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ABSTRACT 

 

Bearing failures are a leading cause of rotating machinery failures in industries 

such as oil and gas, manufacturing, and power generation. Early detection of 

bearing failures using Predictive Maintenance (PdM) is critical for minimizing 

downtime and optimizing maintenance strategies. The aim of this study is to 

investigate the vibration characteristics of defective bearings by developing a 

reliable vibration monitoring system. The vibration monitoring algorithm 

utilizes time-domain parameters, frequency domain analysis, and envelope 

analysis to assess bearing conditions. The vibration indicators utilized in this 

study include K-factor, root mean square (RMS) acceleration, peak acceleration, 

crest factor, kurtosis, RMS velocity, RMS displacement, and peak-to-peak 

displacement. This research specifically focuses on types of bearing damage, 

including lubricant contamination, chemical corrosion, and mechanical damage. 

The key findings of this study highlight several important observations in 

bearing fault detection. First, the use of the envelope spectrum has proven to be 

highly valuable in visualizing specific bearing fault frequencies, which makes 

it a powerful tool for fault detection. The successful detection of the Ball Pass 

Frequency Outer (BPFO) was achieved with an error margin ranging from 0.31% 

to 1.24%. It was also observed that the K-factor, RMS acceleration, and peak 

acceleration are sensitive to operating speed, which may pose challenges in 

variable-speed applications. For indicators without speed dependency, 

thresholds are established based on the two-sigma criteria. The crest factor 

threshold is set at 7.49, while the kurtosis threshold is established at 4.11. The 

algorithm's analysis results were consistent with the physical inspection of 

disassembled bearings. In comparison to a commercial monitoring system, the 

crest factor was identified as the most consistent indicator for evaluating bearing 

condition, demonstrating a percentage difference ranging from 2.63% to 

65.19%. In summary, the combination of RMS acceleration and kurtosis is 

proposed as a reliable method for identifying bearing faults. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

In the modern industrial era, rotating machinery is crucial to the operation of 

industries such as oil and gas, manufacturing, and power generation.  The 

reliability and efficiency of rotating machinery are critical factors which affect 

the productivity of industrial operations. In the event of a rotating machinery 

failure, unplanned downtime of the process will cause a loss of productivity and 

incur a substantial repair cost. To avoid these adverse consequences, the 

maintenance of rotating machinery is a high priority in any industry.  

As one of the critical components in rotating machinery, rolling 

element bearing is frequently the subject of study. As bearings are subjected to 

repeated cyclic loading during their operation, bearings that have been 

extensively used are prone to failure. The main causes of bearing failure include 

fatigue, contamination, poor lubrication, overloading, and overspeeding. To 

minimize the risk of critical failure, proper maintenance strategy needs to be 

implemented. 

Conventionally, the most prevalent strategy in the industry is the 

implementation of preventive maintenance (PM). PM is the predetermination of 

maintenance tasks that are based on the functionality of equipments and the 

expected lifetimes of their components. In practice, this means that maintenance 

activity is performed in regular intervals based on guidance from equipment 

manufacturer. While this conventional strategy has its advantages in terms of 

simplicity, it is susceptible to changes in machinery condition and the 

occurrence of unnecessary maintenance. 

 

1.2 Importance of the Study 

To mitigate the limitation of conventional maintenance strategies, this study 

aims to provide a better insight into the field of predictive maintenance (PdM). 

PdM not only aims for failure prevention, but it also strives to improve the 

process performance by extending the lifespan of equipment. In a conventional 

approach, equipment failure can occur unexpectedly, even if the scheduled 
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maintenance interval has not been reached. Moreover, it might not be possible 

to define a suitable maintenance interval especially when the time-to-failure 

varies significantly. PdM addresses these issues by monitoring the equipment 

condition with continuous or periodical detection of failure indicators. By 

performing maintenance work at the optimal time, the occurrence of 

unscheduled breakdown is reduced by 70% to 75% (Selcuk, 2016). Moreover, 

this improves the reliability of the equipment and enhances the efficiency of the 

process. The employment of PdM strategy also improves the cost-effectiveness 

of any industrial operation. In manufacturing, maintenance costs attributes to 

between 15% and 60% of the overall operational expenses (Zonta et al., 2020). 

Implementing PdM can help to avoid additional expenses incurred by over-

maintenance or emergency repairs, leading to maintenance cost reduction of 25% 

to 30% (Selcuk, 2016). Conventionally, bearings are replaced at predetermined 

intervals without assessment of actual condition. The premature replacements 

of bearings lead to the waste in their remaining useful life. However, with PdM, 

the lifespan of bearings can be prolonged as their health state can be accurately 

evaluated. 

 

1.3 Problem Statement 

In the practical application of predictive maintenance, there are several concerns 

which necessitates a targeted study. While some monitoring methods are 

capable of general bearing fault detection, they lack a holistic approach in 

determining the location of the defect in the bearing. This implies that only the 

replacement of bearings can be performed, while the identification and 

correction of the root cause remains hindered. Next, some methods are limited 

to diagnostic only, whereby the remaining useful life of the bearing and any 

potential future failures cannot be determined. This proves to be an issue in the 

planning of maintenance schedule as the failure time of the bearing cannot be 

estimated. Furthermore, there is a lack of comprehensive studies on smaller 

bearings and low-power motors. These smaller components are important in 

various applications where space, weight, and energy efficiency are prioritized. 

Industries that rely on smaller machinery such as precision manufacturing and 

small-scale industrial equipment will face challenges in effectively detecting 

early bearing failures using the available methods.  
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1.4 Aim and Objectives 

The primary aim of this study is to develop a vibration monitoring system for 

the early detection of bearing failure. The objectives of this study are listed 

below. 

(i) To develop signal processing algorithms for the vibration 

analysis of bearing fault.  

(ii) To investigate the relationship between vibration patterns and 

bearing failure modes.  

(iii) To evaluate the effectiveness and robustness of the monitoring 

system through controlled experiments and real-world 

applications. 

 

1.5 Scope and Limitation of the Study 

The scope of this study will be centred on improving the monitoring of rolling 

element bearing based on the concept of Predictive Maintenance. This study 

will be directed on improving monitoring system based on vibration analysis 

instead of other monitoring techniques. Hence, the accelerometer will be the 

sensor employed in the study. Techniques such as temperature monitoring, 

acoustic emission analysis, and oil analysis will not fall within the scope of the 

study. This study will be targeted at failure caused by bearings and its vibration 

data. Vibration which rises from faults in other machinery components such as 

gears, coupling, and shafts, will not be the centre of analysis. This also means 

that machinery issues such as unbalance, misalignment, and resonance will not 

be the target of analysis.  

Due to the complex nature of bearing fault formation, the possible 

failure modes in this study will not be exhaustive. This study may not capture 

all possible bearing fault conditions in industrial settings, which leads to 

potential gap in fault detection. Next, the limitations of this study also arise from 

the limited range of bearing types tested. The threshold of the vibration 

indicators established may only be applicable to the particular bearing models 

examined. Therefore, it restricts the applicability of the findings to other bearing 

types unless further validation is conducted. Another limitation in this study is 

the compatibility between data acquisition hardware and signal processing 

software. The data acquisition module should be able to transfer data to the 
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selected processing software without using any complicated middleware 

solutions. Lastly, complex diagnostics techniques will not be considered due to 

their high demand on computational time and power. 

 

1.6 Contribution of the Study 

This study makes several contributions to the field of bearing diagnostics. First, 

it evaluates the effectiveness and reliability of various vibration indicators in 

bearing monitoring. Next, it provides insights into the detection of localized 

faults in bearings through the use of envelope spectrum analysis. Lastly, it 

introduces various methods for inducing defects in bearings, offering new 

perspectives on bearing fault simulation. 

 

1.7 Outline of the Report 

This report consists of five chapters in total. Chapter 1 provides an introduction 

into background of the study, including the importance of predictive 

maintenance, the current problem statement, along with the objectives and 

contribution of the study. Chapter 2 is the literature review on researches 

performed by various academics. This chapter covers the review on bearing 

failure modes, review on bearing diagnostic methods and bearing prognostics 

methods. For instance, bearing diagnostic methods are further divided into time 

domain techniques, frequency domain analysis, and envelope analysis. Chapter 

3 explains the methodology and work plan of the experiment. This chapter will 

elaborate on the experimental setup of the study. This includes the preparation 

of defective bearings, the development of vibration monitoring algorithm, and 

lastly the procedure for test rig setup and data collection. Chapter 4 presents and 

discusses the results obtained from the experiment. The vibration analysis of 

bearings will be analysed based on acceleration waveform, envelope spectrum, 

and vibration indicators. Moreover, the prediction of remaining useful life and 

the validation of algorithm will also be explored. Finally, Chapter 5 concludes 

the findings from the study and provides possible recommendations for future 

work. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

In this chapter, a comprehensive overview of research relevant to bearing failure 

detection is provided. The main focus of this chapter is to explore bearing failure 

modes, bearing diagnostic methods, and prognostics techniques aimed at 

predicting bearing failures. 

 

2.2 Review on Bearing Defects 

In this subsection, various faults associated with bearings will be explored in 

detail while examining their underlying causes and failure mechanism.  

In ISO 15243 standard, bearing failure modes are classified into six 

different categories which include rolling contact fatigue, wear, corrosion, 

electrical erosion, plastic deformation, and lastly cracking and fracture 

(International Organization for Standardization, 2017). On the other hand, 

Patidar and Soni (2013) classifies rolling element bearing faults into two 

categories, namely distributed defects and localized defects. Distributed defects 

include surface roughness, waviness, misaligned races, and off-size rolling 

elements. Distributed faults are not actual surface damages, instead they are 

irregularities in the bearing geometry due to imperfect manufacturing, faulty 

mounting, and misuse (Dolenc, Boškoski and Juričić, 2016). Localized defects 

are such as cracks, pits, and spalls on rolling element surfaces. These defects 

occur as a consequence of various failure modes that will be explored in the 

following section.  

Surface roughness refers to irregularities or deviations such as peaks or 

valleys on the component surface. When surface roughness is significant, the 

ruggedness of the surface breaks through the lubricating film, comes in contact 

with the opposing surface, and results in increased vibration for the bearing 

(Kondhalkar and Diwakar, 2019). The stress distributions in near-surface region 

are proportional to the surface irregularities. High stress distribution is known 

to accelerates the creation of defects (Goepfert et al., 2008). 
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Waviness is defined as geometric imperfection of a ball, inner or outer 

race in a ball bearing. Waviness is always present in a ball bearing to varying 

degrees as a result of the manufacturing process, although it can also be 

generated by load or operating conditions (Jang and Jeong, 2004).  

Upadhyay, Harsha and Jain (2009) differentiates waviness and surface 

roughness by their respective wavelengths. Surface roughness refers to surface 

features that are characterized by short wavelengths which are comparable to 

the contact width. Conversely, waviness refers to features with wavelengths 

much greater than contact width. Waviness extends over a greater distance and 

influences the macroscopic profile of the surface. 

Misaligned races refers to a condition whereby the centreline of the 

inner race is not aligned with the centreline of the outer race. When bearing is 

misaligned, the rolling elements will exhibit uneven rolling paths. Typical 

causes of misalignment are improper assembly, bent shafts, and out-of-square 

shoulders on shafts or housings. 

Off-size rolling elements refer to bearing rolling elements that deviate 

from the specified dimensions or tolerances. Off-sized balls increases the 

contact stiffness between the bearing ball and the raceway, especially when the 

diameter deviation is significant. This subsequently increase the local stress 

concentration at the contact area, which accelerates wear and degradation (Neisi 

et al., 2018).  

 

2.3 Review on ISO 15243 Bearing Failure Modes 

This subsection delves into the distinct types of failure modes categorized by 

ISO 15243 standard. These failure modes include fatigue, wear, corrosion, 

electrical erosion, plastic deformation, cracking, and facture. 

 

2.3.1 Fatigue 

Rolling contact fatigue is induced by the repeated stresses developed in the 

contacts between rolling elements and the bearing races. Fatigue can be 

classified into subsurface-initiated and surface-initiated. 

Subsurface microcracks are initiated when the material undergoes 

structural changes under cyclic loading. Subsurface microcracks is often caused 

by inclusions (foreign particle) in bearing steel such as impurities or oxides. The 
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propagation of these microcracks to the surface will result in the detachment of 

material which causes spalling. Sub-surface-initiated spalling is significantly 

influenced by the microstructure of the material which is inherently 

inhomogeneous and possesses a topological disorder. Topological disorder 

refers to the non-uniform arrangement of grains and grain boundaries, which 

give rise to regions of stress concentration (Raje and Sadeghi, 2009). 

Fatigue can also be surface-initiated due to surface distress, which is the 

damage due to plastic deformation of the surface asperities (roughness). This 

leads to phenomenon such as smoothing, burnishing, and glazing. Contact 

between asperities is prompted by insufficient lubricant film thickness. Surface 

initiated fatigue can potentially lead to asperity microcracks and asperity 

microspalls as shown in Figure 2.1. 

 

 

Figure 2.1: Progression of spall formation on bearing raceway (International 

Organization for Standardization, 2017).  

 

2.3.2 Wear 

Wear, which is the progressive removal of material from surface, can be 

classified into abrasive wear and adhesive wear. Abrasive wear is the result 

when a hard surface or particle is cutting or ploughing on another surface due 

to sliding action. The abrasive wear process is self-accelerating since the 

quantity of hard particles increases as the material is worn away. The worn 

surfaces typically take on a dull appearance, however polishing effect may occur 

if the abrasives are very fine. 

Adhesive wear is identified by the transfer of material from one surface 

to another with frictional heat, while occasionally causes tempering or surface 

rehardening. Since this creates a localized stress concentration, the potential for 

cracking or spalling increases. Smearing (scuffing) occurs due to localized 

temperature spikes in poor lubrication conditions as shown in Figure 2.2. 



8 

Seizing occurs in severe cases of smearing. As opposed to wear, smearing is a 

sudden occurrence instead of an accumulated process. 

In Figure 2.3, El-Thalji and Jantunen (2015) segmented the wear 

evolution of bearing faults into five distinct stages which are running-in stage, 

steady-state stage, defect initiation, defect propagation, and damage growth. 

 

 

Figure 2.2: Smearing on the outer ring raceways of a spherical roller bearing 

(International Organization for Standardization, 2017). 

 

 

Figure 2.3: Evolution of surface topology in the wear evolution of bearing 

faults (El-Thalji and Jantunen, 2015). 

 

2.3.3 Corrosion 

Corrosion is a failure mode that takes place when bearing components come 

into contact with moisture, water, or acids. These aggressive media will cause 

oxidation or corrosion (rusting) and form corrosion pits. For instance, the water 

content in lubricant or degraded lubricant will react with the bearing elements 

and result in dark discolouration and corrosion pits. Rust can also develop in 

bearing via surface oxidation when the ambient humidity is high. Bearing will 
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be at high risk of corrosion when its protective covers is substandard which 

results in precipitation and condensation under fluctuating temperatures 

conditions (Malla and Panigrahi, 2019). 

 On the other hand, frictional corrosion (tribo-oxidation) can be 

triggered by the relative micromovements between mating surfaces which leads 

to surface oxidation and material loss in the form of powdery rust. Frictional 

corrosion can happen via two mechanisms which are fretting corrosion and false 

brinelling. 

Fretting corrosion happens in fit interfaces between components that 

transmits loads under oscillating micromovements. The surface becomes 

oxidized into discoloured blackish red. This type of corrosion is typically 

observed when the radial clamping by mounting fits is exceeded by the applied 

loads.  

False brinelling (vibration corrosion) typically applies to stationary 

bearings which mostly provide support and stand-by equipments which are 

occasionally operated. The cause of corrosion are micromovements and the 

elastic resilience of the contact surfaces under cyclic vibration. Malla and 

Panigrahi (2019) describes false brinelling as bearing wear due to quick motion 

of bearing balls in the raceway when machine is idling. As the bearing is lacking 

rotation, fresh lubricant cannot be replenished to the contact area, which 

promotes false brinelling. In stationary bearing, depressions are observed at 

regular intervals where the bearing balls contact the raceways as illustrated in 

Figure 2.4. The depressions mark may be discoloured reddish or shiny. In stand-

by equipment which receives vibrations from adjacent equipments, closely 

spaced flutes with bright or fretted bottoms will be developed.  

 

 

Figure 2.4: False brinelling on outer raceway of a tapered roller bearing 

(International Organization for Standardization, 2017). 



10 

2.3.4 Electrical Erosion 

The electrical discharge results in extremely rapid localized heating, which 

melts and weld the contact areas together. Electrical pitting can manifest as a 

series of bead-like craters with diameter up to 500 µm as shown in Figure 2.5. 

According to Prudhom et al. (2017), bearing currents pose a significant 

risk of damage to rotating machinery, especially in variable frequency drive 

(VFD) systems. These currents are present due to common mode voltage, which 

is the potential difference between the inverter output and earth. In smaller 

motors rated at less than 30 kW, common mode voltage induces a voltage drop 

between the inner and outer races of the bearing. Consequently, high frequency 

bearing current pulses flow through the bearing races. When the voltage 

difference equals the breakdown voltage of the bearing oil film, the currents will 

flow through the bearing itself. The currents may damage the contact surface on 

the bearing balls and races. Eventually, small craters appear on the surface in 

the form of arcing, pitting, and fluting. As illustrated in Figure 2.6, flutes may 

develop on the contact surfaces of roller and ring raceway if the damaging 

current continues to flow continuously. The lubricant that has been deteriorated 

by electrical current will also exhibit black discolouring and hardened 

consistency. 

 

  

Figure 2.5: Craters formed by excessive current on rolling element 

(International Organization for Standardization, 2017). 

 

  

Figure 2.6: Fluting on the inner ring raceway of a tapered roller bearing 

(International Organization for Standardization, 2017). 
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2.3.5 Plastic Deformation 

In this failure mode, permanent deformation is caused when the yield strength 

of material is exceeded. Plastic deformation is commonly a result of incorrect 

assembly methods and presence of foreign matter (Peng et al., 2022). Plastic 

deformation can occur on a macroscale or microscale, depending on the size of 

the contact footprint. For stationary bearing, the overloading by static load or 

shock load is known as true brinelling. Figure 2.7 shows that at the bottom of 

the depressions caused by overload, surface finish or residual machining marks 

are visible. Overloading can also be an aftermath of excessive preloading or 

incorrect handling during mounting. For rotating bearing, instantaneous 

overload can lead to fluting and depressions while permanent overload triggers 

the macroscopic deformation of the overloaded raceway circumference. 

Indentations of various sizes and shapes can also form on raceway as particles 

are over-rolled. The particles involved may include soft particles (fibres, 

plastics), hardened steel particles, or hard mineral particles (silica in oil). 

 

  

Figure 2.7: Overload on a stationary inner ring of an angular contact ball 

bearing (International Organization for Standardization, 2017). 

 

2.3.6 Cracking and Fracture 

Cracks propagate when the stresses experienced by a material surpass the 

ultimate tensile strength. This propagation leads to fracture, resulting in a 

complete separation of the material. Fracture can occur through various modes, 

including forced fracture, fatigue fracture, and thermal fracture. Forced fracture 

may be induced by impacts or excessive interference fits, while fatigue fracture 

arises when the fatigue strength limit is frequently exceeded under bending, 

tension, or torsion conditions. Lastly, thermal cracking occurs when sliding 
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motion generates significant frictional heating. Components made of hardened 

steel are particularly susceptible to thermal cracking due to localized 

rehardening and high levels of residual tensile stress. 

 

2.4 Review on Diagnostic Methods  

This subsection discusses the bearing fault diagnostic methods explored in 

research. The theoretical foundations, practical applications, and experimental 

results is discussed for each diagnostic method. 

 

2.4.1 Time Domain Techniques 

Time domain analysis focuses on analyzing the time-series data directly to 

identify patterns and trends associated with faults. Typically, statistical 

measures are used to provide quantitative descriptions of the distribution and 

central tendency of the vibration signal. Calculations can be performed to attain 

basic statistical parameters such as peak, peak-to-peak, mean, root mean square 

(RMS), crest factor, skewness, and kurtosis. Among these parameters, RMS, 

crest factor, and kurtosis are most commonly used to diagnose the condition of 

machinery. Skewness is generally known to be a weak indicator of bearing fault 

as it only measures the asymmetry of the signal. 

The assessment of peak value is the most intuitive method to detect any 

possible faults. When impacts occur due to defect such as spalling, the impulsive 

force generated by the damaged surface will cause acceleration to increase, 

resulting in a spike in the signal. Changes in peak amplitude of vibration in the 

frequency range of 10kHz is a good indicator of incipient damage (Sikora, 2015). 

However, the simplicity of this method means that it cannot detect subtle 

changes over time and it can be easily influenced by outlier data points. 

 

2.4.1.1 Root Mean Square 

One of the most widely used methods is to observe trend changes in the RMS 

level as calculated by Equation 2.1. Example of fault indicators include when 

RMS amplitude exhibit an increasing trend or when RMS increases relative to 

a healthy baseline. According to Sikora (2015), the RMS method can be refined 

by subdividing the sampling frequency into different octave or third-octave. As 
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the frequency band becomes narrow, a targeted analysis of RMS level in 

different range of interest can be performed.  

 

 𝑅𝑀𝑆 = √
∑ (𝑥𝑖)

2𝑁
𝑖=1

𝑁
 (2.1) 

 

where 

RMS = Root mean square of the signal 

N = number of data points 

x = amplitude of each data point 

i = index of data point  

 

The measurement of RMS is only useful when it is compared against 

predetermined threshold levels. For this purpose, standard such as ISO 10816-3 

and ISO 20816-3 (revised version of ISO 10816-3) provides the threshold for 

vibration evaluation using the RMS value or peak value of velocity 

measurement. This standard is applicable for machinery such as electric motors, 

rotary compressor, turbines, and generators. Vibration measurement is obtained 

by taking RMS of velocity on non-rotating parts, or by measuring the peak-to-

peak displacement on rotating parts. Ideally, the evaluation of the machine 

should often be performed based on measurements taken on both rotating parts 

and non-rotating parts. According to Figure 2.8, the determination of machine 

condition is dependent the machine type (classified by rated power and shaft 

height) and the flexibility of the machine support. By assessing the vibration 

against the machine type, the machine condition can be classified into newly 

commissioned (Zone A), acceptable for long-term operation (Zone B), 

unsatisfactory for long-term operation (Zone C), and sufficiently severe to cause 

machine damage (Zone D). (International Organization for Standardization, 

2022) 
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Figure 2.8: Threshold for vibration standard derived from ISO 10816-3 

(Ahmadi et al., 2020). 

 

2.4.1.2 K-factor 

The K-factor is a parameter defined as the product of RMS and peak vibration 

in the time domain. It is highly dependent on the rotational speed of the bearing 

as both RMS and peak values increase with higher speeds.  This means that the 

effect of speed on the K-factor is compounded, which makes it particularly 

sensitive to changes in operating conditions. K-factor will continue to increase 

for bearing with severe defects, making it a vibration indicator that is 

straightforward to interpret (Filippenko, Brown and Neal, 1999). According to 

Almeida and Almeida (2005), K-factor is effective in detecting changes in 

defect level in the bearing outer race. The indicator will not be influenced to 

decrease even as damage becomes more distributed. Moreover, K-factor is 

sensitive to detecting both small and large defect. This makes it more useful 

compared to other parameters such as RMS acceleration, peak acceleration, 

crest factor, and kurtosis. In short, K-factor has potential to be a sensitive 

vibration indicator for identifying both small and large defects, which 

contributes to the early detection of bearing failure. 

 

2.4.1.3 Crest Factor 

Crest factor is the ratio of the peak amplitude to the RMS amplitude of the signal. 

It is representative of the impulsiveness and spikiness of the vibration signal. A 
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high crest factor means the bearing is experiencing increased impact during 

operation. As illustrated in Figure 2.9, localized defect creates transient bursts 

of high energy in the vibration signal which increase the peak value but has no 

effect on the RMS value, resulting in increased crest factor. 

 

 

Figure 2.9: Comparison of crest factor between healthy and faulty bearing 

(Kondhalkar and Diwakar, 2019). 

 

To establish a threshold level, Pachaud, Salvetat and Fray (1997) found 

that the crest factor value of a Gaussian signal falls between 3 and 5 while Dron, 

Bolaers and Rasolofondraibe (2004) reported a range between 3 and 6. On the 

other hand, Patidar and Soni (2013) indicates the value of the crest factor for a 

healthy bearing is approximately five. All in all, the value of crest factor for 

bearing without fault should be less than 5. 

Crest factor is advantageous in actual operating conditions due to its 

simplicity and insensitivity to changes in bearing load and speed (Dyer and 

Stewart, 1978; Sikora, 2015). However, this method also comes with several 

drawbacks. First, the effectiveness of crest factor is dependent on the presence 

of significant impulsiveness (Aherwar and Khalid, 2012). For example, in the 

early stages of a bearing defect, the fault vibration is normally low compared 

with other vibration sources, thus making the detection difficult. At advanced 

stages where bearing damage is severe, crest factor will counterintuitively 

decrease because RMS of the vibration is very significant (Patidar and Soni, 

2013). 

 

2.4.1.4 Kurtosis 

Kurtosis is the normalized fourth statistical moment of the signal given by 

Equation 2.2. It is a measure of the tailedness of a signal relative to the normal 

distribution (Aherwar and Khalid, 2012). Similar to crest factor, kurtosis is also 

proportional to the spikiness of the vibration signal. A bearing in good condition 
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exhibits a Gaussian distribution of accelerations, characterized by the kurtosis 

value of 3. Kurtosis value greater than 3 indicates that the distribution is sharply 

peaked with heavy tails (Lord, Qin and Geedipally, 2021). According to Figure 

2.10, these features indicate that extreme values occur more frequently in the 

data. When kurtosis value is greater than 3, it indicates failure without the need 

for prior vibration history. The indication of damage first occurs in the lower 

frequency bands of around 3 to 5 kHz (Mathew and Alfredson, 1984). On the 

other hand, Kim (2013) suggested the use of kurtosis value greater than 7 as 

reference value for detecting substantial non-normality in large sample data (n > 

300). Kurtosis is found to be particularly effective in the detection of incipient 

faults in narrow bands at high frequencies. Kurtosis value is sensitive to 

rotational speed because the time interval between the occurrence of successive 

fault events reduces at high rotational speed. Hence, vibration signal becomes 

more impulsive and transient, thereby increasing the kurtosis (El-Thalji and 

Jantunen, 2015). In order for kurtosis to be effective, the frequency of shock 

repetition must be between 2.5 and 3 times of the shock relaxation time (Dron, 

Bolaers and Rasolofondraibe, 2004). 

 

 𝑘 = ∑
[𝑥(𝑛)−𝜇]4

𝑁(𝜎2)2
𝑁
𝑛=1  (2.2) 

 

where 

x(n) = amplitude of time series 

μ = mean value  

N = total number of data points 

σ = variance  

 

 

Figure 2.10: Comparison between different values of kurtosis (Xie et al., 

2022). 
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2.4.2 Frequency Domain Analysis 

Frequency-domain analysis is a signal processing technique which involves the 

transformation of time-domain signal into its frequency components. This 

decomposition of time waveform is commonly performed using Fast Fourier 

Transform (FFT). The result of the transform, referred to as spectrum, describes 

the magnitude and phase characteristics of a signal as a function of frequency. 

 

2.4.2.1 Spectrum Analysis 

In spectrum analysis, the main frequencies of interest are the four characteristics 

fault frequencies of bearing which are cage fault frequency, outer raceway fault 

frequency, inner raceway fault frequency, and rolling element fault frequency. 

The frequencies can be determined using Equation 2.3 to Equation 2.6. Cage 

fault frequency or FTF (fundamental train frequency) is the frequency generated 

by defective bearing cage. Outer raceway fault frequency or BPFO (ball pass 

frequency outer) is defined as the fundamental vibration frequency when the 

ball passes over the defect on the bearing outer race. Rolling element fault 

frequency is the pulse repetition rate due to the interaction between defective 

rolling element and adjacent surfaces. This fault frequency is twice the value of 

ball spin frequency (BSF), which is the angular frequency of the spinning rolling 

element (Malla and Panigrahi, 2019; Prudhom et al., 2017; Patidar and Soni, 

2013). On the other hand, distributed faults produce more complicated vibration 

patterns. The response of distributed faults is characterized by two dominant 

impulse responses at the entry and exit of the faulty area, and a series of minor 

vibrations caused by the roughness in the faulty area (Dolenc, Boškoski and 

Juričić, 2016). 

 

 𝐹𝑐𝑎𝑔𝑒 =
1

2
[1 −

𝐷𝐵

𝐷𝑃
𝑐𝑜𝑠 𝛽]𝐹𝑅  (2.3) 

 𝐹𝑖𝑛𝑛𝑒𝑟 =
𝑁𝐵

2
[1 +

𝐷𝐵

𝐷𝑃
𝑐𝑜𝑠 𝛽]𝐹𝑅  (2.4) 

 𝐹𝑜𝑢𝑡𝑒𝑟 =
𝑁𝐵

2
[1 −

𝐷𝐵

𝐷𝑃
𝑐𝑜𝑠 𝛽] 𝐹𝑅 (2.5) 

 𝐹𝑏𝑎𝑙𝑙 =
𝐷𝑃

𝐷𝐵
[1 − (

𝐷𝐵

𝐷𝑃
cos 𝛽)

2

] 𝐹𝑅  (2.6) 
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where 

NB = Number of rolling elements 

DB = Ball or roller diameter 

DP = Pitch diameter 

β = Contact angle 

FR = Shaft speed (Hz) 

 

However, the characteristics fault frequencies are just a theoretical 

value as discrepancies arise especially when bearings carry significant thrust 

loads or when slippage exists (McInerny and Dai, 2003). The slip experienced 

by rolling elements can cause a constant or random deviations in kinematics 

frequency. Moreover, when the defect is experiencing variation in load 

distribution, the impacts will be modulated in amplitude. Due to load 

modulation, sideband effects are pronounced when the fault is located on 

rotating parts. This means spectral components are expected to appear around 

the main spectral lines (Renaudin et al., 2010).  

The vibrations signal of bearing is dominated by high-level imbalance 

and misalignment components while also contains friction-induced random 

vibrations. Imbalance vibration occurs at the frequency of shaft revolution 

(known as the 1X), while misalignment appears at the fundamental (1X) and its 

harmonics. The spectral components associated with the ringing pulse sequence 

(bearing defects) are not integer harmonics of the fundamental, making them 

distinct compared to other vibrations. However, these components can easily be 

lost in the background vibration noise since their amplitude is relatively small. 

Hence, conventional spectral analysis has its limitations especially when the 

background vibration is large enough to bury the components of ringing pulse 

sequence (McInerny and Dai, 2003). 

 

2.4.2.2 Cepstrum 

Cepstrum is defined as the inverse Fourier transform of the log spectrum. It is 

obtained by applying FFT to the time-domain signal, subsequently determining 

its natural logarithm of magnitude, and lastly performing inverse FFT. 

According to (Randall and Sawalhi, 2011) it has been long established that 

editing in the cepstrum will lead to the removal of harmonics and sidebands 
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from the spectrum. A new method is further proposed to achieve the separation 

of periodic components (bearing signal) from random components (gear signals) 

in a signal. The periodic primary signal is measured on a faulty bearing while 

the random reference signal is measured on a remote healthy bearing. The 

separation of these two components leads to the de-noising of bearing vibration 

data.  

Based on Figure 2.11, after the real cepstrum is obtained, the rahmonics 

(uniformly spaced components in the cepstrum) associated with the harmonics 

and sidebands families are removed. The edited cepstrum then goes through 

FFT and combines with the original phase spectrum. This results in the creation 

of complex log spectrum which is then passed through IFFT to obtain the time 

signal. The time signal will no longer contain random vibrations induced by gear 

mesh, which increases the clarity in fault detection. All in all, cepstrum is a 

useful technique in de-noising and filtering applications in vibration analysis. 

 

 

Figure 2.11: Schematic diagram of the cepstral method for the removal of 

harmonics and sidebands (Randall and Sawalhi, 2011). 

 

2.4.3 Time-Frequency Analysis 

Time-frequency analysis is a signal processing technique utilized to analyse 

non-stationary signals which have varying frequency content over time. 

Qualitatively, time-frequency transforms can be divided into discrete and 

continuous. According to Prudhom et al. (2017), time-frequency analysis is 

advantageous as the preservation of time information means it has the ability to 

visualize the progressive degradation of the bearing while discriminating 
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against unrelated frequencies. Time-frequency map is capable of illustrating the 

amplitude evolution of fault-related frequencies in a single plot. Characteristic 

t-f patterns then can be observed to diagnose bearing faults. This method is said 

to be highly reliable and rarely yields false positives. However, the technique 

has a drawback whereby transient component in the TF plane has wider spread 

compared to the original time domain. Hence, this results in reduced accuracy 

in time locating for transient events. 

 

2.4.3.1 Short-Time Fourier Transform 

In Short-Time Fourier Transform (STFT), the concept of local frequency is 

utilized by applying the Fourier transform to the signal using a sliding window 

shown in Figure 2.12. This effectively treats the signal as stationary within each 

window (Boudinar et al., 2019). The frequency composition in each time 

fragment can be evaluated and the result will be represented as a two-

dimensional time-frequency map. As shown in Equation 2.7, STFT is performed 

by multiplying the input signal with a window function, subsequently applying 

Fourier transform on the product. However, the major drawback of STFT is the 

inability to achieve good resolutions in time and frequency domains 

simultaneously due to the Heisenberg uncertainty principle (Lee, 2013). 

 

 

Figure 2.12: Sliding window concept in STFT (Boudinar et al., 2019). 

 

 STFT {𝑥(𝑡)}(𝜏, 𝜔) ≡ 𝑋(𝜏, 𝜔) = ∫ 𝑥(𝑡)
∞

−∞
𝑤(𝑡 − 𝜏)𝑒−𝑖𝜔𝑡𝑑𝑡 (2.7) 

 

where 

𝑋(𝜏, 𝜔) = Fourier transform of 𝑥(𝑡)(𝑡 −  𝜏 ) 

𝑥(𝑡) = Signal to be transformed 

𝑤 (𝑡 − 𝜏) = Sliding window function  



21 

𝜏 =  Window function centered to zero 

𝜔 = Frequency 

 

In adaptive STFT, the window length changes dynamically in response 

with the variations in vibrations. The length of the local window is affected by 

change in the local instantaneous frequency (IF). This means if the variation of 

the IF happens rapidly, a short window length will be applied. This method 

yields a clearer resolution in both time and frequency when compared to 

standard STFT. The diagnostic capability of this technique is illustrated in 

Figure 2.13. There are five prominent peaks appearing within a 0.1-second 

period, which suggests that chattering is occurring every 0.02 seconds (Lee, 

2013). 

It is also possible to performing windowing in the frequency domain 

as demonstrated by Mateo and Talavera (2018). The window size is defined as 

a fixed number of cycles of each frequency. This approach does not need band-

pass filter banks which is required in multi-resolution STFT to capture signal 

components at multiple scales. Moreover, there will be no evaluation of local 

signal characteristics such as instantaneous frequency or amplitude variations, 

unlike in adaptive STFT. This technique can deliver good resolution in time and 

frequency domain simultaneously; however, it requires significant computation 

time.  

 

 

Figure 2.13: Time-frequency contour plots using adaptive STFT scheme (Lee, 

2013). 
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2.4.3.2 Spectral Kurtosis 

Spectral kurtosis (SK) is a statistical parameter indicating how the 

impulsiveness of a signal varies with frequency. Typically, SK is applied as a 

band-pass filter to retain the impulsive components while significantly reducing 

the background noise. This is because SK is effective in identifying the 

frequency bands dominated by the bearing fault signals, which usually included 

fault-excited resonance frequencies. At frequencies where the signals are 

predominantly stationary, the SK is effectively zero. The determination of these 

optimum frequency bands along with the center frequency is crucial for the 

accuracy of envelope analysis technique. 

According to Figure 2.14, the spectra obtained from each time window 

are arranged in a three-dimensional diagram with a time axis and a frequency 

axis. This makes the intensity of each frequency component to be observable 

over a period of time. Subsequently, SK is calculated for each frequency line in 

the time direction (Randall and Sawalhi, 2011). Peaks in the spectral kurtosis 

spectrum means impulsive activity is significant in the particular frequency 

bands, which is an indication of bearing abnormality. However, SK can be easily 

influenced by background noise. Hence, proper preprocessing methods such as 

denoising and filtering on the raw signal is important to increase the reliability 

of SK (Xiang, Zhong and Gao, 2015). 

 

 

Figure 2.14: Calculation of SK for a simulated bearing fault signal (Sawalhi 

and Randall, 2011). 
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2.4.3.3 Wavelet Analysis 

Wavelet transform is a technique for the simultaneous analysis in both domains 

using the concept of wavelets. Wavelet analysis is useful in providing a signal 

representation with multi-resolution in time and frequency, which facilitates 

fault detection. Wavelet tools are powerful due to its ability to zoom in on any 

time intervals without sacrificing spectral information (Al-Badour, Sunar and 

Cheded, 2011). In order to focus on the low frequency components, longer time 

interval is applied, and vice versa. 

Tse, Peng and Yam (2001) defines wavelet analysis as a scale-time 

decomposition of a temporal signal, x(t), into components 𝜓 (
𝑡−𝑏

𝑎
) which are 

localized in time. The transformation of basis wavelet and the wavelet transform 

of input signal is computed using Equation 2.8 and Equation 2.9 respectively. 

Wavelet analysis is initiated by the selection of mother wavelet (basis wavelet), 

which is a waveform with average value of zero, and is only effective in a 

limited duration. The selection of basis wavelets is crucial as it significantly 

affect the analysis outcome. Examples of basis wavelets include Haar wavelet, 

Daubechies wavelets, Morlet wavelet, Mexican hat wavelet, and Gaussian 

wavelet as partially shown in Figure 2.15. Morlet and Gaussian wavelets to be 

the best at representing vibration signal as they consist of harmonic oscillation 

with singularity (Al-Badour, Sunar and Cheded, 2011). This effectively imitates 

the background noise and the bearing fault. 

Using the basis wavelet, operations such as stretching and shifting is 

performed on the basis wavelet to generate wavelets family for analysis. The 

scaling parameter will apply stretching or compression on the basis wavelet, 

while the time shifting parameter moves the wavelet along the time axis. The 

result of wavelet transform will be obtained by determining the product of the 

complex conjugate of the modified wavelet and the input signal. 

 

 𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓(

𝑡−𝑏

𝑎
) (2.8) 

 

where 

𝜓(
𝑡 − 𝑏

𝑎
) = scaled and shifted version of basis wavelet 
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𝑎 =  scaling parameter  

𝑏 =  time shifting parameter 

 

 𝑊𝑥(𝑎, 𝑏) = ∫ 𝑥(𝑡)
+∞

−∞
𝜓𝑎,𝑏

∗ (𝑡) 𝑑𝑡 (2.9) 

 

where 

𝑊𝑥 = Wavelet transform of the signal 

𝑥(𝑡) = Input signal 

𝜓𝑎,𝑏
∗ (𝑡) = Complex conjugate of the modified wavelet 

 

 

Figure 2.15: Examples of different types of mother wavelets (Salles et al., 

2020). 

 

The diagnosis capability of wavelet analysis is demonstrated by Tse, 

Peng and Yam (2001). Healthy bearing is found to have low energy level in the 

low frequency range under 2 kHz, where the majority of the macrostructural 

vibrations are located. For a bearing with race fault, the presence of dark 

coloured contours indicates that the energy levels in the low frequency range is 

high, with an increase of up to 20 dB. The time interval between impact 

occurrence can be measured based on difference between dark coloured strips. 

In Figure 2.16, the interval is estimated to be 4.5 ms, which validates the 

theoretical outer race fault frequency of 222 Hz. 

 



25 

 

Figure 2.16: Time-frequency map of outer-race defect using wavelet analysis 

(Tse, Peng and Yam, 2001). 

 

2.4.4 Envelope Analysis 

Envelope analysis involves the extraction of envelope of a modulated signal to 

highlight its low-frequency variation. The envelope is the curve that tracks the 

maximum amplitude of a signal, which represents the smoothed version of the 

vibration signal When a localized defect is created on the bearing, it generates 

a characteristic fault frequency, which causes amplitude modulation on the 

resonance frequency of the bearing housing (Feng et al., 2015). Amplitude 

modulation here refers to the multiplication of the high-frequency resonance 

signal by a low-frequency fault frequency signal. When a signal is modulated, 

its spectrum will have a peak at the carrier frequency, while having sidebands 

spaced at intervals determined by modulation frequency. The modulating 

frequency is important to be determined as it corresponds to the fault frequency. 

However, it is practically impossible to resolve the sidebands from the 

conventional spectrum due to the limited spectral resolution. Hence, techniques 

such as bandpass and demodulation is utilized. Generally, the procedure of 

envelope analysis consists of bandpass filtering, rectification, and lastly Fourier 

transform (McInerny and Dai, 2003). 

Bandpass filtering is used to allow signals within the passband while 

attenuating signal outside of the range. The passband is established to remove 

random noise and attenuate signal components related to imbalance and 

misalignment, which are typically low-frequency and high amplitude 
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(McInerny and Dai, 2003). The centre frequency of the passband should be 

selected to coincide with the resonance frequency of the structure. Next, the 

bandwidth should be a minimum of two times the highest bearing characteristic 

defect frequency. The technique of spectral kurtosis can also be applied to select 

the appropriate centre frequency and bandwidth (Patel, Tandon and Pandey, 

2012).  

In rectification, the bipolar filtered signal is converted into a unipolar 

signal. This rectification is often performed using Hilbert transform (HT), which 

mathematically shifts the phase of the input signal by 90°. To achieve Hilbert 

transform, the input signal (xin) is first passed through the FFT to produce Xin. 

Xa is calculated using Equation 2.10 before it is processed via IFFT to obtain the 

analytic signal (xa). The analytic signal is a complex signal where the real part 

represents the original signal and the imaginary part is the Hilbert transform of 

that signal (Feng et al., 2015).  

Since, the product of a complex conjugate pair is positive and real, 

Equation 2.11 essentially computes the square of complex magnitude and 

subsequently takes its square root to obtain the envelope signal. After removing 

the envelope mean value from the envelope signal, FFT is applied to obtain the 

envelope spectrum as shown in Equation 2.12. Hanning window functions are 

included to reduce the spectral leakage. 

 

 𝑋𝑎(𝑛) = {

𝑋𝑖𝑛(𝑛), 𝑖𝑓 𝑛 = 0, 𝑁/2 

2[𝑋𝑖𝑛(𝑛)], 𝑖𝑓 0 < 𝑛 < 𝑁/2  

0,  𝑖𝑓 𝑁 2⁄ < 𝑛 < 𝑁  

 (2.10) 

 

where 

𝑋𝑎 = FFT of analytic signal, 𝑥𝑎  

𝑋𝑖𝑛 = FFT of input signal, 𝑥𝑖𝑛  

𝑛 =  Index of data sequence with the length of 𝑁 

 

 𝑥𝑒𝑛𝑣 = √(𝑥𝑎) ∗ 𝑐𝑜𝑛𝑗(𝑥𝑎) (2.11) 

 𝑋𝑒𝑛𝑣 = | FFT(𝑥𝑒𝑛𝑣 − 𝑥𝑒𝑛𝑣̅̅ ̅̅ ̅̅ ) ∗ ℎ𝑎𝑛𝑛(𝑁) | (2.12) 

 

where 
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𝑋𝑒𝑛𝑣 = Envelope spectrum 

𝑥𝑒𝑛𝑣̅̅ ̅̅ ̅̅ = mean value of the envelope 

ℎ𝑎𝑛𝑛(𝑁) =  Hanning window  

 

The square of the absolute value of envelope spectrum, or  squared 

envelope spectrum (SES) is utilized with computed order tracking (COT) to 

minimize the impact of speed fluctuations. Computed order tracking is a method 

which is based on multiples of the rotational speed called orders, instead of 

absolute frequencies. The vibration data is first sampled at constant rate and 

resampled to constant angular increments using the computed order tracking 

software. The analysis of angular-resampled signal is more invariant towards 

speed variations (Borghesani et al., 2013). 

The analysis result of envelope spectrum are presented by Feng et al. 

(2015), which carried out vibration monitoring using wireless sensor network. 

As depicted in Figure 2.17 (b), the spectral components outside of the passband 

is attenuated which provides focus on the bearing defect frequencies. As 

anticipated, the envelope signal shown in Figure 2.18 (a) closely matches with 

the filtered signal in Figure 2.17 (a). From Figure 2.18 (b), three distinct peaks 

are observed in the low frequency region while components above 500 Hz are 

suppressed. The peaks registered frequencies of 87.9 Hz, 170.9 Hz and 258.8 

Hz respectively, which match the first three harmonics of outer race fault 

frequency shown in Figure 2.19. Moreover, when the results of envelope 

spectrum from four different nodes are averaged, the spectral peaks become 

more pronounced, which leads to a reliable diagnostic result. 

 

 

Figure 2.17: Band-pass filtered signal: (a) Signal waveform; (b) frequency 

spectrum (Feng et al., 2015). 

 

a) b) 
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Figure 2.18: Envelope signal: (a) Signal waveform; (b) frequency spectrum 

(Feng et al., 2015). 

 

 

Figure 2.19: Envelope spectrum magnified in low frequency range for the 

faulty roller bearing (Feng et al., 2015). 

 

2.4.5 Statistical Process Control 

Statistical process control (SPC) is the application of statistical methods to 

monitor process and analyse trend, commonly in manufacturing settings. In 

bearing fault detection, SPC can be employed to detect any abnormal variations 

or trends in the vibration data, which serves as indication for potential 

degradation. In SPC, a core concept called Shewhart theory states that all 

processes exhibit variation, which is either caused by common cause or special 

cause. When a process is statistically controlled, it is operating in a steady state 

without presence of special cause variation. Control charts such as mean chart 

and range chart are used to monitor the process data by comparing it to the 

predetermined control limits. The signal is considered out of control if there is 

data point located beyond the limits, if there is a series of rising or falling trend, 

or if there is a run above or below the mean value (Oakland, 2007, pp.105–112). 

a) b) 
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In the practical application of SPC, historical data is crucial for the 

understanding of the monitored process and effectiveness of the method. Wang 

and Zhang (2008) demonstrated that the failure evolution of bearing is a two-

stage process. Conventional SPC theory can be used to determine the initiation 

point of the defect. For the determination of initiation point, data from normal 

operation is used to establish the mean and the control limits. The vibration level, 

where all test bearings behaves similarly, is selected to be the threshold level. 

Variations from the control limits shown by Equation 2.13 and 2.14 indicates 

that the defect has been initiated. As shown in Figure 2.20, the bearing vibration 

starts to surpass the action line at around 900 hours of operation, indicating fault 

formation. 

 

 Action limit = 𝜇 + 3𝜎 (2.13) 

 Warning limit = 𝜇 + 2𝜎 (2.14) 

 

where 

μ = mean value  

σ = standard deviation  

 

Saidy et al. (2020) demonstrated the use of cumulative sum (CUSUM) 

control chart to improve detection on small process shifts. First, the target mean 

of µ0 is determined using data from in-control process to serve as the baseline. 

If a process is operating within control at µ0, the cumulative sum will be a 

random walk (sequence) with a mean of zero. However, when the mean become 

greater than µ0, the cumulative sum will increase, indicating a upward shift in 

the overall process mean. Figure 2.21 shows the application of the CUSUM 

chart in the bearing monitoring of aircraft gearbox. The gray points indicate data 

points within control while points in red represents possible fault modes. 
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Figure 2.20: Shewhart mean chart for bearing monitoring method (Wang and 

Zhang, 2008). 

 

 

Figure 2.21: Fault detection on roller bearing in an aircraft gearbox (Saidy et 

al., 2020). 

 

2.5 Review on Prognostics Methods  

This subsection examines several prognostic methods used for the estimation of 

remaining useful life. Example of prediction methods include support vector 

machine and recursive least square. 

 

2.5.1 Prognosis in Predictive Maintenance 

Predictive maintenance is a maintenance strategy that uses data analytics to 

predict the failure point of equipment, which allows the component to undergo 

maintenance before it critically fails. The prediction of machine condition leads 

to prolonged usage of the machinery and reduced down time. When effective 
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prognostic methods are in place, sufficient lead time is available to acquire 

replacement parts and schedule maintenance work. 

Prognosis refers to the ability to predict the future health and 

degradation of the machinery based on existing data. Typically, prognosis 

focuses on estimating the remaining useful life and the progress of deterioration. 

Remaining useful life (RUL) is defined as length from current condition to the 

end of use of an asset (Liu et al., 2018). The accurate prediction of RUL is 

crucial for optimizing the operational lifespan of equipment. 

There are two types of methods in prognosis, namely physics model-

based and data-driven (statistical and machine learning) (El-Thalji and Jantunen, 

2015; Kim et al., 2012). In this study, the focus will only be on the data-driven 

methods. The data-driven approaches are based on the past historical data 

obtained from the monitoring system. The main assumption taken is that the 

statistical characteristics of the dataset is relatively constant, unless if 

abnormality happens to the system. For the prediction to be effective, the 

degradation model, assessment of the current state (diagnostic) and knowledge 

of failure pattern needed to be optimized. After feature extraction (feature 

selection), the dataset are trained using classification algorithms. The estimation 

of health states is performed using classification algorithms such as Support 

Vector Machines, Linear Regression, and Artificial Neural Networks (Kim et 

al., 2012).  However, due to the complexity of neural networks, they fall outside 

the scope of this study and will not be discussed. 

 

2.5.2 Support Vector Machines 

Support Vector Machines (SVM) is a supervised machine learning algorithm 

which predicts the target value (class labels) of the data points when provided 

with the attributes (features) (Hsu, Chang and Lin, 2016). The training vectors 

(input-output pairs) are mapped into higher dimensional space. As shown in 

Figure 2.22, SVM model determines a linear separating hyperplane which 

maximizes the margin between different classes. The larger the margin between 

the hyperplane and the nearest vector from each class, the better the performance 

of the model against new data.  
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Figure 2.22: The separation of two classes performed by SVM (Yang and 

Prayogo, 2022). 

  

Kim et al. (2012) demonstrated the usage of SVM for multi-

classification of health stages using the  ‘‘one-against-one’’ method. First, 

diagnostic is performed to obtain relevant time domain parameters and 

frequency domain parameters as shown in Table 2.1. These parameters serve as 

features for the classification of health states with SVM. In Figure 2.23, the 

bearing degradation is assumed to follow a series of discrete health states, taking 

into account the nonlinear nature of failure and the presence of dynamic 

processes. The probability distribution of each health state with respect to time 

also naturally overlaps. After finding the probability of each health states from 

multi-classification, the prediction of RUL is performed using Equation 2.15. 

The prediction model is affected by the health state probabilities at a particular 

time, and the historical remaining life of each health state. 

 

 RUL(𝑇𝑡) = ∑ Pr(𝑆𝑡 = 𝑖|𝑥𝑡⃗⃗  ⃗ , … , 𝑥 𝑡+𝑢−1) ∙ 𝜏𝑖
𝑚
𝑖=1  (2.15) 

 

where 

Tt = specific point in time  

Σ Pr = sum of probabilities 

𝑥𝑡⃗⃗  ⃗ = observed features at time (t) 

St = probabilities of each health state at time (t) 

τi = historical remaining life for each trained health state (i) 

m = number of health state 
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From Figure 2.24, the probability of first state is observed to begin at 

100% and decreases gradually. When the first state probability is declining, the 

second state probability will increase at the same rate. The overlaps between the 

health states and the non-uniformity of the distribution is due to dynamic 

processes, uncertainty in machine health, and possible inappropriate acquisition 

of data. As illustrated in Figure 2.25, the overall trend of the predicted RUL 

matches the gradient of the actual RUL. The average prediction accuracy was 

also high, standing at 94.4% across the whole dataset. 

 

Table 2.1: Selection of feature parameters and its attributed feature number in 

square bracket (Kim et al., 2012). 

Position Time domain parameters Frequency domain 

parameters 

Acc. (A) Mean [1], RMS [2], Shape 

factor [3], Skewness [4], 

Kurtosis [5], Crest factor [6] 

RMS frequency value [11], 

Frequency centre value [12] 

Acc. (B) Entropy estimation value [7], 

Entropy estimation error [8], 

Histogram upper [9] and 

Histogram lower [10] 

Root variance frequency [13] 

and Peak value [14] 

 

 

Figure 2.23: Discrete health states in the machine degradation (Kim et al., 2012). 
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Figure 2.24: Probability distribution of each health state obtained from open test 

(Kim et al., 2012). 

 

 

Figure 2.25: Comparison between actual RUL and predicted RUL for open test 

(Kim et al., 2012). 

 

2.5.3 Recursive Least Square 

Recursive Least Squares (RLS) is a technique used to estimate the parameters 

of a linear regression model recursively over time as data is sequentially 

available. Rocchi et al. (2014) demonstrated a prognosis algorithm based on the 

prediction of the deterioration with vibration acceleration as input. The system 

is modeled so that the trend of deterioration follows an exponential pattern as 

shown in Equation 2.16. The model parameters are important in representing 

the characteristics of the system. Hence, they will be determined and updated 

using a Recursive Least Square algorithm with a Forgetting Factor (RLSFF) as 

shown in Equation 2.17. Forgetting Factor allows the algorithm to assign less 

weight to older data points while providing more importance to new data entries. 

RLS updates the model parameters based on the error between predicted and 

actual acceleration signals, assuming that wear is proportional to vibration. 

Finally, the prediction of acceleration signal is computed based on the actual 

measured signal and the model parameters as shown in Equation 2.18. The 

algorithm can successfully predict the eventual rise of the acceleration signal 
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for actual faults. In Figure 2.26, the red line represents the threshold value. As 

the predicted signal exceeds the threshold value, it indicates that the equipment 

will experience failure in the near future. 

 

 𝑦(𝑡𝑘) = 𝑤1 ∙ 𝑒𝑤2 ∙𝑡𝑘 (2.16) 

 

where 

y(tk) = predicted acceleration at time tk 

tk = time instances between consecutive samples in data 

w1 = model parameters representing scale factor 

w2 = model parameters representing decay rate 

 

 𝒘(𝑡𝑘+1) = 𝒘(𝑡𝑘) +  𝑲(𝑡𝑘) ∙ 𝑒(𝑡𝑘) (2.17) 

 

where 

w(tk) = parameters vector 

K(tk) = gain vector 

e(tk) = error signal 

 

 𝑦(𝑡𝑘+𝑖) = 𝑑(𝑡𝑘) + 𝑤1(𝑡𝑘) · 𝑒𝑤2(𝑡𝑘)(𝑡𝑘+𝑖) − 𝑦(𝑡𝑘) (2.18) 

 

where 

y(tk+i) = predicted acceleration at time tk+i 

d(tk) = actual measured acceleration signal at time tk  

y(tk) = predicted acceleration at time tk 
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Figure 2.26: Prediction of vibration acceleration signal in an event of actual 

fault (Rocchi et al, 2014).  

 

2.6 Summary 

In summary, a comprehensive review of literature has been conducted for the 

understanding of bearing fault detection. First, the defect types and failure 

modes of bearing have been explored to provide an insight on the underlying 

mechanisms. Next, the signal processing techniques used to diagnose bearing 

faults are discussed in detail. The diagnostic of fault can be performed in either 

time domain, frequency domain, or time-frequency domain. Lastly, the review 

covers the prediction of RUL through the use of SVM and RLS. 

A significant research gap in the current study is the absence of 

standardized thresholds for key vibration indicators such as the k-factor, crest 

factor, and kurtosis. Additionally, the research lacks a comprehensive analysis 

of the vibration indicators that offer the highest effectiveness, which limits the 

detection of bearing failures. There is also a notable lack of comparison with 

commercial vibration monitoring systems, which makes the practical 

performance of the proposed monitoring methods unclear. Lastly, some of the 

techniques explored may be too computationally intensive for real-time 

monitoring and predictive maintenance applications in industrial settings. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter outlines the overall work plan for the study and provides a detailed 

explanation of the methodology used in setting up the experiment. The process 

of preparing defective bearings will be stated in detail. Following this, the 

procedures for setting up the experimental test rig and collecting data will be 

outlined. Finally, the development of the vibration monitoring algorithm will be 

explored. 

 

3.2 Work Plan 

Figure 3.1 illustrates the work plan followed in this study, which was employed 

to develop an effective vibration monitoring algorithm and prepare defective 

bearings for experimental use. The algorithm was then evaluated through 

experiments to test its effectiveness and reliability. 
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Figure 3.1: Flowchart of work plan. 
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3.3 Experimental Setup 

3.3.1 Component Specification 

The main components used in this setup are a data acquisition system, 

accelerometer, AC motor, variable frequency drive, and ball bearings. The 

technical specifications of these components are summarized in Table 3.1. 

The NI-9234 data acquisition system, as shown in Figure 3.2, was 

selected due to its high sampling rate. This data acquisition system (DAQ) has 

the capability to obtain 51200 samples per second which is equivalent to 51.2 

kHz when utilizing only one channel. Since it has a total of 4 channels, it is 

capable to support inputs from multiple accelerometers if required. With a 

resolution of 24 bits, the digital signal can be represented with a high accuracy 

(National Instruments, 2024). 

 In Figure 3.3, Kistler 8704B50T accelerometer was selected to 

measure acceleration experienced by the bearing as representation of vibration. 

This piezoelectric accelerometer has a wide measuring range which is suitable 

for the experiment. Most importantly, it can effectively capture frequencies in 

the range of 0.35 kHz to 10 kHz. This is because it is able to detect the bearing 

fault frequencies which are typically in the medium to high frequency range. 

Lastly, it has a low transverse sensitivity which means it is less likely to detect 

acceleration in different axes from the main sensing direction (Kistler 

Instrument Corporation, 2008). 

 For the ball bearings, the Asahi UC201 and SKF 6002 were selected 

for the experiment, as illustrated in Figure 3.4. The Asahi UC201 was chosen 

because its pillow block housing can be easily mounted on the test rig. 

Additionally, it features a set-screw locking mechanism that prevents rotational 

slip between the shaft and the bearing. The SKF 6002 was selected to provide 

analysis results for bearings of different diameters. To assemble the 6002 

bearing on the same test rig, a steel housing and shaft were designed and 

fabricated, as shown in Figures 3.5 and 3.6, respectively. The 6002 bearing was 

secured in the housing with a housing shoulder and an acrylic cover. The 

housing and shaft were fabricated with a 0–5 µm interference fit with the 

bearing to ensure a tight, slip-free assembly. 

The AC motor used in the setup is a Siemens D-91056, it was 

connected to a Delta Electronics VFD007L21A variable frequency drive. The 
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AC motor and VFD are displayed in Figure 3.7 and Figure 3.8 respectively. This 

enables the flexible adjustment of the rotational speed of the motor. Equation 

3.1 is used to correlate the VFD frequency to the actual motor speed. Since the 

motor has 4 poles, the motor will be operating at 1500 RPM when it is supplied 

with 50 Hz frequency.  

 

 𝑁𝑠 =
120𝑓

𝑝
  (3.1) 

 

where 

NS = synchronous speed (RPM) 

f = frequency of supply (Hz) 

p = number of poles  

 

Table 3.1: Model name and technical specifications for each component. 

Description Model Name Technical Specifications 

Data acquisition 

system (DAQ) 

NI-9234  Sampling rate = 51.2 kS/s 

Number of channels = 4 (analogue) 

ADC resolution = 24 bits 

Input measurement range = ± 5 V 

Accelerometer Kistler 

8704B50T 

Measuring range = ± 50g  

Sensitivity = 100 mV/g 

Transverse sensitivity < 1.5% 

Supply voltage = 18 V to 30 V 

Frequency response = 0.35 kHz to 10 kHz 

Minimum threshold = 0.005 grms 

AC Motor Siemens  

D-91056  

Number of Pole = 4 

Frequency = 50 / 60 Hz 

Rated Power = 0.37 / 0.45 kW 

Rated Speed = 1370 RPM / 1670 RPM 

Variable 

Frequency 

Drive 

Delta 

Electronics  

VFD007L21A 

Input = 3-phase 5.1A 200-240V 50/60Hz 

Output = 3-phase 0-240V 4.2A 1HP 

Frequency range = 1-400 Hz 

Ball Bearings Asahi UC201 Bore diameter = 12 mm 
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Outer diameter = 47 mm 

Width = 17 mm 

SKF 6002 Bore diameter = 15 mm 

Outer diameter = 32 mm 

Width = 9 mm 

 

 

Figure 3.2: NI-9234 data acquisition system. 

 

 

Figure 3.3: Kistler 8704B50T Accelerometer. 

 

 

Figure 3.4: UC201 bearing (left) and SKF 6002 bearing (right). 
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Figure 3.5: Engineering drawing of housing designed for 6002 bearing. 

 

 

Figure 3.6: Engineering drawing of shaft designed for 6002 bearing. 
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Figure 3.7: Siemens D-91056 AC motor. 

 

  

Figure 3.8: Delta Electronics VFD007L21A variable frequency drive: (a) Top 

view; (b) Side view. 

 

3.3.2 Preparation of Defective Bearings 

To create bearings without lubrication, as shown in Figure 3.9, the process 

began by removing the factory-packed bearing grease using pressurized air. 

Afterwards, the bearing was degreased with brake cleaner fluid, as shown in 

Figure 3.10. Brake cleaner fluid typically contains compounds such as acetone, 

methyl acetate, and hydrocarbons, making it highly effective at dissolving 

grease without leaving residue (Gatzke and Sobon, 2000). The aerosol was used 

in a well-ventilated area to disperse hazardous fumes. Since the aerosol is 

flammable, it was kept away from any ignition sources, such as sparks or open 

flames. 

a) b) 
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Figure 3.9: UC201 bearing without lubrication. 

 

 

Figure 3.10: Toyo-G Brake Cleaner. 

 

The next defect involved the contamination of bearing grease with 

particles, specifically sand and metal particles. The sand was passed through a 

600 µm sieve before being mixed with the bearing grease. The metal chips were 

collected from bandsaw scrap and consisted of chips from various materials, 

including mild steel, aluminium, and stainless steel. The metal chip particles 

were then combined with the bearing grease to simulate the condition of 

lubricant contamination. The bearings contaminated with metal and sand are 

shown in Figures 3.11 and 3.12, respectively. 



45 

  

Figure 3.11: Metal-contaminated bearing: (a) Metal chip collected from 

bandsaw; (b) Bearing contaminated with metal particles. 

 

  

Figure 3.12: Sand-contaminated bearing: (a) Sand after passing through 600 

µm sieve; (b) Bearing contaminated with sand particles. 

 

To create a defect on the outer race of the bearing, a hole was drilled 

to form an abnormality where the ball bearing would repeatedly collide as it 

rotated around the race. The process began by clamping the outer race securely 

on a machining centre. The bearing was positioned so that the drill bit did not 

come into contact with any of the bearing balls when penetrating the outer race. 

Using a 3.5 mm carbide drill bit, the hole was carefully drilled. Initially, the drill 

bit was slowly brought into contact with the outer race to create a small dent, 

similar to the function of a centre punch. The drill was then slowly advanced 

and retracted to remove chips. This process continued until the outer race was 

fully penetrated, as shown in Figure 3.13. Proper lubrication was maintained 

a) b) 

a) b) 
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throughout the procedure to prevent the drill bit from overheating, which could 

have affected the precision of the hole or damaged the bearing material. 

 

 

Figure 3.13: UC201 bearing with outer race damage. 

 

Next, the bearings were treated with acid to induce corrosion. Two 

concentrations of hydrochloric acid (HCl) were prepared, namely 1 mol/L or 

1M (3.65 wt%) and 6 mol/L or 6M (21.88 wt%). The diluted acid solution was 

made by adding concentrated HCl to a volume of distilled water and thoroughly 

mixing the solution. The bearings were submerged in the acidic solution for 15 

minutes, then rinsed with distilled water to halt further reaction. The end product 

of the reaction is shown in Figure 3.14. 

 

  

Figure 3.14: Bearing after corrosive reaction with acid: (a) HCl 1M; (b) HCl 

6M. 

 

3.3.3 Procedure for Test Rig Setup and Data Collection 

The setup for the experimental test rig and the procedure for data collection are 

elaborated in this subsection. An overview of the test rig is displayed in Figure 

3.15. To set up the experimental test rig, the bearings were first assembled into 

a) b) 
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their respective housings. For the UC201 bearing, the locking notch on the 

bearing was aligned with the housing groove. Then, the bearing was pivoted 

with a tool such as an Allen key to properly rotate it into position. Next, the 

bearing units were mounted onto the test rig block using 3/8" screws. Once the 

screws were tightened, the shaft was inserted through the bearings’ bore. Lastly, 

the set screws on the coupling and bearings were tightened, and the rotating load 

was attached. 

For the 6002 bearing, it was inserted into the housing by being tapped 

with a hammer and a piece of soft metal. The bearing was knocked with 

moderate force until contact was made with the bearing shoulder. Next, the 

acrylic cover was tightened to secure the bearing in place. At this point, the 

assembly process became similar to that of the UC201 bearing. However, since 

the 6002 bearing does not feature set-screw locking, the shaft had to be tapped 

into position during assembly. 

After assembly, the signal acquisition module was connected to a 

computer using a USB cable (Type A Plug to Type B Plug). The accelerometer 

was then connected to channel 0 of the DAQ using a BNC cable. It was mounted 

in the radial direction of the bearing housing to maximize effectiveness. The 

accelerometer could be mounted using either adhesive or stud-based methods. 

Once connected, LabView software was activated to begin acquiring vibration 

signals from the accelerometer. To initiate data logging, the VFD was set to the 

desired frequency before being activated. The accelerometer sent a voltage 

signal to the DAQ, proportional to the acceleration. The recording of vibration 

data began after the test rig operated at the specified speed for at least 30 seconds. 

Vibration monitoring was performed for at least 90 to 120 seconds at each speed. 

The motor was operated at speeds ranging from 600 RPM to 1800 RPM, in 

intervals of 300 RPM. 

For the Remaining Useful Life (RUL) experiment, the test rig was 

operated continuously while data for the vibration indicators were collected at 

1-minute intervals. Based on preliminary testing, the metal-contaminated 

bearing was identified as the most suitable damage type for the RUL test. 

Preliminary testing also identified RMS acceleration as a prominent indicator 

for tracking bearing degradation. In this setup, the metal-contaminated bearing 

was placed on the motor side, while a healthy bearing was installed on the driven 
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side. The rig operated at a constant speed of 1500 RPM under load throughout 

the experiment. 

 

 

Figure 3.15: Labelled diagram of the experimental test rig. 

 

3.3.4 Vibration Monitoring Algorithm  

The summary of the vibration monitoring algorithm is shown in Figure 3.16. In 

short, the low frequency acceleration wave is used to derive velocity and 

displacement, along with their respective spectrum. On the other hand, high 

frequency acceleration is used to obtain high-frequency acceleration spectrum,  

envelope spectrum, and vibration indicators.  
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Figure 3.16: Flowchart of the vibration monitoring algorithm. 

 

The data acquisition process was carried out using the DAQmx Data 

Acquisition Palette. The palette contained many data acquisition VIs (Virtual 

Instruments), which are the fundamental building blocks of LabVIEW programs. 

As shown in Figure 3.17, the first step involved creating a virtual channel and 

assigning it to the physical channel connected to the accelerometer. The input 

type was set to Analog Input Acceleration. The minimum and maximum values 

for the channel were set to ±5, matching the input range of the NI-9234 

(National Instruments, 2024). The sampling rate was then used to determine the 

acquisition rate for the virtual channel. 

Next, the DAQmx Read VI was configured to receive an analogue 

single-channel waveform with multiple samples. For instance, if the number of 

samples per channel was set to 25,600, the VI waited until the previous task had 

acquired 25,600 samples before reading them. This ensured accurate 

synchronization and data collection from the accelerometer. 

The original waveform was filtered with a bandpass filter to obtain the 

acceleration waveform for high frequencies, as shown in Figure 3.18. In this 

experiment, the low cutoff frequency was set to 1 kHz, while the high cutoff 
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frequency was set to 10 kHz. For the acceleration graph, the x-axis was scaled 

based on the reciprocal of the number of samples. Since 25,600 samples were 

collected per second, the axis was adjusted to accurately represent time. 

 

 

Figure 3.17: LabVIEW code for waveform acquisition. 

 

 

Figure 3.18: LabVIEW code to obtain high frequency acceleration. 

 

To obtain velocity, the low-frequency acceleration was first integrated 

to produce a velocity waveform, as shown in Figure 3.19. However, this initial 

waveform often included unwanted trends or distortions, which were 

undesirable. To correct this, the velocity waveform underwent curve fitting to 

obtain the line of best fit. The final velocity waveform was obtained after 

removing the trend. The velocity waveform was then scaled by a factor of 1,000 

to convert the units to mm/s. Next, the root mean square (RMS) value of the 

velocity waveform was calculated. To derive displacement, the velocity 

waveform was integrated and corrected using curve fitting. The resulting 

displacement waveform was multiplied by 1,000,000 to convert it into 

micrometers (µm). The peak-to-peak displacement was determined by 
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calculating the difference between the maximum and minimum displacement 

values. 

 

 

Figure 3.19: LabVIEW code for the integration and curve fitting of velocity 

and displacement. 

 

Before the Fast Fourier Transform (FFT) was applied, a Hanning 

window was used to reduce spectral leakage by attenuating the signal at the 

edges, as shown in Figure 3.20. This process reduced abrupt discontinuities and 

prevented spectral energy from spreading across frequency bins, which leads to 

improved frequency measurements. After windowing, the FFT was performed 

on the signal, as illustrated in Figure 3.21. The resulting output was divided by 

the number of samples. This normalization is required because the amplitude in 

the FFT output is proportional to the total number of samples collected over a 

time window. While the FFT produces an array of complex numbers, only the 

magnitude was extracted for analysis. The FFT output array was extracted up to 

the Nyquist frequency only, which is half the sampling rate, as frequencies 

beyond this point are aliased and do not provide an accurate representation. 

Finally, the FFT output was multiplied by a factor of two, as the FFT represents 

both positive and negative frequency components symmetrically. This means 

the energy of each frequency is distributed between the positive and negative 

halves of the spectrum. Since only the positive frequencies are considered here, 
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the output was scaled to reflect the true amplitude of the signal (Fahy and Pérez, 

1993). 

In Figure 3.22, the Hilbert transform was applied to the vibration signal 

to obtain its envelope signal. To construct the envelope waveform, the 

magnitude of the Hilbert transform corresponded to the Y values, while the 

reciprocal of the sampling rate represented the small changes in time along the 

X axis. The envelope signal was then passed through a Hanning window before 

the FFT converted it into the envelope spectrum. 

 

 

Figure 3.20: Scaled time domain window using Hanning window.  

 

 

Figure 3.21: Frequency spectrum for acceleration, velocity, and displacement 

at low frequency. 

 

 

Figure 3.22: LabVIEW code for envelope spectrum. 
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Figure 3.23 shows the graphical code for creating a new TDMS file. 

The file name consists of user-defined text, which is automatically appended 

with the current date and time. When the "Save to TDMS" button is activated, 

the TDMS Write VI begins recording the waveform acquired from the physical 

channel. Additionally, the time elapsed since the start of waveform logging is 

displayed. Figure 3.24 shows an example of the recorded TDMS waveform for 

a duration of about 53 seconds. Figure 3.25 shows the code used to build the 

graph for the vibration indicators. The process begins by initializing an empty 

array. Each new value for the vibration indicator is appended to this array, and 

the array is fed back into itself to retain previous values. This allows for a 

continuous update of the graph. If the "Refresh" button is activated, the “Select” 

function is triggered, which returns an empty array. This effectively resets the 

graph by clearing all previous values in the array. 

 

 

 

Figure 3.23: LabVIEW code for to open and read TDMS file. 
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Figure 3.24: Example of TDMS waveform exported by the program. 

 

 

Figure 3.25: LabVIEW code to build and refresh graph. 

 

The characteristic fault frequencies were calculated using equations 

from the literature. In Figure 3.26, the dimensions of UC201 will be used for 

calculations by default. By activating the "Switch Bearing" option, the program 

will instead use the dimensions of 6002 bearing. The specific parameters used 

in the calculations are provided in Table 3.2. Once the fault frequencies were 

computed, they were displayed on the graph as cursors. This allows for easier 

visual tracking and analysis. In Figure 3.27, the harmonics were calculated and 

displayed on the envelope spectrum based on the rotor speed. This helped to 

differentiate fault frequencies from the fundamental frequency and its 

harmonics. Additionally, threshold levels can be set to evaluate the vibration 

indicator. Two levels of warning are established, namely Caution and Danger. 

Caution level serves as an early warning, while Danger level indicates critical 

issue. 
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Figure 3.26: LabVIEW code for the calculation of characteristics fault 

frequency and the display of cursor. 

 

 

Figure 3.27: LabVIEW code for the display of harmonics and threshold level. 

 

Table 3.2: Parameters used for calculation of characteristic fault frequencies. 

Bearing model UC201 6002 

Number of balls, NB 8 9 

Ball diameter, DB 7.94 mm 4.76 

Pitch diameter, DP 33.5 mm 23.5 

Contact angle, β 0° 0° 

 

The code used for the computation of vibration indicators are presented 

in Figure 3.28. After the indicators are calculated, they can be exported to a 

spreadsheet. Figure 3.29 shows the code used to write the indicators to an Excel 

spreadsheet. Initially, all of the signals were merged into a single output signal. 

The indicators were then recorded in different spreadsheet columns which 

corresponds to different signal index. Additionally, a timestamp was included 

for each data point to track when the measurements were taken. Figure 3.30 

displays the spreadsheet exported by the program. 
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Figure 3.28: LabVIEW code for the computation of vibration indicators. 

 

 

Figure 3.29: LabVIEW code to write indicators into delimited spreadsheet. 

 

 

Figure 3.30: The output spreadsheet of vibration indicators. 
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Figure 3.31 illustrates the main controls of the program. For 

configuration, the physical channel is assigned to the channel that is physically 

connected to the accelerometer, typically designated as channel 0. Next, the 

sensitivity of the accelerometer and the type of bearing are selected accordingly. 

In this study, the sampling rate is fixed at 25.6 kS/s (kilo-samples per second), 

with the processing interval set to 1 second. As a result, the program performs 

real-time monitoring by processing data every 25,600 samples. Before 

collecting vibration data, the program requires the input of the VFD frequency 

to calculate the bearing’s characteristic frequency. The recorded indicators can 

be exported as an Excel spreadsheet, while the original waveform can be saved 

in TDMS file format. 

Figure 3.32 displays the low-frequency monitoring panel. The first 

graph shows the acceleration spectrum for low-frequency vibration, which is 

filtered between 5 Hz and 300 Hz. The waveforms for velocity and displacement 

are also displayed, with a high cutoff frequency of 1,200 Hz. Lastly, the 

frequency spectrum for both velocity and displacement can be obtained from 

these waveforms, with a high cutoff frequency of 300 Hz. 

Figure 3.33 shows the monitoring panel for high-frequency vibration. 

For the experiments, the cutoff frequencies were set to allow only signals 

between 1 kHz and 10 kHz to pass through without attenuation. Besides 

displaying the waveform and spectrum, the envelope spectrum of the high-

frequency signal is also shown. The calculated characteristic fault frequencies 

are also displayed, based on rotor speed and bearing type. 

Figure 3.34 presents graphs of various vibration indicators, such as the 

K-factor, kurtosis, and crest factor. These graphs are updated every second, and 

the mean value over the entire measurement duration is also displayed. A 

"Refresh" button allows users to reset the graphs. Additionally, threshold levels 

can be input and displayed on the graphs for easier comparison. All indicators 

are computed using high-frequency signals, except for RMS velocity, peak-to-

peak displacement, and RMS displacement. 
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Figure 3.31: Main control panel of the monitoring program. 

 

 

 

Figure 3.32: Low frequency monitoring panel. 

 

 

Figure 3.33: High frequency monitoring panel. 
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Figure 3.34: Vibration indicators monitoring panel. 

 

3.4 Summary 

In summary, this chapter outlined the components used in the experiment and 

the general procedure for preparing defective bearings. The fault detection 

algorithm is based on deriving velocity and displacement, utilizing the envelope 

spectrum, and calculating vibration indicators. The validation of the algorithm 

primarily relies on experimental work, though cross-validation using a 

commercial system is also possible. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter explores various vibration characteristics, such as acceleration 

waveform, envelope waveform, and vibration indicators in different types of 

bearing defect. The vibration indicators include K-factor, RMS acceleration, 

crest factor, and kurtosis, among others. Additionally, the prediction of RUL 

will be investigated. The validation of the algorithms will be conducted through 

physical inspection and comparison of results with a commercial system. 

 

4.2 Acceleration Waveform 

Acceleration waveform is a simple and effective tool in diagnosing the bearing 

condition as it directly visualises the vibration behaviour of bearings. In this 

study, a 1-second acceleration waveform was captured for UC201 at 1500 RPM 

to analyse the vibration pattern and determine whether the bearing is defective. 

In Figure 4.1, the waveform of a healthy bearing is observed to have low 

vibration amplitude of around 5 m/s2 and minimal sudden spikes in the signal. 

This serves as the baseline for comparison with other types of defects. The same 

observation is found  in the study by Muniyappa and Praveen Krishna (2019), 

which indicates that healthy bearings also exhibit lower amplitude compared to 

their defective counterparts. Figure 4.2 shows the waveform of bearing without 

lubrication. The average vibration amplitude has increased to around 10 m/s2 

while the spikes in the signal also increased. Lubricating grease possesses 

properties such as wear protection and corrosion resistance. The grease will 

ensure that bearing raceways and rolling elements are separated by a thin film 

of lubricating oil. When bearings are not lubricated with bearing grease, it 

causes direct contact between the rough metal surfaces which significantly 

increasing friction and vibration (Zheng et al., 2021). 
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Figure 4.1: Waveform of healthy UC201 bearing. 

 

 

Figure 4.2: Waveform of UC201 bearing without lubrication. 

 

Figure 4.3 shows the waveform of a metal-contaminated bearing. The 

vibration profile of the bearing exhibits an average amplitude of 5 m/s2 with a 

generally noisy signal. Occasionally, there are sudden spikes with amplitudes 

around 15 m/s2. These spikes are irregular and non-periodic, as the movements 

and collisions of metal particles inside the bearing are random. These metal 

particles cause impacts and rubbing as they become trapped between the bearing 

balls and the raceway, contributing to the erratic vibration patterns observed. 

Sand particles inside the bearing can also cause abrasion, which increases 

vibration levels. In Figure 4.4, the average vibration level of the sand-

contaminated bearing is not particularly significant. However, when sand 

particles become trapped between the rolling elements and the raceway, they 

generate impulses that can reach magnitudes of up to 100 m/s2. These sudden 

spikes in vibration can lead to the accelerated formation of spalls on the surfaces 

of the bearing components, further worsening the damage over time. 

 

 

Figure 4.3: Waveform of UC201 bearing contaminated with metal particle. 
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Figure 4.4: Waveform of UC201 bearing contaminated with sand particle. 

 

Figure 4.5 shows the effect of damage on the bearing outer race which 

creates distinct spikes at regular intervals. The localized defect causes repeated 

impacts between bearing balls and raceway with each revolution. The spikes in 

vibration are consistently observed at a magnitude of around 50 m/s2. The same 

waveform pattern for outer race damage was identified in the study by Wang et 

al. (2013). 

Besides mechanical damage, damage can also occur in a bearing 

chemically. Figures 4.6 and 4.7 show the effect of an acidic medium on the 

vibration of bearings. After the bearing reacted with 1M HCl, the average 

vibration magnitude increased to around 5 m/s2 while exhibiting some transient 

spikes in the signal, as shown in Figure 4.6. When the bearing reacted with 6M 

HCl, the spikes in the signal were much more significant, with magnitudes 

approaching 40 m/s2. In Figure 4.7, the recurrence of the same spikes at constant 

intervals in the signal indicates that faults have locally developed at specific 

points in the bearing. Every time the bearing balls pass over the damaged area, 

a vibration spike is generated. With higher acid concentration, the corrosion rate 

is higher, resulting in severe degradation of bearing components. This leads to 

deep pitting and irregularity on the steel surface, causing a significant increase 

in vibrations. 

 

 

Figure 4.5: Waveform of UC201 bearing with outer race damage. 
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Figure 4.6: Waveform of UC201 bearing after corrosion with 1M HCl. 

 

 

Figure 4.7: Waveform of UC201 bearing after corrosion with 6M HCl. 

 

4.3 Envelope Spectrum 

The envelope spectrum of 6002 bearing at the motor side is compared for speeds 

between 1500 RPM (25 Hz) and 1800 RPM (30 Hz). Table 4.1 and Table 4.2 

shows the theoretical characteristics fault frequencies for UC201 and 6002, 

respectively. 

 

Table 4.1: Characteristics fault frequencies for UC201 at various speeds. 

 Speed (RPM) 600 900 1200 1500 1800 

FTF (Hz) 3.81 5.72 7.63 9.54 11.44 

BSF (Hz) 19.91 29.87 39.82 49.78 59.73 

BPFO (Hz) 30.52 45.78 61.04 76.30 91.56 

BPFI (Hz) 49.48 74.22 98.96 123.70 148.44 

 

Table 4.2: Characteristics fault frequencies for 6002 at various speeds. 

Speed (RPM) 600 900 1200 1500 1800 

FTF (Hz) 3.99 5.98 7.97 9.97 11.96 

BSF (Hz) 23.67 35.51 47.34 59.18 71.02 

BPFO (Hz) 35.89 53.83 71.77 89.71 107.66 

BPFI (Hz) 54.11 81.17 108.23 135.29 162.34 

 

In Figure 4.8, no peaks were observed in the envelope spectrum for the 

healthy bearing. The amplitude of the envelope spectrum was below 0.05 m/s2, 

which is low and considered noise. Overall, this indicates that the bearing is not 
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defective. Figure 4.9 shows the envelope spectrum of a bearing without 

lubrication. The spectrum is nearly identical to that of a healthy bearing, with 

only a slight increase in noise levels. Since there are no observable peaks, this 

indicates that no localized damage has formed at the targeted locations. 

 

 

Figure 4.8: Envelope spectrum of 6002 bearing with healthy condition at 30 

Hz speed. 

 

 

Figure 4.9: Envelope spectrum of 6002 bearing without lubrication at 30 Hz 

speed. 

 

At the motor speed of 20 Hz, the algorithm successfully detected a peak 

at BPFO of 72 Hz, as illustrated in Figure 4.10 (a). The magnitude of the peak 

is 0.31 m/s2, which is significantly higher than the noise level. At the motor 

speed of 30 Hz, the algorithm also detected a peak at 109 Hz, as shown in Figure 

4.10 (b). This is close to the BPFO of 107.66 Hz, albeit with a slight error. There 

are also peaks at the harmonics of the BPFO, namely at 144 Hz (2X BPFO) and 

217 Hz (3X BPFO). 
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 As the speed increased, the magnitude of the peak also increased to 

1.2 m/s2, while the amplitude of the 2X harmonic rose to 1.68 m/s2. This 

indicates that there is direct and severe damage to the outer race surface. The 

discrepancy in the BPFO detected may be due to the presence of slippage at 

higher speeds. Slip can occur between the bearing balls and the races. It is also 

possible that slippage occurred between the shaft and the bearing inner ring. The 

error analysis for BPFO is presented in Table 4.3. The percentage error observed 

in the experiment ranged from 0.31% to 1.24%. This variation is primarily due 

to the resolution of the envelope spectrum, which is limited to 1 Hz. Despite this 

limitation, the overall measurement of BPFO by the envelope spectrum remains 

accurate. 

 

 

 

Figure 4.10: Envelope spectrum for 6002 bearing with outer race damage: (a) 

at 20 Hz speed; (b) at 30 Hz speed. 

 

Table 4.3: Percentage error of BPFO observed in 6002 bearing with outer 

race damage. 

Operating Speed 

(Hz) 

BPFO (Hz) Percentage Error 

(%) Theoretical Experimental 

a) 

b

) 
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10 35.89 36 0.31 

15 53.83 54 0.32 

20 71.59 72 0.57 

25 89.53 90 0.52 

30 107.66 109 1.24 

 

Figure 4.11 shows the envelope spectrum for a bearing after exposure 

to 1M HCl. A consistent peak is observed at the outer race fault frequency 

(BPFO), reaching a magnitude of 1.5 m/s2. This serves as a significant indication 

for the fault formation on the outer race. Additional peaks are visible at the 

fundamental frequency of 30 Hz and its 2X harmonic at 60 Hz. Compared to 

the spectrum for healthy bearing conditions, the noise level has significantly 

increased, reaching up to 0.3 m/s2. Figure 4.12 shows the envelope spectrum for 

a bearing that reacted with 6M HCl. A peak is observed at the BPFO, with 

magnitudes ranging from 0.4 m/s2 to 0.6 m/s2. There is also a strong peak of 0.6 

m/s2 at approximately 218 Hz, which likely corresponds to the 2X harmonic of 

the BPFO. The high noise level seen in both of these envelope spectrums can be 

attributed to the effects of acidic corrosion. Corrosion causes the bearing 

surfaces to become rough and uneven. This leads to the occurrence of 

continuous small impacts and increased friction as the bearing balls move over 

the damaged areas. These random impacts raise the overall noise level in the 

envelope spectrum, which masks the amplitude of specific fault frequencies. 

 

 

Figure 4.11: Envelope spectrum of 6002 bearing after reaction with 1M HCl at 

30 Hz speed. 
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Figure 4.12: Envelope spectrum of 6002 bearing after reaction with 6M HCl at 

30 Hz speed. 

 

Figure 4.13 presents the envelope spectrum of a bearing contaminated 

with metal particles. Overall, no discernable peaks are observed compared to 

the noise level. The minor peaks present are not significant enough to indicate 

any fault. This is possibly because the bearing has not operated long enough for 

faults to develop due to the interaction between metal particles and the raceways. 

The occasional spikes in the acceleration waveform are caused by brief impacts 

when metal particles become trapped between the rolling elements and the 

raceways. However, since these collisions are inconsistent, they do not register 

as peaks in the envelope spectrum. Similarly, Figure 4.14 shows the envelope 

spectrum for a bearing contaminated with sand, which also does not contain any 

observable peaks. In summary, the envelope spectrum for particle-contaminated 

bearings shows no significant peaks, indicating no signs of fault formation. 

 

 

Figure 4.13: Envelope spectrum of 6002 bearing contaminated with metal 

particles at 30 Hz speed. 
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Figure 4.14: Envelope spectrum of 6002 bearing contaminated with sand 

particles at 30 Hz speed. 

 

4.4 Vibration Indicators 

In this subsection, the results for various vibration indicators will be presented 

and discussed. The respective formulas and units for each indicator are 

summarized in Table 4.4. Additionally, threshold levels will be defined for 

selected vibration indicators.  

 

Table 4.4: Summary of vibration indicators with their respective formula and 

units. 

Indicators Formula Units 

K-factor 𝑎𝑝𝑒𝑎𝑘 ∙ 𝑎𝑅𝑀𝑆 (m/s2)2 

RMS acceleration √
∑ (𝑎𝑖)

2𝑁
𝑖=1

𝑁
 m/s2 

Peak acceleration max (ai) m/s2 

Peak-to-peak acceleration max(ai) − min (ai) m/s2 

Crest factor 
𝑎𝑝𝑒𝑎𝑘

𝑎𝑅𝑀𝑆

 (dimensionless) 

Kurtosis ∑
[𝑎(𝑛) − 𝜇]4

𝑁(𝜎2)2

𝑁

𝑛=1

 (dimensionless) 

RMS velocity √
∑ (𝑣𝑖)

2𝑁
𝑖=1

𝑁
 mm/s 

P-P displacement max(𝑠i) − min (𝑠i) µm 
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RMS displacement √
∑ (𝑠𝑖)

2𝑁
𝑖=1

𝑁
 µm 

 

4.4.1 K-factor 

Based on Table 4.5, the K-factor for a healthy bearing ranges from 3.5 to 38.3, 

with the K-factor increasing proportionally with speed. With bearing is lacking 

lubrication, the metal-to-metal contact leads to a significant rise in the RMS 

vibration level, which causes a substantial increase in the average K-factor. For 

metal particle contamination at 30 Hz, the maximum K-factor reaches 1153, 

which is much higher than its relatively low average of 127.8. In comparison, 

sand-contaminated bearings exhibit an average K-factor of 901.6 at 30 Hz, 

which is significantly greater than that of metal contamination. A characteristic 

of contamination is that the maximum K-factor is often much higher than the 

average, which is true up to a factor of 10. All in all, at 30 Hz, the highest 

average K-factor is seen in bearing with outer race damage with magnitude of 

1690.7. Meanwhile, the greatest maximum K-factor is observed in sand-

contaminated bearing at a value of 8194.4. 

To establish the threshold for the K-factor, the average amplitude and 

maximum amplitude are plotted to obtain an exponential curve fit, as shown in 

Figure 4.15. If a vibration measurement exceeds the average K-factor, it will be 

deemed “Caution.” If the maximum K-factor is exceeded, the bearing is 

considered in “Danger.” Based on this threshold, all of the defective bearings 

are categorized as faulty. Overall, the K-factor effectively combines the effects 

of RMS acceleration and peak acceleration. However, it is sensitive to speed, so 

the threshold needs to be continuously adapted to account for speed variations. 

 

Table 4.5: K-factor for UC201 at motor side. 

Bearing Condition Speed 10 Hz 15 Hz 20 Hz 25 Hz 30 Hz 

Healthy 

Average 3.5 4.3 10.9 19.3 38.3 

Maximum 6.2 7.1 19.9 33.3 59.4 

Minimum 2.3 2.9 6.5 14.4 29.1 

No Lubrication 

Average 43.6 77.4 186.5 462.5 648.7 

Maximum 113.5 147.7 334.4 913.4 1154.7 

Minimum 22.5 53.5 111.4 242.8 462.4 
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Contamination  

(Metal) 

Average 5.9 14.6 15.8 40.0 127.8 

Maximum 25.1 34.0 105.4 705.5 1153.0 

Minimum 3.8 10.0 10.8 16.3 32.0 

Contamination  

(Sand) 

Average 11.7 27.0 46.7 158.9 901.6 

Maximum 48.3 58.0 306.4 1508.6 8194.4 

Minimum 7.9 21.7 35.2 58.3 127.1 

Outer Race  

Damage 

Average 37.1 120.9 366.8 886.3 1690.7 

Maximum 58.7 348.2 429.9 1063.7 2219.1 

Minimum 28.3 86.0 321.2 751.5 1242.4 

Corrosion  

(1M HCl) 

Average 5.1 10.5 19.8 38.0 76.4 

Maximum 17.2 24.2 53.2 103.8 228.0 

Minimum 3.6 5.2 8.2 15.1 27.8 

Corrosion  

(6M HCl) 

Average 14.5 16.3 42.3 142.9 315.4 

Maximum 19.3 29.8 61.8 210.4 484.6 

Minimum 10.1 11.4 33.0 119.9 259.8 

 

 

Figure 4.15: Threshold of K-factor for UC201. 

 

4.4.2 RMS Acceleration 

Similar to the K-factor, root mean square (RMS) acceleration is dependent on 

rotor speed. Figure 4.16 shows that bearings without lubrication experience 

higher RMS acceleration compared to corroded or contaminated bearings. This 

is possibly because degraded or contaminated grease still remains in those 

bearings, which provides a limited lubrication effect. In the case of sand 

contamination, the maximum RMS acceleration of 19.5 m/s2 far exceeds the 
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average of 7.5 m/s2, indicating more variability in vibration levels. In contrast 

for outer race damage, while the average RMS acceleration is the highest at 14.3 

m/s², the maximum value of 15.8 m/s² shows less deviation due to consistent 

impacts. For acid corrosion, higher concentrations lead to increased RMS 

acceleration levels. However, the RMS acceleration for the bearing exposed to 

1M HCl is almost the same as that of a healthy bearing. This suggests that RMS 

acceleration alone may not be sufficient to diagnose faults effectively. Since the 

maximum RMS acceleration does not deviate significantly from the average, 

the threshold set using the maximum value is preferred in order to ensure a more 

conservative approach. The relationship between RMS acceleration and speed 

is illustrated by the equation in Figure 4.17. 

 

 

Figure 4.16: RMS acceleration for UC201 at motor side. 

 

 

Figure 4.17: Threshold of RMS acceleration for UC201. 
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4.4.3 Peak Acceleration 

For a healthy bearing, peak acceleration ranges from 4.7 m/s² to 13.0 m/s² as 

illustrated in Figure 4.18. In the case of no lubrication, peak acceleration 

increases up to 76.2 m/s² at a speed of 30 Hz, while having large variations in 

the data. Metal contamination exhibits relatively low peak acceleration values, 

but the maximum value spikes to 179.41 m/s² at 30 Hz. Sand contamination 

shows the largest variation among all defect types, with a maximum peak 

acceleration of 499.06 m/s² at 30 Hz. Bearings with outer race damage 

demonstrate the highest average peak acceleration at 118.08 m/s². However, the 

variation is not as large compared to contaminated bearings. For corrosion, the 

result is similar to RMS acceleration as bearings exposed to higher 

concentration of acid will exhibit greater peak acceleration. The threshold for 

peak acceleration is shown in Figure 4.19. 

 

 

Figure 4.18: Peak acceleration for UC201 at motor side. 

 

 

Figure 4.19: Threshold of peak acceleration for UC201. 
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4.4.4 Crest Factor 

In literature, it was established that crest factor (CF) of less than 5 indicates the 

bearing is under normal operating conditions. In Figure 4.20, healthy bearings 

show a slight decreasing trend in crest factor as speed increases, ranging from 

4.41 to 6.64, with an average of 5.65. In the study conducted by Kondhalkar and 

Diwakar (2019), it is reported that the crest factor in the radial direction is 4.55 

for healthy ball bearing. The discrepancy may be due to differences in testing 

conditions such as bearing model, operating load, and speed.  

For crest factor, the threshold is set at two standard deviations (2σ) 

above the mean, resulting in a threshold value of 7.49. Under no lubrication 

conditions, the crest factor is observed to decrease as speed increases. In non-

lubricated bearing, the friction between components increases with speed. This 

results in a consistent and widespread increase in vibration level, which explains 

the significant rise in RMS levels. Since there is fewer transient impacts, the 

peak acceleration does not increase as much as the RMS level. This leads to a 

waveform with a high RMS level but less pronounced peaks, which causes the 

crest factor to decrease. 

When comparing the average crest factors for each type of damage to 

the threshold, only particle-contaminated bearings do not exceed the threshold, 

mainly due to their relatively low crest factor at lower speeds. In particle-

contaminated bearings, the crest factor increases slightly as speed rises. This is 

because peak acceleration rises more than the RMS value at higher speeds. As 

bearing speed increases, the energy of impacts between contaminants and 

bearing components rises. This causes the peak accelerations to be larger in the 

signal. Moreover, since the duration of each impact is shorter at high speeds, the 

impulses delivered by each impact significantly increase. This results in a more 

impulsive signal with sharper peaks. Lastly for bearings with outer race damage 

(average CF of 8.11) and 6M HCl corrosion (average CF of 10.7), the crest 

factor fluctuates around their respective means. Meanwhile, the 1M HCl shows 

an increasing trend in crest factor as speed increases. 
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Figure 4.20: Crest factor for UC201 at motor side. 

 

4.4.5 Kurtosis 

Kurtosis is a measure of the tailedness of a signal relative to a normal 

distribution. Similar to the crest factor, it is proportional to the spikiness or 

impulsiveness of the vibration signal. In healthy bearings, the mean kurtosis is 

found to be 3.48, with a threshold level of 4.11 when using a 2σ criterion. The 

spread of kurtosis in healthy bearings is much smaller compared to damaged 

bearings. Similar to predictions in the literature, kurtosis measured in the 

experiment increases with speed for most damage types, except in the case of 

lack of lubrication. The kurtosis values for contaminated bearings exhibit 

significant variation due to the potential for vibration spikes caused by trapped 

particles. In Figure 4.21, the bearing exposed to 6M HCl shows the highest mean 

kurtosis at 20.50, while the sand-contaminated bearing records the highest 

maximum kurtosis at 145.5. For outer race damage, the kurtosis remains more 

consistent with an average of 11.6. However, for bearings without lubrication, 

kurtosis decreases from 14.22 to 5.45 as speed increases. At lower speeds, 

impacts due to friction are more irregular, resulting in more spikiness and higher 

kurtosis. As speed increases, vibrations become more consistent and less 

impulsive, which results in higher RMS values with relatively low peak 

magnitudes. Overall, the use of a 2σ threshold at 4.11 is acceptable for kurtosis. 

However, for a more conservative approach, the threshold could be set at 1σ or 

at the mean kurtosis value. According to study by Kulkarni and Bewoor (2016), 

the kurtosis value for a healthy bearing is close to 4. On the other hand, the 

kurtosis value ranges between 5 and 25 when defects are present on the inner or 
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outer race. In summary, the findings regarding kurtosis are consistent with the 

existing research. 

 

 

Figure 4.21: Kurtosis for UC201 at motor side. 

 

4.4.6 Low-frequency Indicators 

The analysis of RMS velocity, shown in Figure 4.22, reveals that the average 

RMS velocity for healthy bearings is 0.77 mm/s. However, defective bearings 

show little difference from this value. By using the 2σ threshold, it would result 

in misdiagnosis. This means it is an ineffective indicator for bearing diagnosis 

in this operating condition. Figure 4.23 displays RMS displacement which has 

an average value of 3.59 µm under healthy conditions. However, the values for 

other damage types do not deviate significantly from this mean, which also 

proves its ineffectiveness in detecting bearing faults. Peak-to-peak displacement 

has the average value of 19.35 µm for healthy bearings as shown in Figure 4.24. 

While outer race damage slightly exceeds this value, other damage types still 

remain below the mean.  

The ineffectiveness of RMS velocity, RMS displacement, and peak-to-

peak displacement as indicators can be attributed to several factors. First, low-

frequency filtering may cause the DAQ to capture machinery faults rather than 

targeting bearing failures. This causes a lack of ability to differentiate between 

healthy and defective bearings. Additionally, mathematical integration is used 

to derive velocity and displacement from acceleration signal. This may 

introduce inaccuracies and error in the data. Instead, it may be more accurate to 

use sensors specifically designed to directly measure velocity and displacement. 
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Figure 4.22: RMS velocity for UC201 at motor side. 

 

 

Figure 4.23: RMS displacement for UC201 at motor side. 

 

 

Figure 4.24: Peak-to-peak displacement for UC201 at motor side. 
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4.5 RUL Prediction 

The RMS acceleration of a metal-contaminated UC201 bearing was monitored 

over an extended period, with the duration of each run presented in Table 4.6. 

The runs ranged from 39 to 384 minutes, with a cumulative duration of 1,323 

minutes. Theoretically, the vibration level of a degrading bearing should follow 

an exponential curve, as illustrated in Figure 2.20. However, the experimental 

data followed a trend resembling a Power Law, with the equation of fit shown 

in Figure 4.25. In the first 100 minutes, the RMS acceleration increased rapidly 

from 2.8 m/s2 to 7.5 m/s2. After 100 minutes, the vibration level began to 

stabilize, exhibiting a gradual increase over time. The sudden drops in vibration 

level were observed due to the resting effect of the test rig. During extended 

operation, the components experienced increased temperatures and thermal 

stress, which reduced the performance of the bearing lubricant. Once the rig 

rested, the vibration levels decreased as the components returned to ambient 

temperature. To smooth transient deviations, a 60-minute moving average was 

applied to the RMS signal, as shown in Figure 4.26. To estimate the remaining 

useful life (RUL) of the bearing, the data points during the steady state were 

fitted with a linear trend. At the end of the experiment, the RMS acceleration 

hovered around 10 m/s2. The linear fit equation predicted that, in order to reach 

a vibration level of 12 m/s2, it would take approximately 5,867 minutes of 

cumulative run time. 

 

Table 4.6: Duration of data collection for each run. 

Run Duration (minutes) 

1 39 

2 217 

3 168 

4 384 

5 227 

6 289 

Total 1323 
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Figure 4.25: RMS acceleration of metal-contaminated bearing for cumulative 

duration of approximately 1300 minutes. 

 

 

Figure 4.26: RMS acceleration with moving average period of 60 minutes. 

 

4.6 Validation of Algorithm 

Validation of the algorithm performed by disassembling bearings that exhibit 

significant peaks in the envelope spectrum to confirm the presence of any 

failures. Additionally, the validation process involves comparing the results of 
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the algorithm with analysis data from the Dynamox IoT monitoring system by 

MITS Solution Asia. 

 

4.6.1 Bearing Disassembly  

Based on the analysis in Section 4.3, significant peaks were observed in the 

envelope spectrum of 6002 bearings treated with 1M and 6M HCl. According 

to the literature, when bearing steel reacts with acid, corrosion pits accompanied 

by dark discoloration develop. This is evident in Figure 4.27 (a), where a large 

patch of corrosion is seen on the outer race. As the bearing balls come into 

contact with these pits, vibrations at the BPFO frequency are generated. In 

Figure 4.27 (b), corrosion on the inner race is also observed. However, the 

envelope spectrum in Figure 4.11 does not show a significant peak at the BPFI 

frequency. Figure 4.28 illustrates the outer race of a bearing exposed to 6M HCl. 

The location of pitting seems to correspond with the spacing of the bearing balls. 

Notably, the inner race of this bearing showed minimal pitting. 

 

  

Figure 4.27: Photo of 6002 bearing exposed to 1M HCl: (a) outer race; (b) 

inner race. 

a) b) 
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Figure 4.28: Photo of outer race of 6002 bearing exposed to 6M HCl. 

 

4.6.2 Comparison with Commercial System 

MITS Solution Asia possesses a dedicated bearing vibration learning rig 

equipped with bearings that represent various fault conditions, as shown in 

Figure A-1. These include faults in the outer race, inner race, and bearing balls. 

Vibration data are collected using Dynamox wireless DynaLogger sensors, 

illustrated in Figure A-2. The sensors are MEMS-based and capable of capturing 

triaxial vibrations at a sampling rate of up to 13 kHz. The rig is also equipped 

with a digital tachometer, which allows for precise speed control during 

experiments. For validation, the same bearing was operated, and its vibrations 

were monitored using the algorithm developed in this study, followed by 

verification through the Dynamox system. 

Overall, for detection of envelope spectrum, the algorithm is 

considered to be on par with the commercial system. Figure 4.29 shows the 

acceleration recorded for healthy condition bearing. The waveform is within 

expectation as it has a relatively low magnitude of 2 m/s2 and limited spikes in 

the signal. In Figure 4.30, the algorithm detected a magnitude of around 0.1 m/s2, 

which is approximately equivalent to 0.010 g (G-force). This is almost same to 

the envelope spectrum from Dynamox system shown in Figure 4.31, which 

detected a magnitude of around 0.005 g to 0.015 g. The peaks between these 

monitoring systems also overlap slightly, especially for peak at 16 Hz, 50 Hz 

and 125 Hz. 
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Figure 4.32 shows the acceleration recorded for a bearing with inner 

race damage. The waveform exhibits an increased magnitude of approximately 

8 m/s², with periodic spikes in the signal reaching up to 30 m/s². The envelope 

spectra for the bearing with inner race damage are presented in Figures 4.33 

4.34 for the algorithm and its benchmark, respectively. The algorithm detects a 

noise level of around 0.01 g, which is consistent with the observations from the 

Dynamox system. Both monitoring systems observed peaks at intervals of 25 

Hz, which may correspond to the bearing’s BPFI and its harmonics. For the 

algorithm, the peak magnitude ranges from 0.04 to 0.08 m/s², while for 

Dynamox, the magnitude ranges from 0.05 to 0.10 m/s². This demonstrates that 

the algorithm's detection is fairly accurate in terms of both magnitude and 

spectral frequency. 

In Figure 4.35 (a), it is observed that the RMS acceleration values are 

closest for inner race damage, with 3.35 m/s² detected by the algorithm and 4.16 

m/s² by Dynamox. However, there is a significant discrepancy in detection for 

other types of damage. A similar observation is made for peak-to-peak 

acceleration shown in Figure 4.35 (b). For inner race damage, the algorithm 

detected 80.08 m/s², while Dynamox detected 69.26 m/s², which is relatively 

close. Figure 4.35 (c) shows crest factor which is able to produce similar 

indicator values for all damage types. The smallest discrepancy is found for 

healthy bearings (7.53 by the algorithm and 7.34 by Dynamox) and for bearing 

ball defects (4.42 by the algorithm and 4.31 by Dynamox). In terms of kurtosis 

shown in Figure 4.35 (d), the algorithm remains quite consistent with the 

benchmark. However, there is a large difference observed for inner cage 

damage, with a value of 13.5 by the algorithm compared to 5.76 by Dynamox. 

Lastly, Figure 4.35 (e) illustrates RMS velocity. The algorithm produced close 

results to the benchmark for most damage types, albeit for outer race damage. 

There is a significant difference for outer race damage as the algorithm 

measured a RMS velocity of 21.4 mm/s while Dynamox only measured 0.4 

mm/s. 

Table 4.7 presents error analysis by comparing the percentage 

difference between the vibration measurements obtained from the algorithm and 

the Dynamox system. A negative percentage indicates that the algorithm 

produced a lower magnitude than Dynamox, and a positive percentage means 
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the algorithm's measurement was higher. Among the vibration indicators, crest 

factor is the most consistent with percentage difference between 2.63% and 

65.19%. Among different bearing conditions, the percentage difference is 

smallest for the healthy bearing, ranging from 2.63% to 57.86%. For healthy 

bearings and bearings with inner faults, the results from both systems are 

relatively similar. However, for bearings with outer and ball faults, there is a 

notable inconsistency between the algorithm and Dynamox, resulting in large 

percentage differences. 

The discrepancy in vibration measurements between the algorithm and 

the Dynamox system can be attributed to several factors. First, piezoelectric 

accelerometers are more sensitive to minor motions compared to MEMS 

accelerometers, as noted by Huang, Hsu, and Ahn (2022). This could explain 

why the majority of measurements from the algorithm are greater than those 

from the Dynamox system. Next, the piezoelectric accelerometer used in the 

algorithm has a higher acceleration limit of ±50 g, compared to ±16 g for 

MEMS-based systems like Dynamox. This allows the piezoelectric sensor to 

handle larger vibrations without saturation, resulting in more reliable 

measurements, especially for high-impact events. Furthermore, the acceleration 

impact limit of the Dynamox accelerometer may be a contributing factor. As the 

Dynamox system approaches its 10 g limit (98.1 m/s²) over 0.2 ms, it may 

produce inaccurate readings, particularly when measuring peak accelerations, 

as shown in Figure 4.35(b). Lastly, the number of samples taken by each system 

differs significantly. The algorithm captures data for 60 seconds, whereas the 

Dynamox system only records for 2.5 seconds before processing. This 

difference in sampling duration may also contribute to discrepancies in the data 

(Kistler Instrument Corporation, 2008; Dynamox, 2024). 

 

 

Figure 4.29: Acceleration waveform of healthy condition bearing, monitored 

by algorithm. 
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Figure 4.30: Envelope spectrum of healthy condition bearing, monitored by 

algorithm. 

 

 

Figure 4.31: Envelope spectrum of healthy condition bearing, monitored by 

Dynamox system. 

 

 

Figure 4.32: Acceleration waveform of bearing with inner race damage, 

monitored by algorithm. 
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Figure 4.33: Envelope spectrum of bearing with inner race damage, monitored 

by algorithm. 

 

 

Figure 4.34: Envelope spectrum of bearing with inner race damage, monitored 

by Dynamox system. 
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Figure 4.35: Graphical comparison of vibration indicators between algorithm 

and Dynamox monitoring system. 

 

Table 4.7: Percentage difference of vibration indicators between algorithm 

and Dynamox monitoring system. 

  Percentage Difference (%) 

Vibration Indicator Healthy Inner Fault Outer Fault Ball Fault 

RMS Acceleration -57.86 -19.52 2764.35 1136.26 

Peak-to-peak Acceleration -56.38 15.62 3228.00 2339.24 

Crest Factor 2.63 32.66 65.19 2.66 

Kurtosis 20.44 134.56 7.87 -10.62 

RMS Velocity 28.83 25.33 5247.71 123.76 
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4.7 Summary 

In summary, the acceleration waveform provides a direct visualization of 

vibration levels and can help identify periodic spikes and indicate localized 

defects. However, it is not practical for handling large amounts of vibration data. 

To address this, vibration indicators are more effective. The K-factor is sensitive 

to defects but requires constant adjustment on thresholds due to its sensitivity to 

speed. This limits its practical use. RMS acceleration is less sensitive to defects 

because the impact of sharp peaks is averaged out. This is evident by the 

misdiagnosis of the 1M HCl bearing, which indicates that RMS alone may not 

be sufficient for accurate fault detection. Crest factor is less affected by speed 

variations but it can be counterintuitive to interpret. This is because it tends to 

decrease in the presence of severe faults. Kurtosis, on the other hand, is a reliable 

indicator of signal spikiness and remains consistent across different damage 

types. Lastly, low-frequency indicators were found to be ineffective, as bearing 

resonance typically occurs at higher frequencies. All in all, the results produced 

by the algorithm were accurately confirmed through physical inspection of the 

disassembled bearings, along with validation from a commercial system. 

However, the results for RUL prediction were not ideal as the expected 

exponential trend was not fully achieved.  
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In this study, a signal processing algorithm had successfully been developed and 

tested under various operating conditions in real-time. The vibration patterns for 

different failure modes are also identified in the form of acceleration waveform 

and envelope spectrum. The accuracy of the algorithm was evaluated by 

comparing it to a commercial monitoring system. Among the vibration 

indicators, crest factor is identified as the most consistent with percentage 

difference between 2.63% and 65.19%. Additionally, the detection results were 

confirmed through physical inspection of the bearings which reveals pitting in 

bearing exposed to acidic solution. All in all, the objectives of the study were 

achieved. 

It was observed that different failure modes exhibited distinct detection 

patterns in the vibration signals. For instance, outer race damage produced 

periodic spikes in the waveform and peaks at the BPFO frequency, while 

contamination resulted in occasional spikes in the indicator values but did not 

show any clear peak in the envelope spectrum. Bearings with lubrication issues 

showed high RMS values without localized faults in the envelope spectrum, 

while corrosion by acid produced a noisy envelope spectrum with peaks at fault 

frequencies and increased magnitude across indicators. 

This study proved that envelope spectrum is a powerful tool for 

identifying bearing-specific frequencies. The study revealed that the percentage 

error for the BPFO varied between 0.31% and 1.24%, with magnitude ranging 

from 0.3 m/s² to 1.2 m/s² for bearings with outer race damage. On the other hand, 

corroded bearings exhibited a magnitude range of 0.4 m/s² to 1.5 m/s², which 

demonstrates the impact of corrosion on vibration levels. 

In terms of vibration indicators, danger thresholds were established to 

evaluate bearing health. Specifically, a crest factor threshold of 7.49 and a 

kurtosis threshold of 4.11 were defined to indicate defective bearings. Other 

vibration indicators will be evaluated using equations that are dependent on 
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rotational speed. Among the indicators, K-factor is most straightforward to 

interpret. However, it is highly sensitive to speed and difficult to threshold in 

variable-speed operations. RMS acceleration, on the other hand, only shows 

significant changes when the damage is severe. Next, crest factor cannot be 

solely relied on as it tends to decrease at severe fault stages. Kurtosis, which is 

very stable for healthy operation, can effectively detect signal spikiness and 

impulsiveness which makes it useful for early fault detection. Lastly, low-

frequency indicators were found to be less effective at detecting bearing faults. 

The final proposed solution combines the use of RMS acceleration to monitor 

long-term increases in vibration levels along with kurtosis to detect abnormal 

spikes in the signal.  

While the study did not contribute to an ideal method for predicting the 

remaining useful life of the bearings, it provided valuable insights into the 

vibration behaviour of bearings during extended operation. In conclusion, the 

findings in this study contribute to a deeper understanding on how vibration 

patterns evolve with bearing condition and how various indicators can be 

applied to monitor bearing health effectively. 

 

5.2 Recommendations for Future Work 

For future work, several recommendations can be made to improve the 

experimental setup and result accuracy. First, testing can be conducted on 

bearings with larger diameters to study the effect of bearing size. Larger 

bearings can support greater loads, which may provide a better understanding 

of failure modes under high load conditions. Additionally, they generally have 

a longer operational lifespan, which is beneficial for the study of long-term wear 

and degradation. Moreover, operating at a higher running speeds and heavier 

loads will help to  simulate more realistic operational conditions. Additionally, 

using damaged bearings from actual operations in manufacturing plants would 

provide more accurate findings into actual failure modes. 

In terms of the experimental setup, it is recommended to incorporate 

more sensors. Sensors can be installed in horizontal or axial directions. 

Additionally, three-axis sensors can be utilized to capture vibration data with 

greater details. Exploring the use of wireless sensors could also be beneficial as 
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they would be easier to integrate into a cloud processing platform for real-time 

monitoring. For envelope spectrum analysis, future work may focus on 

exploring the development of inner race and ball faults to identify these specific 

fault frequencies. Furthermore, applying denoising techniques to the envelope 

spectrum will increase the signal-to-noise ratio which will enhance its reliability. 

Lastly, for future work in the prediction of remaining useful life, it is 

suggested to use overloading or overspeeding on healthy bearings rather than 

inducing artificial damage. This approach could provide more realistic data on 

the gradual degradation of bearings over time. Additionally, the vibration 

monitoring should be conducted for a longer period of time, possibly in the 

region of hundreds of hours. This allows for more accurate RUL predictions and 

contributes to the development of RUL prediction models. 

 



90 

 

REFERENCES 

Aherwar, A. and Khalid, S., 2012. Vibration analysis techniques for gearbox 

diagnostic: A review. International Journal of Advanced Engineering 

Technology, 3(2). 

Ahmadi, H., Subchan, M., Rachmanita, R.E., Audora, R.D. and Wibuana, A., 

2020. Vibration analysis of Kartini reactor secondary cooling pump using FFT 

analyzer. Journal of Physics Conference, 1511(1). 

http://dx.doi.org/10.1088/1742-6596/1511/1/012080. 

Al-Badour, F., Sunar, M. and Cheded, L., 2011. Vibration analysis of rotating 

machinery using time–frequency analysis and wavelet techniques. Mechanical 

systems and signal processing, 25(6), pp.2083–2101. 

https://doi.org/10.1016/j.ymssp.2011.01.017. 

Almeida, F.R. and Almeida, M.T., 2005. Statistical Analysis of Vibration 

Signals for Condition Monitoring of Defects in Rolling Element Bearings. In:  

18th International Congress of Mechanical Engineering. Brazilian Society of 

Mechanical Sciences and Engineering. 

Borghesani, P., Ricci, R., Chatterton, S. and Pennacchi, P., 2013. A new 

procedure for using envelope analysis for rolling element bearing diagnostics in 

variable operating conditions. Mechanical Systems and Signal Processing, 

38(1), pp.23–35. https://doi.org/10.1016/j.ymssp.2012.09.014. 

Boudinar, A.H., Aimer, A.F., Khodja, M.E.A.K. and Benouzza, N., 2019. 

Induction motor’s bearing fault diagnosis using an improved short time Fourier 

transform. Springer Nature Switzerland AG, 522, pp.411–426. 

https://doi.org/10.1007/978-3-319-97816-1_31. 

Dolenc, B., Boškoski, P. and Juričić, Đ., 2016. Distributed bearing fault 

diagnosis based on vibration analysis. Mechanical systems and signal 

processing, 66-67, pp.521–532. https://doi.org/10.1016/j.ymssp.2015.06.007. 

Dron, J.P., Bolaers, F. and Rasolofondraibe, l., 2004. Improvement of the 

sensitivity of the scalar indicators (crest factor, kurtosis) using a de-noising 

method by spectral subtraction: Application to the detection of defects in ball 

bearings. Journal of sound and vibration, 270(1-2), pp.61–73. 

https://doi.org/10.1016/s0022-460x(03)00483-8. 

Dyer, D. and Stewart, R.M., 1978. Detection of rolling element bearing damage 

by statistical vibration analysis. Journal of mechanical design, 100(2), pp.229–

235. https://doi.org/10.1115/1.3453905. 

Dynamox, 2024. DynaLogger HF+ / HF+S. [online] Available at: 

<https://content.support.dynamox.net/wp-content/uploads/2024/06/DataSheet-

HF-062024-04-EN.pdf> [Accessed 6 October 2024]. 

El-Thalji, I. and Jantunen, E., 2015. A summary of fault modelling and 

predictive health monitoring of rolling element bearings. Mechanical Systems 

http://dx.doi.org/10.1088/1742-6596/1511/1/012080
https://doi.org/10.1016/j.ymssp.2011.01.017
https://doi.org/10.1016/j.ymssp.2012.09.014
https://doi.org/10.1007/978-3-319-97816-1_31
https://doi.org/10.1016/j.ymssp.2015.06.007
https://doi.org/10.1016/s0022-460x(03)00483-8
https://doi.org/10.1115/1.3453905
https://content.support.dynamox.net/wp-content/uploads/2024/06/DataSheet-HF-062024-04-EN.pdf
https://content.support.dynamox.net/wp-content/uploads/2024/06/DataSheet-HF-062024-04-EN.pdf


91 

 

and Signal Processing, 60-61, pp.252–272. 

https://doi.org/10.1016/j.ymssp.2015.02.008. 

Fahy, K. and Pérez, E., 1993. Fast Fourier Transforms and Power Spectra in 

LabVIEW. [online] Available at: 

<https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bc5ffe63a

26521370d72cbff5ec48aed4791601f> [Accessed 14 September 2024]. 

Feng, G.-J., Gu, J., Zhen, D., Aliwan, M., Gu, F.-S. and Ball, A.D., 2015. 

Implementation of envelope analysis on a wireless condition monitoring system 

for bearing fault diagnosis. International Journal of Automation and Computing, 

12(1), pp.14–24. https://doi.org/10.1007/s11633-014-0862-x. 

Filippenko, A., Brown, S. and Neal, A., 1999. Vibration analysis for predictive 

maintenance of rotating machines. [online] Available at: 

<https://patents.google.com/patent/US6370957B1/en> [Accessed 17 

September 2024]. 

Gatzke, K.G. and Sobon, C.A., 2000. US6448209B1 - Brake cleaner 

compositions comprising methyl acetate and acetone and method of using same. 

[online] Google Patents. Available at: 

<https://patents.google.com/patent/US6448209B1/en> [Accessed 9 September 

2024]. 

Goepfert, O., Ampuero, J., Pahud, P. and Boving, H.J., 2008. Surface roughness 

evolution of ball bearing components. Tribology Transactions, 43(2), pp.275–

280. https://doi.org/10.1080/10402000008982340. 

Hsu, C.-W., Chang, C.-C. and Lin, C.-J., 2016. A Practical Guide to Support 

Vector Classification. [online] Taipei, Taiwan. Available at: 

<https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf>. 

Huang, H.-P., Hsu, F. and Ahn, A., 2022. MEMS vs. Piezoelectric 

Accelerometer. [online] Labfront. Available at: 

<https://www.labfront.com/article/mems-vs-piezoelectric-accelerometer> 

[Accessed 7 October 2024]. 

International Organization for Standardization, 2017. ISO 15243:2017. [online] 

ISO. Available at: <https://www.iso.org/standard/59619.html> [Accessed 28 

April 2024]. 

International Organization for Standardization, 2022. ISO 20816-3:2022. 

[online] ISO. Available at: <https://www.iso.org/standard/78311.html> 

[Accessed 28 April 2024]. 

Jang, G. and Jeong, S.-W., 2004. Vibration analysis of a rotating system due to 

the effect of ball bearing waviness. Journal of Sound and Vibration, 269(3-5), 

pp.709–726. https://doi.org/10.1016/s0022-460x(03)00127-5. 

Kim, H.-E., Tan, A.C.C., Mathew, J. and Choi, B.-K., 2012. Bearing fault 

prognosis based on health state probability estimation. Expert Systems with 

https://doi.org/10.1016/j.ymssp.2015.02.008
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bc5ffe63a26521370d72cbff5ec48aed4791601f
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bc5ffe63a26521370d72cbff5ec48aed4791601f
https://doi.org/10.1007/s11633-014-0862-x
https://patents.google.com/patent/US6370957B1/en
https://patents.google.com/patent/US6448209B1/en
https://doi.org/10.1080/10402000008982340
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.labfront.com/article/mems-vs-piezoelectric-accelerometer
https://www.iso.org/standard/59619.html
https://www.iso.org/standard/78311.html
https://doi.org/10.1016/s0022-460x(03)00127-5


92 

 

Applications, 39(5), pp.5200–5213. https://doi.org/10.1016/j.eswa.2011.11.019. 

Kim, H.-Y., 2013. Statistical notes for clinical researchers: assessing normal 

distribution (2) using skewness and kurtosis. Restorative Dentistry & 

Endodontics, 38(1), pp.52–54. https://doi.org/10.5395/rde.2013.38.1.52. 

Kistler Instrument Corporation, 2008. K-Shear Accelerometers. [online] 

Available at: 

<https://intertechnology.com/Kistler/pdfs/Accelerometer_Model_8702B_8704

B.pdf> [Accessed 13 September 2024]. 

Kondhalkar, G.E. and Diwakar, G., 2019. Crest factor measurement by 

experimental vibration analysis for preventive maintenance of bearing. Springer 

eBooks, pp.133–138. https://doi.org/10.1007/978-981-13-8507-0_21. 

Kulkarni, S. and Bewoor, A., 2016. Vibration based condition assessment of 

ball bearing with distributed defects. Journal of Measurements in Engineering, 

4(2), pp.43–121. 

Lee, J.-Y., 2013. Variable short-time Fourier transform for vibration signals 

with transients - June-Yule Lee, 2015. Journal of Vibration and Control, 0(0), 

pp.1–15. https://doi.org/10.1177/1077546313499389. 

Liu, H., Mo, Z., Zhang, H., Zeng, X., Wang, J. and Miao, Q., 2018. Investigation 

on rolling bearing remaining useful life prediction: A review. In: Prognostics 

and System Health Management Conference. IEEE. 

https://doi.org/10.1109/phm-chongqing.2018.00175. 

Lord, D., Qin, X. and Geedipally, S.R., 2021. Exploratory analyses of safety 

data. Elsevier eBooks, pp.135–177. https://doi.org/10.1016/b978-0-12-816818-

9.00015-9. 

Malla, C. and Panigrahi, I., 2019. Review of condition monitoring of rolling 

element bearing using vibration analysis and other techniques. Journal of 

Vibration Engineering & Technologies, 7(4), pp.407–414. 

https://doi.org/10.1007/s42417-019-00119-y. 

Mateo, C. and Talavera, J.A., 2018. Short-time Fourier transform with the 

window size fixed in the frequency domain. Digital Signal Processing, 77, 

pp.13–21. https://doi.org/10.1016/j.dsp.2017.11.003. 

Mathew, J. and Alfredson, R.J., 1984. The condition monitoring of rolling 

element bearings using vibration analysis. Journal of Vibration and Acoustics, 

106(3), pp.447–453. https://doi.org/10.1115/1.3269216. 

McInerny, S.A. and Dai, Y., 2003. Basic vibration signal processing for bearing 

fault detection. IEEE Transactions on Education, 46(1), pp.149–156. 

https://doi.org/10.1109/te.2002.808234. 

Muniyappa, A. and Praveen Krishna, I.R., 2019. Experimental Investigations to 

Assess Surface Contact Fatigue Faults in the Rolling Contact Bearings by 

https://doi.org/10.1016/j.eswa.2011.11.019
https://doi.org/10.5395/rde.2013.38.1.52
https://intertechnology.com/Kistler/pdfs/Accelerometer_Model_8702B_8704B.pdf
https://intertechnology.com/Kistler/pdfs/Accelerometer_Model_8702B_8704B.pdf
https://doi.org/10.1007/978-981-13-8507-0_21
https://doi.org/10.1177/1077546313499389
https://doi.org/10.1109/phm-chongqing.2018.00175
https://doi.org/10.1016/b978-0-12-816818-9.00015-9
https://doi.org/10.1016/b978-0-12-816818-9.00015-9
https://doi.org/10.1007/s42417-019-00119-y
https://doi.org/10.1016/j.dsp.2017.11.003
https://doi.org/10.1115/1.3269216
https://doi.org/10.1109/te.2002.808234


93 

 

Enhancement of Sound and Vibration Signals. Journal of Nondestructive 

Evaluation, 38(1). https://doi.org/10.1007/s10921-019-0571-z. 

National Instruments, 2024. NI-9234 Specification. [online] Available at: 

<https://www.ni.com/docs/en-US/bundle/ni-9234-specs/page/specs.html> 

[Accessed 13 September 2024]. 

Neisi, N., Sikanen, E., Heikkinen, J.E. and Sopanen, J., 2018. Effect of off-sized 

balls on contact stresses in a touchdown bearing. Tribology International, 120, 

pp.340–349. https://doi.org/10.1016/j.triboint.2017.12.036. 

Oakland, J.S., 2007. Statistical Process Control. 6th ed. Routledge eBooks, 

London . pp.105–112. https://doi.org/10.4324/9780080551739. 

Pachaud, C., Salvetat, R. and Fray, C., 1997. Crest factor and kurtosis 

contributions to identify defects inducing periodical impulsive forces. 

Mechanical Systems and Signal Processing, 11(6), pp.903–916. 

https://doi.org/10.1006/mssp.1997.0115. 

Patel, V.N., Tandon, N. and Pandey, R.K., 2012. Defect detection in deep 

groove ball bearing in presence of external vibration using envelope analysis 

and Duffing oscillator. Measurement, 45(5), pp.960–970. 

https://doi.org/10.1016/j.measurement.2012.01.047. 

Patidar, S. and Soni, P.K., 2013. An overview on vibration analysis techniques 

for the diagnosis of rolling element bearing faults. International Journal of 

Engineering Trends and Technology, 4(5).  

Peng, B., Bi, Y., Xue, B., Zhang, M. and Wan, S., 2022. A survey on fault 

diagnosis of rolling bearings. Algorithms, 15(10), pp.347–347. 

https://doi.org/10.3390/a15100347. 

Prudhom, A., Antonino-Daviu, J., Razik, H. and Climente-Alarcon, V., 2017. 

Time-frequency vibration analysis for the detection of motor damages caused 

by bearing currents. Mechanical Systems and Signal Processing, 84, pp.747–

762. https://doi.org/10.1016/j.ymssp.2015.12.008. 

Raje, N. and Sadeghi, F., 2009. Statistical numerical modelling of sub-surface 

initiated spalling in bearing contacts. Proceedings of the Institution of 

Mechanical Engineers, Part J: Journal of Engineering Tribology, 223(6), 

pp.849–858. https://doi.org/10.1243/13506501JET481. 

Randall, R.B. and Sawalhi, N., 2011. A new method for separating discrete 

components from a signal. Sound & Vibration, 45(5), pp.6–9.  

Renaudin, L., Bonnardot, F., Musy, O., Doray, J.B. and Rémond, D., 2010. 

Natural roller bearing fault detection by angular measurement of true 

instantaneous angular speed. Mechanical Systems and Signal Processing, 24(7), 

pp.1998–2011. https://doi.org/10.1016/j.ymssp.2010.05.005. 

 

https://doi.org/10.1007/s10921-019-0571-z.
https://www.ni.com/docs/en-US/bundle/ni-9234-specs/page/specs.html
https://doi.org/10.1016/j.triboint.2017.12.036
https://doi.org/10.4324/9780080551739
https://doi.org/10.1006/mssp.1997.0115
https://doi.org/10.1016/j.measurement.2012.01.047
https://doi.org/10.3390/a15100347
https://doi.org/10.1016/j.ymssp.2015.12.008
https://doi.org/10.1243/13506501JET481
https://doi.org/10.1016/j.ymssp.2010.05.005


94 

 

Rocchi, M., Mosciaro, F., Grottesi, F., Scortichini, M., Giantomassi, A., Pirro, 

M., Grisostomi, M. and Ippoliti, G., 2014. Fault prognosis for rotating electrical 

machines monitoring using recursive least square. In: Proceedings of the 6th 

European Embedded Design in Education and Research, 2014. 

https://doi.org/10.1109/ederc.2014.6924402. 

Saidy, C., Xia, K., Kircaliali, A., Harik, R. and Bayoumi, A., 2020. The 

application of statistical quality control methods in predictive maintenance 4.0: 

An unconventional use of statistical process control (SPC) charts in health 

monitoring and predictive analytics. Advances in Asset Management and 

Condition Monitoring, pp.1051–1061. https://doi.org/10.1007/978-3-030-

57745-2_87. 

Salles , R.S., Almeida, G.C.S., Silva, L.R.M., Duque, C.A. and Ribeiro, P.F., 

2020. Visualization of quality performance parameters using wavelet 

scalograms images for power systems. https://doi.org/10.48011//asba.v2i1.1497. 

Selcuk, S., 2016. Predictive maintenance, its implementation and latest trends. 

Journal of Engineering Manufacture, 231(9), pp.1–10. 

https://doi.org/10.1177/0954405415601640. 

Sikora, E.A., 2015. Detection of bearing damage by statistic vibration analysis 

(Diagnosis using the excess, the concept of crest factor). In:  International 

Conference on Mechanical Engineering, Automation and Control Systems. 

https://doi.org/10.1109/meacs.2015.7414970. 

Tse, P.W., Peng, Y.H. and Yam, R., 2001. Wavelet analysis and envelope 

detection for rolling element bearing fault diagnosis—their effectiveness and 

flexibilities. Journal of Vibration and Acoustics, 123(3), pp.303–310. 

https://doi.org/10.1115/1.1379745. 

Upadhyay, S.H., Harsha, S.P. and Jain, S.C., 2009. Vibration signature analysis 

of high-speed unbalanced rotors supported by rolling-element bearings due to 

off-sized rolling elements. International Journal of Acoustics and Vibration, 

14(3), pp.163–171. https://doi.org/10.20855//ijav.2009.14.3247. 

Wang, J., Cui, L., Wang, H. and Chen, P., 2013. Improved Complexity Based 

on Time-Frequency Analysis in Bearing Quantitative Diagnosis. Advances in 

Mechanical Engineering. https://doi.org/10.1155/2013/258506. 

Wang, W. and Zhang , W., 2008. Early defect identification: Application of 

statistical process control methods. Journal of Quality in Maintenance 

Engineering, 14(3), pp.225–236. https://doi.org/10.1108//jqme. 

Xiang, J., Zhong, Y. and Gao, H., 2015. Rolling element bearing fault detection 

using PPCA and spectral kurtosis. Measurement, 75, pp.180–191. 

https://doi.org/10.1016/j.measurement.2015.07.045. 

Xie, H., Fu, W., Jiang, L. and Bie, Z., 2022. Resilience assessment for natural 

gas systems and electrical power systems without complete integration. IET 

Generation, Transmission & Distribution, 16(24), pp.4893–4913. 

https://doi.org/10.1109/ederc.2014.6924402
https://doi.org/10.1007/978-3-030-57745-2_87
https://doi.org/10.1007/978-3-030-57745-2_87
https://doi.org/10.48011/asba.v2i1.1497
https://doi.org/10.1177/0954405415601640
https://doi.org/10.1115/1.1379745
https://doi.org/10.20855/ijav.2009.14.3247
https://doi.org/10.1155/2013/258506
https://doi.org/10.1108/jqme
https://doi.org/10.1016/j.measurement.2015.07.045


95 

 

https://doi.org/10.1049/gtd2.12629. 

Yang, I-Tung. and Prayogo, H., 2022. Efficient reliability analysis of structures 

using symbiotic organisms search-based active learning support vector machine. 

Buildings, 12(455). https://doi.org/10.3390//buildings12040455. 

Zheng, J., Xiang, D., Li, H. and Quach, D.-C., 2021. An Investigation into the 

Effect of Bearing Grease Degradation on the High-frequency dv/dt Bearing 

Current in an Inverter-fed Motor System. 6th International Conference on 

Power and Renewable Energy. 

https://doi.org/10.1109/ICPRE52634.2021.9635227. 

Zonta, T., Costa, C.A., Righi, R.R., Lima, M.J., Trindade, E.S. and Li , G.P., 

2020. Predictive maintenance in the Industry 4.0: A systematic literature review. 

Computers & Industrial Engineering, 150. 

https://doi.org/10.1016/j.cie.2020.106889. 

 

 

https://doi.org/10.1049/gtd2.12629
https://doi.org/10.3390/buildings12040455
https://doi.org/10.1109/ICPRE52634.2021.9635227
https://doi.org/10.1016/j.cie.2020.106889


96 

 

APPENDICES 

 

Appendix A: Figures 

 

 

Figure A-1: DynaLogger HF+ IoT Sensor from MITS Solutions Asia. 

 

 

Figure A-2: Bearing vibration learning rig by Dynamox. 
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Appendix B: Gantt Chart 

 

 

Graph B-1: Gantt Chart of Final Year Project 1. 

 

 

Graph B-2: Gantt Chart of Final Year Project 1. 
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Graph B-3: Gantt Chart of Final Year Project 1. 

 

 

Graph B-4: Gantt Chart of Final Year Project 2. 

 

 

 

 

 

 

 

 

 


