

Machine Learning-Based Load Estimation Model for

A Research Office

MOK JIA CHENG

UNIVERSITI TUNKU ABDUL RAHMAN

Machine Learning-Based Load Estimation Model for A Research Office

MOK JIA CHENG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Electrical and Electronic

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2024

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : MOK JIA CHENG

ID No. : 1906647

Date : 18 September 2024

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “Machine Learning-Based Load

Estimation Model for A Research Office” was prepared by MOK JIA

CHENG has met the required standard for submission in partial fulfilment of

the requirements for the award of Bachelor of Electrical & Electronic

Engineering with Honours at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Ir. Dr. Wong JianHui

Date : 18 September 2024

Signature :

Co-Supervisor :

Date :

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2024, MOK JIA CHENG. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to everyone who contributed to

the successful completion of this project. First and foremost, I am deeply

thankful to my supervisor, Ir. Dr. Wong JianHui, for her invaluable advice,

guidance, and constant motivation throughout the development of this project.

Her support and expertise have been instrumental in shaping both the direction

and outcome of my work.

I would also like to extend my sincere thanks to my loving parents and

friends, whose unwavering support and encouragement helped me persevere

through the most challenging moments. The process was, at times, exhausting,

especially when personal and academic pressures took their toll on my health.

As someone who spent at least an hour commuting to and from university every

day, the journey was not easy. In those difficult times, my parents and friends

were always there to uplift me and remind me that challenges are part of the

path to success.

Additionally, I want to acknowledge Ir. Dr. Wong for her advice

beyond this project, particularly in shaping my future career prospects. Her

insights have been incredibly valuable, and I have learned a great deal under her

mentorship. I am also grateful to my friend Mr. Thomas Mok Shao Chung for

providing thoughtful advice on managing stress and challenges. Lastly, I would

like to thank Ms. Goh Yong Yee for her diligent teaching, particularly in

research methodologies and presentation skills, which have been essential

throughout this journey.

v

ABSTRACT

This project addresses the challenge of load forecasting in research offices,

where uneven energy usage leads to inefficient load management. Most

effective models require extensive data inputs, such as weather and economic

variables, which are not always available. Additionally, most models are static

and cannot adapt to changing load patterns, limiting the effectiveness in

dynamic environments. This study aims to develop a load forecasting model that

uses limited data length (1- 2 years), limited variables—only time and power

consumption—to achieve compatible accuracy. The selected algorithms include

Catboost, LSTM, GRU, and CNN-BiLSTM, with a focus on incorporating a

self-updating feature to improve adaptability. The results show that while deep

learning models achieve reasonable accuracy, Catboost outperformed with an

RMSE of 0.0819 kW, MAE of 0.0474kW, and MAPE of 0.5127%. The self-

updating Catboost model further enhanced performance compared to its static

counterpart to capture future dynamic load, with MAPE below 5% across every

month. The developed models are ready for deployment and require only power

consumption data for training, making them both robust and adaptable for

predicting future load profiles.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xiii

LIST OF APPENDICES xvi

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 3

1.4 Aim and Objectives 3

1.5 Scope and Limitation of the Study 4

2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Traditional Machine Learning Model 5

2.3 Deep Learning Model 7

2.4 Hybrid Model 8

2.5 Self-updating Model 10

2.6 Dataset 11

2.7 Research Gap 12

2.8 Summary 12

2.8.1 Summarised Finding 13

3 STATIC MODEL DEVELOPMENT &

EVALUATION 17

vii

3.1 Introduction 17

3.2 Flowchart and Work Plan 18

3.3 Data Collection and Analysis 20

3.3.1 Dataset 20

3.3.2 Statistical analysis 22

3.3.3 Box plots analysis 23

3.3.4 Autocorrelation Analysis 25

3.4 Machine Learning Algorithm 27

3.4.1 Categorical Boosting (CatBoost) 27

3.4.2 Long Short-Term Memory (LSTM) 28

3.4.3 Gated Recurrent Unit (GRU) 29

3.4.4 Hybrid Model 30

3.5 Evaluation Metrics 31

3.5.1 Mean Absolute Error (MAE) 31

3.5.2 Root Mean Squared Error (RMSE) 32

3.5.3 Mean Absolute Percentage Error (MAPE) 32

3.6 Feature Selection 34

3.6.1 LSTM 36

3.6.2 GRU 37

3.6.3 CatBoost 38

3.6.4 CNN-LSTM 39

3.7 Data Preprocessing 40

3.7.1 Sliding Window 40

3.7.2 Min-Max Technique 41

3.8 Hyperparameter Tuning 42

3.8.1 Grid Search Method 42

3.8.2 LSTM Tunning 43

3.8.3 GRU Tunning 48

3.8.4 CatBoost Tunning 53

3.8.5 CNN-LSTM Tunning 59

3.9 Convergence Analysis 64

3.9.1 LSTM 64

3.9.2 GRU 66

3.9.3 CatBoost 67

viii

3.9.4 CNN-LSTM 68

3.10 Performance Measure 69

3.11 Limitations of Static models 75

4 ADAPTIVE CATBOOST DEVELOPMENT &

EVALUATION 78

4.1 Flowchart & Work Plan 78

4.2 Dataset 79

4.3 Preprocessing 80

4.4 Drift Detection 81

4.5 Optuna Optimization 82

4.5.1 Updates Starting in 2024 (Scenario 1) 83

4.5.2 Updates Starting in 2023 (Scenario 2) 84

4.6 Updating Size 84

4.7 Updating Model Evaluation 85

4.8 Performance Measure Result 87

4.8.1 Updates Starting in 2024 (Scenario 1) 87

4.8.2 Updates Starting in 2023 (Scenario 2) 91

4.9 Summary 95

5 CONCLUSION 96

5.1 Conclusion 96

5.2 Recommendations for Future Work 96

REFERENCES 98

APPENDICES 103

ix

LIST OF TABLES

Table 2.1: Input Parameters and Self-Update Capabilities of Studied

Papers 13

Table 2.2: Comparison of traditional machine learning and deep

learning 15

Table 2.3: Comparison of deep learning algorithms 16

Table 3.1: Sample of Dataset Used in this Project. 20

Table 3.2: Dataset Characteristics. 21

Table 3.3: Augmented Dickey-Fuller Test 22

Table 3.4: Statistical Analysis Data 23

Table 3.5: Feature Categorization by Correlation Strength 36

Table 3.6: Feature Experiment of LSTM model 37

Table 3.7: Feature Experiment of GRU model 38

Table 3.8: Feature Experiment of CatBoost model 39

Table 3.9: Feature Experiment of CNN-LSTM model 40

Table 3.10: Hyperparameter Tunning of LSTM model (Phase 1) 44

Table 3.11: Hyperparameter Tunning of LSTM model (Phase 2) 45

Table 3.12: Optimizer Tunning of LSTM model 46

Table 3.13: Hyperparameters Tunning of GRU model (Phase 1) 49

Table 3.14: Hyperparameters Tunning of GRU model (Phase 2) 50

Table 3.15: Optimizer Tunning of GRU model 51

Table 3.16: Hyperparameters Tunning of CatBoost model (Phase 1) 54

Table 3.17: Hyperparameters Tunning of CatBoost model (Phase 2) 56

Table 3.18: Hyperparameters Tunning of CatBoost model (Phase 3) 57

Table 3.19: Hyperparameters Tunning of CNN-LSTM model (Phase 1)

 60

x

Table 3.20: Hyperparameters Tunning of CNN-LSTM model (Phase 2)

 61

Table 3.21: Optimizer Tunning of CNN-LSTM model 62

Table 3.22: Overall Comparison between LSTM, GRU, CNN-LSTM,

CatBoost on Test Data 75

Table 4.1: Dataset Characteristics (January 2024 – June 2024) 80

Table 4.2: Adaptive Catboost Optimum Parameter Tunned by

Optuna Optimization for Each Updating (Update from Jan

2024 Onwards) 83

Table 4.3: Adaptive Catboost Optimum Parameter Tunned by

Optuna Optimization for Each Updating (Update from Jan

2023 Onwards) 84

Table 4.4: Overall Performance of Static Model and Updated Models

Across Each Months (Start Update from 2024 Onwards) 90

Table 4.5: Overall Performance of Static Model and Updated Models

Across Each Months (Start Update from 2023 Onwards) 94

xi

LIST OF FIGURES

Figure 3.1: Iterative Development in Software Development 17

Figure 3.2: Flowchart of Static Model Development 19

Figure 3.3: Box plot of hourly electric load 23

Figure 3.4: Box plot of yearly electric load 24

Figure 3.5: Box plot of monthly electric load 24

Figure 3.6: Box plot of daily electric load 25

Figure 3.7: Autocorrelation Function (ACF) and Partial

Autocorrelation Function (PACF) Plot 26

Figure 3.8: Correlation matrix of potential feature 35

Figure 3.9: Illustration of sliding window technique. 41

Figure 3.10: Flowchart of LSTM Tunning Process 47

Figure 3.11: Flowchart of GRU Tunning Process 52

Figure 3.12: Flowchart of CatBoost Tunning Process 58

Figure 3.13: Flowchart of CNN-LSTM Tunning Process 63

Figure 3.14: Training and validation loss for LSTM 65

Figure 3.15: Training and validation loss for GRU 67

Figure 3.16: Training and validation loss for CatBoost 68

Figure 3.17: Training and validation loss for CNN-LSTM 69

Figure 3.18: Prediction curves on 21/10/2023 70

Figure 3.19: Prediction curves on 11/11/2023 71

Figure 3.20: Prediction curves on 22/11/2023 71

Figure 3.21: Prediction curves on 31/12/2023 72

Figure 3.22: Prediction curves on 21/10/2023 to 27/10/2023 (one week)

 72

xii

Figure 3.23: Prediction curves on 20/10/2023 to 31/12/2023 (full test

data) 74

Figure 3.24: Prediction curves on 31/12/2023 74

Figure 3.25: Prediction curves on 21/06/2024 – 27/06/2024 76

Figure 3.26: Plotting of Overall Performance of Static Model and

Updated Models Across Each Months (Start Update from

2024 Onwards) 76

Figure 3.27: Load Power Consumption of Whole Dataset (Dec 2021 to

June 2024) 77

Figure 4.1: Flowchart of Adaptive CatBoost 79

Figure 4.2: Prediction curves on 11/02/2024 to 17/02/2024 (one week)

 87

Figure 4.3: Prediction curves on 06/05/2024 to 12/04/2024 (one week)

 87

Figure 4.4: Prediction curves on 06/05/2024 to 12/05/2024 (one week)

 88

Figure 4.5: Prediction curves on 23/06/2024 to 29/06/2024 (one week)

 88

Figure 4.6: Plotting of Overall Performance of Static Model and

Updated Models Across Each Months (Start Update from

2024 Onwards) 90

Figure 4.7: Prediction curves on 01/08/2023 91

Figure 4.8: Prediction curves on 01/08/2023 to 07/08/2023 (one week)

 91

Figure 4.9: Prediction curves on 15/10/2023 to 22/10/2023 (one week)

 92

Figure 4.10: Prediction curves on 11/05/2024 to 17/05/2024 (one week)

 92

Figure 4.11: Plotting of Overall Performance of Static Model and

Updated Models Across Each Months (Start Update from

2023 Onwards) 94

xiii

LIST OF SYMBOLS / ABBREVIATIONS

𝑉𝑃ℎ𝐴 Phase A voltage

𝑉𝑃ℎ𝐵 Phase B voltage

𝑉𝑃ℎ𝑐 Phase C voltage

𝐼𝑃ℎ𝐴 Phase A current

𝐼𝑃ℎ𝐵 Phase B current

𝐼𝑃ℎ𝐶 Phase C current

𝑃𝐹 Power Factor

𝑋 The original value

𝑋𝑚𝑖𝑛 The minimum values of the feature

𝑋𝑚𝑎𝑥 Maximum values of the feature

𝑥′ Normalized value

∅𝑖 Non-seasonal autoregressive (AR)

𝛷𝑖 Seasonal autoregressive (AR)

𝐿 The lag operator

𝑝 Order of the non-seasonal AR terms

𝑃 Order of the seasonal AR terms

𝑆 Length of the seasonal period

𝑑 Order of non-seasonal differencing

𝐷 Order of seasonal differencing

𝑌𝑡 Time series at time t

𝜃𝑖 Coefficients of the non-seasonal moving average (MA)

𝛩𝑖 Coefficients of the seasonal moving average (MA)

𝑞 Order of the non-seasonal MA

𝑄 Order of the seasonal MA terms

𝑓𝑡 Forget gate at time t

𝑖𝑡 Input gate at time t

𝑥𝑡 Input at timestep t

ℎ𝑡 Output state of the LSTM at timestep t

𝐶𝑡 Cell state at timestep t

𝑊 Weights corresponding to each gate

xiv

 𝑏 Biases corresponding to each gate

 𝜎 Sigmoid activation function

𝜎𝑜 SoftMax activation function (multiple classes)

𝑇𝑎𝑛ℎ Hyperbolic tangent function,

𝑈 The time insensitive hidden state matrix

𝑧𝑡 Update gate at time t

𝑟𝑡 Reset gate at time t

ℎ′
𝑡 Candidate hidden state at time t

ℎ𝑡(𝐺𝑅𝑈) Final hidden state at time t

𝜎 sigmoid activation function, used to regulate the gates

𝑛 Total number of observations in the dataset

𝑦𝑖 The actual observed value for the 𝑖𝑡ℎ observation

𝑦′
𝑖
 The predicted value for the 𝑖𝑡ℎ observation

ACF Autocorrelation Function

ADAM Adaptive moment estimation

AI Artificial Intelligence

ANN Artificial Neural Network

AR Autoregressive

ARIMA Auto Regressive Integrated Moving Average

BiLSTMS Bidirectional Long Short-Term Memory Networks

CNN Convolutional neural network

DL Deep learning

GRU Gated recurrent unit

GTO Golden Tortoise Optimization

GWO Grey Wolf Optimizer

LSTM Long short-term memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine learning

PACF Partial Autocorrelation Function

RMSE Root Mean Squared Error

RNN Recurrent neural network

SAMF Self-Adaptive Momentum Factor

xv

SARIMA Seasonal Autoregressive Integrated Moving Average

SVR Vector Regression

TCN Temporal Convolutional Networks

VMD Variational Mode Decomposition

WNN Wavelet Neural Network

xvi

LIST OF APPENDICES

Appendix A: Codes 103

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

In today’s age where the sustainability of the energy systems concerns us more

than ever, it is not just a technical challenge but a necessity to be able to forecast

the electrical load within commercial buildings precisely. This project serves to

be a substantial step forward in the field of energy management by creating a

state-of-the-art machine learning model for a two-storey research office. As

such, this technology has the potential not only to improve the ways in which

people consume energy but also to make it easier for us to optimize this

consumption on the go, reducing operational costs and increasing sustainability

for many businesses. As more and more businesses are focusing on reducing the

impact on environment and becoming more sustainable and operationally

efficient, the role of such intelligent automation in managing energy will only

end up increasing. In research offices, where the usage of this form is uneve,

this technology will also prove its utmost utility. Being put to use in a country

like Malaysia, which is now focusing on acquiring the benefits of technology

and sustainability, and using complex machine learning techniques, this project

aims to make load forecasts more accurate.

This is not just the next step in the rapid evolution of technology. In

fact, the emergence of artificial intelligence in this situation serves to be a

massive force that changes the way of energy management and conservation.

As such, this model, along with other AI technologies, will bring us a step closer

to a world in which the energy systems know what do and more than that, do it

in a manner that is inherently sustainable. The computational capabilities of

artificial intelligence that will allow businesses to compete on a global level now

equipped with the intellectual capabilities needed to approach this competition

in a manner that is both profitable and beneficial for the environment. As such,

this project not only serves the immediate operational needs of load forecasting

for businesses but also advances the universal discussion on how artificial

intelligence and other technological advancements will define the future in

terms of sustainability and energy efficiency.

2

1.2 Importance of the Study

As the world’s attention shifts towards the sustainability of the energy systems,

the ability to reliably forecast the electrical load within commercial buildings

becomes not just a technical difficulty but a mandate upon which the efficiency

and environmental responsibility of energy use hinge. This capacity is

especially critical amid the rapid advancements in energy management and

digital technology, whose potential to revolutionize the way people conserve

and consume energy remains largely untapped. Recognizing this imperative,

this project seeks to develop an advanced machine learning model designed for

a two-storey research office. By doing this, the goal of the project is inspired by

the need not only to revolutionize how the system consume energy but also to

develop a tool that reliably taps this technology to elevate operational

sustainability, reduce operational costs.

Increasingly, the worldwide shift of businesses toward greener, more

efficient operational models elevates the role of intelligent automation in energy

management. Both the needs and opportunities of doing this emerge with special

depth in settings like research offices, where energy usage is volatile and

unpredictable in nature. In the context of Malaysia’s technological and

sustainability growth, this project’s prospects and contributions can be wholly

attributed to its use of advanced machine learning methodologies for load

forecasting. Therefore, Artificial Intelligence’s dawn and increasing footprint

can be characterized as an epochal shift in on two concomitant levels: by

infinitely expanding the capacity of energy management and conservation, and

fundamentally repositioning the domains of work and its role in the greater

world.

Adding the immense analytical capacities of AI, the potential of the

model created in this project is limitless in all practical senses. Meanwhile, the

contributions made by this project can be equally instrumental not only to the

goals and broader strategies that the connected industry would develop, but also

to the crucially important discussion on how AI can be developed and employed

to create a sustainable future. In the context of this encompassing ambition, this

project is characterized by both prospect and closure, representing a collection

3

of insights on how the world can change, and a foundational step making this

transformation a reality.

1.3 Problem Statement

According to Ahmad, et al. (2022), most conventional energy forecasting

models struggle at one point to capture the dynamic and often non-linear

features of the energy electrical load. This shortcoming creates flaws in energy

planning, leading to higher operational cost for the research office. In most

studies, it is always advised to improve the accuracy of the model, the input data

used to train the model should include as much detailed information like weather,

and temperature and economies data. However, in many cases, the detailed

information might not be always available or easily accessible due to funding

and accessibility issues. The question posed in the case of a research office,

which lacks all the detailed information is how to achieve maximum accuracy

of energy electrical load forecasting with the least detailed data. There is a

critical need for a robust forecasting model that can effectively capture the

dynamic and non-linear characteristics with limited data (time and power

consumption) to predict future load profiles, ensuring energy efficiency and

operational continuity in research facilities.

1.4 Aim and Objectives

This project aims to evaluate the feasibility of machine learning-based load

estimation for a research office. The major objectives are presented as follows:

(i) To investigate the current state-of-the-art algorithms applied on

load forecasting and select suitable algorithms.

(ii) To develop a system that could estimate the next day load using

multiple machine learning methods.

(iii) Evaluate the efficiency of the developed models in predicting the

next day load profile.

4

1.5 Scope and Limitation of the Study

To begin with, it is essential to outline the study’s scope, being limited to the

construction of a load forecasting model designed for a two-storey research

office. As already mentioned, the model is developed using power and time

variables to predict energy consumption and identify specific patterns that

would support future consumption trends. Therefore, the contribution of this

research is a predictive mechanism that allows for better energy management

by analysing historical electricity usage within particular periods. Thus, the

established model facilitates making better decisions regarding consumption

strategies. Simultaneously, the scope involves a detailed analysis of the existing

power usage data, the imposition of an algorithm based on time series analysis,

and a detailed analysis of the results to forecast the load profile within desired

short-term periods.

However, the study is limited to the office context and may require

adaptation when applied to other types of buildings or larger scales. Another

limitation is that the access to high-computational resources is limited, and thus,

the training and refinement of the models and feature tunings differentiate from

the theoretical perspective. The limitations of the study in terms of the resources

available are acknowledged, as the objective of the research is to aim for the

best possible outcomes within the given constraints.

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

Load forecasting plays a crucial role in energy management, allowing for

efficient energy distribution, capacity planning, and reducing operational costs.

Traditionally, statistical methods have been employed, but recent years have

seen a shift towards machine learning (ML) and deep learning (DL) approaches

due to the superior predictive performance and flexibility in handling complex

nonlinear relationships in energy consumption data.

2.2 Traditional Machine Learning Model

Accurate load forecasting models help reduce operational costs, enhance grid

reliability, and support demand-side management initiatives. Various traditional

machine learning and statistical models have been employed for this task, each

offering unique strengths and limitations. Linear Regression (LR) is one of the

most basic for forecasting due to its simple structure. It attempts to model the

relationship between the dependent variable and one or more independent

variables by fitting a linear equation to the observed data. However, the

simplicity of LR often limits its effectiveness in capturing the complex, non-

linear relationships present in load forecasting data. For example, Zhnag et al.

(2019) found that LR had a relatively low R² value, indicating that a significant

proportion of the variance in the load data could not be explained by the model.

This suggests that while LR can provide some basic insights, it is prone to

significant prediction errors when applied to short-term load forecasting,

especially in the presence of non-linear patterns.

Decision Trees (DT) are another popular method in load forecasting.

Decision Trees split the data into subsets based on the value of input features,

creating a model that is easy to visualize and understand. However, DTs are

prone to overfitting, particularly when the trees become too deep, leading to

models that perform well on training data but poorly on unseen data. Huang and

Huang (2020) observed that the R² value for DT models was significantly lower

6

than for other methods, such as Random Forests, particularly as the complexity

of the data increased.

Random Forests (RF), a method that builds multiple decision trees and

aggregates the results, has been shown to improve upon the predictive accuracy

and generalization ability of single decision trees. By averaging the predictions

of many trees, RF reduces the risk of overfitting and typically performs better

on a variety of datasets. Zhou et al. (2021) found that RF achieved R² more than

0.90 in load forecasting tasks, which was higher than both DT and LR models,

indicating that RF provides a more accurate and reliable prediction. SARIMA

(Seasonal AutoRegressive Integrated Moving Average) is a traditional

statistical model widely used in time series forecasting, including load

forecasting. SARIMA extends the ARIMA model by explicitly modeling

seasonal effects, making it particularly useful for datasets with strong seasonal

patterns. Elamin and Fukushige (2018) has introduce a SARIMA model for

hourly electricity demand forecasting that considering external factors like

weather and calendar events. The model's performance is enhanced, reducing

the MAPE by 22.2% and achieving significant reductions in MAE and RMSE

by 21.3% and 21.8%, respectively. However, it performance drop when due to

non-linear load pattern.

Gradient Boosting Machines (GBMs), such as XGBoost, have gained

popularity due to the ability to achieve high accuracy in a wide range of

prediction tasks. GBMs work by sequentially adding models (typically decision

trees) to correct the errors made by previous models, gradually improving the

overall predictive performance. Deng et al. (2022) presented XGboost load

forecasting model with average MAPE of daily load is reduced by 1% -1.5%,

and the average MAPE of peak load is reduced by 3%, outperforming other

traditional models like RF and SVR. However, GBMs require careful tuning of

hyperparameters to avoid overfitting and ensure optimal performance.

In recent years, CatBoost has gained recognition as a powerful gradient

boosting algorithm, particularly in applications that involve complex datasets

with categorical variables. However, CatBoost's utility extends beyond such

scenarios. Even in cases where the dataset is limited to time and load power,

CatBoost has demonstrated robust performance. For instance, its ability to

handle noise and reduce overfitting through ordered boosting is particularly

7

beneficial. While earlier studies like those by Bian et al. (2024) explored

CatBoost's efficacy in HVAC power consumption predictions, achieving an R²

value of 0.91, these findings suggest that CatBoost's strengths are not solely

dependent on the presence of multiple categorical features. The model's inherent

capabilities make it well-suited for various forecasting tasks, including those

with simpler datasets, making it a compelling choice for load forecasting based

solely on time and load power data.

2.3 Deep Learning Model

Despite traditional model having advantages in its simple structure and training

speed, but it have limitations in capturing the nonlinear characteristics of load

series. Deep learning is a subset of machine learning, which in turn is a subset

of artificial intelligence (AI) that employs neural networks with many layers.

Duan (2020) proven that deep learning models are able to capture

complex functions and non-linear pattern of the data. These models have shown

significant improvements in the accuracy of electricity load forecasting when

using large dataset. Additionally, the ability of deep learning techniques to

capture long and non-linear patterns in building power consumption is better

than traditional forecasting methods. Therefore, the application of more

advanced machine learning models has enhanced the electricity load forecasting.

According to Eren and Kucukdemiral (2024), the common deep

learning models applied in load forecasting are long short-term memory

(LSTM), convolutional neural network (CNN), recurrent neural network (RNN),

gated recurrent unit (GRU), and autoencoders. These deep learning were used

to overcome the limitations of traditional forecasting methods. Lin, et al. (2022)

presents a load forecasting model for short-term electricity load using LSTM

based model. It is using a novel attention mechanism to improves forecasting

by considering feature correlations and temporal dynamics, and refined

selection of relevant weather data for more precise regional load predictions.

The research employed the Global Energy Forecasting Competition 2014

datasets with power consumption and temperature data as input to train the

model. It demonstrated superior performance over existing methods in both

point and probabilistic forecasting.

8

Xu and Baldick (2019) investigated single and deep-stacked LSTM

neural networks with different activation functions to forecast power load one

hour ahead using temperature and load data. The results showed that the two-

stacked LSTM network achieved highest accuracy with a MAPE of 1.53%.

According to the research of Bouktif, et al. (2019), LSTM and GRU are

outperformed machine learning and single-sequence models using RTE power

consumption dataset with power consumption and weather data. Both LSTM

and GRU are effective, but GRU is better in term of training speed due to it

algorithm's structure is simpler than LSTM. Massaoudi, et al. (2020)

demonstrated that temporal CNN can provide effective forecasting model with

benchmarks of SVM and LSTM, its architecture can contribute to the training

time reduction by decreasing the model complexity with an improvement of the

model accuracy when integrate with another model such as CNN-LSTM.

According to Tong, et al. (2022), the autoencoder part of the model has

been created to accomplish two tasks: dimensionality reduction in the encoding

phase and reconstruction in the decoding phase. As a result, it allows for

effective compression of time series characteristics with the possibility of

reconstructing the input sequences to enable the latent vectors to be indicative

of the original data. Autoencoders can be educated without a teacher. It implies

that it can strive to identify critical features in the input data without

necessitating the use of explicit tags. When learning is completed, the encoder

network can be employed to gather characteristics from new data samples,

which can be used in an LF problem. However, it may not perform well

compared to other deep learning models on specific supervised learning tasks,

especially those involving sequential data, where RNNs, GRUs, LSTMs, and

CNNs have shown superior performance.

2.4 Hybrid Model

Each of the individual algorithm have its advantages and shortage, so in order

to further improve the performance of the model, people started to proposed

9

hybrid model. The advantage of hybrid model is that if one component of the

hybrid model fails to produce accurate predictions under certain conditions,

other components can help to cover for its shortcomings to increase the accuracy.

Sajjad, et al. (2020) proposed CNN-GRU hybrid model achieved the

smallest error rate in MSE, RMSE, and MAE which are 0.09%, 0.31%, and 0.24%

respectively using same datasets when compared with other popular models,

showcased high precision and efficiency in short-term residential load

forecasting. Kim and Cho (2019) then combined Convolutional Neural

Networks and Long Short-Term Memory networks to build a CNN-LSTM

hybrid model and predict the housing energy consumption. This model is

designed to extract both spatial and temporal features affecting energy

consumption, allowing it to account for complex patterns including irregular

trends in time series data. The performance of the proposed CNN-LSTM

network is highlighted as achieving almost perfect prediction accuracy and

recording the smallest value of RMSE when compared to conventional

forecasting methods.

Fan, et al. (2023) introduces an innovative hybrid model GWO-VMD-

GTO-CNN-BiLSTMS, which uses Variational mode decomposition (VMD)

optimized by Gray Wolf optimization (GWO), for feature extraction along with

Convolutional Neural Network and Bidirectional Short-Term Memory neural

network for very accurate short-term load forecasting. This model provides a

reasonable way of dealing with uncertainty and complexity in power systems,

thus, representing superior predictive performance. However, the dataset chosen

in the analysis is too small and may bias the results. In addition, the model may

be seen as relatively complex, thus, leading to an increase in the training time.

In addition, the study by Hadjout, et al. (2022) presents an innovative hybrid

deep learning model combining Long Short-Term Memory (LSTM), Gated

Recurrent Unit (GRU), and Temporal Convolutional Networks (TCN) to

forecast monthly electricity consumption for the economic sector in Algeria.

The model is trained using data from various economic sectors consumers, and

it outperforms other single forecasting methods.

10

2.5 Self-updating Model

Self-updating model are models that are able to automatically adjust its

parameters in response to new data or changes in its environment, without need

to retrain the underlying models from scratch or updating the internal

parameters manually. This type of method is aimed to solve the problem of

decrease in accuracy when model expose to change of trend due to season or

change of environment in new input data. In fact, it modifies the effect or weight

of each model in the ensemble depending on the performance with the new data

(Kolter & Maloof, 2004). The method enhances the ensemble’s general

prediction by enhancing the use of more accurate models and lowering the

importance of less accurate models, depending on the recent performance of the

model. This is a faster adaption method that does not need the computational

resources and time that full retraining does.

Taleb, et al. (2022) has developed a model the hybrid model, which can

be applied in different region and changes over time. The latter feature allows

the developed model to increase the forecasting accuracy at every forecasting

range. Despite seasons, the model has shown an MAPE of 1.71% for 30-minute

predictions, 3.5 % for 24-hour predictions, and 5.1 % for one-week prediction.

The model adjusts itself through calculating the mean and standard deviations

of the past forecasting errors and changes weights according to them. In addition,

Zulfiqar, et al. (2022) also achieve dynamic weight adjustment by incorporating

a Self-Adaptive Momentum Factor (SAMF) into the load forecasting model,

result in MAPE of 1.71% for 30-minute predictions, 3.5% for 24-hour

predictions, and 5.1% for one-week predictions, indicating a strong performance

across different prediction intervals.

The self-updating can also be achieved in online-model, Li, et al. (2023)

has integrated both online and offline methods to improve the accuracy and

robustness of residential load forecasting. The offline component uses historical

data to build a foundational predictive model and the online component

dynamically updates the forecasts based on real-time data. Fekri, et al. (2021)

has also proposed a load forecasting model that able to continuous learning and

adapting to new patterns using online learning RNN algorithm.

11

2.6 Dataset

The dataset used in load prediction influences the models generated by it,

therefore selection of the data is crucial. It is important to choose the dataset

according to its impact on the accuracy of forecasts and its capacity to generate

meaningful insights. The accuracy of the predictions will generally depend on

how well the models are able to learn from the samples of real consumption

patterns and develop into meaningful forecasting systems. The quality of the

data used in the modelling can have effect on every stage, from the training and

testing to the application of the models. Quality data should be error free, do not

have missing values and or outliers (Qin et al., 2019). It is collected on the same

level of detail as the patterns of load. The data also undergoes preprocessing

such as data cleaning, normalization, and sometimes transformation to ensure

the consistency of the model.

Table 2.1 in summarised finding shows that many load prediction

models incorporate features to capture the dynamics of energy usage. These

features typically encompass power consumption and time along with factors,

like weather conditions (temperature, humidity) time related indicators (daily

weekly) and occasionally socio-economic factors (holidays, events). These

features may help to increase the accuracy in prediction, but at the same time

may overfit the models or increase the complexity of training process.

However, in many cases, especially in regions where the technological

infrastructure is limited or in certain applications where data collection is

limited, it might be unfeasible to collect a comprehensive dataset that includes

all potential features. In these instances, focusing on a simpler dataset that

mainly includes power consumption and time could offer specific benefits. By

doing so, the researchers and analysts can focus on the bare minimum of

temporal patterns that determine electricity usage while avoiding additional

complexity that other variables can introduce. In these cases, this course of

action is not just convenient but also required.

12

2.7 Research Gap

After doing a thorough study of the current literature on load forecasting models,

it is found that most studies achieve robust model using dataset with a wide

range of criteria other than just power usage and time, such as weather

conditions, consumer habits, and socioeconomic data. This strategy, while

effective, frequently demands complicated data collecting and processing.

There is a huge gap in the investigation of models that rely exclusively on

limited inputs which are power consumption and time. Models like this are not

only important in those scenarios with limited data variable, but it also can

achieve simpler implementation while maintaining forecast accuracy.

Furthermore, the models that is capable of self-updating and self-correction is

still not being study much. Most existing forecasting models are static, meaning

they do not evolve after training and deployment. This static nature restricts the

application in dynamic situations where load patterns may keep changing due

to new technologies or changes in usage patterns.

2.8 Summary

In early, traditional statistical models were the most frequently utilized solutions

in load forecasting. It included such popular ones as ARIMA and SARIMAX,

which are highly applicable to small datasets and relatively simple prediction

conditions. Nonetheless, traditional models are limited in its ability to process

nonlinear and dynamic patterns, which are typical for energy consumption data.

Eventually, with the increase in computational power and the amounts of data,

machine learning models such as Support Vector Regression became widely

applied. These solutions are more suitable for high-dimensional data, as well as

complex relationships and are able to overcome the drawbacks of traditional

methods. However, it still face difficulties in capturing long-term dependencies.

With the emergence of deep learning technologies, it contributed to the

development of load forecasting. LSTM models, CNN, GRU, and autoencoders

have demonstrated unique opportunities for monitoring intricate and non-linear

dependencies in vast data sets. Time-dependent models have shown the best

results in terms of temporal dependencies, constantly surpassing all the rest of

the traditional and earlier machine learning models in terms of accuracy and

stability. That is why hybrid models began to be developed, which consist of a

13

tandem of multiple forecasting models for increased prediction data quality.

Hybrid models simultaneously utilize several models using ensemble methods,

such as bagging and boosting, for further improved generalization and

decreased prediction variance by aggregating forecasts from the individual base

models.

Moreover, to solve the problem of decrease in accuracy when model

expose to change of trend due to season or change of environment in new input

data, the self-updating model seems to be a good solution for it. These models

dynamically adjust the parameters in response to new data, enabling them to

continuously learn and adapt to changing patterns without manual intervention

or extensive retraining. However, this type of model is still not widely utilized

and requires further research and development to optimize its performance and

applicability in load forecasting.

2.8.1 Summarised Finding

Table 2.1: Input Parameters and Self-Update Capabilities of Studied

Papers

Author Load Type Input

Parameters

Self-Update

Capability

Duan (2020) Residential

Load

Time, weather, and

power
⨯

Eren and

Kuçukdemiral

(2019)

Residential

Load

Temperature, time,

and power

⨯

Fan et al.

(2023)

Power Grid Time, weather

temperature, and

load data.

⨯

Fekri, et al.

(2021)

Residential Time, temperature,

wind speed and

direction, pressure,

and

humidity



Hadjout, et al.

(2022)

Commercial Time, weather

temperature,

economic data, and

load data.

⨯

14

Kim and Cho

(2019)

Residential

Load

Time, and load data

⨯

Sajjad, et al.

(2020)

Residential

load

Time, Temperature,

humidity, pressure,

power etc..

⨯

Skomski, et al.

(2020)

Office Time, Temperature,

and power.
⨯

Taleb, et al.

(2022)

Power Grid Time,

temperature, load

data



Xu and

Baldick (2019)

Building

cooling load

Time, weather

temperature, and

load data.

⨯

Zulfiqar, et al.

(2022)

Power Grid Time,

temperature, load

data



15

Table 2.2: Comparison of traditional machine learning and deep

learning

Approach Characteristics Forecasting

Applications

Core

Advantages

Primary

Limitations

Traditional

Machine

Learning

- Models based

on statistical

methods and

algorithmic

approaches

- Typically used

for short to

medium-term

forecasting

- Load

forecasting

- Energy price

prediction

- Simple and

interpretable

- Requires less

computational

power

- Effective with

well-structured

data

- Often requires

significant

manual feature

engineering

- Limited in

capturing large

and complex

datasets

Deep Learning - ML subset

with layered

neural

architecture

- Processes

large datasets

efficiently

- All

forecasting

timeframes

(short to long-

term)

- Load demand

forecasting

-Renewable

energy

forecasting

- Good in

selecting

features and

data

classification

-Robust

computational

capabilities

- Wide

applicability for

forecasting

needs

- Lengthy

model training

durations

- Higher

complexity in

model

development

- Limited

performance

with

insufficient in

feature variety

& dataset size.

16

Table 2.3: Comparison of deep learning algorithms

Key

Consideration

RNN LSTM GRU CNN Autoencoder

Sequential

Data Handling

Suitable for

sequence

processing.

Excellently

mitigates

gradient

issues for

time-series

data.

Gate

mechanism

effectively

processing

time-series

data.

Designed for

multi-

dimensional

spatial data,

not primarily

for sequences.

Typically used

for spatial data

arrays, not

sequences.

Model

Complexity

Less complex

with a

straightforward

architecture.

Contains

three gate

structures,

leading to

higher

complexity.

Simplify

the

architecture

by

combining

input and

forget

gates.

Architecture

varies greatly;

may require

strategies

against

overfitting.

Encoder-

decoder

framework

can vary in

complexity

according to

the number of

latent features.

Computational

Efficiency

Efficiency

depends on the

specific use

case and model

design.

Usually

requires more

computational

power due to

complexity.

More

efficient

than

LSTM,

especially

for less

complex

cases.

Intensive

computation,

especially for

large datasets

with

dimensionality

reduction.

Can process

large datasets

efficiently

with

dimensionality

reduction.

Training

Duration

Training time

varies; less

complex

models may

train faster.

Can have

longer

training times

due to

sophisticated

gradient

handling.

Trains

faster than

LSTM due

to simpler

structure.

Training

duration

depends on

layer quantity;

can be

extensive.

Weight

sharing

reduces

parameter

count, which

may help in

training

efficiency.

17

CHAPTER 3

3 STATIC MODEL DEVELOPMENT & EVALUATION

3.1 Introduction

Firstly, one should mention that the research methodology defines the primary

path of a project. In the context of machine learning, research methodology is

generally integrated into the concept of the Data Science pipeline, which is

designed to provide a systematic approach to solving data science problems.

The pipeline includes several components, such as data collection, data

wrangling, exploratory data analysis, normalization, integration, modeling,

validation, and data presentation. Therefore, this project will focus on the

essential steps to ensure that the machine learning model is built to be robust.

Figure 3.1: Iterative Development in Software Development

The second aspect that will provide significant support for the modeling process

is Iterative development from the approach of the software development life

cycle framework as shown in Figure 3.1. This approach focuses on the

importance of repeated evaluation and risk management, which is suitable for

the cyclical nature of evaluating data science projects. By using this approach,

will be able to manage risks effectively and refine the model multiple times.

18

3.2 Flowchart and Work Plan

The purpose of this stage in the methodology is to develop and evaluate static

load forecasting models to determine the most suitable approach for predicting

power consumption in environments similar to the current research scenario. A

static model refers to one that does not adapt or update itself with new data once

it has been trained, making it ideal for applications where the underlying data

patterns are relatively stable over time. In this phase, various machine learning

models, including CatBoost, LSTM, GRU, and CNN-LSTM, are rigorously

tested and fine-tuned. The goal is to identify the model that delivers the most

accurate and reliable results based on historical data, which will serve as the

foundation for further development in the adaptive model phase.

This phase lays the groundwork for forecasting models by optimizing

the model structure, hyperparameters, and other factors such as optimizers and

activation functions, ensuring that the selected model performs well under static

conditions before progressing to adaptive methods.

Figure 3.2 shows the flow chart for the research methodology used in

developing various machine learning models. Revised research flow chart

encompassing the entire project aimed at enhancing the original model to better

address the problem at hand.

19

Figure 3.2: Flowchart of Static Model Development

20

3.3 Data Collection and Analysis

One of the crucial stages of every model development is data collection and

analysis. It refers to collection of the data considered relevant for the real world

scenario and reviewing it in terms of relevant patterns and trends. In case of

machine learning, the quality of data is essential for the ultimate quality of the

created model since the dataset ensures that the model will be representative for

the real world. Moreover, the detailed analysis of the dataset can result in

refining the forecasting algorithms and ensuring greater reliability of the results.

In this respect, the elements of the dataset collected, and the analysis conducted

will be highlighted in the present section.

3.3.1 Dataset

Dataset is critical for the development of an accurate electrical load forecasting

model since the data will be fed into model and train. In this project, the dataset

is collected from a two-story research office in every 30-minute interval, with

total 8 variable: time, 3 phases voltage, 3 phase current, and power factor as

shown in Table 3.1 which are the sample from the dataset. The time variable

delineates temporal intervals at which values needed to compute the power

consumption are recorded, while the power variable denotes the corresponding

electrical load values observed during these intervals.

Table 3.1: Sample of Dataset Used in this Project.

Date/Time

Voltage

Ph-A

Avg

Voltage

Ph-B

Avg

Voltage

Ph-C

Avg

Current

Ph-A

Avg

Current

Ph-B

Avg

Current

Ph-C

Avg

Power

Factor

21/12/2021

1:00 246.55 248.22 246.33 6.98 3.96 6.86 0.97

21/12/2021

1:30 247.03 248.51 246.69 6.86 4.32 5.62 0.98

21/12/2021

2:00 247.63 249.13 247.19 7.17 3.96 6.95 0.97

21

Table 3.2: Dataset Characteristics.

Dataset Characteristics Details

Instances 35,517

Time Span Dec 21, 2021 to Dec 31, 2023

Collect Interval 30 minutes

Missing Values 0

Features

Time, Phase Voltage (A, B, C),

Phase Current (A, B, C), Power

Factor

By using the 3 phases current, 3 phases voltage, and power factor, the

total power consumption and be compute as following:

 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 = [
(𝑉𝑃ℎ𝐴 × 𝐼𝑃ℎ𝐴) + (𝑉𝑃ℎ𝐵 × 𝐼𝑃ℎ𝐵)

+(𝑉𝑃ℎ𝑐 × 𝐼𝑃ℎ𝐶)
] × 𝑃𝐹 (3.1)

where

𝑉𝑃ℎ𝐴 = Phase A voltage,

𝑉𝑃ℎ𝐵 = Phase B voltage,

𝑉𝑃ℎ𝑐 = Phase C voltage,

𝐼𝑃ℎ𝐴 = Phase A current,

𝐼𝑃ℎ𝐵 = Phase B current,

𝐼𝑃ℎ𝐶 = Phase C current,

𝑃𝐹 = Power Factor

The dataset does not contain any other features like meteorological data

or economic data due to limitation of data collection, its significance lies in

providing insights into the temporal load profiles specific to the research office.

By focusing solely on time and power variables, the forecasting model can

discern inherent patterns and fluctuations in electricity consumption within this

environment.

22

3.3.2 Statistical analysis

Table 3.3 shows the Augmented Dickey-Fuller test results, with a test statistic

of -17.2183, which is significantly lower than the critical values at the 1%, 5%,

and 10% significance levels. A highly negative test statistic, such as this one,

strongly suggests that the time series is stationary, meaning that its statistical

properties, like the mean and variance, do not change over time. The associated

p-value is extremely small, close to zero, further confirming that the null

hypothesis of non-stationarity can be rejected with high confidence.

Table 3.3: Augmented Dickey-Fuller Test

Test Statistic -17.2183

P-value 6.3 × 10−30

Lags Used 48.00

Number of Observations Used 3.55 × 104

Critical Value (1%) -3.43

Critical Value (5%) -2.86

Critical Value (10%) -2.56

Table 3.4 shows the statistical analysis of the electricity load data

reveals an average daily usage of approximately 7,057 watts, with a standard

deviation suggesting considerable variability, around 4,040 watts. The

minimum recorded load is approximately 2,990 watts, suggesting there are

periods of low activity. Conversely, the maximum load observed is about 30,163

watts, this abnormal rise of power may be due to some unusual work that require

high demand or data collection error.

The median, or 50th percentile, is approximately 5,276 watts, which

provides a more robust sense of a typical day’s load compared to the mean due

to its resistance to the influence of outliers. Observations lying between the 25th

percentile, around 4,442 watts, and the 75th percentile, around 8,038 watts, form

the interquartile range, which encompasses the middle 50% of the data and

provides a clearer picture of the central distribution of the loads.

23

Table 3.4: Statistical Analysis Data

count 35566.00

mean 7808.18

std 5619.82

min 2990.87

25% 4509.02

50% 5425.66

75% 8541.45

max 36635.33

3.3.3 Box plots analysis

Preliminary box plots analysis for the dataset of December 2021 to July 2023 is

demonstrated in this report. Figure 3.3 shows the electric load pattern of the

research office, it is observed that the electrical power consumption started to

rise around 8 am and remain at around peak from 10 am to 3 pm, then started to

decrease until around minimum on 6 pm. The power consumption of the office

was remained minimum from 6 pm unitl to 7 am. This pattern can be explained

by the working office hours which is from 8 am to 6pm, it is notable that after

office hour, the power cunsumption if not zero, indicating that minimum still

required to maintain some of the equipment such as data center in the research

office.

Figure 3.3: Box plot of hourly electric load

24

The electrical load pattern is more or less the same thoughout the year

and months as shown in Figure 3.4 and Figure 3.5, indicating the activities in

the research office dones not having much different. Meanwhile, the average

load of weekend is found to be much lesser when compared to weekday which

can be observed in Figure 3.6, indicating the research office working staff are

resting during weekend.

Figure 3.4: Box plot of yearly electric load

Figure 3.5: Box plot of monthly electric load

25

Figure 3.6: Box plot of daily electric load

3.3.4 Autocorrelation Analysis

The Autocorrelation Function (ACF) plot for electrical load displays several

spikes that are well above the significance level (outside the shaded area),

particularly at the initial lags. This indicates a strong correlation between

consecutive observations. The fact that these correlations remain significant

over several lags suggests a persistence of influence from past values, which

could imply that the power usage has a memory effect where past usage levels

influence future usage to some extent.

A noticeable pattern in the ACF plot is the gradual decrease in

correlation as the lag increases, which is typical for time series data exhibiting

a mix of trend and autocorrelation. However, the presence of significant

autocorrelations at higher lags might also hint at a seasonal pattern, as the

influence of past values appears to re-emerge at regular intervals.

The ACF shows numerous spikes far above the significance level ,

especially at the initial lags implying that successive observations are highly

dependent. The high and significant negative correlation over several lags may

reflect a longstanding impact emanating from the past values. Such behavior is

reminiscent of memory, where the current power value is highly influenced by

the recent past value and, to some extent, the one before. Another observed

26

pattern of the ACF is the decline in correlation as the lag increases, as is

common in time series with a trend and more autocorrelation. However, the

presence of significant autocorrelations at higher lags might also hint at a

seasonal pattern, as the influence of past values appears to re-emerge at regular

intervals.

The Partial Autocorrelation Function (PACF) plot reveals a sharp cut-

off after the first few lags, with the first lag showing a significant spike. This

behavior is indicative of an autoregressive (AR) process, where the immediate

past value(s) have a strong influence on the current value. The sharp decline in

partial autocorrelation after the first lag suggests that the most recent past value

is a good predictor of the current value, while the influence of values further in

the past becomes negligible once you account for the immediate past. This could

inform the selection of an AR model with a low order for modeling the time

series.

Figure 3.7: Autocorrelation Function (ACF) and Partial Autocorrelation

Function (PACF) Plot

27

3.4 Machine Learning Algorithm

Machine learning is the concept that tries to minimize human input and create a

mainly autonomous process, when the system can operate on its own to solve a

problem. With the help of statistical methods, researchers have managed to

perfect machine learning algorithms and help them “implement” and support

the autonomous learning. In this section, a number of algorithms used in this

project will be examined.

3.4.1 Categorical Boosting (CatBoost)

CatBoost (Categorical Boosting) is an advanced gradient boosting algorithm

that excels at handling categorical data without the need for extensive

preprocessing like one-hot encoding. It's designed to work efficiently with

datasets that have a mix of numerical and categorical features, making it

particularly useful in a wide range of real-world applications. CatBoost is based

on the principle of gradient boosting, where an ensemble of weak learners,

typically decision trees, is built sequentially. Each new tree aims to correct the

errors made by the previous ones, thereby improving the model's overall

accuracy.

CatBoost introduces several key innovations, including an efficient

way to deal with categorical features and a technique called Ordered Boosting,

which helps prevent overfitting and enhances the model's generalization

capabilities. The CatBoost model can be mathematically described as follows:

 ŷ = 𝐹𝑚(𝑥) = ∑ 𝑣 ∙ ℎ𝑚(𝑥)𝑀
𝑚=1 (3.2)

Where:

ŷ = Predicted output,

𝐹𝑚(𝑥) = Final model after 𝑚 iterations,

𝑀 = Total number of iterations (or trees),

𝑣 = Learning rate (controls the contribution of each tree),

ℎ𝑚(𝑥) = The 𝑚𝑡ℎ weak learner (tree) trained on the residuals of the previous

trees.

28

3.4.2 Long Short-Term Memory (LSTM)

LSTMs regulate the flow of information using a sequence of gates known as

input, output, and forget gates. These gates decide what information is important

to keep over time, what to reject, and what to pass through as output. The general

equations governing the LSTM unit operations are:

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (3.3)

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (3.4)

𝑜𝑡 = 𝜎𝑜(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (3.5)

𝐶′
𝑡 = tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (3.6)

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶′
𝑡 (3.7)

ℎ𝑡 = 𝑜𝑡 tanh 𝐶𝑡 (3.8)

Where:

𝑓𝑡 = Forget gate at time t,

𝑖𝑡 = Input gate at time t,

𝑥𝑡 = Input at timestep t,

ℎ𝑡 = Output state of the LSTM at timestep t,

𝐶𝑡 = Cell state at timestep t, representing the memory of the network,

𝑊 = Weights corresponding to each gate,

 𝑏 = Biases corresponding to each gate,

 𝜎 = Sigmoid activation function,

𝜎𝑜 = SoftMax activation function (multiple classes),

Tanh = Hyperbolic tangent function,

𝑈 = The time insensitive hidden state matrix.

The equations describe the structure of a simple LSTM model,

including the order of operation from equations (3.3) to (3.8) that represents the

movement of training data through the model. The LSTM has two major

components: the cell state and the hidden state. It begins by computing the three

important gates: forget, input, and output. The model then updates the cell state

by combining the effects of the current input with the output of the forget gate

and the previous cell state. The new hidden state is created by combining the

output of the current output gate with the new cell state. Overall, controlling the

29

cell and hidden states at each timestep t, when combined with gate functions,

allows the generation of outputs or updates for the next training phase (Michael

et al., 2022).

3.4.3 Gated Recurrent Unit (GRU)

Building on the basic RNN framework, researchers developed the Gated

Recurrent Unit (GRU) model to address some of RNN's drawbacks, specifically

the vanishing gradient problem, which getting more significant as sequence

length rises (Jain et al., 2021). GRU simplifies the LSTM architecture while

retaining its ability to understand dependencies in sequence data. The GRU

model combines gate functions directly into its architecture, which accelerates

the flow of information. The main equations regulating GRU functionality are:

 𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (3.9)

 𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (3.10)

 ℎ′
𝑡 = tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ∙ ℎ𝑡−1) + 𝑏ℎ) (3.11)

 ℎ𝑡(𝐺𝑅𝑈) = 𝑧𝑡 ∙ ℎ𝑡−1 + (1 − 𝑟𝑡) ∙ ℎ′
𝑡 (3.12)

where

𝑧𝑡 = Update gate at time t,

𝑟𝑡 = Reset gate at time t,

ℎ′
𝑡 = Candidate hidden state at time t,

ℎ𝑡(𝐺𝑅𝑈) = final hidden state at time t,

𝜎 = sigmoid activation function, used to regulate the gates,

tanh = hyperbolic tangent function, used for creating the new state vector,

𝑊 = Weights for different gates and state updates,

𝑈 = Recurrent Weights for different gates and state updates,

𝑏 = Biases for different gates and state updates.

𝑏 = Biases for different gates and state updates.

These equations (3.9 to 3.12) are structured to show the sequential

process of training data of the GRU model. The model efficiently computes the

30

reset and update gates to determine how much previous information should be

passed on. The candidate hidden state is then calculated using these gates,

followed by the new hidden state. This simplified method gives a fast learning

and updating, making GRU particularly useful for tasks that require long

dependencies and also being efficient in computation compared to LSTM.

3.4.4 Hybrid Model

In this project, hybrid machine learning models are used to because of the

combined advantages of multiple algorithms, with the goal of improving typical

single-model performance. The combination of CNN-LSTM models is chosen,

as it uses Convolutional Neural Networks (CNNs) for effective spatial feature

extraction and Long Short-Term Memory (LSTM) networks to capture long

term temporal relationships. This combination can handle data with both spatial

and sequential features which improve in extensive feature analysis and

dynamic pattern recognition.

31

3.5 Evaluation Metrics

To assess the effectiveness of any model relative to alternatives, conducting a

comparative performance analysis using recognized error or evaluation metrics

is essential. In this study, the performance of the load forecasting model that

based on different algorithms (CatBoost, LSTM, GRU, CNN-LSTM) are

compared using evaluation metrics involving Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error

(MAPE). Each of these metrics is valued for its capacity to appropriately assess

predictive model precision. MAE represent the average of the absolute errors

between predicted and actual load values, RMSE measures average error

magnitude, and MAPE expresses mean absolute error as a percentage.

3.5.1 Mean Absolute Error (MAE)

Mean Absolute Error represents the average of the absolute differences between

the predicted and actual values without considering the direction. It is calculated

as:

 MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦′

𝑖
|𝑛

𝑖=1 (3.13)

where:

𝑛 = Total number of observations in the dataset

𝑦𝑖 = The actual observed value for the 𝑖𝑡ℎ observation

𝑦′
𝑖

= The predicted value for the 𝑖𝑡ℎ observation.

This metric provides an estimation of the error in the same unit as the

measured variable, and since it is an average, it offers a singular measure of

error across all predictions. Lower MAE values indicate a model with better

predictive accuracy, and since it's an absolute measure, it’s not sensitive to the

direction of errors, making it particularly valuable for many practical

applications.

32

3.5.2 Root Mean Squared Error (RMSE)

Root Mean Squared Error (RMSE), a closely related metric, takes a slightly

different approach by squaring the errors before averaging, thus giving higher

weight to larger errors. The RMSE is calculated as:

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦′

𝑖
)

2𝑛
𝑖=1 (3.14)

where:

𝑛 = Total number of observations in the dataset

𝑦𝑖 = The actual observed value for the 𝑖𝑡ℎ observation

𝑦′
𝑖

= The predicted value for the 𝑖𝑡ℎ observation.

This squaring aspect makes RMSE more sensitive to outliers compared

to MAE. A lower RMSE value is typically better, indicating that the model’s

predictions are closer to the actual values. Since RMSE measures the standard

deviation of errors, it can give more insight into the variance of the prediction

errors. Non-negative values with 0 being ideal, and lower values suggest a

tighter fit of the model to the observed data.

3.5.3 Mean Absolute Percentage Error (MAPE)

Mean Absolute Percentage Error (MAPE) translates the error as a percentage of

the actual values, allowing for a more intuitive grasp of the model's accuracy. It

is calculated with the formula:

 𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖−𝑦′
𝑖

𝑦𝑖
|𝑛

𝑖=1 (3.15)

where

𝑛 = Total number of observations in the dataset

𝑦𝑖 = The actual observed value for the 𝑖𝑡ℎ observation

33

𝑦′
𝑖

= The predicted value for the 𝑖𝑡ℎ observation.

The metric is always non-negative, with lower values indicating better

predictive accuracy, and is presented as a percentage, offering a straightforward

indication of model performance. These symbols and the associated calculations

together form the basis for evaluating and comparing the performance of

predictive models, providing insight into aspects such as the variance explained,

average error magnitude, the impact of larger errors, and the relative error size.

34

3.6 Feature Selection

In time series forecasting model, the temporal features such as year, month and

day may affect the performance of the model which are important and needed

to be investigate. Temporal features that are extracted from the dataset are

quarter of the year, month of the year, day of the month, hour, type of day

(weekend or weekday), rolling mean, and rolling standard deviation. Also, some

time lags features (Lag 1, 12, 24, 48) are created as a sample to check whether

the time lags are the features that is worth to investigate for enhancing the model

performance. In the context of time series analysis and forecasting, time lags are

defined as a delay or change in observed data over time periods. It is a concept

used to find the relationship between a variable's past and future values. The

time lags feature are created using sliding window technique, which the details

of the technique will be discuss during next section.

In this project, the techniques applied to check the relationship between various

parameters and load demand are correlation matrix. Figure 3.8 displays a

correlation matrix between load and the potential attributes listed previously.

Each of the values (Correlation coefficients) in Figure 3.8 and Table

3.5, were used to classify the strength of the relationship between load demand

and the various features. Features were categorized into different correlation

ranges: weak (below 0.4), moderate (0.4 to 0.7), and strong (above 0.7). This

analysis was followed by training a Long Short-Term Memory (LSTM) model,

where each subset of features, grouped by correlation strength, was used to

evaluate model performance in terms of validation Root Mean Square Error

(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error

(MAPE).

35

Figure 3.8: Correlation matrix of potential feature

36

Table 3.5: Feature Categorization by Correlation Strength

3.6.1 LSTM

As shown in Table 3.6 below, the use of features with a higher correlation

generally resulted in better model performance, as indicated by lower RMSE,

MAE, and MAPE values. The "All Features" scenario, which incorporated the

full set of features, yielded the best performance across all metrics. However,

the use of only the last 48-time steps produced competitive results, suggesting

that shorter time horizons might still be effective in certain contexts.

The findings from this feature selection process demonstrate the

importance of including relevant temporal and lag features to improve the

predictive power of the model. The next section will further discuss the

methodology employed to create lag features and assess the impact on model

accuracy.

Correlation Strength Feature

Weak

Power Factor Total

hour

dayofweek

quarter

month

year

dayofyear

dayofmonth

weekofyear

Total Power Lag 10 - Lag 41

Total Power Rolling Mean 96

Total Power Rolling Std 96

Moderate

Voltage Ph-A Avg

Voltage Ph-B Avg

Voltage Ph-C Avg

Total Power Lag 6 -9

Total Power Lag 42 - 48

Total Power Rolling Mean 48

Total Power Rolling Std 48

Strong

Current Ph-A Avg

Current Ph-B Avg

Current Ph-C Avg

Total Power Lag 1 - 5

37

Table 3.6: Feature Experiment of LSTM model

Algorithm Feature Correlation Val RMSE Val MAE Val MAPE

LSTM

Weak (Below 0.4) 0.0747 0.0447 0.3283
Below 0.5 0.0570 0.0320 0.2227
Below 0.6 0.0544 0.0318 0.2254
Moderate (0.4 to 0.7) 0.0547 0.0284 0.1983
Above 0.6 0.0470 0.0208 0.1291
Strong (Above 0.7) 0.0495 0.0242 0.1707
All 0.0437 0.0212 0.1472
Only last 48-time
steps 0.0488 0.0240 0.1681

3.6.2 GRU

For the GRU model, Table 3.7 clearly shows the trend of performance

improvement as feature correlation increases. Initially, when weakly correlated

features are used, the model's RMSE (0.0712) and MAPE (0.3127) are relatively

high, indicating that the GRU struggles to make accurate predictions when

presented with less relevant information. As the strength of the correlations

improves, the model benefits from more informative inputs, reducing the RMSE

to 0.0461 and MAPE to 0.1454 when using all features.

The gradual decline in errors with stronger correlations can be

attributed to the GRU’s ability to capture long-term dependencies more

effectively when it has access to more meaningful, high-correlation features.

This improvement highlights the importance of using strongly predictive

temporal and lag features, which help the model retain essential historical

patterns over time.

Interestingly, when only the last 48-time steps are used, the model’s

performance is still competitive (RMSE = 0.0473), but slightly worse than when

all features are available. This indicates that although GRU can handle shorter-

term data reasonably well, it benefits from a broader range of time steps and

contextual features to fully capture the complexity of the load demand patterns.

38

Table 3.7: Feature Experiment of GRU model

Algorithm Feature Correlation Val RMSE Val MAE Val MAPE

GRU

Weak (Below 0.4) 0.0712 0.0426 0.3126
Below 0.5 0.0555 0.0331 0.2422
Below 0.6 0.0554 0.0304 0.2110
Moderate (0.4 to
0.7) 0.0521 0.0271 0.1889
Above 0.6 0.0498 0.0227 0.1386
Strong (Above 0.7) 0.0472 0.0231 0.1626
All 0.0461 0.0228 0.1454
Only last 48-time
steps 0.0473 0.0236 0.1731

3.6.3 CatBoost

In the CatBoost feature experiment, the model's performance improves

significantly as feature correlation with the target variable increases. When

using highly correlated features (above 0.6 and 0.7), the model shows strong

performance, with low RMSE (0.0039) and MAPE (0.0171), demonstrating its

ability to effectively capture trends when features have a clear relationship with

the target. However, the best overall performance is achieved when all features

are used, yielding the lowest RMSE (0.0024) and MAPE (0.0134). This

indicates that CatBoost benefits from having access to a diverse set of features,

even those that are only weakly correlated, as it still contribute valuable

information for prediction.

When only weakly correlated features (below 0.4) are used, the model

struggles, with RMSE rising to 0.0772 and MAPE to 0.4581, showing that

CatBoost needs sufficient correlation in features to make accurate predictions.

Additionally, when restricted to only the last 48-time steps, the model’s

performance declines further (RMSE = 0.0687, MAPE = 0.4154), highlighting

that CatBoost performs best when provided with a wide temporal scope and a

comprehensive set of features.

Overall, the results in Table 3.8 underscore CatBoost's reliance on a

well-engineered feature set, as it cannot automatically extract patterns from raw

data like deep learning models can.

39

Table 3.8: Feature Experiment of CatBoost model

Algorithm Feature Correlation Val RMSE Val MAE Val MAPE

CatBoost

Weak (Below 0.4) 0.0771 0.0435 0.4580
Below 0.5 0.0389 0.0233 0.2611
Below 0.6 0.0370 0.0224 0.2514
Moderate (0.4 to 0.7) 0.0619 0.0355 0.4051
Above 0.6 0.0038 0.0019 0.0170
Strong (Above 0.7) 0.0041 0.0021 0.0193
All Features 0.0023 0.0013 0.0134
Only Last 48-Time
Steps 0.0687 0.0368 0.4154

3.6.4 CNN-LSTM

For the CNN-LSTM model, Table 3.9 the performance improves progressively

as feature correlation strengthens. When weakly correlated features (below 0.4)

are used, the RMSE is relatively high (0.0652), indicating that the model

struggles to capture meaningful patterns from such features. As the correlation

increases, the error metrics improve, with RMSE dropping to 0.0464 and MAPE

to 0.1389 for features with correlations above 0.6.

The best performance is achieved when all features are used, with the

lowest RMSE (0.0442) and MAPE (0.1290). This result suggests that the CNN-

LSTM model benefits from a wide range of features, including both weakly and

strongly correlated ones, as the combination of CNN and LSTM layers allows

it to learn spatial patterns (through CNN) and temporal dependencies (through

LSTM).

However, when the model is restricted to using only the last 48-time

steps, performance significantly declines (RMSE = 0.0801, MAPE = 0.2943),

indicating that the model requires more information to capture longer-term

trends effectively.

40

Table 3.9: Feature Experiment of CNN-LSTM model

Algorithm Feature Correlation Val RMSE Val MAE Val MAPE

CNN-LSTM

Weak (Below 0.4) 0.0651 0.0358 0.2677
Below 0.5 0.0502 0.0276 0.2060
Below 0.6 0.0502 0.0287 0.2055
Moderate (0.4 to
0.7) 0.0552 0.0316 0.2260
Above 0.6 0.0464 0.0213 0.1389
Strong (Above 0.7) 0.0513 0.0297 0.2174
All 0.0442 0.0199 0.1290
Only last 48-time
steps 0.0801 0.0429 0.2943

3.7 Data Preprocessing

Data preparation represents the essential part of preprocessing in the load

forecasting workflow, and it serves as a basis for any further analysis and

modelling. The preprocessing is carried out through the explicit stages of data

cleaning and prior conversion of raw data, feature engineering, data

normalization, and dimensionality reduction. Notably, the special attention is

given to the step of splitting the data into training and testing sets, as well as

ensuring the chronological correctness of time series data, which is crucial for

developing forecasting techniques. Overall, the process of data preprocessing is

aimed at systematically refining the data to improve the model’s ability to

recognize and analyses the data more effectively and understand the temporal

patterns associated with load forecasting.

3.7.1 Sliding Window

The approach for transforming time series data into a format suitable for

multiple-step forecasting is discussed in this section, and Figure 3.9 shows a

graphic illustration. 𝑋𝑡 represents the dataset at time "t". The conversion method

entails restructuring the time series into lagged features, which relocate old data

points as input variables to forecast future values. This reshaping is carried out

via a sliding window methodology, in which a window of a predetermined size

is slid over the time series, yielding sequences of input-output pairings. The

41

window size was carefully designed to capture the dataset's essential temporal

connections and trends.

Figure 3.9: Illustration of sliding window technique.

The load predictions is focus on only time variable, which are trained

on historical data from time step 𝑡 −𝑏 to 𝑡, "t" denotes the current moment,

whereas "b" defines the number of preceding time steps, which serve as the

model's look-back period.

The sliding window technique is critical in this situation because it

ensures that the model receives up-to-date data by moving the window

incrementally, one time step at a time. This development enables for the

continuous incorporation of recent data, which is critical for capturing the

changing trends in the time series for accurate future forecasts.

3.7.2 Min-Max Technique

The Min-Max normalization technique is based on the concept of feature scaling,

which involves rescaling data attributes or features so that the values fall inside

a specified and predefined interval, most often [0,1]. This normalization method

is apply to scales the electrical load data without distorting or losing information.

It is done by subtracting the minimum value from each characteristic and then

dividing by its range. The mathematical expression as following:

42

 𝑥′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (3.16)

where

𝑋 = The original value,

𝑋𝑚𝑖𝑛 = The minimum values of the feature,

𝑋𝑚𝑎𝑥 = maximum values of the feature,

𝑥′ = Normalized value.

Min-Max method normalize the data such that it has the same scale,

which can be benefit for algorithms that are sensitive to data scale. LSTMs and

GRUs and many deep learning algorithms work better when features are on a

comparable scale. One of the significant advantages of performing this

normalization is with respect to the performance of machine learning algorithms

especially in terms of convergence speed. Moreover, simple algorithms like k-

NN also reap the benefit in the sense that each feature contributes equally to the

distance measurements.

3.8 Hyperparameter Tuning

The efficiency of machine learning models is depending on the selection of

hyperparameters, select correct parameter can improve the model learning

process which can achieve better performance. Due to the complexity of

machine learning model structures, determining the best hyperparameter

combination is important for achieving optimal performance.

3.8.1 Grid Search Method

In this research, the numbers of neurons in the hidden layer, activation function,

batch size, optimizer function, window size are the hyperparameters going to

focus and optimize in this research as shown in Table 3.4. Using grid search to

explore every potential hyperparameter combination can be time consuming and

is not practical for large hyperparameter combination. A more practical

technique is to focus on a specific group of hyperparameters and adjust them

periodically depending on feedback from each iteration. This incremental

43

method can get the optimal or near optimal hyperparameters for the load

forecasting model in more efficient ways.

3.8.2 LSTM Tunning

3.8.2.1 Phase 1: Initial Investigation

In the first phase, 50 LSTM units, dropout rates of 0.01 and 0.1, and learning

rates of 0.1, 0.01, and 0.001 across 1, 2, and 3 layers investigated and shown in

Table 3.10. The results showed that a dropout rate of 0.01 consistently

outperformed 0.1, especially with more complex configurations, reducing

overfitting. The learning rate of 0.001 was optimal, allowing stable convergence,

while higher rates caused higher errors. Increasing the number of layers to 2

improved performance, but 3 layers led to overfitting without careful tuning of

dropout and learning rates.Increasing the number of LSTM layers to 2 and 3

provided mixed results. Although adding a second layer improved performance

in some cases, using 3 layers generally led to overfitting unless combined with

lower dropout rates and learning rates. Overall, the key finding in this phase is

dropout rate of 0.01 and learning rate of 0.001 yielding a better result in different

combinations.

44

Table 3.10: Hyperparameter Tunning of LSTM model (Phase 1)

Phase 1

Units Dropout

Rate

Layers Learning

Rate

Val

RMSE

Val

MAE

Val

MAPE

Total

Normalized

Score

50 0.01 1 0.1 0.0685 0.0301 0.1795 0.1769

0.01 0.0503 0.0235 0.1565 0.0568

0.001 0.0506 0.0232 0.1507 0.0535

2 0.1 0.2777 0.2302 1.9620 2.9690

0.01 0.0483 0.0234 0.1590 0.0134

0.001 0.0477 0.0219 0.1533 0.0366

3 0.1 0.2808 0.2122 1.5679 2.6834

0.01 0.0485 0.0226 0.1565 0.0404

0.001 0.0480 0.0221 0.1288 0.0000

0.1 1 0.1 0.0663 0.0421 0.3222 0.3019

0.01 0.0530 0.0312 0.1350 0.0347

0.001 0.0519 0.0229 0.1484 0.0563

2 0.1 0.0687 0.0410 0.3575 0.3258

0.01 0.0535 0.0335 0.1387 0.0552

0.001 0.0495 0.0218 0.1483 0.0409

3 0.1 0.2851 0.2022 1.3397 2.5306

0.01 0.0509 0.0326 0.1443 0.0484

0.001 0.0488 0.0233 0.1312 0.0421

3.8.2.2 Phase 2: Refinement and Further Adjustments

Building on the insights from Phase 1, the second phase involved refining the

model by increasing the number of LSTM units to 64 and 128 and further

experimenting with the number of layers as shown in Tble 3.10. Building on

Phase 1, the number of LSTM units was increased to 64 and 128 (Table 3.11).

The best results were obtained with 64 units, 3 layers, 0.01 dropout rate, and a

learning rate of 0.001, achieving a validation RMSE of 0.0465. Further

increasing the number of units to 128 or layers to 4 did not improve performance

and, in some cases, worsened it. Overall, the key finding is that 64 units and 3

layers offered an ideal balance between model complexity and generalization.

45

Table 3.11: Hyperparameter Tunning of LSTM model (Phase 2)

Phase 2

Units Dropout

Rate

Layers Learning

Rate

Val

RMSE

Val

MAE

Val

MAPE

Total

Normalized

Score

64 0.01 3 0.001 0.0465 0.0201 0.1108 0.0000

4 0.001 0.0472 0.0205 0.1109 0.0049

0.1 3 0.001 0.0509 0.0216 0.1303 0.0361

4 0.001 0.0487 0.0241 0.1693 0.0599

128 0.01 3 0.001 0.0495 0.0236 0.1713 0.0619

4 0.001 0.0506 0.0233 0.1512 0.0542

0.1 3 0.001 0.0487 0.0219 0.1389 0.0330

4 0.001 0.0485 0.0216 0.1360 0.0291

46

3.8.2.3 Optimizer and Activation Function

The LSTM model was then evaluated with four activation functions, ReLU,

tanh, sigmoid, and linear, and optimized with various optimizers, including

SGD, Adam, Adamax, and Regularizer as shown in Table 3.12. Across all

activation functions, the Adam optimizer consistently outperformed the others.

For example, when using the ReLU activation function, Adam achieved a

validation loss of 0.002111, the lowest for this model. In comparison, SGD

produced much higher losses, with a validation loss of 0.065203 for ReLU.

Similarly, linear activation combined with Adam resulted in a low validation

loss of 0.002271, though still higher than ReLU.

Other activation functions, like tanh and sigmoid, also performed well

with Adam, but neither surpassed ReLU or linear in performance. For instance,

tanh with Adam achieved a validation loss of 0.002397, while sigmoid reached

0.00249. When using SGD or Regularizer, the model showed significantly

worse performance, indicating that these optimizers were less effective for the

LSTM model. Overall, Adam with ReLU was the best combination for

minimizing validation loss in the LSTM model.

Table 3.12: Optimizer Tunning of LSTM model

Model Activation Function Optimizer Best Validation Loss

LSTM

relu

SGD 0.065203
Adam 0.002111

Adamax 0.002229
Regularizer 0.088231

tanh

SGD 0.038712
Adam 0.002397

Adamax 0.0026
Regularizer 0.0676

sigmoid

SGD 0.088701
Adam 0.00249

Adamax 0.003156
Regularizer 0.084181

linear

SGD 0.036673
Adam 0.002271

Adamax 0.00255
Regularizer 0.010772

47

3.8.2.4 Summary Flowchart

Figure 3.10 shows the summary process of LSTM hyperparameters tunning

process. It is found that the best hyperparameters combination for LSTM under

the case study of the double storey research office are 64 neurons units, 3

LSTM layers, dropout 0.01, learning rate 0.001, RELU activation function

with Adam optimizer.

Figure 3.10: Flowchart of LSTM Tunning Process

48

3.8.3 GRU Tunning

3.8.3.1 Phase 1: Initial Investigation

Phase 1 involved testing the GRU model with 50 units, dropout rates of 0.01

and 0.1, learning rates of 0.1, 0.01, and 0.001, and varying the number of layers

between 1, 2, and 3 (Table 3.13). Results indicated that a dropout rate of 0.01

consistently outperformed 0.1, particularly in deeper architectures, as the higher

dropout rate caused over-regularization and hindered the model’s ability to learn.

For example, with 1 layer and a dropout rate of 0.01, the model achieved an

RMSE of 0.0503 at a learning rate of 0.001, whereas using a dropout of 0.1

resulted in significantly worse performance (RMSE = 0.2254 for 3 layers).

The learning rate of 0.001 was the most stable, as higher rates like 0.1

led to unstable convergence and overshooting during training. For instance, the

model achieved an RMSE of 0.0489 with 2 layers and a learning rate of 0.001,

but higher rates produced larger errors. Increasing the number of layers

improved performance initially, but adding a third layer often resulted in

diminishing returns or overfitting, especially with larger dropout rates. Overall,

the key finding in this phase is dropout rate of 0.01 and learning rate of 0.001

yielding a better result in different combinations.

49

Table 3.13: Hyperparameters Tunning of GRU model (Phase 1)

 Phase 1

Units Dropout

Rate

Layers Learning

Rate

Val

RMSE

Val

MAE

Val

MAPE

Total

Normalized

Score

50 0.01 1 0.1 0.0594 0.0310 0.2364 0.2217

0.01 0.0560 0.0297 0.1909 0.1363

0.001 0.0503 0.0285 0.1450 0.0299

2 0.1 0.1098 0.0951 1.1493 1.6826

0.01 0.0697 0.0262 0.2154 0.1236

0.001 0.0509 0.0219 0.1385 0.0215

3 0.1 0.2254 0.1535 1.4118 2.9373

0.01 0.0580 0.0356 0.3175 0.3125

0.001 0.0499 0.0258 0.1410 0.0000

0.1 1 0.1 0.0642 0.0355 0.2754 0.3115

0.01 0.0565 0.0277 0.2237 0.1717

0.001 0.0511 0.0232 0.1690 0.0670

2 0.1 0.2101 0.1260 0.4964 1.9352

0.01 0.0621 0.0299 0.2147 0.2110

0.001 0.0529 0.0221 0.1569 0.0426

3 0.1 0.2373 0.1410 0.7684 2.4042

0.01 0.0601 0.0295 0.1904 0.1788

0.001 0.0530 0.0278 0.1615 0.0232

3.8.3.2 Phase 2: Investigating Deeper Layers

Building on Phase 1, the second phase involved increasing the number of GRU

units to 64 and 128, and testing with 3 and 4 layers as shown in Table 3.14. The

best results were obtained with 64 units, 3 layers, dropout rate of 0.01, and a

learning rate of 0.001, achieving an RMSE of 0.0480 and MAPE of 0.1310.

Increasing the number of units to 128 did not lead to significant improvements,

and in some cases worsened performance (e.g., RMSE = 0.0482). Similarly,

increasing the number of layers to 4 did not yield meaningful gains and often

led to overfitting, as seen with an RMSE of 0.0477 for 4 layers and 128 units.

50

The dropout rate of 0.01 continued to outperform 0.1, especially in

models with more layers, where a higher dropout rate caused increased

validation errors. For instance, with 4 layers and a dropout rate of 0.1, the RMSE

was 0.0518, compared to lower RMSE values with a dropout of 0.01. The

learning rate of 0.001 remained optimal across all configurations, allowing

smooth convergence without the instability associated with higher learning rates.

Table 3.14: Hyperparameters Tunning of GRU model (Phase 2)

Phase 2

64 0.01 3 0.001 0.0480 0.0208 0.1310 0.0027

4 0.001 0.0489 0.0234 0.1545 0.0454

0.1 3 0.001 0.0481 0.0219 0.1298 0.0106

4 0.001 0.0541 0.0254 0.1484 0.0833

128 0.01 3 0.001 0.0482 0.0225 0.1688 0.0461

4 0.001 0.0477 0.0217 0.1318 0.0082

0.1 3 0.001 0.0492 0.0230 0.1603 0.0487

4 0.001 0.0518 0.0244 0.1481 0.0635

3.8.3.3 Optimizer and Activation Function

The GRU model underwent a similar evaluation using the same set of activation

functions and optimizers as shown in Table 3.15. Unlike the LSTM model,

where Adam was the clear winner, the Adamax optimizer produced the best

performance for the GRU model. When paired with the ReLU activation

function, Adamax achieved a validation loss of 0.002139, slightly

outperforming Adam, which recorded a loss of 0.002233. This suggests that

Adamax is marginally more effective in optimizing the GRU model with ReLU.

The tanh activation function also performed reasonably well with

Adamax, achieving a validation loss of 0.002634, although it did not match the

results of ReLU. On the other hand, the sigmoid activation was the least

effective for the GRU model, especially when combined with SGD, which

produced the highest validation loss of 0.089876. Overall, Adamax with ReLU

emerged as the best combination for minimizing validation loss in the GRU

model, offering the lowest validation loss among all tested configurations.

51

Table 3.15: Optimizer Tunning of GRU model

Model Activation Function Optimizer Best Validation Loss

GRU

relu

SGD 0.023053
Adam 0.002233

Adamax 0.002139
Regularizer 0.009657

tanh

SGD 0.019836
Adam 0.002758

Adamax 0.002634
Regularizer 0.009821

sigmoid

SGD 0.089876
Adam 0.002603

Adamax 0.002873
Regularizer 0.082995

linear

SGD 0.01705
Adam 0.002659

Adamax 0.002593
Regularizer 0.072548

52

3.8.3.4 Summary Flowchart

Figure 3.11 shows the summary process of GRU model hyperparameters

tunning process. It is found that the best hyperparameters combination for GRU

under the case study of the double storey research office are 64 neurons units,

3 GRU layers, dropout 0.01, learning rate 0.001, RELU activation function

with Adamax optimizer.

Figure 3.11: Flowchart of GRU Tunning Process

53

3.8.4 CatBoost Tunning

The hyperparameter tuning for the CatBoost model was conducted across three

phases, each progressively refining the search for the optimal configuration. The

primary focus was on tuning depth, learning rate, and L2 regularization,

followed by additional parameters such as Border Count and Random Seed. The

goal throughout was to minimize the validation metrics, including Val RMSE,

Val MAE, Val MAPE, and the Total Normalized Score. The overall tunning

result is shown in Table 3.14, 3.15 and 3.16.

3.8.4.1 Phase 1: Initial Hyperparameter Search

The first phase focused on finding an effective balance between learning rate

(0.001, 0.01, and 0.1) and L2 regularization (1, 3, and 5) with a model depth of

4. Table 3.16 illustrates that a learning rate of 0.001 yielded poor results, with a

Val RMSE of 0.0672 and a Total Normalized Score of 1.9253 after 1000

iterations (L2 = 1), indicating that the model was underfitting. Increasing L2

regularization to 3 or 5 did not substantially improve performance.

Switching to a learning rate of 0.01 reduced errors, as the Val RMSE

dropped to 0.0062, and the Total Normalized Score improved to 0.1060 (L2 =

1). However, the results still left room for further optimization. The best

performance was achieved with a learning rate of 0.1, which lowered the Val

RMSE to 0.0024, with a Total Normalized Score of 0.0007 at L2 = 1. Increasing

L2 beyond 1 caused slight increases in the error metrics, suggesting that

overfitting was beginning to occur. Based on these findings, the combination of

depth = 4, learning rate = 0.1, and L2 = 1 was selected as the optimal

configuration for this phase.

54

Table 3.16: Hyperparameters Tunning of CatBoost model (Phase 1)

Phase 1

Depth Learning

Rate

L2 Leaf

Reg

Iterations Val

RMSE

Val

MAE

Val

MAPE

Total

Normalized

Score

4 0.001 1 500 0.1043 0.0745 1.0411 2.9967

1000 0.0672 0.0474 0.6939 1.9253

3 500 0.1044 0.0746 1.0414 2.9985

1000 0.0674 0.0474 0.6946 1.9281

5 500 0.1045 0.0746 1.0416 3.0000

1000 0.0675 0.0475 0.6945 1.9298

0.01 1 500 0.0094 0.0060 0.0903 0.2064

1000 0.0062 0.0039 0.0486 0.1060

3 500 0.0095 0.0060 0.0911 0.2093

1000 0.0063 0.0039 0.0485 0.1067

5 500 0.0095 0.0060 0.0906 0.2088

1000 0.0063 0.0039 0.0487 0.1074

0.1 1 500 0.0032 0.0020 0.0205 0.0247

1000 0.0024 0.0014 0.0134 0.0007

3 500 0.0033 0.0021 0.0211 0.0272

1000 0.0025 0.0014 0.0138 0.0028

5 500 0.0033 0.0021 0.0219 0.0282

1000 0.0025 0.0014 0.0140 0.0032

55

3.8.4.2 Phase 2: Investigating Deeper Models

Phase 2 extended the analysis by testing deeper models with depths of 6 and 8

asshown in Tabl 3.17, using the best configurations from Phase 1 (learning rates

of 0.001, 0.01, and 0.1; L2 values of 1, 3, and 5). The purpose was to evaluate

whether increasing the model depth would yield further improvements.

At depth = 6, the model's performance was very similar to depth = 4,

with a Val RMSE of 0.0027 and a Total Normalized Score of 0.0033 (L2 = 1).

Although the difference was minor, it indicated that the model's increased

complexity was not justified by a significant gain in accuracy. Further

increasing the depth to 8 did not result in better performance, with the best Val

RMSE reaching 0.0035 and a Total Normalized Score of 0.0129 (L2 = 1).

Higher L2 regularization values (3 and 5) led to increased error metrics,

signaling that overfitting became more of a concern as depth increased.

The results showed that increasing model depth beyond 4 did not

provide meaningful improvements and only introduced the risk of overfitting,

with marginal gains in validation metrics. Thus, depth = 4 remained the

preferred configuration due to its balance between accuracy and model

complexity.

56

Table 3.17: Hyperparameters Tunning of CatBoost model (Phase 2)

Phase 2

Depth Learning

Rate

L2 Leaf

Reg

Iterations Val

RMSE

Val

MAE

Val

MAPE

Total

Normalized

Score

6

0.1 1 1000 0.0027 0.0014 0.0127 0.0033

3 1000 0.0026 0.0014 0.0136 0.0041

5 1000 0.0029 0.0015 0.0139 0.0077

8

0.1 1 1000 0.0035 0.0015 0.013 0.0129

3 1000 0.0037 0.0017 0.0142 0.0187

5 1000 0.0036 0.0017 0.0146 0.0184

3.8.4.3 Phase 3: Refining the Model with Additional Parameters

In Phase 3, additional parameters like Border Count and Random Seed were

explored as shown in Tabl 3.18. The best configuration from Phase 1—depth =

4, learning rate = 0.1, and L2 = 1—was retested, yielding the same optimal

results (Val RMSE = 0.0033, Total Normalized Score = 0.0007). Border Count

and Random Seed variations had minimal effect on performance, showing that

once the core hyperparameters were optimized, these additional parameters did

not provide significant gains. The patterns held for depths 6 and 8, where

increasing L2 again led to overfitting.

57

Table 3.18: Hyperparameters Tunning of CatBoost model (Phase 3)

Phase 3

Depth Learning

Rate

L2

Reg

Border

Count

Random

Seed

Val

RMSE

Val

MAE

Val

MAPE

Total

Normalized

Score

4 0.001 1 32 7 0.0674 0.0476 0.6969 2.9934

0.1 1 128 42 0.0033 0.0018 0.0155 0.0007

0.05 1 64 7 0.0058 0.0028 0.0241 0.0772

0.1 5 128 7 0.0035 0.0019 0.0171 0.0032

0.05 3 128 42 0.0038 0.0021 0.0201 0.0322

6 0.001 1 128 7 0.0658 0.0465 0.6687 2.9064

0.05 1 64 7 0.0052 0.0024 0.0198 0.0598

0.1 1 128 42 0.0034 0.0018 0.0144 0.0033

0.1 5 128 123 0.0035 0.0019 0.0151 0.0051

0.05 3 64 7 0.0054 0.0025 0.02 0.0627

8 0.001 1 128 42 0.0653 0.0461 0.6561 2.8725

0.1 1 128 123 0.0035 0.0018 0.0142 0.0129

0.05 1 64 42 0.0052 0.0026 0.0215 0.0604

0.1 5 128 42 0.0039 0.0019 0.0174 0.0187

0.1 3 64 7 0.0036 0.0018 0.0148 0.0096

10 0.001 1 128 42 0.0654 0.0461 0.6474 2.8569

0.05 1 64 42 0.0055 0.0027 0.021 0.067

0.1 1 128 7 0.0044 0.0021 0.0164 0.0271

0.1 5 128 123 0.0049 0.0023 0.0188 0.0387

0.05 3 64 42 0.0056 0.0028 0.0209 0.0621

3.8.4.4 Optimizer and Activation Function

Optimizer and activation function tuning are not required for CatBoost because

it is a gradient-boosting algorithm that operates differently from neural networks.

CatBoost optimizes its performance through boosting trees, using gradient

descent for decision tree-based learning. Unlike neural networks, which rely on

optimizers like Adam or SGD and activation functions like ReLU or sigmoid to

update weights and capture non-linear patterns, CatBoost builds a series of

decision trees where each tree corrects the errors of the previous one (Hancock

& Khoshgoftaar, 2020). Therefore, no activation function or traditional

optimizer tuning is necessary for CatBoost models.

58

3.8.4.5 Summary Flowchart

Figure 3.12 shows the summary process of CatBoost model hyperparameters

tunning process. depth = 4, learning rate = 0.1, and L2 regularization = 1

was selected as the optimal configuration for CatBoost under the case study of

the double storey research office.

Figure 3.12: Flowchart of CatBoost Tunning Process

59

3.8.5 CNN-LSTM Tunning

3.8.5.1 Phase 1: Initial Hyperparameter Search

In Table 3.19, several key hyperparameters were tuned for the CNN-LSTM

model, including filters, kernel size, LSTM units, dropout rates, learning rates,

and the number of convolutional and LSTM layers. Initial configurations, such

as 8 filters, 50 LSTM units, and kernel sizes of 1, were fixed, which focusing

on the effect of changing dropout rate, learning rate, convolutional layers and

LSTM layers.

When increasing the number of convolutional layers from 1 to 2

significantly improved performance, particularly when paired with 1 LSTM

layer. For instance, using 8 filters, kernel size 1, 2 convolutional layers, and 1

LSTM layer yielded a validation RMSE of 0.0521, compared to 0.0580 with

only 1 convolutional layer. However, adding a second LSTM layer led to

inconsistent results, sometimes worsening the RMSE (e.g., 0.0605). Another

example which highlighted with green color also shows better performance with

2 convolutional layers and 1 LSTM layer when dropout rate is equal to 0.1. The

key finding in this phase is that dropout rate 0.01, learning rate 0.001, 2

convolutional layers and 1 LSTM layers yield a better result.

60

Table 3.19: Hyperparameters Tunning of CNN-LSTM model (Phase 1)

Phase 1
Filters Kernel

Size

LSTM

Units

Dropout

Rate

Learning

Rate

Conv

Layers

LSTM

Layers

Val

RMSE

Val

MAE

Val

MAPE

Total

Normalized

Score

8 1 50 0.01 0.001 1 1 0.0580 0.0272 0.1719 0.1301

2 0.0573 0.0284 0.2010 0.1661

2 1 0.0521 0.0232 0.1288 0.0357

2 0.0605 0.0286 0.1910 0.1692

0.01 1 1 0.0600 0.0282 0.1543 0.1248

2 0.0653 0.0298 0.1835 0.1872

2 1 0.0582 0.0266 0.1621 0.1164

2 0.0562 0.0279 0.1844 0.1409

0.1 0.001 1 1 0.0573 0.0266 0.1681 0.1200

2 0.0602 0.0288 0.1717 0.1480

2 1 0.0528 0.0240 0.1453 0.0614

2 0.0583 0.0296 0.2216 0.1999

0.01 1 1 0.0642 0.0308 0.1828 0.1878

2 0.0611 0.0321 0.2129 0.2166

2 1 0.0593 0.0264 0.1646 0.1228

2 0.0575 0.0278 0.1646 0.1239

61

3.8.5.2 Phase 2: Investigating Deeper Models

In the second phase, increasing the number of filters from 8 to 16 produced the

best results as show in Table 3.20. The configuration of 16 filters, 64 LSTM

units, and 3 convolutional layers delivered a validation RMSE of 0.0446 and

validation MAE of 0.0218. Additionally, kernel size 1 outperformed kernel size

3, showing that smaller kernels captured the patterns in the power consumption

data more effectively.

The optimal setup, featuring 16 filters, 3 convolutional layers, 1 LSTM

layer, 64 LSTM units, kernel size 1, a dropout rate of 0.01, and a learning rate

of 0.001, delivered the best overall performance. This configuration balanced

complexity and accuracy, making it ideal for the dataset.

Table 3.20: Hyperparameters Tunning of CNN-LSTM model (Phase 2)

Phase 2
Filters Kernel

Size

LSTM

Units

Dropout

Rate

Learning

Rate

Conv

Layers

LSTM

Layers

Val

RMSE

Val

MAE

Val

MAPE

Total

Normalized

Score

8 1 50 0.01 0.001 2 1 0.0510 0.0254 0.1885 2.3965

3 0.0471 0.0243 0.1589 1.1480

64 0.01 0.001 2 0.0482 0.0233 0.1572 1.1004

3 0.0484 0.0245 0.1838 1.7189

3 50 0.01 0.001 2 0.0466 0.0222 0.1492 0.5052

3 0.0481 0.0267 0.2144 2.5506

64 0.01 0.001 2 0.0481 0.0248 0.1514 1.3078

3 0.0472 0.0225 0.1479 0.6543

16 1 50 0.01 0.001 2 0.0493 0.0248 0.1586 1.5899

3 0.0491 0.0248 0.1634 1.6422

64 0.01 0.001 2 0.0473 0.0252 0.1891 1.7812

3 0.0446 0.0218 0.1400 0.0000

3 50 0.01 0.001 2 0.0459 0.0234 0.1668 0.8854

3 0.0456 0.0226 0.1690 0.6998

64 0.01 0.001 2 0.0482 0.0249 0.1758 1.6679

3 0.0471 0.0247 0.1852 1.5885

32 1 64 0.01 0.001 3 0.0487 0.0260 0.1836 2.0926

4 0.0473 0.0232 0.1513 0.8497

0.01 0.001 3 0.0484 0.0255 0.1864 1.9727

4 0.0474 0.0253 0.1639 1.4731

62

3.8.5.3 Optimizer and Activation Function

Table 3.21 The most effective configuration for this model was the Adamax

optimizer combined with the ReLU activation function, which achieved a

remarkably low validation loss of 0.001266. This made it the top-performing

combination not only for CNN-LSTM but across all models evaluated.

The Adam optimizer also performed well, achieving a validation loss

of 0.001322 when paired with ReLU, which was slightly higher than Adamax

but still highly effective. The linear activation function produced similarly

strong results, particularly when combined with Adam or Adamax, both

resulting in validation losses below 0.0016. While tanh also delivered decent

performance, sigmoid activation was consistently the weakest performer,

especially when paired with Regularizer, leading to high validation losses, such

as 0.043121. Therefore, the best configuration for the CNN-LSTM model was

clearly Adamax with ReLU, delivering the lowest validation loss.

Table 3.21: Optimizer Tunning of CNN-LSTM model

Model Activation Function Optimizer Best Validation Loss

CNN-
LSTM

relu

SGD 0.023877
Adam 0.001322

Adamax 0.001266
Regularizer 0.008115

tanh

SGD 0.020791
Adam 0.001324

Adamax 0.001414
Regularizer 0.010754

sigmoid

SGD 0.0449
Adam 0.001693

Adamax 0.001879
Regularizer 0.043121

linear

SGD 0.018816
Adam 0.001328

Adamax 0.001598
Regularizer 0.008122

63

3.8.5.4 Summary Flowcahrt

Figure 3.13 shows the summary process of CNN-LSTM model hyperparameters

tunning process. It is found that 16 filters, 3 convolutional layers, 1 LSTM layer,

64 LSTM units, kernel size 1, a dropout rate of 0.01, and a learning rate of 0.001,

delivered the best overall performance.

Figure 3.13: Flowchart of CNN-LSTM Tunning Process

64

3.9 Convergence Analysis

Convergence analysis is a crucial step in evaluating the performance of machine

learning models across different algorithms. It assesses how effectively a model

minimizes its error or loss during training and how well this performance

translates to unseen data. By tracking both the training loss (error on training

data) and the validation loss (error on separate validation data), convergence

analysis helps determine the model’s ability to generalize and identify any signs

of overfitting.

The primary objective of convergence analysis is to ensure that both

training and validation losses decrease as the training process continues. If the

validation loss begins to increase or plateau while the training loss continues to

decrease, this is often an indication of overfitting. In such cases, the model

becomes too specialized to the training data and fails to generalize effectively.

To quantify the gap between training and validation losses, practical benchmark

is applied in convergence analysis. In this project, the used benchmark is that

the relative difference between training and validation losses should be less than

10%. However, the exact threshold can vary depending on the specific problem,

dataset, and model being used (Owen, 2022). When this gap remains small, it

suggests that the model is generalizing well and has converged appropriately. If

the gap exceeds 10%, it could indicate overfitting, as the model may be learning

patterns too specific to the training data, which do not translate well to new data.

3.9.1 LSTM

Figure 3.14 shows both training and validation losses showed a consistent

decrease throughout the training process, with no sharp increases in validation

loss, further indicating that the model is not overfitting. Although minor

fluctuations in validation loss were observed, these are normal in deep learning

models and do not suggest any significant overfitting. The overall downward

trend of both losses points to effective learning and strong generalization.

A key benchmark is how closely training and validation loss follow

each other. The training loss began at 0.00449 and decreased to 0.00061, while

the validation loss started at 0.00232 and dropped to 0.00109. The final

difference between the two losses was calculated as 0.00048, or approximately

65

4.4%, well below the acceptable threshold of 10%. This small gap indicates that

the model generalizes well without overfitting. If the validation loss had

stagnated or increased while training loss continued to drop, this would have

indicated overfitting, but that was not the case here.

The close alignment of training and validation loss, combined with the

small magnitudes (0.00061 for training and 0.00109 for validation), suggests

that the model makes minimal errors and generalizes well to unseen data. The

consistent performance across epochs shows that the model is not overly

specialized to the training set, further supporting its robustness for load

forecasting tasks.

Figure 3.14: Training and validation loss for LSTM

66

3.9.2 GRU

In Figure 3.15, both training and validation losses for the GRU model exhibited

a consistent downward trend throughout the training process, with no significant

increases in validation loss, indicating that the model is not overfitting.

Although minor fluctuations in validation loss were observed, these variations

are normal in deep learning models and do not suggest any substantial

overfitting. The general decrease in both training and validation losses

underscores effective learning and strong generalization across the dataset.

A key benchmark for convergence analysis is how closely the training

and validation losses follow each other. The training loss began at 0.00263 and

steadily decreased to 0.00074, while the validation loss started at 0.00164 and

dropped to 0.00080 by the end of training. The final difference between the two

losses was calculated as 0.00006, which equates to a relative difference of

approximately 7.5%, comfortably below the accepted threshold of 10%. This

small gap indicates that the model generalizes well without significant

overfitting. If the validation loss had stagnated or increased while the training

loss continued to drop, this would have indicated overfitting, but that was not

the case here.

The close alignment between the training and validation losses, along

with the small magnitudes (0.00074 for training and 0.00080 for validation),

suggests that the model makes minimal errors and generalizes effectively to

unseen data. The consistent performance across epochs demonstrates that the

model is not overly specialized to the training set, further supporting its

robustness for tasks like load forecasting.

67

Figure 3.15: Training and validation loss for GRU

3.9.3 CatBoost

he graph in Figure 3.16 illustrates the training and validation loss of the

CatBoost model over several epochs for your load forecasting project. The

minimal percentage difference between the training and validation losses is

approximately 1.5853% at its lowest point, indicating that the model is

generalizing very well. Both losses decrease steadily over time, and the near-

identical values of 0.0019855 for training loss and 0.0019545 for validation loss

reflect that the model is learning the training data effectively while maintaining

strong performance on unseen validation data.

This near-perfect alignment between training and validation losses

suggests that the CatBoost model is well-optimized for this specific task. Unlike

more complex models that may struggle with overfitting or underfitting, the

CatBoost algorithm efficiently handles the data, showing excellent convergence

and generalization without overfitting. The minimal gap between losses

demonstrates that the model captures the underlying patterns in both the training

and validation sets, leading to accurate and reliable predictions.

Compared to other models, CatBoost's strong performance here shows

its ability to balance complexity and generalization. The decision-tree-based

structure of CatBoost, combined with boosting iterations, makes it particularly

68

well-suited for this type of data. Unlike neural network architectures, which may

struggle with small datasets or univariate time-series data, CatBoost adapts

effectively without requiring extensive tuning, leading to superior results for

load forecasting tasks. The almost negligible gap between the losses further

supports its ability to generalize well without sacrificing performance.

Figure 3.16: Training and validation loss for CatBoost

3.9.4 CNN-LSTM

The graph in Figure 3.17 illustrates the training and validation loss of the CNN-

LSTM model over several epochs for your load forecasting project. The

minimal percentage difference between the training and validation losses is

approximately 18.68% at its lowest point across the epochs, indicating that the

model is starting to overfit. While both losses decrease over time, the gap

remains consistent, suggesting that the model is learning the training data well

but struggling to generalize to unseen validation data.

This performance issue is likely due to the unnecessary complexity

introduced by the CNN layers, which are designed for spatial feature extraction

but are not suited for your univariate time-series data (power consumption). As

a result, the CNN-LSTM model overfits the training data while failing to capture

generalizable patterns, leading to slower and less effective convergence.

69

In contrast, simpler models like LSTM and GRU, which are better

suited for handling temporal dependencies in time-series data, would likely

exhibit faster convergence and a smaller gap between training and validation

loss, leading to better overall performance for load forecasting. The complexity

of CNN-LSTM in this context does not provide any additional benefit and

instead hinders its ability to generalize.

Figure 3.17: Training and validation loss for CNN-LSTM

3.10 Performance Measure

The effectiveness of each model will be determined by evaluating its

performance in predicting future power consumption. For this purpose, the

evaluation will use a testing set, derived using the holdout method, with 10% of

the dataset reserved for testing. This ensures that the model is assessed on data

it has not encountered during training, providing an accurate measure of its

predictive capability. Validation samples will be used for tuning neural

network-based models, as these models employ iterative training, while

classical machine learning methods such as CatBoost do not require validation

during training.

The performance of each model will be analyzed using several metrics,

including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and

Mean Absolute Percentage Error (MAPE). These metrics provide a clear

70

assessment of the model's accuracy in predicting continuous values, with RMSE

particularly useful for penalizing larger errors, while MAE and MAPE offer

insights into average error magnitudes and percentage-based accuracy.

Figure 3.18 to Figure 3.22 illustrate the prediction outcome of all

developed static load forecasting models for random observation periods. It is

evident that show whether all the models can trace the load usage pattern of the

research office.

Figure 3.18: Prediction curves on 21/10/2023

71

Figure 3.19: Prediction curves on 11/11/2023

Figure 3.20: Prediction curves on 22/11/2023

72

Figure 3.21: Prediction curves on 31/12/2023

Figure 3.22: Prediction curves on 21/10/2023 to 27/10/2023 (one week)

The overall performance of the static load forecasting models, as

shown in Figure 3.23 and Table 3.22, was evaluated on a 10% test set covering

data from October 20, 2023, to December 31, 2023. Key metrics used for

assessment were Root Mean Square Error (RMSE), Mean Absolute Error

(MAE), and Mean Absolute Percentage Error (MAPE), which provide insights

into each model's ability to predict future power consumption with minimal

input variables.

73

The LSTM model performed well, achieving an RMSE of 1.2579, MAE of

0.5799, and MAPE of 7.2875. These results indicate that LSTM effectively

captured the power consumption patterns, with relatively low prediction errors.

LSTM's ability to model long-term dependencies in time-series data allowed it

to perform well despite using only datetime and power data.

The CNN-LSTM model had a higher RMSE of 1.4381, MAE of 0.6630,

and MAPE of 8.2021, showing that it struggled more compared to LSTM. The

addition of convolutional layers did not improve performance, likely because

the limited input variables made it difficult to leverage CNN's strengths.

The GRU model, a simpler alternative to LSTM, performed similarly

with an RMSE of 1.2771, MAE of 0.5821, and MAPE of 7.6171. While GRU

handled the sequential data efficiently, LSTM had a slight advantage in

capturing more complex temporal patterns.

The CNN model recorded the poorest performance, with an RMSE of

1.4614, MAE of 0.7164, and MAPE of 8.6425. As CNNs are designed to capture

spatial patterns, it struggled to model the sequential nature of power

consumption using only datetime and power, leading to higher error metrics.

Surprisingly, the CatBoost model delivered the best performance, with the

lowest RMSE of 0.9621, MAE of 0.4217, and MAPE of 5.6212. CatBoost’s

gradient-boosting approach efficiently handled the limited input data,

consistently making accurate predictions with smaller errors than other models.

Its MAPE of 5.6212% further demonstrated its reliable percentage-based

predictions, making it the most effective model.

74

Figure 3.23: Prediction curves on 20/10/2023 to 31/12/2023 (full test data)

Figure 3.24: Prediction curves on 31/12/2023

0

1

2

3

4

5

6

7

8

9

RMSE (kW) MAE (kW) MAPE (%)

Axis Title

LSTM GRU CNN-LSTM CatBoost

75

Table 3.22: Overall Comparison between LSTM, GRU, CNN-LSTM, CatBoost

on Test Data

In summary, CatBoost outperformed all models in forecasting power

consumption with limited input variables. Among the neural networks, LSTM

performed best, followed by GRU, while CNN-LSTM and CNN

underperformed due to added complexity not suited for the limited dataset.

CatBoost is the recommended model for this task, with LSTM and GRU as

strong alternatives for time-series data.

3.11 Limitations of Static models

The static load forecasting models, as shown in Figure 3.25, and Figure 3.26

have several limitations, particularly when applied to time periods with dynamic

or evolving power consumption patterns. These models are trained on historical

data from a fixed time span (in this case, 2021 to 2023) and are not updated as

new data becomes available. As the load profile evolves, especially with

significant changes in usage patterns, the performance of static models tends to

degrade. This is evident in the rising RMSE, MAE, and MAPE values over time,

as depicted in the figure, where the errors progressively increase from February

to June 2024. The pattern of degrading can be explain by Figure 3.27 which is

the load power consumption of whole dataset. It shows that the load power

consumption of the research office was keep changing.

Model RMSE (kW) MAE (kW) MAPE (%)

LSTM 1.2579 0.5799 7.2875

GRU 1.3158 0.6185 7.4891

CNN-LSTM 1.4381 0.6630 8.2021

CatBoost 0.0819 0.0474 0.5127

76

Figure 3.25: Prediction curves on 21/06/2024 – 27/06/2024

Figure 3.26: Plotting of Overall Performance of Static Model and

Updated Models Across Each Months (Start Update from 2024

Onwards)

77

Figure 3.27: Load Power Consumption of Whole Dataset (Dec 2021 to

June 2024)

One of the key limitations is the inability of static models to adapt to

changing trends or seasonal variations. Without the ability to retrain or adjust

based on new data, these models cannot capture shifts in power consumption

patterns effectively. Additionally, static models may struggle with unseen

conditions or data distributions that differ from the training period, leading to

overfitting to historical trends but underperforming in future periods.

In summary, while static models can provide reasonable accuracy in

the short term, the effectiveness diminishes over time as it is unable to

dynamically adapt to the evolving load profile. This limitation underscores the

need for adaptive models that can update and refine themselves as new data is

introduced, ensuring more accurate and reliable forecasts in changing

environments.

78

CHAPTER 4

4 ADAPTIVE CATBOOST DEVELOPMENT & EVALUATION

4.1 Flowchart & Work Plan

The purpose of this stage in the methodology is to develop an adaptive load

forecasting model using the CatBoost algorithm, which was identified as the

best-performing model during the static development phase. Unlike the static

model, which is fixed after training, the adaptive model is designed to adjust to

new data, ensuring it can handle changing consumption patterns over time. This

adaptability is essential for accounting for shifts in future power consumption

trends, which may differ from historical patterns. By building an adaptive

CatBoost model, the goal is to maintain high forecasting accuracy even in

dynamic environments where consumption behavior evolves over time. The

flowchart and workplan is shown in Figure 4.1.

79

Figure 4.1: Flowchart of Adaptive CatBoost

4.2 Dataset

For the development of the adaptive CatBoost model, the dataset will consist of

power consumption data collected from January 2024 to June 2024 from the

80

same two-story research office used in the static model development. This

dataset shares the same structure and variables as the previous dataset, ensuring

consistency in the modeling process while reflecting updated power

consumption trends for 2024. The adaptive model will be updated monthly,

allowing it to account for potential changes in consumption patterns that may

differ from those observed between December 2021 and December 2023. The

total power is computed in same manner as in static model development stage.

Table 4.1: Dataset Characteristics (January 2024 – June 2024)

Dataset Characteristics Details

Instances 35,517

Time Span Jan 1, 2024 to June 30, 2024

Collect Interval 30 minutes

Missing Values 0

Features

Time, Phase Voltage (A, B, C), Phase

Current (A, B, C), Power Factor

4.3 Preprocessing

In the preprocessing phase of developing the adaptive CatBoost model, the

preprocessing step kept consistent with that used in the static model

development to ensure uniformity and reliability. This consistency is crucial for

maintaining the comparability of results across different stages of model

evolution. The preprocessing begins with the integration of newly collected

monthly data with the existing historical dataset. This approach allows us to

build upon the previous data, ensuring that the model continuously learns from

the most recent trends. Missing values in the dataset are addressed using

imputation methods that were applied in the static model. For numerical features,

imputation is carried out by filling in missing values with the mean or median

of the respective features, while categorical features are handled according to

the specific characteristics.

Normalization and scaling are essential steps to prepare the data for

effective model training. In this regard, MinMaxScaler was apply to normalized

feature values to a range between 0 and 1, ensuring that all features contribute

81

equally to the model training process. Feature engineering is maintained in the

same manner as the static model, with the same set of features being used to

ensure that the model's performance can be consistently evaluated over time.

Data splitting is performed by dividing the dataset into training and testing sets

following the same proportions as used in the static model, allowing us to

validate the model on a representative sample and ensure its robustness.

4.4 Drift Detection

Drift detection is a vital aspect of maintaining the accuracy and reliability of

predictive models, especially in environments where the underlying data

distribution can change over time—a phenomenon known as concept drift. In

the context of the adaptive CatBoost model for power consumption forecasting,

the detection technique being employed is the ADWIN (Adaptive Windowing)

algorithm to detect such drifts effectively.

ADWIN is a robust and efficient method designed specifically for

streaming data applications. Its core functionality revolves around maintaining

a dynamically sized sliding window over the data stream, which, in this case,

consists of the sequence of absolute errors between the model's predictions and

the actual observed values. Unlike fixed-size windowing techniques, ADWIN

adjusts the window size adaptively based on the statistical properties of the

incoming data. This adaptability allows it to be sensitive to both gradual and

abrupt changes in the data distribution.

The mechanism by which ADWIN detects drift involves several key

steps. Firstly, as new data points arrive, the absolute error was computed

between each predicted value and its corresponding true value. These error

values are sequentially fed into the ADWIN algorithm. ADWIN continuously

updates its internal statistics with each new error, recalculating the mean and

variance within the current window. This continuous monitoring is crucial for

timely detection of any significant changes in the error distribution.

Secondly, ADWIN employs statistical hypothesis testing to compare

the distribution of errors in different segments of the window. Specifically, it

splits the window into two sub-windows at every possible point and evaluates

whether the difference in the mean errors between these sub-windows is

82

statistically significant. It utilizes Hoeffding's Inequality to calculate confidence

intervals, which helps determine whether the observed difference could be due

to random fluctuations or represents a genuine shift in the data distribution.

A significant advantage of ADWIN is its use of dynamic thresholds

derived from the data itself, rather than relying on manually set fixed thresholds.

This means that the algorithm calculates thresholds based on the observed

variance and desired confidence levels, making it highly adaptable to various

types of drift and noise levels in the data. If the statistical test indicates that the

difference between sub-windows exceeds the calculated threshold, ADWIN

concludes that a concept drift has occurred.

4.5 Optuna Optimization

Optuna is a powerful hyperparameter optimization framework designed to

enhance model performance through systematic and efficient search techniques.

In this project, Optuna is employed to fine-tune the hyperparameters of the

CatBoost model, aiming to optimize its forecasting accuracy for power

consumption. The core objective of using Optuna is to identify the optimal set

of hyperparameters that improves the model's predictive accuracy while

maintaining computational efficiency.

Optuna employs a Bayesian optimization approach, which builds a

probabilistic model of the objective function and iteratively refines it based on

previous trial results. This method is advantageous over traditional grid search

or random search approaches as it explores the hyperparameter space more

intelligently. The optimization begins with an initial set of hyperparameters,

which are evaluated based on model performance metrics. Optuna then updates

its probabilistic model to suggest new configurations that are likely to enhance

performance.

A notable feature of Optuna is its trial management capability. It

handles multiple trials by sampling different hyperparameter configurations and

assessing the performance. Each trial involves training the CatBoost model with

a specific set of hyperparameters and measuring its performance on validation

data. Based on these results, Optuna guides subsequent trials towards more

promising configurations. Additionally, Optuna includes a pruning mechanism

83

that allows early termination of underperforming trials, conserving

computational resources by focusing on more promising trials.

Optuna also provides visualization tools that help understand the optimization

process and the impact of various hyperparameters on model performance. By

utilizing Optuna’s advanced search algorithms and pruning features, the goals

is to enhance the CatBoost model’s performance, leading to more accurate and

reliable power consumption forecasts.

4.5.1 Updates Starting in 2024 (Scenario 1)

In Scenario 1, where the model was initially trained on data from 2021 to 2023

and updates started in January 2024, Optuna consistently selected a depth of 6

and a learning rate around 0.049 for most months as shown in Table 4.2.

Although the L2 regularization and iterations varied slightly with each update,

this variability shows that tuning occurred during each update to reflect changes

in the dataset. The adjustments made by Optuna for every update ensured the

model stayed optimized and adapted well to the new data, maintaining high

accuracy.

Table 4.2: Adaptive Catboost Optimum Parameter Tunned by Optuna

Optimization for Each Updating (Update from Jan 2024 Onwards)

Data
used to
Update Depth

Learning_rat
e L2 Regularization (L2_leaf_reg)

Lteration
s

2024-01 5 0.0494 3.6631 1785
2024-02 5 0.0499 1.3292 1958
2024-03 6 0.0359 0.2528 1999
2024-04 6 0.0491 0.1068 2000
2024-05 6 0.0495 0.3351 2000

84

4.5.2 Updates Starting in 2023 (Scenario 2)

Similarly, in Scenario 2, where the model was initially trained on data from

2021 to 2022 and updates began in January 2023, Optuna again tuned the

model’s hyperparameters for each update as shown in Table 4.3. The depth of 6

remained constant, but adjustments in learning rate, L2 regularization, and

iterations occurred monthly, showing that the model was continually optimized

as it incorporated new data. This fine-tuning process during each update further

confirms that the model was regularly recalibrated to handle shifting

consumption patterns.

Table 4.3: Adaptive Catboost Optimum Parameter Tunned by Optuna

Optimization for Each Updating (Update from Jan 2023 Onwards)

Date depth learning_rate l2_leaf_reg iterations
2023/01 6 0.0489 2.0293 1755
2023/02 6 0.0498 0.2216 1870
2023/03 6 0.049 3.3553 1918
2023/04 6 0.05 0.3612 1886
2023/05 6 0.0498 0.1128 1870
2023/06 6 0.0456 0.9556 1997
2023/07 6 0.0495 0.1918 1680
2023/08 6 0.05 0.1047 1928
2023/09 6 0.0498 0.7588 1954
2023/10 6 0.0455 0.1952 1724
2023/11 6 0.045 0.1711 1807
2023/12 6 0.0495 4.2478 1930
2024/01 6 0.0469 1.2794 1885
2024/02 6 0.0496 0.3521 1814
2024/03 5 0.0498 0.1522 1960
2024/04 6 0.0488 3.1979 1899
2024/05 6 0.05 0.4013 1930

4.6 Updating Size

The decision to update the adaptive CatBoost model on a monthly basis was

made to balance responsiveness, stability, and computational efficiency. Power

consumption patterns often follow monthly cycles due to factors like weather

changes, holidays, and billing periods. By updating the model monthly, it can

capture these recurring trends without overreacting to short-term fluctuations

85

that could occur weekly. Weekly updates might cause the model to respond to

noise, reducing its stability and accuracy.

A key reason for avoiding weekly updates is that it don’t provide

enough new data for the model to learn. Power consumption doesn’t change

significantly week to week, so updating the model weekly would not give it

enough information to learn meaningful patterns. In contrast, monthly updates

offer sufficient data, allowing the model to adjust more effectively and improve

its predictions.

Monthly updates also align well with seasonal variations in power

consumption, such as increased energy demand during summer and winter. This

helps the model adapt to these shifts in a timely manner, whereas yearly updates

might miss mid-year changes, leading to outdated forecasts. Weekly updates

could overreact to minor variations, missing the larger seasonal trends.

Finally, monthly updates align with typical business and operational cycles,

where power consumption is often tracked and billed monthly. This makes the

updates more relevant for decision-makers and ensures that forecasts stay in

sync with practical needs.

4.7 Updating Model Evaluation

The evaluation process for the adaptive model will differ significantly from the

approach used for the static model, given the model's continuous updates over

time. To appropriately assess the adaptive model's performance, a rolling

window evaluation will be employed. This method is particularly suitable for

time series forecasting models, where predictions are made iteratively with the

inclusion of newly available data.

Initially, the static model will be used to predict power consumption

from January 2024 onwards. This static model is trained on historical data from

2021 to 2023 and will serve as the baseline for comparison. Since the static

model does not incorporate any data from 2024 or beyond, its predictions will

be made based solely on the historical patterns learned during the training period.

This establishes a reference point against which the performance of the adaptive

model will be measured.

86

For the adaptive model, beginning in January 2024, the model will be

updated monthly with newly available data. After each monthly update, the

model will generate predictions for the subsequent month. For example, the

model updated at the end of January 2024 will be used to predict power

consumption for February 2024, and the model updated at the end of February

2024 will be used to forecast March 2024, and so on. This approach ensures that

the model adapts to evolving trends in power consumption and is responsive to

any changes in underlying data patterns.

The performance of both the static and adaptive models will be

assessed using standard forecasting metrics, including Root Mean Squared Error

(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error

(MAPE). These metrics will be calculated for each month, enabling a direct

comparison of how the static model, with its fixed knowledge of past data,

performs relative to the adaptive model, which integrates new information on a

rolling basis. The focus of the evaluation will be on how well the adaptive model

reduces forecasting errors over time, and whether its ability to learn from recent

data leads to improved accuracy compared to the static model.

87

4.8 Performance Measure Result

4.8.1 Updates Starting in 2024 (Scenario 1)

Figure 4.2 to Figure 4.5 illustrate the prediction curve of initial static model and

the Adaptive CatBoost model. From these Figure, the performance difference

of both static and updated model is being visualized.

Figure 4.2: Prediction curves on 11/02/2024 to 17/02/2024 (one week)

Figure 4.3: Prediction curves on 06/05/2024 to 12/04/2024 (one week)

88

Figure 4.4: Prediction curves on 06/05/2024 to 12/05/2024 (one week)

Figure 4.5: Prediction curves on 23/06/2024 to 29/06/2024 (one week)

89

After each updating, the models was used to predict power consumption for the

subsequent month's power consumption, At the same time, the initial static

model, which was not updated, continued to predict the same months, serving

as a benchmark to compare the performance of the static and updated models.

Key differences in performance were observed at specific data points, reflecting

the advantages of the adaptive model. The overall performance of Adaptive

CatBoost is shown in Figure 4.6 and Table 4.4.

In February 2024, after being updated with January's data, the adaptive

model achieved an RMSE of 48.64, significantly lower than the static model’s

70.13. This suggests that the adaptive model quickly captured recent

consumption patterns, improving its prediction accuracy early on.

The most notable improvement occurred in April 2024, where the adaptive

model’s RMSE dropped to 282.86, compared to a much higher 405.40 for the

static model. The static model struggled here, likely due to evolving power

consumption trends, whereas the adaptive model successfully adjusted to these

changes through monthly updates.

Similarly, in April 2024, the MAPE for the adaptive model was 1.43%,

compared to 3.98% for the static model. This significant reduction shows that

the adaptive model provided more accurate percentage-based forecasts,

effectively accounting for shifts in power usage patterns.

By May 2024, although the error margins slightly increased, the adaptive model

still outperformed the static model across all metrics, including MAE, which

was 132.34 compared to 250.71 for the static model. This indicates that even

with fluctuations, the adaptive model maintained better accuracy.

90

Figure 4.6: Plotting of Overall Performance of Static Model and Updated

Models Across Each Months (Start Update from 2024 Onwards)

Table 4.4: Overall Performance of Static Model and Updated Models Across

Each Months (Start Update from 2024 Onwards)

Static Model Updated Model Static Model Updated Model Static Model Updated Model
2024/02 0.0632356 0.0701327 0.0437327 0.0486426 0.5829 0.6407
2024/03 0.121942 0.1167044 0.0594443 0.055297 0.8854 0.8608
2024/04 0.5025032 0.4054039 0.4037901 0.2828642 6.7277 3.9805
2024/05 0.6539747 0.2507122 0.5357126 0.1323437 8.0718 1.4314
2024/06 0.6942722 0.1224752 0.6098815 0.0761539 11.2927 1.1038

RMSE(kW)
Evaluation Month

MAE(kW) MAPE(%)

91

4.8.2 Updates Starting in 2023 (Scenario 2)

Figure 4.7 to Figure 4.10 illustrate the prediction curve of initial static model

and the Adaptive CatBoost model. From these Figure, the performance

difference of both static and updated model is being visualized.

Figure 4.7: Prediction curves on 01/08/2023

Figure 4.8: Prediction curves on 01/08/2023 to 07/08/2023 (one week)

92

Figure 4.9: Prediction curves on 15/10/2023 to 22/10/2023 (one week)

Figure 4.10: Prediction curves on 11/05/2024 to 17/05/2024 (one week)

93

In Scenario 2, the Adaptive CatBoost model was trained on data from 2021 to

2022, with monthly updates starting in January 2023. Each update was used to

predict power consumption for the following month, with the static model

serving as a benchmark. Performance was evaluated using RMSE, MAE, and

MAPE, showing clear improvements with the adaptive model. The result was

shown in Figure 4.11 and Table 4.5.

The RMSE results highlight significant gains for the adaptive model.

In July 2023, the static model recorded a high RMSE of 2.7612, while the

adaptive model reduced this error to 1.2127. Similarly, in August 2023, the

static model had an RMSE of 3.7131, which the adaptive model brought down

to 0.5597. These reductions demonstrate the adaptive model’s ability to adjust

to changing consumption patterns effectively.

In later months, especially from October to December 2023, the

adaptive model continued to outperform the static model. For instance, in

November 2023, the static model's RMSE was 1.4768, while the adaptive model

achieved a much lower 0.1754. These improvements show how the adaptive

model better captured evolving trends in power consumption.

The MAE results follow a similar pattern. In June 2023, the adaptive model

reduced the MAE to 0.1482, compared to 0.2388 for the static model. By

November 2023, the MAE for the adaptive model was 0.0936, compared to

0.5372 for the static model, proving the adaptive model's precision in

forecasting.

The MAPE values further emphasize the adaptive model's advantage.

In August 2023, the static model's MAPE was 1.6637%, while the adaptive

model reduced it to 0.2409%. Even in June 2024, where the static model’s

MAPE surged to 11.9732%, the adaptive model maintained a much lower error

of 1.0841%. These results highlight the adaptive model's superior percentage-

based accuracy over time.

94

Figure 4.11: Plotting of Overall Performance of Static Model and

Updated Models Across Each Months (Start Update from 2023

Onwards)

Table 4.5: Overall Performance of Static Model and Updated Models Across

Each Months (Start Update from 2023 Onwards)

Static Model Updated Model Static Model Updated Model Static Model Updated Model
2023/02 0.1268 0.1267 0.0486 0.0431 0.6327 0.5422
2023/03 0.0638 0.0556 0.0417 0.0358 0.5771 0.4799
2023/04 0.0777 0.0789 0.0498 0.0482 0.6610 0.6168
2023/05 0.2961 0.3323 0.0893 0.0911 0.7964 0.7286
2023/06 0.9126 0.5014 0.2388 0.1482 1.3644 0.9505
2023/07 2.7612 1.2127 1.0085 0.4044 3.9361 1.7803
2023/08 3.7131 0.5597 1.6637 0.2409 6.0567 1.2274
2023/09 3.2976 0.2318 1.4319 0.1200 5.2929 0.8522
2023/10 1.9976 0.1294 0.6687 0.0716 2.8380 0.6822
2023/11 1.4768 0.1754 0.5372 0.0936 2.4775 0.8068
2023/12 0.4069 0.1072 0.1331 0.0622 0.9928 0.6981
2024/01 0.2161 0.1588 0.0863 0.0601 0.8469 0.6750
2024/02 0.0868 0.0727 0.0515 0.0490 0.6262 0.6193
2024/03 0.2119 0.1200 0.0871 0.0585 1.0256 0.8781
2024/04 1.1519 0.4323 0.6709 0.3206 7.4883 4.7778
2024/05 1.6152 0.2525 0.9993 0.1349 9.8654 1.4634
2024/06 0.9946 0.1259 0.7584 0.0774 11.9732 1.0841

Evaluation Month
RMSE(kW) MAE(kW) MAPE(%)

95

4.9 Summary

In both scenarios, the Adaptive CatBoost model proved to be more effective

than the static model in forecasting power consumption over time. The primary

difference between the two scenarios was the initial training period: in Scenario

1, the model was trained on data from 2021 to 2023, while in Scenario 2, it was

trained on data from 2021 to 2022, with updates beginning earlier in 2023.

Across both scenarios, the monthly updates of the adaptive model

allowed it to continuously improve and adjust to changes in consumption

patterns. This adaptive capability resulted in consistently lower errors compared

to the static model, which struggled to maintain accuracy as time progressed and

consumption trends shifted. The adaptive model’s ability to incorporate new

data each month made it more responsive to changes, leading to more reliable

predictions.

Overall, the results from both scenarios demonstrate the effectiveness

of the adaptive approach, with the Adaptive CatBoost model outperforming the

static model in predicting future power consumption, particularly as

consumption patterns evolved over time. This underscores the importance of

periodic model updates in dynamic forecasting environments.

96

CHAPTER 5

5 CONCLUSION

5.1 Conclusion

This project successfully demonstrated the potential of various machine

learning and deep learning models in forecasting power consumption using

limited data, specifically datetime and power variables. The models tested

included CatBoost, LSTM, GRU, CNN, and CNN-LSTM, each providing

insights into different aspects of load forecasting. Among them, the adaptive

CatBoost model proved to be the most effective in capturing evolving

consumption patterns by updating monthly, significantly outperforming the

static models, which struggled to generalize to future data. Both LSTM and

GRU models exhibited strong performance in handling temporal dependencies,

while CNN-LSTM showcased its capability in combining spatial and temporal

features. However, CNN alone underperformed, indicating that pure spatial

feature extraction may not be sufficient for this type of forecasting task. Overall,

the project demonstrated that machine learning models, even when limited to

minimal input features, can provide robust and accurate predictions, particularly

when dynamically updated to reflect changing trends in power consumption.

5.2 Recommendations for Future Work

To build upon the findings of this project and further enhance the forecasting

models, several key areas of improvement are recommended. First, expanding

the dataset to include additional features such as weather data, occupancy levels,

or economic indicators could significantly improve model performance. These

additional variables would provide the models with more context and enable

them to capture more complex consumption patterns, thereby improving both

short-term and long-term predictions.

Second, future work should explore advanced deep learning

architectures, particularly transformer-based models, which have shown

promising results in time-series forecasting tasks. The self-attention mechanism

in transformers could potentially improve the handling of long-term

97

dependencies and provide more accurate predictions for datasets with limited

features, like the one used in this project. Integrating these architectures could

offer a significant leap in forecasting accuracy.

Finally, implementing an ensemble approach, combining the strengths

of multiple models, could provide more robust predictions. For instance,

combining the adaptive capabilities of CatBoost with the temporal learning

strengths of LSTM or GRU could yield a more reliable system that excels at

both trend detection and short-term fluctuations. This multi-model ensemble

could offer better generalization and accuracy than relying on a single model,

especially in dynamic environments where consumption patterns change

frequently.

98

REFERENCES

Ahmad, T., Madoński, R., Zhang, D., Huang, C., & Mujeeb, A. ，2022.

Data-driven probabilistic machine learning in sustainable smart

energy/smart energy systems: Key developments, challenges, and future

research opportunities in the context of smart grid paradigm. Elsevier BV.

https://doi.org/10.1016/j.rser.2022.112128

Al-Shatri, H., & Awad, M.， 2024. Time series forecasting of electricity

consumption using hybrid model of recurrent neural networks and genetic

algorithms. Elsevier BV, 100004-100004.

https://doi.org/10.1016/j.meaene.2024.100004

Bian, J., Wang, J., & Yece, Q., 2024. A novel study on Power Consumption

of an HVAC system using CatBoost and AdaBoost algorithms combined

with the Metaheuristic Algorithms. Energy, 302, 131841.

https://doi.org/10.1016/j.energy.2024.131841

Bouktif, S., Fiaz, A., Ouni, A., & Serhani, M A.，2019. Single and Multi-

Sequence Deep Learning Models for Short and Medium Term Electric Load

Forecasting. Multidisciplinary Digital Publishing Institute, 12(1), 149-149.

https://doi.org/10.3390/en12010149

Deng, X., Ye, A., Zhong, J., Xu, D., Yang, W., Song, Z., Zhang, Z., Guo, J.,

Wang, T., Tian, Y., Pan, H., Zhang, Z., Wang, H., Wu, C., Shao, J., & Chen,

X. (2022). Bagging–XGBoost algorithm based extreme weather

identification and short-term load forecasting model. Energy Reports, 8,

8661–8674. https://doi.org/10.1016/j.egyr.2022.06.072

Duan, X.， 2020. Application of Deep Learning in Power load Analysis.

https://doi.org/10.46300/9106.2020.14.92

https://doi.org/10.1016/j.rser.2022.112128
https://doi.org/10.1016/j.egyr.2022.06.072

99

Elamin, N., & Fukushige, M.，2018. Modeling and forecasting hourly

electricity demand by SARIMAX with interactions. Elsevier BV, 165, 257-

268. https://doi.org/10.1016/j.energy.2018.09.157

Eren, Y., & Küçükdemiral, İ B., 2024. A comprehensive review on deep

learning approaches for short-term load forecasting. Elsevier BV, 189,

114031-114031. https://doi.org/10.1016/j.rser.2023.114031

Fan, G., Han, Y., Wang, J., Jia, H., Peng, L., Huang, H., & Hong, W., 2023.

A new intelligent hybrid forecasting method for power load considering

uncertainty. Elsevier BV, 280, 111034-111034.

https://doi.org/10.1016/j.knosys.2023.111034

Fekri, M N., Patel, H R., Grolinger, K., & Sharma, V., 2021. Deep learning

for load forecasting with smart meter data: Online Adaptive Recurrent

Neural Network. Elsevier BV.

https://doi.org/10.1016/j.apenergy.2020.116177\

Hadjout, D., Torres, J F., Troncoso, A., Sebaa, A., & Martínez‐Álvarez,

F., 2022. Electricity consumption forecasting based on ensemble deep

learning with application to the Algerian market. Elsevier BV, 243, 123060-

123060. https://doi.org/10.1016/j.energy.2021.123060

Hancock, J.T. and Khoshgoftaar, T.M. (2020a) CatBoost for Big Data: An

interdisciplinary review - journal of big data, SpringerLink. Available at:

https://link.springer.com/article/10.1186/s40537-020-00369-8 (Accessed:

17 September 2024).

Huang, Y., & Huang, S. (2020, September 1). A Short-Term load

forecasting model based on improved random Forest algorithm. IEEE

Conference Publication | IEEE Xplore.

https://ieeexplore.ieee.org/abstract/document/9356670

https://doi.org/10.1016/j.apenergy.2020.116177/
https://ieeexplore.ieee.org/abstract/document/9356670

100

Kim, T Y., & Cho, S B., 2019. Predicting residential energy consumption

using CNN-LSTM neural networks. Elsevier BV, 182, 72-81.

https://doi.org/10.1016/j.energy.2019.05.230

Kolter, J Z., & Maloof, M A., 2004. Dynamic weighted majority: a new

ensemble method for tracking concept drift.

https://doi.org/10.1109/icdm.2003.1250911

Li, Y., Zhang, F., Liu, Y., Liao, H., Zhang, H., & Chung, C., 2023.

Residential Load Forecasting: An Online-Offline Deep Kernel Learning

Method. Institute of Electrical and Electronics Engineers.

https://doi.org/10.1109/tpwrs.2023.3299637

Lin, J., Ma, J., Zhu, J., & Chen, Y., 2022. Short-term load forecasting based

on LSTM networks considering attention mechanism. Elsevier BV, 137,

107818-107818. https://doi.org/10.1016/j.ijepes.2021.107818

Massaoudi, M., Refaat, S S., Chihi, I., Trabelsi, M., Abu‐Rub, H., &

Oueslati, F S., 2020. Short-Term Electric Load Forecasting Based on Data-

Driven Deep Learning Techniques.

https://doi.org/10.1109/iecon43393.2020.9255098

Michael, N E., Mishra, M., Hasan, S., & Al‐Durra, A., 2022. Short-Term

Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM

Technique. Multidisciplinary Digital Publishing Institute.

https://doi.org/10.3390/en15062150

Owen, L. (2022, July). Hyperparameter Tuning with Python. Google Books.

https://books.google.com.my/books?hl=en&lr=&id=CqF-

EAAAQBAJ&oi=fnd&pg=PP1&dq=What%27s+the+optimal+machine+le

arning+data+split+ratio+and+how+to+achieve+it%3F+Learn+how+to+av

oid+overfitting+&ots=RPIBpjE2lF&sig=XipcHVvm1op8m90ufAnx2g2M

Xfo&redir_esc=y#v=onepage&q&f=false

https://doi.org/10.1109/icdm.2003.1250911
https://doi.org/10.1109/tpwrs.2023.3299637
https://doi.org/10.3390/en15062150
https://books.google.com.my/books?hl=en&lr=&id=CqF-EAAAQBAJ&oi=fnd&pg=PP1&dq=What%27s+the+optimal+machine+learning+data+split+ratio+and+how+to+achieve+it%3F+Learn+how+to+avoid+overfitting+&ots=RPIBpjE2lF&sig=XipcHVvm1op8m90ufAnx2g2MXfo&redir_esc=y#v=onepage&q&f=false
https://books.google.com.my/books?hl=en&lr=&id=CqF-EAAAQBAJ&oi=fnd&pg=PP1&dq=What%27s+the+optimal+machine+learning+data+split+ratio+and+how+to+achieve+it%3F+Learn+how+to+avoid+overfitting+&ots=RPIBpjE2lF&sig=XipcHVvm1op8m90ufAnx2g2MXfo&redir_esc=y#v=onepage&q&f=false
https://books.google.com.my/books?hl=en&lr=&id=CqF-EAAAQBAJ&oi=fnd&pg=PP1&dq=What%27s+the+optimal+machine+learning+data+split+ratio+and+how+to+achieve+it%3F+Learn+how+to+avoid+overfitting+&ots=RPIBpjE2lF&sig=XipcHVvm1op8m90ufAnx2g2MXfo&redir_esc=y#v=onepage&q&f=false
https://books.google.com.my/books?hl=en&lr=&id=CqF-EAAAQBAJ&oi=fnd&pg=PP1&dq=What%27s+the+optimal+machine+learning+data+split+ratio+and+how+to+achieve+it%3F+Learn+how+to+avoid+overfitting+&ots=RPIBpjE2lF&sig=XipcHVvm1op8m90ufAnx2g2MXfo&redir_esc=y#v=onepage&q&f=false
https://books.google.com.my/books?hl=en&lr=&id=CqF-EAAAQBAJ&oi=fnd&pg=PP1&dq=What%27s+the+optimal+machine+learning+data+split+ratio+and+how+to+achieve+it%3F+Learn+how+to+avoid+overfitting+&ots=RPIBpjE2lF&sig=XipcHVvm1op8m90ufAnx2g2MXfo&redir_esc=y#v=onepage&q&f=false

101

Qin, S. J., MacGregor, J. F., Ge, Z., Daszykowski, M., Maronna, R. A.,

Serneels, S., Templ, M., Downs, J. J., Luo, L., Nomikos, P., Kano, M., Cai,

B., Yu, H., Yu, J., & Bao, S., 2019. Robust monitoring of industrial

processes using process data with outliers and missing values.

Chemometrics and Intelligent Laboratory Systems.

https://www.sciencedirect.com/science/article/abs/pii/S0169743919300735

Sajjad, M., Khan, Z A., Ullah, A., Hussain, T., Ullah, W., Lee, M Y., & Baik,

S W., 2020. A Novel CNN-GRU-Based Hybrid Approach for Short-Term

Residential Load Forecasting. Institute of Electrical and Electronics

Engineers, 8, 143759-143768. https://doi.org/10.1109/access.2020.3009537

Taleb, I., Guérard, G., Fauberteau, F., & Nguyen, N., 2022. A Flexible Deep

Learning Method for Energy Forecasting. Multidisciplinary Digital

Publishing Institute, 15(11), 3926-3926.

https://doi.org/10.3390/en15113926

Tong, X., Wang, J., Zhang, C., Wu, T., Wang, H., & Wang, Y., 2022. LS-

LSTM-AE: Power load forecasting via Long-Short series features and

LSTM-Autoencoder. Elsevier BV, 8, 596-603.

https://doi.org/10.1016/j.egyr.2021.11.172

Xu, J., & Baldick, R., 2019. Day-Ahead Price Forecasting in ERCOT

Market Using Neural Network Approaches.

https://doi.org/10.1145/3307772.3331024

Zhang, N., Li, Z., Zou, X., & Quiring, S. M. (2019, October 17). Comparison

of three short-term load forecast models in Southern California. Energy.

https://www.sciencedirect.com/science/article/abs/pii/S0360544219320535

Zhou, Y., Liu, Y., Wang, D., & Liu, X. (2021). Comparison of machine-

learning models for predicting short-term building heating load using

operational parameters. Energy and Buildings, 253, 111505.

https://doi.org/10.1016/j.enbuild.2021.111505

https://doi.org/10.1145/3307772.3331024
https://www.sciencedirect.com/science/article/abs/pii/S0360544219320535
https://doi.org/10.1016/j.enbuild.2021.111505

102

Zulfiqar, M H., Kamran, M., Rasheed, M B., Alquthami, T., & Milyani, A

H., 2022. A Short-Term Load Forecasting Model Based on Self-Adaptive

Momentum Factor and Wavelet Neural Network in Smart Grid. Institute of

Electrical and Electronics Engineers.

https://doi.org/10.1109/access.2022.3192433

https://doi.org/10.1109/access.2022.3192433

103

APPENDICES

Appendix A: Codes

Appendix A : LSTM Model Code

104

105

106

107

Appendix B : GRU Model Code

108

109

110

111

112

113

Appendix C : CatBoost Model Code

114

115

116

117

118

Appendix D : CNN-LSTM Model Code

119

120

121

122

