

SECURENET VPN APPLICATION

LIM XIAO ZE

UNIVERSITI TUNKU ABDUL RAHMAN

i

SECURENET VPN APPLICATION

LIM XIAO ZE

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science (Honours) Software

Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

October 2024

DECLARATION

I hereby declare that this project report is based on my original work except for citations

and quotations which have been duly acknowledged. I also declare that it has not been

previously and concurrently submitted for any other degree or award at UTAR or other

institutions.

Signature :

Name :

ID No :

Date :

LIM XIAO ZE

1901159

1/10/2024

1

APPROVAL FOR SUBMISSION

I certify that this project report entitled “SECURENET VPN APPLICATION” was

prepared by LIM XIAO ZE has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Science Software

Engineering with Honours at University Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

Mohammad Babrdel Bonab

1/10/2024

2

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of University Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2024, LIMXIAOZE. All right reserved.

1

TABLE OF CONTENTS

TABLE OF CONTENTS 1

LIST OF FIGURES 5

DECLARATION.. 2

APPROVAL FOR SUBMISSION ... 1

TABLE OF CONTENTS ... 1

LIST OF FIGURES ... 6

LIST OF TABLE.. 9

ABSTRACT... 11

Chapter 1 .. 12

1.1 Introduction .. 12

1.2 Problem Background ... 13

1.3 Problem Statement ... 14

1.3.1 Unreliable Protocol and Encryption Standards 14

1.3.2 Lack of Robust Authentication and Access Control Measures 15

1.3.3 Complexity of User Interface ... 15

1.4 Objective .. 16

1.4.1 Implement and Integration of Robust Encryption Standards and

Reliable Protocols .. 16

1.4.2 Enhance User Authentication Mechanisms By Integrated With Two-

Factor-Authentication. ... 16

1.4.3 Optimize User Interface Design By Providing Friendly User Interface

 17

1.5 System overview .. 17

1.6 Project Scope.. 19

1.6.1 Tools ... 19

1.6.2 Platform Support .. 19

1.6.3 Feature Covered ... 20

1.6.4 Features Not Covered ... 20

1.7 Defining "Reliable" in the Security Context .. 21

1.7.1 Introduction .. 21

1.7.2 Definition of "Reliable" in Security ... 21

Chapter 2 .. 24

2.1 Introduction to VPN ... 24

2.2 Type of VPN .. 26

2.2.1 Remote Access VPN .. 26

2.2.2 Site to Site VPN ... 27

2.2.3 Client to Client VPN .. 28

2.3 VPN Protocol ... 29

2

2.3.1 OpenVPN ... 29

2.3.2 Internet Protocol Security (IPsec) .. 30

2.3.3 L2TP/IPsec (Internet Key Exchange Version 2/IP Security) 32

2.3.4 PPTP (Point-to-Point Tunneling Protocol)....................................... 33

2.3.5 SSTP (Secure Socket Tunneling Protocol) 34

2.3.6 WireGuard .. 35

2.3.7 IKEv2/IPsec (Internet Key Exchange version2/IP security) 36

2.4 Encryption Algorithm .. 37

2.4.1 AES (Advanced Encryption Standard) .. 37

2.4.2 ChaCha20... 38

2.4.3 3DES (Triple Data Encryption Standard) .. 38

2.5 Authentication Algorithm... 39

2.5.1 HMAC-SHA256 .. 39

2.5.2 HMAC-SHA512 .. 39

2.5.3 EAP (Extensible Authentication Protocol)....................................... 39

2.6 Key Exchange Protocols .. 40

2.6.1 RSA(Rivest-Shamir-Adleman) .. 40

2.6.2 DH (Diffie-Hellman).. 41

2.7 Comparison of VPN Application ... 41

2.7.1 Hola VPN ... 42

2.7.2 Hotspot Sheild.. 43

2.7.3 Surfshark VPN ... 46

2.7.4 Chart of Comparison .. 48

2.8 Reason For Choosing OPENVPN ... 49

2.8.1 Reliability of OpenVPN... 49

2.8.2 Security of OpenVPN .. 49

2.8.3 Performance of OpenVPN ... 50

2.8.4 Proven Track Record .. 51

2.8.5 Conclusion ... 51

2.9 Reason For Choosing AES-256-GCM ... 52

2.9.1 Introduction to AES-256-GCM.. 52

2.9.2 Strong Security... 52

2.9.3 Comprehensive Protection with GCM ... 53

2.9.4 Efficiency in Performance ... 53

2.9.5 Widespread Adoption and Support .. 53

2.9.6 Regulatory Compliance.. 54

2.9.7 Variations of AES-256 ... 54

2.9.8 Conclusion ... 54

Chapter3 ... 55

3.1 Introduction .. 55

3.2 System Development Methodology ... 55

3.3 Work Plan ... 57

3

3.3.1 Work Breakdown Structure .. 57

3.3.2 Gantt Chart ... 63

3.4 Development Tools .. 65

3.4.1 Frontend Part.. 65

3.4.2 Backend Part .. 66

3.4.3 Version Management Tools.. 67

3.4.4 Other Tools... 68

3.5 Development Workflow ... 68

Chapter 4 .. 73

4.1 Introduction .. 73

4.2 Requirement Specification ... 73

4.2.1 Functional Requirements ... 73

4.2.2 Non-Functional Requirements ... 75

4.3 Use Case Diagram.. 76

4.4 Use Case Description ... 77

4.4.1 Login .. 77

4.4.2 Registration .. 78

2.1 Error input for registration ... 78

4.4.3 Country Selection... 79

4.4.4 Submit Feedback.. 80

3.1 Error input for feedback ... 80

4.4.5 Connect to VPN Server .. 81

4.1 Error in validate identity .. 81

4.4.6 Fetch Config File ... 82

4.4.7 Generate Config File .. 83

4.4.8 Notification .. 84

4.4.9 Verify User ... 85

4.5 Activity Diagram.. 86

4.5.1 Login .. 86

4.5.2 Registration .. 87

4.5.3 Country Selection... 87

4.5.4 Submit Feedback.. 89

4.5.5 Connect to VPN Server .. 90

4.5.6 Fetch Config file .. 91

4.5.7 Generate Config File .. 92

4.5.8 Notification .. 93

4.5.9 Verify User ... 95

4.6 Data Flow Diagram .. 96

Chapter 5 .. 98

5.1 Introduction .. 98

5.2 System Architecture Design ... 98

5.3 Client Frontend (VPN Client App) .. 99

4

5.4 Centralized Backend .. 100

5.5 VPN Server .. 102

5.6 Security Considerations ... 103

5.7 Conclusion ... 103

Chapter 6 .. 105

6.1 Introduction .. 105

6.2 Frontend (VPN Client Application) ... 105

6.2.1 Input Validation .. 105

6.2.2 JSON Web Token ... 106

6.2.3 Secure Storage.. 106

6.2.4 Background service.. 107

6.2.5 OpenVPN Library .. 107

6.2.6 Error Handling ... 108

6.2.7 VPN Connection Errors ... 108

6.2.8 HTTP Request Errors ... 109

6.3 Centralized Backend .. 109

6.3.1 Authentication .. 110

6.3.2 Usage Tracking .. 112

6.3.3 Schedule ... 113

6.3.4 Database ... 113

6.3.5 API List .. 115

6.4 Microservice on VPN Server ... 117

6.4.1 Generate Configuration File ... 117

6.4.2 Read Configuration File... 118

6.4.3 API List .. 118

6.5 VPN Server .. 118

6.5.1 Preparation for Installation ... 119

6.5.2 Installing OpenVPN ... 119

6.5.3 Post-Installation (Server Configuration) .. 121

6.5.4 Post-Installation (Client Configuration) .. 122

6.5.5 Integration with DNS Ads Block Pihole .. 123

6.5.6 Security configuration .. 126

6.5.7 Configuration for HTTPS using CertBot 126

6.5.8 Configuration for Firewall on AWS Security Group 130

Chapter 7 .. 132

7.1 Introduction .. 132

7.2 Test Plan ... 132

7.2.1 Test Scope .. 132

7.2.2 Test Strategy... 132

7.2.3 Test Condition .. 133

7.3 Unit Test ... 133

7.3.1 Mobile Application Unit Test... 135

5

7.3.2 APIs Unit Test .. 140

7.4 VPN Test .. 149

7.4.1 DNS Leak Test ... 149

7.4.2 IP Address and Location Test ... 150

7.4.3 Traffic Routing Test ... 151

7.4.4 Speed Test .. 153

7.4.5 Capturing Network Traffic using Wireshark 154

7.5 Conclusion ... 157

Chapter 8 .. 157

8.1 Conclusion ... 157

8.2 Limitations ... 158

8.2.1 Geographical Limitations Due to Insufficient Server Coverage 158

8.2.2 Limited Customization Options ... 158

8.2.3 Server Overload Due to Low-Spec Infrastructure 159

8.3 Recommendation for Future Work ... 159

8.3.1 Provide more countries coverage ... 159

8.3.2 Enhance the current cloud platform infrastructure 160

8.3.3 Integration of other VPN protocols.. 160

8.3.4 Provide support for customization ... 160

Reference ... 161

6

LIST OF FIGURES

 Figure 1.1 System Overview 14

 Figure 2.1 VPN Mechanism 25

 Figure 2.2 Remote Access VPN 27

 Figure 2.3 Site to Site VPN 28

 Figure 2.4 Client to Client VPN 29

 Figure 2.5 OpenVPN VPN 30

 Figure 2.6 WireGuard VPN 36

 Figure 2.7 Hola VPN 43

 Figure 2.8 Hotspot Sheild VPN 45

 Figure 2.9 Surfshark VPN 47

 Figure 2.10 Chart of Comparison 49

Figure 3.1 Iterative Methodology 53

Figure 3.2 Work Breakdown Structure 61

Figure 3.3 Work Breakdown Structure (Continued) 62

Figure 3.4 Work Breakdown Structure (Continued) 63

Figure 3.5 Gantt Chart 64

Figure 3.6 Gantt Chart (Continued) 65

Figure 3.7 Workflow of OpenVPN with CA and RSA 70

Figure 3.8 Workflow of Backend Server 72

Figure 3.9 Frontend Workflow 72

Figure 4.1 Use Case Diagram of SecureNet VPN Application 77

Figure 4.2 Activity diagram of Login 87

Figure 4.3 Activity diagram of Registration 88

Figure 4.4 Activity diagram of Country Selection 89

Figure 4.5 Activity diagram of Submit Feedback 90

Figure 4.6 Activity diagram of Connect to VPN Server 91

7

Figure 4.7 Activity diagram of Fetch Config File 92

Figure 4.8 Activity diagram of Generate Config File 93

Figure 4.9 Activity diagram of Notification for Connection 94

Figure 4.10 Activity diagram of Notification for Submit Feedback 95

Figure 4.11 Activity diagram of Verify User 96

Figure 4.12 Context diagram of SecureNet VPN 97

Figure 4.13 Level 0 of SecureNet VPN 98

Figure 5.1 System Architecture 99

Figure 5.2 Client Frontend 100

Figure 5.3 Client Frontend 2 101

Figure 5.2 Centralized Backend 1 102

 Figure 5.5 Centralized Backend 2 102

 Figure 5.6 VPN Server 103

Figure 5.7 Https 104

Figure 5.8 Communicate via VPN tunnel 104

Figure 6.1 JSON Web Token 111

Figure 6.2 Token Validation 112

Figure 6.3 Mail transporter 112

Figure 6.4 Send Main Function 113

Figure 6.5 One Time Password Email 113

Figure 6.6 Reset Task 114

Figure 6.7 Generate Configuration File 118

Figure 6.8 Read Configuration File 119

Figure 6.9 Configure IP address 120

Figure 6.10 Select Protocol 120

Figure 6.11 Assign DNS 121

Figure 6.12 OpenVPN Server 122

Figure 6.13 OpenVPN Server Configuration 123

8

Figure 6.14 OpenVPN Client Configuration 124

Figure 6.15 PiHole Installation 125

Figure 6.16 Interface Selection 125

Figure 6.17 Select DNS Provider 126

Figure 6.18 Logging selection 126

Figure 6.19 OpenVPN server configuration 127

Figure 6.20 Example Domain Name 128

Figure 6.21 DNS Record with prefix 128

Figure 6.22 Instance on AWS 128

Figure 6.23 Browser warning 129

Figure 6.24 Certbot Installation 129

Figure 6.25 Command Validation 129

Figure 6.26 Execute Certbot 129

Figure 6.27 Serve Certificate 130

Figure 6.28 Https Validation 130

Figure 7.1 DNS Leak Test 150

Figure 7.2 DNS Leak Test Result 151

Figure 7.3 IP address before connecting to VPN 152

Figure 7.4 IP address After connecting to VPN 152

Figure 7.5 IP address and Location after connected to VPN 152

Figure 7.6 Traffic Routing Test 153

Figure 7.7 Speed Test Before Connect to VPN 154

Figure 7.8 Speed Test Before Connect to VPN 154

Figure 7.9 Result in WireShark 156

Figure 7.10 Cipher suite 156

9

LIST OF TABLE

Table 4.1 Login Use Case 78

Table 4.2 Registration Use Case 79

Table 4.3 Country Selection Use Case 80

Table 4.4 Submit Feedback Use Case 81

Table 4.5 Connect to VPN Server Use Case 82

Table 4.6 Fetch Config File Use Case 83

Table 4.7 Generate Config File Use Case 84

Table 4.8 Notification Use Case 85

Table 4.9 Verify User Use Case 86

Table 6.1 OTP Collection 114

Table 6.2 Temporary User Collection 115

Table 6.3 User Collection 116

Table 6.4 VPN Configuration Collection 116

Table 6.5 API List 117

Table 6.6 Microservices API List 119

Table 6.7 Server Inbound Rules 131

Table 6.8 Server Outbound Rules 131

Table 6.9 VPN Inbound Rules 131

Table 6.10 VPN Outbound Rules 131

Table 7.1 Test Case APP-1 136

Table 7.2 Test Case APP-2 137

Table 7.3 Test Case APP-3 137

Table 7.4 Test Case APP-4 138

Table 7.5 Test Case APP-5 139

Table 7.6 Test Case APP-6 139

Table 7.7 Test Case API-1 141

Table 7.8 Test Case API-2 142

10

Table 7.9 Test Case API-3 143

Table 7.10 Test Case API-4 144

Table 7.11 Test Case API-5 144

Table 7.12 Test Case API-6 145

Table 7.13 Test Case API-7 145

Table 7.14 Test Case API-8 146

Table 7.15 Test Case API-9 147

Table 7.16 Test Case API-10 148

Table 7.17 Test Case API-11 148

11

ABSTRACT

In an era of growing concerns over online privacy and security, current VPN

solutions often fail to meet user expectations due to unreliable protocols, weak

authentication mechanisms, and overly complex interfaces. This project, SecureNet

VPN, addresses these issues by focusing on three core objectives: the implementation

of robust encryption standards and reliable open-source protocols like OpenVPN, the

integration of two-factor authentication (2FA) to enhance access control, and the design

of a user-friendly interface to improve usability.By adopting industry-standard

encryption (AES-256) and a no-log policy, SecureNet VPN ensures data security and

privacy. It mitigates the risks posed by inadequate protocols and weak authentication

practices, while its intuitive interface simplifies the VPN experience for users,

regardless of technical expertise. SecureNet VPN aims to deliver a dependable, secure,

and easy-to-use virtual private network solution that effectively addresses the

challenges facing current VPN services, thereby enhancing both user privacy and online

security.

12

Chapter 1

Introduction

1.1 Introduction

In this age of increasing apprehension regarding online privacy and data security,

SecureNet VPN emerges as a dependable virtual private network solution that emanates

confidence. Given the presence of vulnerabilities and threats, our primary objective is

to provide users with a seamless, user-friendly connectivity experience while

simultaneously establishing an impregnable barrier against malicious intent and

intrusive eyes.

SecureNet VPN signifies that user privacy is protected and digital defenses have

been fortified; it is not merely an application. By integrating advanced authentication

mechanisms, cutting-edge encryption protocols, and an intuitive user interface, our

project endeavors to fundamentally transform VPN technology by strict adherence to

rigorous standards.

With a triple objective, the initiative strives to achieve its ultimate purpose. Before

anything else, we intend to integrate established VPN protocols, such as OpenVPN, so

that data security can be ensured, and data transmission can be optimized when our

product is in use. Subsequently, however, effort has been devoted to developing a user

authentication system that is fortified through the implementation of robust

authorization mechanisms and multiple authentication methods, thereby restricting

access to our VPN service exclusively to authorized users. In conclusion, our objective

is to streamline the server selection process by implementing an intuitive interface,

enable effortless monitoring of connection status, and furnish users with customization

options.

13

The objective of the project is to create a VPN application which emphasize on

secure and user-friendly. SecureNet VPN endeavors to significantly contribute to the

fulfilment of this expanding need by guaranteeing secure online communications and

robust data protection via unwavering commitment and groundbreaking advancements.

1.2 Problem Background

In this age of advanced technology, internet usage had expanded across various

sectors. As the internet develops, the issue of cybercrime and the importance of privacy

is also gradually magnifying. The concern of this causes growing need for secure

communication methods especially for business, organization and for those who had

requirements for secure communications method to secure their data and privacy(NIKI,

2023). Virtual Private Networks(VPN) had become the best solution and crucial for

safeguarding online activities and criminal activities. Virtual Private Networks core

function is encrypt user data during transmission of data, which able to provide

protection against malicious hackers, privacy invaders and cyber criminals.

 Nowadays most of the VPN application has multiple issue which causing insecure

communications, data leakage and interception. First issue comes from the unreliable

protocol issue, many VPN application does not implement and integrated with reliable

protocol and encryption standard(Williams, 2020).. Encryption of data as the core

functionalities in VPN, selecting and implementation of encryption standard and

reliable protocol significantly impact the effectiveness of VPN solution regarding the

security issue. Reliable encryption algorithm and protocol is crucial for establishing a

secure connection and maintaining communication stability.

Additionally, weak authentication mechanisms or lack of adequate access control

measure will also affect the effectiveness of VPN solution which may cause

unauthorized access to the services causing result such as data breaching and

14

jeopardizing the integrity and confidentiality of transmitted data. Besides, complexity

of user interface of VPN application is another issue led to ineffective of using VPN

solution. Many applications had provided many features that need user to configure

themselves, but most of the user did not have such technical skills to support them to

configure the VPN application and causing frustration. As a result, user will select to

using default setting ,which many no provide optimal security and undermine the

effectiveness of VPN solution. This poses a significant risk as improperly configured

VPN may leave users vulnerable to security breaches and privacy violations(Sablah,

2024).

In conclusion, implement and integrate reliable VPN protocol and encryption

standards able to provide secure communication channels to user to secure their data

and privacy, while access controls able to protect user while using the VPN services

and high usability and intuitive user interface can help user to achieve their task

effectively.

1.3 Problem Statement

Based on the problem background, we will continue discuss three major problem that

has the most influence on VPN solutions.

1.3.1 Unreliable Protocol and Encryption Standards

Some VPN solution had issue regarding of lacking implementation of reliable

protocol or using closed source protocol and encryption standards. This issue will

compromise the security and reliability of the VPN service and causing user’ data may

be intercept and may exploit by malicious parties for malicious activities and this also

undermines the fundamental purpose of VPN service to secure online activities. These

issue are able to solve in a very effective way by implementing those reliable protocol

such as OpenVPN, WireGuard, IPsec,L2TP which are consider as famous, reliable and

15

transparent due to its open-source attribute.

1.3.2 Lack of Robust Authentication and Access Control Measures

Existing VPN apps tend to overlook the importance of a robust user authentication

and access control of VPN services. This will expose services and user’s privacy and

information to security risks. For example, unauthorized users may exploit this flaw

gain network access which will able to intercept and exploit user’s data during

transmission. Based on this, we can say that inadequate control increases the risk of

data exposure and jeopardizing the integrity and confidentiality of transmitted data.

Implementing strong authentication is essential for VPN services such as implementing

multifactor authentication and effective access control measure to control user access

and ensure only authenticated user to use the service prevent malicious event happening.

1.3.3 Complexity of User Interface

Many VPN applications had problem that had design overly complex user

interfaces, this cause usability issue for the application which will causing user hard to

understand how to properly use the VPN application and difficult for users to navigate

and utilize all the features effectively. Besides that, complexity of VPN application

interfaces can hinder user adoption rates which users may be discouraged from using

the service due to its low usability and they may faced security and privacy issue during

online activity. There is a necessary for VPN applications had a simplify user interfaces

to improve the usability and accessibility of for all users regardless of their expertise,

by emphasizing usability of user interface we able to leading higher user satisfaction

and usage to secure user’s online activities.

In conclusion, the problems associated with VPN services including lacking

implementation of reliable protocol and encryption standards, absent of robust user

16

authentication and access control measures and the complexity of user interface, these

challenges had significantly affected the effectiveness of VPN services.

1.4 Objective

Based on the problem statement, the 3 objectives of this project will define and

discussed.

1.4.1 Implement and Integration of Robust Encryption Standards and Reliable

Protocols

In this project, we aim to implement a robust encryption standard as industry

standard such as AES and RSA for data integrity and security and integrate open-source

VPN protocol such as OpenVPN into SecureNet VPN to provide a reliable network

establishment and connection to users. By implementing robust encryption and reliable

protocol, we able to mitigate the concern of privacy issue and criminal activities and

also safeguarding user’s information during transmission.

1.4.2 Enhance User Authentication Mechanisms By Integrated With Two-

Factor-Authentication.

In this project, we will implement user authentication mechanisms for access our

VPN service. This action able to increase awareness of user about the importance of

secure authentication practices. By employing stronger password policies and utilizing

multi-factor authentication techniques, our application will integrated with an

additional layers of security for user authentication and authorization. With an

additional layer of security, SecureNet VPN application able to protecting sensitive user

data from unauthorized access, data breaches, mitigating risk of account hijacking and

identity theft which reduce the likelihood of unauthorized access attempts and improved

protection of user credentials and personal information,.

17

1.4.3 Optimize User Interface Design By Providing Friendly User Interface

We aim to provide a user friendly interface for better usability. We plan to

optimizing interface layout for simplicity and ease of use which able to enhancing user

experience while using our application. For example, we will implementing responsive

design, streamlining work flows and minimizing user friction. Additional feature for

improving user usability included providing clear and concise instructions and prompts

while using the application. By prioritizing and emphasizing in usability of user

interface, the application can improved efficiency and effectiveness for user to complete

their tasks and reduce the cost of support and training due to intuitive design, last but

not least able to increase user base for secure and safeguarding their privacy and

information for online activities.

With these goals, SecureNet VPN application strives to provide a secure, user-

friendly and dependable virtual private networking experience that able to provide user

necessary VPN functions while solving the addressing key problems currently facing

the industry.

1.5 System overview

Figure 1.1 System Overview

SecureNet VPN aim to emphasize on 3 objectives. First is to implement and

integrated reliable VPN protocol and encryption standard to the application. SecureNet

VPN will integrate OpenVPN, an open-source VPN protocol which are famous for

18

reliable and flexibility to provide the VPN services. Second, SecureNet VPN will

implement user access-control measures such as multi-factor authentication (MAF) or

two factor authentication(2FA) to control only authenticate and authorize user able to

access to the services to increase the level of security of the application.

The last factor is provided a intuitive user interface which able to increase the

efficient of the application for user. Besides, SecureNet VPN also will provide multiple

features such as kill switch function which will disconnect the internet access if the

VPN connection lost accidentally and the connection of the VPN will be setup to

become one-to-one mapping. In SecureNet VPN, each user will have own unique

configuration file use to establish connection to the server, one-to-one mapping will

only allow one connection to the VPN server at a time in the case of many users holding

the same configuration file due to leakage of configuration file. This able to ensure user

does not use any file not belongs to them and increase the security level of the whole

system.

SecureNet VPN application will have a frontend (android)which had a user-

friendly user interface for letting user to initiate to access to our services. Before using

our service, user need to login or register in our databased before proceed to use the

services, this practice aim for emphasizing the importance of user authentication and

access control. After login to our application, user able to initiate a request which

request to connect our VPN service to our backend server.

Our backend server will be responsible for user authentication and access control

to protect and allow only trusted user able to use the services. After all required

validation done, backend server will communicate with our VPN server and fetching

necessary file from it and send back to authenticated user. Lastly, user able to connect

to our VPN service, which had implemented robust encryption algorithms and reliable

19

protocol to safeguarding user’s online activities by encrypt user’s data during

transmission across the network.

Our system strives to resolving current VPN solutions faced issues and provide better

solution in VPN services by emphasizing, user-friendly, user authentication and access

control practices and implementation of robust encryption standards and reliable

protocols to users to safeguarding them.

1.6 Project Scope

The project scope encompasses the development of a VPN application with a focus on

security, user authentication, and a user-friendly interface. The application will support

standard VPN protocols and provide a reliable and efficient connection for users.

1.6.1 Tools

This project involved various tools such as framework, protocols, encryption

algorithms and virtual machines or device for testing.

Development IDEs: Virtual Studio Code, Android Studio

Framework: Node.js for backend, React-Native for frontend

Database: MySQL

Programming language: JavaScript, Linux command

Protocols: OpenVPN

Operating system: Android, Linux

Version Control Tools: Git

Testing Device: Android, Window PC

Others: Virtual Machines

1.6.2 Platform Support

20

SecureNet VPN will support for Android platforms only by providing a consistent and

intuitive user interface.

1.6.3 Feature Covered

This project deliverables included a fully functional SecureNet VPN application

for Android platforms. The applications will integrated with secure VPN Protocols

(OpenVPN) with optimization and implementation of robust user authentication and

authorization system. Besides, it also provides a consistent and intuitive user interface

and lastly documentation for this project will covering the development process,

security measures and user guidelines.

Expected Deliverables:

1. Fully functional SecureNet VPN application for Android

2. Integration of secure VPN protocols (OpenVPN) with optimization.

3. Implementation of a robust user authentication and authorization system.

4. User friendly and consistent user interface.

5. Documentation covering development processes, security measures, and user

guidelines.

6. Enhanced Security Features such as DNS leak protection, IPV6 support and split

tunneling to prevent data leakage.

7.Selection of multiple country of the VPN services.

1.6.4 Features Not Covered

1. Advanced Network Configuration

As the application prioritize on user friendly, advanced customizing features such as

divided tunnel, port forward could make the application become more complex and

21

confusing. Therefore, we will not support for these advanced setting to keep

applications simple and user-friendly.

2. Additional Authentication Methods

Additional authentication methods bring complexity when there are several

authentication methods. In this project we will have simple management of this includes

strong username/password authentication system with token-based management

focusing on simplicity and security.

3. Advanced Protocols Options

In this project, we will not support selection of protocols which may cause more

complexity and reduce usability of the application. This project focus more on

simplicity, we will only support for one protocol for simplicity while using industry-

standard protocols such as OpenVPN for a robust security measure without adding

complexity

1.7 Defining "Reliable" in the Security Context

1.7.1 Introduction

In the implementation of SecureNet VPN, the term "reliable" needs to be clearly

defined within the security framework to ensure that the encryption standards and VPN

protocols used provide comprehensive protection against a range of security threats.

Reliability, in this context, extends beyond basic functionality, focusing on the

consistent and secure performance of the cryptographic systems and VPN protocols.

This section seeks to narrow down the definition of "reliable" specifically from a

security perspective, emphasizing data protection and resilience against cyber threats.

1.7.2 Definition of "Reliable" in Security

22

From a security standpoint, reliability refers to the system's ability to consistently

maintain the confidentiality, integrity, and availability of data under various operational

conditions. In this project, where AES (Advanced Encryption Standard) and RSA

(Rivest-Shamir-Adleman) encryption are used, reliability focuses on the following

aspects:

1. Confidentiality: The encryption algorithms employed (AES and RSA) must

reliably prevent unauthorized access to sensitive information. A reliable

encryption standard ensures that data is kept confidential during transmission,

even if intercepted, by making it computationally infeasible for attackers to

decrypt the data without the correct keys.

2. Integrity: Reliable encryption ensures that the data remains unchanged during

transit. Any tampering or alteration during transmission should be detectable by

the recipient through cryptographic hash functions or digital signatures. In this

project, reliable encryption guarantees that the information received is exactly

what was sent.

3. Authentication: RSA, being a public-key cryptosystem, provides a mechanism

for verifying the authenticity of the sender. Reliability in this context ensures

that parties communicating over SecureNet VPN can authenticate each other’s

identities, minimizing the risk of impersonation attacks (e.g., man-in-the-middle

attacks).

4. Non-Repudiation: A reliable system also provides non-repudiation, ensuring

that once a transaction or communication is made, the sender cannot deny

having sent the message. RSA-based digital signatures play a crucial role in this,

ensuring that the identity of the sender is verifiable and binding.

5. Resistance to Cryptographic Attacks: Reliability includes the system's

resilience against known cryptographic attacks, such as brute force, side-

channel, and timing attacks. AES and RSA must be implemented securely,

23

using strong keys (e.g., 256-bit for AES and 2048-bit for RSA), to provide long-

term security against evolving threats.

6. Secure Key Exchange and Management: A reliable encryption system

ensures the safe generation, exchange, and storage of cryptographic keys. This

is particularly crucial in the use of RSA, where secure key management ensures

that private keys are kept confidential and are not compromised during

transmission.

In summary, reliability in the context of security for this project encompasses the

encryption system’s ability to maintain confidentiality, integrity, and authentication

consistently, alongside the VPN protocol’s capacity to securely transmit data over the

network without leaks, attacks, or interruptions. By narrowing the definition of

"reliable" to focus specifically on security, we emphasize the importance of robust

encryption standards (AES and RSA) and the secure, stable operation of the VPN

protocol (OpenVPN) to protect user data against both passive and active threats

throughout its transmission.

This definition helps guide the implementation of a system that not only functions

correctly but also consistently meets high-security standards in a hostile and evolving

cyber environment.

24

Chapter 2

Literature Review

2.1 Introduction to VPN

Figure 2.1 VPN Mechanism (Gershwin, 2019)

Virtual Private Network (VPN) is a technology that creates a secure and encrypted

connection over a less secure network such as internet. VPN primarily used to provide

secure access to resources and data on internet remotely and ensure confidentiality, data

integrity and authentication (Cisco, 2024).

In common scenario of browsing or getting access to resources online, user request

will be route to the specific server by its internet service provider. In this

screnario,user’s request such as resources, data as well as IP address are been capture

by internet service provider which means user’s activity are all under

monitoring(Microsoft, 2024). Beside of service provider, during the data transmission,

25

user’s data packet also able to be capture and exploit by malicious parties even though

nowadays our internet traffic had implemented multiple security measure during data

transmission such as HTTPs but it still far enough to have a completely secure

communication channel.

Virtual Private Network solution able to provide user a more secure environment

to access and communicate to online resources due to its mechanism. While user

connecting to the VPN server, user’s request will be forward to the VPN server and the

request will be made by the VPN server. After getting the result VPN server will send

back to the user which will encrypt all the traffic end-to-end to user device. In this

scenario, internet service providers only able to detect and monitor user’s keep associate

with VPN server but did not know what is the request afterward since request will be

done by VPN server, client just need to forward to VPN server(OPENVPN, 2024).

Besides, due to its encryption of traffic, it is hard for malicious parties to decrypt the

traffic even if they able to intercept it.

Virtual Private Network (VPN), on the other hand, ensures that data transmission

over the internet is secure and encrypted to form a private network out of a public

internet source. It provide function such as end-to-end encryption to all internet traffic,

establish secure connections through robust authentication mechanisms and encryption

protocol, which providing a more comprehensive layer of security, ensuring all the data

between VPN Server remains protected from interception and tampering. Beside of

secure user’s privacy and information, VPN able to spoof user’s geographic location

which enhancing anonymity and privacy online by hiding user’s real IP address replace

with the IP address of VPN server(Microsoft, 2024).

Therefore, VPNs are important in protecting privacy online, boosting security level

and unblocking internet bans. Whether it is about keeping confidential data safe from

26

intruders’ eyes, getting into locally based information, or ensuring secure remote entry

to corporate networks; VPN have become fundamental for individuals and companies

grappling with the intricacies of contemporary digital era.

2.2 Type of VPN

Several important type of VPN knowledge need to explain.3 type of VPN will be

discussed which is Remote Access VPN, Site to Site VPN and Client to Client VPN.

2.2.1 Remote Access VPN

Figure 2.2 Remote Access VPN (Shweta, 2024)

Remote access VPN service allows individual users to securely connect to a private

network securely over the network. It allows individuals user or devices that outside

the corporate network to access to resources, applications, and data as they currently

connected to the network locally. For remote access VPN, the establishment of

connection typically initiated from software client on their device and users must

typically authenticate themselves before gaining access to VPN which ensures that only

authorized users can connect and access to corporate resources while maintaining

confidentiality, integrity, and availability of data. Inside the private network, the data is

27

decrypted and processed as usual which ensuring user can interact with network

resources as if they were directly connected. This mechanism allows safe and remote

access to resources while maintaining the security and integrity of data(FORTINET,

2024).

2.2.2 Site to Site VPN

Figure 2.3 Site to Site VPN (Paloalto, 2024)

Site to site VPN also known as router-to-router VPN, is a type of VPN connection

that able connects multiple networks or sites securely over network. Site to site VPN

establish secure connection between entire network or subnets and frequently used by

companies which have multiple offices in different geographical location that its

employee needs to access to and use the corporate network. With site-to-site VPN,

company can securely connect to its corporate network with remote offices to share

resources and communicate with them as a single network. At each site, a VPN gateway

or router is used to establish and manage the VPN connection which serves as the

endpoint for VPN tunnel and responsible for authenticating each other for ensuring the

legitimacy of endpoint and encrypting and decrypting data during transmission between

28

the sites. By enforcing security policies such as traffic filtering and access control, the

VPN gateway able to safeguard the network from unauthorized access or malicious

activities. Additionally, its high availability and redundancy attribute ensure that

uninterrupted connectivity which is vital for maintaining seamless operation across

distributed networks(Paloato, 2024).

2.2.3 Client to Client VPN

Figure 2.4 Client to Client VPN(FORTINET, 2024)

Client to client VPN also known as peer-to-peer VPN, where individual devices or

clients connect directly to each other over secure encrypted tunnel. In this scenario,

each client act as a VPN client and VPN server for allowing direct communication

between them without the need for a central VPN server infrastructure. Through mutual

authentication and encryption mechanism, client device will create aa secure tunnel for

communication which ensuring the confidentiality and integrity of data exchange

between them. This configuration enables direct peer-to-peer communication and able

to have feature such as peer to peer file sharing, collaborative work and remote desktop

access. Client to client VPN offer flexibility and decentralized connectivity and

integrated with robust security measures such as strong authentication and encryption

mechanisms. Overall, client to client VPN able to provide versatile solution for

establishing secure communications channel between individual user’s device where

29

centralized server is not practical or desire(FORTINET, 2024).

2.3 VPN Protocol

In this part, we will have a discussion on different types of VPN protocol by

comparing each strength and weaknesses and from this we can saw the reason behind

choosing OpenVPN protocol for this project due to its strengths and acceptable

weakness

2.3.1 OpenVPN

Figure2.5 OpenVPN (OpenVPN, 2018)

OpenVPN Is an open-source virtual private network protocol that establish secure

communication over the network. It employs SSL/TSL protocols for encryption,

authentication and key exchange which ensuring the confidentiality and integrity of

data transmitted between devices or networks. OpenVPN is popular choice for secure

VPN communications due to its high security level features, flexibility and extensive

community support(OpenVPN, 2022).

2.3.1.1 OpenVPN Strengths

➢ High security level

OpenVPN offer robust security features such as encryption, authentication and key

management which ensuring data privacy and protection against unauthorized

30

access.

➢ Flexibility

OpenVPN support various authentication methods and encryption algorithms which

allowing to customization based on specific security requirements.

➢ Community Support

OpenVPN as an open-source project, it benefits from dedicated community of developers

and users which contributing to its ongoing development, support and continuous

improvement.

2.3.1.2 OpenVPN Weaknesses

➢ Potential Vulnerabilities

OpenVPN may have security vulnerabilities if not properly maintained or

updated like any other software

➢ Scalability

OpenVPN having challenges in scaling to support large numbers of simultaneous

connections or complex network configurations.

2.3.2 Internet Protocol Security (IPsec)

Internet Protocol Security (IPsec) is a protocol used to secure internet protocol

communications by authenticating and encrypting IP packet of a communication

session(Cloudflare, 2024).

2.3.2.1 IPsec Strengths

➢ Security

IPsec provides strong security features such as encryption, authentication and integrity of

data checking which ensures that data confidential and tamper-proof during transmission

➢ Flexibility

IPsec support various encryption algorithms, authentication method and key

31

exchange protocol which allowing customization based on specific security

requirements

➢ Transparent Integration

IPsec operate at network layer of OSI model, it able to provide transparent security

for all IP-based applications and protocols without requiring modifications to

individual applications

2.3.2.2 IPsec Weaknesses (tailscale, 2024)

➢ CPU Overhead

IPsec is well known for high CPU usage. It requires higher processing power to

encrypt and decrypt all the data pass through the server. It may cause overhead

when small data packet pass through server.

➢ Higher Complexity

IPsec is more complex due to it included many features and options which will lead

in probability of weakness in protocol

➢ Limited NAT Traversal Support

IPsec may have difficulties when traversing network address translation (NAT)

device which might require additional extra arrangement of mechanism to address

the challenges.

32

2.3.3 L2TP/IPsec (Internet Key Exchange Version 2/IP Security)

L2TP/IPsec is combination of L2TP with IPsec which aim to provides secure

communication over internet. L2TP is tunneling protocol used to create virtual private

network over internet but it does not provide encryption function and relies on other

protocol for data confidentiality and integrity. It creates tunnel between client and server,

encapsulating data packets and allow packet to transmit over internet securely(Zola,

2021).

2.3.3.1 L2TP/IPsec Strengths

➢ Widespread Support

L2TP/IPsec is widely supported by most operating systems, including Windows,

macOS, Linux, iOS, and Android.

➢ Strong Security

The combination of L2TP for tunneling and IPsec for encryption, authentication, and

integrity protection, make it able to offers robust security features while IPsec provides

strong encryption algorithms and authentication methods to ensure the confidentiality

and integrity of data transmitted over the VPN connection.

➢ Ease of Setup

L2TP/IPsec is easy to set up and configure compared to other VPN protocols like

OpenVPN. Besides, many operating systems and VPN clients provide built-in support

for L2TP/IPsec which simplifying the configuration process for users.

2.3.3.2 L2TP/IPsec Weaknesses (Dmitry, 2023)

➢ Limited Anonymity

L2TP/IPsec does not provide strong anonymity features compared to some other VPN

protocols. Due to it relies on fixed protocols and ports and it may be easier for network

33

administrators or ISPs to identify and block L2TP/IPsec traffic.

2.3.4 PPTP (Point-to-Point Tunneling Protocol)

PPTP is one of the earliest virtual private network protocols developed and widely used

to establish secure connections over internet. PPTP operates at the layer 2 of OSI model

and provide encapsulation and encryption mechanisms to secure data transmission

between endpoints.

2.3.4.1 PPTP Strengths

➢ Ease of Setup

PPTP is easy to set up and configure which making it accessible to users with limited

technical expertise and it is supported by most operating systems and devices making

it widely available.

➢ Compatibility

PPTP is supported by a wide range of devices and operating systems, including

Windows, macOS, Linux, iOS, and Android.

➢ Performance

PPTP is known for its relatively fast connection speeds and low latency compared to

some other VPN protocols.

2.3.4.2 PPTP Weaknesses

➢ Security Concerns

PPTP has known security vulnerabilities and weaknesses which making it less secure

compared to more modern VPN protocols. Besides ,it uses relatively weak encryption

algorithms and its security mechanisms have been compromised in the past.

➢ Lack of Strong Authentication

34

PPTP relies on MS-CHAP v2 (Microsoft Challenge Handshake Authentication Protocol

version 2) for authentication which has been found to be susceptible to certain attacks,

including brute force attacks

➢ Limited Support for Modern Features

PPTP lacks support for advanced features such as strong encryption, multi-factor

authentication and robust key exchange mechanisms. Its outdated design and limited

security features may not meet current requirements

2.3.5 SSTP (Secure Socket Tunneling Protocol)

SSTP is a virtual private network developed by Microsoft. It designed to establish

secure and encrypted connections between client and VPN server over internet. SSTP

operate at later 4 of OSI model using SSL/TLS encryption to secure data during

transmission. Point-to-Point Tunneling Protocol (PPTP) connections does not apply

SSL/TLS due to this SSTP was introduced to improve the security of data transfers and

to avoid limitations of PPTP(proofpoint, 2024).

2.3.5.1 SSTP Strengths

➢ Strong Encryption

SSTP utilizes SSL/TLS encryption to secure data transmission between the client and

the server which ensuring the confidentiality, integrity, and authenticity of the VPN

connection.

➢ Firewall-Friendly

SSTP operates on TCP port 443 which is the same port used for secure HTTPS traffic.

This makes SSTP traffic indistinguishable from regular HTTPS traffic and allowing it

to bypass firewalls and network restrictions that may block other VPN protocols.

35

2.3.5.2 SSTP Weaknesses (Perimeter 81, 2023)

➢ Limited Platform Support

SSTP is primarily supported on Windows-based platforms such as Windows Server and

desktop editions, native support may be limited or absent on non-Windows platforms.

2.3.6 WireGuard

Figure 2.6 WireGuard (BlessingGeek, 2019)

WireGuard is a modern lightweight VPN protocol designed aim to be easy to implement,

highly efficient and secure. It improves upon existing VPN protocol by simplifying

codebase, reducing attack surface, and providing better performance(Donenfeld, 2024).

2.3.6.1 WireGuard Strengths

➢ Simplicity and Efficiency

WireGuard’s minimalistic design with small codebase which making it easier to

understand implement and audit. Its lightweight nature results in faster connection

speeds and lower latency compared to other protocol.

➢ Security

WireGuard employed modern cryptographic techniques such as Curve25519 for key

exchange and ChaCha20Poly1305 for encryption and authentication which ensuring

strong security.

36

➢ Reliability

WireGuard has undergone extensive testing and development which include security

audits by third-party researchers and has demonstrated stability and reliability in ral-

work deployments.

2.3.6.2 WiredGuard Weaknesses(Jack, 2023)

➢ Maturity

WireGuard as a relatively new protocol there could be unforeseen challenges or issues that

arise as it continues to mature.

2.3.7 IKEv2/IPsec (Internet Key Exchange version2/IP security)

IKEv2/IPsec is combination of two protocol that use to create secure virtual private

network connections over the network. IKEv2 is a protocol use for establishing secure

connection between 2 devices in VPN setup which primary function is to facilitate the

negotiation of cryptographic keys and parameters that necessary to establish encrypted

tunnel between both client and VPN server. IKEv2 are responsible for authentication,

managing and generating key encryption key securely and managing parameters of

security association such as encryption algorithms, integrity protection and lifetime. By

combining both protocols, this solution able to provide strong security features,

efficient connection management and support for mobility(Miklos, 2024).

2.3.7.1 IKEv2/IPsec Strengths

➢ High Security

IKEv2/IPsec able to offer robust security features such as encryption, authentication,

and key management which ensuring the confidentiality, integrity of data during

transmission over VPN connection.

➢ Resilience and Mobility

37

IKEv2/IPsec able provides resilience to network changes and disruptions. IKEv2 able

to quickly re-establish connections along with IPsec support for mobility making it

suitable for uses who frequently switch between networks such as mobile devices.

➢ Stability

IKEv2/IPsec can provide a stable connection and allow user to switch its internet

connections without losing protection.

2.3.7.2 IKEv2/IPsec Weaknesses

➢ Compatibility Issues

IKEv2/IPsec is supported on most modern platforms but have compatibility issues with

older devices or operating systems which may leading to connectivity problems in

certain scenarios.

➢ Potential Performance Impact

The encryption and decryption processes involved in IPsec can introduce overhead and

impact network performance which is critical on low-powered devices or high-

bandwidth connections.

2.4 Encryption Algorithm

We will discuss variety of cryptographic techniques employed to secure data

transmission over networks. By analyze and considering factors like security level,

computational efficiency, and compatibility with different network architectures.

Through this exploration, we aim to gain a comprehensive understanding of encryption

strategies in VPN environments and their implications for ensuring data confidentiality,

integrity, and authenticity.

2.4.1 AES (Advanced Encryption Standard)

38

AES is asymmetric encryption algorithm used to protect sensitive data which it

using the same key for both encryption and decryption process. AES supports key sizes

of 128 ,192 and 256 bits while longer key sized provide stronger encryption but may

require more computational resources. AES able to performs multiple rounds of

substitution, permutation and mixing operations on the data with the number of rounds

determined by the key size. AES has undergone extensive scrutiny by cryptographers

and is trusted by governments and organizations globally. Its computational efficiency

ensures swift encryption and decryption processes which making it suitable for diverse

applications such as secure communications, data storage and protecting sensitive

information(Awati et al., 2024).

2.4.2 ChaCha20

ChaCha20 is a symmetric encryption algorithm operates as a stream cipher which

it will generate a continuous stream of pseudorandom data and then is combined with

a plaintext to produce ciphertext. ChaCha20 is optimized for performance across a wide

range of platforms including both software and hardware implementations due to its

ability of efficient and fast encryption and decryption operations making it suitable for

use in resource-constrained environments such as mobile devices and embedded

systems. Besides, it able to provide strong security guarantees and resistant to known

cryptanalytic attacks and offers high level of security when used with appropriate key

sizes and often used as encryption algorithm in various protocol and application

including VPN(Nagaraj, 2023).

2.4.3 3DES (Triple Data Encryption Standard)

3DES is a symmetric encryption algorithm that applies the Data Encryption

Standard (DES) cipher algorithm three times to each block of data which more secure

compare to the original DES algorithm.3DES offers stronger security that DES but it

suffers slower performance due to need of multiple encryption operation and may result

39

not efficient as modern encryption algorithm such as AES or ChaCha20 and it had

become vulnerable to brute-force attacks due to its relative short key length(Cobb,

2023).

2.5 Authentication Algorithm

We will look into various authentication algorithms in the context of VPN. Explore

how these algorithms facilitate the exchange of credentials, certificates, or

cryptographic keys between the VPN client and server, enabling mutual authentication

and protecting user information safety and integrity against unauthorized access or data

interception.

2.5.1 HMAC-SHA256

Hash-based Message Authentication Code with Secure Hash Algorithm 256

(HMAC-SHA256) is a cryptographic algorithm use for generating messages

authentication codes to ensure the integrity and authenticity of data that transmitted

over network. It combines the strength of SHA-256 hash function with security

properties of HMAC (Keyed-Hash Message Authentication Code) to produce a fixed

size hash value that can be used to verify, and integrity data transmitted(Okta, 2023).

2.5.2 HMAC-SHA512

Same with HMAC-SHA256, the difference is on the hash value which SHA512

can produces 512bits has value compared to SHA256 which is 256bits.SHA512 offers

larger hash output size compared to SHA256 which providing higher security and

resistance against brute-force attacks. This algorithm is commonly used when higher

level of security is required.

2.5.3 EAP (Extensible Authentication Protocol)

40

Extensible Authentication Protocol (EAP) is an authentication framework used in

network communication protocols. It provides a flexible and extensible mechanism for

supporting various authentication methods authentication methods such as passwords,

digital certificates, token-based authentication, one-time passwords, biometrics, and

more. These methods can be integrated into the EAP framework to provide

authentication flexibility based on the specific security requirements of the

network(Webster & Contributor, 2021).

2.6 Key Exchange Protocols

We will look into various key exchange protocols which show the different

mechanisms used to securely establish cryptographic key between communicating

parties and examining their strength and weakness in different scenarios.

2.6.1 RSA(Rivest-Shamir-Adleman)

RSA is an asymmetric encryption algorithm which using two different keys, a

public key and private key for encryption and decryption. The public key is sued for

encryption and the private key is used for decryption. RSA facilitates the secure

exchange of encryption keys between VPN endpoints which ensure that the sensitive

data remain confidential during transmission. The key exchange process forms the

bedrock of secure communication within VPN infrastructure and safeguarding users

against unauthorized access and interception. Besides, RSA enable endpoints to verity

each other’s identities by using digital certificates so that only authenticated and

authorized parties gain access to the VPN network which can mitigating risk associated

with unauthorized intrusion and malicious activities(Cobb, 2021).

Furthermore, RSA have the ability to ensure data integrity verification through the

generation of digital signatures. These signatures serve as cryptographic assurances of

41

the authenticity and integrity of transmitted data which aim to safeguarding data against

tampering and unauthorized modifications. Due to its mechanism, VPN endpoints can

reliably validate the trustworthiness of data exchanges and forming a secure and

trustworthy communication environment.

2.6.2 DH (Diffie-Hellman)

DH key exchange protocol is a foundational cryptographic technique utilized

within VPNs to establish secure communication channels between the VPN endpoints.

DH enables two parties to jointly generate a shared secret key over an insecure

communication channel without ever exchanging the key itself. Initially, both parties

needed to agree upon certain public parameters such as a prime number and a generator

and based on this, each party will independently generate its own secret value. After

that through a series of mathematical computations, the secret values are combined with

the public parameters to produce a shared secret key which remains unknown to

eavesdroppers even if they had intercepted the exchanged messages(Gillis, 2022).

In VPN contexts, DH key exchange occurs during the initial phase of establishing

a connection where both client and server negotiate cryptographic parameters and

compute the shared secret key. The key subsequently serves as the foundation for

encrypting and decrypting data exchanged between the endpoints throughout the VPN

session.

2.7 Comparison of VPN Application

In this section, we will compare 3 famous VPN application in current market.

Discussion will cover many factors such as features, performance, strength, and

weakness. By analyze each VPN application, we able to have a better guidance and

insight through identify common factor, good practice and security strategy, and from

42

this making our application better.

2.7.1 Hola VPN

Figure 2.7 Hola VPN (Macarthur, 2021)

Hola VPN is a widely used Virtual Private Network service renowned for its user-

friendly interface, extensive features and expansive global server network. Hola

provided user effortless experience bypassing geo restriction which allow user to access

blocked content and websites. Although Hola VPN is a popular VPN service provider,

but it also known with many flaws especially in terms of security such as lack of a

robust user authentication and authorization mechanisms which will raising security

concern. Beside Hola VPN does not provide kill switch feature which may cause data

leaks if VPN server down and its unstable performance which may cause usability

issue(Williams, 2020).

2.7.1.1 Hola VPN Features

➢ User Access Control (Authentication and Authorization)

Hola VPN operates on a unique peer-to-peer network model where users share their IP

addresses with others to access content from different regions, but this model lacks

traditional user authentication and authorization mechanisms which potentially raising

security concerns.

➢ Security Features

43

Hola VPN offers limited security features compared to traditional VPN services due to

its lack of robust encryption protocols and a kill switch, which may compromise user

privacy and security.

➢ Device Compatibility

Hola VPN is compatible with desktops, mobile devices and offers browser extensions

for popular browsers which providing wide device support.

➢ Performance

Hola VPN's performance can vary depending on the peer-to-peer network's availability

and user bandwidth. Speeds may be inconsistent and users may experience latency

issues when using the service.

➢ Privacy and Security:

Hola VPN has faced criticism regarding its privacy practices and lack of a clear no-logs

policy which potentially compromising user privacy informed consent.

➢ User Interface and Experience:

Hola VPN offers a user-friendly interface with an easy setup process. It provides

tutorials and support documentation for assistance which making it accessible to users

with varying technical expertise levels.

2.7.2 Hotspot Sheild

44

Figure 2.8 Hotspot Sheild (i2Coalition, 2020)

Hotspot Sheild is a Virtual Private Network service offered by AnchorFree. It is

one of the most popular VPN service providers known for its ease of use, fast

connection speed and broad platform support. Hotspot Sheild designed to offer users

enhanced privacy, security and access to geo-restricted content by encrypts internet

traffic, routing through VPN server to safeguard data against interception. Hotspot

Sheild encrypting data between users' devices and its servers to ensures confidentiality

protecting against cyber threats, ISP monitoring, and government surveillance.

However, despite its popularity, Hotspot Sheild faced scrutiny regarding its

security practices. One of the major concerns of this VPN is its logging policy which

has raised question about the collection and potential sharing of user’s connection log

such as IP address and timestamps while the company claims not to log users' browsing

activity. Moreover, some users have raised doubts about the robustness of its encryption

compared to other VPN providers and this can potentially leave users vulnerable to

surveillance or attack(Millares, 2024).

2.7.2.1 Hotspot Sheild Features:

➢ User Access Control (Authentication and Authorization)

45

Hotspot Shield provide user authentication through account creation and login

credentials which ensuring secure access to the VPN service.

➢ Security Features

Hotspot Shield utilizes strong encryption protocols, including the proprietary Catapult

Hydra protocol which providing secure data transmission when using the service. It

also includes a kill switch feature for added security. Besides, Hotspot Shield utilize

Transport Layer Security (TLS) encryption which designed to provide secure

communication over a network.

➢ Device Compatibility

Hotspot Shield supports desktop and mobile devices including Windows, macOS,

Android and iOS. It also provides browser extensions for Chrome and Firefox for

ensuring broad device compatibility.

➢ Performance

Hotspot Shield is known for its fast speeds due to its proprietary Catapult Hydra

protocol which able providing users with a reliable and high-performance VPN

experience.

➢ Privacy and Security

Hotspot Shield has improved its privacy policy over time but there have been concerns

about logging user data. However, it offers strong encryption and DNS leak protection,

prioritizing user security.

➢ User Interface and Experience

Hotspot Shield provides a user-friendly interface with an easy setup process. It offers

tutorials and support documentation for assistance which ensuring a positive user

46

experience.

2.7.3 Surfshark VPN

Figure 2.9 Surfshark VPN (Max Eddy , 2023)

Surfshark VPN is widely regarded as one of the premier VPN service providers in

the industry. Renowned had implemented robust security features, user-friendly

interface extensive server network spanning numerous countries and has earned a

reputation for reliability and performance. Surfshark operates under a strict no-logs

policy, ensuring user data remains confidential and by implementing advanced

encryption protocols and built-in ad blocker offer users peace of mind while browsing

the internet (Attila, 2024).

We will discover multiple factors to analyzing Surfshark’s feature and identify

areas for improvement in our own applications to ultimately striving to deliver a

superior VPN experience to our users.

2.7.3.1 Surfshark VPN features

➢ User Access Control (Authentication and Authorization)

Surfshark provides multiple authentication methods including username/password,

47

two-factor authentication (2FA) and in some cases it also supports for authentication

via third-party identity providers like Google or Facebook which provide a solid basis

for secure access to their service based on authentication and authorization.

➢ Security Features

Surfshark VPN uses AES-256 encryption which is considered one of the most secure

encryption standards in current industry and it also offers kill switch feature which will

terminates internet traffic if the VPN connection drops unexpectedly to preventing data

leaks. Besides, it also supports various VPN protocols such as OpenVPN and

IKEv2/IPsec for providing flexibility and compatibility to users with different devices

and networks.

➢ Device Compatibility

Surfshark VPN is compatible with a wide range of devices and platforms such as on

Windows, macOS, iOS, Android, Linux and routers. Besides, it also offers browser

extensions for popular web browsers like Chrome and Firefox. Surfshark broad device

compatibility attribute ensures that users can protect their online activities across

multiple devices and operating systems which provide huge convenient for user’s

experience.

➢ Performance

Surfshark VPN generally offers good performance with fast connection speeds and low

latency for their VPN service. Actual performance may vary depending on factors such

as server location, network congestion and the user's internet connection speed but

overall Surfshark does provide good performance for their VPN service. Besides,

Surfshark has maintains a large network of servers in numerous countries worldwide

which allowing users to find a server with optimal performance for their needs.

48

➢ Privacy and Security

Surfshark VPN has strong privacy policy that states it does not log user’s information

such as their browsing activity, IP addresses or other personally identifiable information.

➢ User Interface and Experience

Surfshark VPN offers user-friendly apps and interfaces across various devices and

platforms. The application are well-designed, intuitive and easy to use which making it

simple for users to carry out multiple operation such as connect to VPN servers,

configure settings and access additional features. Surfshark also provides

comprehensive support documentation and customer support channels to assist users

with any questions or issues they may encounter.

2.7.4 Chart of Comparison

Figure 2.10 Chart of Comparison

49

2.8 Reason For Choosing OPENVPN

In the rapidly evolving landscape of network security, the choice of Virtual Private

Network (VPN) solutions plays a crucial role in ensuring secure communication over

the internet. For our VPN project, OpenVPN has been chosen due to its proven track

record in reliability, robust security features, and outstanding performance. This section

delves into the detailed reasons why OpenVPN is the preferred solution and supported

by insights from scholarly articles and technical evaluations.

2.8.1 Reliability of OpenVPN

OpenVPN is widely recognized for its reliability in various networking

environments. Its ability to maintain stable connections over long periods and across

different network conditions is a testament to its robust architecture. OpenVPN use of

User Datagram Protocol (UDP) as its default transport layer protocol contributes

significantly to this reliability. UDP which being a connectionless protocol allows

OpenVPN to handle network fluctuations without dropping connections and this

attribute making it ideal for environments with variable network quality.

Moreover, OpenVPN’s ability to traverse Network Address Translation (NAT) and

firewalls without compromising performance further underscores its reliability. The

software’s design includes features like adaptive compression and automatic

reconnection, which ensure that even in the face of packet loss or network interruptions,

which make the VPN connection remains stable and effective (Muhammad Iqbal &

Imam Riadi, 2019).

2.8.2 Security of OpenVPN

 Security is one of the most compelling reasons for choosing OpenVPN. It uses a

combination of cryptographic techniques to secure data transmission which including

SSL/TLS for key exchange and AES-256 encryption for data protection. These

50

technologies are industry standards for secure communications which providing a high

level of assurance that data transmitted over OpenVPN is well-protected against

eavesdropping and tampering.

OpenVPN also supports a variety of authentication methods, its supports including

X.509 certificates which provide a secure and flexible mechanism for verifying the

identities of parties involved in the communication. Besides, the use of Perfect Forward

Secrecy (PFS) further enhances security by ensuring that even if a session key is

compromised, it cannot be used to decrypt past sessions (Aleksandar Skendzic &

Božidar Kovačić, 2017).

Additionally, OpenVPN’s integration with OpenSSL provides robust support for

cryptographic algorithms and ensures that security updates and patches are promptly

applied, maintaining the software’s resistance to emerging threats. This integration also

means that OpenVPN benefits from the continuous improvements and audits conducted

by the broader OpenSSL community which is critical for staying ahead of potential

vulnerabilities (Muhammad Iqbal & Imam Riadi, 2019).

2.8.3 Performance of OpenVPN

Performance is another area where OpenVPN excels. The protocol is designed to

be lightweight to provide capabilities allowing it to operate efficiently even on lower-

end hardware without significant performance degradation. This efficiency is partly due

to its use of the UDP protocol which is less resource-intensive compared to TCP

protocol, particularly in environments with high latency or jitter (Aleksandar Skendzic

& Božidar Kovačić, 2017).

OpenVPN also supports multi-threading, allowing it to take full advantage of

multi-core processors to improve throughput and reduce latency. This capability is

crucial for organizations that need to secure high volumes of traffic without introducing

51

bottlenecks. Furthermore, OpenVPN’s ability to work seamlessly with different

network infrastructures, including wireless networks, VPNs over satellite, and mobile

networks, demonstrates its versatility in delivering high performance under various

conditions (Muhammad Iqbal & Imam Riadi, 2019).

Performance evaluations have shown that OpenVPN can achieve high throughput

rates while maintaining low latency, making it suitable for both high-bandwidth

applications like video streaming and critical low-latency applications like VoIP. Its

support for adaptive compression also optimizes the amount of data transmitted, further

enhancing performance (Aleksandar Skendzic & Božidar Kovačić, 2017).

2.8.4 Proven Track Record

OpenVPN’s reliability, security, and performance are not just theoretical

advantages instead it has been proven in real-world scenarios. Many enterprises,

government agencies and non-profits rely on OpenVPN to protect their

communications. Its open-source nature allows for continuous peer review and

community-driven improvements, ensuring that the software remains up-to-date with

the latest security practices and performance enhancements (Aleksandar Skendzic &

Božidar Kovačić, 2017).

Moreover, OpenVPN has been subjected to rigorous testing and audits by

independent security experts which further validating its effectiveness as a secure and

reliable VPN solution. Its adoption across various sectors is a strong endorsement of its

capability to meet the demanding requirements of modern secure communications

(Muhammad Iqbal & Imam Riadi, 2019)..

2.8.5 Conclusion

In conclusion, OpenVPN stands out as a highly reliable, secure, and performant VPN

solution, making it the ideal choice for our VPN project. Its proven ability to maintain

52

stable connections, robust security protocols, and efficient performance across diverse

network conditions provides the assurance needed for protecting our communications.

The combination of these factors, supported by strong community and commercial

backing, ensures that OpenVPN will continue to be a leading VPN solution for years

to come.

2.9 Reason For Choosing AES-256-GCM

In this project AES-256-GCM encryption algorithm is chosen for data encryption

for the data transmit via the VPN tunnel.

2.9.1 Introduction to AES-256-GCM

AES-256-GCM (Advanced Encryption Standard with a 256-bit key in

Galois/Counter Mode) is a widely adopted encryption algorithm that provides a

combination of strong data encryption and authentication. It is a specific instance of

AES-GCM, where AES is employed with a 256-bit key size (McGrew, D & Viega,

2005).

AES is a symmetric key encryption standard established by the U.S. National

Institute of Standards and Technology (NIST) in 2001. It supports three key sizes: 128

bits, 192 bits, and 256 bits. The “256” in AES-256 refers to the length of the encryption

key in bits (McGrew, D & Viega, 2005).

GCM (Galois/Counter Mode) is an advanced mode of operation for cryptographic

block ciphers. It provides both data confidentiality (encryption) and data integrity

(authentication) in a highly efficient manner and particularly suitable for parallel

processing and high-speed environments (McGrew, D & Viega, 2005).

Why AES-256-GCM is Used

2.9.2 Strong Security

53

The primary reason for choosing AES-256-GCM for OpenVPN is its high level

of security. AES-256 uses a 256-bit key, which provides an extremely large key

space. This means that it would require an infeasible amount of computational

power to break the encryption through brute-force attacks. Given current

computational capabilities, AES-256 is considered secure against all known

forms of cryptographic attacks (McGrew, D & Viega, 2005).

2.9.3 Comprehensive Protection with GCM

GCM mode not only encrypts data but also provides authentication. This dual

functionality ensures that data is both confidential and verified, protecting

against tampering and unauthorized alterations. GCM’s authentication is based

on Galois field multiplication, which is highly efficient and secure, making

AES-256-GCM suitable for environments where both encryption and integrity

are crucial (McGrew, D & Viega, 2005).

2.9.4 Efficiency in Performance

Despite the increased key size, AES-256-GCM remains efficient, especially on

modern processors that support hardware acceleration for AES operations, such

as Intel’s AES-NI (AES New Instructions (McGrew, D & Viega, 2005). GCM

mode is designed to take advantage of parallel processing, which enhances its

speed and makes it suitable for high-performance applications like VPNs

(McGrew, D & Viega, 2005).

2.9.5 Widespread Adoption and Support

AES-256-GCM is widely supported across various platforms and devices,

ensuring broad compatibility. This widespread support makes it an excellent

choice for OpenVPN, which aims to provide secure and private communication

for a wide range of users and devices globally (McGrew, D & Viega, 2005).

54

2.9.6 Regulatory Compliance

Many regulatory standards and security frameworks recommend or mandate the

use of AES-256 for protecting sensitive data. By using AES-256-GCM,

OpenVPN adheres to these standards, ensuring compliance with security

regulations and guidelines (McGrew, D & Viega, 2005).

2.9.7 Variations of AES-256

AES comes in three key sizes: 128, 192, and 256 bits. The key size impacts both

security and performance:

• AES-128: Faster than AES-256 due to the smaller key size, but still provides

strong security. It is often used where performance is a higher priority than the

extra security provided by AES-256 (McGrew, D & Viega, 2005).

• AES-192: Less commonly used, it offers a middle ground between AES-128

and AES-256 in terms of security and performance (McGrew, D & Viega, 2005).

• AES-256: Provides the highest level of security among the three, making it ideal

for environments where maximum security is required, such as VPNs and

government applications (McGrew, D & Viega, 2005).

AES-256, despite being slightly slower than AES-128, is chosen for its superior

security, which is critical for safeguarding highly sensitive data).

2.9.8 Conclusion

AES-256-GCM is used in OpenVPN due to its robust security features, efficient

performance, and widespread support. Its ability to provide both encryption and

authentication makes it a versatile and powerful choice for securing communications.

The use of a 256-bit key in AES-256-GCM ensures that even with the advancement of

55

computational power, the encryption remains secure against brute-force and other

forms of cryptographic attacks (McGrew, D & Viega, 2005).

Chapter3

METHODOLOGY AND WORK PLAN

3.1 Introduction

The appropriate SDLC methodology for this project will be selected and discussed. The

details of implementation flow and method will be listed in the Work Breakdown

Structure and the Gantt chart are provided to illustrate the start and end date of the

project. Lastly the development tools for this project will also be covered in this chapter

3.2 System Development Methodology

Iterative methodology was selected for SecureNet VPN. Figure 3.1 shows the

lifecycle for iterative methodology. The reason for selecting iterative methodology for

this project due to many factors regarding security since in this project we focus on

security and it involved in many area such as VPN protocol, encryption algorithm, multi

factor authentication and authorization. The challenge in this project primarily related

to the security issue, which is difficult to develop a fully secure system in once. Instead,

in order to ensure our system is reliable and secure, the effort will need to focus on keep

refinement for the system and keeping discover vulnerabilities and enhance the system.

Besides, high usability as one our project main objectives, iterative methodology able

to keep refinement on the user interface through user feedback which can ensure the

high usability and user-friendly interface of our system. Therefore, iterative

methodology is suitable for this project due to its nature of iterative refinement allow

to continuous improvement of the system and allow quick respond and adapted to

changes in new requirement and feedback received from user regarding the Virtual

Private Network services.

56

Figure 3.1 Iterative Methodology (Softwaretestingo Editorial Board, 2024)

After initial planning phase, the project will conduct multiple iteration to ensure

iterative development and refinement to fulfil the requirements. Iteration will be

performed 5 times and each iteration approximately around 25 to 30 days. Each

iteration for this project has same process but each iteration will focus on different

aspects which will be discussed.

In first iteration, main task will be focus on gathering requirement, performing

analyze on requirement and design of the system. Documentation will also be

performed such as use case diagram, user interface design and prototype will also be

developed. Besides, the implementation of the system will also be conducted, this will

cover such as setup project environment and tools and implement the basic VPN

functionality.

In the second iteration, new requirement will be collected and analyzed and

continue refinement for the existing system but will more focus on enhance the

authentication functionality and with additional authentication methods such as multi-

factor authentication and improve error handling of the system. Besides, we will also

monitor the system performance and user feedback to discover any possible security

57

vulnerabilities in the system and plan to improve it in the coming iteration.

For the third iteration, like iteration before new requirement will be collected and

analyzed and continue refinement for the existing system, in this iteration, effort will

keep focus on the security and Virtual Private Network part such as refine

authentication and authorization mechanisms, complete integration for OpenVPN

protocol and conduct extensive testing for security part and compatibility testing.

Besides, documentation and user guides for the application will begin.

Forth iteration will focus on improvement of the user interface from the user

feedback to ensure high usability and user-friendly interface. In the last iteration which

is fifth iteration will focus on testing of the application to address any identified issues

or bugs, functionalities, interoperability of the system to ensure that all component

works well which related to security aspect, performance, and compatibility. After all

testing completed, will prepared for deployment and official release of SecureNet VPN

application.

3.3 Work Plan

In this section work breakdown structure will be planned to simplify the complex tasks

into smaller tasks. Figure 3.2, figure 3.3 and figure 3.4 shows the work breakdown

structure of the project. The specific work content and duration of work in each sprint

are planned in Gantt Chart. Figure 3.5 and figure 3.6 display the Gantt Chart of the

project.

3.3.1 Work Breakdown Structure

SecureNet VPN’s Work Breakdown Structure:

1. Initial Planning

1.1 Project Planning

1.1.1 Introduction

58

1.1.2 Problem Background Research

1.1.3 Define Problem Statement

1.1.4 Define Project Objectives

1.1.5 Define Project Scope

1.1.6 Define Project Solution

1.2 Literature Review

1.2.1 Research of Virtual Private Network Application in Market

1.2.2 Comparison of Virtual Private Network Application

1,2,3 Research on Virtual Private Network Protocol

1.2.4 Research on Encryption Algorithms

1.2.5 Research on Authentication Algorithm

1.2.6 Research on Key Exchange Protocols

1.3 Methodology and Workplan

1.3.1 Select SDLC Methodology

1.3.2 Develop Project Workplan

1.3.3 Select Development Tools

2.Iterative Process

2.1 First Iteration

2.1.1 Requirement Gathering and Documentation

2.1.2 Analysis and Design

2.1.3 Implementation

2.1.4 Testing

2.1.5 Evaluation

2.2 Second Iteration

2.2.1 New Requirement Gathering and Documentation

2.2.2 Analysis and Design

2.2.3 Implementation

2.2.4 Testing

59

2.2.5 Evaluation

2.3 Second Iteration

2.2.1 New Requirement Gathering and Documentation

2.2.2 Analysis and Design

2.2.3 Implementation

2.2.4 Testing

2.2.5 Evaluation

2.3 Third Iteration

2.2.1 New Requirement Gathering and Documentation

2.2.2 Analysis and Design

2.2.3 Implementation

2.2.4 Testing

2.2.5 Evaluation

2.4 Forth Iteration

2.2.1 New Requirement Gathering and Documentation

2.2.2 Analysis and Design

2.2.3 Implementation

2.2.4 Testing

2.2.5 Evaluation

2.5 Fifth Iteration

2.2.1 New Requirement Gathering and Documentation

2.2.2 Analysis and Design

2.2.3 Implementation

2.2.4 Testing

2.2.5 Evaluation

3.Deployment Phase

3.1 System Deployment

4.Report Finalize

60

4.1 Complete Report Writing

Figure 3.2 Work Breakdown Structure

61

Figure 3.3 Work Breakdown Structure (Continued)

62

Figure 3.4 Work Breakdown Structure (Continued)

63

3.3.2 Gantt Chart

Figure 3.5 Gantt Chart

64

Figure 3.6 Gantt Chart(Continued)

65

3.4 Development Tools

We will discuss the tools we will use and the reason for choosing the tools. We will discuss

in 3 parts which is frontend, backend, and VPN server

3.4.1 Frontend Part

This project aims to provide high usability for user on Android platforms. The tools

involved in the frontend part included Flutter Frameworks, Node Package Manager (NPM),

Android Studio.

3.4.1.1 Flutter

Flutter is an open-source framework created by Google for building natively compiled

applications for mobile, web, and desktop from a single codebase. The framework allows

developers to build cross-platform mobile applications for Android and iOS using the Dart

programming language. The reason for choosing Flutter for this project is due to its ability

to deliver a highly customizable and visually appealing user interface. Flutter’s widget-

based architecture allows for rapid development and a consistent look and feel across

platforms. Additionally, Flutter provides a rich set of pre-designed widgets that can be

easily customized to match the project’s design requirements. Flutter’s strong community

and ecosystem offer a vast range of packages and plugins, enabling developers to access

device-specific features and functionalities with ease. This support network ensures that

developers can find solutions to common challenges quickly, improving development

efficiency. Moreover, Flutter’s hot reload feature allows for real-time code changes,

significantly speeding up the development process by allowing developers to see

immediate results.

3.4.1.2 Android Studio

Android Studio is a development environment for Android applications development

Its provides a comprehensive set of tools for designing, developing, testing, and debugging

Android applications. In this project, we will use an emulator for Android device which

can use for design and preview user interface for different screen size resolution. Besides,

they had integrated with version control system which allowing developers to manage code

66

repositories directly within the IDE and also provide tools for generate APK, configure app

and monitor app performance directly from the IDE

3.4.2 Backend Part

In this project Amazon Web service will be use for deploying our VPN Server in

different region and our backend for user management, authentication and authorization

action. For the instance on Amazon Web service, we will be using Linux operating system,

OpenVPN library for the VPN server and ??? as our backend interoperate with MySQL

database for performing management of user profile

3.4.2.1 Amazon Web Service

Amazon web service is comprehensive cloud computing platform which provided

wide range of services that enable businesses or anyone to used for build , deploy and

manage their own applications and infrastructure in the cloud. This project offer VPN

services which means we need to deploy our server among multiple country. AWS can

provide basic computing node such as the elastic cloud computing (EC2) to fulfil our

requirements for deploy our services on it, beside we can manage it effectively through

amazon own AWS console and its charging is based on a pay-as-you-go model

3.4.2.2 OpenVPN

OpenVPN is an open-source virtual private network protocol which allowing for

creating a secure point to point or site to site connection based on configuration. This

protocol is widely use for secure remote access to networks and for creating secure

connection between network over internet. OpenVPN protocol as the core component in

this project, it able to provide high security level by employ encryption algorithms which

ensure secure communication over internet, it support end-to end encryption,

authentication and data integrity verification which making the communication is highly

secure against malicious parties or activities like tampering, eavesdropping and other

security threat

3.4.2.3 MongoDB

67

MongoDB is a popular open-source NoSQL database known for its flexibility,

scalability, and performance. It stores data in a JSON-like BSON format, making it ideal

for handling unstructured or semi-structured data. MongoDB's schema-less design allows

for dynamic and evolving data models, which is particularly advantageous in agile

development environments where requirements may change frequently. Its horizontal

scalability, with built-in replication and sharding, ensures the database can handle large

volumes of data and high traffic while maintaining high availability. MongoDB's rich query

language supports complex queries and analytics, and its extensive ecosystem and active

community provide valuable resources for developers, making it an excellent choice for

projects requiring a flexible and robust data management solution.

3.4.2.4 Node.js

 Node.js is an open-source, server-side JavaScript runtime environment which enable

developers to create web servers and build scalable network applications. Node.js uses an

event-driven and non-blocking I/O model, which makes it efficient and suitable for

handling concurrent operations such as serving multiple requests simultaneously. It is

popular for building real-time applications, RESTful APIs, and backend services due to its

fast execution and vast ecosystem of libraries and frameworks.

3.4.3 Version Management Tools

3.4.3.1 Git

Git is a distributed version control system that used for tracking changes in our

development environment. It allows to track all the changes to files and directories in the

project overtime and allow to record changes, revert to previous version and provide

collaborate flexibility with others on the same codebase which provided effect and efficient

in managing project.

3.4.3.2 Node Package Manager (NPM)

Node Package Manager is the dependency or package manager for JavaScript runtime

environment. It provides automation of update and managing dependency and installing all

68

the necessary dependency from trusted source. Node Package Manager play crucial role in

JavaScript ecosystem which enable developers to leverage vast of opensource library and

tools to build applications for efficiently.

3.4.4 Other Tools

3.4.4.1 Virtual machine

Virtual machine will be used in this project for the purpose of configuring, testing, and

remote access to the VPN server on the cloud services which can provide a sandboxed

environment that is isolated from the host system can help prevent conflict between VPN

server and other software service running on host system.

3.4.4.2 Visual Studio Code

A free open-source code editor which compatible for various programming languages

and platforms. It is a lightweight and fast development tool with rich features integrated

into it such as terminal integration, git integration and extensible through it extension

market which provide high efficient during development.

3.5 Development Workflow

At the initial phase of this project which involves identify problem background and

analyze user’s need to discover the details requirements including functionality, security

features, user interface and performance expectations. By analyze and prioritize the

requirements based on their importance and feasibility, all the tasks will be break down

into smaller task to for easing execution of the development.

After a set of analysis phase of requirement and design of the system, the next step is

to embark on the development of prototype. The prototype will be develop using Figma

which will serve as preliminary version of SecureNet Application which able to offer a

tangible representation of the applications’ functionalities and design. The major objective

of prototyping is to provide stakeholders and end-users a concrete visualization of the

69

proposed solution to enabling them to provide feedback and validate the proposed approach.

Through early feedback from prototyping, the application can refine and iterate on design

and functionality of the application which ensuring all requirement aligns with identified

requirements and needs. After that, based on prototype, the production of frontend user

interface will majorly using Flutter to build an interactive application which specifically

for Android Platform.

Following the frontend development phase, the focus shifts to backend implementation

of SecureNet VPN application. The tools and environment needed here including AWS

EC2(Elastic Cloud Compute) instance, OpenVPN library, Certificate Authority (CA) and

Easy-RSA. Once EC2 instance is provisioned, OpenVPN library packages and

dependencies needed to download on the EC2 instance which includes installing OpenVPN

software along with all the libraries and utilities required for its operation. Besides, setting

up a Certificate Authority (CA) and generating RSA key pairs which able to facilitate the

secure communication between the VPN server and client devices.

Figure 3.7 Workflow of OpenVPN with CA and RSA

With OpenVPN installed and all necessary security tools has been setup, next phase

70

entails with setting up and configuring the VPN server to establish secure connections with

client devices. This including configures VPN network setting, like IP address, routing

subnet configuration, encryption protocols, authentication algorithms, port number

parameters to ensure secure communication channels. After that we will need to setup

Certificate Authority (CA) to establishing trust and security within the VPN

infrastructure.CA is responsible for issuing digital certificates that authenticate the

identities of the VPN server and client devices which CA will generates a root certificate

and private key to sign server and client certificates to ensure the integrity and authenticity

of communication channels. RSA key pairs play crucial role in encrypting data and

facilitating secure authentication within VPN ecosystem. RSA keys are generated for the

VPN server and client devices which comprising a public key for encryption and a private

key for decryption.

For connected to the VPN server, client configuration file is needed to for client to

establish connections from their device. After client has register themselves in database or

if their configuration file is expired, backend server will be invoked to request VPN server

to generate new client configuration file which contain all necessary parameters such as IP

address, port number, authentication, and encryption algorithms as well as along with the

encrypted certificate and key pair to ensure integrity. If any of the encrypted key pair or

certificate had been modify which mean the document is not more secure and the VPN

server will reject to establish connection between it with client, this process also been

known as Transport Layer Security (TLS) process.

71

Figure3.8 Workflow of Backend Server

For another backend which using NodeJS major function is for authentication and

authorize users, store user’s profile and hosting RESTful API endpoints for responding

request from client. The backend is hosted on the same EC2 instance with the VPN server

which aiming to invoke the VPN server for several purposes such as generating new client

configuration file for establish VPN connections and fetching the file from VPN server.

MongoDB database as reliable data storage will work with NodeJS backend for storing and

managing user’s profile and necessary information.

Figure 3.9 Frontend Workflow

72

For frontend part, frontend will integrate with OpenVPN library for establish

connections to the server. On client device, the application will first fetch the configuration

file first when they login or register themselves, the flow will be request to backend API

endpoint and backend server will communicate with VPN server in order to generate or

fetching generated file from database. The configuration file will be stored in user device

and will set an expiration date along with the login session lifetime with using JWT(JSON

WEB TOKEN). This ensures that user will need to re-login themselves after a period of

time and ensure the renew of configuration file to prevent abuse such as distribution of

configuration file.

After setting up all frontend, VPN server and backend server, testing will be covered

to ensure interoperability of frontend, VPN server and backend server works well.

Activities included unit testing, end-to-end testing, and user acceptance testing.

Final step is deployment of the SecureNet VPN Application online by hosting VPN

server and backend server on Amazon Web Service and distribute the frontend application

of SecureNet VPN for users so they can access to the server anytime. Besides, the system

architecture, database schemas, description of server, technical details, used dependencies,

API endpoints will be documented and accessible for users for continuous update, bug fixes

and refinement of the application.

73

Chapter 4

Project Specification

4.1 Introduction

This chapter will cover the detailed requirements specification of this project, functional

and non-functional requirements of the application will be defined. Use case, activity

diagram and data flow diagram will outline interaction and processes of SecureNet VPN

application. These information will be serves as foundation of the design and development

of SecureNet VPN.

4.2 Requirement Specification

Requirement specification like a blueprint to defines what the application should do and

behave, and for stakeholders to know what they can expect from the final product. The

requirement is extract through the review of similar applications.

4.2.1 Functional Requirements

4.2.1.1 Frontend Functional Requirements

1. User Registration and Authentication

⚫ Allow users to register new accounts securely

⚫ Provide options for users to log in and log out of their accounts.

2. Country Selection

⚫ Present users with a list of available countries to select for VPN connection.

⚫ Display relevant information about each country, such as server location and

connection speed.

3. Feedback Integration

⚫ Allow stakeholders and end-users to provide feedback on the application's

functionalities and design

74

4.2.1.2 Backend Functional Requirements

1. User Authentication and Authorization

⚫ Implement secure authentication mechanisms to verify user identities.

⚫ Authorize users to access specific features based on their roles and permissions.

2. Profile Management

⚫ Store and manage user profiles securely in a MySQL database.

⚫ Allow users to update their profiles, including personal information and

preferences

3. Client Configuration Handling

⚫ Handle requests from users to generate new client configuration files.

⚫ Ensure secure generation and delivery of configuration files to users 4.Integration

with VPN Server

⚫ Facilitate communication between the frontend and VPN server for VPN

connection setup

4.2.1.3 VPN Server Functional Requirements

1. Client Configuration Handling

⚫ Establish a Certificate Authority (CA) for issuing digital certificates

⚫ Generate RSA key pairs for encryption and authentication purposes

2. Client Configuration Handling

⚫ Configure VPN network settings, including IP addresses, routing subnet

configurations, and encryption protocols.

⚫ Manage server parameters such as port numbers and authentication algorithms for

secure communication channels.

3. Client Connection Handling

⚫ Receive and process requests from clients for establishing VPN connections.

⚫ Verify client certificates and key pairs for authentication and encryption.

75

4.2.2 Non-Functional Requirements

⚫ The application should provide fast and responsive performance, with minimal latency

during VPN connections

⚫ The application's backend infrastructure should be optimized for scalability to handle

increased user loads

⚫ All data transmitted between the client and server should be encrypted using strong

encryption algorithms. The application should implement multi-factor authentication

for user logins to enhance security.

⚫ User credentials and sensitive information should be securely stored and hashed to

prevent unauthorized access

⚫ The VPN connections should be stable and reliable, with automatic reconnection in

case of network disruptions

⚫ The user interface should be intuitive and easy to navigate, catering to users of varying

technical expertise

⚫ The application should provide clear instructions and error messages to guide users

through the setup and configuration process

⚫ It should offer multi-platform support and compatibility with a wide range of devices

to maximize usability

⚫ The VPN server should be accessible 24hours

76

4.3 Use Case Diagram

A use case diagram is provided to illustrate the interactions between users and the system

by highlighting the various functionalities that the system supports from a user's
perspective.

Figure 4.1 Use Case Diagram of SecureNet VPN Application

77

4.4 Use Case Description

Each use case description will describe in detail and show it relationship between use case

and flow of event

4.4.1 Login

Use Case Name: Login ID: UC01 Importance Level: High

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

User – wants to login to the application

Brief Description: This use case describes that user login to the application.

Trigger: User wants to login to the application

Relationships:

Association :User

Include :Fetch Config File

Extend :N/A

Generalization:N/A

Normal Flow of Events:

1. User access to the application
2. User select Login option
3. System will redirect user to login page. If user login before, perform exceptional flow 1.1
4. System will prompt user to input their information such as password and id
5. System will check user credential based on user input
6. If user data is not found, perform exceptional flow 1.2
7. If data is found and match ,system will redirect to main page of the application

Sub-flows:N/A

Alternate/Exceptional Flows:

1.1 Session found in application

1. System will redirect to main page without need user input their credential
1.2Data not found in database

1. System will prompt user to reinput their credential

78

4.4.2 Registration

Use Case Name: Registration ID: UC02 Importance Level: High

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

User – wants to register to the application

Brief Description: This use case describes that user register to the application.

Trigger: User wants to register to the application

Relationships:

Association :User

Include :Generate Config File
Extend :N/A

Generalization:N/A

Normal Flow of Events:

1. User access to application
2. User select register option

3. System navigate user to register page
4. System will prompt user to input email and password for registration
5. User input the id and password to the system
6. System validates both input is validated. If not perform exceptional flow 2.1.
7. System will show successful of the registration
8. System will navigate user to main page of the application

Sub-flows:N/A

Alternate/Exceptional Flows:

2.1 Error input for registration

1. System will prompt user regarding the error of input
2. User need to reinput their information.

3. Continue to flow 4.

79

4.4.3 Country Selection

Use Case Name: Country Selection ID: UC03 Importance Level: High

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

User – wants to select country of VPN connection

Brief Description: This use case describes that user wants to select country of VPN

connection.

Trigger: User wants to select country of VPN connection

Relationships:

Association :User

Include :N/A
Extend :N/A

Generalization:N/A

Normal Flow of Events:
1. User select the country they wish to connect to.
2. System fetch new config file for establish connection
3. System will prompt the change was successful
4. The country logo will be change to the selected country

Sub-flows:N/A

Alternate/Exceptional Flows:N/A

80

4.4.4 Submit Feedback

Use Case Name: Submit Feedback ID: UC04 Importance Level: High

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

User – wants to submit feedback

Brief Description: This use case describes that user submit feedback

Trigger: User wants to submit feedback

Relationships:

Association :User

Include : Notification
Extend :N/A

Generalization:N/A

Normal Flow of Events:
1. User select the feedback button.
2. System will show feedback form to user
3. User will input their feedback into the form
4. User submit the form
5. System will validate the input to check if any empty input.If contain empty input perform

exceptional flow 3.1
6. System show that feedback submitted successfully

Sub-flows:N/A

Alternate/Exceptional Flows:

3.1 Error input for feedback

1. System will prompt user regarding the error of input
2. User need to reinput their information.
3. Continue to flow 6.

81

4.4.5 Connect to VPN Server

Use Case Name: Connect to VPN server ID: UC05 Importance Level: High

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

User – wants to establish connection to VPN

Brief Description: This use case describes that user wants to establish connection to

VPN.

Trigger: User wants to establish connection to VPN

Relationships:

Association :User

Include :Verify User ,Notification
Extend :N/A

Generalization:N/A

Normal Flow of Events:
1. User click the button of connect to VPN to establish connection to VPN
2. System will prompt user to validate their identity before successfully connect to VPN
3. If user fail to validate themself, Perform exceptional flow 4.1
4. If user success to validate themselves, the connection will establish. If connection not

successful, Perform exceptional flow 4.2
5. System will show connection successful. 6.

Sub-flows:N/A

Alternate/Exceptional Flows:

4.1 Error in validate identity

1. System will prompt that user fail to validate their identity
2.User need to validate their identity again

2.If fail many times, system will cancel the request to establish connection
4.2 Error in establishing connection
 1. System will prompt connection error

 2.User have to reclick connect button to establish connection again

82

4.4.6 Fetch Config File

Use Case Name: Fetch Config File ID: UC06 Importance Level: High

Primary Actor: N/A Use Case Type: Detail, Essential

Stakeholders and Interests:

User – wants to login to the application

Brief Description: This use case describes that user config file will be fetch after

successfully login

Trigger: User successfully login to the application

Relationships:

Association :N/A

Include :N/A
Extend :N/A

Generalization:N/A

Normal Flow of Events:
1. After user successful login to the application, the client application will fetch the user

config file from database
2. The config file will store in user device

Sub-flows:N/A

Alternate/Exceptional Flows:N/A

83

4.4.7 Generate Config File

Use Case Name: Generate Config File ID: UC07 Importance

Level: High

Primary Actor: N/A Use Case Type: Detail,

Essential

Stakeholders and Interests:

User – wants to register to the application

Brief Description: This use case describes that user config file will

be generate after successfully register

Trigger: User successfully register to the application

Relationships:

Association :N/A

Include :N/A

Extend :N/A

Generalization:N/A

Normal Flow of Events:
1. After user register login to the application, the client application will request

to backend server
2. Backend server will request to VPN server to generate new config file
3. Backend server will store the config file in database

Sub-flows:N/A

Alternate/Exceptional Flows:N/A

84

4.4.8 Notification

Use Case Name: Notification ID: UC08 Importance

Level: High

Primary Actor: N/A Use Case Type: Detail,

Essential

Stakeholders and Interests:

User – establish connection to VPN, successfully submit feedback

Brief Description: This use case describes that user will receive

notification when establish connection to VPN and submit feedback

Trigger: User establish connection to the application and submit feedback

Relationships:

Association :N/A

Include :N/A

Extend :N/A

Generalization:N/A

Normal Flow of Events:
1. Establish to connection to VPN

1.1 User successfully establish connection to VPN
1.2 The application will pop up a notification showing current connection status

2. Submit feedback successfully
2.1 User submitted their feedback to application
2.2 The application will pop up a notification showing user successfully submit

their feedback
Sub-flows:N/A

Alternate/Exceptional Flows:N/A

85

4.4.9 Verify User

Use Case Name: Verify User ID: UC09 Importance

Level: High

Primary Actor: N/A Use Case Type: Detail,

Essential

Stakeholders and Interests:

User – establish connection to VPN

Brief Description: This use case describes that user will need to

verify their identify before establish connection to VPN

Trigger: User initiate the connection to VPN

Relationships:

Association :N/A

Include :N/A

Extend :N/A

Generalization:N/A

Normal Flow of Events:
1. The application will pop up various authentication method such as fingerprint to

check user identity.
2. System will query and validate the information from database
3. If validate success, system will proceed the next action after this function
4. If validate fail.Perform exceptional flows 5.1

Sub-flows:N/A

Alternate/Exceptional Flows

5.1Fail in identify verify
1. The application will prompt user fail to verify themselves
2. The application will show error

86

4.5 Activity Diagram

Activity diagrams are provided to visually represent the flow of activities and process

within SecureNet VPN system which can helping stakeholders understand the

sequential order, decision point and interactions involved in achieving specific task.

4.5.1 Login

Figure 4.2 Activity diagram of Login

87

4.5.2 Registration

Figure 4.3 Activity diagram of Registration

4.5.3 Country Selection

88

Figure 4.4 Activity diagram of Country Selection

89

4.5.4 Submit Feedback

Figure 4.5 Activity diagram of Submit Feedback

90

4.5.5 Connect to VPN Server

Figure 4.6 Activity diagram of Connect to VPN Server

91

4.5.6 Fetch Config file

Figure 4.7 Activity diagram of Fetch Config File

92

4.5.7 Generate Config File

Figure 4.8 Activity diagram of Generate Config File

93

4.5.8 Notification

Figure 4.9 Activity diagram of Notification for Connection

94

Figure 4.10 Activity diagram of Notification for Submit Feedback

95

4.5.9 Verify User

Figure 4.11 Activity diagram of Verify User

96

4.6 Data Flow Diagram

Data flow diagram provided an overview of the data flow within SecureNet VPN

application. It shows flow of the data between user and component of the system, such

as user information, feedback, configuration file and the selection of country to

establishing connection with VPN.

Figure 4.12 Context diagram of SecureNet VPN

97

Figure 4.13 Level 0 of SecureNet VPN

98

Chapter 5

System Design

5.1 Introduction

In this chapter, the system architecture will be discussed, focusing on a high-level

overview of the system. Each component of the system will be discussed which include

Client Frontend, Centralized backend, VPN server and Security Concern. In this chapter

we will able to understand how each component working with each other and showing

the behavior and data flow among each component.

5.2 System Architecture Design

Figure 5.1 System Architecture

The system architecture diagram shows a multi-tiered application. Client frontend,

a centralized backend and multiple remote servers for VPN services which manage by

centralized backend. Here’s the breakdown of each component and their interaction and

99

responsibilities.

5.3 Client Frontend (VPN Client App)

This component represents the frontend of the application which is built by using

Flutter framework. It allows users to interact with the centralized backend for certain

request. This client app is designed with a user-centric approach. Key features such as

clean, easy navigate interface, optimized for various screen sized and performance and

the allow user to establish connection to VPN easily.

 Figure 5.2 Client Frontend

 Client app will interact with centralized backend with HTTPS request such as user

management and authentication, discover available VPN services and fetching

configuration for establish connection to VPN service. While the centralized backend

will authenticate and authorized frontend to validate user credentials and send back

appropriate response to frontend such as VPN configuration, available country list and

user information.

100

Figure 5.3 Client Frontend 2

In order to establish connections to VPN server, necessary flow for authentication

and authorization been design as image above. Client first needs to request permission

from centralized backend and get back response from backend such as “Granted” or

“Denied” based on user’s allow usage of the services. If user is denied for connection

the client app will show pop up to inform user that they are not allowed to establish

connections for certain reason such as credential issue and usage issue. If user is granted

to establish connection, the VPN library module which integrated with the client app

will establish connections to the VPN server based on the configuration such as IP

address, port of the service, protocol, authentication and encryption algorithm and other

necessary network setting.

5.4 Centralized Backend

 The centralized backend is built by using Nodejs with express as backend and

working with MongoDB, the NoSQL for handing request from frontend as we discussed

in client frontend such as user login, register, authentication, authorization, response

back available VPN server list and VPN configuration for client. All the APIs of the

backend are designed as Restful API ensuing efficient and organized communication

between client frontend and backend. The centralized backend also has the capability

to granted client app to establish connection to the VPN services. The centralized

backend manages users group using stateless authentication which implement by using

JWT (JSON Web Tokens).

101

Figure 5.4 Centralized Backend 1

Figure 5.5 Centralized Backend 2

Beside handling frontend request, the centralized backend will also manage the

remote VPN server such as request VPN server to generate or reading configuration file

based on request from client app and then storing configuration from the VPN server

into the database for better performance when handling with user request in future.

Additionally, the centralized backend implements robust error handling to maintain

system stability. By efficiently managing these tasks, the centralized backend able to

ensure the system operated smoothly and enhancing overall reliability and performance

when handling request.

102

5.5 VPN Server

 The remote VPN server are instance on Amazon Web Service. Each of the instance

have 2 important module, OpenVPN library for providing VPN services and a

microservices construct with NodeJS and Express framework for listening request from

the centralized backend. The responsibilities for instance include providing VPN

services connection for client app and listen request from the centralized backend for

some certain tasks such as generate new configuration for new client, read and return

configuration to the centralized backend.

Figure 5.6 VPN Server

The microservices within the instance of VPN server, will keep listening request

from centralized backend. When centralized backend sends a request to it, it will

execute some script to run some system command in order to invoke OpenVPN library

to generate new configuration file for client. After VPN library generated the new

configuration file. The content of the file is read and response back to centralized

backend for further action such as send to client or storing within database. After client

able to fetch the configuration file, they will able to establish connection to the VPN

server.

103

5.6 Security Considerations

Figure 5.7 Https

All the communication between client frontend, centralized backend, and VPN

server (microservices) are based on HTTPS protocol which ensure secure

communication between each component which able protect data from being

intercepted or tampered with during transit between components.

Figure 5.8 Communicate via VPN tunnel

While for the connection between client frontend and the VPN server, all the traffic

will be encrypted through the tunnels establish between clients and VPN server. The

tunnels create a secure, encrypted path for all traffic between client and the VPN server

which ensures any data transmitted through the VPN tunnel. This encryption safeguards

sensitive information preventing eavesdropping and man-in-the-middle attacks. This

encryption safeguards all communications, enhancing security and privacy by masking

users' IP addresses and activities. The direct, secure connection via encrypted VPN

tunnels ensures robust and protected communication exclusively between the client

frontend and the VPN server.

5.7 Conclusion

In this chapter, we had provided an in-depth overview of our system architecture

104

including its structure and how each component within it interacts with the others.

These components included a Client Frontend, a Centralized Backend, and multiple

remote VPN servers which collectively ensure that the entire system runs smoothly.

The client frontend built using flutter, offers a user-friendly interface that allows

users to easily navigate and interact with the VPN services and it also handles user

interaction and communicates with the Centralized Backend via HTTPS for tasks such

as authentication, and fetching VPN configurations.

The Centralized Backend, developed using Node.js and Express, manages user

authentication and authorization, processes requests from the Client Frontend, and

coordinates with the VPN servers, and its use MongoDB for efficient data handling and

employs JWT for secure stateless authentication. Additionally, it implements robust

error handling to ensure system stability and performance.

The VPN Servers which hosted on Amazon Web Services, run instances with

OpenVPN library and a Node.js-based microservice architecture. It provide VPN

connectivity and respond to configuration requests from the Centralized Backend. The

VPN servers generate and manage VPN configurations, which are then communicated

back to the backend and subsequently to the client.

By integrating these components, the system ensures a secure, reliable, and

efficient VPN service that meets user needs while maintaining high standards of

security and performance. The clear separation of concerns and the use of secure

communication protocols enhance the overall robustness of the system, providing a

seamless and protected user experience.

105

Chapter 6

IMPLEMENTATION

6.1 Introduction

This chapter outlines implementation of SecureNet VPN application, which

involved, frontend, centralized backend, VPN Server, microservices on VPN server and

security configuration. Through this chapter all the implementation of important

module and consideration will be discussed and clarified.

6.2 Frontend (VPN Client Application)

Our client frontend is built by Flutter framework. In this section, we will discuss

the important component which contribute heavily to this VPN application.Before

development of each component, we need to undergo a series of initialization setting of

the flutter project, which include

1. Initialization of flutter project

2. Design of user interface

3. Installation of required fonts

4. Preparation of necessary asset such as icons or images for UI design

5. Creation of independent component which avoid code redundancy and improve

maintainability

6. Define application navigation and routes to different section of the application

Next, we will discuss about the important module or library that contribute heavily

to the frontend application.

6.2.1 Input Validation

Input Validation ensures that the data entered by the user meets certain

criteria before we processed the data. This is crucial for security and data

106

integrity, and it also reduces the stress of backend when processing the data.

We utilize the “Form” widget in flutter along with the “TextFormField” and

the validation functions which natively provided by the “Form” widget to

achieve validation functions for common requirements like email and

password validation.

6.2.2 JSON Web Token

The main purpose for the JWT is for stateless authentication and

information exchange. JWT allows the application authenticate users

without maintain session data on server. In our application, user will receive

a JWT after login which able use to prove their identity on subsequent

request, which achieving a stateless architecture.

JWT also able to securely transmit information between frontend and

backend. Backend able to inject payload in the token to helping frontend

for displaying important information to the users and allow frontend to

execute certain logic based on the information in the payload.

6.2.3 Secure Storage

For sensitive information such as the JSON Web Token, OpenVPN

configuration and user information, we will be storing it using secure

storage for secure and persistent storage. Flutter Secure Storage is a storage

solution specifically designed to handle sensitive data securely, it able

encrypt the data storing within it with using encryption protocol such as

AES encryption which providing an additional layer of security.

By using secure Storage, we can safely store critical information like JWT

which used for authenticating and authorizing user session, as well as

107

OpenVPN configurations that is crucial for establish VPN connections. For

user information, which include personal and sensitive information will

also be protected using secure storage.

6.2.4 Background service

In order to enhance functionality and user experience of the application, we

will integrate background services for handling specific task. The

background services will either run in background or foreground based on

different condition and usage of the application. The use case of background

services in our application is for monitor user’s connections time to the

VPN services. It able to control the connections of the VPN services based

on the usage quota allows for users, if typical users had exceeded their

allows quota, for example exceed predefined allow connection time. The

background services will turn off the connections automatically. The

background services will also run-in foreground in form of notification

banner when user is connected to the VPN services to display necessary

information and notify user that VPN services is currently connected on the

mobile.

6.2.5 OpenVPN Library

The OpenVPN module is the most important component in the frontend

application. It provides ability to establish connection to VPN services

which based on OpenVPN protocol. This library is built on top of 2 popular

open-source project on GitHub, “ICS-OpenVPN” and “OpenVPN-Flutter”.

The ICS-OpenVPN is the native module allowing android establish

connection without root access to OpenVPN services. This repository had

contributed heavily to many OpenVPN projects, while the OpenVPN-

flutter is another repository build on top of the ICS-OpenVPN core module

which bridging the native code of ICS-OpenVPN to compatible with Flutter

108

environment.

The library able to handles various aspect of VPN connectivity which

including supports multiple methods such as username/password and

certificate-based authentication. It also utilized strong encryption protocols

to ensure secure data transmission and manages the VPN connection

lifecycle including establishment, maintenance, and termination of the

connections.

Although these 2 libraries are considered popular library, but for

OpenVPN-flutter, since this library is still new and undergo maintenance,

it still has many issues and problems need pay attention to. In our

application, we had made some modifications and customization to suite

the library to meet our own requirements. The original capability of the

OpenVPN-Flutter library was to read configuration files. We have

enhanced it to read configuration data directly from variables, providing

greater flexibility and integration with dynamic configuration sources.

By utilize these 2 libraries we able to ensures robust, secure, and user-

friendly VPN connectivity, enhancing the privacy and security of user data.

6.2.6 Error Handling

Effective error handling is essential for ensuring smooth and reliable user

experience in our application, especially when our application needs

dealing with various backend services such as login, registration, fetching

available country list and VPN connections.

6.2.7 VPN Connection Errors

109

In our application, handling VPN-specific errors involves managing

various connection states and failures

1. Connection Status

The application will display the connections status during or after

establishing connection to VPN services

2. Connection Error

The application will display error message if any occurs error and will

prompt user to retry again or try again later

3. Connection Timeout

The application will display error message indicate there is connection

timeout issue and will prompt user to retry again or try again later

4. Connection Drops

The application will display error message indicate connection drops

and will automatically retry to reconnect to the VPN services and update

connections status.

6.2.8 HTTP Request Errors

Handling HTTP request errors involves ensuring that users are promptly

informed of any issues with their requests. When an error occurs, the

frontend will display clear and user-friendly messages, such as notifying

users of network connectivity issues, server errors, or request timeouts. This

approach helps users understand the nature of the problem and provides

guidance on what actions they might need to take, such as checking their

internet connection or retrying the request.

6.3 Centralized Backend

The centralized backend is built by using Node.js and express.js framework to

implement backend functionality because of their efficiency, scalability, and ease of use

110

in handling asynchronous operations, making them ideal for building fast and

responsive web applications.

6.3.1 Authentication

Authentication is a critical component in securing the centralized backend. It

ensures that only authorized users can access the system and resources. The major usage

of centralized backend is handled user management such as registration, login, and

access control.

In our application, when a user success login themselves, the backend will send

back a JSON Web Token to frontend, with information such as user information in

payload by using sign() method in jsonwebtoken library. This token is set to expired in

7 days, during the period, user able to send request that required authentication to

backend to identify themselves and get authorized from backend for example action

such as reset password, request permission for VPN connection and fetch VPN

configuration data. The backend will use verify() method in jsonwebtoken library to

verify the validity of the token with the secret key which use to sign the token. For each

API endpoint which required validation of token will pass through a middleware which

responsible for validating the token.

Figure 6.1 JSON Web Token

111

Figure 6.2 Token Validation

 For certain request such as registration and reset password, the application will

have a 2FA authentication before executing the request. The first authentication is

through the email and password provided by user while second factor will through

email One Time Password (OTP) to authenticate themselves. The one time password

will send to user provided email, and with the help of nodemailer ,our backend can send

email and the one time password to user’s email and user need to input the one time

password at the frontend application.

 In our application we use email provided Zoho with nodemailer for sending email.

The reason of using Zoho is due to Zoho had provided offer for creating email with

their domain name and its easy configuration which provided clear documentation and

support for SMTP and IMAP configuration making it easy to integrate with nodemailer

for sending email programmatically beside that nodemailer documentation also

recommend users to use other mail services rather than Gmail. While Gmail might face

some restriction due to its own policy issue.

Figure 6.3 Mail transporter

112

Figure 6.4 Send Main Function

Figure 6.5 One Time Password Email

6.3.2 Usage Tracking

The is an endpoint in our backend which will trigger whenever user try to establish

connection to VPN services, this endpoint helps track how long users are using the

service each day. When a user connects, the frontend application will provide a time

indicating when they are disconnected. The system uses this information to calculate

how much time they spent online. If it's the user's first connection of the day, the system

starts tracking from that point. As the user continues to connect and disconnect, the

system keeps adding up their usage time. Non-premium users have a daily limit on how

long they can use the service, while premium users can use it without any limits. The

response from the backend will also tell the user if they can continue using the service

and how much time they have left for the day.

113

6.3.3 Schedule

 The backend has a daily schedule for reset daily usage for free tier user which they

only allow to establish connection to VPN services one hour every day. Node Cron

module is a tiny task scheduler in pure JavaScript for Node.js. This module allows us

to schedule task in Node.js environment. In our application Cron are used for reset daily

usage so free tier usage can enjoy the services every day.

Figure 6.6 Reset Task

6.3.4 Database

Our backend system works with MongoDB, which is a powerful NoSQL database

that can handle wide range of data structure and scales well for many applications. In

our application we had define multiple Schema of the collections in database with the

help of using Mongoose. Mongoose is an Object Data Modeling (ODM) library for

MongoDB and Node.js, providing a straightforward, schema-based solution to model

our application data.

1. OTP Collection

This Collection storing the One Time Password which send to user’s email for

two factor authentication. When user try to validate the OTP, the application will

retrieve the OTP from this collection. This collection had been set an expired time

of 5 minutes which the record will be remove from the collection after expired.

Table 6.1 OTP Collection

Column Type Required Default Expired

114

_id String True Null N/A

otp String True Null N/A

createdAt Date False DateNow() 5 minutes

2. Temporary User Collection

This Collection will be storing user’s credential such as email and password

temporary. The purpose for this collection is working with the OTP Collection, for

storing user information temporary before they successfully validate the One Time

Password. In Our application, for action such as registration, reset password, user

need input email and password and send to backend, after backend received it will

generate an One Time Password, then will store user credential in this collection

and the One Time Password in OTP Collection. Temporarily storing user

credentials and OTPs in separate collections able ensures security and data integrity

by validating user actions like registration and password resets before permanently

saving their information.

Table 6.2 Temporary User Collection

Column Type Required Default

_id String True Null

pass String True Null

createdAt Date False DateNow()

3. User Collection

This collection will store user information permanently after user successfully

pass the verification of the One Time Password. This collection had the record of

user type which either premium or non-premium, and the record of their connection

time and usage. These record majorly use for tracing user’s VPN connections

usages and allow or restrict them based on the record.

115

Table 6.3 User Collection

Column Type Required Default

_id String True Null

pass String True Null

premium Boolean False False

dailyUsage Number False 0

ConnectTime Date False Null

DisconnectTime Date False Null

createdAt Date False DateNow()

4. VPN Configuration Collection

This collection stores the VPN configuration of each user for each country.

When typical user send request to get a configuration for the VPN. The backend

will first check this collection, if not exist in this collection, backend will send

request to microservice on VPN server to generate new configuration for the user

and then store in this collection. If configuration exist, backend will direct retrieve

the record and send to user for better performance instead fetch from VPN server

again.

Table 6.4 VPN Configuration Collection

Column Type Required Default

user String True Null

country String True Null

config String True Null

createdAt Date False DateNow()

6.3.5 API List

Table 6.5 shows the breakpoints, HTTP methods, parameters and description of the

116

different routes of backend.

Table 6.5 API List

Endpoint HTTP

method

Parameter Description

/register POST {email,password} Store user credential and One

Time Password temporary and

send One Time Password to

user’s email.

/validate POST {email,otp} Validate the One Time

Password, and store user

credential as permanent if

success.

/login POST {email,password} Endpoint for user login,

checking credential and

compare from database.

/vpnStatus GET - Endpoint for fetching available

VPN country list and latency.

/vpnConfig GET - Endpoint for request VPN

configuration.

/validateM GET - Validate email exist in

database, and initiate reset

password flow.

/validateO POST {email,otp} Validate One Time password

for reset password scenario

/resetPass POST {email,password Endpoint for reset password,

and update the record.

/resendO GET - Resend One Time Password

117

/goPremium GET - Endpoint for upgrade user to

premium status.

/connect POST {token,disconnectTime} Endpoint use for checking user

status and allow usage to

determine granted or denied

connect to VPN serives.

6.4 Microservice on VPN Server

 A microservices built with Node.js and express.js is deploy with each VPN server.

The purpose of the microservices is to listen request from centralized backend, generate

VPN configurations and read the configuration.

6.4.1 Generate Configuration File

The microservice have the ability to generate VPN configurations by using the

child-process module from Node.js. This module able to invoke the Linux command

to read the autogenerate script to generate configuration and passing parameter for

necessary modifications on the configuration.

Figure 6.7 Generate Configuration File

118

6.4.2 Read Configuration File

Child-process module from Node.js provide ability to use Linux command. After

generate configuration ,it able to read the file through Linux command and return the

result as string for further processing.

Figure 6.8 Read Configuration File

6.4.3 API List

The microservice only have 2 endpoints since it designed for generate and read

configuration file. Below is the API list of microservice.

Table 6.6 Microservices API List

Endpoint HTTP

method

Parameter Description

/getConfig POST {clientName} Invoked system to run script to

generate VPN configuration

and return the configuration

/readConfig GET - Read configuration and return

the configuration

6.5 VPN Server

The setup of the VPN Server will be discussed in this section. Our VPN server

hosted on EC2 Amazon Web Service for public access. The preparation, installation and

119

configuration step and details will be explained in this section.

6.5.1 Preparation for Installation

OpenVPN library are the main component for providing VPN services in this

project. Ubuntu LTS 22, Amazon Web Services and the SSH client MobaXterm will be

the use in this project.Prerequisite for configure OpenVPN are as below:

1. A remote instance with Linux as operating system.

2. Attach public IP to the instance.

3. Planning and configuration firewall of the instance.

4. A SSH client for connect to the instance.

6.5.2 Installing OpenVPN

Due to complexity of manual installation of the OpenVPN, is not recommend to

manual install the OpenVPN library, we will be installing OpenVPN with the help of

installation script which found on the GitHub. This script will automatically setup all

the necessary configuration for OpenVPN. The steps are as below:

1. Download script and run the script

sudo wget https://git.io/vpn -O openvpn-install.sh && sudo bash openvpn-

install.sh

2. Answering all the prompt questions

Figure 6.9 Configure IP address

Figure 6.10 Select Protocol

120

Figure 6.11 Assign DNS

3. OpenVPN Installation Done.

The script will setup 2 item. One is OpenVPN library, and the other is the certificate

required by the OpenVPN in order to establishing secure connection. The script will

first create a Certificate Authority (CA) and generated a server key and certificate

request for setting up an OpenVPN server using Easy-RSA. The CA certificate was

saved at /etc/openvpn/server/easy-rsa/pki/ca.crt. The server certificate request at

/etc/openvpn/server/easy-rsa/pki/reqs/server.req, and the server key at

/etc/openvpn/server/easy-rsa/pki/private/server.key. It then signed the server

certificate request using the CA, resulting in the creation of the server certificate at

/etc/openvpn/server/easy-rsa/pki/issued/server.crt. Additionally, an inline file

containing both the certificate and key was created at /etc/openvpn/server/easy-

rsa/pki/inline/server.inline.

121

Figure 6.12 OpenVPN Server

Setting up certificates is crucial for establishing a secure and trusted

communication channel. Certificates ensure that the server and clients can authenticate

each other, preventing unauthorized access. The CA certificate acts as a trusted root

which will verifying the authenticity of server and client certificates. The server

certificate and key encrypt data transmitted over the VPN, safeguarding it from

eavesdropping and tampering.

6.5.3 Post-Installation (Server Configuration)

The OpenVPN server configuration file will locate at

/etc/openvpn/server/server.conf. The server.conf file is the configuration file for the

OpenVPN server. It specifies all the necessary settings and parameters to establish and

manage the VPN connections. This includes network settings, security configurations,

and paths to certificate and key files. Essentially, it defines how the OpenVPN server

should operate, including the port to listen on, encryption methods, authentication

mechanisms, and other essential server behaviors. We able to modify the file to meet

own requirement if necessary. Below is the content of the configuration file.

122

Figure 6.13 OpenVPN Server Configuration

6.5.4 Post-Installation (Client Configuration)

To create a new configuration file for client, simply rerun the auto installation script

and it will generate a client configuration file automatically. Similar with the server

certificate,the client certificate request was generated at /etc/openvpn/client/easy-

rsa/pki/reqs/client.req, and the client key at /etc/openvpn/client/easy-

rsa/pki/private/client.key. The client certificate request was then signed using the CA,

resulting in the creation of the client certificate at /etc/openvpn/client/easy-

rsa/pki/issued/client.crt. Additionally, an inline file containing both the client

certificate and key was created at /etc/openvpn/client/easy-rsa/pki/inline/client.inline.

After certificate generated, the client configuration will also be generated,the certificate

will be attached to the configuration file and client now able to establish connection to

VPN server with this configuration file. The content of the client configuration file are

as below.

123

Figure 6.14 OpenVPN Client Configuration

6.5.5 Integration with DNS Ads Block Pihole

Pi-hole is a network-wide ad blocker that acts as a DNS sinkhole, preventing

ads and tracking scripts from being downloaded and displayed on any device

connected to the network. By functioning as a DNS server, Pi-hole intercepts

domain requests and blocks those associated with ads or tracking, effectively

filtering unwanted content before it reaches your devices. It offers privacy

protection, customizable blocklists, and a web interface for monitoring and

managing network activity. Pi-hole is efficient, requires minimal resources, and

provides ad-blocking benefits to all devices on the network without the need for

individual software. Below is the configuration and installation steps.

1. First we need to install the pihole using an installation command.

curl -sSL https://install.pi-hole.net | bash

2. Ensure Static IP

124

Figure 6.15 PiHole Installation

3. Select tun0

Figure 6.16 Interface Selection

4. Select upstream DNS provider

125

Figure 6.17Select DNS Provider

5. Enable Query login based on own requirement. In this project, we will choose no

Figure 6.18 Logging selection

6. Modify OpenVPN server configuration file.

 sudo vim /etc/openvpn/server/server.conf

7. Modify the line of push "dhcp-option to 10.8.0.1"

126

Figure 6.18 OpenVPN server configuration

8. Restart VPN server

 sudo systemctl restart openvpn-server@server

Now the ads block have successfully integrated with the VPN server and our VPN

have the capability to filter ads content based on DNS.

6.5.6 Security configuration

Securing our application is crucial to protect user data and ensure reliable service.

Proper configuration of HTTPS and firewall rules is a key part of this security process.

In this section, we will discuss why these measures are important for our application,

and then we will dive into the detailed steps to configure HTTPS and set up a firewall

for our AWS instances.

6.5.7 Configuration for HTTPS using CertBot

In order to host our application using HTTPS, our application need a valid

SSL/TLS certificate and a domain name. Below is the step to configure HTTPS

communication

127

Figure 6.20 Example Domain Name

First, we need to select a domain name for our application, domain name can be

acquired from domain name provider such as (GoDaddy, Namecheap, Google

Domains). After acquired a domain name, we need to configure DNS Record, we need

to set up a prefix for our domain name and the IP address the domain will point to our

remote instance which has a Public IP.

Figure 6.21 DNS Record with prefix www point to 18.139.182.111

Figure 6.22 Instance on AWS with IP address 18.139.182.111

After the configuration, the domain name www.magicconchxhell.xyz will point to

the IP address 18.139.182.111. But currently our application is still considered as not

secure since we still lack valid SSL/TLS certificate to establish HTTPS connection.

http://www.magicconchxhell.xyz/

128

Figure 6.23 Browser warning

Next, we need to generate valid SSL/TLS certificate with the help of Certbot.

Certbot is a free, open-source software tool for automatically using Let’s Encrypt

certificates on manually administrated websites to enable HTTPS. Our remote server

using Linux Ubuntu, below are the step to configure certbot with Ubuntu.

1. Install Certbot

Figure 6.24 Certbot Installation

2. Execute the following instruction on the command line on the machine to ensure

that the certbot command can be run.

Figure 6.25 Command Validation

3. Run the Certbot

 Figure 6.26 Execute Certbot

4. Enter Domain Name

Enter the domain name for the certificate, and answer other questions prompt by

129

Certbot, after that Certbot will be able to generate a valid SSL/TLS Certificate for

HTTPS hosting purpose.

5. Host the certificate

Next, we need, host the certificate generated by certbot in our application.

 Figure 6.27 Serve Certificate

6. Test the application

Now our application is hosting using HTTPS.

130

 Figure 6.28 Https Validation

6.5.8 Configuration for Firewall on AWS Security Group

Firewall is important for ensuring the security and integrity of our application

(instance). In AWS, firewall configurations are managed through the Security Groups

which are a set of traffic inbound and outbound rules attached to an instance. Below are

the rules attached to the VPN server and Centralized Backend.

Centralized Backend

Table 6.7 Server Inbound Rules:

Type Protocol Port Range Source

HTTP TCP 80 0.0.0./0

HTTPS TCP 443 0.0.0./0

SSH TCP 22 0.0.0./0

Table 6.8 Server Outbound Rules:

Type Protocol Port Range Source

ALL ALL ALL 0.0.0./0

VPN Server

Table 6.9 VPN Inbound Rules

Type Protocol Port Range Source

HTTP TCP 80 0.0.0./0

HTTPS TCP 443 0.0.0./0

UDP UDP 1194 0.0.0./0

UDP UDP 1194 ::/0

SSH TCP 22 0.0.0./0

Table 6.10 VPN Outbound Rules:

Type Protocol Port Range Source

131

ALL ALL ALL 0.0.0./0

Explanation of each Rules

1. HTTP (Hypertext Transfer Protocol)

HTTP is the foundation of any data exchange on the Web, it used for transmitting

hypertext request and information on internet. The reason for exposing HTTP port

in our application is ensure that the request which send using HTTP can be capture

and we able to redirect that request to HTTPS automatically for secure the

communication. This method able to improve and provide a smoother request

experience.

2. HTTPS (Hypertext Transfer Protocol Secure)

HTTPS ensures that the data exchanged between user’s browser and web server is

encrypted, which able to protect against data breaches and man in the middle attack.

HTTPS is the critical component for secure communication between client and

server. In Our application, all the requests are transmit using HTTPS protocol

between client, centralized backend, and VPN Server.

3. SSH (Secure Shell)

Secure Shell is the protocol which used to securely access and manage the remote

servers over network. It able to provides secure channel for communication between

client and server, by encrypting data transmitted between them. SSH allow us to

remote manage and configure our server over the network

4. UDP 1194 (Port for OpenVPN Connection)

The port 1194 which using UDP protocol is the port for establish connection with

the VPN server. By default, OpenVPN use UDP protocol listen on port 1194 for

communication. OpenVPN can be configured to use TCP or other port while UDP

132

1194 is the standard and the most commonly used port for OpenVPN connections.

Chapter 7

System Testing

7.1 Introduction

This chapter documents the testing activities of the project. It includes the test plan

which all tests have been complete and compare to actual and expected results. The

testing cover for this project included the frontend application, backends APIs and VPN

testing.

7.2 Test Plan

Test Plan as a critical document which aims to enhance the efficiency and

effectiveness of testing process. It includes details test scope, test item, test strategy,

entry and exit criteria. The test plan will outline the testing process, ensuring that all

activities are carried out accurately and comprehensively. The main goal of this test

plan is to detect system errors, failures, correct the error and ensure stability of the VPN

application. Upon test closure no critical bug reports should be issued.

7.2.1 Test Scope

The test scope encompasses the frontend and backend component of the application.

The testing for frontend and backend will be tested independently which frontend

application will focuses the test on the interaction and functionality while backend will

focus test on the functionality of the backend API endpoint. The following are the test

activity that will be conducted for this project:

1. Unit testing of the mobile application.

2. Unit testing of the API.

3. VPN testing

7.2.2 Test Strategy

133

The testing strategy for this project is focused on behavioral testing strategy and

functional testing strategy. Behavioral strategy focuses on the external behavioral of the

application which test on the frontend mobile application while functional testing will

focus on the functionality of the VPN connection, Server, and API endpoint of entire

system.

7.2.3 Test Condition

Unit test was planned for this project which will be carried out by developers with

various testing tools.

Entry Criteria

The testing can begin when the entry criteria listed are met.

1. The entire test project has already been scheduled in detail.

2. All features to be tested were completed and functioned stably.

3. All relevant resources, such as tools and devices, have been set up in the test

environment.

Exit Criteria

The testing can end when the exit criteria listed are met.

1. All test cases have been executed and passed.

2. All defects found during the test phase are corrected and closed.

3. No critical defects were outstanding.

4. No changes to the codes and design.

7.3 Unit Test

Unit testing is a software testing method where individual units or components of

an application which are tested in isolation. The primary purpose of unit testing is to

ensure that each part of the software behaves as expected. In this project, unit test will

perform on both frontend application and backend API endpoint, purpose of this unit

134

test to ensure the functionality and quality of the system. Both components will be

tested individually which able to narrow the scope of defect detection and identifying

possible root cause of problem efficiently and effectively.

135

7.3.1 Mobile Application Unit Test

The project performed unit test by manually inserting values clicking buttons and conducting various interaction with the mobile application

within emulator. This testing is purpose to test the functionality and error handling of the frontend mobile application.6 test case were designed to

test the functionality of the mobile application. The actual and expected results of the tests were compared and documented.

Table 7.1 Test Case APP-1 - Register

Test Case APP1 Test Case Title Register

Test Case Overview Test register functionality of mobile application

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

Register an account

with a valid email,

password and confirm

password

1. Enter email test@gmail.com HTTP request sent. HTTP request sent. Pass

2. Enter password Test123@

3.Enter confirm password Test123@

4. Tap register button -

Register account with

empty input field.

1. Tap register button - Error message display

without sending HTTP

request.

Error message display

without sending HTTP

request

Pass

Register account with

valid email, password

1.Enter email test@gmail.com Error message display

without sending HTTP

Error message display

without sending HTTP

Pass

2. Enter password Test123@

136

but not match confirm

password.

3. Enter confirm password Test122@ request. request.

4.Tap register password -

Table 7.2 Test Case APP-2 - Login

Test Case APP2 Test Case Title Login

Test Case Overview Test login functionality of mobile application

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

Login account with

valid email and

password.

1. Enter email test@gmail.com HTTP request sent. HTTP request sent. Pass

2. Enter password Test123@

3. Tap register button Test123@

 -

Login account with

empty input field.

1. Tap register button - Error message display

without sending HTTP

request.

Error message display

without sending HTTP

request

Pass

Table 7.3 Test Case APP-3 – Forget Password

Test Case APP3 Test Case Title Forget Password

Test Case Overview Test edit password functionality of mobile application

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

Valid email and new 1. Enter email test@gmail.com HTTP request sent. HTTP request sent. Pass

137

password match with

confirm password

2. Tap proceed button -

3. Enter confirm password Test123@

4.Enter new confirm

password

Test123@

5. Tap reset button -

Not registered email 1. Enter email test@gmail.com Error message display

without sending HTTP

request.

Error message display

without sending HTTP

request

Pass

2. Tap proceed button -

Valid email and new

password but not

match with confirm

password

1. Enter email test@gmail.com Error message display

without sending HTTP

request.

Error message display

without sending HTTP

request.

Pass

2. Tap proceed button -

3. Enter confirm password Test123@

4.Enter new confirm

password

Test1234@

5. Tap reset button -

Table 7.4 Test Case APP-4 –Logout

Test Case APP4 Test Case Title Logout

Test Case Overview Test logout functionality of mobile application

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

Logout Button 1. Press logout button - Navigate to login page Navigate to login page Pass

138

Table 7.5 Test Case APP-5 –Select Country

Test Case APP5 Test Case Title Select Country

Test Case Overview Test select country functionality of mobile application

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

Select country with

backend server in

working condition

1. Press select country

button

- HTTP request sent. HTTP request sent. Pass

2. Tap selected country -

Select country with

backend server error

condition

1. Press select country

button

- Error message display Error message display Pass

2. Tap selected country -

Table 7.6 Test Case APP-6 –Connect to VPN

Test Case APP6 Test Case Title Connect to VPN

Test Case Overview Test connect to vpn functionality of mobile application

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

Connect to VPN and

the daily quota does

not reach

1. Press connect button -

HTTP request sent.

Established

connection to VPN

HTTP request sent.

Established

connection to VPN

Pass

Connect to VPN and

the account already

reach daily quota

1. Press select country

button

-

HTTP request sent. A

message prompt to

informed quota

HTTP request sent. A

message prompt to

informed quota

Pass

139

information. Does not

establish connection to

VPN

information. Does not

establish connection to

VPN

140

7.3.2 APIs Unit Test

For testing of backend APIs, Postman APIs development tools was used for this testing. Postman allows to send HTTP request to API to be

tested and obtained the responses.11 test case are design for the backend APIs. The actual and expected result of tests were compared and

documented.

Table 7.7 Test Case API-1 –Register

Test Case API-1 Test Case Title Register

Test Case Overview Test Register functionality of API

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

Register with valid

email and password.

1. Select Post method - New record inserted to

database and one time

password send to

register email.

New record inserted to

database and one time

password send to

register email.

Pass

2. Enter email Test@gmail.com

3. Enter password Test123@

4. Send Http Request -

Register with valid

email registered

before

1. Select Post method - API response Email

have been registered

API response Email

have been registered

Pass

2. Enter email Test@gmail.com

3. Enter password Test123@

4. Send Http Request -

Server error 1. Select Post method - API response Error

during registration

API response Error

during registration

Pass

2. Enter email Test@gmail.com

3. Enter password Test123@

141

4. Send Http Request -

Table 7.8 Test Case API-2 –Validate One Time Password for register

Test Case API-2 Test Case Title Validate One Time Password for register

Test Case Overview Test one time password verification of API

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

Validate with valid

one-time password

1. Select Post method - New record inserted to

database and API

response Registration

successful

New record inserted to

database and API

response Registration

successful

Pass

2. Enter email Test@gmail.com

3. Enter one time

password

123456

4. Send Http Request -

Validate with invalid

one-time password

1. Select Post method - API response Invalid

One-time password

API response Invalid

One-time password

Pass

2. Enter email Test@gmail.com

3. Enter one time

password

123456

4. Send Http Request -

Server error 1. Select Post method - API response Error

during OTP validation

API response Error

during OTP validation

Pass

2. Enter email Test@gmail.com

3. Enter one time

password

123456

4. Send Http Request -

142

Table 7.9 Test Case API-3 –User Login

Test Case API-3 Test Case Title User Login

Test Case Overview Test login functionality of API

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

Login with valid

email and password

1. Select Post method - API response Login

successful and return a

token

API response Login

successful and return a

token

Pass

2. Enter email Test@gmail.com

3. Enter password 123456

4. Send Http Request -

Login with email not

registered before

1. Select Post method - API response Email

not registered

API response Email

not registered

Pass

2. Enter email Test1@gmail.com

3. Enter password 123456

4. Send Http Request -

Login with valid

email but invalid

password

1. Select Post method - API response

Password Error

API response

Password Error

Pass

2. Enter email Test1@gmail.com

3. Enter password 12345677

4. Send Http Request -

Server error 1. Select Post method - API response Error

during login

API response Error

during login

Pass

2. Enter email Test1@gmail.com

3. Enter password 123456

4. Send Http Request -

143

Table 7.10 Test Case API-4 –Resend One time password

Test Case API-4 Test Case Title Resend One time password

Test Case Overview Test login functionality of API

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

Resend one time

password

1. Select GET method - One time password

sends to email. API

response One time

password resend to the

entered email

One time password

sends to email. API

response One time

password resend to the

entered email

Pass

2. Enter email Test@gmail.com

3.Send Http request -

Server error 1. Select GET method - API response Error

during resend one time

password

API response Error

during resend one time

password

Pass

2. Enter email Test@gmail.com

3.Send Http request -

Table 7.11 Test Case API-5 –Fetch VPN country information

Test Case API-5 Test Case Title Fetch VPN country information

Test Case Overview Test Fetch VPN country information functionality of API

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

Query the VPNstatus

endpoint

1. Select GET method - API response status of

VPN country

API response status of

VPN country

Pass

2. Send Http request -

Server error 1. Select GET method - API response Error

getting information

API response Error

getting information

Pass

2. Send Http request -

144

Table 7.12 Test Case API-6 –Fetch VPN configuration

Test Case API-6 Test Case Title Fetch VPN configuration

Test Case Overview Test Fetch VPN configuration of API

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

Query the getconfig

endpoint with valid

token

1. Select GET method - API response VPN

configuration

API response VPN

configuration

Pass

2. Enter country Test@gmail.com

3. Enter token token

4. Send Http Request -

Query the getconfig

endpoint with invalid

token

1. Select GET method - API response invalid

token

API response invalid

token

Pass

2. Enter country Test@gmail.com

3. Enter token Invalid token

4. Send Http Request -

Table 7.13 Test Case API-7 –Validate Email for reset password

Test Case API-7 Test Case Title Validate Email for reset password

Test Case Overview Test Validate Email for reset password of API

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

With valid email 1. Select GET method - API response status

200 and send one time

password to email

API response status

200 and send one time

password to email

Pass

2. Enter email Test@gmail.com

3. Send Http Request -

With invalid email 1. Select GET method - API response 409 API response 409 Pass

145

2. Enter email Test11@gmail.com Email not registered Email not registered

3. Send Http Request -

Server Error 1. Select GET method - API response error

occur during validate

API response error

occur during validate

Pass

2. Enter email Test@gmail.com

3. Send Http Request -

Table 7.14 Test Case API-8 –Validate One time password for reset password

Test Case API-8 Test Case Title Validate One time password for reset

password

Test Case Overview Test Validate One time password for reset password of API

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

With valid email and

one time password

1. Select POST method - API response

validation successful

API response

validation successful

Pass

2. Enter email Test@gmail.com

3. Enter One time

password

123456

4. Send Http Request -

With valid email and

invalid one-time

password

1. Select POST method - API response invalid

one-time password

API response invalid

one-time password

Pass

2. Enter email Test@gmail.com

3. Enter One time

password

1234567

4. Send Http Request -

146

Server error 1. Select POST method - API response error

during validation

API response error

during validation

Pass

2. Enter email Test@gmail.com

3. Enter One time

password

123456

4. Send Http Request -

Table 7.15 Test Case API-9 –Reset password

Test Case API-9 Test Case Title Reset password

Test Case Overview Test Validate One time password for reset password of API

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

With email and new

password

1. Select POST method - API response reset

successful

API response reset

successful

Pass

2. Enter email Test@gmail.com

3. Enter password 124456

4. Send Http Request -

Server error 1. Select POST method - API response error

occur during reset

API response error

occur during reset

Pass

2. Enter email Test@gmail.com

3. Enter One time

password

1234567

4. Send Http Request -

147

Table 7.16 Test Case API-10 –Change to premium status

Test Case API-10 Test Case Title Change to premium status

Test Case Overview Test Change to premium status of API

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

With valid token 1. Select GET method - API response upgrade

successful

API response upgrade

successful

Pass

2. Enter token token

3. Send Http Request -

With invalid token 1. Select GET method - API response invalid

token

API response invalid

token

Pass

2. Enter token token

3. Send Http Request -

Server error 1. Select GET method - API response error

occur during upgrade

API response error

occur during upgrade

Pass

2. Enter token token

3. Send Http Request -

Table 7.17 Test Case API-11 –Connect VPN

Test Case API-11 Test Case Title Connect VPN

Test Case Overview Test Connect VPN of API

Test Detail Test Instruction Test Data Expected Result Actual Result Condition

With valid token and

disconnect time

1. Select POST method - API response allow or

denied based on

remaining quota

API response allow or

denied based on

remaining quota

Pass

2. Enter token token

3. Enter disconnect time disconnect time

148

4. Send Http Request -

With invalid token

and disconnect time

1. Select POST method - API response invalid

token

API response invalid

token

Pass

2. Enter token token

3. Enter disconnect time disconnect time

4. Send Http Request -

149

7.4 VPN Test

In this section, we will cover various VPN tests such as DNS leak tests, IP address

and location tests, traffic routing tests, speed tests, and network packet analysis using

Wireshark. These tests are designed to ensure that the VPN is functioning correctly by

verifying that it effectively masks the user's IP address, prevents DNS leaks, routes

traffic securely, maintains satisfactory connection speeds, and properly encrypts data.

By performing these tests, we can confirm the VPN's ability to protect user privacy,

maintain anonymity, and ensure data security while using the internet.

7.4.1 DNS Leak Test

 DNS stands for Domain Name System, which translating human-readable domain

names into IP addresses that computer use to communicate with each other. When using

VPN services, every request as well as the DNS queries should also be routed through

the VPN server instead of our internet service provider (ISP) ‘s DNS server instead. If

the DNS queries is sent to our local internet service provider (ISP), this is considered

as DNS leak. By performing a DNS leak test, we able to tell the effectiveness of the

VPN services and ensures privacy protection for online activities.

 We will test the DNS leak with the help of DNSleaktest website, this website offers

simple test to determine if our DNS request is being leaked. Below shows 2 tests for

the DNS leak, the first image is the test before we establish connection to VPN server

and as the test results shows that, our DNS queries is route to our Internet Service

Provider (ISP) which also indicates that the ISP are aware of our online activities.

 Figure 7.1 DNS Leak Test

150

 Second test is tested when we connected to the VPN services. The results show that

our DNS queries are routed to the DNS servers provided by the same entity that operates

the VPN server. This indicates that our DNS requests are being handled securely within

the VPN's encrypted tunnel, confirming that there is no DNS leak. By routing DNS

queries through the VPN's DNS servers, it able ensures our online activity is kept

private and is not visible to our ISP or any external observers. This setup maintains our

online privacy and anonymity by keeping all aspects of our internet traffic secure.

 Figure 7.2 DNS Leak Test Result

7.4.2 IP Address and Location Test

 IP address and Location test is an effective way to determine if the VPN is

effectively masking our real IP address and location. The main goal of VPN is to mask

the real IP address and location which helps protect the privacy and precenting websites

advertisers and other entities from tacking real identity and location. When connected

to VPN, our traffic all are route through the VPN server first, then the VPN server will

make the request for us and this will resulting the web server only received request from

our VPN server and shows the VPN server IP address instead our real IP address.

151

 Figure 7.3 IP address before connecting to VPN

 Figure 7.4 IP address After connecting to VPN

Figure 7.5 IP address and Location after connected to VPN

 After connecting to VPN server, we will run the test using IPleak website to detect

our current IP address. The result shows our IP address has changes to the VPN server’s

IP address and location which indicates the VPN is masking our real address effectively.

7.4.3 Traffic Routing Test

The traceroute test is conducted after establishing connection to VPN. The purpose of

this test is to understand the path that data packets take from source device to destination

after connecting to VPN.

152

Figure 7.6 Traffic Routing Test

Traceroute Results:

1. First Hop (VPN Server):

➢ Address: ip-10-8-0-1.ap-southeast-1.compute.internal (VPN Server)

➢ Latency: 41 ms

2. Subsequent Hops:

➢ Not detailed as they are not the focus of this summary.

The traceroute results confirms that after establishing the VPN connection, the data

packets are first routed through the VPN server. This is evidenced by the result of the

testing which the first hop of the data packets.

Through the traceroute testing, we can claim that all internet traffic from the source

device is encrypted which protects the data from potential eavesdropping or

interception by unauthorized parties through VPN tunnel. Beside that VPN server able

mask, the sources device’s IP address and providing anonymity and preventing tracking

153

of online activities. By routing through VPN server, it allows user to bypass

geographical restriction and access content that may be blocked or restricted in original

region, since all the data packets are first routed to VPN server first before performing

the actual request as we seen in the testing result.

7.4.4 Speed Test

The speed test is conducted by comparing the speed of network before and after

connecting to VPN services. This aim to analyze the impact and the performance of our

VPN application.

Figure 7.7 Speed Test Before Connect to VPN

Before Connecting to VPN:

➢ Download Speed:111.43 Mbps

➢ Ping :19ms

➢ Server: TM

Figure 7.8 Speed Test after Connect to VPN

154

After Connecting to VPN

➢ Download Speed:100.24 Mbps

➢ Ping :19ms

➢ Server: Amazon

Based on the test results, before connecting to VPN, the test was conducted through

local network. The download speed measured was 111.43 Mbps with a ping of 19 MS,

while after connecting to VPN the speed measured was 100.24 Mbps with a ping of 19

and there is a slight reduction in download speed when connected to the VPN, which is

expected due to the additional overhead of encryption and routing through the VPN

server.

From the result we can say that our VPN application performance and speed is

consider as effective. Our application has the minimal impact on speed indicates that

the VPN maintains a high level of performance which providing security and encryption

without significantly compromising download speeds or increasing latency.

Important Consideration

While the performance of speed of the VPN is consider effective, but the actual

speed can be vary significantly depending on the VPN server’s location and distance

from the original location. Other factors such as server load and network congestion

can also affect the speed and performance of the connection.

7.4.5 Capturing Network Traffic using Wireshark

To verify that the packet during the transmission is encrypted, we will capture and

analyze the packet after connected to the VPN. From the screenshot, we can saw that

the Data payload column contains a brunch of hexadecimal string which represents that,

the content we transmit between the VPN is encrypted and only the intended recipient,

either the VPN client and server can decrypt and read the data.

155

Figure 7.9 Result in WireShark

7.4.5.1 Secure Connection Verification

In order to verify the security of our VPN connection, we will continue the capture

packets during the establishment of the connection. By analyzing the packets, we can

ensure that the communication between the client and server is properly encrypted and

secure. Two critical components in this verification process are the use of the TLS 1.2

protocol and the specific cipher suite employed during the connection.

Wireshark can capture various handshake messages, including the "Server Hello"

packet. This packet is part of the TLS handshake process, where the server

communicates the chosen encryption parameters to the client. By examining the packets,

we can identify the protocols and cipher suites being used by our VPN server to ensure

it meet our security requirements.

From the screenshot we can focus on 2 parameters. The Handshake protocols and the

Cipher suite.

Figure 7.10 Cipher suite

156

1. Handshake Protocol TLS 1.2

TLS 1.2 is the widely recognized and robust version of the Transport Layer Security

protocol. It plays a crucial role in securing the OpenVPN connection by establishing a

secure channel between the client and server. It will perform a series of cryptographic

handshakes between client and server which include key exchange, certificate

verification, and the negotiation of encryption parameters to ensures that the data

transmitted between the client and server is encrypted and protected against

eavesdropping and tampering.

2. Cipher Suite TLS_AES_256_GCM_SHA384

The cipher suite TLS_AES_256_GCM_SHA384 is of paramount importance in

ensuring a secure connection. This suite specifies the algorithms used for encryption,

integrity checking, and hashing. AES_256_GCM- the Advanced Encryption Standard

(AES) with a 256-bit key in Galois/Counter Mode (GCM) ensures that the data is

encrypted, providing confidentiality and integrity. While SHA384-Secure Hash

Algorithm 384-bit is used for hashing, ensuring that the data has not been altered during

transmission.

AES_256_GCM is known for its robust encryption capabilities, while GCM mode

offers additional integrity checks. SHA384 ensures that messages are authenticated and

have not been tampered with, providing a comprehensive security framework.

By capturing and analyzing the "Server Hello" packet with Wireshark, we can

verify that TLS 1.2 is being used along with the TLS_AES_256_GCM_SHA384

cipher suite. These elements are critical in confirming that our OpenVPN connection is

secure by the TLS handshake which provide authentication, encryption, and integrity

verification for packet transmit during the session. By confirming these components

through packet analysis, we can confidently assert that our OpenVPN connection is

157

secure, with encrypted and authenticated data transmission, protecting the

communication from potential threats.

7.5 Conclusion

 In summary, the extensive software testing has successfully identified and

addressed potential errors in the application. This testing has significant enhanced the

system’s quality and reliability. The testing phase has proven to be a crucial component

of the software development lifecycle, ensuring that the final product adheres to the

necessary standards and specifications.

Chapter 8

CONCLUSION AND RECOMMENDATION

8.1 Conclusion

This project has successfully developed a reliable VPN application for Android

platform. During the project, few challenges such as VPN module integration, system

architecture design had been faced during early stage of the project. However, with

careful planning, troubleshooting, and problem-solving, these challenges were

effectively addressed, ensuring the smooth progress and successful completion of the

application. The final product meets the intended objectives, providing a secure and

user-friendly VPN solution for Android users.

The first objective, implement and integration of robust encryption standards and

reliable protocols has been achieved through deployment of VPN using OpenVPN

protocol and the configuration of the VPN with using strong encryption standards. This

ensures that user data and activities is securely transmitted and protected from potential

threat by providing a high level of security and privacy for end users

The second objective which was enhance user authentication mechanisms by

158

integrated with two-factor-authentication has been successfully accomplished by

integrating the two-factor-authentication(2FA). The integration of 2FA provides an

additional layer of security and ensuring that only authorized users able to access our

VPN application by requiring second form of verification in addition to the standard

username and password. This mechanism has significantly enhanced the overall

security of the application and have capabilities protecting against unauthorized access.

 The final objective was optimized user interface design by providing user friendly

interface has also been successfully achieved. The application features a streamlined

and user-friendly interface that allows users to easily navigate and interact with the

VPN features within the application his focus on user-centered design enhances

accessibility and ensures that users can efficiently manage their VPN connections with

minimal effort which contributing to a positive overall experience.

8.2 Limitations

While the project has successfully achieved its primary objectives, there are still

few limitations.

8.2.1 Geographical Limitations Due to Insufficient Server Coverage

The VPN application have geographical limitations allow user to select due to

insufficient server coverage. The application currently only provided service at 3

countries. The limited server availability may cause reduced connection speeds or face

difficulty accessing the VPN altogether. This limitation restricts the global accessibility

and effectiveness of the VPN when particularly in regions where internet censorship or

restrictions are prevalent, and where a reliable VPN connection is most needed.

8.2.2 Limited Customization Options

 The second limitation comes to the customization options of the VPN application.

The application did not provide much space allow user to make their own customization

159

such as encryption protocols, customizing DNS setting or other VPN features. The

project is configured to follow a set of fixed predefined configuration which reduce the

flexibility of the application. This limitation could potentially restrict the application's

appeal to tech-savvy users who desire greater control over their VPN configurations.

Although the application using fixed configuration but all the configuration claim to

provide the most optimal balance between security, performance, and ease of use, while

users may not have the ability to customize settings extensively due to this, the default

configurations have been chosen to meet the needs of most users.

8.2.3 Server Overload Due to Low-Spec Infrastructure

The VPN application might encounter issues related to server overload especially

during peak usage times. This is due to the low-spec infrastructure of the server selected

due to lack of sufficient budget. As a result, users may experience slower connection

speeds, increased latency, or even temporary connection drops. This limitation impacts

the overall performance and reliability of the VPN service, especially as the user base

grows.

8.3 Recommendation for Future Work

There are still have a lot of space for future work that could exploit from existing

project.

8.3.1 Provide more countries coverage

One of the key areas for improvement is expanding the server network to cover

more countries. By increasing number of servers in diverse geographic locations can

enhance global accessibility of the VPN but also can improve speeds and reliability for

user in underserved regions. This improvement able make the application more

attractive to broader user base and help mitigate current limitation of insufficient server

coverage

160

8.3.2 Enhance the current cloud platform infrastructure

To address issues related to server overload and performance, it is highly

recommended to enhance current cloud platform infrastructure such as add more server

instance within same region to provide VPN services in terms to achieve high

availability and implement load balancing to reduce the traffic stress and provide

capabilities of disaster recovery. This would lead to improved connection stability,

faster speeds, and better overall user experience especially during peak usage times

8.3.3 Integration of other VPN protocols

 The current project only supports for one VPN protocols which is OpenVPN

protocol. By integrating additional VPN protocols support such as Wire Guard, IKEV2

or SSTP could provide users more option, better experience, and potentially better

performance in certain scenarios. By Offering a variety of protocols would allow users

to choose the one that best fits their needs, whether they prioritize speed, security, or

compatibility with different network environments.

8.3.4 Provide support for customization

Introducing more customization options would significantly enhance the user

experience, particularly for advanced users. By allowing users to modify settings such

as encryption levels, protocol selection, DNS configurations, and connection rules

would give them greater control over their VPN experience. This flexibility could cater

to a wider range of user preferences and use cases, making the application more

versatile and appealing to a broader audience.

161

Reference

1. Gershwin, A. A. (2019, June 14). The evolution of VPNs: From business security

to privacy protection. Bitcoin Insider.

https://www.bitcoininsider.org/article/70244/evolution-vpns-business-security-

privacy-protection

2. Shweta. (2024, April 12). What is a remote access VPN? Forbes.

https://www.forbes.com/advisor/business/what-is-remote-access-vpn/

3. Paloalto. (2024, April 12). What is a site-to-site VPN? Palo Alto Networks.

https://www.paloaltonetworks.com/cyberpedia/what-is-a-site-to-site-vpn

4. Fortinet. (2024, April 12). What is peer-to-peer (P2P) VPN? Are P2P VPNs safe?

Fortinet. https://www.fortinet.com/resources/cyberglossary/peer-to-peer-p2p-vpn

5. OpenVPN. (2018, March 6). OpenVPN brings tools for businesses to securely and

easily access Microsoft Cloud Services. PR Newswire.

https://www.prnewswire.com/news-releases/openvpn-brings-tools-for-businesses-

to-securely-and-easily-access-microsoft-cloud-services-300536944.html

6. BlessingGeek, B. (2019, February 13). WireGuard: Erste Testversion für Windows

verfügbar. RandomBrick.de. https://www.randombrick.de/wireguard-erste-

testversion-fuer-windows-verfuegbar/

7. OpenVPN. (2018, March 6). OpenVPN brings tools for businesses to securely and

easily access Microsoft Cloud Services. PR Newswire.

https://www.prnewswire.com/news-releases/openvpn-brings-tools-for-businesses-

to-securely-and-easily-access-microsoft-cloud-services-300536944.html

8. Eddy, M. S. (2023, April 12). My start in Surfshark VPN. PCMag Australia.

https://au.pcmag.com/vpn/62274/surfshark-vpn

9. i2Coalition. (2020). I2COALITION member spotlight Q&A: Hotspot Shield.

i2Coalition. https://i2coalition.com/i2coalition-member-spotlight-qa-hotspot-

shield/

10. Cisco. (2024). What is a virtual private network (VPN)? Cisco.

https://www.cisco.com/c/en/us/products/security/vpn-endpoint-security-

clients/what-is-vpn.html

11. Cloudflare. (2024). What is IPsec? | How IPsec VPNs work. Cloudflare.

https://www.cloudflare.com/learning/network-layer/what-is-ipsec/

162

12. Fortinet. (2024a). What is a remote access VPN? Fortinet.

https://www.fortinet.com/resources/cyberglossary/remote-access-vpn

13. Fortinet. (2024b). What is peer-to-peer (P2P) VPN? Are P2P VPNs safe? Fortinet.

https://www.fortinet.com/resources/cyberglossary/peer-to-peer-p2p-vpn

14. Microsoft. (2024). What is a VPN? Why should I use a VPN? Microsoft Azure.

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-

vpn/

15. OpenVPN. (2022). What is OpenVPN? OpenVPN. https://openvpn.net/faq/what-

is-openvpn/

16. OpenVPN. (2024). What is a VPN? VPN definition. OpenVPN.

https://openvpn.net/what-is-a-vpn/

17. Paloalto. (2024). Site-to-site VPN overview. Palo Alto Networks.

https://docs.paloaltonetworks.com/network-security/ipsec-vpn/administration/get-

started-with-ipsec-vpn-site-to-site/site-to-site-vpn-overview

18. Tailscale. (2024). What you need to know about Internet Protocol Security (IPsec).

Tailscale. https://tailscale.com/learn/ipsec

19. Zola, A. (2021). What is L2TP and how does it work? Networking.

https://www.techtarget.com/searchnetworking/definition/Layer-Two-Tunneling-

Protocol-L2TP

20. Awati, R., Bernstein, C., & Cobb, M. (2024). What is the Advanced Encryption

Standard (AES)? TechTarget Security.

https://www.techtarget.com/searchsecurity/definition/Advanced-Encryption-

Standard

21. Cobb, M. (2023). What is triple DES and why is it being disallowed? TechTarget

Security. https://www.techtarget.com/searchsecurity/tip/Expert-advice-

Encryption-101-Triple-DES-explained

22. Dmitry. (2023). VPN protocols compared: Advantages and disadvantages.

WebsiteHosting.com. https://websitehosting.com/blog/vpn-protocols-compared -

advantages-and-disadvantages/

23. Donenfeld, J. A. (2024). Fast, modern, secure VPN tunnel. WireGuard.

https://www.wireguard.com/

24. Jack. (2023). What is WireGuard? A new VPN protocol explained. Cybernews.

https://cybernews.com/what-is-vpn/wireguard-protocol/

https://openvpn.net/what-is-a-vpn/

163

25. Miklos. (2024). IKEv2 VPN protocol explained: What it is and how it works.

Privacy Affairs. https://www.privacyaffairs.com/ikev2-vpn-protocol/

26. Nagaraj, K. (2023). Understanding ChaCha20 encryption: A secure and fast

algorithm for data protection. Medium.

https://cyberw1ng.medium.com/understanding-chacha20-encryption-a-secure-

and-fast-algorithm-for-data-protection-2023-a80c208c1401

27. Perimeter 81. (2023). What is secure Socket Tunneling Protocol (SSTP)? Perimeter

81. https://www.perimeter81.com/blog/network/secure-socket-tunneling-protocol

28. Proofpoint. (2024). What is SSTP? - VPN protocol. Proofpoint.

https://www.proofpoint.com/us/threat-reference/sstp

29. Williams, M. (2020). Hola VPN review. TechRadar.

https://www.techradar.com/reviews/hola-free-vpn

30. Webster, E., & Contributor, T. (2021). What is the Extensible Authentication

Protocol (EAP)? TechTarget Security.

https://www.techtarget.com/searchsecurity/definition/Extensible-Authentication-

Protocol-EAP

31. Okta. (2023). HMAC (hash-based message authentication codes) definition. Okta.

https://www.okta.com/identity-101/hmac/

32. Millares, L. (2024). Hotspot Shield VPN review 2024: Pricing, features & security.

TechRepublic. https://www.techrepublic.com/article/hotspot-shield-review/

33. Gillis, A. S. (2022). What is Diffie-Hellman key exchange? TechTarget Security.

https://www.techtarget.com/searchsecurity/definition/Diffie-Hellman-key-

exchange

34. Cobb, M. (2021). What is the RSA algorithm? Definition from SearchSecurity.

TechTarget Security. https://www.techtarget.com/searchsecurity/definition/RSA

35. Tomaschek, A. (2024). Surfshark VPN gives you blazing speeds at competitive

pricing. CNET. https://www.cnet.com/tech/services-and-software/surfshark-vpn-

review/

36. NIKI, S. (2023). VPN growth highlights global crackdown on internet freedom.

Nikkei Asia. https://asia.nikkei.com/Business/Technology/VPN-growth-

highlights-global-crackdown-on-internet-freedom

37. Sablah, W. (2024). Worst VPN warning list: Avoid VPN scams in 2024.

Cloudwards. https://www.cloudwards.net/worst-free-vpn/

164

38. Skendzic, A., & Kovačić, B. (2017). Open source system OpenVPN in a function

of Virtual Private Network. ResearchGate.

https://www.researchgate.net/publication/317159271_Open_source_system_Open

VPN_in_a_function_of_Virtual_Private_Network

39. Iqbal, M. I. M. I., & Riadi, I. R. (2019). Analysis of security virtual private network

(VPN) using OpenVPN. ResearchGate.

https://www.researchgate.net/publication/333198144_Analysis_of_Security_Virtu

al_Private_Network_VPN_Using_OpenVPN

40. McGrew, D., & Viega, J. (2005). The Galois/Counter mode of operation (GCM).

NIST.

https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-

revised-spec.pdf

