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ABSTRACT 

 

Matrix decomposition is extremely useful for data compression and efficient 

storage. As images are increasingly used across the Internet, the challenge of 

managing large file sizes becomes more significant. However, higher-quality 

images often come with large file sizes, making transmission extremely 

cumbersome. Matrix decomposition techniques can address this issue by 

compressing images to smaller file sizes while preserving much of the image 

fidelity. Although Singular Value Decomposition (SVD) has been widely used, 

Interpolative Decomposition (ID) has recently emerged as an alternative. This 

report explores the applicability of ID in image processing, particularly in image 

compression and compares its performance with that of SVD. 

We used four different images with unique characteristics to evaluate 

the performance of the matrix decomposition methods. Based on this, we 

deduced general compression parameters for both methods and tested these 

parameters using a separate image. All images were taken from the USC-SIPI 

Image Database. Our analysis showed that both ID and SVD struggled to 

compress images with darker regions. Nevertheless, ID generally produced 

better image quality, while SVD was more effective in reducing file size. For 

512 × 512 pixel images, we established the following generalised compression 

parameters: for grayscale images, 𝑘 = 243 with a threshold of 0.01 for ID, and 

𝑘 = 89 for SVD; for colour images, 𝑘 = 370 with a threshold of 0.01 for ID, 

and 𝑘 = 184 for SVD. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

As technology continues to evolve, taking high-quality pictures is not as 

challenging as it can be done with a smartphone. However, transmitting these 

images can be cumbersome due to their high resolution and larger file sizes. 

Moreover, often the content is much more significant than the image quality. 

Therefore, an image compression approach is required to reduce file sizes for 

convenient transmission. Matrix decomposition is one technique for image 

compression. By breaking down complex matrices into simpler components, 

matrix decomposition offers insights into the underlying structure of the data, 

which is beneficial for various computational tasks and analysis. 

One such classical method is the Lower-Upper (LU) factorisation, 

which efficiently solves systems of linear equations and calculates determinants 

(Mittal and Al-Kurdi, 2002; Su et al., 2018). Singular value decomposition 

(SVD) is another well-known method that is widely used in a variety of fields, 

including collaborative filtering, image processing, and data compression. 

Additionally, QR decomposition decomposes a matrix into the product of Q, an 

orthogonal matrix and R, an upper triangular matrix. Because of its stability and 

robustness, QR decomposition is widely used in data analysis, optimisation, and 

numerical computations. It provides reliable answers for eigenvalue 

calculations, linear least squares issues, and orthogonalisation processes 

(Kawamura and Suda, 2021). 

In recent years, Interpolative Decomposition (ID) has become a 

powerful approach for matrix compression and approximation. ID focuses on 

finding a subset of columns that represent the fundamental composition of the 

original matrix, known as the skeleton. ID creates a low-rank approximation by 

interpolating across chosen columns, which significantly lowers computational 

complexity and memory requirements while preserving important properties. 

These various matrix decomposition techniques present different trade-

offs in terms of accuracy, computational complexity, and suitability for 

particular problem fields. Understanding their concepts and capabilities is 
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critical in image processing, whether it involves compression, denoising, or 

other transformational operations. 

 

1.2 Motivation 

The volume of data being generated grows at an exponential rate. Knowledge is 

hidden within these data and is waiting to be discovered. Data analysts apply 

data mining or predictive modelling techniques to uncover the secrets hidden 

within them. However, as the volume of information grows, the curse of 

dimensionality is also experienced. A suitable number of attributes is mostly 

enough to produce the required knowledge, too many of them may cause 

disturbances in the decision-making process or impede the calculation process. 

To address this challenge, matrix decomposition or matrix factorisation 

techniques may be used to decompose a vast matrix into its constituent parts to 

leverage the computation process. By leveraging interpolative decomposition 

methods, we can effectively navigate the complexities of high-dimensional data 

and uncover actionable insights that drive informed decision-making and 

enhance overall data-driven strategies. 

 

1.3 Problem Statement 

Matrices are widely used for representations of numerical data in various fields, 

from systems of equations to image processing. However, manipulating a large 

matrix may be tedious to operate with, thus, techniques such as LU 

decomposition, QR decomposition, SVD, and ID are invented to help break 

down the large matrix into a simpler form to work on. 

ID is a numerical approach for approximating large matrices with low-

rank matrices. The skeleton matrix is usually the matrix to represent the original 

matrix. This project aims to explore the practical applications of ID in image 

processing. 

Furthermore, the project aims to compare ID against other matrix 

decomposition techniques to assess its performance and applicability for various 

applications. By examining the strengths and weaknesses of ID in comparison 

with alternative methods, this study aims to provide insights into its optimal 

usage scenarios and potential improvements. 
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1.4 Objectives 

The objectives of this project are summarised as follows: 

(1) Explore the applicability of Interpolative Decomposition (ID) 

in image processing by utilising the properties of ID. 

(2) Conduct and compare the performance and suitability of 

different matrix decomposition techniques including ID and 

Singular Value Decomposition (SVD), in image processing. 

(3) Obtain a generalised compression parameters to compress 

images using ID and SVD. 

 

1.5 Project Schedule Timeline 

The entire project spans two trimesters, consisting of Project I and Project II. 

Table 1.1 and Table 1.2 show the Gantt Charts for Project I and Project II 

respectively. 

 

Table 1.1: Gantt Chart Final Year Project I (January Trimester 2024). 

Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 
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Task 

 Title Registration 

 Submission of Biweekly Report 

 Sourcing ID and Image Processing Related Material 

 Writing Proposal 

 Submission of Project Proposal 

 Writing Algorithm and Test for Grayscale Images 

 Writing Interim Report 

 Submission of Interim Report 

 Oral Presentation 

 

Table 1.2: Gantt Chart Final Year Project II (May Trimester 2024). 

Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 
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Task 

 Expanding the Report from Project I 

 Sourcing ID and Image Processing Related Material 

 Writing Algorithm and Test for RGB Images 

 Refining the Algorithm 

 Writing Final Report 

 Submission Mid-Semester Monitoring Form 

 Prepare FYP Poster 

 Submission of Poster 

 Submission of Presentation Slide 

 Submission of All Relevant Documents 

 Oral Presentation 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Low-rank approximation is a popular technique used in data analysis to reduce 

the memory footprint and computational complexity (Muravev et al., 2018). 

One common method for this is SVD, but ID is also emerging as a promising 

alternative. 

 

2.2 Definitions 

Some common definitions are listed below. 

Let 𝑖, 𝑗 be two positive integers where 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 and let 

𝐴 = (𝑎𝑖,𝑗) ∈ ℝ𝑚×𝑛. 

(1) 𝐴 is a diagonal matrix when 𝑎𝑖,𝑗 = 0 for all 𝑖 ≠ 𝑗. 

(2) 𝐴 is a lower triangular matrix when 𝑎𝑖,𝑗 = 0 for all 𝑖 < 𝑗. 

(3) 𝐴 is an upper triangular matrix when 𝑎𝑖,𝑗 = 0 for all 𝑖 > 𝑗. 

(4) 𝐴 is a lower diagonal matrix when 𝑎𝑖,𝑗 = 0 for all 𝑖 < 𝑗  and 

𝑎𝑖,𝑗 ≠ 0. 

(5) 𝐴 is an upper diagonal matrix when 𝑎𝑖,𝑗 = 0 for all 𝑖 > 𝑗 and 

𝑎𝑖,𝑗 ≠ 0. 

(6) 𝐴 = 𝐼𝑛 = 𝐼 ∈ ℝ𝑛×𝑛  is the identity matrix of order 𝑛  when 

𝑎𝑖,𝑗 = 0 for all 𝑖 ≠ 𝑗 and 𝑎𝑖,𝑗 = 1 for all 𝑖 = 𝑗. 

 

2.3 Interpolative Decomposition (ID) 

This subsection summarises the definition and properties of ID. The following 

lemma defines the interpolative decomposition. 

 

Lemma 1 (Liberty et al., 2007): Suppose 𝑚, 𝑛 are two positive integers, and 𝐴 

is an 𝑚 × 𝑛 matrix. Then, for any real number 𝑘 with 𝑘 ≤ 𝑚 and 𝑘 ≤ 𝑛, there 

exists an 𝑚 × 𝑘 skeleton matrix 𝐶 whose columns are a selected subset of the 

columns of the matrix 𝐴, and a 𝑘 × 𝑛 interpolation matrix 𝑍, such that 
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1. An identity matrix of order 𝑘, 𝐼𝑘 is a subset of the columns of the matrix 

𝑍, 

2. Every element of 𝑍 will have a magnitude less than or equal to a small 

positive integer, say 2, 

3. The 𝑘th greatest singular value of 𝑍 is at least 1, 

4. ‖𝑍𝑘×𝑛‖ ≤ √4𝑘(𝑛 − 𝑘) + 1, 

5. When 𝑘 = 𝑛 or 𝑘 = 𝑚, 𝐴 = 𝐶𝑍, and 

6. When 𝑘 < 𝑛 or 𝑘 < 𝑚, ‖𝐶𝑚×𝑘𝑍𝑘×𝑛 − 𝐴𝑚×𝑛‖2 ≤ √𝑘(𝑛 − 𝑘) + 1𝜎𝑘+1 

where 𝜎𝑘+1 is the (𝑘 + 1)st greatest singular value of 𝐴. 

 

Property 2 ensures that the decomposition is numerically stable. 

Property 3 follows directly from property 1. Combining properties 1 and 2 yields 

property 4. Property 5 is the interpolative decomposition of 𝐴, whereas property 

6 is the 𝑘-rank approximation of 𝐴. (Liberty et al., 2007) 

Figure 2.1 is the illustration of ID where 𝐴 is the original matrix and 

after applying ID, it will decompose the matrix to a skeleton matrix 𝐶 and an 

interpolation matrix 𝑍. 

 

 

Figure 2.1: Illustration of ID. 

 

2.3.1 Proposed Algorithms 

ID is calculated by modifying pivoted QR, as proposed by Golub (1965). The 

computation cost of ID is 𝒪(𝑛𝑚𝑘) , which is cheaper than SVD 

(𝒪(𝑛𝑚 𝑚𝑖𝑛(𝑛, 𝑚))), where 𝑛, 𝑚, 𝑘  are the number of rows, the number of 

columns, and the rank of original matrix, respectively. As 𝑘 ≤  𝑚𝑖𝑛(𝑛, 𝑚), ID 

is particularly useful when solving rank-deficient least squares problems. 
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Many algorithms have been proposed to solve the interpolative 

decomposition problem such as (Woolfe et al., 2008), (Liu and He, 2019), 

(Bhaskara et al., 2020), (Advani and O’Hagan, 2022), etc. Python’s called 

scipy.linalg.interpolative library offers two methods for calculating ID: a 

deterministic approach (SciPy ID) and a randomised approach (SciPy RID). 

Advani, Crim and O’Hagan (2020), and Advani and O’Hagan (2022) proposed 

two simplified algorithms for computing ID in Python. The deterministic 

algorithm, called Optim ID, selects columns of 𝐶 through column-pivoted QR 

decomposition and computes 𝑍  via least-squares. On the other hand, the 

randomised algorithm, Optim RID, speeds up the calculation by using column 

sampling by sacrificing some accuracy, particularly in very sparse datasets. 

Both Optim ID and Optim RID algorithms outperform existing 

methods in the SciPy library by demonstrating greater computational efficiency 

and accuracy in constructing ID. Specifically, Optim ID computes 

approximations faster than SciPy ID while maintaining similar accuracy, and 

Optim RID consistently shows better performance than SciPy RID across most 

datasets, particularly on dense datasets like MNIST and Fashion-MNIST. 

 

2.4 Singular Value Decomposition (SVD) 

Let 𝐴 be an 𝑚 × 𝑛 matrix, SVD decomposes 𝐴 into a product of three matrices, 

 

𝐴 = 𝑈Σ𝑉𝑇 . 

Here, 

• 𝑈 is an 𝑚 × 𝑚 orthogonal matrix, where its columns represent the left 

singular vectors, 

• Σ is an 𝑚 × 𝑛 diagonal matrix with decreasing singular values, and 

• 𝑉𝑇  is an 𝑛 × 𝑛  orthogonal matrix, whose rows represent the right 

singular vectors. 

 

Both 𝑈 and 𝑉𝑇  are unitary matrices, thus, 𝑈𝑇 = 𝑈−1 and 𝑉𝑇 = 𝑉−1. 

The singular values in Σ indicate the importance of the corresponding singular 

vectors in the decomposition, with higher values indicating greater importance 

(Strang, 2006). Another type of SVD, called the Truncated SVD, is similar to 
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the classic SVD with the difference that only the top 𝑘  significant singular 

values are considered, where 𝑘  is a user-determined integer parameter. The 

choice of 𝑘 plays a crucial role in determining the level of approximation and 

compression achieved. 

With a higher 𝑘 value, more singular values and singular vectors from 

the original matrix are retained, which increases the accuracy of the 

approximation and reduces matrix norms (e.g., Frobenius norm or spectral 

norm). As a result, the compression ratio is lower to store more information of 

the original data and the compressed representation is less compact. 

SVD and its variants are commonly used to perform data compression 

(Bentbib, Kreit and Labaali, 2022), dimensionality reduction (Libal, Baras and 

Johansson, 2020), and data reconstruction (Intawichai and Chaturantabut, 2022). 

 

2.5 Non-Negative Matrix Decomposition (NMF) 

Suppose an 𝑚 × 𝑛 matrix 𝐴, whose elements are all non-negative. NMF aims 

to approximates 𝐴  into 𝐴 ≈ 𝑊𝐻 , where 𝑊 ∈ ℝ𝑚×𝑘  and 𝐻 ∈ ℝ𝑘×𝑛  are both 

nonnegative matrices and 𝑘  is the desired low rank. This is an optimisation 

problem where it minimises the Frobenius norm 

 

min
𝑊≥0,𝐻≥0

‖𝐴 − 𝑊𝐻‖𝐹
2 . 

 

This optimisation problem can be solved by gradient descent (Lin, 

2007) or the multiplicative update rule (Lee and Seung, 2000). Each column of 

𝑊 can be interpreted as a basis vector or a feature. These basis vectors capture 

underlying patterns or components present in the data. Each column of 𝐻 

represents the coefficients or weights to reconstruct the original matrix 𝐴. The 

𝑖𝑡ℎ column of 𝐴, 𝒂𝒊 is a linear combination of the columns of 𝑊 weighted by 

the coefficients in 𝒉𝒊 (𝑖𝑡ℎ column of 𝐻) 

 

𝒂𝒊 ≈ 𝑊𝒉𝒊. 
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2.6 QR Decomposition 

Given a matrix 𝐴 ∈ ℝ𝑚×𝑛 , QR decomposition decomposes 𝐴  into an 

orthonormal matrix, 𝑄, and an upper triangular matrix, 𝑅, such that 

 

𝐴 = 𝑄𝑅. 

 

If 𝐴 is a full rank matrix, i.e. all columns are linearly independent, then 

𝑅 will be an upper triangular matrix. The orthonormality of the columns of 𝑄 

implies that each column in 𝑄 is of unit length 1 and every pair of columns in 

𝑄 are orthogonal (perpendicular) to each other. In addition, any column vector 

in the column space of 𝐴 can be formed by performing linear combinations on 

columns of 𝑄. On the other hand, 𝑅 is the scaling factor of 𝑄 to form 𝐴. 

The application of QR decomposition includes solving linear least 

squares problems, solving generalised linear regression model problems, and 

finding the eigenvalue and eigenvector of a matrix (Anderson, Bai and Dongarra, 

1992). 

 

2.7 Strength of Each Matrix Decomposition 

ID's strength compared to other matrix decompositions is that it reuses the 

columns of the original matrix. Thus, it can save computational resources, both 

in terms of time and space. Another strength of ID is that it can inherit the 

structure of the columns of the original matrix. This includes sparsity, locality, 

and factorised form (Ying, et al., 2018). Keeping the structure of the original 

matrix is extremely important, as it helps maintain data integrity, increases 

reconstruction accuracy, and preserves its features.  

SVD is considered one of the most numerically stable methods for 

matrix decomposition (Golub and Van Loan, 2013). The stability of SVD helps 

ensure that small changes in the input matrix result in small changes in the 

output, thereby maintaining the integrity of the solution. Another strength of 

SVD is the guarantee of decomposing any matrix 𝐴 into a specific form: 𝐴 =

𝑈Σ𝑉𝑇 , where 𝑈  and 𝑉  are orthogonal matrices and Σ  is a diagonal matrix 

containing singular values. This universality means that SVD can be applied to 
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matrices of any shape (rectangular, square, etc.), making it a highly versatile 

tool in linear algebra (Lay, Lay and McDonald, 2014). 

One of the key strengths of NMF is its ability to decompose a non-

negative matrix into the product of two non-negative matrices, thereby revealing 

its underlying structure and features while preserving non-negativity in the 

factorised components. This property makes NMF particularly suited for 

interpretability in applications such as image processing and text mining, as the 

original data are non-negative (Zhang, 2024). 

One classical advantage of QR factorisation is its ability to solve least 

squares problems. Given a tall matrix 𝐴𝑚×𝑛  with 𝑚 > 𝑛 , the least squares 

problem is to solve 𝐴𝑥 = 𝑏. This problem can be approached in the following 

three ways:  

(1) By solving the normal equation 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏. 

(2) By solving the equation 𝑅𝑥 = 𝑄𝑇𝑏, where 𝐴 = 𝑄𝑅 is the QR 

factorisation of 𝐴. 

(3) By solving 𝑥 = 𝑉Σ−1𝑈𝑇𝑏, where 𝐴 = 𝑈Σ𝑉𝑇 is the SVD of 𝐴. 

Method 1 is the simplest and fastest approach to solve the problem. 

However, it is less stable, as the condition number is squared. 

 

Proof. 

The condition number of a matrix 𝑀 is defined as:  

 

𝜅(𝑀) = ‖𝑀−1‖‖𝑀‖. 

 

For a matrix 𝐴 the condition number is:  

 

𝜅(𝐴) =
𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
, 

where 𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛 is the largest and smallest singular value of 𝐴. 

 

According to the SVD decomposition of 𝐴, we have 𝐴 = 𝑈Σ𝑉𝑇 . Computing 

𝐴𝑇𝐴 using SVD, we get: 

 

𝐴𝑇𝐴 = (𝑈Σ𝑉𝑇)𝑇(𝑈Σ𝑉𝑇) 
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= 𝑉ΣT𝑈𝑇𝑈Σ𝑉𝑇 

= 𝑉ΣTΣ𝑉𝑇 . 

Note that 𝑈𝑇 = 𝑈−1 implies 𝑈𝑇𝑈 = 𝐼. 

 

Here ΣTΣ is the diagonal matrix where each diagonal entry is the square of the 

corresponding singular value of 𝐴 . Specifically, if Σ = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, … , 𝜎𝑟) , 

where 𝑟 = min(𝑚, 𝑛), then:  

 

ΣTΣ = 𝑑𝑖𝑎𝑔(𝜎1
2, 𝜎2

2, … , 𝜎𝑟
2). 

 

To find the condition number for method 1, we compute 𝜅(𝐴𝑇𝐴): 

 

𝜅(𝐴𝑇𝐴) = ‖(𝐴𝑇𝐴)−1‖‖𝐴𝑇𝐴‖. 

 

As previously shown, the largest and smallest singular value of 𝐴𝑇𝐴 are 𝜎𝑚𝑎𝑥
2  

and 𝜎𝑚𝑖𝑛
2 , respectively. Thus, we have: 

 

𝜅(𝐴𝑇𝐴) =
𝜎𝑚𝑎𝑥

2

𝜎𝑚𝑖𝑛
2  

= (
𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
)

2

 

= 𝜅(𝐴)2 

 

This shows that the condition number is squared when solving the least squares 

problem through the normal equation.  ∎ 

 

Considering both stability and speed, method 2 (solving through the 

QR factorisation) is the optimal choice, with a computational cost 𝒪(2𝑚𝑛2) (if 

using the Gram-Schmidt algorithm), which is cheaper than the SVD method 

(method 3) of computational cost 𝒪(2𝑚𝑛2 + 11𝑛3) (Torberg, 2013). Method 3 

is more appropriate when 𝐴 is rank-deficient. 
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2.8 Application of Matrix Decomposition 

This section exemplifies some applications of how matrix decomposition is used 

in various fields. 

 

2.8.1 Application in Quantum Mechanics 

The usage of ID is also present in the realm of quantum mechanics, particularly 

in addressing nonlinear eigenvalue problems within Kohn-Sham density 

function theory (DFT). In this context, Damle, Lin and Ying (2017) used the 

Selected Columns of Density Matrix (SCDM) approach with ID to efficiently 

approximate solutions by focusing on localised and sparse columns of the 

density matrix. Another application is the electron repulsion integral tensor, in 

which ID is used in conjunction with Fast Fourier Transforms (FFTs) to 

compress the low-rank matrix representing basis functions in electron systems. 

This demonstrates the effectiveness of ID in reducing computational complexity 

and increasing the efficiency of quantum mechanical simulations (Lu and Ying, 

2015). 

 

2.8.2 Application in Signal Processing 

Tang, Ng and Liew (2023) presented insights into the use of ID in signal 

processing, specifically in the context of musical instrument source separation. 

The study compared the performance of ID, Non-negative Matrix Factorisation 

(NMF), and Convolutive Non-negative Matrix Factorisation (CNMF) in 

separating musical instrument sources. As opposed to expectation, the results 

showed that ID did not perform as effectively as NMF and CNMF. The authors 

regarded this mismatch as the inherent nature of ID, which involves randomly 

selecting columns from the original matrix, potentially resulting in redundancy 

and unwanted data in the factorised matrix. This observation highlights the 

importance of understanding the underlying mechanisms of ID and its 

implications in different problem domains. 

 

2.8.3 Application in Image Processing 

There are two types of image compression: lossy and lossless. Lossless 

compression is a technique that reduces a file to a smaller size while allowing it 

to be reconstructed without loss of information. Lossless compression methods 
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include Variable Length Coding, Run Length Encoding, Differential Coding 

and Predictive Coding (Sahu and Satao, 2016). 

Lossy compression, on the other hand, is a compression technique that 

reduces the file size of an image by deleting certain features that are nearly 

unnoticeable to the human eye. This process is irreversible; thus, the original 

image cannot be fully restored from the compressed version. Methods such as 

Quantisation, Transform Coding, Fractal Coding and Wavelet Coding are 

commonly used for lossy compression (Sahu and Satao, 2016). Lossy 

compression is employed in this project.  

Kiran et al. (2023) applied SVD to compress images by utilising logic 

similar to Truncated SVD. Rather than truncating the matrix, they set the 

truncated part to zero. According to their findings, the image is efficiently 

compressed since less storage space is needed to record matrix information at 

lower matrix ranks. 

In contrast, Varghese and Saroja (2021) compressed an image by 

applying SVD on a hexagonal grid image. Mersereau (1979) pointed out that to 

achieve similar outcomes, a hexagonal lattice structure needs just 13.4% fewer 

sample points than a conventional square lattice structure, which means lesser 

storage and computational resources are needed. Additionally, the similarity of 

hexagonal patterns to photoreceptors in the human retina served as inspiration 

for the hexagonal grid image processing method. Varghese and Saroja (2021) 

first transformed a square lattice image into a pseudo-hexagonal structure based 

on the design by Wüthrich and Stucki (1991). After approximating the image 

using a reasonable rank- 𝑘  approximation, they regenerated the matrix by 

eliminating singularities in the Σ matrix. This study demonstrates how SVD-

based image compression performs better in the hexagonal domain than it does 

in the square domain. 

Kong et al. (2017) proposed an image compression scheme in Wireless 

Multimedia Sensor Networks (WMSNs) using Non-Negative Matrix 

Decomposition (NMF). While the primary goal of their scheme is not solely 

image compression, the authors employed a notable method for this purpose. 

They observed that the NMF algorithm requires more computational resources 

to achieve higher image quality, resulting in a longer compression time for 

larger images. To address this, the authors proposed an adaptive blocking image 
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compression mechanism. This method partitions an image into smaller blocks, 

claiming that it can achieve a higher compression ratio and better image 

restoration with fewer iterations. Their conclusion indicates that the blocking 

method outperforms SVD in terms of image restoration, given the same 

blocking size and compression ratio. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter introduces the project’s flow to achieve the targeted objectives. 

This project revolves around Interpolative Decomposition (ID) and its 

application in image processing. Figure 3.1 shows the flowchart to obtain the 

optimal compression parameters an image using ID. 

 

 

Figure 3.1: Flowchart to obtain the optimal compression parameters of an 

image using ID. 

 

3.2 Data Understanding 

Initially, an image is loaded into Python through Python libraries such as 

OpenCV (cv2) or Pillow (PIL). The loaded image is essentially a collection of 

pixels arranged in a grid format and each pixel has a value representing its 

colour intensity. For grayscale images, the matrix is a two-dimensional matrix 
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with each entry containing a value from 0 (black) up to 255 (white) with shades 

of grey in between, representing the colour intensity of each pixel. For colour 

images (RGB), the matrix has three channels (red, followed by green, then blue), 

each channel with its two-dimensional array storing different colour intensities 

for each pixel. Converting the image into a matrix creates a mathematical 

representation of the image. This, allows us to obtain information on colour 

intensity in each pixel, thus, enable for various image-processing tasks. 

 

3.3 Image Preprocessing 

Once the image is loaded, it undergoes an initial conversion to a grayscale 

format, and its representation matrix, denoted as 𝐴 , is extracted. Assuming 

without loss of generality, that the number of rows, 𝑚 is less than or equal to 

the number of columns, 𝑛, if this condition is not met, the transpose of the matrix 

is taken. Once, the image is ready, it can proceed to the next step, compression. 

 

3.4 Image Compression 

An iterative process is employed to select optimal parameters (𝑘 and threshold). 

Following this, the ID process is applied to 𝐴, yielding an approximation: 

 

𝐴 ≈ 𝐶𝑍, 

 

where 𝐶 is an 𝑚 × 𝑘 matrix, comprising columns selected from 𝐴, and 𝑍 is the 

interpolation matrix, a 𝑘 × 𝑛 matrix. The parameter 𝑘 represents the rank of the 

desired low-rank approximation of 𝐴. 

In the following step, the interpolation matrix is modified such that any 

entries below a certain threshold are set to the minimum value of 𝑍. The value 

of the threshold is determined through experimentation to ensure that the final 

image is visually acceptable and effectively reduces the image size. To modify 

the interpolation matrix, a Python code snippet in Figure 3.2 is used. The code 

sets any values with an absolute value less than the specified threshold to 𝑍’s 

minimum after the interpolation matrix, 𝑍 is normalised using a min-max scaler. 
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Figure 3.2: Python code snippet to modify the interpolation matrix, 𝑍. 

 

This adjustment is because each entry in the interpolation matrix 

represents the weights and scaling factors used in reconstructing the original 

matrix from the selected subset. This approach assumes that lower-value 

elements contribute less to reconstruction accuracy and can be discarded 

without significantly impacting the final image quality. Then the compressed 

matrix, 𝐴̃ is reconstructed using the new interpolated matrix, 𝑍′. 

 

𝐶𝑍 ≈ 𝐴̃ = 𝐶𝑍′. 

 

3.5 Performance Metrics 

The compression error, denoted as 𝜖𝑐 , of the compressed matrix can be 

calculated using the Frobenius norm, 

 

‖𝐴 − 𝐴̃‖
𝐹

2
= 𝜖𝑐. 

 

Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) 

are the two metrics used to evaluate the quality of image reconstruction tasks. 

MSE quantifies the average squared difference between corresponding pixels in 

the original image and the reconstructed image after compression. A lower MSE 

value indicates a smaller overall difference and potentially better reconstruction 

quality. The formula for MSE is:  

 

𝑀𝑆𝐸 =
1

𝑚 × 𝑛
∑ ∑(𝐴̃𝑖,𝑗 − 𝐴𝑖,𝑗)

2
𝑛

𝑗=1

𝑚

𝑖=1

. 

 

In contrast, PSNR provides a measure of the signal-to-noise ratio in 

decibels (dB). A higher PSNR value signifies a higher ratio of the original signal 
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power (image content) to the noise power (introduced by compression artefacts). 

The formula for PSNR is: 

 

𝑃𝑆𝑁𝑅 = 10 × log10

(2𝑁 − 1)2

𝑀𝑆𝐸
, 

where 𝑁 is the bit depth per channel of the image. 

 

Figure 3.3 illustrates the Python code used to calculate the 

reconstruction error of an image. The Structural Similarity Index Measure 

(SSIM) is another performance metric used to assess image quality. 

 

 

Figure 3.3: Python code snippet to calculate reconstruction error. 

 

These steps are iteratively repeated until suitable parameters are 

identified. The process is then adapted for RGB format images, with slight 

modifications in error computation. 

The performance of ID in image compression is compared with SVD 

by compressing the same set of images. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

In this chapter, we present the results of our study on Interpolative 

Decomposition (ID) and its application in image compression. Our objective 

was to explore the applicability of ID for compressing images by using its 

properties. The following sections detail the process of identifying optimal 

parameters for compressing 8-bit images using ID. All images analysed in this 

project were obtained from the USC-SIPI Image Database. 

 

4.2 Initial Findings 

Before determining the optimal parameters to compress an image using ID, it is 

crucial to understand the relationship between the 𝑘 value, the rank of the low-

rank approximation, and the reconstruction metrics. For this demonstration, we 

used the grayscale image, Baboon, which has a size of 512 × 512 pixels, as 

shown in Figure 4.1. 

 

 

Figure 4.1: Uncompressed Baboon image. 

 

Different values of 𝑘 were used to decompose a grayscale image, and 

each resulting metric was evaluated. 
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To ensure a fair comparison, a constant threshold value, of 0.01 was 

applied when plotting each metric against the 𝑘 value. Figure 4.2 illustrates that 

the Mean Square Error (MSE) decreases as the value of 𝑘 increases. 

 

 

Figure 4.2: MSE vs 𝑘 with a threshold of 0.01. 

 

Figure 4.3 and Figure 4.4, depict the relationships between the Peak 

Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Measure 

(SSIM) respectively with different 𝑘 values. These graphs demonstrate that both 

PSNR and SSIM increase as the 𝑘 value rises. 

 

 

Figure 4.3: PSNR vs 𝑘 with a threshold of 0.01. 

 



22 

 

Figure 4.4: SSIM vs 𝑘 with a threshold of 0.01. 

 

The trends observed in Figure 4.3, Figure 4.4, and Figure 4.5 align with 

our expectations: as the 𝑘  value increases, the rank of the low-rank 

approximation rises, thereby providing a closer approximation to the original 

matrix. A notable observation from Figure 4.3 is that the graph exhibits 

fluctuations as the 𝑘 value approaches its maximum. This behaviour is likely 

due to information redundancy. Therefore, even minor changes in the 

interpolative matrix could result in the observed fluctuations in PSNR. 

Figure 4.5 illustrates how different 𝑘 values with the same threshold 

will affect the compression output. When 𝑘 is below 50, the compressed image 

is heavily distorted and almost unrecognisable. However, as the value of 𝑘 

gradually increases to 200, the image shows significant improvement in visual 

fidelity, with recognisable features becoming clearer. Then, at 𝑘 = 200, the 

difference between the compressed and original images becomes negligible to 

the naked eye. This suggests that increasing the value of 𝑘  enhances the 

preservation of image details and overall quality in the compressed output. 
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Figure 4.5: ID compression of different 𝑘 values with a threshold of 0.01. 

 

Table 4.1 lists out the metrics with their respective 𝑘  values at a 

threshold of 0.01. From the table, it can be seen that, generally as 𝑘 increases, 

the compression ratio decreases. 

 

Table 4.1: Table of 𝑘 and their respective reconstruction errors and 

compression ratios. 

𝑘 MSE PSNR SSIM Compression Ratio 

2 2010.716 15.0973 0.150149 5.803884 

5 1463.848 16.4758 0.176223 4.852780 

10 1241.537 17.1912 0.226701 4.352396 

50 651.644 19.9907 0.477479 3.183527 

100 374.1713 22.4001 0.658740 2.808142 

200 112.6913 27.6119 0.853026 2.584975 

300 42.50894 31.8460 0.940245 2.534132 

510 25.88132 34.0009 0.989444 2.536124 

 

Combining the insights from Figure 4.5 and Table 4.1, a 𝑘  value 

around 200  appears to offer the best compromise between compression 

effectiveness and image quality, as the improvement beyond 𝑘 = 200 becomes 

less noticeable. Additionally, the MSE, PSNR, and SSIM metrics remain at 

acceptable levels for 𝑘 around 200. 



24 

It can be concluded that there are trade-offs between compression 

efficiency and image quality at different values of 𝑘. Although higher 𝑘-values 

often produce better image quality, they also cause bigger compressed files. As 

a result, the choice of 𝑘 depends on the specific needs of the application, such 

as storage restrictions and the desired level of image fidelity. 

 

4.3 Finding Optimal Parameters 

In this section, we determined the optimal parameters for compressing the 

images of “Baboon”, “Sailboat on Lake”, “Peppers” and “Airplane F-16”. We 

then derived general parameters which can compress any image without 

requiring an iterative process. 

 

4.3.1 Optimal Parameters for ID 

The optimal compression parameters for the image Baboon, as in Figure 4.1, 

rank, 𝑘 and threshold value to compress the image Baboon were determined by 

iterating the compression process using different 𝑘  and threshold values. 

Specifically, we chose 20 equidistant values of 𝑘 from 1 up to the actual rank 

of the image. Each 𝑘 value was paired with threshold values of 0.001, 0.005, 

0.01, 0.025, 0.05, 0.1, 0.25 and 0.5. Threshold values exceeding 0.5 were not 

considered, as the image becomes completely unrecognisable, which does not 

align with the objective. 

Throughout the process, a total of 160 iterations ( 20 𝑘 values ×

 8 threshold values) were conducted. For each iteration, metrics such as the 

Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity Index Measure (SSIM), and compression ratio were recorded and 

stored in a CSV file for subsequent analysis. A sample of the CSV file for the 

grayscale Baboon image is shown in TableA-1. SSIM and compression ratio 

were used to determine the optimal combinations of 𝑘 and threshold value to 

compress the image. Figure 4.6 illustrates various compressed Baboon images 

with their respective SSIM values.  
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Figure 4.6: Compressed Baboon images with their SSIM values. 

 

From Figure 4.6, it is noticeable that image quality improves as the 

SSIM value increases. When the SSIM value is below 0.7, the image appears 

quite blurry; but as it reaches 0.8, the image is visually acceptable. Therefore, 

an SSIM value of 0.8 was set as the benchmark to deduce the optimal 

combination. Any combinations resulting in an SSIM value less than 0.8 were 

discarded. After this filtering based on SSIM, the optimal combination of 𝑘 and 

threshold was determined by selecting the configuration with the highest 

compression ratio from the remaining set of combinations. 

 

Table 4.2: The best configuration results for the Baboon image using ID. 

𝑘 Threshold MSE 
PSNR 

(dB) 
SSIM 

File Size 

(bytes) 

Compression 

Ratio 

189 0.001 99.559 28.150 0.8413 103208 2.7189 

189 0.005 99.559 28.150 0.8413 103208 2.7189 

189 0.01 99.559 28.150 0.8413 103208 2.7189 

𝟏𝟖𝟗 𝟎. 𝟎𝟐𝟓 𝟗𝟗. 𝟓𝟓𝟗 𝟐𝟖. 𝟏𝟓𝟎 𝟎. 𝟖𝟒𝟏𝟑 𝟏𝟎𝟑𝟐𝟎𝟖 𝟐. 𝟕𝟏𝟖𝟗 
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Figure 4.7: Comparison between uncompressed and compressed Baboon 

images with optimal compression parameters. 

 

In Table 4.2, the metrics are the same with varying threshold values. 

However, we chose the last row with a threshold of 0.025 because a higher 

threshold would imply more values are being replaced in the interpolation 

matrix 𝑍. This may aid compression through techniques like Huffman Coding 

which assigns shorter binary codes to frequently occurring characters. 

The results for the Sailboat on Lake image, obtained using a similar 

process, are presented in Table 4.3, and those for the Peppers image are shown 

in Table 4.4. Comparative images of the uncompressed and compressed 

versions for the Sailboat on Lake image and the Peppers image are displayed in 

Figure 4.8 and Figure 4.9, respectively. 

 

Table 4.3: The best configuration results for the Sailboat on Lake image using 

ID. 

𝑘 Threshold MSE 
PSNR 

(dB) 
SSIM 

File Size 

(bytes) 

Compression 

Ratio 

135 0.001 48.799 31.247 0.8395 73694 3.2095 

135 0.005 48.799 31.247 0.8395 73694 3.2095 

𝟏𝟑𝟓 𝟎. 𝟎𝟏 𝟒𝟖. 𝟕𝟗𝟗 𝟑𝟏. 𝟐𝟒𝟕 𝟎. 𝟖𝟑𝟗𝟓 𝟕𝟑𝟔𝟗𝟒 𝟑. 𝟐𝟎𝟗𝟓 

 

  

Uncompressed Baboon image Compressed Baboon image with 𝑘 = 189, 

threshold 0.025 
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Figure 4.8: Comparison between uncompressed and compressed Sailboat on 

Lake images with optimal compression parameters. 

 

Table 4.4: The best configuration results for the Peppers image using ID. 

𝑘 Threshold MSE 
PSNR 

(dB) 
SSIM 

File Size 

(bytes) 

Compression 

Ratio 

135 0.001 32.780 32.975 0.8650 60186 3.5229 

135 0.005 32.780 32.975 0.8650 60186 3.5229 

135 0.01 32.780 32.975 0.8650 60186 3.5229 

135 0.025 32.780 32.975 0.8650 60186 3.5229 

𝟏𝟑𝟓 𝟎. 𝟎𝟓 𝟑𝟐. 𝟕𝟖𝟎 𝟑𝟐. 𝟗𝟕𝟓 𝟎. 𝟖𝟔𝟓𝟎 𝟔𝟎𝟏𝟖𝟔 𝟑. 𝟓𝟐𝟐𝟗 

 

 

Figure 4.9: Comparison between uncompressed and compressed Peppers 

images with optimal compression parameters. 

 

It is observed that the compression ratio is highest for the Peppers 

image, followed by the Sailboat on Lake image when compared to the Baboon 

image. This is due to the complexity of the Baboon image, particularly in its 

detailed fur texture. Images with higher variance in intensity values, like the 

  

Uncompressed Sailboat on Lake image Compressed Sailboat on Lake image with 

𝑘 = 135, threshold 0.01 

 

  

Uncompressed Pepper image Compressed Pepper image with 𝑘 = 135, 

threshold 0.05 
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Baboon image, typically exhibit lower compression ratios because they contain 

more unique information that cannot be efficiently compressed. In contrast, the 

Sailboat on Lake image depicts scenery with similar intensity values throughout, 

making it easier to compress than the Baboon image. Additionally, the Peppers 

image, which has the lowest variance of intensity values among the three, 

achieves the highest compression ratio due to its uniformity in pixel intensity. 

The compression ratio alone does not fully indicate the complexity of 

an image. However, when considered alongside the MSE value, we can identify 

that the algorithm can compress the Peppers image more effectively compared 

to the other two. This is because MSE is sensitive to large differences between 

images, penalising more heavily when the two images differ significantly. 

 

Table 4.5: The best configuration results for the Airplane F-16 image using 

ID. 

𝑘 Threshold MSE 
PSNR 

(dB) 
SSIM 

File Size 

(bytes) 

Compression 

Ratio 

𝟒𝟓𝟕 𝟎. 𝟏 𝟎. 𝟕𝟓𝟓𝟒 𝟒𝟗. 𝟑𝟒𝟗 𝟎. 𝟗𝟗𝟔𝟑 𝟓𝟓𝟏𝟔𝟎 𝟑. 𝟑𝟏𝟒𝟔 

 

From Table 4.5, we observed that the threshold required for optimal 

image compression was relatively higher compared to the other images to 

provide the best results. However, using the same threshold with a different 𝑘 

value produced poor compressed results. Therefore, a threshold value of 0.01 

was selected for compressing the Airplane F-16, rather than 0.1. The best result 

achieved with this threshold value and with an SSIM value greater than 0.8 is 

shown in Table 4.6. Figure 4.10 displays three images: the uncompressed 

Airplane F-16 image, the compressed image using the optimal parameter 

combination, and the compressed image with a threshold value of 0.01. 

 

Table 4.6: The best configuration results for the Airplane F-16 image using 

ID with a threshold value of 0.01. 

𝑘 Threshold MSE 
PSNR 

(dB) 
SSIM 

File Size 

(bytes) 

Compression 

Ratio 

𝟓𝟏𝟏 𝟎. 𝟎𝟏 𝟎. 𝟎𝟎𝟏𝟎 𝟕𝟖. 𝟐𝟎𝟎 𝟎. 𝟗𝟗𝟗𝟗 𝟓𝟓𝟏𝟔𝟑 𝟑. 𝟑𝟏𝟒𝟒 
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Figure 4.10: Comparison of three images: the uncompressed Airplane F-16 

image, the compressed image using the optimal parameters, and 

the compressed image with a threshold value of 0.01. 

 

In order to generalise a 𝑘 value for compressing different images, the 

average 𝑘 value was calculated as follows:  

 

𝑘𝑎𝑣𝑔 =
189 + 135 + 135 + 511

4
≈ 243. 

 

The four images were recompressed using the average 𝑘 value and a 

threshold of 0.01. The results showed that even with this different 𝑘 value, the 

outcomes remained acceptable compared to the optimal results obtained from 

experimentation, as shown in Table 4.7 and Figure 4.11. 

 

Table 4.7: Compression results for the four images using ID with 𝑘𝑎𝑣𝑔 = 243 

and a threshold of 0.01. 

Image Name Baboon 
Sailboat 

on Lake 
Peppers 

Airplane 

F-16 

MSE 51.43476 13.74751 10.02563 2.984943 

PSNR (dB) 31.01824 36.74856 38.11968 43.38144 

SSIM 0.905144 0.939733 0.947379 0.974663 

File Size (bytes) 104879 75768 60658 55785 

Compression Ratio 2.675579 3.121634 3.495466 3.27744 

Difference in 

Compression Ratio 
−0.04332 −0.08785 −0.02741 −0.03696 

   

Uncompressed Airplane F-

16 image 

Compressed Airplane F-16 

image with 𝑘 = 457, 

threshold 0.1 

Compressed Airplane F-16 

image with 𝑘 = 511, 

threshold 0.01 
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Figure 4.11: Comparative images of their uncompressed and recompressed 

versions with 𝑘𝑎𝑣𝑔 = 243 and a threshold of 0.01. 

 

The decreased compression ratio for the Baboon, Sailboat on Lake, and 

Peppers images was due to a higher 𝑘 value chosen to compress the images, 

indicating that more detailed information was retained, resulting in a lower 

compression ratio. On the other hand, the Airplane F-16 image, compressed 

using a smaller 𝑘  value was expected to yield better compression results 

according to the earlier logic. However, an anomaly was observed, likely due to 

the interaction between the nature of ID and the inherent characteristics of the 

image. 

We also attempted to find general compression parameters for 

512 × 512  pixel-coloured images. Unlike grayscale images, colour images 

have three colour channels: red (R), green (G) and blue (B). Consequently, the 

colour image was first split into three matrices, each representing one of the 

three channels. Each matrix then underwent a similar compression process using 

the same 𝑘 and threshold value. Finally, all three compressed matrices were 

combined to produce the final compressed image. Their best configuration 

results are shown in Table 4.8. 

Baboon Sailboat on Lake Peppers Airplane F-16 

    

    

Uncompressed 

 

    

Compressed with 𝑘𝑎𝑣𝑔 = 243 and a threshold of 0.01 
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Table 4.8: The best configuration results for the four images using ID. 

Image Name 
Baboon 

Sailboat 

on Lake 
Peppers 

Airplane 

F-16 

𝑘 511 162 510 296 

Threshold 0.025 0.001 0.01 0.01 

MSE 0.000997 72.05922 0.001222 1.896656 

PSNR (dB) 78.14481 29.99359 77.55624 45.38779 

SSIM 0.999995 0.83849 0.99999 0.980846 

File Size (bytes) 122718 88845 73864 63332 

Compression Ratio 6.409589 8.853306 10.64892 12.41982 

 

 

Figure 4.12: Comparative images of uncompressed and optimally compressed 

versions. 

 

From Table 4.8, we observed that the 𝑘 value required to compress the 

Baboon and Peppers images was relatively higher than that of the other two 

images. As noted earlier, the 𝑘 value is related to the amount of information 

retained from the original matrix. A higher 𝑘  value indicates that more 
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information was retained. For the Baboon image, the high 𝑘  value was 

necessary due to the complexity of the fur texture, similar to the case with its 

grayscale image. 

In contrast, the Peppers image required significantly more 𝑘  values 

than its grayscale version due to the vibrant colours of the peppers. In the 

grayscale version, colour information was discarded, as a result, compressing it 

will require less information. However, for the colour version, the vibrant 

colours likely contributed to the need for a higher 𝑘 value to retain the necessary 

information for effective compression. 

Since more images had 0.01 as their optimal threshold value for 

compression, we adopted 0.01 as a general threshold for compressing. We then 

calculated the average 𝑘 value as follows: 

 

𝑘𝑎𝑣𝑔 =
511 + 162 + 510 + 296

4
≈ 370. 

 

The results for the four images after recompressing with 𝑘𝑎𝑣𝑔 = 370 

and a threshold of 0.01 is presented in Table 4.9. 

 

Table 4.9: Compression results for the four images using ID with 𝑘𝑎𝑣𝑔 = 370 

and a threshold of 0.01. 

Image Name 
Baboon 

Sailboat 

on Lake 
Peppers 

Airplane 

F-16 

MSE 34.57612 7.379738 200.8264 0.687366 

PSNR (dB) 33.70509 40.14759 30.47195 49.79675 

SSIM 0.966854 0.977783 0.947861 0.992076 

File Size (bytes) 123864 90560 82346 63464 

Compression Ratio 6.350287 8.685645 9.552037 12.39399 

Difference in 

Compression Ratio 
−0.0593 −0.16766 −1.09688 −0.02583 
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Figure 4.13: Comparative images of their uncompressed and recompressed 

versions with 𝑘𝑎𝑣𝑔 = 370 and a threshold of 0.01. 

 

From Table 4.9, we observed that all four images were recreated with 

high SSIM values, which indicated good quality. The difference in compression 

ratios compared to their optimal results was generally acceptable, except for the 

Sailboat on Lake and Peppers images. The increased difference in compression 

ratio for the Sailboat on Lake image is due to the difference between the 𝑘𝑎𝑣𝑔 

and 𝑘𝑆𝑎𝑖𝑙𝑏𝑜𝑎𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙, where 𝑘𝑆𝑎𝑖𝑙𝑏𝑜𝑎𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 represents the optimal 𝑘 value for 

compressing the Sailboat on Lake image. 

For the Peppers image, the difference in compression ratio had been 

significantly larger despite using a smaller 𝑘 value. By examining the image in 

Figure 4.13, lines of dots appeared in the darker areas of the image, which 

explained the high MSE value. This phenomenon resulted in the need for 

additional information to store the image accurately. The lines of dots were 

likely caused by the low intensity in those areas, which were consequently 

discarded due to the small value of 𝑘. 

The compression parameters were tested on new images to evaluate 

their performance. The Splash image was used to assess the parameters for both 
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grayscale and colour images. The results were compared with their optimal 

values and were listed in Table 4.10. 

 

Table 4.10: Comparison results between compressing using optimal and 

generalised parameters on both grayscale and colour images using 

ID. 

Image Mode Grayscale Colour 

Compression 

Parameters Used 
Optimal Generalised  Optimal Generalised  

𝑘 55 243 484 370 

Threshold 0.01 0.01 0.01 0.01 

MSE 30.07837 1.971176 0.027419 159.4838 

PSNR (dB) 33.34826 45.18355 68.61479 42.46367 

SSIM 0.844145 0.978776 0.999614 0.974872 

File Size (bytes) 42574 45729 55700 66448 

Compression Ratio 3.922676 3.652037 14.12158 11.83741 

Difference in 

Compression Ratio 
− −0.27064 − −2.28417 
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Figure 4.14: Comparative images of uncompressed, optimally compressed, and 

generally compressed versions. 

 

From Table 4.10 and Figure 4.14, it was evident that the compression 

results for the tested grayscale image were acceptable. The image quality 

improved, and the decrease in compression ratio was bearable, even though it 

used a larger 𝑘 value. However, the results for the colour version were less 

satisfactory. Similar issues had arisen when compressing the Peppers image. 

There were lines of dots in the darker area of the image. This phenomenon 

indicated that careful consideration is needed when working with images having 

darker regions, as relying solely on a low-rank approximation can lead to such 

problems. 

In conclusion, for the compression of a 512 × 512 pixel grayscale 8-

bit image using ID, it is recommended to use a 𝑘 value of 243 along with a 

threshold value of 0.01. For the colour images of the same resolution, the 

recommended compression parameters are 𝑘 = 370 and a threshold value of 

0.01. However, issues might occur when compressing images around dark areas, 

such as the Peppers and Splash images. 
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4.3.2 Optimal Parameters for SVD 

The optimal compression parameter for the same set of images using SVD was 

determined similarly to the method used for ID. The difference between the two 

methods is that ID includes an additional parameter, the threshold. Therefore, 

only 20 equidistant values of 𝑘 from 1 up to the actual rank of the image were 

iterated to determine the optimal 𝑘  value. As with the previous method, an 

SSIM value of 0.8 was used as a benchmark, and any results with an SSIM value 

less than 0.8 were discarded. Then, the optimal 𝑘  value was determined by 

selecting the configuration with the highest compression ratio from the 

remaining set. 

Figure 4.15 illustrates two graphs: (a) the relationship between SSIM 

and the 𝑘 value, and (b) the relationship between the compression ratio and 𝑘 

value for the Baboon image. From graph (a), it is evident that the value of 𝑘 

increases along with the SSIM value. Conversely, in graph (b), the relationship 

between 𝑘  and the compression ratio is inversely proportional. This 

phenomenon aligns with the expectation that a higher 𝑘  value implies less 

information is being discarded, thus, resulting in a highly similar image (high 

SSIM) and larger file size (low compression ratio) after compression. 

 

 

Figure 4.15: Graphs of SSIM and Compression Ratio against 𝑘. 

 

The optimal compression result for each image is shown in Table 4.11. 
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Table 4.11: The best configuration results for the four images using SVD. 

Image Name 
Baboon 

Sailboat 

on Lake 
Peppers 

Airplane 

F-16 

𝑘  135 82 82 55 

MSE 97.18361 57.0874 48.59727 54.82631 

PSNR (dB) 28.25487 30.5654 31.26468 30.74091 

SSIM 0.848653 0.821318 0.860182 0.809397 

File Size (bytes) 98150 66511 53287 51650 

Compression Ratio 2.859012 3.556104 3.978982 3.539826 

 

From Table 4.11, we observed that the Baboon image required a larger 𝑘 value 

for compression compared to the others, whereas the Airplane F-16 required the 

lowest 𝑘 value. The number of 𝑘 required is directly linked to the number of 

information retained. A higher 𝑘  value is needed for images with higher 

complexity. When examining the Baboon image, the statement is indeed true, 

due to its fur texture. 

In order to generalise a 𝑘 value for compressing different images, the 

average 𝑘 value was calculated as follows:  

 

𝑘𝑎𝑣𝑔 =
135 + 82 + 82 + 55

4
≈ 89. 

 

The four images were recompressed using the calculated 𝑘𝑎𝑣𝑔 = 89. 

The compression results are listed in Table 4.12. 
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Table 4.12: Compression results for the four images using SVD with 𝑘𝑎𝑣𝑔 =

89. 

Image Name 
Baboon 

Sailboat 

on Lake 
Peppers 

Airplane 

F-16 

MSE 188.5694 49.81902 43.8322 21.02483 

PSNR (dB) 25.37609 31.15685 31.71287 34.90348 

SSIM 0.750196 0.841139 0.871685 0.89274 

File Size (bytes) 92348 67665 53912 54571 

Compression Ratio 3.038636 3.495456 3.932854 3.350351 

Difference in 

Compression Ratio 
0.179625 −0.06065 −0.04613 −0.18947 

 

The comparison of the four images using their best configurations and 

the average 𝑘  value ( 𝑘𝑎𝑣𝑔 = 89 ) is shown along with their uncompressed 

versions in Figure 4.16. 
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Figure 4.16: Comparison of the four images using their best configurations 

versus 𝑘𝑎𝑣𝑔 = 89, alongside their uncompressed versions. 

 

Due to the nature of SVD, a higher resemblance between the 

compressed image and the original image (indicated by a higher SSIM) 

corresponds to a lower compression ratio. Since the Baboon image required the 

largest 𝑘 value (compared to the other 3 images) to achieve the optimal result, 

taking the average of the 𝑘 values would imply 𝑘𝐵𝑎𝑏𝑜𝑜𝑛 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 < 𝑘𝑎𝑣𝑔, where 

𝑘𝐵𝑎𝑏𝑜𝑜𝑛 𝑜𝑝𝑡𝑖𝑚𝑎𝑙  is the optimal 𝑘  value for compressing the Baboon image. 

Consequently, the SSIM value for the Baboon image would be lower than the 

benchmark value of 0.8. 

Additionally, 𝑘𝑎𝑣𝑔 exceeded 𝑘𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒 𝐹−16 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 by more than 50%, 

where 𝑘𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒 𝐹−16 𝑜𝑝𝑡𝑖𝑚𝑎𝑙  is the optimal 𝑘  value for compressing the 

Airplane F-16 image. Compressing the Airplane F-16 using 𝑘𝑎𝑣𝑣𝑔  would 
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involve using more unnecessary information, thereby significantly lowering the 

compression ratio. 

For colour images, the compression process was similar to that used in 

ID. Each colour image could be split into three layers corresponding to different 

colour channels. Each of the channels underwent a procedure similar to the 

grayscale version. Finally, the three compressed channels were recombined to 

form the final compressed image. The optimal compression results are shown 

in Table 4.13. 

 

Table 4.13: The best configuration results for the four colour images using 

SVD. 

Image Name 
Baboon 

Sailboat 

on Lake 
Peppers 

Airplane 

F-16 

𝑘 135 89 456 55 

MSE 193.5929 101.2867 0.480854 59.52733 

PSNR (dB) 25.39016 28.74577 51.31229 30.88547 

SSIM 0.831916 0.81573 0.998179 0.813418 

File Size (bytes) 117427 83561 73861 61359 

Compression Ratio 6.698391 9.413147 10.64935 12.81918 
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Figure 4.17: Comparative images of uncompressed and optimally compressed 

versions. 

 

From Table 4.13, we observed an anomaly in the compression results 

for the Peppers image. Upon examining the compressed image with different 𝑘 

value, we noticed unusual dots appearing around the darker areas. This issue 

happened likely due to the intensity level in the darker regions are minimal. 

When performing SVD on these areas, the singular values are also low, which 

leads to information loss when a lower 𝑘 value is used for compression. Despite 

this, we calculate the average 𝑘  value to identify a general compression 

parameter:  

 

𝑘𝑎𝑣𝑔 =
135 + 89 + 456 + 55

4
≈ 184. 
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Table 4.14: Compression results for the four images using SVD with 𝑘𝑎𝑣𝑔 =

184. 

Image Name 
Baboon 

Sailboat 

on Lake 
Peppers 

Airplane 

F-16 

MSE 110.8986 38.98517 786.3443 16.7668 

PSNR (dB) 27.88043 33.20277 24.4599 39.23673 

SSIM 0.896224 0.92935 0.877558 0.969713 

File Size (bytes) 120135 88266 88782 63621 

Compression Ratio 6.547401 8.911382 8.859589 12.3634 

Difference in 

Compression Ratio 
−0.15099 −0.50177 −1.78976 −0.45578 

 

 

Figure 4.18: Comparative images of their uncompressed and recompressed 

versions with 𝑘𝑎𝑣𝑔 = 184. 

 

According to Table 4.14, the performance for all four images decreased 

in terms of compression ratio. The reasons for the decrease in performance for 

the Baboon, Sailboat on Lake, and Airplane F-16 images were similar to those 

observed with the grayscale version. As a result, approximating the image with 
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a larger 𝑘 value required additional storage to capture more details. As for the 

Peppers image, using a 𝑘value smaller than its optimum created dots appearing 

in the darker areas of the image, which consequently required storing excess 

information. 

The compression parameter was tested on the same image to evaluate 

their performance. The Splash image was used to assess the parameter for both 

grayscale and colour images. The results were compared with their optimal 

values and were listed in. 

 

Table 4.15: Comparison results between compressing using optimal and the 

general parameter for both grayscale and colour images using 

SVD. 

Image Mode Grayscale Colour 

Compression 

Parameter Used 
Optimal Generalised Optimal Generalised 

𝑘 28 89 28 184 

MSE 31.92671 6.080673 451.7643 24.06033 

PSNR (dB) 33.08926 40.29129 29.71018 40.92835 

SSIM 0.836819 0.937818 0.835039 0.971149 

File Size (bytes) 33648 41180 51226 58242 

Compression Ratio 4.963267 4.055464 15.35494 13.50524 

Difference in 

Compression Ratio 
− −0.9078 − −1.8497 
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Figure 4.19: Comparative images of uncompressed, optimally compressed, and 

generally compressed versions. 

 

From Table 4.15 and Figure 4.19, although the difference in 

compression ratio for both the grayscale and colour images decreased 

significantly, the comparative image showed improvement. This was due to a 

higher 𝑘  value chosen for compression compared to their optimum values. 

Nevertheless, the final images showed better quality in exchange for a larger 

file size. For the colour image, the improvements were notable, with the 

anomaly lines becoming less obvious. 

In conclusion, a 𝑘 value of 89 will be used for compressing 512 × 512 

pixel grayscale 8-bit images using SVD. However, the results may not be 

consistent due to their image structures and the difference between their optimal 

compression 𝑘 value and the average 𝑘 value of 89. In the case of colour images 

of the same resolution, the general parameter for compressing was 𝑘 = 84. 

 

4.4 Comparative Analysis of ID-method and SVD-method 

In this section, the performance of both the ID and SVD methods was discussed. 

To compress images, there were two key aspects to consider: maximising the 
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quality of the final image (represented by SSIM) and minimising the final file 

size (represented by the compression ratio). However, both aspects could not be 

achieved simultaneously, as the relationship between them was inversely 

proportional (the better the image quality, the lower the compression ratio). 

Therefore, finding a balance between the two was important.  

Figure 4.20 presents the comparison graph of SSIM between ID and 

SVD using the generalised parameters from Section 4.3.1 and 4.3.2, 

respectively. 

 

 

Figure 4.20: Comparison of SSIM for ID and SVD using the generalised 

parameters. 

 

From Figure 4.20, it was noticeable that when compressing with ID 

using the generalised parameters, the SSIM was higher compared to using SVD 

for all four images. As shown in Figure 4.15, the SSIM values increased along 

with 𝑘. Therefore, the optimal parameter would be the minimum 𝑘 value that 

achieved at least an SSIM of 0.8 (the benchmark). Consequently, when using 

the generalised parameter for SVD, the resulting image typically had a relatively 

lower SSIM value. 

Generally, grayscale images had a lower SSIM value compared to their 

colour counterparts. This is because colour images are separated into three 

channels, capturing more detailed information. Additionally, since both ID and 
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SVD compressed the channels separately, more information could be retained 

from the other channels, thereby increasing the similarity between the original 

and the compressed images. Therefore, ID would be preferred if maintaining 

image quality was prioritised over file storage. 

Figure 4.21 illustrates the comparison of SSIM for ID and SVD using 

the generalised parameters. 

 

 

Figure 4.21: Comparison of SSIM for ID and SVD using the generalised 

parameters. 

 

From Figure 4.21, it is clearly that the graph was divided into two 

sections: the lower half for grayscale images and the upper half for colour 

images. The explanation is straightforward, the colour images had more 

information to store (which represented in channels of colours), while the 

grayscale images only needed to store information in a 2D array. 

Generally, the compression ratio using SVD was higher than that using 

ID. However, the difference was not significant. indicating that the storage 

required for the compressed images by these two methods was similar. In the 

case of larger images, this difference could be further enlarged; therefore, SVD 

would be preferred if file storage is the sole consideration. 

According to the discussions in these sections, the summary is 

provided in Table 4.16. 
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Table 4.16: Summary of the similarities and differences between ID and SVD 

method. 

Decomposition 

Method 
ID SVD 

Generalised 

Parameters 

Grayscale:  

𝑘 = 243; 

thresholds of 0.01 

 

Colour:  

𝑘 = 370; 

thresholds of 0.01 

Grayscale: 

𝑘 = 89  

 

 

Colour: 

𝑘 = 184  

Similarities • Required a larger 𝑘 value to compress complex 

images. 

• Not effective at handling dark regions. 

Pros Able to retain most 

information using 

generalised parameters. 

Achieves compression with 

smaller 𝑘 values, leading to 

less storage space 

requirement. 

Cons Requires a relatively larger 

𝑘  value for compression, 

resulting in a lower 

compression ratio. 

Dependent on the optimal 

compression parameter. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In this report, we explored and analysed the applicability of Interpolative 

Decomposition (ID) in image compression, alongside a comparative analysis 

with Singular Value Decomposition (SVD). Our investigation aimed to 

understand the strengths and weaknesses of ID, assess its performance relative 

to SVD, and identify generalised compression parameters for image 

compression. 

The exploration of ID revealed that it effectively maintained the 

sparsity of matrices due to its unique properties. Additionally, ID preserved the 

structure of the matrix by reusing the columns of the original matrix in the 

approximated low-rank matrix. As a result, it can save both storage space and 

computational resources. However, it was noted that ID required a relatively 

larger 𝑘 value to approximate a dense matrix accurately. 

In comparing ID and SVD, we observed similarities in their 

performance during image compression. Both methods required a larger 𝑘 value 

to achieve good compression for complex images, such as the Baboon image, 

which features dense fur textures. Additionally, both methods struggled to 

handle colour images containing dark regions. Consequently, requiring a higher 

𝑘  value to address the issue. In terms of their advantages, SVD showed 

superiority when the primary goal was to optimise storage, whereas ID proved 

advantageous when the quality of the compressed image was more important. 

This comparison emphasised the importance of selecting the appropriate 

method based on the specific objective, such as final image size or desired 

quality. 

We also determined generalised compression parameters for 

compressing images using ID and SVD. These parameters were tested with a 

sample image, yielding ideal results. For a 512 × 512 pixel grayscale image, 

the general compression parameters were found to be 𝑘 = 243 with a threshold 

of 0.01 for ID, and 𝑘 = 89 for SVD. For colour images of the same resolution, 
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the parameters were 𝑘 = 370 with a threshold of 0.01 for ID, and 𝑘 = 184 for 

SVD. 

 

5.2 Recommendations for future work 

The technique used to manipulate the interpolation matrix 𝑍 in the compression 

of ID was relatively straightforward. Future research could focus on refining 

this technique and exploring additional methods to enhance image processing 

capabilities. For instance, rather than compressing the entire matrix directly, one 

could partition the matrix into smaller blocks and compress each blocks 

separately before combining them to form the final compressed image. However, 

this method might require additional time for compression in exchange for 

better image quality.  

Furthermore, the algorithm could be improved by selecting a suitable 

set of numbers to be used in the interpolation matrix 𝑍, and then replacing values 

with those closest to the numbers in this predefined list. By doing so, the matrix 

would consist of a limited range of values, allowing for a storage method that 

efficiently handles frequently occurring numbers. This method theoretically 

could lead to a more optimised image file size by focusing on common values. 
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APPENDICES 

 

Appendix A: Tables 

 

TableA-1: Sample of Results Stored In A CSV File For The Grayscale 

Baboon Image Compressed Using ID. 

k threshold mse psnr ssim file_size compression_ratio 

2 0.001 1650.104 15.95569 0.150196 46576 6.02482 

28 0.001 744.3648 19.41295 0.350787 74486 3.767312 

55 0.001 502.7615 21.11718 0.50018 85430 3.284701 

82 0.001 366.8684 22.4857 0.602505 91983 3.050694 

109 0.001 266.5912 23.87235 0.686399 96535 2.906842 

135 0.001 196.3527 25.20043 0.747024 99710 2.814281 

162 0.001 138.5697 26.71412 0.799559 101757 2.757668 

189 0.001 99.55919 28.14999 0.841333 103208 2.718898 

216 0.001 71.73163 29.5737 0.875785 103953 2.699412 

243 0.001 51.41388 31.02 0.905176 104853 2.676242 

269 0.001 37.95246 32.3384 0.925151 105359 2.663389 

296 0.001 26.87882 33.8367 0.942068 105680 2.655299 

323 0.001 19.00764 35.34152 0.95762 105881 2.650258 

350 0.001 13.79339 36.73409 0.970333 105869 2.650559 

377 0.001 9.120949 38.5304 0.98042 105769 2.653065 

403 0.001 6.641659 39.90804 0.987404 105699 2.654822 

430 0.001 3.306774 42.93676 0.992921 105593 2.657487 

457 0.001 2.142971 44.82064 0.997257 105535 2.658947 

484 0.001 0.888279 48.64531 0.999311 105440 2.661343 

511 0.001 0.000984 78.20001 0.999996 105401 2.662328 

2 0.005 1650.104 15.95569 0.150196 46576 6.02482 

28 0.005 744.3674 19.41293 0.350784 74481 3.767565 

55 0.005 502.7615 21.11718 0.50018 85430 3.284701 

82 0.005 366.8684 22.4857 0.602505 91983 3.050694 

109 0.005 266.5912 23.87235 0.686399 96535 2.906842 

135 0.005 196.3527 25.20043 0.747024 99710 2.814281 

162 0.005 138.5697 26.71412 0.799559 101757 2.757668 

189 0.005 99.55919 28.14999 0.841333 103208 2.718898 

216 0.005 71.73429 29.57354 0.875787 103968 2.699023 

243 0.005 51.41665 31.01977 0.90517 104862 2.676012 

269 0.005 37.95246 32.3384 0.925151 105359 2.663389 

296 0.005 26.87882 33.8367 0.942068 105680 2.655299 

323 0.005 19.00764 35.34152 0.95762 105881 2.650258 

350 0.005 13.79391 36.73393 0.970331 105887 2.650108 

377 0.005 9.120949 38.5304 0.98042 105769 2.653065 

403 0.005 6.641659 39.90804 0.987404 105699 2.654822 

430 0.005 3.306774 42.93676 0.992921 105593 2.657487 

457 0.005 2.146797 44.81289 0.997252 105542 2.658771 



54 

 

484 0.005 0.888279 48.64531 0.999311 105440 2.661343 

511 0.005 0.000984 78.20001 0.999996 105401 2.662328 

2 0.01 1650.104 15.95569 0.150196 46576 6.02482 

28 0.01 744.3674 19.41293 0.350784 74481 3.767565 

55 0.01 502.7615 21.11718 0.50018 85430 3.284701 

82 0.01 366.8746 22.48563 0.602494 91983 3.050694 

109 0.01 266.5912 23.87235 0.686399 96535 2.906842 

135 0.01 196.3527 25.20043 0.747024 99710 2.814281 

162 0.01 138.5777 26.71387 0.799554 101763 2.757505 

189 0.01 99.55919 28.14999 0.841333 103208 2.718898 

216 0.01 71.73987 29.5732 0.875784 103965 2.699101 

243 0.01 51.43476 31.01824 0.905144 104879 2.675579 

269 0.01 37.95246 32.3384 0.925151 105359 2.663389 

296 0.01 26.87882 33.8367 0.942068 105680 2.655299 

323 0.01 19.00764 35.34152 0.95762 105881 2.650258 

350 0.01 13.79391 36.73393 0.970331 105887 2.650108 

377 0.01 9.120949 38.5304 0.98042 105769 2.653065 

403 0.01 6.641659 39.90804 0.987404 105699 2.654822 

430 0.01 3.306774 42.93676 0.992921 105593 2.657487 

457 0.01 2.146797 44.81289 0.997252 105542 2.658771 

484 0.01 0.895958 48.60793 0.999282 105430 2.661595 

511 0.01 0.000984 78.20001 0.999996 105401 2.662328 

2 0.025 1650.16 15.95554 0.150112 46712 6.007279 

28 0.025 744.4177 19.41264 0.350741 74492 3.767009 

55 0.025 502.9038 21.11595 0.500138 85476 3.282933 

82 0.025 367.0244 22.48385 0.60227 92017 3.049567 

109 0.025 266.619 23.87189 0.686349 96540 2.906692 

135 0.025 196.3527 25.20043 0.747024 99710 2.814281 

162 0.025 139.2025 26.69433 0.79927 101786 2.756882 

189 0.025 99.55919 28.14999 0.841333 103208 2.718898 

216 0.025 71.73987 29.5732 0.875784 103965 2.699101 

243 0.025 51.80497 30.98709 0.904777 104875 2.675681 

269 0.025 37.95246 32.3384 0.925151 105359 2.663389 

296 0.025 26.91368 33.83107 0.942031 105672 2.6555 

323 0.025 19.00764 35.34152 0.95762 105881 2.650258 

350 0.025 13.84145 36.71899 0.970188 105886 2.650133 

377 0.025 9.120949 38.5304 0.98042 105769 2.653065 

403 0.025 6.641659 39.90804 0.987404 105699 2.654822 

430 0.025 3.366608 42.85888 0.992699 105583 2.657738 

457 0.025 2.195656 44.71516 0.997087 105547 2.658645 

484 0.025 0.895958 48.60793 0.999282 105430 2.661595 

511 0.025 0.000984 78.20001 0.999996 105401 2.662328 

2 0.05 1650.869 15.95368 0.149618 47005 5.969833 

28 0.05 745.5494 19.40604 0.35 74749 3.754057 

55 0.05 504.5117 21.10209 0.498991 85688 3.274811 

82 0.05 370.1935 22.44652 0.600122 92409 3.036631 

109 0.05 267.4439 23.85848 0.685504 96644 2.903564 



55 

 

135 0.05 197.5139 25.17483 0.746093 99773 2.812504 

162 0.05 142.2337 26.60078 0.796597 101962 2.752123 

189 0.05 100.5745 28.10593 0.839795 103340 2.715425 

216 0.05 72.38821 29.53413 0.874667 104075 2.696248 

243 0.05 54.65582 30.75444 0.902188 105046 2.671325 

269 0.05 38.00722 32.33214 0.925112 105368 2.663161 

296 0.05 27.04153 33.81049 0.941819 105663 2.655726 

323 0.05 19.55145 35.21901 0.956633 105868 2.650584 

350 0.05 14.53925 36.50538 0.968719 105942 2.648732 

377 0.05 9.342354 38.42624 0.980218 105790 2.652538 

403 0.05 6.641659 39.90804 0.987404 105699 2.654822 

430 0.05 3.366608 42.85888 0.992699 105583 2.657738 

457 0.05 3.459385 42.74081 0.99364 105706 2.654646 

484 0.05 1.455086 46.50192 0.997616 105500 2.659829 

511 0.05 0.237541 54.37341 0.999188 105469 2.660611 

2 0.1 1653.874 15.94578 0.149051 47729 5.879277 

28 0.1 939.0886 18.40374 0.305924 83086 3.377368 

55 0.1 858.0319 18.79577 0.425502 95423 2.940717 

82 0.1 744.3473 19.41305 0.504999 101064 2.776577 

109 0.1 384.3778 22.28322 0.635107 100716 2.786171 

135 0.1 300.1633 23.35723 0.700343 103191 2.719346 

162 0.1 505.028 21.09765 0.658269 108918 2.57636 

189 0.1 119.3873 27.36122 0.821606 104290 2.690689 

216 0.1 121.1155 27.29881 0.834734 105888 2.650083 

243 0.1 199.0125 25.142 0.805017 109426 2.5644 

269 0.1 46.30955 31.4741 0.913099 105944 2.648682 

296 0.1 34.75857 32.72018 0.931361 106159 2.643318 

323 0.1 33.66245 32.85935 0.939209 106585 2.632753 

350 0.1 26.73894 33.85936 0.951669 106758 2.628487 

377 0.1 15.97456 36.09651 0.968991 106231 2.641526 

403 0.1 9.686218 38.26926 0.982737 105857 2.650859 

430 0.1 29.19716 33.4774 0.959171 106879 2.625511 

457 0.1 102.2901 28.03247 0.900499 108894 2.576928 

484 0.1 28.85151 33.52912 0.966379 106655 2.631025 

511 0.1 10.46948 37.93155 0.992565 105808 2.652087 

2 0.25 1756.226 15.685 0.146007 48851 5.744243 

28 0.25 7210.931 9.55089 0.03218 165267 1.697931 

55 0.25 7301.682 9.496575 0.010792 179123 1.566588 

82 0.25 7245.564 9.530082 0.012344 183123 1.532369 

109 0.25 7150.497 9.587441 0.01311 183849 1.526318 

135 0.25 7259.887 9.521505 0.006504 184384 1.521889 

162 0.25 7284.138 9.507022 0.010512 184348 1.522186 

189 0.25 4541.479 11.55883 0.133667 175972 1.59464 

216 0.25 7121.643 9.605002 0.015105 184320 1.522418 

243 0.25 7231.765 9.538361 0.01444 184608 1.520042 

269 0.25 3345.662 12.88598 0.246844 167241 1.67789 

296 0.25 3000.133 13.3594 0.300045 163333 1.718036 
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323 0.25 2660.589 13.88103 0.354178 160210 1.751526 

350 0.25 2268.937 14.57258 0.414505 155144 1.80872 

377 0.25 1886.888 15.37334 0.47164 149415 1.878071 

403 0.25 1476.863 16.4374 0.562522 137253 2.044487 

430 0.25 1136.906 17.57356 0.644696 136316 2.05854 

457 0.25 782.6599 19.19507 0.729898 130198 2.155271 

484 0.25 415.5972 21.94408 0.838113 119278 2.352588 

511 0.25 15.14066 36.32936 0.991363 106215 2.641924 

2 0.5 5183.541 10.98454 0.130474 58727 4.778245 

28 0.5 7621.699 9.310286 0.033997 111607 2.514287 

55 0.5 7174.352 9.572977 0.020412 131872 2.127912 

82 0.5 7224.019 9.543015 0.019887 147368 1.904158 

109 0.5 7072.019 9.635369 0.022937 157801 1.778265 

135 0.5 7370.224 9.455997 0.00823 164090 1.71011 

162 0.5 7340.775 9.473384 0.018218 172286 1.628757 

189 0.5 7326.364 9.481919 0.012593 176093 1.593544 

216 0.5 7132.542 9.59836 0.017428 178051 1.57602 

243 0.5 7229.549 9.539692 0.015026 181447 1.546523 

269 0.5 7373.169 9.454262 0.00673 181967 1.542104 

296 0.5 7386.319 9.446523 0.008155 181866 1.54296 

323 0.5 7033.146 9.659307 0.022039 180505 1.554594 

350 0.5 7093.487 9.622206 0.017308 180184 1.557364 

377 0.5 7114.038 9.609642 0.027638 179947 1.559415 

403 0.5 7169.393 9.575979 0.019442 180030 1.558696 

430 0.5 7215.429 9.548182 0.020755 177916 1.577216 

457 0.5 7132.059 9.598654 0.023292 175397 1.599868 

484 0.5 7337.9 9.475086 0.017086 175412 1.599731 

511 0.5 7486.23 9.388172 0.015723 173394 1.618349 

 

 

 




