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ABSTRACT 

 

FORECASTING DATA WITH LONG MULTI-SEASONAL PERIODS 

IN THE ARIMA MODEL USING DISCRETE FOURIER TRANSFORM 

REGRESSORS 

 

YAP YI XIAN 

 

Time series data with multiple seasonalities often appear in data observed at 

high frequency. For instance, daily observed data may exhibit multiple seasonal 

patterns due to the combination of weekly, monthly, or annual periodicities. 

Traditional forecasting methods, such as the Autoregressive Integrated Moving 

Average (ARIMA) model, face significant challenges when dealing with long, 

multiple seasonal cycles. Specifically, the ARIMA model fitting function may 

suffer from memory insufficiency when handling long seasonal periods and is 

generally designed to handle univariate time series with a single seasonal pattern. 

To address these challenges, this study proposed a novel forecasting approach 

by integrating Multiple Seasonal Trend decomposition using Loess (MSTL), 

Discrete Fourier Transform (DFT), and ARIMA. Firstly, the MSTL algorithm 

was employed to decompose the time series into their constituent components. 

For the seasonal components, the properties of the Discrete Fourier Transform 

were utilized to serve as regressors in the ARIMA framework. The non-seasonal 

components, including the trend and remainder, were fitted using the ARIMA 

model. The proposed MSTL-DFT-ARIMA approach was then compared with 

the TBATS model, a known benchmark for handling multiple seasonalities. 
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From the results, MSTL-DFT-ARIMA approach outperforms TBATS in both 

forecast accuracy and computational efficiency. Hence, the integration of MSTL, 

DFT, and ARIMA provides a promising alternative for managing time series 

data with long multi-seasonal periods.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of the Study 

Time series refers to a set of ordered data points collected over a time interval 

(Umer et al., 2022). Time series analysis aims to develop a mathematical model 

that can forecast future values based on past observations. Seasonality is said to 

be present in a time series if there is a repeating pattern over a fixed period. 

Moreover, time series data can be observed over various lengths, ranging from 

short intervals like hours or days to much longer periods like years. When data 

are observed over longer time intervals, they often exhibit complex seasonalities, 

where multiple overlapping seasonal patterns emerge. For instance, daily data 

might display both weekly and annual patterns, whereas hourly data can be even 

more complex, exhibiting daily, weekly, and annual seasonalities (Hyndman 

and Athanasopoulos, 2021). These complex seasonal patterns are increasingly 

common in real-world scenarios. For example, daily minimum temperatures 

were recorded over centuries and stock indices were recorded every minute for 

several months (Wang et al., 2023). 

 

The Autoregressive Integrated Moving Average (ARIMA) model is a traditional 

time series analysis tool developed by Box and Jenkins (1976). The model 

assumes that future values in a time series can be predicted from its past values. 

ARIMA's strength lies in its ability to handle various types of data models such 

as non-stationary and seasonal patterns (Rizkya et al., 2019). Furthermore, it is 

a linear model that is good at handling linear relationships between variables. 
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However, it struggles with capturing more complex and nonlinear patterns such 

as sudden shocks (Ridwan, Sadik and Afendi, 2023). The requirement for 

applying ARIMA is the time series needs to be stationary, meaning that it has 

to hold a constant variance, covariance, and mean over time (Schaffer, Dobbins 

and Pearson, 2021). While ARIMA performs well in short to medium-term 

forecasting, its accuracy tends to decrease over longer forecast horizons. This is 

because the model’s reliance on past data and its assumptions about linearity 

and stationarity become less reliable, leading to less accurate predictions in the 

long term (Liu, 2024). 

 

On top of that, Multiple Seasonal-Trend decomposition using LOESS (MSTL) 

represents a multi-seasonal decomposition approach introduced by Bandara, 

Hyndman and Bergmeir (2022). This method is an extension of the classical 

Seasonal Trend decomposition using LOESS (STL) algorithm which uses 

Locally Estimated Scatterplot Smoothing (LOESS) to extract seasonal 

components from time series data (Manani, 2022). LOESS can be regarded as 

a non-parametric method that fits multiple local regressions to subsets of data 

points. Hence, it allows STL to capture complex and nonlinear more effectively 

than traditional linear methods by reducing the influence of noise and outliers 

(Jacoby, 2000). In context, the MSTL algorithm works by iteratively applying 

the STL procedure to detect and separate seasonal and non-seasonal 

components (Bandara, Hyndman and Bergmeir, 2022). The MSTL simplifies 

the time series analysis by breaking down time series into trend, seasonality, and 

residual. This breakdown aids in understanding the underlying patterns and 

making predictions. However, MSTL does not automatically account for 
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trading day or calendar variations, and there is limited information on specific 

scenarios where the model might underperform (Arneric, 2021). 

 

In Fourier analysis, a time series is often regarded as a mix of signals with 

different frequencies. The Fourier transform is a mathematical technique 

devised by a French mathematician from the 18th century, namely Jean-Baptiste 

Joseph Fourier (IEEE Pulse, 2016). It breaks down a time series into its 

individual frequency components and identifies the most important frequencies 

in the data (Keil et al., 2022). Some frequency components may appear as 

random, high-frequency signals, which often represent noise. These 

components can be filtered out by setting an appropriate threshold. Furthermore, 

the Fourier transform shifts the time series into the frequency domain. While 

the time domain representation only provides direct information about the 

values of the signal over time, the frequency domain representation offers a 

different perspective that can often be more insightful for certain types of 

analysis (Parsons, Boonman and Obrist, 2000). However, its limitation is that it 

cannot pinpoint exactly when a particular frequency occurs, which can be a 

drawback in analyzing signals with time-varying frequencies (Sakhuja, 2024). 

 

On the other hand, the Trigonometric, Box-Cox, ARMA, Trend, Seasonal 

(TBATS) model, developed by De Livera, Hyndman, and Snyder (2011), is an 

advanced approach designed for handling complex seasonal time series data. It 

is capable of handling seasonal patterns that are non-integer, non-nested, and of 

long periods, without imposing any constraints on the type of seasonality. Thus, 

it is possible for long-term forecasts (Nadeem, 2021). In addition, as a state-
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space model, TBATS can handle a larger parameter space to yield accurate 

forecasts (Munim, 2022). However, this flexibility comes at the cost of slower 

computation. In addition, TBATS requires evaluating numerous model 

candidates, which can be time-consuming, especially for multiple parallel time 

series (Hyndman and Athanasopoulos, 2021). 

 

 

1.2 Problem Statement 

Forecasting time series data with long seasonal periods poses significant 

challenges. One major issue is that ARIMA model fitting functions in software 

often struggle with memory insufficiency when dealing with long seasonal 

periods. This difficulty arises because the seasonal differencing process requires 

comparing current data with observations from many time points in the past. 

Such comparisons are computationally intensive and can lead to running out of 

memory, especially when the seasonal period exceeds 200 units (Wang et al., 

2023). Additionally, estimating model coefficients via maximum likelihood 

estimation adds further complexity, as it involves solving numerous linear 

systems, which further strains computational resources (Hyndman and 

Athanasopoulos, 2021).  

 

Moreover, most of the traditional methods are generally unable to account for 

multiple seasonal patterns (Hyndman and Athanasopoulos, 2021). For example, 

the traditional ARIMA models are designed to handle a single type of 

seasonality. Furthermore, Seasonal Autoregressive Integrated Moving Average 

(SARIMA) extends ARIMA to include seasonality but it can only handle one 
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seasonal pattern at a time (Williams, Sperl and Chung, 2023). On the other hand, 

even though Exponential Smoothing (ETS) is a popular time series approach 

for handling single seasonality, it performs poorly when applied to time series 

containing multiple seasonal patterns (Naim, Mahara and Idrisi, 2018). 

 

To tackle these challenges, this study proposed a novel algorithm to improve 

time series forecasting with long seasonal periods and multiple seasonal patterns. 

It will be discussed in greater detail in Chapter 3. 

 

 

1.3 Research Objectives 

The objectives of this study are: 

1. To develop a model capable of forecasting long multi-seasonal time 

series data by integrating the MSTL, ARIMA, and Discrete Fourier 

Transform. 

2. To compare the forecasting performance of the proposed method with 

TBATS in terms of computational efficiency and forecasting accuracy. 
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1.4 Significance of the Study 

Today's technology has made data collection easy and frequent, hence, long and 

multi-seasonal data can be commonly encountered in real life. Therefore, there 

is a need for a fast and effective model to handle these complexities. This study 

is significant because it explores the development of a model specifically 

designed to manage both long and multi-seasonal data simultaneously. 

Moreover, this model is expected to address the limitations of ARIMA in 

handling such data, while also improving the prediction accuracy and reducing 

computational time. The insights gained from this study could also pave the way 

for future research, by offering a preliminary idea for developing an alternative 

to multi-seasonal data analysis. 

 

 

1.5 Outline 

The remainder of this thesis is structured as follows:  

Chapter 2 reviews the literature relevant to this study. Chapter 3 elaborates on 

the research methods employed. Chapter 4 presents and discusses the results. 

Finally, Chapter 5 concludes the study and recommends potential extensions for 

future research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Past Approaches to Multi-seasonal Time Series 

There is a large body of literature that accommodates multiple seasonal patterns. 

Among the early studies, Harvey and Koopman (1993) developed an 

unobserved components method to model a time series with two seasonal 

periods, daily and weekly. Specifically, they used time-varying periodic splines 

within a state-space framework to model the seasonal components. Furthermore, 

Taylor (2003) extended the simple Holt-Winters model to capture seasonalities 

by incorporating multiple seasonal components into the linear framework of the 

model. This double seasonal exponential smoothing method allowed one 

seasonal cycle to be nested within another, but it assumed that the intra-day 

cycle was identical for every day of the week.  

 

Next, the Multiple Seasonal (MS) process model was introduced by Gould et al. 

(2008) to model multiple seasonalities. It was built upon the exponential 

smoothing techniques. The MS model was capable of handling additive and 

multiplicative seasonal effects. It also accounted for public holidays and missing 

data in the time series. However, they pointed out that the MS model must 

identify the recurring patterns across different cycles for multiple seasonal data, 

thus, this approach might be time-consuming. Despite this limitation, the model 

outperformed the traditional approaches such as Taylor’s Double Seasonal (DS) 

and Holt-Winters (HW) models, in forecasting utility demand and vehicle flows 

across various prediction horizons. However, most of these techniques were 
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prone to issues with optimization and overparameterization, as well as unable 

to capture complex seasonalities in time series data (De Livera, Hyndman and 

Snyder, 2011).  

 

To tackle the challenges in modelling complex seasonal patterns, De Livera, 

Hyndman and Snyder (2011) developed the TBATS model, an extension of the 

earlier BATS framework proposed by De Livera (2010). The BATS model was 

designed to manage multiple seasonalities in time series data. However, it 

struggled with capturing complex and high-frequency seasonal patterns. 

Therefore, De Livera et al. (2011) proposed the TBATS model, which integrated 

trigonometric functions into the BATS framework, thus, creating a more 

parsimonious and flexible version of the innovation state-space modelling 

framework. This framework could model multiple seasonal periods, calendar 

effects, or even non-integer seasonality. Hence, it can accommodate time series 

with complex seasonal patterns. 

 

A study conducted by Vieira, Sousa, and Dória-Nóbrega (2023) also found that 

the TBATS model was strong in handling non-integer frequencies, such as the 

365.25-day annual seasonality. However, despite its strengths in managing 

complex seasonalities, TBATS demonstrated lower predictive power than 

SARIMA and ETS in scenarios consisting of holiday effects. This might be due 

to the inability of TBATS to include external variables for holidays or other 

significant events that can influence a time series. As a result, the model might 

miss important variations that could improve the accuracy of the forecast, 
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particularly in cases where holidays or other external factors hold a significant 

role in the behaviour of the time series (Hyndman, 2017). 

 

To address this gap, Taylor and Letham (2018) introduced the Prophet model to 

decompose data into multiple components, then, fit each one separately, and 

combine them to generate forecasts. Prophet handled multiple non-integer 

seasonal periods through the use of the Fourier series. Additionally,  Prophet 

included a component specifically designed to model holidays or special events, 

which added a layer of precision that many other models lack. However, the 

Prophet approach struggled with multidimensional data and did not account for 

scale information. On top of that, it tends to function more as a curve-fitting 

model instead of fully capturing the temporal dependency structure within the 

data (Sousa, Tom and Moreira, 2022). 

 

Apart from that, Lakshmanan and Das (2017) introduced a two-stage 

framework to model time series with multiple levels of seasonalitiies. The first 

stage focused on fitting a regression model to capture lower frequency 

seasonalities, such as daily and weekly data. It used dummy variables to 

represent days of the week and incorporated weather-related covariates to 

account for annual patterns. This regression model helped to remove the major 

seasonal components from the data. If the regression model's residuals still 

contain significant patterns, methods like ARIMA or TBATS were applied to 

further refine the fit. In the second stage, the framework addressed high-

frequency components, such as hourly or minute-level patterns. This involved 

using the residuals from the first stage and applying classical decomposition 
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methods or polynomial functions to estimate the high-frequency seasonality. 

The study revealed that when dealing with time series that have multiple levels 

of seasonalities, the two-stage method yielded superior computational 

efficiency and accuracy compared to TBATS. Additionally, this approach could 

avoid overfitting and inconsistency issues. 

 

Another effective approach to handle multi-seasonal time series is through time 

series decomposition. The STL method developed by Cleveland et al. (1990) 

emerged as the most commonly used decomposition method. However, 

Hyndman and Athanasopoulos (2021) pointed out that STL was originally 

designed to handle only a single seasonality and did not account for calendar 

effects or special events. In reference to Moon, Lee and Song (2022), only a few 

traditional statistical models could decompose time series with multiple 

seasonalities, such as x11, and SEATS. Nonetheless, they revealed that these 

methods were limited in their ability to capture only quarterly and monthly 

periodicities. To overcome these limitations, Bandara, Hyndman and Bergmeir 

(2022) proposed a Multiple Seasonal Trend decomposition using Loess (MSTL) 

approach, which iteratively applied the STL to decompose time series with more 

than one seasonality. This method first separated the time series into individual 

components such as trends, residuals, and seasonalities. Then, each of these 

components was modelled independently. Lastly, the time series was fitted into 

the forecasting model that was capable of handling time series with multiple 

seasonalities. Hence, the complexity of the model was reduced compared to 

forecasting the entire time series in its entirety (Bandara, Hyndman and 

Bergmeir, 2022; Moon, Lee and Song, 2022). Next, Trull, García-Díaz and 
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Peiró-Signes (2022) also enhanced the STL methods by integrating discrete-

interval moving seasonalities (DIMS) to account for special events.  

 

Moreover, MSTL proved its capability in analyzing high-frequency data, as 

shown in the study by Arneric (2021), where it was applied to trading volume 

data for the DAX stock index. The 15-minute trading volume observations over 

five years were decomposed into monthly, hourly, and daily seasonal 

components. This decomposition offered deeper insights into trading 

behaviours. For instance, the monthly seasonality highlighted higher trading in 

January and downturns in May and August, daily seasonality highlighted the 

trading activity increased towards the end of the week, whereas hourly 

seasonality was most dominant and consistent, in which the trading volumes 

peaked at the beginning and end of the trading day. Notably, the decomposition 

captured over 50% of the variations in trading volume through these multi-

seasonal patterns. 

 

MSTL has found widespread application across various domains as it enabled 

each component to be modelled and forecast independently. For instance, in the 

study by Nan, Zhu, and Ma (2023), MSTL was a critical element in predicting 

wireless traffic in cellular networks. By breaking down cellular traffic data into 

daily and weekly seasonalities, trends, and residuals, MSTL enabled the 

separate modelling of each component. The seasonal components were refined 

using a global model that employed clustering techniques and a distance-

assisted attention mechanism to effectively capture both common and unique 
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spatiotemporal patterns across different cells. This approach resulted in superior 

performance in terms of forecasting accuracy and model efficiency. 

 

Similarly, Krechiem and Khadir (2023) utilized the MSTL method to analyze 

electricity consumption in Algeria by decomposing the data into daily and 

weekly seasonalities, trends, and residual components. This decomposition 

allowed them to understand the underlying structure of electricity demand. The 

residual component that captured high-frequency fluctuations, was modelled 

using Artificial Neural Network (ANN), specifically the Multilayer Perceptron 

(MLP) and Long Short-term Memory (LSTM) types. The modelled components 

were then combined to produce a final load forecast. The results of their study 

demonstrated that MSTL, in conjunction with ANN models, provided more 

accurate short-term load forecasting compared to classical predictive 

approaches. This was evidenced by lower RMSE and MAPE values. 

 

However, most of the seasonal-trend decomposition algorithms struggled with 

a high computational burden and demand a huge amount of data when multiple 

seasonalities and long-time series exist. To tackle this issue, Yang et al. (2021) 

explored a novel model that simplified the process. They proposed a multi-scale 

seasonal-trend decomposition method that first down-sampled the time series to 

a lower resolution and then transformed it into a time series with a single 

seasonal component. Hence, the existing decomposition algorithms could be 

applied more directly to estimate the trend and seasonal components. To further 

boost efficiency, the model incorporated an optimization technique using the 

Alternative Direction Multiplier Method (ADMM), which helped recover the 
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high-resolution components effectively. When this method was tested on 

synthetic data, it showed much lower MSE, and shorter computation times 

compared to traditional methods like STL and RobustSTL. 

 

 

2.2 Related Studies on Research Topic 

The use of Fourier analysis in time series forecasting has proven effective in 

overcoming the limitations of other methods in capturing seasonality (Lye et al., 

2009). Therefore, Fourier analysis has been extensively applied in various 

disciplines, including physics, economics, engineering, and seismology.  

 

In the context of electricity demand forecasting, McLoughlin, Duffy, and 

Conlon (2013) demonstrated how Fourier analysis could replicate the temporal 

characteristics of demand profiles at the level of individual dwellings. They 

found that Fourier transforms managed to replicate the temporal characteristics 

of demand profiles using only half the number of variables. However, the 

findings suggested that while Fourier transforms were valuable in scenarios 

where demand was more evenly distributed across the day, they might struggle 

with scenarios that involved peak demand.  

 

On top of that, Kang et al. (2023) advanced the application of Fourier analysis 

by integrating it with a Transformer architecture to enhance electric load 

forecasting. They approached electric load forecasting as a time series problem 

to extract periodic features from data. The methodology involved preprocessing 

the dataset by extracting time-based features, applying FFT to transform the 
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data to the frequency domain, and then using a Transformer model to process 

this frequency domain data and forecast load. Their model was tested against 

LSTM, GRU, ARIMA, and ResNet using data from 2,000 households over three 

years. The results demonstrated that the FFT-Transformer outperformed the 

benchmark models in forecasting accuracy through lower MSE and MAE. 

 

Besides, Fourier analysis is also useful in predicting consumer behaviour. FFT 

was applied by Lewis, Herbert, and Bell (2003) to predict call arrivals at a 24-

hour inbound telephone call center. Their approach first transformed the time 

series data into the frequency domain to identify dominant periodic components. 

Then, the phase shift, amplitude, and frequency were estimated using a 

nonlinear fitting procedure in the frequency domain. These components were 

then summed to reconstruct the time series and predict future values.  

Furthermore, they used a controlled dataset with a linear trend and three sine 

waves of different frequencies to validate the model. The result showed that the 

model's predictions matched the actual call data, showing good alignment of the 

daily and weekly cycles with the call center's workload patterns. 

 

In addition to these applications, Singh and McAtackney (2002) discussed a 

pattern modelling and recognition system that utilized Fourier transform for 

noise filtering. They noted that this technique enhanced the accuracy of their 

forecasting system. Similarly, Rao et al. (2006) focused on refining forecasts by 

using Fourier transform techniques. They shaped, filtered, and smoothed the 

forecasts by first applying FFT to transform the data into the frequency domain. 
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This process allowed them to eliminate higher harmonics that cause sudden 

fluctuation in the forecasted load. 

 

On the other hand, Hyndman and Athanasopoulos (2021) emphasized that the 

Dynamic Harmonic Regression (DHR) model with Fourier series terms often 

outperformed other approaches when dealing with long seasonal periods. 

Therefore, Permata, Prastyo and Wibawati (2022) explored forecasting methods 

for short-term electricity load, with a focus on long seasonal periods and 

calendar variations. This study compared the DHR model and its hybrid version 

with Double Seasonal ARIMA (DSARIMAX). The DHR model effectively 

captured long seasonal patterns by applying the Fourier series, which allowed it 

to address daily, weekly, and yearly harmonics in the data. However, they 

noticed that the DHR model alone performed reasonably well in capturing long 

seasonal patterns, but it was less effective in handling calendar variations when 

compared to the hybrid model. 

 

Moreover, Rausch, Albrecht, and Baier (2021) extended the DHR model 

specifically designed to handle long seasonal periods by incorporating 

additional predictor variables other than Fourier terms. The model utilized 

Fourier series terms to capture periodic components of the time series and 

ARIMA error terms to address short-term dynamics. They compared the DHR 

model's performance against traditional time series models like TBATS, ETS, 

and ARIMA, as well as machine learning models such as Gradient Boosting 

Regressor (GBR) and Random Forest (RF), using two datasets of 174 weeks of 

call and e-mail arrival data. The results showed that the DHR model, achieved 
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superior performance against all traditional time series models and machine 

learning approaches across all lead times, particularly in capturing long seasonal 

periods.  

 

 

2.3 Research Gap 

Although many studies have addressed either multi-seasonal patterns or long 

seasonal periods independently, there are relatively few approaches that tackle 

both complexities concurrently. Furthermore, previous studies have explored 

the use of the Fourier Series in handling long and multiple seasonal patterns, 

but the application of DFT as an exogenous variable within the ARIMA 

framework still remains underexplored. Since Kang et al. (2023) emphasized 

that the Fourier transform can handle various types of data efficiently, hence, 

this study aims to bridge this gap by employing the DFT to handle the time 

series with long and multi-seasonal periods.  
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CHAPTER 3 

METHODOLOGY 

 

3.1 Dataset Overview 

In this study, the dataset by Taylor (2003) was used for the development of the 

forecasting model. The dataset was a collection of electricity demand data taken 

in England and Wales, from 5th of June 2000 (Monday) to 27th of August 

(Sunday) of the same year. It comprised 4032 half-hourly records of electricity 

consumption in megawatts for 84 days. However, the data was truncated to 1600 

data points to simplify the analysis. The data demonstrated multiple seasonal 

effects, particularly showing a daily cycle with 48 half-hour periods and a 

weekly cycle with 336 half-hour periods.  

 

 

Figure 3.1: The time series graph of the electricity demand in England and 

Wales data (Truncated data with 1600 data points) 
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The time plot of the dataset is shown in Figure 3.1. Multiple seasonality patterns 

were observed. The large pattern, which repeated after approximately seven up-

and-down movements, represented the weekly cycle. On the other hand, the 

small pattern, that repeated within the weekly cycle represented the daily cycle. 

Furthermore, the amplitude of these cycles remained relatively stable 

throughout the observed period. 

 

3.2 Data Decomposition Using MSTL Method 

The MSTL algorithm decomposes the time series data using an additive 

approach. While traditional STL decompositions extract only a single seasonal 

component, MSTL iteratively applies the STL method to extract multiple 

seasonal elements within the time series.  

 

The STL decomposition performs smoothing on the time series using Loess in 

two recursive loops. In the inner loop, the seasonal component is calculated 

through detrending and seasonal smoothing with Loess. The trend component 

is then calculated through deseasonalized, and trend smoothing with Loess. The 

remainder is determined by subtracting the seasonal and trend components from 

the time series. Meanwhile, the outer loop minimizes the impact of outliers on 

the trend and seasonal components (Rehman, Shahrizal and Noorasiah, 2023). 

 

The decomposition of a time series 𝑍𝑡 using MSTL can be expressed as: 

𝑍𝑡 = 𝑇𝑡 + ∑ 𝑆𝑖,𝑡

𝑁

𝑖=1

+ 𝑅𝑡    
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where 𝑇𝑡  is the trend component,  𝑆𝑖,𝑡  are the seasonal components, 𝑅𝑡  is the 

remainder component, 𝑡 is the time index, which is the specific point in the time 

series being evaluated and 𝑁 is the number of seasonal components (Bandara, 

Hyndman and Bergmeir, 2022). 

 

The MSTL decomposition was performed using the ‘mstl’ function from the 

built-in ‘forecast’ package in R (Rdocumentation.org, n.d.). The MSTL 

effectively separated the time series into its constituent parts, which were the 

multiple seasonal components (𝑆𝑖,𝑡), trend component (𝑇𝑡), and the remainder 

component (𝑅𝑡). MSTL not only provided a clear view of the underlying trends 

and seasonal patterns but also allowed for the separate modelling and 

forecasting of each decomposed component. Once the modelling and 

forecasting were completed, these components were summed up to recreate a 

data structure identical to the original time series.  

 

 

3.3 ARIMA Model Fitting  

The ARIMA model is a prominent statistical approach that is extensively 

employed for time series analysis and forecasting. ARIMA modelling is a 

regression process where the current value, 𝑍𝑡 is predicted using both past 

values of 𝑍 and past forecast errors (𝜖𝑡). It combines autoregressive (AR) terms, 

differencing to make the data stationary (I for Integrated), and moving average 

(MA) terms to model the underlying data patterns (Bakar and Rosbi, 2017). 

Specifically, the AR component captures the influence of previous time series 
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values on the current value while the MA component captures the influence of 

past prediction errors on the current value. 

The 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) is expressed using the equation: 

𝑍𝑡
′ = 𝑐 + ∅1𝑍𝑡−1

′ + . . . +∅𝑝𝑍′
𝑡−𝑝 + 𝜃1𝜀𝑡−1+ . . . + 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡 

 

Furthermore, the equation can also be expressed in backshift notation:  

∅(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝑐 + 𝜃(𝐵)𝜀𝑡 

 

where the ∅𝑖 is the parameter of AR, 𝜃𝑖 is the parameter of MA, ∅(𝐵) = (1 −

∅1𝐵 − ⋯ − ∅𝑝𝐵𝑝) is a polynomial of degree 𝑝 in 𝐵, 𝜃(𝐵) = (1 + 𝜃1𝐵 + ⋯ +

𝜃𝑞𝐵𝑞)𝜀𝑡 (1 − 𝐵)𝑑 is a polynomial of degree 𝑞 in 𝐵, 𝑍𝑡 is the time series, 𝑍𝑡
′ is 

the differenced series, 𝑑 is the order of differencing to achieve stationary, 𝑐 is 

the constant term and 𝐵 is the backshift operator, 𝐵𝑖𝑍𝑡 = 𝑍𝑡−𝑖,  hence, 𝑍′𝑡 =

(1 − 𝐵)𝑍𝑡 (Schaffer, Dobbins and Pearson, 2021).  

 

In this study, the automatic algorithm developed by Hyndman and Khandakar 

(2008) was applied to identify the best-fitting ARIMA models. The automated 

ARIMA algorithm is advantageous as it can automatically return the best 

ARIMA model based on either Akaike Information Criterion (AIC), Corrected 

Akaike Information Criterion (AICc), or Bayesian Information Criterion (BIC). 

In the default setting, the model with the lowest AICc will be returned. It 

improves the overall model-fitting process by choosing the optimal model that 

achieves both the goodness of fit and complexity. Not only that, it also 

accurately identifies the appropriate lag values for the autoregressive and 

moving average components, which traditionally require manual inspection of 
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the autocorrelation function (ACF) and partial autocorrelation function (PACF) 

plots (Box and Jenkins, 1976). 

 

AIC is used to measure the performance of statistical models by considering 

both fit and complexity. It penalizes models by the number of parameters. It is 

defined as:  

𝐴𝐼𝐶 = 2𝑠 − 2𝐿𝑜𝑔(𝐿)    

where 𝐿 refers to the maximized value of the likelihood function for the model 

and 𝑠 refers to the number of estimated parameters in the model (Chakrabarti 

and Ghosh, 2011). 

 

In contrast, BIC also assesses model quality but imposes a stronger penalty for 

the number of parameters compared to AIC. It is derived from Bayesian 

probability and defined as: 

𝐵𝐼𝐶 = 𝐿𝑜𝑔(𝑛)𝑠 − 2𝐿𝑜𝑔(𝐿)     

where 𝐿 is the maximized value of the likelihood function for the model. 𝑛 is 

the number of observations and 𝑠 is the number of estimated parameters in the 

model (Shi and Tsai, 2002). 

 

Besides, AICc is an adjusted version of AIC to improve model selection for 

small sample sizes. This correction applies a stronger penalty when the number 

of parameters is high compared with the sample size, thus rectifying the bias 

that occurs in AIC due to the small, limited, and insufficient sample size. When 

𝑛 increases, the correction term diminishes and  AICc will converge to AIC. 
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Therefore, AICc is a more reliable criterion for small samples and gives similar 

results to AIC for larger datasets.  

 

It is defined as: 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +  
2𝑠(𝑠 + 1)

𝑛 − 𝑠 − 1
    

where 𝑠 is the number of estimated parameters in the model and 𝑛 is the number 

of observations (Brewer, Butler and Cooksley, 2016). 

 

In this study, the best-fitting ARIMA model was selected based on minimizing 

the AICc criterion in the model identification process. AICc was chosen because 

it could balance the model fit and complexity, ensuring high parsimony and 

optimal forecast performance (Hyndman and Athanasopoulos, 2021). The 

ARIMA fitting was conducted using the ‘auto.arima’ function from the built-in 

‘forecast’ package in R (Rdocumentation.org, n.d.).  

 

 

3.4 Discrete Fourier Transform 

The Discrete Fourier Transform (DFT) maps a time-domain signal into a 

frequency domain and vice versa using the Inverse Discrete Fourier Transform 

(IDFT) (Kong, Siauw and Bayen, 2020). The transformation is visualized in 

Figure 3.2 below. Importantly, no information is lost when moving between the 

frequency domain to the time domain. Therefore, crucial information such as 

harmonics, amplitude, and phase are preserved in the transformation (Parsons, 

Boonman and Obrist, 2000). 
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Figure 3.2: The transformation between the time domain and frequency domain 

using DFT and IDFT 

 

The DFT can be mathematically expressed as: 

𝑦𝑘 =
1

𝑁
∑ 𝑧𝑡𝑒

−2𝜋𝑖(𝑘−1)(𝑡−1)
𝑁

𝑁

𝑡=1

, 𝑘 = 1,2,3, … . . , 𝑁                                                (1)  

 

The IDFT can be mathematically expressed as: 

𝑓𝑡 = ∑ 𝑦𝑘𝑒
2𝜋𝑖(𝑘−1)(𝑡−1)

𝑁

𝑁

𝑘=1

 , 𝑡 = 1,2, … , 𝑁                                                          (2)   

 

where 𝑧𝑡 , 𝑓𝑡 are the time-domain data, 𝑦𝑘 is the frequency-domain coefficient, 

𝑘 is the index of the frequency component, 𝑁 is the number of data points, and 

𝑖 is the imaginary unit (Jain and Singh, 2011). 

 

In this study, the DFT was applied to the seasonal components of the time series 

data. The underlying seasonal patterns were represented as combinations of 

sinusoids with different frequencies, amplitudes, and phases. By analyzing 
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those frequency components, important seasonal patterns were identified 

(Dhuriya, 2021).  

 

The DFT was executed using the ‘fft’ function from R’s built-in ‘stats’ package 

(Rdocumentation.org, n.d.). The ‘fft’ function computed the DFT in a fast 

manner using the Fast Fourier Transform (FFT) algorithm. It optimized the 

computation process, reducing both time and memory usage when compared to 

the standard DFT calculation methods. 

 

The output of the FFT was a set of complex numbers, each representing a 

different frequency component of the seasonal data. These complex numbers 

encoded both amplitude and phase information of the frequency components 

that made up the seasonality.  

 

By applying the IDFT to these frequency components, the original data points 

could be accurately reconstructed. However, if the IDFT was applied manually 

using formula (2) in R, rather than relying on a built-in function, it allowed the 

time variable 𝑡 to be extended to the desired length. By extending 𝑡 beyond the 

original data length, the periodicity characteristics of the IDFT caused the 

transformation to create a repeating pattern. These repeating patterns 

corresponded to the seasonal patterns in the data and could be used as the future 

value, serving as the exogenous regressor in the Arima model. The result of this 

process was illustrated in Figure 3.4.2 using an example with the data points 

𝑧 = (2,1,4,5,5,4) and extending to a forecast horizon of 16. As can be seen in 
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Figure 3.3, those repeating patterns preserved the original pattern of the data 

points. 

 

 

Figure 3.3: The graph of original and extended data points using IDFT 

 

Notably, the exogenous variable must have values for every single time point in 

the dataset (Andres, 2023). Therefore, the 𝑡 must be extended so that the number 

of data points matches the forecast horizon before model forecasting. This 

ensures that the ARIMA model could use both the past values of the time series 

and the corresponding values of the exogenous variable to generate reliable 

forecasts. 

 

 

3.5 The MSTL-DFT-ARIMA Model 

To facilitate model training and evaluation, the data was first divided into 

training and testing sets. Then, the MSTL-DFT-ARIMA algorithm was 
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performed on the training set. Figure 3.4 presents a block diagram that 

delineates the entire process of how the algorithm works. 

 

 

Figure 3.4: The block diagram of the MSTL-DFT-ARIMA algorithm 

 

The time series data was first decomposed using MSTL, isolating the residual, 

trend, and seasonal components. Then, the residual and trend components were 

summed up and modelled using an ARIMA model to capture the non-seasonal 
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patterns and generate forecasts. On the other hand, the seasonal components 

were combined and converted into the frequency domain using discrete Fourier 

transform (DFT). In the frequency domain, the seasonal component was 

decomposed into a series of sinusoids to provide a more detailed and 

interpretable representation of the underlying periodic patterns. Furthermore, 

the process was reversed using the inverse DFT. During the inverse DFT, the 

data point was extended to match the size of the forecast horizon.  

 

For model fitting, only the inverse-transformed data segment corresponding to 

the length of the training data was used as an exogenous regressor in the ARIMA 

model. Next, the fitted ARIMA model, where the inverse-transformed data with 

a length matching the forecast horizon served as the regressor was used for 

forecasting. This ensured that the seasonal patterns were accurately captured 

across the forecast period, with each forecasted point having a corresponding 

regressor value that reflected the extended seasonal patterns. Lastly, the two sets 

of forecasted values, from the non-seasonal components and seasonal 

components, were summed to get the total forecast.  

 

An exogenous variable is an external input to the model that is not predicted by 

the model itself but is used to enhance the forecasting accuracy (Howell, 2023).  

In this study, the exogenous variable was derived from the data after applying 

the inverse DFT. It represented the periodic patterns identified in the seasonal 

components. By including this exogenous feature in the ARIMA model, the 

model not only relies on past values but also incorporates the specific seasonal 
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cycles found in the data. This combination allows the ARIMA model to make 

better use of the repeating patterns in the data, resulting in more accurate 

predictions of seasonal components. 

Therefore, the equation of the ARIMA model with the inverse discrete Fourier 

transform regressor will be the combination of the ARIMA model equation and 

the regression model equation. The model can be expressed as: 

𝑍𝑡
′ = 𝛽1𝑋𝑡

′ + 𝜂𝑡
′  

where 𝑍𝑡
′  is the differenced series, 𝑋𝑡

′  is the differenced exogenous variable 

(derived from the inverse DFT), and 𝛽1 is the coefficient of the regressor. The 

term 𝜂𝑡
′  captures the residual component that is further modelled using the 

ARIMA process: 

 

𝜂𝑡
′ = ∅1𝜂𝑡−1

′ + . . . +∅𝑝𝜂′
𝑡−𝑝

+ 𝜃1𝜀𝑡−1+ . . . + 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡 

where ∅𝑖  are the autoregressive parameters, 𝜃𝑗 are the moving average 

parameters, and 𝜀𝑡 is the error term (Hyndman and Athanasopoulos, 2021). 

 

 

3.6 Forecasting (TBATS) 

The methodology behind TBATS is structured to automate the modelling 

process and generate accurate forecasts by decomposing overall seasonal 

patterns into several individual components, each with distinct frequencies. 
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The TBATS model can be expressed as: 

TBATS(𝑞, 𝑝, 𝜔, 𝜑, {𝑚1, 𝑘1}, {𝑚2, 𝑘2}, . . . , {𝑚𝑇 , 𝑘𝑇 })    

where each component has a specific function: 

𝜔  = the Box-Cox transformation parameter, which stabilizes the time series 

variance. 

 𝜑 = damping parameter, regulating the impact of past values on future ones. 

𝑞 = the orders of the moving average (MA) components 

𝑝= the orders of the autoregressive (AR) components 

{𝑚1, 𝑘1}, {𝑚2, 𝑘2}, . . . , {𝑚𝑇, 𝑘𝑇 }  = the seasonal periods and the number of 

harmonics used to model each seasonal element (Yu et al., 2021). 

 

The modelling process starts with the Box-Cox transformation to deal with 

nonlinearity in the data. This transformation makes the time series more linear 

and homoscedastic so that the model fits better. This transformation is defined 

as: 

𝑧𝑡
(𝜔)

= {

𝑧𝑡
𝜔 − 1

𝜔
  𝑖𝑓 𝜔 ≠ 0

log(𝑧𝑡) 𝑖𝑓 𝜔 = 0,
 

where 𝑧𝑡 is the original time series, and 𝜔  is the Box-Cox transformation 

parameter and 𝑧𝑡
(𝜔)

is the observations that have undergone transformation using 

the Box-Cox method with the parameter 𝜔. 

Next, the TBATS model accommodates multiple and complex seasonalities by 

incorporating trigonometric terms. In this case, each seasonal component is 

represented using a Fourier series, which includes a sum of sine and cosine 

terms.  
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The modelling equation is defined as: 

𝑧𝑡 = ∑ 𝛼𝑗cos (
2𝜋𝑗𝑡

𝑚

𝐽

𝑗=1

) +    ∑ 𝛽𝑗sin (
2𝜋𝑗𝑡

𝑚

𝐽

𝑗=1

)        

where 𝑚 is the seasonal period, 𝛼𝑗 and 𝛽𝑗 are coefficients estimated from the 

data and the number of harmonics, 𝐽 determines the smoothness of the seasonal 

component, with more harmonics capturing more detailed seasonal patterns. 

 

Furthermore, the state space representation of the TBATS model is then 

constructed. It is composed of seasonal components, a trend component, and an 

ARMA error component. The parameters of the TBATS model are estimated 

using a MLE approach. More specifically, it is done by iteratively updating the 

state vector and associated variances by the use of the Kalman filter (Hyndman 

and Athanasopoulos, 2021). 

 

The automation of the TBATS model involves heuristic searching for the best 

parameters, supplemented by model selection criteria like AIC. This ensures 

that the model is both parsimonious and capable of capturing the features of the 

time series. The state space structure propagates the state vector forward in time 

using the estimated parameters to do forecasting. This process automatically 

accounts for the trend, seasonal patterns, and autocorrelations in the residuals to 

obtain reliable forecasts (De Livera, Hyndman and Snyder, 2011). 

 

In this study, the TBATS model was applied to the same dataset using the ‘tbats’ 

function from the built-in ‘forecast’ package in R (Rdocumentation.org, n.d.). 

The forecast horizon for both the TBATS model and the proposed model was 
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set identically. This alignment allowed for a direct comparison of both model 

performances over the same time period, which will be further discussed in the 

subsequent section 3.7. 

 

 

3.7 Model Evaluation  

To compare the proposed MSTL-DFT-ARIMA model with the TBATS model, 

both models were applied to the same dataset with an identical forecast horizon 

of 1,000 data points. The size of the training and testing sets was kept the same 

for both models, and their forecast accuracy and computing time were measured 

to evaluate their effectiveness. 

 

3.7.1 Quantitative Forecast Accuracy 

The out-of-sample predictive performances of the MSTL-DFT-ARIMA and 

TBATS models were evaluated using the testing set. Three forecast accuracy 

metrics, namely Mean Absolute Percentage Error (MAPE), Root Mean Squared 

Error (RMSE), and Mean Absolute Error (MAE) were calculated from the 

differences between the observed values in the testing set and the corresponding 

forecasts. The detailed information on these three error measures is presented in 

Table 3.1 below.  
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Table 3.1: Summary of Accuracy Metrics 

Measure Formula Purpose 

MAE 1

𝑁
∑|𝑍𝑡 − 𝑍𝑡̂|

𝑁

𝑖=1

 

Quantifies the average magnitude of 

errors without taking the direction 

into account, providing a 

straightforward measure of forecast 

accuracy. 

MAPE 1

𝑁
∑ |

𝑍𝑡 − 𝑍̂𝑡

𝑍𝑡
|

𝑁

𝑡=1

 

Expresses forecast accuracy in 

percentage form, making it easier to 

compare performance across 

different models. 

RMSE 

√
1

𝑁
∑(𝑍𝑡 − 𝑍𝑡̂)

2
𝑁

𝑖=1

 

It highlights significant deviations in 

forecasts. 

 

In context, 𝑁 refers to the total number of data points in the testing set, 𝑍𝑡̂ is the 

predicted value from the forecasted data and 𝑍𝑡  is the actual value from the test 

data (Hyndman and Koehler, 2006).  

 

 

3.7.2 Computational Efficiency 

The computational efficiency was assessed using the elapsed time required for 

model fitting and forecasting for both the TBATS and MSTL-DFT-ARIMA 

models. 
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3.8 Forecast Performance Comparison – Time Series Cross-Validation 

The cross-validation method that used in classification with independent 

observations is not directly applicable to time series forecasting. This is because 

time series data must preserve their temporal order, where the observations are 

ordered chronologically and depend on preceding values (Assaad and Fayek, 

2021). 

 

For time series forecasting, the time series cross-validation or rolling window 

approach is analogous to the traditional cross-validation methods. In this 

approach, the model is trained using either a fixed window or an expanding 

window. In the fixed window approach, the size of the training set remains 

constant while the window slides forward in time (refer to Figure 3.5 A). This 

method uses a fixed amount of past data to predict future values, allowing for a 

consistent comparison across iterations. On the other hand, the expanding 

window approach starts with an initial training size and gradually incorporates 

more recent data as time progresses (refer to Figure 3.5 B). This enables the 

model to learn from an increasing amount of information (Hewamalage, 

Ackermann and Bergmeir, 2022). 
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Figure 3.5: (A) Cross-validation based on Fixed Window Approach (B) Cross-

validation based on Expanding Window Approach (Shojaei and Flood, 2018) 

 

In this study, a rolling origin cross-validation method was applied to compare 

the performance of both the proposed model (MSTL-DFT-ARIMA) and the 

TBATS model in handling the long, multi-seasonal data. The original dataset of 

4032 points was truncated to 1600 points to shorten the validation time. The 

cross-validation procedure began with an initial training set of 1400 data points, 

and the next 200 points were designated as the testing set. This train-test split 

preserved the time order of the data.  

 

Contrary to the typical expanding window approach, this study started with the 

longest training window and gradually shortened it in each iteration. The 

training set decreased by 20 data points while the testing set shifted backward 

in time in each subsequent iteration. Each iteration was analogous to one-fold 

in traditional cross-validation. The process involved five repetitions, resulting 

in five distinct iterations. Notably, a different model was created and evaluated 
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for its forecast performance for every iteration. The idea is illustrated in Figure 

3.6 below. 

 

 

Figure 3.6: The bar chart of the rolling origin cross-validation procedure with 

a step-back loop 

 

Furthermore, each model's accuracy and computational efficiency were 

evaluated in each iteration. If the proposed model consistently showed a lower 

MAE, MAPE, RMSE, and computing time than the TBATS model, it indicated 

superior performance on the given data. Conversely, if the TBATS model 

showed lower error metrics and computing time, it was regarded as the better-

performing model. 

 

The study recognized that using a single dataset might lead to biased or 

misleading comparisons between forecast models. Therefore, the rolling origin 

cross-validation procedure with a step-back loop was employed. This approach 

evaluated the models' performance across different historical periods with 
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different amounts of training data. Hence, the risk of bias from randomly 

choosing a single training and testing set was reduced. Consequently, the model 

performance assessments were more reliable and not merely a result of chance 

(Hyndman and Athanasopoulos, 2021).   
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

This section discussed and compared the forecasting results of the MSTL-DFT-

ARIMA and TBATS models. Five-fold cross-validation has been performed for 

both methods to ensure a more reliable evaluation. 

 

4.1 Data Decomposition Using MSTL Method 

The training set was first decomposed using the MSTL method, which separates 

the series into its trend, multiple seasonal components, and remainder. The 

decomposition is represented by the following equation: 

𝑍𝑡 = 𝑇𝑡 + 𝑆48,𝑡 + 𝑆336,𝑡 + 𝑅𝑡   

where 𝑍𝑡 is the original time series, 𝑇𝑡 is the trend component, 𝑆48,𝑡 and 𝑆336,𝑡 

are the seasonal components with periods of 48 and 336, respectively, and 𝑅𝑡 is 

the remainder component.  

 

  

Figure 4.1: The components of the 1380 training data points under MSTL 

decomposition 
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Figure 4.1 shows the individual plots of these decomposed components. 

Compared to the original time series, the decomposed components exhibit 

simpler patterns. This reduction in complexity leads to a more nuanced 

understanding of the data. It also simplifies the modelling of each component, 

thus improving the overall model fitting. 

 

Based on Figure 4.1, the original time series data (𝑍𝑡 ) appears to move up and 

down regularly, which suggests that there are underlying seasonal trends. Next, 

the trend component (𝑇𝑡) shows a clear downward slope followed by an upward 

trend. Moreover, the seasonal48 components (𝑆48,𝑡 ) shows a clear repeating 

pattern every day, corresponding to 48-time units. Moreover, the seasonal336 

components (𝑆336,𝑡) shows a clear repeating pattern every week, corresponding 

to 336-time units. Lastly, the remainder component (𝑅𝑡) fluctuates irregularly 

without any obvious pattern. 
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4.2 ARIMA Model Fitting  

The ARIMA model was fitted to the training set through the automatic algorithm 

developed by Hyndman and Khandakar (2008). The model orders selected for 

the five iterations are presented in Table 4.1. 

 

Table 4.1: Optimal model selection for each iteration 

Iteration Non-seasonal Model Seasonal Model 

1 𝐴𝑅𝐼𝑀𝐴(0,1,4) 𝐴𝑅𝐼𝑀𝐴(3,0,1) 

2 𝐴𝑅𝐼𝑀𝐴(0,1,4) 𝐴𝑅𝐼𝑀𝐴(3,0,1) 

3 𝐴𝑅𝐼𝑀𝐴(0,1,4) 𝐴𝑅𝐼𝑀𝐴(3,0,1) 

4 𝐴𝑅𝐼𝑀𝐴(1,1,3) 𝐴𝑅𝐼𝑀𝐴(3,0,1) 

5 𝐴𝑅𝐼𝑀𝐴(1,1,3) 𝐴𝑅𝐼𝑀𝐴(5,0,0) 

 

The optimal models identified in each iteration are detailed below, along with 

their equivalent representations using the backshift operator. 

 

Iteration 1 

Non-Seasonal Model (ARIMA(0,1,4)): 

𝑍𝑡
′ =  𝜖𝑡 − 0.0627𝜖𝑡−1 + 0.0298𝜖𝑡−2 − 0.0658𝜖𝑡−3 − 0.0505𝜖𝑡−4 

(1 − 𝐵)𝑍𝑡 = (1 − 0.0627𝐵 + 0.0298𝐵2 − 0.0658𝐵3 − 0.0505𝐵4)𝜖𝑡  

Seasonal Model (ARIMA(3,0,1)): 

𝑍𝑡 = 0.5067𝑍𝑡−1 + 0.6715𝑍𝑡−2 − 0.3845𝑍𝑡−3 + 𝜖𝑡 − 0.9350𝜖𝑡−1

+ 0.9975𝑋𝑡 

(1 − 0.5067𝐵 − 0.6715𝐵2 + 0.3845𝐵3)𝑍𝑡 = (1 − 0.9350𝐵)𝜖𝑡 + 0.9975𝑋𝑡 
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Iteration 2 

Non-Seasonal Model (ARIMA(0,1,4)): 

𝑍𝑡
′ =  𝜖𝑡 − 0.0590𝜖𝑡−1 + 0.0292𝜖𝑡−2 − 0.0657𝜖𝑡−3 − 0.0487𝜖𝑡−4 

(1 − 𝐵)𝑍𝑡 = (1 − 0.0590𝐵 + 0.0292𝐵2 − 0.0657𝐵3 − 0.0487𝐵4)𝜖𝑡  

Seasonal Model (ARIMA(3,0,1)): 

𝑍𝑡 = 0.5125𝑍𝑡−1 + 0.6541𝑍𝑡−2 − 0.3890𝑍𝑡−3 + 𝜖𝑡 − 0.9096𝜖𝑡−1

+ 0.9985𝑋𝑡 

(1 − 0.5125𝐵 − 0.6541𝐵2 + 0.3890𝐵3)𝑍𝑡 = (1 − 09096𝐵)𝜖𝑡 + 0.9985𝑋𝑡  

 

Iteration 3 

Non-Seasonal Model (ARIMA(0,1,4)): 

𝑍𝑡
′ =  𝜖𝑡 − 0.0591𝜖𝑡−1 + 0.0325𝜖𝑡−2 − 0.0627𝜖𝑡−3 − 0.0482𝜖𝑡−4 

(1 − 𝐵)𝑍𝑡 = (1 − 0.0591𝐵 + 0.0325𝐵2 − 0.0627𝐵3 − 0.0482𝐵4)𝜖𝑡  

Seasonal Model (ARIMA(3,0,1)): 

𝑍𝑡 = 0.5284𝑍𝑡−1 + 0.6173𝑍𝑡−2 − 0.3759𝑍𝑡−3 + 𝜖𝑡 − 0.8868𝜖𝑡−1

+ 0.9986𝑋𝑡 

(1 − 0.5284𝐵 − 0.6173𝐵2 + 0.3759𝐵3)𝑍𝑡 = (1 − 08868𝐵)𝜖𝑡 + 0.9986𝑋𝑡  
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Iteration 4 

Non-Seasonal Model (ARIMA(1,1,3)): 

𝑍𝑡
′ = 0.8713𝑍𝑡−1

′ + 𝜖𝑡 − 0.9414𝜖𝑡−1 + 0.0864𝜖𝑡−2 − 0.0881𝜖𝑡−3                 

(1 − 0.8713𝐵)(1 − 𝐵)𝑍𝑡 = (1 − 0.9414𝐵 + 0.0864𝐵2 − 0.0881𝐵3)𝜖𝑡  

Seasonal Model (ARIMA(3,0,1)): 

𝑍𝑡 = 0.9994𝑋𝑡 + 0.5207𝑍𝑡−1 + 0.6111𝑍𝑡−2 − 0.3801𝑍𝑡−3 − 08999𝜖𝑡−1

+ 𝜖𝑡 

(1 − 0.5207𝐵 − 0.6111𝐵2 + 0.3801𝐵3)𝑍𝑡 = (1 − 08999𝐵)𝜖𝑡 + 0.9994𝑋𝑡  

 

Iteration 5 

Non-Seasonal Model (ARIMA(1,1,3)): 

𝑍𝑡
′ = 0.8570𝑍𝑡−1

′ + 𝜖𝑡 + 0.9266𝜖𝑡−1 − 0.0803𝜖𝑡−2 + 0.0885𝜖𝑡−3    

(1 − 0.8570𝐵)(1 − 𝐵)𝑍𝑡 = (1 + 0.9266𝐵 − 0.0803𝐵2 + 0.0885𝐵3)𝜖𝑡 

Seasonal Model (ARIMA(5,0,0)): 

𝑍𝑡 = 1.4706𝑍𝑡−1 − 0.7143𝑍𝑡−2 + 0.1569𝑍𝑡−3 − 0.1809𝑍𝑡−3 + 0.1694𝑍𝑡−3

+ 1.0013𝑋𝑡 

(1 − 1.4706𝐵 + 0.7143𝐵2 − 0.1569𝐵3 + 0.1809𝐵4 − 0.1694𝐵5)𝑍𝑡

= 1.0013𝑋𝑡 

 

where 𝑍𝑡  is the time series, 𝑍𝑡
′  is the differenced series, 𝐵  is the backshift 

operator, 𝜖𝑡 is the error term and 𝑋𝑡 refers to the exogenous regressor (IDFT) 

included in the ARIMA model. 

 

These models ensure that both non-seasonal and seasonal components are 

accurately captured. Thus, providing robust forecasts for the time series data. 
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4.3 Forecasting Accuracy Comparison and Visualization: TBATS vs 

MSTL-DFT-ARIMA 

 
4.3.1 Visualization 

The forecasts from the MSTL-DFT-ARIMA and TBATS models are plotted 

together with the corresponding testing set and a segment of the training set on 

the same figure for a visual accuracy comparison. Notably, the forecasted data 

extends beyond the testing data to assess the models’ ability to capture the long 

(i.e. the weekly) seasonal pattern besides the short (i.e. daily) seasonal pattern.  

Figure 4.2 presents the accuracy comparison for the initial iteration, while 

Figures 4.3, 4.4, 4.5, and 4.6 display the plots for the remaining four iterations.  

 

 

Figure 4.2: The plot of truncated training data (1400 data points), testing data  

& forecasted data using MSTL-DFT-ARIMA and TBATS for iteration 1 
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Figure 4.3: The plot of truncated training Data (1380 data points), testing data 

& forecasted data using MSTL-DFT-ARIMA and TBATS for iteration 2 

 

 

Figure 4.4: The plot of truncated training Data (1360 data points), testing data 

& forecasted data using MSTL-DFT-ARIMA and TBATS for iteration 3 
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Figure 4.5: The plot of truncated training Data (1340 data points), testing data 

& forecasted data using MSTL-DFT-ARIMA and TBATS for iteration 4 

 

 

 

Figure 4.6: The plot of truncated training Data (1320 data points), testing data 

& forecasted data using MSTL-DFT-ARIMA and TBATS for iteration 5 
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In all the plots, the forecasted data for TBATS (blue line) and MSTL-DFT-

ARIMA (green line) closely match the patterns of the test data (red line), 

indicating that both MST-FFT-ARIMA and TBATS models effectively capture 

the seasonalities and trends of the testing data. However, with a more zoomed-

in observation of the forecasted lines, it is observed that the MSTL-DFT-

ARIMA forecast line adheres more tightly to the fluctuations in the test data, 

whereas TBATS shows slight deviations from the actual test data. 

 

 

4.3.2 Quantitative Forecast Performance 

The forecast accuracies of both the MSTL-DFT-ARIMA and TBATS models 

for each iteration are summarized in Table 4.2 in terms of RMSE, MAPE, and 

MAE. 

 

Table 4.2: Forecast error comparison for MSTL-DFT-ARIMA and TBATS for 

each iteration 

Metrics Iteration MSTL-DFT-ARIMA TBATS 

RMSE 1 514.91 792.51 

 2 487.37 948.19 

 3 464.94 774.55 

 4 510.07 936.24 

  5 471.29 863.24 

MAE 1 373.54 653.67 

 2 400 763.58 

 3 368.74 661.16 
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 4 397.2 775.78 

  5 373.32 691 

MAPE (%) 1 1.14 2.14 

 2 1.3 2.7 

 3 1.19 2.06 

 4 1.43 2.46 

 5 1.29 2.25 

 

Across all five iterations, the MSTL-DFT-ARIMA model demonstrates good 

forecasting capabilities, as evidenced by its lower RMSE, MAE, and MAPE 

values.  

 

 

4.3.3 Computational Efficiency 

The total computational times for the model fitting and forecasting processes 

are presented in Table 4.3. 

 

Table 4.3: Computational time for MSTL-DFT-ARIMA and TBATS for each 

iteration 

Iteration Proposed Model (seconds) TBATS Model (seconds) 

1 2.59 116.60 

2 2.40 77.86 

3 2.60 77.50 

4 0.90 100.57 

5 0.85 92.98 
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The MSTL-DFT-ARIMA model took significantly less time to fit the model and 

forecast for each of the five iterations, with computation durations ranging from 

roughly 0.85 to 2.60 seconds. On the other hand, the computing times of the 

TBATS model range from about 77.50 seconds up to 116.60 seconds. Thus, the 

proposed model outranks the TBATS model in handling long and multi-seasonal 

data in terms of computational efficiency. 

 

Based on the above results, the MSTL-DFT-ARIMA model shows a superior fit 

when comparing the forecasted data to the test data. It also demonstrates both 

high speed and accuracy. These superior performances are primarily due to the 

ability of the proposed model to partition the data into manageable subseries, 

such as trend, seasonal, and residual components using MSTL. This 

decomposition reduces the data complexity and permits a deeper understanding 

of underlying patterns and trends. Additionally, the model further enhances its 

ability to capture long and multi-seasonal variations by fully utilizing the 

periodicity of inverse discrete Fourier transform to create the exogenous 

regressor, which is then included in the ARIMA model. This approach allows 

the model to more accurately capture and forecast seasonal dynamics. Moreover, 

the efficiency of the FFT algorithm also speeds up the computation. Hence, the 

decomposition of the time series and the integration of these regressors into the 

ARIMA model improves the overall forecasting performance. 

 

While the TBATS model is effective in capturing complex seasonality, it is 

computationally intensive. Furthermore, the parameter estimation in TBATS is 

slower because the prediction length often requires extensive computation. 
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Hence, a longer time is needed to fit the model, and do forecasting (Hyndman 

and Athanasopoulos, 2021).  
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CHAPTER 5 

CONCLUSIONS 

 

5.1 Summary of Research 

In today’s world, where scientific research is greatly valued and digital 

technology is rapidly evolving, data collection has become easier and more 

frequent. Hence, multiple seasonal data will be encountered commonly. That 

said, a fast and good model is in demand. Therefore, this research has introduced 

a forecasting method using MSTL, ARIMA, and DFT, mainly to handle long 

and multi-seasonal data. The remarkable features of the proposed model are the 

use of DFT and the extended inverse DFT (IDFT) to serve as an exogenous 

regressor in the ARIMA framework. Since only one dataset was used in this 

study, TSCV was adopted to ensure a more valuable evaluation. Furthermore, 

the forecast performances of MSTL-DFT-ARIMA were compared with TBATS 

in terms of RMSE, MAPE, and MAE. The result shows that the MSTL-DFT-

ARIMA outperformed TBATS in both prediction accuracy and computational 

time across all 5 iterations of TSCV. 
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5.2 Limitations and Recommendations 

One of the limitations of the proposed MSTL-DFT-ARIMA model is it 

considers that the data is available every day, without accounting for gaps like 

weekends, holidays, or festivals. Furthermore, the model was tested using only 

one dataset throughout the study, which did not exhibit an increasing trend or 

variance. This limitation restricts the generalizability of the model, as it may not 

perform as well on datasets with different characteristics, such as those showing 

an upward trend or increasing variance over time. Another limitation is that the 

model was compared only with the TBATS model. This limited comparison 

may not fully highlight the strengths and weaknesses of the MSTL-DFT-

ARIMA model. On top of that, the study did not perform residual diagnostic 

tests such as the Ljung-box test to assess the adequacy of the model. Those 

diagnostic tests ensure the residuals are uncorrelated and follow a white noise 

process. Thus, the absence of such tests may cause issues related to model 

assumptions and fit unaddressed, affecting the forecasting results.  

 

To address these limitations, future research should explore the effects of 

weekends and holidays on the model performance. Next, future studies should 

experiment with a broader range of datasets with varying characteristics, rather 

than relying on a single dataset. For instance, further research may also try to 

apply the model to non-seasonal data or data with changing periodicity over 

time to see whether the model works well or if modifications are needed. 

Moreover, further study should evaluate the MSTL-DFT-ARIMA model by 

benchmarking it against other forecasting methods than TBATS, such as 

Prophet, to better understand its strengths and limitations. 
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