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ABSTRACT 

 

This project focuses on the design and development of a Smart Air 

Conditioning Controller (SACC) using a Fuzzy Logic (FL) algorithm as its 

decision-making engine. The primary goal of the SACC is to control air 

conditioning (AC) systems for energy savings without compromising user 

comfort. Three versions of the FL algorithm were developed, each with 

different input parameters, fuzzy sets, and rules, showing progressive 

improvement. The third version achieved 19.85% energy savings and 

maintained 63.21% more time in the thermal comfort zone, outperforming the 

baseline 24°C control scheme. The SACC also integrates Internet-of-Things 

(IoT) features, enabling remote monitoring and control, voice command for 

monitoring and control, and additional functionalities like automation, Over-

the-Air (OTA) enabled, and Wi-Fi provisioning. Developed at a low cost, 

below RM 200, the SACC offers a plug-and-play solution, making it suitable 

for residential split-air conditioners. This project contributes to energy 

efficiency and decarbonization efforts by providing an affordable, user-

friendly controller that balances energy savings with thermal comfort. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Climate change is a serious issue and it needs to be addressed before it is too 

late. It causes various problems such as the rise in global temperature, melting 

of ice glacier, unpredictable weather patterns and etc (Koca, Bhuiyan and 

Mayorga, 2020). One of the contributors of climate change is the greenhouse 

gases (GHG). GHG traps heat which causes the heat unable escape the Earth’s 

atmosphere. Carbon dioxide gas (CO2) is an example of GHG gases. 

Therefore, one way to tackle the issue of climate change is through 

decarbonization. Decarbonization is a method to reduce the CO2 gases that are 

release to the Earth’s atmosphere. There are many ways to do it, for example, 

through the use of clean energy to replace fossil fuels, replacement of fossil 

fuel vehicles with electric vehicles and reduction of energy consumption.  

                Reduction of energy consumption in buildings can be a good option 

as a decarbonization method to tackle the climate change issue. The energy 

consumption in buildings accounts for 20 % of the total energy worldwide 

(Sun, et al., 2013). For residential building, air conditioner (AC) is one of the 

main contributors of energy consumption as it accounts for 45 % of the 

residential building’s energy consumption. In Malaysia, 48 % of the country’s 

total electricity generation is consumed by the building sector, which includes 

residential (Aqilah, et al., 2021). Besides that, this value is going to increase, 

as through urbanization, more people in Malaysia are going to install AC in 

their residential building to tackle the hot weather conditions. Therefore, one 

way to address the issue of climate change is to reduce the energy 

consumption of AC. 

                To reduce the energy consumption of AC is to make the AC energy 

efficient. There are two technical routes to achieve it (Shao, et al., 2023). One 

way is to improve the hardware technology of the AC such as the compressor, 

coil, fans, refrigerants and etc. By improving the hardware, the AC will be 

more energy efficient which reduces the energy consumption. Another way is 

to improve the software technology of the AC. The software technology refers 
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to the control algorithm that controls the operation of the AC. By improving 

the control algorithm, the AC will operate more efficiently. The software route 

has some advantages over the hardware route. First, the structure of the AC 

does not need any necessary changes. Since only the control algorithm needs 

to be improved, no major changes are needed for the AC itself. This means 

that the existing AC unit can operate more energy efficient with just the 

upgraded control algorithm. Second, energy saving of AC can be achieved 

with lower investment. Upgrading the control algorithm typically requires 

lower upfront costs compared to hardware changes. This is because the 

software approach requires less investment in purchasing new equipment. 

Third, ease of implementation. The control algorithm can be an external unit to 

the existing AC unit. This external unit can be easily deployed and installed 

with the existing AC unit. Compared to hardware route, it is simpler and faster. 

                 There are already existing control algorithms used in AC such as the 

ON/OFF control, Hysteresis control and Proportional-Integral-Derivative (PID) 

control. These traditional control techniques can help achieve energy saving of 

AC. However, they become ineffective when the system becomes complex. 

Besides that, these control algorithms are unable to account for user 

comfortability. This is because they can only handle one objective which is to 

save energy. Therefore, they will do their best in achieving the objective while 

neglecting other objectives such as occupant comfortability. One way to tackle 

it is to maintain the temperature set point at 24 °C.  Based on Suruhanjaya 

Tenaga (ST) guidelines, setting the temperature set point at 24 °C can help 

save energy without compromising user comfort. However, various study has 

shown that advanced control algorithms can achieve higher energy saving than 

this method without compromising user comfort. Besides that, setting it at 

constant 24 °C may feel cold for some people after some time which causes 

them to set above 24 °C. Once setting above 24 °C, people may feel hot at set 

back to 24 °C and the cycle repeats. Therefore, it is better to go for advanced 

control algorithms approach that can automatically set the optimum 

temperature for the users then maintaining at 24 °C to tackle the climate 

change issue. 

                    There are several advanced control algorithms for AC currently in 

research phase. Some advanced control algorithms require the modelling of 
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the system that the AC controls, some require data for training of the control 

algorithm, some required high computing resources. Examples of the 

advanced control algorithms are the model-based control (MBC) algorithms, 

data-driven control algorithms and multi-objective optimization (MOO) 

control algorithms and fuzzy logic (FL) algorithm. Each has their own 

advantages and disadvantages which will be discussed in the literature review 

section. 

                  In this paper, FL is proposed as the control algorithm to regulate 

the air conditioning system. It is capable of addressing both energy saving and 

user comfort simultaneously. Unlike other control algorithms, fuzzy logic is 

relatively simple to implement as it does not require complex system modeling, 

training of data nor high computation resources. The fuzzy logic controller is 

designed to adjust the AC temperature dynamically based on multiple inputs, 

such as carbon dioxide concentration, occupancy detection, Predicted Mean 

Vote (PMV), temperature and power consumption, ensuring efficient energy 

usage while maintaining thermal comfort for the occupants. The prototype is 

developed and tested in a real environment to validate its performance, with a 

focus on tropical countries like Malaysia, where only cooling operation is 

considered. 

 

1.2 Importance of the Study 

This paper develops a real controller with FL algorithm as the brain and is 

tested in real environment. In this paper, data is collected real-time for the 

analysis of the controller in terms of energy saving and user comfortability. 

The main purpose of this paper is to shed light on the feasibility of the FL 

algorithm in controlling the AC. By demonstrating the feasibility, the study 

paves the way for widespread implementation of the AC controller with FL 

algorithm as the decision-making engine. 

             Another purpose of this paper is to develop a protype that can easily 

be integrated with the existing AC unit. With minimal to no modifications on 

the existing AC unit, the controller with FL algorithm is capable of controlling 

the AC unit, effectively functioning as an external unit to the AC. With this 

plug-and play characteristic, people will be encouraged to buy the product due 

to ease of installation. This will help contribute to the global decarbonization 
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efforts to tackle the climate change challenge. Additionally, users can benefit 

from lower energy bills due to increase in AC energy efficiency. Moreover, by 

verifying FL algorithm, this protype can be further be developed or modified 

to hybrid with other control algorithms to handle more complex system. In 

other words, this study will help in the advancement of research in FL control 

algorithm for AC. 

 

1.3 Problem Statement 

Traditional control algorithms are single-optimization algorithms capable of 

handling one objective at a time. The main objective is typically to reduce the 

energy consumption of the AC system, making the AC system energy efficient. 

However, other objectives such as occupant comfort are neglected. Besides 

that, when the system becomes complex, the traditional control algorithms can 

lack in precision and accuracy, unable to control the AC properly for energy 

saving. Advanced control algorithms have the upper hand over traditional 

control algorithms as they are capable of handling multiple objectives and 

complex system. However, some advanced control algorithms are difficult to 

be implemented. This is because they lack in the aspect of practicality, cost 

effectiveness and portability. Besides accuracy and having the capability to 

handle complex system, a viable control algorithm has to be practical, 

affordable and portable in order to be attract the common people to purchase it, 

especially in the residential sector. 

                      FL algorithm is capable of managing multiple constraints while 

efficiently controlling an AC system by utilizing linguistic rules. It is well-

suited for handling complex systems and offers a simpler design and 

development process compared to other advanced control algorithms. 

However, for FL to effectively regulate the AC, careful fine-tuning of the 

input parameters and fuzzy rules is essential. Despite its potential, the 

practicality of implementing FL for AC control remains a critical question. 

Therefore, developing and testing a prototype with FL as the decision-making 

engine is necessary to validate its effectiveness and feasibility in real-world 

applications. 
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1.4 Aim and Objectives 

The aim of this study is to design and develop a smart AC controller with FL 

algorithm as the decision-making engine to achieve energy saving without 

compromising user comfort. The objectives of the study are as follows: 

1. To design and develop a FL controller algorithm that can achieve 

energy saving without compromising user comfort.  

2. To design and develop a smart AC controller.  

3. To compare the performance of the developed FL controller algorithm 

with the 24 degree baseline scheme. 

 

1.5 Scope and Limitation of the Study 

The scope of the study focuses on the design and development of the smart air 

conditioning system with FL algorithm as the decision-making engine. This 

includes the development of both the monitoring and control systems to 

intelligently manage the operation of the AC. Besides that, the scope includes 

ensuring compatibility and ease of integration with the existing AC units 

commonly found in residential sector. The developed prototype functions as 

an external unit that can be seamlessly integrated with different AC models. 

Moreover, the study aims to evaluate the feasibility of the developed smart AC 

controller in achieving energy saving without compromising user comfort. 

This involves real-time monitoring and assessment of energy consumption and 

user satisfaction metrics. The study seeks to verify the applicability of FL 

based control algorithms in real-world settings. 

                    The developed smart AC controller has limitations in terms of 

features, performance and scalability. The developed system is not fully 

optimized due to the limited resource and time given for the duration of the 

study. Besides that, the evaluation of the developed system is limited by the 

sample size and diversity of the test environments. The prototype is tested in a 

controlled cabin environment in a tropical country for a certain duration. 

Therefore, the findings of the study have limitations in generalizing to 

different building types and geographic regions. Moreover, since the 

evaluation period is in limited duration, the results does not capture the long-

term performance and effectiveness of the smart AC controller.  
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1.6 Contribution of the Study 

The research on the development of a fuzzy logic-based smart air conditioning 

controller (SACC) offers a cost-effective solution for enhancing energy 

efficiency without requiring significant hardware upgrades. By deploying the 

SACC prototype with IoT monitoring systems in a controlled environment, the 

study emphasizes the benefits of utilizing fuzzy logic algorithms to optimize 

energy consumption while maintaining thermal comfort. The analysis of 

control strategies, using real-time data, highlights the effectiveness of fuzzy 

logic in balancing multiple objectives, such as energy savings and occupant 

comfort. The study's findings provide valuable insights into the potential of 

fuzzy logic for residential air conditioning systems and lay a foundation for 

future implementations in larger-scale applications, focusing on affordability, 

scalability, and ease of integration with existing AC units. 

 

1.7 Outline of the Report 

The report is organized into five chapters. Chapter 1 provides a general 

introduction to the project, emphasizing its significance, and presenting the 

problem statement, aims and objectives, scope, limitations, and contributions 

of the study. Chapter 2 delves into various control algorithms for air 

conditioning systems, highlighting their advantages and disadvantages, while 

comparing their suitability for energy saving and thermal comfort optimization. 

Chapter 3 focuses on the design and development of the FL algorithm, as well 

as the SACC prototype, including the hardware and software components. 

Additional features of the SACC are also discussed. Chapter 4 presents and 

analyses the performance of the FL algorithm in terms of energy savings and 

thermal comfort. Furthermore, it explores refined versions of the FL algorithm, 

assessing their improvements in both areas. Additional evaluations, such as the 

battery life and cost-effectiveness of the SACC, are also covered in this 

chapter. Finally, Chapter 5 concludes the study with a summary of findings 

and provides recommendations for future improvements to the SACC's 

performance. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Energy efficient AC plays a main role in the decarbonization efforts to tackle 

the climate change issue. With energy efficient AC, AC consumes less energy 

which reduces the emission of CO2 gas. Improving the control algorithm that 

controls the AC is one way for the AC to operate more efficiently in terms of 

energy. Although it is important for AC to operate efficiently, the user comfort 

must not be compromised. Both energy saving and thermal comfort of user are 

important factors to be considered when designing and developing a control 

algorithm. There are existing control algorithms out there in used to control 

the AC and various advanced control algorithms currently in research. This 

section reviewed on the advantages and disadvantages of the existing control 

algorithms and advanced control algorithms. 

 

2.2 Traditional Control Algorithms 

The ACs in buildings are currently using traditional control algorithms for 

their operation. These control algorithms are categorized as single-

optimization methods. Their only objective is to properly operate the AC for 

energy saving. They are simple and cheap to be implemented, making them an 

attractive solution for AC energy saving. These traditional control algorithms 

work effectively when the controlled system is simple. However, when the 

building complexity increases, these control algorithms tend to struggle to 

operate the AC for energy saving. Besides that, since they are single-

optimization methods, the thermal comfort of the occupants may be 

compromised. Examples of the traditional control algorithms are the ON/OFF 

control, Hysteresis control, Thermostat-based control and PID control. 

 

2.2.1    ON/OFF Control 

As its name stated, ON/OFF control is a binary control that consists of two 

types of signals which are ON (1) and OFF (0) (Mirinejad, et al., 2008). The 

actuating parameter of the ON/OFF controller is the temperature. The 
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controller monitors and compares two parameters which are the system 

temperature and the temperature setpoint. When the system temperature 

exceeded the temperature setpoint, the ON/OFF controller will send the signal 

to the AC to be turn on. The AC turns on and cools down the environment. On 

the other hand, when the system temperature is below the temperature set 

point, the controller signals the AC to turn off. This allows the AC to save 

energy. 

                The operation of the ON/OFF controller is the simplest compared to 

the other traditional control algorithms. However, due to the nature of the 

ON/OFF control algorithm, the AC is frequently being turned on and off 

because of the fluctuation of the environment temperature (Ryniecki, 

Wawrzyniak and Pilarska, 2015). The frequent on and off cycles of the AC 

unit leads to an overall inefficiency in energy saving, unable to fulfill its 

purpose as an energy saving controller. Moreover, this phenomenon leads to 

large temperature swings which may cause discomfort of the occupants. It also 

reduces of service life of the air conditioning equipment due to wear and tear. 

Therefore, the ON/OFF controller is rarely used in AC control even though it 

is cheap and easy to be implemented. 

 

 

Figure 2.1: Characteristics of ON/OFF control  

(EEEGUIDE.COM, n.d.) 

 

2.2.2    Hysteresis Control 

Hysteresis control is very similar to ON/OFF control. It is also considered as a 

binary control as it operates on the basis of ON (1) and OFF (0). However, a 

slight modification on this controller allows it to address the problem posed by 
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the ON/OFF controller (Fayazbakhsh, Bahgeri and Bahrami, 2015). As 

mentioned before, the ON/OFF controller causes the AC unit to frequently 

turn on and off. Hysteresis controller solves the problem by introducing two 

fixed temperature setpoints instead of a fixed temperature setpoint. For 

example, 23 °C and 26 °C as the two fixed temperature setpoints. The 

Hysteresis controller monitors and compares the system temperature with the 

two fixed temperature setpoints. The AC is initially turn off. When the system 

temperature reaches the 23 °C set point, the controller will not turn on the AC. 

The controller only turns on the AC when the system temperature exceeds 

26 °C to cool the environment. When the environment cools down and drops 

below 26 °C, the controller does not turn off the AC. The controller only 

signals the AC to turn off when the system temperature drops below 23 °C. 

                   Due to the nature of the Hysteresis controller, the AC is being 

turned on and off less frequently. The two fixed temperature setpoint 

introduces a deadband. This deadband essentially maintains the AC at its 

current state. Therefore, there is no immediate switching of the state of the AC 

when it reaches one of the temperatures set points, ensuring smoother 

operation of the AC. Less switching means high energy efficiency of the 

hysteresis controller compared to ON/OFF controller, greater occupant 

comfort and reduce wear and tear of the air conditioning components. The 

Hysteresis controller is better than the ON/OFF controller in every aspect. All 

being said, Hysteresis controller has difficulty in controlling the AC when the 

system becomes complex.  

                    Since the Hysteresis controller relies on the deadband to 

effectively reduce the frequent switching of the AC, there is a problem in 

determining the optimum deadband. If the deadband is too wide, the precision 

of the controller in achieving the energy saving of the AC is reduced. If 

deadband is too narrow, the Hysteresis controller will operate like the ON/OFF 

controller. Even though if the deadband is properly selected by trial-and-error 

method, the non-linearity and dynamic of the system will cause the controller 

to struggle to maintain the optimal performance due to the fixed deadband 

limits (Al-Azba, et al., 2020). In other words, because of the nature of the 

working principle of the hysteresis controller, it has limited adaptability to the 
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dynamic environment which affects its ability in achieving greater energy 

saving and thermal comfort of the occupant.  

 

 

Figure 2.2: Characteristics of Hysteresis control  

(instrumentationtoolbox.com, n.d.) 

 

2.2.3    Thermostat-Based Control 

Thermostat-based control is the most commonly used controller for AC. Most 

advanced control algorithms work on the base principle of this controller. The 

Thermostat-based control compares the two parameters which are the system 

temperature and the temperature setpoint (Jain, 2018). The goal is to maintain 

the system temperature as close to the temperature setpoint. When the system 

temperature is lower than the temperature setpoint, the AC works lesser. This 

means that the AC operates at a lower power. On the other hand, when the 

system temperature is higher than the temperature setpoint, the AC works 

harder to cool the environment. This means that the AC operates at a higher 

power. Besides that, based on the thermostat-based controller, the AC operates 

at a different power level depending on the temperature difference between the 

system temperature and the temperature setpoint. The higher the difference, 

the higher the operating power and vice versa.  

              Due to nature of the thermostat-based control, the flexibility of the 

AC to work at different operating power based on the temperature difference 

between the system temperature and the temperature setpoint allows it to 

achieve better energy saving when compared to ON/OFF controller and 

Hysteresis controller. Besides that, since it is not a binary controller, there is 

no occurrence of AC being turn on and off, thus reducing the wear and tear of 

the mechanical components of the AC and better occupant’s thermal comfort. 

Essentially, the thermostat-based control is more superior to the ON/OFF 
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controller and the Hysteresis controller in terms of energy saving and 

occupant’s comfort. 

            Note that the temperature setpoint is set manually by the user. In 

tropical countries, a higher temperature setpoint will achieve a better energy 

saving. This is because tropical countries have hot climates. Hence, the AC 

works lesser to maintain the difference between system temperature and the 

high temperature setpoint. However, this will compromise the user comfort as 

the occupant will feel hot and uncomfortable. Likewise, a lower temperature 

setpoint might improve the occupant comfort but consumes more energy. 

Therefore, it is important to choose the right temperature setpoint that will 

both achieve a considerable energy saving and user comfort. Study has shown 

that choosing the temperature setpoint to be 24 °C can optimally save energy 

while maintaining user satisfaction. However, various study has shown that 

advanced control algorithms can save more energy without compromising user 

comfort. Hence, it is better to go for the advanced control algorithm approach 

if it is feasible to be implemented in terms of simplicity, cost effectiveness, 

energy saving and thermal comfort. 

 

2.2.4   Proportional-Integrative-Derivative Control 

The PID control can be considered as an advanced control algorithm when 

compared amongst the other traditional control algorithms. This control 

algorithm is widely used in split inverter air conditioner. It usually works as a 

feedback controller to the main controller such as the thermostat-based control. 

The PID controller feedbacks the main controller to reduce the temperature 

difference between the system temperature and desired temperature. The 

difference between the system temperature and desired temperature is called as 

error (Yamakawa, et al., 2011). Each element in the PID controller works to 

reduce the error as much as possible.  

                The proportional element of the PID controller works proportionally 

to the size of the error. The higher the error, the greater the output of the 

proportional element of the PID controller to reduce the error. However, with 

proportional element alone, there will always be a minor difference between 

the system temperature and the target temperature. This difference is called as 

the steady-state error. The integrative element of the PID controller help 
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eliminates this error. It works by accumulating the steady-state error over time 

and adjust the output of the controller according to the size of the accumulated 

steady-state error. Higher accumulated steady-state error means greater output 

of the integral element of the PID controller and vice versa. As for the 

derivative element, it handles the sudden disturbances to the system. 

Disturbances to the system causes fluctuations in the system temperature. 

Fluctuations in the system temperature can be reflected by the rate of change 

of error. The derivative element of the PID controller reacts to the rate of 

change of error. Higher rate of change of error indicates greater disturbances. 

The output of the derivative element of the PID controller will be greater to 

counter the greater disturbances. This help reduce the fluctuations of the 

system temperature caused by the disturbances, stabilizing the system. 

                     Due to the nature of the PID controller, it requires careful tuning 

of the proportional, integral and derivative element of the controller to ensure 

it works at its best performance (Nausation, 2011). The tuning of PID 

controller can be time-consuming, labor-intensive and vary depending on the 

system characteristics. Even if the parameters are tuned correctly, they may 

not be optimal across all scenarios due to the dynamicity and non-linearity of 

the system. Hence, the PID controller struggles to adapt to changing 

environmental conditions. This will also affect the performance of the PID 

controller in energy saving. However, due to its simplicity and cost-

effectiveness aspect, the PID controller is a well-established technology, and it 

is widely used to control AC. Therefore, the advanced control algorithms that 

are in research mostly paired it with the PID controller to improve the overall 

performance of the controller in terms of energy saving and thermal comfort. 

 

 

Figure 2.3: PID Block Diagram 

(WatElectronics, 2022) 
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2.3   Advanced Control Algorithms 

The system that the AC is controlling is typically non-linear and dynamic. 

Traditional algorithms fail to handle the non-linearity and dynamicity of the 

system due to their algorithms’ working principle. Hence, they are unable to 

adapt to the changing of the system’s conditions. This leads to the energy 

inefficient of the AC. On the other hand, advanced control algorithms are able 

to overcome this challenge. Advanced control algorithms utilize various 

advance techniques to form the control algorithm to control the AC so that it 

can handle the non-linearity and dynamicity of the environment. Example of 

the advanced techniques are the modeling techniques, data-driven techniques, 

multi-objective optimization techniques and linguistic techniques. These 

techniques can be used individually or combined to form the control algorithm 

to handle complex systems.  

 

2.3.1   Model-Based Control Algorithm 

MBC algorithms refer to control algorithms that are formed from models. 

These models are able to reflect the non-linearity and dynamicity of the system. 

The models can be formed from mathematical models or through software. 

With the model of the system, the control algorithm uses it to compute the 

predicted behavior of the system. Behavior of the system refers to the indoor 

temperature, humidity, air flow and etc. It then compares the predicted 

behavior with the actual observed behavior of the system. Suitable outputs 

such as temperature setpoint and fan speed are generated from the control 

algorithm to meet the desired behavior of the system. The MBC controllers 

can anticipate and respond to the disturbances to the system in real time which 

enables them to adapt to varying system conditions, maintaining the optimal 

performance of AC in energy saving and occupant’s comfort. 

              In the paper by Bohara, et al. (2023), they did an experimental study 

on the Model Predictive Control (MPC) control algorithm to control a 

residential split air conditioner. The model of the system, in this case, a 

residential sleeping room, is modeled using the EnergyPlus software. Instead 

of predicted behavior, MPC controller computes future behavior of the system 

for a specific time horizon. It then outputs the optimal AC temperature 

setpoints to obtain the desired future behavior of the system. The study has 
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shown that the MPC controller saves around 7% of energy as compared to the 

thermostat-based control at constant 24 °C. Besides that, the MPC controller 

gives better thermal comfort, 42 % better than the thermostat-based control at 

constant 24 °C.  In another paper by Boodi, et al. (2019), they also use MPC 

control algorithm to achieve thermal comfort and energy optimization in a 

container building. They were able to achieve a reduction of 31% reduction in 

energy usage compared to the traditional control algorithms. However, since 

MPC is a MBC algorithm, the designed controller is specific to the building 

type. Therefore, the MPC controller’s performance might degrade with 

different building type. For another building type, the model has to remodeled 

for accurate performance of the AC. There is no generalized modelling 

approach, thus additional investments are needed for targeted modelling. 

Besides that, due to the nature of MPC, if the system is too complex, the 

model reflects the complexity. The more complex the model, the higher the 

computational power which can be difficult to build and perform on 

controllers.  

 

Figure 2.4: MPC Scheme 

(Bohara et al., 2023) 

 

2.3.2    Data-Driven Control Algorithm 

As its names implies, data-driven control algorithms are formed using data. As 

compared to MBC algorithms, data-driven control algorithms do not need to 

rely on system modelling. Instead, the control algorithms are trained with 

datasets to understand the system behavior. These datasets can include the 

weather patterns, occupancy pattern, indoor and outdoor temperature, fan 
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speeds and etc. A data-trained control algorithm is able to extract the patterns 

between the input and output relationships of the datasets that it was trained 

with. The correlation between the inputs and outputs enables the controller to 

understand the system behavior. With that, the controller is able to output the 

relevant signals to control the AC for energy saving and occupant’s comfort.  

               In the paper by Ku, et al. (2015), they utilized a trained control 

algorithm to accurately output the temperature setpoint for AC control of a 

split-type air conditioner in a room. The datasets used to train the control 

algorithm are the Predicted Mean Vote (PMV) value, clothing insulation of the 

occupants, metabolism rate of the occupants and mean radiant temperature. 

The study has shown that the trained control algorithm can achieve a 37.3% of 

energy saving as compared to the conventional control algorithm (fixed 

temperature setting at 26 °C). It is also able to maintain the thermal comfort in 

the room for the whole experimental period. Besides that, the paper by Yu, et 

al. (2021), they use a control algorithm called Deep Q-Learning (DQL) for the 

AC to control the classroom environment. DQL is also trained with data to 

learn to make decisions. It has shown that this method is able to save energy of 

up to 43% without comprising thermal comfort of the occupants as compared 

to the conventional control algorithm (fixed temperature setting at 25 °C). 

                  For data-driven control algorithms to work properly, they have to 

be well-trained. For them to be well-trained, the training data needs to be in 

good quality and amount. Therefore, in situations where data are scare or 

unreliable, the data-driven control algorithms may struggle to generalize well 

to the environment’s behavior. This means that they can control a specific 

environment properly when they are trained with the data specific to that 

environment, but fail to perform when given a new environment. Hence the 

AC performance might not be optimized for energy saving and thermal 

comfort for the new environment. Moreover, instead of learning the patterns 

and correlations from the data, the data-driven control algorithms may 

memorize the patterns of the data instead. Memorization of data by the control 

algorithms is the effect of poor training and it also leads to poor generalization 

to the system. 
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Figure 2.5: Data Driven Algorithm Structure 

(Baheti, 2021) 

 

2.3.3    Multi-Objective Optimization Control Algorithm 

Multi-objective optimization (MOO) control algorithms are control algorithms 

that are able to handle multiple objectives. Note that MBC and data-driven 

control algorithms are also able to handle multiple objectives. Evolutionary 

control algorithms are part of MOO control algorithms used to control AC. 

Example of these are Genetic Algorithms (GA), Particle Swarm Optimization 

(PSO) and Artificial Bee Colony (ABC) algorithm. Unlike MBC algorithms, 

MOO algorithms do not need any modelling of the system. They also do not 

need any datasets for training. These algorithms are able to find the best 

solution from a pool of solutions. They do that by evolving the pool of 

solutions and evaluate the quality of each of the solutions in the pool. 

Solutions that are not good in quality are eliminated, the ones that are good 

quality are remained and evolved. The process is done iteratively until the best 

quality of solutions remain in the pool. In AC control context, the pool of 

solutions can be the temperature setpoint, fan speed, compressor speed and etc. 

These solutions are evaluated by a function. The function can include the 

calculations of the energy consumption of AC and thermal comfort of the 

occupant. Solutions that give lower energy consumption and high thermal 

comfort are good quality solutions, and those that are the opposite are bad 

quality solutions. The bad quality ones are eliminated whereas the good 

quality ones are evolved through operators. The process is done iteratively 

until the best quality of temperature setpoints, fan speeds, compressor speeds 
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and etc are obtained. The MOO controller then uses these values to control the 

AC for maximum energy saving without compromising user comfort.  

                   In the paper by Khorram, et al. (2019), they proposed the PSO 

control algorithm to optimize the AC energy consumption based on CO2 

concentration level. The set of solutions are the period to turn on and turn off 

the AC. The evaluation function for the solutions includes the calculation of 

CO2 concentration level and the required AC power reduction. A constraint is 

included to limit the AC power reduction to handle the user comfort aspect. 

The best set of solutions are obtained through PSO and the AC is turned on 

and off according to the periods. Results have shown that the PSO is able to 

effectively reduce the energy consumption of the AC without compromising 

user comfort. In another paper by Ullah and Kim (2017), they are able to 

achieve 27.32 % and 31.42 % of reduction of energy consumption in a lab 

using PSO and GA respectively when compared to their baseline scheme. The 

results also shown that PSO and GA are able to increase the user comfort by 

10% compared to their baseline scheme. Ruiz, et al. (2021) proposed an 

advanced GA control algorithm called NSGA-II to control the AC. The 

simulation results shown that NSGA-II is able to effectively reduce more 

power consumption of AC while having a better user comfort index as 

compared to the GA.  

                  Compared to MBC algorithm and data-driven control algorithm, 

MOO control algorithm is simpler to be implemented. However, as system 

becomes more complex, it might be difficult for MOO algorithm to find the 

best set of solutions from the pool of solutions. Due to the difficulty for the 

MOO algorithm to converge, the optimal set of solutions might not be found, 

and this will degrade the performance of AC in energy saving and thermal 

comfort. This can be solved by choosing good operators for the evolution 

process and having larger number of iterations. However, larger number of 

iterations increases computational burden and cost. Besides this, MOO 

algorithms cannot be embedded into microcontrollers as of now. Therefore, 

plug-and-play characteristics cannot be implemented as a personal computer is 

required for MOO algorithm to connect with the microcontroller for 

controlling the AC. 
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Figure 2.6: General Structure of GA 

(Gómez, 2023) 

 

2.3.4    Fuzzy Logic Algorithm 

FL algorithm has the ability to handle uncertainty and approximate reasoning. 

In the context of AC control, FL provides a framework for dealing with 

imprecise inputs and creating flexible, adaptive control systems. The process 

starts with fuzzification, which converts crisp input values such as temperature 

and humidity into fuzzy values by mapping them to linguistic terms like "cool" 

or "warm" using membership functions. These membership functions could be 

triangular, trapezoidal, or Gaussian, depending on the system's requirements.  

After fuzzification, the fuzzy inference system processes the inputs using a set 

of if-then rules. There are two main types of inference systems which are the 

Mamdani and Sugeno methods. Mamdani inference is more common in 

control systems like ACs because it provides intuitive linguistic rules and 

outputs that are easier to interpret. It uses a min-max approach for aggregation 

and implication, combining the fuzzy outputs from multiple rules to form a 

final fuzzy set. Finally, the defuzzification process translates the fuzzy output 

back into a crisp value, typically using methods like centroid defuzzification. 

For an AC system, this would result in an exact output, such as the new 

temperature setpoint or fan speed, based on the fuzzy logic engine’s decisions. 

The flexibility of fuzzy logic allows for improved control, enabling the system 

to maintain energy efficiency while optimizing user comfort. 

                    In the paper by Attia, Rezeka and Saleh (2015), they were able to 

develop a FL controller to control the air conditioning system. Instead of 

temperature setpoint as the output of the controller, the controller controls the 

percentage of chilled and hot water flow rates for summer and hot water and 
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steam flow rates at winter. With this FL, they were able to demonstrate the 

efficient operation of the air-conditioning system in terms of energy saving 

and user comfort when controlled by FL as compared to PID control. In the 

paper by Belman- Flores, et al. (2019), they presented a FL control system for 

domestic refrigerator, designed to optimize temperature and reduce energy 

consumption. The results showed a 3% of energy saving by minimizing 

compressor starts, highlighting the potential for enhanced efficiency through 

more real-time data integration into the FL system. 

                  Compared to other advanced control algorithms, FL control 

algorithm is simpler to be implemented as it does not require system modeling, 

training of data nor high computational resources. Besides that, FL control 

algorithm can be embedded into microcontroller. This allows the FL control 

algorithm to control the AC in real-time without the need of extensive setup 

and laboratory intensive work. Due to this, a controller can be easily built with 

the FL control algorithm as the decision-making engine to control the AC, 

working as an external unit. However, for FL to operate properly, the 

membership functions for the inputs and outputs as well as the fuzzy rules 

have to be properly defined or else it can lead to suboptimal control 

performance. 

 

Figure 2.7: Fuzzy Logic Architecture 

(GeeksforGeeks, 2023) 
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Figure 2.8: Summary of Comparisons of the Control Algorithms 

 

 

 

 

Category ON/OFF Control
Hysteresis 

Control
Thermostat-based 

Control
PID 

Control

Model-Based 
Control 
(MBC)

Data-
Driven 

Control

Mutiple Objective 
Optimization (MOO) 

Control

Fuzzy Logic (FL) 
Control

System Modelling ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘

Training of Data ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘

High 
Computational 
Resource

✘ ✘ ✘ ✘ ✔ ✔ ✔ ✘

Adaptability ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔

Handling 
Complexity

✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔

Ease of 
Implementation

✔ ✔ ✔ ✔ ✘ ✘ ✘ ✔
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CHAPTER 3 

 

3 METHODOLOGY  

 

3.1   Design and Development of Fuzzy Logic (FL) Control Algorithm 

The controller algorithm is developed using FL. There are a total of five inputs 

and one output. The five inputs for the controller algorithm are the indoor 

carbon dioxide concentration, indoor occupancy, predicted mean vote (PMV), 

indoor temperature and power consumption of the AC itself. These inputs are 

feed into the FL algorithm. The FL algorithm consists of the fuzzification 

process, inference system and defuzzification process to produce the output 

which is the AC temperature to control the AC. The inference system used is 

the Mamdani inference system. 

 

 

       Figure 3.1: Fuzzy Logic Algorithm for AC controller 

 

                     The indoor carbon dioxide concentration input parameter 

functioned as a parameter to indirectly measures the number of occupancies in 

the controlled area. If there is high occupancy level, the indoor carbon dioxide 

concentration is high and vice versa (Areif-Ang et al., 2018). Lower 

occupancy may require less cooling, saving energy, while higher occupancy 

levels may necessitate more cooling to maintain comfort. Therefore, the 

carbon dioxide concentration functions to indirectly monitor the occupancy in 

the controlled area to effectively adjust the AC set temperature for energy 

saving and occupancy comfort. 
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                    The indoor occupancy detection input parameter functioned as a 

complimentary parameter to the indoor carbon dioxide concentration. Unlike 

indoor carbon dioxide concentration, indoor occupancy detection directly 

detects whether there is presence of occupancy or not (Yes or No). By 

combining both the indoor occupancy detection and indoor carbon dioxide 

concentration, the AC set temperature can be better adjusted to cater for the 

energy saving and occupancy comfort. 

                   The PMV input parameter functioned as a parameter to directly 

measures the occupancy thermal comfort. PMV is a standard thermal comfort 

model used by the American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE) (Dyvia and Arif, 2019). The PMV 

parameter aims to directly monitors thermal comfort of the occupancy and 

adjusts the AC set temperature to maintain the thermal comfort. This 

parameter focuses on the thermal comfort aspect. 

                    For the power consumption input parameter, it directly monitors 

the ON/OFF operation of the air compressor of the AC. It functions to adjust 

the AC set temperature to a higher value whenever it detects the air 

compressor of the AC in ON state. This is to aim to reduce the workload of the 

air compressor, saving energy. This parameter focuses on the energy saving 

aspect. 

                   The indoor temperature input parameter is a parameter that 

compliments the power consumption parameter. Whenever the air compressor 

of the AC turns on, the AC set temperature will be set to a value depending on 

the indoor temperature. This is to aim to reduce the workload of the air 

compressor while ensuring that the user comfort is not compromised. 

                     

3.1.1   Fuzzy Logic (Fuzzification)                    

Fuzzification is a part of the FL algorithm that convert the crips values into 

corresponding fuzzy sets for fuzzy inference process.  The crips inputs which 

are the indoor carbon dioxide concentration, indoor occupancy detection, 

PMV, power consumption and indoor temperature are mapped onto the 

defined fuzzy sets through membership functions.                    

                   For the indoor carbon dioxide concentration, the range defined is 

from 300 to 1000 parts per million (ppm) as this range is categorized as 
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normal CO2 concentration level (Wisconsin Department of Health Services, 

2018). Five membership functions are used to categorize this range. These 

membership functions are of triangular membership function and trapezoidal 

membership function. The range are segregated into five different fuzzy sets 

which are low, slightly low, normal, slightly high and high. Below Figure 3.2 

shows the membership functions for the indoor carbon dioxide concentration. 

 

 

 

Figure 3.2: Membership Functions for Indoor Carbon Dioxide Concentration 

 

           The membership functions for the input variable, indoor occupancy 

detection, define two fuzzy sets: No Detection and Detection. The No 

Detection set represents situations where no occupant is detected within the 

monitored area, corresponding to a membership value of 1.0 when the input 

variable is 0. On the other hand, the Detection set represents the presence of an 

occupant in the area. This set is characterized by a membership value of 1.0 

when the input variable is 1, which reflects full occupancy detection. Below 

Figure 3.3 shows the membership functions for the indoor occupancy 

detection 

 

 

Figure 3.3: Membership Functions for Indoor Occupancy Detection 
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                        For the PMV, the defined range is from -2 to 2. The range of -2 

to 2 is chosen instead of -3 to 3 for the PMV as it focuses on more commonly 

experienced thermal comfort levels, excluding extreme conditions that are less 

relevant in typical indoor environments. Five membership functions are used 

to categorize this range. The membership functions used are the triangular and 

trapezoidal membership functions. The range are segregated into five different 

fuzzy sets which are cold, moderately cold, slightly code, neutral and hot. 

Below Figure 3.4 shows the membership functions for the PMV. 

 

 

Figure 3.4: Membership Functions for PMV 

 

                The power consumption of the AC has two fuzzy sets. These two 

fuzzy sets are the Low fuzzy set and High fuzzy set. When the air compressor 

of the AC turns on, the power consumption is typically above 1 kW but always 

below 2 kW. Therefore, within this range, it belongs to the High fuzzy set with 

membership value of 1.0. On the other hand, when the air compressor of the 

AC turns off, the power consumption is below 1 kW. Therefore, anything 

below 1 kW belongs to the Low fuzzy set with membership value of 1.0. 

Sigmoid membership functions are used to give a smooth transition from low 

to high and vice versa. Below Figure 3.5 shows the membership functions for 

the power consumption of AC.  
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Figure 3.5: Membership Functions for Power Consumption of AC 

 

                 For the indoor temperature, it has a defined range of 18 °C to 30 °C. 

This range is chosen as the indoor temperature of the test area is within this 

range. Five fuzzy sets are used to define this range. The trapezoidal and 

triangular membership functions are used for the fuzzy sets. The five fuzzy 

sets are the cold set, slightly cold set, normal set, slightly hot set and hot set. 

Below Figure 3.6 shows the membership functions for the indoor temperature. 

 

 

Figure 3.6: Membership Functions for Indoor Temperature 

 

 

3.1.2   Fuzzy Logic (Defuzzification)                    

Defuzzification is the process of converting fuzzy outputs into crips values 

that can be used in the real-world after undergoing the inference process. 

There is only one output which is the AC set temperature. After going through 

the inference process whereby multiple fuzzy outputs of AC set temperature is 

produced, these fuzzy outputs will undergo defuzzification using centroid 

method to produce a single crips value for controlling the AC. 

                The AC set temperature has a defined range of 21 °C to 28 °C. 

Although it has a range of 21 °C to 28 °C, the possible AC temperature range 
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to control the AC is only from 22 °C to 27 °C. The range of 22°C to 27°C is 

selected as this is the typical range common users set. Five fuzzy sets are 

defined within this range which are the low set, slightly low set, medium set, 

slightly high set and high set. Below Figure 3.7 shows the membership 

functions for the AC set temperature. 

  

 

Figure 3.7: Membership Functions for AC Set Temperature 
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3.1.3    Fuzzy Logic (Inference System)                    

 

 

Figure 3.8: Fuzzy Rules for Inference Process 

 

There is a total of fifty-five fuzzy rules. The first 50 rule, from rule 1 to rule 50, 

the AC set temperature is determined by different combinations of fuzzy sets 

from different input parameters such as the indoor carbon dioxide, indoor 

occupancy detection and PMV.  There is a total of 50 rules from these 

combinations because there are 5 fuzzy sets from indoor carbon dioxide, 2 

fuzzy sets from indoor occupancy detection and 5 fuzzy sets from PMV. By 

multiplying them together, 50 possible combinations are available. The rules 

are set such that to conserve energy whenever possible and providing comfort 

whenever necessary. 
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                 From rule 51 to rule 55, these five rules are set such that to save 

energy.  Whenever, the power consumption is high, while considering rules 

from 1 to 50, the AC set temperature is set to a higher degree depending on the 

indoor temperature. This is to reduce the workload of the AC compressor to 

save energy. 

                The fuzzy logic algorithm operates based on the Mamdani inference 

system. The fifty-five combinations of rules are formed using the AND 

method. Hence, for Mamdani inference system, the minimum operator is used 

for the AND method to determine the rule strength during the rule evaluation 

process. As for the aggregation process, Mamdani inference system uses the 

maximum operator. Aggregation is a process that combines all the same fuzzy 

output sets after the rule evaluation process into a single fuzzy output set for 

defuzzification. 

 

3.2   Design and Development of Smart Air-Conditioner Controller 

(SACC)                   

 

 

 

Figure 3.9: Main Algorithm Flow of Smart AC Controller 
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Above Figure 3.9 shows the main algorithm flow of the Smart AC Controller 

(SACC). The FL algorithm is designed using MATLAB software and 

converted into C ++ program. This C++ program is programmed into the 

ESP32 microcontroller for real-time controlling of the AC. The SACC 

controls the AC temperature for every 15 minutes. For every 15 minutes, the 

SAAC takes in the indoor temperature, indoor humidity to compute the PMV. 

After that, it measures the indoor carbon dioxide concentration, checks the 

indoor occupancy and measures the power consumption. All these input 

parameters are then feed into the FL algorithm to produce the crips output of 

AC set temperature. The AC set temperature is then round up to nearest 

integer for controlling the AC.  

                    The MH-Z19C carbon dioxide sensor is used to measure the 

indoor carbon dioxide concentration. The MH-Z19C is a low-cost CO2 sensor 

and has an effective range of 400 – 5000 ppm, which is sufficient enough for 

the measuring of CO2. For the indoor occupancy, HLK-LD2410C, millimeter 

Wave (mmWave) radar sensor is used. This sensor has the capability to detect 

non-movement unlike other sensors like PIR and microwave radar which only 

detects motion.  

                       The PMV parameter takes in six inputs. These inputs are the 

indoor temperature, indoor mean radiant temperature, indoor humidity, air 

velocity, metabolic rate and clothing insulation. The indoor mean radiant 

temperature is influenced by the temperatures of surrounding surfaces. 

According to Alegría-Sala, et al. (2024), this parameter is difficult to measure 

and is normally assumed to be the same as the indoor temperature as the 

surface temperatures do not vary significantly from the indoor temperature. 

For the air velocity, it is assumed to be 0.11 m/s. This value comes from 

(Designingbuildings.co.uk, 2016) whereby 0.11 m/s can be used as an 

assumption for internal air velocity for simple heat transfer calculation. The 

metabolic rate is defined as a constant 1.1. 1.1 directly translates to the 

metabolic rate for typing. As the test area consists of subjects that are in 

postgraduate degree, they are mostly with their laptop doing their research. 

Hence 1.1 is a suitable value to be chosen as the metabolic rate. For the 

clothing insulation, it is set as a constant 0.31. The clothing insulation of 0.31 
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is the sum of clothing insulation of T-shirt, thin trousers, men’s underwear, 

ankle socks and shoes. This combination is the usual combination worn by the 

subjects in the test area. For the indoor temperature and indoor humidity 

parameter to calculate the PMV, DHT22 is used. DHT 22 is a low-cost sensor 

that can measure both temperature and humidity at an accurate accuracy.   

                        The power consumption of the AC is taken from a smart energy 

meter (ADW300) which is already installed in the test area. The values are 

collected and stored at an IoT platform called Blynk. The microcontroller is 

connected to Blynk for assessing the power consumption data to compute the 

AC output temperature using the FL algorithm. Infrared (IR) transmitter is 

used to send the IR signal of the computed AC temperature value to control 

the AC.  

 

 

Figure 3.10: Block Diagram of Smart AC Controller 

 

3.3  Prototype Development of Smart Air-Conditioner Controller 

(SACC)                

Below Figure 3.11 and Figure 3.12 shows the schematic diagram and the 

prototype of the SACC. Besides the aforementioned components used to 

obtain the input parameters of the FL algorithm, some other components are 

used to improve the quality of life of the SACC. 

           An OLED display is used as a user interface of the SACC to display 

essential information such as the indoor temperature status, indoor humidity 

status, PMV status, indoor CO2 status, indoor occupancy status, power 

consumption status and AC temperature status. Besides this, the OLED also 
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displays the online status of the SACC, AC power status, AC control mode 

status and energy consumption of the AC. 

            The online status of the SACC shows whether the SACC is connected 

to the Blynk IoT platform or not. The AC power status indicates whether the 

AC is ON or OFF state. For the AC control mode status, it indicates whether 

the AC is in automatic mode or manual mode. In automatic mode, the SACC 

is running on FL algorithm to control the AC temperature. On the other hand, 

FL algorithm is deactivated on manual mode. User can manually adjust the 

AC temperature via the Blynk IoT platform when manual mode is initiated. 

             Four physical push buttons are used as the physical user control panel 

for the SACC. These four push buttons are the SACC power push button, AC 

power push button, AC control mode push button and Wi-Fi configuration 

push button. The SACC power push button is to power ON/OFF the 

microcontroller. The AC power push button is to power ON/OFF the AC. AC 

control mode push button is to change the operating mode of the AC, either 

automatic or manual. As for the Wi-Fi configuration push button, when 

pressed, it allows user to connect to the any available Wi-Fi networks by 

inputting the Service Set Identifier (SSID) and password of the Wi-Fi network 

through a portal using mobile phone.  

               The power supply of the SACC can be either through power socket 

connection or using power bank. As the SACC is a plug-and-play device, it 

works as an external unit to control the AC. Hence, no retrofitting of the AC is 

needed. 

 

 

Figure 3.11: Schematic Diagram of Smart AC Controller 
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Figure 3.12: Smart AC Controller Prototype 

 

 

Figure 3.13: OLED display of Smart AC Controller 
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3.4  Software Applications for Smart Air-Conditioner Controller (SACC)              

The HLK-LD2410C, mmWave radar sensor that is used for indoor occupancy 

detection can be remotely calibrated using Bluetooth connection via the HLK 

Radar Calibration Tool application. Among the relevant parameters that can be 

calibrated are the detection range, static energy thresholds and motion energy 

thresholds. 

                The detection range for the mmWave radar sensor is set to 

maximum six meters for the test area. For the static and motion energy 

thresholds, they are set based on trial-and-error method. The setting of the 

thresholds for the static and motion energy are similar whereby higher 

thresholds are set for nearer distances (gate 1 to gate 4, 0m to 2.25m) and 

lower thresholds are set for further distances (gate 5 to gate 9, 3m to 6m). This 

means that for nearer distances, the mmWave radar sensor is less sensitive to 

prevent false positives. On the other hand, for further distances, the mmWave 

radar sensor is more sensitive such that little to no movement is able to trigger 

the mmWave radar sensor as long there is a presence of person. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: HLK Radar Calibration Tool 
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Figure 3.15: Static and Motion Energy Threshold Calibration 

 

          The power consumption of the AC is tapped from the existing installed 

energy meter in the test area. Node-RED software is used to obtain the energy 

consumption and power consumption from the energy meter. Before the 

readings are passed to Blynk platform, they are properly formatted. Below 

Figure 3.16 shows the Node-RED software to obtain the power consumption 

and energy consumption from the meter. 

 

 

Figure 3.16: Node-RED software application 
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Figure 3.17: Existing installation of the Energy Meter 

 

              The SACC is connected to the Blynk IoT platform to allow users to 

control the SACC remotely. Users are able to remotely power ON/OFF the AC, 

switch between automatic mode and manual mode and manually control the 

AC temperature if manual mode is initiated. Besides that, the SACC also 

allows users to view essential information remotely such as the AC power 

control status, AC control mode status, AC temperature status, indoor 

temperature status and etc. Users are able to do this via their personal 

computer or their mobile phone. 
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Figure 3.18: Blynk Web Dashboard 
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Figure 3.19: Blynk Web Dashboard (Graph) 

 

Figure 3.20: Blynk Mobile Dashboard 
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3.5   Other Features for Smart Air-Conditioner Controller (SACC)              

To further enhance the SACC, making it smarter, the SACC is developed such 

that it can be controlled via voice command. With this feature, the users can 

control the AC remotely via voice control to power ON/OFF the AC, changing 

the operation mode and setting the AC temperature. Environment information 

such as the indoor carbon dioxide and indoor temperature can also be 

monitored using voice command.  

                   This can be done due to the Blynk RESTFUL Application 

Programming Interface (API). This API allows other third-party applications 

to access Blynk. With this API, IOS shortcuts can be used to access Blynk 

remotely, which in turns accessing the SACC as the SACC connects to Blynk. 

Hence, when utilising Siri voice command feature from Iphone Operating 

System (IOS), the IOS shortcuts can be triggered, which indirectly triggers 

Blynk, allowing users to control the SACC. 

Figure 3.21: IOS shortcuts 
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Figure 3.22: Blynk API 

 

              Besides voice command feature, the SACC also has the automation 

feature. This feature is a complimentary feature of the SACC. It allows the AC 

to turn ON/OFF automatically at a specified time. For example, the AC turns 

on every 8:00 AM and turns off every 6:00 PM. Besides that, for further 

energy saving, the AC can be controlled such that at 12:00 PM, it will check 

whether there are occupants in the area through the mmWave radar sensor and 

set the AC temperature to a higher degree if there is no one around the area. 

Below Figure 3.23 shows the types of automations available for the SACC. 

 

 

 

Figure 3.23: Automations for Smart AC Controller 

 

            When updating the firmware is needed for the SACC to fix bugs or to 

implement new features, one way is to connect the microcontroller to a 

personal computer via cable and update it through an Integrated Development 
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Environment (IDE). However, this type of way is complex for the common 

users and introduces inconveniences. Therefore, Over-The-Air (OTA) update 

feature is enabled for the SACC. With OTA, common users can update the 

firmware of the SACC with ease via Blynk platform.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24: OLED display during OTA update 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25: Smart AC Controller OTA Update 
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           To complement the Wi-Fi connectivity feature, Wi-Fi provisioning is 

provided for the SACC. This means that the device can be configured to 

connect to any available Wi-Fi by providing the service set identifier (SSID) 

and password. This provides flexibility to the SACC as the SSID, and 

password are not hard coded into the microcontroller. A push button is used to 

enable the Wi-Fi provisioning feature. Below Figure 3.26 shows the Wi-Fi 

provisioning process for the SACC.  

Figure 3.26: Wi-Fi Provisioning Process for SACC 

 

3.6   Deployment of Smart Air-Conditioner Controller (SACC)              

The SACC was deployed in one of the cabins located at the KA block of 

Tunku Abdul Rahman University (UTAR). It was used to control a non-

inverter, 3-star rating, split-air conditioner. The performance of the FL 

algorithm of the SACC was compared with the baseline scheme. The baseline 

scheme is the constant 24 °C temperature setpoint AC control. 

                The performance of the FL algorithm of the SACC was compared 

with the 24 °C baseline scheme on the aspect of energy consumption and 

thermal comfort. Energy consumption readings were obtained from the digital 

energy meter through Blynk IoT platform. As for the thermal comfort, it was 

evaluated through the PMV thermal comfort model. The PMV algorithm was 

programmed into the ESP32 microcontroller and calculated in real-time. PMV 
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readings was stored in Blynk IoT platform for the evaluation of the thermal 

comfort performance for SACC and 24 °C baseline scheme.  

 

Figure 3.27: Test area 

 

Table 3.1 Formula Used for Evaluation Parameters 

Evaluation Parameters Formula 

Energy Saving |𝐹𝑢𝑧𝑧𝑦 𝐿𝑜𝑔𝑖𝑐 − 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 24 °𝐶|

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 24 °𝐶
 𝑥 100 % 

Average Thermal Comfort 

Difference 

|𝐹𝑢𝑧𝑧𝑦 𝐿𝑜𝑔𝑖𝑐 − 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 24 °𝐶| 

Average Outdoor Temperature 

Difference & Average Outdoor 

Humidity Difference 

|𝐹𝑢𝑧𝑧𝑦 𝐿𝑜𝑔𝑖𝑐 − 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 24 °𝐶|
𝐹𝑢𝑧𝑧𝑦 𝐿𝑜𝑔𝑖𝑐+𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 24 °𝐶

2

 𝑥 100 % 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1  Results and Analysis of SACC [Fuzzy Logic Ver 1]              

The SACC and constant 24 °C baseline scheme were both run for 5 days each 

from 9:00 am till 5:00 pm to collect the energy consumption and PMV data for 

the evaluation of energy saving and thermal comfort aspect of the SACC. By 

comparing the 5 days of SACC and 5 days of constant 24 °C, SACC was able 

to save an average of 5.65 %.  Below Figure 4.1 shows the comparison of 

energy consumption between the SACC and 24 °C baseline scheme 

 

 

Figure 4.1: Comparison of Energy Consumption Between SACC and Constant 

24 °C 

 

                  During the 5 days of running the SACC and 24 °C, it was raining 

for the majority of the time for the days running the 24 °C. This can be seen by 

the average outdoor temperature difference of 3.42 % and average outdoor 

humidity difference of 6.78 % shown in Figure 4.2 and Figure 4.3 respectively. 

An average outdoor temperature difference of 3.42 % indicates that the days 

running the SACC was hotter whereas an average outdoor humidity difference 

of 6.78 % indicates that the days running the 24 °C was raining. The SACC 

may have higher energy savings if the weather conditions of the days are the 

similar. 
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Figure 4.2: Comparison of Average Outdoor Temperature Between SACC and 

Constant 24 °C 

 

 

Figure 4.3: Comparison of Average Outdoor Humidity Between SACC and 

Constant 24 °C 

 

                 For the thermal comfort aspect, within the 5 days of running the 

SACC, SACC was able to maintain a maximum of 59.03 %, minimum of 

27.09 % and an average of 44.83 % in the thermal comfort zone. This is 

equivalent to a maximum of 4.72 thermal comfort hours, minimum of 2.17 

thermal comfort hours and an average of 3.59 thermal comfort hours. When 

compared with the 24 °C, the SACC was able to maintain longer thermal 

comfort hours, an average of 26.45 % more.  Below Figure 4.4 shows the 

comparison of thermal comfort between the SACC and 24 °C baseline scheme 
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Figure 4.4: Comparison of Thermal Comfort Between SACC and Constant 

24 °C 

 

               The SACC outperformed the constant 24 °C in both the energy 

saving and thermal comfort aspect. However, for the thermal comfort aspect, 

maintaining an average of 44.83 %  in the thermal comfort zone for the SACC 

was suboptimal. By enlarging the thermal comfort zone by a small margin, 

between -0.5 and 0.5 to between -0.75 and 0.5, the thermal comfort hours 

increased from 44.83 % to 73.21 % for the SACC. This means that majority of 

the time during the running of the SACC, the PMV was slightly out of the 

thermal comfort zone, skew to the cold zone. 

 

 

Figure 4.5: Comparison of Extended Thermal Comfort Zone Between SACC 

and Constant 24 °C 

 

                The reason behind the low thermal comfort hours of the SACC was 

due to the tuning flaw of the FL algorithm. When defining the fuzzy sets for 

59.03

44.83

27.0929.55
18.38

9.11

0

20

40

60

80

Max Average Min

PM
V 

(%
)

Comparison of Thermal Comfort (-0.5 <= PMV <= 0.5)

Smart AC Controller (Fuzzy Logic) 24 Degree (Baseline Scheme)

80.2
73.21

58.8161.67

44.21

20.76

0

20

40

60

80

100

Max Average Min

PM
V 

(%
)

Comparison of Thermal Comfort (-0.75 <= PMV <=0.5)

Smart AC Controller (Fuzzy Logic) 24 Degree (Baseline Scheme)



60 

the indoor carbon dioxide concentration, for the High fuzzy set, it was defined 

for the range of 650 ppm to 1000 ppm. As for the rules defined, when indoor 

carbon dioxide concentration is in High fuzzy set, the AC set temperature is in 

Medium and Low fuzzy sets. During the 5 days of running the SACC, the 

average indoor carbon dioxide concentration for each of the days were 725, 

605, 653, 769 and 691 ppm. Due to this, for the majority time during the 

running of the SACC, the AC set temperature was in the medium to low range. 

This affects the overall PMV performance and energy saving performance of 

the SACC.  

                     During the 5 days of running of the SACC, it was discovered that 

the indoor CO2 concentration maintained between the aforementioned range. 

This was because the number of occupancies in the test area remained the 

same which was 3 persons. Besides that, there was no frequent in and out 

movement by the occupancies. Below Figure 4.6 shows the average indoor 

CO2 level for each of the 5 days during the running of the SACC. 

 

 

Figure 4.6: Average Indoor CO2 level [Smart AC Controller (Fuzzy Logic)] 

 

                Below Figure 4.7 shows the indoor occupancy status for one of the 

days when SACC was controlling the AC. Based on the Figure 4.7, there was 

presence of occupants for the majority of time. For the mmWave radar sensor 

to not detect anyone, all the occupants must leave the test area which rarely 

happens. Due to this, only the fuzzy rules that are defined with “Detection” for 

indoor occupancy detection are being triggered. There was no opportunity for 
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the “No Detection” rules to be triggered, thus limiting the SACC in saving 

more energy.  

 

Figure 4.7: Indoor Occupancy Status [Smart AC Controller (Fuzzy Logic)] 

        

           

Figure 4.8: Overall Comparison Between SACC and 24 °C 

 

4.2  Design and Development of Refined Fuzzy Logic (FL) [Fuzzy Logic 

Ver 2]              

A refined version of FL algorithm (Fuzzy Logic Ver 2) was developed for the 

SACC with the intention of improving the energy saving and thermal comfort. 

Instead of taking in 5 input parameters, only 3 input parameters were feed into 

the FL algorithm which were the PMV, indoor temperature and power 

consumption of AC. The indoor CO2 concentration and indoor occupancy 

detection were removed as the condition of the test area did not allow these 

two input parameters to vary. Below Figure 4.9 shows the refined version of 

the FL algorithm. 
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Figure 4.9: Refined Version of FL Algorithm (Fuzzy Logic Ver 2) 

 

                  As both the indoor CO2 concentration and indoor occupancy 

detection were removed in the refined version of FL algorithm, the number of 

fuzzy rules were changed. A total of 10 rules were developed, whereby rule 1 

to rule 5 were responsible for the thermal comfort aspect and rule 6 to rule 10 

were responsible for the energy saving aspect. Rule 6 to rule 10 remained the 

same as previous FL algorithm. As for the membership functions and fuzzy 

sets for the inputs and output and the type of inference system, these remained 

the same. Below Figure 4.10 shows the fuzzy rules for the refined version of 

FL algorithm. 

 

 

Figure 4.10: Fuzzy Rules for Refined Version of FL algorithm (Fuzzy Logic 

Ver 2) 

Rule No. PMV Status
Power 

Consumption
Indoor 

Temperature
AC Set 

Temperature

1 Cold - - High

2 Moderately Cold - - Slightly High

3 Slightly Cold - - Medium

4 Neutral - - Slightly Low

5 Hot - - Low

6 - High Cold Slightly Low

7 - High Slightly Cold Medium

8 - High Normal Slightly High

9 - High Slightly Hot High

10 - High Hot High
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4.2.1  Results and Analysis of SACC [Fuzzy Logic Ver 2] 

 The SACC with the refined version of FL algorithm was tested for 3 days, 

each day from 9:00 am till 5:00pm. For fair comparisons, the results were 

compared with three of the days from the 24 °C testing that had similar 

weather conditions with the days of running the refined version of FL 

algorithm, with an average outdoor temperature difference of 1.53 % and an 

average outdoor humidity difference of 1.27 %. For the energy consumption, 

the refined version of SACC had an average energy consumption of 8.38 kWh 

whereas the 24 °C has an average energy consumption of 9.64 kWh. For this, 

the SACC has an improved energy saving of 13.07 %.  

 

 

Figure 4.11: Comparison of Energy Consumption Between Refined SACC and 

Constant 24 °C 
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Figure 4.12: Comparison of Average Outdoor Temperature Between Refined 

SACC and Constant 24 °C 

 

 

Figure 4.13: Comparison of Average Outdoor Humidity Between Refined 

SACC and Constant 24 °C 

 

                     For the thermal comfort aspect, within the 3 days of running the 

refined SACC, the refined SACC was able to maintain an average of 46.55 % 

in the thermal comfort zone. This is equivalent to an average of 3.72 thermal 

comfort hours which is slightly better than the previous FL algorithm. When 

compared with the 24 °C,  the refined SACC was able to maintain longer 

thermal comfort hours, an average of 33.28 % more. Below Figure 4.14 shows 

the comparison of thermal comfort between the refined SACC and 24 °C 

baseline scheme 
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Figure 4.14: Comparison of Thermal Comfort Between Refined SACC and 

Constant 24 °C 

 

              The refined SACC outperformed the constant 24 °C in both the 

energy saving and thermal comfort aspect and has better performance than the 

previous FL algorithm. However, for the thermal comfort aspect, maintaining 

an average of 46.55 % in the thermal comfort zone for the refined SACC was 

still suboptimal. By enlarging the thermal comfort zone by a small margin, 

between -0.5 and 0.5 to between -0.75 and 0.5, the thermal comfort hours 

increased from 46.55 % to 80.34 % for the refined SACC. This means that 

majority of the time during the running of the SACC, the PMV was slightly 

out of the thermal comfort zone, skew to the cold zone. 

 

 

Figure 4.15: Comparison of Extended Thermal Comfort Zone Between 

Refined SACC and Constant 24 °C 
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              Below Figure 4.16 shows the relationship between the PMV and AC 

Set Temperature. By looking at the first box, whenever the PMV goes slightly 

beyond 0.2, the AC set temperature drops to 23 °C. This causes the PMV to 

exceed beyond -0.5. By focusing on the second box, when PMV exceeds 

beyond -0.5, the AC set temperature increases to 25 °C to bring the PMV back 

into the comfort zone. However, the PMV still falls out of the comfort zone, 

skew to the cold zone. These are due to the flaws in the refined FL algorithm. 

The flaws are in the defined fuzzy sets for the PMV and the defined fuzzy 

rules for the refined FL algorithm.  

 

 

Figure 4.16: Relationship between PMV and AC Set Temperature 

 

 

Figure 4.17: Overall Comparison Between Refined SACC and 24 °C 

 

4.3   Design and Development of Further Refined Fuzzy Logic (FL) 

[Fuzzy Logic Ver 3]              

A further refined version of FL algorithm (Fuzzy Logic Ver 3) was developed 

for the SACC to further improve the energy saving and thermal comfort. In 

this version, everything remained the same as in the previous refined version 

except some changes were made in this further refined version on the fuzzy 

sets of the PMV and the fuzzy rules defined. The fuzzy sets for the PMV were 

increased from four to a total of seven fuzzy sets. At the hot zone (beyond 0.5), 

instead of one single fuzzy set to define the range, two additional fuzzy sets 

namely, slightly hot and moderately hot were introduced. Below Figure 4.18 
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shows the fuzzy sets for the PMV for the further refined version of FL 

algorithm. 

 

 

Figure 4.18: New Fuzzy Sets for Further Refined FL Algorithm  

(Fuzzy Logic Ver 3) 

 

             With the new fuzzy sets introduced for the PMV, the fuzzy rules 

increased from ten to twelve. These new fuzzy rules were developed in an 

attempt to solve the problem in the previous refined FL algorithm. Now, for 

the AC set temperature to set at 23 °C or below, the PMV has to go beyond the 

neutral zone. Besides that, when the PMV goes beyond 0.5 and into the cold 

side, the AC set temperature is more likely to be set above 25 °C to bring the 

PMV back to the comfort zone. Note that rule 8 to rule 12 remained the same 

as previous FL algorithms. Below Figure 4.19 shows the newly defined fuzzy 

rules for the further refined version of FL algorithm. 
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Figure 4.19: Fuzzy Rules for Further Refined Version of FL algorithm 

 (Fuzzy Logic Ver 3) 

 

 

4.3.1 Results and Analysis of SACC [Fuzzy Logic Ver 3] 

The SACC with the further refined version of FL algorithm was tested for 3 

days, each day from 9:00 am till 5:00pm. For fair comparisons, the results 

were compared with three of the days from the 24 °C testing that had similar 

weather conditions with the days of running the further refined version of FL 

algorithm, with an average outdoor temperature difference of 1.9 % and an 

average outdoor humidity difference of 4.13 %. For the energy consumption, 

the further refined version of SACC had an average energy consumption of 

7.35 kWh whereas the 24 °C has an average energy consumption of 9.17 kWh. 

For this, the SACC has an improved energy saving of 19.85 %, performing 

better than the previous versions of FL algorithm. 

 

Rule No. PMV Status
Power 

Consumption
Indoor 

Temperature

AC Set 
Temperat

ure
1 Cold - - High
2 Moderately Cold - - High

3 Slightly Cold - -
Slightly 

High

4 Neutral - -
Slightly 

High

5 Slightly Hot - - Medium

6 Moderately Hot - - Medium
7 Hot - - Low

8 - High Cold
Slightly 

Low
9 - High Slightly Cold Medium

10 - High Normal
Slightly 

High
11 - High Slightly Hot High
12 - High Hot High
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Figure 4.20: Comparison of Energy Consumption Between Further Refined 

SACC and Constant 24 °C 

 

 

Figure 4.21: Comparison of Average Outdoor Temperature Between Further 

Refined SACC and Constant 24 °C 
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Figure 4.22: Comparison of Average Outdoor Humidity Between Further 

Refined SACC and Constant 24 °C 

 

                For the thermal comfort aspect, within the 3 days of running the 

further refined SACC, the further refined SACC was able to maintain an 

average of 80.46 % in the thermal comfort zone. This is equivalent to an 

average of 6.44 thermal comfort hours which is much better than the previous 

versions of FL algorithm. When compared with the 24 °C, the refined SACC 

was able to maintain longer thermal comfort hours, an average of 63.21 % 

more. Below Figure 4.23 shows the comparison of thermal comfort between 

the further refined SACC and 24 °C baseline scheme 

 

 

Figure 4.23: Comparison of Thermal Comfort Between Further Refined SACC 

and Constant 24 °C 
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             The further refined SACC outperforms the constant 24 °C in both the 

energy saving and thermal comfort aspect and has better performance than the 

previous versions of FL algorithm. With the modifications made on the FL 

algorithm, the energy saving of the SACC improved from 5.65% to 19.85 %. 

As for the thermal comfort aspect, it increased from 26.45 % to 63.21 % more 

when compared with the 24 °C baseline scheme. 

 

 

Figure 4.24: Overall Comparison Between Further Refined SACC and 24 °C 

 

4.3.2   Relationship of Input Parameters with the AC Set Temperature 

[Fuzzy Logic Ver 3] 

Below Figure 4.25 shows the further refined FL algorithm effect on the AC 

Set temperature. By looking at the first box, whenever the power consumption 

of the AC is ON, the further refined FL algorithm detects it, and the SACC 

sets the AC set temperature to a higher degree The AC set temperature 

computed by the further refined FL algorithm considers both the power 

consumption and PMV in this case. With this, the workload of the AC is 

reduced, and the power consumption of the AC is OFF. Once the power 

consumption of the AC is in idle state (OFF), the further refined FL algorithm 

focuses only on the PMV value, and the SACC sets the AC set temperature to 

ensure the PMV is in the comfort zone. 

               In the second box, for this period, the AC set temperature is in 

constant 26 °C. This is based on the fuzzy rules defined in the further refined 

FL algorithm. It considers both the power consumption and the PMV value 

and determines that 26 °C is the suitable temperature to maintain the PMV in 

the thermal comfort zone and at the same time, reduce the workload of the AC. 
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Figure 4.25: Effect of Further Refined FL Algorithm on AC Set Temperature 

 

4.4   Battery Life and Costing of SACC 

The SACC operates as an external unit to the AC and requires external power 

supply for it to run. To be considered a reliable Smart AC Controller, the 

controller needs to be long-lasting in terms of its battery life. Below Table 4.1 

shows a simple battery life evaluation for the SACC when it is powered with a 

10000mAh power bank. 

 

Table 4.1: SACC Battery Life Evaluation 

 

 

 

 

 

 

 

 

 

             

 

 

Component Active Mode (mA) 

ESP-WROOM-32 ~170 

DHT22 ~1 

HLK-LD2410C ~70 

MH-Z19C ~85 

IR LED ~30 

Push Buttons (x4) - 

OLED ~25 

Total Current 

Consumption (mA) 
~381 

Battery Life 

(10000mAH)   
26 h 14 m  
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             By considering the current consumption of the components used for 

the SACC, for a 10000mAH power bank, it can last for 26 hours and 14 

minutes. This is approximately equivalent to 3 days of continuously 8 hours 

(9:00 am to 5:00 pm) of operation of the SACC, which tallies with the real-life 

testing. For controlling residential split-air conditioner, this battery life span is 

more than enough for the reliable operation of the SACC. Alternatively, the 

SACC can be powered through power socket with the used of power adapter 

for it to continuously operate without worrying about battery life span. Even 

though the mmWave radar sensor and carbon dioxide sensor were not used for 

the final version of the FL algorithm, they are being considered for the battery 

life evaluation for further enhancement on the FL algorithm that includes these 

two components. 

                 Besides battery life, the costing of the SACC is also an important 

factor in determining whether it is suitable to be commercialized. For the 

SACC, it costs below RM200 while considering the 10000mAh power bank 

being used as the power supply. Without considering the 10000mAH power 

bank, the SACC only costs below RM 150, which considers as low cost and 

affordable. All the costing of the SACC comes from the hardware components. 

The software components which are the Blynk IoT platform and IOS shortcut 

are free of cost. Blynk IoT platform has free subscription plan which was used 

to develop the necessary features for the SACC. Below Table 4.2 shows the 

costing of the SACC. 
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Table 4.2: Costing of the SACC 

Components Quantity Price 

(RM) 

Physical Components (Main)    

ESP-Wroom-32 1 27.00 

mmWave Radar Sensor (HLK-LD2410C) 1 10.02 

Temperature Sensor (DHT22) 1 7.90 

CO2 Sensor (MH-Z19C) 1 79.27 

IR LED 1 0.2 

OLED  1 14.90 

Push Buttons 4 3.20 

Total Cost  142.47 

Physical Components (Other)   

Power Bank (10000mAH) - 50 

Cables and Other Accessories  - 5 

Total Cost  55 

Software Components   

Blynk IoT Platform - - 

IOS Shortcut - - 

Total Cost  - 

Grand Total  197.47 
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CHAPTER 5 

 

5 CONCLUSIONS AND FUTURE WORK AND RECOMMENDATIONS 

 

5.1 Conclusion 

A smart air conditioning controller (SACC) was designed and developed in 

this project. The SACC uses fuzzy Logic (FL) algorithm as its decision-

making engine to optimally compute the AC set temperature to control the AC 

to achieve energy saving without compromising user comfort. In this project, 

three versions of FL algorithm were designed and developed with different set 

of input parameters, fuzzy sets and rules defined, each performs better than its 

predecessor.  

              By comparing it with the 24 °C baseline scheme, for the first version 

of FL algorithm, it was able to save 5.65 % of energy and was able to maintain 

26.45% more of time in the thermal comfort zone. Second version of FL 

algorithm was able to save 13.07 % of energy and was able to maintain 33.28 % 

more of time in the thermal comfort zone. With the third version of FL 

algorithm, the SACC saves 19.85 % of energy and was able to maintain 63.21 % 

more of time in the thermal comfort zone. With these results, it demonstrates 

the feasibility of the FL to be used as a control algorithm to control the AC for 

energy saving and thermal comfort. 

               Besides that, the SACC is Internet-of-Things (IoT) enabled. The 

SACC is developed such that it can be monitored and controlled remotely 

through IoT platform and voice command. Not only that, features such as 

automations, Over-the-Air (OTA) update and Wi-Fi provisioning are made 

available for the SACC. With all these features, the SACC only cost below 

RM 200. 

               Last but not least, the SACC is a low-cost and affordable and has 

plug-and-play characteristic that enabled users to use it wherever they want to 

control their residential split-air conditioner. This work will benefit the 

community and environment by offering simple and affordable solution to 

effectively control the AC in the effort of decarbonization while saving energy 

cost. 
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5.2 Future Work and Recommendations 

The developed SACC is a prototype to test the feasibility of the FL algorithm 

in energy saving and thermal comfort. As the feasibility of the FL algorithm is 

proved, at least for the controlling of a single split-air conditioner unit, the 

SACC can have a more compact design by switching to Printed Circuit Board 

(PCB) for the architecture and 3D- printing for the enclosure. With these, there 

will be no loose connections that might affect the operation of SACC, and the 

SACC can operate as a complete product to control the AC. 

               The latest version of FL algorithm only includes PMV, indoor 

temperature and power consumption of AC as its input. It is recommended to 

include back the indoor CO2 concentration and indoor occupancy parameters 

into the FL algorithm if the test area setting allow these two parameters to vary. 

If the test area setting allows these two parameters to vary, the SACC might 

further improve on its energy saving and thermal comfort. 

                 As the developed SACC is only capable of controlling a single split-

air conditioner unit, for the control of multiple split-air conditioner units, the 

SACC can be of multiple units. For example, for the controlling of three split-

air conditioner units, the SACC can be 3 units, whereby one unit has all the 

sensors attached to it and able to control one of the ACs, while the other two 

SACC just comprises of a microcontroller and an IR transmitter to control the 

other two ACs. The FL algorithm will run on the SACC that has all the 

sensors attached to it and compute the AC set temperature. The AC set 

temperature information then can be sent to the two other SACCs via 

communication protocol such as ESP-NOW to control their respective ACs.  

                     Additionally, as the developed SACC is a single module with all 

sensors integrated, the accuracy of the sensor readings may be compromised. 

To ensure more precise measurements for the FL algorithm, particularly when 

controlling multiple split-air conditioners, it is recommended to deploy the 

sensors across different locations. 
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APPENDICES 

 

Appendix A: Pin Layout Diagram of ESP32 (Microcontroller of SACC) 

 

  

 

 

Appendix B: Datasheet of DHT22 (Temperature and Humidity Sensor)
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Appendix C: Datasheet of HLK-LD2410C (Indoor Occupancy Sensor) 

 

 

Appendix D: Datasheet of MH-Z19C (Indoor Carbon Dioxide Concentration 

Sensor) 

 

 


