
 

 

 

ELDERLY CARE AND ASSISTANCE 

BOOKING PLATFORM 

 

 

 

 

 

 

 

 

 

HEW ZI XUAN   

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TUNKU ABDUL RAHMAN 

 

 



ii 

 

 

 

 

Elderly Care and Assistance Booking Platform  

 

 

 

 

 

 

 

HEW ZI XUAN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lee Kong Chian Faculty of Engineering and Science 

Universiti Tunku Abdul Rahman 

 

 

 

 

A project  report submitted in partial fulfilment of 

the requirements for the award of Bachelor of 

Science (Honours) Software  Engineering 

October 2024



iii 

 

  

DECLARATION 

 

 

 

 

 

I hereby declare that this project report is based on my original work except for 

citations and quotations which have been duly acknowledged. I also declare that 

it has not been previously and concurrently submitted for any other degree or 

award at UTAR or other institutions. 

 

 

 

 

Signature : 
 

Name : Hew Zi Xuan 

ID No. : 2005764 

Date : 25-2-2024 

 

 

  



iv 

 

APPROVAL FOR SUBMISSION 

 

 

 

 

 

I certify that this project report entitled “TITLE TO BE THE SAME AS 

FRONT COVER, CAPITAL LETTER, BOLD” was prepared by 

STUDENT’S NAME has met the required standard for submission in partial 

fulfilment of the requirements for the award of Bachelor of Software 

Engineering with Honours at Universiti Tunku Abdul Rahman. 

 

 

 

Approved by, 

 

 

Signature :  

Supervisor :  

Date :  

 

 

 

Signature :  

Co-Supervisor :  

Date :  

  

Nawaf Hassan Mohammed Mohsen Shrifan

1/10/2024



v 

 

 

 

 

 

 

The copyright of this report belongs to the author under the terms of 

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti 

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use 

of any material contained in, or derived from, this report. 

 

 

© 2024, Hew Zi Xuan. All right reserved. 

 

  



vi 

 

ACKNOWLEDGEMENTS 

 

 

I would like to thank everyone who helped get this project done. Special thanks 

to my supervisor, Dr. Nawaf Hassan Mohammed Mohsen Shrifan, who 

provided clear direction and assistance during the research. Furthermore, I am 

grateful to my friends and family for their support and understanding. This 

project would not have been achieved without their collaborative efforts. 

  



vii 

 

ABSTRACT 

 

The Elderly Care and Assistance Booking Platform project aims to 

address the urgent need in Malaysia for an interactive platform that enables 

customers to access care services and facilitates direct interaction with 

caregivers. Currently, there is a large gap in such platforms, making this project 

highly relevant and impactful. The project focuses on developing a platform 

that enables registration, strong communication channels, and comprehensive 

search capabilities for customized care services for clients and caregivers. The 

project adopts a Rapid Application Development (RAD) approach to ensure 

agility and adaptability to meet the changing needs of the care sector. This 

approach helps to quickly adjust and respond to user preferences and emerging 

needs. By leveraging insights gained from the existing platform, the project 

aims to enhance the well-being of clients and caregivers throughout Malaysia. 

To ensure the platform meets the highest standards of quality and functionality, 

four types of testing will be conducted. The testing includes unit testing, feature 

testing, black-box testing, and user acceptance testing (UAT). These tests will 

cover various aspects of the platform from individual components to the overall 

user experience. An attractive feature of the platform is its AI recommendation 

system. This system is designed to personalize care service suggestions based 

on user preferences and needs. This system provides tailored recommendations 

and enhances the matching process between clients and caregivers. 

Additionally, the platform includes a GPT-powered description function that 

generates detailed and context-aware descriptions of services. This further 

improves the user experience and facilitates informed decision-making. For this 

project, Laravel serves as the project's fundamental framework. Laravel ensures 

safe data management, user authentication, and scalability via its Model-View-

Controller (MVC) architecture. This strong architecture facilitates the 

platform's expansion and adaptability which gives a safe and scalable response 

to the changing needs of elderly care service. 

  



viii 

 

 

TABLE OF CONTENTS 

 

 

DECLARATION iii 

APPROVAL FOR SUBMISSION iv 

ACKNOWLEDGEMENTS vi 

ABSTRACT vii 

TABLE OF CONTENTS viii 

LIST OF TABLES xii 

LIST OF FIGURES xv 

LIST OF SYMBOLS / ABBREVIATIONS xxiii 

LIST OF APPENDICES xxiv 

 

CHAPTER 1 INTRODUCTION 1 

1.1 Project Background 1 

1.2 Problem Statement 2 

1.2.1 Lack of a Booking Platform that Allow Registration for Both 

Clients and Caregivers 2 

1.2.2 The Lack of Communication Channel Between Families and 

Caregiver  3 

1.2.3 The Lack of a Search Function with Filtering Capabilities 3 

1.3 Project Objectives 3 

1.4 Project Solution 4 

1.5 Project Approach 4 

1.6 Scope and Limitation of the Study 5 

1.6.1 Target Users  5 

1.6.2 Modules Covered 6 

1.6.3 Modules Not Covered 7 

1.6.4 Assumptions of this project 7 

CHAPTER 2 LITERATURE REVIEW 8 

2.1 Introduction 8 

2.2 Elderly Care platforms 8 



ix 

 

2.2.1 Care.com  8 

2.2.2 Pillar  11 

2.2.3 CareConcierge 13 

2.2.4 ElderCare  15 

2.2.5 Comparison of Existing Elderly Care and Assistance 

Booking Platform 17 

2.3 Software development methodologies 19 

2.3.1 Agile Development 19 

2.3.2 Waterfall Development 20 

2.3.3 Rapid Application Development (RAD) 21 

2.3.4 Comparison of Software Development Methodology 23 

2.4 Web Development Tools 23 

2.4.1 Development Frameworks 23 

2.4.2 Code Editors  26 

2.4.3 Databases  29 

2.5       Conclusion 32 

CHAPTER 3 METHODOLOGY AND WORK PLAN 34 

3.1 Introduction 34 

3.2       Software Development Methodology 34 

3.2.1 Planning and Analysis 34 

3.2.2. Design  35 

3.2.3 Development and Testing 36 

3.2.4 Closing  37 

3.3 Development Tools 37 

3.3.1 Markup Languages 37 

3.3.2 Programming Languages 37 

3.3.3 Framework  38 

3.3.4 Runtime Environments 38 

3.3.5 Integrated Development Environment (IDE) 39 

3.3.6 Database System 39 

3.3.6 Hosting Server 39 

3.3.7 Prototyping Tool 39 

3.4 Project Plan 40 



x 

 

3.4.1 Work Breakdown Structure 40 

3.4.2 Gantt Chart  40 

3.5 Summary 40 

CHAPTER 4 PROJECT SPECIFICATION 41 

4.1 Introduction 41 

4.2 Requirements Specifications 41 

4.2.1 Functional Requirements 41 

4.2.2 Non-functional Requirements 44 

4.3 Use Case Diagram 45 

4.4 Use Case Description 45 

4.5 Prototype 66 

4.5.1 Prototype of Client 67 

4.5.2 Prototype of Caregiver 75 

4.5.3 Prototype of Administrator 82 

4.6 Summary 84 

CHAPTER 5 SYSTEM DESIGN 85 

5.1 Introduction 85 

5.2 System Architecture Design 85 

5.3 Designed UML Diagram 86 

5.3.1  Class Diagram 86 

5.3.2  Activity Diagram 87 

5.4 Database Design 99 

5.4.1  Entity Relationship Diagram (ERD) 99 

5.4.2 Data Dictionary 101 

CHAPTER 6 SYSTEM IMPLEMENTATION 109 

6.1 Introduction 109 

6.2 Software Setup 109 

6.2.1 Visual Studio Code 109 

6.2.2 WampServer  110 

6.2.3 Node.js  110 

6.3 Setting and Configuration 110 

6.3.1 Database Configuration 110 

6.3.2 Mail Server Configuration 111 



xi 

 

6.3.3 Pusher API Configuration 111 

6.4  System Operation with Screenshots 112 

6.4.1 Home Page  112 

6.4.2 Sign Up Page 112 

6.4.3 Login Page  113 

6.4.4 Client  115 

6.4.5 Caregiver  130 

6.4.6 Administrator 143 

6.5 Implementation Issues and Challenges 146 

CHAPTER 7 SYSTEM TESTING 147 

7.1 Introduction 147 

7.2 Testing Types 147 

7.3 Unit Test 147 

7.4 Feature Test 149 

7.5 Black Box Test 151 

7.5.1 Black Box Test Cases for Login and Registration 151 

7.5.2 Black Box Test Cases for Client Perspective 152 

7.5.3 Black Box Test Cases for Caregiver Perspective 156 

7.5.4 Black Box Test Cases for Admin Perspective 160 

7.6 User Acceptance Test (UAT) 161 

CHAPTER 8 CONCLUSION AND RECOMMENDATION 169 

8.1 Conclusion 169 

8.2 Limitations 170 

8.3 Recommendations 171 

REFERENCES 172 

APPENDICES 178 

 

 

  



xii 

 

LIST OF TABLES 

 

 

Table 2.1: Comparison of Existing Elderly Care and Assistance Booking 

Platform 17 

Table 2.2: Comparison of Software Development Methodology 23 

Table 2.3: Comparison of Development Frameworks 26 

Table 2.4: Comparison of Development Frameworks 29 

Table 2.5: Comparison of databases 32 

Table 4.1: Functional Requirements for Clients 41 

Table 4.2: Functional Requirements for Caregivers 43 

Table 4.3: Functional Requirements for Administrators 44 

Table 4.4: Non-functional Requirements 44 

Table 4.5: Use Case Description of Register Account 45 

Table 4.6: Use Case Description of Search Care Services 47 

Table 4.7: Use Case Description of Get Service Recommendation 48 

Table 4.8: Use Case Description of View Caregiver's Profile 49 

Table 4.9: Use Case Description of Manage Booking 50 

Table 4.10: Use Case Description of Make Payment 52 

Table 4.11: Use Case Description of Provide Feedback 53 

Table 4.12: Use Case Description of View Transaction History 54 

Table 4.13: Use Case Description of Chat in Chat Box 55 

Table 4.14: Use Case Description of Set Up Profile 56 



xiii 

 

Table 4.15: Use Case Description of View Booking 57 

Table 4.16: Use Case Description of View Feedback 59 

Table 4.17: Use Case Description of View Client’s Profile 60 

Table 4.18: Use Case Description of Manage Care Service 61 

Table 4.19: Use Case Description of View Appointment 63 

Table 4.20: Use Case Description of Manage Account 64 

Table 4.21: Use Case Description of Delete Service 65 

Table 5.1: Data dictionary for the table “bookings” 101 

Table 5.2: Data dictionary for the table “ch_favorites” 102 

Table 5.3: Data dictionary for the table “ch_messages” 103 

Table 5.4: Data dictionary for the table “notifications” 103 

Table 5.5: Data dictionary for the table “services” 104 

Table 5.6: Data dictionary for the table “services_dates” 105 

Table 5.7: Data dictionary for the table “service_timeslots” 105 

Table 5.8: Data dictionary for the table “users” 106 

Table 6.1: Database Configuration 110 

Table 6.2: Mail Server Configuration 111 

Table 6.3: Pusher API Configuration 111 

Table 7.1: Unit Test Result 148 

Table 7.2: Feature Test Result 149 

Table 7.3: Login and Registration Test Cases 151 



xiv 

 

Table 7.4: Client Module Test Cases 152 

Table 7.5: Caregiver Module Test Cases 156 

Table 7.6: Admin Module Test Case 160 

  



xv 

 

LIST OF FIGURES 

 

Figure 1.1: Step of Rapid Application Development methodology (Chien, 

2020). 4 

Figure 2.1:  Home Page of Care.com 8 

Figure 2.2: Caregiver’ profile page 9 

Figure 2.3: Messaging System Page 10 

Figure 2.4: Matching Caregivers’ Page 10 

Figure 2.5: Home Page of Pillar 11 

Figure 2.6: Care Consultation Page 11 

Figure 2.7: Review and Rating System Page 12 

Figure 2.8: List of Services Provided 12 

Figure 2.9: Description of the Services Provided 13 

Figure 2.10: Care Packages Page 13 

Figure 2.11: Live Chat Support Page 14 

Figure 2.12: Registration Page 15 

Figure 2.13: Matching Caregivers Page 15 

Figure 2.14: Live Chat Page 16 

Figure 2.15: Agile Manifesto (Infinity, n.d.). 19 

Figure 2.16: The five stages of Waterfall Development (Abraham, 2023). 20 

Figure 2.17: Flow of Rapid Application Development 21 

Figure 2.18: Hashing Algorithm (Blog, 2021). 23 



xvi 

 

Figure 3.1: Laravel as a full-stack framework (Tis, 2023) 38 

Figure 3.2:  Gantt Chart 40 

Figure 4.1: Use Case Diagram 45 

Figure 4.2: Sign Up Page 66 

Figure 4.3: Login Page 67 

Figure 4.4: Home Page 67 

Figure 4.5: Manage Account Page 68 

Figure 4.6: Setting Profile Page 68 

Figure 4.7: Caregiver List Page 69 

Figure 4.8: View Caregiver Profile Page 69 

Figure 4.9: View Service Detail Page 70 

Figure 4.10: Search Service Page 70 

Figure 4.11: Booking List Page (Pending state) 71 

Figure 4.12: View Booking Page 71 

Figure 4.13: Update Booking Page 72 

Figure 4.14: Delete Booking Page 72 

Figure 4.15: Booking List Page (Approved state) 73 

Figure 4.16: Feedback Page 73 

Figure 4.17: Booking List Page (Decline state) 74 

Figure 4.18: Chat Page 74 

Figure 4.19: Home Page 75 



xvii 

 

Figure 4.20: Manage Account Page 75 

Figure 4.21: Setting Profile Page 76 

Figure 4.22: Service List Page 76 

Figure 4.23: Create Service Page 77 

Figure 4.24: View Service Page 77 

Figure 4.25: Update Service Page 78 

Figure 4.26: Delete Service Page 78 

Figure 4.27: Booking List Page (Pending) 79 

Figure 4.28: Message shown when click on Accept Button 79 

Figure 4.29: Message shown when click on Decline Button 80 

Figure 4.30: Booking List Page (Approved) 80 

Figure 4.31: Booking List Page (Declined) 81 

Figure 4.32: Feedback List Page 81 

Figure 4.33: Chat Page 82 

Figure 4.34: Manage User Account Page 82 

Figure 4.35: View Profile Page 83 

Figure 4.36: Message shown when clicking Delete Button 83 

Figure 4.37: Chat Page 84 

Figure 5.1: Model-View-Controller Architectural Pattern (Sadika, 2023). 85 

Figure 5.2: Class Diagram 86 

Figure 5.3: Activity Diagram for Register Account 87 



xviii 

 

Figure 5.4: Activity Diagram for Setup Profile 88 

Figure 5.5: Activity Diagram for View Transaction History 89 

Figure 5.6: Activity Diagram for Search Care Service 89 

Figure 5.7: Activity Diagram for Get Service Recommendation 90 

Figure 5.8: Activity Diagram for View Caregiver’s Profile 91 

Figure 5.9: Activity Diagram for Provide Feedback 91 

Figure 5.10: Activity Diagram for Make Payment 92 

Figure 5.11: Activity Diagram for Manage Booking 93 

Figure 5.12: Activity Diagram for Manage Care Service 94 

Figure 5.13: Activity Diagram for View Client’s Profile 95 

Figure 5.14: Activity Diagram for View Feedback 95 

Figure 5.15: Activity Diagram for View Booking 96 

Figure 5.16: Activity Diagram for View Appointment 97 

Figure 5.17: Activity Diagram for Delete Service 97 

Figure 5.18: Activity Diagram for Manage Account 98 

Figure 5.19: Activity Diagram for Chat in Chat Box 99 

Figure 5.20: Entity Relationship Diagram 100 

Figure 6.1: Home Page 112 

Figure 6.2: Sign Up page 112 

Figure 6.3: Email Verification Message 113 

Figure 6.4: Email of the Email Verification 113 



xix 

 

Figure 6.5: Login Page 113 

Figure 6.6: Send Password Reset Page 114 

Figure 6.7: Email of the Reset Password Notification 114 

Figure 6.8: Reset Password Page 115 

Figure 6.9: Home Page of Client 115 

Figure 6.10: Profile Icon 116 

Figure 6.11: Setting Profile Page 116 

Figure 6.12: Notification dropdown 117 

Figure 6.13: Notification Page 117 

Figure 6.14: Live Chat 118 

Figure 6.15: Caregiver List Page 118 

Figure 6.16: Caregiver’s Profile Page 119 

Figure 6.17: Care Service Page 119 

Figure 6.18: View of Service Details 120 

Figure 6.19: Booking Modal 120 

Figure 6.20: Search Page 121 

Figure 6.21: Caregiver’s Profile Page 121 

Figure 6.22: Booking Modal 122 

Figure 6.23: Feedback Modal 122 

Figure 6.24: AI Service Recommendation Chatbot 123 

Figure 6.25: Pending Booking Page 124 



xx 

 

Figure 6.26: Booking Details Page 124 

Figure 6.27: Edit Booking Page 125 

Figure 6.28: Alert Message of Deletion of a Booking 125 

Figure 6.29:  Accepted Booking List Page 126 

Figure 6.30: Payment Modal 126 

Figure 6.31: Feedback Modal 127 

Figure 6.32: Declined Booking List Page 127 

Figure 6.33: Transaction History Page 128 

Figure 6.34: Invoice of a Transaction 128 

Figure 6.35: CSV file of a Transaction 129 

Figure 6.36: Contact Us Page 129 

Figure 6.37: Chat Page 130 

Figure 6.38: Caregiver Monthly Dashboard Page 131 

Figure 6.39: Profile Icon Dropdown 131 

Figure 6.40: Edit Profile Page 132 

Figure 6.41: Notification Dropdown 132 

Figure 6.42: Notification Page 133 

Figure 6.43: Service List Page 133 

Figure 6.44: Create Service Page 134 

Figure 6.45: AI Improve Description 134 

Figure 6.46: Service Details Page 135 



xxi 

 

Figure 6.47: Update Service Page 136 

Figure 6.48: Pending Booking Page 137 

Figure 6.49: Alert Message When Decline the Booking 137 

Figure 6.50: Accepted Booking Page 138 

Figure 6.51: Declined Booking Page 138 

Figure 6.52: Client’s Profile Page 139 

Figure 6.53: Booking Details Page 139 

Figure 6.54: Feedback List Page 140 

Figure 6.55: Payment History Page 140 

Figure 6.56: Invoice of a Transaction 141 

Figure 6.57: CSV File of a Transaction 141 

Figure 6.58: Appointment Calendar Page 142 

Figure 6.59: Chat Page 142 

Figure 6.60: Manage User Account Page 143 

Figure 6.61: User’s Details Page 144 

Figure 6.62: Alert Message When Delete a User Account 144 

Figure 6.63: Manage Service Page 145 

Figure 6.64: Chat Page 145 

Figure 7.1: Unit Test Result 148 

Figure 7.2: Feature Test Result 151 

Figure 7.3: UAT Result of Question 1 162 



xxii 

 

Figure 7.4: UAT Result of Question 2 162 

Figure 7.5: UAT Result of Question 3 163 

Figure 7.6: UAT Result of Question 4 163 

Figure 7.7: UAT Result of Question 5 164 

Figure 7.8: UAT Result of Question 6 165 

Figure 7.9: UAT Result of Question 7 166 

Figure 7.10: UAT Result of Question 8 166 

Figure 7.11: UAT Result of Question 9 167 

Figure 7.12: UAT Result of Question 10 167 

Figure 7.13: UAT Result of Question 11 168 

 

  



xxiii 

 

LIST OF SYMBOLS / ABBREVIATIONS 

 

DOSM Department of Statistic Malaysia 

MVC Model-View-Controller 

MYSQL My Structured Query Language 

RAD Rapid Application Development 

PHP Hypertext Preprocessor 

DDoS Distributed denial-of-service  

BCrypt BlowFish &Crypt 

CSS Cascading Style Sheets 

JSX JavaScript XML 

ES6 ECMAScript 6 

HTML Hypertext Markup Language 

VS Code Visual Studio Code 

IDE Integrated Programming Environment 

RAM Random Access Memory 

PCI DSS Payment Card Industry Data Security Standard 

ERD Entity Relationship Diagram 

API Application Programming Interface 

ORM Object-Relational Mapping 

WBS Work Breakdown Structure 

UML Unified Modeling Language 

UUID Universally Unique Identifier 

PDF Portable Document Format 

CSV Comma Separated Value 

FK Foreign Key 

SMLP Simple Mail Transfer Protocol 

TLS Transport Layer Security 

AJAX Asynchronous JavaScript and XML 

TF-IDF Term Frequency-Inverse Document Frequency 

NLP  Natural Language Processing 

UAT User Acceptance Test  



xxiv 

 

LIST OF APPENDICES 

 

APPENDIX A: Work Breakdown Structure 178 

APPENDIX B: Unit Test code 180 

APPENDIX C: Feature Test code 191 

 

 

 

  



1 

 

1 CHAPTER 1 

INTRODUCTION 

 

1.1 Project Background 

Malaysia’s population is aging, the most recent statistic from DOSM 

indicate that the percentage of Malaysia’s population that is 65 years of age or 

over climbed from 7.2% to 7.4% with roughly 2.5 million people (Columnist, 

2023). It is expected that by 2023, Malaysia’s aging population will account for 

15% of the total population, highlighting the urgent need for a comprehensive 

elderly care platform to maintain the dignity of the elderly and improve their 

quality of life (Meera Murugesan, 2021).  

 

Elderly individuals may experience difficulties with daily activities such 

as clothing, grooming, bathing, and meal preparation as they get older. 

Sometimes, as the caregiver, we might handle every single one of these tasks 

(Scnova, 2024). However, due to work and study commitments, providing 

constant care and attention to our elderly family members becomes challenging, 

especially when we have other responsibilities demanding our time and energy. 

Therefore, we might think to have a caregiver to help with these tasks but 

finding a reliable caregiver for these tasks is also not easy. The process of 

searching for suitable caregivers can be time-consuming. So that, this is why an 

elderly care and assistance booking platform is extremely important.  

 

The elderly care and assistance booking platform offer a range of 

benefits for both the elderly and their families. The first benefit is accessibility 

and convenience, enabling users to easily access the platform by using their 

tablets or computers. This platform allows users to choose from different kind 

of services that best meet their needs. Additionally, users can communicate 

directly with their caregiver through chat features in this platform.  

 

The second benefit of this platform is affordability and flexibility. This 

platform reduces the cost of care services since user is direct pay to the caregiver 

then eliminating the need for intermediary agencies that charge commissions. 



2 

 

In addition, users are free to cancel the services whenever they want since there 

is not bound with the long-term contract.   

 

By performing background check and letting users to access the 

caregivers’ performance and feedback by other users, this platform further 

guarantees the reliability and quality of the caregiver. Moreover, this platform 

provides customer support that allow user to communicate with the 

administrator in case of any issues or problems therefore enhancing user 

satisfaction.  

 

Furthermore, the platform offers a wide range of care services, including 

medical care, and food care etc. Users can easily find and compare the caregiver 

based on price, reviews, and services offered. This streamlining the process of 

finding quality care and reducing uncertainty. 

 

 By developing such a platform, family members can focus on their work 

or studies while efficiently managing their time. Simultaneously, elderly 

individuals receive a quality care and leading to an improved quality of life. 

Thus, this platform benefits multiple parties, including elderly individuals, 

caregivers, and family members (FasterCapital, 2024). 

 

1.2 Problem Statement 

After conducting a review on existing elderly care and assistance booking 

platforms, three main problems have been identified in the Malaysia elderly care 

platform.  

 

1.2.1 Lack of a Booking Platform that Allow Registration for Both 

Clients and Caregivers 

One of the significant problems identified in the platform is the absence of a 

comprehensive booking platform that allows registration for both users and 

caregivers. This platform lacks a registration process for both clients and 

caregivers. Some of the existing platforms focus on booking consultations only. 

This restriction makes it more difficult for caregivers to advertise their services 



3 

 

and highlight to users their credentials, experience, and availability. This 

problem restricts consumers' options for choosing a caregiver as well as 

caregivers' chances to connect with a larger user base. 

 

1.2.2 The Lack of Communication Channel Between Families and 

Caregiver 

The lack of a communication channel between families and caregivers is another 

issue observed in Malaysia elderly care platforms. Many platforms in Malaysia 

do not provide chat features that enable direct communication between users 

and caregivers.  In some of the existing platforms, users can only communicate 

with the platform assistance by using the live chat box. This restricts the direct 

communication between the client and caregiver. Without a chat feature, clients 

may face difficulties in discussing specific care requirements with the caregiver. 

This will result in misunderstandings or delays in service delivery. Thus, clients 

might be dissatisfied and become not confident about the services that provided 

in this platform.  

 

1.2.3 The Lack of a Search Function with Filtering Capabilities 

The lack of a search function with filtering capabilities is also one of the 

problems in many Malaysia elderly care platform. Without this feature, users 

are unable to specify their exact service requirements and preferences. This will 

be leading to a lack of caregiver matching list. Due to this problem, users may 

struggle to find a caregiver who meet their needs then users will waste more 

time to browsing irrelevant profiles and become frustration. This problem will 

affect both users and caregivers since users may have to navigate through many 

profiles manually, while caregivers may struggle to attract the right clients who 

match their expertise and availability. 

 

1.3 Project Objectives 

The objective of this project is to develop an elderly care and assistance 

booking platform that improving the overall quality of care provided to elderly 

people. The three main objectives are: 

 



4 

 

1. To develop an integrated booking platform that allow registration for 

both clients and caregiver so that clients can find the services they need, 

and caregiver can promote their services.  

2. To implement a chat channel that allows clients to communicate directly 

with caregivers for information exchange. 

3. To design a platform with search function with filtering capabilities to 

generate caregiver matching lists based on user preferences and 

requirements. 

 

1.4 Project Solution 

To develop an elderly care and assistance booking platform that meets the 

project objectives and solves the project problem described in the previous 

section, the Laravel platform was chosen as the development framework due to 

its blade templating engine, complete authentication system, and rapid 

development. Model-View-Controller (MVC) architecture is implemented by 

Laravel. This framework allows for both front-end and back-end system 

development. The details of the system architecture design will be listed in 

Section 5.1.  

 

1.5 Project Approach  

 

Figure 1.1: Step of Rapid Application Development methodology (Chien, 

2020). 

 

This project will adopt Rapid Application Development (RAD) methodology to 

develop an elderly care and assistance booking platform. This methodology's 

emphasis on rapid prototyping and iterative cycles aligns perfectly with creating 

a user-friendly platform for elderly individuals, family members, and 



5 

 

caregivers. By swiftly prototyping and refining key features like caregiver 

matching and communication tools, the project can incorporate valuable user 

feedback early on, ensuring a seamless user experience (Chien, 2020). Since 

this is an individual approach, it allows for focused decision-making and 

flexibility in addressing project requirements, leading to a timely launch of the 

platform with iterative updates based on real-world usage and evolving user 

needs.  

 

1.6 Scope and Limitation of the Study  

1.6.1 Target Users 

1.6.1.1 Elderly Individuals 

This platform is mostly used by elderly individuals who require various care 

services to assist them with daily tasks and improve their quality of life. They 

can use this platform to search for and book caregivers who suite their specific 

needs.  

 

1.6.1.2 Family Members 

Another important user group consists of family members who oversee and 

manage the care of their elderly family. This covers adult children, partners, 

siblings, and other family members who contribute significantly to the 

caregiving process. They may search and book caregiver, communicate with 

caregivers, and provide feedback or ratings based on their experience. 

 

1.6.1.3 Caregivers 

Caregivers are the one of the essential users of this platform. They create their 

own profile by filling up their qualifications, experience, availability, service 

offered to promote their services. They can also use this platform to connect 

with the care receiver by using the chat channel.  

 

1.6.1.4 Administrators 

The administrator oversees the overall functioning of the platform. They 

manage user account including account of elderly individuals, family members 

as well as caregiver account. Administrator can also communicate with the users. 



6 

 

 

1.6.2 Modules Covered 

Users in this section consider as elderly individuals and family members.  

 

1.6.2.1 User and Caregiver Registration and Login 

This platform allows users and caregivers to register their account on the 

platform and login to the platform using their criteria.  

 

1.6.2.2 Profile Management 

Users and caregivers can manage their profiles by updating their personal 

information such as name, email, contact numbers, etc. The users can view the 

caregiver’s profile as same as the caregivers. 

 

1.6.2.3 Transaction History Module 

Users can view the transaction history they made before, and caregivers can 

view the payment received history. Users and caregivers can generate invoice 

and export CSV of any transaction.  

 

1.6.2.4 Service Seach and Filtering 

Users can search for care services based on specific criteria. Advanced filtering 

features help users find the most suitable caregivers. Users can also ask for 

service recommendations by using the recommendation chatbot.  

 

1.6.2.5 Booking Management 

Users can book for a service directly through this platform. They can manage 

the booking later including view the booking, update the booking and cancel the 

booking. After the user makes a booking, the caregiver can accept or decline the 

booking. If the caregiver has accepted the booking, the users may proceed to 

make the payment. 

 

1.6.2.6  Care Services Management 

Caregiver can promote their services on this platform. They can manage their 

services later including view the service, update the service and delete the 



7 

 

service. Besides, the administrator can delete a service that was created by the 

caregiver.  

 

1.6.2.7 Account Management 

Administrator can manage the user account by viewing and deleting the user 

and caregiver’s account. 

 

1.6.2.8 Communication Channel 

This platform establishes chat features that allows direct communication 

between users and caregiver. Administrator can also use this tool to 

communicate to users and caregivers. 

 

1.6.2.9 Feedback System 

This platform allows users to provide feedback to caregivers after conducting 

the care services based on their experiences and will enable caregivers to view 

this feedback. This module helps accountability within the platform.  

  

1.6.3 Modules Not Covered 

Due to the limitation of time and technologies, payment processing is not 

covered in this project.  

 

1.6.4 Assumptions of this project 

i. The users and caregivers are assumed to have a basic level of digital 

literacy necessary to navigate the platform.  

ii. Assumed that the web application function seamlessly across different 

operating systems such as Windows, macOS and Linux, enabling users 

to access it from any device with an internet connection.  

  



8 

 

 

1 CHAPTER 2    

LITERATURE REVIEW 

 

2.1       Introduction 

This chapter has four main sections, which are Section 2.2, Section 2.3, 

Section 2.4, and Section 2.5. Section 2.2 discusses the background of the 

existing elderly care platforms and their strengths and weaknesses. Next, 

Section 2.3 discusses the software development methodologies with their 

strengths and weaknesses. Other than that, Section 2.4 discusses web 

development tools such as development framework, code editors, database 

along with their advantages and disadvantages. Section 2.5 is about the 

conclusion of each session. 

 

2.2 Elderly Care platforms 

Due to the limited number of elderly care and assistance booking platforms that 

have developed in Malaysia, I reviewed two platforms from other countries and 

two from Malaysia. 

 

2.2.1 Care.com 

Care.com was founded in 2006 and launched in 2007. In 2012, Care.com 

expanded its reach by launching in the United Kingdom and Canada while also 

acquiring the Berlin-based Betreut.de. This strategic move broadened its 

footprint and solidified its position as a leading online resource connecting 

families with caregivers across different regions (Weingus, 2024). 

 

 

Figure 2.1:  Home Page of Care.com 



9 

 

 The figure above shows that Care.com is a platform that allow users to 

apply to jobs or log in to find a care service. This boots the interaction between 

clients and caregivers. 

 

 

Figure 2.2: Caregiver’ profile page 

 

Care.com has various strengths that dramatically improve the care 

experience for the users. One significant aspect is the detailed caregiver profiles. 

Care.com provides detailed information on caregivers' backgrounds, including 

the services provided, rates, qualifications, languages spoken, and professional 

skills. These profiles provide users confidence by offering comprehensive data, 

which empowers them to make well-informed decisions based on their 

individual needs and preferences. To guarantee the safety and security of elderly 

individuals or family members who use the platform, Care.com also thoroughly 

examines the backgrounds of carers. Care.com also allows users to provide a 

review after they use the services. This review may help clients make decisions 

when booking a service.  

 



10 

 

 

Figure 2.3: Messaging System Page 

 

Furthermore, Care.com has a message system that allows 

communication between clients and caregivers. This seamless communication 

platform will enable them to communicate with each other on time. This system 

also helps exchange critical information and discuss individual care 

requirements while maintaining privacy and security. 

 

Figure 2.4: Matching Caregivers’ Page 

  

Moreover, Care.com offers a personalized list of caregivers based on the 

client’s needs. This customised approach helps the client to select a caregiver 

more easily and quickly. This also ensures that caregivers can align their 

services with the right user base.  

 

However, Care.com has its weaknesses too. The platform is 

subscription-based so clients must pay membership fees to access the full range 



11 

 

of features. This may reduce user usage since not all users might use a platform 

that requires a fee. They may use another free app instead of this. 

 

2.2.2 Pillar 

Pillar is Malaysia’s No.1 home caregiver provider platform. Users can 

use this platform without registering an account. In this case, this platform 

eliminates the need for registration for both clients and caregivers.  

 

 

Figure 2.5: Home Page of Pillar 

 

One of Pillar's most significant features is its user-friendly interface. 

This can be proven by its ease of use. Users may simply explore the platform 

and find important information about its diverse range of services. This is 

because its page has a clever design and straightforward navigation. This 

emphasis on user experience enhances interaction and engagement. 

 

 

Figure 2.6: Care Consultation Page 

 



12 

 

Additionally, users can submit a Contact Us form by entering their 

detailed information and the message to the platform. This client-centric 

approach strategy ensures that users’ needs and requirements are clear from the 

start. These free consultations make customers feel respected and supported. 

 

 

Figure 2.7: Review and Rating System Page 

 

Furthermore, users can view ratings and feedback from other users for any 

service they have used. This feedback system will help users understand the 

actual experiences of other users. This can help them make an informed decision 

when they want to book a service. 

 

However, Pillar's platform exhibits several weaknesses. One of them is a 

lack of communication channels that allow users to directly communicate with 

caregivers. This lack of direct communication channels can lead to delays and 

misunderstandings between the client and caregiver. This will impact the overall 

quality of care delivery and the user experience. 

 

 

Figure 2.8: List of Services Provided 

 



13 

 

 

Figure 2.9: Description of the Services Provided 

 

In addition, Pillar’s platform focuses on showcasing care services rather 

than providing profiles of caregivers. Users can access a list of services provided 

by the platform. For example, a brief description of the scope of these services 

is provided. In this case, the platform may lack detailed information about the 

caregiver’s details and information. This limitation may make it more difficult 

for clients to select the best caregiver for their needs and make a fully informed 

choice. 

 

2.2.3 CareConcierge 

CareConcierge is a platform that offers home care services for the 

elderly. This platform meets the varied needs of the elderly who require 

assistance in their own homes. 

 

 

Figure 2.10: Care Packages Page 

  

CareConcierge provides different types of care package plans. With 

these care plans, CareConcierge makes the process of selecting care services 



14 

 

more effective. This allows users to choose plans that align with their 

requirements without the need for extensive comparisons of many services. 

 

 

Figure 2.11: Live Chat Support Page 

 

Additionally, CareConcierge enhances the customer experience with a 

live chat support option. The live chat feature on the platform allows users to 

ask and receive questions. This live chat will allow users to resolve their issues 

instantly, thereby enhancing the trust and confidence of users when using the 

platform. 

 

However, there are various weaknesses on CareConcierge platform. 

This platform does not provide the caregiver’s details and information for user 

view purposes. This will lead to user frustration since there is not sufficient 

information available regarding a caregiver's details. Users may find it difficult 

to evaluate the caregiver's eligibility. This restriction may prevent users from 

picking a caregiver who best meets their requirements and desires. Another 

weakness of CareConcierge is the lack of user reviews or feedback. Users may 

struggle to assess the quality and dependability of the platform's care services 

in the absence of feedback from past users.  

 



15 

 

Finally, CareConcierge’s lack of a direct booking feature may be 

problematic for some users. The platform allows users to make bookings via 

WhatsApp by navigating to it by clicking on the WhatsApp logo. However, 

some users may prefer to book directly through the website. Implementing a 

direct booking feature may improve platform customer satisfaction. 

 

2.2.4 ElderCare 

ElderCare is a platform that focuses on supporting elderly individuals in 

the Canada, United States, and the United Kingdom. This platform is designed 

specifically for elderly individuals by offering a range of services and resources 

to help them stay healthy and independent. 

 

Figure 2.12: Registration Page 

 

On the Registration page, users are presented with two options as shown in 

Figure 2.12. By offering this registration choice, ElderCare facilitates a 

streamlined process for both caregivers and clients to engage with the platform. 

 

 

Figure 2.13: Matching Caregivers Page 



16 

 

 

ElderCare allows users to search for services by filtering criteria such as 

language, education level, availability, qualifications, and responsibilities. After 

applying these filters, the platform will show a list of caregivers that meet their 

needs. This feature significantly reduces the time and effort required for users 

to find suitable services. Therefore, users can quickly identify carers that align 

with their needs and preferences. 

 

 

Figure 2.14: Live Chat Page 

  

ElderCare has established a chat feature that facilitates direct 

communication between users and carers. This helps improve the quality of care 

and support provided. This secure messaging enables users to connect directly 

with carers to discuss care plans and ask questions. 

 

ElderCare offers a more user-friendly booking mechanism. This 

booking mechanism allows customers to request services and pay caregivers 

directly through the platform. This guarantees that the reservation process runs 

smoothly and efficiently. ElderCare improves the transaction process by 

incorporating payment capabilities. 

 

Despite its many strengths, ElderCare also has some specific weaknesses. 

One notable weakness is the costs associated with eldercare services. For some 

individuals and families, the cost of using these services can be too expensive. 

This limits their ability to fully utilize ElderCare resources. 



17 

 

ElderCare doesn’t offer feedback or ratings for each caregiver. This 

means that users cannot review the ratings or feedback from other users about a 

specific carer’s services. This makes it challenging for users to find quality and 

reliable services. 

 

2.2.5 Comparison of Existing Elderly Care and Assistance Booking 

Platform  

Table 2.1: Comparison of Existing Elderly Care and Assistance Booking 

Platform 

Features Care.com Pillar CareConcierge ElderCare 

Strengths  

Registration 

process for clients 

and caregivers 

Yes No No Yes 

Comprehensive 

caregiver profiles 

Yes No No Yes 

Secure messaging 

with caregivers 

Yes No No Yes 

User-friendly 

interface 

Yes Yes Yes Yes 

Transparent 

reviews and 

ratings 

No Yes Yes No 

Caregivers 

Matching List 

Yes No No Yes 

Convenient 

booking process 

Yes No No Yes 

Live Chat Feature Yes No No Yes 

Weaknesses 

Lack of direct 

booking process 

No Yes Yes No 



18 

 

Lack of caregiver 

details 

No Yes Yes No 

Lack of user 

reviews 

Yes No Yes Yes 

 

Based on the table comparing the features of various elderly care and 

assistance booking platforms that I reviewed, it's evident that the platforms 

developed in Malaysia share a common weakness.  

 

First, these platforms do not allow users and caregivers to register directly 

on the platform, preventing a seamless connection between those seeking 

services and caregivers providing expertise. This restriction restricts users from 

easily finding the services they need and prevents caregivers from displaying 

their profiles and proposing their services within the platform. This led to the 

lack of a direct booking process on these sites contributes to the disconnect 

between users and caregivers. Users cannot directly schedule services they 

require, and caregivers cannot receive bookings directly through the platform, 

resulting in a fragmented and inefficient booking experience. 

 

Moreover, the reviewed platforms lack communication channels that allow 

for direct communication between users and caregivers. Without secured 

messaging system, users and caregivers struggle to communicate effectively, 

which is critical for discussing care plans, asking questions, and providing real-

time updates. 

 

Additionally, the existing platforms in Malaysia lack search function with 

filter features. Users might need to search for their services by filtering some 

criteria. After applying the filter, this list should be provided on the elderly care 

and assistance booking platform so that users can easily access the services they 

need. By lacking this functionality, users might spend more time to find or 

compare various services until find a service that meets their requirements.  

 



19 

 

In conclusion, the common weakness of existing elderly care and 

assistance booking platform that developed in Malaysia are lacking platform 

that allow registration of both client and caregiver, lack of a communication 

channel and lack of a search function with filter capabilities. Enhancing features 

such as direct registration, robust communication channels, and search function 

with filter capabilities can significantly improve the user experience and the 

quality of caregiving services offered through these platforms. 

 

2.3  Software development methodologies 

2.3.1 Agile Development 

 

Figure 2.15: Agile Manifesto (Infinity, 2024). 

 

Agile methodology is popular in the software development business due to 

its ability to adapt to changing needs and deliver value progressively. Its 

advantages lie from its adaptability and collaborative, which enables teams to 

react swiftly to feedback and market developments. Agile project management 

divides work into manageable segments, promoting ongoing improvement and 

ensuring that the final product meets customer requirements (Atlassian, 2024). 

 

Small-to-medium sized firms benefit from agile because it speeds up 

decision-making, which helps teams adjust to change more successfully (Olic, 

2020). Its emphasis on adaptability and flexibility also guarantees that the 

finished product satisfies client expectations by modifying methods in response 

to changing specifications and input.  



20 

 

 

However, Agile has several limitations. One major limitation is the lack of 

certainty in development schedules. This is because Agile is based on 

adaptability and iterative development so that project deadlines can be difficult 

to anticipate effectively. This uncertainty may cause dissatisfied among 

stakeholders who want a more consistent delivery schedule.  

 

Another limitation of Agile is its emphasis on delivering small part of the 

software solution frequently. Although this strategy encourages gradual 

enhancement, it may lead to a restricted scope and complicate the delivery of a 

complete solution on schedule. This constraint might force teams to abandon 

some features and disappoint some stakeholders (Tutorialspoint, 2024). 

 

Overall, Agile methodology provides benefits in flexibility, adaptability, 

and customer satisfaction. However, challenges arise from its iterative 

development and unpredictable deadline, impacting project management and 

scope.  

 

2.3.2 Waterfall Development 

 

  

Figure 2.16: The five stages of Waterfall Development (Abraham, 2023). 

 

The Waterfall methodology introduced by Winston W. Royce in 1970, is a 

step-by-step project management technique with five consecutive phases. To 

move forward, each step relies on the previous phase's deliverable. It is ideal for 



21 

 

projects that have clearly defined end goals and require predictability (Hoory, 

2022). 

 

The strength of the Waterfall approach is its focus on systematic information 

exchange at each stage, providing complete documentation throughout the 

project cycle. This facilitates seamless phases and helps quickly onboard new 

team members when needed (Lucidchart, 2018). 

 

Nevertheless, the Waterfall methodology has its weaknesses. One of it is the 

challenge of making changes after the project has entered the testing phase. This 

is because Waterfall is a linear process that requires each phase to be finished 

before proceeding to the next phase. After a phase is finished, backtracking and 

integrating changes becomes challenging and costly. 

 

Additionally, the waterfall approach might not be suitable for complex or 

object-oriented projects due to its inflexible that could hinder adaptability. It is 

also not ideal for long-term projects or those with medium to high risks projects 

because of the changing requirements, as it lacks the capability to effectively 

manage such changes. 

 

In conclusion, the Waterfall approach provides benefits in organized data 

exchange and predictability but is limited in its flexibility, adaptability, and 

responsiveness to change. Thus, this approach making it less appropriate for 

certain projects, particularly those with changing requirements or high 

complexity levels (Dutta, 2024). 

 

2.3.3 Rapid Application Development (RAD)  

 

Figure 2.17: Flow of Rapid Application Development 



22 

 

Rapid Application Development is a flexible software development 

method known for its emphasis on prototyping, fast feedback cycles, and 

reduced focus on detailed planning. RAD promotes iterative refinement of the 

software through development and prototype building, enabling quick iterations 

and updates to meet user requirements (Kissflow, Inc, 2024). 

 

One of the advantages of RAD is flexibility. RAD’s flexibility comes 

from its iterative nature. This allows developers to quickly adapt to changing 

needs and incorporate user feedback. Thus, resulting in a more customer-centric 

development process (Kissflow, Inc, 2024). The software is made to be both 

value-driven and functional through a continual feedback loop. Unlike 

sequential, waterfall-driven approaches, this methodology ensures quality from 

the beginning of product development.  

   

However, RAD may be less suitable for broad or complex projects that 

lack clear boundaries. When faced with complex requirements or complex 

systems, RAD's collaborative and flexible approach can become unmanageable. 

In this case, waterfall or agile methodologies will be considered better options 

(Sharma, 2024). 

 

In short, RAD is beneficial for small to medium-sized projects with clear 

scopes due to its flexibility and responsiveness to user feedback but might not 

be the best option for larger or complicated projects that require more structured 

methodologies. 

 

 

 

 

 

 

 

 

 



23 

 

2.3.4 Comparison of Software Development Methodology  

 

Table 2.2: Comparison of Software Development Methodology 

Aspect Agile 

Development  

Waterfall 

Development 

Rapid 

Application 

Development 

(RAD) 

Flexibility Excellent Poor Good  

Predictability  Poor Excellent Good 

Collaboration Good Poor Good 

Responsiveness 

to Change 

Excellent Poor Good 

Suitability  Good Excellent Good 

 

The table above outlines that Agile Development excels in flexibility and 

responsiveness to change, making it best suited for dynamic project but less 

predictable. Waterfall Development offers excellent predictability but lacks 

flexibility and responsiveness. This makes it well for stable, well-defined 

projects. RAD combines good flexibility, predictability, and collaboration, 

making it suitable for time-sensitive projects. 

 

2.4  Web Development Tools  

2.4.1 Development Frameworks 

2.4.1.1 Laravel  

 

Figure 2.18: Hashing Algorithm (Blog, 2021). 

 



24 

 

Laravel is a PHP framework that offers a powerful collection of tools for 

web development and security. Laravel has strong security which will protect 

the website from DDoS attacks. Besides, the Bcrypt algorithm keeps passwords 

safe by encrypting them instead of directly saving them in the database. 

 

Laravel also facilitates seamless database migration. This migration 

process allows developers to track changes made to the database over time. It 

also allows developers to roll back or update the database schema. Additionally, 

developers may create migration files and can easily manage the tables and 

columns without directly writing SQL queries. (ICStudio,2022). 

 

However, Laravel still has some limitations. One notable disadvantage is 

its lack of direct support for payment processing. Although Laravel provides 

robust tools for web development, it lacks built-in functionality for managing 

payment transactions. Therefore, developers need to utilize external libraries 

and connect with widely used payment gateways like Stripe, PayPal, and 

Braintree. (Sharma, 2024). 

 

2.4.1.2 React  

React is a UI development library for JavaScript that manages CSS file 

prefixes and uses Webpack to assemble React, JSX, and ES6 code automatically. 

Since its release in May 2013, it has grown to rank among the frontend libraries 

for web development that are most frequently used (Deshpande, 2023). 

 

React using a component-based architecture by breaking down the user 

interface into reusable components. Reusing components saves developers time 

and ensure that changes made to one section of the application don't impact 

other sections. Furthermore, compared to other frontend frameworks, React's 

modular nature makes code maintenance simpler and more adaptable, which 

helps organizations save a lot of time and money (Modan, 2024). 

 

However, React is not a full-featured framework as it focuses on the 

view component of the MVC architecture. Developers require additional 



25 

 

libraries and tools for the Controller and Model components, which may result 

in a less structured codebase and patterns. 

 

Another issue is the lack of documentation caused by Reacts rapid 

expansion, which includes the addition of new tools and patterns on a regular 

basis. This can make it difficult for new developers to begin working with React 

and may result in delayed development, particularly in teams with 

inexperienced developers (Ragala, 2023). 

 

2.4.1.3 Vue.js 

 Vue.js is a JavaScript framework for building user interfaces, 

leveraging standard HTML, CSS, and JavaScript. It offers a declarative, 

component-based programming model for efficient development of user 

interfaces (Vue.js, 2024). 

 

 The strength of Vue.js is its detailed documentation, which is crucial 

for both beginners and experienced developers. It provides clear explanations, 

comparisons to other frameworks, and is regularly updated, making it a reliable 

resource for troubleshooting and learning. 

  

 Another advantage of Vue.js is the reusability achieved through its 

component-based approach, allowing the creation of reusable single-file 

components for cohesive, maintainable UI elements, thereby increasing 

development efficiency (Patel and Patel, 2024). 

 

 However, compared to mature frameworks like React, Vue.js faces 

challenges such as a lack of plugins, which may hinder full dependency and 

require switching to other languages to implement certain features. 

 

 Additionally, Vue.js may not offer robust support for large-scale 

projects due to its smaller community and development team size, which could 

impact stability and quick issue resolution required for enterprise-level projects 

(Editor, 2022). 



26 

 

2.4.1.4 Comparison of Development Frameworks 

Table 2.3: Comparison of Development Frameworks 

Aspect Laravel React Vue.js 

Backend Framework Yes No No 

Frontend Library  No Yes No 

Built-in Security Yes No Yes 

Built-in Authentication Yes No No 

Seamless Database Migration Yes No No 

Direct payment processing No No No 

High Reusability No Yes Yes 

Detailed documentation Yes No Yes 

Strong community support Yes Yes Yes 

Scalability  Yes Yes Yes 

 

From the table above, it can be said that Laravel stands out as a backend 

framework with built-in security, authentication, seamless database 

management, and detailed documentation. React is a frontend library known for 

high reusability of components, strong community support, and scalability in 

building interactive user interfaces. Vue.js shares similarities with React in 

terms of high reusability and strong community support, and offering scalability 

for developing large-scale applications, but it lacks built-in authentication and 

database migration features. 

 

2.4.2 Code Editors 

2.4.2.1 VS Code 

Visual Studio Code is Microsoft's adaptive integrated programming 

environment (IDE). It is known for its speed, usability, and comprehensive 

feature set. This cross-platform code editor is widely appreciated for its 

extensive feature set and user-friendly interface (WebHostingMonkey, 2024). 

 

A significant advantage of Visual Studio Code is its extensive debugging 

assistance. Developers can improve debugging and accelerate application error 



27 

 

resolution using tools such as analyzing variables, stepping through code, 

managing exceptions, and creating breakpoints (Pedamkar, 2023). 

 

Visual Studio Code is the best solution for developers working with 

various programming languages such as Python, C, Java, and JavaScript. This 

is because it provides important language support such as syntax highlighting, 

code completion, and language-specific features. This broad compatibility 

improves development processes and increases productivity on multilingual 

projects (Mir, 2023). 

 

Although VS Code has many benefits, new users may encounter 

difficulties. The huge feature set and adaptable options may be too much for less 

experienced programmers who may not need all of its features. For those with 

no coding experience, it can be difficult to navigate and use the editor effectively 

without spending some time and effort (Mir, 2023). 

 

2.4.2.2 NotePad++  

For Microsoft Windows, Notepad++ is a free text and source code editor. 

With its tabbed editing feature, users may work on many open files from a 

single window (UniversityOfKent, 2024). 

 

One feature of Notepad++ is its ability for multiple tabs, which makes it 

easier to work on many files at once. Users may simply switch between tabs, 

and each tab preserves its own settings such as font size, color scheme, and line 

numbers, which help with organization and navigation across various sections 

of code. 

 

Another significant feature is Notepad++'s syntax highlighting.  It 

enhances coding by using different colours to highlight distinct parts of the code 

according to their functions. This facilitates reading and comprehending 

complicated code files, which boosts productivity and code comprehension 

(Centro and Centro, 2023). 

 



28 

 

However, Notepad++ has certain limitations. One limitation is that it relies 

on plugins to increase functionality, which might cause dependence problems 

or compatibility issues with newer versions of Notepad++ or the plugins 

themselves (Schaferhoff, 2022). 

 

Furthermore, Notepad++ is mainly a text editor and lacks some complex 

Integrated Development Environment (IDE) features available in more 

complete IDEs, such as code debugging, project management, and built-in 

compilers. This constraint may affect developers who need a more integrated 

development environment for complex projects (Smithaydon, 2023). 

 

2.4.2.3 Phpstrom   

 PhpStorm is an integrated development environment for PHP developers 

and designed with the purpose of boosting development productivity. With the 

help of this software, developers on Linux, Windows, and macOS may easily 

write, edit, analyse, restructure, test, and debug PHP code (Phpstorm, 2021). 

 

One of the PhpStrom strength is its strong support of different PHP 

frameworks, making it a great option for developers who working with 

frameworks like Laravel, Drupal, WordPress, CakePHP, Symfony, and others. 

Its integrated features simplify development processes and improve productivity 

with widely used frameworks (Monovm, 2021). 

 

Additionally, PhpStorm stands out for its strong database support, offering 

various tools for smooth integration with SQL and diverse databases. Users can 

manage the database directly within the IDE. This extensive support contributes 

to improved code assistance and simplifies database management for projects 

(Pedamkar, 2023). 

 

However, since PhpStorm is a paid integrated development environment 

that costs 200 euros per year, some developers with limited funds will not 

hesitate to use it. Moreover, PhpStorm needs a substantial amount of random-

access memory (RAM) to function optimally, with a minimum of 16GB 



29 

 

recommended. This demand for resources can cause difficulties for developers 

working with constrained hardware or environments, impacting performance 

and availability (Phpstorm, 2021). 

 

2.3.3.4 Comparison of Code Editors 

Table 2.4: Comparison of Development Frameworks 

Aspect Vs Code NotePad++ PhpStorm 

Integrated Development 

Environment (IDE) 

Yes No Yes 

Cross-platform Yes No Yes 

Free to use Yes Yes No 

Extensive debugging support Yes No Yes 

Wide range of programming 

languages 

Yes No Yes 

Advanced PHP support Yes No Yes 

Minimal resource usage No No No 

 

VS Code and PhpStorm are IDEs suitable for various programming languages, 

offering extensive debugging support, and provides advanced PHP-specific 

features. Vs Code is free to use while PhpStorm requiring a paid license. In 

contrast, NotePad++ is a lightweight text editor that lack of IDE functionalities 

and PHP support, primarily suited for basic text editing tasks.  

 

2.4.3 Databases 

2.4.3.1 Oracle 

Oracle is a relational database management system that developed by 

Oracle Corparation. It is known for its database engine which excel in data 

organization, storage and retrieval  (javaTpoint, 2024). 

 

One of Oracle's strengths is its emphasis on performance, which includes 

approaches for achieving high performance. Performance tuning strategies can 

be used within the database to retrieve and modify data more quickly, reducing 

query execution time and optimizing application operations. 



30 

 

 

Another advantage is Oracle's robust data security measures. It makes 

use of IP blocklists, multiple authentication methods, and encryption as data 

security mechanisms. Additionally, it complies with globally recognised 

security standards like PCI DSS, which guarantees the security of company data 

(Nguyen and Nguyen, 2024). 

 

However, there are several limitations to using an Oracle database. One 

of it is its complexity, which can be difficult for users who are not technically 

adept or lack the necessary technical skills to operate with Oracle. This 

complexity may make adoption difficult, particularly among users who prefer 

simpler database management systems (javaTpoint, 2024). 

 

2.4.3.2 MySQL 

MySQL is available for free and enables users to manage structured data. 

It is widely implemented in a variety of applications, including medium-scale 

projects, enterprise-level solutions, and large-scale websites (Domantas G., 

2024). 

 

One advantage of MySQL is that it is open-source and free, making it a 

popular choice for entrepreneurs and developers on a tight budget. It provides 

almost all the functionality required by a database server without affecting 

application performance or consistency (blueclaw, 2021). 

 

MySQL well know about its speed, scalability, and flexibility. It is 

considered one of the fastest databases to access due to its ability to enable 

multi-threading to improve performance. Additionally, MySQL is suitable for a 

variety of use cases as it can handle embedded applications (blueclaw, 2021). 

 

However, MySQL has disadvantages. Certain use cases, such as auditing, 

or transactions may cause stability difficulties and data corruption. Furthermore, 

MySQL's speed may slow down under heavy stress, making it less suitable for 



31 

 

large organizations with millions of records and transactions compare to other 

databases such as Oracle or SQL Server (blueclaw, 2021). 

 

2.4.3.3 SQLite 

SQLite is a free-to-use database management system that runs without a 

server. It requires zero configuration and does not need installation, making it 

highly convenient with its compact size of less than 500kb, significantly smaller 

than other database management systems (S, 2023). 

 

One advantage of SQLite is its better performance compared to 

traditional file systems, offering fast reading, and writing operations. It achieves 

this by only loading the necessary data and overwriting specific parts of the file 

when edits are made, leading to efficient use of memory (javaTpoint, 2024). 

 

SQLite is also portable across all 32-bit and 64-bit operating systems 

and various architectures, allowing multiple processes to attach to the same 

application file without interference. It is compatible with all programming 

languages and may be integrated with them without any problems (javaTpoint, 

2024). 

 

However, SQLite has limitations, such as lacking support for features 

like stored procedures and user-defined functions found in traditional RDBMS. 

It also lacks user management features, making it unsuitable for applications 

requiring user authentication and authorization (Wong, 2023). 

 

 Another limitation of SQLite is its file-based nature, which limits 

centralized control of the database and can be challenging to manage in large-

scale applications. Additional tools or systems may be necessary for effective 

database management (Wong, 2023). 

 

 

 

 



32 

 

2.4.3.4 Comparison of databases 

Table 2.5: Comparison of databases 

 

By comparing the table above, it is note that Oracle Database and MySQL excel 

in performance tuning, robust data security, scalability for large-scale 

applications, and support for stored procedures and user-defined functions. 

However, Oracle Database is complex and not open-source, while MySQL 

offers open-source availability. SQLite is simpler, open-source, and free, 

suitable for smaller applications with limited security features, scalability, and 

centralized control over the database compared to Oracle Database and MySQL. 

 

2.5       Conclusion  

 In conclusion, after reviewing existing elderly care and assistance 

booking platforms in Malaysia, it's evident that these platforms lack a 

centralized platform for users and caregivers to register and interact, efficient 

Aspect Oracle 

Database 

MySQL SQLite 

Performance tuning Yes Yes Yes 

Robust data security Yes Yes Limited 

Complexity Yes Moderate No 

Open-source and free No Yes Yes 

Speed and scalability Yes Yes Limited 

Stability Yes Moderate Moderate 

Suitable for large-scale 

applications 

Yes Yes Limited 

Support for stored procedures 

and user-defined functions 

Yes Yes Limited 

Centralized control over the 

database 

Yes Yes No 

Suitable for user authentication 

and authorization 

Yes Yes Limited 



33 

 

booking systems within the platform, communication channels between them, 

and a search function with filter capabilities. 

 

 By comparing the software development methodology, it is noted that 

RAD is more suitable for this project compared to other methodology. This is 

because RAD focus on quick prototyping, iterative development, allow for rapid 

iterations, and frequent updates based on user input.  

 

For the development framework, Laravel stands out of its full-stack 

framework. Laravel's backend capabilities ensure efficient development, 

security, and scalability. Laravel’s Blade templating engine allow developers to 

create dynamic fronted views using PHP. By using Blade templates, developers 

can reuse the components, extend layouts, and pass data from the backend to 

the frontend seamlessly. 

 

For the code editor, VS Code as the IDE ensures coding, debugging, and 

collaboration across frontend and backend components. Lastly, MySQL 

provides scalability, robust data security, and complex query support crucial for 

managing user and caregiver data.



34 

 

1 CHAPTER 3  

METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

The objective of this chapter is to provide specifics on the project's methodology 

and workplan. There are four sections in this chapter. Based on the study 

presented in Chapter 2, Section 3.2 describes the selected software development 

methodology. The development and prototype tools used in system 

development are covered in Section 3.3. The Gantt Chart and WBS are 

presented in Section 3.4. Finally, this chapter is concluded in Section 3.5. 

 

3.2       Software Development Methodology    

Rapid Application Development (RAD) was chosen for the elderly care and 

assistance booking platform project due to its iterative approach. The RAD 

methodology involves four main phases: Planning and Analysis: where 

requirements are gathered and scoped; Design: focusing on system architecture 

and interface layout; Development and Testing: featuring rapid prototyping and 

iterative development with continuous feedback; and Closing: encompassing 

finalizing the system, user acceptance testing, bug fixing, and deployment 

preparation. 

 

3.2.1 Planning and Analysis 

Determining the project's direction and comprehending the needs of 

stakeholders are essential tasks for the Planning and Analysis phase. 

 

3.2.1.1 Identify Stakeholders 

Identifying the proper stakeholders is essential to making sure that the project's 

development considers all relevant parties. The stakeholder in this project is 

elderly individuals in need of care, family members in charge of scheduling and 

administering care services, and platform administrators supervising system 

operations. 

 

 



35 

 

3.2.1.2 Gather Requirements 

A thorough literature analysis was carried out to examine existing elderly care 

and assistance booking platform offerings to efficiently gather requirements. 

Through this review, I gained insight on the feasibility and functionality analysis, 

user input, and industry best practices. Knowledge on user expectations and 

system capabilities was obtained through this review. Thus, this eliminated the 

need for extra surveys or questionnaires and added significant data and insights 

to the requirement-gathering phase. 

 

3.2.1.3 Define Project Scope 

In this phase, the project scope is identified. As stated in Chapter 1, the project's 

scope is broad and includes a variety of modules and features necessary for a 

productive and intuitive eldercare platform. These consist of systems enabling 

both users and carers to register and manage their profiles securely, search and 

booking capabilities for services and carers, a communication channel that 

allows users to communicate directly with carers, and more features to improve 

the overall user experience. 

 

3.2.2. Design  

In the Design phase, the Use Case Diagram, Class Diagram, Activity Diagram, 

and Entity Relationship Diagram (ERD) are developed to define user 

interactions and database structure for the elderly care platform. 

 

3.2.2.1 Use Case Diagram Creation 

A use case diagram will be drawn in this design stage. The purpose of this 

diagram is to visually represent the interaction between users and the system. In 

this project, this diagram will illustrate three users in the platform which are the 

client, caregiver, and admin, and how each interacts with the system.  

 

3.2.2.2 Construction of the Class Diagram  

The class diagram will be drawn based on all the models of the platform to 

illustrate the key models of the Elder Care and Assistance Booking Platform 



36 

 

and their relationships. This class diagram provides a comprehensive view of 

the system structure. 

 

3.2.2.2 Construction of the Activity Diagram  

Activity diagrams will be drawn based on all the use cases in the Use Case 

Diagram. This diagram provides a clear and detailed visualization of the specific 

flow of activities and actions involved in the use case. 

 

3.2.2.2 Construction of the Entity Relationship Diagram (ERD)  

The database structure of the platforms will be specified using an entity 

relationship diagram (ERD). The Entity Relationship Diagram (ERD) will 

demonstrate the relationships between various entities, including users, 

notifications, ch_favorites, ch_meesages, services, service_dates, 

service_timeslots, and bookings. 

 

3.2.3 Development and Testing  

The Development and Testing phase will use an iterative methodology to ensure 

speedy development and continual testing for project success. This phase will 

include several iterations, each focused on improving the platform's capabilities 

to fulfill the following goals: 

 

3.2.3.1 First Iteration 

The first iteration of this project will focus on developing the Client Module. 

All the features of the Client Module will be developed. After developing all the 

features of the Client Module, unit tests, and feature tests will be carried out to 

ensure that all functions are working well. 

 

3.2.3.2 Second Iteration 

The second iteration of this project will focus on developing the Caregiver 

Module. All the features of the Caregiver Module will be developed. After the 

development of all the features of the Caregiver Module, unit tests, and feature 

tests will be carried out to ensure that all functions are working well. 

 



37 

 

3.2.3.3 Third Iteration 

The third iteration of this project will focus on developing the Admin Module. 

All the features of the Admin Module will be developed. After the development 

of all the features of the Admin Module, unit tests, and feature tests will be 

carried out to ensure that all functions are working well. Lastly, the User 

Acceptance Test will be carried out to ensure user satisfaction on the platform.  

 

3.2.4 Closing 

In the closing state, all development and testing codes will be finalized. If any 

bugs are found, they will be resolved. Once the platform has no further issues, 

the report documentation will begin. 

 

3.3       Development Tools 

3.3.1 Markup Languages 

3.3.1.1 HyperText Markup Language (HTML) 

HTML is required to develop web pages and defining its content and layout 

structure. It provides the structure needed to display forms, graphics, text, and 

other types of components online. 

 

3.3.1.2 Cascading Style Sheets (CSS) 

CSS enables developers to format and style HTML elements while also 

changing the visual appearance of the platform. It includes colours, fonts, layout, 

and responsive design features to provide a visually appealing and user-friendly 

experience. 

 

3.3.2 Programming Languages 

Using AJAX, JavaScript can interact with PHP to allow dynamic content 

changes without the need for page reloads. This connection allows for the 

creation of a search function with filter options. 

 

3.3.2.1 JavaScript 



38 

 

JavaScript can be used to create dynamic and interactive web elements. It is 

essential when integrating third-party libraries and APIs, controlling user 

interactions, form validations, animations, and client-side scripting. 

 

3.3.2.2 PHP  

The server-side programming language PHP is used to create the backend of 

web-based applications. It handles form data processing, database interactions, 

user authentication control, and dynamic content generation based on user input 

or system logic. 

 

3.3.3  Framework 

3.3.3.1 Laravel 

 

Figure 3.1: Laravel as a full-stack framework (Tis, 2023) 

 

 In this project, Laravel will be used for both frontend and backend 

development. Laravel combines HTML and Blade templates for creating the 

user interface while JavaScript adds interactivity and CSS style to the pages. 

This setup allows developers to develop the platform smoothly and effectively 

without needing extra fronted frameworks.  

 

3.3.4 Runtime Environments 

3.3.4.1 Node.js 

In this project, Node.js will be used as a runtime environment that allows 

JavaScript to be executed server-side. It will be utilized in the service 



39 

 

recommendation system by enabling efficient handling of server-side logic and 

asynchronous events to provide fast and scalable recommendations to users. 

 

3.3.5 Integrated Development Environment (IDE) 

3.3.5.1 VS Code 

Visual Studio Code is the chosen integrated development environment for this 

project. The developer can open the project and edit its code by using VS Code.  

Its integrated terminal helps developers to execute any command more 

efficiently. 

 

3.3.6 Database System 

3.3.6.1 MySQL 

MySQL was selected as the database management system for this platform. This 

is because MYSQL is quite compatible with the Laravel framework. Laravel 

includes support for Object-Relational Mapping (ORM) via Eloquent ORM. 

This will ease database interactions and querying using MYSQL. Besides, its 

features like data indexing, querying, transactions, and user management make 

it an excellent option for organizing and storing data. 

 

3.3.7 Hosting Server 

3.3.7.1 WampServer 

WampServer will serve as the hosting server for this platform. WampServer 

meets the system requirements for running Laravel, such as PHP, MYSQL and 

Apache. This setup ensures that Laravel application runs smoothly without 

compatibility issues and saving time and effort in setting up a development 

environment.  

 

3.3.8 Prototyping Tool 

3.3.8.1 Axure RP 9 

Axure RP 9 is a UI tool for creating functional prototypes. Axure RP 9 was 

selected for developing and testing the user interface and functionality of the 

platform. The prototype will be design and develop using Axure RP.  

 



40 

 

3.4 Project Plan  

3.4.1 Work Breakdown Structure 

WBS is attached in Appendix A. 

3.4.2 Gantt Chart 

 

Figure 3.2:  Gantt Chart 

 

3.5 Summary 

In Summary, this chapter highlights how crucial it is to choose a suitable 

software development methodology based on research findings, to improve 

system development by using efficient development and prototyping tools, and 

to manage projects effectively by creating a thorough project plan that includes 

a Gantt chart and Work Breakdown Structure (WBS). This chapter provides a 

clear road plan for the project's successful completion, laying the foundation for 

the following chapter. 

 



41 

 

1 CHAPTER 4  

PROJECT SPECIFICATION 

 

4.1   Introduction 

This chapter will focus on the details of specification in this project. This chapter 

is divided into six sections. Section 4.2 contains a list of requirements 

specifications which encompass functional requirements for the client, 

caregiver, and administrator, as well as non-functional requirements. Section 

4.3 is to show the use case diagram of this project. Section 4.4 is to list out all 

use case descriptions based on the use case diagram. Section 4.5 is to provide 

preliminary user interface design for the following iterations. Section 4.6 is to 

summarize this chapter. 

 

4.2       Requirements Specifications  

This section discusses on functional requirements for client, caregiver, and 

administrator, and non-functional requirements of this project. 

 

4.2.1 Functional Requirements 

4.2.1.1 Functional Requirements for Clients 

 

Table 4.1: Functional Requirements for Clients 

Requirement ID Functional Requirement 

FR001 The platform should allow clients to register 

an account using a valid email address and 

password, with validation rules for email 

format and password strength. 

nFR002 The platform should allow clients to login 

using their registered account. 

FR003 The platform should allow clients to logout. 

FR004 The platform should allow clients to manage 

their profile including updating personal 

information. 



42 

 

FR005 The platform should allow clients to search 

for care service by applying the filter function 

and view the caregiver matching list based on 

search criteria.  

FR006 The platform should allow clients to get a 

service recommendation by describing the 

service they need.  

FR007 The platform should allow clients to view 

detailed information about caregiver profiles. 

FR008 The platform should allow clients to create a 

booking for a care service. 

FR009 The platform should allow clients to view for 

their bookings list. 

FR010 The platform should allow clients to update 

their booking. 

FR011 The platform should allow clients to cancel 

their booking with confirmation prompts. 

FR012 The platform should allow clients to make a 

payment by selecting a payment method after 

the booking has been accepted. 

FR013 The platform should allow clients to view the 

transaction history, generate invoice, or 

export CSV for any transactions.  

FR014 The platform should allow clients to 

communicate with their caregiver and the 

administrator through messaging features. 

FR015 The platform should allow clients to provide 

feedback after conducting a service.  

 

 

 

 

 



43 

 

4.2.1.2 Functional Requirements for Caregivers 

Table 4.2: Functional Requirements for Caregivers 

Requirement ID Functional Requirement 

FR001 The platform should allow caregivers to 

register an account using a valid email 

address and password, with validation rules 

for email format and password strength. 

nFR002 The platform should allow caregivers to 

login using their registered account. 

FR003 The platform should allow caregivers to 

logout. 

FR004 The platform should allow caregivers to 

update their profile including updating 

personal information. 

FR005 The platform should allow caregivers to 

create care services. 

FR006 The platform should allow caregivers to view 

their own care services. 

FR007 The platform should allow caregivers to 

update their care services. 

FR008 The platform should allow caregivers to 

delete their care services. 

FR009 The platform should allow caregivers to view 

of their bookings with user information. 

FR010 The platform should allow caregivers to 

approve or decline booking requests. 

FR011 The platform should allow caregivers to view 

their feedback from clients. 

FR012 The platform should allow caregivers to view 

the payment received history.  



44 

 

FR013 The platform should allow caregivers to view 

all the appointments in the appointment 

calendar.  

FR014 The platform should allow caregivers to 

communicate with users and administrators 

through messaging features. 

 

 

4.2.1.3 Functional Requirements for Administrators 

Table 4.3: Functional Requirements for Administrators 

Requirement ID Functional Requirement 

FR001 The platform should allow admin to view 

the details of user account including profile 

information. 

FR002 The platform should allow admin to delete 

the user account with confirmation prompts. 

FR003 The platform should allow admin to delete 

the service created by caregiver with 

confirmation prompts. 

FR004 The platform should allow admin to 

communicate with clients and caregivers. 

 

4.2.2 Non-functional Requirements 

Table 4.4: Non-functional Requirements 

Requirement ID Non-functional Requirement 

NFR001 The platform should be user-friendly with 

clear navigation and intuitive interfaces. 

NFR002 The platform should be reliable by ensuring 

that bookings and communication are 

processed accurately and on time. 



45 

 

NFR003 The platform should implement robust 

security measures including encryption for 

data protection to protect user data.  

NFR004 The platform should support major browsers 

such as Chrome, Firefox, and Edge.  

NFR005 The platform should have efficient error 

handling which provides error messages and 

informative messages for troubleshooting. 

 

4.3  Use Case Diagram 

 

Figure 4.1: Use Case Diagram 

 

4.4  Use Case Description 

 

Table 4.5: Use Case Description of Register Account 

Use Case Name: Register Account 

 

ID: UC01 Importance Level: 

High 

Primary Actor: Client, Caregiver Use Case Type:  Detail, Essential 



46 

 

 

Stakeholders and Interests:  

Client: Client wants to register an account to search for care service. 

Caregiver: Caregiver wants to register account to provide care services.  

 

Brief Description: This use case describes how the client and caregiver 

register a new account on the platform. 

Trigger: Client wants to seek for care service and Caregiver wants to 

provide care service.  

  

Relationships: 

 Association : Client, Caregiver 

 Include : - 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. Client and caregiver access the registration page of the platform. 

2. The client and caregiver enter their name, email address, password, 

and confirmed password and choose their role to create an account. 

3. The system validates the entered email address is valid. Continue to 

E3: Reenter Email Address. 

4. The system validates the entered password is compliance with 

password policies. Continue to E4: Reenter Password. 

5. The system verifies that the confirmed password matches the 

entered password. Continue to E5: Reenter Confirmed Password. 

6. If both email address and password are valid, the system will send 

an email verification link to the email registered. 

7. After the email is verified, the system proceeds to create a new user 

account. 

8. The client and caregiver will be redirected to the Login Page. 

Sub-flows: 



47 

 

Alternate/Exceptional Flows: 

E3: Reenter Email Address 

1. If the client and caregiver enter an email address that is already 

registered in the system, the system will display an error message 

indicating that the email address is already exist. 

2. The client and caregiver are prompted to use another email address 

for registration. 

 

E4: Reenter Password 

1.  If the client and caregiver enter a password that is not compliance with 

password policies, the system will display an error message indicating 

that the password does not meet the requirements.  

2. The client and caregiver are prompted to use another password for 

registration. 

 

E5: Reenter Confirmed Password 

1.  If the client and caregiver enter the confirmed password that is not 

matches the entered password, the system will display an error 

message indicating that the password does not match the entered 

password.  

2. The client and caregiver are prompted to reenter the confirmed 

password.  

 

 

Table 4.6: Use Case Description of Search Care Services 

Use Case Name: Search Care Services ID: UC02 Importance 

Level: High 

Primary Actor: Client 

 

Use Case Type:  Detail, Essential 

Stakeholders and Interests:  

Client: Client wants to search for care services that meet their requirements 

Brief Description: This use case describes how the client search for 

available care services based on their specific needs and 



48 

 

preferences. The system will display a list of caregivers 

that match their search criteria for care services.  

Trigger: Client wants to find suitable care services. 

 

Relationships: 

 Association : Client 

 Include : View Caregiver Matching List 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The client search for care services by applying filter to filter the 

service type, duration of service, price, location, and provider. 

2. The system processes the search query and retrieves matching care 

services from the database. Continue to E2: No Matching Care 

Service. 

3. The system presents a list of caregivers that match the user’s search 

criteria along with their services and details. 

Sub-flows: 

Alternate/Exceptional Flows: 

E2: No Matching Care Service 

1. If no matching care services are found, the system will display an 

empty list. 

2. The client can clear the filter to reset to the default state, showing all 

available services 

 

Table 4.7: Use Case Description of Get Service Recommendation 

Use Case Name: Get Service 

Recommendation 

ID: UC03 Importance 

Level: High 

Primary Actor: Client 

 

Use Case Type:  Detail, Essential 



49 

 

Stakeholders and Interests:  

Client: The client wants to get a service recommendation from the system. 

Brief Description: This use case describes how the client gets a service 

recommendation from the system. The client will use a 

chat feature to ask for a service by describing the service 

they need. 

Trigger: The client wants to get a recommended service. 

 

Relationships: 

 Association : Client 

 Include :  

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The client navigates to the Search Service Page. 

2. The client clicks on the “Click here for suggestion” button. 

3. The client types the description of the service they want in the chat 

box and sends it. 

4. If the service is found, a recommended service with the caregiver's 

details will be returned to the client. 

5. If not, the chat box will return a message indicating that no service 

found. 

Sub-flows: 

Alternate/Exceptional Flows: 

 

Table 4.8: Use Case Description of View Caregiver's Profile 

Use Case Name: View Caregiver’s Profile  ID: UC04 Importance 

Level: High 

Primary Actor: Client  Use Case Type:  Detail, Essential 



50 

 

 

Stakeholders and Interests:  

Client: They want to view caregiver’s detail information. 

Brief Description: This use case describes how the client view detailed 

information about a caregiver’s profile. 

Trigger: Client wants to gather more information about caregiver through 

their profile. 

 

Relationships: 

 Association : Client 

 Include : - 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The client navigates to the caregiver’s profile page. 

2. The system displays the detailed profile of the selected caregiver 

that include caregiver’s name, photo, email, phone number, 

qualifications, experience etc.  

3.  The client reviews the details information provided in the profile 

to assess suitability.  

Sub-flows: 

Alternate/Exceptional Flows: 

 

Table 4.9: Use Case Description of Manage Booking 

Use Case Name: Manage Booking 

  

ID: UC05 Importance 

Level: High 

Primary Actor: Client 

 

Use Case Type:  Detail, Essential 

Stakeholders and Interests:  



51 

 

Client: Client wants to manage their own booking.  

Brief Description: This use case describes how the client managing 

booking, including creating, viewing, updating, cancel 

booking.   

Trigger: Client intends to manage booking on the platform.   

Relationships: 

 Association : Client 

 Include : Create/ Read/ Update/ Delete Booking 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1 If the client wants to create the booking, S1, Create Booking is 

performed. 

2 If the client wants to view the booking, S2: View Booking is 

performed. 

3 If the client wants to edit the booking, S3: Edit Booking is 

performed. 

4 If t the client wants to cancel the booking, S4: Cancel Booking is 

performed. 

Sub-flows: 

S1: Create Booking 

1. The client navigates to Caregiver List Page and select a service to 

view its details. These details include the caregiver’s name, service 

type, service description and feedback etc. from other clients. 

2. In the Service Detail Page, the client can make the booking by 

choosing the date and time they wish to have the service. 

3. The system saves the details into the database and confirms the 

successful booking with a success message. 

 

S2: View Booking 



52 

 

1. The client accesses their Booking List Page to view a list of their 

existing bookings.  

2. The client selects a specific booking to view detailed information. 

3. The system displays details about the booking, including caregiver 

name, service type, service details, booking date and time etc.  

 

 

S3: Edit Booking 

1. The client accesses their Booking List Page and selects a booking to 

do modification. 

2. The system redirects the client to an Update Booking Page to allow 

client to modify the existing booking. 

3. After making changes, client can click on the Update button, and the 

system updates the booking information accordingly. 

4. The system shows the success message to indicating that the 

booking updated successfully. 

 

S4: Cancel Booking 

1. The client accesses their Booking List Page to select a booking to 

cancel. 

2. The system prompts them to confirm the cancellation. 

3. After confirmation, the system removes it from the booking list. 

4. The system displays the success message to indicating that the 

booking deleted successfully. 

 

Alternate/Exceptional Flows:  

 

Table 4.10: Use Case Description of Make Payment 

Use Case Name: Make Payment  ID: UC06 Importance 

Level: High 

Primary Actor: Client  Use Case Type:  Detail, Essential 



53 

 

 

Stakeholders and Interests:  

Client: They want to make payment after a booking has been accepted. 

Brief Description: This use case describes how the client makes a booking. 

Trigger: Client wants to make a booking after their pending booking has 

been accepted. 

 

Relationships: 

 Association : Client 

 Include : - 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The client navigates to the Accepted Booking page. 

2. The client selects a booking and clicks on the “Pay” button. 

3. The payment modal will drop down then the client can select a 

payment method to pay. 

4.  The system stores the payment method in the database and shows 

a success message.   

Sub-flows: 

Alternate/Exceptional Flows: 

 

Table 4.11: Use Case Description of Provide Feedback 

Use Case Name: Provide Feedback 

  

ID: UC07 Importance 

Level: High 

Primary Actor: Client  

 

Use Case Type:  Detail, Essential 

Stakeholders and Interests:  

Client: They want to sharing feedback after conducted a care service.  



54 

 

Brief Description: This use case describes how the client share their 

feedback after a care service has been provided.   

Trigger: Client wants to share their feedback to assists other users in 

making informed decisions. 

 

Relationships: 

 Association : Client 

 Include : -  

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The client accesses the Booking List Page and select the Approved 

state and choose a booking to give some comments.   

2. The feedback modal will pop out and allow the client to rank and 

submit feedback. 

3. The system stores the feedback in the database with success message 

and linked to the respective caregiver. 

Sub-flows: 

Alternate/Exceptional Flows: 

 

Table 4.12: Use Case Description of View Transaction History 

Use Case Name: View Transaction History 

  

ID: UC08 Importance 

Level: High 

Primary Actor: Client, Caregiver 

 

Use Case Type:  Detail, Essential 

Stakeholders and Interests:  

Client: Client wants to view the transaction history after they pay for a 

booking.  



55 

 

Caregiver: Caregiver wants to view the payment received history to ensure 

that the client has paid for the service. 

Brief Description: This use case describes how the clients and caregivers 

view the transaction history. They can generate invoices 

and export CSV for a specific transaction. 

Trigger: The client and caregiver want to view the transaction history, 

generate an invoice, or export CSV for a transaction. 

 

Relationships: 

 Association : Client, Caregiver 

 Include : -  

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The client and caregiver access the Transaction History Page to view 

all the transactions they made before.    

2. The client and caregiver can select any of the transactions to 

generate an invoice or export CSV. The Invoice in pdf format or 

CSV file will be downloaded automatically. 

Sub-flows: 

Alternate/Exceptional Flows: 

 

Table 4.13: Use Case Description of Chat in Chat Box 

Use Case Name: Chat in Chat Box 

  

ID: UC09 Importance 

Level: High 

Primary Actor: Client, Caregiver, 

Administrator 

 

Use Case Type:  Detail, Essential 

Stakeholders and Interests:  



56 

 

Client: Client wants to chat with caregiver or administrator in the chat 

group. 

Caregiver: Caregiver wants to chat with client or administrator in the chat 

group. 

Administrator: Administrator wants to chat with the client or caregiver in 

the chat group. 

Brief Description: This use case describes how the client, caregiver and 

administrator communicate with each other.   

Trigger: Client, caregiver, or administrator initiates a chat session.  

Relationships: 

 Association : Client, Caregiver, Administrator 

 Include : -  

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. User navigates to the Chat Page within the platform. 

2. User can search for conversation by name.  

3. In the conversation, user can type any message in the chat box and 

sends it by clicking the Send button.  

Sub-flows: 

Alternate/Exceptional Flows: 

 

Table 4.14: Use Case Description of Set Up Profile 

Use Case Name: Set Up Profile 

  

ID: UC10 Importance 

Level: High 

Primary Actor: Caregiver, Client 

 

Use Case Type:  Detail, Essential 

Stakeholders and Interests:  

Caregiver: He/She want to set up their profile information on the platform. 



57 

 

Client: He/She want to set up their profile information on the platform. 

Brief Description: This use case describes how the caregiver and client 

setting up their profile on the platform. For client, name, 

email, phone number, gender and location need to be fill 

up. For caregiver, name, email, phone number, gender, 

location, availability, qualifications, experience, and 

about me need to be fill up.  

Trigger: Caregiver and client want to update their profile information on the 

platform after register an account.  

Relationships: 

 Association : Caregiver, Client 

 Include : -  

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The caregiver or client navigates to the Profile Page. 

2. The system displays the initial profile interface with fields for 

entering personal details. 

3. The caregiver or client enters personal information.  

4. The system saves the profile information in the database. 

5. The system displays a confirmation message to caregiver or client to 

indicate that the profile setup successfully.  

Sub-flows: 

Alternate/Exceptional Flows: 

 

Table 4.15: Use Case Description of View Booking 

Use Case Name: View Booking 

  

ID: UC11 Importance 

Level: High 

Primary Actor: Caregiver Use Case Type:  Detail, Essential 



58 

 

 

Stakeholders and Interests:  

Caregiver: He/She want to view their booking list which are book from the 

client.  

Brief Description: This use case describes how the caregiver reviewing 

bookings made by the client for care services on the 

platform. 

Trigger: Caregivers want to view the booking and accept or decline the 

booking. 

Relationships: 

 Association : Caregiver 

 Include :  Accept/Decline Booking 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The caregiver navigates to the Booking List page. 

2. The system searches for care service bookings assigned to the 

caregiver, made by the client. Continue to E2: No Booking Found. 

3. The system displays the care service bookings lists.  

4. The caregiver selects a specific booking from the list and decide on 

the booking. Continue to S4-1: Accept Booking or S4-2: Decline 

Booking. 

Sub-flows: 

S4-1: Accept Booking 

4a. If the caregiver decides to accept the booking, the system processes the 

caregiver’s acceptance request. 

4b. The system updates the booking status to “accepted” in the database. 

 

S4-2: Decline Booking 

4a. If the caregiver decides to decline the booking, the system processes the 

caregiver’s decline request. 



59 

 

4b. The system updates the booking status to “declined” in the database. 

 

Alternate/Exceptional Flows: 

E2: No Booking found. 

1. If the system does not find any bookings assigned to the caregiver, 

the system will display a message “No Booking Found”.  

 

 

Table 4.16: Use Case Description of View Feedback 

Use Case Name: View Feedback 

  

ID: UC12 Importance 

Level: High 

Primary Actor: Caregiver 

 

Use Case Type:  Detail, Essential 

Stakeholders and Interests:  

Caregiver: He/She want to review feedback provided by the client.   

Brief Description: This use case describes how the caregiver reviewing 

feedback provided by the client after receiving care 

services.  

Trigger: Caregivers want to check the feedback given by elderly individuals 

or family members to make improvement.   

Relationships: 

 Association : Caregiver 

 Include : -  

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The caregiver navigates to the Feedback List page. 

2. The system displays a list of feedback provided by elderly 

individuals or family members. Continue to E2: No Feedback 

Found. 

Sub-flows: 



60 

 

 

Alternate/Exceptional Flows: 

E2: No Feedback Found 

1. If the system does not find any feedback, the system will display an 

error message like “No Feedback Found” to indicating there is no 

feedback from elderly individual and family member after using the 

service. 

 

 

Table 4.17: Use Case Description of View Client’s Profile 

Use Case Name: View Client’s Profile  ID: UC13 Importance 

Level: High 

Primary Actor: Caregiver 

 

Use Case Type:  Detail, Essential 

Stakeholders and Interests:  

Caregiver: They want to view client’s detail information. 

Brief Description: This use case describes how the caregiver view detailed 

information about a client’s profile. 

Trigger: Client wants to gather more information about client through their 

profile. 

 

Relationships: 

 Association : Caregiver 

 Include : - 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The caregiver navigates to the client’s profile page. 

2. The system displays the detailed profile of the selected client that 

includes the client’s name, photo, email, phone number, gender, 

about me, and location.  



61 

 

3.  The caregiver reviews the details information provided in the 

profile.  

Sub-flows: 

Alternate/Exceptional Flows: 

 

 

Table 4.18: Use Case Description of Manage Care Service 

Use Case Name: Manage Care Service 

  

ID: UC14 Importance 

Level: High 

Primary Actor: Caregiver 

 

Use Case Type:  Detail, Essential 

Stakeholders and Interests:  

Caregiver: Caregiver wants to manage their own care services.   

Brief Description: This use case describes how the caregiver managing care 

service, including creating, viewing, updating, deleting 

service.   

Trigger: Caregiver intends to manage service on the platform.   

Relationships: 

 Association : Caregiver 

 Include : Create/ Read/ Update/ Delete Service 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. If the caregiver wants to create the service, S1, Create Service is 

performed. 

2. If the caregiver wants to view the service, S2: View Service is 

performed. 

3. If the caregiver wants to edit the service, S3: Edit Service is 

performed. 



62 

 

4. If the caregiver wants to delete the service, S4: Delete Service is 

performed. 

Sub-flows: 

S1: Create Service 

1. The caregiver navigates to Service List Page and click on the Add 

Service button to create a care service. 

2. The caregiver will be redirected to the Add Service Page and required 

to enter the service type, service description, etc. to create a new care 

service. 

3. The system saves the details into the database and confirms the 

successful creation of a service with a success message. 

 

S2: View Service 

1. The caregiver navigates to Service List Page to view a list of their 

existing services.  

2. The caregiver selects a specific service to view detailed information. 

3. The system displays details about the services, including service 

name, descriptions, etc.  

 

S3: Edit Service 

1. The caregiver navigates to Service List Page to view a list of their 

existing services.  

2. The caregiver selects a service to do modification. 

3. The system redirects the caregiver to an Update Service Page to 

allow caregiver to modify the existing service. 

4. After making changes, they can click on the Update button, and 

the system updates the service information accordingly. 

5. The system shows the success message to indicating that the 

service updated successfully. 

 

S4: Delete Service 

1. The caregiver navigates to Service List Page to view a list of their 

existing services.  



63 

 

2. The caregiver selects a service to delete. 

3. The system prompts them to confirm the deletion. 

4. After confirmation, the system removes it from the service list. 

5. The system displays the success message to indicating that the 

service deleted successfully. 

 

Alternate/Exceptional Flows:  

 

Table 4.19: Use Case Description of View Appointment 

Use Case Name: View Appointment 

  

ID: UC15 Importance 

Level: High 

Primary Actor: Caregiver  

 

Use Case Type:  Detail, Essential 

Stakeholders and Interests:  

Caregiver: Caregiver wants to view all the appointment dates easily.   

Brief Description: This use case describes how the caregiver views the 

appointment date on the Appointment Calendar Page.   

Trigger: The caregiver wants to check all their appointment quickly and 

easily. 

Relationships: 

 Association : Care 

 Include : -  

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The caregiver accesses the Appointment Calendar Page. 

2. This page shows all the appointments. 

3. The caregiver can click on the date link to navigate to the booking 

details page. 



64 

 

Sub-flows: 

Alternate/Exceptional Flows: 

 

 

Table 4.20: Use Case Description of Manage Account 

Use Case Name: Manage Account 

  

ID: UC16 Importance 

Level: High 

Primary Actor: Administrator Use Case Type:  Detail, Essential 

Stakeholders and Interests:  

Administrator: Administrator wants to manage client and caregiver account. 

 

Brief Description: This use case describes how the administrator managing 

user accounts on the platform. This includes viewing or 

deleting a user account.    

Trigger: Administrator wants to perform account management activities on 

the platform. 

Relationships: 

 Association : Administrator 

 Include : View/ Detele Account 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The administrator navigates to the Manage User Account Page. 

2. The administrator can perform various actions related to the user 

accounts: 

2.1 If the administrator wants to view the details of the existing 

account, S1: View Account will perform.  

2.2 If the administrator wants to delete existing account, S2: Delete 

Account will perform.  



65 

 

 

Sub-flows: 

S1: View Account 

1. The admin selects a user account to view its detail. 

2. The system displays details information about the user account, 

including name, email, contact number etc.  

 

S2: Delete Account 

1. The admin selects a user account to delete. 

2. The system prompts admin to confirm the deletion. 

3. After confirmation, the system removes the account and all 

associated data from database.  

4. The system displays the success message to indicating that the 

booking deleted successfully. 

Alternate/Exceptional Flows: 

 

 

Table 4.21: Use Case Description of Delete Service 

Use Case Name: Delete Service 

  

ID: UC17 Importance 

Level: High 

Primary Actor: Administrator Use Case Type:  Detail, Essential 

Stakeholders and Interests:  

Administrator: Administrator wants to delete the service that was created by 

the caregiver. 

 

Brief Description: This use case describes how the administrator deletes the 

services in the platform. 

Trigger: Administrator wants to delete a service that does not meet the 

standard.  

Relationships: 

 Association : Administrator 

 Include :  



66 

 

 Extend  : - 

 Generalization: - 

 

Normal Flow of Events: 

1. The admin navigates to the Manage Service Page. 

2. The admin selects a service and clicks on the “Delete” button. 

3. An alert message will show to ask for the confirmation of the 

deletion. 

4. Upon confirmation is confirmed, the service will be deleted and 

removed from the database. 

5. A success message will show to indicate the service has been deleted 

successfully. 

Sub-flows: 

Alternate/Exceptional Flows: 

 

 

4.5     Prototype 

 

Figure 4.2: Sign Up Page 

 

In Sign Up Page, users are required to enter their email, password, confirm 

password, and select the role as client or caregiver to sign up an account.  



67 

 

 

Figure 4.3: Login Page 

 

In Login Page, users are required to enter their email, password, and choose 

their role to login the platform.  

 

4.5.1  Prototype of Client  

 

Figure 4.4: Home Page 



68 

 

 

Figure 4.5: Manage Account Page 

 

Client can click on the account logo to setting profile or logout.  

     

 

Figure 4.6: Setting Profile Page 

 



69 

 

 

Figure 4.7: Caregiver List Page 

 

Client will be redirected to View Caregiver Profile Page when they click on the 

“View Profile” button and redirected to View Service Detail Page once they 

click on the “View Details" button. 

 

 

Figure 4.8: View Caregiver Profile Page 

 



70 

 

 

Figure 4.9: View Service Detail Page 

 

Client may book for the service by choosing the date and time in this page. 

 

 

Figure 4.10: Search Service Page 

 

Client may search for the service they want by applying the filter. After applying 

the filter, the caregiver matching list will be shown. 

 



71 

 

 

Figure 4.11: Booking List Page (Pending state) 

 

This page shows all the booking that are pending for approval and declination. 

Client is allowed to view, update and cancel their booking in this page.  

 

Figure 4.12: View Booking Page 

 



72 

 

  

Figure 4.13: Update Booking Page 

 

Client may renter the date and time and click on the Update button to update 

their booking. 

 

 

Figure 4.14: Delete Booking Page 



73 

 

Once the client clicks on the Cancel Button, a confirmation will pop out to make 

sure if the client wants to cancel the booking.  

 

 

Figure 4.15: Booking List Page (Approved state) 

 

In this page, all the approved booking is shown, and clients are only allowed to 

view the booking and give comment after they conduct the booking.  

 

 

Figure 4.16: Feedback Page 

 



74 

 

 

Figure 4.17: Booking List Page (Decline state) 

 

For the Declined bookings, clients are only allowed to view their bookings. 

 

 

Figure 4.18: Chat Page 

 

Client can search for the name of the caregivers or administrators to start for a 

conversation. 

 



75 

 

4.5.2 Prototype of Caregiver 

 

 

Figure 4.19: Home Page 

 

  

Figure 4.20: Manage Account Page 

 

Caregiver can click on the account logo to setting profile or logout.  

 



76 

 

      

Figure 4.21: Setting Profile Page 

 

Figure 4.22: Service List Page 

In this page, caregiver can choose to add a new service and view/update/delete 

their existing services. 



77 

 

 

Figure 4.23: Create Service Page 

 

In this page, caregiver is required to choose their service type and enter service 

description to create a new service. 

 

 

Figure 4.24: View Service Page 

 

 



78 

 

 

Figure 4.25: Update Service Page 

 

In this page, caregiver is required to rechoose their service type and re-enter 

service description to update the selected service. 

 

 

Figure 4.26: Delete Service Page 

 

Once the caregiver clicks on the Delete Button, a confirmation will pop out to 

make sure if the client wants to delete their service.  

 



79 

 

 

Figure 4.27: Booking List Page (Pending) 

 

For the pending bookings from clients, caregiver can choose to accept or decline 

the bookings. Caregiver is also allowed to view the client’s profile. 

 

 

Figure 4.28: Message shown when click on Accept Button 

 

If the caregiver clicks on the Accept button, a confirmation message will appear 

to indicate that the booking is accepted successfully. 



80 

 

 

Figure 4.29: Message shown when click on Decline Button 

 

If the caregiver clicks on the Decline button, a confirmation message will appear 

to indicate that the booking is declined successfully. 

 

 

Figure 4.30: Booking List Page (Approved) 

 

 



81 

 

 

Figure 4.31: Booking List Page (Declined) 

 

Caregiver is only allowed to view the client’s profile in these two pages. 

 

 

Figure 4.32: Feedback List Page 

 



82 

 

 

Figure 4.33: Chat Page 

 

Caregiver can search for the name of the clients or administrators to start for a 

conversation. 

 

4.5.3 Prototype of Administrator  

 

Figure 4.34: Manage User Account Page 

 

In this page, admin is allowed to view the profile of the client or caregiver and 

delete their account. 

 



83 

 

 

Figure 4.35: View Profile Page 

 

 

Figure 4.36: Message shown when clicking Delete Button 

 

Once admin clicked on the Delete button, a successful message will be shown 

to indicate that the account has been deleted successfully. 

 



84 

 

 

Figure 4.37: Chat Page 

 

Admin can search for the name of the clients or caregivers to start for a 

conversation. 

 

 

4.6     Summary 

In Summary, the necessary requirements had been obtained by conducting the 

literature review. There are 12 functional requirements for both the client and 

caregiver and 5 functional requirements for the administrator as well as 5 non-

functional requirements. A use case diagram has been drawn and correctly 

outlined with 12 use case descriptions. The ERD diagram is also created to show 

the connection among tables. Finally, a prototype had been developed to 

demonstrate the interface and for the purpose of further system implementation. 

 

  



85 

 

1 CHAPTER 5 

SYSTEM DESIGN 

 

5.1 Introduction 

This chapter will focus on the system design of the project. This chapter is 

divided into three sections. Section 5.2 will focus on the system architecture 

design of the platform. Section 5.3 will show all the designed UML diagrams 

which include activity diagrams and class diagrams. The last section 5.4 will 

show the database design including the ERD diagram and data dictionary of the 

database. 

 

5.2 System Architecture Design 

As stated in Section 1.4, Laravel MVC architecture was used throughout the 

entire development process. 

 

 

Figure 5.1: Model-View-Controller Architectural Pattern (Sadika, 2023). 

 

From this architecture, Model can used to interact with the database and perform 

data manipulation. Between the Model and View, the Controller serves as a 

mediator. It handles the user’s request, asks the Model to provide data, and 

updates the view. View is used to display data from the Model to users and 

handles the request process (Sadika, 2023). 

 



86 

 

Additionally, MySQL was utilized as the database management system while 

WampServer was used as a web development environment which allow 

developers to create web applications with Apache2, PHP, and a MySQL 

database. PhpMyAdmin in WampServer was utilized for easy and efficient 

database management (F and F, 2024). 

 

5.3 Designed UML Diagram 

5.3.1  Class Diagram 

 

Figure 5.2: Class Diagram 

 

The above diagram illustrates the key models of the Elder Care and Assistance 

Booking Platform and their relationships. The diagram provides a 

comprehensive view of the system structure. The User model represents 



87 

 

different users by distinguishing roles. The Service model details the services 

provided by the caregiver. The Booking model connects customers with 

caregivers and services. Bookings are associated with specific service dates and 

time slots which ensure that the service is available at a specific time. The 

ServiceDate model indicates the available date of a specific service while the 

ServiceTimeslot model further refines the availability by specifying the start 

and end time of each date. In addition, the ChMessage and ChFavorite models 

combine UUID functionality for unique identification. These models may 

facilitate communication between customers and caregivers and enable them to 

mark other users as favorites. 

 

5.3.2  Activity Diagram 

Figure 5.3 to Figure 5.19 shows the Activity Diagram based on each use case 

 

Figure 5.3: Activity Diagram for Register Account 

 

For registration, the user may go to the registration page and input their name, 

email, password, and confirm password. After this, the system will validate the 



88 

 

input. If the input has invalid data, the system will display an error, else the 

system will send an email verification link to the registered email. Once the user 

verifies the email, the system will redirect the page to the Login page. 

 

 

Figure 5.4: Activity Diagram for Setup Profile 

 

To set up a profile, users may go to the edit profile page and input their profile 

details. After this, the system will validate the input. If the input has invalid data, 

the system will display an error. Otherwise, the system will store data in the 

database and display a success message. 

 



89 

 

 

Figure 5.5: Activity Diagram for View Transaction History 

 

To view the transaction history, the users may go to the transaction history page. 

The system will then show all the transaction history. After that, the user can 

select any of the transactions to generate an invoice or export CSV. If the user 

does so, the system will download the invoice and CSV automatically on their 

PC. 

 

 

Figure 5.6: Activity Diagram for Search Care Service 

 

To search for a care service, the client needs to go to the Search page. Then, the 

system will display the search page with all services. The client can apply the 



90 

 

filter to find a specific service. After doing so, the system will display the service 

that matches the search criteria. If the user clears the filter, the system will then 

display all available service.  

 

 

Figure 5.7: Activity Diagram for Get Service Recommendation 

 

To get service recommendations, customers need to go to the Search page. They 

can click on the "Click here to get recommendations" button. After clicking on 

this button, the system will display the service recommendation chat box so that 

the customer can describe the desired service and send it. After sending the 

message, the system will analyze the input and respond with a recommended 

service if a service is found, and if not, an error message will be displayed. 

 



91 

 

 

Figure 5.8: Activity Diagram for View Caregiver’s Profile 

 

To view the caregiver's profile, the client needs to go to the caregiver list page 

and click on the "View Profile" button. After clicking on this button, the system 

will navigate to the caregiver's profile page and display the caregiver's profile 

details. 

 

 

Figure 5.9: Activity Diagram for Provide Feedback 

 

To provide feedback, the client needs to go to the Booking List page and click 

on the "Accepted" button. The system will navigate to the Accepted Booking 



92 

 

page. On this page, the customer can click on the "Review" button. After 

clicking on this button, the system will pop up the feedback modal. The 

customer can then rank the service and submit feedback. The system will store 

the data into the database and display a success message. 

 

 

Figure 5.10: Activity Diagram for Make Payment 

 

To make a payment, the customer needs to go to the booking Listing page and 

click on the "Accepted" button. The system will navigate to the Accepted 

Booking page. On this page, the customer can click on the "Pay" button. After 

clicking on this button, the system will pop up the payment modal. The customer 

can then select a payment method and submit. The system will store the data 

into the database and display a success message. 

 

 



93 

 

 

Figure 5.11: Activity Diagram for Manage Booking 

 

When a client creates a booking, they need to select a date and time slot and 

submit it. After submitting the form, the system saves the data to the database 

and displays a success message. To view the booking, the client may need to 

navigate to the Booking Details page. This page will display the details of the 

selected booking. To update the booking, the client can select a new date and 

time slot and submit it. After that, the system saves the data to the database and 

displays a success message. When a customer deletes a booking, the system 

displays an alert message. If the response is confirmed to delete, the system will 

delete the data from the database and display a success message, otherwise, the 

operation will be canceled. 

 



94 

 

 

Figure 5.12: Activity Diagram for Manage Care Service 

 

When a caregiver creates a service, they need to enter the service details. If the 

data entered has invalid input, the system displays an error message, otherwise, 

the system saves the data to the database and displays a success message. To 

view a service, the caregiver may need to navigate to the Service Details page. 

This page will display the details of the selected service. To update a service, 

the caregiver can enter new service details. If the data entered has invalid input, 

the system displays an error message, otherwise, the system saves the data to 

the database and displays a success message. When a caregiver deletes a service, 

the system displays an alert message. If the deletion is confirmed, the system 

deletes the data from the database and displays a success message, otherwise, 

the operation is cancelled. 

 



95 

 

 

Figure 5.13: Activity Diagram for View Client’s Profile 

 

To view the client's profile, the client needs to go to the Booking List page and 

click on the "View Profile" button. After clicking on this button, the system will 

navigate to the client's profile page and display the client’s profile details. 

 

 

Figure 5.14: Activity Diagram for View Feedback 

 



96 

 

To view the feedback, the caregiver needs to go to the Feedback List page. Then, 

the system will display the Feedback List page with all feedback. The client can 

apply the filter to find specific feedback. After doing so, the system will display 

all the feedback that match the search criteria. If the caregiver clears the filter, 

the system will then display all feedback again. 

 

 

Figure 5.15: Activity Diagram for View Booking 

 

Caregiver first navigates to the Booking List page. To view booking details, the 

caregiver can click on the “View Booking Details” button. After this, the system 

will navigate to the booking detail page and display all the booking details. To 

accept a booking, the caregiver can click on the “Accept” button. Once this 

button is clicked, the system will change the status of the booking to “accepted” 

in the database and navigate to the Accepted Booking page with a success 

message. To decline a booking, the caregiver can click on the “Decline” button. 

Once this button is clicked, the system will change the status of the booking to 

“declined” in the database and navigate to the Declined Booking page with a 

success message. 

 



97 

 

 

Figure 5.16: Activity Diagram for View Appointment 

 

To view the appointment, the caregiver will need to navigate to the Appointment 

Calendar page. The system will then display all the appointments in the calendar. 

The caregiver can click on the date link in the calendar. After clicking on it, the 

system will navigate to the Booking Detail page and display the booking details 

of the booking.  

 

 

Figure 5.17: Activity Diagram for Delete Service 



98 

 

To delete a service, the admin needs to go to the Manage Service page. The 

system will then display all the services in the database. Admin can select a 

service and click on the “Delete” button. Once the button is clicked, the system 

will display the alert message. If the response is confirmed to delete, the system 

will remove the service from the database and show a success message. 

Otherwise, the action will be cancelled.  

 

 

Figure 5.18: Activity Diagram for Manage Account 

 

To manage the account, the admin may navigate to the Manage User Account 

Page. On this page, the admin can click on the “View Booking Details” button. 

Once the button is clicked, the system will navigate to the User Profile page and 

display the user profile details. Admin may also click on the “Delete” button on 

the Manage User Account Page. Once the button is clicked, the system will 

display an alert message, if the response is confirmed to delete, the system will 



99 

 

remove the user from the database and show a success message. Otherwise, the 

action will be cancelled.  

 

 

Figure 5.19: Activity Diagram for Chat in Chat Box 

 

To chat in the chat box, the user may go to the Chat page and select a user to 

send a chat in the chat box. After that, the chat data will be stored in the database. 

 

5.4 Database Design 

5.4.1  Entity Relationship Diagram (ERD) 

The Entity Relationship Diagram below represents an Elderly Care and 

Assistance Booking Platform that consists of several entities, including users, 

bookings, services, service_dates, service_timeslots, notifications, ch_favorites 

and ch_messages. Each entity has its own attributes and relationships. 



100 

 

  

Figure 5.20: Entity Relationship Diagram 

 

The Users and Services entities have a one-to-zero/many relationship. This 

means the user can manage no or many services. This is because only caregivers 

are allowed to manage services while other users cannot. 

 

The Services and Service Dates (service_dates) entities have a one-to-many 

relationship. This means a service can have many associated service dates. 

 

The Service Dates and Service Time Slots (service_timeslots) entities also have 

a one-to-many relationship. This means multiple time slots can belong to a 

single service date. 

 

For Users and Bookings entities, there is a one-to-zero/many relationship. This 

means a user can manage no bookings or many bookings, but each booking is 

linked to only one user. This is because only client can manage the bookings 

while other users cannot. 



101 

 

The Bookings and Service Dates (service_dates) entities have a one-to-one 

relationship.  This means each booking is associated with exactly one service 

date. Similarly, the Bookings and Service Time Slots (service_timeslots) 

entities have a one-to-one relationship. This means each booking is linked to 

one time slot. 

 

Additionally, the Users and Notifications entities have a one-to-many 

relationship. This means a user can receive many notifications. 

 

The Users and Chat Favorites (ch_favorites) entities also have a one-to-many 

relationship. This means a user can have multiple chat favorites. 

 

Finally, the Users and Chat Messages (ch_messages) entities have a one-to-

many relationship. This means a user can send and receive many chat messages. 

  

5.4.2 Data Dictionary 

 

Table 5.1: Data dictionary for the table “bookings” 

Field Name Data Type Field 

Length 

Constraint Description 

id int - PRIMARY 

KEY 

Unique ID of 

booking 

client_id int - FK, NOT 

NULL 

ID of client 

caregiver_id int - FK, NOT 

NULL 

ID of 

caregiver 

service_id int - FK, NOT 

NULL 

ID of service 

service_date_id int - FK, NOT 

NULL 

ID of service 

date  

time_slot_id int - FK, NOT 

NULL 

ID of time 

slot 



102 

 

status enum - - Status of 

booking 

created_at timestamp - - Creation 

timestamp 

updated_at timestamp - - Updated 

timestamp 

payment_method varchar 191 - Payment 

method for a 

booking 

feedback text - - Feedback on 

a booking 

rating int - - Rating of a 

booking 

payment_date timestamp - - Payment 

date of a 

booking 

 

Table 5.2: Data dictionary for the table “ch_favorites” 

Field Name Data Type Field 

Length 

Constraint Description 

id int - PRIMARY 

KEY 

Unique ID of 

chat favorite 

user_id int - FK, NOT 

NULL 

ID of user 

who added 

the favorite 

favorite_id int - FK, NOT 

NULL 

ID of user 

marked as a 

favorite 

created_at timestamp - - Creation 

timestamp 

updated_at timestamp - - Updated 

timestamp 

 



103 

 

Table 5.3: Data dictionary for the table “ch_messages” 

Field Name Data Type Field 

Length 

Constraint Description 

id int - PRIMARY 

KEY 

Unique ID of 

chat 

message 

from_id int - FK, NOT 

NULL 

ID of user 

who sent the 

message  

to_id int - FK, NOT 

NULL 

ID of user 

received the 

message 

body varchar 5000 - Content of 

the message 

attachment  varchar 191 - Attachment 

associated 

with the 

message 

seen boolean - - Indicates if 

the message 

has been 

seen 

created_at timestamp - - Creation 

timestamp 

updated_at timestamp - - Updated 

timestamp 

 

Table 5.4: Data dictionary for the table “notifications” 

Field Name Data Type Field 

Length 

Constraint Description 

id int - PRIMARY 

KEY 

Unique ID of 

notification 



104 

 

notifiable_id int - FK, NOT 

NULL 

ID of related 

entity 

type varchar 191 NOT NULL Type of the 

notification  

notifiable_type int - NOT NULL Type of 

related entity 

data  text 5000 NOT NULL Content of 

the 

notification 

read_at timestamp 191 - Timestamp 

when read 

created_at timestamp - - Creation 

timestamp 

updated_at timestamp - - Updated 

timestamp 

 

Table 5.5: Data dictionary for the table “services” 

Field Name Data Type Field 

Length 

Constraint Description 

id int - PRIMARY 

KEY 

Unique ID of 

service 

caregiver_id int - FK, NOT 

NULL 

ID of 

caregiver 

name varchar 191 NOT NULL Name of the 

service 

description text - NOT NULL Description 

of service  

service_type varchar 191 NOT NULL Type of 

service 

duration varchar 191 NOT NULL Duration of 

service 



105 

 

price decimal - NOT NULL Price of 

service  

availability varchar 191 NOT NULL Availability 

of service  

location varchar 191 NOT NULL Location 

where the 

service 

provider 

image varchar 191 - Image of 

service 

created_at timestamp - - Creation 

timestamp 

updated_at timestamp - - Updated 

timestamp 

 

Table 5.6: Data dictionary for the table “services_dates” 

Field Name Data Type Field 

Length 

Constraint Description 

id int - PRIMARY 

KEY 

Unique ID of 

service date  

service_id int - FK, NOT 

NULL 

ID of service   

date int - NOT NULL Date of the 

service 

created_at timestamp - - Creation 

timestamp 

updated_at timestamp - - Updated 

timestamp 

 

Table 5.7: Data dictionary for the table “service_timeslots” 

Field Name Data Type Field 

Length 

Constraint Description 



106 

 

id int - PRIMARY 

KEY 

Unique ID of 

service time 

slot 

service_date_id int - FK, NOT 

NULL 

ID of service 

date   

start_time time - NOT NULL Start time of 

the service 

end_time time - NOT NULL End time of 

the service 

availability varchar 191  Availability 

of the 

service 

created_at timestamp - - Creation 

timestamp 

updated_at timestamp - - Updated 

timestamp 

 

Table 5.8: Data dictionary for the table “users” 

Field Name Data Type Field 

Length 

Constraint Description 

id int - PRIMARY 

KEY 

Unique ID of 

user 

name varchar 191 NOT NULL User’s name 

email varchar 191 NOT NULL User’s email 

role varchar 191 NOT NULL User’s role 

email_verified_at timestamp - - Timestamp 

when email 

was verified 

password varchar 191 NOT NULL User’s 

hashed 

password 



107 

 

phone_number varchar 191 - User’s 

phone 

number  

gender enum - - User’s 

gender 

loacation varchar 191 - Users’ 

address 

image varchar 191 - User’s 

profile 

image 

remember_token varchar 100 - Token for 

"remember 

me" 

functionality 

created_at timestamp - - Creation 

timestamp 

updated_at timestamp - - Updated 

timestamp 

availability varchar 191 - Payment 

date of a 

booking 

qualification varchar 191 - User’s 

qualification 

experience text - - User’s 

experience 

details 

about_me text - - User’s 

personal 

description 

active_status boolean - NOT NULL Indicates if 

the user is 

active 



108 

 

avatar varchar 191 NOT NULL Avatar 

image URL 

dark_mode boolean - NOT NULL Indicates if 

dark mode is 

enabled 

messenger_color varchar 191 - User's 

preferred 

messenger 

color 

  



109 

 

1 CHAPTER 6 

SYSTEM IMPLEMENTATION 

 

6.1 Introduction 

This chapter will focus on the system implementation details of this project. 

This chapter is divided into four sections. Section 5.2 outlines the basic software 

tools required to develop this project and the settings of this software. Section 

5.3 will explain how to configure the necessary settings in the "env" file to 

ensure that the platform has the appropriate environment to run properly. 

Section 5.4 will provide a visual demonstration of the main functions of the 

platform. Section 5.5 will express the challenges I encountered in the process of 

developing the elderly care and assistance booking platform.  

 

6.2 Software Setup 

In this project, three essential software applications need to be installed to 

develop the Elderly Care and Assistance Booking Platform. The software 

applications are Visual Studio Code (VS Code), WampServer, and Node.js. 

These tools provide the necessary environment for coding, testing, and running 

the platform locally before deploying it to a live server. 

 

6.2.1 Visual Studio Code 

Visual Studio Code will be used as the primary code editor during the entire 

development process. It supports multiple programming languages which 

include PHP, JavaScript, HTML, and CSS, which are crucial for this project. 

Besides that, the built-in terminal in VS codes allows developers to run 

commands and scripts directly within the editor. Last, VSCode integrates 

seamlessly with GitHub. This enables developers to perform version control 

operations efficiently. Developers commit, push, pull, and manage branches 

directly from the editor. This is the link for VSCode installation: 

https://code.visualstudio.com/download. 

 



110 

 

6.2.2 WampServer 

WampServer is used to create a local server environment which is essential to 

the development of this platform. Since web development requires Apache, 

MySQL, and PHP, WampServer comes with a complete configuration of these. 

To make managing the MySQL database simple, WampServer also comes with 

phpMyAdmin. Before installing the platform, this configuration enables 

effective development and testing on your local computer. Download links for 

WampServer are available at https://wampserver.aviatechno.net/. 

 

6.2.3 Node.js 

Node.js will be used to handle the platform's service recommendation 

functionality. It allows server-side applications to provide recommendations 

based on client requests. This is the link for Node.js installation: 

https://nodejs.org/en/download/. 

 

6.3 Setting and Configuration 

To ensure that the platform operates correctly, the specific environment settings 

need to be configured correctly in the ‘. env’ file.  

 

6.3.1 Database Configuration 

 

Table 6.1: Database Configuration 

DB_CONNECTION=mysql 

DB_HOST=127.0.0.1 

DB_PORT=3306 

DB_DATABASE=eldercare 

DB_USERNAME=root 

DB_PASSWORD= 

With these configurations, the program is guaranteed to establish a connection 

with the local MySQL server on the same system. Replace "DB_DATABASE" 

with the name of the MySQL database. The database credentials were left as 

default for development purposes. 

 

 



111 

 

6.3.2 Mail Server Configuration 

 

Table 6.2: Mail Server Configuration 

MAIL_MAILER=smtp 

MAIL_HOST=smtp.gmail.com 

MAIL_PORT=587 

MAIL_USERNAME=zixuan@1utar.my 

MAIL_PASSWORD=qxyecvkpngqeaytr 

MAIL_ENCRYPTION=tls 

MAIL_FROM_ADDRESS=zixuan@1utar.my 

MAIL_FROM_NAME="${APP_NAME}" 

After an account is registered, this platform will utilize the mail server to send 

an email for email verification. It will also use the mail server to send a link for 

password resets. The mail server must be configured to allow Gmail's SMTP 

server with TLS encryption for the platform to deliver emails safely. The 

sender’s name and email address are indicated by Mail_FROM_NAME and 

Mail_FROM_ADDRESS respectively. 

 

6.3.3 Pusher API Configuration 

 

Table 6.3: Pusher API Configuration 

PUSHER_APP_ID=1835973 

PUSHER_APP_KEY=00eca1ea162231d33ffe 

PUSHER_APP_SECRET=b96de7f5bdee1a63777a 

PUSHER_APP_CLUSTER=ap1 

To enable real-time chat functionality with Chatify, the PUSHER API should 

be configured in the ‘. env’ file.  After configuring this, Chatify can use Pusher 

for instant messaging and notifications. 

 



112 

 

6.4  System Operation with Screenshots 

6.4.1 Home Page 

 

Figure 6.1: Home Page 

Users will first be redirected to the home page when they go to this link: 

http://127.0.0.1:8000. 

 

6.4.2 Sign Up Page 

 

Figure 6.2: Sign Up page 

 

In the Sign Up page, users will need to enter their information, including name, 

email, and password, and whether they want to register as a client or caregiver. 

The user may click on the eye icon to view their password for confirmation of 

the correct password. 

 

 

http://127.0.0.1:8000/


113 

 

 

Figure 6.3: Email Verification Message 

 

After registering an account, a verification link will be sent to the registered 

email, and a message will be shown to notify the users. 

 

 

Figure 6.4: Email of the Email Verification 

 

The figure above shows the email of the email verification. User may click on 

the verify link in the email to verify their email.  

 

6.4.3 Login Page 

 

Figure 6.5: Login Page 



114 

 

 

After verifying the email address, the user can now login to the platform. The 

user is requiring to enter their email, password, and their role to login. The user 

may also click on the eye icon to view their password for confirmation of the 

correct password. 

 

 

Figure 6.6: Send Password Reset Page 

 

If the user forgets their password, they may click the “Forgot Password?” link 

on the login page, and then they will be redirected to this Reset Password Page. 

To get the password reset link, the user must enter their email address again and 

click the blue button. This reset password link will be sent to the email address 

that the user entered.  

 

 

Figure 6.7: Email of the Reset Password Notification 

 



115 

 

The figure above shows the email that the user will receive after requesting a 

password reset link. 

 

 

Figure 6.8: Reset Password Page 

 

The user will be redirected to this page after clicking on the reset password 

button in the email. The user can now reset their password on this page by 

entering their email and the new password. 

 

6.4.4 Client 

6.4.4.1 Home Page 

 

 
Figure 6.9: Home Page of Client 

 



116 

 

The client can view the upcoming appointments on this Home Page. Once the 

client clicks on the date link of the upcoming appointments, they will be 

redirected to the booking details page. Clients can also view all the feedback 

and ratings that were provided by other clients on this page.  

 

 

Figure 6.10: Profile Icon 

 

The setting profile and logout dropdown will show when the client clicks on the 

profile icon on the header.  

 

 

 
Figure 6.11: Setting Profile Page 

 

Once the client clicks on the “Setting Profile” on the profile dropdown, they will 

be redirected to this page. The client can update their profile details on this page 

by uploading their personal information and image profile. 

 



117 

 

 

Figure 6.12: Notification dropdown 

 

The client can check for the new notification by clicking on the notification icon 

on the header. The red dot on the notification icon indicates that there is an 

unread notification. Once the client clicks on it, the red dot will disappear, 

indicating that there is no unread notification anymore. 

 

 

Figure 6.13: Notification Page 

 

When the client clicks on the "view all" blue word on the notification dropdown, 

they will be redirected to this Notification Page. This page shows all the 

notifications received by the client. The client may clear all the notifications by 

clicking on the red clear notification button. 

 



118 

 

 

Figure 6.14: Live Chat 

 

The client can use the live chat that lies on the footer to have a chat with the 

platform assistance directly. This live chat feature allows clients to get 

immediate assistance without having to wait for email. Therefore, enhances the 

user experience by resolving issues and answering questions quickly. 

 

6.4.4.2 Caregiver List Page 

 

Figure 6.15: Caregiver List Page 

 

The client can view all the caregivers on this Caregiver List page. They can also 

search for a caregiver by entering the caregiver's name in the search box. As the 

client types in the search box, the page dynamically updates to show matching 

caregivers without needing to reload the page by using the AJAX.  

 



119 

 

 

Figure 6.16: Caregiver’s Profile Page 

 

The client will be navigated to the Caregiver's Profile Page if they click on the 

“View Profile” button. This page shows the detailed information of the 

caregiver.  

 

 

Figure 6.17: Care Service Page 

 

After clicking on the “View Service” button on the Caregiver List Page, the 

client will be redirected to this Care Service Page. This page shows all the 

services provided by the selected caregiver.  



120 

 

 

Figure 6.18: View of Service Details 

 

The service details will be listed when the client expands any of the services. 

On this page, the client can view the details and the feedback of the service. 

After reviewing the details and the feedback on the service, they can book the 

service by clicking on the book button.  

 

 

Figure 6.19: Booking Modal 

 

The booking modal will pop out and ask the client to choose the booking date 

and timeslot when the client clicks on the “Book” button. After the booking has 

been made, a notification will be sent to the caregiver to notify them that the 

service has been booked. 

 

 

 



121 

 

6.4.4.3 Search Page 

 

Figure 6.20: Search Page 

 

On this search page, clients can view all the services created by the caregivers. 

The client can filter the service by entering the service type, duration, price, 

location, and the provider. The clear filter button will clear all the filters applied 

and return all the services to this page. After that, the client can perform actions 

like view the caregiver's profile, book the service, and view the feedback on this 

service. 

 

 

Figure 6.21: Caregiver’s Profile Page 

 

The client can view all the caregiver’s details and information on this page after 

clicking on the “View Profile” button in the Search Page. 



122 

 

 

 

Figure 6.22: Booking Modal 

 

If the client clicks the “Book” button on the Search Page, a booking modal will 

pop up and ask them to choose the booking date and time slot. The client can 

select the booking date and time slot to make a booking. 

 

 

Figure 6.23: Feedback Modal 

 

If the client clicks on the view feedback button, a feedback modal will pop out 

and show all the feedback and ratings of the service. 

 



123 

 

   

Figure 6.24: AI Service Recommendation Chatbot 

 

The client may click on the "Click Here for Suggestion" black button to request 

a service recommendation. When the client clicks the button, they will be 

prompted to describe the service they need. Once the description is submitted, 

the server processes the request using natural language processing techniques. 

Specifically, the server compares the client's description with the descriptions 

of services in the database using a TF-IDF model. It identifies the service with 

the highest similarity score to the client's request and returns this as the 

recommended service along with the caregiver details. 

 

If the client's description does not match any of the platform's services, the 

server will return a message stating that no matching services were discovered. 

This guarantees that clients receive appropriate recommendations or are notified 

if their request cannot be addressed by the present service options. Overall, this 

process aims to provide clients with tailored service suggestions based on their 

specific needs or inform them when their request is outside the platform's 

capabilities. 

 

 

 

 

 

 



124 

 

6.4.4.4 Booking List Page 

 

Figure 6.25: Pending Booking Page 

 

The Pending Booking Page shows all the services that are still pending from the 

caregiver. 

 

 

Figure 6.26: Booking Details Page 

 

After clicking the “View” button on the Pending Booking Page, the client will 

be redirected to this booking details page. This page will show the service details 

and the booking date and time.  

 



125 

 

 

Figure 6.27: Edit Booking Page 

 

The client can also update the service by selecting a new date and timeslot and 

updating it. 

 

 

 

Figure 6.28: Alert Message of Deletion of a Booking 

 

If the client clicks on the “Cancel” button, an alert message will show. Once the 

client confirms the deletion, the booking will be deleted.  

 



126 

 

 

Figure 6.29:  Accepted Booking List Page 

 

This page will show all the bookings that were accepted by the caregiver. On 

this page, the client can view the bookings, pay the bill, and provide a comment. 

 

 

Figure 6.30: Payment Modal 

 

Once the client clicks on the “Pay” button, the Select Payment Method modal 

will be shown, and ask the caregiver to select a payment method. After the 

payment has been made, a notification will be sent to the caregiver to notify 

them that the payment of the service has been paid. 

 



127 

 

 

Figure 6.31: Feedback Modal 

 

Same as the “Pay” button, once the client clicks on the “Comment” button, the 

feedback modal will be shown. The client can rank the service and provide some 

comments on the service. 

 

 

Figure 6.32: Declined Booking List Page 

 

The Declined Booking Page shows all the services that have been declined by 

the caregiver. The client can view the booking details on this page. 

 

 

 

 



128 

 

6.4.4.5 Transaction History Page 

 

Figure 6.33: Transaction History Page 

 

This Transaction History Page will show all the transactions made by the log-in 

client for record-keeping purposes. On this page, clients can search for the 

transaction history during a specific date by applying the date filter. The client 

may also select one or more transactions to generate an invoice or export to 

CSV.  

 

 

Figure 6.34: Invoice of a Transaction 

 

The client can select one or more transactions to generate an invoice by clicking 

on the “Generate Invoice” button. After clicking on the button, the invoice pdf 

will download automatically to the client’s PC. The figure above shows the 

invoice of a transaction.  

 



129 

 

 

Figure 6.35: CSV file of a Transaction 

 

The client can also select one or more transactions to export to CSV by clicking 

on the “Export CSV” button. After clicking on the button, the CSV file will 

download automatically to the client’s PC.  The figure above shows the CSV 

file of a transaction.  

 

 

6.4.4.6 Contact Us Page 

 

 
Figure 6.36: Contact Us Page 

 

The client can fill up the Contact Us form to send a message or ask any questions. 

The client will receive the response in the email later. 

 

 

 



130 

 

6.4.4.7 Chat Page 

 

 
Figure 6.37: Chat Page 

 

The client can engage in direct communication with all platform users through 

the integrated chat channel. Additionally, the client has the option to mark 

specific users as favourites for easier access and streamlined interactions in the 

future. The client is also allowed to send images or emojis using this chat 

channel.  

 

6.4.5 Caregiver 

6.4.5.1 Home Page 

 

 



131 

 

 

 
Figure 6.38: Caregiver Monthly Dashboard Page 

 

The caregiver can check for their monthly income dashboard and upcoming 

appointments on the Home Page. Some financial information, such as total 

income, average monthly income, highest income month, lowest income month, 

month with most bookings, and service with most bookings, will be listed on 

this page. Apart from that, some graphs also show a better evaluation of the 

monthly income. The first and second graphs are for the net income, and the 

third graph is for the net booking for each month. For the upcoming 

appointments section, the caregiver can click on the date link, and they will be 

redirected to the booking details page. 

 

 

 
Figure 6.39: Profile Icon Dropdown 

 

The setting profile and logout dropdown will show when the caregiver clicks on 

the profile icon on the header.  

 

 



132 

 

 

 
Figure 6.40: Edit Profile Page 

 

The caregiver can update their profile details on this page by entering their 

personal information and profile image. 

 

 

Figure 6.41: Notification Dropdown 

 

The caregiver can check for the new notification by clicking on the notification 

icon on the header. The red dot on the notification icon indicates that there is an 

unread notification. Once the caregiver clicks on it, the red dot will disappear, 

indicating that there is no unread notification anymore. 

 



133 

 

 

Figure 6.42: Notification Page 

 

When the caregiver clicks on the "View all" blue word on the notification 

dropdown, they will be redirected to this Notification Page which shows all the 

notifications received by the caregiver. The caregiver can filter the notification 

by applying the notification filter. The caregiver may also clear all the 

notifications by clicking on the red clear notification button. 

 

6.4.5.2 Service List Page 

 

Figure 6.43: Service List Page 

 

In this service list page, caregivers are allowed to add, view, update, and delete 

a service. 

 



134 

 

 

Figure 6.44: Create Service Page 

 

When the caregiver clicks on the “Add” button on the Service List Page, they 

will be redirected to this Create Service Page. The caregiver needs to fill up the 

service details, the date, and timeslot to create a new service. If there is any 

incorrect data input, such as the end time being earlier than the start time, the 

error message will be shown. 

 

 

Figure 6.45: AI Improve Description 

 

The caregiver can enter a brief description of their service into the service 

description text box and click on the "Improve Description" button to enhance 

the content. When this button is clicked, the system first checks if the caregiver 

has described by validating the input field. If the text box is empty, an alert 

prompts the user to input a description before proceeding. Once a description is 

provided, an API call is triggered using the `fetch` function. This call sends a 

POST request to the ChatGPT API via RapidAPI which containing the 

caregiver's description wrapped in a structured JSON body. 

 

The API request sends the message in the format: "Improve this description: 

[caregiver's description]," along with parameters such as max tokens, and 



135 

 

authentication headers like the API key. The API processes this request and 

responds with an improved version of the caregiver's description. Once the 

response is received, the code checks if the API returned a valid result. If 

successful, the improved description automatically replaces the original text in 

the input field. This allows the caregiver to immediately view the enhanced 

version. If there is an error with the API call or the response structure is 

unexpected, an error message is logged and the user is notified. This process 

allows caregivers to refine and optimize their service descriptions effortlessly 

by ensuring they present more attractive and engaging descriptions for potential 

clients. 

 

 

Figure 6.46: Service Details Page 

 

After clicking on the “View” button on the Service List Page, the caregiver will 

be redirected to this page. On this page, the caregiver can view the service 

details and the current availability of the timeslots. 

 



136 

 

 

 
Figure 6.47: Update Service Page 

 

After selecting a service and clicking the "Update" button, the caregiver will be 

redirected to the Update Service Page. On this page, the caregiver can update 

their service by entering new data. As shown in Figure 6.47, this page displays 

the timeslots associated with the selected service, including both pending and 

approved slots. Caregivers are not permitted to modify these pending or 

approved timeslots. If any incorrect data is entered, such as an end time that 

precedes the start time, an error message will be displayed to guide the caregiver 

in correcting the issue. 

 

 

 

 

 

 

 

 

 



137 

 

6.4.5.3 Booking List Page 

 

Figure 6.48: Pending Booking Page 

 

The figure above is the Pending Booking Page, which shows the booking that 

was booked by the client and is still pending action. The caregiver can view the 

client profile, view booking details, and accept or decline the service on this 

page. After the booking has been approved or declined, a notification will be 

sent to the caregiver to notify them that the service has been approved or 

declined. 

 

 

Figure 6.49: Alert Message When Decline the Booking 

 

If the caregiver clicks on the “Decline” button, an alert message will show. Once 

the caregiver confirms the deletion, the booking will be deleted. 



138 

 

 

Figure 6.50: Accepted Booking Page 

 

After the caregiver accepts a booking from the Pending Booking Page, the status 

of the booking will now become accepted and listed in the Accepted Booking 

Page. 

 

 

Figure 6.51: Declined Booking Page 

 

If the caregiver declines a pending booking, the status of the booking now 

becomes declined and will be listed on this Declined Booking Page. 

 



139 

 

 

Figure 6.52: Client’s Profile Page 

 

The caregiver will be redirected to this page when they click on the “View” 

profile button. This page shows all the client profile details including name, 

email, phone number, gender, location, and about me. 

 

 

Figure 6.53: Booking Details Page 

 

After the caregiver chooses a booking and clicks on the “View Booking Details” 

button, they will be redirected to this page. This page shows the booking details 

including service type, booking date and time, service duration, client address, 

and total cost.  

 

 

 



140 

 

6.4.5.4 Feedback List Page 

 

Figure 6.54: Feedback List Page 

 

On the Feedback Page, the caregiver can view all feedback provided by clients. 

Additionally, the caregiver has the option to filter the feedback by applying a 

service-specific filter. This allows them to view comments related to a particular 

service. This feature helps caregivers easily manage and review feedback 

relevant to their offerings. 

 

6.4.5.5 Payment History Page 

 

Figure 6.55: Payment History Page 

 

This Payment History Page will show all the transactions made by the client for 

record-keeping purposes. On this page, the caregiver can search for the 

transaction history during a specific date by applying the date filter. The 



141 

 

caregiver may also select one or more transactions to generate an invoice or 

export to CSV.  

 

 

Figure 6.56: Invoice of a Transaction 

 

The caregiver can select one or more transactions and generate an invoice by 

clicking the "Generate Invoice" button. Upon clicking the button, a PDF invoice 

will be automatically downloaded, and formatted as shown in Figure 6.56 

provided above. 

 

 

Figure 6.57: CSV File of a Transaction 

 

The client can select one or more transactions and export them to a CSV file by 

clicking the "Export CSV" button. Once the button is clicked, a CSV file will 

be automatically downloaded, and formatted as illustrated in Figure 6.57 

provided above. 

 

 

 

 

 

 

 



142 

 

6.4.5.6 Appointment Calendar Page 

 

Figure 6.58: Appointment Calendar Page 

 

On the Appointment Calendar Page, caregivers can view all their scheduled 

appointment dates and times for added convenience. Each appointment is 

represented as a clickable link. When a caregiver clicks on it, they will be 

navigated to the booking details page where they can access a more detailed 

view of the specific booking. 

 

6.4.5.7 Chat Page 

 

 
Figure 6.59: Chat Page 

 



143 

 

The caregiver can communicate with all the clients and the admin by using 

this chat channel. The caregiver is also allowed to send images or emojis using 

this chat channel. 

6.4.6 Administrator 

6.4.6.1 Manage User Account Page 

 

Figure 6.60: Manage User Account Page 

 

After admins login to the platform, they will be redirected to this page. On this 

page, admins can manage user accounts by viewing the user details and deleting 

the user account. Admin can also search the users by entering the user’s name 

in the “search users” search box and filtering the users by roles. When an admin 

searches for users by entering a name into the "search users" box or applies 

filters based on user roles, AJAX automatically sends the search and filter 

requests to the server. The server processes these requests and responds with the 

relevant data. The page then updates dynamically to display the filtered user list 

and search results without requiring a full page reload.  

 



144 

 

 

Figure 6.61: User’s Details Page 

 

After clicking on the “View” button on the Manage User Account Page, the 

admin will be redirected to this User’s Details Page. This page will show the 

details of the user.  

 

 

Figure 6.62: Alert Message When Delete a User Account 

 

An alert message will show when the user clicks on the “Delete” button. After 

users confirm the deletion, the user account will be removed from the database 

and a success message will show.  

 

 

 



145 

 

6.4.6.2 Manage Service Page 

 

Figure 6.63: Manage Service Page 

Admin can view all the services and perform deletion on the service on this 

page. If the service has been deleted, a notification will be sent to the caregiver 

to notify them that the service has been deleted. 

 

6.4.6.3 Chat Page 

 

 

Figure 6.64: Chat Page 

 

Admin can communicate with all the clients and caregivers by using this chat 

channel. The admin is also allowed to send images or emojis using this chat 

channel. 

 



146 

 

6.5 Implementation Issues and Challenges 

During the development of this project, I encountered several problems and 

challenges. The first problem I encountered was the creation of service dates 

and time slots in the Add Service function. First, the Add Service function I 

designed just let the customer select the date and time to book the service. Later, 

I felt that this was illogical because it just let the customer select the date and 

time slot they wanted to use the service without considering whether the 

caregiver was available. After consideration, I modified the logic to let the 

caregivers declare their service duration first and then I create time slots for each 

caregiver based on this duration. For example, if caregiver A declares her/his 

service time to be 2 hours, then I will set the time slots to 12 pm to 2 pm, 2 pm 

to 4 pm, and so on. After implementation, I still felt that it was not very 

convenient because the caregivers could not manage their time slots themselves. 

Finally, I thought of a better idea, which is to let the caregivers create the service 

time slots themselves. Caregivers can first select a service date, and then they 

can add time slots for that date. This makes the creation of time slots completely 

managed by the caregivers themselves, which is the most convenient. After I 

implemented this, there were still some minor errors, that is, after the customer 

booked the time slot, the caregiver could still update the time slot, which made 

the data uncontrollable. So, I modified the update service to check if the time 

slot was already booked, making it impossible to modify it. Finally, this time 

slot issue was solved, but it took me a long time because I tried many different 

ways to create the time slot. 

 

The second challenge was the implementation of AI service recommendations. 

Since this was not planned for FYP1 but recommended by my supervisor, I 

spent a lot of time researching and learning how to apply AI to recommendation 

systems. To avoid spending more time testing the model, I found a better way, 

which is to use NLP methods to process text and make intelligent 

recommendations. 

 

 

  



147 

 

1 CHAPTER 7 

SYSTEM TESTING 

 

7.1 Introduction 

This chapter is divided into five sections. Section 7.2 provides an overview of 

the types of testing that will be performed in this project. Section 7.3 will explain 

how to plan and execute unit testing. Section 7.4 will outline how to plan and 

execute feature testing. Section 7.5 will discuss how to plan and execute black-

box testing. The final section, 7.6, discusses the planning and execution process 

for UAT. 

 

7.2 Testing Types 

Once the project is implemented, four types of testing will be performed. Unit 

and Feature testing will be automatically performed using Laravel's built-in 

tools to ensure that individual components and integrations function properly. 

For Unit and Feature tests, they will be automatically run in GitHub Actions 

after they are written. Additionally, manual black-box testing will be performed 

to evaluate the general functionality of the application from the user's 

perspective without considering the internal code structure. Finally, end users 

themselves conduct User Acceptance Testing (UAT) to verify that the program 

meets their needs and operates as expected. By combining automated and 

manual testing methods, the approach ensures thorough coverage and reliability 

which addressing both technical performance and user satisfaction. 

 

7.3 Unit Test  

Unit testing is an important part of software testing where each component or 

functionality of a software program is tested independently. This strategy 

ensures that each software unit functions properly. In this unit testing, all models 

will be tested through unit testing. This ensures that individual logic in the 

model such as data operations and relationships work properly in isolation. 

  



148 

 

In this unit testing, 5 unit modules with a total of 28 unit test cases were 

conducted. All 28 test cases are passed during the unit testing. The testing code 

of this unit test will be attached in Appendix B.  

 

Table 7.1: Unit Test Result 

Unit Test Module Name  Number of unit test 

cases in the module 

Number of passed unit 

test cases in the 

module 

BookingModelTest 7 7 

ServiceDateModelTest 3 3 

ServiceModelTest 7 7 

ServiceTimeslotModelTest 3 3 

UserModelTest 8 8 

Total 28 28 

 

 

Figure 7.1: Unit Test Result 



149 

 

The figure above shows that after executing the 'php artisan test --testsuite=Unit' 

command, all unit tests passed. 

 

7.4 Feature Test  

Feature test involves testing large blocks of code that typically complete HTTP 

requests and responses which may include multiple units of code that work 

together to perform a task. For example, handling a form submission or 

returning a view. In this case, all controllers will be tested with this Feature test. 

This will verify that the application's endpoints, routes, and user interactions 

function as expected, covering the flow from request to response.  

 

In this feature test, 13 feature modules with a total of 56 feature test cases were 

conducted. All 56 test cases are passed during the feature testing. The testing 

code of this feature test will be attached in Appendix B.  

 

Table 7.2: Feature Test Result 

Feature Test Module Name  Number of 

feature test 

cases in the 

module 

Number of 

passed feature 

test cases in 

the module 

AdminControllerFeatureTest 3 3 

BookingControllerFeatureTest 10 10 

CalendarControllerFeatureTest 1 1 

CaregiverControllerFeatureTest 13 13 

CaregiverNotificationControllerFeatureTest 4 4 

ClientControllerFeatureTest 2 2 

FeedbackControllerFeatureTest 2 2 

HomeControllerFeatureTest 2 2 

NotificationControllerFeatureTest 4 4 

PaymentControllerFeatureTest 2 2 

ProfileControllerFeatureTest 2 2 

ServiceControllerFeatureTest 9 9 



150 

 

TransactionControllerFeatureTest 2 2 

Total 56 56 

 

 

 

 



151 

 

 

 

 
Figure 7.2: Feature Test Result 

 

The figure shows that all unit tests passed after executing the 'php artisan test -

-testsuite=Feature' command. 

 

 

7.5 Black Box Test 

7.5.1 Black Box Test Cases for Login and Registration 

 

Table 7.3: Login and Registration Test Cases 

Test 

Case 

No 

Test 

Scenario 

Input Expected Result Actual 

Result  

Pass

/ 

Fail 

TC001 Registration 

with valid 

data 

Input 

valid 

credentials 

An email 

verification will 

As  

expected 

Pass 



152 

 

send to registered 

email 

TC002 Registration 

with 

already-used 

email 

Input 

invalid 

credentials 

Error message 

should be displayed 

and the registration 

is not completed 

As 

expected 

Pass 

TC003 Login with 

valid data 

Input 

valid 

credentials 

User will be redirect 

to home page 

As 

expected 

Pass 

TC004 Login with 

invalid data 

Input 

invalid 

credentials 

Error message 

should be displayed 

and the user remains 

on the login page 

As 

expected 

Pass 

 

7.5.2 Black Box Test Cases for Client Perspective 

 

Table 7.4: Client Module Test Cases 

Test 

Case 

No 

Test 

Scenario 

Input Expected Result Actual 

Result  

Pass

/ 

Fail 

TC001 Book a 

Service 

Select a date and 

timeslot then 

click the "Book" 

button 

Booking is 

created and client  

is redirected to the 

Pending Booking 

page 

As 

expected 

Pass 

TC002 View 

booking 

Select a booking 

and click on the 

“View” button 

Client will be 

redirected to the 

booking detail 

page 

As 

expected 

Pass 

TC003 Update 

Booking 

Select a new 

date and 

timeslot then 

Client will be 

redirected to the 

Pending Booking 

As 

expected 

Pass 



153 

 

click on the 

“Update” button 

Page with a 

success message  

TC004 Delete 

Booking 

Select a booking 

from Pending 

Booking Page 

and click on 

“Cancel” button 

Alert message 

shown first and 

once confirm to 

delete, a success 

message shown 

As 

expected 

Pass 

TC005 Make 

payment 

Select a booking 

from the 

Accepted 

Booking Page 

and click on the 

“Pay” button 

The payment 

modal drops 

down. Client can 

select a payment 

method and click 

the "Proceed" 

button. After that, 

a success message 

will be displayed 

As 

expected 

Pass 

TC006 Provide 

comment 

Select a booking 

from the 

Accepted 

Booking Page 

and click on the 

“Comment” 

button 

The comment 

modal drops 

down. Client can 

rank and comment 

on the service and 

click on the 

"Submit" button. 

After that, a 

success message 

will be displayed 

As 

expected 

Pass 

TC007 Search 

Service 

Apply filter 

criteria  

The services that 

match the applied 

filters are shown 

in the Search Page 

As 

expected 

Pass 

TC008 Clear 

Search 

Filter  

Apply a filter 

and then click 

Search results are 

reset to the default 

As 

expected 

Pass 



154 

 

the "Clear 

Filter" button 

state, showing all 

available services 

TC009 Get 

Service 

Suggestio

n 

Click on the 

“Click here for 

suggestion” 

button and send 

a message 

describing the 

service you 

want 

If the platform has 

a matching 

service, a 

recommended 

service is sent 

back to the user. If 

no, an error 

message is sent 

indicating that no 

service matches 

the description 

As 

expected 

Pass 

TC010 View 

Feedback 

Select a service 

in Search Page 

and click on 

“View 

Feedback” 

button 

A feedback modal 

will pops out and 

displaying all 

feedbacks related 

to the selected 

service  

As 

expected 

Pass 

TC011 Apply 

Date 

Filter in 

Transacti

on 

History 

Page 

Select a date 

range using the 

"From" and 

"To" date 

pickers then 

click on the 

“Apply Filters” 

button 

The transaction 

history list is 

filtered to show 

only transactions 

that occurred 

within the 

selected date 

range 

As 

expected 

Pass 

TC012 Apply 

Clear 

Filter on 

Transacti

on 

Apply any filter 

date then click 

on the “Clear 

Filter” button 

The transaction 

history page resets 

to its default state, 

displaying all 

transactions 

As 

expected 

Pass 



155 

 

History 

Page 

without any filters 

applied 

TC013 Generate 

Invoice 

Select a 

transaction 

history and click 

on the 

“Generate 

Invoice”  button 

An invoice PDF is 

automatically 

downloaded to the 

user's PC 

As 

expected 

Pass 

TC014 Export 

CSV 

Select a 

transaction 

history and click 

on the “Export 

CSV” button 

A CSV file is 

automatically 

downloaded to the 

user's PC 

As 

expected 

Pass 

TC015 Send a 

message  

Fill out the 

"Contact Us" 

form and click 

the "Send 

Message" 

button 

A success 

message is shown 

indicating that the 

message was sent 

successfully 

As 

expected 

Pass 

TC016 Edit 

profile 

with valid 

data 

Input valid 

credentials and 

click on the 

“Save Changes” 

button 

A success 

message is shown 

and the profile is 

updated 

As 

expected 

Pass 

TC017 Edit 

profile 

with 

invalid 

data 

Input invalid 

credentials and 

click on the 

“Save Changes” 

button 

Error message 

shown indicating 

the profile is not 

updated 

As 

expected 

Pass 

TC018 Chat in 

the Chat 

channel 

Send a message 

to any user in 

the chat channel 

A double tick 

appears next to the 

message 

As 

expected 

Pass 



156 

 

indicating that it 

has been 

successfully sent 

 

7.5.3 Black Box Test Cases for Caregiver Perspective 

 

Table 7.5: Caregiver Module Test Cases 

Test 

Case 

No 

Test 

Scenario 

Input Expected Result Actual 

Result  

Pass

/ 

Fail 

TC001 Add service 

with valid 

data 

Input valid 

credentials 

Service added and 

caregiver is 

redirected to the 

service list page with 

a success message 

As 

expected 

Pass 

TC002 Add service 

with invalid 

data 

Input 

invalid 

credentials 

Error message 

shown 

As 

expected 

Pass 

TC003 View 

service 

Select a 

service 

and click 

on the 

“View” 

button 

The caregiver is 

redirected to the 

service detail page 

and all details of the 

service are displayed 

As 

expected 

Pass 

TC004 Update 

service with 

valid data 

Input valid 

credentials 

Service updated and 

caregiver is 

redirected to the 

service list page with 

a success message 

As 

expected 

Pass 

TC005 Update 

service with 

invalid data 

Input 

invalid 

credentials 

Error message 

shown 

As 

expected 

Pass 



157 

 

TC006 Delete 

service 

Select a 

service 

and click 

on the 

“Delete” 

button 

A alert message 

shown and upon 

confirmation, 

successful message 

shown 

As 

expected 

Pass 

TC007 View client 

profile  

Select a 

booking 

from the 

Booking 

List Page 

and click 

on the 

“View 

Profile” 

button 

Caregiver is 

redirected to the 

client detail page and 

all the details of the 

client shown 

As 

expected 

Pass 

TC008 View 

booking 

details 

Select a 

booking 

from the 

Booking 

List Page 

and click 

on the 

“View 

Booking 

Details” 

button 

Caregiver is 

redirected to the 

booking detail page 

and all the details 

about the booking 

shown 

As 

expected 

Pass 

TC009 Accept 

booking 

Select a 

booking 

from 

Pending 

Booking 

Page and 

The booking is 

accepted, and the 

success message 

shown 

As 

expected 

Pass 



158 

 

click on 

the 

“Accept” 

button 

TC010 Decline 

booking 

Select a 

booking 

from 

Pending 

Booking 

Page and 

click on 

the 

“Decline” 

button 

The booking is 

declined, and the 

success message 

shown 

As 

expected 

Pass 

TC011 Filter 

feedback 

Apply a 

filter by 

service 

Feedback related to 

the selected service 

is displayed 

As 

expected 

Pass 

TC012 Apply Date 

Filter in 

Payment 

History Page 

Select a 

date range 

using the 

"From" 

and "To" 

date 

pickers 

then click 

on the 

“Apply 

Filters” 

button 

The payment 

received list is 

filtered to show only 

history that occurred 

within the selected 

date range 

As 

expected 

Pass 

TC013 Apply Clear 

Filter on 

Payment 

History Page 

Apply any 

filter date 

then click 

on the 

The payment 

received history page 

resets to its default 

state, displaying all 

As 

expected 

Pass 



159 

 

“Clear 

Filter” 

button 

history without any 

filters applied 

TC014 Generate 

Invoice 

Select a 

payment 

received 

history 

and click 

on the 

“Generate 

Invoice”  

button 

An invoice PDF is 

automatically 

downloaded to the 

user's PC 

As 

expected 

Pass 

TC015 Export CSV Select a 

payment 

received 

history 

and click 

on the 

“Export 

CSV” 

button 

A CSV file is 

automatically 

downloaded to the 

user's PC 

As 

expected 

Pass 

TC016 Edit profile 

with valid 

data 

Input valid 

credentials 

and click 

on the 

“Save” 

button 

A success message is 

shown and the 

profile is updated 

As 

expected 

Pass 

TC017 Edit profile 

with invalid 

data 

Input 

invalid 

credentials 

and click 

on the 

Error message 

shown indicating the 

profile is not updated 

As 

expected 

Pass 



160 

 

“Save” 

button 

TC018 Chat in the 

Chat 

channel 

Send a 

message 

to any user 

in the chat 

channel 

A double tick 

appears next to the 

message indicating 

that it has been 

successfully sent 

As 

expected 

Pass 

 

7.5.4 Black Box Test Cases for Admin Perspective 

 

Table 7.6: Admin Module Test Case 

Test 

Case 

No 

Test 

Scenario 

Input Expected Result Actual 

Result  

Pass

/ 

Fail 

TC001 Search user 

by name 

Enter a 

name in to 

the 

‘Search 

users’ text 

box 

The user list updates 

to display only the 

users whose name 

matches the input. If 

no users match, the 

list should be empty 

As  

expected 

Pass 

TC002 Filter user 

list by role 

Select a 

role from 

the 

dropdown 

filter  

The user list updates 

to display only the 

users associated with 

the selected role. If 

no users match, the 

list should be empty 

As 

expected 

Pass 

TC003 View user 

details 

Select a 

user from 

the list 

and click 

the 

Admin is redirected 

to user detail page 

and the detail of the 

user are shown 

As 

expected 

Pass 



161 

 

"View" 

button 

TC004 Delete user 

account 

Select a 

user from 

the list 

and click 

the 

"Delete" 

button 

An alert message 

prompts for 

confirmation. Upon 

confirming, the user 

account is deleted, 

and a success 

message is displayed 

As 

expected 

Pass 

TC005 Delete 

Service 

Select a 

service 

from the 

list and 

click the 

"Delete" 

button, 

An alert message 

prompts for 

confirmation. Upon 

confirming, the 

service is deleted, 

and a success 

message is displayed 

As 

expected 

Pass 

TC006 Chat in the 

Chat 

channel 

Send a 

message 

to any 

user in the 

chat 

channel 

A double tick 

appears next to the 

message indicating 

that it has been 

successfully sent 

As 

expected 

Pass 

 

 

7.6 User Acceptance Test (UAT) 

For User Acceptance Testing (UAT), I will use Google Forms to adapt questions 

to four key areas of the platform. This encompasses usability, functionality, 

visual design, and overall satisfaction. This systematic approach enables a full 

review of the platform by collecting focused feedback on key aspects. By 

focusing on these precise areas, I can accurately assess the platform's user 

experience, operational efficiency, and aesthetics. This will help me to assess 

which aspects of the platform are functioning well and which require further 

work or enhancement to satisfy user expectations and improve overall 

performance. For this test, 12 testers were selected to assess the platform's 



162 

 

usability, functionality, and visual design, and overall satisfaction. Their 

responses have been analyzed and are presented in the following sections. 

 

 

Figure 7.3: UAT Result of Question 1 

 

On a scale of 1 to 5, the majority of users (66.7%) thought the platform's 

navigation was "4". This means it was reasonably straightforward to use. A 

quarter of customers gave it a "5" rating, indicating that they thought it to be 

extremely user-friendly. Only one person (8.3%) rated the navigation as "3 

which implies it was moderately easy. No one rated it lower than 3 which 

suggests overall positive feedback on navigation. 

 

 

Figure 7.4: UAT Result of Question 2 



163 

 

The platform's instructions and labels were deemed straightforward and easy to 

comprehend by 91.7% of users who either "Agreed" (75%) or "Strongly 

Agreed" (16.7%). Although there was some slight space for improvement, just 

8.3% of respondents were uncertain indicating that the clarity was well-received. 

 

 

Figure 7.5: UAT Result of Question 3 

 

100% of users confirmed they were able to complete the tasks they intended on 

the platform. This indicates that although all tasks were completed, there could 

have been minor issues that users faced. 

 

 

Figure 7.6: UAT Result of Question 4 



164 

 

The majority of users (66.7%) rated the process of booking a "4" which indicates 

overall satisfaction. 25% of the users rated it a "5". Only one user (8.3%) rated 

it a "3" suggesting that the booking process was moderately effective for them. 

This can conclude that the process of booking is functioning well.  

 

 

Figure 7.7: UAT Result of Question 5 

 

Most users were satisfied with the platform’s performance. This can be proved 

with 50% rating it a “4” and 50% rating it a “5.” There were no ratings lower 

than a "4" which indicates that the platform operates with good speed and 

dependability. 



165 

 

 

Figure 7.8: UAT Result of Question 6 

 

83.3% of users stated that they did not find any features lacking while 16.7% 

did mention a few missing aspects. One respondent pointed out the lack of 

integration with a payment gateway. This is crucial if transactions are part of 

the platform. Another respondent mentioned that the font size is small which 

might impact the platform's usability for some users. Even though the majority 

of users reported no missing functionality, implementing a payment gateway 

and changing the font size could improve the user experience. 

 



166 

 

 

Figure 7.9: UAT Result of Question 7 

 

58.3% of users rated the visual design of the platform as a "4" out of 5, while 

41.7% rated it a "5." This indicates that users generally found the design 

appealing, with no ratings below "4." Although the platform's design has 

garnered positive feedback, there might be opportunities for minor 

improvements to further elevate its visual appeal. 

 

 

Figure 7.10: UAT Result of Question 8 

 

All respondents thought the platform was user-friendly and accessible to elderly 

people. This is a positive result, showing that your platform is inclusive and 

user-friendly for different age groups, particularly elderly users. 



167 

 

 

 

Figure 7.11: UAT Result of Question 9 

 

50% of users rated their satisfaction with the platform as a "4" while 41.7% 

rated it a "5". Only one user (8.3%) gave a rating of "3" suggesting a moderate 

level of satisfaction for that user. Most users are quite satisfied with the platform, 

with only a small minority expressing moderate satisfaction. 

 

 

Figure 7.12: UAT Result of Question 10 

 

66.7% of users rated their likelihood to recommend the platform to others as a 

"4" and 33.3% rated it a "5". No users rated it below "4" which indicates a strong 



168 

 

endorsement from users. Users are likely to recommend the platform to others, 

demonstrating a positive overall experience. 

 

 

Figure 7.13: UAT Result of Question 11 

 

Many users felt that "all features are good enough" and liked the platform's ease 

of navigation and straightforwardness. Some appreciated the UI design and felt 

the system could be made "more flexible." Some suggested enhancing the UI 

for a more modern look or making the UI more attractive. One user 

recommended adding a bot for real-time issue resolution while another 

mentioned making the scheduling system more flexible. There were also 

suggestions to make the UI cleaner and possibly enhance the overall appearance. 

While most feedback is positive, focusing on UI improvements and adding more 

advanced features like real-time support could further enhance user satisfaction. 

 

 

  



169 

 

1 CHAPTER 8 

CONCLUSION AND RECOMMENDATION 

 

8.1 Conclusion 

In conclusion, this project successfully achieved the objectives outlined in 

Chapter 1 Section 1.3. These objectives were to: 

1. To develop an integrated booking platform that allow registration for 

both clients and caregiver so that clients can find the services they need, 

and caregiver can promote their services.  

2. To implement a chat channel that allows clients to communicate directly 

with caregivers for information exchange. 

3. To design a platform with search function with filtering capabilities to 

generate caregiver matching lists based on user preferences and 

requirements. 

 

The first objective of develop an integrated booking platform that allow 

registration for both clients and caregiver so that clients can find the services 

they need, and caregiver can promote their services has been successfully 

achieved. Users can choose their role either as a client or a caregiver. This role-

based registration system ensures that clients can easily search for services 

while caregivers can promote their service to the client. 

 

The second objective was accomplished through the implementation of a fully 

functional chat channel. This chat channel enables all the users in this platform 

to communicate with each other. Additionally, the users may use the “favorite 

user” function to mark a user as a favorite. This makes it easier to find and 

communicate with them quickly in the future.  

 

For the third objective, a robust search functionality with filtering capabilities 

was integrated into the platform. This feature allows users to apply filters based 

on specific criteria such as location, service type, etc. After applying the filter, 



170 

 

client can get all the match services. Moreover, the newly added service 

recommendation feature further enhances the platform. Clients can use this 

feature by describe their service requirements. The platform will then find the 

most suitable service in the database and return it to the client. This feature is 

particularly beneficial for clients who may not be familiar with all available 

services and require guidance. 

 

8.2 Limitations 

These are some of the limitations of this platform: 

1. Limited Flexibility for Service Scheduling 

The platform requires caregivers to manually enter dates and timeslots for 

their services. For caregivers with complicated schedules, this process may 

be time-consuming. Scheduling problems and confusion may arise from 

overlapping appointments caused by a lack of automated scheduling and 

conflict detection. 

 

2. Does Not Integrate with Payment Gateway 

The platform does not support direct payment processing through a payment 

gateway. This absence limits the ability to handle online transactions 

securely and efficiently, potentially leading to a fragmented user experience 

and reliance on less convenient alternative payment methods. 

 

3. No Multilingual Support 

Accessibility for non-native English speakers is limited because the 

platform only supports English currently. This limitation affects user 

participation and inclusivity, particularly for users from diverse language 

backgrounds. 

 



171 

 

8.3 Recommendations 

Based on the Section 8.2 Limitation, these are the recommendations and 

enhancement for future work:  

 

1. Enhanced Scheduling Tools 

Implement automated or recurring scheduling options and conflict detection 

features to simplify service management for caregivers. This will reduce 

manual entry, prevent overlapping appointments, and improve scheduling 

accuracy. 

 

2. Integrate Payment Gateway 

Add integration with a reliable payment gateway to enable secure and 

seamless online payment processing. This will enhance user experience by 

allowing direct transactions and ensuring compliance with industry security 

standards. 

 

3. Implement Multilingual Support 

Include multilingual features to serve a larger audience. In order to increase 

accessibility and user happiness, start with important languages depending 

on user demographics and market expansion objectives. 

  



172 

 

REFERENCES 

 

Columnist, 2023. Malaysian aging society at crossroads [Online]. Available at: 

<https://www.astroawani.com/berita-malaysia/columnist-malaysian-aging-society-

crossroads-438187> [Accessed 2 Februaty 2024]. 

Murugesan, M., 2021. Extending care for the elderly. NST Online. Available at:     

<https://www.nst.com.my/lifestyle/heal/2021/05/688938/extending-care-elderly> [Accessed 2 

Februaty 2024]. 

Scnova, 2024.Major challenges to expect when caring for the elderly [Online]. Available at: 

<https://scnova.org/major-challenges-to-expect-when-caring-for-the-elderly/> [Accessed 

1 Februaty 2024]. 

FasterCapital, 2024, What are elderly care platforms and why are they important - FasterCapital 

[Online]. Available at: <https://fastercapital.com/topics/what-are-elderly-care-platforms-

and-why-are-they-important.html> [Accessed 2 Februaty 2024]. 

Care Concierge Malaysia, 2023, Care Concierge - Home care and nursing services for elderly 

[Online]. Available at: <https://mycareconcierge.com/> [Accessed 16 April 2024]. 

Sadika, 2023. The MVC Architecture - Sadika - Medium. Medium. Available at: 

<https://medium.com/@sadikarahmantanisha/the-mvc-architecture-97d47e071eb2> 

[Accessed 17 April 2024]. 

F, H. and F, H., 2024, WAMP vs XAMPP: Which is the Best Suitable Local Server for Web 

Development? [Online]. Available at: <https://www.temok.com/blog/wamp-vs-xampp/> 

[Accessed 17 April 2024]. 



173 

 

Chien, C., 2020, What is Rapid Application Development (RAD)? [Online]. Available at: 

<https://codebots.com/app-development/what-is-rapid-application-development-rad> 

[Accessed 17 April 2024]. 

Weingus, L., 2024. Care.com review: Tried and tested (2024). Forbes Health. Available at: 

<https://www.forbes.com/health/family/care-com-review/> [Accessed 3 Februaty 2024]. 

Infinity, Agile Methodology: Better organization for your team [Online]. Available at: 

<https://startinfinity.com/project-management-methodologies/agile> [Accessed 3 

Februaty 2024]. 

Atlassian, 2024. What is Agile? | Atlassian [Online]. Available at: 

<https://www.atlassian.com/agile#:~:text=The%20Agile%20methodology%20is%20a,R

EAD%20ON%20BELOW> [Accessed 7 March 2024]. 

Olic, A., 2020. Advantages and Disadvantages of Agile Project Management [Checklist]. 

ActiveCollab. Available at: <https://activecollab.com/blog/project-management/agile-

project-management-advantages-disadvantages> [Accessed 7 March 2024]. 

Tutorialspoint, 2024. What are the Advantages and Disadvantages of Agile? [Online]. Available 

at: <https://www.tutorialspoint.com/what-are-the-advantages-and-disadvantages-of-

agile> [Accessed 7 March 2024]. 

Abraham, M., 2023. Waterfall Methodology – Ultimate Guide. Management.Org. Available at: 

<https://management.org/waterfall-methodology> [Accessed 17 April 2024]. 

Hoory, L., 2022. What is waterfall methodology? Here’s how it can help your project management 

strategy. Forbes Advisor. Available at: <https://www.forbes.com/advisor/business/what-

is-waterfall-methodology/> [Accessed 9 March 2024]. 



174 

 

Lucidchart, 2018, The pros and cons of waterfall methodology [Online]. Available at: 

<https://www.lucidchart.com/blog/pros-and-cons-of-waterfall-methodology> [Accessed 9 

March 2024]. 

Dutta, B., 2024. Waterfall Methodology: working, Advantages & Disadvantages | Analytics Steps 

[Online]. Available at: <https://www.analyticssteps.com/blogs/waterfall-methodology-

working-advantages-disadvantages#google_vignette> [Accessed 9 March 2024]. 

Kissflow, Inc, 2024, Rapid Application Development (RAD) | Definition, Steps & Full Guide 

[Online]. Available at: <https://kissflow.com/application-development/rad/rapid-

application-development/> [Accessed 11 March 2024]. 

Sharma, R., 2024. Top 12 Commerce Project Topics & Ideas in 2023 [For Freshers]. upGrad blog. 

Available at: <https://www.upgrad.com/blog/rad-models-overview/> [Accessed 11 March 

2024]. 

Blog, Https.I., 2021, Everything about Secure Hashing Algorithm (SHA) - Security Boulevard 

[Online]. Available at: <https://securityboulevard.com/2021/09/everything-about-secure-

hashing-algorithm-sha/> [Accessed 11 March 2024]. 

ICStudio, 2022, 17 Benefits of LaRavel Framework [Online]. Available at: 

<https://icstudio.online/en/post/17-benefits-laravel-framework> [Accessed 14 March 

2024]. 

 

Deshpande, C., 2023, The best guide to know what is react [Online]. Available at: 

<https://www.simplilearn.com/tutorials/reactjs-tutorial/what-is-reactjs> [Accessed 16 

March 2024]. 



175 

 

Modan, S., 2024. Benefits and reasons to choose ReactJS for your project [Online]. Available at: 

<https://www.peerbits.com/blog/reasons-to-choose-reactjs-for-your-web-development-

project.html> [Accessed 16 March 2024]. 

Ragala, B. K., 2023, What are the pros and cons of React [Online]. Available at: 

<https://www.knowledgehut.com/blog/web-development/pros-and-cons-of-react#> 

[Accessed 16 March 2024]. 

Vue,js, 2024. Vue.js [Online]. Available at: <https://vuejs.org/guide/introduction> [Accessed 18 

March 2024]. 

Patel, J. and Patel, J., 2024, 10 Outstanding Advantages of Vue js You Should Know About 

[Online]. Available at: <https://www.monocubed.com/blog/advantages-of-vue-js/> 

[Accessed 18 March 2024]. 

Editor, 2022. The good and the bad of Vue.js framework programming. AltexSoft. Available at: 

<https://www.altexsoft.com/blog/pros-and-cons-of-vue-js/> [Accessed 18 March 2024]. 

WebHostingMonkey, 2024, What is Visual Studio Code (VS Code) [Online]. Available at: 

<https://webhostingmonkey.com/vs-code/> [Accessed 19 March 2024]. 

Mir, M.A., 2023. What are the advantages and disadvantages of using Visual Studio Code or 

Atom? Medium. Available at: <https://medium.com/@ssc.ahmed.926748/what-are-the-

advantages-and-disadvantages-of-using-visual-studio-code-or-atom-d3132bf1af85> 

[Accessed 19 March 2024]. 

UniversityOfKent, 2024. Notepad++  - Software finder - University of Kent [Online]. Available 

at: <https://www.kent.ac.uk/software/notepad> [Accessed 20 March 2024]. 

Centro and Centro, 2023. The power of NotePad++: leveraging its advantages for efficient coding 

and text editing – a comprehensive guide on how to make the most - Madrid Centro. 



176 

 

Madrid Centro - Lettera Trattoria Moderna. Available at: 

<https://www.letteramadrid.com/centro/2023/03/22/the-power-of-notepad-leveraging-its-

advantages-for/> [Accessed 20 March 2024]. 

Schaferhoff, N., 2022. NotePad++ Review – A powerful, free code editor packed with features 

[Online]. Available at: <https://www.elegantthemes.com/blog/resources/notepad-review-

a-powerful-free-code-editor-packed-with-features#notepad-cons-and-turnoffs> [Accessed 

20 March 2024]. 

Smithaydon, 2023. Is NotePad++ an IDE? - Smithaydon - Medium. Medium. Available at: 

<https://medium.com/@smithaydon2/is-notepad-an-ide-b34e61903e02> [Accessed 20 

March 2024]. 

PhpStorm, 2021.  Explore PhpStorm features | PhpStorm [Online]. Available at: 

<https://www.jetbrains.com/help/phpstorm/quick-start-guide-phpstorm.html> [Accessed 

21March 2024]. 

Monovm, 2021, What is PhpStorm? [Online]. Available at: <https://monovm.com/blog/what-is-

phpstorm/#Benefits-of-PHPStorm> [Accessed 21 March 2024]. 

Pedamkar, P., 2023, PhPStorm [Online]. Available at: <https://www.educba.com/phpstorm/> 

[Accessed 21 March 2024]. 

JavaTpoint, 2024. What is Oracle - javatpoint [Online]. Available at: < 

https://www.javatpoint.com/what-is-oracle> [Accessed 23 March 2024]. 

Nguyen, S. and Nguyen, S., 2024. The benefits of Oracle DBMS for your organization. 

DreamFactory Software- Blog - API Management, Enterprise Integrations, Data Security 

and More. Available at: <https://blog.dreamfactory.com/the-benefits-of-oracle-dbms-for-

your-organization/#2> [Accessed 23 March 2024]. 



177 

 

Domantas G., 2024, What is MySQL and how does it work [Online]. Available at: 

<https://www.hostinger.com/tutorials/what-is-mysql> [Accessed 25 March 2024]. 

blueclaw, 2021, MySQL Advantages and Disadvantages - Blue Claw Database Developer 

Resource [Online]. Available at: <https://blueclawdb.com/mysql/advantages-

disadvantages-mysql/> [Accessed 25 March 2024]. 

S, R.A., 2023, What is SQLite? Everything You Need to Know [Online]. Available at: 

<https://www.simplilearn.com/tutorials/sql-tutorial/what-is-sqlite> [Accessed 26 March 

2024]. 

javaTpoint, 2024. SQLite Advantages and Disadvantages - javatpoint [Online]. Available at: 

<https://www.javatpoint.com/sqlite-advantages-and-disadvantages> [Accessed 26 March 

2024]. 

Wong, C., 2023. Advantages and Disadvantages of using SQLite - Christopher Wong - Medium. 

Medium. Available at: <https://medium.com/@cw30355/advantages-and-disadvantages-

of-using-sqlite-2f490fa467bd> [Accessed 26 March 2024]. 

Tis, T., 2023. LaRavel: Benefits for outstanding PHP Web Development. TIS. Available at: 

<https://www.tisdigitech.com/blog/laravel-framework-best-choice-for-php-web-

development/> [Accessed 18 April 2024]. 

 

 

 

  



178 

 

APPENDICES 

 

APPENDIX A: Work Breakdown Structure 

 

1.0 Project Initiation 

1.1 Identify project background 

1.2 Identify problem statement 

1.3 Identify project objective 

1.4 Identify project solution 

1.5 Identify project approach 

1.6 Identify project scope and limitation of the study 

2.0 Literature Review 

2.1 Review on existing elderly care platforms 

2.2 Review on software development methodologies 

2.3 Review on web development tools 

2.3.1 Review on development frameworks 

2.3.2 Review on code editors 

2.3.3 Review on databases 

3.0 Methodology and Work Plan 

3.1 Determine the phase of chosen software development methodology  

3.2 Determine the adopted development and prototyping tools 

3.3 Define project plan 

3.3.1 Construct WBS 

3.3.2 Construct Gantt Chart 

4.0 Project Specification 

4.1 Define requirements specifications 

4.1.1 Define functional requirements 

4.1.2 Define non-functional requirements 

4.2 Construct use case diagram 

4.3 Outline use case description 



179 

 

4.4 Develop prototype 

5.0 System Design 

5.1 Define the system architecture design 

      5.2 Design UML diagram 

            5.2.1 Design Class diagram 

            5.2.2 Design Activity diagram 

      5.3 Define the database design 

            5.3.1 Design ERD diagram 

            5.3.2 Design data dictionary table 

6.0 System Development and Testing 

      6.1 First Iteration 

            6.1.1 Develop Client Module 

            6.1.2 Conduct Testing 

                      6.1.2.1 Conduct Unit Testing 

                      6.1.2.2 Conduct Feature Testing 

      6.2 Second Iteration 

            6.2.1 Develop Caregiver Module 

            6.2.2 Conduct Testing 

                      6.2.2.1 Conduct Unit Testing 

                      6.2.2.2 Conduct Feature Testing 

      6.3 Third Iteration 

            6.3.1 Develop Administrator Module 

            6.3.2 Conduct Testing 

                      6.3.2.1 Conduct Unit Testing 

           6.3.2.2 Conduct Feature Testing 

 6.3.3 Conduct Use Acceptance Testing 

7.0 Closing 

      7.1 Finalize final report 

 

 



180 

 

APPENDIX B: Unit Test code 

 

<?php 

namespace Tests\Unit; 

 

use Tests\TestCase; 

use App\Models\Booking; 

use Illuminate\Database\Eloquent\Relations\BelongsTo; 

use Mockery; 

use Carbon\Carbon; 

 

class BookingModelTest extends TestCase 

{ 

    // Test attribute casting without involving database 

    public function testAttributeCasting() 

    { 

        $booking = new Booking(); 

        $booking->payment_date = '2024-01-01 10:00:00'; 

         

        // Test if casting works 

        $this->assertInstanceOf(Carbon::class, $booking->payment_date); 

        $this->assertEquals('2024-01-01 10:00:00', 

$booking->payment_date->format('Y-m-d H:i:s')); 

    } 

 

    // Mock relationships and verify expected behavior 

    public function testClientRelationship() 

    { 

        $booking = Mockery::mock(Booking::class)->makePartial(); 

        $clientRelation = Mockery::mock(BelongsTo::class); 

         

        // Set up the mock to return a relation instance 

        $booking->shouldReceive('client')->andReturn($clientRelation); 

        $clientRelation->shouldReceive('getResults')->andReturn(Mockery::mock('Ap

p\Models\User')); 

         

        $this->assertInstanceOf(BelongsTo::class, $booking->client()); 

    } 

 

    public function testCaregiverRelationship() 

    { 

        $booking = Mockery::mock(Booking::class)->makePartial(); 

        $caregiverRelation = Mockery::mock(BelongsTo::class); 

         



181 

 

        // Set up the mock to return a relation instance 

        $booking->shouldReceive('caregiver')->andReturn($caregiverRelation); 

        $caregiverRelation->shouldReceive('getResults')->andReturn(Mockery::mock(

'App\Models\User')); 

         

        $this->assertInstanceOf(BelongsTo::class, $booking->caregiver()); 

    } 

 

    public function testServiceRelationship() 

    { 

        $booking = Mockery::mock(Booking::class)->makePartial(); 

        $serviceRelation = Mockery::mock(BelongsTo::class); 

         

        // Set up the mock to return a relation instance 

        $booking->shouldReceive('service')->andReturn($serviceRelation); 

        $serviceRelation->shouldReceive('getResults')->andReturn(Mockery::mock('A

pp\Models\Service')); 

         

        $this->assertInstanceOf(BelongsTo::class, $booking->service()); 

    } 

 

    public function testServiceDateRelationship() 

    { 

        $booking = Mockery::mock(Booking::class)->makePartial(); 

        $serviceDateRelation = Mockery::mock(BelongsTo::class); 

         

        // Set up the mock to return a relation instance 

        $booking->shouldReceive('serviceDate')->andReturn($serviceDateRelation); 

        $serviceDateRelation->shouldReceive('getResults')->andReturn(Mockery::moc

k('App\Models\ServiceDate')); 

         

        $this->assertInstanceOf(BelongsTo::class, $booking->serviceDate()); 

    } 

 

    public function testTimeSlotRelationship() 

    { 

        $booking = Mockery::mock(Booking::class)->makePartial(); 

        $timeSlotRelation = Mockery::mock(BelongsTo::class); 

         

        // Set up the mock to return a relation instance 

        $booking->shouldReceive('timeSlot')->andReturn($timeSlotRelation); 

        $timeSlotRelation->shouldReceive('getResults')->andReturn(Mockery::mock('

App\Models\ServiceTimeslot')); 

         

        $this->assertInstanceOf(BelongsTo::class, $booking->timeSlot()); 



182 

 

    } 

 

    // Test that the deleted event is triggered, mocking any side effects 

    public function testDeletedEvent() 

    { 

        $booking = Mockery::mock(Booking::class)->makePartial(); 

 

        // Mock the delete method and verify it's called 

        $booking->shouldReceive('delete')->once(); 

        $booking->delete(); 

 

        // Verify that delete was called 

        $this->assertTrue(true);  

    } 

 

    protected function tearDown(): void 

    { 

        Mockery::close(); 

        parent::tearDown(); 

    } 

} 

 

 

<?php 

namespace Tests\Unit; 

 

use Tests\TestCase; 

use App\Models\Service; 

use Illuminate\Database\Eloquent\Relations\HasMany; 

use Illuminate\Database\Eloquent\Relations\BelongsTo; 

use Mockery; 

 

class ServiceModelTest extends TestCase 

{ 

    public function testBookingsRelationship() 

    { 

        // Create a partial mock of the Service model 

        $service = Mockery::mock(Service::class)->makePartial(); 

         

        // Create a mock of the HasMany relationship 

        $bookingsRelation = Mockery::mock(HasMany::class); 

         

        // Set up the expectation that the bookings method will return the 

HasMany mock 



183 

 

        $service->shouldReceive('bookings')->andReturn($bookingsRelation); 

         

        // Verify that the bookings method returns an instance of HasMany 

        $this->assertInstanceOf(HasMany::class, $service->bookings()); 

    } 

 

    public function testBookingsWithFeedbackRelationship() 

    { 

        // Create a partial mock of the Service model 

        $service = Mockery::mock(Service::class)->makePartial(); 

         

        // Create a mock of the HasMany relationship 

        $bookingsWithFeedbackRelation = Mockery::mock(HasMany::class); 

         

        // Set up the expectation that the bookingsWithFeedback method will 

return the HasMany mock 

        $service->shouldReceive('bookingsWithFeedback')->andReturn($bookingsWithF

eedbackRelation); 

         

        // Verify that the bookingsWithFeedback method returns an instance of 

HasMany 

        $this->assertInstanceOf(HasMany::class, 

$service->bookingsWithFeedback()); 

    } 

 

    public function testCaregiverRelationship() 

    { 

        // Create a partial mock of the Service model 

        $service = Mockery::mock(Service::class)->makePartial(); 

         

        // Create a mock of the BelongsTo relationship 

        $caregiverRelation = Mockery::mock(BelongsTo::class); 

         

        // Set up the expectation that the caregiver method will return the 

BelongsTo mock 

        $service->shouldReceive('caregiver')->andReturn($caregiverRelation); 

         

        // Verify that the caregiver method returns an instance of BelongsTo 

        $this->assertInstanceOf(BelongsTo::class, $service->caregiver()); 

    } 

 

    public function testClientRelationship() 

    { 

        // Create a partial mock of the Service model 

        $service = Mockery::mock(Service::class)->makePartial(); 



184 

 

         

        // Create a mock of the BelongsTo relationship 

        $clientRelation = Mockery::mock(BelongsTo::class); 

         

        // Set up the expectation that the client method will return the 

BelongsTo mock 

        $service->shouldReceive('client')->andReturn($clientRelation); 

         

        // Verify that the client method returns an instance of BelongsTo 

        $this->assertInstanceOf(BelongsTo::class, $service->client()); 

    } 

 

    public function testServiceDatesRelationship() 

    { 

        // Create a partial mock of the Service model 

        $service = Mockery::mock(Service::class)->makePartial(); 

         

        // Create a mock of the HasMany relationship 

        $serviceDatesRelation = Mockery::mock(HasMany::class); 

         

        // Set up the expectation that the serviceDates method will return the 

HasMany mock 

        $service->shouldReceive('serviceDates')->andReturn($serviceDatesRelation)

; 

         

        // Verify that the serviceDates method returns an instance of HasMany 

        $this->assertInstanceOf(HasMany::class, $service->serviceDates()); 

    } 

 

    public function testServiceTimeslotsRelationship() 

    { 

        // Create a partial mock of the Service model 

        $service = Mockery::mock(Service::class)->makePartial(); 

         

        // Create a mock of the HasMany relationship 

        $serviceTimeslotsRelation = Mockery::mock(HasMany::class); 

         

        // Set up the expectation that the serviceTimeslots method will return 

the HasMany mock 

        $service->shouldReceive('serviceTimeslots')->andReturn($serviceTimeslotsR

elation); 

         

        // Verify that the serviceTimeslots method returns an instance of HasMany 

        $this->assertInstanceOf(HasMany::class, $service->serviceTimeslots()); 

    } 



185 

 

 

    public function testDatesRelationship() 

    { 

        // Create a partial mock of the Service model 

        $service = Mockery::mock(Service::class)->makePartial(); 

         

        // Create a mock of the HasMany relationship 

        $datesRelation = Mockery::mock(HasMany::class); 

         

        // Set up the expectation that the dates method will return the HasMany 

mock 

        $service->shouldReceive('dates')->andReturn($datesRelation); 

         

        // Verify that the dates method returns an instance of HasMany 

        $this->assertInstanceOf(HasMany::class, $service->dates()); 

    } 

 

    // Clean up Mockery after each test 

    protected function tearDown(): void 

    { 

        Mockery::close(); 

        parent::tearDown(); 

    } 

} 

 

 

<?php 

 

namespace Tests\Unit; 

 

use App\Models\ServiceDate; 

use App\Models\Service; 

use App\Models\ServiceTimeslot; 

use Illuminate\Database\Eloquent\Collection; 

use Mockery; 

use PHPUnit\Framework\TestCase; 

 

class ServiceDateModelTest extends TestCase 

{ 

    protected function tearDown(): void 

    { 

        // Close Mockery after each test to ensure no lingering expectations 

        Mockery::close(); 

        parent::tearDown(); 



186 

 

    } 

 

    /** @test */ 

    public function it_has_a_service_relationship() 

    { 

        $serviceDate = Mockery::mock(ServiceDate::class)->makePartial(); 

 

        $service = Mockery::mock(Service::class); 

        $serviceDate->shouldReceive('service') 

            ->once() 

            ->andReturn($service); 

 

        $this->assertInstanceOf(Service::class, $serviceDate->service()); 

    } 

 

    /** @test */ 

    public function it_has_a_timeslots_relationship() 

    { 

        $serviceDate = Mockery::mock(ServiceDate::class)->makePartial(); 

 

        $timeslots = Mockery::mock(Collection::class); 

        $serviceDate->shouldReceive('timeslots') 

            ->once() 

            ->andReturn($timeslots); 

 

        $this->assertInstanceOf(Collection::class, $serviceDate->timeslots()); 

    } 

 

    /** @test */ 

    public function it_has_a_service_timeslots_relationship() 

    { 

        $serviceDate = Mockery::mock(ServiceDate::class)->makePartial(); 

 

        $serviceTimeslots = Mockery::mock(Collection::class); 

        $serviceDate->shouldReceive('serviceTimeslots') 

            ->once() 

            ->andReturn($serviceTimeslots); 

 

        $this->assertInstanceOf(Collection::class, 

$serviceDate->serviceTimeslots()); 

    } 

 

     

} 

 



187 

 

<?php 

 

namespace Tests\Unit; 

 

use App\Models\ServiceTimeslot; 

use PHPUnit\Framework\TestCase; 

 

class ServiceTimeslotTest extends TestCase 

{ 

    public function testIsBooked() 

    { 

        $timeslot = new ServiceTimeslot(); 

        $timeslot->availability = 1; // Simulate a booked state 

 

        $this->assertTrue($timeslot->isBooked(), 'The timeslot should be 

booked.'); 

        $this->assertFalse($timeslot->isAvailable(), 'The timeslot should not be 

available.'); 

    } 

 

    public function testIsAvailable() 

    { 

        // Create an instance of ServiceTimeslot with the availability set to 

available (0) 

        $timeslot = new ServiceTimeslot(['availability' => 0]); 

 

        // Assert that isAvailable returns true 

        $this->assertTrue($timeslot->isAvailable()); 

 

        // Assert that isBooked returns false 

        $this->assertFalse($timeslot->isBooked()); 

    } 

 

    public function testFillableAttributes() 

    { 

        $fillable = (new ServiceTimeslot())->getFillable(); 

        $expected = [ 

            'service_date_id', 

            'start_time', 

            'end_time', 

        ]; 

 

        // Assert that the fillable attributes match the expected ones 

        $this->assertEquals($expected, $fillable); 



188 

 

    } 

} 

 

 

<?php 

 

namespace Tests\Unit; 

 

use Tests\TestCase; 

use Mockery; 

use App\Models\User; 

use Illuminate\Database\Eloquent\Collection; 

 

class UserModelTest extends TestCase 

{ 

    /** @test */ 

    public function it_has_fillable_attributes() 

    { 

        $user = new User(); 

 

        $this->assertEquals([ 

            'name', 

            'email', 

            'password', 

            'role', 

        ], $user->getFillable()); 

    } 

 

    /** @test */ 

    public function it_hides_password_and_remember_token() 

    { 

        $user = new User(); 

 

        $this->assertEquals([ 

            'password', 

            'remember_token', 

        ], $user->getHidden()); 

    } 

 

    /** @test */ 

    public function it_casts_email_verified_at_to_datetime() 

    { 

        $user = new User(); 

 



189 

 

        $this->assertArrayHasKey('email_verified_at', $user->getCasts()); 

        $this->assertEquals('datetime', $user->getCasts()['email_verified_at']); 

    } 

 

    /** @test */ 

    public function it_has_bookings_relationship() 

    { 

        $mockedCollection = Mockery::mock(Collection::class); 

 

        $user = Mockery::mock(User::class)->makePartial(); 

        $user->shouldReceive('bookings')->andReturn($mockedCollection); 

 

        $this->assertInstanceOf(Collection::class, $user->bookings()); 

    } 

 

    /** @test */ 

    public function it_has_caregiving_bookings_relationship() 

    { 

        $mockedCollection = Mockery::mock(Collection::class); 

 

        $user = Mockery::mock(User::class)->makePartial(); 

        $user->shouldReceive('caregivingBookings')->andReturn($mockedCollection); 

 

        $this->assertInstanceOf(Collection::class, $user->caregivingBookings()); 

    } 

 

    /** @test */ 

    public function it_has_messages_relationship() 

    { 

        $mockedCollection = Mockery::mock(Collection::class); 

 

        $user = Mockery::mock(User::class)->makePartial(); 

        $user->shouldReceive('messages')->andReturn($mockedCollection); 

 

        $this->assertInstanceOf(Collection::class, $user->messages()); 

    } 

 

    /** @test */ 

    public function it_has_services_relationship() 

    { 

        $mockedCollection = Mockery::mock(Collection::class); 

 

        $user = Mockery::mock(User::class)->makePartial(); 

        $user->shouldReceive('services')->andReturn($mockedCollection); 

 



190 

 

        $this->assertInstanceOf(Collection::class, $user->services()); 

    } 

 

    /** @test */ 

    public function it_has_caregiver_relationship() 

    { 

        $mockedCaregiver = Mockery::mock(User::class); 

 

        $user = Mockery::mock(User::class)->makePartial(); 

        $user->shouldReceive('caregiver')->andReturn($mockedCaregiver); 

 

        $this->assertInstanceOf(User::class, $user->caregiver()); 

    } 

 

    protected function tearDown(): void 

    { 

        Mockery::close(); 

        parent::tearDown(); 

    } 

} 

 

 

  



191 

 

APPENDIX C: Feature Test code 

<?php 

 

namespace Tests\Feature; 

 

use App\Models\User; 

use Illuminate\Foundation\Testing\RefreshDatabase; 

use Tests\TestCase; 

 

class AdminControllerFeatureTest extends TestCase 

{ 

    use RefreshDatabase; 

 

    protected function setUp(): void 

    { 

        parent::setUp(); 

        // Create a user with admin role if needed 

        $this->admin = User::factory()->create(['role' => 'administrator']); 

        $this->actingAs($this->admin); 

    } 

 

    /** @test */ 

    public function it_can_list_users() 

    { 

        // Create some users 

        User::factory()->count(20)->create(); 

 

        // Make a GET request to the listUsers route 

        $response = $this->get(route('admin.users')); 

 

        // Check the response 

        $response->assertStatus(200); 

        $response->assertViewIs('admin.users'); 

        $response->assertViewHas('users'); 

    } 

 

    /** @test */ 

    public function it_can_delete_a_user_and_associated_data() 

    { 

        // Create a user with bookings 

        $user = User::factory()->create(['role' => 'client']); 

        $user->bookings()->create([ 

            'caregiver_id' => User::factory()->create(['role' => 

'caregiver'])->id, 



192 

 

            'service_id' => 1, 

            'service_date_id' => 1, 

            'status' => 'pending', 

        ]); 

 

        // Ensure the user and their bookings exist 

        $this->assertDatabaseHas('users', ['id' => $user->id]); 

        $this->assertDatabaseHas('bookings', ['client_id' => $user->id]); 

 

        // Make a DELETE request to the deleteUser route 

        $response = $this->delete(route('admin.deleteUser', ['id' => 

$user->id])); 

 

        // Check the response 

        $response->assertStatus(302); 

        $response->assertRedirect(route('admin.users')); 

        $response->assertSessionHas('success', 'User and associated data deleted 

successfully.'); 

 

        // Assert that the user and their bookings were deleted 

        $this->assertDatabaseMissing('users', ['id' => $user->id]); 

        $this->assertDatabaseMissing('bookings', ['client_id' => $user->id]); 

    } 

 

    /** @test */ 

    public function it_can_view_user_details() 

    { 

        // Create a user 

        $user = User::factory()->create([ 

            'name' => 'John Doe', 

            'email' => 'john.doe@example.com', 

        ]); 

 

        // Make a GET request to the viewUser route 

        $response = $this->get(route('admin.viewUser', ['id' => $user->id])); 

 

        // Check the response 

        $response->assertStatus(200); 

        $response->assertViewIs('admin.user_details'); 

        $response->assertViewHas('user', function ($viewUser) use ($user) { 

            return $viewUser->id === $user->id; 

        }); 

    } 

} 

 



193 

 

<?php 

 

namespace Tests\Feature; 

 

use App\Models\Client; 

use App\Models\Caregiver; 

use App\Models\Service; 

use App\Models\ServiceDate; 

use App\Models\ServiceTimeslot; 

use App\Models\Booking; 

use Tests\TestCase; 

use Illuminate\Testing\TestResponse; 

use App\Http\Controllers\BookingController; 

use App\Models\User; 

use Illuminate\Foundation\Testing\RefreshDatabase; 

use Illuminate\Foundation\Testing\WithoutMiddleware; 

use Illuminate\Support\Facades\Notification; 

use Illuminate\Http\Request; 

use Illuminate\Support\Facades\Log; 

 

class BookingControllerFeatureTest extends TestCase 

{ 

    use RefreshDatabase, WithoutMiddleware; 

 

    protected $user; 

    protected $caregiver; 

    protected $service; 

    protected $serviceDate; 

    protected $timeSlot; 

 

    protected function setUp(): void 

    { 

        parent::setUp(); 

        $this->withoutMiddleware(\App\Http\Middleware\VerifyCsrfToken::class); 

 

        // Create test data 

        $this->user = User::factory()->create(); 

        $this->caregiver = User::factory()->create(['role' => 'caregiver']); 

        $this->service = Service::factory()->create(['caregiver_id' => 

$this->caregiver->id]); 

        $this->serviceDate = ServiceDate::factory()->create(); 

        $this->timeSlot = ServiceTimeslot::factory()->create(['availability' => 

1]); // Availability 1 means available 

    } 

 



194 

 

    public function testCreate() 

    { 

        $controller = new BookingController(); 

        $response = $controller->create($this->caregiver->id); 

 

        $this->assertEquals('booking', $response->getName()); 

        $this->assertArrayHasKey('caregiver', $response->getData()); 

        $this->assertArrayHasKey('services', $response->getData()); 

    } 

 

    public function testGetAvailableTimeslots() 

{ 

    // Create a ServiceDate and a ServiceTimeslot with known data 

    $serviceDate = ServiceDate::factory()->create(); 

    $timeslot = ServiceTimeslot::factory()->create([ 

        'service_date_id' => $serviceDate->id, 

        'availability' => 0, // Assuming 0 means available 

        'start_time' => '06:49:24', 

        'end_time' => '02:03:44' 

    ]); 

 

    // Create a request with the service_date_id 

    $request = Request::create('/timeslots', 'GET', ['service_date_id' => 

$serviceDate->id]); 

 

    // Initialize the controller and get the response 

    $controller = new BookingController(); 

    $response = $controller->getAvailableTimeslots($request); 

 

    // Decode the JSON response into an array 

    $responseData = json_decode($response->getContent(), true); 

 

    // Debug: Output response data for inspection 

    // dd($responseData); 

 

    // Assert that the specific timeslot is in the response data 

    $this->assertContains([ 

        'id' => $timeslot->id, 

        'start_time' => '06:49:24', // Ensure this matches the data in the 

response 

        'end_time' => '02:03:44',   // Ensure this matches the data in the 

response 

    ], $responseData); 

} 



195 

 

 

 

public function testStore() 

{ 

    // Create a client and caregiver 

    $client = User::factory()->create(['role' => 'client']); 

    $caregiver = User::factory()->create(['role' => 'caregiver']); 

     

    // Create a service date and time slot 

    $serviceDate = ServiceDate::factory()->create(); 

    $timeSlot = ServiceTimeslot::factory()->create(); 

     

    // Create a service associated with the caregiver 

    $service = Service::factory()->create(['caregiver_id' => $caregiver->id]); 

 

    // Act as the client and send a POST request to create a booking 

    $response = $this->actingAs($client)->post('/bookings/' . $caregiver->id, [ 

        'date' => $serviceDate->id, 

        'timeslot' => $timeSlot->id, 

        'service_id' => $service->id, 

    ]); 

 

    // Assert that the booking was created with the expected values 

    $this->assertDatabaseHas('bookings', [ 

        'client_id' => $client->id, 

        'caregiver_id' => $caregiver->id, 

        'service_id' => $service->id, 

        'service_date_id' => $serviceDate->id, 

        'time_slot_id' => $timeSlot->id, 

        'status' => 'pending', // Assert the default status value 

    ]); 

 

    // Optionally, check the response status and content if needed 

    $response->assertStatus(302); // Assuming the response is a redirect 

    $response->assertSessionHas('status', 'Booking successful!'); 

} 

 

 

 

 

 

 

 

 



196 

 

    public function testEdit() 

    { 

        $serviceDate = ServiceDate::create([ 

            'service_id' => 1, // Ensure this ID exists in the 'services' table 

            'date' => '2025-03-25', 

        ]); 

 

        $this->assertDatabaseHas('service_dates', [ 

            'service_id' => 1, 

            'date' => '2025-03-25', 

        ]); 

    } 

 

    public function testUpdateBooking() 

{ 

    // Create required records 

    $client = User::factory()->create(['role' => 'client']); 

    $caregiver = User::factory()->create(['role' => 'caregiver']); 

    $service = Service::factory()->create(['caregiver_id' => $caregiver->id]); 

    $serviceDate = ServiceDate::factory()->create(['service_id' => 

$service->id]); 

    $timeSlot = ServiceTimeslot::factory()->create(['service_date_id' => 

$serviceDate->id, 'availability' => 0]); 

 

    // Create a booking with existing IDs 

    $booking = Booking::factory()->create([ 

        'client_id' => $client->id, 

        'caregiver_id' => $caregiver->id, 

        'service_id' => $service->id, 

        'service_date_id' => $serviceDate->id, 

        'time_slot_id' => $timeSlot->id, 

        'status' => 'pending', 

    ]); 

 

    // Create new records for update 

    $newDate = ServiceDate::factory()->create(['service_id' => $service->id]); 

    $newTimeslot = ServiceTimeslot::factory()->create(['service_date_id' => 

$newDate->id]); 

 

    // Update the booking 

    $response = $this->putJson(route('booking.update', $booking->id), [ 

        'date' => $newDate->id, 

        'timeslot' => $newTimeslot->id, 

    ]); 

 



197 

 

    // Assert the response 

    $response->assertStatus(302); 

    $response->assertSessionHas('success', 'Booking updated successfully.'); 

 

    // Assert database changes 

    $this->assertDatabaseHas('bookings', [ 

        'id' => $booking->id, 

        'service_date_id' => $newDate->id, 

        'time_slot_id' => $newTimeslot->id, 

    ]); 

 

    // Check availability 

    $this->assertDatabaseHas('service_timeslots', [ 

        'id' => $newTimeslot->id, 

        'availability' => 1, // Should be available after selection 

    ]); 

    $this->assertDatabaseHas('service_timeslots', [ 

        'id' => $timeSlot->id, 

        'availability' => 0, // Should remain unavailable 

    ]); 

} 

 

    public function testDestroy() 

{ 

    // Disable CSRF protection for testing 

    $this->withoutMiddleware(\App\Http\Middleware\VerifyCsrfToken::class); 

 

    // Create a time slot with availability set to 1 

    $timeSlot = ServiceTimeslot::factory()->create(['availability' => 1]); 

 

    // Create a booking associated with the time slot 

    $booking = Booking::factory()->create([ 

        'time_slot_id' => $timeSlot->id, 

        'client_id' => User::factory()->create(['role' => 'client'])->id, 

        'caregiver_id' => User::factory()->create(['role' => 'caregiver'])->id, 

        'service_id' => Service::factory()->create()->id, 

        'service_date_id' => ServiceDate::factory()->create()->id, 

    ]); 

 

    // Perform the DELETE request to destroy the booking 

    $response = $this->delete(route('booking.destroy', ['id' => $booking->id])); 

 

    // Assert the response status and redirection 

    $response->assertStatus(302); 

    $response->assertRedirect(route('booking-list')); 



198 

 

 

    // Assert that the booking has been deleted from the database 

    $this->assertDatabaseMissing('bookings', ['id' => $booking->id]); 

 

    // Refresh the time slot and assert its availability is updated 

    $timeSlot->refresh(); 

    $this->assertEquals(0, $timeSlot->availability); 

} 

 

public function testShowApproved() 

{ 

    // Create a user and act as that user 

    $user = User::factory()->create(); 

    $this->actingAs($user); 

 

    // Create necessary related records 

    $caregiver = User::factory()->create(['role' => 'caregiver']); 

    $service = Service::factory()->create(['caregiver_id' => $caregiver->id]); 

    $serviceDate = ServiceDate::factory()->create(); 

    $timeSlot = ServiceTimeslot::factory()->create(['availability' => 0]); 

 

    // Create a booking with 'approved' status and all related records 

    $booking = Booking::factory()->create([ 

        'client_id' => $user->id, 

        'caregiver_id' => $caregiver->id, 

        'service_id' => $service->id, 

        'status' => 'approved', 

        'service_date_id' => $serviceDate->id, 

        'time_slot_id' => $timeSlot->id 

    ]); 

 

    // Perform a GET request to the route that should return approved bookings 

    $response = $this->get(route('approved')); 

 

    // Check if the status code is 200 (OK) 

    $response->assertStatus(200); 

 

    // Verify that the response contains the booking ID 

    $response->assertSee($booking->id); 

} 

 

public function testShowDeclined() 

{ 



199 

 

    // Create a user and act as that user 

    $user = User::factory()->create(); 

    $this->actingAs($user); 

 

    // Create necessary related records 

    $caregiver = User::factory()->create(['role' => 'caregiver']); 

    $service = Service::factory()->create(['caregiver_id' => $caregiver->id]); 

    $serviceDate = ServiceDate::factory()->create(); 

    $timeSlot = ServiceTimeslot::factory()->create(['availability' => 0]); 

 

    // Create a booking with 'approved' status and all related records 

    $booking = Booking::factory()->create([ 

        'client_id' => $user->id, 

        'caregiver_id' => $caregiver->id, 

        'service_id' => $service->id, 

        'status' => 'declined', 

        'service_date_id' => $serviceDate->id, 

        'time_slot_id' => $timeSlot->id 

    ]); 

 

    // Perform a GET request to the route that should return approved bookings 

    $response = $this->get(route('declined')); 

 

    // Check if the status code is 200 (OK) 

    $response->assertStatus(200); 

 

    // Verify that the response contains the booking ID 

    $response->assertSee($booking->id); 

} 

 

    public function testFeedbackForm() 

{ 

    // Create related records 

    $client = User::factory()->create(['role' => 'client']); 

    $caregiver = User::factory()->create(['role' => 'caregiver']); 

    $service = Service::factory()->create(['caregiver_id' => $caregiver->id]); 

    $serviceDate = ServiceDate::factory()->create(); 

    $timeSlot = ServiceTimeslot::factory()->create(['availability' => 0]); 

 

    // Create a booking with all necessary related records 

    $booking = Booking::factory()->create([ 

        'client_id' => $client->id, 

        'caregiver_id' => $caregiver->id, 

        'service_id' => $service->id, 



200 

 

        'service_date_id' => $serviceDate->id, 

        'time_slot_id' => $timeSlot->id, 

        'status' => 'approved' 

    ]); 

 

    // Create an instance of the controller and call the method 

    $controller = new BookingController(); 

    $response = $controller->feedbackForm($booking->id); 

 

    // Check that the view name and data are as expected 

    $this->assertEquals('feedback', $response->getName()); 

    $this->assertArrayHasKey('booking', $response->getData()); 

} 

 

public function testStorePayment() 

{ 

    // Create related records 

    $client = User::factory()->create(['role' => 'client']); 

    $caregiver = User::factory()->create(['role' => 'caregiver']); 

    $service = Service::factory()->create(['caregiver_id' => $caregiver->id]); 

    $serviceDate = ServiceDate::factory()->create(); 

    $timeSlot = ServiceTimeslot::factory()->create(['availability' => 0]); 

 

    // Create a booking with all necessary related records 

    $booking = Booking::factory()->create([ 

        'client_id' => $client->id, 

        'caregiver_id' => $caregiver->id, 

        'service_id' => $service->id, 

        'service_date_id' => $serviceDate->id, 

        'time_slot_id' => $timeSlot->id, 

        'status' => 'completed' 

    ]); 

 

    $paymentMethod = 'Credit Card'; 

 

    $response = 

$this->withoutMiddleware(\App\Http\Middleware\VerifyCsrfToken::class) 

                     ->postJson(route('storePayment', ['id' => $booking->id]), [ 

                         'payment_method' => $paymentMethod 

                     ]); 

 

    $response->assertStatus(200) 

             ->assertJson(['message' => 'Payment method saved successfully.']); 

 



201 

 

    $booking->refresh(); 

    $this->assertEquals($paymentMethod, $booking->payment_method); 

    $this->assertNotNull($booking->payment_date); 

} 

 

} 

 

 

<?php 

 

namespace Tests\Feature; 

 

use Illuminate\Foundation\Testing\RefreshDatabase; 

use Illuminate\Support\Facades\Auth; 

use Tests\TestCase; 

use App\Models\User; 

use App\Models\Booking; 

use App\Models\ServiceDate; 

use App\Models\ServiceTimeslot; 

use Carbon\Carbon; 

 

class CalendarControllerFeatureTest extends TestCase 

{ 

    use RefreshDatabase; 

 

    /** 

     * Test that the calendar shows the caregiver's approved bookings. 

     * 

     * @return void 

     */ 

    public function test_show_calendar_displays_approved_bookings() 

    { 

        // Create a user and log them in as the caregiver 

        $caregiver = User::factory()->create(); 

        Auth::login($caregiver); 

 

        // Create service dates and timeslots 

        $serviceDate = ServiceDate::factory()->create([ 

            'date' => '2025-01-25', // Set a specific date for consistency 

        ]); 

        $timeSlot = ServiceTimeslot::factory()->create([ 

            'start_time' => '09:00:00', 

            'end_time' => '10:00:00', 

        ]); 



202 

 

 

        // Create a client (required for foreign key reference) 

        $client = User::factory()->create(); // Assuming User is used as a client 

as well 

 

        // Create an approved booking 

        $booking = Booking::factory()->create([ 

            'caregiver_id' => $caregiver->id, 

            'client_id' => $client->id, // Ensure client_id is valid 

            'service_date_id' => $serviceDate->id, 

            'time_slot_id' => $timeSlot->id, 

            'status' => 'approved', 

        ]); 

 

        // Create a booking with a different status (should not be displayed) 

        Booking::factory()->create([ 

            'caregiver_id' => $caregiver->id, 

            'client_id' => $client->id, // Ensure client_id is valid 

            'service_date_id' => $serviceDate->id, 

            'time_slot_id' => $timeSlot->id, 

            'status' => 'pending', 

        ]); 

 

        // Send a GET request to the showCalendar route 

        $response = $this->get(route('caregiver.calendar')); 

 

        // Assert the response is successful 

        $response->assertStatus(200); 

 

        // Extract the start and end times for assertion 

        $startDateTime = Carbon::parse($serviceDate->date . ' ' . 

$timeSlot->start_time); 

        $endDateTime = Carbon::parse($serviceDate->date . ' ' . 

$timeSlot->end_time); 

         

        $startTime = $startDateTime->format('Y-m-d\TH:i:s'); 

        $endTime = $endDateTime->format('Y-m-d\TH:i:s'); 

         

        // Format the title 

        $title = $startDateTime->format('g:iA') . '-' . 

$endDateTime->format('g:iA') . ' #Booking' . $booking->id; 

 

        // Assert that the event title contains the booking ID and times 

        $response->assertSee($title); 

        $response->assertSee($startTime); 



203 

 

        $response->assertSee($endTime); 

    } 

} 

 

 

<?php 

namespace Tests\Feature; 

 

use Tests\TestCase; 

use Illuminate\Foundation\Testing\RefreshDatabase; 

use Illuminate\Foundation\Testing\WithFaker; 

use Illuminate\Support\Facades\Auth; 

use Illuminate\Support\Facades\Storage; 

use App\Models\Service; 

use App\Models\User; 

use App\Models\ServiceTimeslot; 

use App\Models\Booking; 

use App\Models\ServiceDate; 

use Illuminate\Support\Facades\Log; 

 

use App\Models\Caregiver; 

use Illuminate\Http\UploadedFile; 

 

use Illuminate\Support\Facades\DB; 

use Carbon\Carbon; 

 

class CaregiverControllerFeatureTest extends TestCase 

{ 

    use RefreshDatabase; 

 

    protected $caregiver; 

 

    protected function setUp(): void 

    { 

        parent::setUp(); 

        $this->caregiver = User::factory()->create(['role' => 'caregiver']); 

        Auth::login($this->caregiver); 

    } 

 

    /** @test */ 

    public function it_displays_service_list() 

    { 

        // Create a caregiver user 

        $caregiver = User::factory()->create(); 



204 

 

 

        // Log in as the caregiver 

        Auth::login($caregiver); 

 

        // Create a service associated with the caregiver 

        $service = Service::factory()->create(['caregiver_id' => 

$caregiver->id]); 

 

        // Send a request to the service list route 

        $response = $this->get(route('service-list')); 

 

        // Assert the response status is OK 

        $response->assertStatus(200); 

 

        // Assert that the response contains the service name or any other 

expected content 

        $response->assertSee($service->name); 

    } 

 

    /** @test */ 

    public function it_shows_add_service_form() 

    { 

        $response = $this->get(route('add-service')); 

 

        $response->assertStatus(200); 

        $response->assertViewIs('caregiver.add-service'); 

    } 

 

    /** @test */ 

    public function it_can_add_a_service_with_dates_and_timeslots() 

    { 

        // Fake the storage for image uploads 

        Storage::fake('public'); 

 

        // Prepare the request data 

        $data = [ 

            'name' => 'Test Service', 

            'description' => 'A description of the service', 

            'service_type' => 'Type A', 

            'duration' => '60', 

            'price' => 100.0, 

            'availability' => 'Monday to Friday', 

            'location' => 'Location A', 

            'provider' => 'Provider A', 



205 

 

            'notes' => 'Additional notes', 

            'dates' => ['2024-08-01', '2024-08-02'], 

            'timeslots' => [ 

                [ 

                    ['start' => '09:00', 'end' => '12:00'], 

                ], 

                [ 

                    ['start' => '13:00', 'end' => '15:00'], 

                ], 

            ], 

            // 'image' => UploadedFile::fake()->image('service.jpg'), 

        ]; 

 

        // Perform the request 

        $response = $this->post(route('save-service'), $data); 

 

        // Assert the service was added 

        $response->assertRedirect(route('service-list')); 

        $this->assertDatabaseHas('services', [ 

            'name' => 'Test Service', 

            'description' => 'A description of the service', 

        ]); 

 

        // Assert the image was stored 

        $service = Service::first(); 

        // Storage::disk('public')->assertExists($service->image); 

 

        // Assert the dates and timeslots were added 

        $this->assertCount(2, ServiceDate::where('service_id', 

$service->id)->get()); 

        $this->assertDatabaseHas('service_timeslots', [ 

            'start_time' => '09:00', 

            'end_time' => '12:00', 

        ]); 

        $this->assertDatabaseHas('service_timeslots', [ 

            'start_time' => '13:00', 

            'end_time' => '15:00', 

        ]); 

    } 

 

    /** @test */ 

    public function it_shows_service_details() 

    { 

        $service = Service::factory()->create(); 



206 

 

        $response = $this->get(route('service.show', ['service' => 

$service->id])); 

 

        $response->assertStatus(200); 

        $response->assertViewHas('service'); 

        $response->assertSee($service->name); 

    } 

 

    /** @test */ 

    public function it_shows_edit_service_form() 

    { 

        $service = Service::factory()->create(); 

        $response = $this->get(route('service.edit', ['service' => 

$service->id])); 

 

        $response->assertStatus(200); 

        $response->assertViewHas('service'); 

} 

 

/** @test */ 

public function it_updates_service_successfully() 

    { 

        // Arrange 

        $user = User::factory()->create(); 

        $this->actingAs($user); 

 

        $service = Service::factory()->create(); 

 

        // Define valid request data 

        $data = [ 

            'name' => 'New Service', 

            'description' => 'Updated description', 

            'service_type' => 'Type A', 

            'duration' => 60, 

            'price' => 100.00, 

            'availability' => 'Available', 

            'location' => 'Location X', 

            'provider' => 'Provider Y', 

            'notes' => 'Some notes', 

            'dates' => ['2024-08-24'], 

            'timeslots' => [ 

                [ 

                    ['start' => '09:00:00', 'end' => '10:00:00'] 

                ] 

            ], 



207 

 

        ]; 

 

        // Act 

        $response = $this->put(route('service.update', ['id' => $service->id]), 

$data); 

 

        // Assert 

        $response->assertRedirect(route('service-list')); 

        $this->assertDatabaseHas('services', [ 

            'id' => $service->id, 

            'name' => 'New Service', 

            'description' => 'Updated description', 

            'price' => 100.00, 

        ]); 

    } 

 

    /** @test */ 

    public function it_can_delete_service() 

    { 

        $service = Service::factory()->create(); 

 

        $this->withoutMiddleware(\App\Http\Middleware\VerifyCsrfToken::class); 

 

        $response = $this->delete(route('service.destroy', ['service' => 

$service->id])); 

 

        $response->assertRedirect(route('service-list')); 

        $response->assertSessionHas('success', 'Service and all related data have 

been deleted successfully.'); 

        $this->assertDatabaseMissing('services', ['id' => $service->id]); 

    } 

 

    /** @test */ 

    public function it_displays_dashboard_with_bookings_and_income() 

{ 

    // Arrange: Create related records 

    $client = User::factory()->create(); 

    $service = Service::factory()->create(); 

    $serviceDate = ServiceDate::factory()->create(['service_id' => 

$service->id]); 

 

    // Ensure the caregiver is also created 

    $caregiver = $this->caregiver; 

 



208 

 

    // Create a booking that references the related records 

    $booking = Booking::factory()->create([ 

        'client_id' => $client->id, 

        'caregiver_id' => $caregiver->id, 

        'service_id' => $service->id, 

        'service_date_id' => $serviceDate->id, 

        'status' => 'approved' 

    ]); 

 

    // Act: Make a GET request to the dashboard route 

    $response = $this->get(route('caregiver-dashboard')); 

 

    // Assert: Check that the response status is 200 and that the view has the 

expected data 

    $response->assertStatus(200); 

    $response->assertViewHas('incomePerMonth'); 

    $response->assertViewHas('bookingsPerMonth'); 

    $response->assertViewHas('highestBookingMonth'); 

    $response->assertViewHas('upcomingAppointments'); 

} 

 

    /** @test */ 

    public function it_shows_setting_profile_form() 

    { 

        $response = $this->get(route('caregiver.profile-edit')); 

 

        $response->assertStatus(200); 

        $response->assertViewIs('caregiver.setting-profile'); 

    } 

 

    /** @test */ 

    public function it_updates_the_user_profile_successfully_without_image() 

    { 

        // Create a user and log them in 

        $user = User::factory()->create(); 

        $this->actingAs($user); 

 

        // Prepare the data for the request 

        $data = [ 

            'name' => 'Updated Name', 

            'email' => 'zixxuan2002@gmail.com', 

            'phone' => '1234567890', 

            'gender' => 'male', 

            'location' => 'Updated Location', 



209 

 

            'availability' => 'Weekdays', 

            'qualification' => ['Updated Qualification'], // Adjusted to array 

format 

            'experience' => '5 years', 

            'about_me' => 'Updated about me', 

            // No image provided 

        ]; 

 

        // Make a PUT request to the profile update route 

        $response = $this->put(route('profile.update'), $data); 

 

        // Assertions 

        $response->assertStatus(302); // Redirect status 

        $response->assertRedirect(route('caregiver.profile-edit')); // Ensure 

this matches your actual route 

        $response->assertSessionHas('success', 'Profile updated successfully.'); 

 

        // Check that the data was updated in the database 

        $this->assertDatabaseHas('users', [ 

            'id' => $user->id, 

            'name' => 'Updated Name', 

            'email' => 'zixxuan2002@gmail.com', 

            'phone_number' => '1234567890', 

            'gender' => 'male', 

            'location' => 'Updated Location', 

            'availability' => 'Weekdays', 

            'qualification' => 'Updated Qualification',  

            'experience' => '5 years', 

            'about_me' => 'Updated about me', 

        ]); 

 

        // Check that no image was uploaded 

        $this->assertNull($user->fresh()->image); 

    } 

 

 

    /** @test */ 

    public function it_displays_caregiver_list() 

    { 

        $caregiver = User::factory()->create(['role' => 'caregiver']); 

        $response = $this->get(route('caregiver-list')); 

 

        $response->assertStatus(200); 

        $response->assertViewHas('caregivers'); 



210 

 

        $response->assertSee($caregiver->name); 

    } 

 

    /** @test */ 

    public function it_can_search_caregivers() 

    { 

        $caregiver = User::factory()->create(['role' => 'caregiver', 'name' => 

'John Doe']); 

        $response = $this->json('GET', route('caregiver.search'), ['query' => 

'John']); 

 

        $response->assertStatus(200); 

        $response->assertJsonFragment(['name' => 'John Doe']); 

    } 

 

    /** @test */ 

    public function it_shows_caregiver_profile() 

    { 

        $caregiver = User::factory()->create(['role' => 'caregiver']); 

        $response = $this->get(route('caregiver-profile', ['id' => 

$caregiver->id])); 

 

        $response->assertStatus(200); 

        $response->assertViewHas('caregiver'); 

    } 

} 

 

 

<?php 

 

namespace Tests\Feature; 

 

use Tests\TestCase; 

use Illuminate\Foundation\Testing\RefreshDatabase; 

use Illuminate\Support\Facades\Auth; 

use Illuminate\Support\Facades\Notification; 

use App\Models\User; 

use App\Models\Service; 

use App\Notifications\CaregiverNotification; 

use App\Notifications\PaymentReceivedNotification; 

use App\Notifications\ServiceDeleted; 

 

class CaregiverNotificationControllerFeatureTest extends TestCase 

{ 



211 

 

    use RefreshDatabase; 

 

    protected $user; 

 

    protected function setUp(): void 

    { 

        parent::setUp(); 

        $this->user = User::factory()->create(); // Create a user for testing 

        Auth::login($this->user); 

    } 

 

    /** @test */ 

public function it_can_fetch_filtered_notifications() 

{ 

    // Create notifications for the user 

    $this->user->notify(new CaregiverNotification((object)['id' => 1, 'client' => 

(object)['name' => 'Client A']])); 

    $this->user->notify(new PaymentReceivedNotification((object)['id' => 2, 

'payment_method' => 'Credit Card', 'payment_date' => now()])); 

    $this->user->notify(new ServiceDeleted(Service::factory()->create())); 

 

    // Fetch caregiver notifications 

    $response = $this->get(route('caregiver.notifications', ['filter' => 

'caregiver'])); 

    $response->assertStatus(200); 

    $response->assertViewHas('notifications'); 

    $response->assertSee('You have a new booking from Client A'); 

     

    // Fetch payment notifications 

    $response = $this->get(route('caregiver.notifications', ['filter' => 

'payment'])); 

    $response->assertStatus(200); 

    $response->assertViewHas('notifications'); 

    $response->assertSee('A payment has been received for booking ID: 2'); 

     

    // Fetch service deleted notifications 

    $response = $this->get(route('caregiver.notifications', ['filter' => 

'service_deleted'])); 

    $response->assertStatus(200); 

    $response->assertViewHas('notifications'); 

    $response->assertSee('The service'); 

} 

 

/** @test */ 

public function it_can_clear_filtered_notifications() 



212 

 

{ 

    // Create notifications for the user 

    $this->user->notify(new CaregiverNotification((object)['id' => 1, 'client' => 

(object)['name' => 'Client A']])); 

    $this->user->notify(new PaymentReceivedNotification((object)['id' => 2, 

'payment_method' => 'Credit Card', 'payment_date' => now()])); 

    $this->user->notify(new ServiceDeleted(Service::factory()->create())); 

 

    // Clear caregiver notifications 

    $response = $this->post(route('notifications.clear'), ['filter' => 

'caregiver']); 

    $response->assertRedirect(route('caregiver.notifications')); 

    $response->assertSessionHas('success', 'Notifications have been cleared.'); 

    $this->assertDatabaseMissing('notifications', ['type' => 

CaregiverNotification::class]); 

 

    // Clear payment notifications 

    $response = $this->post(route('notifications.clear'), ['filter' => 

'payment']); 

    $response->assertRedirect(route('caregiver.notifications')); 

    $response->assertSessionHas('success', 'Notifications have been cleared.'); 

    $this->assertDatabaseMissing('notifications', ['type' => 

PaymentReceivedNotification::class]); 

 

    // Clear all notifications 

    $response = $this->post(route('notifications.clear'), ['filter' => '']); 

    $response->assertRedirect(route('caregiver.notifications')); 

    $response->assertSessionHas('success', 'Notifications have been cleared.'); 

    $this->assertDatabaseMissing('notifications', ['user_id' => 

$this->user->id]); 

} 

 

/** @test */ 

public function it_can_mark_all_notifications_as_read() 

{ 

    // Create unread notifications 

    $this->user->notify(new CaregiverNotification((object)['id' => 1, 'client' => 

(object)['name' => 'Client A']])); 

    $this->user->notify(new PaymentReceivedNotification((object)['id' => 2, 

'payment_method' => 'Credit Card', 'payment_date' => now()])); 

 

    // Mark all notifications as read 

    $response = $this->post(route('caregiver.notifications.markRead')); 

    $response->assertJson(['status' => 'success']); 

 



213 

 

    // Fetch the notifications from the database and check that the `read_at` 

field is not null 

    $notifications = $this->user->notifications()->get(); 

    foreach ($notifications as $notification) { 

        $this->assertNotNull($notification->read_at, "The notification's read_at 

timestamp should not be null"); 

    } 

} 

 

 

/** @test */ 

public function it_can_get_the_unread_notification_count() 

{ 

    // Create unread notifications 

    $this->user->notify(new CaregiverNotification((object)['id' => 1, 'client' => 

(object)['name' => 'Client A']])); 

    $this->user->notify(new PaymentReceivedNotification((object)['id' => 2, 

'payment_method' => 'Credit Card', 'payment_date' => now()])); 

 

    // Mark all notifications as read 

    $response = $this->post(route('caregiver.notifications.markRead')); 

    $response->assertJson(['status' => 'success']); 

 

    // Force fresh retrieval from the database 

    $unreadNotifications = $this->user->unreadNotifications()->count(); 

     

    // Assert that there are no unread notifications left 

    $this->assertEquals(0, $unreadNotifications, "There should be no unread 

notifications after marking them as read."); 

} 

 

 

 

 

 

 

} 

 

 

<?php 

 

namespace Tests\Feature; 



214 

 

 

use App\Models\Service; 

use App\Models\ServiceTimeSlot;  

use App\Models\ServiceDate;  

use App\Models\Booking; 

use Carbon\Carbon; 

use Tests\TestCase; 

use Illuminate\Foundation\Testing\RefreshDatabase; 

use Illuminate\Support\Facades\Auth; 

use App\Models\User; 

 

class ClientControllerFeatureTest extends TestCase 

{ 

    use RefreshDatabase; 

 

    protected function setUp(): void 

    { 

        parent::setUp(); 

         

    } 

 

    /** @test */ 

    public function it_can_show_client_profile() 

    { 

        // Create a client user 

        $client = User::factory()->create(['role' => 'client']); 

 

        // Authenticate as the client 

        $this->actingAs($client); 

 

        // Call the route that displays the client profile 

        $response = $this->get(route('client-profile', ['id' => $client->id])); 

 

        // Assert that the response status is 200 

        $response->assertStatus(200); 

 

        // Assert that the view name is correct 

        $response->assertViewIs('caregiver.client-profile'); 

 

        // Assert that the view has the correct data 

        $response->assertViewHas('client', function ($viewClient) use ($client) { 

            return $viewClient->id === $client->id && $viewClient->name === 

$client->name; 

        }); 

    } 



215 

 

 

        /** @test */ 

    public function testIndexDisplaysFeedbacksAndUpcomingAppointments() 

    { 

        // Create a client user 

        $client = User::factory()->create(['role' => 'client']); 

     

        // Create a caregiver user 

        $caregiver = User::factory()->create(['role' => 'caregiver']); 

     

        // Create a service 

        $service = Service::factory()->create(['caregiver_id' => 

$caregiver->id]); 

     

        // Create service dates 

        $futureDate1 = Carbon::now()->addDays(5)->format('Y-m-d'); 

        $futureDate2 = Carbon::now()->addDays(10)->format('Y-m-d'); 

        $serviceDate1 = ServiceDate::factory()->create(['date' => $futureDate1]); 

        $serviceDate2 = ServiceDate::factory()->create(['date' => $futureDate2]); 

     

        // Create time slots 

        $timeSlot1 = ServiceTimeSlot::factory()->create(); 

        $timeSlot2 = ServiceTimeSlot::factory()->create(); 

     

        // Create a booking with feedback 

        Booking::factory()->create([ 

            'client_id' => $client->id, 

            'caregiver_id' => $caregiver->id, 

            'service_id' => $service->id, 

            'service_date_id' => $serviceDate1->id, 

            'time_slot_id' => $timeSlot1->id, 

            'feedback' => 'Great service!', 

            'rating' => 5, 

            'status' => 'approved', 

        ]); 

     

        // Create an upcoming appointment 

        Booking::factory()->create([ 

            'client_id' => $client->id, 

            'caregiver_id' => $caregiver->id, 

            'service_id' => $service->id, 

            'service_date_id' => $serviceDate2->id, 

            'time_slot_id' => $timeSlot2->id, 

            'status' => 'accepted', 



216 

 

        ]); 

     

        // Authenticate as the client 

        $this->actingAs($client); 

     

        // Call the index method 

        $response = $this->get('/client-dashboard'); 

     

        // Assert that the view is returned 

        $response->assertStatus(200); 

        $response->assertViewIs('client-dashboard'); 

     

        // Retrieve the view data 

        $data = $response->original->getData(); 

     

        // Debug information for failing assertions 

        // dd($data); 

     

        // Assert the feedback is present 

        $feedbacks = $data['feedbacks']->toArray(); 

        $this->assertNotEmpty($feedbacks, 'Feedbacks should not be empty.'); 

        $this->assertContains('Great service!', array_column($feedbacks, 

'feedback')); 

     

        // Assert the upcoming appointment is present 

        $appointments = $data['upcomingAppointments']->toArray(); 

        $this->assertNotEmpty($appointments, 'Upcoming appointments should not be 

empty.'); 

     

        // Convert expected date to Carbon instance for comparison 

        $expectedDate = Carbon::parse($futureDate2)->format('Y-m-d'); 

     

        // Assert the future date is present 

        $appointmentDates = array_map(function($appointment) { 

            return Carbon::parse($appointment['appointment_date'])->format('Y-m-

d'); 

        }, $appointments); 

     

 

    } 

} 

 

 

<?php 



217 

 

use Illuminate\Foundation\Testing\RefreshDatabase; 

use Illuminate\Support\Facades\Auth; 

use App\Models\User; 

use App\Models\Service; 

use App\Models\ServiceDate; 

use App\Models\Booking; 

use Tests\TestCase; 

 

class FeedbackControllerTest extends TestCase 

{ 

    use RefreshDatabase; 

 

    /** @test */ 

    public function 

it_displays_feedback_for_a_specific_service_when_service_id_is_provided() 

    { 

        // Create a user and authenticate 

        $caregiver = User::factory()->create(); 

        Auth::login($caregiver); 

 

        // Create a client 

        $client = User::factory()->create(); 

 

        // Create a service 

        $service = Service::factory()->create(['caregiver_id' => 

$caregiver->id]); 

 

        // Create a service date 

        $serviceDate = ServiceDate::factory()->create(); 

 

        // Create a booking with feedback 

        Booking::factory()->create([ 

            'client_id' => $client->id, 

            'caregiver_id' => $caregiver->id, 

            'service_id' => $service->id, 

            'status' => 'approved', 

            'feedback' => 'Great service!', 

            'rating' => 4, 

            'service_date_id' => $serviceDate->id, 

        ]); 

 

        $response = $this->get(route('feedback-list', ['service_id' => 

$service->id])); 

 

        $response->assertStatus(200) 



218 

 

                 ->assertViewHas('feedbacks', function ($feedbacks) use 

($service) { 

                     return $feedbacks->contains(fn($feedback) => 

$feedback->service_id === $service->id); 

                 }) 

                 ->assertViewHas('services', function ($services) use ($service) 

{ 

                     return $services->contains($service); 

                 }) 

                 ->assertViewHas('serviceId', $service->id); 

    } 

 

    /** @test */ 

    public function 

it_displays_feedback_for_all_services_when_no_service_id_is_provided() 

    { 

        // Create a user and authenticate 

        $caregiver = User::factory()->create(); 

        Auth::login($caregiver); 

 

        // Create a client 

        $client = User::factory()->create(); 

 

        // Create services 

        $service1 = Service::factory()->create(['caregiver_id' => 

$caregiver->id]); 

        $service2 = Service::factory()->create(['caregiver_id' => 

$caregiver->id]); 

 

        // Create a service date 

        $serviceDate = ServiceDate::factory()->create(); 

 

        // Create bookings with feedback 

        Booking::factory()->create([ 

            'client_id' => $client->id, 

            'caregiver_id' => $caregiver->id, 

            'service_id' => $service1->id, 

            'status' => 'approved', 

            'feedback' => 'Good job!', 

            'rating' => 4, 

            'service_date_id' => $serviceDate->id, 

        ]); 

 

        Booking::factory()->create([ 

            'client_id' => $client->id, 



219 

 

            'caregiver_id' => $caregiver->id, 

            'service_id' => $service2->id, 

            'status' => 'approved', 

            'feedback' => 'Excellent service!', 

            'rating' => 5, 

            'service_date_id' => $serviceDate->id, 

        ]); 

 

        $response = $this->get(route('feedback-list')); 

 

        $response->assertStatus(200) 

                 ->assertViewHas('feedbacks', function ($feedbacks) use 

($service1, $service2) { 

                     return $feedbacks->contains(fn($feedback) => 

$feedback->service_id === $service1->id || $feedback->service_id === 

$service2->id); 

                 }) 

                 ->assertViewHas('services', function ($services) use ($service1, 

$service2) { 

                     return $services->contains($service1) && 

$services->contains($service2); 

                 }) 

                 ->assertViewHas('serviceId', null); 

    } 

} 

 

 

<?php 

 

namespace Tests\Feature; 

 

use Illuminate\Foundation\Testing\RefreshDatabase; 

use Illuminate\Foundation\Testing\WithoutMiddleware; 

use Tests\TestCase; 

use App\Models\User; 

use App\Models\Booking; 

use App\Models\Service; 

use App\Models\ServiceDate; 

use Carbon\Carbon; 

 

class HomeControllerFeatureTest extends TestCase 

{ 

    use RefreshDatabase, WithoutMiddleware; 

 



220 

 

    /** @test */ 

    public function testDisplaysFeedbackAndUpcomingAppointments() 

{ 

    $response = $this->get('/client-dashboard'); 

 

    $response->assertStatus(200); // Ensure the page loads successfully 

 

    // Check for specific content in the HTML 

    $response->assertSee('Feedback'); // Adjust the content to what should be 

present 

    $response->assertSee('Upcoming Appointments'); // Adjust the content to what 

should be present 

} 

 

/** @test */ 

public function it_displays_feedback_and_upcoming_appointments() 

    { 

        // Create necessary data 

        $user = User::factory()->create(); 

        $caregiver = User::factory()->create(); 

        $service = Service::factory()->create(); 

        $serviceDate = ServiceDate::factory()->create(['date' => 

Carbon::now()->addDays(1)]); 

 

        // Create a booking with all necessary foreign keys 

        $booking = Booking::factory()->create([ 

            'client_id' => $user->id, 

            'caregiver_id' => $caregiver->id, 

            'service_id' => $service->id, 

            'service_date_id' => $serviceDate->id, 

            'status' => 'approved', 

            'feedback' => 'Great service!', 

            'rating' => 5 

        ]); 

 

        // Create additional data for feedback 

        Booking::factory()->create([ 

            'client_id' => $user->id, 

            'caregiver_id' => $caregiver->id, 

            'service_id' => $service->id, 

            'service_date_id' => $serviceDate->id, 

            'status' => 'approved', 

            'feedback' => 'Another feedback!', 

            'rating' => 4 

        ]); 



221 

 

 

        // Make a GET request to the client dashboard 

        $response = $this->actingAs($user)->get('/client-dashboard'); 

 

        // Assert the response status is 200 

        $response->assertStatus(200); 

 

        // Assert the view contains the expected content 

        $response->assertSee('Upcoming Appointments'); 

        $response->assertSee('Great service!'); 

        $response->assertSee($serviceDate->date->format('d M Y')); 

 

        // Check that the feedback is displayed with the correct rating 

        $response->assertSee('<i class="fas fa-star"></i>', false); // Ensure 

rating star is present 

        $response->assertSee('<i class="far fa-star"></i>', false); // Ensure 

empty star is present 

    } 

} 

 

<?php 

 

namespace Tests\Feature; 

 

use Tests\TestCase; 

use Illuminate\Foundation\Testing\RefreshDatabase; 

use Illuminate\Support\Facades\Auth; 

use Illuminate\Support\Facades\Notification; 

use App\Models\User; 

use Illuminate\Notifications\DatabaseNotification; 

 

class NotificationControllerFeatureTest extends TestCase 

{ 

    use RefreshDatabase; 

 

    protected $user; 

 

    protected function setUp(): void 

    { 

        parent::setUp(); 

        $this->user = User::factory()->create(); // Create a user for testing 

        Auth::login($this->user); 

    } 

 

    /** @test */ 



222 

 

    public function it_can_list_notifications() 

    { 

        Notification::fake(); 

        $notification = $this->user->notify(new 

\App\Notifications\BookingStatusUpdated((object)['id' => 1, 'status' => 

'confirmed'])); 

         

        $response = $this->get(route('notifications')); 

 

        $response->assertStatus(200); 

        $response->assertViewHas('notifications'); 

    } 

 

    /** @test */ 

    public function it_can_clear_all_notifications() 

    { 

        Notification::fake(); 

        $this->user->notify(new 

\App\Notifications\BookingStatusUpdated((object)['id' => 1, 'status' => 

'confirmed'])); 

        $this->user->notify(new 

\App\Notifications\BookingStatusUpdated((object)['id' => 2, 'status' => 

'pending'])); 

 

        $response = $this->post(route('client-notifications.clear')); 

 

        $response->assertRedirect(route('notifications')); 

        $response->assertSessionHas('success', 'All notifications have been 

cleared.'); 

        $this->assertDatabaseMissing('notifications', ['notifiable_id' => 

$this->user->id]); 

    } 

 

    /** @test */ 

    public function it_can_mark_all_notifications_as_read() 

    { 

        // Create notifications directly 

        $this->user->notify(new 

\App\Notifications\BookingStatusUpdated((object)['id' => 1, 'status' => 

'confirmed'])); 

        $this->user->notify(new 

\App\Notifications\BookingStatusUpdated((object)['id' => 2, 'status' => 

'pending'])); 

 

        // Fetch notifications from the database 



223 

 

        $notifications = $this->user->notifications; 

 

        // Mark all notifications as read 

        $response = $this->post(route('notifications.markRead')); 

 

        $response->assertJson(['status' => 'success']); 

 

        // Assert that all notifications are marked as read 

        foreach ($notifications as $notification) { 

            $this->assertNotNull($notification->fresh()->read_at); 

        } 

    } 

 

    /** @test */ 

    public function it_can_get_unread_notification_count() 

    { 

        // Create notifications directly 

        $this->user->notify(new  \App\Notifications\BookingStatusUpdated((object)

['id' => 1, 'status' => 'confirmed'])); 

        $this->user->notify(new  \App\Notifications\BookingStatusUpdated((object)

['id' => 2, 'status' => 'pending'])); 

 

        // Fetch notifications and mark one as read 

        $notifications = $this->user->notifications; 

        if ($notifications->count() > 0) { 

            $notifications->first()->markAsRead(); // Mark the first notification 

as read 

        } 

 

        $response = $this->getJson(route('notifications.unreadCount')); 

 

        $response->assertStatus(200); 

        $response->assertJson(['unread_count' => 

$this->user->unreadNotifications()->count()]); 

    } 

} 

 

 

<?php 

namespace Tests\Feature; 

 

use Illuminate\Foundation\Testing\RefreshDatabase; 

use Tests\TestCase; 

use App\Models\Booking; 



224 

 

use App\Models\Service; 

use App\Models\User; 

use Illuminate\Support\Facades\Auth; 

 

class PaymentControllerFeatureTest extends TestCase 

{ 

    use RefreshDatabase; 

 

  /** @test */ 

public function it_displays_transaction_history_page_for_caregivers() 

{ 

    // Simulate authenticated caregiver 

    $caregiver = User::factory()->create(); 

    Auth::login($caregiver); 

 

    // Create necessary data 

    $service = Service::factory()->create(['price' => 100.00]); 

    $client = User::factory()->create(); 

    $booking = Booking::factory()->create([ 

        'caregiver_id' => $caregiver->id, 

        'payment_date' => now()->subDays(5), 

        'service_id' => $service->id, 

        'client_id' => $client->id, 

        'payment_method' => 'credit_card', 

        'status' => 'approved', 

    ]); 

 

    // Regular request to the correct URL 

    $response = $this->get('/transaction-history?from_date=' . 

now()->subDays(10)->toDateString() . '&to_date=' . now()->toDateString()); 

 

    $response->assertStatus(200) 

             ->assertViewIs('caregiver.transaction-history') 

             ->assertViewHas('history', function ($history) use ($booking, 

$service, $client) { 

                 return $history[0]['date'] === 

$booking->payment_date->format('d-m-Y') && 

                        $history[0]['amount'] === 'RM ' . 

number_format($service->price, 2) && 

                        $history[0]['client'] === $client->name && 

                        $history[0]['service'] === $service->name && 

                        $history[0]['payment_method'] === 

ucfirst($booking->payment_method); 

             }) 

             ->assertViewHas('userName', $caregiver->name); 



225 

 

} 

 

/** @test */ 

public function it_returns_json_for_caregivers_when_filtering_payments() 

{ 

    // Simulate authenticated caregiver 

    $caregiver = User::factory()->create(); 

    Auth::login($caregiver); 

 

    // Create necessary data 

    $service = Service::factory()->create(['price' => 100.00]); 

    $client = User::factory()->create(); 

    $booking = Booking::factory()->create([ 

        'caregiver_id' => $caregiver->id, 

        'payment_date' => now()->subDays(5), 

        'service_id' => $service->id, 

        'client_id' => $client->id, 

        'payment_method' => 'credit_card', 

        'status' => 'approved', 

    ]); 

 

    // Simulate AJAX request to the correct URL 

    $response = $this->json('GET', '/filter-payments', [ 

        'from_date' => now()->subDays(10)->toDateString(), 

        'to_date' => now()->toDateString() 

    ]); 

 

    $response->assertStatus(200) 

             ->assertHeader('Content-Type', 'application/json') 

             ->assertJsonFragment([ 

                 'date' => $booking->payment_date->format('d-m-Y'), 

                 'amount' => 'RM ' . number_format($service->price, 2), 

                 'client' => $client->name, 

                 'service' => $service->name, 

                 'payment_method' => ucfirst($booking->payment_method), 

             ]); 

} 

 

} 

 

 

<?php 

 



226 

 

namespace Tests\Feature; 

 

use Illuminate\Foundation\Testing\RefreshDatabase; 

use Illuminate\Http\UploadedFile; 

use Illuminate\Support\Facades\Storage; 

use Illuminate\Support\Facades\Auth; 

use Tests\TestCase; 

use App\Models\User; 

 

class ProfileControllerFeatureTest extends TestCase 

{ 

    use RefreshDatabase; 

 

/** @test */ 

public function user_can_update_their_profile_without_image() 

{ 

    // Set up a fake storage disk 

    Storage::fake('public'); 

 

    // Create a user and log in 

    $user = User::factory()->create(); 

    $this->actingAs($user); 

 

    // Define profile update data 

    $data = [ 

        'name' => 'Updated Name', // Ensure this matches the value you expect 

        'email' => 'zixuan@1utar.my', 

        'phone' => '0123456789', 

        'gender' => 'female', 

        'location' => 'Updated Location', 

    ]; 

 

    // Send a PUT request to update the profile 

    $response = $this->put(route('profile-update'), $data); 

 

    // Refresh the user instance 

    $user->refresh(); 

 

    // Log the updated user details 

    \Log::info('User after update:', $user->toArray()); 

 

    // Assert the user details have been updated 

    $this->assertEquals('Updated Name', $user->name); 

    $this->assertEquals('zixuan@1utar.my', $user->email); 

    $this->assertEquals('0123456789', $user->phone_number); 



227 

 

    $this->assertEquals('female', $user->gender); 

    $this->assertEquals('Updated Location', $user->location); 

 

    // Assert redirection and success message 

    $response->assertRedirect(route('profile.edit')); 

    $response->assertSessionHas('success', 'Profile updated successfully.'); 

} 

 

    /** @test */ 

    public function user_can_update_their_profile_with_image() 

    { 

        // Set up a fake storage disk 

        Storage::fake('public'); 

 

        // Create a user and log in 

        $user = User::factory()->create(); 

        $this->actingAs($user); 

 

        // Define profile update data with an image 

        $image = UploadedFile::fake()->image('profile.jpg'); 

        $data = [ 

            'name' => 'Updated Name', 

            'email' => 'zixuan@1utar.my', 

            'phone' => '0123456789', 

            'gender' => 'female', 

            'location' => 'Updated Location', 

            // 'image' => $image, 

        ]; 

 

        // Send a PUT request to update the profile 

        $response = $this->put(route('profile.update'), $data); 

 

        // Refresh the user instance 

        $user->refresh(); 

 

        // Assert the user details have been updated 

        $this->assertEquals('Updated Name', $user->name); 

        $this->assertEquals('zixuan@1utar.my', $user->email); 

        $this->assertEquals('0123456789', $user->phone_number); 

        $this->assertEquals('female', $user->gender); 

        $this->assertEquals('Updated Location', $user->location); 

        // $this->assertNotNull($user->image); 

        // Storage::disk('public')->assertExists('images/' . $user->image); 

 



228 

 

        // Assert redirection and success message 

        $response->assertRedirect(route('caregiver.profile-edit')); 

        $response->assertSessionHas('success', 'Profile updated successfully.'); 

    } 

} 

 

 

<?php 

 

namespace Tests\Feature; 

 

use Illuminate\Foundation\Testing\RefreshDatabase; 

use Illuminate\Support\Facades\Notification; 

use Illuminate\Support\Facades\Storage; 

use Illuminate\Http\UploadedFile; 

use Tests\TestCase; 

use App\Models\Service; 

use App\Models\ServiceDate; 

use App\Models\User; 

use App\Models\ServiceTimeslot; 

use App\Models\Booking; 

use App\Notifications\ServiceDeleted; 

 

use Illuminate\Foundation\Testing\TestResponse; 

 

class ServiceControllerFeatureTest extends TestCase 

{ 

    use RefreshDatabase; 

    /** 

     * A basic unit test example. 

     * 

     * @return void 

     */ 

 

     public function setUp(): void 

{ 

    parent::setUp(); 

 

    // Disable CSRF protection for tests 

    $this->withoutMiddleware([\App\Http\Middleware\VerifyCsrfToken::class]); 

} 

 



229 

 

/** @test */ 

public function it_stores_a_service_successfully() 

{ 

    // Arrange 

    Storage::fake('public'); // For testing file uploads 

    $user = \App\Models\User::factory()->create(); // Assuming you have a User 

factory 

 

    $requestData = [ 

        'name' => 'Test Service', 

        'description' => 'Service description', 

        'service_type' => 'Type', 

        'duration' => 60, 

        'price' => 100, 

        'availability' => 'Available', 

        'location' => 'Location', 

        'provider' => 'Provider', 

        'notes' => 'Some notes', 

        // 'image' => UploadedFile::fake()->image('image.jpg'), // Fake image for 

upload 

        'dates' => ['2024-08-25', '2024-08-26'], 

        'timeslots' => [ 

            [ 

                ['start' => '08:00', 'end' => '12:00'], 

                ['start' => '13:00', 'end' => '17:00'], 

            ], 

            [ 

                ['start' => '09:00', 'end' => '11:00'], 

            ], 

        ], 

    ]; 

 

    // Act 

    $response = $this->actingAs($user)->post(route('save-service'), 

$requestData); 

 

    // Assert 

    $response->assertRedirect(route('service-list')); 

    $response->assertSessionHas('success', 'Service added successfully!'); 

 

    $this->assertDatabaseHas('services', [ 

        'name' => 'Test Service', 

        'description' => 'Service description', 

        'service_type' => 'Type', 

        'duration' => 60, 



230 

 

        'price' => 100, 

        'availability' => 'Available', 

        'location' => 'Location', 

        'provider' => 'Provider', 

        'notes' => 'Some notes', 

    ]); 

 

    $service = Service::first(); 

 

    $this->assertNotNull($service); 

    $this->assertDatabaseHas('service_dates', ['service_id' => $service->id, 

'date' => '2024-08-25']); 

    $this->assertDatabaseHas('service_dates', ['service_id' => $service->id, 

'date' => '2024-08-26']); 

    $this->assertDatabaseHas('service_timeslots', ['start_time' => '08:00', 

'end_time' => '12:00']); 

    $this->assertDatabaseHas('service_timeslots', ['start_time' => '13:00', 

'end_time' => '17:00']); 

    $this->assertDatabaseHas('service_timeslots', ['start_time' => '09:00', 

'end_time' => '11:00']); 

     

    // Check if the image was uploaded 

    // Storage::disk('public')->assertExists('images/' . $service->image); 

} 

 

/** @test */ 

public function it_can_search_services_by_type() 

{ 

    // Arrange: Create a service with a specific type 

    $service = Service::factory()->create([ 

        'service_type' => 'Cleaning', 

        'duration' => '2 hours', 

        'price' => 50, 

        'availability' => 'available', 

        'location' => 'New York', 

        'provider' => 'John Doe' 

    ]); 

 

    // Act: Perform the search with a query parameter 

    $response = $this->get('/search?service_type=Cleaning'); 

 

    // Assert: The service should be in the response 

    $response->assertStatus(200); // Directly use status code 

    $response->assertSee($service->service_type); 

} 



231 

 

 

/** @test */ 

public function it_can_search_services_by_duration() 

{ 

    // Arrange: Create a service with a specific duration 

    $service = Service::factory()->create([ 

        'service_type' => 'Cleaning', 

        'duration' => '60', 

        'price' => 50, 

        'availability' => 'available', 

        'location' => 'New York', 

        'provider' => 'John Doe' 

    ]); 

 

    // Act: Perform the search with a query parameter 

    $response = $this->get('/search?duration=60'); 

 

    // Assert: The service should be in the response 

    $response->assertStatus(200); 

    $response->assertSee($service->duration); 

} 

 

/** @test */ 

public function it_can_search_services_by_price() 

{ 

    // Arrange: Create a service with a specific price 

    $service = Service::factory()->create([ 

        'service_type' => 'Cleaning', 

        'duration' => '2 hours', 

        'price' => 50, 

        'availability' => 'available', 

        'location' => 'New York', 

        'provider' => 'John Doe' 

    ]); 

 

    // Act: Perform the search with a query parameter 

    $response = $this->get('/search?price=50'); 

 

    // Assert: The service should be in the response 

    $response->assertStatus(200); 

    $response->assertSee($service->price); 

} 

 

/** @test */ 

public function it_can_search_services_by_availability() 



232 

 

{ 

    // Arrange: Create a service with a specific availability 

    $service = Service::factory()->create([ 

        'service_type' => 'Cleaning', 

        'duration' => '2 hours', 

        'price' => 50, 

        'availability' => 'available', 

        'location' => 'New York', 

        'provider' => 'John Doe' 

    ]); 

 

    // Arrange: Create a service date and timeslot with availability 

    $serviceDate = ServiceDate::factory()->create(['service_id' => 

$service->id]); 

    ServiceTimeslot::factory()->create([ 

        'service_date_id' => $serviceDate->id, 

        'availability' => 0, // 0 means available 

    ]); 

 

    // Act: Perform the search with a query parameter 

    $response = $this->get('/search?availability=available'); 

 

    // Assert: The service should be in the response 

    $response->assertStatus(200); 

    $response->assertSee($service->availability); 

} 

 

/** @test */ 

public function it_can_search_services_by_location() 

{ 

    // Arrange: Create a service with a specific location 

    $service = Service::factory()->create([ 

        'service_type' => 'Cleaning', 

        'duration' => '2 hours', 

        'price' => 50, 

        'availability' => 'available', 

        'location' => 'Cheras', 

        'provider' => 'John Doe' 

    ]); 

 

    // Act: Perform the search with a query parameter 

    $response = $this->get('/search?location=Cheras'); 

 

    // Assert: The service should be in the response 

    $response->assertStatus(200); 



233 

 

    $response->assertSee($service->location); 

} 

 

 

 

public function test_view_feedback() 

{ 

    // Create necessary related models first 

    $service = Service::factory()->create();   

    $client = User::factory()->create();      

    $caregiver = User::factory()->create();  

    $serviceDate = ServiceDate::factory()->create(['service_id' => 

$service->id]); 

 

    // Now create the booking 

    $booking = Booking::factory()->create([ 

        'service_id' => $service->id, 

        'client_id' => $client->id, 

        'caregiver_id' => $caregiver->id, 

        'service_date_id' => $serviceDate->id, 

        'feedback' => 'Great service!' 

    ]); 

 

    // Run the test 

    $response = $this->get(route('service.feedback', ['id' => $service->id])); 

 

    $response->assertStatus(200); 

    $response->assertViewHas('feedback', function ($feedbacks) use ($booking) { 

        return $feedbacks->contains($booking); 

    }); 

} 

 

    /** @test */ 

    public function it_can_delete_a_service_and_notify_caregiver_and_client() 

{ 

    // Set up fake notifications 

    Notification::fake(); 

 

    // Create a caregiver and a client 

    $caregiver = User::factory()->create(); 

    $client = User::factory()->create(); 

 

    // Create a service and a service date 



234 

 

    $service = Service::factory()->create(['caregiver_id' => $caregiver->id]); 

    $serviceDate = ServiceDate::factory()->create(['service_id' => 

$service->id]); 

 

    // Create a booking for that service 

    $booking = Booking::factory()->create([ 

        'service_id' => $service->id, 

        'client_id' => $client->id, 

        'caregiver_id' => $caregiver->id, 

        'service_date_id' => $serviceDate->id, 

        'status' => 'pending' 

    ]); 

 

    // Act as an admin user (or whoever has the permissions to delete a service) 

    $admin = User::factory()->create(['role' => 'administrator']); 

    $this->actingAs($admin); 

 

    // Send the DELETE request to delete the service 

    $response = $this->delete(route('services.destroy', $service->id)); 

 

    // Assert the service is deleted from the database 

    $this->assertDatabaseMissing('services', ['id' => $service->id]); 

 

    // Assert that notifications were sent 

    Notification::assertSentTo( 

        $caregiver, 

        ServiceDeleted::class 

    ); 

    Notification::assertSentTo( 

        $client, 

        ServiceDeleted::class 

    ); 

 

    // Assert redirect and success message 

    $response->assertRedirect(route('admin.services')); 

    $response->assertSessionHas('success', 'Service deleted successfully.'); 

} 

 

 

 

    /** @test */ 

    public function it_displays_a_list_of_services_to_an_admin() 

    { 

        // Create some services 



235 

 

        $services = Service::factory()->count(3)->create(); 

 

        // Create an admin user 

        $admin = User::factory()->create(['role' => 'administrator']); 

 

        // Act as the admin user 

        $this->actingAs($admin); 

 

        // Send a GET request to the index route 

        $response = $this->get(route('admin.services')); 

 

        // Assert the response status 

        $response->assertStatus(200); 

 

        // Assert that the view is correct 

        $response->assertViewIs('admin.services-list'); 

 

        // Assert that the view receives the expected data 

        $response->assertViewHas('services', function ($viewServices) use 

($services) { 

            // Ensure the view services match the expected services 

            foreach ($services as $service) { 

                $this->assertTrue($viewServices->contains('id', $service->id)); 

                $this->assertTrue($viewServices->contains('name', 

$service->name)); 

                $this->assertTrue($viewServices->contains('description', 

$service->description)); 

                // Add assertions for other attributes if needed 

            } 

            return true; 

        }); 

 

        // Optionally, assert that the service data is present in the response 

        foreach ($services as $service) { 

            $response->assertSee($service->name); 

            $response->assertSee($service->description); 

            // Add assertions for other attributes if needed 

        } 

    } 

 

 

 

 

} 



236 

 

<?php 

 

namespace Tests\Feature; 

 

use Tests\TestCase; 

use Illuminate\Foundation\Testing\RefreshDatabase; 

use Illuminate\Support\Facades\Auth; 

use Illuminate\Support\Facades\Notification; 

use Illuminate\Support\Carbon; 

use App\Models\Booking; 

use App\Models\Service; 

use App\Models\User; 

use App\Models\Caregiver; 

 

class TransactionControllerFeatureTest extends TestCase 

{ 

    use RefreshDatabase; 

 

    protected function setUp(): void 

    { 

        parent::setUp(); 

 

        // Create and authenticate a user 

        $this->user = User::factory()->create(); 

        $this->actingAs($this->user); 

    } 

 

    /** @test */ 

    public function it_can_show_transaction_history() 

    { 

        // Arrange 

        $caregiver = User::factory()->create(['role' => 'caregiver']); 

        $service = Service::factory()->create(['name' => 'Service 1', 'price' => 

100.00]); 

        $booking = Booking::factory()->create([ 

            'client_id' => $this->user->id, 

            'caregiver_id' => $caregiver->id, 

            'payment_method' => 'credit_card', 

            'payment_date' => Carbon::now()->toDateString(), 

            'service_id' => $service->id, 

            'status' => 'approved', 

        ]); 

 

        // Act 

        $response = $this->get(route('transaction_history')); 



237 

 

 

        // Assert 

        $response->assertStatus(200); 

        $response->assertViewIs('transaction_history'); 

        $response->assertViewHas('history', function ($history) use ($booking, 

$caregiver) { 

            return $history->contains(function ($item) use ($booking, $caregiver) 

{ 

                return $item['date'] === $booking->payment_date->format('d-m-Y') 

&& 

                       $item['amount'] === $booking->service->price && 

                       $item['caregiver'] === $caregiver->name && 

                       $item['service'] === $booking->service->name && 

                       $item['payment_method'] === 

ucfirst($booking->payment_method); 

            }); 

        }); 

    } 

 

    /** @test */ 

    public function it_can_filter_transactions_by_date_and_return_view() 

    { 

        // Arrange 

        $user = User::factory()->create(); 

        Auth::login($user); 

        $service = Service::factory()->create(['price' => 100.00]); 

        $caregiver = User::factory()->create(['role' => 'caregiver']); 

        $client = User::factory()->create(['role' => 'client']); 

        $booking = Booking::factory()->create([ 

            'client_id' => $client->id, 

            'caregiver_id' => $caregiver->id, 

            'service_id' => $service->id, 

            'service_date_id' => 1, 

            'status' => 'approved', 

            'feedback' => 'Great service!', 

            'rating' => 5, 

            'payment_date' => now()->subDays(5), 

            'payment_method' => 'credit_card', 

        ]); 

 

        // Act 

        $response = $this->get('/filter-transactions?from_date=' . 

now()->subDays(10)->toDateString() . '&to_date=' . now()->toDateString()); 

 

        // Assert 



238 

 

        $response->assertStatus(200); 

        $response->assertViewIs('transaction_history'); 

        $response->assertViewHas('history', function ($history) use ($booking, 

$service, $caregiver) { 

            return $history[0]['date'] === $booking->payment_date->format('d-m-

Y') && 

                   $history[0]['amount'] === 'RM ' . 

number_format($service->price, 2) && 

                   $history[0]['caregiver'] === $caregiver->name && 

                   $history[0]['service'] === $service->name && 

                   $history[0]['payment_method'] === 

ucfirst($booking->payment_method); 

        }); 

        $response->assertViewHas('userName', $user->name); 

    } 

} 

 

 


