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ABSTRACT 

 

This project addresses the challenge of load forecasting in research offices, 

where uneven energy usage leads to inefficient load management. Most 

effective models require extensive data inputs, such as weather and economic 

variables, which are not always available. Additionally, most models are static 

and cannot adapt to changing load patterns, limiting the effectiveness in 

dynamic environments. This study aims to develop a load forecasting model that 

uses limited data length (1- 2 years), limited variables—only time and power 

consumption—to achieve compatible accuracy. The selected algorithms include 

Catboost, LSTM, GRU, and CNN-BiLSTM, with a focus on incorporating a 

self-updating feature to improve adaptability. The results show that while deep 

learning models achieve reasonable accuracy, Catboost outperformed with an 

RMSE of 0.0819 kW, MAE of 0.0474kW, and MAPE of 0.5127%. The self-

updating Catboost model further enhanced performance compared to its static 

counterpart to capture future dynamic load, with MAPE below 5% across every 

month. The developed models are ready for deployment and require only power 

consumption data for training, making them both robust and adaptable for 

predicting future load profiles. 
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CHAPTER 1 

 

1       INTRODUCTION 

 

1.1 General Introduction 

In today’s age where the sustainability of the energy systems concerns us more 

than ever, it is not just a technical challenge but a necessity to be able to forecast 

the electrical load within commercial buildings precisely. This project serves to 

be a substantial step forward in the field of energy management by creating a 

state-of-the-art machine learning model for a two-storey research office. As 

such, this technology has the potential not only to improve the ways in which 

people consume energy but also to make it easier for us to optimize this 

consumption on the go, reducing operational costs and increasing sustainability 

for many businesses. As more and more businesses are focusing on reducing the 

impact on environment and becoming more sustainable and operationally 

efficient, the role of such intelligent automation in managing energy will only 

end up increasing. In research offices, where the usage of this form is uneve, 

this technology will also prove its utmost utility. Being put to use in a country 

like Malaysia, which is now focusing on acquiring the benefits of technology 

and sustainability, and using complex machine learning techniques, this project 

aims to make load forecasts more accurate. 

This is not just the next step in the rapid evolution of technology. In 

fact, the emergence of artificial intelligence in this situation serves to be a 

massive force that changes the way of energy management and conservation. 

As such, this model, along with other AI technologies, will bring us a step closer 

to a world in which the energy systems know what do and more than that, do it 

in a manner that is inherently sustainable. The computational capabilities of 

artificial intelligence that will allow businesses to compete on a global level now 

equipped with the intellectual capabilities needed to approach this competition 

in a manner that is both profitable and beneficial for the environment. As such, 

this project not only serves the immediate operational needs of load forecasting 

for businesses but also advances the universal discussion on how artificial 

intelligence and other technological advancements will define the future in 

terms of sustainability and energy efficiency. 
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1.2 Importance of the Study 

As the world’s attention shifts towards the sustainability of the energy systems, 

the ability to reliably forecast the electrical load within commercial buildings 

becomes not just a technical difficulty but a mandate upon which the efficiency 

and environmental responsibility of energy use hinge. This capacity is 

especially critical amid the rapid advancements in energy management and 

digital technology, whose potential to revolutionize the way people conserve 

and consume energy remains largely untapped. Recognizing this imperative, 

this project seeks to develop an advanced machine learning model designed for 

a two-storey research office. By doing this, the goal of the project is inspired by 

the need not only to revolutionize how the system consume energy but also to 

develop a tool that reliably taps this technology to elevate operational 

sustainability, reduce operational costs. 

Increasingly, the worldwide shift of businesses toward greener, more 

efficient operational models elevates the role of intelligent automation in energy 

management. Both the needs and opportunities of doing this emerge with special 

depth in settings like research offices, where energy usage is volatile and 

unpredictable in nature. In the context of Malaysia’s technological and 

sustainability growth, this project’s prospects and contributions can be wholly 

attributed to its use of advanced machine learning methodologies for load 

forecasting. Therefore, Artificial Intelligence’s dawn and increasing footprint 

can be characterized as an epochal shift in on two concomitant levels: by 

infinitely expanding the capacity of energy management and conservation, and 

fundamentally repositioning the domains of work and its role in the greater 

world. 

Adding the immense analytical capacities of AI, the potential of the 

model created in this project is limitless in all practical senses. Meanwhile, the 

contributions made by this project can be equally instrumental not only to the 

goals and broader strategies that the connected industry would develop, but also 

to the crucially important discussion on how AI can be developed and employed 

to create a sustainable future. In the context of this encompassing ambition, this 

project is characterized by both prospect and closure, representing a collection 
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of insights on how the world can change, and a foundational step making this 

transformation a reality. 

 

1.3 Problem Statement 

According to Ahmad, et al. (2022), most conventional energy forecasting 

models struggle at one point to capture the dynamic and often non-linear 

features of the energy electrical load. This shortcoming creates flaws in energy 

planning, leading to higher operational cost for the research office. In most 

studies, it is always advised to improve the accuracy of the model, the input data 

used to train the model should include as much detailed information like weather, 

and temperature and economies data. However, in many cases, the detailed 

information might not be always available or easily accessible due to funding 

and accessibility issues. The question posed in the case of a research office, 

which lacks all the detailed information is how to achieve maximum accuracy 

of energy electrical load forecasting with the least detailed data. There is a 

critical need for a robust forecasting model that can effectively capture the 

dynamic and non-linear characteristics with limited data (time and power 

consumption) to predict future load profiles, ensuring energy efficiency and 

operational continuity in research facilities.  

  

1.4 Aim and Objectives 

This project aims to evaluate the feasibility of machine learning-based load 

estimation for a research office. The major objectives are presented as follows: 

 

(i) To investigate the current state-of-the-art algorithms applied on 

load forecasting and select suitable algorithms. 

(ii) To develop a system that could estimate the next day load using  

multiple machine learning methods. 

(iii) Evaluate the efficiency of the developed models in predicting the 

next day load profile.  
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1.5 Scope and Limitation of the Study 

To begin with, it is essential to outline the study’s scope, being limited to the 

construction of a load forecasting model designed for a two-storey research 

office. As already mentioned, the model is developed using power and time 

variables to predict energy consumption and identify specific patterns that 

would support future consumption trends. Therefore, the contribution of this 

research is a predictive mechanism that allows for better energy management 

by analysing historical electricity usage within particular periods. Thus, the 

established model facilitates making better decisions regarding consumption 

strategies. Simultaneously, the scope involves a detailed analysis of the existing 

power usage data, the imposition of an algorithm based on time series analysis, 

and a detailed analysis of the results to forecast the load profile within desired 

short-term periods.  

However, the study is limited to the office context and may require 

adaptation when applied to other types of buildings or larger scales. Another 

limitation is that the access to high-computational resources is limited, and thus, 

the training and refinement of the models and feature tunings differentiate from 

the theoretical perspective. The limitations of the study in terms of the resources 

available are acknowledged, as the objective of the research is to aim for the 

best possible outcomes within the given constraints.
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Load forecasting plays a crucial role in energy management, allowing for 

efficient energy distribution, capacity planning, and reducing operational costs. 

Traditionally, statistical methods have been employed, but recent years have 

seen a shift towards machine learning (ML) and deep learning (DL) approaches 

due to the superior predictive performance and flexibility in handling complex 

nonlinear relationships in energy consumption data. 

 

2.2 Traditional Machine Learning Model 

Accurate load forecasting models help reduce operational costs, enhance grid 

reliability, and support demand-side management initiatives. Various traditional 

machine learning and statistical models have been employed for this task, each 

offering unique strengths and limitations. Linear Regression (LR) is one of the 

most basic for forecasting due to its simple structure. It attempts to model the 

relationship between the dependent variable and one or more independent 

variables by fitting a linear equation to the observed data. However, the 

simplicity of LR often limits its effectiveness in capturing the complex, non-

linear relationships present in load forecasting data. For example, Zhnag et al. 

(2019) found that LR had a relatively low R² value, indicating that a significant 

proportion of the variance in the load data could not be explained by the model. 

This suggests that while LR can provide some basic insights, it is prone to 

significant prediction errors when applied to short-term load forecasting, 

especially in the presence of non-linear patterns.  

Decision Trees (DT) are another popular method in load forecasting. 

Decision Trees split the data into subsets based on the value of input features, 

creating a model that is easy to visualize and understand. However, DTs are 

prone to overfitting, particularly when the trees become too deep, leading to 

models that perform well on training data but poorly on unseen data. Huang and 

Huang (2020) observed that the R² value for DT models was significantly lower 
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than for other methods, such as Random Forests, particularly as the complexity 

of the data increased.  

Random Forests (RF), a method that builds multiple decision trees and 

aggregates the results, has been shown to improve upon the predictive accuracy 

and generalization ability of single decision trees. By averaging the predictions 

of many trees, RF reduces the risk of overfitting and typically performs better 

on a variety of datasets. Zhou et al. (2021) found that RF achieved  R² more than 

0.90 in load forecasting tasks, which was higher than both DT and LR models, 

indicating that RF provides a more accurate and reliable prediction. SARIMA 

(Seasonal AutoRegressive Integrated Moving Average) is a traditional 

statistical model widely used in time series forecasting, including load 

forecasting. SARIMA extends the ARIMA model by explicitly modeling 

seasonal effects, making it particularly useful for datasets with strong seasonal 

patterns. Elamin and Fukushige (2018) has introduce a SARIMA model for 

hourly electricity demand forecasting that considering external factors like 

weather and calendar events. The model's performance is enhanced, reducing 

the MAPE by 22.2% and achieving significant reductions in MAE and RMSE 

by 21.3% and 21.8%, respectively. However, it performance drop when due to 

non-linear load pattern.  

Gradient Boosting Machines (GBMs), such as XGBoost, have gained 

popularity due to the ability to achieve high accuracy in a wide range of 

prediction tasks. GBMs work by sequentially adding models (typically decision 

trees) to correct the errors made by previous models, gradually improving the 

overall predictive performance. Deng et al. (2022) presented XGboost load 

forecasting model with average MAPE of daily load is reduced by 1% -1.5%, 

and the average MAPE of peak load is reduced by 3%, outperforming other 

traditional models like RF and SVR. However, GBMs require careful tuning of 

hyperparameters to avoid overfitting and ensure optimal performance.  

In recent years, CatBoost has gained recognition as a powerful gradient 

boosting algorithm, particularly in applications that involve complex datasets 

with categorical variables. However, CatBoost's utility extends beyond such 

scenarios. Even in cases where the dataset is limited to time and load power, 

CatBoost has demonstrated robust performance. For instance, its ability to 

handle noise and reduce overfitting through ordered boosting is particularly 
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beneficial. While earlier studies like those by Bian et al. (2024) explored 

CatBoost's efficacy in HVAC power consumption predictions, achieving an R² 

value of 0.91, these findings suggest that CatBoost's strengths are not solely 

dependent on the presence of multiple categorical features. The model's inherent 

capabilities make it well-suited for various forecasting tasks, including those 

with simpler datasets, making it a compelling choice for load forecasting based 

solely on time and load power data. 

 

2.3 Deep Learning Model 

Despite traditional model having advantages in its simple structure and training 

speed, but it have limitations in capturing the nonlinear characteristics of load 

series. Deep learning is a subset of machine learning, which in turn is a subset 

of artificial intelligence (AI) that employs neural networks with many layers.  

Duan (2020) proven that deep learning models are able to capture 

complex functions and non-linear pattern of the data. These models have shown 

significant improvements in the accuracy of electricity load forecasting when 

using large dataset. Additionally, the ability of deep learning techniques to 

capture long and non-linear patterns in building power consumption is better 

than traditional forecasting methods. Therefore, the application of more 

advanced machine learning models has enhanced the electricity load forecasting. 

According to Eren and Kucukdemiral (2024), the common deep 

learning models applied in load forecasting are long short-term memory 

(LSTM), convolutional neural network (CNN), recurrent neural network (RNN), 

gated recurrent unit (GRU), and autoencoders. These deep learning were used 

to overcome the limitations of traditional forecasting methods. Lin, et al. (2022) 

presents a load forecasting model for short-term electricity load using LSTM 

based model. It is using a novel attention mechanism to improves forecasting 

by considering feature correlations and temporal dynamics, and refined 

selection of relevant weather data for more precise regional load predictions. 

The research employed the Global Energy Forecasting Competition 2014 

datasets with power consumption and temperature data as input to train the 

model. It demonstrated superior performance over existing methods in both 

point and probabilistic forecasting. 
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Xu and Baldick (2019) investigated single and deep-stacked LSTM 

neural networks with different activation functions to forecast power load one 

hour ahead using temperature and load data. The results showed that the two-

stacked LSTM network achieved highest accuracy with a MAPE of 1.53%. 

According to the research of Bouktif, et al. (2019), LSTM and GRU are 

outperformed machine learning and single-sequence models using RTE power 

consumption dataset with power consumption and weather data. Both LSTM 

and GRU are effective, but GRU is better in term of training speed due to it 

algorithm's structure is simpler than LSTM. Massaoudi, et al. (2020) 

demonstrated that temporal CNN can provide effective forecasting model with 

benchmarks of SVM and LSTM, its architecture can contribute to the training 

time reduction by decreasing the model complexity with an improvement of the 

model accuracy when integrate with another model such as CNN-LSTM. 

According to Tong, et al. (2022), the autoencoder part of the model has 

been created to accomplish two tasks: dimensionality reduction in the encoding 

phase and reconstruction in the decoding phase. As a result, it allows for 

effective compression of time series characteristics with the possibility of 

reconstructing the input sequences to enable the latent vectors to be indicative 

of the original data. Autoencoders can be educated without a teacher. It implies 

that it can strive to identify critical features in the input data without 

necessitating the use of explicit tags. When learning is completed, the encoder 

network can be employed to gather characteristics from new data samples, 

which can be used in an LF problem. However, it may not perform well 

compared to other deep learning models on specific supervised learning tasks, 

especially those involving sequential data, where RNNs, GRUs, LSTMs, and 

CNNs have shown superior performance. 

 

 

 

 

 

2.4 Hybrid Model 

Each of the individual algorithm have its advantages and shortage, so in order 

to further improve the performance of the model, people started to proposed 
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hybrid model. The advantage of hybrid model is that if one component of the 

hybrid model fails to produce accurate predictions under certain conditions, 

other components can help to cover for its shortcomings to increase the accuracy.  

Sajjad, et al. (2020) proposed CNN-GRU hybrid model achieved the 

smallest error rate in MSE, RMSE, and MAE which are 0.09%, 0.31%, and 0.24% 

respectively using same datasets when compared with other popular models, 

showcased high precision and efficiency in short-term residential load 

forecasting. Kim and Cho (2019) then combined Convolutional Neural 

Networks and Long Short-Term Memory networks to build a CNN-LSTM 

hybrid model and predict the housing energy consumption. This model is 

designed to extract both spatial and temporal features affecting energy 

consumption, allowing it to account for complex patterns including irregular 

trends in time series data. The performance of the proposed CNN-LSTM 

network is highlighted as achieving almost perfect prediction accuracy and 

recording the smallest value of RMSE when compared to conventional 

forecasting methods.  

Fan, et al. (2023) introduces an innovative hybrid model GWO-VMD-

GTO-CNN-BiLSTMS, which uses Variational mode decomposition (VMD) 

optimized by Gray Wolf optimization (GWO), for feature extraction along with 

Convolutional Neural Network and Bidirectional Short-Term Memory neural 

network for very accurate short-term load forecasting. This model provides a 

reasonable way of dealing with uncertainty and complexity in power systems, 

thus, representing superior predictive performance. However, the dataset chosen 

in the analysis is too small and may bias the results. In addition, the model may 

be seen as relatively complex, thus, leading to an increase in the training time. 

In addition, the study by Hadjout, et al. (2022) presents an innovative hybrid 

deep learning model combining Long Short-Term Memory (LSTM), Gated 

Recurrent Unit (GRU), and Temporal Convolutional Networks (TCN) to 

forecast monthly electricity consumption for the economic sector in Algeria. 

The model is trained using data from various economic sectors consumers, and 

it outperforms other single forecasting methods. 
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2.5 Self-updating Model 

Self-updating model are models that are able to automatically adjust its 

parameters in response to new data or changes in its environment, without need 

to retrain the underlying models from scratch or updating the internal 

parameters manually. This type of method is aimed to solve the problem of 

decrease in accuracy when model expose to change of trend due to season or 

change of environment in new input data. In fact, it modifies the effect or weight 

of each model in the ensemble depending on the performance with the new data 

(Kolter & Maloof, 2004). The method enhances the ensemble’s general 

prediction by enhancing the use of more accurate models and lowering the 

importance of less accurate models, depending on the recent performance of the 

model. This is a faster adaption method that does not need the computational 

resources and time that full retraining does. 

Taleb, et al. (2022) has developed a model the hybrid model, which can 

be applied in different region and changes over time. The latter feature allows 

the developed model to increase the forecasting accuracy at every forecasting 

range. Despite seasons, the model has shown an MAPE of 1.71% for 30-minute 

predictions, 3.5 % for 24-hour predictions, and 5.1 % for one-week prediction. 

The model adjusts itself through calculating the mean and standard deviations 

of the past forecasting errors and changes weights according to them. In addition, 

Zulfiqar, et al. (2022) also achieve dynamic weight adjustment by incorporating 

a Self-Adaptive Momentum Factor (SAMF) into the load forecasting model, 

result in MAPE of 1.71% for 30-minute predictions, 3.5% for 24-hour 

predictions, and 5.1% for one-week predictions, indicating a strong performance 

across different prediction intervals. 

The self-updating can also be achieved in online-model, Li, et al. (2023) 

has integrated both online and offline methods to improve the accuracy and 

robustness of residential load forecasting. The offline component uses historical 

data to build a foundational predictive model and the online component 

dynamically updates the forecasts based on real-time data. Fekri, et al. (2021) 

has also proposed a load forecasting model that able to continuous learning and 

adapting to new patterns using online learning RNN algorithm. 
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2.6 Dataset 

The dataset used in load prediction influences the models generated by it, 

therefore selection of the data is crucial. It is important to choose the dataset 

according to its impact on the accuracy of forecasts and its capacity to generate 

meaningful insights. The accuracy of the predictions will generally depend on 

how well the models are able to learn from the samples of real consumption 

patterns and develop into meaningful forecasting systems. The quality of the 

data used in the modelling can have effect on every stage, from the training and 

testing to the application of the models. Quality data should be error free, do not 

have missing values and or outliers (Qin et al., 2019). It is collected on the same 

level of detail as the patterns of load. The data also undergoes preprocessing 

such as data cleaning, normalization, and sometimes transformation to ensure 

the consistency of the model. 

Table 2.1 in summarised finding shows that many load prediction 

models incorporate features to capture the dynamics of energy usage. These 

features typically encompass power consumption and time along with factors, 

like weather conditions (temperature, humidity) time related indicators (daily 

weekly) and occasionally socio-economic factors (holidays, events). These 

features may help to increase the accuracy in prediction, but at the same time 

may overfit the models or increase the complexity of training process. 

However, in many cases, especially in regions where the technological 

infrastructure is limited or in certain applications where data collection is 

limited, it might be unfeasible to collect a comprehensive dataset that includes 

all potential features. In these instances, focusing on a simpler dataset that 

mainly includes power consumption and time could offer specific benefits. By 

doing so, the researchers and analysts can focus on the bare minimum of 

temporal patterns that determine electricity usage while avoiding additional 

complexity that other variables can introduce. In these cases, this course of 

action is not just convenient but also required. 
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2.7 Research Gap 

After doing a thorough study of the current literature on load forecasting models, 

it is found that most studies achieve robust model using dataset with a wide 

range of criteria other than just power usage and time, such as weather 

conditions, consumer habits, and socioeconomic data. This strategy, while 

effective, frequently demands complicated data collecting and processing. 

There is a huge gap in the investigation of models that rely exclusively on 

limited inputs which are power consumption and time. Models like this are not 

only important in those scenarios with limited data variable, but it also can 

achieve simpler implementation while maintaining forecast accuracy. 

Furthermore, the models that is capable of self-updating and self-correction is 

still not being study much. Most existing forecasting models are static, meaning 

they do not evolve after training and deployment. This static nature restricts the 

application in dynamic situations where load patterns may keep changing due 

to new technologies or changes in usage patterns. 

 

2.8 Summary 

In early, traditional statistical models were the most frequently utilized solutions 

in load forecasting. It included such popular ones as ARIMA and SARIMAX, 

which are highly applicable to small datasets and relatively simple prediction 

conditions. Nonetheless, traditional models are limited in its ability to process 

nonlinear and dynamic patterns, which are typical for energy consumption data. 

Eventually, with the increase in computational power and the amounts of data, 

machine learning models such as Support Vector Regression became widely 

applied. These solutions are more suitable for high-dimensional data, as well as 

complex relationships and are able to overcome the drawbacks of traditional 

methods. However, it still face difficulties in capturing long-term dependencies. 

With the emergence of deep learning technologies, it contributed to the 

development of load forecasting. LSTM models, CNN, GRU, and autoencoders 

have demonstrated unique opportunities for monitoring intricate and non-linear 

dependencies in vast data sets. Time-dependent models have shown the best 

results in terms of temporal dependencies, constantly surpassing all the rest of 

the traditional and earlier machine learning models in terms of accuracy and 

stability. That is why hybrid models began to be developed, which consist of a 
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tandem of multiple forecasting models for increased prediction data quality. 

Hybrid models simultaneously utilize several models using ensemble methods, 

such as bagging and boosting, for further improved generalization and 

decreased prediction variance by aggregating forecasts from the individual base 

models. 

Moreover, to solve the problem of decrease in accuracy when model 

expose to change of trend due to season or change of environment in new input 

data, the self-updating model seems to be a good solution for it. These models 

dynamically adjust the parameters in response to new data, enabling them to 

continuously learn and adapt to changing patterns without manual intervention 

or extensive retraining. However, this type of model is still not widely utilized 

and requires further research and development to optimize its performance and 

applicability in load forecasting. 

 

2.8.1 Summarised Finding 

 

Table 2.1: Input Parameters and Self-Update Capabilities of Studied 

Papers 

Author Load Type Input 

Parameters 

Self-Update 

Capability  

Duan (2020) Residential 

Load 

Time, weather, and 

power 
⨯ 

Eren and 

Kuçukdemiral 

(2019) 

Residential 

Load 

Temperature, time, 

and power 
 

⨯ 

Fan et al. 

(2023) 

Power Grid Time, weather 

temperature, and 

load data. 

⨯ 

Fekri, et al. 

(2021) 

Residential Time, temperature, 

wind speed and 

direction, pressure, 

and 

humidity 

 

 

 

Hadjout, et al. 

(2022) 

Commercial Time, weather 

temperature, 

economic data, and 

load data. 

 

⨯ 
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Kim and Cho 

(2019) 

Residential 

Load 

Time, and load data 

 

 

 

⨯ 

Sajjad, et al. 

(2020) 

Residential 

load 

Time, Temperature, 

humidity, pressure, 

power etc.. 

 

⨯ 

Skomski, et al. 

(2020) 

Office Time, Temperature, 

and power. 
⨯ 

Taleb, et al. 

(2022) 

Power Grid Time, 

temperature, load 

data 

 

 

Xu and 

Baldick (2019) 

Building 

cooling load 

Time, weather 

temperature, and 

load data. 

 

⨯ 

Zulfiqar, et al. 

(2022) 

Power Grid Time, 

temperature, load 

data 

 

 

 

 
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Table 2.2: Comparison of traditional machine learning and deep 

learning 

Approach Characteristics Forecasting 

Applications 

Core 

Advantages 

Primary 

Limitations 

Traditional 

Machine 

Learning  

- Models based 

on statistical 

methods and 

algorithmic 

approaches 

 

 

- Typically used 

for short to 

medium-term 

forecasting 

- Load 

forecasting 

- Energy price 

prediction 

- Simple and 

interpretable 

- Requires less 

computational 

power 

- Effective with 

well-structured 

data 

- Often requires 

significant 

manual feature 

engineering 

- Limited in 

capturing large 

and complex 

datasets 

Deep Learning  - ML subset 

with layered 

neural 

architecture 

 

- Processes 

large datasets 

efficiently 

- All 

forecasting 

timeframes 

(short to long-

term) 

- Load demand 

forecasting 

-Renewable 

energy 

forecasting 

- Good in 

selecting 

features and 

data 

classification 

-Robust 

computational 

capabilities 

- Wide 

applicability for 

forecasting 

needs 

- Lengthy 

model training 

durations 

- Higher 

complexity in 

model 

development 

- Limited 

performance 

with 

insufficient in 

feature variety 

& dataset size. 
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Table 2.3: Comparison of deep learning algorithms 

Key 

Consideration 

RNN LSTM GRU CNN Autoencoder 

Sequential 

Data Handling 

Suitable for 

sequence 

processing. 

Excellently 

mitigates 

gradient 

issues for 

time-series 

data. 

Gate 

mechanism 

effectively 

processing 

time-series 

data. 

Designed for 

multi-

dimensional 

spatial data, 

not primarily 

for sequences. 

Typically used 

for spatial data 

arrays, not 

sequences. 

Model 

Complexity 

Less complex 

with a 

straightforward 

architecture. 

Contains 

three gate 

structures, 

leading to 

higher 

complexity. 

Simplify 

the 

architecture 

by 

combining 

input and 

forget 

gates. 

Architecture 

varies greatly; 

may require 

strategies 

against 

overfitting. 

Encoder-

decoder 

framework 

can vary in 

complexity 

according to 

the number of 

latent features. 

Computational 

Efficiency 

Efficiency 

depends on the 

specific use 

case and model 

design. 

Usually 

requires more 

computational 

power due to 

complexity. 

More 

efficient 

than 

LSTM, 

especially 

for less 

complex 

cases. 

Intensive 

computation, 

especially for 

large datasets 

with 

dimensionality 

reduction. 

Can process 

large datasets 

efficiently 

with 

dimensionality 

reduction. 

Training 

Duration 

Training time 

varies; less 

complex 

models may 

train faster. 

Can have 

longer 

training times 

due to 

sophisticated 

gradient 

handling. 

Trains 

faster than 

LSTM due 

to simpler 

structure. 

Training 

duration 

depends on 

layer quantity; 

can be 

extensive. 

Weight 

sharing 

reduces 

parameter 

count, which 

may help in 

training 

efficiency. 
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CHAPTER 3 

 

3 STATIC MODEL DEVELOPMENT & EVALUATION 

 

3.1 Introduction 

Firstly, one should mention that the research methodology defines the primary 

path of a project. In the context of machine learning, research methodology is 

generally integrated into the concept of the Data Science pipeline, which is 

designed to provide a systematic approach to solving data science problems. 

The pipeline includes several components, such as data collection, data 

wrangling, exploratory data analysis, normalization, integration, modeling, 

validation, and data presentation. Therefore, this project will focus on the 

essential steps to ensure that the machine learning model is built to be robust. 

 

 

Figure 3.1: Iterative Development in Software Development 

 

The second aspect that will provide significant support for the modeling process 

is Iterative development from the approach of the software development life 

cycle framework as shown in Figure 3.1. This approach focuses on the 

importance of repeated evaluation and risk management, which is suitable for 

the cyclical nature of evaluating data science projects. By using this approach, 

will be able to manage risks effectively and refine the model multiple times.  
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3.2 Flowchart and Work Plan  

The purpose of this stage in the methodology is to develop and evaluate static 

load forecasting models to determine the most suitable approach for predicting 

power consumption in environments similar to the current research scenario. A 

static model refers to one that does not adapt or update itself with new data once 

it has been trained, making it ideal for applications where the underlying data 

patterns are relatively stable over time. In this phase, various machine learning 

models, including CatBoost, LSTM, GRU, and CNN-LSTM, are rigorously 

tested and fine-tuned. The goal is to identify the model that delivers the most 

accurate and reliable results based on historical data, which will serve as the 

foundation for further development in the adaptive model phase. 

This phase lays the groundwork for forecasting models by optimizing 

the model structure, hyperparameters, and other factors such as optimizers and 

activation functions, ensuring that the selected model performs well under static 

conditions before progressing to adaptive methods. 

Figure 3.2 shows the flow chart for the research methodology used in 

developing various machine learning models. Revised research flow chart 

encompassing the entire project aimed at enhancing the original model to better 

address the problem at hand. 
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Figure 3.2: Flowchart of Static Model Development 
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3.3 Data Collection and Analysis  

One of the crucial stages of every model development is data collection and 

analysis. It refers to collection of the data considered relevant for the real world 

scenario and reviewing it in terms of relevant patterns and trends. In case of 

machine learning, the quality of data is essential for the ultimate quality of the 

created model since the dataset ensures that the model will be representative for 

the real world. Moreover, the detailed analysis of the dataset can result in 

refining the forecasting algorithms and ensuring greater reliability of the results. 

In this respect, the elements of the dataset collected, and the analysis conducted 

will be highlighted in the present section. 

 

3.3.1 Dataset 

Dataset is critical for the development of an accurate electrical load forecasting 

model since the data will be fed into model and train. In this project, the dataset 

is collected from a two-story research office in every 30-minute interval, with 

total 8 variable: time, 3 phases voltage, 3 phase current, and power factor as 

shown in Table 3.1 which are the sample from the dataset. The time variable 

delineates temporal intervals at which values needed to compute the power 

consumption are recorded, while the power variable denotes the corresponding 

electrical load values observed during these intervals. 

 

Table 3.1: Sample of Dataset Used in this Project. 

Date/Time 

Voltage 

Ph-A 

Avg 

Voltage 

Ph-B 

Avg 

Voltage 

Ph-C 

Avg 

Current 

Ph-A 

Avg 

Current 

Ph-B 

Avg 

Current 

Ph-C 

Avg 

Power 

Factor  

21/12/2021 

1:00 246.55 248.22 246.33 6.98 3.96 6.86 0.97 

21/12/2021 

1:30 247.03 248.51 246.69 6.86 4.32 5.62 0.98 

21/12/2021 

2:00 247.63 249.13 247.19 7.17 3.96 6.95 0.97 
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Table 3.2: Dataset Characteristics. 

Dataset Characteristics Details 

Instances 35,517 

Time Span Dec 21, 2021 to Dec 31, 2023 

Collect Interval 30 minutes 

Missing Values 0 

 

Features 

 

Time, Phase Voltage (A, B, C), 

Phase Current (A, B, C), Power 

Factor 

 

By using the 3 phases current, 3 phases voltage, and power factor, the 

total power consumption and be compute as following: 

 

                           𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 = [
(𝑉𝑃ℎ𝐴 × 𝐼𝑃ℎ𝐴) + (𝑉𝑃ℎ𝐵 × 𝐼𝑃ℎ𝐵)

+(𝑉𝑃ℎ𝑐 × 𝐼𝑃ℎ𝐶)
] × 𝑃𝐹            (3.1) 

 

where 

𝑉𝑃ℎ𝐴 = Phase A voltage, 

𝑉𝑃ℎ𝐵 = Phase B voltage, 

𝑉𝑃ℎ𝑐 = Phase C voltage, 

𝐼𝑃ℎ𝐴 = Phase A current, 

𝐼𝑃ℎ𝐵 = Phase B current, 

𝐼𝑃ℎ𝐶 = Phase C current, 

𝑃𝐹  = Power Factor 

 

The dataset does not contain any other features like meteorological data 

or economic data due to limitation of data collection, its significance lies in 

providing insights into the temporal load profiles specific to the research office. 

By focusing solely on time and power variables, the forecasting model can 

discern inherent patterns and fluctuations in electricity consumption within this 

environment.  
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3.3.2 Statistical analysis 

Table 3.3 shows the Augmented Dickey-Fuller test results, with a test statistic 

of -17.2183, which is significantly lower than the critical values at the 1%, 5%, 

and 10% significance levels. A highly negative test statistic, such as this one, 

strongly suggests that the time series is stationary, meaning that its statistical 

properties, like the mean and variance, do not change over time. The associated 

p-value is extremely small, close to zero, further confirming that the null 

hypothesis of non-stationarity can be rejected with high confidence. 

 

Table 3.3: Augmented Dickey-Fuller Test 

Test Statistic -17.2183 

P-value 6.3 × 10−30 

Lags Used 48.00 

Number of Observations Used 3.55 × 104 

Critical Value (1%) -3.43 

Critical Value (5%) -2.86 

Critical Value (10%) -2.56 

 

Table 3.4 shows the statistical analysis of the electricity load data 

reveals an average daily usage of approximately 7,057 watts, with a standard 

deviation suggesting considerable variability, around 4,040 watts. The 

minimum recorded load is approximately 2,990 watts, suggesting there are 

periods of low activity. Conversely, the maximum load observed is about 30,163 

watts, this abnormal rise of power may be due to some unusual work that require 

high demand or data collection error. 

The median, or 50th percentile, is approximately 5,276 watts, which 

provides a more robust sense of a typical day’s load compared to the mean due 

to its resistance to the influence of outliers. Observations lying between the 25th 

percentile, around 4,442 watts, and the 75th percentile, around 8,038 watts, form 

the interquartile range, which encompasses the middle 50% of the data and 

provides a clearer picture of the central distribution of the loads. 
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Table 3.4: Statistical Analysis Data 

count 35566.00 

mean 7808.18 

std 5619.82 

min 2990.87 

25% 4509.02 

50% 5425.66 

75% 8541.45 

max 36635.33 

 

3.3.3 Box plots analysis 

Preliminary box plots analysis for the dataset of December 2021 to July 2023 is 

demonstrated in this report. Figure 3.3 shows the electric load pattern of the 

research office, it is observed that the electrical power consumption started to 

rise around 8 am and remain at around peak from 10 am to 3 pm, then started to 

decrease until around minimum on 6 pm. The power consumption of the office 

was remained minimum from 6 pm unitl to 7 am. This pattern can be explained 

by the working office hours which is from 8 am to 6pm, it is notable that after 

office hour, the power cunsumption if not zero, indicating that minimum still 

required to maintain some of the equipment such as data center in the research 

office. 

 

Figure 3.3: Box plot of hourly electric load 
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The electrical load pattern is more or less the same thoughout the year 

and months as shown in Figure 3.4 and Figure 3.5, indicating the activities in 

the research office dones not having much different. Meanwhile, the average 

load of weekend is found to be much lesser when compared to weekday which 

can be observed in Figure 3.6, indicating the research office working staff are 

resting during weekend. 

 

Figure 3.4: Box plot of yearly electric load 

 

 

Figure 3.5: Box plot of monthly electric load 
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Figure 3.6: Box plot of daily electric load 

 

3.3.4 Autocorrelation Analysis 

The Autocorrelation Function (ACF) plot for electrical load displays several 

spikes that are well above the significance level (outside the shaded area), 

particularly at the initial lags. This indicates a strong correlation between 

consecutive observations. The fact that these correlations remain significant 

over several lags suggests a persistence of influence from past values, which 

could imply that the power usage has a memory effect where past usage levels 

influence future usage to some extent. 

A noticeable pattern in the ACF plot is the gradual decrease in 

correlation as the lag increases, which is typical for time series data exhibiting 

a mix of trend and autocorrelation. However, the presence of significant 

autocorrelations at higher lags might also hint at a seasonal pattern, as the 

influence of past values appears to re-emerge at regular intervals. 

The ACF shows numerous spikes far above the significance level , 

especially at the initial lags implying that successive observations are highly 

dependent. The high and significant negative correlation over several lags may 

reflect a longstanding impact emanating from the past values. Such behavior is 

reminiscent of memory, where the current power value is highly influenced by 

the recent past value and, to some extent, the one before. Another observed 
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pattern of the ACF is the decline in correlation as the lag increases, as is 

common in time series with a trend and more autocorrelation. However, the 

presence of significant autocorrelations at higher lags might also hint at a 

seasonal pattern, as the influence of past values appears to re-emerge at regular 

intervals. 

The Partial Autocorrelation Function (PACF) plot reveals a sharp cut-

off after the first few lags, with the first lag showing a significant spike. This 

behavior is indicative of an autoregressive (AR) process, where the immediate 

past value(s) have a strong influence on the current value. The sharp decline in 

partial autocorrelation after the first lag suggests that the most recent past value 

is a good predictor of the current value, while the influence of values further in 

the past becomes negligible once you account for the immediate past. This could 

inform the selection of an AR model with a low order for modeling the time 

series. 

 

Figure 3.7: Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) Plot 
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3.4 Machine Learning Algorithm 

Machine learning is the concept that tries to minimize human input and create a 

mainly autonomous process, when the system can operate on its own to solve a 

problem. With the help of statistical methods, researchers have managed to 

perfect machine learning algorithms and help them “implement” and support 

the autonomous learning. In this section, a number of algorithms used in this 

project will be examined. 

 

3.4.1 Categorical Boosting (CatBoost ) 

CatBoost (Categorical Boosting) is an advanced gradient boosting algorithm 

that excels at handling categorical data without the need for extensive 

preprocessing like one-hot encoding. It's designed to work efficiently with 

datasets that have a mix of numerical and categorical features, making it 

particularly useful in a wide range of real-world applications. CatBoost is based 

on the principle of gradient boosting, where an ensemble of weak learners, 

typically decision trees, is built sequentially. Each new tree aims to correct the 

errors made by the previous ones, thereby improving the model's overall 

accuracy. 

CatBoost introduces several key innovations, including an efficient 

way to deal with categorical features and a technique called Ordered Boosting, 

which helps prevent overfitting and enhances the model's generalization 

capabilities. The CatBoost model can be mathematically described as follows: 

 

                                          ŷ = 𝐹𝑚(𝑥) = ∑ 𝑣 ∙ ℎ𝑚(𝑥)𝑀
𝑚=1                       (3.2)

                                                       

 

Where: 

ŷ = Predicted output, 

𝐹𝑚(𝑥) = Final model after 𝑚 iterations, 

𝑀 =  Total number of iterations (or trees), 

𝑣 = Learning rate (controls the contribution of each tree), 

ℎ𝑚(𝑥) = The 𝑚𝑡ℎ weak learner (tree) trained on the residuals of the previous 

trees. 
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3.4.2 Long Short-Term Memory (LSTM) 

LSTMs regulate the flow of information using a sequence of gates known as 

input, output, and forget gates. These gates decide what information is important 

to keep over time, what to reject, and what to pass through as output. The general 

equations governing the LSTM unit operations are: 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)                               (3.3) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)                                (3.4) 

𝑜𝑡 = 𝜎𝑜(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)                               (3.5) 

𝐶′
𝑡 = tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)                            (3.6) 

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶′
𝑡                                        (3.7) 

ℎ𝑡 = 𝑜𝑡 tanh 𝐶𝑡                                            (3.8) 

  

Where: 

𝑓𝑡 = Forget gate at time t, 

𝑖𝑡 =  Input gate at time t, 

𝑥𝑡 = Input at timestep t, 

ℎ𝑡 = Output state of the LSTM at timestep t, 

𝐶𝑡 = Cell state at timestep t, representing the memory of the network, 

𝑊 = Weights corresponding to each gate, 

 𝑏 =  Biases corresponding to each gate, 

 𝜎 =  Sigmoid activation function, 

𝜎𝑜 = SoftMax activation function (multiple classes), 

Tanh = Hyperbolic tangent function, 

𝑈 = The time insensitive hidden state matrix. 

 

The equations describe the structure of a simple LSTM model, 

including the order of operation from equations (3.3) to (3.8) that represents the 

movement of training data through the model. The LSTM has two major 

components: the cell state and the hidden state. It begins by computing the three 

important gates: forget, input, and output. The model then updates the cell state 

by combining the effects of the current input with the output of the forget gate 

and the previous cell state. The new hidden state is created by combining the 

output of the current output gate with the new cell state. Overall, controlling the 
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cell and hidden states at each timestep t, when combined with gate functions, 

allows the generation of outputs or updates for the next training phase (Michael 

et al., 2022). 

 

 

3.4.3 Gated Recurrent Unit (GRU) 

Building on the basic RNN framework, researchers developed the Gated 

Recurrent Unit (GRU) model to address some of RNN's drawbacks, specifically 

the vanishing gradient problem, which getting more significant as sequence 

length rises (Jain et al., 2021). GRU simplifies the LSTM architecture while 

retaining its ability to understand dependencies in sequence data. The GRU 

model combines gate functions directly into its architecture, which accelerates 

the flow of information. The main equations regulating GRU functionality are: 

 

 𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (3.9) 

 𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (3.10) 

 ℎ′
𝑡 = tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ∙ ℎ𝑡−1) + 𝑏ℎ) (3.11) 

 ℎ𝑡(𝐺𝑅𝑈) = 𝑧𝑡 ∙ ℎ𝑡−1 + (1 − 𝑟𝑡) ∙ ℎ′
𝑡 (3.12) 

 

where 

𝑧𝑡 = Update gate at time t, 

𝑟𝑡 = Reset gate at time t, 

ℎ′
𝑡 = Candidate hidden state at time t, 

ℎ𝑡(𝐺𝑅𝑈) = final hidden state at time t, 

𝜎 = sigmoid activation function, used to regulate the gates, 

tanh = hyperbolic tangent function, used for creating the new state vector, 

𝑊 = Weights for different gates and state updates, 

𝑈 = Recurrent Weights for different gates and state updates, 

𝑏 = Biases for different gates and state updates. 

𝑏 = Biases for different gates and state updates. 

 

These equations (3.9 to 3.12) are structured to show the sequential 

process of training data of the GRU model. The model efficiently computes the 
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reset and update gates to determine how much previous information should be 

passed on. The candidate hidden state is then calculated using these gates, 

followed by the new hidden state. This simplified method gives a fast learning 

and updating, making GRU particularly useful for tasks that require long 

dependencies and also being efficient in computation compared to LSTM. 

 

3.4.4 Hybrid Model 

In this project, hybrid machine learning models are used to because of the 

combined advantages of multiple algorithms, with the goal of improving typical 

single-model performance. The combination of CNN-LSTM models is chosen, 

as it uses Convolutional Neural Networks (CNNs) for effective spatial feature 

extraction and Long Short-Term Memory (LSTM) networks to capture long 

term temporal relationships. This combination can handle data with both spatial 

and sequential features which improve in extensive feature analysis and 

dynamic pattern recognition.  
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3.5 Evaluation Metrics 

To assess the effectiveness of any model relative to alternatives, conducting a 

comparative performance analysis using recognized error or evaluation metrics 

is essential. In this study, the performance of the load forecasting model that 

based on different algorithms (CatBoost, LSTM, GRU, CNN-LSTM) are 

compared using evaluation metrics involving Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error 

(MAPE). Each of these metrics is valued for its capacity to appropriately assess 

predictive model precision. MAE represent the average of the absolute errors 

between predicted and actual load values, RMSE measures average error 

magnitude, and MAPE expresses mean absolute error as a percentage. 

 

3.5.1 Mean Absolute Error (MAE) 

 

Mean Absolute Error represents the average of the absolute differences between 

the predicted and actual values without considering the direction. It is calculated 

as: 

 

                                                MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦′

𝑖
|𝑛

𝑖=1                               (3.13) 

 

where: 

𝑛 = Total number of observations in the dataset  

𝑦𝑖 = The actual observed value for the 𝑖𝑡ℎ observation  

𝑦′
𝑖

= The predicted value for the 𝑖𝑡ℎ observation. 

 

This metric provides an estimation of the error in the same unit as the 

measured variable, and since it is an average, it offers a singular measure of 

error across all predictions. Lower MAE values indicate a model with better 

predictive accuracy, and since it's an absolute measure, it’s not sensitive to the 

direction of errors, making it particularly valuable for many practical 

applications.  
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3.5.2 Root Mean Squared Error (RMSE) 

Root Mean Squared Error (RMSE), a closely related metric, takes a slightly 

different approach by squaring the errors before averaging, thus giving higher 

weight to larger errors. The RMSE is calculated as: 

                                                

                                                   𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦′

𝑖
)

2𝑛
𝑖=1                         (3.14) 

 

where: 

𝑛 = Total number of observations in the dataset  

𝑦𝑖 = The actual observed value for the 𝑖𝑡ℎ observation  

𝑦′
𝑖

= The predicted value for the 𝑖𝑡ℎ observation. 

 

This squaring aspect makes RMSE more sensitive to outliers compared 

to MAE. A lower RMSE value is typically better, indicating that the model’s 

predictions are closer to the actual values. Since RMSE measures the standard 

deviation of errors, it can give more insight into the variance of the prediction 

errors. Non-negative values with 0 being ideal, and lower values suggest a 

tighter fit of the model to the observed data. 

 

 

 

 

 

3.5.3 Mean Absolute Percentage Error (MAPE) 

Mean Absolute Percentage Error (MAPE) translates the error as a percentage of 

the actual values, allowing for a more intuitive grasp of the model's accuracy. It 

is calculated with the formula: 

 

                                            𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖−𝑦′
𝑖

𝑦𝑖
|𝑛

𝑖=1                               (3.15) 

where 

𝑛 = Total number of observations in the dataset  

𝑦𝑖 = The actual observed value for the 𝑖𝑡ℎ observation  
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𝑦′
𝑖

= The predicted value for the 𝑖𝑡ℎ observation. 

 

The metric is always non-negative, with lower values indicating better 

predictive accuracy, and is presented as a percentage, offering a straightforward 

indication of model performance. These symbols and the associated calculations 

together form the basis for evaluating and comparing the performance of 

predictive models, providing insight into aspects such as the variance explained, 

average error magnitude, the impact of larger errors, and the relative error size. 
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3.6 Feature Selection 

In time series forecasting model, the temporal features such as year, month and 

day may affect the performance of the model which are important and needed 

to be investigate. Temporal features that are extracted from the dataset are 

quarter of the year, month of the year, day of the month, hour, type of day 

(weekend or weekday), rolling mean, and rolling standard deviation. Also, some 

time lags features (Lag 1, 12, 24, 48) are created as a sample to check whether 

the time lags are the features that is worth to investigate for enhancing the model 

performance. In the context of time series analysis and forecasting, time lags are 

defined as a delay or change in observed data over time periods. It is a concept 

used to find the relationship between a variable's past and future values. The 

time lags feature are created using sliding window technique, which the details 

of the technique will be discuss during next section. 

In this project, the techniques applied to check the relationship between various 

parameters and load demand are correlation matrix. Figure 3.8 displays a 

correlation matrix between load and the potential attributes listed previously.  

Each of the values (Correlation coefficients) in Figure 3.8 and Table 

3.5, were used to classify the strength of the relationship between load demand 

and the various features. Features were categorized into different correlation 

ranges: weak (below 0.4), moderate (0.4 to 0.7), and strong (above 0.7). This 

analysis was followed by training a Long Short-Term Memory (LSTM) model, 

where each subset of features, grouped by correlation strength, was used to 

evaluate model performance in terms of validation Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error 

(MAPE). 
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Figure 3.8: Correlation matrix of potential feature 
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Table 3.5: Feature Categorization by Correlation Strength 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6.1 LSTM  

As shown in Table 3.6 below, the use of features with a higher correlation 

generally resulted in better model performance, as indicated by lower RMSE, 

MAE, and MAPE values. The "All Features" scenario, which incorporated the 

full set of features, yielded the best performance across all metrics. However, 

the use of only the last 48-time steps produced competitive results, suggesting 

that shorter time horizons might still be effective in certain contexts. 

The findings from this feature selection process demonstrate the 

importance of including relevant temporal and lag features to improve the 

predictive power of the model. The next section will further discuss the 

methodology employed to create lag features and assess the impact on model 

accuracy. 

Correlation Strength Feature 

Weak 

Power Factor Total 

hour 

dayofweek 

quarter 

month 

year 

dayofyear 

dayofmonth 

weekofyear 

Total Power Lag 10 - Lag 41 

Total Power Rolling Mean 96 

Total Power Rolling Std 96 

Moderate  

Voltage Ph-A Avg 

Voltage Ph-B Avg 

Voltage Ph-C Avg 

Total Power Lag 6 -9 

Total Power Lag 42 - 48 

Total Power Rolling Mean 48 

Total Power Rolling Std 48 

Strong 

Current Ph-A Avg 

Current Ph-B Avg 

Current Ph-C Avg 

Total Power Lag 1 - 5 
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Table 3.6: Feature Experiment of LSTM model  

Algorithm Feature Correlation Val RMSE Val MAE Val MAPE 

LSTM 

Weak (Below 0.4) 0.0747 0.0447 0.3283 
Below 0.5 0.0570 0.0320 0.2227 
Below 0.6 0.0544 0.0318 0.2254 
Moderate (0.4 to 0.7) 0.0547 0.0284 0.1983 
Above 0.6 0.0470 0.0208 0.1291 
Strong (Above 0.7) 0.0495 0.0242 0.1707 
All 0.0437 0.0212 0.1472 
Only last 48-time 
steps 0.0488 0.0240 0.1681 

 

3.6.2 GRU 

For the GRU model, Table 3.7 clearly shows the trend of performance 

improvement as feature correlation increases. Initially, when weakly correlated 

features are used, the model's RMSE (0.0712) and MAPE (0.3127) are relatively 

high, indicating that the GRU struggles to make accurate predictions when 

presented with less relevant information. As the strength of the correlations 

improves, the model benefits from more informative inputs, reducing the RMSE 

to 0.0461 and MAPE to 0.1454 when using all features. 

The gradual decline in errors with stronger correlations can be 

attributed to the GRU’s ability to capture long-term dependencies more 

effectively when it has access to more meaningful, high-correlation features. 

This improvement highlights the importance of using strongly predictive 

temporal and lag features, which help the model retain essential historical 

patterns over time. 

Interestingly, when only the last 48-time steps are used, the model’s 

performance is still competitive (RMSE = 0.0473), but slightly worse than when 

all features are available. This indicates that although GRU can handle shorter-

term data reasonably well, it benefits from a broader range of time steps and 

contextual features to fully capture the complexity of the load demand patterns. 
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Table 3.7: Feature Experiment of GRU model  

Algorithm Feature Correlation Val RMSE Val MAE Val MAPE 

GRU 

Weak (Below 0.4) 0.0712 0.0426 0.3126 
Below 0.5 0.0555 0.0331 0.2422 
Below 0.6 0.0554 0.0304 0.2110 
Moderate (0.4 to 
0.7) 0.0521 0.0271 0.1889 
Above 0.6 0.0498 0.0227 0.1386 
Strong (Above 0.7) 0.0472 0.0231 0.1626 
All 0.0461 0.0228 0.1454 
Only last 48-time 
steps 0.0473 0.0236 0.1731 

 

3.6.3 CatBoost 

In the CatBoost feature experiment, the model's performance improves 

significantly as feature correlation with the target variable increases. When 

using highly correlated features (above 0.6 and 0.7), the model shows strong 

performance, with low RMSE (0.0039) and MAPE (0.0171), demonstrating its 

ability to effectively capture trends when features have a clear relationship with 

the target. However, the best overall performance is achieved when all features 

are used, yielding the lowest RMSE (0.0024) and MAPE (0.0134). This 

indicates that CatBoost benefits from having access to a diverse set of features, 

even those that are only weakly correlated, as it still contribute valuable 

information for prediction. 

When only weakly correlated features (below 0.4) are used, the model 

struggles, with RMSE rising to 0.0772 and MAPE to 0.4581, showing that 

CatBoost needs sufficient correlation in features to make accurate predictions. 

Additionally, when restricted to only the last 48-time steps, the model’s 

performance declines further (RMSE = 0.0687, MAPE = 0.4154), highlighting 

that CatBoost performs best when provided with a wide temporal scope and a 

comprehensive set of features. 

Overall, the results in Table 3.8 underscore CatBoost's reliance on a 

well-engineered feature set, as it cannot automatically extract patterns from raw 

data like deep learning models can. 

  



39 

 

 

 

Table 3.8: Feature Experiment of CatBoost model  

Algorithm Feature Correlation Val RMSE Val MAE Val MAPE 

CatBoost 

Weak (Below 0.4) 0.0771 0.0435 0.4580 
Below 0.5 0.0389 0.0233 0.2611 
Below 0.6 0.0370 0.0224 0.2514 
Moderate (0.4 to 0.7) 0.0619 0.0355 0.4051 
Above 0.6 0.0038 0.0019 0.0170 
Strong (Above 0.7) 0.0041 0.0021 0.0193 
All Features 0.0023 0.0013 0.0134 
Only Last 48-Time 
Steps 0.0687 0.0368 0.4154 

 

3.6.4 CNN-LSTM 

For the CNN-LSTM model, Table 3.9 the performance improves progressively 

as feature correlation strengthens. When weakly correlated features (below 0.4) 

are used, the RMSE is relatively high (0.0652), indicating that the model 

struggles to capture meaningful patterns from such features. As the correlation 

increases, the error metrics improve, with RMSE dropping to 0.0464 and MAPE 

to 0.1389 for features with correlations above 0.6. 

The best performance is achieved when all features are used, with the 

lowest RMSE (0.0442) and MAPE (0.1290). This result suggests that the CNN-

LSTM model benefits from a wide range of features, including both weakly and 

strongly correlated ones, as the combination of CNN and LSTM layers allows 

it to learn spatial patterns (through CNN) and temporal dependencies (through 

LSTM). 

However, when the model is restricted to using only the last 48-time 

steps, performance significantly declines (RMSE = 0.0801, MAPE = 0.2943), 

indicating that the model requires more information to capture longer-term 

trends effectively. 
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Table 3.9: Feature Experiment of CNN-LSTM model  

Algorithm Feature Correlation Val RMSE Val MAE Val MAPE 

CNN-LSTM 

Weak (Below 0.4) 0.0651 0.0358 0.2677 
Below 0.5 0.0502 0.0276 0.2060 
Below 0.6 0.0502 0.0287 0.2055 
Moderate (0.4 to 
0.7) 0.0552 0.0316 0.2260 
Above 0.6 0.0464 0.0213 0.1389 
Strong (Above 0.7) 0.0513 0.0297 0.2174 
All 0.0442 0.0199 0.1290 
Only last 48-time 
steps 0.0801 0.0429 0.2943 

 

 

3.7 Data Preprocessing 

Data preparation represents the essential part of preprocessing in the load 

forecasting workflow, and it serves as a basis for any further analysis and 

modelling. The preprocessing is carried out through the explicit stages of data 

cleaning and prior conversion of raw data, feature engineering, data 

normalization, and dimensionality reduction. Notably, the special attention is 

given to the step of splitting the data into training and testing sets, as well as 

ensuring the chronological correctness of time series data, which is crucial for 

developing forecasting techniques. Overall, the process of data preprocessing is 

aimed at systematically refining the data to improve the model’s ability to 

recognize and analyses the data more effectively and understand the temporal 

patterns associated with load forecasting. 

 

3.7.1 Sliding Window  

The approach for transforming time series data into a format suitable for 

multiple-step forecasting is discussed in this section, and Figure 3.9 shows a 

graphic illustration. 𝑋𝑡 represents the dataset at time "t". The conversion method 

entails restructuring the time series into lagged features, which relocate old data 

points as input variables to forecast future values. This reshaping is carried out 

via a sliding window methodology, in which a window of a predetermined size 

is slid over the time series, yielding sequences of input-output pairings. The 
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window size was carefully designed to capture the dataset's essential temporal 

connections and trends. 

 

Figure 3.9: Illustration of sliding window technique. 

 

The load predictions is focus on only time variable, which are trained 

on historical data from time step 𝑡 −𝑏 to 𝑡, "t" denotes the current moment, 

whereas "b" defines the number of preceding time steps, which serve as the 

model's look-back period. 

The sliding window technique is critical in this situation because it 

ensures that the model receives up-to-date data by moving the window 

incrementally, one time step at a time. This development enables for the 

continuous incorporation of recent data, which is critical for capturing the 

changing trends in the time series for accurate future forecasts. 

 

3.7.2 Min-Max Technique 

The Min-Max normalization technique is based on the concept of feature scaling, 

which involves rescaling data attributes or features so that the values fall inside 

a specified and predefined interval, most often [0,1]. This normalization method 

is apply to scales the electrical load data without distorting or losing information. 

It is done by subtracting the minimum value from each characteristic and then 

dividing by its range. The mathematical expression as following: 
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 𝑥′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (3.16) 

 

where 

𝑋 = The original value, 

𝑋𝑚𝑖𝑛 = The minimum values of the feature, 

𝑋𝑚𝑎𝑥 = maximum values of the feature, 

𝑥′ = Normalized value. 

 

Min-Max method normalize the data such that it has the same scale, 

which can be benefit for algorithms that are sensitive to data scale. LSTMs and 

GRUs and many deep learning algorithms work better when features are on a 

comparable scale. One of the significant advantages of performing this 

normalization is with respect to the performance of machine learning algorithms 

especially in terms of convergence speed. Moreover, simple algorithms like k-

NN also reap the benefit in the sense that each feature contributes equally to the 

distance measurements. 

 

3.8 Hyperparameter Tuning 

The efficiency of machine learning models is depending on the selection of 

hyperparameters, select correct parameter can improve the model learning 

process which can achieve better performance. Due to the complexity of 

machine learning model structures, determining the best hyperparameter 

combination is important for achieving optimal performance. 

 

3.8.1 Grid Search Method 

In this research, the numbers of neurons in the hidden layer, activation function, 

batch size, optimizer function, window size are the hyperparameters going to 

focus and optimize in this research as shown in Table 3.4. Using grid search to 

explore every potential hyperparameter combination can be time consuming and 

is not practical for large hyperparameter combination. A more practical 

technique is to focus on a specific group of hyperparameters and adjust them 

periodically depending on feedback from each iteration. This incremental 
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method can get the optimal or near optimal hyperparameters for the load 

forecasting model in more efficient ways.  

 

3.8.2 LSTM Tunning 

3.8.2.1 Phase 1: Initial Investigation 

In the first phase, 50 LSTM units, dropout rates of 0.01 and 0.1, and learning 

rates of 0.1, 0.01, and 0.001 across 1, 2, and 3 layers investigated and shown in 

Table 3.10. The results showed that a dropout rate of 0.01 consistently 

outperformed 0.1, especially with more complex configurations, reducing 

overfitting. The learning rate of 0.001 was optimal, allowing stable convergence, 

while higher rates caused higher errors. Increasing the number of layers to 2 

improved performance, but 3 layers led to overfitting without careful tuning of 

dropout and learning rates.Increasing the number of LSTM layers to 2 and 3 

provided mixed results. Although adding a second layer improved performance 

in some cases, using 3 layers generally led to overfitting unless combined with 

lower dropout rates and learning rates. Overall, the key finding in this phase is 

dropout rate of 0.01 and learning rate of 0.001 yielding a better result in different 

combinations. 
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Table 3.10: Hyperparameter Tunning of LSTM model (Phase 1) 

Phase 1 

Units Dropout 

Rate 

Layers Learning 

Rate 

Val 

RMSE 

Val 

MAE 

Val 

MAPE 

Total 

Normalized 

Score 

50 0.01 1 0.1 0.0685 0.0301 0.1795 0.1769 

0.01 0.0503 0.0235 0.1565 0.0568 

0.001 0.0506 0.0232 0.1507 0.0535 

2 0.1 0.2777 0.2302 1.9620 2.9690 

0.01 0.0483 0.0234 0.1590 0.0134 

0.001 0.0477 0.0219 0.1533 0.0366 

3 0.1 0.2808 0.2122 1.5679 2.6834 

0.01 0.0485 0.0226 0.1565 0.0404 

0.001 0.0480 0.0221 0.1288 0.0000 

0.1 1 0.1 0.0663 0.0421 0.3222 0.3019 

0.01 0.0530 0.0312 0.1350 0.0347 

0.001 0.0519 0.0229 0.1484 0.0563 

2 0.1 0.0687 0.0410 0.3575 0.3258 

0.01 0.0535 0.0335 0.1387 0.0552 

0.001 0.0495 0.0218 0.1483 0.0409 

3 0.1 0.2851 0.2022 1.3397 2.5306 

0.01 0.0509 0.0326 0.1443 0.0484 

0.001 0.0488 0.0233 0.1312 0.0421 

 

3.8.2.2 Phase 2: Refinement and Further Adjustments 

Building on the insights from Phase 1, the second phase involved refining the 

model by increasing the number of LSTM units to 64 and 128 and further 

experimenting with the number of layers as shown in Tble 3.10. Building on 

Phase 1, the number of LSTM units was increased to 64 and 128 (Table 3.11). 

The best results were obtained with 64 units, 3 layers, 0.01 dropout rate, and a 

learning rate of 0.001, achieving a validation RMSE of 0.0465. Further 

increasing the number of units to 128 or layers to 4 did not improve performance 

and, in some cases, worsened it. Overall, the key finding is that 64 units and 3 

layers offered an ideal balance between model complexity and generalization. 

 



45 

 

Table 3.11: Hyperparameter Tunning of LSTM model (Phase 2) 

Phase 2 

Units Dropout 

Rate 

Layers Learning 

Rate 

Val 

RMSE 

Val 

MAE 

Val 

MAPE 

Total 

Normalized 

Score 

64 0.01 3 0.001 0.0465 0.0201 0.1108 0.0000 

4 0.001 0.0472 0.0205 0.1109 0.0049 

0.1 3 0.001 0.0509 0.0216 0.1303 0.0361 

4 0.001 0.0487 0.0241 0.1693 0.0599 

128 0.01 3 0.001 0.0495 0.0236 0.1713 0.0619 

4 0.001 0.0506 0.0233 0.1512 0.0542 

0.1 3 0.001 0.0487 0.0219 0.1389 0.0330 

4 0.001 0.0485 0.0216 0.1360 0.0291 
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3.8.2.3 Optimizer and Activation Function 

The LSTM model was then evaluated with four activation functions, ReLU, 

tanh, sigmoid, and linear, and optimized with various optimizers, including 

SGD, Adam, Adamax, and Regularizer as shown in Table 3.12. Across all 

activation functions, the Adam optimizer consistently outperformed the others. 

For example, when using the ReLU activation function, Adam achieved a 

validation loss of 0.002111, the lowest for this model. In comparison, SGD 

produced much higher losses, with a validation loss of 0.065203 for ReLU. 

Similarly, linear activation combined with Adam resulted in a low validation 

loss of 0.002271, though still higher than ReLU. 

Other activation functions, like tanh and sigmoid, also performed well 

with Adam, but neither surpassed ReLU or linear in performance. For instance, 

tanh with Adam achieved a validation loss of 0.002397, while sigmoid reached 

0.00249. When using SGD or Regularizer, the model showed significantly 

worse performance, indicating that these optimizers were less effective for the 

LSTM model. Overall, Adam with ReLU was the best combination for 

minimizing validation loss in the LSTM model. 

 

Table 3.12: Optimizer Tunning of LSTM model  

Model Activation Function Optimizer Best Validation Loss 

LSTM 

relu 

SGD 0.065203 
Adam 0.002111 

Adamax 0.002229 
Regularizer 0.088231 

tanh 

SGD 0.038712 
Adam 0.002397 

Adamax 0.0026 
Regularizer 0.0676 

sigmoid 

SGD 0.088701 
Adam 0.00249 

Adamax 0.003156 
Regularizer 0.084181 

linear 

SGD 0.036673 
Adam 0.002271 

Adamax 0.00255 
Regularizer 0.010772 
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3.8.2.4 Summary Flowchart 

Figure 3.10 shows the summary process of LSTM hyperparameters tunning 

process. It is found that the best hyperparameters combination for LSTM under 

the case study of the double storey research office are 64 neurons units, 3 

LSTM layers, dropout 0.01, learning rate 0.001, RELU activation function 

with Adam optimizer. 

 

Figure 3.10: Flowchart of LSTM Tunning Process 
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3.8.3 GRU Tunning 

3.8.3.1 Phase 1: Initial Investigation 

Phase 1 involved testing the GRU model with 50 units, dropout rates of 0.01 

and 0.1, learning rates of 0.1, 0.01, and 0.001, and varying the number of layers 

between 1, 2, and 3 (Table 3.13). Results indicated that a dropout rate of 0.01 

consistently outperformed 0.1, particularly in deeper architectures, as the higher 

dropout rate caused over-regularization and hindered the model’s ability to learn. 

For example, with 1 layer and a dropout rate of 0.01, the model achieved an 

RMSE of 0.0503 at a learning rate of 0.001, whereas using a dropout of 0.1 

resulted in significantly worse performance (RMSE = 0.2254 for 3 layers). 

The learning rate of 0.001 was the most stable, as higher rates like 0.1 

led to unstable convergence and overshooting during training. For instance, the 

model achieved an RMSE of 0.0489 with 2 layers and a learning rate of 0.001, 

but higher rates produced larger errors. Increasing the number of layers 

improved performance initially, but adding a third layer often resulted in 

diminishing returns or overfitting, especially with larger dropout rates. Overall, 

the key finding in this phase is dropout rate of 0.01 and learning rate of 0.001 

yielding a better result in different combinations.  
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Table 3.13: Hyperparameters Tunning of GRU model (Phase 1) 

 Phase 1 

Units Dropout 

Rate 

Layers Learning 

Rate 

Val 

RMSE 

Val 

MAE 

Val 

MAPE 

Total 

Normalized 

Score 

50 0.01 1 0.1 0.0594 0.0310 0.2364 0.2217 

0.01 0.0560 0.0297 0.1909 0.1363 

0.001 0.0503 0.0285 0.1450 0.0299 

2 0.1 0.1098 0.0951 1.1493 1.6826 

0.01 0.0697 0.0262 0.2154 0.1236 

0.001 0.0509 0.0219 0.1385 0.0215 

3 0.1 0.2254 0.1535 1.4118 2.9373 

0.01 0.0580 0.0356 0.3175 0.3125 

0.001 0.0499 0.0258 0.1410 0.0000 

0.1 1 0.1 0.0642 0.0355 0.2754 0.3115 

0.01 0.0565 0.0277 0.2237 0.1717 

0.001 0.0511 0.0232 0.1690 0.0670 

2 0.1 0.2101 0.1260 0.4964 1.9352 

0.01 0.0621 0.0299 0.2147 0.2110 

0.001 0.0529 0.0221 0.1569 0.0426 

3 0.1 0.2373 0.1410 0.7684 2.4042 

0.01 0.0601 0.0295 0.1904 0.1788 

0.001 0.0530 0.0278 0.1615 0.0232 

 

 

3.8.3.2 Phase 2: Investigating Deeper Layers 

Building on Phase 1, the second phase involved increasing the number of GRU 

units to 64 and 128, and testing with 3 and 4 layers as shown in Table 3.14. The 

best results were obtained with 64 units, 3 layers, dropout rate of 0.01, and a 

learning rate of 0.001, achieving an RMSE of 0.0480 and MAPE of 0.1310. 

Increasing the number of units to 128 did not lead to significant improvements, 

and in some cases worsened performance (e.g., RMSE = 0.0482). Similarly, 

increasing the number of layers to 4 did not yield meaningful gains and often 

led to overfitting, as seen with an RMSE of 0.0477 for 4 layers and 128 units. 
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The dropout rate of 0.01 continued to outperform 0.1, especially in 

models with more layers, where a higher dropout rate caused increased 

validation errors. For instance, with 4 layers and a dropout rate of 0.1, the RMSE 

was 0.0518, compared to lower RMSE values with a dropout of 0.01. The 

learning rate of 0.001 remained optimal across all configurations, allowing 

smooth convergence without the instability associated with higher learning rates. 

 

Table 3.14: Hyperparameters Tunning of GRU model (Phase 2) 

Phase 2 

64 0.01 3 0.001 0.0480 0.0208 0.1310 0.0027 

4 0.001 0.0489 0.0234 0.1545 0.0454 

0.1 3 0.001 0.0481 0.0219 0.1298 0.0106 

4 0.001 0.0541 0.0254 0.1484 0.0833 

128 0.01 3 0.001 0.0482 0.0225 0.1688 0.0461 

4 0.001 0.0477 0.0217 0.1318 0.0082 

0.1 3 0.001 0.0492 0.0230 0.1603 0.0487 

4 0.001 0.0518 0.0244 0.1481 0.0635 

 

 

3.8.3.3 Optimizer and Activation Function 

The GRU model underwent a similar evaluation using the same set of activation 

functions and optimizers as shown in Table 3.15. Unlike the LSTM model, 

where Adam was the clear winner, the Adamax optimizer produced the best 

performance for the GRU model. When paired with the ReLU activation 

function, Adamax achieved a validation loss of 0.002139, slightly 

outperforming Adam, which recorded a loss of 0.002233. This suggests that 

Adamax is marginally more effective in optimizing the GRU model with ReLU. 

The tanh activation function also performed reasonably well with 

Adamax, achieving a validation loss of 0.002634, although it did not match the 

results of ReLU. On the other hand, the sigmoid activation was the least 

effective for the GRU model, especially when combined with SGD, which 

produced the highest validation loss of 0.089876. Overall, Adamax with ReLU 

emerged as the best combination for minimizing validation loss in the GRU 

model, offering the lowest validation loss among all tested configurations. 
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Table 3.15: Optimizer Tunning of GRU model  

Model Activation Function Optimizer Best Validation Loss 

GRU 

relu 

SGD 0.023053 
Adam 0.002233 

Adamax 0.002139 
Regularizer 0.009657 

tanh 

SGD 0.019836 
Adam 0.002758 

Adamax 0.002634 
Regularizer 0.009821 

sigmoid 

SGD 0.089876 
Adam 0.002603 

Adamax 0.002873 
Regularizer 0.082995 

linear 

SGD 0.01705 
Adam 0.002659 

Adamax 0.002593 
Regularizer 0.072548 
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3.8.3.4 Summary Flowchart 

Figure 3.11 shows the summary process of GRU model hyperparameters 

tunning process. It is found that the best hyperparameters combination for GRU 

under the case study of the double storey research office are 64 neurons units, 

3 GRU layers, dropout 0.01, learning rate 0.001, RELU activation function 

with Adamax optimizer. 

 

Figure 3.11: Flowchart of GRU Tunning Process 
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3.8.4 CatBoost Tunning 

The hyperparameter tuning for the CatBoost model was conducted across three 

phases, each progressively refining the search for the optimal configuration. The 

primary focus was on tuning depth, learning rate, and L2 regularization, 

followed by additional parameters such as Border Count and Random Seed. The 

goal throughout was to minimize the validation metrics, including Val RMSE, 

Val MAE, Val MAPE, and the Total Normalized Score. The overall tunning 

result is shown in Table 3.14, 3.15 and 3.16. 

 

3.8.4.1 Phase 1: Initial Hyperparameter Search 

The first phase focused on finding an effective balance between learning rate 

(0.001, 0.01, and 0.1) and L2 regularization (1, 3, and 5) with a model depth of 

4. Table 3.16 illustrates that a learning rate of 0.001 yielded poor results, with a 

Val RMSE of 0.0672 and a Total Normalized Score of 1.9253 after 1000 

iterations (L2 = 1), indicating that the model was underfitting. Increasing L2 

regularization to 3 or 5 did not substantially improve performance. 

Switching to a learning rate of 0.01 reduced errors, as the Val RMSE 

dropped to 0.0062, and the Total Normalized Score improved to 0.1060 (L2 = 

1). However, the results still left room for further optimization. The best 

performance was achieved with a learning rate of 0.1, which lowered the Val 

RMSE to 0.0024, with a Total Normalized Score of 0.0007 at L2 = 1. Increasing 

L2 beyond 1 caused slight increases in the error metrics, suggesting that 

overfitting was beginning to occur. Based on these findings, the combination of 

depth = 4, learning rate = 0.1, and L2 = 1 was selected as the optimal 

configuration for this phase. 
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Table 3.16: Hyperparameters Tunning of CatBoost model (Phase 1) 

Phase 1 

Depth Learning 

Rate 

L2 Leaf 

Reg 

Iterations Val 

RMSE 

Val 

MAE 

Val 

MAPE 

Total 

Normalized 

Score 

4 0.001 1 500 0.1043 0.0745 1.0411 2.9967 

1000 0.0672 0.0474 0.6939 1.9253 

3 500 0.1044 0.0746 1.0414 2.9985 

1000 0.0674 0.0474 0.6946 1.9281 

5 500 0.1045 0.0746 1.0416 3.0000 

1000 0.0675 0.0475 0.6945 1.9298 

0.01 1 500 0.0094 0.0060 0.0903 0.2064 

1000 0.0062 0.0039 0.0486 0.1060 

3 500 0.0095 0.0060 0.0911 0.2093 

1000 0.0063 0.0039 0.0485 0.1067 

5 500 0.0095 0.0060 0.0906 0.2088 

1000 0.0063 0.0039 0.0487 0.1074 

0.1 1 500 0.0032 0.0020 0.0205 0.0247 

1000 0.0024 0.0014 0.0134 0.0007 

3 500 0.0033 0.0021 0.0211 0.0272 

1000 0.0025 0.0014 0.0138 0.0028 

5 500 0.0033 0.0021 0.0219 0.0282 

1000 0.0025 0.0014 0.0140 0.0032 
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3.8.4.2 Phase 2: Investigating Deeper Models 

Phase 2 extended the analysis by testing deeper models with depths of 6 and 8 

asshown in Tabl 3.17, using the best configurations from Phase 1 (learning rates 

of 0.001, 0.01, and 0.1; L2 values of 1, 3, and 5). The purpose was to evaluate 

whether increasing the model depth would yield further improvements. 

At depth = 6, the model's performance was very similar to depth = 4, 

with a Val RMSE of 0.0027 and a Total Normalized Score of 0.0033 (L2 = 1). 

Although the difference was minor, it indicated that the model's increased 

complexity was not justified by a significant gain in accuracy. Further 

increasing the depth to 8 did not result in better performance, with the best Val 

RMSE reaching 0.0035 and a Total Normalized Score of 0.0129 (L2 = 1). 

Higher L2 regularization values (3 and 5) led to increased error metrics, 

signaling that overfitting became more of a concern as depth increased. 

The results showed that increasing model depth beyond 4 did not 

provide meaningful improvements and only introduced the risk of overfitting, 

with marginal gains in validation metrics. Thus, depth = 4 remained the 

preferred configuration due to its balance between accuracy and model 

complexity. 
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Table 3.17: Hyperparameters Tunning of CatBoost model (Phase 2) 

Phase 2 

Depth Learning 

Rate 

L2 Leaf 

Reg 

Iterations Val 

RMSE 

Val 

MAE 

Val 

MAPE 

Total 

Normalized 

Score 

 

6 

0.1 1 1000 0.0027 0.0014 0.0127 0.0033 

3 1000 0.0026 0.0014 0.0136 0.0041 

5 1000 0.0029 0.0015 0.0139 0.0077 

 

8 
 

0.1 1 1000 0.0035 0.0015 0.013 0.0129 

3 1000 0.0037 0.0017 0.0142 0.0187 

5 1000 0.0036 0.0017 0.0146 0.0184 

 

3.8.4.3 Phase 3: Refining the Model with Additional Parameters 

In Phase 3, additional parameters like Border Count and Random Seed were 

explored as shown in Tabl 3.18. The best configuration from Phase 1—depth = 

4, learning rate = 0.1, and L2 = 1—was retested, yielding the same optimal 

results (Val RMSE = 0.0033, Total Normalized Score = 0.0007). Border Count 

and Random Seed variations had minimal effect on performance, showing that 

once the core hyperparameters were optimized, these additional parameters did 

not provide significant gains. The patterns held for depths 6 and 8, where 

increasing L2 again led to overfitting. 
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Table 3.18: Hyperparameters Tunning of CatBoost model (Phase 3) 

Phase 3 

Depth Learning 

Rate 

L2 

Reg 

Border 

Count 

Random 

Seed 

Val 

RMSE 

Val 

MAE 

Val 

MAPE 

Total 

Normalized 

Score 

4 0.001 1 32 7 0.0674 0.0476 0.6969 2.9934 

0.1 1 128 42 0.0033 0.0018 0.0155 0.0007 

0.05 1 64 7 0.0058 0.0028 0.0241 0.0772 

0.1 5 128 7 0.0035 0.0019 0.0171 0.0032 

0.05 3 128 42 0.0038 0.0021 0.0201 0.0322 

6 0.001 1 128 7 0.0658 0.0465 0.6687 2.9064 

0.05 1 64 7 0.0052 0.0024 0.0198 0.0598 

0.1 1 128 42 0.0034 0.0018 0.0144 0.0033 

0.1 5 128 123 0.0035 0.0019 0.0151 0.0051 

0.05 3 64 7 0.0054 0.0025 0.02 0.0627 

8 0.001 1 128 42 0.0653 0.0461 0.6561 2.8725 

0.1 1 128 123 0.0035 0.0018 0.0142 0.0129 

0.05 1 64 42 0.0052 0.0026 0.0215 0.0604 

0.1 5 128 42 0.0039 0.0019 0.0174 0.0187 

0.1 3 64 7 0.0036 0.0018 0.0148 0.0096 

10 0.001 1 128 42 0.0654 0.0461 0.6474 2.8569 

0.05 1 64 42 0.0055 0.0027 0.021 0.067 

0.1 1 128 7 0.0044 0.0021 0.0164 0.0271 

0.1 5 128 123 0.0049 0.0023 0.0188 0.0387 

0.05 3 64 42 0.0056 0.0028 0.0209 0.0621 

 

3.8.4.4 Optimizer and Activation Function 

Optimizer and activation function tuning are not required for CatBoost because 

it is a gradient-boosting algorithm that operates differently from neural networks. 

CatBoost optimizes its performance through boosting trees, using gradient 

descent for decision tree-based learning. Unlike neural networks, which rely on 

optimizers like Adam or SGD and activation functions like ReLU or sigmoid to 

update weights and capture non-linear patterns, CatBoost builds a series of 

decision trees where each tree corrects the errors of the previous one (Hancock 

& Khoshgoftaar, 2020). Therefore, no activation function or traditional 

optimizer tuning is necessary for CatBoost models. 
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3.8.4.5 Summary Flowchart 

Figure 3.12 shows the summary process of CatBoost model hyperparameters 

tunning process. depth = 4, learning rate = 0.1, and L2 regularization = 1 

was selected as the optimal configuration for CatBoost under the case study of 

the double storey research office. 

 

 

Figure 3.12: Flowchart of CatBoost Tunning Process 
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3.8.5 CNN-LSTM Tunning 

3.8.5.1 Phase 1: Initial Hyperparameter Search 

In Table 3.19, several key hyperparameters were tuned for the CNN-LSTM 

model, including filters, kernel size, LSTM units, dropout rates, learning rates, 

and the number of convolutional and LSTM layers. Initial configurations, such 

as 8 filters, 50 LSTM units, and kernel sizes of 1, were fixed, which focusing 

on the effect of changing dropout rate, learning rate, convolutional layers and 

LSTM layers.  

When increasing the number of convolutional layers from 1 to 2 

significantly improved performance, particularly when paired with 1 LSTM 

layer. For instance, using 8 filters, kernel size 1, 2 convolutional layers, and 1 

LSTM layer yielded a validation RMSE of 0.0521, compared to 0.0580 with 

only 1 convolutional layer. However, adding a second LSTM layer led to 

inconsistent results, sometimes worsening the RMSE (e.g., 0.0605). Another 

example which highlighted with green color also shows better performance with 

2 convolutional layers and 1 LSTM layer when dropout rate is equal to 0.1. The 

key finding in this phase is that dropout rate 0.01, learning rate 0.001, 2 

convolutional layers and 1 LSTM layers yield a better result.  
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Table 3.19: Hyperparameters Tunning of CNN-LSTM model (Phase 1) 

Phase 1 
Filters Kernel 

Size 

LSTM 

Units 

Dropout 

Rate 

Learning 

Rate 

Conv 

Layers 

LSTM 

Layers 

Val 

RMSE 

Val 

MAE 

Val 

MAPE 

Total 

Normalized 

Score 

8 1 50 0.01 0.001 1 1 0.0580 0.0272 0.1719 0.1301 

2 0.0573 0.0284 0.2010 0.1661 

2 1 0.0521 0.0232 0.1288 0.0357 

2 0.0605 0.0286 0.1910 0.1692 

0.01 1 1 0.0600 0.0282 0.1543 0.1248 

2 0.0653 0.0298 0.1835 0.1872 

2 1 0.0582 0.0266 0.1621 0.1164 

2 0.0562 0.0279 0.1844 0.1409 

0.1 0.001 1 1 0.0573 0.0266 0.1681 0.1200 

2 0.0602 0.0288 0.1717 0.1480 

2 1 0.0528 0.0240 0.1453 0.0614 

2 0.0583 0.0296 0.2216 0.1999 

0.01 1 1 0.0642 0.0308 0.1828 0.1878 

2 0.0611 0.0321 0.2129 0.2166 

2 1 0.0593 0.0264 0.1646 0.1228 

2 0.0575 0.0278 0.1646 0.1239 
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3.8.5.2 Phase 2: Investigating Deeper Models 

In the second phase, increasing the number of filters from 8 to 16 produced the 

best results as show in Table 3.20. The configuration of 16 filters, 64 LSTM 

units, and 3 convolutional layers delivered a validation RMSE of 0.0446 and 

validation MAE of 0.0218. Additionally, kernel size 1 outperformed kernel size 

3, showing that smaller kernels captured the patterns in the power consumption 

data more effectively. 

The optimal setup, featuring 16 filters, 3 convolutional layers, 1 LSTM 

layer, 64 LSTM units, kernel size 1, a dropout rate of 0.01, and a learning rate 

of 0.001, delivered the best overall performance. This configuration balanced 

complexity and accuracy, making it ideal for the dataset. 

 

Table 3.20: Hyperparameters Tunning of CNN-LSTM model (Phase 2) 

Phase 2 
Filters Kernel 

Size 

LSTM 

Units 

Dropout 

Rate 

Learning 

Rate 

Conv 

Layers 

LSTM 

Layers 

Val 

RMSE 

Val 

MAE 

Val 

MAPE 

Total 

Normalized 

Score 

8 1 50 0.01 0.001 2 1 0.0510 0.0254 0.1885 2.3965 

3 0.0471 0.0243 0.1589 1.1480 

64 0.01 0.001 2 0.0482 0.0233 0.1572 1.1004 

3 0.0484 0.0245 0.1838 1.7189 

3 50 0.01 0.001 2 0.0466 0.0222 0.1492 0.5052 

3 0.0481 0.0267 0.2144 2.5506 

64 0.01 0.001 2 0.0481 0.0248 0.1514 1.3078 

3 0.0472 0.0225 0.1479 0.6543 

16 1 50 0.01 0.001 2 0.0493 0.0248 0.1586 1.5899 

3 0.0491 0.0248 0.1634 1.6422 

64 0.01 0.001 2 0.0473 0.0252 0.1891 1.7812 

3 0.0446 0.0218 0.1400 0.0000 

3 50 0.01 0.001 2 0.0459 0.0234 0.1668 0.8854 

3 0.0456 0.0226 0.1690 0.6998 

64 0.01 0.001 2 0.0482 0.0249 0.1758 1.6679 

3 0.0471 0.0247 0.1852 1.5885 

32 1 64 0.01 0.001 3 0.0487 0.0260 0.1836 2.0926 

4 0.0473 0.0232 0.1513 0.8497 

0.01 0.001 3 0.0484 0.0255 0.1864 1.9727 

4 0.0474 0.0253 0.1639 1.4731 
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3.8.5.3 Optimizer and Activation Function 

Table 3.21 The most effective configuration for this model was the Adamax 

optimizer combined with the ReLU activation function, which achieved a 

remarkably low validation loss of 0.001266. This made it the top-performing 

combination not only for CNN-LSTM but across all models evaluated. 

The Adam optimizer also performed well, achieving a validation loss 

of 0.001322 when paired with ReLU, which was slightly higher than Adamax 

but still highly effective. The linear activation function produced similarly 

strong results, particularly when combined with Adam or Adamax, both 

resulting in validation losses below 0.0016. While tanh also delivered decent 

performance, sigmoid activation was consistently the weakest performer, 

especially when paired with Regularizer, leading to high validation losses, such 

as 0.043121. Therefore, the best configuration for the CNN-LSTM model was 

clearly Adamax with ReLU, delivering the lowest validation loss. 

 

Table 3.21: Optimizer Tunning of CNN-LSTM model  

Model Activation Function Optimizer Best Validation Loss 

CNN-
LSTM 

relu 

SGD 0.023877 
Adam 0.001322 

Adamax 0.001266 
Regularizer 0.008115 

tanh 

SGD 0.020791 
Adam 0.001324 

Adamax 0.001414 
Regularizer 0.010754 

sigmoid 

SGD 0.0449 
Adam 0.001693 

Adamax 0.001879 
Regularizer 0.043121 

linear 

SGD 0.018816 
Adam 0.001328 

Adamax 0.001598 
Regularizer 0.008122 
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3.8.5.4 Summary Flowcahrt 

Figure 3.13 shows the summary process of CNN-LSTM model hyperparameters 

tunning process. It is found that 16 filters, 3 convolutional layers, 1 LSTM layer, 

64 LSTM units, kernel size 1, a dropout rate of 0.01, and a learning rate of 0.001, 

delivered the best overall performance. 

 

 

 

Figure 3.13: Flowchart of CNN-LSTM Tunning Process  
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3.9 Convergence Analysis 

Convergence analysis is a crucial step in evaluating the performance of machine 

learning models across different algorithms. It assesses how effectively a model 

minimizes its error or loss during training and how well this performance 

translates to unseen data. By tracking both the training loss (error on training 

data) and the validation loss (error on separate validation data), convergence 

analysis helps determine the model’s ability to generalize and identify any signs 

of overfitting. 

The primary objective of convergence analysis is to ensure that both 

training and validation losses decrease as the training process continues. If the 

validation loss begins to increase or plateau while the training loss continues to 

decrease, this is often an indication of overfitting. In such cases, the model 

becomes too specialized to the training data and fails to generalize effectively. 

To quantify the gap between training and validation losses, practical benchmark 

is applied in convergence analysis. In this project, the used benchmark is that 

the relative difference between training and validation losses should be less than 

10%. However, the exact threshold can vary depending on the specific problem, 

dataset, and model being used (Owen, 2022). When this gap remains small, it 

suggests that the model is generalizing well and has converged appropriately. If 

the gap exceeds 10%, it could indicate overfitting, as the model may be learning 

patterns too specific to the training data, which do not translate well to new data. 

 

3.9.1 LSTM 

Figure 3.14 shows both training and validation losses showed a consistent 

decrease throughout the training process, with no sharp increases in validation 

loss, further indicating that the model is not overfitting. Although minor 

fluctuations in validation loss were observed, these are normal in deep learning 

models and do not suggest any significant overfitting. The overall downward 

trend of both losses points to effective learning and strong generalization. 

A key benchmark is how closely training and validation loss follow 

each other. The training loss began at 0.00449 and decreased to 0.00061, while 

the validation loss started at 0.00232 and dropped to 0.00109. The final 

difference between the two losses was calculated as 0.00048, or approximately 
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4.4%, well below the acceptable threshold of 10%. This small gap indicates that 

the model generalizes well without overfitting. If the validation loss had 

stagnated or increased while training loss continued to drop, this would have 

indicated overfitting, but that was not the case here. 

The close alignment of training and validation loss, combined with the 

small magnitudes (0.00061 for training and 0.00109 for validation), suggests 

that the model makes minimal errors and generalizes well to unseen data. The 

consistent performance across epochs shows that the model is not overly 

specialized to the training set, further supporting its robustness for load 

forecasting tasks. 

 

 

Figure 3.14: Training and validation loss for LSTM 
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3.9.2 GRU   

In Figure 3.15, both training and validation losses for the GRU model exhibited 

a consistent downward trend throughout the training process, with no significant 

increases in validation loss, indicating that the model is not overfitting. 

Although minor fluctuations in validation loss were observed, these variations 

are normal in deep learning models and do not suggest any substantial 

overfitting. The general decrease in both training and validation losses 

underscores effective learning and strong generalization across the dataset. 

A key benchmark for convergence analysis is how closely the training 

and validation losses follow each other. The training loss began at 0.00263 and 

steadily decreased to 0.00074, while the validation loss started at 0.00164 and 

dropped to 0.00080 by the end of training. The final difference between the two 

losses was calculated as 0.00006, which equates to a relative difference of 

approximately 7.5%, comfortably below the accepted threshold of 10%. This 

small gap indicates that the model generalizes well without significant 

overfitting. If the validation loss had stagnated or increased while the training 

loss continued to drop, this would have indicated overfitting, but that was not 

the case here. 

The close alignment between the training and validation losses, along 

with the small magnitudes (0.00074 for training and 0.00080 for validation), 

suggests that the model makes minimal errors and generalizes effectively to 

unseen data. The consistent performance across epochs demonstrates that the 

model is not overly specialized to the training set, further supporting its 

robustness for tasks like load forecasting. 
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Figure 3.15: Training and validation loss for GRU 

 

 

3.9.3 CatBoost 

he graph in Figure 3.16 illustrates the training and validation loss of the 

CatBoost model over several epochs for your load forecasting project. The 

minimal percentage difference between the training and validation losses is 

approximately 1.5853% at its lowest point, indicating that the model is 

generalizing very well. Both losses decrease steadily over time, and the near-

identical values of 0.0019855 for training loss and 0.0019545 for validation loss 

reflect that the model is learning the training data effectively while maintaining 

strong performance on unseen validation data. 

This near-perfect alignment between training and validation losses 

suggests that the CatBoost model is well-optimized for this specific task. Unlike 

more complex models that may struggle with overfitting or underfitting, the 

CatBoost algorithm efficiently handles the data, showing excellent convergence 

and generalization without overfitting. The minimal gap between losses 

demonstrates that the model captures the underlying patterns in both the training 

and validation sets, leading to accurate and reliable predictions. 

Compared to other models, CatBoost's strong performance here shows 

its ability to balance complexity and generalization. The decision-tree-based 

structure of CatBoost, combined with boosting iterations, makes it particularly 
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well-suited for this type of data. Unlike neural network architectures, which may 

struggle with small datasets or univariate time-series data, CatBoost adapts 

effectively without requiring extensive tuning, leading to superior results for 

load forecasting tasks. The almost negligible gap between the losses further 

supports its ability to generalize well without sacrificing performance. 

 

Figure 3.16: Training and validation loss for CatBoost 

 

3.9.4 CNN-LSTM    

The graph in Figure 3.17 illustrates the training and validation loss of the CNN-

LSTM model over several epochs for your load forecasting project. The 

minimal percentage difference between the training and validation losses is 

approximately 18.68% at its lowest point across the epochs, indicating that the 

model is starting to overfit. While both losses decrease over time, the gap 

remains consistent, suggesting that the model is learning the training data well 

but struggling to generalize to unseen validation data. 

This performance issue is likely due to the unnecessary complexity 

introduced by the CNN layers, which are designed for spatial feature extraction 

but are not suited for your univariate time-series data (power consumption). As 

a result, the CNN-LSTM model overfits the training data while failing to capture 

generalizable patterns, leading to slower and less effective convergence. 
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In contrast, simpler models like LSTM and GRU, which are better 

suited for handling temporal dependencies in time-series data, would likely 

exhibit faster convergence and a smaller gap between training and validation 

loss, leading to better overall performance for load forecasting. The complexity 

of CNN-LSTM in this context does not provide any additional benefit and 

instead hinders its ability to generalize. 

 

Figure 3.17: Training and validation loss for CNN-LSTM 

 

3.10 Performance Measure 

The effectiveness of each model will be determined by evaluating its 

performance in predicting future power consumption. For this purpose, the 

evaluation will use a testing set, derived using the holdout method, with 10% of 

the dataset reserved for testing. This ensures that the model is assessed on data 

it has not encountered during training, providing an accurate measure of its 

predictive capability. Validation samples will be used for tuning neural 

network-based models, as these models employ iterative training, while 

classical machine learning methods such as CatBoost do not require validation 

during training. 

The performance of each model will be analyzed using several metrics, 

including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and 

Mean Absolute Percentage Error (MAPE). These metrics provide a clear 
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assessment of the model's accuracy in predicting continuous values, with RMSE 

particularly useful for penalizing larger errors, while MAE and MAPE offer 

insights into average error magnitudes and percentage-based accuracy.  

Figure 3.18 to Figure 3.22 illustrate the prediction outcome of all 

developed static load forecasting models for random observation periods. It is 

evident that show whether all the models can trace the load usage pattern of the 

research office.  

 

 

 

 

Figure 3.18: Prediction curves on 21/10/2023 
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Figure 3.19: Prediction curves on 11/11/2023  

 

 

Figure 3.20: Prediction curves on 22/11/2023  
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Figure 3.21: Prediction curves on 31/12/2023  

 

 

 

Figure 3.22: Prediction curves on 21/10/2023 to 27/10/2023 (one week)  

 

 

The overall performance of the static load forecasting models, as 

shown in Figure 3.23 and Table 3.22, was evaluated on a 10% test set covering 

data from October 20, 2023, to December 31, 2023. Key metrics used for 

assessment were Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), and Mean Absolute Percentage Error (MAPE), which provide insights 

into each model's ability to predict future power consumption with minimal 

input variables. 
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The LSTM model performed well, achieving an RMSE of 1.2579, MAE of 

0.5799, and MAPE of 7.2875. These results indicate that LSTM effectively 

captured the power consumption patterns, with relatively low prediction errors. 

LSTM's ability to model long-term dependencies in time-series data allowed it 

to perform well despite using only datetime and power data. 

The CNN-LSTM model had a higher RMSE of 1.4381, MAE of 0.6630, 

and MAPE of 8.2021, showing that it struggled more compared to LSTM. The 

addition of convolutional layers did not improve performance, likely because 

the limited input variables made it difficult to leverage CNN's strengths. 

The GRU model, a simpler alternative to LSTM, performed similarly 

with an RMSE of 1.2771, MAE of 0.5821, and MAPE of 7.6171. While GRU 

handled the sequential data efficiently, LSTM had a slight advantage in 

capturing more complex temporal patterns. 

The CNN model recorded the poorest performance, with an RMSE of 

1.4614, MAE of 0.7164, and MAPE of 8.6425. As CNNs are designed to capture 

spatial patterns, it struggled to model the sequential nature of power 

consumption using only datetime and power, leading to higher error metrics. 

Surprisingly, the CatBoost model delivered the best performance, with the 

lowest RMSE of 0.9621, MAE of 0.4217, and MAPE of 5.6212. CatBoost’s 

gradient-boosting approach efficiently handled the limited input data, 

consistently making accurate predictions with smaller errors than other models. 

Its MAPE of 5.6212% further demonstrated its reliable percentage-based 

predictions, making it the most effective model. 
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Figure 3.23: Prediction curves on 20/10/2023 to 31/12/2023 (full test data) 

 

 

Figure 3.24: Prediction curves on 31/12/2023  
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Table 3.22: Overall Comparison between LSTM, GRU, CNN-LSTM, CatBoost 

on Test Data 

 

In summary, CatBoost outperformed all models in forecasting power 

consumption with limited input variables. Among the neural networks, LSTM 

performed best, followed by GRU, while CNN-LSTM and CNN 

underperformed due to added complexity not suited for the limited dataset. 

CatBoost is the recommended model for this task, with LSTM and GRU as 

strong alternatives for time-series data. 

 

 

3.11 Limitations of Static models 

The static load forecasting models, as shown in Figure 3.25, and Figure 3.26 

have several limitations, particularly when applied to time periods with dynamic 

or evolving power consumption patterns. These models are trained on historical 

data from a fixed time span (in this case, 2021 to 2023) and are not updated as 

new data becomes available. As the load profile evolves, especially with 

significant changes in usage patterns, the performance of static models tends to 

degrade. This is evident in the rising RMSE, MAE, and MAPE values over time, 

as depicted in the figure, where the errors progressively increase from February 

to June 2024. The pattern of degrading can be explain by Figure 3.27 which is 

the load power consumption of whole dataset. It shows that the load power 

consumption of the research office was keep changing. 

Model RMSE (kW) MAE (kW) MAPE (%) 

LSTM 1.2579 0.5799 7.2875 

GRU 1.3158 0.6185 7.4891 

CNN-LSTM 1.4381 0.6630 8.2021 

CatBoost 0.0819 0.0474 0.5127 
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Figure 3.25: Prediction curves on 21/06/2024 – 27/06/2024 

 

 

Figure 3.26: Plotting of Overall Performance of Static Model and 

Updated Models Across Each Months  (Start Update from 2024 

Onwards) 
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Figure 3.27: Load Power Consumption of Whole Dataset (Dec 2021 to 

June 2024) 

 

One of the key limitations is the inability of static models to adapt to 

changing trends or seasonal variations. Without the ability to retrain or adjust 

based on new data, these models cannot capture shifts in power consumption 

patterns effectively. Additionally, static models may struggle with unseen 

conditions or data distributions that differ from the training period, leading to 

overfitting to historical trends but underperforming in future periods. 

In summary, while static models can provide reasonable accuracy in 

the short term, the effectiveness diminishes over time as it is unable to 

dynamically adapt to the evolving load profile. This limitation underscores the 

need for adaptive models that can update and refine themselves as new data is 

introduced, ensuring more accurate and reliable forecasts in changing 

environments. 
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CHAPTER 4 

 

4 ADAPTIVE CATBOOST DEVELOPMENT & EVALUATION 

 

4.1 Flowchart & Work Plan 

The purpose of this stage in the methodology is to develop an adaptive load 

forecasting model using the CatBoost algorithm, which was identified as the 

best-performing model during the static development phase. Unlike the static 

model, which is fixed after training, the adaptive model is designed to adjust to 

new data, ensuring it can handle changing consumption patterns over time. This 

adaptability is essential for accounting for shifts in future power consumption 

trends, which may differ from historical patterns. By building an adaptive 

CatBoost model, the goal is to maintain high forecasting accuracy even in 

dynamic environments where consumption behavior evolves over time. The 

flowchart and workplan is shown in Figure 4.1. 
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Figure 4.1: Flowchart of Adaptive CatBoost 

 

 

4.2 Dataset  

For the development of the adaptive CatBoost model, the dataset will consist of 

power consumption data collected from January 2024 to June 2024 from the 
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same two-story research office used in the static model development. This 

dataset shares the same structure and variables as the previous dataset, ensuring 

consistency in the modeling process while reflecting updated power 

consumption trends for 2024. The adaptive model will be updated monthly, 

allowing it to account for potential changes in consumption patterns that may 

differ from those observed between December 2021 and December 2023. The 

total power is computed in same manner as in static model development stage.  

 

Table 4.1: Dataset Characteristics (January 2024 – June 2024) 

Dataset Characteristics Details 

Instances 35,517 

Time Span Jan 1, 2024 to June 30, 2024 

Collect Interval 30 minutes 

Missing Values 0 

 

Features 

 

Time, Phase Voltage (A, B, C), Phase 

Current (A, B, C), Power Factor 

 

4.3 Preprocessing 

In the preprocessing phase of developing the adaptive CatBoost model, the 

preprocessing step kept consistent with that used in the static model 

development to ensure uniformity and reliability. This consistency is crucial for 

maintaining the comparability of results across different stages of model 

evolution. The preprocessing begins with the integration of newly collected 

monthly data with the existing historical dataset. This approach allows us to 

build upon the previous data, ensuring that the model continuously learns from 

the most recent trends. Missing values in the dataset are addressed using 

imputation methods that were applied in the static model. For numerical features, 

imputation is carried out by filling in missing values with the mean or median 

of the respective features, while categorical features are handled according to 

the specific characteristics. 

Normalization and scaling are essential steps to prepare the data for 

effective model training. In this regard, MinMaxScaler was apply to normalized 

feature values to a range between 0 and 1, ensuring that all features contribute 
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equally to the model training process. Feature engineering is maintained in the 

same manner as the static model, with the same set of features being used to 

ensure that the model's performance can be consistently evaluated over time. 

Data splitting is performed by dividing the dataset into training and testing sets 

following the same proportions as used in the static model, allowing us to 

validate the model on a representative sample and ensure its robustness. 

 

 

4.4 Drift Detection 

Drift detection is a vital aspect of maintaining the accuracy and reliability of 

predictive models, especially in environments where the underlying data 

distribution can change over time—a phenomenon known as concept drift. In 

the context of the adaptive CatBoost model for power consumption forecasting, 

the detection technique being employed is the ADWIN (Adaptive Windowing) 

algorithm to detect such drifts effectively. 

ADWIN is a robust and efficient method designed specifically for 

streaming data applications. Its core functionality revolves around maintaining 

a dynamically sized sliding window over the data stream, which, in this case, 

consists of the sequence of absolute errors between the model's predictions and 

the actual observed values. Unlike fixed-size windowing techniques, ADWIN 

adjusts the window size adaptively based on the statistical properties of the 

incoming data. This adaptability allows it to be sensitive to both gradual and 

abrupt changes in the data distribution. 

The mechanism by which ADWIN detects drift involves several key 

steps. Firstly, as new data points arrive, the absolute error was computed 

between each predicted value and its corresponding true value. These error 

values are sequentially fed into the ADWIN algorithm. ADWIN continuously 

updates its internal statistics with each new error, recalculating the mean and 

variance within the current window. This continuous monitoring is crucial for 

timely detection of any significant changes in the error distribution. 

Secondly, ADWIN employs statistical hypothesis testing to compare 

the distribution of errors in different segments of the window. Specifically, it 

splits the window into two sub-windows at every possible point and evaluates 

whether the difference in the mean errors between these sub-windows is 
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statistically significant. It utilizes Hoeffding's Inequality to calculate confidence 

intervals, which helps determine whether the observed difference could be due 

to random fluctuations or represents a genuine shift in the data distribution. 

A significant advantage of ADWIN is its use of dynamic thresholds 

derived from the data itself, rather than relying on manually set fixed thresholds. 

This means that the algorithm calculates thresholds based on the observed 

variance and desired confidence levels, making it highly adaptable to various 

types of drift and noise levels in the data. If the statistical test indicates that the 

difference between sub-windows exceeds the calculated threshold, ADWIN 

concludes that a concept drift has occurred. 

 

4.5 Optuna Optimization 

Optuna is a powerful hyperparameter optimization framework designed to 

enhance model performance through systematic and efficient search techniques. 

In this project, Optuna is employed to fine-tune the hyperparameters of the 

CatBoost model, aiming to optimize its forecasting accuracy for power 

consumption. The core objective of using Optuna is to identify the optimal set 

of hyperparameters that improves the model's predictive accuracy while 

maintaining computational efficiency. 

Optuna employs a Bayesian optimization approach, which builds a 

probabilistic model of the objective function and iteratively refines it based on 

previous trial results. This method is advantageous over traditional grid search 

or random search approaches as it explores the hyperparameter space more 

intelligently. The optimization begins with an initial set of hyperparameters, 

which are evaluated based on model performance metrics. Optuna then updates 

its probabilistic model to suggest new configurations that are likely to enhance 

performance. 

A notable feature of Optuna is its trial management capability. It 

handles multiple trials by sampling different hyperparameter configurations and 

assessing the performance. Each trial involves training the CatBoost model with 

a specific set of hyperparameters and measuring its performance on validation 

data. Based on these results, Optuna guides subsequent trials towards more 

promising configurations. Additionally, Optuna includes a pruning mechanism 
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that allows early termination of underperforming trials, conserving 

computational resources by focusing on more promising trials. 

Optuna also provides visualization tools that help understand the optimization 

process and the impact of various hyperparameters on model performance. By 

utilizing Optuna’s advanced search algorithms and pruning features, the goals 

is to enhance the CatBoost model’s performance, leading to more accurate and 

reliable power consumption forecasts.  

 

4.5.1 Updates Starting in 2024 (Scenario 1) 

In Scenario 1, where the model was initially trained on data from 2021 to 2023 

and updates started in January 2024, Optuna consistently selected a depth of 6 

and a learning rate around 0.049 for most months as shown in Table 4.2. 

Although the L2 regularization and iterations varied slightly with each update, 

this variability shows that tuning occurred during each update to reflect changes 

in the dataset. The adjustments made by Optuna for every update ensured the 

model stayed optimized and adapted well to the new data, maintaining high 

accuracy. 

 

Table 4.2: Adaptive Catboost Optimum Parameter Tunned by Optuna 

Optimization for Each Updating (Update from Jan 2024 Onwards) 

Data 
used to 
Update Depth 

Learning_rat
e L2 Regularization (L2_leaf_reg) 

Lteration
s 

2024-01 5 0.0494 3.6631 1785 
2024-02 5 0.0499 1.3292 1958 
2024-03 6 0.0359 0.2528 1999 
2024-04 6 0.0491 0.1068 2000 
2024-05 6 0.0495 0.3351 2000 
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4.5.2 Updates Starting in 2023 (Scenario 2) 

Similarly, in Scenario 2, where the model was initially trained on data from 

2021 to 2022 and updates began in January 2023, Optuna again tuned the 

model’s hyperparameters for each update as shown in Table 4.3. The depth of 6 

remained constant, but adjustments in learning rate, L2 regularization, and 

iterations occurred monthly, showing that the model was continually optimized 

as it incorporated new data. This fine-tuning process during each update further 

confirms that the model was regularly recalibrated to handle shifting 

consumption patterns. 

 

Table 4.3: Adaptive Catboost Optimum Parameter Tunned by Optuna 

Optimization for Each Updating (Update from Jan 2023 Onwards) 

Date depth learning_rate l2_leaf_reg iterations 
2023/01 6 0.0489 2.0293 1755 
2023/02 6 0.0498 0.2216 1870 
2023/03 6 0.049 3.3553 1918 
2023/04 6 0.05 0.3612 1886 
2023/05 6 0.0498 0.1128 1870 
2023/06 6 0.0456 0.9556 1997 
2023/07 6 0.0495 0.1918 1680 
2023/08 6 0.05 0.1047 1928 
2023/09 6 0.0498 0.7588 1954 
2023/10 6 0.0455 0.1952 1724 
2023/11 6 0.045 0.1711 1807 
2023/12 6 0.0495 4.2478 1930 
2024/01 6 0.0469 1.2794 1885 
2024/02 6 0.0496 0.3521 1814 
2024/03 5 0.0498 0.1522 1960 
2024/04 6 0.0488 3.1979 1899 
2024/05 6 0.05 0.4013 1930 

 

4.6 Updating Size  

The decision to update the adaptive CatBoost model on a monthly basis was 

made to balance responsiveness, stability, and computational efficiency. Power 

consumption patterns often follow monthly cycles due to factors like weather 

changes, holidays, and billing periods. By updating the model monthly, it can 

capture these recurring trends without overreacting to short-term fluctuations 
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that could occur weekly. Weekly updates might cause the model to respond to 

noise, reducing its stability and accuracy. 

A key reason for avoiding weekly updates is that it don’t provide 

enough new data for the model to learn. Power consumption doesn’t change 

significantly week to week, so updating the model weekly would not give it 

enough information to learn meaningful patterns. In contrast, monthly updates 

offer sufficient data, allowing the model to adjust more effectively and improve 

its predictions. 

Monthly updates also align well with seasonal variations in power 

consumption, such as increased energy demand during summer and winter. This 

helps the model adapt to these shifts in a timely manner, whereas yearly updates 

might miss mid-year changes, leading to outdated forecasts. Weekly updates 

could overreact to minor variations, missing the larger seasonal trends. 

Finally, monthly updates align with typical business and operational cycles, 

where power consumption is often tracked and billed monthly. This makes the 

updates more relevant for decision-makers and ensures that forecasts stay in 

sync with practical needs. 

 

4.7 Updating Model Evaluation 

The evaluation process for the adaptive model will differ significantly from the 

approach used for the static model, given the model's continuous updates over 

time. To appropriately assess the adaptive model's performance, a rolling 

window evaluation will be employed. This method is particularly suitable for 

time series forecasting models, where predictions are made iteratively with the 

inclusion of newly available data. 

Initially, the static model will be used to predict power consumption 

from January 2024 onwards. This static model is trained on historical data from 

2021 to 2023 and will serve as the baseline for comparison. Since the static 

model does not incorporate any data from 2024 or beyond, its predictions will 

be made based solely on the historical patterns learned during the training period. 

This establishes a reference point against which the performance of the adaptive 

model will be measured. 
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For the adaptive model, beginning in January 2024, the model will be 

updated monthly with newly available data. After each monthly update, the 

model will generate predictions for the subsequent month. For example, the 

model updated at the end of January 2024 will be used to predict power 

consumption for February 2024, and the model updated at the end of February 

2024 will be used to forecast March 2024, and so on. This approach ensures that 

the model adapts to evolving trends in power consumption and is responsive to 

any changes in underlying data patterns. 

The performance of both the static and adaptive models will be 

assessed using standard forecasting metrics, including Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error 

(MAPE). These metrics will be calculated for each month, enabling a direct 

comparison of how the static model, with its fixed knowledge of past data, 

performs relative to the adaptive model, which integrates new information on a 

rolling basis. The focus of the evaluation will be on how well the adaptive model 

reduces forecasting errors over time, and whether its ability to learn from recent 

data leads to improved accuracy compared to the static model. 
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4.8 Performance Measure Result 

4.8.1 Updates Starting in 2024 (Scenario 1) 

Figure 4.2 to Figure 4.5 illustrate the prediction curve of initial static model and 

the Adaptive CatBoost model. From these Figure, the performance difference 

of both static and updated model is being visualized. 

 

Figure 4.2: Prediction curves on 11/02/2024 to 17/02/2024 (one week) 

 

Figure 4.3: Prediction curves on 06/05/2024 to 12/04/2024 (one week) 
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Figure 4.4: Prediction curves on 06/05/2024 to 12/05/2024 (one week) 

 

 

 

Figure 4.5: Prediction curves on 23/06/2024 to 29/06/2024 (one week) 
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After each updating, the models was used to predict power consumption for the 

subsequent month's power consumption, At the same time, the initial static 

model, which was not updated, continued to predict the same months, serving 

as a benchmark to compare the performance of the static and updated models. 

Key differences in performance were observed at specific data points, reflecting 

the advantages of the adaptive model. The overall performance of Adaptive 

CatBoost is shown in Figure 4.6 and Table 4.4. 

In February 2024, after being updated with January's data, the adaptive 

model achieved an RMSE of 48.64, significantly lower than the static model’s 

70.13. This suggests that the adaptive model quickly captured recent 

consumption patterns, improving its prediction accuracy early on. 

The most notable improvement occurred in April 2024, where the adaptive 

model’s RMSE dropped to 282.86, compared to a much higher 405.40 for the 

static model. The static model struggled here, likely due to evolving power 

consumption trends, whereas the adaptive model successfully adjusted to these 

changes through monthly updates. 

Similarly, in April 2024, the MAPE for the adaptive model was 1.43%, 

compared to 3.98% for the static model. This significant reduction shows that 

the adaptive model provided more accurate percentage-based forecasts, 

effectively accounting for shifts in power usage patterns. 

By May 2024, although the error margins slightly increased, the adaptive model 

still outperformed the static model across all metrics, including MAE, which 

was 132.34 compared to 250.71 for the static model. This indicates that even 

with fluctuations, the adaptive model maintained better accuracy. 
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Figure 4.6: Plotting of Overall Performance of Static Model and Updated 

Models Across Each Months  (Start Update from 2024 Onwards) 

 

 

 

Table 4.4: Overall Performance of Static Model and Updated Models Across 

Each Months  (Start Update from 2024 Onwards) 

 

 

 

  

Static Model Updated Model Static Model Updated Model Static Model Updated Model
2024/02 0.0632356 0.0701327 0.0437327 0.0486426 0.5829 0.6407
2024/03 0.121942 0.1167044 0.0594443 0.055297 0.8854 0.8608
2024/04 0.5025032 0.4054039 0.4037901 0.2828642 6.7277 3.9805
2024/05 0.6539747 0.2507122 0.5357126 0.1323437 8.0718 1.4314
2024/06 0.6942722 0.1224752 0.6098815 0.0761539 11.2927 1.1038

RMSE(kW)
Evaluation Month

MAE(kW) MAPE(%)
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4.8.2 Updates Starting in 2023 (Scenario 2) 

Figure 4.7 to Figure 4.10 illustrate the prediction curve of initial static model 

and the Adaptive CatBoost model. From these Figure, the performance 

difference of both static and updated model is being visualized. 

 

 

Figure 4.7: Prediction curves on 01/08/2023 

 

 

 

Figure 4.8: Prediction curves on 01/08/2023 to 07/08/2023 (one week) 
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Figure 4.9: Prediction curves on 15/10/2023 to 22/10/2023 (one week) 

 

 

 

 

Figure 4.10: Prediction curves on 11/05/2024 to 17/05/2024 (one week) 
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In Scenario 2, the Adaptive CatBoost model was trained on data from 2021 to 

2022, with monthly updates starting in January 2023. Each update was used to 

predict power consumption for the following month, with the static model 

serving as a benchmark. Performance was evaluated using RMSE, MAE, and 

MAPE, showing clear improvements with the adaptive model. The result was 

shown in Figure 4.11 and Table 4.5. 

The RMSE results highlight significant gains for the adaptive model. 

In July 2023, the static model recorded a high RMSE of 2.7612, while the 

adaptive model reduced this error to 1.2127. Similarly, in August 2023, the 

static model had an RMSE of 3.7131, which the adaptive model brought down 

to 0.5597. These reductions demonstrate the adaptive model’s ability to adjust 

to changing consumption patterns effectively. 

In later months, especially from October to December 2023, the 

adaptive model continued to outperform the static model. For instance, in 

November 2023, the static model's RMSE was 1.4768, while the adaptive model 

achieved a much lower 0.1754. These improvements show how the adaptive 

model better captured evolving trends in power consumption. 

The MAE results follow a similar pattern. In June 2023, the adaptive model 

reduced the MAE to 0.1482, compared to 0.2388 for the static model. By 

November 2023, the MAE for the adaptive model was 0.0936, compared to 

0.5372 for the static model, proving the adaptive model's precision in 

forecasting. 

The MAPE values further emphasize the adaptive model's advantage. 

In August 2023, the static model's MAPE was 1.6637%, while the adaptive 

model reduced it to 0.2409%. Even in June 2024, where the static model’s 

MAPE surged to 11.9732%, the adaptive model maintained a much lower error 

of 1.0841%. These results highlight the adaptive model's superior percentage-

based accuracy over time.  
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Figure 4.11: Plotting of Overall Performance of Static Model and 

Updated Models Across Each Months  (Start Update from 2023 

Onwards) 

 

 

 

Table 4.5: Overall Performance of Static Model and Updated Models Across 

Each Months  (Start Update from 2023 Onwards) 

 

 
 

 

 

 

 

Static Model Updated Model Static Model Updated Model Static Model Updated Model
2023/02 0.1268 0.1267 0.0486 0.0431 0.6327 0.5422
2023/03 0.0638 0.0556 0.0417 0.0358 0.5771 0.4799
2023/04 0.0777 0.0789 0.0498 0.0482 0.6610 0.6168
2023/05 0.2961 0.3323 0.0893 0.0911 0.7964 0.7286
2023/06 0.9126 0.5014 0.2388 0.1482 1.3644 0.9505
2023/07 2.7612 1.2127 1.0085 0.4044 3.9361 1.7803
2023/08 3.7131 0.5597 1.6637 0.2409 6.0567 1.2274
2023/09 3.2976 0.2318 1.4319 0.1200 5.2929 0.8522
2023/10 1.9976 0.1294 0.6687 0.0716 2.8380 0.6822
2023/11 1.4768 0.1754 0.5372 0.0936 2.4775 0.8068
2023/12 0.4069 0.1072 0.1331 0.0622 0.9928 0.6981
2024/01 0.2161 0.1588 0.0863 0.0601 0.8469 0.6750
2024/02 0.0868 0.0727 0.0515 0.0490 0.6262 0.6193
2024/03 0.2119 0.1200 0.0871 0.0585 1.0256 0.8781
2024/04 1.1519 0.4323 0.6709 0.3206 7.4883 4.7778
2024/05 1.6152 0.2525 0.9993 0.1349 9.8654 1.4634
2024/06 0.9946 0.1259 0.7584 0.0774 11.9732 1.0841

Evaluation Month
RMSE(kW) MAE(kW) MAPE(%)
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4.9 Summary 

In both scenarios, the Adaptive CatBoost model proved to be more effective 

than the static model in forecasting power consumption over time. The primary 

difference between the two scenarios was the initial training period: in Scenario 

1, the model was trained on data from 2021 to 2023, while in Scenario 2, it was 

trained on data from 2021 to 2022, with updates beginning earlier in 2023. 

Across both scenarios, the monthly updates of the adaptive model 

allowed it to continuously improve and adjust to changes in consumption 

patterns. This adaptive capability resulted in consistently lower errors compared 

to the static model, which struggled to maintain accuracy as time progressed and 

consumption trends shifted. The adaptive model’s ability to incorporate new 

data each month made it more responsive to changes, leading to more reliable 

predictions. 

Overall, the results from both scenarios demonstrate the effectiveness 

of the adaptive approach, with the Adaptive CatBoost model outperforming the 

static model in predicting future power consumption, particularly as 

consumption patterns evolved over time. This underscores the importance of 

periodic model updates in dynamic forecasting environments. 
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CHAPTER 5 

 

5    CONCLUSION 

 

5.1 Conclusion      

This project successfully demonstrated the potential of various machine 

learning and deep learning models in forecasting power consumption using 

limited data, specifically datetime and power variables. The models tested 

included CatBoost, LSTM, GRU, CNN, and CNN-LSTM, each providing 

insights into different aspects of load forecasting. Among them, the adaptive 

CatBoost model proved to be the most effective in capturing evolving 

consumption patterns by updating monthly, significantly outperforming the 

static models, which struggled to generalize to future data. Both LSTM and 

GRU models exhibited strong performance in handling temporal dependencies, 

while CNN-LSTM showcased its capability in combining spatial and temporal 

features. However, CNN alone underperformed, indicating that pure spatial 

feature extraction may not be sufficient for this type of forecasting task. Overall, 

the project demonstrated that machine learning models, even when limited to 

minimal input features, can provide robust and accurate predictions, particularly 

when dynamically updated to reflect changing trends in power consumption. 

 

5.2 Recommendations for Future Work 

To build upon the findings of this project and further enhance the forecasting 

models, several key areas of improvement are recommended. First, expanding 

the dataset to include additional features such as weather data, occupancy levels, 

or economic indicators could significantly improve model performance. These 

additional variables would provide the models with more context and enable 

them to capture more complex consumption patterns, thereby improving both 

short-term and long-term predictions. 

Second, future work should explore advanced deep learning 

architectures, particularly transformer-based models, which have shown 

promising results in time-series forecasting tasks. The self-attention mechanism 

in transformers could potentially improve the handling of long-term 
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dependencies and provide more accurate predictions for datasets with limited 

features, like the one used in this project. Integrating these architectures could 

offer a significant leap in forecasting accuracy. 

Finally, implementing an ensemble approach, combining the strengths 

of multiple models, could provide more robust predictions. For instance, 

combining the adaptive capabilities of CatBoost with the temporal learning 

strengths of LSTM or GRU could yield a more reliable system that excels at 

both trend detection and short-term fluctuations. This multi-model ensemble 

could offer better generalization and accuracy than relying on a single model, 

especially in dynamic environments where consumption patterns change 

frequently. 
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Appendix A: Codes 

Appendix A : LSTM Model Code 
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Appendix B : GRU Model Code 
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Appendix C : CatBoost Model Code 
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Appendix D : CNN-LSTM Model Code 
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