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ABSTRACT 

Heart disease, also known as cardiovascular disease, persists as a primary cause 

of mortality on a global scale, necessitating effective prediction methods. This 

study introduces a novel modelling approach utilising the Self-Organising Map 

(SOM), an unsupervised machine learning approach, for heart disease 

prediction with the incorporation of Particle Swarm Optimisation (PSO), a 

metaheuristic optimisation algorithm. The SOM model was employed to 

analyse and cluster patient data based on intrinsic patterns without requiring 

predefined labels, allowing for the identification of individuals with heart 

disease. The results demonstrated the SOM’s capability in distinguishing 

between healthy and diseased individuals, offering a robust approach for early 

detection of heart disease. By integrating PSO to fine-tune SOM’s 

hyperparameters, the SOM model achieved superior predictive performance, 

with an accuracy of 94.44%, precision of 100%, recall of 92.86%, F1-score of 

96.30%, and a quantisation error of 0.024. Furthermore, this study explored the 

impact of SOM's visualisation techniques, such as heatmaps and the Unified 

Distance Matrix (U-Matrix), on the comprehension of cardiovascular 

conditions. The U-Matrix of the optimised SOM model provided insightful 

visualisation that revealed two distinct clusters, effectively illustrating the 

health status of individuals with similar health conditions concerning heart 

disease. These visualisations afford a more profound understanding of the 

hidden relationships within the heart disease data, enhancing the model's 

interpretability and facilitating a better management of heart disease. The 

findings suggest the potential of integrating SOM into clinical workflows, 

offering a potent tool for healthcare professionals in the fight against heart 

disease. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

The heart, a vital organ, unceasingly works to infuse every part of the human 

body with vibrant red blood. Yet, the heart is susceptible to malfunctioning and 

damage, despite being one of the strong and muscular internal organs. Heart 

disease, also known as cardiovascular disease, has been among the most fatal 

illnesses across the globe, affecting all walks of life. Nearly 17.9 million lives 

have been taken every year due to heart disease, as reported by The World 

Health Organization (WHO, 2021). Heart disease encompasses various 

conditions, such as coronary artery disease, arrhythmias and heart failure. These 

conditions produce a considerable burden on healthcare systems and impact 

patients’ quality of life. 

Researchers and clinicians continually seek innovative approaches to 

enhance disease diagnosis and optimise analyses of patients’ conditions. 

Thriving in the era of science and technology, Machine Learning (ML) has 

become a promising technique in enhancing medical diagnostics, with its ability 

to handle and analyse large medical datasets. ML is an algorithm in which data 

is learnt by computer machines without human intervention. They are widely 

implemented for complex data analysis and prediction (Sheeba, et al., 2022). 

ML primarily comprises two basic types: Supervised Learning and 

Unsupervised Learning. For the past few years, supervised learning such as 

Logistic Regression (LR), Support Vector Machine (SVM) has been popularly 

implemented for analysis and prediction in almost every field. The intersection 

of ML and healthcare has even brought remarkable impacts to the world (Lin 

and Hsieh, 2015). Nevertheless, unsupervised learning models are barely 

studied to verify its effectiveness in analysing and predicting illness. 

Aside from outcome prediction, interpretable ML models should be 

implemented for a comprehensive understanding of the disease (Jiang, et al., 

2023). Unsupervised learning is well known for its data-driven approach 

without requiring labelled data, unlike supervised learning. What makes 

unsupervised learning algorithms significant is its capability to discover hidden 
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patterns and trends in the data, on top of dimensionality reduction. Principal 

Component Analysis (PCA), t-distributed Stochastic Neighbour Embedding (t-

SNE) are great examples of unsupervised learning algorithms which aid in 

reducing dimensionality at the stage of data preprocessing. 

Moreover, clustering is among the tasks that could be performed by 

unsupervised learning models. Consequently, more accurate information for 

clinical assessment and management is available when clustering and real-time 

analysis are connected (Jiang, et al., 2023). Self-Organising Map (SOM) 

presents as one kind of neural network that can be developed to analyse data 

and predict outcomes of diseases. Besides, it is capable of discovering hidden 

patterns and can be used further to determine whether diseases are present or 

not (Rankovic, et al., 2023). In this context, this project seeks to adopt and 

evaluate SOM, as one of the unsupervised ML approaches to predict heart 

disease, contributing to early heart disease detection and prevention. 

 

1.2 Importance of the Study 

One of the primary significances of conducting this study is to accurately predict 

heart disease with an unsupervised ML model. By having a reliable 

computational model, it could contribute to early detection of heart disease, 

providing the correctly predicted output coupled with the comprehensive 

understanding of the disease along with its risk factors. Individuals suffering 

from heart disease face physical limitations, pain, anxiety and other 

unfavourable symptoms. Research that improves prevention and early detection 

of the disease directly enhances patients’ well-being. Hence, undoubtedly early 

detection of heart disease indicates possible treatment in advance and recovery. 

Besides, the modern era has allowed ML to be capable of analysing 

and predicting heart disease with patients’ conditions, thereby raising the 

public's alert on heart disease. Future research on ML applications ought to 

improve prediction accuracy by utilising real-world data and external 

validations. By implementing and optimising ML techniques, accurate heart 

disease prediction becomes achievable with the existing medical data that 

accumulates as time goes. These techniques can offer the advantage of 

automated disease detection, making the process less complicated, costly, and 

more reproducible. Furthermore, such an approach enables screening of a large 
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number of patients using readily available clinical data from hospitals. Hence, 

to make it the best possible model in heart disease prediction, a metaheuristic 

technique can be incorporated into the developed unsupervised ML model to 

enhance the model prediction performance. 

 

1.3 Problem Statement 

Despite medical advancement, heart disease has been a significant challenge in 

the healthcare field, necessitating continuous research and innovative 

approaches. Some patients exhibit symptoms like chest pain, shortness of breath, 

or fatigue, while others seek routine check-ups. The healthcare professionals 

face several critical issues such as assessing every patient’s risk of developing 

heart disease. Traditional risk factors such as age, sex, blood pressure, 

cholesterol levels provide only minimal information as conventional models 

have limited ability to model the complex relationship within several variables. 

Henceforth, a comprehensive approach is necessary to consider both obvious 

and hidden risk factors in disease detection. 

Heart disease data is complex. It includes clinical measurements, 

lifestyle and environmental factors. Traditional models struggle to handle the 

multidimensional data effectively, let alone predicting the disease. It makes the 

identification of subtle patterns that precede clinical symptoms challenging with 

manual mankind analysis. These patterns may not be obvious and evident in 

structured data alone. Hence, manual analysis can be time-consuming, 

especially when dealing with numerous patients. To illustrate, trained 

professionals usually conduct specialised procedures such as echocardiograms 

and electrocardiograms, which are time-consuming, costly and require 

continuous effort. In addition, electrocardiograms may occasionally be unable 

to confirm the presence of heart disease in patients, leading to potential 

diagnostic challenges and uncertainties in their medical evaluation. Furthermore, 

it is unknown if there are distinct patient subgroups among the heart disease 

patients. Perhaps some patients share common symptoms, genetic factors or 

lifestyle habits. Understanding these subgroups can lead to tailored 

interventions and personalised treatment. 
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1.4 Aim and Objectives 

The project aims to explore and develop an unsupervised learning model 

capable of predicting heart disease, thereby increasing the efficiency of disease 

diagnosis. The objectives of this project are as follows: 

1. To develop an unsupervised machine learning model for heart disease 

prediction. 

2. To incorporate a metaheuristic optimisation algorithm to enhance the 

performance of the developed unsupervised machine learning model. 

3. To evaluate the classification performance of the unsupervised machine 

learning model based on performance metrics. 

 

1.5 Scope and Limitation of the Study 

This study involves the development of an unsupervised learning model based 

on a heart disease dataset consisting of relevant features such as age, blood 

pressure and cholesterol levels. Proper data preprocessing like dimensionality 

reduction or feature engineering, and SOM parameter optimisation are essential 

procedures. In addition, swarm-based optimisation algorithms such as Particle 

Swarm Optimisation (PSO) are to optimise the model for better prediction 

performance. Evaluation metrics such as accuracy, recall, and precision are used 

to evaluate the model performance. 

Despite the promising potential of ML, several limitations must be 

acknowledged. Besides the variables studied, other health conditions, lifestyle 

changes, or external events should be concerned as they may influence heart 

disease predictions, which is not available in this study. Besides, while SOMs 

are effective at representing the distribution of structured input vectors, they can 

sometimes create misleading representations in areas outside the input space 

(Astudillo and Oommen, 2014). The initial placement of weight vectors is 

crucial, as neurons in low-density regions might not be chosen as Best Matching 

Units (BMUs) or updated adequately. As training progresses and the 

neighbourhood radius shrinks, some neurons may end up in areas with no data 

points, being ignored for the remaining training process (Astudillo and Oommen, 

2014).  
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CHAPTER 2 

 

2 LITERATURE REVIEW 

Numerous studies have showcased the impactful application of ML models in 

the healthcare field. There are myriads of means and techniques to predict heart 

disease. This section reviews the common methods used for predicting heart 

disease, as well as the existing research to highlight the unsupervised ML 

models coupled with optimisation in the healthcare industry. 

 

2.1 Conventional Approach 

The usual process of predicting heart disease is by undergoing multiple clinical 

tests, obtaining medical images of patients and analysing them. Specialised 

procedures like echocardiograms and electrocardiograms are typically 

conducted by trained specialists, requiring significant time, resources, and effort 

due to their complexity and cost (Verma, et al., 2016). As technology keeps 

evolving, most of the researchers used deep learning instead of conventional 

models to predict heart disease because of their excellent performance with 

medical images like echocardiograms. For instance, Arnaout, et al. (2021) 

performed an ensemble of neural networks to distinguish between the congenital 

heart disease and the normal heart using a dataset of over 1300 echocardiograms. 

Correspondingly, researchers have also found that recurrent neural networks 

work well with both medical images and videos, including ultrasound standard 

planes. This approach allows them to observe the foetus' detailed cardiac 

anatomy, which is crucial for the diagnosis of congenital heart disease (Chen, 

2017). These ultrasound planes are capable of clearly visualising core 

anatomical for disease diagnosis. 

Nevertheless, deep learning techniques, particularly in the medical 

field, are considered as black boxes with little to no interpretability, despite their 

high accuracy and sensitivity (Kaur and Ahmad, 2024). Hence, ML algorithms 

have been widely used by researchers to make predictions which have high 

accuracy and provide better and easier understanding for clinicians. For 

instance, Mohapatra, et al. (2022) used an approach of stacking classifiers model 

in base level and meta level to predict heart disease where a set of ML models 
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were used. The authors reported 92% accuracy with sensitivity of 92.6% and 

specificity of 91%. Other than supervised ML models, unsupervised ML models 

also have been applied by researchers to predict various diseases. To illustrate, 

the Density-Based Spatial Clustering of Applications with Noise (DBSCAN), a 

popular unsupervised clustering algorithm was used by Kaur and Ahmad (2024) 

to perform congenital heart disease prediction. The clusters obtained were 

treated as attributes to the dataset which were then classified using ML models 

including SVM and Random Forest (RF). Such a cluster-based approach 

allowed them to achieve a high Area Under the ROC Curve (AUC) of 0.91. 

 

2.2 Dimensionality Reduction 

A remarkable medical application of unsupervised ML algorithms worth noting 

is the implementation of t-SNE for dimensionality reduction and feature 

selection in various disease analyses. In the research by Jiang, et al. (2023), it is 

known that sepsis, a disease triggered by the body’s overwhelming response to 

an infection, has a complex multidimensional collection of variables. Hence, t-

SNE and PCA were applied to identify subgroups in the septic death cohort. The 

high-dimensional dataset was reduced to a two-dimensional space, allowing 

Jiang, et al. (2023) to visualise the grouping effect. The t-SNE and PCA were 

able to reveal that two distinct phenotypes in the cohort were significantly 

separable in the plane space, using patients with septic death as an example. 

 Besides, in the study by Sheeba, et al. (2022), Normalised Mutual 

Information induced Principal Component Analysis (NM-PCA) was proposed 

to reduce feature dimension before modelling for heart disease prediction, 

decreasing the lengthy computing time. The proposed model was found 

performed the best with an accuracy of 91.7% when NM-PCA was applied. 

Furthermore, to extract the best characteristics from the new subset 

without losing important information, Kapila and Saleti (2023) employed 

dimensionality reduction techniques such as t-SNE after feature selection, with 

the aim of detecting breast cancer. As t-SNE managed to produce a subset from 

which the best characteristics were extracted, these features were then applied 

to the suggested ensemble model for breast cancer detection. Hence, it is evident 

that t-SNE is effective in dimensionality reduction, contributing to a decent 

model performance in disease predictions. 
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2.3 Unsupervised Learning Approach 

Unsupervised ML models have adeptly discerned patterns across a wide array 

of data types, encompassing of rainfall data and sedimentation data for 

hydrological field (Loh, et al., 2021; 2024), text document data for text mining 

(Yang and Lee, 2012), imaging data for medical fields which includes the 

diagnosis of tumours and abnormal cell growths. On top of that, in the medical 

field, they have also been applied to categorise diseases based on patients' 

symptoms and medical histories, thereby identifying the patient subgroups 

requiring personalized treatment (Rankovic, et al., 2023). 

For instance, a study on different ML models including the unsupervised 

SOM was carried out by Rankovic, et al. (2023) to predict 17 different chronic 

diseases such as coronary heart disease, asthma and hypertension. A high 

cholesterol is observed as the most prevalent disease in Serbia by analysing the 

heatmap represented by SOM. Aside from considering clinical test attributes, 

the coronary heart disease diagnosis using electrocardiogram signal is 

achievable and it was studied by Rath, et al. (2022) with the development of 

SOM. An accuracy of 93.5% was achieved with predictions made by SOM 

alone. On top of that, the combination of SOM and autoencoder, an 

unsupervised neural network, that was further proposed exhibited the best 

performance with an accuracy of 98.4%.  

Following the studies mentioned above, it is evident that SOM is 

effective in predicting outcomes. A hybrid approach based on SOM and other 

models yields even better performance. In fact, there are a number of research 

done in similar ways. For instance, in order to predict the risk of fatal heart 

disease incidence in Type 2 Diabetes Mellitus, a common form of diabetes, 

SOM was proposed by Zarkogianni, et al. (2018) to be combined with Hybrid 

Wavelet Neural Network which yielded a decent performance with AUC of 

71.48%. As such issues associated with unbalanced nature of data and 

nonlinearities could be resolved. Another case study by Osman and Alzahrani 

(2019) on epilepsy disease, a brain disease, offered an alternative way for 

identifying unknown patterns in the epilepsy dataset using SOM. This study 

presented an automatic epilepsy diagnostic method based on SOM using radial 

basis function neural networks, achieving an overall detection accuracy of 
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97.47%. It was the best prediction performance in comparison to other methods 

such as wavelet chaotic neural network and radial basis function neural network. 

Henceforth, SOM demonstrates its effectiveness in predictions, while also being 

observed to be highly compatible with other models in hybrid approaches. 

 

2.4 Optimisation Algorithms 

Optimisation is a great helper in enhancing effectiveness and performance of 

ML algorithms. Many researchers have incorporated optimisation on classifiers 

to improve prediction accuracy after removing irrelevant features. For instance, 

after incorporating Genetic Algorithm (GA) to obtain optimal subset of features, 

Soni, et al. (2011) reported that the accuracy of Decision Tree (DT) and Naive 

Bayes (NB) further increased in heart disease prediction, at 99.2% and 96.5% 

respectively. Amin, et al. (2013) employed Artificial Neural Network (ANN) 

and GA for heart disease prediction. Using GA to optimise the connection 

weights of the neural network for prediction produced a result showing an 

accuracy of 89%.  

Some researchers have explored the fusion of two optimisation 

algorithms in disease prediction. For example, aiming to predict heart disease 

accurately, Sheeba, et al. (2022) introduced a hybrid optimisation approach 

where the Moth-Flame Optimisation algorithm was combined with the Deer 

Hunting Optimisation algorithm to optimise its weight function. After the 

implementation, there was a significant increase in the accuracy of the optimised 

Recurrent Neural Network at 91.4%. Besides, Subanya and Rajalaxmi, Lin and 

Hsieh made significant contributions by hybridising their models with swarm 

intelligence-based Artificial Bee Colony (ABC) algorithms in 2014 and 2015, 

respectively. Subanya and Rajalaxmi (2014) applied ABC algorithm to select 

the best features and found that ABC-SVM performed better than feature 

selection with reverse ranking on Cleveland heart disease. It is shown when 

ABC-SVM achieved an accuracy of 86.76% while the method of reverse 

ranking yielded an accuracy of 85%. Besides, a hybrid evolutionary algorithm 

using endocrine-based PSO and ABC coupled with SVM was proposed by Lin 

and Hsieh (2015) for extracting the optimal feature subsets. The superiority of 

such hybrid algorithm was proven when the performance of SVM with feature 
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selection achieved higher accuracy then that without feature selection. The 

endocrine-based PSO achieved the highest accuracy, reaching 91.35%. 

In fact, a wide range of such uses of metaheuristic algorithms can be 

found in illness prediction in the medical sector (Nssibi, et al., 2023; Malakar, 

et al., 2023). Considering the effectiveness of metaheuristic algorithms, Malakar, 

et al. (2023) have favoured to employ PSO for feature selection when applying 

them to medical datasets that are associated with chronic illnesses. According 

to the authors, this approach was selected over the others primarily because it 

can be used to address a wide range of challenging optimisation. They were able 

to determine the best-case scores for Heart disease, Breast Cancer, Chronic 

Kidney disease, and Diabetes to be 96.72%, 99.82%, 100.00%, and 84.41%, 

respectively after a comprehensive series of tests. Furthermore, with the purpose 

of predicting heart disease, Verma, et al. (2016) developed a hybrid model using 

two ML classifiers, K-Nearest Neighbours (KNN) and Multilayer Perceptron 

(MLP) with PSO as well and achieved an accuracy of 90.28%. Moreover, in the 

study by Raja and Pandian (2020), the popular PSO optimisation technique was 

proven effective when it was combined to improve performance while 

maintaining the distinctive characteristics of Fuzzy Clustering Means (FCM). 

Premature convergence, a limitation of FCM, was prevented by incorporating 

PSO and resulted in a higher accuracy of 95.42%. This indicates that the 

predicted model, PSO-FCM, is successful in predicting the onset of diabetes 

earlier. In short, the integration of PSO with other optimisation techniques for 

hybrid approaches yields favourable results. 

 

2.5 Summary 

All in all, unsupervised ML models including t-SNE and SOM have gained 

popularity in the medical field for higher efficiency in disease diagnosis. The 

methods discussed above demonstrate how various algorithms enhance 

evaluation metrics such as accuracy and precision. However, it is noticeable that 

there remains scope for further improvement in the developed models. 

Therefore, it is undeniable that optimisation like PSO is essential to make it the 

best possible ML model in analysing and predicting disease outcomes. 

To provide a concise overview of the unsupervised ML models 

discussed above, a summary of analysis, specifically SWOT (strengths, 
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weaknesses, opportunities, and threats) analysis, is carried out as shown in 

tables below. As stated in Table 2.1, in terms of dimensionality reduction, it is 

clear that t-SNE excels at visualising high-dimensional data in lower dimensions, 

preserving local structures. However, it can be computationally expensive for 

large datasets. In contrary, PCA is limited to capture linear relationships while 

maintaining orthogonality of components. 

Apart from that, unlike supervised learning models, SOMs are 

effective for clustering and dimensionality reduction, as described in Table 2.2. 

They improve the understanding of relationships between variables but require 

careful handling of parameters. Furthermore, a few optimisation algorithms, 

which are PSO, GA and ABC, are analysed as shown in Table 2.3. It is clear 

that PSO is efficient and globally searches for optimal solutions. It is 

computationally less complex compared to GA, besides having relatively faster 

convergence than ABC. However, it may converge to local optima and requires 

parameter tuning. 

 

Table 2.1: SWOT Analysis of t-SNE and PCA. 

Algorithm Strength Weakness Opportunity Threat 

t-SNE Excellent at 

visualising 

high-

dimensional 

data in lower 

dimensions 

Sensitive to 

hyperparameters 

Enhanced 

feature 

selection and 

pattern 

discovery 

Computationally 

expensive for 

large datasets 

PCA Maintains 

orthogonality of 

components 

May not capture 

nonlinear 

relationships 

Integration 

with other 

algorithms 

for better 

results 

Sensitivity to 

outliers and 

noise 
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Table 2.2: SWOT Analysis of SOM. 

Algorithm Strength Weakness Opportunity Threat 

SOM Effective for 

clustering and 

dimensionality 

reduction 

Sensitivity to 

initialization 

parameters 

Better 

understanding of 

data topology 

Potential for 

model 

overfitting 

 Nonlinear 

dimensionality 

reduction 

technique 

Interpretability 

can be 

challenging 

Application in 

various fields  

such as image 

processing, natural 

language 

processing 

 

 

Table 2.3: SWOT Analysis of Optimisation Algorithms. 

Algorithm Strength Weakness Opportunity Threat 

PSO Global search 

capability due 

to swarm 

dynamics 

Convergence to 

local optima if 

not properly 

tuned 

Application in 

various 

optimisation 

problems 

 

Sensitive to 

parameters 

GA Suitable for 

optimization 

with 

constraints 

Computational 

complexity 

Development 

of parallel and 

distributed 

versions 

Difficulty in 

handling high-

dimensional 

problems 

 

ABC Less sensitive 

to parameter 

settings 

Slower 

convergence 

compared to 

PSO and GA 

Enhancement 

through 

hybridization 

with other 

algorithms 

Vulnerable to 

noise and 

outliers 

 

In a nutshell, the advantages of SOM such as excellent visualisation 

through heatmaps and effective clustering are evident. Pairing it with PSO can 

significantly boost the accuracy of SOM for better performance in heart disease 

prediction.  
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

 

Figure 3.1: Flow Chart of the Proposed Project. 

 

The figure above outlines the overall workflow of the project. The workflow 

commences with data preprocessing, where raw data is cleaned, scaled, and 
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prepared for analysis. Subsequently, low-dimensional visualisation using t-SNE 

provides a visual representation of the high-dimensional data. This aids in 

feature selection, identifying potentially relevant attributes for predicting heart 

disease while considering correlation between features. 

An unsupervised SOM is then developed as the primary predictive 

model, utilising the R programming environment for model development and 

optimisation. The SOM model is implemented using the kohonen package, 

which provides a comprehensive set of functions for constructing and training 

SOMs. For optimising the hyperparameters of SOM, PSO is incorporated with 

the pso package, a metaheuristic algorithm known for its efficacy in fine-tuning 

model parameters, enhancing the model's predictive accuracy. 

Finally, the trained SOM is evaluated using various performance 

metrics, such as accuracy, precision, recall, and F1-score. These metrics provide 

insights into the model's effectiveness in predicting the presence of heart disease. 

Additionally, visualisations like heatmaps can be plotted to identify patterns 

within the data and visualise the SOM's structure. 
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3.2 Dataset Description 

The dataset used for this project is the Heart Disease Dataset, available on the 

UCI Machine Learning Repository. There are 303 instances in total. In addition, 

this dataset contains 13 features. Each feature is described in further detail in 

Table 3.1 below. 

 

Table 3.1: Feature Description of the Heart Disease Dataset (UCI Machine 

Learning Repository, 1988). 

 

There are 5 numerical features, including age, trestbps, chol, thalach 

and oldpeak. The rest of the attributes are categorical with 3 being binary (sex, 

fbs, exang) and 5 having multiple categories (cp, restecg, slope, ca, thal). In 

addition, the study focuses on predicting the binary presence of heart disease as 

the target variable, classifying between individuals with heart disease and those 

without. This dataset is selected to be used to develop and test an unsupervised 

ML model for heart disease prediction. 

Feature Description 

age Age of the patient (in years) 

sex Gender (Female: 0, Male: 1) 

cp Chest pain type (0: typical angina, 1: atypical angina,  

2: non-angina pain, 3: asymptomatic) 

trestbps Resting blood pressure (in mm Hg) 

chol Serum cholesterol (in mg/dl) 

fbs Fasting blood sugar > 120mg/dl (0: False, 1: True) 

restecg Resting electrocardiogram (0: normal, 1: ST-T wave 

abnormality, 2: left ventricular hypertrophy) 

thalach Maximum heart rate achieved 

exang Exercise-induced angina (0: no, 1: yes) 

oldpeak ST depression induced by exercise relative to rest 

slope Slope of peak exercise ST segment (0: upsloping, 1: flat,  

2: downsloping) 

ca Number of major vessels coloured by fluoroscopy (0 - 3) 

thal Thalassemia type (0: normal, 1: fixed defect, 2: reversible 

defect) 

target Heart disease (0: negative, 1: positive) 
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3.3 Dimensionality Reduction 

Despite the fact that conventional research aimed to predict heart disease 

effectively, the lack of dimensionality reduction and feature selection would 

significantly affect the accuracy (Barfungpa, et al., 2023). Therefore, an 

effective means using ML techniques to increase the prediction rate is essential 

for the diagnosis of heart disease. 

Due to its powerful mapping capability, the t-SNE, which was created 

by Maaten and Hinton (2008), has gained popularity in the ML industry. As t-

SNE tends to preserve both global and local structures, it is introduced in this 

study to reduce dimensionality of nonlinear data. It is useful for managing SOM 

because it promotes the easy comprehension of high-dimensional data and their 

transformation into a low-dimensional space (Barfungpa, et al., 2023). This 

approach computes pairwise similarity between the data points to convert the 

distances between them into Gaussian joint probabilities, preserving the 

similarity between the high-dimensional data and mapping it into a low-

dimensional space.  

Suppose that a set of 𝑛 D-dimensional points X = {𝑥1, 𝑥2, … , 𝑥𝑛 | 𝑥𝑖 ∈

ℛ𝐷} is to be mapped into a low-dimensional space, 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛 | 𝑦𝑖 ∈

ℛ𝐾} , where 𝐾 < 𝐷. The t-SNE first computes the conditional probability of 𝑥𝑖 

choosing 𝑥𝑗 as its neighbour, which is denoted by 𝑝𝑗|𝑖 and is defined as 

 

𝑝𝑗|𝑖 =
exp (−‖𝑥𝑖 − 𝑥𝑗‖

2
/ 2𝜎𝑖

2)

∑ exp (−‖𝑥𝑖 − 𝑥𝑘‖2/ 2𝜎𝑖
2)𝑘≠𝑖

 (3.1) 

 

where 

𝜎𝑖 = vector variance of the Gaussian function centred on the data point 𝑥𝑖. 

 

When 𝑝𝑖|𝑖 = 0, the joint probability 𝑝𝑖𝑗 in high-dimensional space is 

defined as 

𝑝𝑖𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑛
 (3.2) 
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Similar to Equation (3.2), in low-dimensional space, when 𝜎𝑖  of 

conditional probability 𝑞𝑗|𝑖 equals 
1

√2
 , the joint probability 𝑞𝑖𝑗 is defined as  

 

𝑞𝑖𝑗 =
(1 + ‖𝑦𝑖 − 𝑦𝑗‖

2
)−1

∑ (1 + ‖𝑦𝑘 − 𝑦𝑗‖
2

)−1
𝑘≠𝑖

 (3.3) 

  

Subsequently, t-SNE addresses the crowding problem by employing a 

heavy-tailed distribution to the embedded low-dimensional data points. 

Furthermore, Kullback–Leibler divergences between Q and P are calculated 

with the gradient descent below. 

 

𝐶 = 𝐾𝐿(𝑃|𝑄) = ∑ 𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗𝑖≠𝑗
 (3.4) 

 

Then, the gradient of the Kullback–Leibler divergence is given by 

 

𝜕𝐶

𝜕𝑦𝑖
= 4 ∑(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖 − 𝑦𝑗)(1 + ‖𝑦𝑖 − 𝑦𝑗‖

2
)−1

𝑗

 (3.5) 

 

From Equation (3.5), the solution is given by 

 

𝑌(𝑡) = 𝑌(𝑡−1) + 𝜂
𝛿𝐶

𝛿𝑌
+ 𝛼(𝑡)(𝑌(𝑡−1) − 𝑌(𝑡−2)) (3.6) 

 

where 

𝑌(𝑡) = the solution obtained from the ith iteration, 

𝜂 = learning rate, 

𝛼(𝑡) = momentum of the ith iteration. 

 

3.4 Model Development 

In this study, SOM is proposed to be built to predict heart disease. The SOM is 

a special kind of ANN that Kohonen (1982) introduced. SOM is made up of a 

single layered grid of neurons in two dimensions, in contrast to the ANN 
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structure. Every grid node has a direct connection to the input vector, but there 

is no connectivity between the nodes. The grid is a representation of the map 

that organises itself based on the input data at each. 

As stated by Rath, et al. (2022), there are four steps in the self-

organisation process. Every connecting weight is initially set at random in the 

initialization process. The neuron that produces the least amount of value wins 

after each one computes its function. The winning neuron, often referred to as 

the best matching unit (BMU), locates its location within a close range of other 

neurons during the cooperation step. Lastly, by adjusting the connected weights, 

the individual discriminant values of each activated neuron are reduced in the 

adaptation stage. The stepwise procedure in SOM is as follows: 

i. Initialisation:  

The weight vectors 𝑤𝑗 are initialised randomly for each neuron.  

 

ii. Sampling: 

A sample input vector 𝑥𝑖 is chosen from a set of training input data. 
 

iii. Cooperation: 

The subsequent step involves the identification of the BMU, 𝑤𝑗, with the 

closest weight vector. The similarity between the input vector 𝑥𝑖  and 

weight vectors of each other neuron is determined by computing the 

distance between them, that is, Euclidean distance, as shown in Equation 

(3.7). 

 

𝑑𝑗(𝑥) = √∑(𝑥𝑖 − 𝑤𝑗𝑖)
2

𝑑

𝑖=1

 (3.7) 

 

where 

𝑑 = number of features, 

𝑤𝑗 = weight vector for the neuron j, 

x = data example. 
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iv. Updating:  

The weights of neurons are then updated with the weighting rule defined 

below. 

 

𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) + 𝛼𝑖(𝑡) ∙ 𝛽𝑐𝑗(𝑡)[𝑥(𝑡) − 𝑤𝑖𝑗(𝑡)] (3.8) 

  

𝛽𝑗(𝑡) = exp (−
𝑤𝑗 − 𝑤𝑗

∗2

2𝜎2(𝑡)
 ) (3.9) 

 

where 

𝛼 = learning rate at time t, 

𝑗 = index of BMU, 

i = ith feature of the training example, 

𝛽𝑗(𝑡) = neighbourhood function, 

𝜎(𝑡) = width of the kernel corresponding to neighbourhood radius. 

 

Furthermore, in SOM, the topology, that is, the choice of grid shape—

hexagonal or rectangular—significantly influences the map's ability to represent 

data. Hexagonal grids are normally favoured for their superior topological 

representation and visual appeal, as each neuron has six neighbours, creating a 

uniform neighbourhood structure that minimises distortions in the map's 

representation of high-dimensional data (Chaudhary, Bhatia and Ahlawat, 2014). 

Hence, this structure promotes excellent clustering and accurate data 

visualisation. In contrast, rectangular grids, while simpler and computationally 

efficient due to their alignment with Cartesian coordinates, can introduce 

distortions in the neighbourhood relationships due to the four-neighbour 

configuration (Chaudhary, Bhatia and Ahlawat, 2014). However, the decision 

between hexagonal and rectangular grids should be guided by the specific 

dataset and the characteristics of the map. Balancing accuracy with 

computational efficiency is crucial. A practical approach to determine the 

optimal grid type involves a trial-and-error methodology. By training SOMs 

with both grid types under consistent parameters and evaluating performance 
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using metrics like quantisation error, one can determine which grid type 

provides the best balance for the SOM model. 

 

3.5 Hyperparameter Optimisation 

The process of optimisation involves the identification of the optimal solution 

from a set of options available that either maximises or minimises an objective 

function for a particular problem (Nguyen, et al., 2023). The problems in which 

feasible solutions are restricted due to constraints can take place in real-world 

situations. As stated by Nguyen, et al. (2023), the following notation shows how 

the problems can be expressed: 

  

min
𝑥

𝑓(𝑥), 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,2, … , 𝑚 

ℎ𝑗(𝑥) ≤ 0, 𝑗 = 1,2, … , 𝑝 

𝑥 ∈ 𝑋 

(3.10) 

 

where 

𝑔𝑖(𝑥) and ℎ𝑗(𝑥) = constraint functions, 

X = set of possible values of x. 

There are a few hyperparameters in SOM, including the size of the 

SOM grid, 𝜂 - learning rate, 𝜎 – the bandwidth of the neighbourhood function 

shown in Equation (3.9) as well as the number of iterations. Their values remain 

constant throughout the training phase, and they can only be chosen in advance 

(Nguyen, et al., 2023). Aside from the hyperparameters, the model parameter, 

weight, can be optimised as well. They can be updated throughout the training 

phase. 

In this study, the hyperparameters selected for optimisation include the 

grid size of the SOM (specifically dimensions x and y), the number of iterations, 

the learning rate, and the neighbourhood radius.  The grid size determines the 

resolution of the SOM. Larger grids can capture more complex patterns but 

require more computation time. Besides, the number of iterations indicates the 
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number of training iterations or epochs the SOM undergoes, affecting how well 

the SOM learns from the data (Wehrens and Buydens, 2007). More iterations 

typically improve the model's ability to capture complex patterns but also 

lengthen computation time. Furthermore, the learning rate is a parameter that 

controls the extent to which the weights of the SOM nodes are adjusted during 

training (Wehrens and Buydens, 2007). It is typically defined within a range of 

values specified by a learning rate schedule. In addition, the radius determines 

the size of the neighbourhood around a winning node that is updated during 

training. It typically starts large and decreases over time. 

The rationale for optimising multiple hyperparameters, rather than 

focusing on just one, is due to the inherent sensitivity of SOM to these 

hyperparameters. Addressing this weakness ensures more robust model 

performance. Hence, to optimise these hyperparameters, PSO is introduced in 

this study.  

The PSO is a prevalent metaheuristic technique that can be applied to 

resolve optimisation issues (Nguyen, et al., 2023). It is metaheuristic as it 

explores potential solutions within a vast search space without making 

significant assumptions about the problem being optimised. This flexibility 

allows it to effectively tackle complex optimisation tasks across various fields. 

As introduced by Kennedy and Eberhart (1995), PSO attempts to obtain the best 

outcomes by imitating the social behaviour of a flock of fish or a swarm of birds. 

A swarm of particles in PSO act as potential solutions that move throughout the 

search space to find the best options. The swarm's movements are guided by 

improved positions. 

One of the key advantages of PSO is that it is easy to implement and 

requires minimal parameter adjustment. According to Raja and Pandian (2020), 

PSO consists of three fundamental steps, repeated until all particles converge to 

a certain point where optimal value is attained.  

i. Determine the fitness of each particle. 

ii. Continuously update the best individuals and global functionalities. 

iii. Update the position and speed of each particle. 
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Every particle is situated with each swarm's best fit. The particle status 

update formula is given by 

 

𝑣𝑖𝑗(𝑡 + 1) = 𝑣𝑖𝑗(𝑡) + 𝑟1 (𝑃𝑏𝑒𝑠𝑡𝑖𝑗
− 𝑥𝑖𝑗(𝑡)) + 𝑟2 (𝐺𝑏𝑒𝑠𝑡𝑗

− 𝑥𝑖𝑗(𝑡)) (3.11) 

  

𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡 + 1) (3.12) 

 

where 

𝑟1 and 𝑟2 = random numbers within the interval (0,1), 

𝑣𝑖𝑗 = velocity for the 𝑖𝑡ℎ particle in 𝑗𝑡ℎ dimension, 

𝑥𝑖𝑗 = position for the 𝑖𝑡ℎ particle in 𝑗𝑡ℎ dimension, 

𝑃𝑏𝑒𝑠𝑡𝑖𝑗
 = personal best solution, 

𝐺𝑏𝑒𝑠𝑡 = global best solution. 

 

Algorithm 1: Proposed PSO-SOM Algorithm       

Initialise particles with the hyperparameters vector 𝒉 = [map size, number 

of iterations, learning rate, radius] randomly 

Define the accuracy as the objective function 

do 

    for each particle 

        Train SOM with the assigned 𝒉 

        Calculate the fitness value (accuracy) 

        If the accuracy is better than 𝑃𝑏𝑒𝑠𝑡 in history 

             Set the current value as the new 𝑃𝑏𝑒𝑠𝑡 

    end for 

    Choose the particle with the best accuracy from all particles as the 𝐺𝑏𝑒𝑠𝑡 

    for each particle 

        Calculate the particle velocity according to Equation (3.11) 

        Update the particle position according to Equation (3.12) 

    end for 

while (maximum iterations or minimum criteria is not attained)   

return the best 𝒉 and corresponding accuracy   

 

The proposed algorithm above integrates PSO with SOM to optimise 

key hyperparameters, with the objective of enhancing the accuracy of the SOM. 

In this approach, the fitness function of the PSO is defined as the accuracy of 

the SOM model, which serves as the primary metric for evaluating the 
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performance of each candidate solution. Each particle in the PSO swarm 

represents a unique configuration of SOM hyperparameters, specifically the 

map size, number of iterations, learning rate, and radius. These hyperparameters 

are encapsulated within a vector 𝒉, where 𝒉 = [map size, number of iterations, 

learning rate, radius]. In other words, in the proposed PSO-SOM algorithm, 

each particle represents a potential 𝒉, while the accuracy of SOM serves as the 

fitness value or solution quality. 

Through this process, the algorithm systematically converges on the 

hyperparameter set that yields the highest SOM accuracy. Finally, the outcome 

of the algorithm is the identification of the optimal hyperparameters—map size, 

number of iterations, learning rate, and radius—that produce the best-

performing SOM model. This integration of PSO not only automates the 

hyperparameter tuning process but also enhances the overall model accuracy, 

making it a powerful tool for optimising SOM in medical applications. 

 

3.6 Model Evaluation 

At the final stage, a confusion matrix is exported as the model prediction 

outcome as illustrated in Figure 3.2 below. 

 

 

Figure 3.2: Layout of a Confusion Matrix. 

 

The confusion matrix obtained is used to compute several evaluation metrics, 

including accuracy, sensitivity, specificity, precision and F1 score. The 

evaluation metrics to be computed are described as follows: 
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i. Accuracy (ACC) refers to the ratio of the total number of correctly 

classified predictions to the total number of instances. 

𝐴𝐶𝐶 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
× 100% (3.13) 

 

ii. Sensitivity (SN), also known as recall, refers to as True Positive rate, is 

the fraction of true positive predictions among all actual positive 

predictions. 
 

𝑆𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% (3.14) 

 

iii. Specificity (SP), also referred to as True Negative rate, is the fraction of 

true negative predictions among all actual negative predictions. 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100% (3.15) 

 

iv. Precision refers to the proportion of correctly predicted positive class to 

all positive class predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100% (3.15) 

 

v. F1 score, also is referred to as F score, or F measure, is a measure of the 

harmonic mean of precision and recall. 

𝐹1 =
2 ×  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (3.16) 

 

While these basic metrics provide useful information, additional 

elements can also be considered for specific models. In the context of SOM, 

Quantisation Error (QE) serves as an important metric that evaluates how well 

the SOM model maps the input data onto the grid. The QE represents the 

average squared distance between each data point and its corresponding BMU 

on the map (Kohonen, 2001). It is mathematically represented as Equation (3.17) 

below. 
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𝑄𝐸 =
1

𝑁
∑‖𝑥𝑖 − �̅�𝑖‖

𝑁

𝑖=1

 (3.17) 

 

QE quantifies how well the map's prototypes represent the data points. 

A lower QE indicates that the map's prototypes are closer to the data points, 

reflecting better representation and organisation of the data within the SOM 

(Kohonen, 2001). Thus, minimising QE is crucial for enhancing the model's 

performance and ensuring accurate data mapping. Including such metrics offers 

a more comprehensive assessment of the model’s performance and overall 

effectiveness. 

On the other hand, visualisation plays a crucial role in providing 

insights into the performance of the SOM model. The unsupervised nature of 

the SOM allows for a few meaningful visualisations. Among these, heatmaps 

are valuable tools for analysing and uncovering relationships between variables. 

Heatmaps offer a detailed view of the data distribution across the SOM, 

illustrating the distribution of individual variables. Additionally, the Unified 

Distance Matrix (U-Matrix) is essential for visualising clustering patterns, 

highlighting the distances between data points and their respective clusters. 

These visualisations can collectively enhance the understanding of the SOM 

model's performance and the underlying data structure. 

By incorporating these additional elements alongside numeric 

performance metrics, it provides a more comprehensive and insightful 

evaluation of the SOM model's performance. 
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3.7 Gantt Chart 

The following Gantt charts describe the timeline of the study and the key 

milestones achieved for Project I and Project II.  

 

 

Figure 3.3: Project Milestone Gantt Chart for Project I. 

 

Project I mainly focused on literature review on existing studies related 

as well as data exploration for better understanding of the dataset used. Practical 

implementation of methodology following EDA was carried out with the aim of 

developing an unsupervised model, SOM. Its output was presented as the 

preliminary result. 
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Figure 3.4: Project Milestone Gantt Chart for Project II. 

 

Subsequently, Project II was proceeded with the incorporation of PSO, 

a metaheuristic algorithm for enhancing the performance of the developed SOM 

model in predicting heart disease. The outcomes were evaluated and 

documented in the final report. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Exploratory Data Analysis (EDA) 

The Exploratory Data Analysis (EDA) is a critical and fundamental step to 

initiate a general understanding and insights of the dataset before 

implementation of ML. It involves statistical analysis, summarising main 

characteristics, identifying patterns and relationships using various graphical 

plots. In this study, the heart disease data is explored to provide a comprehensive 

overview. 

In total, there are 303 instances in the dataset. It consists of 13 features, 

excluding the target variable. Five of them are numerical and eight are 

categorical, specifically three binary and five multi-categorical. All the values 

for each column are originally present in type integer except the column 

‘oldpeak’ which has floats. However, it was observed that the values in the ‘ca’ 

and ‘thal’ columns are of the object type due to the presence of unknown values 

(‘?’). There are six unknown values present in the ‘ca’ and ‘thal’ columns, 

accounting for less than 5% of the data. Hence, these rows were removed, 

resulting in 297 instances left. Apart from that, there were no null values 

detected in the dataset. 

The target variable consists of unique values of 0, 1, 2, 3 and 4. Note 

that the values 1, 2, 3 and 4 convey the same meaning that the patient has heart 

disease. Hence, value reassigning was performed to group them together as a 

class, represented by the value 1, while value 0 indicates the absence of heart 

disease. The summary statistics were tabulated as shown in Table 4.1 below. 

 

Table 4.1: Summary Statistics for Numerical Features. 

Feature Min Max Median Mean 
Standard 

Deviation 

age 29.0 77.0 56.0 54.54 9.05 

trestbps 94.0 200.0 130.0 131.69 17.76 

chol 126.0 564.0 243.0 247.35 52.00 

thalach 71.0 202.0 153.0 149.60 22.94 

oldpeak 0.0 6.2 0.8 1.06 1.17 
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Figure 4.1: Class Balance. 

Aside from the missing value issues, ensuring class balance for the 

predicted target labels is also a crucial factor as it can significantly impact the 

prediction performance of a given model. As depicted in Figure 2, the class 

distribution is fairly even. The total number of patients without heart disease is 

slightly higher than those with heart disease. 
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4.1.1 Univariate Analysis 

 

Figure 4.2: Distribution of Continuous Variables. 

 

Based on Figure 4.2 above, Age and ST Depression are lack of 

variation as they have low standard deviation. It is observed that age follows a 

normal distribution. Resting Blood Pressure has a moderately right-skewed 

distribution while Cholesterol and ST Depression show highly right-skewed 

distributions. Conversely, the distribution of Maximum Heart Rate Achieved is 

moderately left-skewed. In addition, outliers are detected in the distribution of 

Cholesterol and ST Depression. Nevertheless, in medical data, it often exists 

rare but significant events where extreme conditions or unusual phenomena 

occur in certain patients, represented by outliers. To preserve the genuine 

information and maintain the integrity of the data, outliers are not discarded in 

this case. 
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Figure 4.3: Distribution of Categorical Features. 

 

According to the bar charts as shown in Figure 4.3 above, there are 

more male patients than female patients. Majority do not experience chest pain, 

also known as asymptotic (type 3) and have fasting blood pressure that is less 

than 120 mg/dl (value 0). The individuals having resting electrocardiogram of 

type 1 (having ST-T wave abnormality) are the least, barely any. Normal (type 

0) and left ventricular hypertrophy (type 2) patients are of almost the same 
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amount. Besides, there is a greater portion of patients who do not experience 

exercise-induced angina. The number of patients with upsloping and flat ST 

slopes account for similar percentages and are higher than those with 

downsloping. Patients with 0 major vessels coloured by fluoroscopy are 

obviously much more numerous than those with major vessels. In terms of 

thalassemia, patients with normal blood flow (type 0) have the highest 

distribution, followed by reversible defect, whose blood flow is not normal (type 

2) and then fixed defect (type 1), where there is no blood flow in a specific part 

of the heart. 

 

4.1.2 Correlation 

 

Figure 4.4: Correlation between Features and Target Variable. 

 

Pearson’s Correlation is a popular method to quantify the strength of 

linear relationship between variables using correlation coefficients. Ranging 

from -1 to 1, a correlation coefficient reflects the direction of the relationship, 

indicating whether they are positively correlated, negatively correlated, or not 

correlated at all. Figure 4.4 above displays the sorted correlation between each 
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feature and target variable. There are 6 features relatively being highly 

correlated with target variable, having absolute coefficients greater than 0.4. 

The high positive correlation involves features like Chest Pain Type, Exercise-

induced Angina, ST Depression, Number of Major Vessels and Thalassemia. 

Meanwhile, Maximum Heart Rate Achieved is the only feature having a 

negative correlation with the target variable. In contrast, when correlation 

coefficients fall below 0.2, they signify extremely weak correlations (Akoglu, 

2018). In light of this criterion, the 4 features with the lowest correlation 

coefficients, which are less than 0.2, are highlighted as having very weak 

correlations with the target variable. 

 

Figure 4.5: Correlation Matrix for All Features. 

 

Aside from focusing on target variable, Figure 4.5 above shows an 

overview of the correlation between all features. As the dataset contains quite a 

number of features, the following bivariate analysis will focus selectively on 

variables having high correlation, enabling a more insightful exploration. 
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4.1.3 Bivariate Analysis 

First and foremost, a bivariate analysis between each feature and target variable 

is performed. Continuous features and categorical features are explored 

separately. 

 

Figure 4.6: Distribution of Continuous Features by Target Variable. 

 

Connecting the features with the target variable is crucial for 

uncovering their relationship. The distribution of each continuous feature by the 

target variable is visualised as shown in Figure 4.6 above. It is observed that 

most patients aged about 60 are diagnosed with heart disease. This finding aligns 

with existing studies indicating that adults aged around 65 are more likely to 

develop heart disease compared to younger individuals (National Institute on 

Aging, 2018). 
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Upon examining the plot, it becomes evident that Resting Blood 

Pressure and Cholesterol may not be significant factors in determining heart 

disease, as their distributions for both classes are similar. In addition, a normal 

range of blood pressure is less than 120 mm Hg, while blood pressure exceeding 

140 mm Hg is considered high, also known as hypertension (CDC, 2021). In the 

case of cholesterol, measurements below 200 mg/dL are within the normal range, 

while levels above 240 mg/dL are considered high cholesterol (Johns Hopkins 

Medicine, n.d.).  

Furthermore, the distribution reveals that populations with a higher 

maximum heart rate are less likely to suffer from heart disease. In fact, 

determining whether a heart rate is normal or abnormal is contingent on age, 

which is a topic that will be explored further in the discussion later with Figure 

4.11. It is also evident that individuals with lower ST depression are at lower 

risk of getting heart disease, as the peak of the blue bell curve is pronounced 

and narrow at the value zero. Higher ST depression tend to appear among heart 

disease patients as existing studies have stated that values below 0.5 mm are 

generally considered normal, while values exceeding this threshold are 

considered pathological (Rawshani, 2021).  
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Figure 4.7: Distribution of Categorical Features by Target Variable. 

 

The bar charts relating categorical features to the target variable are 

displayed in Figure 4.7 above. Chest pain, also known as angina, is a temporary 

discomfort that happens when the heart does not receive sufficient blood and 

oxygen supply. It could be one of the symptoms of heart disease. Still, many 

heart disease patients do not experience any chest pain symptoms, which is 
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evident from the plot showing chest pain type 3 (asymptomatic) is higher than 

the other types. Besides, it can be inferred that fasting blood sugar is not a good 

indicator of heart disease since healthy and unhealthy population distribution is 

almost the same for each category.  

A resting electrocardiogram, commonly known as an ECG, is a 

graphical representation of the heart’s electrical activity when one is at rest. This 

output is analysed to detect any abnormalities in the heart's rhythm or structure. 

A closer look at the plot reveals that normal patients (value 0) and patients with 

left ventricular hypertrophy (value 2) have a much higher incidence of heart 

disease. There are very less patients with ST-T wave abnormality (value 1).  

Moreover, the relationship between exercise-induced angina and heart 

disease seems to be direct. Individuals without exercise-induced angina are less 

likely to develop heart disease while those experiencing exercise-induced 

angina tend to have a higher likelihood of heart disease. Additionally, ST slope 

refers to the direction in which the ST segment moves during peak exercise on 

ECG. The figure illustrates that individuals with flat sloping (value 1) have a 

higher incidence of heart disease. Upsloping ST segments (value 0) apparently 

suggest a lower risk of developing heart disease. This inference is explained by 

the National Centre for Biotechnology Information (2002) which states that flat 

and downsloping ST segment indicates a higher probability of heart disease.  

Furthermore, the number of major vessels coloured by fluoroscopy 

with values 0-3 reflects the severity of heart disease based on the number of 

major vessels, specifically coronary arteries that are affected or blocked. The 

fluoroscopy is used to visualise the blood flow through major vessels with dye. 

As depicted from the figure, patients with no vessels coloured by fluoroscopy 

have a much lower incidence of heart disease because value 0 represents that 

there are probably no major vessels that show significant blockages or 

narrowing, indicating unobstructed blood flow to the heart. In terms of 

thalassemia, patients with normal condition (value 0) are more likely to be free 

from heart disease but reversible defect thalassemia (value 2) has a significantly 

higher incidence of heart disease.  

 



37 

 

Subsequently, the following section discusses about the bivariate 

analysis between one feature and another. 

 

Figure 4.8: Exercise-Induced Angina by Chest Pain Type. 

 

According to the previous analysis regarding the correlation in Figure 

4.5, the correlation between exercise-induced angina and chest pain type is 

noticeably moderate. As mentioned before, angina is a temporary chest pain. 

Exercise-induced angina, also known as exertional angina or angina pectoris, is 

a chest pain that occurs during physical activity. Hence, they are put together 

for further exploration as they are relatively related. From the stacked bar plot, 

it can be seen that chest pain type 0 (typical angina), type 1 (atypical angina) 

and type 2 (non-angina pain) all shows very few instances of exercise-induced. 

On the other hand, chest pain type 3 (asymptomatic) has the highest count 

overall, with a significant major portion experiencing exercise-induced angina. 

Therefore, it suggests that patients with asymptomatic chest pain are more likely 

to experience exercise-induced angina. Meanwhile, typical angina and atypical 

angina patients have the least likelihood of suffering from exercise-induced 

angina. 
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Figure 4.9: Violin Plot of ST Depression by ST Slope with Target. 

 

Based on Figure 4.5 that displays the correlation matrix, the highest 

correlation is observed between the features ST depression and ST slope, with 

a coefficient of 0.58. Looking at the upsloping ST segment slope (value 0), the 

violin plot shows overlapping distributions. However, there is a significant shift 

towards lower ST depression values for individuals without heart disease. On 

top of that, there is less distinction in ST depression levels between the two 

groups for flat ST slope (value 1). The peak around the ST depression of 0.5 

with a flat slope suggests common amounts for both target groups. Then, with 

downsloping ST slope (value 2), individuals with higher ST depression values 

tend to have heart disease. In contrast to the rest, this violin plot exhibits a more 

extensive range of ST depression values. In short, higher levels of ST depression 

within a downsloping ST segment may signal an increased probability of heart 

disease, whereas a lower degree of ST depression in an upsloping ST segment 

could imply a lower risk of heart disease. 
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Figure 4.10: Swarm Plot of Age by Sex with Target. 

 

To provide a comprehensive view of the demographics of the dataset, 

a swarm plot illustrating age and sex alongside the target variable has been 

generated, as shown in Figure 4.10 above. As illustrated in the figure, a male 

with younger age tends to be exposed to a higher risk of heart disease compared 

to a young female. The risk tends to increase significantly as male individuals 

start entering the age of 60 and above. On the other hand, females tend to 

develop heart disease with age ranging approximately from 55 to 65, and that is 

the period when the menopause hits. 

 

 

Figure 4.11: Scatter Plot of Age by Maximum Heart Rate with Target. 



40 

 

On another note, a moderate correlation between age and maximum 

heart rate achieved is observed, with a coefficient of -0.39 as shown in Figure 

4.5. The scatter plot in Figure 4.11 above illustrates that patients with and 

without heart disease are aged between 40 to 70 years old. The spread of 

maximum heart rate of individuals without heart disease ranges from 140 to 180. 

From the plot, it appears that patients who tend to be less prone to heart disease 

have achieved maximum heart rate over 149 and under the age of 54. It can also 

be seen overall that age and maximum heart rate has a negative correlation. 

Further to this, conditions like heart disease may actually lead to 

lowering the maximum heart rate (Harvard Medical School, 2023). In addition, 

age is required to determine whether the maximum heart rate achieved is 

acceptable. To be more precise, during moderate-intensity activities, a normal 

maximum heart rate typically falls within the range of 50-70% of the maximum 

heart rate, while during vigorous physical activity, it is typically ranges from 

70-85% of the maximum (American Heart Association, 2021). For instance, 

according to studies by American Heart Association, 60-year-old individuals 

are expected to have a maximum heart rate of 160 beats per minute (bpm). 

However, upon the review of the plot, it becomes evident that a subset of heart 

disease patients around this age have achieved a maximum heart rate lower than 

160 bpm, in contrast to those without heart disease. Therefore, the presence of 

heart disease is likely to result in a reduced maximum heart rate achieved by a 

patient. 

 

4.2 Feature Selection 

Before proceeding to SOM model development, by removing redundant or 

irrelevant features and applying dimensionality reduction can help improve the 

performance of SOM. As such the model can focus better on the significant 

features and learn more robust patterns from the data.  

From Figure 4.5 displaying the correlation matrix, it becomes evident 

that there exists at least a feature that is very less correlated with the rest of the 

features. Such variables include resting blood pressure, cholesterol, fasting 

blood sugar and resting electrocardiogram. Their coefficients are extremely low, 

that is, less than 0.2. This implies very weak correlations, as described by 
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Akoglu in 2018. The fasting blood sugar even shows no correlation with the 

target variable, with a Pearson’s correlation coefficient of 0. Hence, these 4 

features become strong candidates to be removed. Nevertheless, correlation 

measures linear relationships between variables. In other words, it might not be 

able to capture nonlinear relationships effectively. Hence, t-SNE was 

implemented as it is a powerful tool for visualising high-dimensional data in 

low dimension. It excels in capturing nonlinear relationships, thereby preserving 

the local structure of the dataset. 

 

 

Figure 4.12: t-SNE Plot for All Features. 

 

 

Figure 4.13: t-SNE Plot for All Features in 3D. 
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The t-SNE plot in Figure 4.12 above was generated by including all 

features in the dataset. One cluster is predominantly yellow, suggesting a 

grouping of individuals without heart disease. The other cluster is 

predominantly purple, indicating individuals with heart disease. From the plot, 

it is obvious that there is some degree of overlap. The area where yellow and 

purple points mix represents individuals whose feature values are similar to both 

groups. This could indicate that borderline cases or noise existing in the data. 

This t-SNE output was visualised in three dimensions as well, as shown in 

Figure 4.13. Similarly, there exists some obvious overlapping areas. Hence, a 

plot in Figure 4.14 below was further generated by excluding the four features 

that have the least correlation. 

 

 

Figure 4.14: t-SNE Plot Excluding Least Correlated Features. 

  

Comparing with Figure 4.12, it is evident that two clusters are fairly 

well-separated, which suggests that the features used to generate the t-SNE plot 

perform a good job of distinguishing between the two groups. The separation 

between the two groups became clearer, which could be indicative of strong 

predictive features that could be useful for building a classification model to 

predict heart disease. In a nutshell, the 4 features having the least correlation 
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were to be removed. They are resting blood pressure (trestbps), cholesterol 

(chol), fasting blood sugar (fbs) and resting electrocardiogram (restecg). 

 

4.3 Model Development 

Prior to developing an unsupervised SOM model, some preprocessing steps 

were implemented. Categorical features underwent encoding, while numerical 

features were processed using min-max scaling. This scaling procedure ensures 

that numerical values are transformed to a standardised range between 0 and 1. 

Besides, the dataset was divided into training and testing sets, with 80% of the 

data used for training and the remaining 20% reserved for testing. 

Leveraging the kohonen package in the R programming environment, 

the development of a SOM model becomes both accessible and efficient. The 

somgrid function is critical in structuring the SOM by determining the grid 

dimensions and topology (Wehrens and Buydens, 2007). On this grid, each 

neuron or unit represents a cluster of similar observations, grouping data points 

that share common characteristics.  

Subsequently, the xyf function was utilised as it is suited for scenarios 

where labelled data is available, as exemplified in this study. This function is a 

variant of the Kohonen SOM, combining unsupervised clustering and 

supervised classification. It is particularly useful for supervised mapping, 

enabling the mapping of high-dimensional data to a lower-dimensional grid 

while considering a target variable that guides the training process (Wehrens 

and Buydens, 2007). In this study, heart disease status (yes or no) served as the 

target variable, providing a supervised learning component to the analysis. By 

synergising the SOM's unsupervised clustering capabilities with supervised 

learning, the xyf function ensured that the SOM not only organises data based 

on similarities but also aligns the map with the relationship between features 

and heart disease outcomes (Wehrens and Buydens, 2007). This resulted in a 

more structured map, organising the data into distinct regions corresponding to 

specific heart disease outcomes. 
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Moreover, in the context of SOM topology, the two tables below, Table 

4.2 and Table 4.3, present a comparison of performance metrics for rectangular 

and hexagonal SOM topologies across various grid dimensions. 

 

Table 4.2: Performance Metrics of Rectangular Topology across Various 

Grid Dimensions of SOM. 

Dimension Accuracy Precision Recall F1 Score  QE 

(5, 5) 0.5833 0.7333 0.6471 0.6875 0.0476 

(6, 6) 0.6531 0.7250 0.8286 0.7733 0.0425 

(7, 7) 0.6250 0.7407 0.7143 0.7273 0.0368 

(8, 8) 0.6190 0.6970 0.7931 0.7419 0.0301 

(9, 9) 0.6047 0.7419 0.7188 0.7302 0.0256 

(10, 10) 0.6279 0.7500 0.7500 0.7500 0.0252 

  (11, 11) 0.6757 0.8400 0.7241 0.7778 0.0238 

  (12, 12) 0.5349 0.6786 0.6333 0.6552 0.0247 

  (13, 13) 0.6000 0.8000 0.6667 0.7273 0.0217 

  (14, 14) 0.5952 0.7500 0.6774 0.7119 0.0230 

  (15, 15) 0.5333 0.7647 0.5652 0.6500 0.0212 

 

Table 4.3: Performance Metrics of Hexagonal Topology across Various Grid 

Dimensions of SOM. 

Dimension Accuracy Precision Recall F1 Score  QE 

(5, 5) 0.5625 0.7692 0.5714 0.5385 0.0498 

(6, 6) 0.5306 0.6765 0.6571 0.6667 0.0431 

(7, 7) 0.6053 0.7917 0.6552 0.7170 0.0373 

(8, 8) 0.6522 0.7813 0.7353 0.7576 0.0293 

(9, 9) 0.5778 0.6667 0.7742 0.7164 0.0256 

(10, 10) 0.6122 0.7105 0.7714 0.7397 0.0247 

  (11, 11) 0.6190 0.7059 0.8000 0.7500 0.0247 

  (12, 12) 0.5556 0.6071 0.7727 0.6800 0.0227 

  (13, 13) 0.5588 0.7368 0.5833 0.6512 0.0219 

  (14, 14) 0.5455 0.7500 0.5625 0.6429 0.0197 

  (15, 15) 0.5357 0.6842 0.6500 0.6667 0.0193 

 

To determine the suitable topology type, it is essential to ensure a fair 

comparison between hexagonal and rectangular topologies. This requires using 
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a constant grid dimension for both topologies, ensuring that the grid size and 

number of neurons are identical, However, for a thorough and reliable 

comparison, using just one constant grid dimension is typically insufficient. 

Hence, by varying the grid dimension from 5 x 5 to 15 x 15, it becomes possible 

to capture the impact of topology on performance metrics. This range was 

chosen to cover a variety of grid sizes ranging from small to large, providing a 

more comprehensive evaluation.  

Based on the comparative results of both topologies above, it is evident 

that the rectangular topology generally outperforms the hexagonal topology 

across all metrics. Consequently, the subsequent SOM model development was 

conducted using the rectangular topology. 

Furthermore, as discussed in Section 3.6, key hyperparameters of SOM 

include grid size, number of iterations, learning rate, and neighbourhood radius. 

These hyperparameters must be predefined before training, as they remain 

constant throughout the training process. In fact, SOM is highly sensitive to their 

hyperparameters, which can significantly impact the model performance 

(Astudillo and Oommen, 2014).  For instance, small changes in grid size can 

alter the SOM's topology, while variations in learning rate can affect 

convergence speed. 

Hence, in this study, an initial guess followed by a trial-and-error 

approach was first employed to set the required hyperparameter for the SOM 

model development. While initial guess and trial-and-error methods are 

common approaches for setting these hyperparameters, they can be time-

consuming and may lead to suboptimal results. This is often a trade-off between 

accuracy and development time. In some cases, a suboptimal hyperparameter 

configuration might be acceptable if it allows for a quick and reasonably 

accurate model, especially under time constraints. 

To assess the performance of the developed SOM model, several 

performance metrics were employed. By varying the grid dimension while 

keeping other hyperparameters constant, the impact of these hyperparameters 

on the model's behaviour was explored. The Table 4.4 below presents some of 

the results obtained with varying grid dimensions through trial and error. For 
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clarity, the Table 4.4 displays accuracy metrics sorted in ascending order to 

facilitate easier comparison. 

 

Table 4.4: Performance Metrics of SOM Model with Varying Grid 

Dimensions through Trial and Error. 

Grid x Grid y Accuracy Precision Recall F1 Score QE 

5 6 0.5510 0.7600 0.5429 0.6333 0.0444 

9 13 0.6000 0.7619 0.6957 0.7273 0.0242 

10 14 0.6053 0.7407 0.7143 0.7273 0.0228 

15 12 0.6053 0.7143 0.7407 0.7273 0.0224 

12 8 0.6111 0.7500 0.6923 0.7200 0.0264 

8 12 0.6136 0.7273 0.7500 0.7385 0.0258 

14 7 0.6154 0.8182 0.6207 0.7059 0.0264 

9 12 0.6190 0.7500 0.7500 0.7500 0.0238 

5 10 0.6364 0.7222 0.8125 0.7647 0.0324 

7 6 0.6364 0.7576 0.7576 0.7576 0.0393 

11 13 0.6512 0.7500 0.7742 0.7619 0.0252 

13 15 0.6552 0.7222 0.7222 0.7222 0.0222 

7 8 0.6585 0.7931 0.7419 0.7667 0.0336 

11 7 0.6585 0.8000 0.6897 0.7407 0.0255 

6 14 0.6596 0.7368 0.8235 0.7778 0.0280 

6 9 0.6667 0.8077 0.7241 0.7636 0.0288 

14 15 0.6800 0.7500 0.8333 0.7895 0.0207 

13 5 0.6818 0.8214 0.7188 0.7667 0.0289 

8 13 0.6944 0.7857 0.8148 0.8000 0.0252 

10 5 0.6977 0.8276 0.7500 0.7869 0.0350 

15 9 0.7143 0.8148 0.8148 0.8148 0.0244 

12 9 0.7179 0.7500 0.8889 0.8136 0.0256 

 

Through trial-and-error, the highest accuracy of SOM that could be 

obtained was 71.79% with grid dimensions of 12 x 9. The remaining metrics 

were well-balanced, demonstrating the SOM’s capability of organising the data 

and predicting heart disease. Before optimisation, such trial-and-error approach 

was used to explore different grid sizes for the SOM model. The best 

configuration found through this method served as a reference for comparing 

performance improvements after applying PSO optimisation. This comparison 



47 

 

would help evaluate the effectiveness of the optimisation process in enhancing 

the SOM model's performance.  

Additionally, from this approach, one can infer that determining the 

optimal set of hyperparameters to achieve outstanding model performance can 

be both challenging and time-consuming when relying solely on trial-and-error 

methods. This approach may not only fail to yield satisfactory results but also 

makes it difficult to confirm whether the chosen hyperparameters represent the 

best possible configuration.  

To address these limitations, additional hyperparameter tuning 

techniques are necessary to be employed. These techniques can often help 

achieve better model performance while reducing the time and effort required 

for hyperparameter tuning. In this study, the metaheuristic optimisation 

algorithm, PSO, is proposed to enhance the performance of the SOM model, 

with the outcomes discussed in the following section. 

 

4.4 Hyperparameter Optimisation 

In an effort to further enhance the SOM model’s effectiveness, PSO was 

employed after the SOM model development. Utilising the pso package in R 

environment, the psoptim function, serving as the Particle Swarm Optimiser, is 

introduced in this study for the general implementation of PSO.  

The psoptim function is configured with several parameters (Bendtsen, 

2022). The par parameter represents the initial parameter vector. The fn 

parameter specifies the fitness function, which was designed to be maximised 

to improve the accuracy of SOM. The lower and upper parameters define the 

lower and upper bounds for the hyperparameters, respectively. The control 

parameter is a list of control parameters, including maxit set to 1500, which 

represents the maximum number of iterations for the PSO algorithm.  

Five hyperparameters of the SOM are optimised in this process. Table 

4.5 below outlines the settings for the lower and upper bounds of these SOM 

hyperparameters, which are to be optimised through the PSO-SOM algorithm. 
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Table 4.5: Bounds for SOM Hyperparameters Optimised by the PSO-SOM 

Algorithm. 

SOM Hyperparameter Lower Bound Upper Bound 

Grid x 5 15 

Grid y 5 15 

Number of Iterations 500 2000 

Maximum Number of Iterations 0.01 0.5 

Neighbourhood Radius 1 10 

 

This setup ensures that the PSO-SOM algorithm effectively searches 

for the optimal hyperparameters to maximise the accuracy of the SOM. By 

incorporating PSO into the SOM model, an optimal solution was obtained. The 

optimal hyperparameter settings for SOM are presented in Table 4.6 below. 

 

Table 4.6: Optimal Hyperparameter Settings of SOM. 

Hyperparameter Optimal Value 

Grid x 15 

Grid y 13 

Number of Iterations 776 

Learning Rate [0.2572, 0.01] 

Neighbourhood Radius [4.5304, 1] 

 

With these optimal hyperparameter settings, the SOM model was 

trained to achieve improved performance. 

 

4.5 Model Evaluation 

Evaluating the performance of the developed SOM model involves assessing 

both quantitative metrics and qualitative visualisations to ensure reliable and 

interpretable outcomes. This section discusses the numerical performance 

metrics used to evaluate the SOM model. Additionally, visualisations such as 

heatmaps, U-Matrix, and training progress plots are utilised to provide insights 

into the model performance, which are essential for interpreting the underlying 

structure and the learning process of the SOM model. 
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4.5.1 Performance Metrics 

The performance of the developed SOM model was reassessed following the 

integration of PSO. Table 4.7 below presents a comparison of the SOM model's 

performance before and after the PSO-SOM algorithm. 

 

Table 4.7: Comparative Results of the SOM Model Before and After the 

PSO-SOM Algorithm. 

Metric Before PSO After PSO 

Accuracy 0.7179 0.9444 

Precision 0.7500 1.0000 

Recall 0.8889 0.9286 

Specificity 0.3333 1.0000 

F1 Score 0.8136 0.9630 

QE 0.0256 0.024 

 

Based on the result, it is evident that the incorporation of PSO led to 

significant improvements across all evaluated metrics. The optimised SOM 

model achieved a maximum accuracy of 94.44%, an improvement from the 

previous accuracy of 71.79%, reflecting a significant enhancement in its overall 

classification performance. Besides, precision improved from 0.75 to 1, 

demonstrating that the optimised model now identifies true positive cases with 

barely any false positives.  

In heart disease prediction, while accuracy is crucial, recall and 

specificity are particularly important to avoid misclassifications that could 

impact patient outcomes. Recall rose from 0.8889 to 0.9286, indicating a slight 

reduction in missed positive cases. This is crucial in heart disease prediction as 

missing a diagnosis (false negatives) can have serious consequences for patients. 

Specificity experienced a dramatic increase from 0.3333 to 1, showing the 

model’s capability to correctly identify negative cases without false positives. 

This is important to avoid false alarms where healthy individuals are incorrectly 

classified as having heart disease, thereby reducing unnecessary treatments and 

ensuring that only those who truly need intervention are identified. 

Additionally, the F1 score, which balances precision and recall, 

improved from 0.8136 to 0.9630, highlighting the model's improved 
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performance and effectiveness. Furthermore, the QE decreased marginally from 

0.0256 to 0.0240, suggesting a slight reduction in the error associated with 

mapping input vectors to the nearest neurons, thus indicating better accuracy 

and consistency of the model. Overall, these results highlight the effectiveness 

of PSO in optimising the SOM model’s hyperparameters, leading to great 

improvement in predictive accuracy and reliability. 

 

4.5.2 Kohonen Map Visualisation 

Upon developing the optimised SOM model, the Kohonen Map can be 

visualised using a variety of plots to interpret clusters and relationships within 

the data. Below are some common plots used for visualising SOM in R, along 

with explanations for each. 

 

  

Figure 4.15: Feature Heatmaps of SOM. 

 

Figure 4.16 above illustrates SOM’s heatmap visualisations. These 

component planes show the distribution of data for each feature across the SOM 

grid. They are useful for identifying and understanding the overall structure of 
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the data. Red indicates low values and white indicates high values. By 

comparing the heatmaps of different features, the distribution of various 

variables can be analysed to determine whether they exhibit similar patterns. If 

two features have similar patterns, this suggests they are correlated. For instance, 

by observing the heatmaps of ‘oldpeak’ (ST depression) and ‘slope’ (slope of 

peak exercise ST segment), both features display similar patterns, suggesting a 

potential significant correlation between them.  

On the other hand, the heatmaps for ‘thalach’ (maximum heart rate 

achieved) and ‘exang’ (exercise-induced angina) shows an inverse relationship 

between them, as it is noticed that regions with higher ‘thalach’ values (light 

yellow areas) correspond to regions with lower ‘exang’ values (red areas). The 

inverse relationship between "thalach" and "exang" as observed suggests that 

individuals with higher maximum heart rates are less likely to have angina 

during exercise. This finding aligns with medical knowledge, as a higher heart 

rate capacity generally indicates better cardiovascular health and a reduced risk 

of angina (Wong, et al., 2015).  

When looking at the ‘sex’ variable alone, the heatmap reveals a distinct 

pattern that differs from those observed in other variables. This observation 

suggests that 'sex' may not exhibit a strong or direct relationship with the rest of 

the variables within the context of this SOM model. The lack of pattern 

similarity could also imply that 'sex' possibly interacts with these variables in a 

more complex manner that may not be immediately apparent from the heatmap 

alone. 
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Figure 4.16 Heatmaps of SOM for the Target Variable. 

 

The heatmaps in Figure 4.17 above illustrating the distribution of 

neurons in the SOM for the target variable, with separate plots for cases of no 

heart disease (0) and heart disease (1). This visualisation helps to identify 

regions of the SOM grid associated with higher or lower frequencies of the 

target variable. Red indicates the strong presence of each case of the target 

condition. Specifically, in the heatmap representing no heart disease (0), red 

indicates the frequency of cases with no heart disease and in the heatmap 

representing heart disease (1), red indicates the frequency of cases with heart 

disease. In short, the formation of distinct patterns indicates that SOM has 

identified meaningful patterns and relationships within the data. 

In addition, by examining the heatmaps of features and the target 

variable concurrently, it allows for the inference of the importance of certain 

features indirectly. For instance, examining the heatmap of the feature ‘exang’ 

(exercise-induced angina) in Figure 4.15 alongside the heatmap of no heart 

disease (0) in Figure 4.16, reveals significant overlap in the red regions at the 

top left of both heatmaps., This overlap suggests that the region associated with 

the absence of heart disease is significantly composed of patients without 

exercise-induced angina, thereby indicating that 'exang' may be a critical 

predictor of heart disease. 



53 

 

 

Figure 4.17: U-Matrix of SOM. 

 

The Neighbour Distance Plot of the developed SOM as shown in 

Figure 4.15 above, also referred to as U-Matrix, reveals significant insights into 

the clustering performance of SOM. This plot visualises the distances between 

neighbouring neurons, thereby identifying cluster boundaries and the relative 

distances between clusters. The lighter areas, indicating larger distances 

between neighbouring nodes, are regions where the data points are significantly 

different from each other. These light regions serve as boundaries between 

distinct clusters, suggesting effective separation of two groups within the data. 

Conversely, the red circles, representing smaller distances, highlight regions of 

high homogeneity, implying that the data points within each cluster share 

substantial similarities. The upper left red areas indicate clusters of patients 

without heart disease, while the bottom right red areas indicate clusters of 

patients with heart disease. The presence of clear boundaries and two clusters 

highlights the SOM model’s efficacy in organising the data. 
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Figure 4.18: Training Progress of SOM. 

 

This plot illustrates the training progress of SOM across 776 iterations. 

The y-axis shows the mean distance to the closest unit, while the x-axis 

represents the number of iterations. The plot shows a general decreasing trend 

in mean distance over time, indicating that the nodes' weights are becoming 

closer to the samples. As training progresses, the SOM’s neurons are effectively 

adjusting and becoming better at representing the input data. A lower mean 

distance to the closest unit suggests that the SOM is improving in terms of how 

well it fits the data. However, there are fluctuations in the line, which is normal 

during SOM training as the map adjusts to the data. The overall downward trend 

is what indicates convergence. Toward the end of the iterations, the line appears 

to level off, suggesting that the training is stabilising, and the SOM has largely 

converged. 

 

4.6 Summary 

The implementation of PSO has led to substantial enhancements across all 

metrics, indicating that the optimisation technique has significantly boosted the 

model’s performance. The SOM model is now more accurate and precise, with 

improved capability in correctly identifying both positive and negative cases of 

heart disease. Additionally, the visualisations of SOM including feature 

heatmaps and U-matrix as well offer valuable insights into the relationships 

among cardiovascular conditions—insights that are uniquely afforded by 

unsupervised learning models. In fact, it becomes evident that SOM, as an 
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unsupervised ML model, is capable of making predictions with high accuracy 

and effectiveness, potentially even outperforming supervised ML models.  
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

Heart disease remains a chronic and persistent health issue, necessitating 

reliable and robust methods for early prediction and intervention. Considering 

the limitations of conventional models, this study highlights the efficacy of the 

SOM as an innovative unsupervised ML approach for predicting heart disease. 

Following the selection of a robust feature set, based on the correlation analysis 

and using the unsupervised t-SNE algorithm,, the SOM model was developed. 

The proposed PSO-SOM model then further contributes to resolving the 

challenges of predictive tasks within the medical field. 

In cases where a predictive model like SOM is sensitive to 

hyperparameters, PSO is particularly advantageous as it can efficiently search 

through the possible hyperparameter space to identify the optimal configuration. 

Moreover, PSO’s capability to handle non-differentiable spaces makes it well-

suited for optimising SOM, an unsupervised ML model that does not provide a 

smooth gradient for optimisation. In fact, the effectiveness of the proposed PSO-

SOM algorithm is clearly demonstrated by its ability to enhance the accuracy of 

the SOM model to 94.4%. This improvement significantly bolsters the model's 

performance in predicting heart disease, underscoring the potential of the PSO-

SOM approach in this domain. 

Furthermore, this study also highlights that unsupervised SOMs offer 

a compelling advantage over supervised methods due to their ability to preserve 

topology, reduce dimensionality, and utilise various visualisation techniques. 

For instance, visualisations such as heatmaps and U-matrix of SOM provide a 

rich visual representation of the underlying data structure, revealing hidden 

patterns and relationships that may be obscured by supervised approaches. This 

enhanced interpretability is crucial for understanding complex cardiovascular 

conditions and optimising the development of effective predictive models.   

To conclude, the unsupervised SOM model has demonstrated highly 

effective prediction results, achieving strong performance across all assessment 
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metrics. It is crucial for predictive models, particularly in the medical field, to 

have a high recall rate alongside accuracy due to the significant costs associated 

with medical diagnoses. The optimal performance metrics of the SOM model 

indicate not only high accuracy but also effective identification of heart disease, 

minimising instances of missed actual heart disease cases. Hence, integrating 

the SOM model into clinical workflows could significantly enhance early 

detection and personalised treatment plans for heart disease, enabling healthcare 

professionals to identify at-risk individuals through data patterns and reducing 

disease prevalence.  

In addition, this study closely aligns with and can contribute to the 

Sustainable Development Goals (SDGs), specifically SDG 3, as illustrated in 

Figure 5.1 below. SDG 3 emphasises on promoting healthy lives and well-being 

for people of all ages (United Nations, 2024).  

 

 

Figure 5.1: SDG 3: Good Health and Well-Being. 

 

Heart disease is one of the major non-communicable diseases (NCDs). 

By improving predictive models for heart disease, this study contributes to early 

detection and better management of cardiovascular conditions, which aligns 

with the goal of reducing premature mortality from NCDs including 

cardiovascular disease, diabetes, cancer, and chronic respiratory diseases, as 

outlined in Target 3.4.1 of SDG 3 (United Nations, 2024). 

Besides, Target 3.d of SDG 3 is also relevant to this study, as it 

emphasises strengthening the capacity of countries, particularly developing 

ones, for early warning, risk reduction, and management of health risks (United 

Nations, 2024). The SOM model for heart disease prediction plays a crucial role 

in this objective by enhancing early warning systems and improving risk 

management strategies. By offering predictive insights into heart disease, this 
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study supports global health systems, including those in developing regions, 

thereby bolstering their ability to manage and respond to health risks more 

effectively. 

 

5.2 Recommendations for Future Work 

Upon achieving promising results with the developed SOM model, several 

limitations and areas for improvement can be acknowledged and addressed for 

future research. 

In this study, the generalisability of the model may be constrained by 

the relatively small sample size of the heart disease data used. To strengthen the 

model's applicability across diverse populations, future research should validate 

the SOM model using larger, more representative datasets from reliable sources. 

These datasets should encompass a wider range of demographic, clinical, and 

sociocultural factors to ensure comprehensive evaluation and broader 

applicability. 

While PSO was a useful tool for hyperparameter tuning in this study, 

investigating other optimisation algorithms such as GA may offer alternative 

perspectives on the model's performance. By comparing these methods, 

researchers can identify the most effective technique for fine-tuning the SOM 

model, enhancing the optimisation process. This would ultimately improve the 

model's overall effectiveness and ensure its robustness in real-world 

applications, across various demographic and clinical contexts. 

In short, addressing these factors will contribute to the development of 

a more reliable and applicable SOM model, capable of effectively capturing the 

complexity of medical data and predicting heart disease. This will ultimately 

facilitate better clinical decision-making and lead to enhanced patient outcomes. 
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