

DEVELOPMENT OF AN IOT-INTEGRATED APP FOR

MONITORING HYDROPONIC FARMING SYSTEMS

CHAN JIA JUN

UNIVERSITI TUNKU ABDUL RAHMAN

DEVELOPMENT OF AN IOT-INTEGRATED APP FOR MONITORING

HYDROPONIC FARMING SYSTEMS

CHAN JIA JUN

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2024

A project report submitted in partial fulfilment of

the requirements for the award of Bachelor of

Science (Honours) Software Engineering

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : Chan Jia Jun

ID No. : 2002845

Date : 2/10/2024

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DEVELOPMENT OF AN IOT-

INTEGRATED APP FOR MONITORING HYDROPONIC FARMING

SYSTEMS” was prepared by CHAN JIA JUN has met the required standard

for submission in partial fulfilment of the requirements for the award of

Bachelor of Software Engineering with Honours at Universiti Tunku Abdul

Rahman.

Approved by,

Signature :

Supervisor : See Yuen Chark

Date : 2/10/2024

Signature :

Co-Supervisor : Ts.Dr.Sugumaran Nallusamy

Date : 2/10/2024

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2024, CHAN JIA JUN. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to everyone for providing me with

the resources and support necessary to complete this project. I would like to

thank my supervisor, Dr. See Yuen Chark, for his guidance and support

throughout the project process. His expertise and feedback have been invaluable

in completing this project.

 In addition, I would like to thank my friend, Chua Shi Jian, for his

support on data collection and integration of hydroponic farm system. His

contributions have been essential to the success of this project. Moreover, I

would also like to acknowledge my other friends that support on this project,

providing valuable feedback and insights that helped improve the quality of this

project.

 Lastly, I am deeply grateful to my family and friends for their

unwavering support and encouragement throughout this final year project

journey. Their love and support have been a constant source of motivation.

v

ABSTRACT

As urbanization accelerates in Malaysia, the demand for fresh produce

continues to rise, yet the availability of agricultural land is diminishing.

Hydroponics, a soil-less cultivation method, presents a viable solution to this

challenge. However, managing hydroponic systems can be time-intensive,

particularly for urban dwellers with busy lifestyles. This project proposes an

IoT-integrated hydroponic farm monitoring mobile application designed to

address these challenges. The development of the application focused on a

feature-driven approach using React Native, NodeJS, and Flask frameworks.

The application enables users to remotely monitor and control environmental

parameters within hydroponic farms while receiving real-time notifications

about farm status, thereby enhancing overall farm management efficiency. A

key aspect of the project was ensuring the application's usability, with features

such as environmental parameter trend predictions to facilitate automated

hydroponic farm management. This innovation has significant implications for

farm management and plant growth, allowing users to manage their time more

effectively and increase productivity. Moreover, the application supports plant

management by allowing users to record observations and plan tasks with

reminder notifications, streamlining the process of tracking plant growth

without relying on physical records. Overall, this project contributes to

advancing urban agriculture in Malaysia by providing a convenient and

efficient mobile solution for managing hydroponic farms, thereby promoting

sustainable and efficient urban farming practices.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES xi

LIST OF FIGURES xiv

LIST OF SYMBOLS / ABBREVIATIONS xvii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Project Background 2

1.3 Problem Statement 3

1.3.1 Time Constraints and Monitoring

Challenges in Urban Hydroponic Farming 3

1.3.2 Skills Gap and Technological Adoption in

Malaysian Hydroponic Agriculture 4

1.4 Aim and Objectives 4

1.5 Scope and Limitations of Study 5

1.6 Proposed Solution 5

1.7 Proposed Methodology 6

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Features and Capabilities of Hydroponic Farming

System Mobile Applications 7

2.2.1 User Interface Design 10

2.3 Machine Learning Model 12

2.3.1 Long-Short-Term-Memory (LSTM) 12

2.3.2 Isolation Forest 13

2.3.3 One-Class Support Vector Machine (One-

Class SVM) 14

vii

2.3.4 Anomaly Detection Model in Agricultural

Industry 15

2.3.5 Justification on Machine Learning Model

Selection 16

2.4 Summary 17

3 METHODOLOGY AND WORK PLAN 19

3.1 Introduction 19

3.2 System Development Methodology 19

3.2.1 Waterfall Methodology 19

3.2.2 Unified Process (UP) 20

3.2.3 Lean Development 21

3.2.4 Feature Driven Development 23

3.2.5 Comparison among SDLC methodologies 24

3.2.6 Activities in Each Phase 25

3.3 Machine Learning 27

3.3.1 Datasets Selection and Preparation 27

3.3.2 Model Training 29

3.4 Work Plan 30

3.4.1 Work Breakdown Structure 31

3.4.2 Gantt Chart 35

3.5 Development Tools 37

3.5.1 JavaScript 37

3.5.2 React Native 37

3.5.3 Visual Studio Code 37

3.5.4 Android Studio 37

3.5.5 Google Collab 38

3.5.6 Git 38

3.5.7 Firebase 38

3.5.8 Node,js 38

3.5.9 Flask 38

3.5.10 TensorFlow 39

3.5.11 NumPy 39

3.5.12 Scikit-learn 39

3.6 Conclusion 39

viii

4 PROJECT SPECIFICATION 40

4.1 Introduction 40

4.2 Requirement Specification 40

4.2.1 Functional Requirements 40

4.2.2 Non-Functional Requirements 42

4.3 Use Case Diagram 42

4.4 Use Case Description 43

4.4.1 Login 43

4.4.2 Register Account 44

4.4.3 Edit Account Credentials 45

4.4.4 Add Plant 46

4.4.5 Edit Plant Details 47

4.4.6 View Plant Details 48

4.4.7 Monitor Real-Time Environmental

Parameters 49

4.4.8 Edit Parameters 50

4.4.9 View Notification 51

4.4.10 Configure Notifications Settings 52

4.4.11 Review Data and Insight 53

4.4.12 Detect Anomalies 54

5 SYSTEM DESIGN 55

5.1 Introduction 55

5.2 System Architecture Design 55

5.3 Database Design 58

5.3.1 Entity Relationship Diagram 58

5.3.2 Data Dictionary 60

5.4 User Interface Design 66

5.4.1 User Authentication Pages 66

5.4.2 Monitor Panel Pages 67

5.4.3 Control Panel Screen 69

5.4.4 Data and Insight Screen 69

5.4.5 Plant Management Pages 70

5.4.6 Notification Screen 72

5.4.7 User Profile Pages 72

ix

6 IMPLEMENTATION 75

6.1 Introduction 75

6.2 Frontend Implementation 75

6.2.1 Firebase Authentication 75

6.2.2 Monitor Panel 76

6.2.3 User Profile 77

6.2.4 Control Panel 77

6.2.5 Data and Insight 78

6.2.6 Plant Management 78

6.2.7 Notification 78

6.3 Backend Implementation 79

6.3.1 Application Server 79

6.3.2 Model Server 79

6.3.3 API Functions 80

6.4 Model Training 85

6.4.1 Data Preparation 85

6.4.2 Model Definition 86

6.4.3 Training Loop 87

6.4.4 Model Evaluation 88

6.5 Summary 88

7 SYSTEM TESTING 90

7.1 Introduction 90

7.2 Test Plan 90

7.2.1 Objectives 90

7.2.2 Test Scope 90

7.2.3 Test Basis 91

7.2.4 Test Items 91

7.2.5 Test Strategy 92

7.2.6 Test Criteria 93

7.3 Functionality Test 93

7.3.1 Mobile Application Functionality Test 94

7.3.2 App Server Functionality Test 107

7.3.3 Model Server Functionality Test 119

7.4 Performance Test 121

x

7.4.1 Response Time 121

7.4.2 App Start Time 122

7.4.3 Response Success Rate 123

7.4.4 Frozen Frames Percentage 124

7.5 Anomaly Detection Evaluation 126

7.6 Summary 132

8 CONCLUSION AND FUTURE IMPROVEMENT 133

8.1 Conclusion 133

8.2 Limitations 134

8.3 Recommendation for Future Improvements 135

REFERENCES 136

xi

LIST OF TABLES

Table 2.1 Comparison of Feature of Hydroponic Farming System Mobile

Applications 9

Table 2.2 Advantages and Disadvantages of LSTM 13

Table 2.3 Advantages and Disadvantages of Isolation Forest 14

Table 2.4 Differences between support vectors machine (SVM) and

One-Class SVM 15

Table 2.5 Results of the LSTM-CNN model (Alazani et al., 2023) 16

Table 3.1: Advantages and Disadvantages of Waterfall methodology

(Gallagher, Dunleavy and Reeves, 2019) 20

Table 3.2 Advantages and Disadvantages of Unified Process

(GeeksforGeeks, 2024) 21

Table 3.3 Advantages and Disadvantages of Lean Development 22

Table 3.4 Advantages and Disadvantages of Feature Driven

Development (www.productplan.com, n.d.) 23

Table 3.5 Comparison of Software Development Life Cycle

methodologies 25

Table 3.6 Environmental Parameters 27

Table 3.7 Datasets Features 28

Table 5.1 Description of Database Tables 60

Table 5.2 Users Entity Data Dictionary 60

Table 5.3 Farms Entity Data Dictionary 62

Table 5.4 Sectors Entity Data Dictionary 62

Table 5.5 Plants Entity Data Dictionary 63

Table 5.6 Devices Entity Data Dictionary 64

Table 5.7 Anomalies Entity Data Dictionary 65

Table 6.1 API List of Multiple Backend Services 80

xii

Table 6.2 LSTM Layer configuration 86

Table 7.1 Functional Services to be tested 91

Table 7.2 Testing Levels, Types and Tools 92

Table 7.3 Test Case MA-1 User registration 94

Table 7.4 Test Case MA-2 User Login 95

Table 7.5 Test Case MA-3 Change Email 96

Table 7.6 Test Case MA-4 Change Password 97

Table 7.7 Test Case MA-5 Retrieve farm and sector data 98

Table 7.8 Test Case MA-6 Update Sector Settings 99

Table 7.9 Test Case MA-7 Add Plant 100

Table 7.10 Test Case MA-8 Add Plant Record 101

Table 7.11 Test Case MA-9 Add Plant Task 102

Table 7.12 Test Case MA-10 Edit Plant Detail 103

Table 7.13 Test Case MA-11 Data Insight Display 104

Table 7.14 Test Case MA-12 Data Export 105

Table 7.15 Test Case MA-13 Notification Retrieval 106

Table 7.16 Test Case MA-14 Notification Delete 106

Table 7.17 Test Case AS-1 Cron Job for Checking and Saving

Notifications 107

Table 7.18 Test Case AS-2 Sector Status Update Cron Job 108

Table 7.19 Test Case AS-3 User Registration 109

Table 7.20 Test Case AS-4 Update Email 110

Table 7.21 Test Case AS-5 Check and Update Message Token 111

Table 7.22 Test Case AS-6 Update Notification Settings 112

Table 7.23 Test Case AS-7 Get Sector Latest Data 113

Table 7.24 Test Case AS-8 Update Parameter Settings 113

xiii

Table 7.25 Test Case AS-9 Add Sector 114

Table 7.26 Test Case AS-10 Update Parameter Data 115

Table 7.27 Test Case AS-11 Post Trigger Result 116

Table 7.28 Test Case AS-12 Register Device 117

Table 7.29 Test Case AS-13 Add Plant 118

Table 7.30 Test Case MS-1 Receive Data for Anomaly Detection 119

Table 7.31 Test Case MS-2 Predict Trigger Status 120

xiv

LIST OF FIGURES

Figure 1.1 Malaysia: Urbanization from 2012 to 2022 by World

Bank (World Bank, 2018) 2

Figure 1.2 Survey Result (Cost) (Kyu, 2023) 3

Figure 1.3 Layout of the Proposed System 6

Figure 2.1 User Interface of Smart Suan Pak Nam (Peuchpanngarm

et al., 2016) 10

Figure 2.2 User Interface of Smart Suan Pak Nam (Peuchpanngarm

et al., 2016) 11

Figure 2.3 User Interface of VertiFarmControl (Kaur et al., 2022) 11

Figure 2.4 User Interface of VertiFarmControl (Kaur et al., 2022) 12

Figure 2.5 LSTM Architecture (GeeksforGeeks, 2019) 13

Figure 2.6 Performance Metrics for Autoencoder Model (Adkisson

et al., 2021) 16

Figure 3.1: Unified Process (GeeksforGeeks, 2024). 21

Figure 3.2 Lean Software Development (trident, 2021) 22

Figure 3.3 Feature Driven Development (www.productplan.com,

n.d.) 23

Figure 3.4 Data Training Needs (Baheti, 2021) 29

Figure 3.5 Work Breakdown Structure 33

Figure 3.6 Work Breakdown Structure (continued) 34

Figure 3.7 Gantt Chart 35

Figure 3.8 Gantt Chart (continued) 36

Figure 4.1 Use Case Diagram 42

Figure 5.1 System Architecture Design 56

Figure 5.2 Entity Relationship Diagram 59

Figure 5.3 Login, Register and Forgot Password Screen 66

xv

Figure 5.4 Monitor Panel Screen 67

Figure 5.5 Edit Farm Screen 68

Figure 5.6 Edit Sector Screen 68

Figure 5.7 Control Panel Screen 69

Figure 5.8 Data and Insight Screen 70

Figure 5.9 Plant Screen, Add Plant Screen, and Plant Detail Screen 71

Figure 5.10 Add observations and tasks, and Edit Plant Detail Screen 71

Figure 5.11 Notification Screen 72

Figure 5.12 User Profile Screen 73

Figure 5.13 User Screen with Edit User Credentials Function 74

Figure 6.1 Firebase Authentication Providers 76

Figure 6.2 Model Training Result 87

Figure 6.3 Model Evaluation Result 88

Figure 7.1 19 Hours Response Time Trend from IP 13.229.207.3 122

Figure 7.2 19 Hours App Start Time 123

Figure 7.3 19 Hours Response Success Rate from IP 13.229.207.3 124

Figure 7.4 17 Hours Frozen Frame Percentage for MainActicity

instance 125

Figure 7.5 18 Hours Frozen Frame Percentage for dashboardScreen

instance 125

Figure 7.6 17 Hours Frozen Frame Percentage for reportScreen

instance 126

Figure 7.7 LSTM Prediction Based 2 Weeks Anomaly Detection

Result 127

Figure 7.8 LSTM Autoencoder Based 2 Weeks Anomaly Detection

Result 127

Figure 7.9 Isolation Forest and One Class Support Vector Machine 2

Weeks Anomaly Detection Result 128

xvi

Figure 7.10 LSTM Prediction Based 4 Weeks Anomaly Detection

Result 129

Figure 7.11 LSTM Autoencoder Based 4 Weeks Anomaly Detection

Result 129

Figure 7.12 Isolation Forest 4 Weeks Anomaly Detection Result 130

Figure 7.13 One Class Support Vector Machine 4 Weeks Anomaly

Detection Result 131

xvii

LIST OF SYMBOLS / ABBREVIATIONS

AI Artificial Intelligence

ARIMA Autoregressive Integrated Moving Average

CNN Convolutional Neural Network

CO2 Carbon Dioxide

EC Electrical Conductivity

FDD Feature Driven Development

GPU Graphical Processing Unit

HRDF Human Resources Development Fund

HTTP HyperText Transfer Protocol

ICT Information and Communications Technology

IDE Integrated Development Environment

iOS iPhone Operating System

IoT Internet of Things

LSTM Long-Short-Term-Memory

MQTT Message Queuing Telemetry Transport

pH Potential of Hydrogen

SDLC Software Development Life Cycle

SQL Structured Query Language

SVM Support Vector Machine

TDS Total Dissolved Solids

UI User Interface

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Malaysia, a developing nation with a significant agricultural base, is gradually

embracing digitization to cope with increasing international competition.

Urbanization, a key component of national development, has been steadily

rising. As of 2022, Malaysia’s urbanization rate reached 78.2%, according to

data from the World Bank (2023), as depicted in Figure 1.1. The government's

Fourth National Physical Plan aims to further increase the urbanization rate to

85% by 2040 (Department of Statistics Malaysia, 2022). However, urbanization

has led to higher population densities in urban areas while diminishing rural

populations, which exacerbates the challenge of ensuring an adequate supply of

vegetables and fruits in urban markets (Muhammad & Rabu, 2015). To address

this issue, urban farming techniques have become increasingly necessary.

Among various methods such as vertical farming and aeroponics, hydroponics

stands out as the most recognized and practiced in Malaysia (Muhammad &

Rabu, 2015).

Hydroponics, a method of growing plants without soil but using

nutrient-rich water, offers a viable solution to the challenges posed by limited

urban space (Encyclopedia Britannica, n.d.). This technique, known for its

efficiency and sustainability, is particularly well-suited to Malaysia’s urban

communities. It provides an alternative approach to traditional farming, helping

to overcome issues related to pest control and enabling indoor cultivation.

Nevertheless, the time constraints faced by urban dwellers make it difficult to

consistently monitor and manage these systems. Hence, the development of

software or mobile applications that allow real-time monitoring of crop status

would greatly benefit busy urban farmers.

According to pioneering research by Lakshmanan, Djama, et al. (2020),

integrating Internet of Things (IoT) technologies with hydroponic systems

heralds a new era of remote farm management. This integration facilitates real-

time environmental monitoring via mobile applications, simplifying agricultural

2

oversight and broadening access to farming regardless of an individual’s

location or expertise (Lakshmanan et al., 2020).

Figure 1.1 Malaysia: Urbanization from 2012 to 2022 by World Bank (World

Bank, 2018)

1.2 Project Background

To gauge the need for hydroponic farming system mobile applications in

Malaysia, Kyu et al. (2023) conducted a mixed-methods study using online

questionnaires and virtual interviews. The study concluded that the majority of

respondents believe that automation and mobile applications can significantly

reduce labor costs associated with plant care. Additionally, most respondents

favored monitoring capabilities, as these features would enhance operational

efficiency. Figure 1.2 illustrates the survey results regarding labor cost reduction

when a smart hydroponic system mobile application is implemented. This

survey underscores the importance of developing IoT-integrated hydroponic

farming systems for individuals interested in hydroponic farming.

72.275
72.93

73.577
74.213

74.84
75.447

76.036
76.607

77.16
77.696

78.214

69

70

71

72

73

74

75

76

77

78

79

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

P
er

ce
n

ta
ge

Years

Malaysia Urbanization Rate from 2012 to 2022

3

Figure 1.2 Survey Result (Cost) (Kyu, 2023)

Another preliminary survey by Hamdan et al. (2021) focused on the

perceptions of low-income households in Selangor regarding various aspects of

hydroponic farming, including needs, knowledge, cost, pricing, and benefits.

The results indicated a preference for hydroponic systems priced below RM100,

particularly for growing food plants such as Green Chili, Mint, and Soup Leaf,

as these could help improve daily cooking and overall quality of life. This

survey confirms the acceptance and preference for IoT-integrated hydroponic

farming systems among Malaysians.

1.3 Problem Statement

1.3.1 Time Constraints and Monitoring Challenges in Urban

Hydroponic Farming

Urban dwellers often face significant time constraints that hinder their ability to

monitor hydroponic farming systems effectively. Consequently, there is a

pressing need for tools that provide convenient, anytime access to crop status

information. The development of software or applications that enable remote

monitoring of hydroponic systems is crucial for addressing the concerns of busy

urban farmers. Given that 98.7% of Malaysians use smartphones and 96.8%

have internet access, there is a solid foundation for digital solutions in

agriculture (Department of Statistics, Malaysia, 2022). The widespread use of

social networks and digital content suggests a population well-acquainted with

4

mobile technologies, indicating a high potential for the acceptance of

hydroponic farming applications. Such an app would not only align with

existing digital habits but also fulfil the need for accessible, real-time farm

management tools.

1.3.2 Skills Gap and Technological Adoption in Malaysian Hydroponic

Agriculture

The integration of Internet of Things (IoT) and Information Communication

Technology (ICT) into hydroponic farming systems can significantly improve

management efficiency. The slow adoption of advanced technologies within

Malaysia’s agriculture sector highlights a critical opportunity for innovation. A

report by the Human Resource Development Fund (2019) identifies a deficiency

in training and skill development among agricultural workers. This project aims

to bridge this gap by employing IoT and ICT to simplify hydroponic farm

management, thereby reducing the reliance on skilled labor and increasing

technological integration in agriculture. IoT-enabled monitoring systems can

record raw data, while the integration of IoT and ICT allows for real-time data

collection, such as temperature and humidity. This data can be used to

automatically adjust the indoor environment, creating ideal conditions for plant

growth.

1.4 Aim and Objectives

The primary goal of this project is to develop a software solution that simplifies

the management of hydroponic farming systems by providing real-time data and

remote monitoring capabilities. This solution will help farmers optimize their

operations and increase productivity. The objectives of the project are as follows:

• To develop mobile application capable of remotely monitoring and

controlling hydroponic farming systems.

• To create a mobile application that alerts users to critical issues and tasks

that need to be performed in hydroponic farming systems.

• To employ machine learning with IoT and ICT technologies for

detecting normal and abnormal environmental patterns in hydroponic

farming, enabling automated adjustments and simplifying management.

5

1.5 Scope and Limitations of Study

This project focuses on the development of a mobile application tailored to the

needs of hydroponic farmers in Malaysia. The application will feature real-time

remote monitoring and control of hydroponic farming systems. It will also

leverage IoT devices and a cloud database to store vast amounts of data

generated by IoT devices, using machine learning to optimize environmental

settings. Additionally, an anomaly detection algorithm will be employed to

detect irregular data in real-time.

However, the project will concentrate solely on software development

and testing, excluding physical hardware implementation. Due to resource

constraints, the project may not encompass all variations in hydroponic farming

practices, and the effectiveness of the proposed solutions may vary based on

specific environmental and operational factors. The hydroponic farming

systems will upload data collected from IoT devices to a cloud database, from

which the mobile application will retrieve data for display.

1.6 Proposed Solution

The proposed solution involves developing an Android-based mobile

application for monitoring and controlling hydroponic farming systems. This

application will be capable of real-time environmental monitoring. Figure 1.3

presents the layout of the proposed system. Data will be collected from sensors

and transmitted to IoT device, which will then upload the data to a cloud

database. The application will retrieve this environmental data from the server

and display it to the user. Users can set preferred environmental parameters,

such as temperature and humidity. Optimization will be achieved by controlling

the fogger and nutrient solution dispenser through a IoT device. Additionally,

the anomaly detection model will be deployed on the server.

6

Figure 1.3 Layout of the Proposed System

1.7 Proposed Methodology

The Agile methodology is proposed for this project. Given the need for quick

deployment to identify discrepancies between the actual system and

requirements, Agile is well-suited for this project. It allows for the

accommodation of new requirements discovered during deployment. The

detailed project methodology will be discussed in Chapter 3.2.

7

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

This chapter analyse the current state of Internet of Things (IoT) integrated

hydroponic farming system mobile application and machine learning model. It

aims to identify their features, capabilities, and limitation with focus of their

ability to regulate environment parameters for plant growth. Additionally, the

review of machine learning model aims to identify capabilities on providing

support to mobile application feature for better monitoring experiences such as

anomaly detection. By synthesizing findings from existing literature, this review

aims to bridge the gap between technological potential and the practical needs

for urban hydroponic farming, as outlined in Chapter 1.

2.2 Features and Capabilities of Hydroponic Farming System Mobile

Applications

An exploration of existing research reveals advancements in IoT-integrated

hydroponic applications with studies highlighting autonomous nutrient

regulation, environment monitoring, and AI driven functionalities like plant

disease classification and nutrient level prediction. For instance, Kularbphettong

et al. (2019) developed a hydroponic farming system that capable of

autonomously regulating nutrient levels using Message Queuing Telemetry

Transport (MQTT) technology. Peuchpanngarm et al. (2016) incorporated

various sensors for environment control and a Raspberry Pi2 controller, along

with gardening planning and monitoring features into their application. This

study has enlightened the importance of the scheduling of farming in our future

implementation for users to provide more interactive farming experience.

Furthermore, Khare et al. (2023) introduced plant disease classification and

nutrient level prediction using deep learning models. Ramakrishnam Raju et al.

(2022) also deployed deep learning convolutional neural network (DLCNN) to

predict the nutrient level and plant disease. This indicates that Artificial

Intelligence (AI) is the trend of providing more responsive and smart farming

methods. Similarly, Kaur et al. (2022) focused on monitoring and controlling

8

multiple environmental parameters using Arduino Mega, accompanied by a

comprehensive mobile application which consists of climate component that

display the environment parameters, nutrition component that display the status

of nutrient solution and the image component that capture the condition of the

farm. Moreover, Shin et al. (2024) developed a low cost IoT hydroponic setup

with the capability of easily replicated, featuring the monitoring of

environmental parameters and customization of these environmental parameters

for different types of plants. Rahimi et al. (2022) developed a Multi Factor

Authentication (MFA) functionality for an indoor hydroponic system mobile

application to enhance the security when using the cloud database IoT platform.

From all the studies listed, several strengths and limitations have been

identified in existing IoT-integrated hydroponic farming system mobile

applications. The strengths include the planning components from Smart Suan

Pak Nam by Peuchpanngarm et al. (2016) which it able to let users to setup their

planting plan by specifying the number of units for their target, then the

application generate a blueprint for actual gardening and record the harvest data

for users next planting planning; the customization of environmental parameters

based on types of plant by Shin et al (2024); the implementation of plant disease

classification, and nutrient level prediction deep learning models by Khare et al.

(2023); and the ability to view the hydroponic farming system via web camera

by Kaur et al. (2022).While existing applications demonstrate significant

strengths, such as planning components and advanced functionality for disease

classification and nutrient prediction, they also exhibit limitations, including

anomaly detection for overall status of hydroponic system and lack of

comprehensive control algorithms. Addressing these limitations presents an

opportunity for future development and innovation in this field.

While addressing the main features of the application, the monitoring

feature of the hydroponic farming system was the essential and crucial feature

that play as foundation of the application. Table 2.1 list out the environment

parameters of every application reviewed. From the table, air temperature,

humidity, potential of Hydrogen (pH) value, and light intensity were the

parameters frequently measured in the hydroponic farm system while water

temperature, total dissolved solids (TDS), and electrical conductivity (EC) are

measured less frequently. TDS is the total amount of organic and inorganic

9

substances contain in the water that are not dissolved as gases such as salts,

metals, minerals, and ions (knowledge.hannainst.com, n.d.). EC is the

concentration of conductive ion present which featuring greater salinity or

dissolved solids (www.westlab.com, n.d.). The main differences between TDS

and EC are the measurement on the water quality. TDS is measured on the

dissolved substances while EC focuses on measured the substances’ ability to

conduct electricity. Thus, the parameters will be monitored are depends on the

measure range requirements which decide what to cover in monitoring the

hydroponic farm.

Table 2.1 Comparison of Feature of Hydroponic Farming System Mobile

Applications

 Kularbphettong

et al. (2019)

Peuchpanngarm

et al. (2016)

Khare

et al.

(2023)

Kaur

et al.

(2022)

Shin

et al.

(2024)

Water

Temperature
 ✓ ✓  

Air

Temperature
✓ ✓ ✓ ✓ 

Humidity
✓ ✓ ✓ ✓ 

pH Value
✓ ✓ ✓ ✓ ✓

Light

Intensity
✓ ✓ ✓ ✓ 

Total

Dissolved

Solids (TDS)

  ✓ ✓ 

Electrical

Conductivity

(EC)

 ✓   ✓

10

2.2.1 User Interface Design

Effective user interface design is paramount in ensuring the accessibility and

usability of hydroponic system mobile application. The Smart Suan Pak Nam

application, as referenced by Peuchpanngarm et al. (2016) and

VertiFarmControl application by Kaur et al. (2022), reveals that clean, intuitive

layouts, and easy navigation significantly enhance user experience. These

interfaces facilitate efficient farm management by providing clear insights into

farming conditions, suggesting that a user-centric design approach is essential

for successful application development. Figure 2.1 and figure 2.2 shows the user

interface of the Smart Suan Pak Nam application. Figure 2.3 and figure 2.4

shows the user interface of VertiFarmControl application.

Figure 2.1 User Interface of Smart Suan Pak Nam (Peuchpanngarm et al., 2016)

11

Figure 2.2 User Interface of Smart Suan Pak Nam (Peuchpanngarm et al., 2016)

Figure 2.3 User Interface of VertiFarmControl (Kaur et al., 2022)

12

Figure 2.4 User Interface of VertiFarmControl (Kaur et al., 2022)

2.3 Machine Learning Model

This section explores on the machine learning model for providing real time

data insight such as Long-Short-Term-Memory (LSTM), Isolation Forest, and

One-Class Support Vector Machine (One-Class SVM). This section aims to

identify AI models that providing anomaly detection feature to mobile

application. This section also examines each model characteristics, abilities, and

suitability for anomaly detection purpose. Furthermore, this section reviews

several existing research about anomaly detection application in agriculture

industry.

2.3.1 Long-Short-Term-Memory (LSTM)

According to Chugh (2019), Long-Short-Term-Memory is an improved version

of recurrent neural networks (RNN) addressing the difficult to learn long-term

dependencies. LSTM capable to learn long-term dependencies by introducing a

memory cell to hold the information for an extended period. The memory cell

consists of three gates which are the input gate for information insertion, the

forget gate for information removal and the output gate for information output

(GeeksforGeeks, 2019). Figure 2.5 shows the architecture of LSTM which

include the forget gate, the input gate, and the output gate respectively. Table

2.2 discussed about the advantages and disadvantages of LSTM. The

characteristics of LSTM enable it well-suited for tasks such as language

13

translation, speech recognition, time series forecasting and anomaly detection

(GeeksforGeeks, 2019).

Figure 2.5 LSTM Architecture (GeeksforGeeks, 2019)

Table 2.2 Advantages and Disadvantages of LSTM

Advantages of LSTM Disadvantages of LSTM

Capture long-term dependencies Computationally more expensive

Selectively recalls or forget

information

Training more time consuming

Capture important context even

there is significant time gap between

related events

Hard to parallelize work of

processing the sentences

2.3.2 Isolation Forest

Isolation Forest is a model that introduces random partitioning the data

recursively to isolate the anomalies instances instead of distance or density

computations like traditional method (Liu et al., 2008). According to Liu et al.

(2008), anomalies are "few and different," making them more prone to isolation

than normal points. In isolation trees (iTrees), anomalies typically have shorter

path lengths than normal instances. To perform anomaly detection, isolation

forest model will plot out an ensemble of iTrees based on random sub-samples

data, then exploiting shorter path lengths for anomalies due to the susceptibility.

Through averaging the path lengths across ensemble of isolation trees, a scoring

14

formula based on tree analysis will be used to obtain anomaly scores. Lastly,

the final anomaly detection is ranked the instances based on anomaly scores.

Table 2.3 listed out the advantages and disadvantages of isolation forest.

Table 2.3 Advantages and Disadvantages of Isolation Forest

Advantages of Isolation Forest Disadvantages of Isolation Forest

Isolates anomalies instead profiling

normal instances

May not perform well if anomalies

not “few and different” from normal

instances

Linear time complexity and low

memory requirement

Requires tuning of sub-samples and

number of trees for optimal

performance

Alleviates the effects of swamping

and masking by using small sub-

samples data

May not be as effective as other

methods for low-dimensional data

with few irrelevant attributes.

Handle high-dimensional data Does not provide a direct

interpretation of the anomaly scores

2.3.3 One-Class Support Vector Machine (One-Class SVM)

One Class Support Vector Machine is a model designed to outlier, anomaly, or

novelty detection but not for performing binary or multiclass classification tasks

like other traditional machine learning model (GeeksforGeeks, 2024). The

model key working principles are outlier boundary, margin maximization and

high sensitivity. One-Class SVM define boundary around normal instances in

the feature space to encapsulate the normal data points, then maximize the

margin around the normal instances to separate the normal and anomaly data

points. Furthermore, One-Class SVM consist of a hyperparameter, “nu” to

represent upper boundary on the fraction of margin errors with support vectors,

influences the model’s sensitivity to anomalies. Table 2.4 discussed the

differences between support vectors machine (SVM) and One-Class SVM.

15

Table 2.4 Differences between support vectors machine (SVM) and One-

Class SVM

2.3.4 Anomaly Detection Model in Agricultural Industry

The purpose of Anomaly Detection is to identify rare events or observations that

raise suspicious by being statistically different from the rest of the observation

(GeeksforGeeks, 2019) The anomaly can be categorized to three types: point

anomaly, contextual anomaly, and collective anomaly, difference are the point

of view to the data which are tuple in a dataset, context of observations, and set

of data instances respectively. The anomaly detection can be done in both

supervised and unsupervised depend on the datasets and requirement. For

example, Adkissson et al. (2021) proposed an anomaly detection model using

unsupervised Autoencoder machine learning model to detect data discrepancies

on environments condition for smart farming. Figure 2.6 shows the result of the

autoencoder in anomaly detection. Bandar Alanazi and Ibrahim Alrashdi (2023)

proposed Convolutional Neural Network-Long Short-Term Memory (CNN-

LSTM) deep learning model anomaly detection to protect the smart agriculture

system from network edge threats such as Distributed Denial of Service (DDoS)

attacks by detect anomaly data transmitted from sensors device. Table 2.5 shows

the result of the CNN-LSTM model in anomaly detection. Furthermore,

Abdallah et al. (2021) explored the deployment of Machine Learning (ML) in

16

digital agriculture using Autoregressive Integrated Moving Average (ARIMA)

and LSTM models for predicting time series of sensor data then perform

anomaly detection, found out that LSTM has better prediction performance on

unseen dataset compared to ARIMA model. Moreover, Catalano et al. (2022)

proposed an anomaly detection system for overcome infrastructure threats based

on Multivariate Linear Regression (MLR) and LSTM algorithms, found out that

LSTM results are closer to the actual observed data.

Figure 2.6 Performance Metrics for Autoencoder Model (Adkisson et al., 2021)

Table 2.5 Results of the LSTM-CNN model (Alazani et al., 2023)

2.3.5 Justification on Machine Learning Model Selection

To provide precise and efficient anomaly detection in the hydroponic farming

system, the machine learning model selection is essential. The Long Short-Term

Memory (LSTM) neural network was chosen for this project after a number of

models were evaluated because of its capacity to capture the long-term linkages

and temporal dependencies present in time-series data. As opposed to

conventional anomaly detection models like One-Class Support Vector

Machine (SVM) and Isolation Forest, which lack of mechanisms to deal with

17

sequential data, LSTM is specially made to be able to learn from the

environmental factors' historical context. This feature allows the model to detect

anomalies based on patterns and trends that develop over time as well as the

specific values of sensor readings. Moreover, the gating mechanisms and

memory cells of LSTM enable it to retain information over extended sequences,

which makes it very useful for identifying minute variations in sensor data that

can point to any problems with the hydroponic system. By utilizing recent

prediction errors as a basis, the dynamic thresholding mechanism keeps

anomaly detection flexible enough to adjust to shifting environmental

circumstances, therefore decreasing false positives and enhancing detection

precision. This flexibility is essential in a real-time monitoring application

because system disruptions might cause sensor data to show different patterns.

Since the objective of this research is to provide robust and reliable anomaly

detection for optimizing the hydroponic farming environment, LSTM was

selected as the most suitable model.

2.4 Summary

Several existing studies have explored various features and capabilities of a

hydroponic farming system mobile application, such as autonomous nutrient

regulation, environmental monitoring, gardening planning, plant disease

classification and nutrient level prediction using deep learning models.

Furthermore, user interface design demonstrated in the previous studies have

underscores the importance of clean, intuitive, easy navigation, and consistent

visual aesthetics in ensuring the user experience and accessibility. Despite the

strengths, there were limitations could be found, such as anomaly detection and

lack of comprehensive control algorithms.

In addition, there are various machine learning models to perform

anomaly detection for real time farming datasets such as LSTM, Isolation Forest,

and One-Class SVM. After reviewing several existing journals related to

anomaly detection machine learning model in agriculture industry, LSTM

model is mentioned relatively more numbers than other machine learning

models, it features high accuracy on predicting the environment parameters, and

reliable in learning new data collected from the IoT devices.

18

In synthesizing the research, it's evident that while current applications

excel in certain areas, they lack in customizable control and anomaly detection

(Khare et al., 2023; Shin et al., 2024). The integration of such algorithms,

alongside LSTM's data interpretative strength, could significantly propel the

functionality of the proposed mobile application. This chapter lays the

groundwork for developing a solution that not only addresses the identified gaps

but also leverages advanced IoT and ICT solutions, echoing the objectives set

out in Chapter 1

19

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter will discuss the suitable system development methodology for this

project by reviewing various methods from online resources and the decision of

methodology will be elaborated. The machine learning will discuss the datasets

used, the training details and procedure. The development flow of the project

will be listed detailed in the Work Plan Section. In the Work Plan Section, Work

Breakdown Structure and Gantt Chart are provided to define the tasks details

and schedule. Finally, development tools for this project will be elaborated in

this chapter.

3.2 System Development Methodology

To select the most appropriate development methodology, review on existing

methodology need to be included. The methodologies will be discussed are

waterfall, unified process, lean development, and feature driven development.

Each methodology advantages and disadvantages will be compared to each

other to decide whether which methodology are suitable for this project. This

section also elaborates the activities performed in each development phases.

3.2.1 Waterfall Methodology

The Waterfall methodology is a linear and sequential approach to project

management which based on fixed requirements, flows, testing and output

(Gallagher, Dunleavy and Reeves, 2019). This methodology does not require

much communication between stakeholders but only approval from

stakeholders to continue to next stage. The lack of communication lets the

project consists of limitations and problem in delivering a good quality software

to stakeholders. This also increases the development cost due to the long

duration of the project, and unnecessary functionality in the software. Below

table 3.1 listed out the advantages and disadvantages of Waterfall methodology.

In contrast, this methodology is suitable for project that have constant project

20

scope and minimal changes to requirements while also have sufficient budget

and time.

Table 3.1: Advantages and Disadvantages of Waterfall methodology

(Gallagher, Dunleavy and Reeves, 2019)

Advantages Disadvantages

Static project scope Hard to add new requirements

Minimal changes to system Dependencies on relatively unstable

products

Easy to plan the tasks Difficult to estimate total time

project complete

Reduce impact from the leave of key

members

Large contingency during

development

3.2.2 Unified Process (UP)

The Unified Process methodology is an incremental and iterative approach to

project management that emphasizes teamwork, producing usable software

increments, and adapting to changes. (GeeksforGeeks, 2024). Figure 3.1 shows

the flow of Unified Process. This is based on Unified Modeling Language (UML)

and is a use case driven development. Its focus on architecture design enables it

more suitable for complex project. This methodology requires clear guidelines

and workflows to enhance the feedback and communication from stakeholders

which also ensure the quality of the project outcomes. However, it needs to have

solid understanding on the principles which increase the learning curves of this

methodology. Table 3.2 discusses the advantages and disadvantages of Unified

Process.

21

Figure 3.1: Unified Process (GeeksforGeeks, 2024).

Table 3.2 Advantages and Disadvantages of Unified Process

(GeeksforGeeks, 2024)

Advantages Disadvantages

Iterative development Complexity

Risk Management Overhead in documentation and

formalized processes

Quality Assurance Longer Learning Curve

Stakeholder Collaboration Scope Management

Flexibility and Adaption Adoption Resistance from

stakeholders or team members

3.2.3 Lean Development

The Lean Development is a continuous improvement approach to project

management focusing on efficiency and waste reduction on time and resources

in software development (Developer.com, 2022). This methodology also

focuses on the collaboration which the teams consist of cross-functional

members to achieve the goals of the project. The characteristics of this

methodology are short cycles development, focus on customer value,

collaboration, minimize waste and learn from errors actively. Figure 3.2 shows

the flow of Lean Development. This methodology suitable for stakeholders that

prefer fast development with minimum resources consumed, and improvement

22

based on validation from customer feedback. Table 3.3. listed out the

advantages and disadvantages of Lean Development.

Figure 3.2 Lean Software Development (trident, 2021)

Table 3.3 Advantages and Disadvantages of Lean Development

Advantages Disadvantages

Increase Efficiency by focus on

essential tasks

Lead to “ship it now, fix it later”

mindset which may cause low

quality

Improved Quality Relies heavily on customer feedback

Increase Customer Satisfaction Change on team’s work habits

Improve morale by streamlining

development process

23

3.2.4 Feature Driven Development

The Feature Driven Development is an iterative approach in project

management with mixture of different Agile approach practices, it more focused

on the exact features of a software to develop. This methodology relies heavily

on customer input, as the software features are defined by the customer (Laoyan,

2022). This methodology has four main values: Individuals over processes and

tools, working software over comprehensive documentation, customer

collaboration over contract negotiations, and responding to change over

following a plan (Laoyan, 2022). Figure 3.3 visualize the flow of Feature Driven

Development. This methodology suitable for project that need to iterate rapidly

based on feature require by customers and for the project leader that have clear

vision on the software development. Table 3.4 listed out the advantages and

disadvantages of Feature Driven Development.

Figure 3.3 Feature Driven Development (www.productplan.com, n.d.)

Table 3.4 Advantages and Disadvantages of Feature Driven Development

(www.productplan.com, n.d.)

Advantages Disadvantages

Simple five-step process enable for

rapid development

Does not work efficiently with small

projects

Allows larger teams to move

product forwards with continuous

success

Less written documentation

Leverages pre-defined development

standards

High dependant on lead developers

or programmers

24

3.2.5 Comparison among SDLC methodologies

To achieve the goals of the project, comparison among methodologies is

performed to determine the most appropriate software development approach.

Table 3.5 compares the four methodologies reviewed in this chapter. The criteria

used to determine the most appropriate software development are the focus,

flexibility, result delivery, risk factors, and customer feedback. Based on the

comparison, Feature Driven Development (FDD) is more suitable for this

project than other methodologies. This is due to the development of hardware

components and mobile applications for hydroponic farming system are

developed by separate teams. As a result, a clear and structured process is

needed for developing the application to ensure the deliverables of software

features. Although the flexibility of this approach might not higher than Lean

Development and Unified Process but the adaptability to changing project

requirements also enable this project respond to new requirements in short

period. The adaptability is important because the app relies on real-time data

retrieve from the sensors, while it depends on the app to provide control and

monitoring functionality which need adjust based on the situation. By

employing FDD's iterative approach with frequent delivery cycles, the mobile

application can be developed to meet all required features while maximizing the

use of data from the hydroponic system sensors. Moreover, FDD's emphasis on

delivering working features incrementally aligns well with the need for

continuous communication and feedback between the hardware sensor and

mobile app development teams. In summary, with the feature driven approach,

adaptability, and the constant feedback from stakeholders, ensure the project

objectives and scope to be achieved.

25

Table 3.5 Comparison of Software Development Life Cycle methodologies

Methodology /

criteria

Waterfall Unified

Process (UP)

Lean

Development

Feature

Driven

Development

Focus Fixed

requirements,

flows, testing,

output

Creating

working

software

increments,

collaborating,

adapting

Efficiency and

waste

reduction

Exact features

development

based on

customer

input

Flexibility Limited Excellent Excellent Excellent

Result

Delivery

Delayed Medium Frequent Medium

Risk Factor High Low Low Low

Customer

Feedback

Low High High High

3.2.6 Activities in Each Phase

The first phase for the project is initiation planning, which includes identifying

the problem statement, defining the aim, objectives, and scope of the project.

The aim and objectives are defining based on the problem statement while the

problem statement is identified based on the online research via journal, article,

and public data. This phase also determines the scope and the limitations of this

project to ensure the range of the deliverables. After these preparations, this

phase will come out a simplify proposed solution and methodology for this

project.

 The next phase will be the performing the requirements collection and

complete the software design of the project. During this phase, requirements

define, use case design, software design including the user interface and system

architecture will be performed. The requirements define is based on the module

identified and analysed in the early phase. For the use case design will be

including the use case diagram with use case description to better visualize the

interactions between users and system. The user interface design will be based

on the use case design to ensure providing a more intuitive and professional

experience to the users. For the tools will be use in this phase are Enterprise

26

Architect (EA) for drawing the use case diagram, while Figma for drawing the

user interface design for this project. After these have been completed, the

requirements and design will be reviewed for verification to ensure the good

quality of the project.

 After the review of the requirements and software design, there will be

correction based on the feedback collected. New iteration will be initiated based

on updated requirements and design which is the module development. The first

module is the monitoring and controlling module which represents the data

presentation and parameters control of the hydroponic system. This module

includes the setup of the database for the hydroponic system and the mobile

application to collect the data retrieved from the sensors. The outcome for this

module is the app able to display the data fetch from the database and database

respond to the request from the app. Functional testing will be performed

continuously during the development of the module. After the completion of the

main module, other modules will be initiated like reminders and notifications,

listing of plants details, and user authentication and management. The reminders

and notification will remind and push notification to the users on the tasks,

anomaly alerts and daily reminders about the hydroponic system. The plant

module handles the farm plant management. The user authentication and

management are for the security of the application and maintain the session.

 Next iteration is about the anomaly detection machine learning model

for better detection on the anomaly data via the database. This model is to

enhance the monitoring of the environment parameters of hydroponic system by

making predictions based on real time data. After fine-tuning of the model and

testing, it will be integrated into the main module to support features such as

reminder module trigger and preparing deployment to the server.

 The last iteration is the integration testing and performance testing. The

integration testing will be run for all modules to test on the interaction between

modules. While performance testing will focus on evaluating the system

efficiency and stability. After all the testing performed and bug fixed, the final

product will present to the user indicates that the development is complete and

able to deploy to production environment.

27

3.3 Machine Learning

This project will leverage machine learning to enhance the mobile application’s

capability to monitor hydroponic system effectively. The Long Short-Term

Memory (LSTM) model is selected, as justified in Chapter 2.3.1 and Chapter

2.3.4, for its proficiency in handling time-series data crucial for predicting

environmental parameters in hydroponic farming.

3.3.1 Datasets Selection and Preparation

The LSTM model will predict key environmental parameters outlined in Table

3.6, drawing on methodologies from Khare et al. (2023). Comprehensive

training will also incorporate sensor value and timestamps to improve model

accuracy. The selection of features for training is detailed in Table 3.6.

Table 3.6 Environmental Parameters

No. Environmental Parameters

1. Surrounding Temperature

2. Surrounding Humidity

3. Light Intensity

4. pH Level

5. Total Dissolved Solids (TDS)

6. Solution Temperature

7. Low pH Trigger

8. High pH Trigger

9. Low TDS Trigger

10. High TDS Trigger

11. Fogger Trigger

12. Fogger Temperature

13. Fogger Humidity

28

Table 3.7 Datasets Features

No. Datasets Features

1. Environmental Parameters

2. Timestamps

Data will be sourced from the hydroponic system developed by Chua

Shi Jian, an Electrical Electronic System (3E) student responsible for the design

and operation, the data will continuously be uploading to the Firebase database

after deployment.

Data preparation involves multiple stages to ensure quality and

consistency:

Data Validation: Ensuring data conforms to type, range, and presence

requirements (Bhandari, 2021).

Data Screening: Identifying and removing inconsistent, missing, or

outlier data using manual and statistical methods (Bhandari, 2021).

Data Cleaning: Eliminating duplicates and correcting invalid data entries.

Data Normalization: Utilizing MinMaxScaler or StandardScaler

techniques to standardize data values, facilitating more effective training

(Brownlee, 2016). MinMaxScaler normalize data by rescaling values between

range of 0 and 1 as shown in Equation 3.1 while StandardScaler as shown in

Equation 3.2, normalize data by subtracting the mean value.

Post-Preparation: Data is split into training and validation sets with an

80/20 ratio, as visualized in Figure 3.4, to optimize learning outcomes and

model validation.

𝑦 =
(𝑥−𝑚𝑖𝑛)

(max − min)
 (3.1)

where

𝑚𝑖𝑛 = Minimum observable value

𝑚𝑎𝑥 = Maximum observable value

29

𝑦 =
(𝑥−µ)

𝜎
 (3.2)

where

µ = mean of observable value

𝜎 = standard deviations of observable value

Figure 3.4 Data Training Needs (Baheti, 2021)

3.3.2 Model Training

The chosen LSTM model will be trained using Backpropagation Through Time

(BPTT) to address long-term dependencies and sequence-related challenges in

machine learning. TensorFlow will serve as our primary tool for model training.

The model architecture will consist of several layers, with specific units

per layer, activation functions, and dropout layers to mitigate overfitting.

Tuning will be conducted to determine the optimal architecture configuration.

The optimization algorithm will be needed to adjust the weights and

biases of the model. It can minimize the error between the predicted and actual

values which ensure the accuracy of model. The optimization algorithm can be

used to train LSTM models are Bayesian optimization, Sine Cosine Algorithm,

Harmony Search and Gray Wolf Optimizers (Rashid et al., 2018). The choice

of optimization algorithms will depend on the datasets features and

requirements.

30

Model Performance will be assessed using Mean Absolute Error (MAE)

and Root Mean Square Error (RMSE), providing insight into average prediction

deviations and variability. The MAE derived by calculating the average

difference between the predicted value and the actual value, as shown in

Equation 3.3.

𝑀𝐴𝐸 =
1

𝑛
𝛴|𝑦 − 𝑦|̂ (3.3)

where

𝑛 = Total number of data points

𝑦 = Actual output value

𝑦̂ = Predicted output value

The RMSE is determined by calculating the square root of difference

between square of predicted value and actual value shows in Equation 3.4. The

finalized model will be deployed to a server for real-time predictions and to

monitor anomalies in the collected data.

𝑅𝑀𝑆𝐸 = √∑
(𝑦̂−𝑦)2

𝑛
 (3.4)

where

𝑛 = Total number of data points

𝑦 = Actual output value

𝑦̂ = Predicted output value

3.4 Work Plan

This section includes the Work Breakdown Structure and Gantt Chart. The

Work Breakdown Structure will list out the tasks of each phase. While the Gantt

Chart will provide each tasks’ duration.

31

3.4.1 Work Breakdown Structure

IoT-Integrated Hydroponic Farming System Mobile Application

1.0 Initial Planning

1.1 Project Planning

 1.1.1 Project Background Research

 1.1.2 Define Problem Statement

 1.1.3 Define Project Objectives

 1.1.4 Define Scope and Limitation

 1.1.5 Define Solution and Approach

1.2 Literature Review

 1.2.1 Review on Features and Capabilities of Hydroponic Farming

System Mobile Applications

 1.2.2 Review on Mobile Applications User Interface Design

 1.2.3 Review on Proportional-Integral-Derivative (PID) Control

Algorithm

 1.2.4 Review on Machine Learning Model

1.3 Methodology and Work Plan

 1.3.1 Compare and Select SDLC methodology.

 1.3.2 Develop Work Plan

 1.3.3 Determine Development Tools

2.0 Execution

2.1 First Iteration

 2.1.1 Requirement Collection and Analysis

 2.1.2 Design User Interface

 2.1.3 Design System Architecture

 2.1.4 Develop Use Case Diagram

 2.1.5 Evaluation and Feedback

2.2 Second Iteration

 2.2.1 Develop Monitor and Control Module

 2.2.2 Develop Reminder and Notification Module

 2.2.3 Develop Plant Listing and Detail Module

 2.2.4 Develop User Authentication and Account Module

 2.2.5 Evaluation and Feedback

32

2.3 Third Iteration

 2.3.1 Preprocessing Datasets

 2.3.2 Training Model

 2.3.3 Fine-tuning and Testing Model

 2.3.4 Integrate Machine Learning Model with Hydroponic Farming

System

 2.3.5 Evaluation and Feedback

2.4 Fourth Iteration

 2.4.1 Develop Testing Plan

 2.4.2 Develop Test Case

 2.4.3 Integration Testing

 2.4.4 Performance Testing

 2.4.5 Evaluation and Feedback

3.0 Closure

3.1 System Deployment

3.2 Report and Documentation

33

Figure 3.5 Work Breakdown Structure

34

Figure 3.6 Work Breakdown Structure (continued)

35

3.4.2 Gantt Chart

Figure 3.7 Gantt Chart

36

Figure 3.8 Gantt Chart (continued)

37

3.5 Development Tools

This section introduces the tools will be used for developing this project

including programming languages, frameworks, integrated development

environments (IDE), version control systems, and database. This project mainly

using Android Studio and Visual Studio Code to develop the application while

Google Collab for developing the anomaly detection model.

3.5.1 JavaScript

This programming language are used as the default language of React Native

framework. This language has many developed and basics libraries can be used

in this project like user interface (UI) libraries. It is a language that suitable for

this project frontend and backend development.

3.5.2 React Native

This framework is a JavaScript framework for developing cross-platform

mobile applications. It allows the project can be deployed in multiple platforms

such as Android and iPhone Operating System (iOS). React Native can import

large numbers of third-party libraries and community support for efficient

development.

3.5.3 Visual Studio Code

This IDE is a lightweight and powerful tool to develop different kinds of web

and mobile project. Its capabilities of importing extension and module enhance

the productivity for the project. Thus, it is suitable for the project using

JavaScript and React Native.

3.5.4 Android Studio

This IDE is the official tool for developing Android applications. It offers

efficient tool for building and testing the Android app, the emulators a virtual

device to simulate the environment of smartphones. It also ensures the

compatibility and performance of the Android app for easier developing and

debugging.

38

3.5.5 Google Collab

This online tool is a cloud-based platform for developing the machine learning

model that will deploy in this project. It provides free access to Graphics

Processing Unit (GPU) resources which reduce the costs and time to train the

model. It reduces the difficulty of developing and testing the machine learning

model for this project.

3.5.6 Git

Git is a version control system that used for tracking changes in source code

during project development. It can sync with GitHub for backing up the source

code to avoid accident loses. It enables the project can merge the changes or

revert to previous versions if occur incompatible of dependencies or other issues.

3.5.7 Firebase

Firebase is a No Structured Query Language (NoSQL) database which increase

the efficiency of retrieving time-stamp data. It also provides real-time database

for real-time synchronization between mobile applications and server. It will

simplify the backend development and management of this project, increase the

productivity of the development.

3.5.8 Node,js

Node.js is a JavaScript runtime environment can be used for developing server-

side scripting. It is an event-driven architecture, featuring of asynchronous input

and output, and single-threaded design enabled high efficiency development. It

also provides frameworks that simplify the development process of mobile

applications.

3.5.9 Flask

Flask is a lightweight web framework for Python, designed to make web

applications and API easy to build. Its characteristics of microframework and

simplicity let it easy to use and understand which using less code to write and

suitable for developers. This framework provides URL mapping to functions

which allow handling of different HTTP requests such as GET and POST.

39

3.5.10 TensorFlow

TensorFlow is an open-source machine learning framework developed by

Google. This framework is widely used for building and training machine

learning and deep learning models. The Keras API is one of the key features for

TensorFlow to build deep learning models and promote quick model

development including packages such as layers, optimizers, regularizers and

others.

3.5.11 NumPy

NumPy is a Python fundamental library for numerical and scientific computing

which suitable for processing the raw data. It supports data processing for arrays,

matrix, and many mathematical functions such as arithmetic, statistical analysis,

and linear algebra. It also integrates well with other scientific libraries like

scikit-learn that would also be used in this project.

3.5.12 Scikit-learn

In this project, Scikit-learn, an open-source machine learning framework for

Python that offers effective and simple to use data analysis and modeling

capabilities was used. It is constructed upon NumPy, SciPy, and matplotlib,

which are data science-specific libraries. The transformers for this library will

be used for preprocessing and feature extraction such as StandardScaler and

MinMaxScaler.

3.6 Conclusion

This chapter decides the Feature Driven Development (FDD) software

development methodology as the project development methodology.

Additionally, steps to process the datasets and model training were identified

and discussed. Moreover, this chapter also discussed the tasks to be done in the

work breakdown structure while the time schedule mentioned in the Gantt Chart.

The tools for developing the project include JavaScript, React Native, Visual

Studio Code, Android Studio, Google Collab, Git and Firebase. In conclusion,

by utilizing the FDD methodology with the tools identified, the project could

deliver efficient solution to meet the requirements and challenges of the

development process.

40

CHAPTER 4

4 PROJECT SPECIFICATION

4.1 Introduction

This chapter will introduce the requirements specification for the application

including functional and non-functional requirements. The use case diagram and

description provide a visualization and explanation of the main functionality of

the application. All these information act as a foundation to the application

architecture design and development.

4.2 Requirement Specification

Requirement Specification will define what features or functionalities include

in this project. The requirements were collected through review of feature and

capabilities of hydroponic farming system mobile application and based on the

project objectives.

4.2.1 Functional Requirements

Monitoring and Controlling Module

• The application shall allow users to monitor real-time data from sensor

in the hydroponic system.

• The application shall display environmental parameters such as

temperature, humidity, and pH levels.

• The application shall allow users to adjust parameters range remotely.

• The application shall display the tasks to do that user set for their plants.

Reminders and Notifications Module

• The application shall push reminder of tasks set by user based on user’s

notification settings.

• The application shall push notification to alert users about critical issues

or changes detected by Anomaly Detection Module based on user’s

notification settings.

• The application shall allow users to view all the notification.

41

• The application shall allow users to configure notification settings on

reminders and alerts.

Plant Management Module

• The application shall allow users to add the plant details including image,

status, observation, and measurement.

• The application shall allow users to edit the plant details.

• The application shall display a listing of plants of the farm.

• The application shall allow users to add observation and measurement

for record purposes.

• The application shall allow users to add tasks with date that need to be

implement on plants.

User Authentication and Management Module

• The application shall allow users to register a new account.

• The application shall allow users to login via email and password.

• The application shall send a verification email after users register an

account.

• The application shall allow users to edit their account credentials include

email and password.

• The application shall allow users to recover account by resetting

password via email.

Anomaly Detection Module

• The model shall perform real-time analysis of data from sensors to detect

anomalies in environmental parameters.

• The model shall identify abnormal patterns or deviations from the data

collected.

• The application shall allow users to review data and insight of the current

farm.

42

4.2.2 Non-Functional Requirements

• The application shall achieve a response time of less than 5 second for

displaying real-time data, measured consistently during operation.

• The application shall maintain a minimum uptime of 99% for continuous

hydroponic system operation, tracked through uptime monitoring, and

alert on anomalies.

• The user interface of application shall be intuitive, require minimal

learning for operation.

• The application shall be able to adapt to different screen sizes of mobile

devices.

4.3 Use Case Diagram

Figure 4.1 shows the use case diagram for Internet of Things (IoT) integrated

hydroponic farming system mobile application.

Figure 4.1 Use Case Diagram

43

4.4 Use Case Description

4.4.1 Login

Use Case Name: Login ID: UC01 Importance Level: High

Primary Actor: User Use Case Type: Detail, Real

Stakeholders and Interests: User: Login to account

Brief Description: This use case describes that a registered user login to the

mobile application

Trigger: User opens the mobile application

Relationships:

 Association : User

 Include : N/A

 Extend : Recover Account

 Generalization: N/A

Normal Flow of Events:

1. The user opens the mobile application.

2. The application displays the login screen.

3. The users forgot their password.

The S-1 Recover Account flow performed.

4. The user enters the valid email and password.

5. The user submits the user credentials.

6. The application verifies the user’s login credentials. If user

credentials are invalid, perform Exceptional Flow 6.1.
Sub-flows:

 S-1 Recover Account

1. The user selects the Recover Account option from the login screen.

2. The application displays the recover screen.

3. The user enters their registered email address and submit.

4. The application generates a password reset link and sends to user’s

email address.

5. The application prompts the password reset link sent.

6. Return to main flow step 2.

Alternate/Exceptional Flows:

6.1 Invalid User Credentials

1. The application displays an error message on wrong user

credentials.

2. The application prompts user to retry the login procedure.

44

4.4.2 Register Account

Use Case Name: Register Account

ID: UC02 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User: Register account

Brief Description: This use case describes that a new user can register a new

account.

Trigger: User opens the mobile application and don’t have account.

Relationships:

 Association : User

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user selects the Register Account option from the login screen.

2. The application displays the registration screen.

3. The user enters the required information for register account.

4. The user submits the registration information.

5. The application validates the information entered. If the registration

information is invalid and duplicated, perform Exceptional Flow 5.1

Sub-flows:

 N/A

Alternate/Exceptional Flows:

5.1 Invalid and Duplicated Register Information

1. The application displays an error message on invalid or duplicated

register information.

2. The application prompts user to retry the registration procedure.

45

4.4.3 Edit Account Credentials

Use Case Name: Edit User

Credentials

ID: UC04 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User: Edit user credentials.

Brief Description: This use case describes that a registered user can update

their email or password.
Trigger: User wants to change user credentials.

Relationships:

 Association : User

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user opens their profile.

2. The application displays option for changing email or password.

3. The user can modify the user credentials by select the option. If the

update information is invalid and duplicated, perform Exceptional

Flow 3.1

4. The user saves the changes of user credentials.

5. The application prompts update successful message, and updates user

credentials.

Sub-flows:

 N/A

Alternate/Exceptional Flows:

5.1 Invalid and Duplicated Update Information

1. The application displays an error message on invalid or duplicated

update information.

 2. Return to main flow step 2.

46

4.4.4 Add Plant

Use Case Name: Add Plant

ID: UC05 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User: Add Plant.

Brief Description: This use case describes that a user can add a plant including

image, status, observation, and measurement.
Trigger: User wants to add a new plant for a sector.

Relationships:

 Association : User

 Include : Record Observation and Measurement, Set Tasks

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user opens the plant screen.

S-1 Add New Observation and Measurement flow performed.

S-2 Add New Task flow performed.

2. The user selects Add Plant option.

3. The user enters the add plant screen and fill in the info.

4. The application saves the new plant. If the information is incomplete

or invalid, perform exceptional flow 4.1.
Sub-flows:

 S-1 Add New Observation and Measurement

1. The user enter new observation and measurement to the selected

plant.

2. The application save the new info.

3. Return to main flow step 1.

 S-2 Add New Task

1. The user enter new task note and date to the selected plant.

2. The application save the new info.

3. Return to main flow step 1.

Alternate/Exceptional Flows:

 Exceptional Flow 4.1: Incomplete or Invalid information

1. The application displays an error message on incomplete or invalid

information.

2. The application prompts user to complete and enter valid

information.

3. Return to main flow step 2

47

4.4.5 Edit Plant Details

Use Case Name: Edit Plant Details

ID: UC06 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User: Edit Plant Details.

Brief Description: This use case describes that a user can edit a plant detail

including status, observation and measurement, and tasks.
Trigger: User wants to edit a new plant detail.

Relationships:

 Association : User

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user opens the plant screen.

2. The application displays list plants for each sector.

3. The user selects a plant that require update.

4. The application displays the selected plant information.

5. The user selects Edit Plant Details option.

6. The user edits the plant details.

7. The application saves the new plant details. If the information is

incomplete or invalid, perform exceptional flow 7.1.
Sub-flows:

 N/A

Alternate/Exceptional Flows:

 Exceptional Flow 7.1: Incomplete or Invalid information

1. The application displays an error message on incomplete or invalid

information.

2. The application prompts user to complete and enter valid

information.

48

4.4.6 View Plant Details

Use Case Name: View Plant

Details

ID: UC07 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Essential

Stakeholders and Interests: User: View Plant Details.

Brief Description: This use case describes that a user can view a plant detail

including image, status, observation and measurement,

and tasks.
Trigger: User wants to view a new plant detail.

Relationships:

 Association : User

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user opens the plant screen.

2. The application displays list of plants for each sector.

3. The user selects a plant to view.

4. The application displays the selected plant information.
Sub-flows:

 N/A

Alternate/Exceptional Flows:

 N/A

49

4.4.7 Monitor Real-Time Environmental Parameters

Use Case Name: Monitor Real-

Time Environmental Parameters

ID: UC08 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User: Monitor real-time environmental

parameters.

Brief Description: This use case describes that a user can monitor real-time

data from sensor in the hydroponic system.

Trigger: User wants to monitor hydroponic farm system.

Relationships:

 Association : User

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user opens the monitor panel.

2. The application displays the real-time environmental parameters

including surrounding temperature, solution temperature, humidity,

pH value, nutrient level, light intensity, and TDS level.

3. The application updates the parameters every 10 minutes.

4. The user can manually refresh the monitor panel to retrieve the latest

data
Sub-flows:

 N/A

Alternate/Exceptional Flows:

 N/A

50

4.4.8 Edit Parameters

Use Case Name: Edit Parameters

ID: UC09 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Essential

Stakeholders and Interests: User: Edit parameters.

Brief Description: This use case describes that a user can edit parameters

remotely

Trigger: User wants to adjust parameters for hydroponic farm.

Relationships:

 Association : User

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user opens the control screen.

2. The application displays parameters settings for each sector.

3. The user selects edit parameters option.

4. The user can adjust the values of parameters.

5. The user saves the changes on the parameters.

6. The application saves and update the required parameters in database.

Sub-flows:

 N/A

Alternate/Exceptional Flows:

 N/A

51

4.4.9 View Notification

Use Case Name: View

Notification

ID: UC10 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Essential

Stakeholders and Interests: User: View notification

Brief Description: This use case describes that a user can view notification.

Trigger: User wants to view notification.

Relationships

 Association : User

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user opens the notification screen.

2. The application displays list of notification.

3. The user can delete the notification.

4. The user can select one of the notifications for review.

5. The application displays the details of the notifications.

Sub-flows:

 N/A

Alternate/Exceptional Flows:

 N/A

52

4.4.10 Configure Notifications Settings

Use Case Name: Configure

Notification Settings

ID: UC11 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User: Configure Notification Settings

Brief Description: This use case describes that a user can configure

notification settings.

Trigger: User wants to configure notification settings.

Relationships

 Association : User

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user opens the user profile.

2. The user selects Notification Settings option.

3. The application displays the current enabled notification settings.

4. The user can enable or disable the push of reminders and alerts.

5. The application saves the notification settings.
Sub-flows:

 N/A

Alternate/Exceptional Flows:

 N/A

53

4.4.11 Review Data and Insight

Use Case Name: Review Data and

Insight

ID: UC12 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Real

Stakeholders and Interests: User: Review data and insight

Brief Description: This use case describes that a user can review data and

insight

Trigger: User wants to gain insights of hydroponic farm.

Relationships

 Association : User

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The user opens the Insight screen.

2. The application displays the data and insight of the current farm.

3. The insight categorizes data and insight to two periods, daily and

monthly.

4. The user can select the date for review.

5. The user can choose to export the specific date of parameter data to

csv file.
Sub-flows:

 N/A

Alternate/Exceptional Flows:

 N/A

54

4.4.12 Detect Anomalies

CHAPTER 5

Use Case Name: Detect

Anomalies

ID: UC13 Importance Level: High

Primary Actor: Anomaly

Detection Model

Use Case Type: Detail, Essential

Stakeholders and Interests: Anomaly Detection Model: Detect anomalies

Brief Description: This use case describes that a model able to identify

abnormal patterns or deviations from expected forms.

Trigger: When there are anomalies in the data collected

Relationships

 Association : Anomaly Detection Model

 Include : N/A

 Extend : Push Alert Notification

 Generalization: N/A

Normal Flow of Events:

1. The model retrieves the real-time sensor data.

2. The model analyses the data based on trained data.

3. The model identifies abnormal patterns or deviations from the

expected forms.

4. The application collected details of the anomaly detected.

5. The application can push alert notification to user.

S-1 Push Alert Notification flow performed.

Sub-flows:

 S-1 Push Alert Notification

1. The application check the alert notification settings is enable

2. The application push the alert notification.

3. Return to main flow step 1.
Alternate/Exceptional Flows:

 N/A

55

5 SYSTEM DESIGN

5.1 Introduction

This chapter provides an in-depth discussion of the system architecture design,

database design, and user interface design. The system architecture design

outlines the flow of the system process, including the frameworks and

connections used. The database design visualizes the structure of the database

and presents the data dictionaries. Finally, the user interface design introduces

each screen's design and its respective functionality.

5.2 System Architecture Design

The mobile application implements a client-server architecture that is divided

into three tiers: presentation tier, application tier, and database tier, representing

the frontend, backend, and database layers, respectively. Figure 5.1 visualizes

the system architecture of the entire system. This architecture ensures that each

layer is independent, thereby enhancing the maintainability and flexibility of the

system during implementation and development. Additionally, it improves the

system's reliability by implementing rules that limit user access to data based on

authority levels.

56

Figure 5.1 System Architecture Design

The presentation tier includes the mobile application, developed using the React

Native framework to simplify the development process. The mobile application

is responsible for displaying processed data to users and receiving user input.

Additionally, the hydroponic system functions as a client within the overall

system. To enable communication with the mobile application and data upload,

the hydroponic system sends HTTP requests to the server for data uploading

and other actions. Furthermore, Firebase Authentication is employed in the

presentation tier to handle user registration and sign-in processes, offering

comprehensive authentication services, including email verification and

password reset, thus reducing the development time for the user authentication

module.

57

 The application tier, acting as the middle layer, is responsible for

executing business logic, managing data access and processing, and performing

tasks such as triggering push notifications when certain conditions are met, as

well as scheduling notifications or reminders based on user settings. Node.js

was selected to provide the foundation for deploying functionalities and services

in the application tier due to its ease of deployment and flexibility. The app

server continuously operates to handle HTTP requests directed at the application

programming interface (API), which is customized using the Express.js

framework. The API processes requests, executes actions such as

communicating with the database to retrieve data, and finally returns data via

HTTP response. For the model server, the Flask framework was chosen to set

up the server for the anomaly detection machine learning model, as the model

relies on Python libraries such as NumPy, Pandas, and TensorFlow. To obtain

the anomaly detection results, the app server sends HTTP POST requests to the

model server with data retrieved from the database. This data is preprocessed

before being sent to the model for prediction and anomaly detection, with the

results returned via HTTP response.

 Moreover, Firebase Cloud Messaging is used to provide notification

services for the mobile application due to its efficient message delivery and

customization capabilities. The backend server pushes notifications when

certain conditions are met, such as user settings or scheduled reminders and

tasks. Additionally, the trained anomaly detection model can send request to

app-server to push notifications when an anomaly is detected. To ensure real-

time monitoring, the trained model constantly retrieves the latest data from the

database and identifies any potential anomalies.

 Lastly, the database tier is responsible for data storage and retrieval. This

tier includes the database management system (DBMS) that handles data

storage, retrieval, and modification. Firebase Cloud Firestore and Cloud Storage

are used to store all the data utilized by the system, including user data, farm

data, and images. These technologies were chosen because they offer NoSQL

database and cloud storage solutions, enabling flexible and scalable data storage

for the entire system.

58

5.3 Database Design

Before building the actual database, a database design process was conducted, which involved defining data elements, data relationships, and

normalizing data. This section visualizes the database design using an Entity Relationship Diagram (ERD) and a Data Dictionary, providing an

overview of the database structure for the mobile application.

5.3.1 Entity Relationship Diagram

An Entity Relationship Diagram (ERD) is a crucial tool for database design and development, as it visualizes the overall structure of the database

and validates the design against the system’s requirements. Figure 5.2 illustrates the ERD for the IoT-Integrated System for Monitoring Hydroponic

Farming. This ERD contains four entities: Users, Farms, Sectors, Plants, Devices, Anomalies.

59

Figure 5.2 Entity Relationship Diagram

60

5.3.2 Data Dictionary

Table 5.1 Description of Database Tables

Table Name Description

Users Contains user’s data required for performed certain action

Farms Contains farm information, one user can have multiple farms.

Sectors Contains sector information, one farm can have multiple sectors.

Plants Contains plant information, one sector can have multiple plants.

Devices Contains device information, one device only can have one sector.

Anomalies Contains anomaly information, one sector can have zero to many anomalies.

Table 5.2 Users Entity Data Dictionary

Fields Field’s Description Type Example

userId [PK] Unique identifier for the

user.

String VWYk4xnl1UZTx6R4HgMWdP5To4j1

farmList Array of references

(document IDs) to

documents within the

String aJ59zZKqjt8zm0JC2Hq3

61

Farms collection, indicating

farms the user is associated

with.

messageToken Token used for sending

push notifications to the

user's device.

String cZ30dQrFRm6q3pXktOkjsv:APA91bH1gZ4OjWj7

notificationList Array of objects containing

notification details.

String This is your daily reminder for you to check on your farm.

2024-07-10

1720586167113

12:36:06

Daily Reminder

normal

notificationSettings Array of user preferences

for different notification

categories.

Boolean true

true

true

62

Table 5.3 Farms Entity Data Dictionary

Fields Field’s Description Type Example

farmId [PK] Unique identifier for the farm. String aJ59zZKqjt8zm0JC2Hq3

createdAt Date and time the farm was created. Timestamp 2024-07-11T13:44:08.497Z

location Location details of the farm. String test location

name Name of the farm. String test

sectorList Array of references (document IDs) to documents within the

Sectors collection, representing sectors belonging to the farm.

String DzTAF5V1yxGSdVT9UfAO

Table 5.4 Sectors Entity Data Dictionary

Fields Field’s Description Type Example

sectorId [PK] Unique identifier for the sector. String DzTAF5V1yxGSdVT9UfAO

createdAt Date and time the sector was created. Timestamp 2024-07-11T13:44:08.497Z

latestData Object containing the latest value of the multiple parameter

objects

String surroundingTemperature

-timestamp: 2024-07-29T21:06:20

-value: 31.3

63

plantList Array of references (document IDs) to documents within

the Plants collection, representing plant belonging to the

sector.

String zntrE8qKcmEY8UC2kHKV

parameterSettings Object containing the upper and lower ranges of the

multiple parameter objects

Number surroundingTemperature

20

40

anomalyList Array of anomaly document IDs to documents within the

anomaly collection, referring the anomaly detected in the

sector

String 2UMLVlf2LlmEMOCqZHii

triggerSettings Object containing the multiple IoT device trigger name and

values

Boolean foggerTrigger: false

Table 5.5 Plants Entity Data Dictionary

Fields Field’s Description Type Example

plantId [PK] Unique identifier for the plant. String OyWjQu67vnTzH4fQ1waO

imageUrl Reference (URL) to the

plant's image stored in

Firebase Storage.

String https://storage.googleapis.com/test-aeba2.appspot.com/sectors/

64

importantDates Array of objects containing

dates and notes for the plant.

String 2024-07-07

Leaf Check

lastUpdate Date and time the plant

document was last updated.

Timestamp 2024-07-11T13:44:08.497Z

name Name of the plant. String lettuce

records Array of objects containing

dates, observation, and

measurements.

String 2024-07-11T13:44:08.497Z

Leaf in healthy state

3cm

sectorId Reference (document ID) to a

document within the Sectors

collection.

String DzTAF5V1yxGSdVT9UfAO

status Current state of the plant String healthy

Table 5.6 Devices Entity Data Dictionary

Fields Field’s Description Type Example

deviceId [PK] Unique identifier for the device. String YVsE3C3e4pwfLs8Rh7PM

createdAt Date and time the device was created. String 2024-07-28T00:54:07

deviceName Name of the device String abc

65

deviceLocation Location of the device String abc location

linkSector The linked sector ID String rXHbTROjARlvr2DCubny

linkUser The linked user ID String jNpmgDej52T9D758EoZyS0HF4Yl2

Table 5.7 Anomalies Entity Data Dictionary

Fields Field’s Description Type Example

anomalyId [PK] Unique identifier for the anomaly. String 2UMLVlf2LlmEMOCqZHii

createdAt Date and time the anomaly was detected. String 2024-07-28T00:54:07

anomalySummary Object containing detected status and anomaly score String Detected: true

Anomaly_score: 10.01

sectorId The anomaly detected at this sector String rXHbTROjARlvr2DCubny

66

5.4 User Interface Design

User interface (UI) design visually represents the mobile application's features

and layout, ensuring that user requirements and expectations are met.

5.4.1 User Authentication Pages

The user authentication module comprises three screens: the login screen, the

registration screen, and the forgot password screen. Figure 5.3 displays the UI

design of the user authentication module. Users are required to enter a valid

email address and password to sign in to the application. During registration,

users must correctly input their email and password. The system verifies

whether the email has already been registered. After verification, a confirmation

email is sent to the user’s email address. If a user forgets their password, they

can submit their registered email address, and a password reset link will be sent

to that address.

Figure 5.3 Login, Register and Forgot Password Screen

67

5.4.2 Monitor Panel Pages

Figure 5.4 presents the monitor panel screen of the application. An icon in the

upper right corner allows users to navigate to the user profile screen. The

monitor panel displays the current farm name along with related sector

parameters and events. Users can switch between parameters and tasks by

clicking on the upper tab bar, with parameters grouped by sector. On the right

side of the screen title, icons provide features such as editing farms and sectors.

The bottom navigation bar includes five modules: Monitor Panel, Control Panel,

Data and Insight, Plant, and Notification.

Figure 5.4 Monitor Panel Screen

Figure 5.5 illustrates the edit farms screen with its functions. Users can

add or delete farms using the plus and edit icons located in the upper right corner

of the screen. To add a farm, users must enter the farm name and location.

68

Figure 5.5 Edit Farm Screen

Figure 5.6 depicts the edit sector screen with its functions. Similar to

farm management, users can add or delete sectors using the icons in the upper

right corner. To add a sector, users need to enter the device information obtained

after registering the device on the hydroponic farm system.

Figure 5.6 Edit Sector Screen

69

5.4.3 Control Panel Screen

Figure 5.7 shows the control panel screen of the application. This screen

displays all the sector parameter settings associated with a farm. By clicking the

edit icon next to each parameter, a modal window opens, allowing users to edit

the parameter settings. Below the parameter settings, users can manually turn

IoT devices, such as pumps for pH and TDS control, on or off using the trigger

actions.

Figure 5.7 Control Panel Screen

5.4.4 Data and Insight Screen

Figure 5.8 presents the data and insight screen of the application. It displays

parameter trends and detected anomalies based on the selected sector and

timeframe, including daily and monthly data. Users can switch between

parameters to update the trend graph accordingly. The trend graph displays

actual data points, predicted data points, and anomaly points. Detected

anomalies are detailed with the detection time, threshold, and the discrepancy

between predicted and actual values, allowing users to analyse abnormal events

thoroughly. Additionally, users can export all parameter data for a specific date

by clicking the download button.

70

Figure 5.8 Data and Insight Screen

5.4.5 Plant Management Pages

Figure 5.9 shows the Plant Screen, Add Plant Screen, and Plant Detail Screen.

The Plant Screen lists all plants within the sectors that have been added. Users

can navigate to the Add Plant Screen by clicking the plus icon at the bottom

right of the screen. To view plant details, users simply click on the respective

plant item. The Plant Detail Screen displays the plant's status, observation

records, and tasks to be performed. Users can add new records and tasks by

clicking the respective buttons. The edit and delete icons in the upper right

corner allow users to modify or remove plant details.

71

Figure 5.9 Plant Screen, Add Plant Screen, and Plant Detail Screen

Figure 5.10 shows the modals for adding observation records and tasks,

as well as the edit plant detail screen, which appears after clicking the edit icon.

Tasks can only be deleted, while observation records can be both edited and

deleted. Users can also edit the plant's image and status. After editing, users

must click the save button in the upper right corner to save changes; otherwise,

modifications will not be saved.

Figure 5.10 Add observations and tasks, and Edit Plant Detail Screen

72

5.4.6 Notification Screen

Figure 5.11 shows the notification screen of the application. This screen lists all

notifications sent to the user. Users can delete notifications by clicking the top-

right edit icon and selecting the notifications they wish to remove. A modal will

appear showing the notification details when a user clicks on a notification.

Figure 5.11 Notification Screen

5.4.7 User Profile Pages

Figure 5.12 shows the user profile page of the application, which lists four

options: change email, change password, notification settings, and logout.

73

Figure 5.12 User Profile Screen

Figure 5.13 displays the screens for each of these options: change email,

change password, and notification settings. To change their email, users must

enter the new email address. To change their password, users must enter both

their old and new passwords to ensure account security. Both actions will log

the user out, requiring them to sign in again with their new credentials. The

notification settings screen lists options for push notifications, including task

reminders, daily reminders, and anomaly alerts. Users must save their updated

settings before returning to the user profile.

74

Figure 5.13 User Screen with Edit User Credentials Function

75

CHAPTER 6

6 IMPLEMENTATION

6.1 Introduction

This chapter discusses the implementation of the frontend, backend, and model

training components of the Hydroponic Farm Monitoring Application. The

frontend implementation covers the development of user interfaces and the

setup of Firebase Authentication. The backend implementation focuses on

configuring the application programming interface (API) and deploying the

machine learning model. The model training section outlines the steps involved

in training the machine learning model.

6.2 Frontend Implementation

The project utilizes the React Native framework as the foundation for mobile

application development. The initial setup involves initiating the React Native

framework using the command npx react-native init HydroponicApp, which

downloads the necessary libraries, packages, and configuration files, including

default directories and environment settings.

6.2.1 Firebase Authentication

Firebase Authentication is integrated into the project to manage user

authentication and account management. The setup involves registering the

application with Firebase and downloading the necessary configuration file,

google-services.json. This file includes critical credentials such as the API key,

project ID, and application ID, which are required for communication between

the application and Firebase. Once the Firebase project is connected, the

Firebase Authentication module is integrated into the application, including the

setup of email/password sign-in methods as shown in Figure 6.1.

76

Figure 6.1 Firebase Authentication Providers

 The application implements several authentication features. Users can

register for a new account by completing a registration form, which captures the

user's email and password. After validation, a new user account is created via

Firebase Authentication, and a user document is generated to store additional

information such as farm lists and notification settings. The login functionality

allows users to sign in using their registered email and password. In case users

forget their password, the application provides a password reset option, sending

a reset link to the registered email. The user interface (UI) for login, registration,

and password reset is built using react-native-paper, as referenced in Figure 5.3

of Chapter 5. Forms are managed using Formik, with schema validation

provided by Yup to ensure accurate and complete data input.

6.2.2 Monitor Panel

The application is designed to monitor real-time data from sensors in the

hydroponic system. The react-native-tab-view is used to display tabs for

parameters and tasks, each associated with different sectors, as shown in Figure

5.4. Users can easily switch between sectors and view associated data by

selecting the relevant tab. Data retrieval from the server is handled via API calls,

and the retrieved sector info is stored locally using AsyncStorage to enhance

performance and reduce unnecessary API calls.

77

 The monitor panel also includes pages for managing farm and sector lists.

Users can view, delete, and add farms or sectors using an intuitive UI built with

react-native-paper. Adding a farm requires inputting the farm name and location,

while adding a sector involves registering the device ID associated with the

hydroponic system. Each device can be linked to only one sector, ensuring data

synchronization with sensor readings.

6.2.3 User Profile

The application allows users to update account credentials and configure

notification settings, as shown in Figure 5.12. Users can change their email

address or password through the user profile. When updating the email address,

the application sends an API request to the server with the new email. After the

update, the user is signed out and must verify the new email address before

signing in again. Similarly, password changes require re-authentication using

the old password. The EmailAuthProvider from react-native-firebase/auth is

used to validate the old password before applying the new one. Users can also

modify their notification preferences, which are saved to the database via API

calls.

6.2.4 Control Panel

The control panel allows users to adjust parameter ranges for the hydroponic

system remotely. Settings such as temperature and humidity ranges can be

updated through the application, with data stored in the database and retrieved

via API. Users can also manually trigger IoT devices, such as pumps, to adjust

pH and TDS levels. The hydroponic system retrieves these trigger settings from

the server and updates its status, accordingly, providing users with flexibility in

managing their systems.

78

6.2.5 Data and Insight

The application includes a Data and Insight screen for reviewing historical data,

anomaly data, and statistical insights. Users can select parameters and time

intervals (daily and monthly) to view trends in line charts, with data displayed

in different colors for easy differentiation. The react-native-pickers and react-

native-chart-kit libraries are used to create an interactive data display.

Anomalies are highlighted in red on the chart, and detailed information is

provided below the chart. Users can also export data by clicking the download

button.

6.2.6 Plant Management

The application supports plant management, allowing users to add, edit, and

track plant details. Users can upload images and record observations using the

react-native-image-picker library. Plant data is managed through an API, with

updates reflected in the plant list. Event listeners are used to ensure real-time

updates without memory leaks.

Handling date displays in Firebase Firestore required converting

timestamps to JavaScript Date objects. The format function from the date-fns

library is used to format dates, while convertToMYT adjusts for time zones.

6.2.7 Notification

The application integrates Firebase Cloud Messaging (FCM) to handle

notifications, ensuring users receive timely updates. The application checks for

remote messaging registration on startup and manages the messaging token

using setMessagingToken. Notifications are handled based on the app's state,

with different handling for background and foreground notifications.

Notifications are saved in the database and displayed in the notification screen,

where users can view details or delete them. The app server manages

notification sending, as detailed in Section 6.3.1.

79

6.3 Backend Implementation

The backend is implemented using Node.js and Express.js for the application

server, and Flask for the model server. Initial setup involves configuring the

necessary dependencies and environments for both Node.js and Flask.

6.3.1 Application Server

The application server integrates Firebase for database operations, storage, and

Firebase Admin SDK. Firebase Firestore handles data management, while

Firebase Storage stores files, and Firebase Admin handles administration action

such as email changing and notification sending. The server uses Express.js for

routing and node-cron for scheduling tasks. A daily cron job is configured to

send notifications based on user settings and plant tasks.

To enable anomaly detection, the server requires a minimum of 100 data

points before executing predictions. Data is sent to the model server for analysis,

and the results are used to update the application with anomaly alerts and

prediction data.

6.3.2 Model Server

The model server processes data received from the application server using a

saved machine learning model for anomaly detection. The server uses libraries

such as NumPy, scikit-learn, and TensorFlow for data processing and model

inference. This server consists of two API endpoint to perform functionality

using the saved model’s architecture definition which are the anomaly detection

and trigger action prediction. Anomaly detection performed by comparing

adaptive threshold with the losses calculated during the prediction process. The

server returns anomaly detection results and predicted values to the application

server, which then updates the user interface. While the trigger action prediction

will check the current trigger status and compare with the predicted trigger

status then return the trigger status back to the application server.

80

6.3.3 API Functions

The server provides multiple API services, including routes for managing user data, farms, sectors, plants, and notifications. The server also handles

multipart form data using multer and processes image uploads for plant management.

Table 6.1 API List of Multiple Backend Services

Service: Plant Default service endpoint: /plant

Endpoint HTTP

method

Body / Query Description

/getplants GET {sectorId} Retrieve list of plants associated with the

sector

/addplant/{sectorId} POST {name, status}, file Add a new plant to a sector

/plant/{plantId} GET - Fetch and return detail of a specific plant

/deleteplant DELETE {plantId, sectorId} Delete a plant from database

/updateplant/{plantId} PUT {status, imageUrl, records, importantDates} Update detail of existing plant

/plant/{plantId}/records POST {observation, measurement} Add a new record (observation and

measurement)

/plant/{plantId}/importantDates POST {date, note} Add a task with a date to the specific plant

81

Service: User Default service endpoint: /user

Endpoint HTTP

method

Body / Query Description

/register POST {userId, farmList, messageToken} Register a new user

/updateEmail POST {uid, newEmail} Update user email address

/getUser GET {userId} Retreive and return user data from database

/updateUserSettings POST {userId, notificationSettings} Update user’s notification settings

/checkToken POST {userId, messageToken} Check messageToken is changed or not

/checkEmail POST {email} Check user exists or not, based on email

Service: Farm Default service endpoint: /farm

Endpoint HTTP

method

Body / Query Description

/getfarm/{userId} GET - Retreive and return list of farms associated

with the user

/addfarm POST {userId, name, location, createdAt} Add a new farm to database

/deletefarm/{farmId}

DELETE {userId} Delete the specific farm from database

82

Service: Sector Default service endpoint: /sector

Endpoint HTTP

method

Body / Query Description

/getLatestData/{sectorId} GET - Retrieve and return latest data for a specific

sector

/getSector/{farmId} GET - Retrieve and return list of sectors for a

specific farm

/addSector POST {farmId, deviceId, userId} Add a new sector to specific farm

/updateData POST {userId, sectorId, parameters} Update parameter data for specific sector

/updateParameterSettings POST {sectorId, parameterSettings} Update the parameter settings for the sector

/getStatus/{sectorId} GET - Fetch and return status of specific sector

/getParameterSettings/{sectorId} GET - Retrieve and return parameter settings of

specific sector

/getParameterData POST {sectorId, selectedInterval} Fetch and return parameter data for specific

sector based on selected interval

/getAnomaliesData POST {sectorId, selectedInterval} Retrieve and return anomaly data for specific

sector

/deleteSector DELETE {farmId, sectorId} Delete a specific sector from given farm

83

/getTriggerSettings/{sectorId} GET - Retrieves the trigger settings for a specific

sector

/updateTriggerSettings POST {sectorId, triggerSettings} Updates the trigger settings for a specific

sector

/triggerResult/{userId} POST {triggerType, status, detail} Records the result of a trigger execution and

send a notification

/getDataForExport POST {sectorId, year, month, day} Fetches and returns the specific sector

parameter data for a specific day from the

Firestore database.

Service: Message Default service endpoint: /message

Endpoint HTTP

method

Body / Query Description

/getNotification GET {userId} Retrieve and return list of notifications for

specific user

/deleteNotification DELETE {userId, notificationIds} Delete specific notification based on array of

notification ID

/checkAndSaveNotifications POST {userId} Check condition and save new notification

for specific user

84

/sendAlert POST {userId, sectorId} Check alert condition for specific sector and

user, and save related notification

Service: Device Default service endpoint: /device

Endpoint HTTP

method

Body / Query Description

/register POST {deviceName, deviceLocation} Register a new device

/getDevice/{deviceId} GET - Retrieve and return information for specific

device

Service: Model (model-server) Default service endpoint: /

Endpoint HTTP

method

Body / Query Description

/receive-data POST {latestData} Processes and analyses incoming sensor data

for anomalies, returning anomaly summaries

and predictions with actual values.

/predict-trigger POST {latestData} Predicts and checks trigger conditions based

on real-time data and predefined thresholds.

85

6.4 Model Training

In this section, we detail the training process of the Long Short-Term Memory

(LSTM) model, implemented in Google Collab, for identifying abnormal

patterns or deviations within the data collected from the hydroponic farming

system. The model is trained on historical sensor data collected from a

hydroponic system, with preprocessing steps including data cleaning and

scaling.

6.4.1 Data Preparation

Data preparation is a crucial step in effectively training a machine learning

model, particularly for time series anomaly detection. This project employed the

Pandas, NumPy, and Scikit-learn libraries to manage data manipulation,

cleaning, numerical operations, array handling, and feature scaling.

Initially, the dataset was loaded into a Pandas DataFrame (df) from a

Comma Separated Value (CSV) file using the read_csv() function, ensuring the

parse_dates parameter was set to interpret the "Time" column as a datetime

object. Data cleaning was then performed using the dropna() function to remove

rows with missing (NaN) values. Non-numeric columns were converted to

numeric types, with errors coerced to NaN, except for the "Time" column. The

"Time" column was subsequently set as the index of the DataFrame, and specific

columns required for analysis were selected, as listed in Table 3.6.

To prepare the data for the LSTM model, the features were standardized

using StandardScaler, which normalizes the data. This step ensures that all

features are on the same scale, improving the model’s performance. A sequence

of length 10 was then created from the scaled data, allowing the model to learn

patterns over multiple time steps. The create_sequences() function generated

overlapping sequences, converting them into an array with the shape

(num_sequences, seq_length, num_features).

86

6.4.2 Model Definition

The LSTM model was defined and trained using the build_and_train_lstm()

function, which leverages the TensorFlow/Keras library. This library was

chosen for its high-level API that simplifies the process of defining neural

networks, training models, and evaluating performance. Additionally, NumPy

was used for numerical operations and array handling, particularly for sequence

creation and data splitting.

The data was split into training and validation sets, with 80% of the

sequences allocated for training and the remaining 20% for validation. The

training and validation datasets (X_train, y_train, X_val, y_val) were prepared

by splitting each sequence into features and target values. The model was

constructed using the Sequential API, which is ideal for models where each

layer has a single input and output tensor.

The model architecture includes two LSTM layers, as detailed in Table

6.2. The Rectified Linear Unit (ReLU) activation function was employed in both

LSTM layers. The first LSTM layer returned the full sequence of outputs, while

the second returned only the output of the last time step. The input shape was

defined for the first LSTM layer which include the timesteps (10 data point)

with input_dim, the 13 features of the data then inferred for the second. A

Dropout layer with a 0.2 rate and a Dense layer with regularization were

included to prevent overfitting.

Table 6.2 LSTM Layer configuration

Units Activation

function

Return Sequence Input Shape

64 ReLu True (timesteps,

input_dim)

32 ReLu False (timesteps,

input_dim)

87

After defining the architecture, the model was compiled using the Adam

optimizer with a learning rate of 1e-3, which adjusts the model’s weights during

training by minimizing the loss function. The loss function, along with metrics

such as Mean Squared Error (MSE) and Mean Absolute Error (MAE), was used

to evaluate the model’s performance.

6.4.3 Training Loop

The training process, encapsulated in the build_and_train_lstm() function,

began by defining the EarlyStopping callback from TensorFlow/Keras. This

callback monitored the validation loss (val_loss) during training and halted the

process if no improvement was observed over 10 consecutive epochs (patience

parameter set to 10). The restore_best_weights parameter was set to true,

ensuring the model reverted to the best-performing state based on validation

loss.

The model was trained using the model.fit() function, with X_train and

y_train serving as the training data. The training was initially set for 200 epochs,

although it could terminate earlier if the EarlyStopping callback was triggered.

Validation data (X_val, y_val) was provided to evaluate the model’s

performance after each epoch, offering insights into its generalization

capabilities. The verbose parameter was set to 1 to display a progress bar and

relevant metrics during each epoch. Upon completing the training at epoch 182,

the model was saved in HDF5 format (model.h5) for deployment, as mentioned

in Section 6.3.2. Figure 6.2 illustrates the training loop results.

Figure 6.2 Model Training Result

88

6.4.4 Model Evaluation

To assess the trained LSTM model's performance, we conducted an evaluation

using a separate test dataset from the hydroponic farm system. This evaluation

step was critical in determining the model’s ability to generalize to unseen data

and its reliability in predicting real-world scenarios.

The test dataset underwent similar preprocessing steps, including data

scaling and sequencing, as applied during the training phase. The

model.evaluate() function was utilized to compute the test loss, MSE, and MAE,

which reflect the model’s prediction accuracy compared to the actual target

values. The evaluation was conducted using X_test_seq (feature sequences) and

y_test_seq (true target values). The results of the model evaluation are presented

in Figure 6.3.

Figure 6.3 Model Evaluation Result

6.5 Summary

Chapter 6 detailed the comprehensive implementation process of the

Hydroponic Farm Monitoring Application, covering the frontend, backend, and

model training components. The frontend implementation involved building

the user interface with React Native, integrating Firebase for user authentication,

and creating intuitive modules for monitoring and managing farm data. Key

features included real-time data display, user profile management, and control

panels for adjusting system parameters.

The backend was developed using Node.js and Express.js, with a focus

on establishing robust APIs for data handling, CRUD operations, and machine

learning model deployment. Firebase was integrated to manage database

operations, file storage, and user notifications. The backend also facilitated

anomaly detection and system control by interfacing with the machine learning

model server.

89

The model training process was conducted using Google Collab, where

an LSTM model was trained on historical sensor data to identify anomalies in

the hydroponic system. The training involved data preprocessing, model

definition, and evaluation, ensuring the model could accurately detect

deviations and predict system behaviour.

This chapter demonstrates the successful integration of these

components into a cohesive system that enhances the management of

hydroponic farms. Future improvements could focus on optimizing algorithms,

enhancing data handling, and refining the integration between various system

components to further improve performance and user experience.

90

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

This chapter outlines the testing activities conducted during the project

development. It includes the test plan, and the results of various tests performed,

including unit tests for the mobile application, API tests, and integration tests.

The testing was designed to ensure that the system meets the requirements and

functions reliably under different conditions.

7.2 Test Plan

7.2.1 Objectives

The objective of the test plan is to ensure that the application meets the

requirements specified in Chapter 4.2, and to validate its performance and

stability across different test scenarios, including application functional unit

tests, API unit tests, and integration tests. The goal is to identify and resolve

defects discovered during testing and to confirm that the application complies

with the requirements specifications.

7.2.2 Test Scope

The test scope for this project includes the mobile application, app-server, and

model-server. Testing for both frontend and backend was conducted in separate

testing environments due to the different frameworks used during development.

Additionally, performance testing was conducted to evaluate the mobile

application's ability to efficiently monitor and control the hydroponic system

remotely, as specified in the requirements. The following test activities were

performed for this project:

- Unit testing of the mobile application

- Unit testing of the API

- Performance testing

91

7.2.3 Test Basis

The following sections from the report served as the basis for designing the test

plan:

• Chapter 4.2 Requirements Specification

• Chapter 4.3 and 4.4 Use Case Diagram and Description

• Chapter 6.3.3 API Functions

7.2.4 Test Items

Table 7.1 lists the functional services of the system that were planned for testing.

Table 7.1 Functional Services to be tested

Mobile Application

Functional Service Description

Authentication Component The main validation of this

component is to test the Firebase

Authentication that integrated with

application able to login, register,

send verification email, send

password reset email, change email,

and change password

Monitor Component The main validation of this

component is to test out the

availability to send HTTP requests to

the server and retrieve the data.

Control Component The main validation of this

component is to test out the

availability to send HTTP requests to

server for retrieving the data and

updating the data

Plant Management Component The main validation of this

component is to test the create and

update of the plant management able

to operate correctly

92

Data Insight Component The main validation of this

component is to test the availability

of data able to be displayed in

multiple formats correctly.

Notification Component The main validation of this

component is to test the operation of

retrieval and delete functions

App-Server

Functional Service Description

API Component The main validation of this

component is to ensure the API can

effectively process the HTTP request

and response to the request.

Cron Component The main validation of this

component is to ensure the services

able to perform the action on the

correct period

Model-Server

Functional Service Description

API Component The main validation of this

component is to ensure the API can

effectively process the HTTP request

and response to the request.

7.2.5 Test Strategy

The table 7.2 shown the overview of the test strategy used for this project.

Table 7.2 Testing Levels, Types and Tools

Testing Levels Testing Types Tools

Unit Test Functional Testing Android Emulator

API Test Functional Testing Postman

Performance Test Performance Testing Firebase Performance

Monitoring

93

7.2.6 Test Criteria

Entry Criteria

The test can begin when the entry criteria listed are met.

- All features to be tested were completed and functionable.

- The testing tools and devices have been setup in the test

environment.

- The test data are prepared for the API unit test

Exit Criteria

- All test case performed and successfully passed

- All defects found during the test phase are fix and solved

- No critical issue remaining

7.3 Functionality Test

Functionality test is one of the software testing processes which involves

independent testing on function or components of a software system. The reason

to perform functionality test is to validate that the function able to perform as

same as the requirement specified and ensuring the unit of code are working

correctly before integrates to whole system. The functionality test also able to

enhance the documentation and maintainability for the software system as it

describes the expected process and result of the specific functionality.

94

7.3.1 Mobile Application Functionality Test

This project performed the following functionality tests by manually inserting the values, clicking on the buttons, and performing any steps that

stated in the test case on the emulator. A total of fourteen functionality tests are performed on the emulator by following the test steps with test

data. The test status is recorded for every unit test after the expected result achieved. The test cases are recorded from Table 7.3 to Table 7.16.

Table 7.3 Test Case MA-1 User registration

Test Case ID MA-1 Test Case Name User Registration Component Authentication

Test Case

Description

To validate that the user able to register a new account

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Register an account

with a valid email,

password and confirm

password

1. Click register

button

- Verification Email

sent

Verification Email

sent

Pass

2. Enter email test@gmail.com

3. Enter password 123456789

4. Enter confirm

password

123456789

95

5. Click register

button

-

Table 7.4 Test Case MA-2 User Login

Test Case ID MA-2 Test Case Name User Login Component Authentication

Test Case

Description

To validate that the user able to login to their account

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Login account with

valid email, and

password

1. Enter email test@gmail.com Navigate to Add Farm

Screen

Navigate to Add Farm

Screen

Pass

2. Enter password 123456789

3. Click on login

button

-

Login account with

invalid email, and

password

1. Enter email Test1@gmail.com Error message prompt Error message prompt Pass

2. Enter password 123

3. Click on login

button

-

Forgot Password 1. Click forgot

password button

- Password reset email

sent

Password reset email

sent

Pass

96

2. Enter email test@gmail.com

3. Click send reset

email

-

Table 7.5 Test Case MA-3 Change Email

Test Case ID MA-3 Test Case Name Change Email Component Authentication

Test Case

Description

To validate that the user able to change the email

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Change to new email

address

1. Click change email

button

- HTTP request sent,

Success Message

Prompt and

Verification Email

sent

HTTP request sent,

Success Message

Prompt and

Verification Email

sent

Pass

2. Enter new email test2@gmail.com

5. Click confirm

button

-

Change to invalid

email

1. Click change email

button

- Failed Message

Prompt

Failed Message

Prompt

Pass

2. Enter invalid email test2@gmail

97

5. Click confirm

button

-

Table 7.6 Test Case MA-4 Change Password

Test Case ID MA-4 Test Case Name Change Password Component Authentication

Test Case

Description

To validate that the user able to change the password

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Change to new

password

1. Click change

password button

- Success Message

Prompt and logout the

user

Success Message

Prompt and logout the

user

Pass

2. Enter old password 123456789

3. Enter new password abc123456

4. Click confirm button -

Use invalid old

password to change

new password

1. Click change

password button

- Failed Message

Prompt

Failed Message

Prompt

Pass

2. Enter invalid old

password

19191919

3. Enter new password abc123456

98

4. Click confirm button -

Table 7.7 Test Case MA-5 Retrieve farm and sector data

Test Case ID MA-5 Test Case Name Retrieve farm and

sector data

Component Monitor

Test Case

Description

To validate that the application able to retrieve farm and sector data

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Retrieve latest

parameter data

1. Click on reload button - HTTP request sent,

Parameters data

display

HTTP request sent,

Parameters data

display

Pass

Retrieve sector tasks

to do

1. Click on tasks tab - HTTP request sent,

Tasks data display

HTTP request sent,

Tasks data display

Pass

Retrieve user farm list 1. Click on edit farm

option

- HTTP request sent,

Farm list display

HTTP request sent,

Farm list display

Pass

Retrieve user sector

list

1. Click on edit sector

option

- HTTP request sent,

Sector list display

HTTP request sent,

Sector list display

Pass

99

Table 7.8 Test Case MA-6 Update Sector Settings

Test Case ID MA-6 Test Case Name Update Sector

Settings

Component Control

Test Case

Description

To validate that the user able to update sector’s parameter and trigger settings

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Update Parameter

Setting

1. Click on edit button

for light intensity

- HTTP request sent;

the parameter lower

boundary updated

HTTP request sent;

the parameter lower

boundary updated

Pass

2. Edit Lower Boundary 150

3. Click save button -

Switch on trigger

Setting

1. Switch on the High pH

Trigger

- HTTP request sent HTTP request sent Pass

Switch off trigger

Setting

1. Switch off the High

pH Trigger

- HTTP request sent HTTP request sent Pass

100

Table 7.9 Test Case MA-7 Add Plant

Test Case ID MA-7 Test Case Name Add Plant Component Plant Management

Test Case

Description

To validate that the user able to add new plant to sector

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Add Plant with valid

input

1. Click on add button - HTTP request sent;

Success message

prompt

HTTP request sent;

Success message

prompt

Pass

2. Click to add image Image of plant

3. Enter plant name Lettuce

4. Enter plant status Seed

5. Select sector to add Sector 1

6. Click on save button -

Add Plant with empty

field

1. Click on add button - Error message prompt Error message prompt Pass

2. Click to add image -

3. Enter plant name Lettuce

4. Enter plant status -

5. Select sector to add Sector 1

6. Click on save button -

101

Table 7.10 Test Case MA-8 Add Plant Record

Test Case ID MA-8 Test Case Name Add Plant Record Component Plant Management

Test Case

Description

To validate that the user able to add new record for a plant

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Add Record with

valid input

1. Click on add record

button

- HTTP request sent;

record updated

HTTP request sent;

record updated

Pass

2. Enter observation test

3. Enter measurement 0.5

4. Click on save button -

Add Record with

empty field

1. Click on add record

button

- Invalid input message

prompt

Invalid input message

prompt

Pass

2. Enter observation -

3. Enter measurement 1

4. Click on save button -

102

Table 7.11 Test Case MA-9 Add Plant Task

Test Case ID MA-9 Test Case Name Add Plant Task Component Plant Management

Test Case

Description

To validate that the user able to add new task for a plant

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Add Task with valid

input

1. Click on add task

button

- HTTP request sent;

task updated

HTTP request sent;

task updated

Pass

2. Enter date 2024-08-21

3. Enter task test

4. Click on save button -

Add Task with empty

field

1. Click on add task

button

- Invalid input message

prompt

Invalid input message

prompt

Pass

2. Enter date -

3. Enter task 1

4. Click on save button -

Add Task with invalid

date format

1. Click on add task

button

- Invalid date format

message prompt

Invalid date format

message prompt

Pass

2. Enter date 20240821

103

3. Enter task Test

4. Click on save button -

Table 7.12 Test Case MA-10 Edit Plant Detail

Test Case ID MA-10 Test Case Name Edit Plant Detail Component Plant Management

Test Case

Description

To validate that the user able to edit plant detail

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Edit Plant Status 1. Click on edit button - HTTP request sent;

plant status updated

HTTP request sent;

plant status updated

Pass

2. Edit Plant Status Germination

3. Click on save button -

Edit Plant Image 1. Click on edit button - HTTP request sent;

plant image updated

HTTP request sent;

plant image updated

Pass

2. Select to change image New Image File

3. Click on save button -

104

Table 7.13 Test Case MA-11 Data Insight Display

Test Case ID MA-11 Test Case Name Data Insight Display Component Data Insight

Test Case

Description

To validate that the user able to view the data in daily and monthly format for selected sector

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Select daily data for

sector

1. Click on Daily option - HTTP request sent;

display one day

parameter and

anomaly data

HTTP request sent;

display one day

parameter and

anomaly data

Pass

Select monthly data

for sector

1. Click on Monthly

option

- HTTP request sent;

display one month

parameter and

anomaly data

HTTP request sent;

display one month

parameter and

anomaly data

Pass

105

Table 7.14 Test Case MA-12 Data Export

Test Case ID MA-12 Test Case Name Data Export Component Data Insight

Test Case

Description

To validate that the user able to export the selected date parameter data

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Export parameter for

sector

1. Click on download

button

- HTTP request sent;

Success message

prompt

HTTP request sent;

Success message

prompt

Pass

2. Select the date 20-8-2024

3. Click on confirm

button

-

106

Table 7.15 Test Case MA-13 Notification Retrieval

Test Case ID MA-13 Test Case Name Notification Retrieval Component Notification

Test Case

Description

To validate that the user able to refresh the notification

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Retrieve latest

notification

1. Click on refresh button - HTTP request sent;

notification list

updated

HTTP request sent;

notification list

updated

Pass

Table 7.16 Test Case MA-14 Notification Delete

Test Case ID MA-14 Test Case Name Notification Delete Component Notification

Test Case

Description

To validate that the user able to remove the notification

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Delete

notification

1. Click edit button - HTTP request sent;

notification list

updated

HTTP request sent;

notification list

updated

Pass

2. Select notification to delete -

3. Click on delete selected

notification button

-

107

7.3.2 App Server Functionality Test

For the app server functionality test, there are two component which are API and Cron component. Postman is used to test with the app-server API

component because it allows to send HTTP request without the client side. A total of thirteen unit and API tests are performed on the postman and

development server by following the test steps with test data. The test status is recorded for every unit test after the expected result achieved. The

test cases are recorded from Table 7.17 to Table 7.29.

Table 7.17 Test Case AS-1 Cron Job for Checking and Saving Notifications

Test Case ID AS-1 Test Case Name Cron Job for Checking and

Saving Notifications

Component Cron, API

Test Case

Description

To validate that the Cron job able to perform the daily notification sending

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Verify Cron Job

Scheduling

1. Start the app-server - Log: Cron Start Log: Cron start Pass

2. Set the system time to

23:59.

-

3. Check logs for

execution result

-

1. Select POST method - Pass

108

Verify

Notification

Check and Save

Process

2. Set test data to

request body

jNpmgDej52T9D7

58EoZyS0HF4Yl2

The notification created and

saved to database, then send

notification via Firebase Cloud

Messaging

The notification

created and saved to

database, then send

notification via

Firebase Cloud

Messaging

3. Send POST request -

Table 7.18 Test Case AS-2 Sector Status Update Cron Job

Test Case ID AS-2 Test Case Name Sector Status Update Cron Job Component Cron

Test Case

Description

To validate that the Cron job able to perform the sector status update

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Verify Cron Job

Scheduling

1. Start the app-server - Log: Sector Status Updated Log: Sector Status

Updated

Pass

2. Set the system time

to just before the next

hour

-

109

3. Wait for the system

time to reach the next

hour

-

4. Check logs for

execution result

-

Table 7.19 Test Case AS-3 User Registration

Test Case ID AS-3 Test Case Name User Registration Component API

Test Case

Description

To validate that the API able to register the user data to database

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Register with

valid data

1. Send POST Request

with valid request body

{

userId: abc123

farmList: []

messageToken: abc123

}

The user documents

created and saved the data

The user documents

created and saved the

data

Pass

110

Register with

empty data

2. Send POST Request

with empty request

body

{} Invalid request data Invalid request data Pass

Table 7.20 Test Case AS-4 Update Email

Test Case ID AS-4 Test Case Name Update Email Component API

Test Case

Description

To validate that the API able to update the user email

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Update email

with valid user

ID

1. Send POST Request

with valid request body

{

userId: abc123

newEmail:

abc@gmail.com

}

Status 200, Email

Updated Successfully

Status 200, Email

Updated Successfully

Pass

Update email

with empty data

2. Send POST Request

with empty request

body

{} Failed to update email Failed to update email Pass

111

Table 7.21 Test Case AS-5 Check and Update Message Token

Test Case ID AS-5 Test Case Name Check and Update

Message Token

Component API

Test Case

Description

To validate that the API able to check and update message token

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Check and

update message

token with valid

data

1. Send POST Request

with valid request body

{

userId: abc123

messageToken: abc123

}

Status 200, Token Check

Successfully

Status 200, Token

Check Successfully

Pass

Check and

update message

token with

empty data

2. Send POST Request

with empty request

body

{} No message token or user

ID found

No message token or

user ID found

Pass

112

Table 7.22 Test Case AS-6 Update Notification Settings

Test Case ID AS-6 Test Case Name Update Notification

Settings

Component API

Test Case

Description

To validate that the API able to update user’s notification settings

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Update

notification

settings with

valid data

1. Send POST Request

with valid request body

{

userId: abc123

notificationSettings:

true, true, true

}

Status 200, Notification

settings updated

successfully

Status 200, Notification

settings updated

successfully

Pass

Update

notification

settings with

empty data

2. Send POST Request

with empty request

body

{} Invalid request data

Invalid request data

Pass

113

Table 7.23 Test Case AS-7 Get Sector Latest Data

Test Case ID AS-7 Test Case Name Get Sector Latest Data Component API

Test Case

Description

To validate that the API able to get specific sector latest data

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Get sector latest

data with valid

data

1. Send GET Request

with valid request

params (sectorID)

tRm5N2mF8oqEF7jl1Xi4 latestData object

latestData object

Pass

Get sector latest

data with empty

data

2. Send GET Request

with empty request

params

{} Error

Error

Pass

Table 7.24 Test Case AS-8 Update Parameter Settings

Test Case ID AS-8 Test Case Name Update Parameter

Settings

Component API

Test Case

Description

To validate that the API able to update the sector’s parameter settings

Test Item Test Steps Test Data Expected Result Actual Result Test Status

114

Update

parameter

settings with

valid data

1. Send POST Request

with valid request body

{

sectorId: abc123,

parameterSettings

}

Status 200, Update

Successfully

Status 200, Update

Successfully

Pass

Update

parameter

settings with

empty data

2. Send POST Request

with empty request

body

{} Error updating

parameter data

Error updating

parameter data

Pass

Table 7.25 Test Case AS-9 Add Sector

Test Case ID AS-9 Test Case Name Add Sector Component API

Test Case

Description

To validate that the API able to add a new sector

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Add sector with

valid data

1. Send POST Request

with valid request body

{farmId; abc

deviceId: device

userId: abc123}

Status 200, return

sectorId

Status 200, return

sectorId

Pass

115

Add sector with

empty data

2. Send POST Request

with empty request

body

{} Farm ID, Device ID,

and User ID are

required!

Farm ID, Device ID,

and User ID are

required!

Pass

Table 7.26 Test Case AS-10 Update Parameter Data

Test Case ID AS-10 Test Case Name Update Parameter Data Component API

Test Case

Description

To validate that the API able to update the sector’s parameter data

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Update

parameter data

with valid data

1. Send POST Request

with valid request body

{userId: abc123,

sectorId: abc123,

parameters}

Status 200, Update

Successful

Status 200, Update

Successful

Pass

Update

parameter data

with empty data

2. Send POST Request

with empty request

body

{} Error updating

parameter data

Error updating

parameter data

Pass

116

Table 7.27 Test Case AS-11 Post Trigger Result

Test Case ID AS-11 Test Case Name Post Trigger Result Component API

Test Case

Description

To validate that the API able to post the trigger result to database

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Post the trigger

result with valid

data

1. Send POST Request

with valid request body

with params userID

{triggerType: highPh,

Status: success

Detail: ON

}

Status 200, Execution

result recorded

Status 200, Execution

result recorded

Pass

Post the trigger

result with

empty data

2. Send POST Request

with empty request

body and params

{} User not found User not found Pass

117

Table 7.28 Test Case AS-12 Register Device

Test Case ID AS-12 Test Case Name Register Device Component API

Test Case

Description

To validate that the API able to register device (hydroponic system) to database

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Register device

with valid data

1. Send POST Request

with valid request body

{deviceName: abc,

deviceLocation: Sg Long}

Status 200, return

device ID

Status 200, return

device ID

Pass

Register device

with empty data

2. Send POST Request

with empty request

body

{} Name and location are

required

Name and location are

required

Pass

118

Table 7.29 Test Case AS-13 Add Plant

Test Case ID AS-13 Test Case Name Add Plant Component API

Test Case

Description

To validate that the API able to add a new plant for a specific sector

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Add plant with

valid data

1. Send POST Request

with valid request body

and params (sectorId)

{name: lettuce,

seed}, Image file

Status 200, Plant added

successfully

Status 200, Plant

added successfully

Pass

Add plant with

empty data

2. Send POST Request

with empty request

body

{} Name, status, and image

are required.

Name, status, and image

are required.

Pass

119

7.3.3 Model Server Functionality Test

For the model server functionality test, there is only one component to test which is the API component. Postman is used to test with the model-

server API component because it allows to send HTTP request without the need of client side. Two API test are performed as recorded the actual

result with test status at Table 7.30 and Table 7.31.

Table 7.30 Test Case MS-1 Receive Data for Anomaly Detection

Test Case ID MS-1 Test Case Name Receive Data for

Anomaly Detection

Component API

Test Case

Description

To validate that the API able to return the anomaly detection result

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Anomaly

Detection with

valid data

1. Send POST Request

with valid request body

{latestData}

{summary, predictions,

actual_values}

{summary, predictions,

actual_values}

Pass

Anomaly

Detection with

empty data

2. Send POST Request

with empty request

body

{} "error": "No data

received"

"error": "No data

received"

Pass

120

Table 7.31 Test Case MS-2 Predict Trigger Status

Test Case ID MS-2 Test Case Name Predict Trigger Status Component API

Test Case

Description

To validate that the API able to return trigger status

Test Item Test Steps Test Data Expected Result Actual Result Test Status

Predict trigger

status with valid

data

1. Send POST Request

with valid request body

{latestData}

{predictions,

trigger_status}

{predictions,

trigger_status}

Pass

Predict trigger

status with

empty data

2. Send POST Request

with empty request

body

{} "error": "No data

received"

"error": "No data

received"

Pass

121

7.4 Performance Test

Performance testing is a critical aspect of mobile application testing, ensuring

that the application delivers a seamless and user-friendly experience. This

testing assesses the scalability, stability, and responsiveness of the application

under several scenarios. For this project, performance testing focused on

validating the application’s capability to monitor and control the hydroponic

system effectively. Firebase Performance Monitoring was used to perform real-

time performance testing, providing insights into application performance.

Testing was conducted using a physical smartphone model (HONOR 9X)

connected via Wi-Fi. The key areas of performance testing included:

• Response time

• App start time

• Response success rate

• Frozen frames percentage

7.4.1 Response Time

Response time is a crucial metric that measures the time elapsed between a

request or query being sent and the corresponding response being received.

Faster response times generally indicate better application performance and

higher user satisfaction. In this context, response time can be influenced by

factors such as network latency, server load, and software efficiency. Figure 7.1

shows the response time trend for the application server deployed on an Amazon

Web Services (AWS) instance with IP address 13.229.207.3.

122

Figure 7.1 19 Hours Response Time Trend from IP 13.229.207.3

As illustrated in Figure 7.1, the response time for IP address

13.229.207.3/** has significantly increased over the past 19 hours, rising from

approximately 2 seconds to around 4 seconds. The current response time of 3.72

seconds is 106% slower compared to the response time recorded 19 hours earlier.

7.4.2 App Start Time

App start time measures the duration it takes for an application to become fully

functional and ready for user interaction after launch. A faster app start time

enhances user experience by reducing waiting time. Factors affecting app start

time include code complexity, resource loading, and device performance. Figure

7.2 presents the app start time trend over a 19-hour period.

123

Figure 7.2 19 Hours App Start Time

As shown in Figure 7.2, the app start time has improved significantly

over the past 19 hours, decreasing from approximately 1.5 seconds to 195

milliseconds (ms), indicating a 90% improvement. The initially higher start time

might have been caused by temporary fluctuations in measurement accuracy or

timing.

7.4.3 Response Success Rate

The response success rate measures the percentage of successful outcomes or

attempts within a given context. This metric can be influenced by various factors,

including network connectivity, data transfer efficiency, and overall application

performance. A high success rate indicates that the application is reliable and

efficient. Figure 7.3 shows the response success rate for the application server

with IP 13.229.207.3 over the past 19 hours.

124

Figure 7.3 19 Hours Response Success Rate from IP 13.229.207.3

According to Figure 7.3, the response success rate for IP address

13.229.207.3/** has remained constant at 100% over the past 19 hours. This

suggests that there were no failures or errors in the system or network

connection associated with this IP address during the specified timeframe.

7.4.4 Frozen Frames Percentage

Frozen frames are a performance metric indicating instances where an

application’s user interface becomes unresponsive or freezes, potentially

degrading user experience. The testing included three instances: MainActivity

(the initial and main user interface), dashboardScreen (monitor panel), and

reportScreen (data and insight). Figures 7.4 to 7.6 show the results for

MainActivity, dashboardScreen, and reportScreen, respectively. All instances

reported a frozen frame percentage of 0% over the testing period, indicating that

the application did not experience any UI freezes, thereby suggesting stable and

reliable performance.

125

Figure 7.4 17 Hours Frozen Frame Percentage for MainActicity instance

Figure 7.5 18 Hours Frozen Frame Percentage for dashboardScreen instance

126

Figure 7.6 17 Hours Frozen Frame Percentage for reportScreen instance

7.5 Anomaly Detection Evaluation

For the evaluation of anomaly detection models, a dataset of 2 weeks for training

and a dataset of 4 weeks for testing are used to trained and identify the abnormal

pattern of the hydroponic farm environment. Since these models are trained

unsupervised, it is not possible to quantify accuracy and dependability with

conventional metrics such as Precision, Recall, or F1-Score because there is not

enough labeled data. Rather, the assessment concentrated on contrasting the

consistency of anomaly detection between various datasets and models. This

evaluation employed four different approaches: LSTM Autoencoder-Based,

LSTM Prediction-Based, LSTM with Isolation Forest, and LSTM with One-

Class Support Vector Machine (SVM). Every model utilized a distinct approach

to identify abnormalities and underwent testing to confirm its resilience and

ability to apply to previously unseen data.

127

The LSTM Prediction-Based approach identifies anomalies by

calculating the deviations between predicted values and actual observations.

The model has identified 6 anomalies on the 2-week training dataset, as

displayed in Figure 7.7. Similarly, the LSTM Autoencoder-Based approach

which relies on reconstruction errors to flag deviations also detected 6

anomalies using a threshold set at the 95th percentile of the mean squared error

(1.1559), as shown in Figure 7.8. The similarity of the two models results in

consistency on capturing deviations in short-term datasets thus suggesting that

both prediction and reconstruction methods can reliably identify key anomalies.

Figure 7.7 LSTM Prediction Based 2 Weeks Anomaly Detection Result

Figure 7.8 LSTM Autoencoder Based 2 Weeks Anomaly Detection Result

128

Moreover, LSTM Autoencoder was combined with Isolation Forest and

One-Class SVM to perform model comparison and resulting slightly higher

number of anomaliesᅳ 7 in totalᅳ were detected in the 2-week dataset or 12%

of the total data points, as depicted in Figure 7.9. This increase indicates that

combining reconstruction errors with clustering-based techniques may increase

sensitivity to subtle variations, potentially identifying more nuanced anomalies

that would be missed by simpler models or false positives.

Figure 7.9 Isolation Forest and One Class Support Vector Machine 2 Weeks

Anomaly Detection Result

Subsequently, a larger 4-week dataset was used to test the models'

scalability and dependability over an extended period of time. As seen in Figure

7.10, the LSTM Prediction-Based model has identified 14 anomalies,

suggesting that it retains its anomaly detection ability even when subjected to

longer data sequences. Furthermore, the LSTM Autoencoder-Based method

produced comparable outcomes, identifying 15 anomalies throughout the same

time frame (Figure 7.11), illustrating its stability performance on both long- and

short-term datasets.

129

Figure 7.10 LSTM Prediction Based 4 Weeks Anomaly Detection Result

Figure 7.11 LSTM Autoencoder Based 4 Weeks Anomaly Detection Result

130

As demonstrated in Figures 7.12 and 7.13, the LSTM Autoencoder with

Isolation Forest and One-Class SVM, on the other hand, demonstrates a notable

increase in detected anomalies observed. The One-Class SVM model detected

70 anomalies, and the Isolation Forest model identified 71 anomalies,

representing roughly 18% of the 4-week dataset. An increased detection

capability but also a larger rate of false positives could result from these hybrid

models' heightened sensitivity to deviations in reconstruction errors, as

suggested by the growing number of anomaly counts.

Figure 7.12 Isolation Forest 4 Weeks Anomaly Detection Result

131

Figure 7.13 One Class Support Vector Machine 4 Weeks Anomaly Detection

Result

Ultimately, even though the LSTM Prediction-Based and LSTM

Autoencoder-Based models performed consistently and dependably in both

short- and long-term assessments, the integration with One-Class SVM and

Isolation Forest led to an increased sensitivity to anomalies. This shows that

hybrid approaches like this might work better in situations when it's important

to capture every potential abnormality. One should consider the possible false

positive trade-off when applying these models in real-world scenarios. The

models' scalability and resilience are further demonstrated by the evaluation on

the larger dataset, which makes them the best options for ongoing monitoring in

hydroponic systems, where the timely identification of anomalies is essential to

preserving perfect environmental conditions.

132

7.6 Summary

In summary, the testing phase of this project thoroughly validated the system’s

functionality, performance, and reliability. Unit tests ensured that individual

components met their expected requirements, while API tests verified the

interactions between external systems and the application. Additionally,

performance tests evaluated the system’s responsiveness under load. Through

these tests, critical issues were identified and resolved, thereby enhancing the

system’s overall quality and ensuring it meets the specified requirements for

deployment. Moreover, evaluation on anomaly detection also have been

performed to ensuring the reliability of the anomaly detection result.

133

CHAPTER 8

8 CONCLUSION AND FUTURE IMPROVEMENT

8.1 Conclusion

An Android mobile application that addresses the challenges mentioned in

Chapter 1.3 has been developed successfully by this project. Firstly, the issue

faced by urban dwellers—lack of time to manage and monitor hydroponic

farms—has been effectively resolved. Additionally, the application has tackled

the challenges associated with the farming skills gap and the implementation of

technology in hydroponic farm monitoring. By leveraging a trained AI model,

the application automates the management of hydroponic farm environmental

parameters, thus achieving the following project objectives:

• Develop a mobile application capable of monitoring and controlling

hydroponic farming systems remotely.

• Develop a mobile application that can notify users of critical issues

and required tasks within the hydroponic farming systems.

• Utilize machine learning with IoT and ICT technologies for

detecting normal and abnormal environmental patterns in

hydroponic farming, enabling automated adjustments and

simplifying management.

The first objective was met by completing the mobile application with

the functionality to monitor and control the hydroponic farm system remotely.

Users are relieved from constantly overseeing the system, as the application

provides real-time environmental parameters and trends. Additionally, the

application allows remote control of the hydroponic system, enhanced with AI-

driven automation based on model predictions.

134

The second objective was achieved by integrating Firebase Cloud

Messaging services into the application. This service enables the application

server to send notifications based on specific conditions, such as positive

anomaly detection, scheduled tasks, daily reminders, and successful trigger

notifications. This feature ensures that users are promptly informed of critical

or important events, allowing them to take necessary actions without delay.

Lastly, to fulfil the third objective, data from the hydroponic farm

system was used to train the Long Short-Term Memory (LSTM) model. With

the support of data provided by Chua Shi Jian’s hydroponic farm system from

the Electrical and Electronic Engineering course (3E), the LSTM model was

successfully trained and deployed to the model server. This deployment allows

the model to identify abnormal patterns in real-time data, based on the training

outcomes.

8.2 Limitations

Despite the success in achieving the project objectives, certain limitations

remain that could be addressed in future work.

The first limitation is the limited size and duration of the dataset used

for training the machine learning model. The dataset was restricted to one month

of data, which, while sufficient for establishing initial patterns for anomaly

detection, may not provide comprehensive insights into long-term

environmental variations. A larger dataset spanning multiple months or years

would improve the model's ability to generalize across different conditions and

yield more accurate predictions.

The second limitation is the specificity of the dataset. The model was

trained primarily on data from a hydroponic farm growing lettuce, which limits

its applicability to other crops. Different crops, such as cabbage or chili, have

unique environmental and nutrient requirements that the current model may not

adequately address. To make the application more versatile, it would be

necessary to gather data specific to other crops and retrain the model

accordingly.

135

The third limitation is the requirement for manual processes such as

harvesting and refilling nutrient solutions. While the application automates the

control of environmental parameters, human intervention is still needed for

some farm tasks. This reliance on manual processes could introduce

inefficiencies and delays, reducing the overall potential for automation in

system monitoring.

8.3 Recommendation for Future Improvements

To enhance the capabilities of this project, several future improvements are

recommended:

Expand the Dataset for Enhanced Model Accuracy: Collecting a larger

volume of data over a more extended period will enable the model to recognize

a broader range of patterns and variations, leading to more accurate predictions

and anomaly detection. An expanded dataset will also allow the system to

generalize across a wider range of environmental conditions.

Support for a Variety of Crops: Incorporating data from a wider range of

vegetables or plants into the model training will allow the application to

recognize the different environmental and nutrient requirements for each type

of crop. Implementing a crop-selection feature would further enhance the

system's flexibility, enabling farmers to switch between different crops and

receive tailored monitoring and control settings for each one.

Prediction and Automation of Farm Tasks: By training more advanced

machine learning models, it may be possible to predict certain maintenance

tasks, such as nutrient refilling or plant harvesting, based on historical data, and

automate these processes without human intervention. For example, if the model

predicts that nutrient depletion is likely within a few days, the system could

notify the user to prepare for refilling or even automate the refilling process via

IoT-connected devices.

136

REFERENCES

Abdallah, M., Wo Jae Lee, Raghunathan, N., Charilaos Mousoulis, Sutherland,

J.W. and Bagchi, S. (2021). Anomaly Detection through Transfer Learning in

Agriculture and Manufacturing IoT Systems. arXiv (Cornell University).

doi:https://doi.org/10.48550/arxiv.2102.05814.

Adkisson, M., Kimmell, J.C., Gupta, M. and Abdelsalam, M. (2021).

Autoencoder-based Anomaly Detection in Smart Farming Ecosystem.

doi:https://doi.org/10.1109/bigdata52589.2021.9671613.

Baheti, P. (2021). Train, Validation, and Test Set: How to Split Your Machine

Learning Data. [online] V7labs.com. Available at:

https://www.v7labs.com/blog/train-validation-test-set.

Bandar Alanazi and Ibrahim Alrashdi (2023). Anomaly Detection in Smart

Agriculture Systems on Network Edge Using Deep Learning

Technique. Sustainable Machine Intelligence Journal, 3.

doi:https://doi.org/10.61185/smij.2023.33104.

Bhandari, P. (2021). What Is Data Cleansing? | Definition, Guide &

Examples. [online] Scribbr. Available at:

https://www.scribbr.com/methodology/data-cleansing.

Brownlee, J. (2016). How to Normalize and Standardize Time Series Data in

Python. [online] Machine Learning Mastery. Available at:

https://machinelearningmastery.com/normalize-standardize-time-series-data-

python/.

Catalano, C., Paiano, L., Calabrese, F., Cataldo, M., Mancarella, L. and

Tommasi, F. (2022). Anomaly detection in smart agriculture

systems. Computers in Industry, 143, p.103750.

doi:https://doi.org/10.1016/j.compind.2022.103750.

Department of Statistics Malaysia (2022). DEPARTMENT OF STATISTICS

MALAYSIA KEY FINDINGS OF POPULATION AND HOUSING CENSUS

OF MALAYSIA 2020: URBAN AND RURAL. [online] Available at:

https://v1.dosm.gov.my/v1/index.php?r=column/pdfPrev&id=ZFRzTG

9ubTkveFR4YUY2OXdNNk1GZz09 [Accessed 15 Feb. 2024].

137

Department of Statistics, Malaysia (2022). ICT Use and Access by Individuals

and Households Survey Report, Malaysia, 2021. [online] v1.dosm.gov.my.

Available at:

https://v1.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=39

5&bul_id=bCs4UlNSQktybTR3THZ3a0RzV2RkUT09&menu_id=am

VoWU54UTl0a21NWmdhMjFMMWcyZz09.

Developer.com. (2022). What is Lean Development? [online] Available at:

https://www.developer.com/project-management/what-is-lean-development/.

Encyclopedia Britannica. (n.d.). Hydroponics | horticulture. [online] Available

at: https://www.britannica.com/topic/hydroponics.

Gallagher, A., Dunleavy, J. and Reeves, P. (2019). The Waterfall Model:

Advantages, disadvantages, and when you should use it. [online] IBM

Developer. Available at: https://developer.ibm.com/articles/waterfall-model-

advantages-disadvantages/.

GeeksforGeeks (2019). What is LSTM Long Short Term Memory? [online]

GeeksforGeeks. Available at: https://www.geeksforgeeks.org/deep-learning-

introduction-to-long-short-term-memory [Accessed 18 Mar. 2024].

GeeksforGeeks. (2019). Machine Learning for Anomaly Detection. [online]

Available at: https://www.geeksforgeeks.org/machine-learning-for-anomaly-

detection/?ref=header_search.[Accessed 18 Mar. 2024].

GeeksforGeeks. (2024). Understanding One-Class Support Vector Machines.

[online] Available at: https://www.geeksforgeeks.org/understanding-one-class-

support-vector-machines/.[Accessed 18 Mar. 2024].

GeeksforGeeks. (2024). Unified Process in OOAD. [online] Available at:

https://www.geeksforgeeks.org/unified-process-in-ooad/. [Accessed 23 Mar.

2024].

Human Resources Development Fund (2019). AGRICULTURE SECTOR

OVERVIEW: Will Agriculture Be the next Sector Covered under PSMB Act?

[online] Available at: https://hrdcorp.gov.my/wp-content/uploads/2021/03/08.-

issue_July02_2019-Human-Capital-Report-Agriculture-Sector-Overview.pdf.

Kaur, G., Upadhyaya, P. and Chawla, P. (2022). IoT Based Mobile Application

for Monitoring of Hydroponic Vertical Farming. 2022 10th International

Conference on Reliability, Infocom Technologies and Optimization (Trends and

Future Directions) (ICRITO).

doi:https://doi.org/10.1109/icrito56286.2022.9964872.

Khare, P., Abhishek Koti and Khare, A. (2023). Solar-smart hydroponics

farming with IoT-based AI controller with mobile app.

doi:https://doi.org/10.1109/ls1858153.2023.10170491.

138

knowledge.hannainst.com. (n.d.). What is the relationship between TDS and

EC? [online] Available at: https://knowledge.hannainst.com/en/knowledge/ec-

tds-what-is-the-relationship-between-tds-and-ec.

Kularbphettong, K., Ampant, U. and Kongrodj, N. (2019). An Automated

Hydroponics System Based on Mobile Application. International Journal of

Information and Education Technology, [online] 9(8), pp.548–552.

doi:https://doi.org/10.18178/ijiet.2019.9.8.1264.

Lakshmanan, R., Djama, M., Perumal, S. and Abdulla, R. (2020). Automated

smart hydroponics system using internet of things. International Journal of

Electrical and Computer Engineering (IJECE), 10(6), p.6389.

doi:https://doi.org/10.11591/ijece.v10i6.pp6389-6398.

Laoyan, S. (2024). What Is Agile Methodology? (A Beginner’s Guide). [online]

Asana. Available at: https://asana.com/resources/agile-methodology.

Liu, F.T., Ting, K.M. and Zhou, Z.-H. (2008). Isolation Forest. 2008 Eighth

IEEE International Conference on Data Mining.

doi:https://doi.org/10.1109/icdm.2008.17.

MUHAMMAD, R. M. & RABU, M. R. 2015. The potential of urban farming

technology in Malaysia: Policy intervention. FFTC Agricultural Policy Article.

Peuchpanngarm, C., Srinitiworawong, P., Samerjai, W. and Sunetnanta, T.

(2016). DIY sensor-based automatic control mobile application for hydroponics.

[online] IEEE Xplore. doi:https://doi.org/10.1109/ICT-ISPC.2016.7519235.

Polanitzer, R. (2022). The Minimum Mean Absolute Error (MAE) Challenge.

[online] Medium. Available at: https://medium.com/@polanitzer/the-

minimum-mean-absolute-error-mae-challenge-928dc081f031.

Rahimi, M.K.H., Saad, M.H.M., Hussain, A. and Hamdan, N.M. (2022). Secure

Cloud Connected Indoor Hydroponic System via Multi-factor

Authentication. International Journal of Advanced Computer Science and

Applications, 13(9). doi:https://doi.org/10.14569/ijacsa.2022.0130925.

Ramakrishnam Raju, S.V.S., Dappuri, B., Ravi Kiran Varma, P., Yachamaneni,

M., Verghese, D.M.G. and Mishra, M.K. (2022). Design and Implementation of

Smart Hydroponics Farming Using IoT-Based AI Controller with Mobile

Application System. Journal of Nanomaterials, 2022, pp.1–12.

doi:https://doi.org/10.1155/2022/4435591.

Rashid, T.A., Fattah, P. and Awla, D.K. (2018). Using Accuracy Measure for

Improving the Training of LSTM with Metaheuristic Algorithms. Procedia

Computer Science, 140, pp.324–333.

doi:https://doi.org/10.1016/j.procs.2018.10.307.

139

Shin, K.G., Tan Ping Ping, Ling, Chong Chee Jiun and Noor Alamshah

Bolhassan (2024). SMART GROW – Low-cost automated hydroponic system

for urban farming. HardwareX, 17, pp.e00498–e00498.

doi:https://doi.org/10.1016/j.ohx.2023.e00498.

trident (2021). 12 Software Development Methodologies: When, Where and

How to Use Them. [online] Trident Technolabs. Available at:

https://tridenttechnolabs.com/12-software-development-methodologies-when-

where-and-how-to-use-them/. [Accessed 23 Mar. 2024].

World Bank Open Data. (n.d.). World Bank Open Data. [online] Available at:

https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?end=2022&locatio

ns=MY&most_recent_year_desc=true&start=2022&view=bar. [Accessed 15

Feb. 2024].

www.productplan.com. (n.d.). What is Feature Driven Development (FDD)? |

Definition. [online] Available at:

https://www.productplan.com/glossary/feature-driven-development/.

www.westlab.com. (n.d.). What is EC? How can you differentiate between EC

and TDS? [online] Available at: https://www.westlab.com/blog/what-is-ec-

how-can-you-differentiate-between-ec-and-tds.

