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ABSTRACT 

 

This study was motivated by the need to understand the biomechanics of 

running, especially among amateur athletes, to enhance performance and 

prevent injuries. The research involved the development of a musculoskeletal 

model using OpenSim, focusing on the deep muscles of the lower limb. 

Experimental data were collected from ten amateur runners, and muscle-driven 

simulations were performed using techniques like Computed Muscle Control 

(CMC) and Static Optimization (SO). These simulations were compared to 

experimental data for validation, where Reduce Residual Algorithm (RRA) 

was found to be most effective in the determination of ankle moment. 

Statistically, the Root Mean Square Error (RMSE), correlation (r), in knee and 

ankle moments, under different types of shoe cushioning, no significant 

differences were found, with 0.3 kg/Nm of RMSE and approximately 95% of 

correlation in comparison with the experimental data. Thus, in this case, the 

computational time does become the key factor in evaluating them, where 

Inverse Kinematics (IK) was the best performed in simulating the knee and 

ankle joint moments in running motion under different types of hardness shoe 

cushioning, then followed by RRA and MocoTrack, which had the longest 

computational time respectively. On the other hand, focusing on muscle 

activations and joint moments during different running distances and with 

varying shoe cushioning, the results demonstrated that CMC provided the 

most accurate muscle force estimations, exhibiting the lowest root mean 

square error (RMSE) and highest correlation, though at the cost of increased 

computational time. Analysis revealed significant changes in muscle force 

generation at 80 km, indicating the body's adaptation to accumulated running 

distance. Muscles like the sartorius and semitendinosus exhibited 

compensatory force generation, while the adductor magnus ischial showed 

adaptive shifts between stance and swing phases. In conclusion, CMC 

provided the most accurate muscle force predictions. Based on the findings, 

running biomechanics can be better understood, aiding in improved training 

routines for amateur runners. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Running is a locomotion ability that human equipped to move from one place 

to another in faster pace than walking. It plays a pivotal role in maintaining 

overall health and fitness, where studies show that moderate and spontaneous 

running is able to promote a healthier life free from cardiovascular diseases 

and psychological diseases (Oswald et al., 2020; McCully, 2004). Among 

amateur athletes and recreational runners, understanding the mechanics of 

running can provide valuable insights into performance enhancement and 

injury prevention. Thus, in-depth study of biomechanics running is necessary, 

which can be established by utilizing computational modelling to analyse deep 

muscle dynamics and other physiological factors on their effect towards 

running. Capability of simulating the complex scene of running is helpful in 

extracting the data that is approximate to the real human running, thus making 

the further analysis, interpretation and deduction to be valuable and worthy, 

which is the main motivation to utilize the computational model in studying 

running biomechanics. It offers a systematic approach to dissect complex 

interactions between neuro-musculoskeletal geometry structures and their 

functions during running. 

In the specific context, the field of computational biomechanics 

merges principles from computing, engineering and biology to elucidate how 

physical forces interact within the fully dynamic biological systems. In the 

context of running, computational biomechanical analysis focuses on how 

neural command, muscles, bones, and joints coordinate to produce movement. 

By applying computational tools, such as finite element analysis and dynamic 

simulations, enabling prediction to be done towards the effects of various 

mechanical loads exerted from or applied towards the human body model.  

Amateur runners, similar to those recreational runners, but unlike 

their professional counterparts, often lack systematic and customized training 

and professional advice on running causing them to have higher chances to get 

injury due to improper running approaches and gestures (Millard, 2021; 
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Stenerson et al., 2023). Therefore, by focusing on this group (amateur runners), 

the study aims to contribute practical and theoretical knowledge that can be 

directly applied in everyday training routines. 

The utilization of computational models in sports biomechanics is an 

expanding field that offers innovative solutions and detailed insights into 

athletic performance. This study not only advances the understanding of 

running mechanics but also ambitious to set a foundation for future studies. By 

exploring the intricate details of muscle activation and mechanical forces in 

running, the study provides a basis for developing targeted interventions that 

enhance performance and mitigate injury risks among amateur runners. 

 

1.2 Importance of the Study 

The importance of studying running biomechanics in amateur runners cannot 

be overstated. Amateur runners often participate in running activities without 

professional guidance, which can lead to inefficient running techniques and a 

higher risk of injuries. Stenerson et al. (2023) provided the insight that out of 

their 616 study participants, up to 84.4% of them were having at least on 

injury event that are caused due to running. A detailed study that outlining a 

detailed biomechanical analysis is to generate more effective training and 

injury prevention strategies tailored to the needs of amateur runners.  

 One of the key contributions of this study is providing the detailed, 

comprehensive and in-depth analysis of lower limb muscle functions during 

running. The lower limb muscles play unreplaceable roles in movement and 

stability, and proper technique and gesture to run is essential to ensure their 

optimal functioning and thus making sure that the runners are safe and 

efficient. For example, the quadriceps and hamstrings are critical for knee 

extension and flexion, respectively, and their balanced interaction is necessary 

for maintaining knee stability and propulsion during running. 

 Technically, a thorough study in exploring the approaches to get the 

information of the deep muscle data during running is also important. Since 

the biomechanical study is niche, and deep muscle analysis is much less 

resource available to public. Specifically speaking, deep muscle in this case is 

defined as the lower limb muscle groups that are located further away from the 

surface of the body and are often positioned underneath superficial muscles or 
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deeper within the body. There are the lower limb muscle groups that are 

difficult to be traced or measured by biomechanical tools or instrumentations. 

Exploring the approaches to study these groups of muscle would provide an 

insight of the public so that if anyone who wishes to study the deep muscle of 

other human activities, these approaches can give them a spike to idea on how 

to start their respective study and analysis. 

 Moreover, this study extends its impact by contributing to the 

development of better footwear and orthotic designs. This study also explores 

the relationship between the running performance and the accumulated 

running distance. The study of this would allow amateur runners to tailored 

made their running strategies depending on their running distance. Moreover, 

the relationship between the type of shoe cushioning and the running also 

would be enclosed in the subsequence section. By understanding the 

biomechanical needs of amateur runners, manufacturers can create shoes that 

offer better support and cushioning, potentially reducing the risk of injuries 

associated with impact forces during running. The relevancy in between the 

type of shoe cushioning and the accumulated running distance would be 

enclosed in this study as well. 

 

1.3 Problem Statement 

Running is a widely practiced physical activity that offers numerous health 

benefits, yet it is associated with a notably high incidence of muscle-related 

and overuse injuries of the lower extremities among amateur runners. Studies 

indicate that between 27% and 70% of runners experience these injuries 

annually, which not only affects their health and performance but also 

discourages continued participation in running (De Araujo et al., 2015; 

Kakouris et al., 2021). 

In the biomechanical aspect, the high rate of injuries can be attributed 

to a variety of biomechanical factors, including improper force distribution, 

inadequate shock absorption during foot strike, and inefficient motion patterns. 

These improper would be compounded by the dynamic and repetitive running, 

which accumulatively places intense stresses on the musculoskeletal system. 

Under different running conditions (shoe cushioning) and needs (accumulated 

running distance), they would become the starting point dive into those injury 
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or performance related analysis and studies. Current simulation models, such 

as those developed using OpenSim, aim to replicate and analyse these complex 

interactions through advanced techniques like multi-body dynamics equation 

of motion, interior point optimization, cost function minimization, single 

shooting, direct coloration and so on. The effectiveness of these 

mathematically solver in capturing true biomechanical behaviours and in 

predicting injury risks under varied running conditions is worth to be 

thoroughly validated and verified. 

Anatomically, variations in muscle strength, tendon resilience, and 

joint stability significantly influence the susceptibility to injuries. Differences 

in individual anatomy can affect how runners respond to physical stresses, 

impacting the effectiveness of generic training and prevention programs. 

Computational models that incorporate detailed anatomical data can 

potentially offer personalized insights into the biomechanical and anatomical 

interactions that is able to prevent potential risk of amateur runners to injuries. 

Yet, the challenge lies in accurately simulating these individual differences 

and understanding their impact on running biomechanics. 

 

1.4 Aim and Objectives 

The aim of this study is to utilize state-of-the-art simulation modelling 

techniques to enhance our understanding of the biomechanical impacts of 

running duration and the type of footwear on amateur runners. Specifically, 

the objectives of this study are to: 

1. Develop and scale a tailored musculoskeletal model that accurately 

represents the biomechanics of amateur runners. 

2. Validate the simulation data obtained from OpenSim against high-

quality experimental data kinematically and kinetically to ensure the 

simulation results were informative, reliable and accurate. 

3. Conduct muscle-driven simulations and estimations to biomechanically 

analyse muscle activity and its interactions with the skeletal geometry 

under varying running durations and different footwear types. 
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1.5 Scope and Limitation of the Study 

This study covers the methodology, analysing and interpreting the results 

regarding to the running biomechanics of amateur running under the hard and 

soft shoe cushioning, and also under different accumulative running distances.  

 In the aspect of limitation, the complexity of human musculoskeletal 

structure may limit the ability to fully replicate every biomechanical 

interaction in the simulation environment. In terms of generalizability, the 

study findings derived from simulated models may not be universally 

applicable to all runner demographics, including variations in age, fitness level, 

and biomechanical properties, Since the experimental data collection process 

is carried out on the treadmill but not overground, thus this differences would 

cause some extent of discrepancies for overground running runners, in short, 

surface type factor is not fully considered and covered in this study. 

 

 

 



6 

CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Performing computational modelling with biomechanical analysis requires a 

simulation program that can run the motion simulation in performing various 

activities. Running is one of them. Nowadays, there are numerous software 

available in the market that can perform the biomechanical simulation. Indeed, 

there are strength and weaknesses for each software. It is worthy to explore 

that before selecting one as the centre of the study. 

 To name a few, OpenSim, AnyBody, and Kinovea are the simulation 

software that are capable of running biomechanical modelling in running. 

Although Kinovea has the most user-friendly in among of this, and it allows 

users to analyse video motion recordings in real-time, however the advanced 

biomechanical modelling is difficult to be performed due to the restriction of 

the degree of freedom that this software equipped and it is designed to mainly 

focus on 2D video analysis, which will be less accurate if performing 3D 

modelling. Lacking physiological modelling is also another strong point on 

discouraging to use Kinovea in this study.  

 OpenSim and Anybody have almost similar capabilities of each other. 

Except in the aspect of cost, Anybody would be a good alternative software to 

run the computational modelling in this study. Trinler et al. (2019) also had a 

strong agreement on this statement, describing that both software have good 

performance in simulation muscle activation modelling, but they have the 

difference simulation results in sagittal ankle and hip angles as well as sagittal 

knee moments. Most substantially, the difference in results happened when 

both simulating the same subject in terms of individual muscle force 

estimations via performing static optimization analysis, which in turn, Trinler 

et al. (2019) recommended that study the mathematical theory behind the 

simulation tools is a crucial step.  

 Kim et al. (2018) also brought the same conclusion: both OpenSim 

and Anybody are performed good in terms of advanced biomechanical 

simulation. Both have consistency in simulating the muscle activation level 
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and root mean square value when comparing to the experimental data, 

showing that OpenSim and Anybody both have the same level of competency. 

 

2.2 Runing Biomechanics Simulation via OpenSim 

In this study, OpenSim is chosen as the main software to perform the 

biomechanical simulation modelling where to perform the running 

biomechanics in the study. 10 subjects were recruited to collect their 3D 

motion trajectory marker data, tri-axis VGRF data, and other experimentally 

data. Unlike clinical studies, research related to biomechanics typically does 

not involve large-scale data collection with hundreds of participants. This is 

primarily because the principles of physics play a significant role, ensuring a 

high degree of consistency results when data collection is conducted 

accurately and meticulously. For instance, Zhao et al. (2022) had focused on 

hip, knee and ankle individual muscle force studies with the data collection 

from only eight male participants, averaging 29 years old and running on the 

treadmill with 5 m/s speed. Another example, 16 male recreational runners 

were collected with their experimental data by Quan et al. (2023) in order to 

study the relationship in between the lower limb muscle activation and the 

running performance under the wearing minimalist shoes or normal shoes to 

run.  

In addition to these studies, Jiang et al. (2021) conducted a study on 

the effects of bionic shoes versus neutral running shoes in 16 male recreational 

runners before and after a 5 km run by using OpenSim. Their study focused on 

ground reaction forces (GRFs), which are critical in understanding the etiology 

of running-related injuries. GRFs have been implicated in various overuse 

injuries, which are prevalent among runners. In their study, the authors found 

that bionic shoes significantly reduced vertical impulse, peak propulsive force, 

and contact time, while increasing braking impulse and the vertical 

instantaneous loading rate (VILR). These findings suggest that bionic shoes 

may reduce injury risk by more closely mimicking barefoot running while 

offering protective benefits. Furthermore, Jiang et al. (2021) observed that 

prolonged running—such as a 5 km treadmill run—led to increases in peak 

vertical impact force, loading rates, and braking forces, which are all 

associated with an elevated injury risk due to fatigue. This observation aligns 
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with the findings of Quan et al. (2023), where prolonged running in minimalist 

footwear altered muscle activation patterns, potentially influencing injury 

susceptibility. 

 

2.3 Simulation-Experimental Results Validation Process 

In the validation process, various parameters would be used to do the 

comparison in between the experimental biomechanics data with the 

simulation data to ensure that simulation results are trustable and accurate. It 

also is a process to inform the operator if their simulation results are error-free. 

In the study done by Tang et al., (2022) intended to examine the performance 

of their markerless (ML) motion capture systems. They used Cohen’s 𝑑𝑑 value 

as the comparison in similarity of markerless and marker-based motion capture 

systems. In the gait analysis results, some part of the gait showed high d-

values, indicating that the difference between the two conditions in that part of 

the gait, is substantial. As the desired outcome, lower d-values would be 

expected, which indicating that the variables have higher extent of similarity.  

Apart from that, RMSE is one of the parameters that would be used to 

do the comparison. Jung et al., (2016) have done a study focused on estimating 

the ground reaction force (GRF) during gait using a dynamically adjustable 

foot-ground contact model, which established that knee moment of RMSE 

with ranged 2.6 to 0.5, while 2.1 to 0.3 in ankle moment. 

Stetter et al., (2020) performed the running knee moment comparison 

by using another parameter, which is called rRMSE, which showed the value 

was lower than 22.3 ± 8.3% in the knee adduction moment and 25.5 ± 7.0% in 

knee flexion moment, when they were comparing the result in between those 

generated by artificial neural network and the experimental data to support the 

development of assistive devices in knee osteoarthritis patients. 

 

2.4 OpenSim Virtual Marker Trajectory Tracking Inverse 

Kinematics Systems 

Based on data from 10 male participants running at three different speeds, Fox 

(2024) reported that MocoTrack outperformed RRA by producing lower 

residual forces and moments. Such deduction reflects that MocoTrack is able 
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to perform motion tracking where the kinematics information is the more 

dynamically consistent to the running virtual ground reaction forces. 

 

2.5 OpenSim Muscle-driven Simulation 

 
Figure 2.1: The Workflow of Muscle-Driven Simulation in OpenSim (Uchida 

and Delp, 2021), Reprinted with Permission from Copyright 2024 

The MIT Press. 

 

Muscle-driven simulation can be done by three techniques in 

OpenSim: Static Optimization (SO), Computed Muscle Control (CMC) and 

MocoInverse. Roelker et al. (2020) conducted a study comparing the 

performance of SO and CMC. Six subject models were validated using 

experimental muscle activation and joint torque data. The study found that 

knee extension torque error was greater with CMC than with SO, and that 

muscle forces, activations, and co-contraction indices were generally lower 

with SO. The study concluded that to choose the best optimization technique 

for muscle-driven simulation in OpenSim, validation with experimental 

activation data is essential.  

 Additionally, Lin et al., (2011) have made a study with targeted to 

compare muscle-force estimated from using three different muscle-driven 

simulation techniques: SO, CMC, and Neuromusculoskeletal Tracking (NMT). 

These methods are evaluated using musculoskeletal modeling and 
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experimental gait data to determine lower-limb muscle forces during walking 

and running. Specific muscle groups were analyzed include the soleus, 

gastrocnemius, vastus, rectus femoris, gluteus maximus, gluteus medius, 

hamstrings, and the combined iliopsoas. The results showed that while all 

methods are valid, provided similar results in terms of the patterns of muscle 

forces for both walking and running, However, SO would be more preferrable 

due to its computational efficiency and ability to closely match experimental 

data with minimal error. 

 

2.6 Superficial Muscle Groups’ Function in Running 

In this study, deep muscle groups were selected as the focus of analysis for 

estimating muscle force-length-velocity relationships, as they are typically 

more difficult to measure accurately using electromyography (EMG) 

compared to superficial muscles. Additionally, their anatomical and 

biomechanical roles in running, as well as their contributions to performance 

enhancement, remain underexplored. In contrast, lower limb superficial 

muscles have been extensively studied, and substantial knowledge about their 

anatomical and biomechanical functions in running is widely available. 

 

Table 2.1: The Function of The Superficial Muscle Groups in the Aspect of 

Anatomically and Biomechanically 

Muscle Groups Anatomical Function 

in Running 

Biomechanical 

Enhancement in 

Running Performance 

Gastrocnemius Lateral 

Head 

Facilitates plantar 

flexion at the ankle 

(Tsuji et al., 2015). 

Enhances push-off 

efficiency, increasing 

stride power and length 

(Tsuji et al., 2015). 

Gastrocnemius Medial 

Head 

Works with lateral head 

for effective plantar 

flexion (Tsuji et al., 

2015). 

Boosts acceleration and 

power during sprints 

and uphill movement 

(Tsuji et al., 2015). 
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Table 2.1: (Continue) 

Rectus Femoris 

Acts to extend the knee 

and flex the hip. 

Increases stride length 

and speed through 

powerful knee 

extension. 

Vastus Lateralis 

Extends the knee, 

ensuring stability during 

movement (Böhm et al., 

2018). 

Improves lateral knee 

stability, vital for 

sustained running pace 

(Böhm et al., 2018). 

Vastus Medialis 

Key player in knee 

extension and patellar 

stabilization (Tsuji et 

al., 2015). 

Enhances endurance and 

stability in long runs 

through knee alignment 

(Tsuji et al., 2015). 

Biceps Femoris Long 

Head 

Extends the hip and 

flexes the knee. 

Facilitates explosive 

movements and better 

shock absorption. 

Biceps Femoris Short 

Head 

Primarily involved in 

knee flexion. 

Improves quick changes 

in speed and enhances 

knee flexion agility. 

Gluteus Maximus 

Major role in hip 

extension and trunk 

stabilization. 

Drives forward 

propulsion and increases 

overall running power. 

Gluteus Medius 

Stabilizes the pelvis 

during the stance phase. 

Reduces lateral pelvic 

tilt, increasing 

mechanical efficiency. 

Gluteus Minimus 

Assists in hip 

stabilization and 

abduction. 

Optimizes energy 

efficiency by improving 

pelvic and leg 

alignment. 

Tensor Fasciae Latae 

Facilitates hip abduction 

and stabilizes the pelvis. 

Enhances leg swing and 

stride efficiency, crucial 

for longer runs. 
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Table 2.1: (Continue) 

Adductor Brevis 

Stabilizes pelvis and 

aids hip adduction. 

Improves medial leg 

stability and control, 

enhancing stride 

dynamics. 

Adductor Longus 

Maintains adduction and 

medial stabilization of 

the thigh. 

Supports energy 

conservation and 

maintains directional 

stability. 

Iliacus 

Works with psoas to 

flex the hip efficiently. 

Increases hip flexion 

strength, aiding in 

higher and faster leg 

lifts. 

Piriformis 

Stabilizes the hip and 

assists in external 

rotation. 

Prevents excessive 

internal rotation, 

optimizing leg 

alignment. 

Psoas 

Major hip flexor that 

lifts the leg during the 

swing phase. 

Enhances stride 

frequency and length, 

critical for maintaining 

pace. 

Tibialis Anterior 

Responsible for 

dorsiflexion of the foot 

(Tsuji et al., 2015). 

Prevents foot slap and 

prepares the foot for 

smooth ground contact 

(Tsuji et al., 2015). 

Extensor Hallucis 

Longus 

Extends the big toe and 

aids dorsiflexion. 

Strengthens toe-off 

phase, crucial for 

effective push-off and 

balance. 
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2.7 The Effect of Shoe Cushioning and Running Distance on Running 

Performance 

In most circumstance, running is typically studied with running shoes, and 

different shoe cushioning affects performance. Lim et al. (2022) and Malisoux 

et al. (2021) found that shoes increase range of motion, and that hard 

cushioning creates higher impact forces during the stance phase, while soft 

cushioning absorbs shock. This cushioning impact can cause inconsistencies in 

kinematics and dynamics parameters. 

Additionally, it is well known that running patterns change with 

accumulated distance. During ultramarathons (50 km to 100 km), the body 

adapts by increasing stride frequency, reducing maximum vertical ground 

reaction forces (GRFs), and decreasing vertical impulse during heel strikes 

(Thompson, 2017). Beyond these surface-level changes, biomechanically, 

there is interest in understanding the behavior of individual muscles during 

long-distance running. Such studies allow for a detailed analysis of how 

specific muscles contribute to agonist-antagonist interactions, balance, and 

coordination. 

 

2.8 The Role of Lower Limb Deep Muscle on Running 

Deep muscles, located beneath superficial muscles and closer to the bones, 

play a crucial role in stabilizing joints, maintaining posture, and controlling 

fine movements. For instance, the adductor magnus muscle, located at the hip, 

plays a significant role in extending the hip joint and assisting in thigh 

adduction (Platzer et al., 2003). In contrast, the sartorius muscle flexes and 

abducts the hip joint (Bablitz-Parker, n.d.). At the knee, the semitendinosus 

muscle helps with knee flexion and hip extension (Moore et al., 2013; Hislop 

and Montgomery, 2007). The vastus intermedius, found deep to the rectus 

femoris in the anterior thigh, contributes to knee extension during running. 

The extensor digitorum longus, an ankle dorsiflexor muscle, extends the toes 

by pulling them upwards during running (Jarmey, 2018). 
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CHAPTER 3 

 

3 METHODOLOGY 

 

3.1 Introduction 

The study can be done by the following key steps of milestone: collecting 

experimental data such as electromyography data, static and running trajectory 

marker position data; collecting tri-axis virtual ground reaction force (VGRF) 

of information; building musculoskeletal model; perform validation process by 

going though scaling, inverse kinematic and dynamic analysis; and lastly 

perform muscle-driven simulation and prediction.  

To use OpenSim software to conduct the study, the trajectory data of 

the markers that were pasted on the test subjects needed to be extracted from 

the C3D (.c3d) format into the Track Row Column (.trc) format. This can be 

done by either using MATLAB or Python, which the conversion tutorial and 

the relevant files can be obtained from OpenSim official User’s Guide 

webpage (https://shorturl.at/deru1). However, currently OpenSim software 

itself have the capability of converting these experimental motion capture files. 

After that, the VGRF information needs to be extracted experimentally as well 

and organized into left and right; point, vector and torque columns. After this, 

the simulation can be proceeded seamlessly from the given experimental initial 

data.  

 

 
Figure 3.1: The General Workflow of the Modelling Study 
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The present study builds upon prior research investigating the impact 

of running shoe cushioning on muscle activation. Boon (2023; 2022) 

conducted a comprehensive analysis in the effect of running shoe cushioning 

on muscle activation by using OpenSim, by leveraging the insights and 

methodologies outlined in Boon's work, this study extends the work towards 

Computational Modelling of Running Biomechanics in Amateur Runners. 

 

3.2 Experimental Data Collection 

Running the computational modelling to study the running biomechanics in 

amateur running via OpenSim absolutely requires the trajectory marker and 

the VGRF data that only can be obtained from amateur runners experimentally. 

Thus, although the experimental data collecting procedure is not under the 

scope of this study, but the process still is worth to be pointing out roughly.  

 In this study, 10 Malaysian male non-professional runners were 

recruited to be the data collection subjects, with each of them enclosed with 

the thorough description of the experimental data collection protocol and been 

received their informed consent before conducting the study (Boon, 2023). 

 

Table 3.1: The Physical and Physiological Data of the Participants (Boon, 

2023) 

Characteristic Mean ± Standard Deviation 

Age (years) 29.20 ± 3.52 

Height (m) 1.72 ± 0.05 

Weight (kg) 70.05 ± 6.91 

BMI (kg/m2) 23.68 ± 1.40 

 

They were required to run accumulatively by wearing shoes that were 

made by either of two types of cushioning: hard or soft. Data collection was 

based on the accumulated overground running milestones (0km, 40km, 80km, 

120km) and the two of shoe cushioning categorization. The running distances 

were tracked by using the monitoring apps and the smartwatches, and each 

participant was required to perform data collection session at Sports 

Performance Laboratory at Malaysia National Sports Institute (Institut Sukan 
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Negara, ISN) once the specified milestone has been achieved or beyond of that 

(Boon, 2023). 

 In the aspect of the setup equipment for the data collection session, it 

was held in ISN with a comprehensive motion capture system. It was consisted 

of 11 cameras (Qualisys Track Manager, QTM 2022, 300 Hz), an 

instrumented treadmill equipped with force plates (Bertec Instrumented 

Treadmill, 1500 Hz), and 35 Qualisys optical markers (QualisysAB, 2019) 

placed on the data collection subject’s body. 

 

 
Figure 3.2: The Cameras Setup of the Motion Capture System (Boon, 2023) 

 

 
Figure 3.3: The Qualisys Optical Markers Position of Placements (Boon et al., 

2022) 

 

When the test subjects were came over to the venue for data 

collection, in order to obtain the data that is as natural or as proximal to reality 
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running as possible, warming up was performed by test subject running up to 

his self-paced speed up to 8 minutes, usually would be at 8 km/h of running 

speed so that they can get to use to the data collection’s running speed, which 

is 12 km/h. Warming up activities were performed to avoid the test subject 

experienced any discomfort due to the unfamiliarity of the venue, large 

amount of marker placement on the body, or the speed. This disconformity 

may cause unnatural running pattern and thus affect the subsequence 

simulation analysis. Before the data collection phase, maximal voluntary 

contraction (MVC) exercises were conducted to obtain the necessary 

electromyography (EMG) data. The placement of the EMG electrodes is 

illustrated in Figure 3.4. 

 

  
Figure 3.4: EMG Electrodes Placement on i) Rectus Femoris - RF, ii) Tibialis 

Anterior – TA, iii) Lateral Gastrocnemius – LG and iv) Biceps 

Femoris – BF (Boon, 2023) 

 

During the data collection session, participants were required to run 

while wearing EMG electrodes under two shoe cushioning conditions: hard 

cushioning with a Shore hardness of 42A and soft cushioning with a Shore 

hardness of 32A, as measured by the Shore 'A' hardness scale and a Digital 

Shore A durometer. EMG data during running was wirelessly recorded using 

the Noraxon system (Noraxon MyoMuscle DTS Desktop Receiver System, 

1500 Hz, Noraxon, Scottsdale, USA). 
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Figure 3.5: Shoes of Hard Cushioning (Left) and Soft Cushioning (Right) 

(Boon, 2023) 

 

Under different condition of shoe cushioning and the accumulated 

running distance, the mechanics parameters and the performance amateur 

runners can be studies by analysing their running biomechanics under 

computationally modelling. 

 

Table 3.2: The Condition of Shoe Cushioning and the Different 

Accumulation Running Distance that were acted as the Parameters 

for Studying the Running Biomechanics of the Amateur Runners 

Cushioning 

Conditions 

Hard Shoe Cushioning Soft Shoe Cushioning 

Accumulated 

Running Distance 

0km 0km 

40km 40km 

80km 80km 

120km 120km 

 

3.3 OpenSim Musculoskeletal Model 

Once the trajectory marker (.trc) files and the VGRF (.mot) files have been 

collected, the study can be proceeded to familiar with OpenSim as the open 

source neuromusculoskeletal simulation and analysis platform. OpenSim 

offers a variety of generic model to cope with different scene of usage, thus 

allowing users to develop, analyse, and visualize models of the 

musculoskeletal system, and to generate various of movement simulation 

dynamically (Seth et al., 2011).  

 In this study, the examine parameters and analysis would be more 

engaged in the lower limbs, lower extremities running parts, as to be proved 

by Brooks et al (2020), upper extremities mostly acts as the body overall 
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balancing and has no effect on the running performance. Although the upper 

extremities movement is still required to be simulated out, however the 

mechanics study will not be performed in this case. Therefore, in this case, the 

running and lower extremities focused generic model called “Full Body Model 

for use in Dynamic Simulations of Human Gait” which can be downloaded 

from https://simtk.org/projects/full_body would be used as the initiator of the 

study (Rajagopal et al., 2016). Mentioned by Rajagopal et al. (2016), the 

generic model was built upon by referencing the previous anatomical 

measurements of 21 cadaver specimens and magnetic resonance images of 24 

young healthy subjects, the full rigid body of the musculoskeletal model has 

been geometrically built equipped with 37 degrees of freedom to define joint 

kinematics, Hill-type models of 80 muscle-tendon units actuating the lower 

limbs, and 17 ideal torque actuators driving the upper body. This generic 

model is very suited to the focus of study which only scaling is required to be 

done to adjust the virtual markers against the experimental markers. The 

model has preset physical data such as the default markers position, height and 

the marker scale factors, which need to be changed according to the test 

subjects’ information that been acquired experimentally. 

 

 
Figure 3.6: The Full Body Generic Musculoskeletal Model that is also Known 

as Rajagopal Model (Rajagopal et al., 2016) 
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3.3.1 Scaling 

The main purpose of scaling is to adjust the position of the virtual markers 

position so that it would be as similar to the experimental markers position as 

possible. This similarity allows the subsequence analysis to be logic, 

reasonable and accurate to the actual scenario. 

Scaling can be conducted by importing the static trajectory maker 

data onto the interface under the “Scale Model” and the “Adjust Model 

Markers” sections. Furthermore, in order to setup the generic model so that it 

is more approximate to the test subject’s body shape, the availability of the 

markers to be traced; the body part that to be paired by the markers set; the 

individual marker scale factor; and each markers pose weights, all were 

needed to do adjustment according to the individual test subject’s markers 

setup during the data collection session. Lastly, the weight of the model also 

needs to key in accordance with test subject’s weight. Figure 3.7 illustrates the 

schematic diagram for running the scaling, where dashed arrow line indicates 

the file was optional to be provided.  

 

 
Figure 3.7: The Simple Schematic Diagram for Running the Scaling Process 

 

Once all the marker scale factor and the marker pose weight have 

been keyed into the interface respectively, hit Run to perform the model 

scaling. On the terminal, the marker error Root Mean Square (RMS) would be 

displayed in meter (m) and it is always recommended to be less than 1 cm. 

 After that, the marker data was saved, and since this scaling 

mechanism itself contains a certain extent of gradient descent algorithm. The 

scaling can be run reiteratively, with incorporating with the save marker data, 

for several times until the result was satisfied. 
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Figure 3.8: The Key Steps to Perform Scaling in OpenSim 

 

 
Figure 3.9: The Simple Workflow of the Scaling Reiterative Process 

 

3.4 Experimental-Simulation Moment Validation 

After scaling, performing validation involves inverse-based analysis process 

that includes inverse kinematics and inverse dynamics. Additionally, it also 

involves extracting the experimental data so that the comparison can be done 

by examine a few statistics parameter such as root mean square error (RMSE) 

and Pearson coefficient correlation (R-value). 

 

3.4.1 Inverse Kinematics 

This process involves importing the running trajectory markers data of the test 

subject and also adjusting the weightage of the markers. The weightage 

involves informing the software which markers are more important and should 
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be tracked more tightly compared to others (Hicks, 2016). The inverse 

kinematics solver involves the equation of weighted least squares. 

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑞𝑞 � � 𝑤𝑤𝑖𝑖‖𝑥𝑥𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑥𝑥𝑖𝑖(𝑞𝑞)‖2 + � 𝑤𝑤𝑗𝑗�𝑞𝑞𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑞𝑞𝑗𝑗�
2

𝑗𝑗∈𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢𝑒𝑒𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑒𝑒𝑢𝑢 𝑢𝑢𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖∈𝑚𝑚𝑚𝑚𝑢𝑢𝑚𝑚𝑒𝑒𝑢𝑢𝑢𝑢

� (3.1) 

𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑚𝑚𝑝𝑝𝑝𝑝𝑑𝑑 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑𝑚𝑚𝑚𝑚𝑎𝑎𝑐𝑐𝑝𝑝𝑑𝑑 𝑗𝑗 

where  

𝑞𝑞 is the vector, 

𝑚𝑚 is the marker, while 𝑗𝑗 is coordinate, 

𝑤𝑤𝑖𝑖  is a weight assigned to marker 𝑚𝑚 , while 𝑤𝑤𝑗𝑗  is a weight assigned to 

coordinate 𝑗𝑗, 

𝑥𝑥𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 is the experimental position of marker 𝑚𝑚, while 𝑞𝑞𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 is the experimental 

coordinate 𝑗𝑗, 

𝑥𝑥𝑖𝑖(𝑞𝑞) is the position of the marker 𝑚𝑚, 𝑞𝑞𝑗𝑗 is the model’s value for coordinate 𝑗𝑗. 

 

 The goal is to determine the set of joint angles (generalized 

coordinates) that best match the movement observed in experimental data, 

subject to constraints like prescribed joint angles. Based on Equation 3.1, the 

weights 𝑤𝑤𝑖𝑖 and 𝑤𝑤𝑗𝑗 determine the relative importance of each term in the sum. 

A larger weight means that the term is considered more important during the 

optimization, and the algorithm will prioritize minimizing that particular error. 

Therefore, if a body part (or corresponding marker) has a smaller weight 𝑤𝑤𝑖𝑖 

assigned to it, the optimization algorithm will consider the error associated 

with that marker as less significant. As a result, the algorithm might be more 

willing to accept a larger error for that marker in favor of reducing the error 

for markers with higher weights. Body parts with the least weighting would be 

less likely to be accurately represented in the optimized solution because the 

algorithm doesn't prioritize their accuracy as highly. Thus, in the study, the 

body part that has involved with the lower extremities would be set up to 1000 

compared to other parts which was only 20. 
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Figure 3.10: The Key Steps to Perform IK in OpenSim 

 

3.4.2 Inverse Dynamics 

Since IK only contains the joint angles of the musculoskeletal model, 

performing moment validation still requires performing ID simulation. The 

inverse kinematics motion (.mot) file requires to feed into the ID’s interface. 

However, the VGRF of the experimental data was also required to feed into 

the interface as well. Before feeding the VGRF .mot file into the ID simulation 

interface, a few settings needed to be done to inform the software on the vector 

force, point force and the torque of the VGRF labeling and also left and right, 

which is as illustrated in Figure 3.12(5). Only then, the ID was now right to 

proceed. 

 Mathematically, ID solver involves the classical mechanics 

fundamental of inverse dynamics equation of motion for a multi-body system. 

Inverse dynamics is a method used to calculate the forces and moments 

(torques) required at the joints to produce a given motion (Hicks, 2024b). As 

shown in Equation 2.3, the mathematical result of the torque heavily depends 

on the kinematics information (𝒒𝒒, �̇�𝒒, �̈�𝒒) and the VGRF information (𝑪𝑪,𝑮𝑮) 

 

𝝉𝝉 = 𝑴𝑴(𝒒𝒒)�̈�𝒒 + 𝑪𝑪(𝒒𝒒, �̇�𝒒) + 𝑮𝑮(𝒒𝒒) (3.2) 

where 

𝒒𝒒, �̇�𝒒, �̈�𝒒 ∈ 𝑹𝑹𝑁𝑁  are the vectors of generalized position, velocities and 

accelerations, respectively, 
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𝑴𝑴(𝒒𝒒) is the mass matrix, 

𝑪𝑪(𝒒𝒒, �̇�𝒒) ∈ 𝑹𝑹𝑁𝑁 is the Coriolis and centrifugal force matrix, 

𝑮𝑮(𝒒𝒒) ∈ 𝑹𝑹𝑁𝑁 is the gravitational force matrix, 

𝝉𝝉 = 𝑸𝑸 is the generalized moment or torques for the particular joint. 

 

The position and velocities parameters usually can be deducted 

through the IK data where the mass distribution, gravity, and the acceleration 

parameters would be able to obtain via the VGRF motion file. The output file 

of the ID would be in Storage (.sto) format. 

 

 
Figure 3.11: The Overall Workflow of the IK and ID and the Files 

Requirements to Run the Tools 

 

 
Figure 3.12: The Key Steps to Perform ID in OpenSim 
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3.4.3 Residual Reduction Algorithm 

The main purpose of requiring undergoing RRA before proceeding with the 

further simulation processes is to ensure that the kinematics and kinetics 

running information are always dynamically consistence to each other. It plays 

the role of modifies the mass properties and distribution (like segment masses 

or inertial properties) of the model to better reflect the actual body dynamics 

observed in experimental data, and to minimize the unexplained forces 

(residuals) applied at the joints (Hicks, 2018). RRA serves the kinematics 

optimization process to ensure that 𝑭𝑭 = 𝒎𝒎𝒎𝒎  by eliminating and reducing 

residual force 𝑭𝑭𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒎𝒎𝒓𝒓 . Figure xx shows the file requirements for running 

RRA.  

 Mathematically, the residual force 𝑭𝑭𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒎𝒎𝒓𝒓  is considered existing 

when the kinetic information itself does not fulfill the Newton second’s law. In 

terms of the classical mechanics point of view, the equation of motion only 

legits when the residual force added into the system. Thus, the numerical cost 

function 𝐽𝐽 needs to be reiterated until the residual force has been resolved. 

 

�𝑭𝑭 + 𝑭𝑭𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢𝑚𝑚𝑟𝑟 = 𝒎𝒎𝒎𝒎 (3.3) 

𝑴𝑴(𝒒𝒒)�̈�𝒒 + 𝑪𝑪(𝒒𝒒, �̇�𝒒) + 𝑮𝑮(𝒒𝒒) = 𝑭𝑭𝒓𝒓𝒆𝒆𝒆𝒆𝒓𝒓𝒓𝒓𝒆𝒆𝒎𝒎𝒓𝒓 + 𝑭𝑭𝒎𝒎𝒓𝒓𝒓𝒓𝒎𝒎𝒓𝒓𝒓𝒓 + 𝑭𝑭𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒎𝒎𝒓𝒓 (3.4) 

Minimize 𝐽𝐽 = ���𝐹𝐹𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢𝑚𝑚𝑟𝑟,𝑖𝑖�
2 + �𝑀𝑀𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢𝑚𝑚𝑟𝑟,𝑖𝑖�

2�
𝑁𝑁

𝑖𝑖=1

 (3.5) 

where 

𝑁𝑁 is the data sample, 

𝐽𝐽 is the cost function, 

𝒒𝒒, �̇�𝒒, �̈�𝒒  are the vectors of generalized position, velocities and accelerations, 

respectively, 

𝑴𝑴(𝒒𝒒) is the mass matrix, 

𝑪𝑪(𝒒𝒒, �̇�𝒒) is the Coriolis and centrifugal force matrix, 

𝑮𝑮(𝒒𝒒) is the gravitational force matrix. 
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Figure 3.13: The Files Requirement of Running the RRA in OpenSim 

 

3.5 Muscle-Driven Simulation 

After the validation, each lower limb muscle activity can be estimated out by 

using muscle-driven simulation. It is one of the main capabilities of OpenSim: 

a biomechanical simulation that uses Hill-type muscle models to generate the 

forces necessary to drive the motion of the body, with that, each muscle 

activities and properties can be extracted out for further analysis its roles and 

functions towards the overall running movement. 

 

3.5.1 Mechanical Parameters and Muscle Study Selection 

In this study, the interested parameters for this muscle biomechanical study are 

muscle actuator force, muscle active force and muscle passive force, and their 

definition in OpenSim is as shown in Table 3.3. While Table 3.4 shows the 

interested deep muscle to be studied. 

 

Table 3.3: The Study Parameters and Their Respective Definition in the 

Simulation Environment 

Study Parameters Definition in OpenSim 

Muscle actuator force 

It refers to the total muscular resultant force 

generated by that individual muscle group, which 

directly contributes to drive the particular joint 

movements in simulation.  

Muscle active force 

The force produced by the individual muscle group 

upon contract during the initial spike of the 

excitation in response to neural activation. 
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Table 3.3: (Continue) 

Muscle passive force 

The force produced by the individual 

muscle group when it is stretched 

during its resting length, independent 

of muscle activation. 

 

Table 3.4: Deep Muscles Selection for Muscular Force Prediction Analysis 

Deep Muscle (Right) Figures 

Adductor magnus ischial 

 

Sartorius 
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Table 3.4: (Continue) 

Semitendinosus 

 

Vastus intermedius 

 

Extensor digitorum longus 
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3.5.2 Computed Muscle Control & Static Optimization 

In the aspect of muscle driven simulation in OpenSim, there are three 

techniques that can be used to perform it, which are CMC, SO and 

MocoInverse. CMC is to calculate muscle activations and forces that drive a 

musculoskeletal model based on tracking the kinematics data (Hicks, 2024a). 

This method uses a feedback control strategy where muscle activations are 

adjusted iteratively to minimize the error between the simulated movement 

and the experimental applied external forces data and is particularly useful for 

analyzing complex, dynamic tasks because it accounts for muscle dynamics 

and the inertia of body segments.  

 CMC uses Proportional-Derivative (PD) Control Law and the spring-

mass damping system to compute the desired acceleration under the governed 

by the velocity and position feedback gains. In most cases, 𝒌𝒌𝑣𝑣 would be 20 

and 𝒌𝒌𝑒𝑒 would be 100 to make the running motion system to be in critical damp. 

The desired acceleration would be used to compute the actuator controls, 𝑥𝑥 via 

the cost function 𝐽𝐽. 

 

�̈�𝒒𝔼𝔼∗(𝑐𝑐 + 𝑇𝑇) = �̈�𝒒𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐 + 𝑇𝑇) + 𝒌𝒌𝑣𝑣��̇�𝒒𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐) − �̇�𝒒(𝑐𝑐)� + 𝒌𝒌𝑒𝑒�𝒒𝒒𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐) − 𝒒𝒒(𝑐𝑐)� (3.6) 

𝒌𝒌𝑣𝑣 = 2�𝒌𝒌𝑒𝑒 (3.7) 

Minimize 𝐽𝐽 = �𝑥𝑥𝑖𝑖2
𝑢𝑢𝑥𝑥

𝑖𝑖=1

 (3.8) 

𝐶𝐶𝑗𝑗 = 𝑞𝑞�̈�𝚥∗ − �̈�𝑞𝑗𝑗          ∀𝑗𝑗 (3.9) 

Where 

�̈�𝒒𝔼𝔼∗ is the desired acceleration, 

𝑇𝑇 is a futuristic time and it should be as small as about 0.001 seconds to allow 

the muscle force to change, 

𝐶𝐶𝑗𝑗 is the equality constraints and 𝐶𝐶𝑗𝑗 = 0. 

 

Static Optimization, on the other hand, is an extension to inverse 

dynamics that further resolves the net joint moments into individual muscle 

forces at each instant in time. The muscle forces are resolved by minimizing 

the objective function while satisfying equilibrium and physiological 
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constraints. It has the tendency in finding the minimum muscle activation state 

for a given force movement. SO uses the given motion to solve the equation of 

motion for the unknown singular muscular generalized forces (Hicks, 2018b). 

 

� (𝑎𝑎𝑚𝑚𝐹𝐹0𝑚𝑚)𝑓𝑓𝑚𝑚𝑗𝑗

𝑢𝑢

𝑚𝑚=1

= 𝜏𝜏𝑗𝑗  (3.10) 

Minimize 𝐽𝐽 = � (𝑎𝑎𝑚𝑚)𝑒𝑒
𝑢𝑢

𝑚𝑚=1

 (3.11) 

where 

𝐽𝐽 is the cost function that focus on minimizing the sum of squared muscle 

activations, 

𝑎𝑎𝑚𝑚 is the activation level of the particular muscle,  

𝐹𝐹0𝑚𝑚 is the maximum isometric force, 

𝑓𝑓𝑚𝑚𝑗𝑗 is the moment arm about the 𝑗𝑗th joint axis, 

𝑝𝑝 is the defined constant (Hicks, 2018c).  

 

Both CMC and SO can generate the results that can be used to 

proceed with the muscle mechanical estimation and analysis. 
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Figure 3.14: The Files Requirements of Running the CMC and SO 

 

3.6 OpenSim Moco 

Moco is a software under the framework of OpenSim designed to solve 

optimal control problems in biomechanics. Moco allows goal to be customized, 

such as aiming for minimizing movement effort for a specific motion, tracking 

virtual markers with experimental setup, and minimizing joint loading. Moco 

leverages direct collocation, a numerical method that transcribes continuous 

optimal control problems into a finite-dimensional nonlinear programming 

problem. Direct collocation allows trajectory path to be tracked by using 

piecewise polynomial function. This enables efficient and accurate simulations 

of complex musculoskeletal dynamics, providing insights into movement 

mechanics, muscle coordination, and rehabilitation outcomes. The direct 

collocation approach used in Moco discretizes the time-dependent variables, 

such as states and controls, into a series of time points, enabling simultaneous 

optimization of both the movement trajectory and control signals. 

The Moco framework operates within an Anaconda Python 

environment, which does not provide an interactive skeleton or graphical user 

interface (GUI) for direct manipulation. All Moco-related simulations must be 

executed via Python coding and command-line instructions, limiting 
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interaction to script-based workflows rather than visual interfaces. Moco is 

only recommended to be used for advanced users comfortable with coding and 

it also requires more technical proficiency for simulation control and analysis. 

 

3.6.1 MocoTrack 

This tool performs simulation by tracing marker trajectory data while solving 

the model kinematics and actuator controls optimization problem. It serves to 

produce kinematics data by tracking the VGRF reference data and the marker 

positions under direct collocation optimal control problem. 

 

𝑚𝑚𝑚𝑚𝑚𝑚 ∫ �𝑥𝑥(𝑐𝑐) − 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐)�2𝑇𝑇
0  𝑑𝑑𝑐𝑐 (3.12)

subject to: 

�̇�𝑥(𝑐𝑐) = 𝑓𝑓�𝑥𝑥(𝑐𝑐),𝑢𝑢(𝑐𝑐)� (3.13) 

𝑥𝑥(0) = 𝑥𝑥0 (3.14) 

𝑔𝑔�𝑥𝑥(𝑐𝑐),𝑢𝑢(𝑐𝑐)� ≤ 0 (3.15) 

Where: 

𝑥𝑥(𝑐𝑐) is the system state,  

𝑢𝑢(𝑐𝑐) is the control input, 

𝑓𝑓(𝑥𝑥(𝑐𝑐),𝑢𝑢(𝑐𝑐)) represents the system dynamics,  

𝑥𝑥𝑒𝑒𝑢𝑢𝑒𝑒(𝑐𝑐) is the experimental data,  

𝑇𝑇 is the time duration of the simulation (Lin and Pandy, 2017). 

 

MocoTrack solves an optimal control problem where the objective is 

to minimize the error between the model's predicted motion 𝑥𝑥(𝑐𝑐) and the 

experimental data 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐) , subject to the system dynamics �̇�𝑥(𝑐𝑐)  and other 

constraints 𝑔𝑔�𝑥𝑥(𝑐𝑐),𝑢𝑢(𝑐𝑐)�.  

Figure 3.15 presents the schematic diagram for executing MocoTrack. 

To successfully run MocoTrack, the most essential Python functions include 

opensim.Model, opensim.ModOpAddExternalLoads, and 

opensim.MocoTrack.setMarkersReferenceFromTRC, which are 

responsible for importing the necessary files into the Moco simulation. On the 

other hand, Figure 3.16 shows the skeleton running result that was visualized 
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by Moco under Python environment when the simulation process have been 

completed.  

 

 
Figure 3.15: The Schematic Diagram for Mocotrack File Requirements 

 

 
Figure 3.16: OpenSim MocoTrack Result Visualization 

 

3.6.2 MocoInverse 

MocoInverse is used to perform inverse simulations, where the objective is to 

estimate joint moments (torques) or generalized forces needed to reproduce an 

experimentally observed motion. It calculates the generalized forces necessary 

to match the recorded kinematics while adhering to the dynamic equations of 

the model. 

 

 

 

 



34 

𝑚𝑚𝑚𝑚𝑚𝑚 ∫ ‖𝜏𝜏(𝑐𝑐)‖2𝑇𝑇
0  𝑑𝑑𝑐𝑐 (3.16)

subject to: 

𝑀𝑀�𝑥𝑥(𝑐𝑐)��̈�𝑥(𝑐𝑐) + 𝐶𝐶�𝑥𝑥(𝑐𝑐), �̇�𝑥(𝑐𝑐)� + 𝐺𝐺�𝑥𝑥(𝑐𝑐)� = 0 (3.17) 

𝑥𝑥(𝑐𝑐) = 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐) (3.18) 

Where: 

𝑀𝑀�𝑥𝑥(𝑐𝑐)� is the mass matrix of the system, 

𝐶𝐶(𝑥𝑥(𝑐𝑐), �̇�𝑥(𝑐𝑐)) represents Coriolis and centrifugal forces, 

𝐺𝐺(𝑥𝑥(𝑐𝑐)) represents gravitational forces, 

𝜏𝜏(𝑐𝑐) is the vector of generalized forces (De Groote et al., 2016). 

 

In MocoInverse, the task is to solve for joint moments 𝜏𝜏(𝑐𝑐)  that 

produce the observed motion 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐), subject to the musculoskeletal model's 

dynamics. 

Figure 3.17 illustrates the schematic diagram for executing 

MocoInverse. opensim.Model, opensim.ModOpAddExternalLoads, 

and osim.MocoInverse.setKinematics are the most important Python 

functions required to assure successfully simulation. 

 

 
Figure 3.17: The Schematic Diagram for Mocoinverse File Requirements 

 

3.7 Data Analysis with MATLAB 

MATLAB was used to process simulation results for a clearer, informative and 

interpretable stance-swing running analysis. Data indices for one running gait 

were identified based on right hip rotation. Isolated indices were used to 

extract interested biomechanics parameters, followed by averaging, standard 

deviation calculation, and visualization. The resulting averaged running 

moment gait was compared to other OpenSim inverse kinematics techniques 
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using root mean square error (RMSE), correlation (r), and computational time, 

presented in bar graphs. 

On the other hand, MATLAB was used for data processing, including 

filtering EMG data (6 Hz 4th Butterworth lowpass filter), rectified, and 

normalized by MVC before validation. Based on the validation results, only 

one muscle-driven optimization technique was selected for further muscular 

force estimation. After that, only five deep muscles as shown in Table 3.4, 

were selected as the target of analysis. Those muscle are adductor magnus 

ischial, sartorius, semitendinosus, vastus intermedius and extensor digitorum 

longus. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

The simulation files for all 10 subjects were successfully extracted and read by 

OpenSim, as illustrated in Figure 4.1 and Figure 4.2. For each subject's data, 

there are four subfolders corresponding to the accumulated running distances, 

and the OpenSim-related files are organized within these subfolders based on 

the respective running distances.  

 

   
Figure 4.1: The Simulation Files for 5 Hard Shoe Cushioning and 5 Soft 

Cushioning 

 

 
Figure 4.2: The Simulation Files That Contain the Static and Running 

Trajectory Marker Files and VGRF File That are Acquired from 

the Subject Experimentally 
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4.2 Scaling for Musculoskeletal Models 

 

According to the OpenSim official documentation, the RMS error for scaling 

should be less than 1 cm. As shown in Table 4.1, the scaling results for all 

randomly selected subjects meet this standard, with RMS errors falling below 

the specified threshold (Hicks, 2019). 

 

Table 4.1: The RMS of the Scaling Results for Randomly Picked Subjects 

Hard 

Cushioning 

RMS (cm) Soft Cushioning RMS (cm) 

H1 (0km) 0.475 S1 (0km) 0.333 

H1 (40km) 0.453 S1 (40km) 0.500 

H1 (80km) 0.625 S1 (80km) 0.499 

H1 (120km) 0.544 S1 (120km) 0.569 

H4 (0km) 0.392 S2 (0km) 0.379 

H4 (40km) 0.554 S2 (40km) 0.771 

H4 (80km) 0.556 S2 (80km) 0.223 

H4 (120km) 0.556 S2 (120km) 0.599 

 

4.3 OpenSim’s Knee and Ankle Moments Kinetics Validation 

4.3.1 Gait Analysis 

Wearing a shoe would have a huge impact on the moment gait, which means 

that 𝑭𝑭 ≠ 𝒎𝒎𝒎𝒎 . As a result, inconsistency of dynamically kinematic and kinetic 

parameters was distinguished. This inconsistency leads to different tools in 

OpenSim treating the data differently. RRA can reduce the residual force and 

report on the inconsistency, but it cannot eliminate it entirely. Table 4.2 

presents the results of the RRA, showing the average residual force. Notably, 

𝑭𝑭𝒚𝒚 , the vertical force, is influenced by shoe cushioning in this study. 
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Table 4.2: Average Residuals Forces After RRA for Two Randomly Picked 

Subjects Wearing Hard Cushioning and Soft Cushioning 

Respectively 

Shoe Cushioning Average Residual Force, 𝑵𝑵 

Hard 

𝑭𝑭𝒆𝒆 -1.47503 

𝑭𝑭𝒚𝒚 16.2115 

𝑭𝑭𝒛𝒛 -1.79812 

Soft 

𝑭𝑭𝒆𝒆 -3.50227 

𝑭𝑭𝒚𝒚 -4.04652 

𝑭𝑭𝒛𝒛 -2.72094 

 

Figure 4.3 and Figure 4.4 show the knee moment gait for hard and 

soft running shoe cushioning, respectively, of a randomly selected subject, 

while Figure 4.5 and Figure 4.6 show the ankle moment gait under hard and 

soft, of a randomly selected subject. 

 

 
Figure 4.3: Knee Moment Gait for Hard Running Shoe Cushioning 

 



39 

 
Figure 4.4: Knee Moment Gait for Soft Running Shoe Cushioning 

 

Both Figure 4.3 and Figure 4.4 show that different tools treat the 

impact force due to the shoe cushioning differently. In the stance phase, 

MocoTrack is more closely approximated to the experimental data, when 

comparing with the others two. In the hard shoe cushioning, as shown in 

Figure 4.3, MocoTrack overestimated the knee moment on the stance phase, 

while in the soft shoe cushioning (Figure 4.4), it underestimated the knee 

moment. Thus, it is believed that stance phase is the stage where the RMSE is 

accumulating, and correlation, r, behaves differently. However, in the swing 

phase, all tools simulated quite accurate to the experimental data, regardless of 

the type of the cushioning. It is mainly because during swing phase, the feet 

were not in contact with the ground, force accumulation does not involve. 

Swing phase is an energy releasing stage, where the movement is purely based 

on the kinematic driven. Thus, the effect of the cushioning is minimal during 

this phase. 

However, as shown in Figure 4.5 and Figure 4.6, all tools perform 

well, and the results are closely approximated to the experimental data. It is 

because compared to the knee, the ankle is a less moveable part of the body 

segment. As the ankle is also closer to the force plate, causing the kinematic 
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parameters to be more dynamically consistent with the kinetic parameters, 

especially during the swing phase, where there is almost no performance 

difference for all tools. Nevertheless, if viewed closely, minor performance 

differences still exist among all tools in the stance phase, especially 

MocoTrack, which underestimates the ankle moment when compared to RRA 

and IK. Such underestimation is due to the tracking algorithm where 

MocoTrack performs tracking that is based on the VGRF and the trajectory 

markers information, and this tracking will harmonize the effect between these 

two mechanics parameters. On the other hand, IK is simulated more closely to 

the experimental data when compared with RRA and MocoTrack. In the 

meanwhile, RRA saw the VGRF information as the comparator to eliminate 

the residual force, attempting to minimize the dynamics gap in between 

kinematics and kinetics data. 

 

 
Figure 4.5: Ankle Moment Gait for Hard Running Shoe Cushioning 
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Figure 4.6: Ankle Moment Gait for Soft Running Shoe Cushioning 
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4.3.2 RMSE, Correlation and Computational Time 

 

Figure 4.7 to Figure 4.10 show the performance comparison of IK, RRA, and 

MocoTrack in terms of RMSE, correlation (r), and computational time. The 

simulation computational time is based on the specifications of the devices, 

which were AMD Ryzen7 6,800HS, Nvidia RTX 3070 Ti, and 24 GB RAM. 

Higher computing specifications can significantly reduce computational time, 

particularly in OpenSim Moco, where the computational cost is notably higher 

compared to other tools. Indeed, more advanced computing devices enable the 

execution of more precise simulations within shorter timeframes, thereby 

improving the validation performance of virtual marker trajectory tracking-

based inverse kinematics tools. RMSE was tabulated to compare the difference 

between the experimental data and the simulation result, and correlation (r) 

examine how closely the simulated data relates to the experimental data. 

 

 
Figure 4.7: Comparison Of IK, RRA, and Mocotrack for Knee Moment 

Running Gait under Hard Shoe Cushioning 
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Figure 4.8: Comparison of IK, RRA, and Mocotrack for Ankle Moment 

Running Gait under Hard Shoe Cushioning 

 

Table 4.3: Quantitative View of RMSE, r, and the Computational Time for 

IK, RRA and MocoTrack in Hard Running Shoe Cushioning 

Body Segment OpenSim Tools Analysis Parameters Average Value 

Knee 

IK 

RMSE (Nm/kg) 0.295 ± 0.146 

r 0.877 ± 0.145 

Compute Time (s) 436.8 ± 70.92 

RRA 

RMSE (Nm/kg) 0.297 ± 0.112 

r 0.854 ± 0.139 

Compute Time (s) 1479 ± 195.6 

MocoTrack 

RMSE (Nm/kg) 0.253 ± 0.0852 

r 0.895 ± 0.0688 

Compute Time (s) 17313 ± 3572 
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Table 4.3: (Continue) 

Ankle IK RMSE (Nm/kg) 0.229 ± 0.141 

  r 0.997 ± 0.0028 

 RRA RMSE (Nm/kg) 0.305 ± 0.0624 

  r 0.991 ± 0.00157 

 MocoTrack RMSE (Nm/kg) 0.274 ± 0.10 

  r 0.989 ± 0.0076 

 

 
Figure 4.9: Comparison of IK, RRA, and Mocotrack for Knee Moment 

Running Gait under Soft Shoe Cushioning 
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Figure 4.10: Comparison of IK, RRA, and Mocotrack for Ankle Moment 

Running Gait under Soft Shoe Cushioning 

 

Assessing closer in terms of RMSE, in running shoes with hard 

cushioning, MocoTrack performed the best compared to IK and RRA, and was 

also most highly correlated to the experimental data for knee moment (Table 

4.3). The additional impulsive force exerted onto the body is obvious, thus it 

becomes the reason for the outstanding performance where MocoTrack uses 

direct collocation and optimal control problems to ensure the dynamic 

consistency between kinematic and kinetic parameters of running. 

However, with the same type of cushioning, ankle moment is not the 

case. IK becomes the outstanding tool for tracking running motion. Compared 

to knee moment, ankle moment is a less movable body segment, and the 

additional impulse due to the hard cushioning may cause the moment to 

deviate. Despite this, the correlation shows that all tools generated moment 

gait that is very highly related to the experimental data. 

In soft running shoe cushioning, the performance of MocoTrack is dropping in 

tracking running motion especially for knee moment (Table 4.4). Soft shoe 

cushioning indeed absorbs some extent of additional reaction force, which can 
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be shown in Table 4.2. The force is minor and ignorable, but it may cause 

MocoTrack, which is a tool that carefully considers dynamic consistency, to 

incorrectly interpret this minor force. It may incorrectly enlarge the force, 

causing overestimation and deviating from the true result. Its correlation also 

proves this deviation. 

 

Table 4.4: Quantitative View of RMSE, r, and the Computational Time for 

IK, RRA and Mocotrack in Soft Running Shoe Cushioning 

Body Segment OpenSim Tools Analysis Parameters Average Value 

Knee 

IK 

RMSE (Nm/kg) 0.240 ± 0.144 

r 0.950 ± 0.0717 

Compute Time (s) 419.25 ± 58.83 

RRA 

RMSE (Nm/kg) 0.244 ± 0.170 

r 0.912 ± 0.113 

Compute Time (s) 1695 ± 194.07 

MocoTrack 

RMSE (Nm/kg) 0.327 ± 0.282 

r 0.772 ± 0.341 

Compute Time (s) 19112 ± 3314 

Ankle 

IK 
RMSE (Nm/kg) 0.244 ± 0.10 

r 0.996 ± 0.00279 

RRA 
RMSE (Nm/kg) 0.315 ± 0.0718 

r 0.983 ± 0.0124 

MocoTrack 
RMSE (Nm/kg) 0.274 ± 0.0755 

r 0.989 ± 0.00649 

 

Soft shoe cushioning absorbs minor reaction force to the body but is 

negligible. Thus, IK and RRA performed equally well. IK and RRA are the 

tools that do not prioritize dynamic consistency, focusing on tracking the 

experimental kinematic trajectory data. In this case, they performed with a 

lower error than MocoTrack. In knee moment, the performance of both is 
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nearly identical in terms of RMSE and r. While in ankle moment, RRA is 

slightly better than IK, due to the properties of RRA as being an inverse 

kinematics optimization tool, allowing the data to be free from residual force 

which is then more accurate to the experimental value. 

 

4.3.3 Performance Evaluation 

Strictly speaking, all three OpenSim tools performed well in tracking the 

running kinematic motion. This is evident in their low RMSE, which was 

around 0.3 Nm/kg, and high correlation, with most of them providing the R-

value greater than 95%. IK, RRA, and MocoTrack are profound, trustworthy, 

and reliable tools for performing biomechanical simulations of running with 

shoe cushioning. Although their results for RMSE and correlation differed 

from each other, the extent of these differences was not significant. In this 

scenario, computational time was the key factor for evaluating their 

performance, where some degree of accuracy could be sacrificed. Specifically, 

while MocoTrack generated lower RMSE in some cases, its computational 

cost was much heavier than IK and RRA. Therefore, IK has the best 

performance, followed by RRA, and lastly is MocoTrack. Additionally, in the 

case where the muscle-driven simulation is not required, IK definitely is the 

tools that is suffice enough to perform the marker trajectory inverse 

kinematics-based analysis. 

 

4.4 Assessing Muscle Driven Optimization Techniques 

4.4.1 EMG Validation 

As shown Table 4.5, the lateral gastrocnemius (Gaslat)’s EMG validation 

identified CMC as having the lowest root mean square error (RMSE) and the 

highest correlation (R-value). However, CMC also had the longest 

computation time, followed by MocoInverse and SO. MocoInverse showed a 

lower RMSE than SO and a slightly higher average correlation than SO. 

Figure 4.11 and Figure 4.12 showed the lateral gastrocnemius muscle 

activation of experimental, CMC, SO and MocoInverse simulations for 40km 

and 80km accumulated running distance respectively. Theoretically, CMC 

uses PD control law and spring-mass damping system to solve the muscle-

driven simulation problem, while SO is the further resolve of the inverse 
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dynamics problem by assuming that the system's dynamics are completely 

driven by the kinematics (positions, velocities, and accelerations) provided as 

input. CMC modelling muscle as Hill-type muscle, equipping springs, 

damping system, active force and passive force. CMC also modelling tendon 

with limited elasticity and Young Modulus. These are the key points making 

CMC results more realistic to the real-world scenario. However, CMC is very 

susceptible to the dynamics consistency, where any unmatched in between 

kinematics and kinetics information would lead to CMC system being 

collapsed, probing error to halt the simulation process. Whereas in SO, its 

further resolve algorithm restricts it only accounting for net force for a 

particular muscle that can generate, which is the force that direct contributing 

to the overall movement. Under this algorithm, SO would not consider muscle 

to have any passive force and assuming tendon is not a force transmission 

media, rigid and inextensible. More direct way to view this phenomenon is the 

muscle would be completely deactivated when the muscle does not move. 

Whereas MocoInverse implicitly handles multibody dynamics by solving for 

accelerations and generalized forces as variables in the optimal control 

problem, The solver in MocoInverse treats the accelerations as unknowns, 

optimizing them in a way that satisfies the equations of motion. This helps in 

achieving more accurate muscle force predictions. It can minimize the effect 

due to the residual force, but the effect of the shoe cushioning would be 

eliminated from the system simulation. 
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Figure 4.11: The EMG Validation Graph for 40 km Accumulated Running 

Distance 

 

 
Figure 4.12: The EMG Validation Graph for 80 km Accumulated Running 

Distance 
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Table 4.5: The rmse, R-Value and the Computational Time for CMC, SO and 

MocoInverse Gaslat Validation 

Running 

Distance 

Optimization 

Techniques 

RMSE r Compute 

time (hours) 

40km 

CMC 0.2042 0.7596 16.41 

SO 0.541 0.2329 7.68 

MocoInverse 0.2875 0.6308 10.51 

80km 

CMC 0.1934 0.7376 16.91 

SO 0.4068 0.7185 7.27 

MocoInverse 0.2119 0.6621 11.40 

 

Based on the validation results, CMC can be concluded as the most 

effective muscle-driven optimization technique in OpenSim when compared to 

MocoInverse and SO. Consequently, the subsequent predictions will focus 

exclusively on the muscular forces of five deep muscles— adductor magnus 

ischial, sartorius, semitendinosus, vastus intermedius, and extensor digitorum 

longus—generated using CMC. The simulations were conducted on a 

computer equipped with an AMD Ryzen 7 6800HS, Nvidia RTX 3070 Ti, and 

24 GB of RAM. Higher computer specifications would reduce computational 

time and allow for finer simulation settings, potentially leading to significant 

improvements in validation results. 

 

4.4.2 CMC Muscular Force Estimation 

The muscular estimation results generated via OpenSim CMC showed 

significant changes or turning points at 80 km of accumulated running distance. 

This indicates that the body adapts to such a long-accumulated running 

distance. Starting with the hip portion, as shown in Figure 4.13 dash line, the 

adductor magnus ischial muscle shows opposite trends at the 80 km 

accumulated running distance. It uses less force in the stance phase but more 

force in the swing phase. Unlike other running distances, force exertion 

increases as the accumulated running distance increases from 0 km to 120 km. 

When the subject reached 80 km, the muscle's adaptability was unable to keep 
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up, leading to fatigue in other hip muscles. By reducing the load on the 

adductor magnus ischial during the stance phase and increasing its role during 

the swing phase, the body might be trying to balance muscle workload and 

reduce the risk of overuse injuries. After adapting to the long running distance 

workload, the trend restored to what it was at 0 km and 40 km. 

 

 
Figure 4.13: The Muscular Force Estimation for the Adductor Magnus Ischial 

across Different Accumulated Running Distance 

 

Figure 4.14 shows the sartorius muscle force during one average gait 

cycle of running across different accumulated running distances. As shown on 

the dash lines of analysis, the force decreases in both stance and swing phases 

but increases at 120 km of accumulated running distance. Anatomically, the 

sartorius muscle plays a complex role in hip flexion, abduction, and knee 

flexion. Its long, thin structure spans both the hip and knee joints. As running 

distances increase, the efficiency of this muscle in performing these functions 

may decrease, especially if other hip muscles begin to fatigue. The increase in 
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force at 120 km could indicate a compensatory mechanism where the sartorius 

takes on a greater role to maintain joint stability and proper movement patterns. 

 

 
Figure 4.14: The Muscular Force Estimation for the Sartorius across Different 

Accumulated Running Distance 

 

The dash lines of analysis in Figure 4.15 shows that the 

semitendinosus muscle force increases in the stance phase but decreases at 120 

km, continuing this trend until the end of toe-off. At mid-swing, the force rises 

but starts to decrease at 80 km of accumulated running distance. However, at 

terminal swing, the trend restores to match the stance phase. 
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Figure 4.15: The Muscular Force Estimation for the Semitendinosus across 

Different Accumulated Running Distance 

 

During the swing phase, which involves the transition from toe-off to 

terminal swing, the semitendinosus controls leg movement. The initial 

increase in force from 0 km to 40 km at mid-swing could be the body's attempt 

to maintain proper leg acceleration and deceleration for smooth forward 

motion. As the distance accumulates, the muscle may fatigue, leading to 

decreased force generation from 80 km to 120 km. The return to a similar 

trend as the stance phase during terminal swing suggests that the muscle's 

function as a decelerator and stabilizer at the knee becomes increasingly 

compromised due to fatigue. 

For the knee extensor muscle, the stance phase of the dash line of 

analysis for the vastus intermedius shows a decrease in force at 0 km, followed 

by an increase at 120 km. At mid-swing, the force generally decreases from 0 

km to 120 km. At terminal swing, the force rises from 0 km to 80 km but 

decreases again at 120 km of accumulated running distance. As shown in 

Figure 4.16, the vastus intermedius muscle demonstrates how the body adapts 
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to running distance. At 120 km of accumulated running distance during the 

stance phase, the body might be compensating for fatigue in other muscles, 

requiring more contribution from the vastus intermedius to maintain stability 

and propulsion. Energy optimization is observed at mid-swing, where the 

muscle force generally decreases. At terminal swing, force generation 

efficiency is compromised due to the need for precise control and leg 

stabilization before the next ground contact, making the muscle prone to 

fatigue. 

 

 
Figure 4.16: The Muscular Force Estimation for the Vastus Intermedius across 

Different Accumulated Running Distance 

 

For the ankle, the extensor digitorum longus (EDL) muscle force 

increases from 0 km to 80 km but starts to decrease at 120 km, as shown in 

Figure 4.17. However, starting at mid-swing, the force increases until 40 km, 

drops to its lowest point at 80 km, and then begins to rise again at 120 km. 
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Figure 4.17: The Muscular Force Estimation for the EDL across Different 

Accumulated Running Distance 

 

In the stance phase, the increase in force generation from 0 km to 80 

km suggests that the body might be compensating for other muscle fatigue by 

relying more heavily on the EDL. The decrease at 120 km could indicate a 

shift in biomechanics, where other muscles or tendons might take over some 

of the EDL's role, or the running form itself changes to reduce reliance on the 

EDL. 

 

4.5 Muscle Length and Muscle Velocity Relationship 

The analysis of muscle length across the gait cycle provides deeper insights 

into how shoe cushioning affects muscle force, length, and overall energy 

expenditure (𝑬𝑬 = 𝑭𝑭𝒓𝒓) . When examining a randomly selected subject with 

accumulation 40 km running distance, the semitendinosus (Semiten) muscle 

length trends during running were found to be similar to the results reported by 

Arnold et al. (2013). Showing the muscle length simulation results were valid 

and trustable, as shown in Figure 4.18, where the works can be extended to 
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plotting 3D graphs showing the relationship between muscle length or muscle 

velocity, muscle force and the gait cycle. 

 

 
Figure 4.18: Semiten Muscle Length Graph Reported by Arnold et al. (2013) 

vs the Simulation Result 

 

The adductor magnus ischial muscle demonstrated more stable force 

output during the stance phase with hard shoe cushioning compared to soft 

cushioning, as observed in the shaded region of Figure 4.19. In the toe-off 

stage, muscle length began to increase in soft cushioning, which marked the 

initiation of energy release from the muscle. Notably, the force output in soft 

cushioning decreased more sharply during the swing phase compared to hard 

cushioning, indicating less efficient energy release. Despite similar muscle 

lengths during the swing phase in both conditions, hard shoe cushioning 

enables greater force exertion, suggesting better energy return and muscular 

performance in adductor magnus ischial. This difference in force dynamics 

indicated that hard cushioning provided more effective shock absorption and 

force generation in adductor magnus ischial, particularly during load bearing 

and propulsion stages. 
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Figure 4.19: The Muscle Length-Force-Gait 3D Curve for Adductor Magnus 

Ischial 

 

Anatomically, the adductor magnus ischial plays a critical role in 

thigh adduction and stabilizing the pelvis during running. With hard 

cushioning, the muscle’s ability to generate consistent force during the stance 

phase reflects its increased engagement in maintaining pelvic stability and 

controlling leg movement. The more intense force drop with soft cushioning 

during the swing phase may indicate reduced activation, potentially causing 

less effective stabilization and energy transfer. The anatomical demands on the 

muscle are therefore heightened with hard cushioning, which might lead to 

greater muscular effort but improved efficiency in force transmission and 

stabilization during the gait cycle. 

 

 
Figure 4.20: The Muscle Velocity-Force-Gait 3D Curve for Adductor Magnus 

Ischial 
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As depicted in Figure 4.21, the Sartorius muscle exhibited greater 

force exertion during the stance phase with soft cushioning compared to hard 

cushioning. However, during the swing phase, the force generated with soft 

cushioning gradually declined, whereas hard cushioning maintained more 

stable and consistent force output. It is important to note that the muscle length 

remained nearly identical for both types of cushioning throughout the entire 

running gait cycle.  

 

 
Figure 4.21: The Muscle Length-Force-Gait 3D Curve for Sartorius 

 

The Sartorius muscle shows higher force exertion in the stance phase 

with soft cushioning, which may suggest a greater involvement in shock 

absorption and propulsion during this phase. However, the force decline 

during the swing phase with soft cushioning, in contrast to the more consistent 

force output observed with hard cushioning, indicates that hard cushioning 

supports better energy retention and return. The similarity in muscle length 

across both cushioning types throughout the gait cycle suggests that the 

differences in force generation are likely due to variations in cushioning 

properties affecting the muscle's energy utilization and efficiency, particularly 

in force transmission during running. 

Anatomically, the sartorius muscle is a key player in hip and knee 

flexion, contributing significantly to leg movement and stabilization. With soft 

cushioning, the increased force during the stance phase may reflect a 

heightened engagement in stabilizing the leg during ground contact and 
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propulsion. However, the decline in force during the swing phase under soft 

cushioning may indicate reduced muscle activation or inefficient energy 

transfer. In contrast, the more stable force with hard cushioning during the 

swing phase suggests that the Sartorius is better able to contribute to leg 

positioning and control when the cushioning provides more consistent support. 

 

  
Figure 4.22: The Muscle Velocity-Force-Gait 3D Curve for Sartorius 

 

In Figure 4.22, the soft cushioning exhibited slightly more extreme 

velocity variations compared to hard cushioning. Specifically, the velocity was 

higher during the stance phase and mid-swing with soft cushioning but lower 

during the initial and terminal swing phases when compared to hard 

cushioning. In terms of velocity, the Sartorius demonstrates higher speeds 

during the stance phase and mid-swing with soft cushioning, reflecting faster 

muscle contraction and movement. However, the lower velocities observed in 

the initial and terminal swing phases indicate that soft cushioning may lead to 

less efficient muscle performance during the non-weight-bearing phases, 

which is the phases where no weight is supported by the limb. The more 

moderate and stable velocity profile with hard cushioning suggests better 

energy efficiency and consistent power generation. This implies that hard 

cushioning supports a more balanced distribution of muscular effort, 

contributing to sustained power output throughout the gait cycle. 

As shown in Figure 4.23, the semitendinosus muscle exhibited trends 

opposite to those of the Sartorius. In the swing phase, hard cushioning resulted 

in shorter muscle length but generated higher force. Additionally, although the 

muscle lengths were nearly identical in both types of cushioning during the 
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stance phase, the force exerted was notably higher with hard cushioning 

compared to soft cushioning. 

 

 
Figure 4.23: The Muscle Length-Force-Gait 3D Curve for Semitendinosus 

 

 The semitendinosus muscle performed differently under hard and soft 

cushioning conditions. During the swing phase, hard cushioning resulted in a 

shorter muscle length yet enabled the muscle to produce higher force, 

suggesting better energy efficiency in force transmission. In the stance phase, 

where muscle lengths were comparable between both cushioning types, the 

higher force exertion with hard cushioning indicates enhanced muscular 

engagement in stabilizing and propelling the body. This suggests that hard 

cushioning may optimize the force-length relationship of the semitendinosus, 

allowing it to generate more effective force throughout the gait cycle.  

 The semitendinosus, part of the hamstring group, plays a crucial role 

in hip extension and knee flexion during running. The higher force observed 

with hard cushioning during both stance and swing phases implies that this 

cushioning type provides better support for the muscle's function in extending 

the hip and decelerating the leg during the swing phase. The shorter muscle 

length during the swing phase with hard cushioning suggests that the muscle 

may be more efficient at controlling leg retraction, potentially reducing strain 

and improving overall energy conservation during running. 
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Figure 4.24: The Muscle Velocity-Force-Gait 3D Curve for Semitendinosus 

 

As shown in Figure 4.24, the velocity profiles of the semitendinosus 

were relatively similar for both types of shoe cushioning. However, the 

velocity values remained consistently low, within the order of magnitude of 

only 10-8. This consistent velocity pattern suggests that while the muscle is not 

generating high-speed contractions, it was still contributing to stability and 

power generation in a controlled manner. 

 

  
Figure 4.25: The Muscle Length-Force-Gait 3D Curve for Vastus Intermedius 

 

In Figure 4.25, although the vastus intermedius demonstrated similar 

muscle length patterns across both hard and soft cushioning conditions, the 

force generated was substantially higher with hard cushioning during the 

stance phase. In the swing phase, while the force exerted with hard cushioning 

remained higher than with soft cushioning, the difference was minor and not 

statistically significant. 
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From a biomechanical perspective, the vastus intermedius exhibited 

consistent muscle length trends during the gait cycle, irrespective of 

cushioning type. However, the force production during the stance phase was 

significantly greater with hard cushioning, indicating a more effective 

engagement of the quadriceps group, particularly in stabilizing the knee and 

supporting the body during weight-bearing, which is another term describing 

phases in which the legs support the body's weight. The increased force output 

under hard cushioning suggests improved energy transfer, aiding in greater 

propulsion and control throughout the gait cycle. During the swing phase, 

while the force remained slightly higher with hard cushioning, the minimal 

difference implies that the muscle’s energy release and contraction efficiency 

were not substantially impacted during this phase. 

 

 
Figure 4.26: The Muscle Velocity-Force-Gait 3D Curve for Vastus 

Intermedius 

 

 Anatomically, the vastus intermedius, part of the quadriceps group, is 

primarily responsible for knee extension. The enhanced force production 

observed with hard cushioning during the stance phase indicates that this type 

of cushioning may better support the muscle’s function in maintaining knee 

stability and controlling leg extension, essential for absorbing impact and 

generating forward momentum. The relatively minor force difference during 

the swing phase suggests that the muscle’s role in non-weight-bearing 

movement, such as leg recovery and knee flexion, is less affected by 

cushioning type, though hard cushioning may provide a slight advantage in 

stabilizing the knee for subsequent ground contact. 
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Figure 4.27: The Muscle Length-Force-Gait 3D Curve for Extensor Digitorum 

Longus 

 

Interestingly, during the stance phase, hard cushioning resulted in a 

greater muscle length for the extensor digitorum longus compared to soft 

cushioning, with a corresponding higher force output in hard cushioning. In 

contrast, while the muscle length remained consistent during the swing phase, 

the force exerted in soft cushioning exceeded that of hard cushioning.  

 The vastus intermedius demonstrated similar muscle length dynamics 

across both cushioning types throughout the gait cycle. However, the muscle's 

force production was notably higher in hard cushioning during the stance 

phase, which aligns with the muscle's role in knee extension and ground 

impact absorption. This indicates that hard cushioning may promote more 

efficient force generation and energy transfer during weight-bearing activities, 

contributing to greater stability and propulsion. In the swing phase, while hard 

cushioning still maintained a slightly higher force, the differences were less 

pronounced, suggesting that the cushioning type has a more substantial impact 

during weight-bearing than during the non-weight-bearing portion of the gait 

cycle. 
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Figure 4.28: The Muscle Velocity-Force-Gait 3D Curve for Extensor 

Digitorum Longus 

 

 The vastus intermedius plays a critical role in knee extension and 

stabilization, particularly during the stance phase of running. The increased 

force exertion observed in hard cushioning suggests that this type of footwear 

better supports the muscle's function in managing the mechanical demands of 

running, particularly in maintaining knee stability and enabling efficient force 

transmission to the ground. In the swing phase, where the muscle is less 

involved in force generation and more focused on leg recovery, the differences 

in force output between the two cushioning types were minimal, indicating 

that both types allow for adequate muscle function in non-weight-bearing 

conditions. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

This study successfully modelled the musculoskeletal dynamics of amateur 

runners and analysed the impact of running distances and shoe cushioning on 

muscle activation. By using techniques such as CMC, SO, and MocoInverse, it 

was possible to estimate muscle forces accurately and understand the 

biomechanical patterns involved in running. 

 On the other hand, after evaluating RMSE, correlation, and 

computational time for knee and ankle joint simulations under various shoe 

cushioning conditions, it can be concluded that IK is the most recommended 

tool for tracking virtual marker trajectories in inverse kinematics, particularly 

when accounting for the added impulsive force during the stance phase of 

running, and this is particularly true if the further muscle-driven simulation is 

not required to proceed. This is because in among all these tools, IK has the 

shortest computational time, under the scenario that IK, RRA and MocoTrack 

provided almost identical values of RMSE and correlation. Despite this, 

increasing the sample data could provide more robust and reliable results, 

while also minimizing the impact of subject-specific outliers caused by loose 

markers, unnatural running postures, or incorrect experimental setups. 

The comparison of CMC, SO, and MocoInverse revealed that CMC 

provided the best muscle-driven simulation results, particularly for the lateral 

gastrocnemius (Gaslat) and knee moments, offering superior accuracy in 

muscle force prediction. SO and MocoInverse followed in performance, each 

with distinct strengths in computational efficiency and dynamic consistency. 

The analysis highlighted that shoe cushioning plays a significant role 

in altering the kinematic and kinetic parameters, especially during the stance 

phase. Hard shoe cushioning tends to increase impact forces, requiring 

muscles like the adductor magnus and sartorius to adapt over longer running 

distances. 
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Accumulated running distance was shown to influence muscle 

activation, with noticeable fatigue in deep muscles like the vastus intermedius 

and extensor digitorum longus at longer distances. This provides insight into 

how muscle endurance can be managed to prevent injuries in amateur runners. 

The study identified the limitations of the simulations, such as the 

difficulty in fully replicating the complex biomechanics of human running in 

silico. However, the results offer a foundation for further research and 

practical applications in improving amateur runner training programs. 

Overall, this research contributes to a deeper understanding of 

running biomechanics and demonstrates the utility of musculoskeletal 

simulations in providing insights that can lead to injury prevention and 

enhanced running performance. 

 

5.2 Recommendations for Future Work 

Future studies should explore forward dynamics using single shooting 

methods via SCONE and reinforcement learning via osim-rl, as shown in 

Figure 5.1. This will allow for more detailed simulations of neuromuscular 

control during running and provide greater insights into dynamic adaptations. 

 

  
Figure 5.1: SCONE’s Interface (Left) and osim-rl Training Interface (Right) 

 

 As illustrated in Figure 5.2, the osim-rl environment failed to run 

properly, halting without displaying any error message. Troubleshooting is 

required to identify the cause of this issue, which may stem from insufficient 

computer RAM, poor maintenance or lack of updates in the osim-rl platform, 
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or the need for modifications to the source code of the Python training 

packages. 

 

 
Figure 5.2: osim-rl Python Package Stops Without Prompting Any Coding 

Error 

 

Recruiting more subjects, especially female participants, and 

expanding age coverage will increase the generalizability of the results. A 

more diverse subject pool could reveal variations in biomechanical 

performance across different demographics, helping to refine training 

recommendations. 

Improving the precision of the simulation settings, such as reducing 

the mesh interval to 0.01 or increasing the decimal precision to 20 places 

during CMC, will enhance the accuracy of musculoskeletal models, leading to 

more reliable predictions results of muscle forces and joint moments. 

Open-loop forward dynamics can be attempted for simulating running 

motion given the neural command-based muscle control. However, this 

approach will require significantly more computational resources and precise 

simulation settings, given the complexity of accurately modelling these 

dynamics.
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