
 

 

COMPUTATIONAL METHODS FOR A COPULA-

BASED MARKOV CHAIN MODEL 

 

 

 

 

 

 

 

 

 

 

LEE CHIN YEE 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TUNKU ABDUL RAHMAN 

 

 



 

 

 

COMPUTATIONAL METHODS FOR A COPULA-BASED MARKOV 

CHAIN MODEL 

 

 

 

 

 

LEE CHIN YEE 

 

 

 

 

 

 

A project report submitted in partial fulfilment of the 

requirements for the award of Bachelor of Science (Honours) in Applied 

Mathematics with Computing. 

 

 

 

 

Lee Kong Chian Faculty of Engineering and Science 

Universiti Tunku Abdul Rahman 

 

 

September 2024 



i 

DECLARATION 

 

 

 

 

 

I hereby declare that this project report is based on my original work except 

for citations and quotations which have been duly acknowledged. I also 

declare that it has not been previously and concurrently submitted for any 

other degree or award at UTAR or other institutions. 

 

 

 

 

Signature :  

Name : LEE CHIN YEE 

ID No. : 2200494 

Date : 01/08/2024 

 

 

  



ii 

APPROVAL FOR SUBMISSION 

 

 

 

 

 

I certify that this project report entitled “COMPUTATIONAL METHODS 

FOR A COPULA-BASED MARKOV CHAIN MODEL” prepared by LEE 

CHIN YEE has met the required standard for submission in partial fulfilment 

of the requirements for the award of Bachelor of Science (Honours) Applied 

Mathematics with Computing at Universiti Tunku Abdul Rahman. 

 

 

 

Approved by, 

 

 

Signature :  

Supervisor : Dr Tan Wei Lun 

Date : 05/ 09/ 2024 

 

 

  



iii 

 

 

 

 

 

 

The copyright of this report belongs to the author under the terms of 

the Copyright Act 1987 as qualified by the Intellectual Property Policy of 

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made 

of the use of any material contained in, or derived from, this report. 

 

 

© 2024, LEE CHIN YEE. All rights reserved. 

 

 

 

  



iv 

ACKNOWLEDGEMENTS 

 

 

 

 

 

I would like to thank everyone who had contributed to the successful 

completion of this project. I would like to express my gratitude to my research 

supervisor, Dr. Tan Wei Lun for his invaluable advice, guidance and his 

enormous patience throughout the development of the research. 

In addition, I would also like to express my gratitude to my loving 

parents and friends who had helped and given me encouragement. 

 

 

 

 

  



v 

ABSTRACT 

 

Copula-based Markov models have gained recognition as powerful tools for 

capturing intricate dependence structures in time series datasets. This study 

focuses on estimating parameters and assessing the performance of Clayton 

and Gaussian copulas in modelling Laplace distributed time series data. The 

Clayton and Gaussian copulas were chosen due to the Clayton copula’s 

capability to model tail dependencies and the Gaussian copula’s alignment 

with the data’s pseudo-observations. The ten-year daily log return of the 

SPX500 index is used in this study as the preliminary analysis revealed that it 

follows a Laplace distribution rather than the traditionally used t-distribution 

for modelling tail behaviour.  Parameters were estimated using Maximum 

Likelihood Estimation (MLE) and the inversion of Kendall’s Tau, yielding 

feasible results for both copulas. The model’s performance was evaluated 

using the Root Mean Square Error (RMSE), with the Clayton copula achieving 

a lower RMSE of 0.01332 compared to 0.01541 for the Gaussian copula, 

indicating a better fit to the data. This study underscores the importance of 

selecting appropriate copulas, marginal distributions and estimation methods, 

demonstrating that the Clayton copula, combined with MLE, offers superior 

performance for modelling the Laplace distributed SPX500’s daily log returns. 

 

 

 

  



vi 

TABLE OF CONTENTS 

 

 

DECLARATION i 

APPROVAL FOR SUBMISSION ii 

ACKNOWLEDGEMENTS iv 

ABSTRACT v 

TABLE OF CONTENTS vi 

LIST OF TABLES viii 

LIST OF FIGURES ix 

LIST OF SYMBOLS/ ABBREVIATIONS              x 

 

 

CHAPTER 

1 INTRODUCTION 1 

1.1 General Introduction 1 

1.2 Importance of the Study 1 

1.3 Problem Statement 2 

1.4 Aim and Objectives 3 

1.5 Scope and Limitation of the Study 3 

1.6 Contribution of the Study 4 

2 LITERATURE REVIEW 5 

2.1 Introduction 5 

2.2 Review of Copula Models 5 

2.3 Marginal Distribution 6 

2.4 Parameter Estimation Method 7 

3 RESEARCH METHODOLOGY 8 

3.1 Introduction 8 

3.2 Copula Formulation 8 

3.2.1 Clayton and Gaussian copula 9 

3.2.2 Copula-based Markov Model 10 

3.3 Data 11 

3.3.1 Data Preprocessing 11 

3.3.2 Diagnostic Test 131 



vii 

         3.3.3  Copulas Selection            13 

3.4 Parameter Estimation 14 

3.4.1 Maximum Likelihood Estimation 14 

3.4.2 Inversion of Kendall’s Tau 16 

3.5 Simulation 17 

3.6 Result Evaluation 18 

3.7 Flow Chart 199 

4 RESULTS AND DISCUSSIONS 20 

4.1 Introduction 20 

4.2 Obtain Data and Data Preprocessing 20 

4.3 Diagnostic Test 21 

4.3.1 Normality Test 21 

4.3.2 Stationary Test 22 

4.3.3 Distribution Test 22 

4.4 Estimated Parameters 25 

4.5 Evaluation 25 

5 CONCLUSIONS AND RECOMMENDATIONS 28 

5.1 Conclusions 28 

5.2 Recommendations 28 

REFERENCES 29 

 

 

 

 

  



viii 

LIST OF TABLES 

 

Table 2.1: Most important copulas from the Archimedean family 5 

Table 4.1: Estimated parameters of Clayton and Gaussian using MLE 

and Kendall’s Tau. 

24 

 

 

 

 

 

 

  



ix 

LIST OF FIGURES 

 

Figure 3.1: Pair plot and Pseudo-observation. 13 

Figure 3.2: Pseudo-observations of four well-known Copulas. 14 

Figure 3.3: The flow chart of the research methodology 19 

Figure 4.1: Preprocessed data. 20 

Figure 4.2:  Normal QQ-plot of log return. 21 

Figure 4.3: Line  plot of Log return. 21 

Figure 4.4: ADF and KPSS Test results. 22 

Figure 4.5: t-distribution QQ-plot. 23 

Figure 4.6: Laplace QQ-plot. 23 

Figure 4.7: Density histogram compared with Laplace distribution. 24 

Figure 4.8: KS Test results for t and Laplace distributions. 24 

Figure 4.9: Clayton copula and MLE method. 25 

Figure 4.10: Gaussian copula and MLE method. 26 

Figure 4.11: Clayton copula and Kendall’s Tau method. 26 

Figure 4.12: Gaussian copula and Kendall’s Tau method. 27 

 

 



x 

LIST OF SYMBOLS/ ABBREVIATIONS 

 

c(u,v) probrability distribution function of bivariate Copula 

C(u,v) cumulative distribution function of bivariate Copula 

d dimension 

H dependency structure 

θ parameter of Copula 

Φ standard normal cumulative distribution function 

M correlation matrix of Gaussian copula 

I identity matrix 

𝑤 bivariate data in the 1x2 matrix form 

𝐷𝑡 test statistic of Komolgorov-Smirnov test at time t 

𝜇 location of distribution 

𝛼 scale of distribution 

𝐿 likelihood function 

ℓ log-likelihood function 

�̂�𝑡 estimated parameters at time t 

𝜏 Kendall’s Tau 

𝑉 inverse of Copulas 

𝑠𝑡 simulated data at time t 

𝑎𝑡 actual data at time t 

 

CDF cumulative distribution function 

PDF probrability distribution function 

SPC statistical process control 

MLE maximum likelihood estimation 

AR autoregressive model 

MA moving average 

ARMA autoregressive moving average  

ARIMA autoregressive integrated moving average 

MSE mean square error 

RMSE root mean square error 

GARCH generalized autoregressive conditional heteroskedasticity  



1 

CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

"Copula" is derived from Latin meaning "join, bond, tie, or link," and was 

initially introduced by Sklar in a mathematical context to describe the 

relationships between variables. It serves as a multivariate cumulative 

distribution function (CDF) that connects multiple distribution functions to 

their respective one-dimensional marginal distribution functions. (Sun et al., 

2020) This characteristic enables copulas to effectively capture and simulate 

complex dependencies between data points without imposing restrictions on 

marginal distributions. Thus, it is widely applied in the real world to predict 

the multivariate dependencies in diverse fields such as finance, risk 

management, healthcare, and statistical process control (SPC). 

Through decades of theoretical exploration and practical application, various 

types of copulas have emerged, each adept at capturing distinct structures of 

dependence. Notably, the Archimedean and Elliptical copula families have 

played significant roles in real-world scenarios. Additionally, Darsow et al. 

(1992) introduced copula-based Markov chain models tailored to fit serially 

dependent time series data. This methodology has since been widely embraced 

by researchers for analyzing both continuous and discrete datasets. 

 

1.2 Importance of the Study 

In this digital age, data and big data have become the driving forces behind 

technological advancements. The ability to analyze data, make inferences, and 

draw conclusions is a vital skill set for the current and future generations. By 

developing statistical models that fit the available data, researchers can make 

predictions about future trends and behaviours, providing invaluable insights 

for various industries. 

In the realm of statistical modelling, copula-based Markov models 

have emerged as a particularly potential tool for capturing the intricate 

dependence structures present within complex data sets. These models 
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combine the principles of copula models, which describe the dependence 

structure, with stochastic Markov models, which capture the transition 

probabilistic behaviour of systems evolving. The integration of these two 

concepts has led to a robust framework for modelling intricate, time-dependent 

data with complex dependence patterns. 

The significance of studying computational methods for copula-based 

Markov models lies in their broad applicability across diverse domains. For 

instance, in finance and economics, these models are instrumental in analyzing 

and forecasting financial data, offering insights into market trends and risk 

assessment. (Chen et al., 2022; Dewick and Liu, 2022; D’Amico et al., 2019) 

Similarly, in environmental sciences, it enables the joint modelling of multiple 

environmental variables, such as temperature, sandstorm count, and air quality, 

enabling more accurate predictions of climate patterns and natural disasters 

(Pepi et al., 2024; Alqawba and Diawara, 2020).   

Moreover, these models have applications in areas like healthcare, 

where they can model the survival data and dependent terminal events like 

death (Huang et al., 2020). In manufacturing and quality control, copula-based 

Markov models aid in monitoring and optimizing production processes by 

capturing the intricate relationships between process variables and product 

quality (Kim et al., 2019; Huang and Emura, 2022). 

In short, the significance of studying computational methods for 

copula-based Markov models lies in their potential to unlock the power for a 

wide range of real-world applications, spanning diverse sectors and offering 

valuable insights for decision-making and problem-solving. 

 

1.3 Problem Statement 

The Gaussian copula is blamed by some experts for the financial crash of 2007 

and 2008. (Dewick and Liu, 2022) However, it's important to recognize that 

different copulas are designed to capture distinct dependency structures 

suitable for various types of data. The issue lies not with the use of the 

Gaussian copula itself, but rather with modelers who may have failed to 

thoroughly understand its properties and applicability. Hence, the crucial 
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aspect is the selection of an appropriate model tailored to fit the specific 

characteristics of the data. 

Furthermore, the critical importance of accurately specifying time-

series parameters to enable the estimation of a correctly-specified copula 

Markov model. Variations in marginal distributions, including symmetries, 

asymmetries, fat tails, and structural breaks, significantly influence the 

estimation outcomes when modelling dependency structures. In cases where 

the marginal distributions are unknown, semi-parametric methods can be 

employed. Otherwise, the parametric methods can be used after the model 

diagnostic is carried out. 

 

1.4 Aim and Objectives 

1. To determine the marginal distribution of the Log return of SPX500. 

2. To estimate the parameters of copula-based Markov models using the 

Maximum Likelihood Method and inversion of Kendall’s Tau method. 

3. To evaluate the performance of the Clayton copula and Gaussian copula. 

 

1.5 Scope and Limitation of the Study 

This study focuses on the computational method of the copula-based Markov 

model under two widely used copulas: the Clayton copula and the Gaussian 

copula. The choice of these two copulas is driven by their prevalence in 

academic research. Numerous studies have studied the performance of the 

Clayton and Gaussian copulas in various applications, providing a solid 

foundation for further exploration.  

Additionally, the data used for analysis is the SPX500 index. The stock 

return is heavy-tailed distributed due to large deviation from the average value. 

Thus, the ability of Clayton to capture tail dependence might show a better fit 

to financial data, which often have heavy-tailed distributions and skewness 

(Sun et al., 2018). 

For parameter estimation, this study employs the Maximum Likelihood 

Estimation (MLE) and inversion of Kendall’s Tau method. Research by Long 

and Emura (2014) indicates that parametric methods, such as MLE, tend to 

outperform semi-parametric approaches. This preference arises from the 
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higher likelihood of achieving a better model-data fit with well-estimated 

parameters. 

While the computational methods developed in this study aim to 

address the challenges associated with parameter estimation and model fitting 

for copula-based Markov models, it is essential to recognize their limitations. 

One significant limitation is the assumption of stationarity in the underlying 

Markov process, which may not hold for certain real-world scenarios where 

the financial time series data exhibits non-stationarity or structural breaks. 

Moreover, the choice of parameter estimation can also impose constraints on 

the range of dependence structures that can be modelled accurately.  

Though the MLE are versatile and widely applicable, they may not 

capture certain intricate dependence patterns present like structural breaks and 

change points. In such cases, a novel change point estimator may be employed, 

which involves the three-state copula model proposed by Emura et al. (2023). 

However, the computational tools for this change point method have not been 

developed yet. 

 

1.6 Contribution of the Study 

This study might have notable contribution by combining the Copula-based 

Markov model with a Laplace marginal distribution, a relatively 

underexplored approach recently in this field. The selection of copula and 

marginal distribution is crucial, as any misalignment between the two can lead 

to poor performance. Thus, the existing R package Copula.Markov is not 

performing well for dataset following distribution other than Normal and 

Binomial. While there has been one prior financial paper utilizing this 

combination, it lacks detailed computational methodology, making this study a 

valuable addition by filling this gap and providing insights for future research. 

(Nadaf et al., 2022) 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

This section primarily delved into a review of the literature concerning copulas, 

copula-based Markov models, and the latest computational methods. The 

focus was examining the fundamental concepts, definitions, and properties of 

these models. Such an exploration serves as a foundational step towards 

identifying viable solutions for subsequent sections of the research. 

 

2.2 Review of Copula Models 

As aforementioned, the idea of a copula was initiated by Abe Sklar in 1969. 

All the copula proposed afterwards were modified based on his concepts. 

There are many families of copula, such as the Elliptical Copulas, 

Archimedean Copulas, Marshall-Olkin Copulas and Extreme-Value Copulas. 

Their corresponding C functions, parameters, generators, and inverse 

generators, are introduced in the following table. 

Table 2.1: Most important copulas from the Archimedean family 

 

 

The pursuit of a "perfect model" for time-series data remains a focal 

point for analysts across various sectors, particularly in finance and economics. 

While existing models like AR, MA, ARMA, and ARIMA have been 

extensively studied and utilized, recent advancements in the application of 
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copulas have garnered attention as a promising avenue in financial modelling. 

(Huang et al., 2020) 

These models primarily address linear dependencies within financial 

time series data. This assumption can be overly restrictive when dealing with 

real-life data, where dependency structures are often complex and challenging 

to capture. The copula Markov model emerges as a viable alternative, offering 

the capability to capture nonlinear and tail dependencies inherent in financial 

time series data (Chen et al., 2022). 

Moreover, copula-based Markov models provide flexibility in 

exploring various types of dependencies within time-series data. These may 

include serial dependencies within univariate data, dependencies between 

variables, or a conditional combination of both. (Kim et al., 2019) Despite the 

limitations of these models and the flexibility offered by copula-based Markov 

models, it may not always represent the optimal choice. The process of 

utilizing copula-based models can be relatively cumbersome, and uncertainties 

surrounding parameter estimation may pose challenges. 

 

 

2.3 Marginal Distribution 

Though not usually mentioned this various studies, determining the marginal 

distribution of each variable is indeed a crucial step in constructing a copula 

model (Nadaf et al., 2022) This process informs the types of parameters to be 

estimated later on which aids in ensuring the accuracy of the proposed model.  

Huang and Emura (2019) introduced a novel package designed to 

assist users in conducting model diagnostic tests, particularly for fitting a 

copula Markov model later on. The stringent normality assumption avoids 

poor performance of the authors' proposed model, which following a Normal 

marginal distribution, underscores the importance of thorough diagnostic 

testing.  

 However, a notable issue observed in various studies is the practice of 

determining marginal distributions without conducting diagnostic tests. For 

instance, Sun et al. (2018) analyzing the log return of SPX500 data concluded 
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that it follows a t-distribution solely based on the violation of normality and 

the presence of fat-tail characteristics. Since the paper focuses on comparing 

the performance of the method of parameter estimation, the performance of the 

copula is not mentioned.  

In contrast, Nadaf et al. (2022) suggest that the Laplace distribution 

provides a better fit for financial data. Nevertheless, it acknowledges that 

copulas can perform adequately as long as a fat-tailed marginal distribution is 

utilized for fitting the data. Hence, the distribution test of these two will be 

performed in this study. 

 

2.4 Parameter Estimation Method 

Researchers have proposed various parameter estimation methods, which are 

typically categorized into parametric and semi-parametric estimations. 

Methods include but not limited to rank regression, Bayesian inference 

methods, inversion of Kendall’s tau, Spearman’s rho, and Optimization-based 

method.  

In a study by Sun et al. (2018), it was found that parametric 

estimators, particularly MLE, outperform semi-parametric estimators and 

provide asymptotically efficient estimates under certain regularity conditions. 

However, it's crucial to acknowledge the limitations of MLE. This includes 

challenges with change points, complex models, and small sample sizes, 

leading to issues like bias, convergence problems, and computational 

challenges. Thus, the Bayesian inferences method is proposed as marginal t-

distribution is used, and a maximization problem will emerge if MLE is used.  

Conversely, Chen et al. (2020) claimed that semi-parametric 

estimators perform equally well for both stationary and non-stationary data, 

suggesting their overall robustness compared to parametric methods, which are 

constrained by the filtration and estimation of marginal distributions. 

In short, while copula-based Markov models offer a promising 

approach to capturing complex dependencies in financial time series data, 

analysts must carefully consider their suitability and weigh the trade-offs 

against the potential benefits, ensuring that the chosen modelling approach 

aligns with the specific characteristics and objectives of the analysis. 
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CHAPTER 3 

3  RESEARCH METHODOLOGY 

 

3.1 Introduction 

This section briefly introduced the research flow and the model formulations 

for specific methods. The flow chart included in the end of this section shows 

the research methodology of this study. There are four main phases including 

data preprocessing, data modelling, simulation and result evaluation. The 

detailed steps in each phase were illustrated and explained in each subsection 

below. 

 

3.2 Copula Formulation 

Copula is a multivariate distribution function of the unit hypercube [0,1]𝑑 in a 

d-dimensional case (𝑑 ∈ ℕ) where the marginal distributions follow uniform 

distributions in the range of [0,1] (Durante and Sempi, 2015). Thus, the 

original copula defined by Sklar is as follows: 

H(x1, x2, … , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)),  

∀(𝑥1, 𝑥2, … , 𝑥𝑑) ∈ ℝ𝑑 

 𝐶(𝑢1, 𝑢2, … , 𝑢𝑑) = 𝐻(𝐹1
−1(𝑢1), 𝐹2

−1(𝑢2), … , 𝐹𝑑
−1(𝑢𝑑)) 

(3.1) 

Some properties of C need to be satisfied. To minimize the 

complexity, the bivariate copula is introduced here as an example to illustrate 

its properties.  

𝐻(x, 𝑦) = 𝐶(F(x), G(y)), ∀(𝑥, 𝑦) ∈ ℝ2 

𝑥 = 𝐹−1(𝑢), 𝑦 = 𝐺−1(𝑣), 

𝐶(𝑢, 𝑣) = 𝐻(𝐹−1(𝑢), 𝐺−1(𝑣)) 

(3.2) 
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The properties (P1) and (P2) proof that the marginal distributions of 

𝑢 and 𝑣 follow uniform distribution in the range of [0,1]. The property (P3) 

shows that the probability mass on (𝑢1, 𝑢2] × (𝑣1, 𝑣2]  is always positive, 

which satisfied the conditions of a cumulative distribution function. (Sun et al., 

2020)  

 

3.2.1 Clayton and Gaussian Copula 

Clayton copula and Gaussian copula belong to two different family, which is 

Archemedian and Elliptical respectively. Thus, both of them have a totally 

different charactheristic in modelling the dependency structures.  

Clayton is widely used to model lower tailed and asymmetric 

dependence. Hence, it is ideal for data showing extreme negative events, like a 

sudden temperature drop. While Gaussian assumes the dependency structure is 

normally distributed, regardless of how the marginal are distributed. Hence, it 

is used to model symmetric dependence without any tail dependence, where it 

treat both extreme high and extreme low values equally. So, the purpose of 

choosing these two models, other than what had mentioned in the other section, 

is to see whether the SPX500 is more to a normal condition or have extreme 

lower dependency. 

 In order to derive the log-likelihood function for the parameter 

estimation afterwards, the PDF of both bivariate Copulas is derived as follow: 

CDF of Clayton Copula: 

𝐶(𝑢, 𝑣) = (𝑢−θ + 𝑣−θ − 1)
−

1

θ (3.3) 

where 

𝜃 ∊ [−1,0) ∪ (0,∞). 

 

PDF of Clayton Copula: 

𝑐(𝑢, 𝑣) = (θ + 1)(𝑢𝑣)−(θ+1)(𝑢−θ + 𝑣−θ − 1)
−

1

θ
−2

 (3.4) 

 

CDF of Gaussian Copula: 
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𝐶(𝑢, 𝑣) = Φ2(Φ
−1(𝑢),Φ−1(𝑣)) (3.5) 

where 

θ ∊ [−1,1], 

Φ is the standard normal CDF, 

Φ2 is the normal CDF with covariance matrix 2x2. 

 

PDF of Gaussian Copula: 

𝑐(𝑢, 𝑣) = −
1

√det(M)
𝑒𝑥𝑝 (−

1

2
(𝒘𝑇(𝑀−1 − 𝐼)𝒘)) (3.6) 

where 

𝐼 is the identity matrix, 

𝑀 is the correlation matrix,  

𝑤 =  (Φ−1(𝑢), Φ−1(𝑣)). 

 

3.2.2 Copula-based Markov Model 

A Markov process is a stochastic process that satisfies the Markov property. 

This property implies that the transition to the next state is determined only by 

the present state, without any influence from previous states, given the current 

state. Formally, a discrete stochastic process 𝑋(𝑡), 𝑡 ∈ 𝑇  ,where 𝑡0 < 𝑡1 <

⋯ < 𝑡𝑛+1, is said to be a Markov process the following condition holds: 

𝑃(𝑋𝑛+1 = 𝑥𝑛+1|𝑋𝑛 = 𝑥𝑛, 𝑋𝑛−1 = 𝑥𝑛−1, … , 𝑋0 = 𝑥0) 

= 𝑃(𝑋𝑛+1 = 𝑥𝑛+1|𝑋𝑛 = 𝑥𝑛) 

(3.7) 

The copula-based Markov Chain model is the combination of Copula 

function and the Markov process. The equations below show the general 

equations for a bivariate copula-based Markov Chain model,  

𝑃(Xn ≤ xn,  𝑋n−1 ≤ xn−1) = 𝐶𝑛,𝑛−1(F(xn), F(xn−1)) (3.8) 

This model maps the copula function to the univariate time series model to 

describe the serial dependencies of a given Markov process.  

 



11 

3.3 Data 

For this study, the widely recognized SPX500 index, which is the Standard 

and Poor’s 500, was used as the data source. It is the stock performance of 500 

largest companies in the United States including Apple, Microsoft, Amazon, 

NVIDIA, etc. Approximately 10 years of daily closing data, spanning from 

January 1, 2010, to December 31, 2019, were considered.  

 

3.3.1 Data Preprocessing 

Due to the extensive time frame required, data is sourced from multiple online 

platforms like Kaggle and FRED. Thus, this process of combining various 

files, ensuring data format alignment, and checking for null or duplicate 

entries. To ensure the reliability of the data, cross-checking with yahoo finance 

data is carried out before proceeding to the next step. Subsequently, around 10 

years span of data is extracted for further modelling purposes and performance 

evaluation. Following this, the logarithmic return of the closing price is 

computed using the training data. The equation for logarithmic return is 

outlined below. 

𝑅 = 𝑙𝑛 (
𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒𝑡

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒𝑡−1
) (3.9) 

 

3.3.2 Diagnostic Test 

When considering parameter estimators over semi-parametric estimators, this 

step becomes particularly crucial. The diagnostic tests such as normality, 

stationarity, and distribution tests are performed using visualization tools and 

statistical analysis as follows, 

 

1. Quantile-Quantile plot (QQ-plot) 

QQ plot is normally used to checked the normality of a distribution. It plot 

the quantiles of the normal distribution against the one of data.If the graph 

showed a diagonal straight line, means that the data is normally distributed, 

otherwise, skewness or heavy tails. It can be used for distribution other 

than normal as well. 

 

 



12 

2. Density plot 

The density plot plots the PDF of a continuous distribution. It is a 

smoothed and perfect version of the distribution thus widely use to 

compare with the real data. Though sometimes it is similar at the first 

glance, it might not necessary following the distribution, further 

investigation like KS test needs to be carry out. 

 

3. Augmented Dickey-Fuller (ADF) test 

ADF is a unit root test widely used to determined whether a time series is 

non-stationary or not. The hypothesis and rejection criteria are as follows: 

𝐻0: The series is non-stationary 

𝐻1: The series is stationary 

a. If the test statistic is smaller than the critical value. 

b. If the p-value is smaller than 0.05. 

 

4. Kwiatkowski-Philips-Schmidt-Shin (KPSS) test 

While KPSS is another test that has the same purpose as ADF, the 

hypothesis is contradict with ADF. 

𝐻0: The series is trend stationary 

𝐻1: The series is non-stationary 

Both the ADF and KPSS  tests are carried out to with the purpose of  

investigate more than just the stationarity of data. This is because the 

combination of rejecting or not rejecting the null hypothesis will hold 

different meanings: 

a. Both concluded stationary. 

b. Both concluded non-stationary. 

c. Only the ADF test indicated stationarity, suggesting difference 

stationarity and warranting further investigation. 

d. Only the KPSS test indicated stationarity, implying trend 

stationarity. 

 

5. Kolmogorov-Smirnov (KS) test 

KS test is a nonparametric method used to investigate the distribution of 

given data. This method utilise the charactheristic of CDF which is always 
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monotonic by comparing it to the computed CDF. The test statistic is 

computed as follow: 

𝐷𝑡 = max
1<=𝑡<=𝑁

(|𝐹(𝑥𝑡) −
𝑖 − 1

𝑁
| , |

𝑖

𝑁
− 𝐹(𝑥𝑡)|) (3.10) 

If the maximum of the test stastistic is larger than the critical value, means 

that there is a significant difference between the data and the distribution. 

In this case, the null hypothesis of following specific distribution will be 

rejected. 

 

This process is essential for capturing unique characteristics such as 

skewness or heavy tails and for validating the stationarity, normality, and 

distribution of the data. It aids in selecting appropriate marginal distributions 

for the time series if ideal results are obtained. Additionally, it ensures the 

reliability and robustness of the parameter estimation process. 

 

3.3.3 Copulas Selection 

Before training and modelling the data, the pseudo-observation of the data is 

visualized which allowed us to further confirm the decision of copula used. 

The pair plot and pseudo-observation do not show any obvious relationship 

between the ‘t’ data and ‘t-1’ data compared to the example of various copulas. 

Thus, the Gaussian and Clayton copula are chosen to model the SPX500 data. 

 

 

Figure 3.1 Pair plot and Pseudo-observation 
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Figure 3.2 Pseudo-observation of four well-known Copulas 

 

3.4 Parameter Estimation 

After that, the values for the parameters of the copula models were estimated 

using both MLE and inversion of Kendall’s tau method. In this subsection, the 

formulation of MLE and Kendall’s tau is shown followed by the computation 

algorithms designed to obtain the values. 

 

3.4.1 Maximum Likelihood Estimation 

The Likelihood and Log-likelihood function for the Copula and marginal 

distribution are as below: 

𝐿(𝜇, 𝛼, 𝜃) = ∏𝑓(𝑥𝑡)∏𝑐(𝐹(𝑥𝑡), 𝐹(𝑥𝑡−1)) (3.11) 

ℓ(𝜇, 𝛼, 𝜃) = ∑𝑙𝑜𝑔𝑓(𝑥𝑡)

𝑛

𝑡=1

 + ∑𝑙𝑜𝑔 𝑐(𝐹(𝑥𝑡), 𝐹(𝑥𝑡−1))

𝑛

𝑡=2

 (3.12) 

 

PDF of Laplace Distribution: 
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𝑓(𝑥𝑡) =
1

2α
exp(−

|𝑥𝑡 − μ|

α
) (3.13) 

 

CDF of Laplace Distribution: 

F(xt) = {

1

2
exp (

𝑥𝑡 − 𝜇

𝛼
) , and𝑖𝑓 𝑥𝑡 ≤ μ

1 −
1

2
exp (−

𝑥𝑡 − 𝜇

𝛼
) , and𝑖𝑓 𝑥𝑡 > μ

 (3.14) 

 

The functions 3.13 and 3.14 are the density and cumulative function 

of Laplace distribution that used to compute the log-likelihood function 3.12. 

The log-likelihood function is the general form and can be reused by any 

distribution chosen. After that, the first and second partial derivative of the 

log-likelihood function were derived for the Newton-Raphson formulation as 

follows: 

 

Newton-Raphson Formulation: 

�̂�𝑡 = �̂�𝑡−1 − ℓ(�̂�𝑡−1)
−1 ⋅ℓ′(�̂�𝑡−1) 

[

�̂�𝑡

�̂�𝑡

𝜃𝑡

] = [

�̂�𝑡−1

�̂�𝑡−1

𝜃𝑡−1

] −

[
 
 
 
 
 
 

∂2ℓ

∂μ2

𝜕2ℓ

𝜕μ𝜕𝛼

𝜕2ℓ

𝜕μ𝜕𝜃

𝜕2ℓ

𝜕μ𝜕𝛼

∂2ℓ

∂α2

𝜕2ℓ

𝜕𝜃𝜕𝛼

𝜕2ℓ

𝜕μ𝜕𝜃

𝜕2ℓ

𝜕𝜃𝜕𝛼

∂2ℓ

∂𝜃2 ]
 
 
 
 
 
 
−1

[
 
 
 
 
 
𝜕ℓ

∂𝜇
∂ℓ

∂α
∂ℓ

∂θ]
 
 
 
 
 

 
(3.15) 

 

Since MLE derivation is affected by the choice of Copulas, thus, the 

log-likelihood function and the partial derivatives of both Copulas have to be 

computed. The equations below show the example of combining the Laplace 

CDF, Laplace PDF, and Clayton Copula PDF to construct the log-likelihood 

and one of the partial derivative. 

 

Log-likelihood for Clayton copula is 

ℓ(𝜇, 𝛼, 𝜃) = ∑𝑙𝑜𝑔𝑓(𝑥𝑡)

𝑛

𝑡=1

 + ∑𝑙𝑜𝑔 𝑐(𝐹(𝑥𝑡), 𝐹(𝑥𝑡−1))

𝑛

𝑡=2

 
(3.16) 
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= ∑𝑙𝑜𝑔[

𝑛

𝑡=1

1

2𝛼
exp(−

|𝑥𝑡 − 𝜇|

𝛼
)]  

+ ∑[𝑙𝑜𝑔(𝜃 + 1)  + 𝑙𝑜𝑔(F(xt)F(xt−1))
−(θ+1)

 

𝑛

𝑡=2

+ 𝑙𝑜𝑔(F(xt)
−θ + F(xt−1)

−θ − 1)
−1/θ−2

] 

 

First order partial derivative with respect to 𝜇 

𝜕ℓ

∂𝜇
= −

1

𝛼
∑sign(𝑥𝑡 − 𝜇)

𝑛

𝑡=1

+ ∑[−(𝜃 + 1)
∂ log (𝐹(𝑥𝑡))

∂μ

𝑛

𝑡=2

− (𝜃 + 1)
∂ log (𝐹(𝑥𝑡−1))

∂μ

− (
1

𝜃
+ 2)

∂

∂μ
𝑙𝑜𝑔(𝐹(𝑥𝑡)

−𝜃 + 𝐹(𝑥𝑡−1)
−𝜃 − 1)]  

(3.17) 

 

The implementation of the MLE using Newthon-Raphson method is designed 

as follows: 

Algorithm 1: Estimate parameters using MLE 

1. 

2. 

3. 

 

4. 

5. 

 

6. 

7. 

Define Laplace PDF and CDF functions. 

Define the Copulas-based Markov Model PDF functions. 

Define the Copulas log likelihood function with marginal distribution 

follows the functions defined in step 1. 

Import the gradient and hessian function from ‘autograd’ library. 

Define the Newton Raphson algorithm that iterate until it converge, 

where epsilon is smaller than 1𝑥 10−8. 

Print each iteration and the epsilons of all parameters. 

Print the output of final gradient and estimated parameters of Laplace 

and copula. 

 

 

3.4.2 Inversion of Kendall’s Tau 

The Kendall’s Tau relation to a bivariate Copula is as below: 
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𝜏 = 4∫∫ (𝑢 − 𝜃 + 𝑣 − 𝜃 − 1)(−1/𝜃)𝑑𝑢𝑑𝑣
1

0

− 1

1

0

 (3.18) 

 

Kendall’s Tau to Clayton Copula 

𝜏 =
𝜃

(𝜃 + 2)
 (3.19) 

 

Kendall’s Tau to Gaussian Copula 

𝜏 =
2

𝜋
𝑎𝑟𝑐𝑠𝑖𝑛(𝜃) (3.20) 

 

The formula 3.19 and 3.20 is the closed form formula to obtain the 

parameters of the Clayton and Gaussian copula by using the Tau obtained. 

Thus, the algorithm 2 below shows the steps of obtaining rank correlation and 

parameters of Clayton and Gaussion copula. 

 

Algorithm 2: Estimate parameters using Kendall’s Tau 

1. 

2. 

 

3. 

4. 

5. 

 

6. 

Pair the data (𝑥0, 𝑦0), … , (𝑥𝑡 , 𝑦𝑡), where t =  0, 1, 2, … 

Given  𝑚 <  𝑛 , if 𝑥𝑚 > 𝑥𝑛 𝑎𝑛𝑑 𝑦𝑚 > 𝑦𝑛 𝑜𝑟 𝑥𝑚 < 𝑥𝑛 𝑎𝑛𝑑 𝑦𝑚 < 𝑦𝑛 , 

number of concordant pair +1. Else, number of discordant pair +1. 

Count the total pairs of concordant and discordant. 

Obtain the Kendall’s Tau correlations. 

Define the Tau to copula parameters according to the equations 3.3 and 

3.4. 

Pass the tau value into the functions and print the result. 

 

3.5 Simulation 

Subsequently, the same n of samples of SPX500 index was simulated 

according to each parameter estimated. The inverse of Copulas are derived to 

generate dependent random variables from the generated uniform distribution 

U1 and U2 in the range [0,1]. The formula below are the inverse of Clayton 

copula. 

𝑉 = (𝑈1−𝜃 ⋅ (𝑈2−
𝜃

1+𝜃 − 1) + 1)
−

1

𝜃

 (3.21) 
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To assess whether the chosen models adequately captured the 

dependence structure and serial dependence inherent in the data, RMSE is 

calculated. If the results were close to zero, means the result is satisfactory. 

However, if the results were unsatisfactory, modifications to the models were 

made before continuing to the final phase. 

 

Algorithm 3: Simulate the data using the estimated parameters 

1. 

2. 

 

3. 

 

4. 

5. 

Generate two independent uniform variables with n samples. 

Generate dependent variable using inverse Copula formula and the 

estimated parameters. 

Inverse the generated data using the inverse function of Laplace CDF 

using the estimated parameters (MLE) or actual parameters (Kendall’s). 

Plot the actual data and simulated data. 

Compute the RMSE. 

 

 

3.6 Result Evaluation 

The purpose of this final phase was to address the second objective of 

the paper, which was to evaluate the results by comparing the RMSE of each 

combination of estimator and copula-based Markov model. RMSE is used to 

measure the dispersion of the simulated data from the actual data. The 

difference of them is squared to make sure it is positive, avoiding cancelation 

of positive and negative values. The formula of the RMSE is as follows: 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 

= √∑
(𝑠𝑡 − 𝑎𝑡)

2

𝑛

𝑛

𝑖=1

 
(3.22) 
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3.7 Flow chart 

 

Figure 3.3 The flow chart of the research methodology 
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CHAPTER 4 

4 RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

The findings discussed in this section covered all the phases as outlined in the 

previous section. This section will delve into the significant findings of the 

model diagnostic tests, estimated parameters, and performance of each Copula. 

These findings will be explained and discussed. 

 

4.2 Obtain data and Data Preprocessing 

The SPX500 index data retrieved from various sources covers the period from 

1992 to 2024. To reduce the volatility of the data, the dataset is trimmed, 

retaining only 10 years, starting from January 4th, 2010. After this process, the 

data is split, and the logarithmic return of the closing price is calculated using 

the training data. 

Upon examination, it was observed that only the logarithmic return of 

the first row displayed a 'NaN' value due to the absence of the previous value. 

Consequently, to maintain data integrity, the first row corresponding to the 

date is removed. Subsequently, the refined data is stored in the data frame 

presented below.  

 

Figure 4.1 Preprocessed data 
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4.3 Diagnostic test 

Some visualization and statistical tests are carried out as the normality and 

stationarity assumptions are stringent. All of these assumptions play a vital 

role in the model selection and formulation afterwards. 

 

4.3.1 Normality test 

Although the copulas do not require the marginal distribution to be normally 

distributed, its normality will ease the work afterwards as many predefined 

packages, such as ‘Copula.Markov’ in R, are restricted for normal marginal 

distribution functions. (Huang and Emura, 2019) Thus, the QQ plot of normal 

distribution against the SPX500 is plotted. 

 

Figure 4.2 Normal QQ-plot of log return.  

 

Figure 4.3 Line plot of log return. 
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Figure 4.2 shows that the data is over-dispersed relative to a normal 

distribution, thus the normality is violated. This aligned with the claims of 

many researchers that the financial data are not normally distributed and the 

assumption of normality without any diagnostic test is a poor practice that will 

lead to further problems. Besides, characteristics of fatter tails and a large 

number of outliers can be concluded from the QQ plot as well. Thus,  normal 

distribution might be a good choice for the data and the packages in R will not 

be suitable for this case.  

 

4.3.2 Stationary test 

The stationary assumption for time series data is vital as this ensures that the 

model is robust over time. To test the stationary of the data, both the ADF Test 

and KPSS Test are carried out.  

 

 

Figure 4.4 ADF and KPSS test results 

  

As the p-value for ADF is smaller than 0.05 and the test statistic is smaller 

than the critical value, the null hypothesis of non-stationary is rejected. 

Besides, the p-value for the KPSS test is 0.1, which is larger than 0.05. Thus, 

we can conclude that the logarithmic return of the time series data is stationary. 

 

4.3.3 Distribution test 

Student’s t-distributions and Laplace distribution are two widely used 

distributions while modelling financial data. (Nadaf et al., 2022; Sun et al., 

2018) Thus, choices of distributions were limited down to these two and 

various tests were carried out to test the goodness-of-fit of these distributions 

with the data.  
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Figure 4.5 t-distribution QQ-plot.  

 

Figure 4.6  Laplace distribution QQ-plot. 
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Figure 4.7 Density histogram compared with Laplace distribution. 

 

Both Figure 4.4 and Figure 4.5 showed that the Laplace distribution 

might fit the data better than t-distributions. To prove this, further 

investigation is performed using the Kolmogorov-Smirnov (KS) test. The 

results are shown in Figure 4.5 below.  

 

Figure 4.8  KS Test results for t and Laplace distributions. 

 

A higher KS statistic of student’s t-distribution indicates a greater 

difference with the data. The extremely low p-value (close to zero) suggests 

strong evidence against the null hypothesis that the sample comes from a 

Student's t-distribution. Therefore, it's likely that the sample does not follow a 

Student's t-distribution. Besides, the p-value of 0.1407 suggests that there is 

evidence that the sample comes from a Laplace distribution at a significance 

level of 0.05 (or 5%).  
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4.4 Estimated parameters 

The Kendalls tau obtained is around -0.02818, showing a slight negative 

correlation of the data. Thus the estimated parameters for Clayton copula and 

Gaussian copula are around -0.05428 and -0.04426 respectively. 

 The location and scale of the Kendall’s Tau is the actual parameters 

calculated from the datasets. By comparing the table below it shows that the 

MLE of Clayton copula obtained the closest scale compare to the MLE of the  

Gaussian. However, both obtained the similar locations. 

Table 4.1: Estimated parameters of Clayton and Gaussian using MLE and 

Kendall’s Tau. 

 

4.5 Evaluation 

After that, data is simulated using the formulated algorithm mentioned in 

section 3.5. The simulated data and actual data are then plotted as below. 

 

 

Figure 4.9 Clayton copula and MLE method. 
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Figure 4.10 Gaussian copula and MLE method. 

 

 Figure 4.8 and 4.9 shows the line plots of simulated and actual data 

using Clayton and Gaussian copulas, where both of their parameters estimated 

using MLE method. The light purple and dark blue line indicating the line plot 

of simulated data and actual data respectively. The darker purple in the middle 

of line is where the simulated data overlay the actual data. It shows very 

clearly that both the line in Clayton is more similar compare to the Gaussian 

copula. Conclusion can be made that the Clayton perform better than Gaussian 

when the MLE is used due to the lower RMSE.  

 

Figure 4.11 Clayton copula and Kendall’s Tau method. 
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Figure 4.12 Gaussian copula and Kendall’s Tau method. 

 

Similar to the MLE method, the simulation of both Copula where 

their parameter were estimated using Kendall’s Tau are shown in Figure 4.10 

and 4.11. The Figure 4.11 showing the worst case were the simulated data that 

is too dispersed. From all the figures above, great differences between the best 

and worst performed models are shown. Thus, the Clayton is once again 

outperformed the Gaussian copula. On top of that, it is obvious that the MLE 

has better performance than Kendall’s Tau. In short, the combination of 

Copula and MLE is the best model for modelling Laplace marginal distributed 

data. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In conclusion, this study aimed to, firstly, identify the marginal distribution of 

SPX500’s log returns and make sure it is following the Laplace distribution. 

Secondly, estimate the parameters of copula-based Markov models using both 

the Maximum Likelihood Estimation (MLE) method and the inversion of 

Kendall’s Tau method and lastly assess the performance of the Clayton and 

Gaussian copulas. 

The findings reveal that the Clayton copula provides a better fit for 

the ten-year SPX500 daily log returns, outperforming the Gaussian copula. 

Both MLE and Kendall’s Tau yielded comparable results for the Clayton 

copula, with MLE having a slight advantage. However, for the Gaussian 

copula, MLE performed significantly better than the inversion of Kendall’s 

Tau method. In short, this study had succesfully explored a combination of 

models that has been under-examined, providing insights into their 

performance for Laplace distributed time series data. 

 

 

5.2 Recommendations 

This study employs the Clayton copula, Gaussian copula, and Laplace 

distribution to model SPX500 log returns. However, future research could 

explore a broader range of methods and models to gain deeper insights. For 

instance, comparing the performance of other copulas, such as the Gumbel, 

Student-t or Frank copulas, along with different marginal distributions which 

could offer valuable comparisons. Additionally, employing alternative 

parameter estimation techniques, such as the Method of Moments or Bayesian 

inference, might enhance model accuracy. Finally, integrating forecasting 

models such as GARCH or its variants could provide a dynamic view of 

volatility and further enrich the analysis.  
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