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ABSTRACT 

 

 

 

As urbanization accelerates in Malaysia, the demand for fresh produce 

continues to rise, yet the availability of agricultural land is diminishing. 

Hydroponics, a soil-less cultivation method, presents a viable solution to this 

challenge. However, managing hydroponic systems can be time-intensive, 

particularly for urban dwellers with busy lifestyles. This project proposes an 

IoT-integrated hydroponic farm monitoring mobile application designed to 

address these challenges. The development of the application focused on a 

feature-driven approach using React Native, NodeJS, and Flask frameworks. 

The application enables users to remotely monitor and control environmental 

parameters within hydroponic farms while receiving real-time notifications 

about farm status, thereby enhancing overall farm management efficiency. A 

key aspect of the project was ensuring the application's usability, with features 

such as environmental parameter trend predictions to facilitate automated 

hydroponic farm management. This innovation has significant implications for 

farm management and plant growth, allowing users to manage their time more 

effectively and increase productivity. Moreover, the application supports plant 

management by allowing users to record observations and plan tasks with 

reminder notifications, streamlining the process of tracking plant growth 

without relying on physical records. Overall, this project contributes to 

advancing urban agriculture in Malaysia by providing a convenient and 

efficient mobile solution for managing hydroponic farms, thereby promoting 

sustainable and efficient urban farming practices. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Malaysia, a developing nation with a significant agricultural base, is gradually 

embracing digitization to cope with increasing international competition. 

Urbanization, a key component of national development, has been steadily 

rising. As of 2022, Malaysia’s urbanization rate reached 78.2%, according to 

data from the World Bank (2023), as depicted in Figure 1.1. The government's 

Fourth National Physical Plan aims to further increase the urbanization rate to 

85% by 2040 (Department of Statistics Malaysia, 2022). However, urbanization 

has led to higher population densities in urban areas while diminishing rural 

populations, which exacerbates the challenge of ensuring an adequate supply of 

vegetables and fruits in urban markets (Muhammad & Rabu, 2015). To address 

this issue, urban farming techniques have become increasingly necessary. 

Among various methods such as vertical farming and aeroponics, hydroponics 

stands out as the most recognized and practiced in Malaysia (Muhammad & 

Rabu, 2015). 

Hydroponics, a method of growing plants without soil but using 

nutrient-rich water, offers a viable solution to the challenges posed by limited 

urban space (Encyclopedia Britannica, n.d.). This technique, known for its 

efficiency and sustainability, is particularly well-suited to Malaysia’s urban 

communities. It provides an alternative approach to traditional farming, helping 

to overcome issues related to pest control and enabling indoor cultivation. 

Nevertheless, the time constraints faced by urban dwellers make it difficult to 

consistently monitor and manage these systems. Hence, the development of 

software or mobile applications that allow real-time monitoring of crop status 

would greatly benefit busy urban farmers. 

According to pioneering research by Lakshmanan, Djama, et al. (2020), 

integrating Internet of Things (IoT) technologies with hydroponic systems 

heralds a new era of remote farm management. This integration facilitates real-

time environmental monitoring via mobile applications, simplifying agricultural 
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oversight and broadening access to farming regardless of an individual’s 

location or expertise (Lakshmanan et al., 2020). 

 

 

Figure 1.1 Malaysia: Urbanization from 2012 to 2022 by World Bank (World 

Bank, 2018) 

 

1.2 Project Background 

To gauge the need for hydroponic farming system mobile applications in 

Malaysia, Kyu et al. (2023) conducted a mixed-methods study using online 

questionnaires and virtual interviews. The study concluded that the majority of 

respondents believe that automation and mobile applications can significantly 

reduce labor costs associated with plant care. Additionally, most respondents 

favored monitoring capabilities, as these features would enhance operational 

efficiency. Figure 1.2 illustrates the survey results regarding labor cost reduction 

when a smart hydroponic system mobile application is implemented. This 

survey underscores the importance of developing IoT-integrated hydroponic 

farming systems for individuals interested in hydroponic farming. 
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Figure 1.2 Survey Result (Cost) (Kyu, 2023) 

 

Another preliminary survey by Hamdan et al. (2021) focused on the 

perceptions of low-income households in Selangor regarding various aspects of 

hydroponic farming, including needs, knowledge, cost, pricing, and benefits. 

The results indicated a preference for hydroponic systems priced below RM100, 

particularly for growing food plants such as Green Chili, Mint, and Soup Leaf, 

as these could help improve daily cooking and overall quality of life. This 

survey confirms the acceptance and preference for IoT-integrated hydroponic 

farming systems among Malaysians. 

 

1.3 Problem Statement 

1.3.1 Time Constraints and Monitoring Challenges in Urban 

Hydroponic Farming 

Urban dwellers often face significant time constraints that hinder their ability to 

monitor hydroponic farming systems effectively. Consequently, there is a 

pressing need for tools that provide convenient, anytime access to crop status 

information. The development of software or applications that enable remote 

monitoring of hydroponic systems is crucial for addressing the concerns of busy 

urban farmers. Given that 98.7% of Malaysians use smartphones and 96.8% 

have internet access, there is a solid foundation for digital solutions in 

agriculture (Department of Statistics, Malaysia, 2022). The widespread use of 

social networks and digital content suggests a population well-acquainted with 
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mobile technologies, indicating a high potential for the acceptance of 

hydroponic farming applications. Such an app would not only align with 

existing digital habits but also fulfil the need for accessible, real-time farm 

management tools. 

 

1.3.2 Skills Gap and Technological Adoption in Malaysian Hydroponic 

Agriculture 

The integration of Internet of Things (IoT) and Information Communication 

Technology (ICT) into hydroponic farming systems can significantly improve 

management efficiency. The slow adoption of advanced technologies within 

Malaysia’s agriculture sector highlights a critical opportunity for innovation. A 

report by the Human Resource Development Fund (2019) identifies a deficiency 

in training and skill development among agricultural workers. This project aims 

to bridge this gap by employing IoT and ICT to simplify hydroponic farm 

management, thereby reducing the reliance on skilled labor and increasing 

technological integration in agriculture. IoT-enabled monitoring systems can 

record raw data, while the integration of IoT and ICT allows for real-time data 

collection, such as temperature and humidity. This data can be used to 

automatically adjust the indoor environment, creating ideal conditions for plant 

growth. 

 

1.4 Aim and Objectives 

The primary goal of this project is to develop a software solution that simplifies 

the management of hydroponic farming systems by providing real-time data and 

remote monitoring capabilities. This solution will help farmers optimize their 

operations and increase productivity. The objectives of the project are as follows: 

• To develop mobile application capable of remotely monitoring and 

controlling hydroponic farming systems. 

• To create a mobile application that alerts users to critical issues and tasks 

that need to be performed in hydroponic farming systems. 

• To employ machine learning with IoT and ICT technologies for 

detecting normal and abnormal environmental patterns in hydroponic 

farming, enabling automated adjustments and simplifying management. 
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1.5 Scope and Limitations of Study 

This project focuses on the development of a mobile application tailored to the 

needs of hydroponic farmers in Malaysia. The application will feature real-time 

remote monitoring and control of hydroponic farming systems. It will also 

leverage IoT devices and a cloud database to store vast amounts of data 

generated by IoT devices, using machine learning to optimize environmental 

settings. Additionally, an anomaly detection algorithm will be employed to 

detect irregular data in real-time. 

However, the project will concentrate solely on software development 

and testing, excluding physical hardware implementation. Due to resource 

constraints, the project may not encompass all variations in hydroponic farming 

practices, and the effectiveness of the proposed solutions may vary based on 

specific environmental and operational factors. The hydroponic farming 

systems will upload data collected from IoT devices to a cloud database, from 

which the mobile application will retrieve data for display. 

 

1.6 Proposed Solution 

The proposed solution involves developing an Android-based mobile 

application for monitoring and controlling hydroponic farming systems. This 

application will be capable of real-time environmental monitoring. Figure 1.3 

presents the layout of the proposed system. Data will be collected from sensors 

and transmitted to IoT device, which will then upload the data to a cloud 

database. The application will retrieve this environmental data from the server 

and display it to the user. Users can set preferred environmental parameters, 

such as temperature and humidity. Optimization will be achieved by controlling 

the fogger and nutrient solution dispenser through a IoT device. Additionally, 

the anomaly detection model will be deployed on the server. 
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Figure 1.3 Layout of the Proposed System 

 

1.7 Proposed Methodology 

The Agile methodology is proposed for this project. Given the need for quick 

deployment to identify discrepancies between the actual system and 

requirements, Agile is well-suited for this project. It allows for the 

accommodation of new requirements discovered during deployment. The 

detailed project methodology will be discussed in Chapter 3.2.
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

This chapter analyse the current state of Internet of Things (IoT) integrated 

hydroponic farming system mobile application and machine learning model. It 

aims to identify their features, capabilities, and limitation with focus of their 

ability to regulate environment parameters for plant growth. Additionally, the 

review of machine learning model aims to identify capabilities on providing 

support to mobile application feature for better monitoring experiences such as 

anomaly detection. By synthesizing findings from existing literature, this review 

aims to bridge the gap between technological potential and the practical needs 

for urban hydroponic farming, as outlined in Chapter 1. 

 

2.2 Features and Capabilities of Hydroponic Farming System Mobile 

Applications 

An exploration of existing research reveals advancements in IoT-integrated 

hydroponic applications with studies highlighting autonomous nutrient 

regulation, environment monitoring, and AI driven functionalities like plant 

disease classification and nutrient level prediction. For instance, Kularbphettong 

et al. (2019) developed a hydroponic farming system that capable of 

autonomously regulating nutrient levels using Message Queuing Telemetry 

Transport (MQTT) technology. Peuchpanngarm et al. (2016) incorporated 

various sensors for environment control and a Raspberry Pi2 controller, along 

with gardening planning and monitoring features into their application. This 

study has enlightened the importance of the scheduling of farming in our future 

implementation for users to provide more interactive farming experience. 

Furthermore, Khare et al. (2023) introduced plant disease classification and 

nutrient level prediction using deep learning models. Ramakrishnam Raju et al. 

(2022) also deployed deep learning convolutional neural network (DLCNN) to 

predict the nutrient level and plant disease. This indicates that Artificial 

Intelligence (AI) is the trend of providing more responsive and smart farming 

methods. Similarly, Kaur et al. (2022) focused on monitoring and controlling 
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multiple environmental parameters using Arduino Mega, accompanied by a 

comprehensive mobile application which consists of climate component that 

display the environment parameters, nutrition component that display the status 

of nutrient solution and the image component that capture the condition of the 

farm. Moreover, Shin et al. (2024) developed a low cost IoT hydroponic setup 

with the capability of easily replicated, featuring the monitoring of 

environmental parameters and customization of these environmental parameters 

for different types of plants. Rahimi et al. (2022) developed a Multi Factor 

Authentication (MFA) functionality for an indoor hydroponic system mobile 

application to enhance the security when using the cloud database IoT platform.  

From all the studies listed, several strengths and limitations have been 

identified in existing IoT-integrated hydroponic farming system mobile 

applications. The strengths include the planning components from Smart Suan 

Pak Nam by Peuchpanngarm et al. (2016) which it able to let users to setup their 

planting plan by specifying the number of units for their target, then the 

application generate a blueprint for actual gardening and record the harvest data 

for users next planting planning; the customization of environmental parameters 

based on types of plant by Shin et al (2024); the implementation of plant disease 

classification, and nutrient level prediction deep learning models by Khare et al. 

(2023); and the ability to view the hydroponic farming system via web camera 

by Kaur et al. (2022).While existing applications demonstrate significant 

strengths, such as planning components and advanced functionality for disease 

classification and nutrient prediction, they also exhibit limitations, including 

anomaly detection for overall status of hydroponic system and lack of 

comprehensive control algorithms. Addressing these limitations presents an 

opportunity for future development and innovation in this field. 

While addressing the main features of the application, the monitoring 

feature of the hydroponic farming system was the essential and crucial feature 

that play as foundation of the application. Table 2.1 list out the environment 

parameters of every application reviewed. From the table, air temperature, 

humidity, potential of Hydrogen (pH) value, and light intensity were the 

parameters frequently measured in the hydroponic farm system while water 

temperature, total dissolved solids (TDS), and electrical conductivity (EC) are 

measured less frequently. TDS is the total amount of organic and inorganic 
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substances contain in the water that are not dissolved as gases such as salts, 

metals, minerals, and ions (knowledge.hannainst.com, n.d.). EC is the 

concentration of conductive ion present which featuring greater salinity or 

dissolved solids (www.westlab.com, n.d.). The main differences between TDS 

and EC are the measurement on the water quality. TDS is measured on the 

dissolved substances while EC focuses on measured the substances’ ability to 

conduct electricity. Thus, the parameters will be monitored are depends on the 

measure range requirements which decide what to cover in monitoring the 

hydroponic farm. 

 

Table 2.1 Comparison of Feature of Hydroponic Farming System Mobile 

Applications 

 Kularbphettong 

et al. (2019) 

Peuchpanngarm 

et al. (2016) 

Khare 

et al. 

(2023) 

Kaur 

et al. 

(2022) 

Shin 

et al. 

(2024) 

Water 

Temperature 
 ✓ ✓   

Air 

Temperature 
✓ ✓ ✓ ✓  

Humidity 
✓ ✓ ✓ ✓  

pH Value 
✓ ✓ ✓ ✓ ✓ 

Light  

Intensity 
✓ ✓ ✓ ✓  

Total 

Dissolved 

Solids (TDS) 

  ✓ ✓  

Electrical 

Conductivity 

(EC) 

 ✓   ✓ 
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2.2.1 User Interface Design 

Effective user interface design is paramount in ensuring the accessibility and 

usability of hydroponic system mobile application. The Smart Suan Pak Nam 

application, as referenced by Peuchpanngarm et al. (2016) and 

VertiFarmControl application by Kaur et al. (2022), reveals that clean, intuitive 

layouts, and easy navigation significantly enhance user experience. These 

interfaces facilitate efficient farm management by providing clear insights into 

farming conditions, suggesting that a user-centric design approach is essential 

for successful application development. Figure 2.1 and figure 2.2 shows the user 

interface of the Smart Suan Pak Nam application. Figure 2.3 and figure 2.4 

shows the user interface of VertiFarmControl application. 

 

 

Figure 2.1 User Interface of Smart Suan Pak Nam (Peuchpanngarm et al., 2016) 
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Figure 2.2 User Interface of Smart Suan Pak Nam (Peuchpanngarm et al., 2016) 

 

 

Figure 2.3 User Interface of VertiFarmControl (Kaur et al., 2022) 
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Figure 2.4 User Interface of VertiFarmControl (Kaur et al., 2022) 

 

2.3 Machine Learning Model 

This section explores on the machine learning model for providing real time 

data insight such as Long-Short-Term-Memory (LSTM), Isolation Forest, and 

One-Class Support Vector Machine (One-Class SVM). This section aims to 

identify AI models that providing anomaly detection feature to mobile 

application. This section also examines each model characteristics, abilities, and 

suitability for anomaly detection purpose. Furthermore, this section reviews 

several existing research about anomaly detection application in agriculture 

industry. 

 

2.3.1 Long-Short-Term-Memory (LSTM) 

According to Chugh (2019), Long-Short-Term-Memory is an improved version 

of recurrent neural networks (RNN) addressing the difficult to learn long-term 

dependencies. LSTM capable to learn long-term dependencies by introducing a 

memory cell to hold the information for an extended period. The memory cell 

consists of three gates which are the input gate for information insertion, the 

forget gate for information removal and the output gate for information output 

(GeeksforGeeks, 2019). Figure 2.5 shows the architecture of LSTM which 

include the forget gate, the input gate, and the output gate respectively. Table 

2.2 discussed about the advantages and disadvantages of LSTM. The 

characteristics of LSTM enable it well-suited for tasks such as language 
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translation, speech recognition, time series forecasting and anomaly detection 

(GeeksforGeeks, 2019). 

 

Figure 2.5 LSTM Architecture (GeeksforGeeks, 2019) 

 

Table 2.2 Advantages and Disadvantages of LSTM 

Advantages of LSTM Disadvantages of LSTM 

Capture long-term dependencies Computationally more expensive 

Selectively recalls or forget 

information 

Training more time consuming 

Capture important context even 

there is significant time gap between 

related events 

Hard to parallelize work of 

processing the sentences 

 

2.3.2 Isolation Forest 

Isolation Forest is a model that introduces random partitioning the data 

recursively to isolate the anomalies instances instead of distance or density 

computations like traditional method (Liu et al., 2008). According to Liu et al. 

(2008), anomalies are "few and different," making them more prone to isolation 

than normal points. In isolation trees (iTrees), anomalies typically have shorter 

path lengths than normal instances. To perform anomaly detection, isolation 

forest model will plot out an ensemble of iTrees based on random sub-samples 

data, then exploiting shorter path lengths for anomalies due to the susceptibility. 

Through averaging the path lengths across ensemble of isolation trees, a scoring 
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formula based on tree analysis will be used to obtain anomaly scores. Lastly, 

the final anomaly detection is ranked the instances based on anomaly scores. 

Table 2.3 listed out the advantages and disadvantages of isolation forest. 

 

Table 2.3 Advantages and Disadvantages of Isolation Forest 

Advantages of Isolation Forest Disadvantages of Isolation Forest 

Isolates anomalies instead profiling 

normal instances 

May not perform well if anomalies 

not “few and different” from normal 

instances 

Linear time complexity and low 

memory requirement 

Requires tuning of sub-samples and 

number of trees for optimal 

performance 

Alleviates the effects of swamping 

and masking by using small sub-

samples data 

May not be as effective as other 

methods for low-dimensional data 

with few irrelevant attributes. 

Handle high-dimensional data Does not provide a direct 

interpretation of the anomaly scores 

 

2.3.3 One-Class Support Vector Machine (One-Class SVM) 

One Class Support Vector Machine is a model designed to outlier, anomaly, or 

novelty detection but not for performing binary or multiclass classification tasks 

like other traditional machine learning model (GeeksforGeeks, 2024). The 

model key working principles are outlier boundary, margin maximization and 

high sensitivity. One-Class SVM define boundary around normal instances in 

the feature space to encapsulate the normal data points, then maximize the 

margin around the normal instances to separate the normal and anomaly data 

points. Furthermore, One-Class SVM consist of a hyperparameter, “nu” to 

represent upper boundary on the fraction of margin errors with support vectors, 

influences the model’s sensitivity to anomalies. Table 2.4 discussed the 

differences between support vectors machine (SVM) and One-Class SVM. 
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Table 2.4 Differences between support vectors machine (SVM) and One-

Class SVM 

 

 

2.3.4 Anomaly Detection Model in Agricultural Industry 

The purpose of Anomaly Detection is to identify rare events or observations that 

raise suspicious by being statistically different from the rest of the observation 

(GeeksforGeeks, 2019) The anomaly can be categorized to three types: point 

anomaly, contextual anomaly, and collective anomaly, difference are the point 

of view to the data which are tuple in a dataset, context of observations, and set 

of data instances respectively. The anomaly detection can be done in both 

supervised and unsupervised depend on the datasets and requirement. For 

example, Adkissson et al. (2021) proposed an anomaly detection model using 

unsupervised Autoencoder machine learning model to detect data discrepancies 

on environments condition for smart farming. Figure 2.6 shows the result of the 

autoencoder in anomaly detection. Bandar Alanazi and Ibrahim Alrashdi (2023) 

proposed Convolutional Neural Network-Long Short-Term Memory (CNN-

LSTM) deep learning model anomaly detection to protect the smart agriculture 

system from network edge threats such as Distributed Denial of Service (DDoS) 

attacks by detect anomaly data transmitted from sensors device. Table 2.5 shows 

the result of the CNN-LSTM model in anomaly detection. Furthermore, 

Abdallah et al. (2021) explored the deployment of Machine Learning (ML) in 
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digital agriculture using Autoregressive Integrated Moving Average (ARIMA) 

and LSTM models for predicting time series of sensor data then perform 

anomaly detection, found out that LSTM has better prediction performance on 

unseen dataset compared to ARIMA model. Moreover, Catalano et al. (2022) 

proposed an anomaly detection system for overcome infrastructure threats based 

on Multivariate Linear Regression (MLR) and LSTM algorithms, found out that 

LSTM results are closer to the actual observed data. 

 

 

Figure 2.6 Performance Metrics for Autoencoder Model (Adkisson et al., 2021) 

 

Table 2.5 Results of the LSTM-CNN model (Alazani et al., 2023) 

 

 

2.3.5 Justification on Machine Learning Model Selection 

To provide precise and efficient anomaly detection in the hydroponic farming 

system, the machine learning model selection is essential. The Long Short-Term 

Memory (LSTM) neural network was chosen for this project after a number of 

models were evaluated because of its capacity to capture the long-term linkages 

and temporal dependencies present in time-series data. As opposed to 

conventional anomaly detection models like One-Class Support Vector 

Machine (SVM) and Isolation Forest, which lack of mechanisms to deal with 
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sequential data, LSTM is specially made to be able to learn from the 

environmental factors' historical context. This feature allows the model to detect 

anomalies based on patterns and trends that develop over time as well as the 

specific values of sensor readings. Moreover, the gating mechanisms and 

memory cells of LSTM enable it to retain information over extended sequences, 

which makes it very useful for identifying minute variations in sensor data that 

can point to any problems with the hydroponic system. By utilizing recent 

prediction errors as a basis, the dynamic thresholding mechanism keeps 

anomaly detection flexible enough to adjust to shifting environmental 

circumstances, therefore decreasing false positives and enhancing detection 

precision. This flexibility is essential in a real-time monitoring application 

because system disruptions might cause sensor data to show different patterns. 

Since the objective of this research is to provide robust and reliable anomaly 

detection for optimizing the hydroponic farming environment, LSTM was 

selected as the most suitable model.  

 

2.4 Summary 

Several existing studies have explored various features and capabilities of a 

hydroponic farming system mobile application, such as autonomous nutrient 

regulation, environmental monitoring, gardening planning, plant disease 

classification and nutrient level prediction using deep learning models. 

Furthermore, user interface design demonstrated in the previous studies have 

underscores the importance of clean, intuitive, easy navigation, and consistent 

visual aesthetics in ensuring the user experience and accessibility. Despite the 

strengths, there were limitations could be found, such as anomaly detection and 

lack of comprehensive control algorithms.  

In addition, there are various machine learning models to perform 

anomaly detection for real time farming datasets such as LSTM, Isolation Forest, 

and One-Class SVM. After reviewing several existing journals related to 

anomaly detection machine learning model in agriculture industry, LSTM 

model is mentioned relatively more numbers than other machine learning 

models, it features high accuracy on predicting the environment parameters, and 

reliable in learning new data collected from the IoT devices.  
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In synthesizing the research, it's evident that while current applications 

excel in certain areas, they lack in customizable control and anomaly detection 

(Khare et al., 2023; Shin et al., 2024). The integration of such algorithms, 

alongside LSTM's data interpretative strength, could significantly propel the 

functionality of the proposed mobile application. This chapter lays the 

groundwork for developing a solution that not only addresses the identified gaps 

but also leverages advanced IoT and ICT solutions, echoing the objectives set 

out in Chapter 1 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter will discuss the suitable system development methodology for this 

project by reviewing various methods from online resources and the decision of 

methodology will be elaborated. The machine learning will discuss the datasets 

used, the training details and procedure. The development flow of the project 

will be listed detailed in the Work Plan Section. In the Work Plan Section, Work 

Breakdown Structure and Gantt Chart are provided to define the tasks details 

and schedule. Finally, development tools for this project will be elaborated in 

this chapter. 

 

3.2 System Development Methodology 

To select the most appropriate development methodology, review on existing 

methodology need to be included. The methodologies will be discussed are 

waterfall, unified process, lean development, and feature driven development. 

Each methodology advantages and disadvantages will be compared to each 

other to decide whether which methodology are suitable for this project. This 

section also elaborates the activities performed in each development phases. 

 

3.2.1 Waterfall Methodology 

The Waterfall methodology is a linear and sequential approach to project 

management which based on fixed requirements, flows, testing and output 

(Gallagher, Dunleavy and Reeves, 2019). This methodology does not require 

much communication between stakeholders but only approval from 

stakeholders to continue to next stage. The lack of communication lets the 

project consists of limitations and problem in delivering a good quality software 

to stakeholders. This also increases the development cost due to the long 

duration of the project, and unnecessary functionality in the software. Below 

table 3.1 listed out the advantages and disadvantages of Waterfall methodology. 

In contrast, this methodology is suitable for project that have constant project 
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scope and minimal changes to requirements while also have sufficient budget 

and time. 

 

Table 3.1: Advantages and Disadvantages of Waterfall methodology 

(Gallagher, Dunleavy and Reeves, 2019) 

Advantages Disadvantages 

Static project scope Hard to add new requirements 

Minimal changes to system Dependencies on relatively unstable 

products 

Easy to plan the tasks Difficult to estimate total time 

project complete 

Reduce impact from the leave of key 

members 

Large contingency during 

development 

 

3.2.2 Unified Process (UP) 

The Unified Process methodology is an incremental and iterative approach to 

project management that emphasizes teamwork, producing usable software 

increments, and adapting to changes. (GeeksforGeeks, 2024). Figure 3.1 shows 

the flow of Unified Process. This is based on Unified Modeling Language (UML) 

and is a use case driven development. Its focus on architecture design enables it 

more suitable for complex project. This methodology requires clear guidelines 

and workflows to enhance the feedback and communication from stakeholders 

which also ensure the quality of the project outcomes. However, it needs to have 

solid understanding on the principles which increase the learning curves of this 

methodology. Table 3.2 discusses the advantages and disadvantages of Unified 

Process. 
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Figure 3.1: Unified Process (GeeksforGeeks, 2024). 

 

Table 3.2 Advantages and Disadvantages of Unified Process 

(GeeksforGeeks, 2024) 

Advantages Disadvantages 

Iterative development Complexity 

Risk Management Overhead in documentation and 

formalized processes 

Quality Assurance Longer Learning Curve 

Stakeholder Collaboration Scope Management 

Flexibility and Adaption Adoption Resistance from 

stakeholders or team members 

 

3.2.3 Lean Development 

The Lean Development is a continuous improvement approach to project 

management focusing on efficiency and waste reduction on time and resources 

in software development (Developer.com, 2022). This methodology also 

focuses on the collaboration which the teams consist of cross-functional 

members to achieve the goals of the project. The characteristics of this 

methodology are short cycles development, focus on customer value, 

collaboration, minimize waste and learn from errors actively. Figure 3.2 shows 

the flow of Lean Development. This methodology suitable for stakeholders that 

prefer fast development with minimum resources consumed, and improvement 
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based on validation from customer feedback. Table 3.3. listed out the 

advantages and disadvantages of Lean Development. 

 

 

Figure 3.2 Lean Software Development (trident, 2021) 

 

Table 3.3 Advantages and Disadvantages of Lean Development 

Advantages Disadvantages 

Increase Efficiency by focus on 

essential tasks 

Lead to “ship it now, fix it later” 

mindset which may cause low 

quality 

Improved Quality Relies heavily on customer feedback 

Increase Customer Satisfaction Change on team’s work habits 

Improve morale by streamlining 

development process 
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3.2.4 Feature Driven Development 

The Feature Driven Development is an iterative approach in project 

management with mixture of different Agile approach practices, it more focused 

on the exact features of a software to develop. This methodology relies heavily 

on customer input, as the software features are defined by the customer (Laoyan, 

2022). This methodology has four main values: Individuals over processes and 

tools, working software over comprehensive documentation, customer 

collaboration over contract negotiations, and responding to change over 

following a plan (Laoyan, 2022). Figure 3.3 visualize the flow of Feature Driven 

Development. This methodology suitable for project that need to iterate rapidly 

based on feature require by customers and for the project leader that have clear 

vision on the software development. Table 3.4 listed out the advantages and 

disadvantages of Feature Driven Development. 

 

 

Figure 3.3 Feature Driven Development (www.productplan.com, n.d.) 

 

Table 3.4 Advantages and Disadvantages of Feature Driven Development 

(www.productplan.com, n.d.) 

Advantages Disadvantages 

Simple five-step process enable for 

rapid development 

Does not work efficiently with small 

projects 

Allows larger teams to move 

product forwards with continuous 

success 

Less written documentation 

Leverages pre-defined development 

standards 

High dependant on lead developers 

or programmers 
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3.2.5 Comparison among SDLC methodologies 

To achieve the goals of the project, comparison among methodologies is 

performed to determine the most appropriate software development approach. 

Table 3.5 compares the four methodologies reviewed in this chapter. The criteria 

used to determine the most appropriate software development are the focus, 

flexibility, result delivery, risk factors, and customer feedback. Based on the 

comparison, Feature Driven Development (FDD) is more suitable for this 

project than other methodologies. This is due to the development of hardware 

components and mobile applications for hydroponic farming system are 

developed by separate teams. As a result, a clear and structured process is 

needed for developing the application to ensure the deliverables of software 

features. Although the flexibility of this approach might not higher than Lean 

Development and Unified Process but the adaptability to changing project 

requirements also enable this project respond to new requirements in short 

period. The adaptability is important because the app relies on real-time data 

retrieve from the sensors, while it depends on the app to provide control and 

monitoring functionality which need adjust based on the situation. By 

employing FDD's iterative approach with frequent delivery cycles, the mobile 

application can be developed to meet all required features while maximizing the 

use of data from the hydroponic system sensors. Moreover, FDD's emphasis on 

delivering working features incrementally aligns well with the need for 

continuous communication and feedback between the hardware sensor and 

mobile app development teams. In summary, with the feature driven approach, 

adaptability, and the constant feedback from stakeholders, ensure the project 

objectives and scope to be achieved. 
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Table 3.5 Comparison of Software Development Life Cycle methodologies 

Methodology / 

criteria 

Waterfall Unified 

Process (UP) 

Lean 

Development 

Feature 

Driven 

Development 

Focus Fixed 

requirements, 

flows, testing, 

output 

Creating 

working 

software 

increments, 

collaborating, 

adapting 

Efficiency and 

waste 

reduction 

Exact features 

development 

based on 

customer 

input 

Flexibility Limited Excellent Excellent Excellent 

Result 

Delivery 

Delayed Medium Frequent Medium 

Risk Factor High Low Low Low 

Customer 

Feedback 

Low High High High 

 

3.2.6 Activities in Each Phase 

The first phase for the project is initiation planning, which includes identifying 

the problem statement, defining the aim, objectives, and scope of the project. 

The aim and objectives are defining based on the problem statement while the 

problem statement is identified based on the online research via journal, article, 

and public data. This phase also determines the scope and the limitations of this 

project to ensure the range of the deliverables. After these preparations, this 

phase will come out a simplify proposed solution and methodology for this 

project. 

 The next phase will be the performing the requirements collection and 

complete the software design of the project. During this phase, requirements 

define, use case design, software design including the user interface and system 

architecture will be performed. The requirements define is based on the module 

identified and analysed in the early phase. For the use case design will be 

including the use case diagram with use case description to better visualize the 

interactions between users and system. The user interface design will be based 

on the use case design to ensure providing a more intuitive and professional 

experience to the users. For the tools will be use in this phase are Enterprise 
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Architect (EA) for drawing the use case diagram, while Figma for drawing the 

user interface design for this project. After these have been completed, the 

requirements and design will be reviewed for verification to ensure the good 

quality of the project. 

 After the review of the requirements and software design, there will be 

correction based on the feedback collected. New iteration will be initiated based 

on updated requirements and design which is the module development. The first 

module is the monitoring and controlling module which represents the data 

presentation and parameters control of the hydroponic system. This module 

includes the setup of the database for the hydroponic system and the mobile 

application to collect the data retrieved from the sensors. The outcome for this 

module is the app able to display the data fetch from the database and database 

respond to the request from the app. Functional testing will be performed 

continuously during the development of the module. After the completion of the 

main module, other modules will be initiated like reminders and notifications, 

listing of plants details, and user authentication and management. The reminders 

and notification will remind and push notification to the users on the tasks, 

anomaly alerts and daily reminders about the hydroponic system. The plant 

module handles the farm plant management. The user authentication and 

management are for the security of the application and maintain the session.  

 Next iteration is about the anomaly detection machine learning model 

for better detection on the anomaly data via the database. This model is to 

enhance the monitoring of the environment parameters of hydroponic system by 

making predictions based on real time data. After fine-tuning of the model and 

testing, it will be integrated into the main module to support features such as 

reminder module trigger and preparing deployment to the server.  

 The last iteration is the integration testing and performance testing. The 

integration testing will be run for all modules to test on the interaction between 

modules. While performance testing will focus on evaluating the system 

efficiency and stability. After all the testing performed and bug fixed, the final 

product will present to the user indicates that the development is complete and 

able to deploy to production environment.  
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3.3 Machine Learning  

This project will leverage machine learning to enhance the mobile application’s 

capability to monitor hydroponic system effectively. The Long Short-Term 

Memory (LSTM) model is selected, as justified in Chapter 2.3.1 and Chapter 

2.3.4, for its proficiency in handling time-series data crucial for predicting 

environmental parameters in hydroponic farming. 

 

3.3.1 Datasets Selection and Preparation 

The LSTM model will predict key environmental parameters outlined in Table 

3.6, drawing on methodologies from Khare et al. (2023). Comprehensive 

training will also incorporate sensor value and timestamps to improve model 

accuracy. The selection of features for training is detailed in Table 3.6. 

 

Table 3.6  Environmental Parameters 

No. Environmental Parameters 

1. Surrounding Temperature 

2. Surrounding Humidity 

3. Light Intensity 

4. pH Level 

5. Total Dissolved Solids (TDS) 

6. Solution Temperature 

7. Low pH Trigger 

8. High pH Trigger 

9. Low TDS Trigger 

10. High TDS Trigger 

11. Fogger Trigger 

12. Fogger Temperature 

13. Fogger Humidity 
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Table 3.7 Datasets Features 

No. Datasets Features 

1. Environmental Parameters 

2. Timestamps 

 

Data will be sourced from the hydroponic system developed by Chua 

Shi Jian, an Electrical Electronic System (3E) student responsible for the design 

and operation, the data will continuously be uploading to the Firebase database 

after deployment.  

Data preparation involves multiple stages to ensure quality and 

consistency:  

Data Validation: Ensuring data conforms to type, range, and presence 

requirements (Bhandari, 2021). 

Data Screening: Identifying and removing inconsistent, missing, or 

outlier data using manual and statistical methods (Bhandari, 2021). 

Data Cleaning: Eliminating duplicates and correcting invalid data entries. 

Data Normalization: Utilizing MinMaxScaler or StandardScaler 

techniques to standardize data values, facilitating more effective training 

(Brownlee, 2016). MinMaxScaler normalize data by rescaling values between 

range of 0 and 1 as shown in Equation 3.1 while StandardScaler as shown in 

Equation 3.2, normalize data by subtracting the mean value. 

Post-Preparation: Data is split into training and validation sets with an 

80/20 ratio, as visualized in Figure 3.4, to optimize learning outcomes and 

model validation. 

 

𝑦 =
(𝑥−𝑚𝑖𝑛)

(max − min )
 (3.1) 

where 

𝑚𝑖𝑛 = Minimum observable value 

𝑚𝑎𝑥 = Maximum observable value 
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𝑦 =
(𝑥−µ)

𝜎
 (3.2) 

where 

µ = mean of observable value 

𝜎 = standard deviations of observable value 

 

Figure 3.4 Data Training Needs (Baheti, 2021) 

 

3.3.2 Model Training 

The chosen LSTM model will be trained using Backpropagation Through Time 

(BPTT) to address long-term dependencies and sequence-related challenges in 

machine learning. TensorFlow will serve as our primary tool for model training. 

The model architecture will consist of several layers, with specific units 

per layer, activation functions, and dropout layers to mitigate overfitting. 

Tuning will be conducted to determine the optimal architecture configuration. 

The optimization algorithm will be needed to adjust the weights and 

biases of the model. It can minimize the error between the predicted and actual 

values which ensure the accuracy of model. The optimization algorithm can be 

used to train LSTM models are Bayesian optimization, Sine Cosine Algorithm, 

Harmony Search and Gray Wolf Optimizers (Rashid et al., 2018). The choice 

of optimization algorithms will depend on the datasets features and 

requirements.  
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Model Performance will be assessed using Mean Absolute Error (MAE) 

and Root Mean Square Error (RMSE), providing insight into average prediction 

deviations and variability. The MAE derived by calculating the average 

difference between the predicted value and the actual value, as shown in 

Equation 3.3.  

 

𝑀𝐴𝐸 =
1

𝑛
𝛴|𝑦 − 𝑦|̂ (3.3) 

where 

𝑛 = Total number of data points 

𝑦 = Actual output value 

𝑦̂ = Predicted output value 

 

The RMSE is determined by calculating the square root of difference 

between square of predicted value and actual value shows in Equation 3.4. The 

finalized model will be deployed to a server for real-time predictions and to 

monitor anomalies in the collected data. 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑦̂−𝑦)2

𝑛
  (3.4) 

where 

𝑛 = Total number of data points 

𝑦 = Actual output value 

𝑦̂ = Predicted output value 

 

3.4 Work Plan 

This section includes the Work Breakdown Structure and Gantt Chart. The 

Work Breakdown Structure will list out the tasks of each phase. While the Gantt 

Chart will provide each tasks’ duration. 
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3.4.1 Work Breakdown Structure 

IoT-Integrated Hydroponic Farming System Mobile Application 

1.0 Initial Planning 

1.1 Project Planning 

 1.1.1  Project Background Research 

 1.1.2 Define Problem Statement 

 1.1.3 Define Project Objectives 

 1.1.4 Define Scope and Limitation 

 1.1.5 Define Solution and Approach 

1.2 Literature Review 

 1.2.1 Review on Features and Capabilities of Hydroponic Farming 

System Mobile Applications 

 1.2.2  Review on Mobile Applications User Interface Design 

 1.2.3 Review on Proportional-Integral-Derivative (PID) Control 

Algorithm 

 1.2.4  Review on Machine Learning Model 

1.3 Methodology and Work Plan 

 1.3.1 Compare and Select SDLC methodology. 

 1.3.2 Develop Work Plan 

 1.3.3 Determine Development Tools 

2.0 Execution 

2.1 First Iteration 

 2.1.1 Requirement Collection and Analysis 

 2.1.2 Design User Interface 

 2.1.3 Design System Architecture 

 2.1.4 Develop Use Case Diagram 

 2.1.5 Evaluation and Feedback 

2.2 Second Iteration 

 2.2.1 Develop Monitor and Control Module 

 2.2.2 Develop Reminder and Notification Module 

 2.2.3 Develop Plant Listing and Detail Module 

 2.2.4 Develop User Authentication and Account Module 

 2.2.5 Evaluation and Feedback 



32 

2.3 Third Iteration 

 2.3.1 Preprocessing Datasets 

 2.3.2 Training Model 

 2.3.3 Fine-tuning and Testing Model 

 2.3.4 Integrate Machine Learning Model with Hydroponic Farming 

System 

 2.3.5 Evaluation and Feedback 

2.4 Fourth Iteration 

 2.4.1 Develop Testing Plan  

 2.4.2 Develop Test Case 

 2.4.3 Integration Testing 

 2.4.4 Performance Testing 

 2.4.5 Evaluation and Feedback 

3.0 Closure 

3.1 System Deployment 

3.2 Report and Documentation
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Figure 3.5 Work Breakdown Structure 
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Figure 3.6 Work Breakdown Structure (continued) 
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3.4.2 Gantt Chart 

 

Figure 3.7 Gantt Chart 
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Figure 3.8 Gantt Chart (continued)
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3.5 Development Tools 

This section introduces the tools will be used for developing this project 

including programming languages, frameworks, integrated development 

environments (IDE), version control systems, and database. This project mainly 

using Android Studio and Visual Studio Code to develop the application while 

Google Collab for developing the anomaly detection model.  

 

3.5.1 JavaScript 

This programming language are used as the default language of React Native 

framework. This language has many developed and basics libraries can be used 

in this project like user interface (UI) libraries. It is a language that suitable for 

this project frontend and backend development. 

 

3.5.2 React Native 

This framework is a JavaScript framework for developing cross-platform 

mobile applications. It allows the project can be deployed in multiple platforms 

such as Android and iPhone Operating System (iOS). React Native can import 

large numbers of third-party libraries and community support for efficient 

development. 

 

3.5.3 Visual Studio Code 

This IDE is a lightweight and powerful tool to develop different kinds of web 

and mobile project. Its capabilities of importing extension and module enhance 

the productivity for the project. Thus, it is suitable for the project using 

JavaScript and React Native.  

 

3.5.4 Android Studio 

This IDE is the official tool for developing Android applications. It offers 

efficient tool for building and testing the Android app, the emulators a virtual 

device to simulate the environment of smartphones. It also ensures the 

compatibility and performance of the Android app for easier developing and 

debugging.  
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3.5.5 Google Collab 

This online tool is a cloud-based platform for developing the machine learning 

model that will deploy in this project. It provides free access to Graphics 

Processing Unit (GPU) resources which reduce the costs and time to train the 

model. It reduces the difficulty of developing and testing the machine learning 

model for this project.  

 

3.5.6 Git 

Git is a version control system that used for tracking changes in source code 

during project development. It can sync with GitHub for backing up the source 

code to avoid accident loses. It enables the project can merge the changes or 

revert to previous versions if occur incompatible of dependencies or other issues.  

 

3.5.7 Firebase 

Firebase is a No Structured Query Language (NoSQL) database which increase 

the efficiency of retrieving time-stamp data. It also provides real-time database 

for real-time synchronization between mobile applications and server. It will 

simplify the backend development and management of this project, increase the 

productivity of the development.  

 

3.5.8 Node,js 

Node.js is a JavaScript runtime environment can be used for developing server-

side scripting. It is an event-driven architecture, featuring of asynchronous input 

and output, and single-threaded design enabled high efficiency development. It 

also provides frameworks that simplify the development process of mobile 

applications. 

 

3.5.9 Flask 

Flask is a lightweight web framework for Python, designed to make web 

applications and API easy to build. Its characteristics of microframework and 

simplicity let it easy to use and understand which using less code to write and 

suitable for developers. This framework provides URL mapping to functions 

which allow handling of different HTTP requests such as GET and POST. 
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3.5.10 TensorFlow 

TensorFlow is an open-source machine learning framework developed by 

Google. This framework is widely used for building and training machine 

learning and deep learning models. The Keras API is one of the key features for 

TensorFlow to build deep learning models and promote quick model 

development including packages such as layers, optimizers, regularizers and 

others.  

 

3.5.11 NumPy 

NumPy is a Python fundamental library for numerical and scientific computing 

which suitable for processing the raw data. It supports data processing for arrays, 

matrix, and many mathematical functions such as arithmetic, statistical analysis, 

and linear algebra. It also integrates well with other scientific libraries like 

scikit-learn that would also be used in this project. 

 

3.5.12 Scikit-learn 

In this project, Scikit-learn, an open-source machine learning framework for 

Python that offers effective and simple to use data analysis and modeling 

capabilities was used. It is constructed upon NumPy, SciPy, and matplotlib, 

which are data science-specific libraries. The transformers for this library will 

be used for preprocessing and feature extraction such as StandardScaler and 

MinMaxScaler. 

 

3.6 Conclusion 

This chapter decides the Feature Driven Development (FDD) software 

development methodology as the project development methodology. 

Additionally, steps to process the datasets and model training were identified 

and discussed. Moreover, this chapter also discussed the tasks to be done in the 

work breakdown structure while the time schedule mentioned in the Gantt Chart. 

The tools for developing the project include JavaScript, React Native, Visual 

Studio Code, Android Studio, Google Collab, Git and Firebase. In conclusion, 

by utilizing the FDD methodology with the tools identified, the project could 

deliver efficient solution to meet the requirements and challenges of the 

development process.
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CHAPTER 4 

 

4 PROJECT SPECIFICATION 

 

4.1 Introduction 

This chapter will introduce the requirements specification for the application 

including functional and non-functional requirements. The use case diagram and 

description provide a visualization and explanation of the main functionality of 

the application. All these information act as a foundation to the application 

architecture design and development. 

 

4.2 Requirement Specification 

Requirement Specification will define what features or functionalities include 

in this project. The requirements were collected through review of feature and 

capabilities of hydroponic farming system mobile application and based on the 

project objectives. 

 

4.2.1 Functional Requirements 

Monitoring and Controlling Module 

• The application shall allow users to monitor real-time data from sensor 

in the hydroponic system. 

• The application shall display environmental parameters such as 

temperature, humidity, and pH levels. 

• The application shall allow users to adjust parameters range remotely. 

• The application shall display the tasks to do that user set for their plants. 

 

Reminders and Notifications Module 

• The application shall push reminder of tasks set by user based on user’s 

notification settings. 

• The application shall push notification to alert users about critical issues 

or changes detected by Anomaly Detection Module based on user’s 

notification settings. 

• The application shall allow users to view all the notification. 
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• The application shall allow users to configure notification settings on 

reminders and alerts. 

 

Plant Management Module 

• The application shall allow users to add the plant details including image, 

status, observation, and measurement. 

• The application shall allow users to edit the plant details. 

• The application shall display a listing of plants of the farm. 

• The application shall allow users to add observation and measurement 

for record purposes. 

• The application shall allow users to add tasks with date that need to be 

implement on plants. 

 

User Authentication and Management Module 

• The application shall allow users to register a new account. 

• The application shall allow users to login via email and password. 

• The application shall send a verification email after users register an 

account. 

• The application shall allow users to edit their account credentials include 

email and password. 

• The application shall allow users to recover account by resetting 

password via email. 

 

Anomaly Detection Module 

• The model shall perform real-time analysis of data from sensors to detect 

anomalies in environmental parameters. 

• The model shall identify abnormal patterns or deviations from the data 

collected. 

• The application shall allow users to review data and insight of the current 

farm. 
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4.2.2 Non-Functional Requirements 

• The application shall achieve a response time of less than 5 second for 

displaying real-time data, measured consistently during operation. 

• The application shall maintain a minimum uptime of 99% for continuous 

hydroponic system operation, tracked through uptime monitoring, and 

alert on anomalies. 

• The user interface of application shall be intuitive, require minimal 

learning for operation. 

• The application shall be able to adapt to different screen sizes of mobile 

devices. 

 

4.3 Use Case Diagram 

Figure 4.1 shows the use case diagram for Internet of Things (IoT) integrated 

hydroponic farming system mobile application. 

 

Figure 4.1 Use Case Diagram 
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4.4 Use Case Description 

4.4.1 Login 

Use Case Name: Login ID: UC01 Importance Level: High 

Primary Actor: User Use Case Type:  Detail, Real 

Stakeholders and Interests: User: Login to account 

Brief Description: This use case describes that a registered user login to the 

mobile application 

Trigger: User opens the mobile application  

Relationships: 

 Association : User 

 Include : N/A 

 Extend  : Recover Account 

 Generalization:  N/A 

Normal Flow of Events:  

1. The user opens the mobile application. 

2. The application displays the login screen.  

3. The users forgot their password.  

The S-1 Recover Account flow performed. 

4. The user enters the valid email and password.  

5. The user submits the user credentials. 

6. The application verifies the user’s login credentials. If user 

credentials are invalid, perform Exceptional Flow 6.1.  
Sub-flows: 

      S-1 Recover Account 

1. The user selects the Recover Account option from the login screen. 

2. The application displays the recover screen. 

3. The user enters their registered email address and submit. 

4. The application generates a password reset link and sends to user’s 

email address. 

5. The application prompts the password reset link sent. 

6. Return to main flow step 2. 

Alternate/Exceptional Flows:  

6.1 Invalid User Credentials 

1. The application displays an error message on wrong user 

credentials. 

2.   The application prompts user to retry the login procedure. 
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4.4.2 Register Account 

Use Case Name: Register Account 

 

ID: UC02 Importance Level: High 

Primary Actor: User 

 

Use Case Type:  Detail, Real 

Stakeholders and Interests: User: Register account 

 

Brief Description: This use case describes that a new user can register a new 

account. 

Trigger: User opens the mobile application and don’t have account.  

Relationships: 

 Association : User 

 Include : N/A 

 Extend  : N/A 

 Generalization:  N/A 

 

Normal Flow of Events:  

1. The user selects the Register Account option from the login screen. 

2. The application displays the registration screen. 

3. The user enters the required information for register account. 

4. The user submits the registration information. 

5. The application validates the information entered. If the registration 

information is invalid and duplicated, perform Exceptional Flow 5.1 

Sub-flows: 

          N/A 

Alternate/Exceptional Flows:  

5.1 Invalid and Duplicated Register Information 

1. The application displays an error message on invalid or duplicated 

register information. 

2.   The application prompts user to retry the registration procedure. 
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4.4.3 Edit Account Credentials 

Use Case Name: Edit User 

Credentials 

 

ID: UC04 Importance Level: High 

Primary Actor: User 

 

Use Case Type:  Detail, Real 

Stakeholders and Interests: User: Edit user credentials. 

 

 

Brief Description: This use case describes that a registered user can update 

their email or password.  
Trigger: User wants to change user credentials. 

Relationships: 

 Association : User 

 Include : N/A 

 Extend  : N/A 

 Generalization:  N/A 

 

Normal Flow of Events:  

1. The user opens their profile. 

2. The application displays option for changing email or password. 

3. The user can modify the user credentials by select the option. If the 

update information is invalid and duplicated, perform Exceptional 

Flow 3.1 

4. The user saves the changes of user credentials. 

5. The application prompts update successful message, and updates user 

credentials. 

Sub-flows: 

          N/A 

Alternate/Exceptional Flows:  

5.1 Invalid and Duplicated Update Information 

1. The application displays an error message on invalid or duplicated 

update information. 

            2.   Return to main flow step 2.   
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4.4.4 Add Plant  

Use Case Name: Add Plant  

 

ID: UC05 Importance Level: High 

Primary Actor: User 

 

Use Case Type:  Detail, Real 

Stakeholders and Interests: User: Add Plant. 

 

Brief Description: This use case describes that a user can add a plant including 

image, status, observation, and measurement.  
Trigger: User wants to add a new plant for a sector. 

Relationships: 

 Association : User 

 Include : Record Observation and Measurement, Set Tasks 

 Extend  : N/A 

 Generalization:  N/A 

 

Normal Flow of Events:  

1. The user opens the plant screen.  

S-1 Add New Observation and Measurement flow performed. 

S-2 Add New Task flow performed. 

2. The user selects Add Plant option. 

3. The user enters the add plant screen and fill in the info. 

4. The application saves the new plant. If the information is incomplete 

or invalid, perform exceptional flow 4.1.  
Sub-flows: 

          S-1 Add New Observation and Measurement  

1. The user enter new observation and measurement to the selected 

plant. 

2. The application save the new info. 

3. Return to main flow step 1. 

          S-2 Add New Task  

1. The user enter new task note and date to the selected plant. 

2. The application save the new info. 

3. Return to main flow step 1. 

  
Alternate/Exceptional Flows:  

          Exceptional Flow 4.1: Incomplete or Invalid information 

1. The application displays an error message on incomplete or invalid 

information. 

2. The application prompts user to complete and enter valid 

information. 

3. Return to main flow step 2 
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4.4.5 Edit Plant Details 

Use Case Name: Edit Plant Details 

 

ID: UC06 Importance Level: High 

Primary Actor: User 

 

Use Case Type:  Detail, Real 

Stakeholders and Interests: User: Edit Plant Details. 

 

Brief Description: This use case describes that a user can edit a plant detail 

including status, observation and measurement, and tasks.  
Trigger: User wants to edit a new plant detail. 

Relationships: 

 Association : User 

 Include : N/A 

 Extend  : N/A 

 Generalization:  N/A 

 

Normal Flow of Events:  

1. The user opens the plant screen. 

2. The application displays list plants for each sector. 

3. The user selects a plant that require update. 

4. The application displays the selected plant information. 

5. The user selects Edit Plant Details option. 

6. The user edits the plant details. 

7. The application saves the new plant details. If the information is 

incomplete or invalid, perform exceptional flow 7.1.  
Sub-flows: 

          N/A 

Alternate/Exceptional Flows:  

          Exceptional Flow 7.1: Incomplete or Invalid information 

1. The application displays an error message on incomplete or invalid 

information. 

2. The application prompts user to complete and enter valid 

information. 
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4.4.6 View Plant Details 

Use Case Name: View Plant 

Details 

 

ID: UC07 Importance Level: High 

Primary Actor: User 

 

Use Case Type:  Detail, Essential 

Stakeholders and Interests: User: View Plant Details. 

 

 

Brief Description: This use case describes that a user can view a plant detail 

including image, status, observation and measurement, 

and tasks.  
Trigger: User wants to view a new plant detail. 

Relationships: 

 Association : User 

 Include : N/A 

 Extend  : N/A 

 Generalization:  N/A 

 

Normal Flow of Events:  

1. The user opens the plant screen. 

2. The application displays list of plants for each sector. 

3. The user selects a plant to view. 

4. The application displays the selected plant information.  
Sub-flows: 

          N/A 

Alternate/Exceptional Flows:  

          N/A 
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4.4.7 Monitor Real-Time Environmental Parameters 

Use Case Name: Monitor Real-

Time Environmental Parameters 

 

ID: UC08 Importance Level: High 

Primary Actor: User 

 

Use Case Type:  Detail, Real 

Stakeholders and Interests: User: Monitor real-time environmental 

parameters. 

Brief Description: This use case describes that a user can monitor real-time 

data from sensor in the hydroponic system. 

Trigger: User wants to monitor hydroponic farm system. 

Relationships: 

 Association : User 

 Include : N/A 

 Extend  : N/A 

 Generalization:  N/A 

 

Normal Flow of Events:  

1. The user opens the monitor panel. 

2. The application displays the real-time environmental parameters 

including surrounding temperature, solution temperature, humidity, 

pH value, nutrient level, light intensity, and TDS level. 

3. The application updates the parameters every 10 minutes. 

4. The user can manually refresh the monitor panel to retrieve the latest 

data  
Sub-flows: 

          N/A 

Alternate/Exceptional Flows:  

          N/A 
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4.4.8 Edit Parameters 

Use Case Name: Edit Parameters 

 

ID: UC09 Importance Level: High 

Primary Actor: User 

 

Use Case Type:  Detail, Essential 

Stakeholders and Interests: User: Edit parameters. 

Brief Description: This use case describes that a user can edit parameters 

remotely 

Trigger: User wants to adjust parameters for hydroponic farm. 

Relationships: 

 Association : User 

 Include : N/A 

 Extend  : N/A 

 Generalization:  N/A 

 

Normal Flow of Events:  

1. The user opens the control screen. 

2. The application displays parameters settings for each sector. 

3. The user selects edit parameters option. 

4. The user can adjust the values of parameters. 

5. The user saves the changes on the parameters.  

6. The application saves and update the required parameters in database. 

Sub-flows: 

          N/A 

Alternate/Exceptional Flows:  

          N/A 
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4.4.9 View Notification  

Use Case Name: View 

Notification  

 

ID: UC10 Importance Level: High 

Primary Actor: User 

 

Use Case Type:  Detail, Essential 

Stakeholders and Interests: User: View notification  

Brief Description: This use case describes that a user can view notification. 

Trigger: User wants to view notification. 

Relationships 

 Association : User 

 Include : N/A 

 Extend  : N/A 

 Generalization:  N/A 

 

Normal Flow of Events:  

1. The user opens the notification screen. 

2. The application displays list of notification. 

3. The user can delete the notification. 

4. The user can select one of the notifications for review. 

5. The application displays the details of the notifications. 

Sub-flows: 

          N/A 

Alternate/Exceptional Flows:  

          N/A 
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4.4.10 Configure Notifications Settings 

Use Case Name: Configure 

Notification Settings 

 

ID: UC11 Importance Level: High 

Primary Actor: User 

 

Use Case Type:  Detail, Real 

Stakeholders and Interests: User: Configure Notification Settings  

Brief Description: This use case describes that a user can configure 

notification settings. 

Trigger: User wants to configure notification settings. 

Relationships 

 Association : User 

 Include : N/A 

 Extend  : N/A 

 Generalization:  N/A 

 

Normal Flow of Events:  

1. The user opens the user profile. 

2. The user selects Notification Settings option. 

3. The application displays the current enabled notification settings. 

4. The user can enable or disable the push of reminders and alerts. 

5. The application saves the notification settings.  
Sub-flows: 

          N/A 

Alternate/Exceptional Flows:  

          N/A 
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4.4.11 Review Data and Insight 

Use Case Name: Review Data and 

Insight 

 

ID: UC12 Importance Level: High 

Primary Actor: User 

 

Use Case Type:  Detail, Real 

Stakeholders and Interests: User:  Review data and insight 

 

Brief Description: This use case describes that a user can review data and 

insight 

Trigger: User wants to gain insights of hydroponic farm. 

Relationships 

 Association : User 

 Include : N/A 

 Extend  : N/A 

 Generalization:  N/A 

 

Normal Flow of Events:  

1. The user opens the Insight screen. 

2. The application displays the data and insight of the current farm. 

3. The insight categorizes data and insight to two periods, daily and 

monthly. 

4. The user can select the date for review. 

5. The user can choose to export the specific date of parameter data to 

csv file.  
Sub-flows: 

          N/A 

Alternate/Exceptional Flows:  

          N/A 
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4.4.12 Detect Anomalies 

 

 

 

 

 

 

 

CHAPTER 5 

Use Case Name: Detect 

Anomalies 

 

ID: UC13 Importance Level: High 

Primary Actor: Anomaly 

Detection Model 

 

Use Case Type:  Detail, Essential 

Stakeholders and Interests: Anomaly Detection Model:  Detect anomalies 

Brief Description: This use case describes that a model able to identify 

abnormal patterns or deviations from expected forms. 

Trigger: When there are anomalies in the data collected 

Relationships 

 Association : Anomaly Detection Model 

 Include : N/A 

 Extend  : Push Alert Notification 

 Generalization:  N/A 

 

Normal Flow of Events:  

1. The model retrieves the real-time sensor data. 

2. The model analyses the data based on trained data. 

3. The model identifies abnormal patterns or deviations from the 

expected forms. 

4. The application collected details of the anomaly detected. 

5. The application can push alert notification to user. 

S-1 Push Alert Notification flow performed. 

Sub-flows: 

          S-1 Push Alert Notification 

1. The application check the alert notification settings is enable 

2. The application push the alert notification. 

3. Return to main flow step 1.  
Alternate/Exceptional Flows:  

          N/A 
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5 SYSTEM DESIGN 

 

5.1 Introduction 

This chapter provides an in-depth discussion of the system architecture design, 

database design, and user interface design. The system architecture design 

outlines the flow of the system process, including the frameworks and 

connections used. The database design visualizes the structure of the database 

and presents the data dictionaries. Finally, the user interface design introduces 

each screen's design and its respective functionality. 

 

5.2 System Architecture Design 

The mobile application implements a client-server architecture that is divided 

into three tiers: presentation tier, application tier, and database tier, representing 

the frontend, backend, and database layers, respectively. Figure 5.1 visualizes 

the system architecture of the entire system. This architecture ensures that each 

layer is independent, thereby enhancing the maintainability and flexibility of the 

system during implementation and development. Additionally, it improves the 

system's reliability by implementing rules that limit user access to data based on 

authority levels. 



56 

 

 
 

Figure 5.1 System Architecture Design 

 

The presentation tier includes the mobile application, developed using the React 

Native framework to simplify the development process. The mobile application 

is responsible for displaying processed data to users and receiving user input. 

Additionally, the hydroponic system functions as a client within the overall 

system. To enable communication with the mobile application and data upload, 

the hydroponic system sends HTTP requests to the server for data uploading 

and other actions. Furthermore, Firebase Authentication is employed in the 

presentation tier to handle user registration and sign-in processes, offering 

comprehensive authentication services, including email verification and 

password reset, thus reducing the development time for the user authentication 

module. 



57 

 

 The application tier, acting as the middle layer, is responsible for 

executing business logic, managing data access and processing, and performing 

tasks such as triggering push notifications when certain conditions are met, as 

well as scheduling notifications or reminders based on user settings. Node.js 

was selected to provide the foundation for deploying functionalities and services 

in the application tier due to its ease of deployment and flexibility. The app 

server continuously operates to handle HTTP requests directed at the application 

programming interface (API), which is customized using the Express.js 

framework. The API processes requests, executes actions such as 

communicating with the database to retrieve data, and finally returns data via 

HTTP response. For the model server, the Flask framework was chosen to set 

up the server for the anomaly detection machine learning model, as the model 

relies on Python libraries such as NumPy, Pandas, and TensorFlow. To obtain 

the anomaly detection results, the app server sends HTTP POST requests to the 

model server with data retrieved from the database. This data is preprocessed 

before being sent to the model for prediction and anomaly detection, with the 

results returned via HTTP response. 

 Moreover, Firebase Cloud Messaging is used to provide notification 

services for the mobile application due to its efficient message delivery and 

customization capabilities. The backend server pushes notifications when 

certain conditions are met, such as user settings or scheduled reminders and 

tasks. Additionally, the trained anomaly detection model can send request to 

app-server to push notifications when an anomaly is detected. To ensure real-

time monitoring, the trained model constantly retrieves the latest data from the 

database and identifies any potential anomalies. 

 Lastly, the database tier is responsible for data storage and retrieval. This 

tier includes the database management system (DBMS) that handles data 

storage, retrieval, and modification. Firebase Cloud Firestore and Cloud Storage 

are used to store all the data utilized by the system, including user data, farm 

data, and images. These technologies were chosen because they offer NoSQL 

database and cloud storage solutions, enabling flexible and scalable data storage 

for the entire system. 
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5.3 Database Design 

Before building the actual database, a database design process was conducted, which involved defining data elements, data relationships, and 

normalizing data. This section visualizes the database design using an Entity Relationship Diagram (ERD) and a Data Dictionary, providing an 

overview of the database structure for the mobile application. 

 

5.3.1 Entity Relationship Diagram 

An Entity Relationship Diagram (ERD) is a crucial tool for database design and development, as it visualizes the overall structure of the database 

and validates the design against the system’s requirements. Figure 5.2 illustrates the ERD for the IoT-Integrated System for Monitoring Hydroponic 

Farming. This ERD contains four entities: Users, Farms, Sectors, Plants, Devices, Anomalies. 
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Figure 5.2 Entity Relationship Diagram 
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5.3.2 Data Dictionary 

Table 5.1 Description of Database Tables 

Table Name Description 

Users Contains user’s data required for performed certain action 

Farms Contains farm information, one user can have multiple farms. 

Sectors Contains sector information, one farm can have multiple sectors. 

Plants Contains plant information, one sector can have multiple plants. 

Devices Contains device information, one device only can have one sector. 

Anomalies Contains anomaly information, one sector can have zero to many anomalies. 

 

Table 5.2 Users Entity Data Dictionary 

Fields Field’s Description Type Example 

userId [PK] Unique identifier for the 

user. 

String VWYk4xnl1UZTx6R4HgMWdP5To4j1 

farmList Array of references 

(document IDs) to 

documents within the 

String aJ59zZKqjt8zm0JC2Hq3 
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Farms collection, indicating 

farms the user is associated 

with. 

messageToken Token used for sending 

push notifications to the 

user's device. 

String cZ30dQrFRm6q3pXktOkjsv:APA91bH1gZ4OjWj7 

notificationList Array of objects containing 

notification details. 

String This is your daily reminder for you to check on your farm. 

2024-07-10 

1720586167113 

12:36:06 

Daily Reminder 

normal 

notificationSettings Array of user preferences 

for different notification 

categories. 

Boolean true 

true 

true 
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Table 5.3 Farms Entity Data Dictionary 

Fields Field’s Description Type Example 

farmId [PK] Unique identifier for the farm. String aJ59zZKqjt8zm0JC2Hq3 

createdAt Date and time the farm was created. Timestamp 2024-07-11T13:44:08.497Z 

location Location details of the farm. String test location 

name Name of the farm. String test 

sectorList Array of references (document IDs) to documents within the 

Sectors collection, representing sectors belonging to the farm. 

String DzTAF5V1yxGSdVT9UfAO 

 

Table 5.4 Sectors Entity Data Dictionary 

Fields Field’s Description Type Example 

sectorId [PK] Unique identifier for the sector. String DzTAF5V1yxGSdVT9UfAO 

createdAt Date and time the sector was created. Timestamp 2024-07-11T13:44:08.497Z 

latestData Object containing the latest value of the multiple parameter 

objects 

String surroundingTemperature 

-timestamp: 2024-07-29T21:06:20 

-value: 31.3 
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plantList Array of references (document IDs) to documents within 

the Plants collection, representing plant belonging to the 

sector. 

String zntrE8qKcmEY8UC2kHKV 

parameterSettings Object containing the upper and lower ranges of the 

multiple parameter objects 

Number surroundingTemperature 

20 

40 

anomalyList Array of anomaly document IDs to documents within the 

anomaly collection, referring the anomaly detected in the 

sector 

String 2UMLVlf2LlmEMOCqZHii 

triggerSettings Object containing the multiple IoT device trigger name and 

values 

Boolean foggerTrigger: false 

 

Table 5.5 Plants Entity Data Dictionary 

Fields Field’s Description Type Example 

plantId [PK] Unique identifier for the plant. String OyWjQu67vnTzH4fQ1waO 

imageUrl Reference (URL) to the 

plant's image stored in 

Firebase Storage. 

String https://storage.googleapis.com/test-aeba2.appspot.com/sectors/ 
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importantDates Array of objects containing 

dates and notes for the plant. 

String 2024-07-07 

Leaf Check 

lastUpdate Date and time the plant 

document was last updated. 

Timestamp 2024-07-11T13:44:08.497Z 

name Name of the plant. String lettuce 

records Array of objects containing 

dates, observation, and 

measurements. 

String 2024-07-11T13:44:08.497Z 

Leaf in healthy state 

3cm 

sectorId Reference (document ID) to a 

document within the Sectors 

collection. 

String DzTAF5V1yxGSdVT9UfAO 

status Current state of the plant  String healthy 

 

Table 5.6 Devices Entity Data Dictionary 

Fields Field’s Description Type Example 

deviceId [PK] Unique identifier for the device. String YVsE3C3e4pwfLs8Rh7PM 

createdAt Date and time the device was created. String 2024-07-28T00:54:07 

deviceName Name of the device String abc 
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deviceLocation Location of the device String abc location 

linkSector The linked sector ID String rXHbTROjARlvr2DCubny 

linkUser The linked user ID String jNpmgDej52T9D758EoZyS0HF4Yl2 

 

Table 5.7 Anomalies Entity Data Dictionary 

Fields Field’s Description Type Example 

anomalyId [PK] Unique identifier for the anomaly. String 2UMLVlf2LlmEMOCqZHii 

createdAt Date and time the anomaly was detected. String 2024-07-28T00:54:07 

anomalySummary Object containing detected status and anomaly score String Detected: true 

Anomaly_score: 10.01 

sectorId The anomaly detected at this sector String rXHbTROjARlvr2DCubny 
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5.4 User Interface Design 

User interface (UI) design visually represents the mobile application's features 

and layout, ensuring that user requirements and expectations are met. 

 

5.4.1 User Authentication Pages 

The user authentication module comprises three screens: the login screen, the 

registration screen, and the forgot password screen. Figure 5.3 displays the UI 

design of the user authentication module. Users are required to enter a valid 

email address and password to sign in to the application. During registration, 

users must correctly input their email and password. The system verifies 

whether the email has already been registered. After verification, a confirmation 

email is sent to the user’s email address. If a user forgets their password, they 

can submit their registered email address, and a password reset link will be sent 

to that address. 

 

 

 

Figure 5.3 Login, Register and Forgot Password Screen 
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5.4.2 Monitor Panel Pages 

Figure 5.4 presents the monitor panel screen of the application. An icon in the 

upper right corner allows users to navigate to the user profile screen. The 

monitor panel displays the current farm name along with related sector 

parameters and events. Users can switch between parameters and tasks by 

clicking on the upper tab bar, with parameters grouped by sector. On the right 

side of the screen title, icons provide features such as editing farms and sectors. 

The bottom navigation bar includes five modules: Monitor Panel, Control Panel, 

Data and Insight, Plant, and Notification. 

 

 

Figure 5.4 Monitor Panel Screen 

 

Figure 5.5 illustrates the edit farms screen with its functions. Users can 

add or delete farms using the plus and edit icons located in the upper right corner 

of the screen. To add a farm, users must enter the farm name and location. 
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Figure 5.5 Edit Farm Screen 

 

Figure 5.6 depicts the edit sector screen with its functions. Similar to 

farm management, users can add or delete sectors using the icons in the upper 

right corner. To add a sector, users need to enter the device information obtained 

after registering the device on the hydroponic farm system. 

 

 

 

Figure 5.6 Edit Sector Screen 

 



69 

 

5.4.3 Control Panel Screen 

Figure 5.7 shows the control panel screen of the application. This screen 

displays all the sector parameter settings associated with a farm. By clicking the 

edit icon next to each parameter, a modal window opens, allowing users to edit 

the parameter settings. Below the parameter settings, users can manually turn 

IoT devices, such as pumps for pH and TDS control, on or off using the trigger 

actions. 

 

 

 

Figure 5.7 Control Panel Screen 

 

5.4.4 Data and Insight Screen 

Figure 5.8 presents the data and insight screen of the application. It displays 

parameter trends and detected anomalies based on the selected sector and 

timeframe, including daily and monthly data. Users can switch between 

parameters to update the trend graph accordingly. The trend graph displays 

actual data points, predicted data points, and anomaly points. Detected 

anomalies are detailed with the detection time, threshold, and the discrepancy 

between predicted and actual values, allowing users to analyse abnormal events 

thoroughly. Additionally, users can export all parameter data for a specific date 

by clicking the download button. 
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Figure 5.8 Data and Insight Screen 

 

5.4.5 Plant Management Pages 

Figure 5.9 shows the Plant Screen, Add Plant Screen, and Plant Detail Screen. 

The Plant Screen lists all plants within the sectors that have been added. Users 

can navigate to the Add Plant Screen by clicking the plus icon at the bottom 

right of the screen. To view plant details, users simply click on the respective 

plant item. The Plant Detail Screen displays the plant's status, observation 

records, and tasks to be performed. Users can add new records and tasks by 

clicking the respective buttons. The edit and delete icons in the upper right 

corner allow users to modify or remove plant details. 
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Figure 5.9 Plant Screen, Add Plant Screen, and Plant Detail Screen 

 

Figure 5.10 shows the modals for adding observation records and tasks, 

as well as the edit plant detail screen, which appears after clicking the edit icon. 

Tasks can only be deleted, while observation records can be both edited and 

deleted. Users can also edit the plant's image and status. After editing, users 

must click the save button in the upper right corner to save changes; otherwise, 

modifications will not be saved. 

 

 

 

Figure 5.10 Add observations and tasks, and Edit Plant Detail Screen 
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5.4.6 Notification Screen 

Figure 5.11 shows the notification screen of the application. This screen lists all 

notifications sent to the user. Users can delete notifications by clicking the top-

right edit icon and selecting the notifications they wish to remove. A modal will 

appear showing the notification details when a user clicks on a notification. 

 

 

 

Figure 5.11 Notification Screen 

 

5.4.7 User Profile Pages 

Figure 5.12 shows the user profile page of the application, which lists four 

options: change email, change password, notification settings, and logout. 
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Figure 5.12 User Profile Screen 

 

Figure 5.13 displays the screens for each of these options: change email, 

change password, and notification settings. To change their email, users must 

enter the new email address. To change their password, users must enter both 

their old and new passwords to ensure account security. Both actions will log 

the user out, requiring them to sign in again with their new credentials. The 

notification settings screen lists options for push notifications, including task 

reminders, daily reminders, and anomaly alerts. Users must save their updated 

settings before returning to the user profile. 
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Figure 5.13 User Screen with Edit User Credentials Function 
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CHAPTER 6 

 

6 IMPLEMENTATION 

 

 

6.1 Introduction 

This chapter discusses the implementation of the frontend, backend, and model 

training components of the Hydroponic Farm Monitoring Application. The 

frontend implementation covers the development of user interfaces and the 

setup of Firebase Authentication. The backend implementation focuses on 

configuring the application programming interface (API) and deploying the 

machine learning model. The model training section outlines the steps involved 

in training the machine learning model. 

 

6.2 Frontend Implementation 

The project utilizes the React Native framework as the foundation for mobile 

application development. The initial setup involves initiating the React Native 

framework using the command npx react-native init HydroponicApp, which 

downloads the necessary libraries, packages, and configuration files, including 

default directories and environment settings. 

 

6.2.1 Firebase Authentication 

Firebase Authentication is integrated into the project to manage user 

authentication and account management. The setup involves registering the 

application with Firebase and downloading the necessary configuration file, 

google-services.json. This file includes critical credentials such as the API key, 

project ID, and application ID, which are required for communication between 

the application and Firebase. Once the Firebase project is connected, the 

Firebase Authentication module is integrated into the application, including the 

setup of email/password sign-in methods as shown in Figure 6.1. 
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Figure 6.1 Firebase Authentication Providers 

 

 The application implements several authentication features. Users can 

register for a new account by completing a registration form, which captures the 

user's email and password. After validation, a new user account is created via 

Firebase Authentication, and a user document is generated to store additional 

information such as farm lists and notification settings. The login functionality 

allows users to sign in using their registered email and password. In case users 

forget their password, the application provides a password reset option, sending 

a reset link to the registered email. The user interface (UI) for login, registration, 

and password reset is built using react-native-paper, as referenced in Figure 5.3 

of Chapter 5. Forms are managed using Formik, with schema validation 

provided by Yup to ensure accurate and complete data input. 

 

6.2.2 Monitor Panel 

The application is designed to monitor real-time data from sensors in the 

hydroponic system. The react-native-tab-view is used to display tabs for 

parameters and tasks, each associated with different sectors, as shown in Figure 

5.4. Users can easily switch between sectors and view associated data by 

selecting the relevant tab. Data retrieval from the server is handled via API calls, 

and the retrieved sector info is stored locally using AsyncStorage to enhance 

performance and reduce unnecessary API calls. 
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 The monitor panel also includes pages for managing farm and sector lists. 

Users can view, delete, and add farms or sectors using an intuitive UI built with 

react-native-paper. Adding a farm requires inputting the farm name and location, 

while adding a sector involves registering the device ID associated with the 

hydroponic system. Each device can be linked to only one sector, ensuring data 

synchronization with sensor readings. 

 

6.2.3 User Profile 

The application allows users to update account credentials and configure 

notification settings, as shown in Figure 5.12. Users can change their email 

address or password through the user profile. When updating the email address, 

the application sends an API request to the server with the new email. After the 

update, the user is signed out and must verify the new email address before 

signing in again. Similarly, password changes require re-authentication using 

the old password. The EmailAuthProvider from react-native-firebase/auth is 

used to validate the old password before applying the new one. Users can also 

modify their notification preferences, which are saved to the database via API 

calls.  

 

6.2.4 Control Panel 

The control panel allows users to adjust parameter ranges for the hydroponic 

system remotely. Settings such as temperature and humidity ranges can be 

updated through the application, with data stored in the database and retrieved 

via API. Users can also manually trigger IoT devices, such as pumps, to adjust 

pH and TDS levels. The hydroponic system retrieves these trigger settings from 

the server and updates its status, accordingly, providing users with flexibility in 

managing their systems. 
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6.2.5 Data and Insight 

The application includes a Data and Insight screen for reviewing historical data, 

anomaly data, and statistical insights. Users can select parameters and time 

intervals (daily and monthly) to view trends in line charts, with data displayed 

in different colors for easy differentiation. The react-native-pickers and react-

native-chart-kit libraries are used to create an interactive data display. 

Anomalies are highlighted in red on the chart, and detailed information is 

provided below the chart. Users can also export data by clicking the download 

button.  

 

6.2.6 Plant Management 

The application supports plant management, allowing users to add, edit, and 

track plant details. Users can upload images and record observations using the 

react-native-image-picker library. Plant data is managed through an API, with 

updates reflected in the plant list. Event listeners are used to ensure real-time 

updates without memory leaks. 

Handling date displays in Firebase Firestore required converting 

timestamps to JavaScript Date objects. The format function from the date-fns 

library is used to format dates, while convertToMYT adjusts for time zones. 

 

6.2.7 Notification  

The application integrates Firebase Cloud Messaging (FCM) to handle 

notifications, ensuring users receive timely updates. The application checks for 

remote messaging registration on startup and manages the messaging token 

using setMessagingToken. Notifications are handled based on the app's state, 

with different handling for background and foreground notifications. 

Notifications are saved in the database and displayed in the notification screen, 

where users can view details or delete them. The app server manages 

notification sending, as detailed in Section 6.3.1. 
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6.3 Backend Implementation 

The backend is implemented using Node.js and Express.js for the application 

server, and Flask for the model server. Initial setup involves configuring the 

necessary dependencies and environments for both Node.js and Flask. 

 

6.3.1 Application Server 

The application server integrates Firebase for database operations, storage, and 

Firebase Admin SDK. Firebase Firestore handles data management, while 

Firebase Storage stores files, and Firebase Admin handles administration action 

such as email changing and notification sending. The server uses Express.js for 

routing and node-cron for scheduling tasks. A daily cron job is configured to 

send notifications based on user settings and plant tasks. 

To enable anomaly detection, the server requires a minimum of 100 data 

points before executing predictions. Data is sent to the model server for analysis, 

and the results are used to update the application with anomaly alerts and 

prediction data. 

 

6.3.2 Model Server 

The model server processes data received from the application server using a 

saved machine learning model for anomaly detection. The server uses libraries 

such as NumPy, scikit-learn, and TensorFlow for data processing and model 

inference. This server consists of two API endpoint to perform functionality 

using the saved model’s architecture definition which are the anomaly detection 

and trigger action prediction. Anomaly detection performed by comparing 

adaptive threshold with the losses calculated during the prediction process. The 

server returns anomaly detection results and predicted values to the application 

server, which then updates the user interface.  While the trigger action prediction 

will check the current trigger status and compare with the predicted trigger 

status then return the trigger status back to the application server.
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6.3.3 API Functions 

The server provides multiple API services, including routes for managing user data, farms, sectors, plants, and notifications. The server also handles 

multipart form data using multer and processes image uploads for plant management. 

 

Table 6.1 API List of Multiple Backend Services 

Service: Plant Default service endpoint: /plant 

Endpoint HTTP 

method 

Body / Query Description 

/getplants GET {sectorId} Retrieve list of plants associated with the 

sector 

/addplant/{sectorId} POST {name, status}, file Add a new plant to a sector 

/plant/{plantId} GET - Fetch and return detail of a specific plant 

/deleteplant DELETE {plantId, sectorId} Delete a plant from database 

/updateplant/{plantId} PUT {status, imageUrl, records, importantDates} Update detail of existing plant 

/plant/{plantId}/records POST {observation, measurement} Add a new record (observation and 

measurement) 

/plant/{plantId}/importantDates POST {date, note} Add a task with a date to the specific plant 
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Service: User Default service endpoint: /user 

Endpoint HTTP 

method 

Body / Query Description 

/register POST {userId, farmList, messageToken} Register a new user 

/updateEmail POST {uid, newEmail} Update user email address 

/getUser GET {userId} Retreive and return user data from database 

/updateUserSettings POST {userId, notificationSettings} Update user’s notification settings 

/checkToken POST {userId, messageToken} Check messageToken is changed or not 

/checkEmail POST {email} Check user exists or not, based on email 

Service: Farm Default service endpoint: /farm 

Endpoint HTTP 

method 

Body / Query Description 

/getfarm/{userId} GET - Retreive and return list of farms associated 

with the user 

/addfarm POST {userId, name, location, createdAt} Add a new farm to database 

/deletefarm/{farmId} 

 

DELETE {userId} Delete the specific farm from database 
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Service: Sector Default service endpoint: /sector 

Endpoint HTTP 

method 

Body / Query Description 

/getLatestData/{sectorId} GET - Retrieve and return latest data for a specific 

sector 

/getSector/{farmId} GET - Retrieve and return list of sectors for a 

specific farm 

/addSector POST {farmId, deviceId, userId} Add a new sector to specific farm 

/updateData POST {userId, sectorId, parameters} Update parameter data for specific sector 

/updateParameterSettings POST {sectorId, parameterSettings} Update the parameter settings for the sector 

/getStatus/{sectorId} GET - Fetch and return status of specific sector 

/getParameterSettings/{sectorId} GET - Retrieve and return parameter settings of 

specific sector 

/getParameterData POST {sectorId, selectedInterval} Fetch and return parameter data for specific 

sector based on selected interval 

/getAnomaliesData POST {sectorId, selectedInterval} Retrieve and return anomaly data for specific 

sector 

/deleteSector DELETE {farmId, sectorId} Delete a specific sector from given farm 
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/getTriggerSettings/{sectorId} GET - Retrieves the trigger settings for a specific 

sector 

/updateTriggerSettings POST {sectorId, triggerSettings} Updates the trigger settings for a specific 

sector 

/triggerResult/{userId} POST {triggerType, status, detail} Records the result of a trigger execution and 

send a notification 

/getDataForExport POST {sectorId, year, month, day} Fetches and returns the specific sector 

parameter data for a specific day from the 

Firestore database. 

Service: Message Default service endpoint: /message 

Endpoint HTTP 

method 

Body / Query Description 

/getNotification GET {userId} Retrieve and return list of notifications for 

specific user 

/deleteNotification DELETE {userId, notificationIds} Delete specific notification based on array of 

notification ID 

/checkAndSaveNotifications POST {userId} Check condition and save new notification 

for specific user 
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/sendAlert POST {userId, sectorId} Check alert condition for specific sector and 

user, and save related notification 

Service: Device Default service endpoint: /device 

Endpoint HTTP 

method 

Body / Query Description 

/register POST {deviceName, deviceLocation} Register a new device 

/getDevice/{deviceId} GET - Retrieve and return information for specific 

device 

Service: Model (model-server) Default service endpoint: / 

Endpoint HTTP 

method 

Body / Query Description 

/receive-data POST {latestData} Processes and analyses incoming sensor data 

for anomalies, returning anomaly summaries 

and predictions with actual values. 

/predict-trigger POST {latestData} Predicts and checks trigger conditions based 

on real-time data and predefined thresholds. 
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6.4 Model Training  

In this section, we detail the training process of the Long Short-Term Memory 

(LSTM) model, implemented in Google Collab, for identifying abnormal 

patterns or deviations within the data collected from the hydroponic farming 

system. The model is trained on historical sensor data collected from a 

hydroponic system, with preprocessing steps including data cleaning and 

scaling. 

 

6.4.1 Data Preparation 

Data preparation is a crucial step in effectively training a machine learning 

model, particularly for time series anomaly detection. This project employed the 

Pandas, NumPy, and Scikit-learn libraries to manage data manipulation, 

cleaning, numerical operations, array handling, and feature scaling. 

Initially, the dataset was loaded into a Pandas DataFrame (df) from a 

Comma Separated Value (CSV) file using the read_csv() function, ensuring the 

parse_dates parameter was set to interpret the "Time" column as a datetime 

object. Data cleaning was then performed using the dropna() function to remove 

rows with missing (NaN) values. Non-numeric columns were converted to 

numeric types, with errors coerced to NaN, except for the "Time" column. The 

"Time" column was subsequently set as the index of the DataFrame, and specific 

columns required for analysis were selected, as listed in Table 3.6. 

To prepare the data for the LSTM model, the features were standardized 

using StandardScaler, which normalizes the data. This step ensures that all 

features are on the same scale, improving the model’s performance. A sequence 

of length 10 was then created from the scaled data, allowing the model to learn 

patterns over multiple time steps. The create_sequences() function generated 

overlapping sequences, converting them into an array with the shape 

(num_sequences, seq_length, num_features). 
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6.4.2 Model Definition 

The LSTM model was defined and trained using the build_and_train_lstm() 

function, which leverages the TensorFlow/Keras library. This library was 

chosen for its high-level API that simplifies the process of defining neural 

networks, training models, and evaluating performance. Additionally, NumPy 

was used for numerical operations and array handling, particularly for sequence 

creation and data splitting. 

The data was split into training and validation sets, with 80% of the 

sequences allocated for training and the remaining 20% for validation. The 

training and validation datasets (X_train, y_train, X_val, y_val) were prepared 

by splitting each sequence into features and target values. The model was 

constructed using the Sequential API, which is ideal for models where each 

layer has a single input and output tensor. 

The model architecture includes two LSTM layers, as detailed in Table 

6.2. The Rectified Linear Unit (ReLU) activation function was employed in both 

LSTM layers. The first LSTM layer returned the full sequence of outputs, while 

the second returned only the output of the last time step. The input shape was 

defined for the first LSTM layer which include the timesteps (10 data point) 

with input_dim, the 13 features of the data then inferred for the second. A 

Dropout layer with a 0.2 rate and a Dense layer with regularization were 

included to prevent overfitting. 

 

Table 6.2 LSTM Layer configuration 

Units  Activation 

function  

Return Sequence  Input Shape  

64  ReLu  True  (timesteps, 

input_dim)  

32  ReLu  False  (timesteps, 

input_dim)  
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After defining the architecture, the model was compiled using the Adam 

optimizer with a learning rate of 1e-3, which adjusts the model’s weights during 

training by minimizing the loss function. The loss function, along with metrics 

such as Mean Squared Error (MSE) and Mean Absolute Error (MAE), was used 

to evaluate the model’s performance. 

 

6.4.3 Training Loop 

The training process, encapsulated in the build_and_train_lstm() function, 

began by defining the EarlyStopping callback from TensorFlow/Keras. This 

callback monitored the validation loss (val_loss) during training and halted the 

process if no improvement was observed over 10 consecutive epochs (patience 

parameter set to 10). The restore_best_weights parameter was set to true, 

ensuring the model reverted to the best-performing state based on validation 

loss. 

The model was trained using the model.fit() function, with X_train and 

y_train serving as the training data. The training was initially set for 200 epochs, 

although it could terminate earlier if the EarlyStopping callback was triggered. 

Validation data (X_val, y_val) was provided to evaluate the model’s 

performance after each epoch, offering insights into its generalization 

capabilities. The verbose parameter was set to 1 to display a progress bar and 

relevant metrics during each epoch. Upon completing the training at epoch 182, 

the model was saved in HDF5 format (model.h5) for deployment, as mentioned 

in Section 6.3.2. Figure 6.2 illustrates the training loop results. 

 

 

Figure 6.2 Model Training Result 
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6.4.4 Model Evaluation 

To assess the trained LSTM model's performance, we conducted an evaluation 

using a separate test dataset from the hydroponic farm system. This evaluation 

step was critical in determining the model’s ability to generalize to unseen data 

and its reliability in predicting real-world scenarios. 

The test dataset underwent similar preprocessing steps, including data 

scaling and sequencing, as applied during the training phase. The 

model.evaluate() function was utilized to compute the test loss, MSE, and MAE, 

which reflect the model’s prediction accuracy compared to the actual target 

values. The evaluation was conducted using X_test_seq (feature sequences) and 

y_test_seq (true target values). The results of the model evaluation are presented 

in Figure 6.3. 

 

 

Figure 6.3 Model Evaluation Result 

 

6.5 Summary 

Chapter 6 detailed the comprehensive implementation process of the 

Hydroponic Farm Monitoring Application, covering the frontend, backend, and 

model training components. The frontend implementation involved building 

the user interface with React Native, integrating Firebase for user authentication, 

and creating intuitive modules for monitoring and managing farm data. Key 

features included real-time data display, user profile management, and control 

panels for adjusting system parameters. 

The backend was developed using Node.js and Express.js, with a focus 

on establishing robust APIs for data handling, CRUD operations, and machine 

learning model deployment. Firebase was integrated to manage database 

operations, file storage, and user notifications. The backend also facilitated 

anomaly detection and system control by interfacing with the machine learning 

model server. 
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The model training process was conducted using Google Collab, where 

an LSTM model was trained on historical sensor data to identify anomalies in 

the hydroponic system. The training involved data preprocessing, model 

definition, and evaluation, ensuring the model could accurately detect 

deviations and predict system behaviour. 

This chapter demonstrates the successful integration of these 

components into a cohesive system that enhances the management of 

hydroponic farms. Future improvements could focus on optimizing algorithms, 

enhancing data handling, and refining the integration between various system 

components to further improve performance and user experience.  
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CHAPTER 7 

 

7 SYSTEM TESTING 

 

7.1 Introduction 

This chapter outlines the testing activities conducted during the project 

development. It includes the test plan, and the results of various tests performed, 

including unit tests for the mobile application, API tests, and integration tests. 

The testing was designed to ensure that the system meets the requirements and 

functions reliably under different conditions. 

 

7.2 Test Plan 

7.2.1 Objectives 

The objective of the test plan is to ensure that the application meets the 

requirements specified in Chapter 4.2, and to validate its performance and 

stability across different test scenarios, including application functional unit 

tests, API unit tests, and integration tests. The goal is to identify and resolve 

defects discovered during testing and to confirm that the application complies 

with the requirements specifications. 

 

7.2.2 Test Scope 

The test scope for this project includes the mobile application, app-server, and 

model-server. Testing for both frontend and backend was conducted in separate 

testing environments due to the different frameworks used during development. 

Additionally, performance testing was conducted to evaluate the mobile 

application's ability to efficiently monitor and control the hydroponic system 

remotely, as specified in the requirements. The following test activities were 

performed for this project: 

 

- Unit testing of the mobile application 

- Unit testing of the API 

- Performance testing 
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7.2.3 Test Basis 

The following sections from the report served as the basis for designing the test 

plan: 

• Chapter 4.2 Requirements Specification 

• Chapter 4.3 and 4.4 Use Case Diagram and Description 

• Chapter 6.3.3 API Functions 

 

7.2.4 Test Items 

Table 7.1 lists the functional services of the system that were planned for testing.  

 

Table 7.1 Functional Services to be tested 

Mobile Application 

Functional Service Description 

Authentication Component The main validation of this 

component is to test the Firebase 

Authentication that integrated with 

application able to login, register, 

send verification email, send 

password reset email, change email, 

and change password 

Monitor Component The main validation of this 

component is to test out the 

availability to send HTTP requests to 

the server and retrieve the data. 

Control Component The main validation of this 

component is to test out the 

availability to send HTTP requests to 

server for retrieving the data and 

updating the data 

Plant Management Component The main validation of this 

component is to test the create and 

update of the plant management able 

to operate correctly 
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Data Insight Component The main validation of this 

component is to test the availability 

of data able to be displayed in 

multiple formats correctly. 

Notification Component The main validation of this 

component is to test the operation of 

retrieval and delete functions  

App-Server 

Functional Service Description 

API Component The main validation of this 

component is to ensure the API can 

effectively process the HTTP request 

and response to the request. 

Cron Component The main validation of this 

component is to ensure the services 

able to perform the action on the 

correct period 

Model-Server 

Functional Service Description 

API Component The main validation of this 

component is to ensure the API can 

effectively process the HTTP request 

and response to the request. 

 

7.2.5 Test Strategy 

The table 7.2 shown the overview of the test strategy used for this project. 

 

Table 7.2 Testing Levels, Types and Tools 

Testing Levels Testing Types Tools 

Unit Test Functional Testing Android Emulator 

API Test Functional Testing Postman 

Performance Test Performance Testing Firebase Performance 

Monitoring 
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7.2.6 Test Criteria 

Entry Criteria 

The test can begin when the entry criteria listed are met. 

- All features to be tested were completed and functionable. 

- The testing tools and devices have been setup in the test 

environment. 

- The test data are prepared for the API unit test 

Exit Criteria 

- All test case performed and successfully passed 

- All defects found during the test phase are fix and solved 

- No critical issue remaining 

 

7.3 Functionality Test 

Functionality test is one of the software testing processes which involves 

independent testing on function or components of a software system. The reason 

to perform functionality test is to validate that the function able to perform as 

same as the requirement specified and ensuring the unit of code are working 

correctly before integrates to whole system. The functionality test also able to 

enhance the documentation and maintainability for the software system as it 

describes the expected process and result of the specific functionality. 
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7.3.1 Mobile Application Functionality Test 

This project performed the following functionality tests by manually inserting the values, clicking on the buttons, and performing any steps that 

stated in the test case on the emulator. A total of fourteen functionality tests are performed on the emulator by following the test steps with test 

data. The test status is recorded for every unit test after the expected result achieved. The test cases are recorded from Table 7.3 to Table 7.16. 

 

Table 7.3 Test Case MA-1 User registration 

Test Case ID MA-1 Test Case Name User Registration Component Authentication 

Test Case 

Description 

To validate that the user able to register a new account 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Register an account 

with a valid email, 

password and confirm 

password 

1. Click register 

button 

- Verification Email 

sent 

Verification Email 

sent 

Pass 

2. Enter email test@gmail.com 

3. Enter password 123456789 

4. Enter confirm 

password 

123456789 
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5. Click register 

button 

- 

 

Table 7.4 Test Case MA-2 User Login 

Test Case ID MA-2 Test Case Name User Login Component Authentication 

Test Case 

Description 

To validate that the user able to login to their account 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Login account with 

valid email, and 

password 

1. Enter email test@gmail.com Navigate to Add Farm 

Screen 

Navigate to Add Farm 

Screen 

Pass 

2. Enter password 123456789 

3. Click on login 

button 

- 

Login account with 

invalid email, and 

password 

1. Enter email Test1@gmail.com Error message prompt Error message prompt Pass 

2. Enter password 123 

3. Click on login 

button 

- 

Forgot Password 1. Click forgot 

password button 

- Password reset email 

sent 

Password reset email 

sent 

Pass 
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2. Enter email test@gmail.com 

3. Click send reset 

email 

- 

 

Table 7.5 Test Case MA-3   Change Email 

Test Case ID MA-3 Test Case Name Change Email Component Authentication 

Test Case 

Description 

To validate that the user able to change the email 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Change to new email 

address 

1. Click change email 

button 

- HTTP request sent, 

Success Message 

Prompt and 

Verification Email 

sent 

HTTP request sent, 

Success Message 

Prompt and 

Verification Email 

sent 

Pass 

2. Enter new email test2@gmail.com 

5. Click confirm 

button 

- 

Change to invalid 

email 

1. Click change email 

button 

- Failed Message 

Prompt 

Failed Message 

Prompt 

Pass 

2. Enter invalid email test2@gmail 
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5. Click confirm 

button 

- 

 

Table 7.6 Test Case MA-4 Change Password 

Test Case ID MA-4 Test Case Name Change Password Component Authentication 

Test Case 

Description 

To validate that the user able to change the password 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Change to new 

password 

1. Click change 

password button 

- Success Message 

Prompt and logout the 

user 

Success Message 

Prompt and logout the 

user 

Pass 

2. Enter old password 123456789 

3. Enter new password abc123456 

4. Click confirm button - 

Use invalid old 

password to change 

new password 

1. Click change 

password button 

- Failed Message 

Prompt 

Failed Message 

Prompt 

Pass 

2. Enter invalid old 

password 

19191919 

3. Enter new password abc123456 
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4. Click confirm button - 

 

Table 7.7 Test Case MA-5 Retrieve farm and sector data 

Test Case ID MA-5 Test Case Name Retrieve farm and 

sector data 

Component Monitor 

Test Case 

Description 

To validate that the application able to retrieve farm and sector data 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Retrieve latest 

parameter data 

1. Click on reload button - HTTP request sent, 

Parameters data 

display 

HTTP request sent, 

Parameters data 

display 

Pass 

Retrieve sector tasks 

to do 

1. Click on tasks tab - HTTP request sent, 

Tasks data display 

HTTP request sent, 

Tasks data display 

Pass 

Retrieve user farm list 1. Click on edit farm 

option 

- HTTP request sent,  

Farm list display 

HTTP request sent,  

Farm list display 

Pass 

Retrieve user sector 

list 

1. Click on edit sector 

option 

- HTTP request sent,  

Sector list display 

HTTP request sent,  

Sector list display 

Pass 
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Table 7.8 Test Case MA-6 Update Sector Settings 

Test Case ID MA-6 Test Case Name Update Sector 

Settings 

Component Control 

Test Case 

Description 

To validate that the user able to update sector’s parameter and trigger settings 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Update Parameter 

Setting 

1. Click on edit button 

for light intensity 

- HTTP request sent; 

the parameter lower 

boundary updated 

HTTP request sent; 

the parameter lower 

boundary updated 

Pass 

2. Edit Lower Boundary 150 

3. Click save button - 

Switch on trigger 

Setting 

1. Switch on the High pH 

Trigger 

- HTTP request sent HTTP request sent Pass 

Switch off trigger 

Setting 

1. Switch off the High 

pH Trigger 

- HTTP request sent HTTP request sent Pass 
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Table 7.9 Test Case MA-7 Add Plant 

Test Case ID MA-7 Test Case Name Add Plant Component Plant Management 

Test Case 

Description 

To validate that the user able to add new plant to sector 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Add Plant with valid 

input 

1. Click on add button - HTTP request sent; 

Success message 

prompt 

HTTP request sent; 

Success message 

prompt 

Pass 

2. Click to add image Image of plant 

3. Enter plant name Lettuce 

4. Enter plant status Seed 

5. Select sector to add Sector 1 

6. Click on save button - 

Add Plant with empty 

field 

1. Click on add button - Error message prompt Error message prompt  Pass 

2. Click to add image - 

3. Enter plant name Lettuce 

4. Enter plant status - 

5. Select sector to add Sector 1 

6. Click on save button - 
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Table 7.10 Test Case MA-8 Add Plant Record 

Test Case ID MA-8 Test Case Name Add Plant Record Component Plant Management 

Test Case 

Description 

To validate that the user able to add new record for a plant 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Add Record with 

valid input 

1. Click on add record 

button 

- HTTP request sent; 

record updated 

HTTP request sent; 

record updated 

Pass 

2. Enter observation test 

3. Enter measurement 0.5 

4. Click on save button - 

Add Record with 

empty field 

1. Click on add record 

button 

- Invalid input message 

prompt 

Invalid input message 

prompt  

Pass 

2. Enter observation - 

3. Enter measurement 1 

4. Click on save button - 
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Table 7.11  Test Case MA-9 Add Plant Task 

Test Case ID MA-9 Test Case Name Add Plant Task Component Plant Management 

Test Case 

Description 

To validate that the user able to add new task for a plant 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Add Task with valid 

input 

1. Click on add task 

button 

- HTTP request sent; 

task updated 

HTTP request sent; 

task updated 

Pass 

2. Enter date 2024-08-21 

3. Enter task test 

4. Click on save button - 

Add Task with empty 

field 

1. Click on add task 

button 

- Invalid input message 

prompt 

Invalid input message 

prompt  

Pass 

2. Enter date - 

3. Enter task 1 

4. Click on save button - 

Add Task with invalid 

date format 

1. Click on add task 

button 

- Invalid date format 

message prompt 

Invalid date format 

message prompt 

Pass 

2. Enter date 20240821 
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3. Enter task Test 

4. Click on save button - 

 

Table 7.12  Test Case MA-10 Edit Plant Detail 

Test Case ID MA-10 Test Case Name Edit Plant Detail Component Plant Management 

Test Case 

Description 

To validate that the user able to edit plant detail 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Edit Plant Status 1. Click on edit button - HTTP request sent; 

plant status updated 

HTTP request sent; 

plant status updated 

Pass 

2. Edit Plant Status Germination 

3. Click on save button - 

Edit Plant Image 1. Click on edit button - HTTP request sent; 

plant image updated 

HTTP request sent; 

plant image updated 

Pass 

2. Select to change image New Image File 

3. Click on save button - 
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Table 7.13  Test Case MA-11 Data Insight Display 

Test Case ID MA-11 Test Case Name Data Insight Display Component Data Insight 

Test Case 

Description 

To validate that the user able to view the data in daily and monthly format for selected sector 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Select daily data for 

sector 

1. Click on Daily option - HTTP request sent; 

display one day 

parameter and 

anomaly data 

HTTP request sent; 

display one day 

parameter and 

anomaly data 

Pass 

Select monthly data 

for sector 

1. Click on Monthly 

option 

- HTTP request sent; 

display one month 

parameter and 

anomaly data 

HTTP request sent; 

display one month 

parameter and 

anomaly data 

Pass 
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Table 7.14  Test Case MA-12 Data Export 

Test Case ID MA-12 Test Case Name Data Export Component Data Insight 

Test Case 

Description 

To validate that the user able to export the selected date parameter data 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Export parameter for 

sector 

1. Click on download 

button 

- HTTP request sent; 

Success message 

prompt 

HTTP request sent; 

Success message 

prompt 

Pass 

2. Select the date 20-8-2024 

3. Click on confirm 

button 

- 
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Table 7.15 Test Case MA-13 Notification Retrieval 

Test Case ID MA-13 Test Case Name Notification Retrieval Component Notification 

Test Case 

Description 

To validate that the user able to refresh the notification 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Retrieve latest 

notification 

1. Click on refresh button - HTTP request sent; 

notification list 

updated 

HTTP request sent; 

notification list 

updated 

Pass 

 

Table 7.16  Test Case MA-14 Notification Delete 

Test Case ID MA-14 Test Case Name Notification Delete Component Notification 

Test Case 

Description 

To validate that the user able to remove the notification 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Delete 

notification 

1. Click edit button - HTTP request sent; 

notification list 

updated 

HTTP request sent; 

notification list 

updated 

Pass 

2. Select notification to delete - 

3. Click on delete selected 

notification button 

- 
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7.3.2 App Server Functionality Test 

For the app server functionality test, there are two component which are API and Cron component. Postman is used to test with the app-server API 

component because it allows to send HTTP request without the client side. A total of thirteen unit and API tests are performed on the postman and 

development server by following the test steps with test data. The test status is recorded for every unit test after the expected result achieved. The 

test cases are recorded from Table 7.17 to Table 7.29. 

 

Table 7.17  Test Case AS-1 Cron Job for Checking and Saving Notifications 

Test Case ID AS-1 Test Case Name Cron Job for Checking and 

Saving Notifications 

Component Cron, API 

Test Case 

Description 

To validate that the Cron job able to perform the daily notification sending 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Verify Cron Job 

Scheduling 

1. Start the app-server - Log: Cron Start  Log: Cron start Pass 

2. Set the system time to 

23:59. 

- 

3. Check logs for 

execution result 

- 

1. Select POST method - Pass 
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Verify 

Notification 

Check and Save 

Process 

2. Set test data to 

request body 

jNpmgDej52T9D7

58EoZyS0HF4Yl2 

The notification created and 

saved to database, then send 

notification via Firebase Cloud 

Messaging 

The notification 

created and saved to 

database, then send 

notification via 

Firebase Cloud 

Messaging 

3. Send POST request - 

 

Table 7.18  Test Case AS-2 Sector Status Update Cron Job 

Test Case ID AS-2 Test Case Name Sector Status Update Cron Job Component Cron 

Test Case 

Description 

To validate that the Cron job able to perform the sector status update 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Verify Cron Job 

Scheduling 

1. Start the app-server - Log: Sector Status Updated  Log: Sector Status 

Updated 

Pass 

2. Set the system time 

to just before the next 

hour 

- 
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3. Wait for the system 

time to reach the next 

hour 

- 

4. Check logs for 

execution result 

- 

 

Table 7.19 Test Case AS-3 User Registration 

Test Case ID AS-3 Test Case Name User Registration Component API 

Test Case 

Description 

To validate that the API able to register the user data to database 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Register with 

valid data 

1. Send POST Request 

with valid request body 

{ 

userId:  abc123 

farmList: [] 

messageToken: abc123 

} 

The user documents 

created and saved the data 

The user documents 

created and saved the 

data 

Pass 
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Register with 

empty data 

2. Send POST Request 

with empty request 

body 

{} Invalid request data Invalid request data Pass 

 

Table 7.20  Test Case AS-4 Update Email 

Test Case ID AS-4 Test Case Name Update Email Component API 

Test Case 

Description 

To validate that the API able to update the user email 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Update email 

with valid user 

ID 

1. Send POST Request 

with valid request body 

{ 

userId: abc123 

newEmail: 

abc@gmail.com 

} 

Status 200, Email 

Updated Successfully 

Status 200, Email 

Updated Successfully 

Pass 

Update email 

with empty data 

2. Send POST Request 

with empty request 

body 

{} Failed to update email Failed to update email Pass 
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Table 7.21  Test Case AS-5 Check and Update Message Token 

Test Case ID AS-5 Test Case Name Check and Update 

Message Token 

Component API 

Test Case 

Description 

To validate that the API able to check and update message token 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Check and 

update message 

token with valid 

data 

1. Send POST Request 

with valid request body 

{ 

userId: abc123 

messageToken: abc123 

} 

Status 200, Token Check 

Successfully 

Status 200, Token 

Check Successfully 

Pass 

Check and 

update message 

token with 

empty data 

2. Send POST Request 

with empty request 

body 

{} No message token or user 

ID found 

 

No message token or 

user ID found 

 

Pass 
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Table 7.22  Test Case AS-6 Update Notification Settings 

Test Case ID AS-6 Test Case Name Update Notification 

Settings 

Component API 

Test Case 

Description 

To validate that the API able to update user’s notification settings 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Update 

notification 

settings with 

valid data 

1. Send POST Request 

with valid request body 

{ 

userId: abc123 

notificationSettings: 

true, true, true 

} 

Status 200, Notification 

settings updated 

successfully 

 

Status 200, Notification 

settings updated 

successfully 

 

Pass 

Update 

notification 

settings with 

empty data 

2. Send POST Request 

with empty request 

body 

{} Invalid request data 

 

Invalid request data 

 

Pass 
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Table 7.23 Test Case AS-7 Get Sector Latest Data 

Test Case ID AS-7 Test Case Name Get Sector Latest Data Component API 

Test Case 

Description 

To validate that the API able to get specific sector latest data 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Get sector latest 

data with valid 

data 

1. Send GET Request 

with valid request 

params (sectorID) 

tRm5N2mF8oqEF7jl1Xi4 latestData object 

 

latestData object 

 

Pass 

Get sector latest 

data with empty 

data 

2. Send GET Request 

with empty request 

params 

{} Error 

 

Error 

 

Pass 

 

Table 7.24  Test Case AS-8 Update Parameter Settings 

Test Case ID AS-8 Test Case Name Update Parameter 

Settings 

Component API 

Test Case 

Description 

To validate that the API able to update the sector’s parameter settings 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 
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Update 

parameter 

settings with 

valid data 

1. Send POST Request 

with valid request body 

{ 

sectorId: abc123, 

parameterSettings 

} 

Status 200, Update 

Successfully 

 

Status 200, Update 

Successfully 

 

Pass 

Update 

parameter 

settings with 

empty data 

2. Send POST Request 

with empty request 

body 

{} Error updating 

parameter data 

Error updating 

parameter data 

Pass 

 

Table 7.25  Test Case AS-9 Add Sector 

Test Case ID AS-9 Test Case Name Add Sector Component API 

Test Case 

Description 

To validate that the API able to add a new sector 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Add sector with 

valid data 

1. Send POST Request 

with valid request body  

{farmId; abc 

deviceId: device 

userId: abc123} 

Status 200, return 

sectorId 

 

Status 200, return 

sectorId 

 

Pass 
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Add sector with 

empty data 

2. Send POST Request 

with empty request 

body 

{} Farm ID, Device ID, 

and User ID are 

required! 

 

Farm ID, Device ID, 

and User ID are 

required! 

 

Pass 

 

Table 7.26  Test Case AS-10 Update Parameter Data 

Test Case ID AS-10 Test Case Name Update Parameter Data Component API 

Test Case 

Description 

To validate that the API able to update the sector’s parameter data 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Update 

parameter data 

with valid data 

1. Send POST Request 

with valid request body  

{userId: abc123, 

sectorId: abc123, 

parameters} 

Status 200, Update 

Successful 

 

Status 200, Update 

Successful 

 

Pass 

Update 

parameter data 

with empty data 

2. Send POST Request 

with empty request 

body 

{} Error updating 

parameter data 

Error updating 

parameter data 

Pass 
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Table 7.27  Test Case AS-11 Post Trigger Result 

Test Case ID AS-11 Test Case Name Post Trigger Result Component API 

Test Case 

Description 

To validate that the API able to post the trigger result to database 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Post the trigger 

result with valid 

data 

1. Send POST Request 

with valid request body 

with params userID  

{triggerType: highPh, 

Status: success 

Detail: ON  

} 

Status 200, Execution 

result recorded 

 

Status 200, Execution 

result recorded 

 

Pass 

Post the trigger 

result with 

empty data 

2. Send POST Request 

with empty request 

body and params 

{} User not found User not found Pass 
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Table 7.28  Test Case AS-12 Register Device 

Test Case ID AS-12 Test Case Name Register Device Component API 

Test Case 

Description 

To validate that the API able to register device (hydroponic system) to database 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Register device 

with valid data 

1. Send POST Request 

with valid request body  

{deviceName: abc,  

deviceLocation: Sg Long} 

Status 200, return 

device ID 

 

Status 200, return 

device ID 

 

Pass 

Register device 

with empty data 

2. Send POST Request 

with empty request 

body 

{} Name and location are 

required 

 

Name and location are 

required 

 

Pass 
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Table 7.29  Test Case AS-13 Add Plant 

Test Case ID AS-13 Test Case Name Add Plant Component API 

Test Case 

Description 

To validate that the API able to add a new plant for a specific sector 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Add plant with 

valid data 

1. Send POST Request 

with valid request body 

and params (sectorId)  

{name: lettuce,  

seed}, Image file 

Status 200, Plant added 

successfully 

 

 

Status 200, Plant 

added successfully 

 

Pass 

Add plant with 

empty data 

2. Send POST Request 

with empty request 

body  

{} Name, status, and image 

are required. 

 

Name, status, and image 

are required. 

 

Pass 
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7.3.3 Model Server Functionality Test 

For the model server functionality test, there is only one component to test which is the API component. Postman is used to test with the model-

server API component because it allows to send HTTP request without the need of client side. Two API test are performed as recorded the actual 

result with test status at Table 7.30 and Table 7.31. 

 

Table 7.30  Test Case MS-1 Receive Data for Anomaly Detection 

Test Case ID MS-1 Test Case Name Receive Data for 

Anomaly Detection 

Component API 

Test Case 

Description 

To validate that the API able to return the anomaly detection result 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Anomaly 

Detection with 

valid data 

1. Send POST Request 

with valid request body  

{latestData} 

 

{summary, predictions, 

actual_values} 

 

 

{summary, predictions, 

actual_values} 

 

Pass 

Anomaly 

Detection with 

empty data 

2. Send POST Request 

with empty request 

body  

{} "error": "No data 

received" 

 

"error": "No data 

received" 

 

Pass 
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Table 7.31 Test Case MS-2 Predict Trigger Status 

Test Case ID MS-2 Test Case Name Predict Trigger Status Component API 

Test Case 

Description 

To validate that the API able to return trigger status 

Test Item Test Steps Test Data Expected Result Actual Result Test Status 

Predict trigger 

status with valid 

data 

1. Send POST Request 

with valid request body 

{latestData} 

 

{predictions, 

trigger_status} 

 

 

{predictions, 

trigger_status} 

 

Pass 

Predict trigger 

status with 

empty data 

2. Send POST Request 

with empty request 

body  

{} "error": "No data 

received" 

 

"error": "No data 

received" 

 

Pass 
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7.4 Performance Test 

Performance testing is a critical aspect of mobile application testing, ensuring 

that the application delivers a seamless and user-friendly experience. This 

testing assesses the scalability, stability, and responsiveness of the application 

under several scenarios. For this project, performance testing focused on 

validating the application’s capability to monitor and control the hydroponic 

system effectively. Firebase Performance Monitoring was used to perform real-

time performance testing, providing insights into application performance. 

Testing was conducted using a physical smartphone model (HONOR 9X) 

connected via Wi-Fi. The key areas of performance testing included: 

• Response time 

• App start time 

• Response success rate 

• Frozen frames percentage 

 

7.4.1 Response Time 

Response time is a crucial metric that measures the time elapsed between a 

request or query being sent and the corresponding response being received. 

Faster response times generally indicate better application performance and 

higher user satisfaction. In this context, response time can be influenced by 

factors such as network latency, server load, and software efficiency. Figure 7.1 

shows the response time trend for the application server deployed on an Amazon 

Web Services (AWS) instance with IP address 13.229.207.3. 
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Figure 7.1 19 Hours Response Time Trend from IP 13.229.207.3 

 

As illustrated in Figure 7.1, the response time for IP address 

13.229.207.3/** has significantly increased over the past 19 hours, rising from 

approximately 2 seconds to around 4 seconds. The current response time of 3.72 

seconds is 106% slower compared to the response time recorded 19 hours earlier. 

 

7.4.2 App Start Time 

App start time measures the duration it takes for an application to become fully 

functional and ready for user interaction after launch. A faster app start time 

enhances user experience by reducing waiting time. Factors affecting app start 

time include code complexity, resource loading, and device performance. Figure 

7.2 presents the app start time trend over a 19-hour period. 
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Figure 7.2 19 Hours App Start Time 

 

As shown in Figure 7.2, the app start time has improved significantly 

over the past 19 hours, decreasing from approximately 1.5 seconds to 195 

milliseconds (ms), indicating a 90% improvement. The initially higher start time 

might have been caused by temporary fluctuations in measurement accuracy or 

timing. 

 

7.4.3 Response Success Rate 

The response success rate measures the percentage of successful outcomes or 

attempts within a given context. This metric can be influenced by various factors, 

including network connectivity, data transfer efficiency, and overall application 

performance. A high success rate indicates that the application is reliable and 

efficient. Figure 7.3 shows the response success rate for the application server 

with IP 13.229.207.3 over the past 19 hours. 
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Figure 7.3 19 Hours Response Success Rate from IP 13.229.207.3 

 

According to Figure 7.3, the response success rate for IP address 

13.229.207.3/** has remained constant at 100% over the past 19 hours. This 

suggests that there were no failures or errors in the system or network 

connection associated with this IP address during the specified timeframe. 

 

7.4.4 Frozen Frames Percentage 

Frozen frames are a performance metric indicating instances where an 

application’s user interface becomes unresponsive or freezes, potentially 

degrading user experience. The testing included three instances: MainActivity 

(the initial and main user interface), dashboardScreen (monitor panel), and 

reportScreen (data and insight). Figures 7.4 to 7.6 show the results for 

MainActivity, dashboardScreen, and reportScreen, respectively. All instances 

reported a frozen frame percentage of 0% over the testing period, indicating that 

the application did not experience any UI freezes, thereby suggesting stable and 

reliable performance. 



125 

 

 

Figure 7.4 17 Hours Frozen Frame Percentage for MainActicity instance 

 

 

Figure 7.5 18 Hours Frozen Frame Percentage for dashboardScreen instance 
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Figure 7.6 17 Hours Frozen Frame Percentage for reportScreen instance 

 

7.5 Anomaly Detection Evaluation 

For the evaluation of anomaly detection models, a dataset of 2 weeks for training 

and a dataset of 4 weeks for testing are used to trained and identify the abnormal 

pattern of the hydroponic farm environment. Since these models are trained 

unsupervised, it is not possible to quantify accuracy and dependability with 

conventional metrics such as Precision, Recall, or F1-Score because there is not 

enough labeled data. Rather, the assessment concentrated on contrasting the 

consistency of anomaly detection between various datasets and models. This 

evaluation employed four different approaches: LSTM Autoencoder-Based, 

LSTM Prediction-Based, LSTM with Isolation Forest, and LSTM with One-

Class Support Vector Machine (SVM). Every model utilized a distinct approach 

to identify abnormalities and underwent testing to confirm its resilience and 

ability to apply to previously unseen data.  
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The LSTM Prediction-Based approach identifies anomalies by 

calculating the deviations between predicted values and actual observations. 

The model has identified 6 anomalies on the 2-week training dataset, as 

displayed in Figure 7.7. Similarly, the LSTM Autoencoder-Based approach 

which relies on reconstruction errors to flag deviations also detected 6 

anomalies using a threshold set at the 95th percentile of the mean squared error 

(1.1559), as shown in Figure 7.8. The similarity of the two models results in 

consistency on capturing deviations in short-term datasets thus suggesting that 

both prediction and reconstruction methods can reliably identify key anomalies. 

 

 

Figure 7.7 LSTM Prediction Based 2 Weeks Anomaly Detection Result 

 

 

Figure 7.8 LSTM Autoencoder Based 2 Weeks Anomaly Detection Result 
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Moreover, LSTM Autoencoder was combined with Isolation Forest and 

One-Class SVM to perform model comparison and resulting slightly higher 

number of anomaliesᅳ 7 in totalᅳ were detected in the 2-week dataset or 12% 

of the total data points, as depicted in Figure 7.9. This increase indicates that 

combining reconstruction errors with clustering-based techniques may increase 

sensitivity to subtle variations, potentially identifying more nuanced anomalies 

that would be missed by simpler models or false positives. 

 

 

Figure 7.9 Isolation Forest and One Class Support Vector Machine 2 Weeks 

Anomaly Detection Result 

 

Subsequently, a larger 4-week dataset was used to test the models' 

scalability and dependability over an extended period of time. As seen in Figure 

7.10, the LSTM Prediction-Based model has identified 14 anomalies, 

suggesting that it retains its anomaly detection ability even when subjected to 

longer data sequences. Furthermore, the LSTM Autoencoder-Based method 

produced comparable outcomes, identifying 15 anomalies throughout the same 

time frame (Figure 7.11), illustrating its stability performance on both long- and 

short-term datasets. 
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Figure 7.10 LSTM Prediction Based 4 Weeks Anomaly Detection Result 

 

 

Figure 7.11 LSTM Autoencoder Based 4 Weeks Anomaly Detection Result 
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As demonstrated in Figures 7.12 and 7.13, the LSTM Autoencoder with 

Isolation Forest and One-Class SVM, on the other hand, demonstrates a notable 

increase in detected anomalies observed. The One-Class SVM model detected 

70 anomalies, and the Isolation Forest model identified 71 anomalies, 

representing roughly 18% of the 4-week dataset. An increased detection 

capability but also a larger rate of false positives could result from these hybrid 

models' heightened sensitivity to deviations in reconstruction errors, as 

suggested by the growing number of anomaly counts. 

 

 

Figure 7.12 Isolation Forest 4 Weeks Anomaly Detection Result 
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Figure 7.13 One Class Support Vector Machine 4 Weeks Anomaly Detection 

Result 

 

Ultimately, even though the LSTM Prediction-Based and LSTM 

Autoencoder-Based models performed consistently and dependably in both 

short- and long-term assessments, the integration with One-Class SVM and 

Isolation Forest led to an increased sensitivity to anomalies. This shows that 

hybrid approaches like this might work better in situations when it's important 

to capture every potential abnormality. One should consider the possible false 

positive trade-off when applying these models in real-world scenarios. The 

models' scalability and resilience are further demonstrated by the evaluation on 

the larger dataset, which makes them the best options for ongoing monitoring in 

hydroponic systems, where the timely identification of anomalies is essential to 

preserving perfect environmental conditions. 
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7.6 Summary 

In summary, the testing phase of this project thoroughly validated the system’s 

functionality, performance, and reliability. Unit tests ensured that individual 

components met their expected requirements, while API tests verified the 

interactions between external systems and the application. Additionally, 

performance tests evaluated the system’s responsiveness under load. Through 

these tests, critical issues were identified and resolved, thereby enhancing the 

system’s overall quality and ensuring it meets the specified requirements for 

deployment. Moreover, evaluation on anomaly detection also have been 

performed to ensuring the reliability of the anomaly detection result.  
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CHAPTER 8 

 

8 CONCLUSION AND FUTURE IMPROVEMENT 

 

8.1 Conclusion 

An Android mobile application that addresses the challenges mentioned in 

Chapter 1.3 has been developed successfully by this project. Firstly, the issue 

faced by urban dwellers—lack of time to manage and monitor hydroponic 

farms—has been effectively resolved. Additionally, the application has tackled 

the challenges associated with the farming skills gap and the implementation of 

technology in hydroponic farm monitoring. By leveraging a trained AI model, 

the application automates the management of hydroponic farm environmental 

parameters, thus achieving the following project objectives: 

 

• Develop a mobile application capable of monitoring and controlling 

hydroponic farming systems remotely. 

 

• Develop a mobile application that can notify users of critical issues 

and required tasks within the hydroponic farming systems. 

 

• Utilize machine learning with IoT and ICT technologies for 

detecting normal and abnormal environmental patterns in 

hydroponic farming, enabling automated adjustments and 

simplifying management. 

 

The first objective was met by completing the mobile application with 

the functionality to monitor and control the hydroponic farm system remotely. 

Users are relieved from constantly overseeing the system, as the application 

provides real-time environmental parameters and trends. Additionally, the 

application allows remote control of the hydroponic system, enhanced with AI-

driven automation based on model predictions. 
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The second objective was achieved by integrating Firebase Cloud 

Messaging services into the application. This service enables the application 

server to send notifications based on specific conditions, such as positive 

anomaly detection, scheduled tasks, daily reminders, and successful trigger 

notifications. This feature ensures that users are promptly informed of critical 

or important events, allowing them to take necessary actions without delay. 

Lastly, to fulfil the third objective, data from the hydroponic farm 

system was used to train the Long Short-Term Memory (LSTM) model. With 

the support of data provided by Chua Shi Jian’s hydroponic farm system from 

the Electrical and Electronic Engineering course (3E), the LSTM model was 

successfully trained and deployed to the model server. This deployment allows 

the model to identify abnormal patterns in real-time data, based on the training 

outcomes. 

 

8.2 Limitations 

Despite the success in achieving the project objectives, certain limitations 

remain that could be addressed in future work. 

The first limitation is the limited size and duration of the dataset used 

for training the machine learning model. The dataset was restricted to one month 

of data, which, while sufficient for establishing initial patterns for anomaly 

detection, may not provide comprehensive insights into long-term 

environmental variations. A larger dataset spanning multiple months or years 

would improve the model's ability to generalize across different conditions and 

yield more accurate predictions. 

The second limitation is the specificity of the dataset. The model was 

trained primarily on data from a hydroponic farm growing lettuce, which limits 

its applicability to other crops. Different crops, such as cabbage or chili, have 

unique environmental and nutrient requirements that the current model may not 

adequately address. To make the application more versatile, it would be 

necessary to gather data specific to other crops and retrain the model 

accordingly. 
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The third limitation is the requirement for manual processes such as 

harvesting and refilling nutrient solutions. While the application automates the 

control of environmental parameters, human intervention is still needed for 

some farm tasks. This reliance on manual processes could introduce 

inefficiencies and delays, reducing the overall potential for automation in 

system monitoring. 

 

8.3 Recommendation for Future Improvements 

To enhance the capabilities of this project, several future improvements are 

recommended: 

Expand the Dataset for Enhanced Model Accuracy: Collecting a larger 

volume of data over a more extended period will enable the model to recognize 

a broader range of patterns and variations, leading to more accurate predictions 

and anomaly detection. An expanded dataset will also allow the system to 

generalize across a wider range of environmental conditions. 

Support for a Variety of Crops: Incorporating data from a wider range of 

vegetables or plants into the model training will allow the application to 

recognize the different environmental and nutrient requirements for each type 

of crop. Implementing a crop-selection feature would further enhance the 

system's flexibility, enabling farmers to switch between different crops and 

receive tailored monitoring and control settings for each one. 

Prediction and Automation of Farm Tasks: By training more advanced 

machine learning models, it may be possible to predict certain maintenance 

tasks, such as nutrient refilling or plant harvesting, based on historical data, and 

automate these processes without human intervention. For example, if the model 

predicts that nutrient depletion is likely within a few days, the system could 

notify the user to prepare for refilling or even automate the refilling process via 

IoT-connected devices. 
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