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ABSTRACT 

 

In the present society, video surveillance systems have continued to develop and 

incorporate more sophisticated video analysis to enhance security and public 

safety. With increasing demand, the need for accurate and efficient violence 

detection in video footage has become more critical. However, detecting 

violence in video footage remains challenging due to varying lighting conditions 

and data quality. While advancements in deep learning techniques can improve 

the accuracy and robustness of violence detection, they often require extensive 

datasets, leading to overloaded training processes. This research focuses on 

advancing and utilizing deep learning models for violence detection in 

surveillance videos, with particular emphasis on varying lighting conditions. A  

dataset of 2,000 videos mostly in normal lighting conditions is used to train a 

hybrid deep learning model combining MobileNet-v2, a lightweight 

Convolutional Neural Network (CNN), with BiLSTM (Bidirectional Long 

Short-Term Memory). This hybrid model seeks to employ MobileNet-v2 for 

feature extraction and BiLSTM for temporal analysis in video datasets. To 

enhance detection accuracy under different lighting conditions, histogram 

equalization is integrated into the video prediction process alongside the trained 

base model. The approach is designed to optimize video-based violence 

detection without overwhelming the model with large datasets and excessive 

training times. The base model (MobileNet-v2 and BiLSTM) performed well in 

normal light conditions (96.33%). While the base model with histogram 

equalization achieved higher accuracy (98.91%) and the model trained on 

varying lighting conditions further improved to (99.15%). On the other hand, 

the base model performed poorly in very dark conditions (24.89%) but showed 

significant improvement with histogram equalization (92.21%), nearly 

matching the performance of the base model trained on varying lighting 

conditions (99.97%). This result highlights the benefit of the proposed 

histogram equalization method, which achieves high detection accuracy without 

relying on extensive datasets and overloaded training resources, making it a 

potential solution for real-time violence detection in diverse lighting scenarios. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1   General Introduction 

Security and social peace form necessary conditions in a modern society, thus 

strong mechanisms for monitoring, and taking actions are needed to prevent 

conflict situations. The classic methods of surveillance such as human 

observation carried out by security personnel and closed-circuit television 

(CCTV) system types, have been used to detect and curb incidences of violence 

and criminal tendencies. Nevertheless, these methods have some inherent 

constraints, which might stand as a barrier in case of ensuring public safety.  

 Nowadays, with the exponential growth in the amount of video data, 

surveillance and anomaly detection have become increasingly crucial. (Feng et 

al., 2021). Hence, surveillance techniques are crucial to effectively respond to 

the security problems. Therefore, the challenge nowadays is further 

compounded especially because surveillance systems deal with a growing 

amount and complexity of footage. A large set of data which is required by deep 

learning models results in longer training time and requires more computational 

power. These challenges, therefore, underscore the need for enhanced 

approaches that would address issues such as large data handling and the 

detection of better accuracies. 

 Thus, this research study seeks to overcome the above challenges by 

proposing a novel automatic violence detection system based on deep learning 

methodology. To improve violence detection under changing lighting 

conditions, this project aims to increase the efficiency and effectiveness of 

identifying violent scenes using hybrid models i.e. MobileNet-v2 with 

Bidirectional Long Short-Term Memory (BiLSTM) networks, The use of 

advanced image processing techniques in histogram equalization in the vision 

pipeline is adopted. The ultimate goal is to enhance the reliability of surveillance 

systems and to define violent actions in real life circumstances and thus make a 

contribution to improving security and reducing crime. 
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1.2 Problem Statement 

This section discusses the problem statement of this project. 

 

1.2.1 Rise in Violence Incidents in Malaysia 

With the increasing occurrence of violent episodes across the country, including 

thefts, domestic abuse and bullying, the present methods for identifying and 

responding to such crimes are becoming insufficient. Conventional systems 

increase the hazards to public safety since they primarily rely on human 

interaction, which will cause delays in detection and reaction. Furthermore, 

recent reports reveal a concerning surge in crime rates in Selangor, with 13,740 

cases reported in 2023, indicating a 5.84% increase from the previous year 

(Khandelwal, 2024). There is a noticeable sense of anxiety among the public, as 

seen by this statistical increase. While property-related offenses have increased 

by 5.8%, violent crimes have increased by 5.92% (Khandelwal, 2024).  

However, even with concentrated efforts to address violence in 

Malaysia, the existing mechanisms are unable to stop the increasing threat of 

violent occurrences. The safety and well-being of residents are still in danger 

due to the ongoing threat of violence, even with the enforcement measures 

already in place. 

Therefore, to overcome the limitation of manual monitoring and the 

increased number of violent incidents in Malaysia, a sophisticated deep-learning 

model will be constructed. Thus, the model will aim to enhance the surveillance 

camera capabilities by automatically detecting violent activity by every frame 

per second. 

 

1.2.2 Challenges in Acquiring Appropriate Datasets 

One of the critical challenges in constructing reliable deep learning models for 

automated violence detection is the lack of suitable datasets that are 

representative of variability in real-world conditions. Most of the current 

datasets are small in quantity and lack variation in lighting, different 

perspectives of the camera, and resolution which is very essential when it comes 

to training models that are capable of operating effectively in different 

environments. Deep learning models highly depend on the quality and amount 

of training data (Alzubaidi et al., 2021a); however, when datasets are 
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insufficient, unbalanced, or contain errors, the models might tend to overfit or 

even underfit, the models learn these peculiarities and are not very good at 

predicting under different conditions (Prudhomme et al., 2023). This usually 

results in the creation of models that do very well on paper, and in lab conditions, 

but poorly when implemented in real-life scenarios such as the recognition of 

violence where there is poor lighting or background noise. The lack of an 

inclusive and diverse dataset also impacts the development of models that can 

identify violent incidents in a variety of environments with reasonable accuracy, 

thus limiting the feasibility and efficacy of automated violence identification 

schemes. 

 

1.2.3 Challenges in Training Large and Complex Datasets 

One of the major concerns for implementing a deep learning model is the fact 

that the training duration escalates when training with large datasets. When 

these datasets become larger and varied, the tune required to train the model 

adequately rises. These diverse datasets are required to teach the model to 

identify violence under different conditions, although training the program on 

millions of pieces of data is considerably time-consuming and requires 

significant computational power (Radiuk, 2017). However, if the performance 

of the model on the initial data is not satisfactory, then a retraining process is 

required, which also takes time and effort. The problem with retraining is that it 

entails rehearsing the model on the entire dataset every round, a process that 

consumes time and requires a lot of computing power. Such a drawn-out training 

and retraining process hamper the efficiency of the model by protracting the 

time taken to deploy it also increases the cost of development which is a major 

barrier to developing an ideal violence detection system. 
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1.3 Aim and Objectives 

This project aims to develop a deep learning-based solution for automated 

violence detection to enhance public safety. 

1. To implement a deep learning-based model capable of accurately detecting 

violent incidents in video footage, even under varying lighting conditions. 

2. To investigate and apply preprocessing techniques to enhance the model’s 

effectiveness in detecting violent incidents. 

3. To evaluate the performance of the implemented violence detection model 

in various lighting conditions. 

 

1.4 Research Questions 

Based on the research objectives, there are two research questions for this study. 

The first research question is how accurately that is a deep learning model 

detects violent behaviour in video footage. Secondly, what effect do 

preprocessing techniques such as histogram equalization have on the deep 

learning model performance in detecting violent behaviour across varying light 

conditions? 

 

1.5 Research Hypotheses 

Based on the research question, there are two research hypotheses for this study. 

The first research hypothesis is a deep learning model can accurately detect 

violent behaviour in video footage. Secondly, preprocessing such as histogram 

equalization can help improve the ability of deep learning models to detect 

violent behaviour in video footage under varying light conditions. 

 

1.6 Research Activities 

Based on the research hypothesis, there are four research activities for this study. 

The first research activity is to conduct a literature review to identify and choose 

existing deep learning model architectures used in similar projects which 

suitable for detecting violent behaviour. Secondly, implement and train a deep 

learning model to detect violent behaviour in video footage. Thirdly, applied 

histogram equalization in the test video that is under the video prediction phase 

where the model is trained. Lastly, analyze and compare the model’s accuracy 
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and reliability based on the base model with additional datasets, with and 

without histogram equalization. 

 

1.7 Scope and Limitation of the Study 

This research project aims to investigate and develop deep learning-based 

models for violence detection using videos or surveillance footage videos, to 

reduce violence cases in Malaysia, and address the challenges of finding suitable 

datasets that reflect the diversity of real conditions and the impact of dataset size 

on the training time. Histogram equalization is performed on test data to 

improve the models gathered in this context as a significant part of this work. 

The project focuses on implementing a deep learning model, a hybrid 

MobileNet-v2 with BiLSTM model, to analyze the video data and identify the 

patterns to indicate violent behavior. This model incorporates histogram 

equalization and identifies the patterns of violent behavior. Therefore, the deep 

learning model will be experimented with to optimize the accuracy of the 

violence detection performance result, and also manage training time effectively 

in making the model suitable for practical deployment in real-world surveillance 

systems. Moreover, this research seeks to explore the model that will allow for 

future modification and integration into a real system. Hence, the integration of 

the trained models into the current surveillance is presented in the subsequent 

implementation phase. 

 Besides, this research has several limitations which must be 

acknowledged while undergoing the project. Firstly, this project is focused on 

improving violence detection under varying lighting conditions through the use 

of histogram equalization. Thus, the model may not be able to address other 

sources of noise in the video data, such as a damaged video with a glitch or 

extremely blurry. Moreover, the model training process will require high-

quality and diverse training datasets containing examples of violent and non-

violent behaviors. It will be challenging to obtain high-quality and diverse 

datasets due to data availability and ethical considerations. Lastly, the datasets 

may not cover all possible violent actions. Thus, it will limit the deep learning 

model’s ability to generalize to unseen or uncommon violent action which will 

affect the violence detection accuracy in real-world situations. 
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1.8 Contribution of the Study 

The research enhances the existing knowledge and practice in using deep 

learning models for video-based violence detection, especially where the 

context is complex, such as during low light conditions. The contributions 

include a proposed approach that improves deep learning model accuracy 

utilizing histogram equalization during the prediction stage and the 

investigation of the effects of training datasets on the model accuracy and time. 

These provide important information that will be useful for researchers and 

practitioners, who want to enhance automated violence detection systems. 

 

1.9 Outline of the Report 

This report is separated into 5 chapters as follows: 

 

Chapter 1: Introduction 

This chapter provides an overview of the research project which includes an 

introduction, a problem statement, aim and objectives, a research question, 

research hypotheses, and the scope and limitations of the research. 

 

Chapter 2: Literature Review 

This chapter summarises the study on many theses that have been put out by 

other researchers and are relevant to this undertaking. 

 

Chapter 3: Methodology 

This chapter explains the details of the workflow plan and the procedure to carry 

out this research. 

 

Chapter 4: Results and Discussion 

This chapter explains and discusses the findings of the research, including the 

performance evaluation of different models under various lighting conditions. 

 

 

Chapter 5: Conclusion 

This chapter summarizes the important findings and recommendations for 

future work.  
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Violence carries significant implications for public safety. Violence can occur 

in different forms such as public violence, family abuse, sports violence, and 

even school bullying cases. As violence continues to escalate across diverse 

domains, there is an urgent need for sophisticated technologies to facilitate the 

early recognition and prevention of these outbreaks of violence. In recent years, 

deep learning technology which is a part of artificial intelligence emerged as a 

potential approach to change the complex task of violence detection.  

The literature presents the current state of the research conducted using 

deep learning techniques to detect violent behaviour in public areas. This 

research focuses on summarizing studies with datasets used, preprocessing 

methods, different activation functions, and deep learning architectures as well. 

 Hence, in this literature review, the main point is to research the basic 

concept of deep learning models to understand how they work. Moreover, 

reviews existing research emphasizing the performance and architecture of 

current models which gives more understanding to seek opportunities to push 

the boundaries of the field with a new and distinctive research contribution. 

 

2.2 Dataset Preparation 

Before putting any video datasets into any deep learning models, preprocessing 

steps are carried out. Thus, a sequence of keyframes is extracted from video 

clips this way (Jahlan and Elrefaei, 2022). The process is deduced by separating 

the video frames and computing the absolute difference in every two 

consecutive frames. This difference frame is compared with the set threshold 

value. If the number of non-zero elements of the difference image is greater than 

the threshold value, the current frame is considered significantly different from 

the frame before and is included. After this, the image is resized to 224x224 

pixels randomly by chopping a portion of the input image with this size. 

 Besides, another way for preprocessing the video is to extract the frame 

from the video datasets and then resize every frame of the video into a fixed 
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height and width. Then, the frames will then be loaded into a Numpy array, with 

each row indicating a sequence or pattern in the video (Halder and Chatterjee, 

2020). Hence, this sequence can comprise many movements and activities such 

as punching, patting, shaking hands, etc.  

 Moreover, the video frames can be further processed by normalization 

to reduce the time to train in the deep learning model. This process is to ensure 

the input data for the deep learning model are on the same scale, so the model 

can process a lower range of data which greatly decreases the training time. 

Hence, video normalization is the process of normalizing all the frames in a 

video such that the RGB values of each pixel fall between 0 and 255 (Thakkar 

and Lo, 2023). Fundamentally, the aforementioned image normalization 

equation is applied to every frame of the video leading to video normalization. 

This process is meant to guarantee that the intensity readings are consistent 

throughout the video segments which makes it easier to standardize the 

processing and analysis of the video data. 

 

2.3 Deep Learning 

Deep learning also lies within the scope of machine learning which itself is a 

subset of artificial intelligence. Artificial intelligence (AI) is one of the 

emerging areas that involves a wide array of techniques used to make computers 

behave like humans. Machine learning is about the algorithms being trained 

with the data in the process of enhancing this function. The particular branch of 

machine learning called Deep Learning essentially imitates the complex 

mechanism of the human brain.  

In 2006, Hinton together with Salakhutdinov published the most 

influential article in the Science journal, which was the beginning of the deep 

learning era (Hinton and Salakhutdinov, 2006). The study logically confirmed 

the fundamental role of fully connected neural networks with hidden layers in 

improving feature learning skills. Such algorithms have great chances to 

enhance precision performance not only of cancer data but of many disparate 

data sources. Hence, this project mainly focuses on the deep learning model that 

can predict violence or nonviolence by image which is the frame extracted from 

the video. 
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2.3.1 Overview of Deep Learning 

The fundamental blueprint of the deep learning model, especially if used in the 

framework of CNNs, contains several layers that process data and make the 

necessary predictions. It always consists of convolutional layers (Conv2D layers) 

filters that scan and identify structures within the input data, e.g. images (Li et 

al., 2024). These layers have learnable filters known as kernels that move over 

the input to construct feature maps that detect features including edges, textures, 

and other complex patterns. 

 Next to the convolutional layers, there are often pooling layers that are 

used to decrease the spatial size of the feature maps but at the same time to keep 

the most significant values (Gichoya et al., 2022). Such steps are referred to as 

sub-sampling or down-sampling, which is important for shrinking the size of 

the model and reducing the risk of over-learning. The two fundamental types of 

pooling are the max pooling, which keeps the largest value of the patch of the 

feature map, and the average pooling which calculates the average of the patch. 

These operations make the model less sensitive to small translations in the input 

data. 

 The result of convolution and pooling works is the dimensionality 

reduction of the output feature maps which are then flattened into 1D vectors 

before being fed to one or more fully connected layers (Du et al., 2016). In these 

layers, all neurons in one layer are connected to all neurons in the previous layer 

and this enables the model to integrate the feature learned by each of the 

convolutional layers before making the final decision. In classification, this final 

fully connected layer uses the activation function to transform the output in the 

form of a probability ensemble for each of the classes, with the probability 

values ranging from zero up to one, with the maximum being the predicted class 

of the model. 

 Besides, there are different activation functions to determine the output 

of each neuron in a deep learning model. 

 

2.3.1.1 ReLU Activation Function 

ReLU is one of the activations functions that are commonly used even in the 

ImageNetILSVRC competition in the year 2012 (Krizhevsky et al., 2017). 

ReLU works by always flatting the input values below a certain threshold, which 
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are commonly set to zero, and then increasing linearly for any input value larger 

than this certain threshold. This means the ReLU will activate a node when the 

input value exceeds a certain threshold level which will exhibit a linear 

relationship with the dependent variable, whereas if the input value is below 

zero, the output value also becomes zero. Although it seems like the ReLU has 

a simple operation, the ReLU activation function introduces key nonlinear 

transformations. 

 Although ReLU has excellent performance, it also has unique 

limitations. As a result, the slope of ReLU often is either zero or a constant value, 

which may cause the phenomenon termed "dying ReLU”, when the neurons 

stop updating during the training (Montesinos López et al., 2022). However, 

experimental data shows that ReLU activation functions on average obtain 

better results than sigmoid activation functions in the field of practice. ReLU is 

frequently used in hidden layers and output layers, particularly when the 

response variables are continuous and positive. 

 

 

Figure 2.1: ReLU activation function graph. 

Source: (Montesinos López et al., 2022) 

 

2.3.1.2 Softmax Activation Function 

The softmax activation function is often used at the CNN fully connected layer 

to provide a dependent probability output, which corresponds to the chance that 

each class fits the input (Emanuel et al., 2024). Thus, the softmax activation 

function will convert the integer values delivered by the fully connected layer 

into probabilities and the resulting values lie within the range [0, 1]. 

Furthermore, it makes sure the probabilities of all the events sum up to 1 and 
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facilitates interpretation as the real probability distribution (Es-Sabery et al., 

2021). The softmax activation function is calculated by (Goodfellow et al., 

2016):  

𝑓(𝑥𝑖) =
𝑒(𝑥𝑖)

∑ 𝑒
(𝑥𝑗)𝐾

𝑗

    (1) 

 

 Besides, the softmax activation function is also commonly used in 

multi-class models, consisting of the computation of the probabilities for each 

class with the highest probability selected as the target class. It is another 

essential layer for the output implementation of deep learning designs which are 

utilized in different models.  

 

 

Figure 2.2: Softmax activation function graph. 

Source: (Es-Sabery et al., 2021) 

 

2.3.2 Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) has become a powerful tool for different 

computer vision problems due to its ability to recognize and classify picture 

features (Bhatt et al., 2021). Like traditional neural networks, the architecture 

of CNN was modelled by neurons found in the brains of humans and other 

animals. For instance, the CNN simulates the complex cell sequence that makes 

up the visual cortex in a cat’s brain (Hubel and Wiesel, 1962). This biological 

inspiration provides insights into why CNN excels over other models in 

autonomously identifying significant characteristics without human oversight. 
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 Besides, in the year of 1990, LeCun et al. introduced a seminal paper 

that laid the foundation for the contemporary Convolutional Neural Networks 

(CNN) framework (Cun et al., 1989). Their work led to the development of 

LeNet-5 which is a multi-layer artificial neural network renowned for its 

precision in classifying handwritten digits. Which is also similar to other neural 

networks, LeNet-5 consists of multiple layers and can be trained using the 

backpropagation algorithm (Gu et al., 2015). Hence, LeNet-5 is noteworthy for 

its capacity to produce effective representations of original pictures, which 

makes it possible to directly identify patterns in raw pixel data with little 

preprocessing requirements. Thus, taking LeNet-5 as an example to study the 

CNN architecture has more advantages due to it is simple architecture compared 

to modern CNN architecture. As shown in Figure 2.1, CNN architecture consists 

of three types of layers convolution, pooling, and fully connected layers. 

 

 

Figure 2.3: LeNet-5 network. 

Source: (Gu et al., 2015) 

  

 The first layer in the CNN architecture, the convolution layer, 

convolves a convolution of two digital signals by using a set of matrix 

operations. Such an operation involves shuffling a tightly packed convolutional 

array referred to as kernel filter atop an input data tensor. The banking filter 

likewise bears the same four-dimensional shape as the input tensor but bears a 

proportionately smaller constant parameter value (Purwono et al., 2023). Let’s 

take an indicator example the input image tensor has a dimension of 32x32x3 

(height, width, channel). A filter size of 5x5x3 is often used, and the stride is set 

to 1. Hence, this boils down to the fact that the corresponding kernel filter must 

be smaller than the input tensor dimensions. 
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The kernel calculates an element-wise product of its coefficients and 

the input tensor values by selecting pairs of coefficients and matrix elements 

that are in each overlapping region. The next step would involve passing those 

products through a layer called a convolutional layer. This results in the 

development of a data set represented by the output tensor. Such a spatial 

location is related to a particular activation map (Purwono et al., 2023). The 

main rotation procedure is exemplified in a particular pattern. It is presented in 

such works just as it is done in different research works. Through this 

mathematical representation, the computational process drawn by the CNN is 

illuminated in the ending with receiving the activation map result. A 

convolutional layer is an indispensable part of representation learning, as it 

significantly assists in feature extraction from the input data helping subsequent 

layers to capture higher-level data structures where simpler features in the input 

data turn into more complex features (Alzubaidi et al., 2021). 

 

 

Figure 2.4: Convolutional Layer. 

Source: (Yin, 2018) 

 

 Following the convolution layer which extracts low-level features 

from the input data, the pooling layer is the second layer of CNN 

architecture, and it works to concisely and comprehensively summarize the 

information from the convolution layer. Not only do the successive 

convolutional layers proceed directly; instead, the pooling operation serves 

as a bridge, which lowers the spatial dimensionality of the feature maps 

generated by the convolutional layer (Purwono et al., 2023). In this 
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scenario, subsampling is a mechanism of dimensionality reduction, where 

the sliding pooling layer repeatedly covers the feature maps with small 

windows. For every window, it calculates a simple summarization statistic 

such as the maximum or the average value. Such border value is then 

aggregated to give the output, which is a single scalar with no values 

window. Through the process of the pooling, the pooling layer is capable 

of condensing the feature maps, thus greatly reducing the computational 

burden for subsequent layers as well as introducing a degree of translation 

invariance, which allows the network to detect local features, irrespective 

of slight positional displacements. 

However, different types of pooling strategies exist, including tree 

pooling, gated pooling, and min pooling, yet the most common are max 

pooling and mean pooling. Max pooling indicates and propagates the 

maximum activation in each window, filtering out the rest of the 

activations, whereas average pooling focuses on the mean value, 

combining all activations into a single summarized representation 

(Alzubaidi et al., 2021). Another essential layer is a pooling layer that 

allows deeper CNN models to do feature information processing and, at 

the same time, summarization efficiently. 

 

 

Figure 2.5: Max pooling. 

Source: (Prasad and Senthilrajan, 2021) 
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 Then, the fully connected layer receives the result of the addition of the 

convolutional and pooling groups of operations, which deliver the multi-

dimensional feature maps replete with specific representational knowledge. But 

to display these deep layer architectural specifications, this feature maps tensor 

undergoes a flattening transformation that stretches it out and keeps all the 

feature information by that until the next layer processing. (Basha et al., 2020) 

In the fully connected layer, every single neuron computes a weighted 

sum over the flattened feature vector by adding a bias term in the summation 

process, which helps to control the activation term. Here, these non-linear 

products are carried out by target functions which play the same role as the 

operations performed in the neural networks'(Alzubaidi et al., 2021). Hence, 

these activations, when added together, serve as the final product of the CNN 

model. Such gets represented in the form of class scores, probabilities, or as an 

outcome (yes/no). 

Significantly, the fully connected layer's dense interconnectivity 

outstandingly gives it a sensational ability to model complex, multi-dimensional 

correlations and influence within feature space due to the convolutional and 

pooling stages (Taye, 2023). This continues to introduce joint learning of both 

features via dense connections of the neuron level that simulate the combination 

and refinement of the layers to result in advanced concepts for the network to 

perform robust classes. The dense connections also help to position the network 

to predict complex behaviours as a result of the ability to extract and join 

together abstract features which are needed for sophisticated tasks. 
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Figure 2.6: Fully connected layer. 

Source: (Alzubaidi et al., 2021b) 

 

 By understanding the fundamentals of CNN architecture, there are 

different modern CNN architecture which is the enhancement of the 

fundamental CNN architecture. These modern CNN architectures are employed 

in similar violence detection projects, showcasing the evolution and versatility 

of CNN technology in addressing such challenges and providing different 

results. 

 

2.3.2.1 3D Convolutional Neural Network 

In 2017, a study proposed factorizing the 3D convolution into a sequential 

combination of 2D spatial convolutions followed by 1D temporal convolutions 

(Tran et al., 2017). This R(2+1)D convolution model outperformed I3D pre-

trained on ImageNet by 2.2% on RGP input and 3.2% on optical flow input. 

However, when fusing the two streams, R(2+1)D was slightly worse than I3D 

by 0.3%. Thus, it is suitable for pre-trained similarly to I3D, but R(2+1)D may 

perform well on specific datasets from scratch whereas the I3D performed well 

on large-scale datasets which are widely adopted due to many cases needed to 

perform training with large-scale datasets. Additionally, because the main goal 

of this research is to examine the recognition of action and not that of violence, 

it conducts a critical analysis of a variety of legitimate and illegitimate 

approaches for the implementation of 3D CNNs in definite applications. 
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 Besides, 3D skeleton points interaction learning (SPIL) was also 

introduced in the year 2020, it can focus on the human skeleton point and 

perform video violence detection (Su et al., 2020). 3D SPIL uses the SPIL model 

to differentiate the weights among the human skeleton points to capture the 

unique motion action of individuals. Then, a multi-head mechanism will be 

added to process various information simultaneously and aggregate them, which 

will reduce the time to train (Vaswani et al., 2017). The multi-head mechanism 

will act as a connection between the joint points of the human skeleton point 

which the joint points will constantly change its position. For instance, each 

head focuses on a particular aspect of one’s behaviour or interaction between 

individuals and makes the AI model easier to analyze and learn. Although 3D 

SPIL outperforms the other existing methods with different violence or 

nonviolence datasets. However, 3D SPIL also has a chance to misclassify as 

violent behaviour from the datasets, such as actions that are not genuine violent 

acts but are similar to violence.  

 

 

Figure 2.7: SPIL overview model pipeline. 

Source: (Su et al., 2020) 

  

2.3.2.2 Mobile Convolutional Neural Network  

Mobile Convolutional Neural Network architectures are particularly made to be 

lightweight which is suitable for deployment on resource-constrained devices 

like mobile phones, embedded systems, and IoT devices. Thus, Mobile CNN 

aims to achieve a trade-off between model size, computational efficiency, and 

performance, allowing them to perform such tasks as image recognition, object 

detection, and other computer vision tasks on devices with limited resources 

(Gunawardena et al., 2022). Hence, unlike the traditional sequential stacking 
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order, these networks use layers that are located both serially and in parallel, 

often grouped into modules that are fused to give rise to the entire architecture. 

For instance, in the form of the Inception module, which was first introduced to 

the world in the context of the Inception model, 1×1, 3×3 and 5×5 together with 

the max-pooling layers achieve the multi-level features extraction and reduce 

the count of the parameters at the same time (Vieira et al., 2022).  

 One of the lightweight Mobile Convolutional Neural Network 

architectures, known as SqueezeNet, attains comparably similar accuracy to the 

groundbreaking AlexNet model but has a much smaller parameter count (Ucar 

and Korkmaz, 2020). The strategic combination of squeeze and expand layer 

types makes the design sustainable and convenient for the user. The network 

uses only 1×1 convolutional filters in the squeeze layers whereas the expand 

layers employ a mixture of 1×1 and 3×3 filters (Vieira et al., 2022). The 

selective application of 1×1 filters with a much lower number of parameters 

compared to the 3×3 filters leads to a notable decrease in the model parameters 

in SqueezeNet. 

 

 

Figure 2.8: The squeezed module. 

Source: (Iandola et al., 2016) 

 

 Besides, the MobileNet-v1 architecture was the first to ever utilize a 

depth-wise separate convolution method as a parameter reduction technique. 

This technique deconstructs traditional convolutions into two distinct stages: a 

depth-wise convolution that makes use of filters that are applied independently 

across each input channel, and a pointwise convolution that performs 1×1 
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convolutions over all the channels at the same time (Howard et al., 2017). 

Comparatively, this decomposition approach has a profound effect in reducing 

the number of parameters required to be trained. As a consequence, architectural 

designs will be more streamlined and efficient. 

To look for ways of making the already successful MobileNet-v1 even 

better, the MobileNet-v2 architecture conceptualized the inverted residual 

sparse architecture that facilitates the development of more compact models. 

This implementation of structure uses the operation sequence consisting of 1×1 

convolutions depth-wise separable convolutions and linear functions (Sandler 

et al., 2018). Via this well-designed structure, MobileNet-v2 reaches even lower 

parameters and much higher performance in comparison with others, this move 

is bringing efficiency to the next level. 

 The NASNet architecture achieves parameter optimization by 

dynamically searching for optimal convolution layer combinations (Zoph et al., 

2018). Starting with an architecture that has been tested on a limited dataset, the 

algorithm searches and tweaks the configuration, ultimately expanding to a 

larger dataset for validation. The NASNet portable version specialized to run on 

resource-limited environments comprises sparsely connected convolution 

layers with variable filter sizes (1×1, 3×3, 5×5, and 7×7), which makes the 

model power and efficient (Vieira et al., 2022). 

 

2.3.3 Recurrent Neural Network Architecture (RNN) 

The Recurrent Neural Networks (RNNs) are being utilized in current research 

projects, recognized as studying powerful learning tools that can recursively 

compute new states by applying a series of transfer functions to prior states and 

inputs. Such transfer functions, in most cases, will include the initial affine 

transformation along with the nonlinear operations, which will be adapted as 

per certain specific problem scenarios. Mass et al. breakthrough study offers 

RNNs using the universal approximation property to model accurate nonlinear 

system complexities with the highest possible precision (Maass et al., 2007). 

RNNs' architecture is essential since it determines the information flow 

between neurons and subsequently influences the network's learning efficiency. 

RNNs can forecast future outcomes when fed sequential data in predictive tasks 

due to optimization techniques such as gradient descent, which are primarily 
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based on the minimization of the difference between predicted and actual 

outputs. A unique and surprising thing about RNNs with good training examples 

may also have generative capabilities of producing sequences similar to training 

data. 

The structural anatomy of a basic RNN is made up of interconnected 

input, hidden, and output nodes, which are tightly woven into a dense dynamic 

topological graph (Koutník et al., 2014). Time-shift operators come with the 

ability of nodes to tap into past and future temporal data, leading to the possible 

capturing of complicated temporal dependencies. Though conceptually 

representable, the practical application of RNNs may face difficulties, such as 

collecting established techniques along with the quicker development of 

architectural designs. 

The resolution of such issues might be provided with the use of 

different methods of training that include conventional gradient-based learning, 

real-time recurrent learning, and evolutionary algorithms (Bianchi et al., 2017). 

There may be new ways being discovered, but the effective training of RNNs 

remains a daunting task that requires a good deal of expert knowledge, which is 

a sign of their complexity. Besides, there are RNN variants utilizing different 

training strategies that are no longer based on gradient calculations to reach 

acceptable results. 

 

 

Figure 2.9: RNN architecture. 

Source: (Arias et al., 2022) 
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2.3.4 Long Short-Term Memory (LSTM) 

The LSTM architecture which was proposed by Hochreiter and Schmidhuber in 

the year of 1997 is an accurate recurrent neural network that can deal with the 

exploding or vanishing gradient problems that are faced during the training 

process of the neural networks as well as across the long dependencies range 

(Hochreiter and Schmidhuber, 1997). This model utilizes a unique method 

referred to as the constant error carousel (CEC) in which these units are 

integrated with an internal error signal. The fact that the patterns are repeated 

and perfectly executed may indicate an intentional design. They include both 

input and output gates for their operation (Van Houdt et al., 2020). On top of it, 

the recurrent loops can operate in a way where a one-step delay of feedback 

becomes possible. 

 A comprehensive investigation into the performance of various LSTM 

variants was conducted by Greff et al. in their study titled "LSTM: A Space 

Odyssey" (Greff et al., 2015). They compared eight LSTM configurations that 

were used in three different tasks: speech recognition, handwriting recognition, 

and polyphonic music modelling. These changes were represented by various 

modifications including input, forget, or output gates switch-off, aggressive 

activation functions, coupled gates, peephole connections, and recurrent gates. 

The study strictly used activities of the normal activation functions which 

include sigmoid and hyperbolic tangent functions. In addition to that, the role 

of hyperparameters including hidden layer size, learning rate, momentum, and 

input noise in performance was investigated, only through an experimental 

procedure in which random values were selected within specific ranges to avoid 

exhaustive testing. Among the bottom lines, it can be seen that the learning rate 

plays the central role, and after comes the hidden size layer. Intriguingly, the 

inclusion of noise at the inputs was found to decrease the accuracy and to 

lengthen the training length as well (Bolboacă and Haller, 2023). Surprisingly, 

system inertia did not display any evident impact on performance and training 

variables. However, after all tests were done, LSTM showed itself to be a strong 

competitor among the other alternatives when compared. 

 Moreover, in the year of 1997, Schuster and Paliwal proposed the 2 

separate networks as Bi-directional Recurrent Neural Networks (BRNNs), the 

data could be processed from both directions (Schuster and Paliwal, 1997). This 
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way was favourable within this context that the beginning and end of data were 

known in advance, for example within phoneme boundary estimation. A BRNN 

is a network in which neurons are split into feed-forward and feedback states 

thus granting the network processing capabilities in both directions of time flow. 

Moreover, in the year of 2018, Aziz Sharfuddin et al. offered the use of BiLSTM 

which employs two LSTM layers, one for the memory of events in the past and 

the other for predictions about future states (Aziz Sharfuddin et al., 2018). 

Similar to Zhao et al. in the year of 2018 as well, the BLSTM architecture was 

explained, and the language of BiLSTM emphasized the back-and-forth 

structure of bidirectional flow and unidirectional flow between input, hidden, 

and output layers (Zhao et al., 2018). 

 

Figure 2.10: BiLSTM architecture. 

Source: (Aziz Sharfuddin et al., 2018) 
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2.3.5 Hybrid CNN + LSTM Architecture  

In the year 2023, the authors, Tiwari et al. provided an entirely new concept to 

detect violence by taking advantage of the key factors of Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory (LSTM) networks (Tiwari et 

al., 2023). The proposed method by the authors uses CNN and LSTM hybrid to 

detect the violent activities in the surveillance footage. By doing this they 

capitalize on the advantages given by each type of neural network. As a result 

of thorough investigations and side-by-side studies, it was established that by 

using a hybrid CNN-LSTM model performance of such methods was improved 

in terms of accuracy. Recognizing the abnormality, the model had an accuracy 

of 98.63% in identifying violent behaviours present in video sequences. 

 Furthermore, another approach uses 2D spatio-temporal convolutional 

networks (STCNN) to extract the local features and then incorporate recurrent 

networks (RNN) to improve the refinement. The utilization of this holistic 

method offers not only computational effectiveness in execution but also brings 

about the promise of good results that can be seen (Traore and Akhloufi, 2020). 

First and foremost, Abdali and Al-Tuma in the year 2019 used VGG19, which 

was initially used on the ImageNet dataset as a method of feature extraction. 

The extracted features are fed into a long-short term memory (LSTM) for further 

processing and then are taken through a time distributed fully connected layer 

through which violence is detected. The success of this technique was confirmed 

across the datasets of the Violent Flux, Hockey, and Movies, and it returned 

competitive performance.   
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Figure 2.11: VGG19 with LSTM model. 

Source: (Abdali and Al-Tuma, 2019) 

 

Moreover, in the year 2020, Halder and Chatterjee proposed a study 

consisting of utilizing a CNN-BiLSTM model for verifying violence in 

sequential video frames (Halder and Chatterjee, 2020). First, video frames are 

being extracted and are going to pass through the CNN for a feature extraction 

process. Afterward, a Bidirectional LSTM block is formed that analyses past 

and future frames along with current frame information to identify temporal 

patterns of violence. Then, a classifier identifies if there are any violent types of 

human behaviours and patterns balancing in both spatial and temporal features, 

which results in highly upgraded accuracy prediction analysis. The proposed 



25 

CNN-BiLSTM model demonstrates a great performance, with accuracies being 

99.27%, 100%, and 98.64% correspondingly to the Hockey Fight, Movie, and 

Violent Flow sets respectively, and superior to the majority of other methods. 

Significantly, it is lightweight, which means it has minimal training time and 

fewer epochs than the previous models. 

 

 

Figure 2.12: CNN-BiLSTM model. 

Source: (Halder and Chatterjee, 2020) 
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2.4 Summary 

The comparison of the deep learning models is based on the literature review of 

different deep learning models that have successfully detected violent and 

nonviolent behaviour in different datasets with high performance. Thus, these 

deep learning models are compared based on their accuracy, which measures 

their capability to distinguish between violent and nonviolent behaviour. 

 

Table 2.1: Comparison of different deep learning models. 

Model Datasets Accuracy (%) 

3D SPIL (Su et al., 2020) RWF-2000: 2000  

Hockey-Fight 

Crowd 

Movies-Fight 

89.30 

96.80 

94.50 

98.50 

SqueezeNet (Vieira et al., 

2022) 

Violence: 1193 

Nonviolence: 1477 

87.00 

MobileNet-v1 (Vieira et 

al., 2022) 

Violence: 1193 

Nonviolence: 1477 

90.00 

MobileNet-v2 (Vieira et 

al., 2022) 

Violence: 1193 

Nonviolence: 1477 

92.00 

NASNetMobile (Vieira et 

al., 2022) 

Violence: 1193 

Nonviolence: 1477 

90.00 

CNN-LSTM (Tiwari et al., 

2023) 

Violence: 5842 

Nonviolence: 5231 

98.63 

VGG19-LSTM (Abdali 

and Al-Tuma, 2019) 

Hockey-Fight: 1000 

Hockey-Fight + Movie-

Fight: 1259 

98.00 

94.77 

CNN-BiLSTM (Halder and 

Chatterjee, 2020) 

Hockey-Fight:  1000 

Movie-Fight: 200 

Violent Flows: 246 

98.78 

99.66 

98.18 

 

 Based on Table 2.1, the highest accuracy performance is the CNN-

BiLSTM model which achieves 99.66% for the Movie-Fight datasets, whereas 

the second highest accuracy performance is still the BiLSTM model due to it 
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achieving 98.78% accuracy. Although BiLSTM achieves high accuracy among 

others, the datasets they use are smaller than other models. Thus, the CNN-

LSTM model comes in better in the case of relatively larger datasets where the 

model achieves a satisfactory 98.63% accuracy rate value. It is also worth 

mentioning that CNN-LSTM accuracy is lower than that of CNN-BiLSTM, 

with a difference of about 0.15% in the accuracy level if compared with the 

Hockey Fight dataset. Therefore, the CNN-BiLSTM and CNN-LSTM have the 

highest accuracy performance among others. 

Using the CNN model which requires large resources might cause a 

delay in the prediction time. The consequence of the delay in time to predict 

violent behaviour might be a concern. Therefore, the MobileNetV2 model may 

help to prevent such issues due to it is a lightweight CNN model which suitable 

for mobile devices or low power devices. The MobileNetV2 itself scores a 92% 

accuracy as shown in Table 2.1, which is higher than the other 3 independent 

CNN models.  

In conclusion, this research project focuses on using MobileNetV2 

with LSTM to test the overall performance and improve the accuracy of video-

based violence detection.  
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

The methodology for violence detection using deep learning involves building 

a model that accurately predicts the behavior of violence in public videos 

through feature extraction, classification using a deep learning classifier, and 

sequential pattern recognition.  

 

3.2 Experimental Setup 

This section's main aim is to demonstrate the project's employed hardware and 

software infrastructure, which are shown in Table 3.1. 

 

Table 3.1: Hardware and Software Specifications. 

Hardware CPU 9th Gen Intel(R) Core(TM) i5-9300H CPU @ 

2.40GHz 

8 GB RAM 

GPU NVIDIA GeForce GTX1050 

Software Kaggle / Google Collab 

Python Libraries (Tensorflow, Keras, Open CV) 
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3.3 Workflow plan 

Figure 3.1 presents the workflow flowchart, with each step explained in detail 

in the subsequent sections.  

 

 

Figure 3.1: Flowchart for the Entire Workflow. 
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3.3.1 Data Collection 

The dataset for this project is mainly video which is similar to the CCTV footage. 

Thus, this video dataset contains quite a few types of actions and situations that 

can be found in the conditions of surveillance systems. Each video clip in this 

dataset is a session of footage in which events and behaviour in the monitored 

areas are captured and this visual data provides a good substratum of 

information for analysis and modeling. Moreover, the dataset also includes 

indoor and outdoor environments which consist of violent or nonviolent 

behaviour. Besides, the video datasets also consist of videos along with violence 

and nonviolence labels. The labels depict what the video shows, including 

violent or nonviolent behavior in the footage. These representations act as the 

ground truth annotation for training and for the evaluation of the deep learning 

models and henceforth supervised learning approaches for violence detection 

and classification tasks can be performed. The dataset is an online source from 

Kaggle and contains 1000 videos for violence and 1000 videos for nonviolence. 

The datasets consist of real-life situations that stimulate the CCTV footage due 

to the quality of the video being similar to CCTV footage. Moreover, there will 

be another dataset used for this research as it contains 2,486 videos in total, 

which have 1199 videos as violence and 1287 videos as nonviolence. This 

dataset will be further preprocessed by lowering the contrast to stimulate a dark 

environment video and allow the model to train. 

 

Table 3.2 Summary of Dataset Used 

Dataset Total Videos Violence Video Nonviolence Video 

Real Life Violence 

Situations Dataset 

(Soliman et al., 

2019) 

2000 1000 1000 

Smart-City CCTV 

Violence Detection 

Dataset (SCVD) 

(Aremu et al., 

2024) 

2486 1199 1287 
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3.3.2 Data Preprocessing  

In the preprocessing stage, several important steps are required to prepare the 

video data, before putting it into the deep learning algorithms to train it.  

 

3.3.2.1 Video Frame Extraction 

Initially, frames are extracted from the video files to produce a series of frames 

in which each sequence forms a single video sample. These frames record the 

temporal changes of scenery and become the fundamental decisive factor for the 

subsequent analysis. Consequently, to make sure that images of the same size 

are used across all frames, each frame undergoes resizing to a fixed height and 

width, which could be set as 64x64 pixels. The size standardization is achieved 

to ensure uniformity in spatial dimensions. This avoids any interference with 

the neural network model processing such as distortion and blurriness. 

 

3.3.2.2 Normalization 

After the pixels are resized, each frame intensity value is normalized in the range 

0 and 1. This normalization process includes dividing every pixel value by 255, 

whereby the intensity values of all the frames are standardized. Therefore, it is 

necessary for problem-handling with feature scaling and model learning 

processes.  

 

3.3.2.3 Video Dataset Construction 

After that, the dataset is constructed by iterating through one video file after 

another in the dataset directory. Then, the video is split into individual frames 

next, which form a series. The set of these frame sequences that are grouped 

with either violent or non-violent class labels is then added up to form the 

dataset. 

 

3.3.3 Data Splitting 

In the data splitting process, the dataset is divided into three distinct subsets: a 

training data sample, a validation data sample, and a test data sample. This 

delimitation is of great importance for acquiring and refining the model that is 

free from any errors and then this model is used to assess the model's 

performance. Therefore, the data are divided as a training set of 85% while a 
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15% split is allocated to the testing sets. The validation sets will further split 15% 

out of the 85% of training sets in the training model. Thus, this manner of 

distribution gives samples that will be used for model training and validation 

which are the necessities, and also for verifying the performance of the model. 

 

3.3.4 Fine Tuning 

Following the data division, the CNN model is applied as a feature extractor, an 

approach that uses its pre-trained weights to capture key features from the input 

images. The upper layers of CNN, which are meant for classification tasks, are 

skipped to enable the model to be trained on violence detection. Fine-tune is 

then done by making the last 40 layers trainable and freezing the rest of them. 

In this way, selective tuning helps the model to remain faithful to the feature 

information learned from the pre-trained weights and simultaneously match it 

to the particulars of the violence detection task. 

 

3.3.5 Model Architecture 

The model architecture is similar as shown in Figure 2.12, the starting of the 

architecture is the input layer taking a 5D tensor that represents sequence length, 

image height, image width, and color channels (RGB). The convolutional 

backbone is a set of four residual blocks, each block contains three 

convolutional layers with 3x3 kernels, after which a batch normalization and 

ReLU activation takes place. The number of filters in each block is 64, 128, 256, 

and 512 in this order. Through residual convolutional blocks, these spatial 

features are extracted from the individual images and then fed into the 

TimeDistributed layer, which are feature maps. 

The TimeDistributed layer denotes the convolutional backbone applied 

separately to all time steps of the input sequence, enabling the extraction of 

spatial features on individual images within the stream. The output of the 

TimeDistributed layer is transformed through a TimeDistributed Flatten layer 

to a single dimension with all spatial features combined. Then 256 units of 

BiLSTM layer process the earlier flattened feature maps with temporal 

dependencies and context in both past and future sequences. 

The output of the bidirectional LSTM is passed to two fully connected 

layers with 256 and 128 units, respectively using ReLU activation. Dropout 
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operation with a rate of 0.3 is done after dense layers to prevent overfitting. The 

following layer is a dense layer with a SoftMax activation function, which can 

achieve class probability scores for the predefined classes. 

 

3.3.6 Model Training 

The training methodology commences by setting up two essential callbacks: 

Early stopping and learning rate reduction. The callback for early stopping is 

looking into the validation accuracy after every epoch, thus terminating the 

process immediately without any improvement over an assigned number of 

epochs and, hence avoiding overfitting. On the same lines, the callback 

ReduceLROnPlateau also decreases the learning rate if the validation error is 

approaching the plateau, leading to better training and preventing the overfitting 

issue.  

Upon setting the callbacks, the model is compiled using categorical 

cross-entropy for its loss function, stochastic gradient descent as its optimizer, 

and accuracy as its evaluation metric. An epoch is set in which 8 batches are 

used with data shuffled before every epoch to achieve generalization. In addition 

to that, 15% out of 85% portion of the training data is reserved for validation 

which makes sure the model is evaluated on unseen data during training. These 

callbacks EarlyStopping and ReduceLROnPlateau are implemented to keep 

track of the training dynamics and adjust the learning rate as needed. 

 

3.3.7 Model Evaluation 

Next is to evaluate the trained model using two graphs, one is the total loss 

versus the total validation loss and the other is to demonstrate the total accuracy 

versus the total accuracy in the validation. Through the analysis of these graphs, 

it will evaluate how well the model performs in terms of loss decrease and 

accuracy improvement throughout the training process. 

 

3.3.8 Model Testing 

The testing process of the model starts by making predictions based on the 

model parameters learned from the training phase. Then, the calculated labels 

are compared with true labels to determine prediction accuracy. Besides, the 

confusion matrix and heatmap are used to provide a look into the model's 
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accuracy in distinguishing between various classes through true positive (TP) 

and true negative (TN), which are determined as successfully classifying 

violence and nonviolence respectively. False positive (FP) and false negative 

(FN) are determined as misclassifying violence and nonviolence respectively. 

A classification report is also generated to provide exact precision, recall, and 

F1-score for each class of data to measure the performance of the classification 

model. Hence, some of the calculations of the evaluation metrics also can be 

used for the testing phase, which is listed below (James et al., 2013): 

 

Evaluation Metrics Equation:  

 

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (2) 

 

 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (3) 

 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
    (4) 

 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (5) 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (6) 

 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (7) 

 

 

 Besides, to measure the efficiency of the particular model to classify 

the positive and the negative classes of data, there is a standard metric called the 



35 

Receiver Operating Characteristic (ROC) curve. The ROC curve is used to 

represent the specificity and sensitivity different values of a decision threshold 

takes when being used to classify patterns in a data set. Based on Figure 3.2, a 

fertile quantity that is obtained from the ROC curve is called the Area Under the 

Curve (AUC), which measures the performance of the model across various 

probabilities. If the AUC is close to 1, this means that the classifier has a high 

capacity for separating one class from another; if its value is 0.5 means the 

performance level similar to one that is based on chance. 

 

 

Figure 3.2: ROC and AUC graph 

Source: (Evidently AI Team, n.d.) 

 

 In summary, precision and recall will be more focused on this research. 

Due to the main focus is to minimize the false positive (FP) and false negative 

(FN) as much as possible to prevent causing issues such as false prediction or 

miss predict before proposing to integrate into real-world systems. Moreover, 

the implementation of the ROC curve along with its AUC promotes such kind 

of evaluation by ensuring a more overall assessment of the model’s performance 

within any possible decision thresholds, thus providing robustness in varying 

situations. 
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3.3.9 Histogram Equalization 

The test video frames are divided into: Normal, Night vision, Dark, and Very 

dark video. Therefore, to improve the video quality, a histogram equalization 

was performed on the test video frames, and this technique redistributes the 

brightness values (luminance) of an image to achieve a more uniform histogram 

thereby leading to an increase in contrast. 

The function then applies the color space conversion on the test video 

reads it through a frame by a frame manner and then passes through the YCrCb 

color space, which is a color space that relays the luminance details of an image 

through the Y channel and the color details through the Cr and Cb channels. A 

Contrast Limited Adaptive Histogram Equalization (CLAHE) is then applied to 

the Y channel, in contrast to the normal way of applying CLAHE directly to all 

three color planes. Unlike the standard histogram equalization, it operates by 

constraining the contrast in some parts of the image to prevent over 

enhancement of contrast and noise amplification. It could be of great help in 

videos where parts of the frame may have different light conditions from the 

other parts. 

The obtained adjusted brightness channel is then combined with the 

CLAHE processed Y channel to get the final CLAHE processed frame in the 

standard BGR color space. The modified frame is then stored in the output video 

with the additional frame. 

 

3.3.10 Video Prediction 

3.3.10.1 Prediction Frame by Frame 

Each frame in a video goes through pre-processing again such as resizing and 

normalization. After that, the frame is appended to a deque (double-ended queue) 

with a maximum length set to 16, this is to make sure that a sequence of frames 

is fixed length. After decking a sequence of frames, equal to the number of 

frames specified, the sequence is passed through the pre-trained model. This 

sequence is fed in the model that gives this particular sequence a set of output 

probabilities for different class labels. The final classification label of the 

sequence is then determined to be the class label with the highest label 

probability. It designates the action or event in the video as conceived by the 

model at the above given time. 
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Moreover, once the sequence length is reached, the frames are 

visualized for prediction by a pre-trained model. The predicted class label is 

then written on the current frame to label it or simply to identify it. To improve 

the readability of the results, labels get distinguished based on the color – the 

“Violence” label is in red if the content is violent, and in green otherwise. Said 

frame is then written to an output video file where it is stored with the visual 

representation of the model’s predictions for further analysis. 

At the end of the processing of all frames in the video, the output 

processed video becomes accessible in frames for review on individual frames. 

The class label of the image is predicted at each frame, which gives a full view 

of how the model’s prediction is made gradually. Also used is a function, to 

review the frames chosen by the algorithm randomly from the processed video, 

so there is no need to review the whole sequence to evaluate the model outcomes 

at different moments of the video. 

 

3.3.10.2 Prediction by Video 

When making predictions about the video whether it contains violent or 

nonviolent behaviour, the video will be extracted from the main information 

such as width, height, and length of the video. After that, the frames are sampled 

from the video sequence in an ordered manner, where it is adjusted so that all 

frames are equally represented. For each given frame, it will go through pre-

processing again before putting into the pre-trained model. Once the input 

frames are placed the pre-trained model will predict and calculate the class 

probabilities for each frame of the video. Once the probabilities are then 

computed the model assigns the label with the highest probability as the 

predicted label. The name of the corresponding class is also read from a 

predefined list of classes. Furthermore, the result visualizes the confidence 

scores of the prediction and these scores are useful as a pointer to instructively 

give insight into the model’s prediction accuracy. 
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3.4 Violence Detection Models 

3.4.1 Base Model 

This flow contains the training of the base model (MobileNet-v2 with the 

BiLSTM) and testing the base model. The flow includes all the orange colour 

steps which are highlighted in Figure 3.1 and also the video prediction with the 

test video. Then it will categorize into video prediction frame by frame and the 

entire video sequence. 

 

3.4.2 Model Trained on Videos with Varying Lighting Conditions 

The base model area is trained with an additional video dataset which contains 

varying levels of darkness, and also with the original dataset trained with it. This 

flow is almost the same as the base model, the only difference will be adding 

the videos with varying levels of darkness dataset. The purpose of this flow is 

to enhance the model’s effectiveness and record the time taken to train the model. 

 

3.4.3 Base Model with Histogram Equalization Enhancement 

Histogram equalization is applied to the test video rather than during the training 

dataset. After the base model has been trained, the histogram equalization is 

used to preprocess the test video. This eventually improves the contrast of the 

video frames, and the trained model is then used to predict the result of the 

preprocessed test video. 

 

3.5 Gantt Chart 

Gantt chart is a comprehensive visualization of the project schedule which 

allows effective time management, assessing the order of precedence of the 

tasks, and the identification of interdependency.  

The following section describes the details of every methodology that 

has been used in each research phase which will be illustrated by the Gantt chart 

of timelines. This integrated approach seeks to clarify and disclose the process 

of monitoring the execution of the research project according to the agreed-upon 

time frames and milestones in a bid to remain on track. Figures 3.3 and 3.4 show 

the gant chart for fyp1 and fyp2. 
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Figure 3.3: Gantt Chart for FYP1. 

 

 

Figure 3.4: Gantt Chart for FYP2. 
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3.6 Summary 

In this research project, the overall workflows are data preprocessing, splitting 

the data, applying fine tuning, building the model architecture, model evaluation, 

model testing, and using the trained model to predict the entire video and frame 

by frame. The research used three types of models: the base model starts with 

training the MobileNet-v2 with BiLSTM and tests it on standard data; the model 

trained on videos with varying lighting conditions improves the base model by 

training more datasets with different levels of darkness; and the base model with 

histogram equalization enhances the base model in video prediction on test data 

and enhances the prediction output from the trained base model.  
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CHAPTER 4 

 

4 RESULS AND DISCUSSIONS 

 

4.1 Introduction 

This research aimed to improve the performance of the violence detection model 

by adding image processing before apply to the trained model. This section 

provides the evaluation of the proposed enhancements and insights into the 

accuracy/computational efficiency trade-offs. 

 

4.2 Performance Evaluation of the Base Model: MobileNet-v2 with 

BiLSTM 

The performance of the base model which is the MobileNet-v2 with BiLSTM 

was assessed using several key evaluation metrics such as precision, recall, F1 

score, and accuracy. The results of these metrics are shown in the table below: 

 

Table 4.1 Evaluation Metrics for Base Model (MobileNet-v2 with BiLSTM) 

Evaluation Metric Value 

Precision 0.93 

Recall 0.93 

F1 score 0.93 

Accuracy 0.93 

 

 As the table above demonstrates across all the evaluation parameters 

with precision, recall, F1 score, and accuracy all four stand at 0.93. This 

supports the base model’s capabilities in correctly predicting positive samples 

and holding lower levels of both false positive and false negative rates.  
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4.2.1 Confusion Matrix of Base Model 

Besides, the base model was also evaluated by using the confusion matrix as 

well. 

 

 

Figure 4.1 Confusion Matrix of Base Model 

  

 In the confusion matrix shown in Figure 4.1, the first row corresponds 

to the non-violence class, and the second row corresponds to the violence class. 

The values reveal that the model classified 98 actual instances of violence (true 

positive) while 88 actual instances of non-violence (true negative). However, it 

classified 11 non-violence cases as violence (False Positives) whereas it failed 

to recognize 3 actual violence cases (False Negatives).  

 

 

 

 

 

 

 

 

 



43 

4.2.2 Evaluation of the Receiver Operating Characteristic (ROC) Curve 

for the Base Model 

Lastly, the ROC curve graph is used to evaluate the performance. The ROC 

curve plots the True Positive Rate (sensitivity) against the False Positive Rate 

at increasing threshold values and thus gives an overall idea of how the model 

discriminates between the classes. 

 

 

Figure 4.2 ROC Curve Graph 

 

 Based on the ROC curve graph shown in Figure 4.2, a strong upward 

trend is shown which curved towards the top left corner of the graph. This means 

that the model performs well, where it has a high true positive rate and a low 

false positive rate across different thresholds. Another measure complementary 

to this is the area under the ROC curve (AUC) of the classifier where a value 

closer to 1 indicates better classifier performance in terms of classifying. The 

AUC indicates that the base model can nearly classify between violence and 

non-violence cases and help the classification module for total robustness. 

 

4.2.3 Example Results of Base Model Prediction 

The base model undergoes two different predictions: predicted as frame by 

frame (examples shown in Figures 4.3, 4.5, and 4.7) and predicted as an entire 

video sequence (examples shown in Figures 4.4, 4.6, and 4.8).  
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Figure 4.3 Prediction as Frame by Frame in Normal Condition 

 

 

Figure 4.4 Prediction as Entire Video Sequence in Normal Condition 
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Figure 4.5 Prediction as Frame by Frame in Dark Condition 

 

Figure 4.6 Prediction as Entire Video Sequence in Dark Condition 

 

 

Figure 4.7 Prediction as Frame by Frame in Very Dark Condition 

 

 

Figure 4.8 Prediction as Entire Video Sequence in Very Dark Condition 

 

 

 



46 

4.3 Comparison of Violence Detection Models Across Different 

Lighting Conditions 

To evaluate the performance of the deep learning models, three different 

approaches can be used which are shown in Table 4.1. At first, the models were 

trained on a normal dataset on top of the MobileNetV2 architecture in 

combination with the BiLSTM model. This approach served as the baseline for 

evaluating the model's accuracy. Next, the baseline model was added with more 

dataset containing videos with varying levels of darkness, along with the normal 

dataset. Finally,  the baseline model was trained with the normal dataset, 

however during the testing phase the videos were subjected to histogram 

equalization to increase the performance of the baseline model. Additionally, 

the test videos in this section which are used for video prediction for all three 

models are fixed at 30 fps, 5 seconds in length and original resolution. 

 

 

Figure 4.9 Accuracy Comparison Across Three Models Across Different 

Lighting Conditions 

 

Based on Figure 4.9, the comparison of three models under varying 

lighting conditions provides insights into the effectiveness of different 

approaches to handling varying levels of lighting conditions. The base model, 

MobileNet-v2 coupled with BiLSTM gives good accuracy under normal light 

conditions with an accuracy of 0.963. However, accuracy reduces significantly 

as the lighting levels decrease giving an accuracy of 0.875 in dark conditions, 
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but is similar to the base model with histogram equalization and model trained 

on the videos with different levels of darkness. However, it shows an accuracy 

of 0.249 and 0.063 under very dark conditions and night vision conditions, the 

lowest performance compared to the other two models. 

The performance of the model trained on the videos with different 

levels of darkness is quite impressive across the entire range of lighting 

conditions. This model gives the highest accuracy in normal lighting at 0.992 

and maintains nearly perfect performance even in very dark conditions with an 

accuracy of 0.999. 

The base model with histogram equalization during the test phase 

demonstrates a significant increase in accuracy under all low-light conditions. 

The accuracy is slightly lower than the model trained with varying levels of 

darkness videos. It shows an accuracy of 0.989 under normal lighting conditions, 

0.944 under dark conditions, and 0.922 under very dark conditions. However, 

under night vision conditions, the histogram equalization approach outperforms 

the model trained with varying levels of darkness videos, 0.996 versus 0.970. 

Thus, this indicates that the base model with histogram equalization is 

able to give similar accuracy to the trained model with varying levels of 

darkness videos. It is worth mentioning that the proposed histogram 

equalization does not require extensive datasets and training, yet achieves 

comparable accuracy. 

 

4.4 Analysis of the Proposed Flow of Base Model with Histogram 

Equalization 

4.4.1 Performance of Different Video Frame Rates 

The frame rate of the video data not only impacts the performance of analysis 

models that operate on videos but also has implications for the time necessary 

to execute operations such as histogram equalization. This section explores the 

trade-off between precision and performance based on frames per second (FPS). 

 



48 

 

Figure 4.10 Accuracy Across Different Video Frame Rates 

 

 The findings of the experiment reveal that raising the video frame rate 

from 10 FPS to 24 FPS results in a significant boost in accuracy, following an 

increase from 0.41 at 10 FPS to 0.85 at 24 FPS. However, as the frame rate rises 

higher than 24 FPS, the improvement in the accuracy is small and remains 

constant at about 0.87 for frame rates of 50 FPS and 60 FPS. This implies that 

even though the higher frame rates increase the degree of accuracy it is not 

proportional and further increases only increase the rate slightly after 24 FPS 

have been reached. 

However, it is still necessary to take into account the dependency of 

the frame rate on the time it takes to apply some filters such as the histogram 

equalization. Reduced FPS means faster frame rates to process because it 

involves fewer frames. This decrease in processing time is especially beneficial 

in contexts, where efficiency and speed are of paramount importance and hence 

lower number of FPS is more reasonable and feasible. 

Therefore, a frame rate of 24 FPS and 30 FPS is recommended as it 

offers a well-balanced trade-off between high accuracy and efficient processing 

time. There is always a gain in accuracy with high frame rates but the difference 

is not very significant and implementation takes time. There is always a gain in 

accuracy with high frame rates but the difference is not very significant and 

implementation takes time. Hence, based on the specifics of the application, it 
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may be more advantageous to accept a frame rate of 30 FPS since the video 

default is set to 30 FPS. Thus, 30 FPS can be focused more on computational 

speed even if marginal improvements in accuracy can be achieved. 

 

4.4.2 Processing Time of Histogram Equalization Across Different 

Video Lengths 

This section examines the findings of the evaluation of the amount of time taken 

to perform histogram equalization on videos across different lengths of videos 

and under different lighting conditions. The analysis focuses on two specific 

scenarios: a very dark environment (Video 1) and a dark environment (Video 

2). The amount of time taken for each processing was recorded and the result 

was graphed as shown in Figures 4.11 and 4.12. 

 

 

Figure 4.11 Processing Time vs. Video Length for Video 1 (Very Dark) 
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Figure 4.12 Processing Time vs. Video Length for Video 2 (Dark) 

 

 The results shown by Figures 4.11 and 4.12 prove that there is a direct 

positive correlation between the video length and the amount of time it takes to 

process videos in very dark (Video 1) and dark (Video 2). Therefore, the 

processing time training was consistent throughout Video 1, ranging from 1 

second for the 1-second video to 56.05 seconds for a 60-second video. Video 2 

also had a linear pattern but the processing took slightly longer than Video 1 

ranging from 1.04 seconds for a 1-second video to 61.66 seconds for a 60 

seconds video. This indicates that the relationship between histogram 

equalization’s processing time and video length is directly proportional. Hence, 

is it preferred to choose which video length is suitable for particular needs. 

 

 

4.4.3 Performance Improvement Through Reduction of Video 

Resolution 

To enhance the effectiveness in processing histogram equalization for the 

frames of the video, a resolution reduction technique was implemented. This 

technique was used to be able to always maintain the accuracy of the histogram 

equalization while at the same time reducing the computation time required. 
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Figure 4.13 Histogram Equalization Processing Time for One-Second Videos 

under Different Lighting Conditions 

 

As can be seen in Figure 4.13, the overall processing time for the 

histogram equalization was greatly decreased once the resolution had been 

lowered. Indeed, regarding a one-second video, the time for processing dropped 

by roughly 70% if the resolution was decreased. It seems that this effect did not 

vary with different video conditions such as very dark and dark videos. 

 

 

Figure 4.14 Comparison of Accuracy and Histogram Equalization Processing 
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From the above Figure 4.14, the accuracy of the base model has slightly 

changed when the resolution was reduced. The slight decrease in accuracy did 

not adversely affect the positive results of the reduced processing time. This 

proved that accuracy was a stable parameter near 1 at the end of the prediction 

in both cases, confirming that the loss of detail associated with lowering the 

resolution did not affect the model performance when properly identifying and 

categorizing the content of the video input. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In this research, an approach to violence detection in the surveillance video has 

been created and tested using deep learning methodology, particularly 

addressing the problem of lighting condition variability. The baseline model, 

which involved a MobileNet-v2 network model for feature extraction, followed 

by Bidirectional Long Short-Term Memory (BiLSTM) for classification 

achieved a low accuracy when used to predict violent behavior in very dark 

conditions, as it only achieved 24.89% accuracy. To counter this, histogram 

equalization increases the visibility of a very dark test video during the video 

prediction phase thus improving the prediction accuracy to 92.21% regardless 

of the need to retrain the model.  

 In addition to this, another set of video data that contained videos that 

were recorded under different lighting conditions was used to fine-tune the base 

model. This approach also enhanced performance to 99.97%, especially during 

the very dark environment but had the drawback of increased training time as 

compared to the previous methods and even required to find additional datasets 

with varying light conditions which is quite challenging. It was found that, while 

the base model greatly failed in detecting objects from dark videos, both the 

histogram equalization and the additional dataset methods significantly 

engineered enhanced detection rates under such circumstances. 

 In conclusion, the project successfully demonstrated that applying 

histogram equalization to test videos can enhance the performance of a pre-

trained model in low-light scenarios. Additionally, retraining the model with 

diverse lighting conditions also proved effective, although it required greater 

investment in training time and challenges in dataset searching. These findings 

provide valuable insights into optimizing violence detection models for real-

world surveillance applications, particularly in environments with varying 

lighting conditions. 
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5.2 Recommendations for future work 

Based on the research conducted towards the development of this concept, some 

suggestions for future courses of action are suggested below. First, although the 

proposed application of the histogram equalization provided a highly 

appreciated degree of the model’s performance boost in situations with low 

lighting, it is crucial to consider other possible image enhancement approaches 

used under various conditions. Other methods of image processing as changes 

of contrast, removing noise, or edge sharpening could be applied to different 

types of difficult conditions to improve the overall performance of the model in 

various conditions. 

Secondly, future work may investigate how the model performs under 

other effective lighting conditions, the influence of environmental noise, motion 

blur, or partial occlusions. Solving these problems would make the adaption of 

the model more suitable for real world surveillance applications. 

Lastly, there is an opportunity for future development of this research 

through the implementation of the proposed model into an end-to-end 

surveillance system, as well as, assessing its feasibility in real-world 

applications. This could confirm the efficiency of the model in practice and 

identify the improvements required to enhance the process of violence detection 

under various conditions. 
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APPENDICES 

 

Appendix A: Accuracy Comparison Across Three Models for Videos 

Categorized into Four Categories Tables 

 

Model 
Accuracy 

Normal Dark Very Dark Night Vision 

Base Model (Mobile 
MobileNet-v2 and 
BiLSTM) 

 

0.9633 0.8750 0.2489 0.0625 

Model trained on 
videos with varying 
levels of darkness 

 

0.9915 0.9934 0.9987 0.9699 

Base Model + 
Histogram 
Equalization 

 

0.9891 0.9442 0.9221 0.9957 

 


