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ABSTRACT 
 
This project studied the finite order universal portfolio (UP) generated by five 

different continuous random variables’ (CRV) moment generating functions 

(MGF), the gamma, lognormal, logistic, Weibull, and generalized Pareto 

distribution. five machine learning models were adopted to perform stock 

selection to filter the top-performing companies based on selected dataset, the 

ridge regression, least absolute shrinkage selection operator, elastic net, boosted 

regression tree and long-term short-term memory models. All machine learning 

models formed portfolios based on predicted performance, and all 

outperformed the KLSE benchmark return. The selected portfolios were used 

to calculate the universal portfolio by a recursive study of CRV’s MGF on 

orders 1, 2, and 3. The terminal wealth of all portfolios did not outperform the 

best constant rebalance portfolio (BCRP) as a benchmark comparison but did 

outperform Buy and Hold (BH), Cover UP (CUP), and Successive Constant 

Rebalance Portfolio (SCRP) in all portfolios, and Constant Rebalance Portfolio 

(CRP) in portfolios B and C. As the universal portfolio will adjust the allocation 

weight based on past observed performance, a transaction cost of 1% was added 

into consideration. The Bayesian Optimization technique was used in stock 

selection and universal portfolio construction processes. In stock selection, each 

model’s best parameters will be determined, which will minimize the means 

squared error of prediction. In contrast, in the universal portfolio, each 

distribution’s best parameters were determined to maximize the terminal wealth 

generated by the distribution. Parameter sensitivity testing was conducted to 

study the allocation preferences and relationships between parameter value with 

the terminal wealth, maximum allocation, and range of allocation. Scenario 

testing was conducted during the COVID-19 period to study the performance 

of the universal portfolio during a market downturn. Additionally, scenarios of 

reducing the trading periods to study the performance of the universal portfolio 

in the short term were conducted as well. Portfolio A and B outperformed the 

BCRP benchmark return in all shorter trading periods, while Portfolio C 

underperformed the BCRP in all periods. 
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CHAPTER 1 
 

1 INTRODUCTION 
 
1.1 Background of the study 

There are various investment strategies in the financial market could be adapted 

by investors following their preferences or needs. This project will study the 

universal portfolio investment strategy introduced by Cover (1991) to improve 

investors’ wealth. This strategy has a combination of stocks in the portfolio and 

the distributions of allocation in each stock will be determined by recursive 

calculation which will provides the possible maximum wealth generated in the 

portfolio. Additionally, the stock selection will be carried out by machine 

learning models to ensure the stock quality for the universal portfolio. The 

machine learning models used were Ridge regression, Least Absolute Shrinkage 

Selection Operator (LASSO), Elastic Net (ENET), Boosted Regression Tree 

(BRT) and Long-Term Short-Term memory (LSTM) which will take stock 

characteristic as predictor’s variables and classify the stock into high and bottom 

performing companies. Portfolio construction will be made on the top 3, 6 and 

9 stocks possessed with the highest performing companies throughout the data 

collected. 

 The proportion of wealth invested in each of q stocks can be denoted 

as the formula, 𝒃𝒃 = �𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑞𝑞�
𝑡𝑡
, where each of the element in the b must be 

greater or equal to zero, and summation of all the elements will be equals to 1, 

denoted as 𝑏𝑏𝑖𝑖 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 ∑ 𝑏𝑏𝑖𝑖 =  1𝑞𝑞
𝑖𝑖=0 . The allocation of wealth in 𝑖𝑖 stock on the 

𝑛𝑛𝑡𝑡ℎ trading days can be denoted as 𝑏𝑏𝒏𝒏𝒏𝒏. For the stock market vector, it can be 

denoted as 𝒙𝒙 = �𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑞𝑞�
𝑡𝑡
, where 𝑥𝑥 ≥ 0. The price relative vector in 𝑖𝑖 

stock on the 𝑛𝑛𝑡𝑡ℎ  trading days can be denoted as 𝑥𝑥𝑛𝑛𝑛𝑛 , which is calculated by 

taking the closing price divide the opening price for stocks 𝑖𝑖. Then, 𝑆𝑆𝑛𝑛 will be 

denoted as the wealth achieved universal portfolio strategy 𝒃𝒃  with 𝑆𝑆𝑛𝑛(𝒃𝒃) =

 ∏ 𝒃𝒃𝒍𝒍𝒕𝒕 𝒙𝒙𝒍𝒍𝑛𝑛
𝑙𝑙=1  ,where 𝒃𝒃𝒍𝒍𝒕𝒕𝒙𝒙𝒍𝒍 = ∑ 𝑏𝑏𝑙𝑙𝑙𝑙𝑥𝑥𝑙𝑙𝑙𝑙

𝑞𝑞
𝑝𝑝=1  and the we assume that the initial wealth 

𝑆𝑆0(𝒃𝒃) = 1 . To achieve the maximum wealth, the condition 𝑆𝑆𝑛𝑛∗(𝒃𝒃) =

max[𝑆𝑆𝑛𝑛(𝒃𝒃)] must be fulfilled. 

The universal portfolio proposed by Cover (1991) requires a significant 

upfront investment of time and resources to implement the algorithm update on 
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the weightage allocation. Therefore, the finite-order universal portfolio is 

introduced. Unlike traditional portfolio allocation methods that rely on static 

asset weightings or optimization techniques, the finite order universal portfolio 

employs a recursive algorithm based on the moment function of random 

variables. The continuous probability distributions such as the lognormal, 

logistic, gamma, generalized pareto and weibull distributions were used to 

generate the moment generating functions for the recursive calculation in this 

project. Next, comparison of the best universal portfolio constructed with others 

investment strategies such as the buy-and-hold and best constant rebalance 

portfolio will be conducted. 

 
1.2 Importance of the Study 

This project will study the finite order 1, 2 and 3 of universal portfolio to 

determine if they reduce the time and resources required for algorithm 

calculations. Additionally, the performance of universal portfolio against other 

strategies will be carried out. Besides, evaluation on the machine learning 

models at the use of stock selection will be conducted. 

 
1.3 Problem Statement 

According to Cover (1991), the universal portfolio considers the entire set of 

available assets in the market and dynamically allocates capital among them 

based on their historical performance and will generate positive financial returns 

in the long run. Nevertheless, stock selection for the universal portfolio was not 

mentioned and thus some high-performing stocks will be chosen by the machine 

learning models to construct the universal portfolio. The models were trained to 

select some of the high-performing stocks in Malaysia according to their 

weighted average of high-performing characteristic possessed. The performance 

of the universal portfolio built will be tested against others investment strategies. 

 
1.4 Aim and Objectives 

The aims and objectives of this project are: 

1. To construct Boosted Regression Tree (BRT), Ridge regression, 

LASSO, ENET, and LSTM machine learning models to select high-

performing stock in selected dataset. 
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2. To construct a universal portfolio by recursive calculation of 

continuous random variables’ moment-generating function. 

3. To investigate the optimal order for the universal portfolio generated. 

4. To discuss the performance of the universal portfolio. 

 
1.5 Scope and Limitation of the Study 

The low order universal portfolio such as order 1, 2 and 3 were studied as the 

universal portfolio proposed by Thamas M. Cover (1991) required a large 

amount of computational power. Besides, the number of companies in the 

universal portfolio is limited to three companies only. The companies studied in 

this project only consist of 27 companies where were the results of data 

preprocessing steps. 
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CHAPTER 2  
 

2 LITERATURE REVIEW 
 

2.1 Introduction to Machine Learning 

Machine learning at its core is to learn from data, which they will automatically 

learn the patterns and make predictions or decisions without having to specify 

how it is to be done. Machine learning can handle large datasets and can 

continuously improve their prediction accuracy by hyper-tuning the parameters 

and perform cross-validation. As the stock market mostly exhibits non-linear 

relationships between variables, machine learning can learn non-linear 

relationships with a large amount of trained data as stock market data are 

available at each trading day. Machine learning approaches might improve stock 

selection compared to linear methods as most machine learning models tend to 

do better on classification problems rather than on regression problems (Wolff 

and Echterling, 2023). 

 

2.1.1 Boosted Regression Trees (BRT) 

In this project, the boosted regression trees machine learning model is used as 

one of the models for the stock selection. According to Li and Rossi (2020), 

regression trees can handle large dimensional data sets compared to other 

machine learning methods. Additionally, the regression trees perform better 

interpretability than other predictive performances, known as the “black boxes.” 

For example, the relative influence measures and the partial dependence plots 

can be used to visualize the significance of covariates and the relation between 

the expected return and each characteristic, respectively. The “black box” means 

that the internal workings of the model prediction are not transparent or easily 

interpretable, although they perform predictions or conclusions as a result.  

Boosting algorithms are employed to perform more accurate forecasts 

than the original model. The boosting algorithm will combine the weak learners, 

such as the decision trees, and create a stronger overall model by weighted 

training. For instance, the algorithm will assign greater weights to the instances 

misclassified in previous iterations and lower weights to correctly classified 

instances. This algorithm will emphasize difficult instances, help the model 
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learn from its mistakes, and improve its performance over time (Li and Rossi, 

2020).  

 
2.1.2 Ridge Regression, LASSO, and ENET 

This project also adapted the ridge regression model, the Least Absolute 

Shrinkage and Selection Operator (LASSO), and the Elastic Net (ENET). 

Ridge regression is used in linear regression to mitigate 

multicollinearity and prevent overfitting by adding a penalty term to the model's 

cost function. This penalty term, controlled by a tuning parameter (λ), helps 

prevent overfitting by discouraging large coefficient values. In classification 

tasks, ridge regression can be adapted with logistic regression. By applying 

ridge regularization to logistic regression, the model's coefficients are penalized 

to avoid extreme values, reducing the risk of overfitting and improving the 

model's ability to generalize to new data. Ridge logistic regression is particularly 

useful when dealing with high-dimensional datasets or datasets with 

multicollinear features, where traditional logistic regression may struggle 

(Hoerl and Kennard, 1970). 

However, ridge regression will not penalize the coefficient values to be 

exactly zero; hence, it does not perform variable selection as some of the 

characteristics might not be contributing values of the company. In contrast, 

LASSO imposes a penalty on the absolute magnitude of the coefficients of the 

independent variable, encouraging sparsity in the model by shrinking some 

coefficients to zero. This helps select the most relevant features and avoid 

overfitting by reducing model complexity (Tibshirani, 1996).  

ENET is a regularization technique combining LASSO and Ridge 

regression penalties to overcome their limitations. According to Zou and Hastie 

(2005), ENET adds a penalty term to the loss function, a mixture of the LASSO 

and Ridge penalties controlled by a mixing parameter (α). Like LASSO, it 

performs variable selection by setting some coefficients exactly to zero. 

However, ENET can handle situations with correlations among predictor 

variables, which can cause LASSO to select only one variable from a group of 

correlated variables. This makes ENET more robust in high-dimensional 

datasets. The mixing parameter alpha controls the balance between the ridge 

and LASSO penalties. A value of alpha closer to 1 emphasizes LASSO-like 
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behavior, while a value closer to 0 emphasizes Ridge-like behavior. By tuning 

alpha, ENET provides flexibility in regularization, allowing it to adapt to 

different datasets and modeling goals. 

 

2.1.3 Long-Term Short-Term Memory 

The long-term, short-term memory, pioneered by Hochreiter and Schmidhuber 

(1997), is a Recurrent Neural Network (RNN) type that tackles the struggle of 

capturing long-term dependencies in sequence due to vanishing gradient 

problems. LSTM comprises interconnected memory cells that control the 

memory to preserve it in the model. The forget gate decides which information 

needs to be kept or discarded. The LSTM model is powerful in predicting time-

dependent data due to its long-term dependencies. 

 
2.2 Universal Portfolio 

The Universal Portfolio, pioneered by Thomas Cover (1991), is an investment 

strategy. Unlike traditional portfolio strategies, which allocate funds to a fixed 

set of assets, the universal portfolio dynamically allocates capital among a large 

universe of assets. 

The universal portfolio employs an algorithm that continuously updates 

the portfolio weights based on the observed performance of assets over time. 

This dynamic adaptation allows the strategy to capitalize on changing market 

conditions and exploit profitable trading opportunities. Ultimately, the optimal 

rebalance portfolio will generate the maximum achievable wealth.  

Further studies on the universal portfolio were carried out by Cover and 

Ordentlich (1996), and they proposed the moving-order universal portfolio, also 

known as the Cover-Ordentlich universal portfolio. It is a type of portfolio that 

adjusts its order based on the positive moments of the Dirichlet distribution. 

However, implementing this strategy is impractical as the number of stocks in 

the portfolio increases, and the implementation time and computer requirements 

grow exponentially. The difference between a universal portfolio and a moving-

order universal portfolio is that the universal portfolio wealth allocation is not 

dependent on predicting future price movements. 

To address the computational challenge, further studies by Tan and Pang 

(2013) have proposed a finite and moving order multivariate normal universal 
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portfolio, which reduces the number of historical stock data stored in the 

calculations and still provides a comparable result with moving-order Dirichlet 

universal portfolio, and some cases that will outperform the wealth generated 

(Tan, 2013). Tan and Kuang (2014) studied the orders 1, 2, and 3 dominant-

diagonal-matrix-generated universal portfolios with two parameters. They 

showed that the order had no superiority in the performance of one order over 

another.  

The performance of the finite order universal portfolio was further 

discussed by Pang, Liew, and Chang (2017), and the wealth achieved 

outperformed the Dirichlet universal portfolio with only order one. A study on 

universal portfolio with two and three parameters distribution by Ling, Phoon, 

and Seoh (2022) showed that the wealth generated was comparable with the best 

constant rebalance portfolio (BCRP) after finding the optimum parameters 

value for each distribution, and the Pareto distribution could generate a high-

performance universal portfolio. This project will discuss the finite order 

universal portfolio, which reduces the number of historical stock data stored in 

the calculations, added with the recursive calculation of continuous random 

variable’s moment generating function, aimed to improve the terminal wealth 

in the universal portfolio. 

 
2.3 Recursive Calculation 

The wealth achieved by the universal portfolio is computed using the constant 

rebalance strategy, which involves a recursive calculation. The recursive 

calculation is used so that the universal portfolio algorithm will recursively 

update the portfolio weights based on past performance. In short, the recursive 

calculation repeats or uses its previous term to calculate subsequent terms. 

 
2.4 Lognormal and Gamma Distributions 

As the finite-order universal portfolio will adjust its order based on the positive 

moments of generating probability distributions, a continuous random variable 

is used instead of discrete probability distributions, as the latter would not 

adequately represent the smooth, continuous changes in stock prices. 

The log-normal distribution is used in the finance field as it exhibits 

non-negativity behaviours which align with the fact that the stock prices could 
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not fall below zero. The logarithm of stock prices would transform the 

multiplicative effects into changes which will then stabilize the volatility of the 

stock movements (Cizeau et al., 1997). Additionally, the application of log-

normal distribution can be further discovered into the Black-Scholes model that 

fundamentally assumes that the stock prices follow a log-normal distribution for 

option pricing (Black and Scholes, 1973). The Black-Scholes model has been 

used broadly by financial institutions, traders, and regulators to calculate the fair 

price of a European call or put option on a stock. Therefore, log-normal 

distribution is used in this study to generate universal portfolio. 

Besides from the log-normal distribution, the gamma distribution also 

only assigns probability to positive values. However, the gamma distribution is 

often used in finding the rate of occurrence in the waiting times which can be 

implied as the time between the significant price jumps in a specific direction. 

The gamma distribution is used instead of exponential distribution as they are 

two parameters (α and β). The α will control the skewness of the distribution 

while the β will control the spread of the distribution. Due to its flexibility, the 

order of α and β can be controlled to fit most of the distribution of stocks. 

 

2.5 Weibull and Generalized Pareto Distributions 

As the log-normal and gamma distributions may underestimate the frequency of 

extreme events, hence the heavier-tailed distributions would be considered. 

The focus of Weibull distribution is to detect extreme events such as 

fatality rate in actuarial industry. However, it can be adapted into focusing 

financial tails event such as modelling for extreme price movements in markets. 

Weibull distribution tends to have heavier tails than the normal distribution but 

with better control over the shape of distribution with parameters β and N. The 

parameter β will be controlling over the shape of distribution, if the 𝛽𝛽 < 1, then 

exhibit heavy tails, if the 𝛽𝛽 = 1, it becomes an exponential distribution but with 

heavier tails, and if 𝛽𝛽 > 1, the larger the value, the more it behaves like normal 

distribution. The parameter N will be controlling over the spread of distribution 

over the axis, a larger N makes the distribution more spread out with a lower 

peak (Weibull, 1951). 

The generalized pareto distribution is considered in this project as it 

portrays heavier tails, providing the ability to determine the extreme events and 
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hence it evaluates how stock prices might perform during extreme conditions 

(Pickands, 1975). Besides, the distribution of generalized pareto can be 

controlled by adjusting the shape parameter k, location parameter 𝛼𝛼 ,and the 

scale parameter 𝜆𝜆. The larger the shape parameter k, the heavier the tails of the 

distribution, and the smaller the scale parameter 𝜆𝜆, the narrower the distribution. 

As both of weibull and generalized pareto distribution’s parameters are flexible, 

a careful estimation on choosing the values of parameters is necessary for 

accurate estimation. 

 

2.6 Logistic Distribution 

The logistic distribution is another valuable tool used in financial modeling due 

to its flexibility and symmetry around the mean. Unlike the normal distribution, 

the logistic distribution exhibits heavier tails, which makes it more effective in 

capturing the likelihood of extreme events while still maintaining simplicity in 

its application. The logistic distribution is often employed to model growth 

processes, which can be analogized to stock prices' movement over time, 

especially when considering the saturation point or maximum potential of 

growth. The key parameters, mean and scale, enable the adjustment of the 

distribution’s central tendency and the spread of potential outcomes, 

respectively. This flexibility allows for the fitting of data that may not align 

perfectly with the assumptions of normality, particularly in markets that 

experience frequent, significant fluctuations (Gray et. al, 1990). Due to these 

characteristics, the logistic distribution is employed in this study as it effectively 

captures both the central tendencies and the tails of stock return distributions, 

providing a more comprehensive view of potential market outcomes. 

2.7 Bayesian Optimization Technique 

The Bayesian optimization technique start with defining an objective function 

𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑥𝑥)𝑥𝑥∈𝑋𝑋 , where to maximize the value generated by 𝑓𝑓(𝑥𝑥), the 

Bayesian optimization will construct a probabilistic surrogate model for this 

objective function and use this model to make decision on the next sample set. 

The surrogate model used in this project will be the gaussian density function, 

and the acquisition function used will be the expected improvement (EI) 

function. The surrogate model will provide a posterior distribution over the 
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possible function and is updated continuously as new data point is added. The 

location of new data point added will be determined by the acquisition function, 

which aimed to determine the trade balance between exploration and 

exploitation (Shahriari et al., 2015).  
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CHAPTER 3  
 

3 METHODOLOGY AND WORK PLAN 
 
3.1 Introduction 

Machine learning models were adopted to select high-performing stocks to build 

universal portfolio. To determine high-performing stocks, data collection, 

modelling for machine learning models and modelling for universal portfolio 

will be discussed. 

 

3.2 Data collection and preprocessing 

The historical stock prices were collected through the Yahoo! Finance API in 

the python. Next, the characteristic of company was collected through the 

Refinitiv website. The data preprocessing will be carried out to remove missing 

values and present the data into clean and presentable formats. 

 

3.3 Machine Learning models algorithms 

The classification of top-9 and bottom-9 performing companies was carried out 

at each test period, where the models will fit to predict the prices. After 

predicting the prices, the predicted price at the start of the test period will be 

regarded as the purchasing price, and the predicted price at the end of the test 

period will be the selling price. The return is calculated by taking the (selling 

price – purchasing price) / purchasing price. Then, the classification of top-9 

and bottom-9 predicted returns will be carried out, and the classification start, 

and end dates will be recorded to build a portfolio. The top 9 companies will be 

labelled as 1, the bottom 9 as –1, and others as 0. A momentum score was added 

to ensure the stock performance was consistent in three test period. Additionally, 

the classification metrics will be computed to study the performance of different 

models.  

The window size of time series splits for all the models will be 55. 

Hence, the return calculated will be in 55 periods, approximately 32 trading days. 

Besides, the Bayesian Optimization technique will be adopted to select the best 

parameters to minimize the Mean Squared Error (MSE) prediction for the BRT 

model. The Ridge, Lasso, and Enet will use their respective cross-validation 
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methods to select the best parameters that will provide the least MSE of 

prediction.  

The portfolio construction will use the predicted label during the test 

period, where top-performing stocks will be regarded in one portfolio. Then, the 

portfolio’s return will be calculated by taking the mean of the return generated 

by companies in the portfolio as we regard the companies in the portfolio as 

equally weighted. Then, the overall returns generated by different models can 

be compared to select the best portfolio. The risk-adjusted return will be the 

benchmark for selecting the best portfolio. 

After determining the best portfolio, the companies in the portfolio will 

be used to construct the universal portfolio by taking the mean value of predicted 

labels. The closer the company’s mean predicted labels to 1, the more it is 

selected as top-performing and will be used in the universal portfolio. 

 

3.4 Machine Learning and Universal Portfolio Modelling start date 

and end date.  

The data will be collected from 2010, 1st January until 2023, 31st December. The 

time frame for the machine learning model to select stocks will be from 2010, 

1st January, until 2016, 31st December, while the remaining will be used for 

modeling Universal Portfolio (UP). In machine learning, the time series cross-

validation method will carry out the train test split. The expanding window 

validation method will be used, in which initially the training period will be 

determined according to the window size and the testing period subsequently. 

Then, the window will expand to include the testing period, forming an 

expended window as the training period and the testing period subsequently. 

The illustration can be shown in Figure 3.1. 

 

 
Figure 3.1: Illustration of expanding window cross-validation. 
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3.5 Boosted Regression Tree 

Let X be the predictor variables, and Y be the response variables, 𝜏𝜏  be the 

number of iterations of the model. The formulas of the BRT model can be 

expressed as: 

 

𝐹𝐹𝜏𝜏(𝑋𝑋) = 𝐹𝐹0(𝑋𝑋) +  �𝛼𝛼𝜏𝜏𝑃𝑃𝜏𝜏(𝑋𝑋)
𝜏𝜏

𝜏𝜏=1

 (3.5.1) 

 

𝜖𝜖𝜏𝜏(𝑋𝑋) = 𝑌𝑌 − 𝐹𝐹𝜏𝜏−1(𝑋𝑋) (3.5.2) 

 

where, 

𝐹𝐹𝜏𝜏(𝑋𝑋) is the final prediction after 𝜏𝜏 iterations, 

𝐹𝐹0(𝑋𝑋) is the initial prediction, 

𝛼𝛼𝜏𝜏 is the shrinkage parameter (learning rate), 

𝑃𝑃𝜏𝜏(𝑋𝑋) is the prediction of 𝜏𝜏 regression tree, 

𝜖𝜖𝜏𝜏(𝑋𝑋) is the residuals after 𝜏𝜏 iterations. 

 

During the training process, the BRT model aims to minimize the desired loss 

function by adding regression trees to the ensemble and adjusting their weight 

by the shrinkage parameters. The higher the 𝛼𝛼𝜏𝜏, the faster the training process, 

as it will put more weight on each regression tree in the ensembles, leading to a 

faster convergence. Additionally, a higher 𝛼𝛼𝜏𝜏  will also increase the risk of 

overfitting. The loss function specified in the BRT model in our study will be 

the Mean Squared Error (MSE) loss function. 

 

3.6 RIGDE, LASSO, ENET and LSTM 

The main objective of RIDGE, LASSO, and ENET machine learning models is 

to minimize the cost function. The lower the value of the cost function, the better 

the performance of these models in terms of both fitting the training data and 

controlling overfitting issues. By minimizing the cost functions, the coefficients 

of these models can be calculated.  
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3.6.1 Ridge Regression 

Let RSS be the Residuals Sum Squares. The cost function of ridge regression 

can be expressed as: 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊) = 𝑅𝑅𝑅𝑅𝑅𝑅(𝑊𝑊) + 𝜆𝜆 ∙ (𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡) 

 

   = ��𝑦𝑦𝑖𝑖 −�𝑤𝑤𝑣𝑣𝑥𝑥𝑖𝑖𝑖𝑖

𝑀𝑀

𝑣𝑣=0

�

2

+ 𝜆𝜆�𝑤𝑤𝑣𝑣2
𝑀𝑀

𝑣𝑣=0

𝑁𝑁

𝑖𝑖=1

  (3.6.1) 

 

where y is the observed value, x is the input value and w are the coefficient of v, 

M is the total number of predictor variables, and 𝜆𝜆 as the regularization term.   

 

3.6.2 LASSO 

The cost function of LASSO can be expressed as: 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊) = 𝑅𝑅𝑅𝑅𝑅𝑅(𝑊𝑊) + 𝜆𝜆 ∙ (𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡) 

 

= ��𝑦𝑦𝑖𝑖 −�𝑤𝑤𝑣𝑣𝑥𝑥𝑖𝑖𝑖𝑖

𝑀𝑀

𝑣𝑣=0

�

2

+ 𝜆𝜆�|𝑤𝑤𝑣𝑣|
𝑀𝑀

𝑣𝑣=0

𝑁𝑁

𝑖𝑖=1

  (3.6.2) 

 

where y is the observed value, x is the input value and w are the coefficient of v, 

M is the total number of predictor variables, and 𝜆𝜆 as the regularization term. 

 

3.6.3 ENET 

The cost function of ENET can be expressed as: 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊) =  ��𝑦𝑦𝑖𝑖 −  �𝑤𝑤𝑣𝑣𝑥𝑥𝑖𝑖𝑖𝑖

𝑀𝑀

𝑣𝑣=0

�
𝑁𝑁

𝑖𝑖=1

2

+ 𝜆𝜆1�|𝑤𝑤𝑣𝑣|
𝑀𝑀

𝑣𝑣=0

+ 𝜆𝜆2�𝑤𝑤𝑣𝑣2
𝑀𝑀

𝑣𝑣=0

  (3.6.3)  

 

where y is the observed value, x is the input value and w are the coefficient of v, 

M is the total number of predictor variables, and 𝜆𝜆 as the regularization term. 
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The 𝜆𝜆1 is the penalty term for lasso regression and 𝜆𝜆2 is the penalty term for 

ridge regression. 

 

3.6.4 LSTM 

The LSTM model consists of three types of gates: the forget gate, the input gate, 

and the output gate. The forget gate decides what to forget, the input gate 

decides what to add to the model, and the output gate decides the information to 

be outputted. Each gate is controlled by a sigmoid function, which will take 

values from 0 to 1. A value close to 0 will allow no information to pass through, 

while a value close to 1 allows information to flow freely. The tanh function 

acts as a cell state update and output activation to prevent the information in the 

model from growing exponentially. An illustration of the LSTM model can be 

shown in Figure 3.2. 

 

 
Figure 3.2: Illustration of LSTM model. 
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3.7 Universal Portfolio Formulas and Definitions 

According to Cover (1991), the proportion of wealth invested in each m stock 

can be denoted as 𝒃𝒃 = �𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑞𝑞�
𝑡𝑡
, where 𝒃𝒃𝒊𝒊 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 ∑ 𝑏𝑏𝑖𝑖 =  1𝑞𝑞

𝑖𝑖=0 . Then 

𝒃𝒃𝑛𝑛𝑛𝑛  is the wealth allocation invested in 𝑖𝑖 stock on the 𝑛𝑛𝑡𝑡ℎ  trading days. The 

stock market vector is denoted as 𝒙𝒙 = �𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑞𝑞�
𝑡𝑡
, where 𝒙𝒙𝒊𝒊 ≥ 0. The price 

relative vector in 𝑖𝑖 stock on the 𝑛𝑛𝑡𝑡ℎ trading days can be denoted as 𝒙𝒙𝒏𝒏𝒏𝒏. Then, 

the overall return for 𝑛𝑛𝑡𝑡ℎ trading days, 𝑆𝑆𝑛𝑛 will be: 

 

𝑆𝑆𝑛𝑛(𝒃𝒃) =  � 𝒃𝒃𝑙𝑙𝑡𝑡 𝒙𝒙𝑙𝑙
𝑛𝑛

𝑙𝑙=1
  (3.7.1) 

 

where 𝒃𝒃𝑙𝑙𝑡𝑡𝒙𝒙𝑙𝑙 = ∑ 𝑏𝑏𝑙𝑙𝑙𝑙𝑥𝑥𝑙𝑙𝑙𝑙
𝑞𝑞
𝑝𝑝=1  and the initial wealth 𝑆𝑆0(𝑏𝑏) = 1. 

 

3.8 Low-Order Universal Portfolio generated by Recursive 

Calculations 

According to Tan (2013), let 𝑌𝑌1,𝑌𝑌2, …𝑌𝑌𝑘𝑘 be k mutually independent continuous 

random variables having a joint probability mass function 𝑓𝑓(𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑘𝑘) 

defined over the domain D such that: 

 

𝐷𝐷 = �(𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑞𝑞�: 𝑓𝑓�𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑞𝑞� > 0} 

 

and the universal portfolio proportion at 𝑟𝑟𝑡𝑡ℎ  portfolio, 𝑏𝑏�𝑛𝑛+1,𝑟𝑟  of order ψ 

generated by 𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑘𝑘 is defined as: 

 

𝑏𝑏�𝑛𝑛+1,𝑟𝑟

=
∫ 𝑦𝑦𝑟𝑟(𝑦𝑦𝑡𝑡𝑥𝑥𝑛𝑛)(𝑦𝑦𝑡𝑡𝑥𝑥𝑛𝑛−1) … �𝑦𝑦𝑡𝑡𝑥𝑥𝑛𝑛−(𝜓𝜓−1)�𝑓𝑓(𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑟𝑟)𝑑𝑑𝑑𝑑 
𝐷𝐷

∫ (𝑦𝑦1 + 𝑦𝑦2 + ⋯𝑦𝑦𝑟𝑟)(𝑦𝑦𝑡𝑡𝑥𝑥𝑛𝑛) … �𝑦𝑦𝑡𝑡𝑥𝑥𝑛𝑛−(𝜓𝜓−1)�
 
𝐷𝐷 𝑓𝑓(𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑟𝑟) 𝑑𝑑𝑑𝑑

 
(3.8.1) 

 

for r = 1,2, …, q. 
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By assuming the 𝐸𝐸�𝑌𝑌1
𝑤𝑤1𝑌𝑌2

𝑤𝑤2 …𝑌𝑌𝑞𝑞
𝑤𝑤𝑞𝑞� ≥ 0, for w in the range of 0 ≤ 𝑤𝑤𝑖𝑖 ≤ 𝜓𝜓 +

1, where 𝑖𝑖 = 1,2, … , 𝑞𝑞 and ∑ 𝑤𝑤𝑖𝑖
𝑞𝑞
𝑖𝑖=1 =  𝜓𝜓 + 1, the numerator of 𝑏𝑏�𝑛𝑛+1,𝑟𝑟  can be 

rewritten as below: 

 

𝑏𝑏�𝑛𝑛+1,𝑟𝑟 =    

𝜋𝜋𝑛𝑛+1 �� … ��𝑥𝑥𝑛𝑛,𝑖𝑖1 … 𝑥𝑥𝑛𝑛−𝜓𝜓+1,𝑖𝑖1�𝐸𝐸[𝑌𝑌1
𝑤𝑤1(𝑟𝑟;𝑖𝑖) …

𝑞𝑞

𝑖𝑖𝜓𝜓=1

𝑞𝑞

𝑖𝑖1=1

𝑌𝑌𝑞𝑞
𝑛𝑛𝑞𝑞(𝑟𝑟;𝑖𝑖)]�  

(3.8.2) 

  

for r = 1,2, …, q. where 𝜋𝜋𝑛𝑛+1 is denoted as: 

 

𝜋𝜋𝑛𝑛+1

= �� � …�
�𝑥𝑥𝑛𝑛𝑖𝑖1 , 𝑥𝑥𝑛𝑛−1,𝑖𝑖2 … 𝑥𝑥𝑛𝑛−𝜓𝜓+1,𝑖𝑖1�

× 𝐸𝐸 ��𝑌𝑌1 + 𝑌𝑌2 + ⋯+ 𝑌𝑌𝑞𝑞� �𝑌𝑌1
𝑤𝑤1(𝑖𝑖)𝑌𝑌2

𝑤𝑤2(𝑖𝑖) …𝑌𝑌𝑞𝑞
𝑤𝑤𝑞𝑞(𝑖𝑖)��

𝑞𝑞

𝑖𝑖𝜓𝜓

𝑞𝑞

𝑖𝑖2=1

𝑞𝑞

𝑖𝑖1=1

�

−1

  
(3.8.3) 

 

where,  

𝑤𝑤𝑗𝑗(𝑖𝑖) = number of 𝑦𝑦𝑗𝑗’s in the sequence 𝑦𝑦𝑖𝑖1 ,𝑦𝑦𝑖𝑖2 , … ,𝑦𝑦𝑖𝑖𝜓𝜓 for 𝑗𝑗 = 1,2, … , 𝑞𝑞; 

0 ≤ 𝑤𝑤𝑗𝑗(𝑖𝑖) ≤ 𝜓𝜓; 𝑖𝑖 = (𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑛𝑛);∑ 𝑤𝑤𝑗𝑗(𝑖𝑖) = 𝜓𝜓𝑞𝑞
𝑗𝑗=1 ,  

𝑤𝑤𝑗𝑗(𝑟𝑟; 𝑖𝑖) = number of 𝑦𝑦𝑗𝑗’s in the sequence 𝑦𝑦𝑖𝑖1 ,𝑦𝑦𝑖𝑖2 , … , 𝑦𝑦𝑖𝑖𝜓𝜓 for 𝑗𝑗 = 1,2, … , 𝑞𝑞; 

0 ≤ 𝑤𝑤𝑗𝑗(𝑟𝑟; 𝑖𝑖) ≤ 𝜓𝜓 + 1;∑ 𝑤𝑤𝑗𝑗(𝑟𝑟; 𝑖𝑖) = 𝜓𝜓 + 1𝑞𝑞
𝑗𝑗=1 .  

 

Let 𝑋𝑋𝑛𝑛�𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑞𝑞� be the sum of all products 𝑥𝑥1𝑖𝑖1 , 𝑥𝑥2𝑖𝑖2,, … , 𝑥𝑥𝑛𝑛𝑖𝑖𝑛𝑛 having the 

same set of counts as ∑ 𝑤𝑤𝑗𝑗(𝑖𝑖) = 𝑛𝑛𝑞𝑞
𝑗𝑗=1 , which can be expressed as: 

 

𝑋𝑋𝑛𝑛�𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑞𝑞� = � �𝑥𝑥1𝑖𝑖1 , 𝑥𝑥2𝑖𝑖2,, … , 𝑥𝑥𝑛𝑛𝑖𝑖𝑛𝑛�
 

𝑤𝑤1(𝑖𝑖)+𝑤𝑤2(𝑖𝑖)+⋯+𝑤𝑤𝑞𝑞(𝑖𝑖)=𝑛𝑛

  (3.8.4) 

 

And the quantity 𝑋𝑋𝑛𝑛 is calculated recursively as follows: 

 

𝑋𝑋𝑛𝑛�𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑞𝑞� =  �𝑥𝑥𝑛𝑛𝑛𝑛𝑋𝑋𝑛𝑛−1�𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑞𝑞�
𝑞𝑞

𝑗𝑗=1

 (3.8.5) 
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With the initial conditions: 

 

𝑋𝑋𝑛𝑛(0,0, … ,𝑛𝑛, … ,0) = 𝑥𝑥𝑛𝑛𝑛𝑛𝑋𝑋𝑛𝑛−1(0,0, … , 𝑛𝑛 − 1, … ,0) (3.8.6)  

 

Then, define the 𝑅𝑅𝑛𝑛�𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑞𝑞� as: 

 

𝑅𝑅𝑛𝑛�𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑞𝑞� = �𝐸𝐸�𝑌𝑌𝑟𝑟
𝑤𝑤𝑟𝑟�

𝑞𝑞

𝑟𝑟=1

 (3.8.7) 

where ∑ 𝑤𝑤𝑟𝑟 = 𝑛𝑛𝑞𝑞
𝑟𝑟=1 . 

Hence, the numerator of 𝑏𝑏�𝑛𝑛+1,𝑟𝑟 can be further simplified into: 

 

= � … ��𝑥𝑥𝑛𝑛,𝑖𝑖1 … 𝑥𝑥𝑛𝑛−𝜓𝜓+1,𝑖𝑖1�𝐸𝐸[𝑌𝑌1
𝑤𝑤1(𝑟𝑟;𝑖𝑖) …

𝑞𝑞

𝑖𝑖𝜓𝜓=1

𝑞𝑞

𝑖𝑖1=1

𝑌𝑌𝑞𝑞
𝑤𝑤𝑞𝑞(𝑟𝑟;𝑖𝑖)] 

 

= � 𝑋𝑋𝑛𝑛�𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑞𝑞�
 

𝑤𝑤1(𝑖𝑖)+𝑤𝑤2(𝑖𝑖)+⋯+𝑤𝑤𝑞𝑞(𝑖𝑖)=𝑛𝑛

𝐸𝐸(𝑌𝑌𝑟𝑟
𝑤𝑤𝑟𝑟(𝑖𝑖)+1)�𝐸𝐸�𝑌𝑌𝑟𝑟

𝑤𝑤𝑟𝑟�
𝑞𝑞

𝑟𝑟=1

 

=  � 𝑋𝑋𝑛𝑛�𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑞𝑞�
 

𝑤𝑤1(𝑖𝑖)+𝑤𝑤2(𝑖𝑖)+⋯+𝑤𝑤𝑞𝑞(𝑖𝑖)=𝑛𝑛

𝑅𝑅𝑛𝑛+1�𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑞𝑞�  (3.8.8) 

 

where,  

𝑅𝑅𝑛𝑛+1�𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑞𝑞� = �
𝐸𝐸�𝑌𝑌𝑤𝑤

𝑤𝑤𝑟𝑟+1�
𝐸𝐸�𝑌𝑌𝑤𝑤

𝑤𝑤𝑟𝑟�
�𝑅𝑅𝑛𝑛�𝑤𝑤1, … ,𝑤𝑤𝑟𝑟 , …𝑤𝑤𝑞𝑞� (3.8.9)  

 

for 𝑤𝑤𝑟𝑟 ≥ 1, 𝑟𝑟 = 1,2, … , 𝑞𝑞. 

 

The portfolio component 𝑏𝑏�𝑛𝑛+1,𝑟𝑟 now can be rewritten as: 

∑ 𝑋𝑋𝑛𝑛�𝑤𝑤1, … ,𝑤𝑤𝑞𝑞�𝑅𝑅𝑛𝑛+1�𝑤𝑤1, … ,𝑤𝑤𝑟𝑟 + 1, … ,𝑤𝑤𝑞𝑞� 
𝑤𝑤1+⋯+𝑤𝑤𝑞𝑞=𝑛𝑛

∑ �∑ 𝑋𝑋𝑛𝑛�𝑤𝑤1, … ,𝑤𝑤𝑞𝑞� 
𝑤𝑤1+⋯+𝑤𝑤𝑞𝑞=𝑛𝑛 𝑅𝑅𝑛𝑛+1�𝑤𝑤1, … ,𝑤𝑤𝑗𝑗 + 1, … ,𝑤𝑤𝑞𝑞��

𝑞𝑞
𝑗𝑗=1

  (3.8.10) 
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Then, the wealth function 𝑆̂𝑆𝑛𝑛(𝑥𝑥𝑛𝑛) can be calculated recursively as: 

 

𝑆̂𝑆𝑛𝑛(𝑥𝑥𝑛𝑛+1) = �𝒃𝒃�𝑛𝑛+1𝒙𝒙𝑛𝑛+1�𝑆̂𝑆𝑛𝑛(𝑥𝑥𝑛𝑛)  (3.8.11) 

  

where from (3.8.1), �𝒃𝒃�𝑛𝑛+1𝒙𝒙𝑛𝑛+1� can be expressed as: 

  

�𝒃𝒃�𝑛𝑛+1𝒙𝒙𝑛𝑛+1� = 

∫ ∏ 𝑦𝑦𝑡𝑡𝑥𝑥𝑖𝑖𝑛𝑛+1
𝑖𝑖=1 𝑓𝑓�𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑞𝑞� 𝑑𝑑𝑑𝑑

 
𝐷𝐷

∫ �𝑦𝑦1 + 𝑦𝑦2 + ⋯𝑦𝑦𝑞𝑞�∏ 𝑦𝑦𝑡𝑡𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

 
𝐷𝐷 𝑓𝑓�𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑞𝑞� 𝑑𝑑𝑑𝑑

  

 

=
∑ 𝑋𝑋𝑛𝑛+1�𝑤𝑤1, … ,𝑤𝑤𝑞𝑞�𝑅𝑅𝑛𝑛+1�𝑤𝑤1, … ,𝑤𝑤𝑞𝑞� 
𝑤𝑤1+⋯+𝑤𝑤𝑞𝑞=𝑛𝑛+1

∑ [∑  𝑋𝑋𝑛𝑛�𝑤𝑤1, … ,𝑤𝑤𝑞𝑞� 
𝑤𝑤1+⋯+𝑤𝑤𝑞𝑞=𝑛𝑛 𝑅𝑅𝑛𝑛+1�𝑤𝑤1, … ,𝑤𝑤𝑗𝑗 + 1, … ,𝑤𝑤𝑞𝑞�]𝑞𝑞

𝑗𝑗=1
 (3.8.12) 

 

The initial portfolio 𝒃𝒃�𝟏𝟏 = (𝑏𝑏1𝑟𝑟) can be chosen as 𝑏𝑏�1𝑟𝑟 = 1
𝑞𝑞

 , 𝑟𝑟 = 1,2, … , 𝑞𝑞. 

 

3.9 Log-normal Distribution 

Let 𝑌𝑌𝑟𝑟 follows log-normal distribution where: 

 

𝑌𝑌𝑟𝑟~(𝜇𝜇𝑟𝑟 ,𝜎𝜎𝑟𝑟)   

 

where the probability density function 𝑓𝑓(𝑦𝑦𝑟𝑟): 

 

𝑓𝑓(𝑦𝑦𝑟𝑟) =
1

𝑦𝑦𝑟𝑟𝜎𝜎𝑟𝑟√2𝜋𝜋
𝑒𝑒
−(ln(𝑦𝑦𝑟𝑟)−𝜇𝜇𝑟𝑟)2

2𝜎𝜎𝑟𝑟
2  ,𝑦𝑦𝑟𝑟 > 0  

 

The expected values of 𝑤𝑤𝑡𝑡ℎ order of log-normal distribution can be expressed 

as: 

𝐸𝐸�𝑌𝑌𝑟𝑟
𝑤𝑤𝑟𝑟� =  𝑒𝑒𝑤𝑤𝑟𝑟𝜇𝜇𝑟𝑟+

𝜎𝜎𝑟𝑟
2

2    

 

where μ and 𝜎𝜎 are the mean and standard deviation of the normal distribution 

respectively.  
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Hence, the ratio is, 

�
𝐸𝐸�𝑌𝑌𝑟𝑟

𝑤𝑤𝑟𝑟+1�
𝐸𝐸�𝑌𝑌𝑟𝑟

𝑤𝑤𝑟𝑟�
� =

𝑒𝑒(𝑤𝑤𝑟𝑟+1)𝜇𝜇𝑟𝑟+
(𝑤𝑤𝑟𝑟+1)2𝜎𝜎𝑟𝑟

2

2  

𝑒𝑒(𝑤𝑤𝑟𝑟)𝜇𝜇𝑟𝑟+
(𝑤𝑤𝑟𝑟)2𝜎𝜎𝑟𝑟

2

2  
 

=  𝑒𝑒𝜇𝜇𝑟𝑟+𝜎𝜎𝑟𝑟
2�𝑤𝑤𝑟𝑟+

1
2�  

 

From the equation (3.8.9), the recursive calculation for log-normal distribution 

is: 

 𝑅𝑅𝑛𝑛+1�𝑤𝑤1, … ,𝑤𝑤𝑟𝑟 + 1, … ,𝑤𝑤𝑞𝑞�

= �𝑒𝑒𝜇𝜇𝑟𝑟+𝜎𝜎𝑟𝑟
2�𝑤𝑤𝑟𝑟+

1
2� �𝑅𝑅𝑛𝑛�𝑤𝑤1, … ,𝑤𝑤𝑟𝑟 , … ,𝑤𝑤𝑞𝑞� 

(3.9.1) 

 

for 𝑟𝑟 = 1,2, … , 𝑞𝑞. 

 

3.10 Gamma Distribution 

Let 𝑌𝑌𝑟𝑟 follows gamma distribution where: 

 

𝑌𝑌𝑟𝑟~(𝛼𝛼𝑟𝑟,𝛽𝛽𝑟𝑟)   

 

where the probability density function 𝑓𝑓(𝑦𝑦𝑟𝑟): 

 

𝑓𝑓(𝑦𝑦𝑟𝑟) =
1

Γ(αr)𝛽𝛽𝑟𝑟
𝛼𝛼𝑟𝑟  𝑒𝑒−

𝑦𝑦𝑟𝑟
𝛽𝛽𝑟𝑟  ,𝑦𝑦𝑟𝑟 > 0  

 

and 𝛼𝛼𝑟𝑟 > 0,𝛽𝛽𝑟𝑟 > 0. 

 

The expected values of 𝑤𝑤𝑡𝑡ℎ order of gamma distribution can be expressed as: 

𝐸𝐸�𝑌𝑌𝑟𝑟
𝑤𝑤𝑟𝑟� =

𝛽𝛽𝑟𝑟
𝑤𝑤𝑟𝑟Γ(wr + αr)

Γ(αr)  ;  𝛼𝛼𝑟𝑟 > 0,𝛽𝛽𝑟𝑟 > 0,𝑤𝑤𝑟𝑟 = 1,2,3 …  
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Hence, the ratio is, 

 

�
𝐸𝐸�𝑌𝑌𝑟𝑟

𝑤𝑤𝑟𝑟+1�
𝐸𝐸�𝑌𝑌𝑟𝑟

𝑤𝑤𝑟𝑟�
� =  

𝛽𝛽𝑟𝑟
𝑤𝑤𝑟𝑟+1Γ(wr + 1 + αr)

Γ(αr)  ×
Γ(αr)

𝛽𝛽𝑟𝑟
𝑤𝑤𝑟𝑟Γ(wr + αr)

 

=  (𝛼𝛼𝑟𝑟 + 𝑤𝑤𝑟𝑟)𝛽𝛽𝑟𝑟 

 

From the equation (3.8.9), the recursive calculation for gamma distribution is: 

 𝑅𝑅𝑛𝑛+1�𝑤𝑤1, … ,𝑤𝑤𝑟𝑟 + 1, … ,𝑤𝑤𝑞𝑞�

= �(𝛼𝛼𝑟𝑟 + 𝑤𝑤𝑟𝑟)𝛽𝛽𝑟𝑟�𝑅𝑅𝑛𝑛�𝑤𝑤1, … ,𝑤𝑤𝑟𝑟 , … ,𝑤𝑤𝑞𝑞� 
(3.10.1) 

 

for 𝑟𝑟 = 1,2, … , 𝑞𝑞. 

 

3.11 Weibull Distribution 

Let 𝑌𝑌𝑟𝑟 follows weibull distribution where: 

 

𝑌𝑌𝑟𝑟~(𝛽𝛽𝑟𝑟,𝑁𝑁𝑟𝑟)   

 

where the probability density function 𝑓𝑓(𝑦𝑦𝑟𝑟): 

𝑓𝑓(𝑦𝑦𝑟𝑟) =
𝑁𝑁𝑟𝑟
𝛽𝛽𝑟𝑟
�
𝑦𝑦𝑟𝑟
𝛽𝛽𝑟𝑟
�
𝑁𝑁𝑟𝑟−1

 ,𝑦𝑦𝑟𝑟 ≥ 0  

 

𝛽𝛽𝑟𝑟 being the shape parameter and 𝑁𝑁𝑟𝑟 being the scale parameter. The expected 

values of 𝑤𝑤𝑡𝑡ℎ order of Weibull Distribution can be expressed as: 

 

𝐸𝐸�𝑌𝑌𝑟𝑟
𝑤𝑤𝑟𝑟� = 𝛽𝛽𝑟𝑟

𝑤𝑤𝑟𝑟  Γ(1 + 𝑁𝑁𝑟𝑟𝑤𝑤𝑟𝑟)   

 

Hence, the ratio is, 

 

�
𝐸𝐸�𝑌𝑌𝑟𝑟

𝑤𝑤𝑟𝑟+1�
𝐸𝐸�𝑌𝑌𝑟𝑟

𝑤𝑤𝑟𝑟�
� =

𝛽𝛽𝑟𝑟
𝑤𝑤𝑟𝑟+1 Γ(1 + 𝑁𝑁𝑟𝑟(𝑤𝑤𝑟𝑟 + 1))
𝛽𝛽𝑟𝑟
𝑤𝑤𝑟𝑟  Γ(1 + 𝑁𝑁𝑟𝑟𝑤𝑤𝑟𝑟)

 

 

= 𝛽𝛽𝑟𝑟� (𝑁𝑁𝑟𝑟𝑤𝑤𝑟𝑟 + 𝑖𝑖)
𝑁𝑁𝑟𝑟

𝑖𝑖=1
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From the equation (3.8.9), the recursive calculation for Weibull distribution is: 

 

 𝑅𝑅𝑛𝑛+1�𝑤𝑤1, … ,𝑤𝑤𝑟𝑟 + 1, … ,𝑤𝑤𝑞𝑞� 

=  (𝛽𝛽𝑟𝑟� (𝑁𝑁𝑟𝑟𝑤𝑤𝑟𝑟  + 𝑖𝑖))
𝑁𝑁𝑟𝑟

𝑖𝑖=1
𝑅𝑅𝑛𝑛�𝑤𝑤1, … ,𝑤𝑤𝑟𝑟 , … ,𝑤𝑤𝑞𝑞� 

(3.11.1) 

   

for 𝑟𝑟 = 1,2, … , 𝑞𝑞. 

 

3.12 Generalized Pareto Distribution  

Let 𝑌𝑌𝑟𝑟 follows generalized pareto distribution (GPD) where: 

 

𝑌𝑌𝑟𝑟~(𝛼𝛼𝑟𝑟 ,𝜆𝜆𝑟𝑟 ,𝑘𝑘𝑟𝑟)   

 

where the probability density function 𝑓𝑓(𝑥𝑥𝑟𝑟 ): 

 

𝑓𝑓(𝑦𝑦𝑟𝑟) =
Γ(αr + kr) λr

αr 𝑦𝑦𝑟𝑟
𝑘𝑘𝑟𝑟−1

Γ(αr)Γ(kr)�𝜆𝜆𝑟𝑟 + 𝑦𝑦𝑟𝑟�
𝛼𝛼𝑟𝑟+𝑘𝑘𝑟𝑟

 ,𝑦𝑦𝑟𝑟 > 0  

 

𝛼𝛼𝑟𝑟 will be the location parameter, 𝜆𝜆𝑟𝑟 will be the scale parameter whereas 𝑘𝑘𝑟𝑟 will 

be the shape parameter. The expected values of 𝑤𝑤𝑡𝑡ℎ order of generalized pareto 

distribution can be expressed as: 

 

𝐸𝐸�𝑌𝑌𝑟𝑟
𝑤𝑤𝑟𝑟� =

𝜆𝜆𝑟𝑟
𝑤𝑤𝑟𝑟 ∏ (𝑘𝑘𝑟𝑟 + 𝑖𝑖)𝑤𝑤𝑟𝑟−1

𝑖𝑖=0
∏ (𝛼𝛼𝑟𝑟 − 𝑗𝑗)𝑤𝑤
𝑗𝑗=1

   

 

Hence, the ratio is, 

 

�
𝐸𝐸�𝑌𝑌𝑟𝑟

𝑤𝑤𝑟𝑟+1�
𝐸𝐸�𝑌𝑌𝑟𝑟

𝑤𝑤𝑟𝑟�
� = � 

𝜆𝜆𝑟𝑟
𝑤𝑤𝑟𝑟+1 ∏ (𝑘𝑘𝑟𝑟 + 𝑖𝑖)𝑤𝑤𝑟𝑟

𝑖𝑖=0

∏ (𝛼𝛼𝑟𝑟 − 𝑗𝑗)𝑤𝑤𝑟𝑟+1
𝑗𝑗=1

×
∏ (𝛼𝛼𝑟𝑟 − 𝑗𝑗)𝑤𝑤𝑟𝑟
𝑗𝑗=1

𝜆𝜆𝑟𝑟
𝑤𝑤𝑟𝑟 ∏ (𝑘𝑘𝑟𝑟  + 𝑖𝑖)𝑤𝑤𝑟𝑟−1

𝑖𝑖=0

� 

 

=
𝜆𝜆𝑟𝑟
𝑤𝑤𝑟𝑟(𝑘𝑘𝑟𝑟 + 𝑤𝑤𝑟𝑟) 
(𝛼𝛼𝑟𝑟 − 𝑤𝑤𝑟𝑟)
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From the equation (3.8.9), the recursive calculation for generalized pareto 

distribution is: 

 

 𝑅𝑅𝑛𝑛+1�𝑤𝑤1, … ,𝑤𝑤𝑟𝑟 + 1, … ,𝑤𝑤𝑞𝑞� 

=  �
𝜆𝜆𝑟𝑟
𝑤𝑤𝑟𝑟(𝑘𝑘𝑟𝑟 + 𝑤𝑤𝑟𝑟)
(𝛼𝛼𝑟𝑟 − 𝑤𝑤𝑟𝑟) �𝑅𝑅𝑛𝑛�𝑤𝑤1, … ,𝑤𝑤𝑟𝑟 , … ,𝑤𝑤𝑞𝑞� 

(3.12.1) 

for 𝑟𝑟 = 1,2, … , 𝑞𝑞. 

 

3.13 Logistic Distribution 

Let 𝑌𝑌𝑟𝑟 follows logistic distribution where: 

 

𝑌𝑌𝑟𝑟~(𝜇𝜇𝑟𝑟 , 𝑠𝑠𝑟𝑟)   

 

where the probability density function 𝑓𝑓(𝑦𝑦𝑟𝑟 ): 

 

𝑓𝑓(𝑦𝑦𝑟𝑟) =
exp (−𝑦𝑦𝑟𝑟−𝜇𝜇𝑟𝑟

𝑠𝑠𝑟𝑟
)

sr(1 + exp (−𝑦𝑦𝑟𝑟−𝜇𝜇𝑟𝑟
𝑠𝑠𝑟𝑟

))
   

 

𝜇𝜇𝑟𝑟 will be the location parameter, 𝑠𝑠𝑟𝑟 will be the scale parameter. The expected 

values of 𝑤𝑤𝑡𝑡ℎ order of Generalized Pareto distribution can be expressed as: 

 

𝐸𝐸�𝑌𝑌𝑟𝑟
𝑤𝑤𝑟𝑟� =

exp(𝜇𝜇𝑟𝑟𝑤𝑤𝑟𝑟)Γ(1 − 𝑠𝑠𝑟𝑟𝑤𝑤𝑟𝑟)Γ(1 + 𝑠𝑠𝑟𝑟𝑤𝑤𝑟𝑟)
Γ(2) ,   |𝑤𝑤𝑟𝑟| <

1
𝑠𝑠𝑟𝑟

 

 

Hence, the ratio is, 

 

�
𝐸𝐸�𝑌𝑌𝑟𝑟

𝑤𝑤𝑟𝑟+1�
𝐸𝐸�𝑌𝑌𝑟𝑟

𝑤𝑤𝑟𝑟�
� = � 

exp(𝜇𝜇𝑟𝑟(𝑤𝑤𝑟𝑟 + 1))Γ�1− 𝑠𝑠𝑟𝑟(𝑤𝑤𝑟𝑟 + 1)�Γ(1 + 𝑠𝑠𝑟𝑟(𝑤𝑤𝑟𝑟 + 1))
Γ(2)

×
Γ(2)

exp(𝜇𝜇𝑟𝑟𝑤𝑤𝑟𝑟)Γ(1− 𝑠𝑠𝑟𝑟𝑤𝑤𝑟𝑟)Γ(1 + 𝑠𝑠𝑟𝑟𝑤𝑤𝑟𝑟)� 

 

=
exp (𝜇𝜇𝑟𝑟)Γ�1− 𝑠𝑠𝑟𝑟(𝑤𝑤𝑟𝑟 + 1)�Γ(1 + 𝑠𝑠𝑟𝑟(𝑤𝑤𝑟𝑟 + 1))

Γ(1− 𝑠𝑠𝑟𝑟𝑤𝑤𝑟𝑟)Γ(1 + 𝑠𝑠𝑟𝑟𝑤𝑤𝑟𝑟)   
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From the equation (3.8.9), the recursive calculation for generalized pareto 

distribution is: 

 

 𝑅𝑅𝑛𝑛+1�𝑤𝑤1, … ,𝑤𝑤𝑟𝑟 + 1, … ,𝑤𝑤𝑞𝑞� 

=  �
exp (𝜇𝜇𝑟𝑟)Γ�1− 𝑠𝑠𝑟𝑟(𝑤𝑤𝑟𝑟 + 1)�Γ(1 + 𝑠𝑠𝑟𝑟(𝑤𝑤𝑟𝑟 + 1))

Γ(1− 𝑠𝑠𝑟𝑟𝑤𝑤𝑟𝑟)Γ(1 + 𝑠𝑠𝑟𝑟𝑤𝑤𝑟𝑟) � 

 × 𝑅𝑅𝑛𝑛�𝑤𝑤1, … ,𝑤𝑤𝑟𝑟 , … ,𝑤𝑤𝑞𝑞� 

(3.13.1) 

 
 
3.14 Transaction cost in Universal Portfolio 

Blum and Kalai (1999) had proposed the concept of transaction costs into the 

universal portfolio, where assuming the costs is borne equally between seller 

and buyer can be shown in below: 
𝜃𝜃
2

× �|𝒃𝒃𝑛𝑛+1(𝑞𝑞) − 𝒃𝒃𝑛𝑛(𝑞𝑞)|
𝑞𝑞

(3.14.1) 

where 0 < 𝜃𝜃 < 1 is the transaction rate in percentage, and the transaction costs 

only occurred when there exists a change in allocation 𝑏𝑏𝑛𝑛.  
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3.15 Low order Universal Portfolio 

Consider first 3 orders of Universal Portfolio in this study and assume there are 

3 mutually independent stock portfolios. From equation (3.7.7), the recursive 

formula can be expressed in: 

 

𝑅𝑅𝑛𝑛(𝑤𝑤1,𝑤𝑤2,𝑤𝑤3) = �𝐸𝐸�𝑌𝑌𝑟𝑟
𝑤𝑤𝑟𝑟�

3

𝑟𝑟=1

= 𝐸𝐸�𝑌𝑌1
𝑤𝑤1� × 𝐸𝐸�𝑌𝑌2

𝑤𝑤2� × 𝐸𝐸�𝑌𝑌3
𝑤𝑤3� (3.15.1) 

 

and from equation (3.8.9), the 𝑅𝑅𝑛𝑛(𝑤𝑤1,𝑤𝑤2,𝑤𝑤3) can be calculated recursively as: 

 

𝑅𝑅𝑛𝑛+1(𝑤𝑤1,𝑤𝑤2,𝑤𝑤3) = �
𝐸𝐸�𝑌𝑌𝑟𝑟

𝑤𝑤𝑟𝑟+1�
𝐸𝐸�𝑌𝑌𝑟𝑟

𝑤𝑤𝑟𝑟�
�𝑅𝑅𝑛𝑛(𝑤𝑤1,𝑤𝑤2,𝑤𝑤3) (3.15.2) 

 

3.15.1 Order 1 Universal Portfolio 

From equation (3.8.2) and equation (3.8.3), the order 1 universal portfolio will 

have the values of  

𝜓𝜓 = 1,𝑚𝑚 = 3,   

∑ 𝑤𝑤𝑟𝑟(𝑖𝑖) = 𝜓𝜓 = 1,3
𝑗𝑗=1   

∑ 𝑤𝑤𝑗𝑗(𝑟𝑟; 𝑖𝑖) = 𝜓𝜓 + 1 =  2,𝑞𝑞
𝑗𝑗=1    

and can be expressed as: 

 

𝑏𝑏�𝑛𝑛+1,𝑟𝑟 =   𝜋𝜋𝑛𝑛+1 ���𝑥𝑥𝑛𝑛,𝑖𝑖1�𝐸𝐸[𝑌𝑌1
𝑤𝑤1(𝑟𝑟;𝑖𝑖)𝑌𝑌2

𝑤𝑤2(𝑟𝑟;𝑖𝑖)𝑌𝑌3
𝑤𝑤3(𝑟𝑟;𝑖𝑖)

3

𝑖𝑖1=1

]�  (3.15.3) 

 

𝜋𝜋𝑛𝑛+1 = ���𝑥𝑥𝑛𝑛,𝑖𝑖1�𝐸𝐸[(𝑌𝑌1 + 𝑌𝑌2 + 𝑌𝑌3)(𝑌𝑌1
𝑤𝑤1(𝑖𝑖)𝑌𝑌2

𝑤𝑤2(𝑖𝑖)𝑌𝑌3
𝑤𝑤3(𝑖𝑖))]

3

𝑖𝑖1=1

�

−1

(3.15.4) 

 

= �𝑏𝑏𝑛𝑛+1,1 + 𝑏𝑏𝑛𝑛+1,2 + 𝑏𝑏𝑛𝑛+1,3�
−1

. 
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From equation (3.8.10), the  𝑏𝑏�𝑛𝑛+1,𝑟𝑟 can be expressed in: 

   

𝑏𝑏�𝑛𝑛+1,𝑟𝑟 =
∑ �𝑥𝑥𝑛𝑛,𝑖𝑖1�𝑅𝑅𝑛𝑛+1(𝑤𝑤1,𝑤𝑤2,𝑤𝑤3)3
𝑖𝑖1=1

∑ �∑ �𝑥𝑥𝑛𝑛,𝑖𝑖1�
3
𝑖𝑖1=1 𝑅𝑅𝑛𝑛+1(𝑤𝑤1,𝑤𝑤2,𝑤𝑤3)�3

𝑗𝑗=1
 (3.15.5) 

 

for 𝑟𝑟 = 1,2,3. 

   

3.15.2 Order 2 Universal Portfolio 

From equation (3.8.2) and equation (3.8.3), the order 2 universal portfolio will 

have the values of  

𝜓𝜓 = 2,𝑚𝑚 = 3,   

∑ 𝑤𝑤𝑟𝑟(𝑖𝑖) = 𝜓𝜓 = 2,3
𝑗𝑗=1   

∑ 𝑤𝑤𝑗𝑗(𝑟𝑟; 𝑖𝑖) = 𝜓𝜓 + 1 =  3,𝑞𝑞
𝑗𝑗=1    

and can be expressed as: 

 𝑏𝑏�𝑛𝑛+1,𝑟𝑟

=   𝜋𝜋𝑛𝑛+1 �� ��𝑥𝑥𝑛𝑛,𝑖𝑖1�(𝑥𝑥𝑛𝑛−1,𝑖𝑖2)𝐸𝐸[𝑌𝑌1
𝑤𝑤1(𝑟𝑟;𝑖𝑖)𝑌𝑌2

𝑤𝑤2(𝑟𝑟;𝑖𝑖)𝑌𝑌3
𝑤𝑤3(𝑟𝑟;𝑖𝑖)

3

𝑖𝑖2=1

]
3

𝑖𝑖1=1

� 
(3.15.6) 

 

 
𝜋𝜋𝑛𝑛+1 = �� ��𝑥𝑥𝑛𝑛,𝑖𝑖1�(𝑥𝑥𝑛𝑛−1,𝑖𝑖2)𝐸𝐸[(𝑌𝑌1 + 𝑌𝑌2

3

𝑖𝑖2=1

3

𝑖𝑖1=1

+ 𝑌𝑌3)(𝑌𝑌1
𝑤𝑤1(𝑖𝑖)𝑌𝑌2

𝑤𝑤2(𝑖𝑖)𝑌𝑌3
𝑤𝑤3(𝑖𝑖))]�

−1

 

(3.15.7) 

 

= �𝑏𝑏𝑛𝑛+1,1 + 𝑏𝑏𝑛𝑛+1,2 + 𝑏𝑏𝑛𝑛+1,3�
−1

. 

 

From equation (3.8.10), the  𝑏𝑏�𝑛𝑛+1,𝑟𝑟 can be expressed in: 

 𝑏𝑏�𝑛𝑛+1,𝑟𝑟

=
∑ ∑ �𝑥𝑥𝑛𝑛,𝑖𝑖1�(𝑥𝑥𝑛𝑛−1,𝑖𝑖2)𝑅𝑅𝑛𝑛+1(𝑤𝑤1,𝑤𝑤2,𝑤𝑤3)3

𝑖𝑖2=1
3
𝑖𝑖1=1

∑ �∑ ∑ �𝑥𝑥𝑛𝑛,𝑖𝑖1�
3
𝑖𝑖2=1 (𝑥𝑥𝑛𝑛−1,𝑖𝑖2)𝑅𝑅𝑛𝑛+1(𝑤𝑤1,𝑤𝑤2,𝑤𝑤3)3

𝑖𝑖1=1 �3
𝑗𝑗=1

 
(3.15.8) 

 

for 𝑟𝑟 = 1,2,3. 
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3.15.3 Order 3 Universal Portfolio 

From equation (3.8.2) and equation (3.8.3), the order 3 universal portfolio will 

have the values of  

𝜓𝜓 = 3,𝑚𝑚 = 3,   

∑ 𝑤𝑤𝑟𝑟(𝑖𝑖) = 𝜓𝜓 = 3,3
𝑗𝑗=1   

∑ 𝑤𝑤𝑗𝑗(𝑟𝑟; 𝑖𝑖) = 𝜓𝜓 + 1 =  4𝑞𝑞
𝑗𝑗=1 ,  

and can be expressed as: 

 𝑏𝑏�𝑛𝑛+1,𝑟𝑟

=   𝜋𝜋𝑛𝑛+1 {� � ��𝑥𝑥𝑛𝑛,𝑖𝑖1��𝑥𝑥𝑛𝑛−1,𝑖𝑖2��𝑥𝑥𝑛𝑛−2,𝑖𝑖3�
3

𝑖𝑖3=1

3

𝑖𝑖2=1

3

𝑖𝑖1=1

 

        × 𝐸𝐸[𝑌𝑌1
𝑤𝑤1(𝑟𝑟;𝑖𝑖)𝑌𝑌2

𝑤𝑤2(𝑟𝑟;𝑖𝑖)𝑌𝑌3
𝑤𝑤3(𝑟𝑟;𝑖𝑖)} 

(3.15.9) 

 

 𝜋𝜋𝑛𝑛+1

= �� � �
�𝑥𝑥𝑛𝑛,𝑖𝑖1��𝑥𝑥𝑛𝑛−1,𝑖𝑖2��𝑥𝑥𝑛𝑛−2,𝑖𝑖3�

× 𝐸𝐸[(𝑌𝑌1 + 𝑌𝑌2 + 𝑌𝑌3)(𝑌𝑌1
𝑤𝑤1(𝑖𝑖)𝑌𝑌2

𝑤𝑤2(𝑖𝑖)𝑌𝑌3
𝑤𝑤3(𝑖𝑖))]

3

𝑖𝑖3=1

3

𝑖𝑖2=1

3

𝑖𝑖1=1

�

−1

 
(3.15.10) 

 

= �𝑏𝑏𝑛𝑛+1,1 + 𝑏𝑏𝑛𝑛+1,2 + 𝑏𝑏𝑛𝑛+1,3�
−1

 

 

From equation (3.8.10), the  𝑏𝑏�𝑛𝑛+1,𝑟𝑟 can be expressed in: 

 

𝑏𝑏�𝑛𝑛+1,𝑟𝑟

=
∑ ∑ ∑ �𝑥𝑥𝑛𝑛,𝑖𝑖1�(𝑥𝑥𝑛𝑛−1,𝑖𝑖2)(𝑥𝑥𝑛𝑛−2,𝑖𝑖3)𝑅𝑅𝑛𝑛+1(𝑤𝑤1,𝑤𝑤2,𝑤𝑤3)3

𝑖𝑖3=1
3
𝑖𝑖2=1

3
𝑖𝑖1=1

∑ �∑ ∑ ∑ �𝑥𝑥𝑛𝑛,𝑖𝑖1�
3
𝑖𝑖3=1 (𝑥𝑥𝑛𝑛−1,𝑖𝑖2)(𝑥𝑥𝑛𝑛−2,𝑖𝑖3)𝑅𝑅𝑛𝑛+1(𝑤𝑤1,𝑤𝑤2,𝑤𝑤3)3

𝑖𝑖2=1
3
𝑖𝑖1=1 �3

𝑗𝑗=1
 
(3.15.11) 

   

for 𝑟𝑟 = 1,2,3. 
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CHAPTER 4 
 

4 RESULTS AND DISCUSSION 
 
4.1 Data Collection and Preprocessing 

Data collection for stock price movement from Yahoo! Finance API and the 

quarterly financial metrics from Refinitiv. The data preprocessing procedure 

was conducted and discussed in the following section. 

 

4.1.1 Historical Stock Prices 

The symbol of companies listed in Malaysia was obtained through the Bursa 

website, including 1022 companies. Then, data filtering was done to filter the 

company in the Bursa but not in Yahoo! Finance API, leaving 744 companies. 

Next, the stock price data were obtained from the Yahoo! Finance API from 

January 1st, 2010, to December 31st, 2023, including 3448 trading days. Data 

cleaning on the 744 companies was done by excluding missing stock data during 

the 3448 trading days. Hence, the cleaned dataset will have no missing historical 

stock data and consist of 253 companies. 

 

4.1.2 Characteristics of Companies 

The characteristics of the 253 companies were obtained through Refinitiv by 

matching the ticker symbol in Yahoo! Finance and Refinitiv, as they used a 

different ticket symbol representing the company. There are 35 companies left 

after matching the names, the characteristics of the companies were collected 

through the quarterly financial summary section in Refinitiv. The financial 

summary consisted of the important metrics in the quarter. There were 125 

unique characteristics in each of the companies, and as they are from different 

industries, common characteristics were filtered out. The companies in the 

banking industry were removed as they consist of 12 individual metrics for their 

industry only. The characteristics with missing values in the starting date, 

January 1st, 2010, were excluded too. Hence, the final cleaned dataset comprised 

27 companies with 26 common characteristics. As the characteristics collected 

were in a quarterly format, and the date they published their financial statements 

differed, the matching of dates for characteristics was carried out. Forward 
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forward-filling technique was applied to handle the missing values. Forward 

filling was applied as the company's characteristics available at the moment 

were the last published financial statements. The characteristics of the company 

will be shown in Table 4.1. Nevertheless, the time frame of characteristics was 

consistent with the historical stock prices, with 3448 trading days, 27 companies 

and 26 characteristics.  

 
Table 4.1: Quarterly Common Characteristics and Details in Financial 

Summary collected from Refinitiv. 

Characteristics Details 

STLR Revenue from Business Activities - Total 

SOPR Operating Profit before Non-Recurring 

Income/Expense 

SEBITA Earnings before Interest, Taxes, Depreciation & 

Amortization (EBITDA) 

SICO Income before Discontinued Operations & 

Extraordinary Items 

SCSI Cash & Short-Term Investments 

ATOT Total Assets 

SLSD Debt – Total 

SQCM Common Equity - Total 

STLO Net Cash Flow from Operating Activities 

SNCC Net Change in Cash - Total 

DivYield_TTC Dividend Yield - Common Stock - Net - Issue 

Specific - %, TTM 

SDCOC EPS - Diluted - excluding Extraordinary Items 

Applicable to Common - Total 

SDWSC Shares used to calculate Diluted EPS - Total 

REBITDAM EBITDA Margin - % 

ROPMAR Operating Margin - % 

RIBTM Income before Tax Margin - % 

RINTR Income Tax Rate - % 

RNIMAR Net Margin - % 
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RetOnSTCSE_TTM Return on Average Common Equity - % (Income 

available to Common excluding Extraordinary Items), 

TTM 

RetOnTotAst_TTM Return on Average Total Assets - % (Income before 

Discontinued Operations & Extraordinary Items), 

TTM 

STCOC Common Shares - Outstanding - Total 

RTDTA Total Debt Percentage of Total Assets 

RTDTC Total Debt Percentage of Total Capital 

RTDTE Total Debt Percentage of Total Equity 

EarnRetenRate Earnings Retention Rate 

PayoutRatio Dividend Payout Ratio - % 

 

A summary of the data preprocessing steps can be shown in Figure 4.1 below: 

 
Figure 4.1: Flow and Summary of data preprocessing steps. Squared Bracket 

indicates number of companies left. 
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4.2 Stock Selection 

This section will discuss the stock selection made by BRT, Ridge, LASSO, 

ENET and LSTM models. The random seed has been set to 42 to ensure 

reproductivity. The best parameters that will minimize the MSE of prediction 

will be determined using appropriate techniques. The BRT model will be using 

the Bayesian optimization technique and LSTM model with ADAM 

optimization, where ridge, lasso and enet will be using the ridgecv, lassocv and 

enetcv respectively. The range of parameters searched were shown in the Table 

4.2. 

 

Table 4.2: Range of parameters tuned in machine learning models to perform 

stock selection. 

ML models Parameters Range 

BRT 

Learning rate (0.01, 0.3) 

n estimators (50, 300) 

Max depth (3, 10) 

Ridge Alpha Logspace(-1, 1, 50) 

Lasso Alpha Logspace(-2, 1, 50) 

Enet 
Alpha Logspace(-2, 1, 50) 

L1 ratio Logspace(0.01, 1, 50) 

LSTM ADAM Optimization 
 

Table 4.3:  Machine Learning Models Classification Metrics. 

ML models Accuracy Precision Recall F1 Score 

BRT 31.04% 38.04% 34.01% 30.04% 

Ridge 34.28% 38.36% 34.28% 34.45% 

Lasso 33.67% 38.32% 33.67% 31.86% 

Enet 34.28% 38.87% 34.28% 34.36% 

LSTM 35.42% 39.50% 35.42% 35.97% 

 

  Table 4.3 showed that the accuracy provided by all ML models 

consistently falls around 31% to 36%, with the highest accuracy, precision, 

recall, and F1 score achieved by the LSTM model. This indicates that the LSTM 
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model effectively captures both the positive and negative labels and highest 

accuracy as well. The portfolio construction is carried out with the top-9 

predicted labelled companies and comparison of benchmark return as KLSE to 

determine the suitable portfolio constructed by different machine learning 

models. 

 

Table 4.4:  Top-9 portfolio constructed by machine learning models. 

ML 

models 

Top-9 Portfolio KLSE 

Terminal 

Return 
Volatility Sharpe Ratio 

Terminal 

Return 
Volatility 

BRT 1.454% 0.0160 90.98 

0.407% 0.0082 

Ridge 1.586% 0.0106 149.83 

Lasso 0.763% 0.0101 75.96 

Enet 1.467% 0.0147 99.67 

LSTM 1.386% 0.0133 104.53 

 

  All portfolios constructed by different ML models outperform the 

KLSE benchmark return at a higher risk rate. The Lasso model had the lowest 

return and Sharpe ratio among all portfolios generated. The other models have 

similar returns gained, ranging from 1.38% to 1.56%, with the best Sharpe ratio 

achieved by the Ridge model. This indicates that the model’s portfolio is ideal 

for maximizing returns with a lower risk tolerance.  

 

 

Figure 4.2:  Rate of return of different machine learning models. 
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  The rate of return of the LSTM model always outperforms the KLSE 

after the fourth trading period, and all the models have a decrease in the rate of 

return from the 6th period to the 12th period, with the Ridge, Enet, and BRT 

models decreasing beyond zero. However, the rate of return for BRT, ridge, 

Lasso, and ENET only outperform the KLSE return after the 30th period. From 

Figure 4.2, the LSTM and Lasso models performed better than KLSE during a 

market downturn, but the LSTM model underperformed the ridge model after 

the 52nd period. Nevertheless, the Ridge model will be selected to build a 

portfolio as it possesses the highest sharpe ratio. The company selected by the 

Ridge model can be shown in Table 4.5. 

 

Table 4.5: Selected companies from the Ridge Model. 

Portfolio Companies 

A PDZH.KL, PBAH.KL, MISC.KL 

B KENH.KL, TAFI.KL, GENT.KL 

C HAPS.KL, KPJH.KL, TROP.KL 

 

Table 4.6: Ranking details from the Ridge Model. 

Company Ranking Score Company Ranking Score 

PDZH 0.4000 MESB -0.0182 

PBAH 0.3091 STAR -0.0182 

MISC 0.2545 UMSH -0.0182 

KENH 0.1818 MBMR -0.0727 

TAFI 0.1818 PETR -0.1091 

GENT 0.1636 CWGH -0.1455 

HAPS 0.1636 ENRA -0.1455 

KPJH 0.1636 YLHI -0.1455 

TROP 0.1455 KRIB -0.1636 

PPHB 0.1091 AYER -0.2000 

GAMU 0.0909 CHHB -0.2727 

GIIB 0.0364 ACME -0.3818 

DKLS 0.0182 DBMS -0.3818 

KYMH -0.0182   
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  From Table 4.6, the ranking of companies ranges from 0.4 to -0.4, 

indicating no strongly high-performing or underperforming companies, with the 

top-ranked companies shown in Table 4.5 that will be used for universal 

portfolio computation.  
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4.3 Universal Portfolio 

Table 4.7 shows the top three portfolios considered in the UP, along with the 

companies' symbols, industries, and full names for portfolios A, B and C. 

 

Table 4.7: Three Portfolios generated by the Ridge Regression model for UP. 

Portfolio A 

Symbol Full Name Industry 

PDZH.KL PDZ Holdings Berhad Freight & Logistics 

Services 

PBAH.KL PBA Holdings Berhad Water & Related 

Utilities 

MISC.KL MISC Berhad Transport 

Infrastructure 

Three companies. 

Portfolio B 

Symbol Full Name Industry 

KENH.KL KEN Holdings Berhad Real Estate Operations 

TAFI.KL 
TAFI Industries Berhad Professional & 

Commercial Services 

GENT.KL 
Genting Berhad Hotels & 

Entertainment Services 

Three companies. 

Portfolio C 

Symbol Full Name Industry 

HAPS.KL 
Hap Seng Consolidated 

Berhad 

Consumer Goods 

Conglomerates 

KPJH.KL 
KPJ Healthcare Berhad Healthcare Providers 

& Services 

TROP.KL Tropicana Corporation Berhad Real Estate Operations 

Three companies. 
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 The best parameters for each distribution will be determined using the 

Bayesian optimization technique targeted to maximize the wealth generated. The 

range of parameters searched can be shown in Table 4.8. 

 

Table 4.8: Range of parameters tuned to find the best terminal wealth 

generated in Universal Portfolio Calculation. 

Distribution Parameters Type Range 

Gamma 𝛼𝛼𝑟𝑟 ,𝛽𝛽𝑟𝑟 Real (0.1, 120) 

Lognormal 𝜇𝜇𝑟𝑟 ,𝜎𝜎𝑟𝑟 Real (0, 3) 

Weibull 
𝛽𝛽𝑟𝑟 Real (0.1, 70) 

𝑁𝑁𝑟𝑟 Integer (1, 11) 

GPD 
𝛼𝛼𝑟𝑟 Integer (3, 150) a 

𝜆𝜆𝑟𝑟 ,𝑘𝑘𝑟𝑟 Integer (1, 150) a 

Logistic 
𝜇𝜇𝑟𝑟 Real (0, 5) 

𝑠𝑠𝑟𝑟 Real (0.001, 0.24) 
a. The maximum range will be 120 for order 3 as the value is close to infinity. 
   

  The range of gamma distribution starts from 0.1 to 120, as both the 𝛼𝛼 

and 𝛽𝛽  can never be zero. This property is also consistent with the Weibull 

distribution, where the Nr must be an integer as it determines the number of 

sequences. The lognormal takes values from 0 to 3 as the exponent of a large 

value will cause the value to close to infinity. The range of the GPD searched is 

between 3 and 150, as the 𝛼𝛼, 𝜆𝜆 and k can never be zero. Additionally, the 𝛼𝛼 value 

for GPD, order 1 is 3, order 2 is 4, and order 3 is 5 as the denominator will be 

invalid. The 𝑠𝑠𝑟𝑟 of logistic distribution maxed at 0.24 to fulfill the condition of 

 |𝑤𝑤𝑟𝑟| < 1
𝑠𝑠𝑟𝑟

 , given 𝑤𝑤𝑟𝑟 is 3.  

  The universal portfolio is calculated at a transaction cost of 1%. Table 

4.9 shows the return for different portfolios, distributions, and orders, with the 

Best Constant Rebalance Portfolio (BCRP) as a benchmark. The BCRP was 

determined using the olpsR package in RStudio, with 10,000 random samplings. 
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Table 4.9: Terminal Wealth for Universal Portfolio. 

Portfolio Order 
Distributions 

Gamma Lognormal Weibull Logistic GPD 

 

A 

 

1 1.84018 1.29297 1.29113 2.00895 1.99981 

2 2.00366 1.29113 1.29569 2.01060 1.99605 

3 2.00471 1.29113 1.32018 2.01003 2.00157 

BCRP 2.15021 

 

B 

 

1 4.65403 4.65340 4.65400 4.64665 4.65684 

2 4.65738 4.65340 4.65400 4.64922 4.65613 

3 4.65719 4.65340 4.65400 4.65327 4.65680 

BCRP 4.91469 

 

C 

 

1 1.53122 1.49166 1.41354 1.52781 1.52459 

2 1.53107 1.52753 1.40024 1.52781 1.52893 

3 1.53107 1.40135 1.40135 1.52687 1.53004 

BCRP 1.54327 

 

All the portfolio terminal wealth underperformed the benchmark 

BCRP returns, with the highest return generated by both gamma distributions 

and logistic distributions. However, portfolios B and C provide relatively close 

returns to BCRP, but portfolio A has the highest difference of 0.86 by the 

lognormal distribution. In three of the portfolios, the Weibull and Lognormal 

distributions were the worst performers among the distribution. Additionally, 

the gamma distribution was the best performer in all portfolios except portfolio 

A, with GPD as the best performer. The logistic distribution provided the middle 

performance among all portfolios. 

All distributions provide similar results across portfolios and orders 

except for gamma distribution, order 1. This similarity suggests that these 

distributions effectively capture the universal portfolio algorithm, maximizing 

the returns. Order 1 of the gamma distribution shows a lower return in all 

portfolios except Portfolio C, suggesting orders 2 and 3 to maximize return in 

the universal portfolios A and B. Gamma shows slightly higher returns in 

portfolios A and B, indicating it is doing better in accommodating the portfolio’s 

weight based on the past price vector of two or three days.  
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In portfolio A, the order increment will lead to improvement in 

terminal wealth, except for lognormal and logistic distributions. In portfolios B 

and C, the order increment leads to an uncertain movement. The gamma 

distribution was the best performer, followed by GPD and logistic distribution. 

The Weibull and Lognormal distributions were the worst performers in the 

selected portfolios. As the finite order universal portfolio will decrease 

computational resource requirements and running time, the time taken to 

generate results in Table 4.9 can be shown in Table 4.10. 

 

Table 4.10: Time taken to generate universal portfolio results. 

Order 
Distributions Single 

Iteration Gamma Lognormal Weibull GPD Logistic 

1 7m 8m 8m 8m 7m 4s 

2 32m 36m 27m 27m 29m 15s 

3 86m 100m 105m 74m 94m 65s 
 

  The m is regarded as minutes, and s is regarded as seconds. All of the 

distributions were run through 75 iterations on Bayesian optimizations with a 

total of 3 portfolios, and the time taken to compute the weight allocation given 

certain parameters is shown in the single iterations column. From the table, order 

3 will take around 12 times the time for order 1 except for the GPD distribution. 

The computer specification is attached for reference to the run time in Table 4.11. 

 

Table 4.11: Specification of Laptop used in this Project. 

Description Specification 

Model ASUS Predator Helios 300 

Processor Intel Core i5-10500H 

Operating System Windows 11 

Graphic NVIDIA GeForce GTX 3060 6GB DDR6 

Memory 16GB DDR4 RAM 

Storage 1TB SATA HDD + 512 GB NVMe SSD 
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4.4 Parameter Sensitivity Testing among Portfolios 

This section will discuss the effect of parameter changes generated by the best 

and worst performer distributions in order 1. The price vector summary and 

performance of stocks in three portfolios can be shown from Table 4.12 to Table 

4.14, and Figure 4.3 to Figure 4.5. The terminal wealth of portfolios in each 

company was computed to consist only of their own stock movement, 

portraying the sole performance achieved by the company. The price vector 

counts, and graphical representation of each stock were displayed to better 

understand the stocks selected in each portfolio. 

 

 Table 4.12:  Price vectors summary for portfolio A. 

Portfolio A 
Price Vector Terminal 

Wealth 1 <1 >1 

PDZH.KL 999 398 324 0.03353 

PBAH.KL 702 531 488 1.11304 

MISC.KL 194 764 763 1.26261 

 

Table 4.13:  Price vectors summary for portfolio B. 

Portfolio B 
Price Vector Terminal 

Wealth 1 <1 >1 

KENH.KL 1034 358 329 0.74118 

TAFI.KL 866 459 396 4.53248 

GENT.KL 124 848 749 0.67631 

 

Table 4.14:  Price vectors summary for portfolio C. 

Portfolio C 
Price Vector Terminal 

Wealth 1 <1 >1 

HAPS.KL 268 735 718 0.51580 

KPJH.KL 454 657 610 1.38753 

TROP.KL 485 578 658 1.39426 
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In both portfolios A and C, the second and third companies had relatively close 

terminal wealth, except for portfolio B where the second company (TAFI.KL) 

performed the best with a maximum difference of 3.86.  

 

 
Figure 4.3: Portfolio A, Cumulative Price Vector Movement graph. 

 

 
Figure 4.4: Portfolio B, Cumulative Price Vector Movement graph. 
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Figure 4.5: Portfolio C, Cumulative Price Vector Movement graph. 

 
4.4.1 Portfolio A, Weibull Distribution 

The Weibull distribution of order 1 had the lowest terminal wealth generated. 

The parameter sensitivity graphs of the Weibull distribution can be shown in 

Figure 4.6. 

 

 

Figure 4.6: Parameter sensitivity graphs for portfolio A, Weibull distribution 
and Order 1. 

   

  The top left graph will be 𝛽𝛽1 followed by N1 to the right and,  𝛽𝛽2 and 

so on. The 𝛽𝛽1 and 𝛽𝛽2 shows the same increasing trend between parameter value 

and the terminal wealth generated, suggesting a higher 𝛽𝛽 value leads to higher 
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terminal wealth. The 𝑁𝑁1  and 𝑁𝑁2  also shows a similar pattern whereby the 

terminal wealth drops drastically beyond value 9. The highest wealth can be 

achieved by higher 𝑁𝑁3 value (beyond value 7), and the 𝛽𝛽3 was highest at value 

5, with terminal wealth at 2. Hence, by combining the parameters of different 

stocks, the allocation details can be shown in Table 4.15. 

 

Table 4.15: Range of allocation for Portfolio A, Weibull distribution and Order 

1. 

Portfolio A 
Parameters Allocation 

BCRP 
[𝜷𝜷𝒓𝒓,𝑵𝑵𝒓𝒓] Maximum Minimum Range 

PDZH.KL [26.47, 6] 0.000000 0.000000 0.000000 0.241 

PBAH.KL [61.19, 5] 0.000000 0.000000 0.000000 0.431 

MISC.KL [48.12, 10] 1.000000 1.000000 0.000000 0.328 

  

  The universal portfolio generated for portfolio A, Weibull distribution 

Order 1 only consists of the MISC.KL company, where the PDZH.KL and 

PBAH.KL has allocations close to zero, although both companies have similar 

terminal wealth. Nevertheless, BCRP asserts a significant allocation at the 

lowest terminal wealth of PDZH.KL, which exploits profitable opportunities 

from it during certain periods, as shown in Figure 4.3. From Table 4.12, the 

Weibull distribution had allocated all weight on MISC.KL was more vigorous 

than the other distributions with a price vector movement of more than 1 or less 

than 1. Figure 4.7 illustrates that the price vector movement for all companies 

in Portfolio A was quite similar, and the highest volatility on price vector 

changes is the PDZH.KL. Weibull distribution emphasized more on the 

MISC.KL as it could not capture the high volatility of PDZH.KL. However, the 

BCRP allocation suggests allocation in all companies with the highest allocation 

on the PBAH.KL company. Hence, the Weibull distribution did not capture the 

return of all companies in the portfolio effectively. 
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Figure 4.7:  Price vector movement for Portfolio A. 
  

4.4.2 Portfolio A, Logistic Distribution 

Logistic distribution generated the highest terminal wealth in portfolio A, and 

Figure 4.8 shows the parameter sensitivity graphs of its parameters when other 

parameters are held at their best values. 

 

 

Figure 4.8: Parameter sensitivity graphs for portfolio A, Logistic distribution 
and Order 1. 

   

  The top left graph will be 𝜇𝜇1 followed by 𝑠𝑠1 to the right, and 𝜇𝜇2 and so 

on. Both the 𝜇𝜇𝑟𝑟 and 𝑠𝑠𝑟𝑟 of all stocks 1, 2, and 3 showed a similar curve, where 
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the best parameters with the highest terminal wealth achieved at the lowest 

possible value of the parameters, except for 𝜇𝜇3 at 1.99. The allocation details 

given the best parameters can be shown in Table 4.16. 

 

Table 4.16: Range of allocation for Portfolio A, Logistic distribution and Order 

1. 

Portfolio A 
Parameters Allocation 

BCRP 
[𝝁𝝁𝒓𝒓, 𝒔𝒔𝒓𝒓] Maximum Minimum Range 

PDZH.KL [1.14, 0.001] 0.220305 0.220305 0.000000 0.241 

PBAH.KL [1.32, 0.001] 0.263258 0.263258 0.000000 0.431 

MISC.KL [1.99, 0.001] 0.516438 0.516438 0.000000 0.328 

  

  From Table 4.16, the allocation of the logistic distribution universal 

portfolio was close to zero at a given weight determined by the Bayesian 

Optimization technique. Logistic distribution asserts more weight on MISC.KL 

which aligned with Order 1, Weibull distribution Portfolio A, but differs from 

it by allowing weights on PDZH.KL and PBAH.KL.  
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4.4.3 Portfolio B, Generalized Pareto Distribution 

The GPD distribution had the highest return in order 1 for portfolio B. The 

change in parameters with respect to terminal wealth was plotted by holding the 

other parameters constant at their best rate, which can be shown in Figure 4.9. 

 

 

Figure 4.9: Parameter sensitivity graphs for portfolio B, GPD and Order 1. 
  

  The top left corner graph will be 𝛼𝛼1, followed by 𝜆𝜆1to the right of the 

graph, and 𝑘𝑘1to the right and so on. From the graphs, the 𝛼𝛼1, 𝜆𝜆2, 𝑘𝑘2 and 𝛼𝛼3 

exhibit the same pattern as the value of these parameters increases, the return 

generated will increase as well but will remain constant when it reaches the 

highest wealth achievable. Besides, the parameters 𝜆𝜆2  and 𝜆𝜆3  shows a 

decreasing trend as the parameter value increases. Hence, the parameters that 

will maximize the portfolio's returns were determined, and they are shown in 

Table 4.17. 

 

Table 4.17: Range of allocation for Portfolio B, GPD and Order 1. 

Portfolio B 
Parameters Allocation 

BCRP 
[𝜶𝜶𝒓𝒓,𝝀𝝀𝒓𝒓,𝒌𝒌𝒓𝒓] Maximum Minimum Range 

KENH.KL [150,25,20] 0.025794 0.025764 0.000030 0.009 

TAFI.KL [122,103,147] 0.974105 0.974075 0.000030 0.990 

GENT.KL [118,2,1] 0.000131 0.000131 0.000000 0.001 
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The generalized Pareto distribution asserted more weight than BCRP on the 

KENH.KL that have the highest price vector count equal to 1 has similar weight 

with BCRP where GENT.KL at minimal allocation. Additionally, the range in 

change of allocation is relatively small as well.  

   

4.4.4 Portfolio B, Lognormal Distribution 

Lognormal distribution generates the lowest terminal wealth in portfolio B. The 

graphs of parameter sensitivity can be shown in Figure 4.10. 

 

 

Figure 4.10:Parameter sensitivity graphs for portfolio B, Lognormal distribution 

and Order 1. 

 
The leftmost graph shows μ1 followed by σ1 to the right, and μ2 and so 

on. None of them possessed similar patterns among each other and fluctuations 

on μ1, μ3, σ3 with respect to terminal wealth can be shown. The best parameters 

were determined and can be shown in Table 4.18. 
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Table 4.18: Range of allocation for Portfolio B, Lognormal distribution and 

Order 1. 

Portfolio B 
Parameters Allocation 

BCRP 
[𝝁𝝁𝒓𝒓,𝝈𝝈𝒓𝒓] Maximum Minimum Range 

KENH.KL [4.86, 0] 0.000000 0.000000 0.000000 0.009 

TAFI.KL [4.90, 0] 1.000000 1.000000 0.000000 0.990 

GENT.KL [0, 0.36] 0.000000 0.000000 0.000000 0.001 

 

  The allocation preference was the same as the Portfolio A, Order 1 

Weibull distribution, where the universal portfolio consists of only one stock. 

The lognormal distribution asserted all of its weight on TAFI.KL has the highest 

terminal wealth generated. 

 

4.4.5 Portfolio C, Gamma Distribution 

The parameter sensitivity graphs of the Gamma distribution in portfolio C can 

be shown in Figure 4.11. 

 

 

Figure 4.11:Parameter sensitivity graphs for portfolio C, Gamma Distribution 
and Order 1. 

 

   The graphs started from 𝛼𝛼1, followed by 𝛽𝛽1 and 𝑎𝑎2 and so on to the 

right. Similar linear decreasing pattern can be found in 𝛼𝛼1 and 𝛽𝛽1, where the as 
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the parameter value increase, the terminal wealth decreases. Additionally, 

𝛼𝛼2,𝛽𝛽2,𝛼𝛼3, and 𝛽𝛽3 have similar pattern as well. As the parameter values increase, 

the terminal wealth increases to a certain level and is held constant afterward. 

The best parameters that provide the highest terminal wealth can be shown in in 

Table 4.19.   

 

Table 4.19: Range of allocation for Portfolio C, Gamma distribution and Order 

1. 

Portfolio 

C 

Parameters Allocation 
BCRP 

[𝜶𝜶𝒓𝒓,𝜷𝜷𝒓𝒓] Maximum Minimum Range 

HAPS.KL [0.1, 0.1] 0.000001 0.000001 0.000000 0.000 

KPJH.KL [120, 73.86] 0.490264 0.490011 0.000253 0.487 

TROP.KL [88.15, 104.41] 0.509988 0.509736 0.000253 0.513 

 

  The weight allocation shows that the HAPS.KL has the lowest weight, 

with approximately zero allocation and no change in weight. Hence, this 

universal portfolio will focus on the KPJH.KL and TROP.KL stocks only. 

Gamma distribution weights are aligned with the BCRP’s weights but with 

slight changes in allocation for KPJH.KL and TROP.KL. 
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4.4.6 Portfolio C, Lognormal Distribution:  

The lognormal distribution had the second lowest terminal wealth gain in 

portfolio C. Figure 4.12 shows the graph of parameter sensitivity testing. 

 

 

Figure 4.12:Parameter sensitivity graphs for portfolio C, lognormal Distribution 
and Order 1. 

 

 From Figure 4.12, the μ2 and μ3, σ2 and σ3 had a similar pattern in 

parameter value and terminal wealth, respectively. This distribution's highest 

terminal wealth will have a minimum value at μ1, σ1, σ2, and σ3 and a 

maximum value at μ2 and μ3. The best parameters and allocation details are 

shown in Table 4.20. 

 
Table 4.20: Range of allocation for Portfolio C, Lognormal distribution and 

Order 1. 

Portfolio C 
Parameters Allocation 

BCRP 
[𝝁𝝁𝒓𝒓,𝝈𝝈𝒓𝒓] Maximum Minimum Range 

HAPS.KL [1.79, 0.20] 0.015018 0.014794 0.000224 0.000 

KPJH.KL [5.00, 0.00] 0.363417 0.358015 0.005402 0.487 

TROP.KL [5.00, 0.70] 0.627191 0.621565 0.005626 0.513 

 

The lognormal distribution does not assert weight to be exactly zero 

for HAPS.KL as shown in Portfolio B, but it still possesses dominance over the 
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KPJH.KL and TROP.KL stocks in the universal portfolio. Lognormal 

distribution had a higher allocation range than the gamma distribution as well. 
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4.5 Parameter Sensitivity Testing among Portfolio C 

This section will discuss the parameter sensitivity testing in portfolio C for 

gamma, lognormal, logistic, and weibull distributions in order 1. 

 

4.5.1 Gamma Distributions 

Gamma distribution in portfolio C, order 1, has the highest terminal wealth 

obtained. The change of parameters of the first stock, 𝛼𝛼1 and 𝛽𝛽1 was studied to 

determine terminal wealth, and its effect on other stock allocations can be shown 

in Figure 4.13. The best terminal wealth was acquired when both the 𝛼𝛼1 and 𝛽𝛽1 

were around 0 and the terminal wealth had an inverse distribution with the 

maximum allocation of the first stock, indicating that increasing allocation will 

lead to decrement in terminal wealth. The terminal wealth, the maximum 

allocation of the second and third stock shows the same distribution, inferring 

that both contribute to the terminal wealth. Additionally, adjusting the parameter 

of 𝛼𝛼1 and 𝛽𝛽1 from 0 to 120 enables the stock to maximize its allocation until 0.5. 

 

 
Figure 4.13: Portfolio C, Gamma distribution Parameter sensitivity testing w.r.t 

allocation and terminal wealth by holding 𝛼𝛼2,𝛽𝛽2,𝛼𝛼3,𝛽𝛽3 at constant. 
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 Next, the parameter changes of 𝛼𝛼2  and 𝛽𝛽2  were studied and can be 

shown in Figure 4.14. The parameter sensitivity graph shows that maximum 

terminal wealth was obtained when the 𝛼𝛼2 and 𝛽𝛽2 fall around the yellow shaded 

area which is (x, y) = (80,120) or (120,80), maximizing both parameters will 

lead to a decrease in terminal wealth. Besides, the maximum allocation of the 

first and second stock had the same distribution but with a different magnitude, 

the first stock allocation z-axis is applicable for multiplier 10-6 as the best 

terminal wealth suggests the first stock to have minimum allocation. 

 

 
Figure 4.14: Portfolio C, Gamma distribution Parameter sensitivity testing w.r.t 

allocation and terminal wealth by holding 𝛼𝛼1,𝛽𝛽1,𝛼𝛼3,𝛽𝛽3 at constant. 

 
 Figure 4.15 shows the effects of the maximum allocation and terminal 

wealth of change in the parameter 𝛼𝛼3  and 𝛽𝛽3 . A similar distribution and 

connection can be found in Figure 4.14, where the parameters that will provide 

the maximum terminal wealth were around (x, y) = (70,110) or (110,70). Besides, 

over-emphasizing the third stock will also lead to a decrement in terminal wealth, 

and the allocation of the first stock will be applied to multipliers 10-6 as well. 

Both Figures 4.14 and 4.15 suggested that the change in parameters in the 
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second and third stock will not greatly affect the allocation of the first stock as 

its best parameter value was too small. 

 

 
Figure 4.15: Portfolio C, Gamma distribution Parameter sensitivity testing w.r.t 

allocation and terminal wealth by holding 𝛼𝛼1,𝛽𝛽1,𝛼𝛼2,𝛽𝛽2 at constant. 

 
The universal portfolio generated by recursive calculation of moment 

generating function of continuous random variable could change the allocation 

of stock with parameters. Hence, the parameter changes of gamma distribution 

regarding the range of allocation can be shown in Figure 4.16. The range of 

allocations for the second and third companies had similar distribution in the 

three stock parameter changes. In the first graph where 𝛼𝛼2,𝛽𝛽2,𝛼𝛼3,𝛽𝛽3  were 

constant, the increase in the range of allocation in the first stock will have an 

inverse relationship with both the range of allocation for the second and third 

stock. 

The maximum range of allocation of the second and third companies 

in last two graphs were when the 𝛼𝛼2 and 𝛼𝛼3 at around 20 to 40 and 𝛽𝛽2and 𝛽𝛽3at 

110 to 120. However, both graphs suggest that the highest allocation range will 
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not bring the highest terminal wealth, as transaction costs were also one of the 

considerations when determining the best parameters. Additionally, the range 

of allocation of the first stock in the last two graphs has an uncertain distribution 

but has the same peak distribution at lower alpha and higher beta, the same as 

the other stocks. The same pattern for second and third stock, suggesting they 

will possess a similar range of allocation at any parameter, but not the first as it 

was applicable for multipliers 10-8 and 10-10 respectively. In short, the 

combination of both 𝛼𝛼𝑟𝑟  and 𝛽𝛽𝑟𝑟  in all stocks was determinant in portfolio 

weightage allocation, higher values on both parameters will have a higher 

allocation amount. The lower the value of 𝛼𝛼𝑟𝑟 and the higher the value of 𝛽𝛽𝑟𝑟 will 

provide a higher range of allocation. 

 

 
Figure 4.16: Portfolio C, Gamma distribution parameter testing w.r.t range of 

allocation and terminal wealth. 
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4.5.2 Lognormal Distribution 

The graphs of parameter changes regarding the maximum allocation and the 

terminal wealth can be shown in Figures 4.17 to 4.19, and lognormal distribution 

was the second worst performer in portfolio C, order 1. 

 

 
Figure 4.17: Portfolio C, Lognormal distribution parameter sensitivity testing 

w.r.t allocation and terminal wealth by holding 𝜇𝜇2,𝜎𝜎2, 𝜇𝜇3,𝜎𝜎3  at 

constant. 

 

Similar to the gamma distribution where the terminal wealth, second 

stock and third stock in the portfolio exist a similar pattern when the 𝜇𝜇1 and 𝜎𝜎1 

changed, and the highest terminal wealth was obtained at both 𝜇𝜇1 and 𝜎𝜎1 close 

to zero. However, ranging the parameters from 0 to 5 enables the first stock to 

have full allocation at 1.0 in the portfolio, whereby differ from the gamma 

distribution that only allows allocation up to 0.5. The 𝜎𝜎1 value contribute more 

to the increment in allocation than the 𝜇𝜇1 value for lognormal distribution as the 

allocation is near 1.0 after the 𝜎𝜎1 reach 3 and beyond. 
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Figure 4.18: Portfolio C, Lognormal distribution parameter sensitivity testing 

w.r.t allocation and terminal wealth by holding 𝜇𝜇1,𝜎𝜎1, 𝜇𝜇3,𝜎𝜎3  at 

constant. 

 

 The terminal wealth in Figure 4.18 showed that there was a sudden 

increment when the 𝜎𝜎2 value is 2, and the terminal wealth stayed constant at 

1.38 after value 3. The increment in 𝜇𝜇2 value will increase the terminal wealth 

given that the 𝜎𝜎2 less than 2.5. Additionally, the maximum allocation for first 

and second stock exhibit similar pattern with the previous section, but first stock 

at maximum allocation less than 0.0175. The decrease in allocation of second 

stock will be proportionally increase the allocation of third stock. 
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Figure 4.19: Portfolio C, Lognormal distribution parameter sensitivity testing 

w.r.t allocation and terminal wealth by holding 𝜇𝜇1,𝜎𝜎1, 𝜇𝜇2,𝜎𝜎2  at 

constant. 

 

 When the third stock’s parameter changed, the decrease in allocation 

was greatly compensated by the increase in allocation of first stock. Besides, the 

𝜎𝜎3 value at any point will produce the highest allocation especially beyond the 

value 2.5. The controlling variable on the allocation was highly dependent in 

the 𝜇𝜇3 value whereby varying it could change the allocation of third stock from 

0.2 to 1.0. From Figure 4.19, the area of the highest terminal wealth was widely 

spread at 1.3, expect for 𝜎𝜎3 value less than 2 that will decrease the terminal 

wealth drastically. The range of allocation of lognormal distribution by varying 

the 𝜇𝜇𝑟𝑟  and 𝜎𝜎𝑟𝑟  parameters can be shown in Figure 4.20. All stocks in the 

portfolio shows similar distribution in range of allocation varying parameters 

where the highest range was obtainable at lowest 𝜇𝜇𝑟𝑟 value, but at a different 𝜎𝜎𝑟𝑟 

value. Decreasing the third stock’s 𝜇𝜇𝑟𝑟 will have a smooth decrement in range of 

allocation, but in first and second stock will have a wave of decrement, where 

the allocation range was still decreasing, but will be increased at certain 𝜇𝜇𝑟𝑟 
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value. In short, the 𝜇𝜇𝑟𝑟 have strong control over the range of allocation and 𝜎𝜎𝑟𝑟 

have strong control over the allocation amount. 

 
Figure 4.20: Portfolio C, Lognormal distribution parameter testing w.r.t range 

of allocation and terminal wealth. 

 

4.5.3 Logistic Distribution 

The second-best performer in portfolio C, order 1 was the logistic distribution, 

and the change in terminal wealth and maximum allocation of each stock can be 

shown in Figure 4.21 To 4.23.  

 

 
Figure 4.21: Portfolio C, Logistic distribution parameter sensitivity testing w.r.t 

allocation and terminal wealth by holding 𝜇𝜇2, 𝑠𝑠2, 𝜇𝜇3, 𝑠𝑠3 at constant. 
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 Varying the first stock’s parameters in the portfolio showed that the 

best terminal wealth was obtained when the 𝜇𝜇1  value was close to zero and 

varying the 𝑠𝑠1  value will not change the terminal wealth obtained. The 

maximum allocation distribution of first stock will increase as the 𝜇𝜇1  value 

increases, regardless of the 𝑠𝑠1  value. From Figure 4.21, the increase in 

allocation of first stock will evenly decrease the allocation of second and third 

stock.  

 

 
Figure 4.22: Portfolio C, Logistic distribution parameter sensitivity testing w.r.t 

allocation and terminal wealth by holding 𝜇𝜇1, 𝑠𝑠1, 𝜇𝜇3, 𝑠𝑠3 at constant. 

 

In the second sets of parameters, the increase in allocation of second 

stock was greatly compensated by the decrease in allocation of third stock as 

the best 𝜇𝜇1 value was close to zero. Besides, the terminal wealth had positive 

relationship with the 𝜇𝜇2  value but varying the 𝑠𝑠2  value will not affect the 

terminal wealth.  
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Figure 4.23: Portfolio C, Logistic distribution parameter sensitivity testing w.r.t 

allocation and terminal wealth by holding 𝜇𝜇1, 𝑠𝑠1, 𝜇𝜇2, 𝑠𝑠2 at constant. 

 

 In the third set of parameters, it exhibits similar patterns with the Figure 

4.22, but with changes in allocation of third stock. The highest terminal wealth 

was determined when the 𝜇𝜇3 value was the highest, and regardless of the 𝑠𝑠3 

value too. Hence, from Figure 4.21 to 4.23, the higher the 𝜇𝜇𝑟𝑟 value the higher 

the allocation amount of the stock but it still limited to a certain amount as the 

𝜇𝜇𝑟𝑟 value of other stock will affect the maximum obtainable allocation. Besides, 

the 𝑠𝑠𝑟𝑟 value contribute no effect to the terminal wealth as well as the maximum 

allocation amount. 
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Figure 4.24: Portfolio C, Logistic distribution parameter testing w.r.t range of 

allocation and terminal wealth. 

 

 Figure 4.24 shows the range of allocation with different parameter 

values, and the change in the range of allocation was dependent on the 𝑠𝑠𝑟𝑟 value. 

The higher the 𝑠𝑠𝑟𝑟 value, the higher the range of allocation, but with criteria that 

the 𝜇𝜇𝑟𝑟 value must be greater than 4.9 for the first set of parameters, and 3.5 for 

the second and third set of parameters. In short, the 𝜇𝜇𝑟𝑟  value of logistic 

distribution will control the amount of allocation of the company and was also 

dependent on the other’s stock 𝜇𝜇𝑟𝑟  value. Additionally, 𝑠𝑠𝑟𝑟  value will be 

controlled over the range of allocation, but only applicable when the 𝜇𝜇𝑟𝑟 value is 

higher than a certain value. 
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4.5.4 Weibull Distribution 

Weibull distribution has the lowest terminal wealth obtained in portfolio C, 

order1. The parameters of distribution included were 𝛽𝛽𝑟𝑟 ,𝑁𝑁𝑟𝑟 and were searched 

in the range from 0.1 to 70.0 for 𝛽𝛽𝑟𝑟, and 1 to 11 for 𝑁𝑁𝑟𝑟. 

 

 
Figure 4.25: Portfolio C, Weibull distribution parameter sensitivity testing w.r.t 

allocation and terminal wealth by holding 𝛽𝛽2,𝑁𝑁2,𝛽𝛽3,𝑁𝑁3 at constant. 

 

 Figure 4.25 showed that there was a wide range of highest terminal 

wealth of could be obtained by Weibull distribution except for the case where 

𝑁𝑁1 value was greater than 9. In overall, changing the parameters did not bring 

effect to the maximum allocation amount before the 𝑁𝑁1 value of 9. After 𝑁𝑁1 

value reach 9, the highest allocation obtainable by first stock was only 0.020 

and it will drop the terminal wealth to 1.3950. Besides, the increase in allocation 

of first stock will evenly decrease both allocation in second and third stock.  
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Figure 4.26: Portfolio C, Weibull distribution parameter sensitivity testing w.r.t 

allocation and terminal wealth by holding 𝛽𝛽1,𝑁𝑁1,𝛽𝛽3,𝑁𝑁3 at constant. 

 

 Similar pattern of allocation could be obtained from Figure 4.26 that 

studied the parameters value of the second stock in the portfolio. The highest 

obtainable allocation was at 0.04. The change in allocation also only works after 

the 𝑁𝑁1 value of 9. The wide area of non-changing allocation in all stocks of the 

portfolio suggests that the combination of parameters of all stocks was 

important. The increase in allocation in second stock will greatly affect the 

allocation on third stock, but not the first stock as it was applicable to multiplier 

of 10-6.  
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Figure 4.27: Portfolio C, Weibull distribution parameter sensitivity testing w.r.t 

allocation and terminal wealth by holding 𝛽𝛽1,𝑁𝑁1,𝛽𝛽2,𝑁𝑁2 at constant. 

 

 Figure 4.27 shows a similar pattern of distribution in allocation and 

terminal wealth with Figure 4.26, where the highest changeable allocation only 

at 0.04, with 𝑁𝑁3 value greater than 9. Besides, the increase in 𝛽𝛽𝑟𝑟 value after 𝑁𝑁𝑟𝑟 

value greater than 9 will lead to increment in stock allocation exponentially.  

Three of the sets of parameters suggest that the combination of best parameters, 

especially the 𝑁𝑁𝑟𝑟 value will greatly affect the allocation weightage of stock. 

 

 
Figure 4.28: Portfolio C, Weibull distribution parameter testing w.r.t range of 

allocation and terminal wealth. 
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 Figure 4.28 shows similar results from Figure 4.25 to 4.26, where the 

increment in stock allocation will also leads to increment in range allocation, 

but still only available after 𝑁𝑁𝑟𝑟 value greater than 9. In short, the combination 

of sets of parameters for all stocks in the portfolio needs careful consideration 

as if a very high 𝑁𝑁𝑟𝑟 value exists, the higher the other stock’s 𝑁𝑁𝑟𝑟 value is needed 

to vary the allocation amount. 

 

4.5.5 Short Summary 

This section will provide the changes in parameter value concerning the terminal 

wealth and allocation with a summary. In portfolio C, the first stock had the best 

allocation at 0 weight. 

 

Table 4.21: Summary on allocation preferences with parameter value in 

Portfolio C. 

Distribution 
Parameter VS Max. 

Allocation 

Parameter VS 

Range of 

Allocation 

Maximum 

Achievable 

Allocation 

Gamma 

Direct Positive for 

both 𝛼𝛼𝑟𝑟 and 𝛽𝛽𝑟𝑟, but 

𝛽𝛽𝑟𝑟 with higher 

determinant role. 

The lower the 

value of 𝛼𝛼𝑟𝑟 and the 

higher the value of 

𝛽𝛽𝑟𝑟 will provide a 

higher range of 

allocation. 

Depends on 

combination 

of parameters. 

Lognormal 

𝜎𝜎𝑟𝑟 have strong 

positive control over 

the allocation amount. 

𝜇𝜇𝑟𝑟 have strong 

positive control 

over the range of 

allocation. 

Full control 

Logistic 

𝜇𝜇𝑟𝑟 weak positive 

control over the 

allocation amount. 

𝑠𝑠𝑟𝑟 value weak 

positive control 

over range of 

allocation 

Depends on 

combination 

of parameters. 
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Weibull 

𝑁𝑁𝑟𝑟 strong positive 

control over the 

allocation amount but 

very dependent on 

other 𝑁𝑁𝑟𝑟 . 

Same with 

maximum 

allocation 

preference. 

Depends on 

combination 

of parameters. 

 

4.6 Risk and Return among Portfolios 

The Annual Percentage Yield (APY) and Annualized Standard Deviation 

(ASTDV) have been adopted to understand the risk and return associated with 

the universal portfolio generated by different orders and distributions. APY 

provides a comprehensive measure of the portfolio's return over a year, taking 

into account the effects of compounding interest. It serves as a critical 

benchmark for evaluating the profitability of the investment strategy, allowing 

investors to compare it against alternative strategies or market indices. On the 

other hand, ASTDV offers a detailed assessment of the volatility associated with 

the portfolio. By annualizing the standard deviation of returns, ASTDV provides 

insights into the risk inherent in the strategy, reflecting how much the portfolio's 

returns can be expected to fluctuate over time. Together, APY and ASTDV form 

a robust framework for analyzing the risk and return performance of the 

universal portfolio, balancing the potential rewards against the associated risks. 

This dual perspective enables investors to make more informed decisions, 

optimizing their portfolio for both growth and stability while considering the 

broader market conditions and their individual risk tolerance.  

 
Figure 4.29: Performance comparisons between distributions for portfolio A. 



67 

 

 
Figure 4.30: Performance comparisons between distributions for portfolio B. 

 

 
Figure 4.31: Performance comparisons between distributions for portfolio C. 

 

 From Figure 4.29 to Figure 4.31, the portfolio A and C have clusters in 

the top right corner, indicating a higher risk level compensated with a higher 

return. However, there are some distribution clusters at lower return and risk as 

well, such as the Weibull distribution in both of the portfolios and the lognormal 

distribution for portfolio A. Given the same level of return, the GPD of order 1 

has the lowest level of risk, indicating better risk compensation. In portfolio A, 

the second lowest level of risk given the same level of return is the gamma 

distribution followed by logistic distribution, while portfolio C has the reverse 

sequence. Hence, GPD, gamma, and logistic distribution are ideal for investors 
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who seek to maximize their profit given a lower risk tolerance level. In portfolio 

B, the highest level of return was achieved by gamma orders 2 and 3, at the 

second and third lowest level of risk among the distribution, respectively. The 

Weibull distribution will have the highest risk level at a relatively lower return. 

Additionally, the increase in orders increases the risk level in portfolio A but 

leads to uncertain movement in portfolios B and C. Nevertheless, the higher risk 

is usually tied with a higher return, careful consideration in selecting the 

distributions to build the universal portfolio based on the investor’s risk 

tolerance was required. 
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4.7 Performance Comparisons 

The best and worst performers on each portfolio will be compared against the 

Buy-and-Hold (BH), BCRP, Constant Rebalanced Portfolio (CRP), Cover’s 

Universal Portfolio (CUP), and Successive Constant Rebalanced Portfolio 

(SCRP). The initial weight was taken 1/N, where N is the number of companies 

in the portfolio. The universal portfolio was constructed with a 1% transaction 

cost, while the others did not include any transaction cost. 

 

Table 4.22: Performance Comparison Terminal Wealth for Portfolios. 

Portfolio 
Terminal Wealth 

UP BCRP BH CUP CRP SCRP 

A (Best) 2.0106 
2.1502 0.8559 1.5441 2.0190 0.5463 

A (Worst) 1.2911 

B (Best) 4.6574 
4.9134 2.1163 2.2188 2.2068 0.6028 

B (Worst) 4.6467 

C (Best) 1.5311 
1.5433 1.1025 1.1381 1.1476 0.4872 

C (Worst) 1.4014 

 

 All portfolios underperform the BCRP but were relatively close with it 

except portfolio B. The best and worst performers in portfolios B and C 

outperformed all other investment strategies, such as BH, CUP, CRP, and SCRP. 

For portfolio A, the best performer only outperformed the BH and SCRP 

strategies. The worst and best performers had a relatively close terminal wealth 

for portfolios B and C, but A with differences at 0.72.  
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Figure 4.32: Performance comparisons between investment strategies for 

portfolio A. 

 

 From the time series graph, the best performer outperformed the BCRP 

return for the 1462 trading period and underperformed it on the last trading days. 

The worst performer in portfolio A was the best performer among other 

investment strategies before trading period 840th, as it does not capture the 

sudden increment in portfolio value at trading period 868th like others. The 

lowest volatility rate in portfolio A was BH, followed by the worst performer 

and SCRP. Next, the performance comparisons of portfolio B can be shown in 

Figure 4.33, where the best and worst performers overlapped with the BCRP 

return, and the best performers exceeded the BCRP return for 1516 trading days. 

  

 
Figure 4.33: Performance comparisons between investment strategies for 

portfolio B. 
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Nevertheless, the BCRP, best, and worst performers all had allocations 

close to 1 for the TAFI.KL stock, so they exhibited similar movement in 

portfolio value. The volatility rate for BCRP is the lowest among the best, worst, 

and BCRP, followed by the worst performer and best performer.  

 

 
Figure 4.34: Performance comparisons between investment for portfolio C. 

 

 From Figure 4.34, the BCRP consistently outperformed both the best 

and worst performers in the portfolio. The best performer in this portfolio 

surpassed the BCRP only in 458 trading days. However, the worst performer 

had the lowest volatility, followed by the best performer and BCRP.  
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4.8 Risk and Return among Investment Strategies 

The Annual Percentage Yield (APY) and Annualized Standard Deviation 

(ASTDV) have been adopted to understand the risk and return associated with 

the universal portfolio generated together with other investment strategies. 

 

 

Figure 4.35: Risk and Return comparison for Portfolio A. 

 

 

Figure 4.36: Risk and Return comparison for Portfolio B. 
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Figure 4.37: Risk and Return comparison for Portfolio C. 
 

In portfolio A, the BCRP’s risk is relatively lower than the universal 

portfolio generated by the recursive calculation of continuous random variables 

given the same level of APY. Similarly, portfolio B is also relatively close to 

BCRP risk and return and at a higher risk level given the same level of return. 

However, in portfolio C, the best performer has a relatively lower risk rate than 

the BCRP given the same level of return, providing a better risk compensation. 

In short, the universal portfolio generated by recursive calculation of continuous 

random variables provides a relatively close with BCRP’s risk and return in 

portfolios A and B, and the best performer in portfolio C outperformed the risk 

compensation of BCRP. 
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4.9 Scenario Testing 

4.9.1 Covid-19 Period 

The universal portfolio was recalculated to study its performance generated by 

MGF of CRV during the COVID-19 period from 1 October 2019 to 1 July 2022. 

Table 4.22 shows the terminal wealth by different orders and distributions 

during the COVID-19 period. 

 

Table 4.23: Terminal Wealth for Universal Portfolio. 

Portfolio Order 
Distributions 

Gamma Lognormal Weibull Logistic GPD 

 

A 

 

1 1.41789 1.06117 1.05689 1.41822 1.41350 

2 1.41728 1.05682 1.05704 1.41609 1.41526 

3 1.41798 1.05681 1.05688 1.41609 1.40139 

BCRP 1.4096 

 

B 

 

1 6.01892 6.01893 6.01893 5.97242 6.01872 

2 6.01892 6.01893 6.01893 5.98596 6.01892 

3 6.01892 6.01893 6.01893 6.01103 6.01888 

BCRP 6.2355 

 

C 

 

1 1.19313 1.19313 1.19313 1.19071 1.19311 

2 1.19313 1.19313 1.19313 1.19141 1.19312 

3 1.19313 1.19313 1.19313 1.19271 1.19296 

BCRP 1.2115 

 

From Table 4.23, the gamma, logistic, and generalized Pareto 

distributions managed to surpass the BCRP terminal wealth in portfolio A, while 

the other portfolios, B and C, still did not surpass the BCRP. Besides, the 

terminal wealth by different distributions in portfolios B and C had a consistent 

value. Additionally, the order increment also leads to uncertain movement in 

terminal wealth generated in all distributions. The best and worst performers in 

each portfolio were the Lognormal and Logistic distributions, respectively, in 

portfolios B and C, but reserved in Portfolio A. However, by only focusing on 

the COVID-19 period, portfolio B surpassed the whole trading period shown in 

Table 4.9 by 1.32. Next, the best and worst performers in the portfolios were 
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studied against the other investment strategies and can be shown in Figure 4.38. 

All the best performers have closely aligned with BCRP and surpassed the other 

investment strategies. 

 
Figure 4.38: Best and Worst performer in each portfolio during the COVID-19 

period’s performance comparisons with other investment strategies. 

 
4.9.2 Short-Term and Long-Term Trading 

The universal portfolio introduced by Cover (1991) demonstrated that it would 

provide profitable returns in the long term regardless of the performance of the 

stocks chosen. Hence, studies on adding each 250-trading day to the universal 

portfolio were carried out.  

 

Table 4.24: Terminal Wealth for Universal Portfolio A. 

Period Order 
Distributions 

Gamma Lognormal Weibull Logistic GPD 

 

250 

 

1 1.04817 1.04762 1.04762 1.04663 1.04798 

2 1.04826 1.04762 1.04762 1.04692 1.04793 

3 1.04826 1.04762 1.04762 1.04740 1.04817 

BCRP 1.04440 

 

500 

 

1 1.03172 1.03163 1.03163 1.02670 1.03174 

2 1.03172 1.03163 1.03164 1.02807 1.03180 

3 1.03172 1.03163 1.03164 1.03072 1.03163 

BCRP 1.01045 

 1 1.32729 1.32729 1.32729 1.32519 1.32717 
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Period Order 
Distributions 

Gamma Lognormal Weibull Logistic GPD 

750 

 

2 1.32729 1.32729 1.32729 1.32581 1.32728 

3 1.32729 1.32729 1.32729 1.32694 1.32725 

BCRP 1.30322 

1000 

1 1.87014 1.10794 1.12723 1.87369 1.85930 

2 1.87141 1.10661 1.10659 1.87252 1.85673 

3 1.87194 1.10659 1.10659 1.87252 1.86514 

BCRP 1.86623 

1250 

1 1.43206 1.21785 1.21796 1.43187 1.42828 

2 1.43243 1.21780 1.21801 1.43105 1.42863 

3 1.43265 1.21780 1.21786 1.43106 1.42726 

BCRP 1.44929 

1500 

1 1.64176 1.29150 1.29143 1.64280 1.63656 

2 1.64247 1.29113 1.29149 1.64099 1.62421 

3 1.64282 1.29113 1.29123 1.64099 1.63706 

BCRP 1.62031 

 

Table 4.25: Terminal Wealth for Universal Portfolio B. 

Period Order 
Distributions 

Gamma Lognormal Weibull Logistic GPD 

 

250 

 

1 1.19346 1.18086 1.16669 1.19309 1.19332 

2 1.19346 1.16557 1.17597 1.19314 1.19300 

3 1.19345 1.16557 1.17587 1.19314 1.19313 

BCRP 1.17788 

 

500 

 

1 0.87359 0.86110 0.86042 0.87443 0.87391 

2 0.87368 0.86241 0.86030 0.87445 0.87418 

3 0.87366 0.84197 0.86030 0.87445 0.87382 

BCRP 0.86402 

 

750 

 

1 0.96712 0.94015 0.94017 0.96672 0.96588 

2 0.96705 0.91581 0.92653 0.96682 0.96540 

3 0.96699 0.91580 0.91602 0.96682 0.96479 

BCRP 0.95842 
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Period Order 
Distributions 

Gamma Lognormal Weibull Logistic GPD 

1000 

1 1.74845 1.74835 1.74835 1.74740 1.74882 

2 1.74867 1.74835 1.74835 1.74770 1.74870 

3 1.74866 1.74835 1.74835 1.74823 1.74876 

BCRP 1.72920 

1250 

1 7.53917 7.53918 7.53918 7.46495 7.53917 

2 7.53917 7.53918 7.53918 7.48653 7.53910 

3 7.53917 7.53918 7.53918 7.52654 7.53911 

BCRP 6.92344 

1500 

1 5.39342 5.39342 5.39342 5.37043 5.39339 

2 5.39342 5.39342 5.39342 5.37721 5.39341 

3 5.39342 5.39342 5.39342 5.38957 5.39342 

BCRP 5.20079 

 

Table 4.26: Terminal Wealth for Universal Portfolio C. 

Period Order 
Distributions 

Gamma Lognormal Weibull Logistic GPD 

 

250 

 

1 1.07631 1.07631 1.07631 1.07509 1.07631 

2 1.07631 1.07631 1.07631 1.07544 1.07631 

3 1.07631 1.07631 1.07631 1.07610 1.07631 

BCRP 1.08481 

 

500 

 

1 1.09761 1.09762 1.09762 1.09652 1.09761 

2 1.09761 1.09762 1.09762 1.09683 1.09761 

3 1.09761 1.09762 1.09762 1.09743 1.09761 

BCRP 1.09953 

 

750 

 

1 1.10995 1.10995 1.10995 1.10879 1.10994 

2 1.10995 1.10995 1.10995 1.10912 1.10995 

3 1.10995 1.10995 1.10995 1.10975 1.10995 

BCRP 1.11419 

1000 

1 1.00250 1.00259 0.97313 1.00260 1.00234 

2 1.00255 1.00232 0.99335 1.00262 1.00240 

3 1.00253 1.00232 0.99096 1.00262 1.00225 
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Period Order 
Distributions 

Gamma Lognormal Weibull Logistic GPD 

BCRP 1.00472 

1250 

1 1.14668 1.13612 1.13612 1.14622 1.14468 

2 1.14667 1.13612 1.13629 1.14621 1.14644 

3 1.14666 1.13612 1.13619 1.14621 1.14340 

BCRP 1.15104 

1500 

1 1.46073 1.46073 1.46073 1.45781 1.46072 

2 1.46073 1.46073 1.46073 1.45866 1.46072 

3 1.46073 1.46073 1.46073 1.46023 1.46072 

BCRP 1.46813 

 

 Tables 4.24 to 4.26 show that the terminal wealth of the universal 

portfolio generated by MGF of different CRV provides comparable results with 

the BCRP, and portfolio B managed to surpass the BCRP terminal wealth in all 

trading periods. In contrast, portfolio C constantly underperforms the BCRP 

terminal wealth, and portfolio A underperforms the BCRP on the 1250 trading 

days period. An illustration of different distribution terminal wealth against 

trading days can be shown in Figure 4.39, where all distributions in portfolios 

B and C were moving in the same trend, but portfolio A with lognormal and 

Weibull distribution constantly underperformed after 750 trading days.  

 

 
Figure 4.39: Terminal Wealth in each trading periods for different distributions 

of order 1, and for portfolio A, B and C. 
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CHAPTER 5 
 

5 CONCLUSIONS AND RECOMMENDATIONS 
 
5.1 Conclusions 

This project empirically studies the universal portfolio generated by recursive 

calculation of the continuous random variable’s moment function, with 

portfolios created by machine learning models by using the data from Refinitiv 

and Yahoo Finance. The portfolio formed through various machine learning 

models outperformed the KLSE return, with the highest risk-adjusted ratio 

obtained by the ridge regression model. Portfolios A, B and C each consist of 

three stocks that were formed with the best model to generate the universal 

portfolio. Universal portfolio A had the highest difference in terminal wealth 

among orders and distributions, while B and C had similar terminal wealth 

regardless of orders and distribution.  

 Parameter sensitivity testing was carried out to study the changes in 

allocation and terminal wealth concerning the change in parameter values. 

Portfolio A had different allocation preferences among different distributions 

hence generating a high difference between distributions. In Portfolio B, all 

distributions assert all allocation to one single stock, and evenly on the last two 

stocks in Portfolio C. Three-dimensional graphs were plotted on Portfolio C to 

study the changes in parameters value in detail where the lognormal distribution 

of a single stock parameter values have full control over the maximum 

allocation amount, while other distributions were dependent on the combination 

of parameters. From performance comparisons, all portfolios underperformed 

the BCRP terminal wealth but did outperform the BH, CUP, and SCRP in all 

portfolios.  

 Risk and return plots were conducted to give investors better insight 

into each distribution, order, and portfolio. Scenario testing showed that the UP 

generated by MGF of CRV could outperform the BCRP return in shorter trading 

periods in portfolios A and B and a relatively close terminal wealth in portfolio 

C. During the COVID-19 period, all portfolios still underperformed the BCRP 

return but remained comparable to it.  
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5.2 Recommendations for Future Work 

The universal portfolio generated by recursive calculation of moment 

generating function of continuous random variables could provide a comparable 

terminal wealth with BCRP, as it would change the allocation over time due to 

observed performance in the past. Further studies on other distributions would 

be recommended to study the performance and allocation preferences. Besides, 

the best parameters could be determined by other strategies, such as the 

maximum likelihood function. Varying parameters in different trading periods 

were recommended, and a combination of distributions in one universal 

portfolio calculation was recommended as well. 
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5 APPENDICES 
 
 

Appendix A: Figures 
 

 
Appendix A-1: Gannt Chart for Project I. 

 

 
Appendix A-2: Gannt Chart for Project II. 
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Appendix A-3: Flow Chart for Project I and II 
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