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ABSTRACT 

 

As the demand for aluminium profiles continues to rise, the occurrences of 

defects on the aluminium surface increase rapidly. While some factories still 

rely on manual defect detection, the small and unobvious defects often lead to 

high false detection rates due to the human eye's limitation. Although nowadays 

some manufacturing industries have implemented algorithms to automate the 

detection of defects, those algorithms face challenges on dealing with noises 

and lighting changes. This study aims to replace manual and inefficient 

automated defect detection with an approach that uses object detection. The 

objectives of this study include implement YOLOv8 model to identify and 

categorise the aluminium surface defect with the aid of data augmentation, 

transfer learning and addition of attention modules. The YOLOv8n model is 

trained to identify and localise the defect on the aluminium surface with the help 

of transfer learning. To solve the problem of limited datasets, data augmentation 

is used to expand the dataset to prevent overfitting. This study also compares 

the performance between YOLOv8n with and without attention modules. 

Attention modules included in this study are ECA and ResCBAM. However, 

the implementation of attention modules does not increase the performance of 

the model. The final model achieved a mAP@0.5 of 94.3% and 79.7% of 

mAP@0.5:0.95 compared to the original YOLOv8n model. This study shows 

the effectiveness and efficiency of  YOLOv8n in detecting defects on aluminium 

surfaces. Besides, this study also proves the effectiveness of transfer learning 

and data augmentation in improving the overall performance of YOLOv8n in 

detecting various kinds of defect of aluminium surface.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Aluminium profiles are known as an essential material for many industrial 

applications.  due to their versatility, strength, and lightweight properties. For 

decades, aluminium profiles have played an important role in applications 

ranging from high-speed railways to skyscrapers industries, causing the yield 

and quality of the aluminium industry to become progressively important 

(Neuhauser, Bachmann, and Hora, 2019). Unfortunately, the high demand for 

aluminium profiles causes the need for rapid production and the different 

complexity of profiles has led to a greater challenge for manufacturers to 

maintain the balance between quality and quantity supply for the demand. As a 

result of fulfilling the high demand for aluminium profiles in the industries, the 

occurrences of defects on the surface of aluminium profiles increase rapidly 

causing the disposal of the whole aluminium components and further leading to 

financial losses for the manufacturer. Furthermore, external factors such as 

ununiform standards of the production process, and different production 

equipment could also affect the service life of aluminium profiles (Wang et al., 

2022). Therefore, it is a must for quality defect inspection to be performed on 

the surface of aluminium to detect and carry out appropriate actions on the 

aluminium profiles. Previously, the manual-based detection method which is by 

human eyes was carried out for defect detection on metal profile surfaces 

(Campbell, 2013). This was highly reliable due to its high accuracy in 

identifying defects. However, the manual-based detection method has been 

slowly eliminated by industries due to its slow detection speed, cost-intensive, 

and visual acuity limitations (Lin and Wibowo, 2021). Manual-based detection 

can also be affected by external factors such as labour tiredness and subjectivity, 

making it inconsistent and unreliable for high-volume production environments. 

Fortunately, significant advancements in machine vision, image 

processing, and artificial intelligence (AI) have massively enhanced the 

capabilities of vision inspection technology, in turn, has propelled the progress 

of vision-based automated optical inspection (AOI) systems (Ganovska et al., 
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2016) (Jia et al., 2018). Lin and Wibowo (2021) stated that the majority of the 

AOI systems depend on image processing algorithms prior to the advent of deep 

learning. In recent years, deep learning has been implemented into the AOI 

systems with the training of deep learning models with massive amounts of 

databases. However, effective AOI systems couldn’t be carried out if the image 

quality of the detection target is too poor even with a resilient deep learning 

detection system. Detecting defects in metal surfaces has been a major challenge 

due to their small size and diverse types of defects such as scratches, die lines, 

dents, blisters, and others arising from production processes (Lin and Wibowo, 

2021). Furthermore, even the same defects would have different features in 

terms of size, depth, and direction, causing the detection of metal surfaces to be 

highly challenging.  

There are two approaches for defect detection algorithms using deep 

learning which are detection in one-stage and two-stage detection algorithms 

(Zhao and Zhu, 2023). Examples of two-stage detection algorithms are Region-

CNN (R-CNN) (Girshick et al., 2013), Fast Region-based CNN (Fast R-CNN) 

(Girshick, 2015) and Faster Region-based CNN (Faster R-CNN) (Ren et al., 

2017). Meanwhile, single-stage detection algorithms include the You Only 

Look Once (YOLO) (Redmon et al., 2015) (Redmon and Farhadi, 2016) 

(Redmon and Farhadi, 2018) series and Single-Shot MultiBox Detector (SSD) 

(Liu et al., 2016). One-stage object detection utilizes a convolutional neural 

network (CNN) to simultaneously predict object class and location directly from 

the image in a single pass (Zhao and Zhu, 2023). One-stage detection prioritizes 

speed by densely sampling the image, but this approach can suffer from class 

imbalance. The abundance of negative samples relative to positive ones makes 

training difficult, potentially compromising model accuracy (Shf and Zhao, 

2020).  

This research studies the application of deep learning-based defect 

detection algorithms for aluminium surface defect detection and aims to 

overcome the limitations of manual-based methods, such as high detection costs, 

cumbersome manual steps, and the inability to simultaneously classify and 

localize defects. Deep learning offers a potential solution for efficient, 

automated defect detection with improved accuracy in both classification and 

localization (Wang et al., 2022). 
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1.2 Importance of the Study 

Aluminium can be found in many sectors, for which the expense of 

aluminium profile quality control is essential because it might otherwise weaken 

its structural integrity. This study will focus on the Sustainable Development 

Goals (SDGs) established by the United Nations and show how AI can find 

chips, scratches, or dents in aluminium profiles. 

The focus of this study is on sustainable industrial practices, which are 

in line with Sustainable Development Goal (SDG) 9: Sustainable industry, 

smart productivity, and the construction of sustainable infrastructure. The AI, 

which can replace the process of manual defect checking with automated 

inspection, can lower production costs and improve production efficiency. As 

production scheduling is subject to manual-based detection, the latter might 

cause delays and create bottlenecks during the course of AI-operated scheduled 

production as compared to AI-based production scheduling. Through recurrent 

photos taken of deficiencies and labelled ‘defects’, this network of AI models 

may speed up the time of on-the-spot evaluation greatly. It decreases the number 

of production-related defects and additionally allows for the reallocation of 

human resources from routine control of product defects to work with more 

unsuccessful cases and high-level decision-making instead. Implications of this 

goal encompass innovation, industrialization, and development of business, 

which are deemed sustainable or productive unlike destructive and polluting. 

SDG 9's objectives are to foster innovation, promote sustainable and beneficial 

industrialization, and build resilient infrastructure (Population Matters, 2023). 

The reflection on how important technological progress is in solving the coating 

of metals has a role in SDG 9. 

Additionally, this study advances Sustainable Development Goal 

(SDG) 12: Ethical Production and Consumption. As aluminium manufacturing 

involves huge power usage, any effort aimed at reducing environmental waste 

can lead to a sharp fall in the overall level of resource consumption by industries. 

The industrial line with an AI defect detection system helps the engineers spot 

any metal surface defects.  If the instance problem is preliminary they could also 

cut a tiny part of the aluminium. It might lead to less garbage accumulation and 

thus less of the environmental damage we currently face through producing 
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aluminium as well. They can inspect the fault, determine the root of it, and take 

measures of prevention for future detachment of the product..  

 

1.3 Problem Statement 

In recent studies on surface defects in aluminium surface, most of the focus has 

been on identifying the type of defects in images, such as scratches. However, 

there has been less attention given to finding the exact location of these defects 

within the images. While it is helpful to know what kind of defect is present, it 

is also important to know where the defect is located, especially in industrial 

production. In a factory setting, workers need to know the precise spot of the 

defect to fix it or remove the damaged part quickly and efficiently. This lack of 

emphasis on identifying the location of defects in previous research creates a 

gap that needs to be addressed. Without the ability to locate defects accurately, 

it becomes difficult for production teams to take corrective actions, leading to 

slower production and increased costs. 

Generally, traditional image processing and deep learning techniques 

are two classifications for inspection algorithms in AOI. However, they do not 

deal with noise, changes in lighting conditions, or complicated patterns (Bhatt 

et al., 2021). Batool et al. (2021) state that there are restrictions with the 

common machine learning and image processing techniques, and massive 

amounts of noisy, poor-quality data are beyond their capabilities. Therefore, 

these methods' significant use of noise filtering, feature extraction, and selection 

procedures is part of the data preprocessing. They may result in information loss 

or distortion which lowers the pattern recognition accuracy. 

 In many existing studies, the primary focus has been on increasing 

detection accuracy in algorithms designed for identifying surface defects. While 

high accuracy is essential, this focus often leads to a significant drawback: a 

decrease in the detection speed of the algorithm. In industries that rely on real-

time inspection, such as manufacturing and quality control, this slower detection 

process can create serious problems. Industrial inspection systems require both 

speed and precision to ensure production lines run efficiently without 

unnecessary delays. If the detection speed is too slow, even if the accuracy is 

very high, it may fail to meet the real-time demands of industrial environments. 

This trade-off between achieving higher accuracy and maintaining quick 
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detection is a critical issue. Slower detection processes can cause bottlenecks in 

production, delaying the identification and correction of defects, and ultimately 

impacting productivity. 

 

1.4 Aim and Objectives 

This study proposes a deep learning-based defect detection for the surface of 

aluminium extrudants leveraging image recognition techniques. The method 

focuses on identifying surface defects with minimal false positive and false 

negative detections.   

 

Objectives: 

 

• Implement a YOLOv8 detection model for aluminium surface defect 

detection by utilizing data augmentation and transfer learning 

 

• Detect, localize, and categorize the types of surface defects using the 

implemented YOLOv8 model, ensuring that the algorithm achieves high 

accuracy while maintaining a fast detection speed suitable for real-time 

industrial applications. 

 

• Evaluate the performance of the YOLOv8 object detection model using 

precision, recall and mean average precision. 

 

1.5 Proposed Solution 

This study proposed a solution to detect surface defects on aluminium 

extrusions using YOLOv8. Wang et al. (2022) proposed a new model, MS-

YOLOv5 which is an advancement based on YOLOv5, the neck part of 

YOLOv5 is replaced with a PE-Neck structure, and the first detection head 

implements a multi-streamnet. The proposed method excels with the highest 

mean average precision (mAP) which is 87.4% in contrast to the popular object 

detection algorithm for detecting aluminium surface defects. The model has an 

average processing speed of 19.1 frames per second (FPS), which meets the 

needs of real-time inspections in industrial settings. Besides that, Xu, Zhang, 

and Wang (2021) also proposed a solution to detect defects with high accuracy 
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which is an improved YOLOv3 model. By using K-Means++, the modified 

model achieves 75.1% mAP and a reasoning speed of 83FPS. It achieves real-

time inspection while ensuring the high accuracy of defect detection.  

According to the two research above, modifying the YOLO models can 

greatly enhance the model's accuracy in detecting aluminium surface defects 

and align with the real-time inspection requirement in the industry. Another 

attention of this study is to find an approach to study new data augmentation 

techniques and resolve the issue of insufficient aluminium defect images. To 

solve the problem of algorithm sensitive to noise and light changes, data 

processing method such as grayscale is used to decrease the effect and impact 

of lighting and colour on the detecting of defects. Besides, data augmentation 

techniques such as noises and exposure are used to add noises such as dots on 

the training data to reduce the vulnerability of model towards noises, while 

exposure will train the model to be more adaptable towards different kind of 

lighting conditions.  Attention modules will be implemented to YOLOv8 to 

allow the model to extract the features to be detected and improve its 

performance.  

 

1.6 Scope and Limitations of the Study  

The scope of this study is to implement a comprehensive deep learning 

defect detection approach using artificial intelligence to detect defects on the 

surface of aluminium extrudants provided by Aliyun Tianchi. By using a 

YOLOv8 detection model, the system is able to identify and localize the defect, 

which makes it possible to identify individual faults on the aluminium surface, 

such as scratches and other anomalies.  

This research investigates the application of a YOLOv8 detection 

model within a deep learning framework to detect surface defects on aluminium 

extrusions. The focus is on extrusions that have completed the extrusion process, 

aiming to identify prevalent issues like scratches, non-conductive, orange peel, 

leakage and more. Scratch will be the focus of this study besides other defects 

as it is the most faced defect in PMB Aluminium Sdn Bhd. Besides, the Aliyun 

Tianchi dataset also has fewer defect images from scratch which requires more 

attention for further improvement. The main enhancements on the YOLOv8 

model would includes data selection, data augmentation, transfer learning, 
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expansion of class specifically on scratch and implementation of attention 

modules. 

While the current scope prioritizes these common surface 

imperfections, future iterations can be expanded to encompass more severe 

defects that impact the entire extrusion, such as tearing and waving patterns. 

Furthermore, image processing techniques to improve the image quality and 

resolution such as super-resolution and image reconstruction are not applied in 

this study. Hence, corrupted images and blurred images collected during dataset 

gathering would not be considered and contributed to the final findings. It is 

important to acknowledge that this research prioritizes exploring and 

reevaluating the core functionalities of the system, rather than focusing on its 

immediate industrial implementation.  

The computing resources accessible to this project are its development 

limitations. The industry partner, PMB Aluminium Sdn Bhd, has contributed to 

the dataset, specifically for the scratch class as this is the most common defect 

found in their manufacturing factory. However, due to the insufficient sample 

provided, the amount of training data for scratch is not enough to train YOLOv8 

to generalise well on scratch. Hence, the scratch class defect images will be also 

using the dataset from Aliyun Tianchi. Another reason for not using the 

aluminium from PMB Aluminium Sdn Bhd is because of the different textures 

on the aluminium surface which causes the model to not identifying well on the 

aluminium from PMB. To prevent information leakage, all deep learning 

models were trained on local machines using this dataset. The Intel i5-11400H 

CPU, RTX3050 laptop graphics card, and 24GB VRAM are installed on the 

local system. Python is the main development tool for this study whereby the 

PyTorch framework will be used to develop YOLO. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Previous work on aluminium surface defect detection 

The following section will review the previous work on aluminium surface 

defect detection.  

 

2.1.1 Unified Method for detecting common and rare aluminium defects 

Traditional image processing techniques have been an area of research recently 

for automatic surface defect detection on aluminium. However, these methods 

that rely on analysing variations in brightness are only suitable for flat 

aluminium plates and cannot handle the complex shapes of aluminium profiles. 

While DCNN methods are suitable for common defects on aluminium profiles, 

they struggle to identify both usual and unusual defects simultaneously. One of 

the factors is the variety and irregularity of defects because of physical and 

chemical. Another factor is the unbalanced data as common defects are easier 

to find and contribute to a larger training dataset while rare defects occur less 

frequently, hence the training dataset is lesser. Therefore, the unbalanced 

between both defects makes it harder for the learning algorithms to perform well. 

The figure below shows some common aluminium profile surface defects on 

the first row while the second row shows the rare defects that occur less 

frequently during production. 

 

 

Figure 2.1: Example of aluminium profile surface defect (Zhang et al., 2020) 
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 In this research, Zhang et al. (2020) proposed a unified method that can 

detect both usual and unusual defects at once. This method extracts usual defect 

characteristics and generates common category feature maps (CMM) using a 

well-established network based on ResNet-50. They also use an attention 

module to transform the CMM into rare category feature maps (RCM). Lastly, 

they use various data augmentation techniques like resizing, cropping and 

random rotating the image data to improve the method's ability to learn from a 

variety of defects.  

 The unified classification method proposed is called UCR, it contains 

3 sub-networks which are the category representation network, the rare category 

transfer network, and the spatial pooling module. The category representation 

network acts as the team’s expert on common defects, it analyses and extracts 

features to generate common category feature maps. The rare category transfer 

network is the team specialist on rare defects, it has a mechanism called self-

attention that focuses on the specific area of CCMs. The network will then 

transform the CMM to RCM that is better suited for identifying rare defects 

under the guidance of a proposal feature map (PM). The final part acts as the 

integrator where it takes both the CMMs and RCMs to analyse their similarities 

across different image regions. This can help the system to understand the 

overall defect image. The figure below shows the overall structure of the 

proposed method (Zhang et al., 2020).  

 

 

Figure 2.2: Structure of the proposed unified method (Zhang et al., 2020) 
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 The category representation network can be denoted as 𝑠𝑐 = 𝐶( here x 

is the input image and 𝑠𝑐  is the output containing 𝑘𝑎 feature maps while the 

feature map of a category is represented by each channel. This network is 

divided into 3 parts where the first part is the feature extractor. This initial step 

extracts relevant features which is a d-channel feature map from the input image. 

Besides, it also acts as a general filter to remove background noise from the 

image and focus on meaningful information. This step is important as the invalid 

feature cannot be classifier correctly, even if the classifier is very powerful. A 

pre-trained ResNet model but without the final pooling and classification is 

applied due to its efficiency compared to VGG16 (Visual Geometry Group) and 

its success in various computer vision tasks. This pre-trained model is fine-tuned 

on specific defect datasets for optimal performance.  

 The second part is the multi-map layer that works to take the extracted 

features and transform them into a format suitable for category-specific analysis. 

It uses a 1x1 convolution to create 𝑘𝑚  ×  𝑘𝑎 channel feature maps, where 𝑘𝑚 

refers to the number of feature maps per category while 𝑘𝑎 stands for the total 

number of categories. If the 𝑘𝑚  is set to 1, which means that it becomes a 

simpler category representation layer. This allows the network to capture 

various aspects of defects such as its shape and texture.  

 The last part of this network is the pooling layer that takes the 𝑘𝑚 

features map generated by each category and merges them into a single-category 

feature map. The merging process is carried out using the average pooling 

mentioned above where the average value across channels is calculated into a 

single value that represents the overall presence or absence of that defect 

category in the image. The formula used in the process is shown below, where 

𝑚𝑗
𝑖 represents the jth feature map of category i (Zhang et al., 2020). 

 

𝑠𝑐
𝑖 =  

1

𝑘𝑚
 ∑ 𝑚𝑗

𝑖

𝑘𝑚

𝑗=1
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 As mentioned above, a rare category transfer network relies on PM 

generated by the attention module to transform CMMs into RCMs. The attention 

module in this study has 2 branches which are channel attention and spatial 

attention. Channel attention focuses on specific feature channels within the 

CMMs and uses 3x3 convolutions to create ‘channel-weight maps’ to highlight 

the important channels while a 1x1 convolution and sigmoid function to obtain 

a ‘coarse salient map’ to indicate the overall channel importance. Finally, a dot 

product operation will combine them to generate ‘channel attention maps’ for 

each channel. Spatial attention focuses on specific spatial regions within the 

CMM and uses 1x1 convolutions and a normalization function to generate a 

spatial proposed mask to emphasize the informative areas. Lastly, the PM is 

obtained by performing for products between the spatial mask and each 

channel’s attention map, and the PM is specifically tailored to each rare category 

(Zhang et al., 2020). 

 

 

Figure 2.3: Structure of the rare category transfer network (Zhang et al., 2020) 

 

 The spatial pooling module unlike the previous parts, does not involve 

any learnable parameters, instead, it relies on three hyper-parameters to function. 

The main task of this module is to identify and focus on regions that are likely 

to contain important features that help in defect prediction within the feature 

maps. It specifically targets the maximum and minimum values within the 

feature maps as the extreme values can be informative but each of them carries 

different types of information. Although both maximum and minimum values 

are important, maximum values are considered more impactful for classification. 

This module also ensures that there are an equal number of slots to capture both 

maximum and minimum values.  
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 The raw data for this study is obtained from a competition hosted by 

Alibaba and there are 30 defect categories, but the number for each category 

varied significantly. There are 11 categories with more than 50 samples each, 6 

categories with 11 to 50 samples each, and 14 categories with less than 11 

samples. However, the 14 categories are not considered due to the overly less 

samples in the categories while the 11 categories will be common defects and 

the 6 categories will be rare defects. Figure 2.15 shows the number of samples 

per category.  

 

 

Figure 2.4: Number of samples per category (Zhang et al., 2020) 

 

 The accuracy of the UCR method is evaluated by testing the 

performance of the method on this dataset. The figure below shows the accuracy 

achieved by the UCR method for both common and rare defects. The result is 

clear that this method performed well in common defects but some of the rare 

defects have low accuracy due to the defects may be too similar. 
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Figure 2.5: Accuracy of UCR method on different defects (Zhang et al., 2020) 

 

 Resnet, Deep Feature Selection (DFS), and UCR without attention 

module are compared with the UCR to evaluate the performance of UCR. As a 

result, Resnet achieved the highest accuracy for common defects but failed to 

detect rare defects with only 15.92% accuracy. For rare defects, UCR shines 

with the highest accuracy of 50% and outperforms all other methods. To show 

the significance of the attention module in UCR, the UCR without attention 

module is used in this experiment also, but its performance is bad compared to 

UCR. In conclusion, UCR demonstrates a good balance between common and 

rare defect detection with attention module playing a crucial role. 

 

Table 2.1: Performance of different detection (Zhang et al., 2020) 

 

 

2.1.2 Usage of Transfer Learning and Data Augmentation on Defect 

Detection 

AI is effective for quality control tasks even under common limitations in the 

real world such as limited training data. It is a common challenge in training 

neural networks with the lack of extensive training data. However, this could be 

solved with the help of transfer learning and data augmentation. Transfer 
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learning leverages the knowledge gained from pre-trained networks for the 

specific task at hand whereas data augmentations artificially expand the 

available data. To carry out this study, three cutting-edge deep learning models 

are used to classify images, which are VGG16, ResNet50, and GoogLeNet, 

these are the networks that exceed the ImageNet challenge. Demant et al. (1999) 

state that industrial inspection systems typically rely on cameras that capture 

images in grayscale. This is because many image processing algorithms 

designed to detect defects function better on grayscale images compared to 

colour images. The training dataset from the ImageNet challenge has only 813 

images which is quite limited for training powerful deep learning algorithms. 

Hence, data augmentation techniques are used on the existing images such as 

shifting, rotating, and flipping horizontally and vertically. By this, it creates new 

variations of the existing images to help the algorithm to learn from a larger 

dataset. Empty spaces created by these transformations will occupied by zero 

and displayed in black in the training images. 

 

 

Figure 2.6: Image with data augmentation (Neuhauser et al., 2019) 
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 To accelerate training and compensate for the small dataset size, 

transfer learning (TL) is applied by leveraging pre-trained models. Since the 

ImageNet data uses colour images which is size of 224x224x3, but the defect 

detection uses grayscale images of size 896x896x1, the network architecture is 

modified by doubling the kernel strides taken by the filters in the first two layers 

for 8 times larger images. Only blue channel weight from the original RGB 

kernels is used in the first convolution layer because blue light is often used in 

industry to improve defect visibility on reflective materials. ImageNet challenge 

classifies 100 categories, so it requires 1000-dimensional output. However, the 

work only distinguishes between four classes in this study, hence the final layer 

swapped out for a new layer with just four neurons with randomly initialized 

weights. 

 GoogLeNet was a broad and deep network proposed by Szegedy et al. 

(2015) with an incorporated unique building block called the inception module. 

Unlike traditional convolutional layers, the inception module applies multiple 

convolutions with different kernel sizes (1x1, 3x3, 5x5) in parallel to the input 

data to capture features in various scales simultaneously. This network does not 

need any pre-defined instruction on which convolutions to use, the parallel 

processing will let the network decide which features are most relevant for the 

task. While parallel processing increases the amount of information, the 

inception module also utilizes 1x1 convolutions to reduce the dimensionality 

before feeding it to the next layer to prevent the network from becoming overly 

complex. GoogLeNet utilizes a deep architecture with three initial convolutional 

layers followed by nine unique building blocks called inception modules and a 

single dense layer. The network incorporates two additional classification points 

midway through to aid in backpropagation which allows the error signal to flow 

more effectively and train the initial layers more effectively. 
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Figure 2.7: An inception module with dimensionality reduction (Neuhauser et 

al., 2019) 

 

 During the training process, the models aim to minimize a function 

called the ‘multi-class cross-entropy loss function’ which measures the 

difference between the models’ predictions and the actual labels of the training 

data. Table 2.3 includes the number of images processed together during 

training, the total number of training cycles, the learning rate, average training 

loss, and the score in classifying images on separate validation and test datasets 

by the network architectures used. VGG16 only has 8 batch sizes because of its 

complex architecture with a vast number of parameters to learn and burden to 

the graphic cards. The models are also tested again with only one data 

augmentation or transfer learning given to monitor their performance. However, 

this time the number of training cycles is changed according to the early 

stopping approach to prevent overfitting (Yao, Rosasco, and Caponnetto, 2007). 

Using only data augmentation, GoogLeNet, and ResNet achieved relatively low 

test set accuracy with 0.61 and 0.65 respectively while scoring 0.79 and 0.75 

with TL. This highlights the benefit of leveraging pre-trained knowledge from 

a large dataset. VGG16 as the only exception performs well with data 

augmentation but struggles with only TL. Overall, the results emphasize the 

importance of combining transfer learning with data augmentation for optimal 
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performance in this specific task of surface defect detection with a limited 

dataset (Neuhauser et al., 2019). 

 

Table 2.2: Training results when trained with transfer learning and data 

augmentation (Neuhauser et al., 2019) 

 

 

Table 2.3: Training results when only trained with data augmentation and 

when only trained with transfer learning (Neuhauser et al., 2019) 
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Figure 2.8: mAP@0.5 with TL and without TL over 800000 iterations 

(Neuhauser et al., 2019) 

 

 

Figure 2.9: Example of defect detection using ResNet50 with DA and TL 

(Neuhauser et al., 2019) 
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2.1.3 Defect detection of aluminium profile surface using MS-YOLOv5 

based on YOLOv5 

There are a lot of algorithms for defect detection nowadays, but the algorithms 

for detecting defects on aluminium profiles have a shortage such as slow 

processing time, limited defect type detection, and challenges in capturing 

features from the input image. Hence, Wang et al. (2022) proposed a powerful 

algorithm named MS-YOLOv5 which is based on YOLOv5. A PE-neck using 

a special convolution technique, Poly-Scale Convolution (PSConv) with a 

channel attention mechanism is proposed to replace the original YOLOv5 neck. 

MS-YOLOv5 also includes a multi-treatment that is inspired by pyramid 

convolutions (PyConv) to improve the detection of randomly distributed defects. 

It modifies the original YOLOv5 architecture by incorporating residual 

connections and utilizing the first detection head, increasing the effectiveness 

of the network in capturing defects scattered across the image surface. In 

addition, they acknowledge the challenge of limited training data, hence they 

use data augmentation techniques such as geometric transformations and image 

processing to the training set. This creates a variation of the existing dataset to 

decrease the model’s dependence on specific features present in the original 

dataset. 

 The dataset created for training and testing the detection model comes 

from the Ali Tianchi database and some actual defect images captured in an 

Guangxi factory. There is a total of seven types of defects, contributing 3098 

defect images including concavity, dirty spot, orange peel, non-conducting, 

scrape under screen, and embossing. As mentioned above, data augmentation 

techniques are used due to an insufficient initial dataset which might lead to 

overfitting and reduced accuracy and generalizability. Data-enhancement 

strategy is also applied to the training set such as adjusting gamma levels, 

brightness, and contrast. With these data augmentation methods, the dataset has 

grown into 7777 images for training, providing more learning opportunities to 

the model, while 1987 images are used for model testing. Different lighting 

conditions can alter the visibility of the defect details; hence gamma variation 

specifically targets enhancing dark details within the images. It applies a non-

linear transformation that brightens dark areas to reveal more defect features 
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that might be obscured. While contrast variation improves the overall image 

quality by adjusting the contrast between the different image elements and 

brightness variation simulates the effects of high-intensity light on the image. 

These techniques are used to expose the model to a wider range of lighting 

conditions and are more adaptable to real-world scenarios where light 

conditions would not be perfectly controlled (Wang et al., 2022). 

 

 

Figure 2.10: Number of datasets for training and testing (Wang et al., 2022) 
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Figure 2.11: RGB comparison histogram. (a) Original (b) Adjusted Gamma (c) 

Adjusted Contrast (d) Adjusted Brightness (Wang et al., 2022) 

 

 The structure of MS-YOLOv5 includes the backbone, neck, and 

detection head. The backbone is the foundation of the model and is responsible 

for extracting core features from the input image, MS-YOLOv5 utilizes the 

well-established CSPDarknet-53 architecture for the backbone. The neck of 

MS-YOLOv5 uses the PE-Neck while the detection uses the multi-streamnet as 

the first detection head. 

 

 

Figure 2.12: Structure of MS-YOLOv5. (a) Backbone, PE-Neck, and multi-

streamnet (b) composition of modules (Wang et al., 2022) 
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 PSConv is a special type of convolution that incorporates multiple 

‘dilation factors’ within a single kernel, it uses a set of different dilation factors 

within the same kernel (Woo et al., 2018). PSConv creates a filter that can 

extract feature information at different scales simultaneously by alternating 

varying dilation factors in a cyclic manner, allowing them to capture details 

from both small and large defects within the same image. The calculations by 

these different kernels within the PSConv kernel alternate across the channel to 

ensure the information at various scales is extracted for each feature channel, 

providing a comprehensive representation of the image data. 

 

 

Figure 2.13: Architecture of PSConv. (a) input features (b) kernel incorporates 

various dilation rates (Wang et al., 2022) 

 

 The research mentioned above has shown the importance of attention 

modules in CNN for improved performance. However, most attention 

mechanisms have complex structures which leads to large network size, 

increased training time, and slow inference time which means slower 

predictions on new data. Efficiency Channel Attention (ECA) is an alternative 

to overcome the shortage of existing attention mechanisms. Some approaches 

like SE-Net will oversimplify the process by reducing the feature dimensionality, 

which will lower the capability of the model to learn and utilize the important 

channel information effectively. Hence, ECA proposes a dimensionless local 

cross-information interaction strategy to achieve good performance while 

maintaining a lightweight structure. This strategy relies on simple 1-

dimensional convolutions instead of complex structures. This technique allows 



23 

 

the model to dynamically choose the most suitable 1D convolution kernel for 

each specific channel, enabling it to capture relevant cross-channel interactions 

effectively.  

 

 

Figure 2.14: Schematic  representation of the ECA module's architecture 

(Wang et al., 2022) 

 

 The standard YOLOv5 neck component aims to extract features at 

various scales and combine them for object detection, but the existing neck 

might struggle to capture a wide range of defect sizes effectively. This is 

because the original neck component performs unnecessary feature extraction 

in its upper part, causing fragmented features which means breaking down 

features and making them less informative. Hence, PSConv, as explained earlier, 

is used in PE-neck to extract information from defects of various sizes within 

the aluminium profiles. While PSConv focuses on capturing semantic 

information, it might neglect the precise location. Therefore, the ECA module 

is used to address this by enhancing the localization information extracted by 

the network. This PE-Neck also utilizes jump connections to bypass these 

redundant steps and directly feed sable features which contain both rich 

semantic and accurate localization information into the detection layer. 
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Figure 2.15: Structure of MS-YOLOv5’s neck (Wang et al., 2022) 

 

 In image processing, convolutions with different kernel sizes are used 

to extract features at various scales like PyConv and OctaveConv to expand the 

model’s ability to perceive features across different image regions. (Duta et al., 

2021). However, this approach may generate a significant amount of redundant 

information that will cause slow processing time to process unnecessary data, 

the abundance of redundant data makes it harder to identify defects accurately 

and increases model complexity which leads to a larger number of parameters 

that require more resources for training. To overcome these limitations, a multi-

stream network is proposed to control redundancy. Instead of relying on varying 

convolution depths, this network uses the quantity of convolutions at different 

scales to manage the overall feature map depth to ensure all scales have the same 

number of feature maps. This approach also optimizes the computational cost 

by ensuring a fixed amount of feature maps are produced and maintaining a 

reasonable level of computation. The multi-stream network is inspired by the 

ResNet architecture to incorporate residual connections to learn and discard 

redundant information within the network structure without sacrificing 

performance. Lastly, these improved features are fed into the initial detection 

stage of the YOLOv5 architecture to enhance the ability of the model to pinpoint 

defects scattered across the image surface. 
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Figure 2.16: Structure of multi-streamnet (Wang et al., 2022) 

 

 By adding P-Neck to original YOLOv5, it improved recall by 2.5% and 

mean Average Precision (mAP) by 1.4%. However, it further boosts its 

performance by replacing P-Neck with PE-Neck, recall, and mAP increased by 

0.6% and 0.2% respectively, where mAP has a large improvement of as much 

as 1.7%. Integration of a multi-stream network further increases the mAP by 

0.2% and precision by 1.2%, but it does not help in increasing recall. Compared 

to the original YOLOv5, MS-YOLOv5 with PE-Neck and multi-stream network 

added achieved significant improvement in mAP with 3.3% and 1.1% increase 

in recall. Notably, the detection speed only increased by 1FPS, making the 

model more efficient for real-world scenarios. 

 

 

Figure 2.17: Comparison of mAP of each detection (Wang et al., 2022) 
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Table 2.4: Comparison of each detection based on precision, recall, mAP, and 

FPS (Wang et al., 2022) 

 

 

 The comparison continues by comparing these methods with F1-cure 

and PR-cure as metrics for overall performance. F-1 cure considers both 

precision and recall where MS-YOLOv5 strives in these metrics compared to 

original YOLOv5. PR-cure plots precision against the recall where the enclosed 

area represents the mAP. Figures 2.30 and 2.31 show that MS-YOLOv5 has a 

bigger area under the curve than YOLOv5, signifying the improvement in mAP 

for MS-YOLOv5. The figure below shows the actual defect detection for both 

methods. Both methods work well in detecting well-defined defects, but MS-

YOLOv5 excels at detecting defects with challenging characteristics. For 

example, it successfully identifies scrape that has variable sizes and dense 

distribution while YOLOv5 misses it. Dirtyspot defects are small and randomly 

distributed, YOLOv5 only detects one, whereas MS-YOLOv5 finds all of them. 

The MS-YOLOv5 model excels at detecting "under screen" defects, which are 

particularly challenging due to their similar colour to the background. 

 

 

Figure 2.18: F1-cure comparison for each defect (Wang et al., 2022) 
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Figure 2.19: PR-cure comparison for each defect (Wang et al., 2022) 

 

 

Figure 2.20: Comparison of YOLOv5 and MS-YOLOv5 in detecting and 

localizing defects (Wang et al., 2022) 

 

 

Figure 2.21: More results of MS-YOLOv5 in detecting defects (Wang et al., 

2022) 
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 The performance of MS-YOLOv5 is further compared with other 

established object detection algorithms such as YOLOv4, YOLOv4, SSD, 

Faster-RCNN, and original YOLOv5. The table below shows the dominance in 

performance across the board. It achieves an Average Precision (AP) above 80% 

for each defect type, showing its consistency and reliability detection across all 

defect categories. Unlike other algorithms, MS-YOLOV5 avoids extreme 

imbalance in detection performance as it is important for real-world applications 

that require effective detection regardless of size variations. MS-YOLOv5’s 

overall mAP reaches 87.4% which is higher than any other algorithms compared. 

It achieved an impressive improvement of 11.54% over YOLOv3, 4.59% over 

YOLOv4, and 3.3% over the base model YOLOv5 itself. MS-YOLOv5 also 

achieved a remarkable 20.4% improvement over SSD and 5.71% over Faster-

RCNN.  

 

Table 2.5: AP performance for each algorithm (Wang et al., 2022) 

 

 

 

Figure 2.22: A comparison chart of mAP for each algorithm (Wang et al., 

2022) 
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2.1.4 Lightweight model network based on YOLOv5s 

There is a study that proposed a new lightweight model network designed for 

real-time detection of aluminium profiles based on the YOLOv5s framework. 

Speed and efficiency for real-time inspection are the main priority in this 

network. This network architecture consists of 4 parts which are the input layer, 

GCANet Backbone, neck, and prediction. The input layer is responsible for 

receiving input images and resizing them into a standard format of 640x640x3 

before feeding them into the network. GCANet Backbone is the core of this 

network which is responsible for feature extraction. It corporates an attention 

module with a specific module called C3Ghost to help the model to focus on 

crucial details in the images, in terms of both colour channels and spatial 

information. There are 3 scale feature maps which are 80x80, 40x40, and 20x20 

extracted at different levels. The neck layer utilizes depthwise separable 

convolution (DwConv) to further compress the model size to make it more 

lightweight and efficient. The final stage performs the actual defect detection 

based on the processed features extracted from the previous layer. 

 

 

Figure 2.23: The proposed network architecture (Tang et al., 2023) 
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 The GCANet backbone as the core component for extracting features 

consists of 3 parts which are the CBL module, Ghost Module, and AC3Ghost 

Module. CBL module is a common building block in CNN which consists of 3 

parts also which are Conv, BatchNorm, and Leaky ReLU. Conv applies a 

standard convolution filter to the input data while BatchNorm normalizes the 

data across channels and improves training stability whereas Leaky ReLU 

introduces a non-linear activation function that allows the network to learn 

complex patterns. The ghost module was originally introduced in Huawei’s 

GhostNet architecture in 2020 and aims to reduce computational cost and the 

number of parameters. It starts with applying a regular convolution to generate 

a small number of high-quality feature maps, followed by creating additional 

feature maps using computationally inexpensive linear operations. 

 

 

Figure 2.24: Ghost module structure (Tang et al., 2023) 

 

 AC3Ghost module utilizes the CBAM attention mechanism proposed 

by Hou, Zhou, and Feng (2021) and embedded it in C3Ghost. This mechanism 

allows the network to focus on both channel-wise and spatial information within 

the feature maps. With this, it helps the model to distinguish between important 

and unimportant aspects within the image. This module works by receiving data 

processed by the regular Ghost module and splitting the data into 2 branches for 

parallel processing. The first branch is to perform a combination of features 

from different levels using multiple Ghost Bottleneck stacks and three 1x1 

convolution modules. This is to combine the features extracted at different 

levels for a more comprehensive understanding of the image. The second branch 
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works to reduce the number of channels using a single 1x1 convolution module. 

The resulting maps from the two branches are combined by concat to create a 

richer representation of the image. After that, the CBAM attention mechanism 

is applied to the combined feature maps to focus on the most relevant channel 

and spatial information for defect detection. The final processed features are 

passed through a final 1x1 convolution module before being used for the next 

stage of the network. 

 

 
Figure 2.25: AC3Ghost module Structure (Tang et al., 2023) 

 

 The evaluation metrics used in this study include average precision 

(AP), mean average precision (mAP), mAP@0.5 and mAP@0.5:0.95. Average 
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precision simply means how well the model performed for a single category of 

defects where it considers both completeness and correctness to avoid false 

positives. The mAP considers the model’s overall accuracy where it takes the 

average AP scores across all defect categories the model is trained to detect. The 

mAP@0.5 is a specific variant of mAP that focuses on detection where the 

predicted bounding box overlaps with the ground truth bounding box by at least 

50%. A high mAP@0.5 indicates the model is good at accurately locating the 

defects in addition to finding them. The mAP@0.5:0.95 is a metric that extends 

the concept of mAP@0.5 where the AP is calculated for IoU thresholds ranging 

from 0.5 to 0.95. This provides a more detailed picture of how well the model 

performs at different levels of bounding box overlay accuracy. There are only 4 

categories of defect included in this study which are pinhole, scratch, dirt, and 

fold (Tang et al., 2023).  

 The accuracy of the proposed model is evaluated using a fivefold cross-

validation method which means splitting the dataset into 5 groups and four 

groups will be used to train the model while the remaining one group will be 

used for testing. As shown in Table 2.6, the model demonstrates strong 

performance in the folding category with 99.45% precision, 100% recall, and 

99.37% AP@0.5%. These high values indicate the model effectively detects 

these defects with minimal false positives and accurate localization. However, 

this model faces challenges with pinholes, which have fewer pixels and less 

texture information. To address this, the paper employs techniques like 

Gaussian blur and copy-pasting to artificially generate more features during 

training. This approach improves pinhole detection, achieving an AP of 82.45%. 

The visual inspection results are shown in Figure 2.36 with all 4 defects detected 

with a confidence level above 0.8 (Tang et al., 2023). 

 

Table 2.6: Result of the four types of defect detection(Tang et al., 2023) 
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Figure 2.26: Object detection results for four defects (Tang et al., 2023) 

 

 The proposed method is further compared against established single-

stage object detection such as SSD and other YOLO variations. Among all the 

detection methods tested, the proposed method achieves the highest in 

mAP@0.5 with 94.85% and mAP@0.5:0.95 with 73.36%. Although YOLOv5-

Mobilenetv3 and YOLOv5-Shufflenetv2 offer faster detection speeds, their 

mAP@0.5 falls below 90%, indicating their low overall accuracy in detecting 

defects. 

 

Table 2.7: Outcome of each algorithm (Tang et al., 2023) 
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2.2 Other usages of YOLO on Metal Surface Defect Detection 

Yun et al. (2009) state that X-ray testing is great for spotting defects in steel 

pipe welds, but it takes humans to figure out what kind of defects it is and where 

it is located. This is where it shows the importance of AI, machines could be 

trained to identify weld defects automatically with the help of deep-learning 

object detection. Hence, Yang et al. (2021) propose the usage of YOLOv5 to 

find defects in steel pipe welds using X-ray images. As a comparison to the 

performance of YOLOv5, Faster-RCNN is also used in this study to be trained 

on the same dataset to compare their precision and total loss during the training. 

Faster R-CNN's precision bounced around a lot during training, starting high 

then going down, and slowly coming back up, while YOLOv5 started shaky but 

steadily improved and then stabilized. For the total loss, Faster R-CNN was 

stable between 50 and 100 epochs but had a couple of large bumps while 

YOLOv5 started lower but became more stable between 100 and 150 epochs 

and efficient after training for a while. YOLOv5 achieves an impressive 

precision of 97.8%, with a mAP@0.5 of 98.7. YOLOv5 can detect a single 

image in just 0.12 seconds which is suitable for real-time defect detection during 

steel pipe production. Overall, YOLOv5 trains faster and ends up being more 

stable and efficient than Faster R-CNN for this weld defect detection task. 

 

Table 2.8: Accuracy of each algorithm (Yun et al., 2009) 

 

 

Shi et al. (2022) point out the difficulties of inspecting steel surfaces 

during production due to the many kinds of defects that can arise and their small 

size, strict quality control makes manual inspection even harder. Therefore, they 

propose an improved version of YOLOv5 which focuses on attention 

mechanism and k-means clustering for anchors. The attention mechanism is to 

help transfer the important details, especially from shallow features from the 

initial processing stage which is the backbone to the neck of the YOLOv5 model. 
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On the other hand, k-means clustering is to optimize the anchor boxes used in 

YOLOv5 to help the model in handling the unusual shapes of defects present in 

their steel surface dataset. Compared to the original YOLOv5, their improved 

model achieved a higher mAP of 86.35% whereas the original only achieved 

81.78%. As a trade-off for the increased accuracy, the detection speed dropped 

a bit from 52 FPS to 45 FPS. 

Ma et al. (2022) use YOLOv4 as a base and modify it with depth-wise 

separable convolutions and parallel dual attention mechanism to tackle the 

challenge of slow processing for detecting defects in aluminium strips during 

production. Depth-wise separable convolutions are used to make the network 

more efficient by reducing the number of calculations needed while a parallel 

dual attention mechanism is used to help the module to focus on the importance 

of the image containing defects. Compared to YOLOv4, their improved network 

has its network size reduced by 83.38% which makes it run faster and requires 

less memory. One of the improvements they customized is the anchor boxes 

used to defect long and thin defects such as scratches in their dataset. It reaches 

a high accuracy on the real data from an aluminium cold-rolling factory with an 

mAP of 96.28%. 

 

 
Figure 2.27: Parallel Network Structure proposed by Ma et al. (2022) 
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2.3 YOLOv8 

A new version of YOLO, YOLOv8, was released in January 2023 and is claimed 

to be better than previous versions. Although there is still no full explanation 

yet, initial tests on YOLOv8 show that it performs more with lesser computing 

power compared to its predecessors. It is interesting to note that both YOLOv5 

and YOLOv8 are from the same company which is Ultralytics and YOLOv5 is 

known for its speed and performance. This suggests that YOLOv8 might be 

designed for devices with lower processing power that need very fast object 

detection. The figure below shows the comparison between YOLOv8, YOLOv5, 

YOLOv6, and YOLOv7 trained on 640 image resolution. The result shows that 

YOLOv8 has better throughput than its predecessors with a similar number of 

parameters, indicating its efficiency when it comes to hardware usage.  

 

 

Figure 2.28: YOLO-v8 comparison with predecessors (Hussain, 2023) 
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Table 2.9 shows the comparison between different YOLO versions 

based on the framework, backbone, AP, and their main contribution. The AP 

retrieved in the table is based on a dataset of images from COCO-2017. 

Common Objects in Context is the industry standard benchmark for evaluating 

object detection models. It includes images of more than 80 regularly seen 

objects, with more than 121000 images with annotations for nearly 883000 

objects. However, it is important to note that the performance of an object 

detection model still depends on the model design and training, instead of the 

dataset itself only. 

 

Table 2.9: Summary of the reviewed YOLO variants (Hussain, 2023) 

 

 

Besides COCO-2017, YOLOv8 is also tested by researchers at 

Roboflow using 100 sample datasets from their repository. The evaluation 

method, co-developed with Intel, is a benchmark that evaluates how well will 

YOLOv8 perform on the custom dataset. YOLOV8 is evaluated with its 

predecessors on RF100 and the YOLOv8 has an overall better mAP@0.5.  
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Figure 2.29: YOLOs mAP@0.5 against RF100 (Solawetz, 2024) 

 

 

Figure 2.30: YOLOs average mAP@0.5 against RF100 categories (Solawetz, 

2024) 
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Table 2.10: Summary of comparison among findings 

No Author Title Technique Used Strength/ 

Limitations 

Result Remark 

1 Zhang et al. 

(2020) 

Unified detection 

method of 

aluminium profile 

surface defects: 

Common and rare 

defect categories 

- Unified method with 

category representation 

network, attention 

module, and rare 

category transfer 

network 

 

 

- Able to detect 

both common 

and rare defect 

- The proposed method has a 

good balance between common 

(86%) and rare defect detection 

(50%) 

 

-ResNet performs the best in 

common defects (90%) but the 

worst in rare (15.9%) 

 

-The method performs badly in 

rare defects without an attention 

module (36.67%) 

-Importance of 

attention module  

2 Neuhauser 

et al. (2019)  

Surface defect 

classification and 

detection on 

extruded aluminium 

-VGG16 

 

-GoogLeNet 

 

- Increased 

accuracy with 

TL and DA 

- Usage of transfer learning and 

data augmentation increases the 

mAP from 0.2 to 0.47 with lower 

iterations with a small dataset.  

- Utilize transfer 

learning and data 

augmentation in 

training CNN.  
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profiles using 

convolutional neural 

networks 

-ResNet50 

3 Wang et al. 

(2022) 

 

An intelligent 

method for detecting 

surface defects in 

aluminium profiles 

based on the 

improved YOLOV5 

algorithm 

-MS-YOLOv5 - High mAP 

 

-Low FPS 

- MS-YOLOv5 has the highest 

mAP of 87.4% and the lowest 

FPS of 19.1 to fit real-time 

detection 

 

4 Tang et al. 

(2023) 

An algorithm for 

Real-Time 

Aluminium Profile 

Surface Defects 

detection based on 

lightweight network 

structure 

-YOLOv5s with 

attention mechanism 

and depth-separable 

convolution 

-Improve mAP 

 

-reduce model 

size  

 

-low FPS 

-Improves mAP by 1.76% 

 

-reduce model size by 52.08% 

 

-reach 17.4 FPS 
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5 Yang et al. 

(2021) 

Deep Learning based 

Steel Pipe Weld 

Defect Detection 

-YOLOv5x - High accuracy 

 

- Fast detection 

time 

- High precision of 97.8% and 

mAP@0.5 of 98.7 

 

-detection time of 0.12s per 

picture 

 

6 Ma et al. 

(2022) 

A lightweight 

detector based on 

attention mechanism 

for aluminium strip 

surface defect 

detection 

-Yolov4 with the 

backbone YOLO-

DCSAM 

-High mAP 

 

-Reduced model 

volume 

 

-Increased 

detection speed 

- mAP of 96.28% 

 

- Reduce the model volume by 

83.38% compared to YOLOv4 

 

- Increase detection speed by 3 

times 

 

7 Shi et al. 

(2022) 

Research on Steel 

Surface Defect 

Detection Based on 

YOLOv5 with 

Attention 

Mechanism 

- YOLOv5 with 

attention module and 

uses K-means algorithm 

-Increased mAP 

 

-Decreased 

detection speed 

-Higher mAP of 86.35% 

compared to the original 

YOLOv5 

 

- Detection speed drops from 52 

FPS to 45 FPS 
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8 Zhao et al. 

(2023) 

A modified YOLO 

for the detection of 

steel surface defects 

- YOLOv5 with 

Res2Net as the 

backbone and double 

feature pyramid 

network in the neck and 

decoupled head  

 

- named as RDD-YOLO 

- High mAP -81.1% of mAP on NEU-DET, 

4.3% higher than YOLOv5 

 

-75.2% of mAP on GC10-DET, 

5.8% higher than YOLOv5 

 

9 Li et al. 

(2018) 

Real-time Detection 

of Steel Strip Surface 

Defects Based on 

Improved YOLO 

Detection Network 

- Improved YOLO 

network with 27 

convolution layers 

-High mAP 

 

-High recall rate 

 

-High detection 

rate with low 

FPS 

- 97.55% of mAP 

 

-95.86% of recall rate 

 

99% detection rate with a speed 

of 83 FPS 

 

10 Wang et al. 

(2022) 

 

Efficient Detection 

model of steel strip 

surface defects based 

on YOLO-V7 

-YOLOv7 with de-

weighted BiFPN, ECA 

attention mechanism, 

and IoU loss function 

- High mAP 

 

-High detection 

speed 

- mAP of 80.2% on GC10-DET 

and 81.9% on NEU-DET 

 

-55.6 FPS on NEU-DET 

 



43 

 

  

 

11 Hussain 

(2023) 

 

YOLO-v1 to YOLO-

v8, the Rise of 

YOLO and Its 

Complementary 

Nature toward 

Digital 

Manufacturing and 

Industrial Defect 

Detection 

-YOLOv8 and all 

previous versions of 

YOLO 

-High mAP 

 

 

- YOLOv8 performs better 

compared to its predecessors on 

COCO-2017 and RF100. 
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2.4 Conclusion 

Based on the resources reviewed above, it can be concluded that traditional, it 

can be concluded that traditional object detection methods have been eliminated 

in recent years. Faster R-CNN as a representative of two-stage architecture may 

offer a high accuracy on aluminium surface defect detection. However, it 

requires more processing power compared to a single-stage approach which 

may lead to slower inference speeds and hinder real-time defect detection on a 

production line. Hence, the single-stage approach will be the focus of choices 

in this study. SSD as one of the single-stage object detection models offers a 

good balance between accuracy and speed, but the prioritization of speed may 

lead to a slight decrease in mAP on complex object detection tasks. Besides, 

SSD’s architecture offers less flexibility for customization which could be a 

disadvantage for a project that requires fine-tuning for specific defect types.  

According to the metal surface defect detection project recently, there 

were a lot of proposed solutions based on YOLO. Previous versions of YOLO 

like YOLOv3 and YOLOv5 have excelled in the previous works of object 

detection. As shown in the table above, YOLOv5 is one of the best object 

detection models that can be modified to fit different projects while maintaining 

high accuracy and speed. Its ability to leverage pre-trained weights on generic 

object detection tasks also allows fine-tuning for specific needs. Among all the 

versions in the YOLO, YOLOv8 will be selected as the method for this study. 

YOLOv5 as one of the most famous YOLOs, was introduced by Ultralytics, 

while YOLOv8 is another cutting-edge technology released by them in January 

2023. With the excellent performance of YOLOv5 in the previous works, it is 

possible to say that YOLOv8 will perform better in object detection. Based on 

the statistics provided by Ultralytics, YOLOv8 performs better than YOLOv5 

in COCO-2017 and RF100. Therefore, YOLOv8 will be chosen as the model 

for this study. Lastly, attention modules and data augmentation have increased 

the accuracy of object detection models in the previous works. Hence, this study 

aims to implement YOLOv8 with a high accuracy of 90% for categorizing and 

localizing the aluminium surface defects with the help of an attention module 

and data augmentation.   
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Workflow of model training  

 

Figure 3.1 shows the workflow for training the YOLOv8 object detection model. 

The process starts with collecting data to build a sufficient dataset to train the 

model. After collecting enough data, the data will be pre-processed by resizing 

it to 640x640. Then, the defects on the image will be annotated to label out the 

defects using bounding boxes. The annotated data will undergo augmentation to 

increase the size of the dataset to train the model. It continues with the training, 

validation, and testing of the model. Depending on the performance of the model, 

improvements will be made to the model to improve its accuracy in detecting 

defects. After achieving the optimal performance, its performance will be 

evaluated from precision, recall, average precision, and mean average precision. 

 

 

Figure 3.1: Workflow for training the YOLOv8 object detection model. 
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3.1.1 Data Collection 

The dataset used in this study is originally an open-source dataset from the 

aluminium surface defect detection competition held by Aliyun Tianchi in 2018. 

However, the dataset from the competition does not provide labels for the 

defects on the aluminium surface defects which makes it difficult to identify and 

classify the defects. Mis location and misclassification of the defects during the 

manual labelling may result in the model learning incorrect patterns with wrong 

classes, leading to poor generalization. As a result, the model will produce more 

incorrect predictions, impacting its accuracy and reliability. Hence, to ensure 

high-quality and accurate labelling, the dataset used in this study was acquired 

upon request from the paper titled ‘MA-YOLO: A Method for Detecting 

Surface Defects of Aluminium Profiles With Attention Guidance’, authored by 

Jiang et al. (2023). This dataset includes 10 aluminium surface defects, 

including corner leak, crater, dirty point, jet, leakage, non-conductive, orange 

peel, paint bubble, parti-colour and scratch. There are a total of 2776 labelled 

defect images with a resolution of 2560 X 1920. Figure 3.2 shows some 

examples of the defect images.  

 

 

Figure 3.2: The labelled dataset from the journal 
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Figure 3.3: Number of images for each classes 

 

3.1.2 Data Selection 

Given the significant disparity in data distribution among the various defect 

classes, ‘Jet’ and ‘Bubble’ were severely underrepresented in the dataset. 

Despite efforts to augment and balance the data, these classes remained 

insufficient for the model to learn robust representations. To mitigate the 

negative impact of these underrepresented classes on the overall model 

performance, they are excluded from this study. This allows the model to focus 

on learning from classes with sufficient data, leading to improved accuracy and 

generalization capabilities on the majority of defects.  

Despite the relatively low quantity of data for the 'Scratch' class, it was 

strategically included in the study due to its importance as the primary focus of 

defect detection in PMB Malaysia Sdn Bhd. To address the data imbalance and 

enhance model performance, the 'Scratch' class was expanded through the 

provision of additional aluminium-based samples. Considering that there is 

insufficient data evidence for ‘Dirty Point’ and also all the weak variables 

according to preliminary analysis, we opted not to include this class in the 

training set. In contrast, ‘Orange Peel’, even though it has a smaller data amount 

compared to ‘Dirty Point’, is projected to enhance the model’s performance due 

to its higher quality and relevance to this study. Consequently, we have included 

‘Orange Peel’ in our training data selection. 
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Figure 3.4: Number of images after data selection 

 

3.1.3 Data Annotation  

Data annotation is carried out before data augmentation because annotating the 

original images is a straightforward process while annotating an augmented 

image needs more consideration on the augmentation like cropping and noise 

which will be rather complex.  Annotating original data can also avoid 

redundant labelling as the annotations for the original images will be applied to 

the corresponding augmented version when augmentation creates variations 

from the original image. 

As most of the journal dataset has been labelled, the main focus of data 

annotation in this study will be labelling the scratch defects on the aluminium 

obtained from Aliyun Tianchi Aluminium Defect Detection Competition's 

official website. The defect images taken were uploaded to RoboFlow to carry 

out manual labelling with bounding boxes. The labelled images are also 

uploaded to perform preprocessing and augmentation.  
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Figure 3.5: Images uploaded to Roboflow 

 

 

Figure 3.6: Annotating defect on image 
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3.1.4 Data preprocessing  

Before the images performed data preprocessing, they were split into the ratio 

of 7:2:1 for training, validation and testing set. Therefore, a total of 2346 images 

in the dataset is split into 1648 for training, 477 for validation, and 221 for 

testing. 

 

 

Figure 3.7: Dataset splitting 

 

This is the step to ensure the dataset follows a standard format to 

maintain the consistency of the dataset for the training of models. Auto-orient 

is applied to all the data to strip the images of their EXIF data and standardize 

the pixel ordering. EXIF data is embedded metadata within the image that 

specifies the intended orientation for proper viewing. All the images are also 

resized to 640x640 in a standard size so that all the defects can be seen clearly 

by the models and prevent confusion for images with the same defects but 

having different defect sizes due to image size. Grayscale is also applied to all 

of the images. This is to decrease the computational costs and increase the 

training speed as the dataset is large. It can also make the model less sensitive 

to variations in lighting and colour which could be beneficial in real-world 

applications where images may have different lighting conditions. Lastly, 

grayscale can help the model to focus on the shape and texture of the defects 

instead of relying on the colour information.  

 

 

Figure 3.8: Comparison after data preprocessing 
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3.1.5 Data augmentation 

As the current dataset is insufficient for the training of the model, data 

augmentation is used to expand the dataset to prevent overfitting which will 

decrease the model’s ability of generalization and accuracy. The employed data 

augmentation techniques include horizontal and vertical flips, rotate, brightness 

and noise. Brightness augmentation is used to ensure the model can adapt to the 

different brightness when capturing the aluminium defects images. Noise is 

added to train our model so that it is more resilient to the camera artifacts. The 

reasons for the data augmentation methods used and the expected result are 

shown in the table below. 

 

Table 3.1: Reason and expected result of data augmentation methods 

 

 

However, augmented data will only be assigned to the training set, not 

the validation and testing set. This is because the training set requires a wider 

variety of data for the model training while augmented data improves its 

robustness and prevents overfitting. On the other hand., the purpose of testing 

and validation is to access the model performance on unseen data. If augmented 

data is included in the testing and validation set, the model would have seen 

variations of a similar picture during the training because of augmentation. 

Hence, the purpose of evaluating the performance on unseen data will be 
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meaningless. Besides, testing and validation also aim to evaluate how well the 

model detects real-world scenarios, while extensive modification with data 

augmentation would not provide an accurate picture of the model’s ability to 

handle real-world scenarios.  

Once the data augmentation is done, the dataset is ready to be 

downloaded. The dataset is downloaded in a zip file to a local computer in the 

YOLOv8 format to be compatible with the training of the YOLOv8 model. 

Folders of train, valid and test with images and labels included are accessible in 

the zip file. A yaml file for dataset configuration during the training of YOLOv8 

is also included in the zip file. RoboFlow provides this convenience for users to 

train models without writing the dataset configuration yaml file. The 

configuration file contains the path for the training, validation and testing set of 

the dataset. It also contains the seven classes of defects to be detected and the 

name of each class.  

 

 

Figure 3.9: Augmented data with flip, rotate, brightness and noise 

 

 

Figure 3.10: Download dataset in YOLOv8 format 
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3.1.6 Model training, validation, and testing 

Before the training of YOLOv8, Anaconda is required to be installed to create 

a locally isolated environment to prevent conflicts between multiple projects’ 

dependencies and libraries. Additionally, it simplifies the installation of libraries 

like PyTorch and CUDA for GPU support. The command conda create -

n yolov8 python=3.8 is used in the command prompt to create a conda 

environment with the name yolov8  and Python3.8 installed in it. Then, conda 

activate yolov8 is used to switch into the yolov8 environment. PyTorch 

is then downloaded as it is the underlying framework for YOLOv8 and it 

provides core libraries for performing model training. Faster model training can 

also be achieved through GPU acceleration with CUDA with the help of 

PyTorch. Once the environment setup is complete, YOLOv8 can be cloned 

easily using git clone and install the requirements using pip install 

ultralytics.  

The training of yolov8 can be started with the command yolo 

task=detect mode=train model=./yolov8n.yaml 

data=data.yaml epochs=100. Table 3.2 shows the hyperparameter 

setting used in the model training. There are some key settings of the parameter 

in this model training such as the input image size is 640X640, batch size is 16, 

optimized by AdamW with weight decay of 0.0005, initial leaning rate of 

0.000909, and momentum of 0.9. The model is trained for 100 epochs to ensure 

its reliability and accuracy. The selection of AdamW as the optimizer is one of 

the options Ultralytics provides. In YOLOv8, besides using your optimizer, 

‘auto’ can be selected and automatically choose an optimizer that suits your 

training based on the dataset size and batch size. Ultralytics claims that this 

function has gone through countless extensive experiments and shows 

improvement in results by using the chosen optimizer. Hence, the optimizer, 

initial learning rate and momentum is chosen by Ultralytics based on the dataset 

size.  

During the training, its performance can be tracked on the validation 

set, measured by validation mAP or validation loss to improve the model’s 

ability to handle unseen data. Once the validation metrics have reached their 

peak, it is better to stop the training, known as early stopping. This prevents the 
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model from overfitting to specific training data and performing worse on unseen 

data.  

After all the training has been done, the model will run on a test set. 

The accuracy of the test set indicates how well the model performs on unseen 

data, which is crucial when it is deployed in production. This prevents the 

overfitting of the model to the validation data.  

 

Table 3.2: Hyperparameter setting of model training 

 

 

3.1.7 Performance Evaluation  

The key metrics for assessing a model’s performance are precision, recall, F1 

score and mean average precision. Precision measures the proportion of true 

positive out of all the predicted positives by the model. Recall, on the other hand, 

accesses the ratio of model’s predicted positives to out all the actual positives 

available on the image.  

Average precision represents the precision for a specific category in 

the mean average precision generalizes this metric across all categories in the 

dataset. The most commonly reported version, mAP at an IoU threshold of 0.5, 

is referred to as mAP@50. 

 

3.1.8 Model Improvement 

3.1.8.1 Dataset Expansion  

After training the model, a thorough evaluation was performed to assess its 

accuracy through mean average precision. However, it is noticeable that the 

model is underperforming in detecting scratch defects due to insufficient data 
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compared to other defects. Hence, more scratch defect data is collected through 

an online source which is Aliyun Tianchi Aluminium Defect Detection 

Competition's official website. As the data sources are unannotated images, data 

annotation needs to be repeated in this stage. There is a total of 98 scratch 

images selected and uploaded to RoboFlow for data annotation and data 

augmentation.  

 

Figure 3.11: Images added to expand the dataset 

 

3.1.8.2 Efficient Channel Attention  

Efficient Channel Attention (ECA) is a mechanism designed to improve cross-

channel interaction in neural networks. It introduces a novel approach to 

enhance feature expression by focusing on important channels without using 

dimensionality reduction. Instead of using complex 1D convolutions, ECA 

applies an adaptive convolution kernel to capture channel dependencies 

effectively. ECA aggregates features by performing Global Average Pooling 

(GAP) followed by channel interaction. Besides, the size of the adaptive 

convolution kernel is determined based on the channel dimension. It also uses a 

nonlinear mapping equation that adjusts the kernel size dynamically to suit the 

features of each channel (Chien et al., 2024). 
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Figure 3.12: Structure of ECA 

 

3.1.8.3 ResBlock + Convolutional Block Attention Module 

Residual Convolutional Block Attention Module (ResCBAM) is a combination 

of the Residual Block and CBAM modules. Residual Block is a fundamental 

building block that consists of a sequence of convolutional layers with a skip 

connection. It uses the skip connection mechanism of residual blocks to improve 

the flow of information and solve the vanishing gradient problem. It includes a 

shortcut connection that directly maps the input to the output to ease the learning 

of the model as the network goes deeper and the gradients become smaller.  

 CBAM is a powerful attention mechanism designed to enhance feature 

representation in deep neural networks by selectively focusing on important 

information within feature maps. It effectively combines two key attention 

mechanisms which are channel attention and spatial attention, they work 

together to refine the network’s focus on critical features. 
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Channel Attention operates by extracting vital information along the 

spatial dimensions and also enables one to identify the most important channels 

using global average pooling and global maximum pooling. The pooled 

information is then passed through a multi-layer perceptron (MLP) in activation 

by a sigmoid function for creating attention weights to enable the network to put 

a lot of weight on more important channels. These weights allow the network to 

prioritize certain channels, improving its ability to capture useful features. 

On the other hand, spatial attention focuses on relevant spatial regions 

across channels. Similar to channel attention, it highlights important spatial 

regions within the feature maps with global average pooling and global 

maximum pooling. This is followed by a 7x7 convolution and a sigmoid 

activation to put weight on spatial attention to make sure the network looks at 

the most informative areas in feature maps. 

By summing these two mechanisms with skip connections as in 

Residual blocks, ResCBAM amplifies the model capability to highlight 

channels and spatial regions that are informative while still constraining the 

gradients to propagate well, hence being a very strong tool in deep learning 

frameworks (Chien et al., 2024).bb 

 

 

Figure 3.13: Structure of ResCBAM 
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3.1.8.4 Load a pre-trained model 

As training from scratch using yolov8.yaml would require more data and time 

to achieve the same level of feature understanding, this could lead to a slower 

convergence and a higher risk of overfitting. Training a model from scratch 

without a large and diverse dataset would be challenging as it needs to learn the 

feature representations from the beginning. A training model with a pre-trained 

model would start the training with a strong generalization model that already 

understands how to detect key features in images. As a pre-trained model on 

aluminium defect detection is not found online, the COCO pre-trained model 

provided by Ultralytics will be used as a foundation for our model training. 

Despite the COCO dataset not being too related to aluminium defects, but it can 

help to model to identify common patterns and details on the aluminium surface, 

rather than a model trained from scratch without any prior knowledge. Fine-

tuning this model for aluminium defects gives the advantage of faster training, 

better generalization, and improved accuracy, even if the target task is different 

from the original COCO training data. 

 

3.2 Evaluation Metrics 

The following section will explain the evaluation metric that will be used in this 

study to evaluate the model's performance. In the field of object detection, AP 

is used to assess the accuracy of a model in identifying objects. To understand 

the various forms of AP, it is crucial to first examine some fundamental concepts 

that are consistent across all of them: 

 

Table 3.3: Fundamental concepts in object detection 

True Positive 

(TP) 

It can be assumed as a correct hit; it is a correct identification 

of an object, and the bounding box is placed exactly where 

the object is.  

False 

Positive (FP) 

It is a false alarm that the object detection mistakenly 

identified something else as an object and placed a bounding 

box around it, but there was no object there.  
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False 

Negative 

(FN) 

A false negative is a miss where the object detection 

completely missed an object that was there. 

True 

Negative 

(TN) 

True negative refers to the bounding boxes that should be 

detected. However, the concept of TN is normally not 

considered in object detection because there are endless 

empty spaces that the system should not identify as ‘not 

having an object’ within an image. 

 

3.2.1 IoU 

Even with the definitions above, a clear establishment is required to identify 

whether the detection is correct or incorrect. Intersection over Union (IoU) is 

the most common way of judging the accuracy of object detection. It is a general 

way to compare the similarity of two sets based on the Jaccard Index. Assume 

the actual location of the object is marked by a box called the ground-truth 

bounding box, 𝐵𝑔𝑡 while the detected area by the detection model is called the 

predicted bounding box, 𝐵𝑝.  IoU measures how well the predicted bounding 

box overlaps with the ground-truth bounding box and divides it with the union 

of both boxes.  

 

𝐼𝑂𝑈 =  
𝐵𝑔𝑡 ∩ 𝐵𝑝  

𝐵𝑔𝑡 ∪ 𝐵𝑝 
 

 

 

Figure 3. 14: Illustration of Intersection over Union (IoU) 

 



60 

 

 

Figure 3.15: Example of IOU 

 

An IoU of 1 means that the predicted box perfectly overlaps the actual 

object's location while 0 means both boxes do not overlap at all. Generally, the 

closer the IoU to 1, the higher the accuracy of the model as its predicted boxes 

match the ground-truth bounding boxes. Only boxes from the same class can be 

compared with IoU as object detection models also perform the classification of 

objects. An IoU threshold is set to determine the strictness of the accuracy of 

the detections. A threshold closer to 1 is tough as it requires nearly perfect 

overlaps while a lower threshold is more lenient, considering even small 

overlaps as detection. 

 

3.2.2 Precision and recall 

As mentioned above, TN is not considered a metric of performance of object 

detection due to the countless empty spaces. The evaluation of object detection 

primarily relies on the concepts of precision and recall. Precision measures the 

accuracy of the model in identifying the actual objects out of all of the predicted 

bounding boxes. It is a percentage of predictions that are truly correct detections. 

Precision can be obtained with the formula below: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
=  

𝑇𝑃

𝐴𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 

 

On the other hand, recall measures the ability of the model to find all 

the actual objects in the image without missing any. It is the ratio of correctly 
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detected positive samples to the total number of positive samples present in the 

ground truth data. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=  

𝑇𝑃

𝐴𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
 

 

A model with a high threshold will have high precision but low recall 

because it may miss many actual objects. Meanwhile, if the threshold is low, the 

objects will have high recall as it finds more objects, but the precision will be 

low as its findings will include a lot of false alarms. To solve this, plotting a 

precision-recall curve for different thresholds can see the trade-off visually. 

Ideally, the curve should stay high in both precision and recall as the confidence 

threshold changes. Therefore, a high area under the curve (AUC) indicates a 

good balance between precision and recall in different confidence thresholds. 

However, the precision-recall curve often possesses a zig-zag pattern, making it 

difficult to calculate the AUC. Techniques like 11-point interpolation and all-

point interpolation are used to remove the zigzag pattern to ease the calculation 

of AUC. The 11-point interpolation is a method that uses 11 evenly spaced 

standard recall levels while the all-point interpolation utilizes every recall point 

available. 

 

 

Figure 3.16: Precision-recall curve using the 11-point interpolation approach 
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Figure 3.17: Precision-recall curve using the all-point interpolation approach 

 

3.2.3 mAP 

As mentioned earlier, an object detector will provide bounding boxes, object 

classes, and confidence scores. Only the confidence scores that are higher than 

the confidence threshold can be considered positive detections and contribute to 

the calculations of precision and recall. Meanwhile, detections with a 

confidence score lower than the confidence threshold will be considered 

negative detections and will not be included in the calculation. After that, all the 

positive detections will be used to calculate the precision and recall, then used 

in plotting the precision-recall curve. After the preprocessing to eliminate the 

zigzag pattern of the curve, the AP is obtained based on the area under the curve.  

Besides AUC, the F1 score is also one of the approaches to combine 

precision and recall into a single metric. The higher the F1 score, the higher the 

precision and the recall. However, AP is calculated for each class as there will 

be many object classes to be identified in the image. Hence, it is important to 

obtain the overall precision of the object detection for all classes. This can be 

obtained by calculating the mAP of the model, which is the average value of the 

AP for all classes. The F1 score and mAP can be calculated using the formula 

below where 𝐴𝑃𝑘 is the AP of the class k and n is the number of classes. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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1

𝑛
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𝑘=𝑛

𝑘=1

 

 

3.3 Gantt Chart 

 

 

Figure 3. 18: Gantt chart for Preliminary Planning from 1/2/2024 to 27/2/2024 

 

 

Figure 3. 19: Gantt chart for Project Methodology Planning from 28/2/2024 to 

12/4/2024 

 

 

Figure 3. 20: Gantt chart for Model Developing from 17/6/2024 to 11/8/2024 
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Figure 3. 21: Gantt chart for Model Developing from 12/8/2024 to 11/9/2024 
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CHAPTER 4 

 

 

4 RESULTS AND DISCUSSION 

 

4.1 Comparison among YOLOv8 Predecessors and YOLOv8 

Before deep into the focus of this study, the predecessors of YOLOv8 are used 

to compare with YOLOv8 on the performance of the model on the aluminium 

surface defects dataset. YOLOv5 and YOLOv7 are used in this study to show 

the performance of YOLOv8 is better than its predecessors. As shown in the 

table below, YOLOv8 has a significantly better overall performance compared 

to YOLOv7. While YOLOv5 is also produced by Ultralytics, it has a 

competitive performance with YOLOv8n. Despite having a lower precision than 

YOLOv5, YOLOv8 outperforms YOLOv5 in other aspects which are recall, F1-

score and the mean average precision. Hence, this proves that YOLOv8 is 

capable in this aluminium defect detection study.  

 

Table 4.1: Comparison between YOLOv8 Predecessors 

Model Precision Recall F1-score mAP@0.5 mAP@0.5:0.95 
YOLOv5n 79.1 68.4 73.4 73.8 54.9 
YOLOv7 65.5 67.7 66.6 65.9 48.3 

YOLOV8n 74.4 76.1 75.2 75.9 56.8 
 

4.2 YOLOv8 Variants Selection   

As shown in the table above, YOLOv8m has the best performance with 

mAP@0.5 of 76.8% and mAP@0.5:0.95 of 57.5%. Despite having the highest 

accuracy among the 3 variants, YOLOv8m is not considered a good model for 

this study as it does not have a huge leap of improvement compared to the other 

2 models. Considering the time needed to train YOLOv8m is significantly more 

than the other 2 models, this model is not suitable for real-time detection. The 

same goes for YOLOv8s, it does not achieve a higher accuracy with the trade-

offs of efficiency. Instead, YOLOv8s and YOLOv8m both achieve lower 

accuracy on certain classes of defects compared to YOLOv8n. Therefore, 

considering the limited computational resources available and the real-time 
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requirement, YOLOv8n is selected as the model for further improvement in this 

study as it offers a good balance between accuracy and efficiency.  

 

Table 4.2: Comparison between Yolov8 variants 

Model Precision Recall  F1-score mAP@0.5 mAP@0.5:0.95 Params (M) 
YOLOv8n 73.3 75.6 74.4 75.4 56.2 3.2 
YOLOv8s 74.4 76.1 75.2 75.9 56.8 11.2 
YOLOv8m 75 76.4 75.7 76.8 57.5 25.9 
 

4.3 Comparison Between Before and After Data Selection & Data 

Augmentation  

According to Table 4.5, the overall performance of the model has a significant 

improvement after applying data selection and data augmentation. The 

precision increases from 73.3% to 86.5%, indicating a reduction in false 

positives. Recall increases from 75.6% to 88.7%, demonstrating an improved 

ability to detect all relevant objects, leading to an increase in F1-score to 87.6, 

showing an improvement in balancing precision and recall. The mean average 

precision also increases significantly for both mAP@0.5 and mAP@0.5:0.95.  

 Removing defect classes with insufficient data would definitely 

increase the overall accuracy of the model as the classes with low precision are 

removed.  However, that does not mean that removing underrepresented classes 

is just to achieve a higher overall mean average precision. The model is able to 

allocate more weight and attention to the other majority classes. This allows the 

model can generalize better to the remaining classes. This can be seen by 

comparing the average precision of classes such as scratches, orange peel and 

crater after data selection. Moreover, this also mitigates the risk of overfitting 

underrepresented classes as their data is insufficient. In real-world use cases, if 

an underrepresented class is rare or not critical, removing it can simplify the 

model’s deployment and reduce potential false positives or confusion. It helps 

avoid unnecessary predictions in cases where the underrepresented class is not 

expected to appear often.  

 This result is achieved not just because of data selection, but also 

thanks to data augmentation. Augmenting data helps the model learn from more 

diverse examples, improving its ability to generalize to unseen data without 

collecting new data which is time-consuming. The model learns to be invariant 
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to small changes, such as rotations, flips, or brightness variations. The ‘Scratch’ 

class benefits the most from data augmentation as it is one of the 

underrepresented classes. However, it was not removed because it is one of the 

most common defects found in the manufacturing process. Its accuracy 

improves from 33.1% to 51.8%.  

 

Table 4.3: Performance of YOLOv8 in each class with the original dataset 

Class Images Instances Box 
(P) R mAP50 mAP50-

95 
all 274 329 0.733 0.756 0.754 0.562 

Non-
Conductive 39 46 0.787 0.826 0.915 0.783 

Scratch 11 17 0.382 0.353 0.331 0.127 

Corner Leak 35 35 1 1 0.995 0.795 

Orange Peel 19 19 0.923 1 0.982 0.889 

Leakage 54 66 0.872 0.924 0.929 0.724 
Jet 10 13 0.492 0.447 0.44 0.203 

Paint Bubble 8 10 0.324 0.346 0.287 0.089 

Crater 40 40 0.755 0.955 0.932 0.518 

Parti-Colour 36 36 0.982 1 0.995 0.978 

Dirty Point 24 39 0.839 0.718 0.734 0.499 
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Table 4.4: Performance of YOLOv8n in each class after data selection and 

augmentation 

Class Images Instances Box 
(P) R mAP50 mAP50-

95 

all 221 240 0.865 0.887 0.904 0.737 

Non-
Conductive 38 41 0.919 0.829 0.902 0.775 

Scratch 9 17 0.7 0.412 0.518 0.227 

Corner 
Leak 36 36 1 1 0.995 0.83 

Orange 
Peel 17 17 0.81 1 0.99 0.909 

Leakage 58 58 0.903 0.966 0.972 0.784 

Crater 34 34 0.723 1 0.953 0.66 

Parti-
Colour 

37 37 1 1 0.995 0.974 

 

Table 4.5: Comparison of performance before and after data augmentation 

Model Precision Recall 
F1-

score 
mAP@0.

5 
mAP@0.5:0.9

5 
YOLOv8n (Before Data 

 Selection & 
Augmentation) 

73.3 75.6 74.4 75.4 56.2 

YOLOv8n (After Data 
 Selection & 

Augmentation) 
86.5 88.7 87.6 90.4 73.7 

 

4.4 Impact on loading pre-trained model 

As mentioned above in Chapter 3, the training of YOLOv8 models allows the 

loading of a pre-trained model for faster training and improved model accuracy. 

In this study, yolov8n.pt is used as a pre-trained model to achieve better model 

accuracy in detecting aluminium defects. The YOLOv8.pt is a pre-trained model 

provided by Ultralytics, typically pre-trained on the COCO dataset. Transfer 

learning is applied by taking the pre-trained model and fine-tuning it 

accordingly to the aluminium surface defect dataset. It helps the new model to 

adapt quickly to the new detection task as it already has a strong understanding 

of general features and does not need to learn everything from scratch.  
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Freezing of layers could be used with transfer learning to speed up the 

training process by freezing some of the layers of the model, so there will be 

only a few layers that will be learning the new features. This action would speed 

up the training process significantly but will have a lower accuracy compared 

to non-freezing as a trade-off. However, freezing layers is not considered in this 

study because YOLOv8n will be used as the detection model, so the training 

speed will be fast and computational resources will be lower. The overall 

performance can be optimized by allowing all the weights of the layers to get 

updated to the new features without freezing any layers.  

 

Table 4.6: Performance on each class using transfer learning 

Class Images Instances Box (P) R mAP50 mAP50-
95 

all 221 240 0.945 0.882 0.927 0.785 

Non-
Conductive 38 41 0.895 0.829 0.901 0.807 

Scratch 9 17 0.818 0.529 0.71 0.408 
Corner 

Leak 36 36 1 1 0.995 0.849 

Orange 
Peel 17 17 1 1 0.995 0.919 

Leakage 58 58 0.933 0.966 0.97 0.811 
Crater 34 34 0.967 0.853 0.924 0.727 
Parti-

Colour 37 37 1 1 0.995 0.975 

 

Table 4.7: Comparison between with and without transfer learning on the 

augmented dataset 

Model Precision Recall  
F1-

score mAP@0.5 mAP@0.5:0.95 
YOLOv8n (without 
transfer learning) 86.5 88.7 87.6 90.4 73.7 

YOLOv8n (with 
transfer learning) 94.5 88.2 91.2 92.7 78.5 

 

 

Table 4.7 shows the improvement of the model in every aspect except 

recall after applying the pre-trained model. Figure 4.1 shows the PR curves of 
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the two models. It can be observed that the pre-trained model improves its 

mAP@50 by 2.3%. The area enclosed by PR curves is mAP whereby YOLOv8n 

with transfer learning has a larger area compared to YOLOv8n without transfer 

learning. Figure 4.2 shows the F1 score curves of both models. The F1 curve 

considers both precision and recall, whereby the higher the curve, the better the 

performance. The curves of all classes have improved, and the F1 score 

improved by 3%. It can be seen easily and concluded that the pre-trained model 

outperforms the baseline model in the aluminium surface defect detection task.  

 

 

Figure 4.1: Comparison of PR curves for YOLOv8n without transfer learning 

(left) and YOLOv8n with transfer learning (right) 
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Figure 4.2: Comparison of F1 score curves for YOLOv8n without transfer 

learning (left) and YOLOv8n with transfer learning (right) 

 

4.5 Impact of Scratch Class Expansion 

It is noticeable that scratch remains less accurate than other classes after a few 

improvements. To solve this problem from its root cause, 98 more images were 

selected and added to the scratch classes from an online source. After data 

labelling and augmentation, 210 images were added to the existing training set, 

18 images were added to the validation set, and 10 images were added to the 

testing set. An expanded dataset with diverse examples allows the model to learn 
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more variations of scratches, preventing overfitting specific examples due to 

insufficient data. 

 

Table 4.8: Performance on each class with scratch class expansion 

Class Images Instances Box (P) R mAP50 mAP50-
95 

all 231 267 0.926 0.907 0.943 0.797 

Non-
Conductive 38 41 0.862 0.829 0.888 0.792 

Scratch 19 44 0.848 0.634 0.786 0.517 
Corner 

Leak 36 36 1 1 0.995 0.845 

Orange 
Peel 17 17 0.916 1 0.995 0.917 

Leakage 50 58 0.948 0.944 0.969 0.838 
Crater 34 34 0.908 0.941 0.975 0.69 
Parti-

Colour 37 37 1 1 0.995 0.98 

 

As shown in Table 4.9, the overall performance of the model increases 

except for precision and mAP@0.5:0.95 with the expansion of the scratch class. 

This indicates that the model performs better overall after the expansion of the 

scratch dataset. It is important to notice the accuracy of scratch detection also 

increases with the help of more training data. Scratch is given attention as it is 

one of the main focuses in this study and one of the common defects in 

aluminium surfaces nowadays. It is noticeable that the mAP@0.5 for the scratch 

only increases from 71% to 77.7% while the mAP@0.5:0.95 for scratch 

improves as much as 7%. This proves that the expansion of the scratch dataset 

did help in improving the accuracy of the model in detecting scratches. 

 

Table 4. 9: Comparison between before and after scratch class expansion on 

the augmented dataset 

Model Precision Recall 
F1-

score 
mAP@0.5 

mAP@0.5 
:0.95 

mAP@0.5 
of 

scratch 

mAP@0.5:0.95 
of scratch 

YOLOv8n 
(transfer 
learning) 

94.5 88.2 91.2 92.7 78.5 71 40.8 
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YOLOv8n 
(transfer 

learning + 
 scratch 

class 
expansion) 

92.6 90.7 91.5 94.3 79.7 78.6 51.7 

 

4.6 Model Improvement with Attention Module 

There are two attention modules used in this study which are ECA and 

ResCBAM. YOLOv8n consistently outperforms YOLOv8n with ECA across 

all metrics. This shows that the addition of the ECA attention mechanism did 

not provide a clear performance boost in this case. In fact, it slightly reduced the 

model's effectiveness in detecting aluminium defects, which might indicate that 

ECA’s channel-based attention is not well-suited for this specific task, or that 

the baseline YOLOv8n architecture is already highly optimized for this dataset. 

 

Table 4.10: Performance of YOLOv8n with ECA 

Class Images Instances Box (P) R mAP50 mAP50-
95 

all 231 267 0.871 0.888 0.911 0.751 

Non-
Conductive 38 41 0.819 0.756 0.868 0.787 

Scratch 19 44 0.692 0.523 0.605 0.336 
Corner 

Leak 36 36 1 1 0.995 0.822 

Orange 
Peel 17 17 0.894 0.991 0.976 0.886 

Leakage 50 58 0.908 0.966 0.969 0.776 
Crater 34 34 0.788 0.983 0.968 0.672 
Parti-

Colour 37 37 1 1 0.995 0.976 

 

YOLOv8n also performs better across all metrics compared to 

YOLOv8n with ResCBAM. The addition of ResCBAM results in a slight 

decrease in precision, recall, F1-score, and mAP metrics. This suggests that the 

attention mechanism introduced by ResCBAM may not provide a clear 

advantage for this specific aluminium defect detection task. YOLOv8n without 

ResCBAM appears to maintain stronger detection and localization capabilities, 

indicating that the base YOLOv8n model is already highly optimized for this 
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dataset and might not benefit from the additional complexity introduced by 

ResCBAM. 

 

Table 4.11: Performance of YOLOv8 with ResCBAM 

Class Images Instances Box (P) R mAP50 mAP50-
95 

all 231 267 0.915 0.891 0.933 0.752 

Non-
Conductive 38 41 0.895 0.835 0.934 0.795 

Scratch 19 44 0.821 0.477 0.664 0.342 
Corner 

Leak 36 36 1 1 0.995 0.849 

Orange 
Peel 17 17 0.944 1 0.989 0.873 

Leakage 50 58 0.899 0.966 0.979 0.768 
Crater 34 34 0.845 0.961 0.974 0.66 
Parti-

Colour 37 37 1 1 0.995 0.974 

 

Table 4. 12: Comparison between two attention modules and YOLOv8n (with 

data augmentation + scratch class expansion)  

Model Precision Recall  F1-score mAP@0.5 mAP@0.5:0.95 
YOLOv8n 92.6 90.7 91.6 94.3 79.7 

YOLOv8n + 
ECA 87.1 88.8 87.9 91.1 75.1 

YOLOv8n + 
ResCBAM 91.5 89.1 90.3 93.3 75.2 

 

4.7  Discussions 

Table 4.13 shows the improvement in the performance of YOLOv8n after the 

step-by-step enhancement used. It is clearly shown that the model has improved 

a lot compared to the original model from scratch. Improvements taken include 

data preprocessing and data augmentation, transfer learning, dataset expansion, 

and application of attention module. Except for the attention module, other steps 

have contributed to the improvement of the models. The model has improved 

its mAP from 75.4% to 94.3%, an improvement of 18.9% while its 

mAP@0.5:0.95 has also improved as much as 23.5%. Given the inference time 

of the model is 9.1ms, it can be calculated that the model has an FPS of 109 
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which fulfils the needs of the industry requirements. This shows that the model 

has a balance between high accuracy and a fast detection speed.  

 

Table 4.13: Effect of each step-by-step improvement on YOLOv8n 

Model Precision Recall  F1-score mAP@0.5 mAP@0.5:0.95 
YOLOv8n 73.3 75.6 74.4 75.4 56.2 

YOLOv8n with  
data augmentation 86.5 88.7 87.6 90.4 73.7 

YOLOv8n (data 
augmentation+ 

 transfer learning) 
94.5 88.2 91.2 92.7 78.5 

YOLOv8n (data 
augmentation + 

transfer learning +  
scratch class 

expansion) 

92.6 90.7 91.6 94.3 79.7 

YOLOv8n + ECA 
(data augmentation 
+ transfer learning + 

scratch class 
expansion) 

87.1 88.8 87.9 91.1 75.1 

YOLOv8n + 
ResCBAM (data 
augmentation + 

transfer learning + 
scratch class 

expansion) 

91.5 89.1 90.3 93.3 75.2 

  



76 

 

 

Figure 4.3: Evaluation metric of baseline model with original dataset 

 

 

Figure 4.4: Evaluation metrics of the improved model with improved dataset 
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Based on the two graphs above, it can be observed that the precision and 

recall have a more stable increment after model improvements which are data 

augmentation, scratch class expansion and transfer learning. Besides, the second 

graph has a steadier decrement in both training and validation loss compared to 

the first graph. Lastly is the obvious increment in value for all aspects after 

model improvement in the second graph. 

Figure 4.5 shows the normalized confusion matrix of the YOLOv8n with 

improvements including data augmentation, transfer learning and scratch class 

expansion. It shows most classes such as corner leak, orange peel, crater and 

parti-colour are perfectly predicted with a value of 1.0. Non-conductive and 

scratch have relatively lower results as there are 12% and 18% of false negatives 

for non-conductive and scratch respectively. At the same time, there are 44% of 

false positives detections on scratch and 25% on crater. Meanwhile, non-

conductive and leakage each have 12% false positive detections. According to 

this result, it shows that this model performs worse in non-conductive and 

scratch compared to other classes. 

 

 

Figure 4.5: Normalized confusion matrix of YOLOv8n with all the 

improvements 
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4.8.1 Failure Case Analysis 

Despite the improved YOLOv8 has shown great performance in this study, it 

still experiences several missed and false detections in certain complex 

scenarios. Some examples of false detection are shown in the figures below. 

Figure 4.6 shows a missed detection of scratch by the model. The missed 

detection in this example may be due to the model detecting it as a reflection of 

light which caused the model to overlook the scratch defect. Figure 4.7 is also 

an example of the model's missed detection on a shallow and long scratch. The 

reason may be due to the scratch is not obvious,  hence the model overlooked it. 

 

 

Figure 4.6: False negative of scratch 

 

 

Figure 4.7: False negative on shallow scratch 

 

 The next example is also an example of false negative detection of 

scratch.  The model does not detect two scratches on the aluminium surface. The 
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reason for this error may be due to one of the scratches being too small and not 

obvious while another scratch is too shallow. 

 

 

Figure 4.8: Two false negatives of scratch 
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CHAPTER 5 

 

5 CONCLUSION AND FUTURE WORKS 

 

5.1 Conclusion 

In conclusion, this study has implemented a comprehensive deep learning 

visual-based inspection approach based on object detection techniques. 

YOLOv8n was selected as the model to carry out defect detection on aluminium 

surfaces. All the objectives proposed in this study have been successfully 

achieved including the implementation of YOLOv8 for aluminium surface 

defect detection by utilizing data augmentation and transfer learning, identifying 

and categorizing the types of aluminium surface defects and evaluating the 

performance of YOLOv8. Besides that, the implementation of YOLOv8 with 

attention modules was also carried out to investigate the impact of attention 

modules on the performance of YOLOv8.  

 As a result, data augmentation and transfer learning help in improving 

the performance of YOLOv8. The YOLOv8n model with transfer learning 

achieved a mAP@0.5 of 94.3% and 79.7% of mAP@0.5:0.95 on the augmented 

dataset with the expansion of scratch class. The implementation of ECA and 

ResCBAM as attention modules for YOLOv8n is carried out as a comparison 

to the YOLOv8n. Despite attention modules are meant to be used to improve 

the performance of the model, neither ECA nor ResCBAM improves the mean 

average precision of YOLOv8n. Both of them achieved 91.1 and 93.3 in 

mAP@0.5 for ECA and ResCBAM respectively.  

 The results of this study reveal that while the YOLOv8 model was 

effective in detecting surface defects, the incorporation of attention modules did 

not lead to the expected enhancements in performance. This lack of 

improvement suggests that the attention mechanism may not have been well-

suited for the specific characteristics of the dataset used. To further investigate 

this unexpected finding, it is crucial to analyse the attention module’s design 

and its interaction with the feature extraction process of the YOLOv8 model. 

Future work could involve testing different types of attention mechanisms or 

adjusting hyperparameters to determine whether these changes could yield 
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better results. Understanding why the attention modules underperformed is 

essential for advancing defect detection technologies and maximizing their 

efficacy in real-world applications 

 By automating defect detection in aluminium manufacturing process, 

this study aims to minimize the need for manual defect detection, allowing 

human resources to be allocated to more critical tasks like important decision-

making. Besides eliminating manual detection, this approach could effectively 

reduce the time needed for defect detection in the manufacturing process. 

Directly, the quality of the aluminium product will also increase as aluminium 

with defect detection will be deposed or remanufactured. YOLOv8 serves as a 

cutting-edge technology that would replace the old algorithms used in the 

current manufacturing process as most of them are not resilient to changes in 

light and noise.  

 

5.2 Future Enhancements 

Future improvements and enhancements are recommended: 

 

• Implementing a more advanced object detection model: 

As YOLOv9 and YOLOv10 have been released, implementation of 

them in detecting aluminium surface defect detection can be considered 

as the latest version often provide better performance. 

 

• Collect more data according to the specific needs: 

In order to improve the accuracy according to the needs of the 

manufacturing process, data collection based on the specific needs of 

defects to be detected can be done to train the model to perform well on 

the common defects. 

 

• Cover the defect detection beside the surface: 

As this study only focuses on the defects on aluminium surfaces, future 

enhancements can include detecting defects on entire aluminium 

extrudants such as tearing and weaving.  

 

• Integrating with mobile or detection machine: 
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The main purpose of this study is to address the tedious process of defect 

detection in manufacturing. Hence, integration into mobile app for 

convenience defect detection or automated detection using detection 

machine could fully optimized the value of this model.   
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Appendix A: Model Configuration File for YOLOv8n 
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Appendix B: Model Configuration File for YOLOv8n with ECA 
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Appendix C: Model Configuration File for YOLOv8n with ResCBAM 
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Appendix D: Code snippet for ECA attention module in init.py 

 

 

Appendix E: Code snippet for ResCBAM attention module in init.py 

 


