
i

Detecting Malware Attack in Mobile Phone using Intrusion Detection and Prevention

System (IDPS)

BY

Leow Yu Hong

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMMUNICATIONS

AND NETWORKING

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2024

ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: Detecting Malware Attack in Mobile Phone using Intrusion Detection and Prevention

System (IDPS)

Academic Session: JUN 2024

 I LEOW YU HONG

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 No 6, Jalan Melur Impian 3,

 Taman Melur Impian, 28300 _ Dr Abdulrahman Aminu Ghali ___

 Triang, Pahang Supervisor’s name

 Date: 11 Sept 2024 Date: 11 Sept 2024

iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 11 Sept 2024

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that LEOW YU HONG (ID No: 20ACB05558) has completed this final year

project/ dissertation/ thesis* entitled “Detecting Malware Attack in Mobile Phone using Intrusion

Detection and Prevention System (IDPS)” under the supervision of Dr. Abdulrahman Aminu Ghali

(Supervisor) from the Department of Faculty of Information and Communication Technology (FICT).

I understand that University will upload softcopy of my final year project / dissertation/ thesis* in pdf

format into UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

(Leow Yu Hong)

iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “Detecting Malware Attack in Mobile Phone using

Intrusion Detection and Prevention System (IDPS)” is my own work except as cited in the

references. The report has not been accepted for any degree and is not being submitted

concurrently in candidature for any degree or other award.

Signature : _________________________

Name : Leow Yu Hong

Date : 11 Sept 2024

v

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Dr. Abdulrahman Aminu Ghali, from

the bottom of my heart for giving me this amazing chance to work on a cybersecurity project.

It's the first step I'm taking to pursue a career in cybersecurity. I am so appreciative of you.

Furthermore, I would want to express my appreciation to my parents and family for their

continuing love, support, and encouragement along this journey.

vi

ABSTRACT

This project centers on cybersecurity, with a specific focus on detecting and preventing adware

through the use of Intrusion Detection and Prevention Systems (IDPS) on Android mobile

devices. The project integrates both Intrusion Detection Systems (IDS) and Intrusion

Prevention Systems (IPS) to strengthen defenses against adware attacks using the IDPS

approach. Multiple techniques are employed, such as signature-based adware detection,

machine learning model detection, and network-based detection. In the signature-based

method, adware is identified by comparing it with a database of known adware signatures. For

adware not found in the database, detection is handled through machine learning models or

network-based approaches. Several malware attributes are analyzed, including file name, size,

type, and API calls. The research data covers the period from 2019 to 2023, with some data

from earlier years. Thanks to the diverse detection methods used by the IDS, such as signature-

based detection and machine learning models, we were able to detect both known and

previously unknown adware in our initial tests. However, false positives can arise due to

configuration errors or low-accuracy model development. Our quarantine system stops specific

application processes to prevent further malware infection. Regular updates to the signature

database are crucial for effectively detecting and stopping threats. By integrating IDS and IPS,

we can significantly improve our success rate in preventing malware attacks, as each system

compensates for the other's weaknesses and enhances overall detection.

vii

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES x

LIST OF TABLES xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 3

1.2 Objectives 6

1.3 Project Scope and Direction 6

1.4 Contributions 6

1.5 Report Organization 7

 1.6 Summary 7

CHAPTER 2 LITERATURE REVIEW 8

2.1 Previous Works on Mobile Malware Detection 8

 2.1.1 Static Signature-based Detection 8

 2.1.2 Behavior Signature-based Detection 9

 2.1.3 Static Anomalies-based Detection 10

 2.1.4 Dynamic Anomaly-based Detection 11

 2.1.5 Machine learning Approaches 12

2.2 Strength and Weakness 13

2.3 Summary 15

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 16

3.1 System Design Diagram/Equation 16

viii

3.1.1 System Architecture Diagram 16

3.1.2 Use Case Diagram and Description 17

3.1.3 Activity Diagram 18

 3.2 Summary 19

CHAPTER 4 SYSTEM DESIGN 20

 4.1 System Block Diagram 20

 4.2 System Components Specifications 21

 4.3 Circuits and Components Design 22

 4.4 System Components Interaction Operations 27

 4.5 Summary 27

CHAPTER 5 SYSTEM IMPLEMENTATION 28

 5.1 Hardware Setup 28

5.2 Software Setup 28

5.3 Setting and Configuration 29

5.4 System Operation (with Screenshot) 30

5.5 Implementation Issues and Challenges 35

5.6 Concluding Remark 36

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 37

6.1 System Testing and Performance Metrics

37

6.2 Testing Setup and Result 38

6.3 Project Challenges 40

6.4 Objectives Evaluation 41

6.5 Concluding Remark 42

CHAPTER 7 CONCLUSION AND RECOMMENDATION 43

7.1 Conclusion 43

7.2 Recommendation 43

REFERENCES 45

 APPENDIX 47

ix

 WEEKLY LOG 47

 POSTER 53

 PLAGIARISM CHECK RESULT 54

 FYP2 CHECKLIST 57

x

LIST OF FIGURES

Figure Number Title Page

Figure 1.1 Intrusion Prevention System vs Intrusion Detection System 2

Figure 1.2 Attack Distribution by Software Type Used 3

Figure 1.3 Trojan Installers for Mobile Banking Were Found 5

Figure 2.1 Methods for Mobile Malware Detection 8

Figure 2.2 Signature-based Static Detection 9

Figure 2.3 Signature-based Behavior Detection 10

Figure 2.4 Anomaly-based Static Identification 11

Figure 2.5 Dynamic Detection of Anomalies 11

Figure 2.6 Malware detection powered by machine learning 12

Figure 3.1 System Architecture Diagram 16

Figure 3.2 Use Case Diagram 17

Figure 3.3 Activity Diagram for Malware IDPS 18

Figure 4.1 System Block Diagram of Malware IDPS 20

Figure 4.2 System Flow of Malware IDPS 23

Figure 4.3 Logical Flow of Malware IDPS 25

Figure 4.4 Logical Flow of Malware IDPS 26

Figure 5.1 Scanning Options 31

Figure 5.2 Quick Scan Result 31

Figure 5.3 Specific Scan Result 31

Figure 5.4 Malicious Detected 31

Figure 5.5 Default Page 32

Figure 5.6 Normal Web Browse 32

Figure 5.7 Malicious Web Browse 32

Figure 5.8 Blocked Website 32

Figure 5.9 Downloading File 33

Figure 5.10 File detected as Safe 33

Figure 5.11 Downloading File 33

Figure 5.12 File Detected as Malicious 33

Figure 5.13 Quarantine File Lists 34

Figure 5.14 Remove File Permanently 34

xi

Figure 6.1 Malicious URL Testing Accuracy Chart 39

Figure 6.2 Download File Detection Testing Accuracy Chart 39

Figure 6.3 Resource Utilization Testing Chart 40

xii

LIST OF TABLES

Table Number Title Page

Table 1.1 Specifications of Development System 28

Table 2.1 Malicious URL Detection Testing Result

37

Table 2.2 Download File Detection Testing Result 37

Table 2.3 Resource Utilization Testing Result 38

xiii

LIST OF ABBREVIATIONS

IDPS Intrusion Detection and Prevention System

IDS Intrusion Detection System

IPS Intrusion Prevention System

1

Chapter 1:

Introduction

Malware poses a significant danger to cybersecurity as it is one of the most common methods

for gaining unauthorized access. Malware comes in many different forms, including as worms,

ransomware, Trojan horses, spyware, and adware. Malware brings distinct threats of its own.

Because of these parallels, spyware and adware are frequently discussed in the same context.

On mobile devices, spyware often gathers user information—such as location, keystrokes,

browser history, and online activity—without the user's knowledge. Following theft, phishing

and other fraudulent activities frequently use this information. Spyware may also monitor

online activities for commercial and promotional objectives. It is concerning to note that

throughout the previous eight years, there have been an estimated 7.7 billion malware

occurrences, peaking at 10.5 billion in 2018 and reaching 5.5 billion attacks in 2022 [1]. As of

early, the manufacturing sector has been the main focus of malware assaults, accounting for

24.8% of all malware attacks in 2022. Next on the list, the finance and insurance industries

were impacted by 18.9% of attacks in the same year. Affected industries also include retail,

consumer services, energy, professional services, and education [2]. Furthermore, educational

and scientific institutions see the highest frequency of malware occurrences—2,314 on average

each week—followed by government and military institutions, which report 1,661 events

weekly [3].

Malware attacks have become one of the major concerns in today's world, since smartphones

have become indispensable. Malicious software affected 1,661,743 mobile devices in 2022

alone [7]. These malware installers are pieces of software designed especially to infect mobile

devices with malicious apps. The majority of these installers come from dubious sources as

opposed to reliable ones like the App Store or Google Play Store. Malicious installers are not

the only thing that have attracted fraudsters' attention; mobile devices, which are often utilized

for internet banking, are also appealing targets. According to cybersecurity reports, the number

of new mobile banking Trojans found in 2022 was 196,476; in comparison, the number was

69,777 in 2019, 156,710 in 2020, and 97,661 in 2021. This indicates that malware infections

will noticeably rise in 2022 [7]. These problems were made worse by the startling increase in

malware, adware, and undesired software attacks that occurred in the first three quarters of

2

2023. In the first quarter alone, an astounding 4,948,522 cases were documented; in the second

quarter, 5,704,599 attacks were reported. The crisis took a dramatic turn for the worse during

the third quarter, with 8,346,169 attacks reported [18]. Figure 1.1 Intrusion Prevention System

vs Intrusion Detection System, which displays pertinent data, appears below.

Figure 1.1 Intrusion Prevention System vs Intrusion Detection System

Intrusion detection and prevention systems, or IDPS, are essential security tools for spotting

and thwarting malware attacks. A mobile phone detection system can be seen in Figure 1.1.

This system can be used to monitor activities, analyse behaviours, identify potential threats,

and take necessary action to stop attacks that are discovered. Encouraging data is displayed in

Figure 1.2, Attack Distribution by Software Type Used.

3

Figure 1.2 Attack Distribution by Software Type Used

It is critical to address this issue because, as Figure 1.2 illustrates, there has been a discernible

increase in malware attacks directed towards mobile devices. To protect mobile devices from

dangerous threats, it is essential to implement a malware detection system.

1.1 Problem Statement and Motivation

Many issues can occur when malware compromises a mobile device. The theft of login

information, including passwords and usernames, is among the most frequent results. Online

privacy data indicates that about 21% of users have had unwanted access to their accounts,

such as social media and email [8]. This suggests that 5 percent of internet users have been the

victim of account hacking. Furthermore, when malware infects mobile devices, sensitive

data—such as bank account information, personal details, and family photos—is highly

vulnerable to theft. Over 10% of internet users have experienced identity theft including credit

cards and bank information [8]. Due to the widespread usage of mobile devices for online

banking, which makes user data more easily accessible to hackers, these devices are especially

susceptible to data breaches. Another common problem associated with malware infestations

is financial loss, which is frequently brought on by downloading malicious files or installing

dubious third-party software. These malicious apps have the ability to carry out unlawful

financial transactions and steal data from the device, which can result in large financial losses.

For instance, to schedule cleaning services, two Malaysian ladies downloaded an app offered

by a cleaning agency [9]. The program was utilized by scammers to obtain their banking

4

information, which cost them RM40,000 in total. The quantity of malicious installation

packages found on mobile devices increased steadily over time, as reported by Statista, from

276,319 in Q4 2022 to 438,962 in Q3 2023 [16]. Spying and surveillance, in particular the use

of spyware as a tool for surveillance, is a problem that is frequently ignored. Under the user's

awareness, spyware frequently installs itself surreptitiously on mobile devices and gathers

private data, including passwords for banking and social media accounts, usernames, and

financial information. Until their smartphone slows down or they get a warning from antivirus

or anti-malware software, consumers are often unaware that several spyware programs are

concealed within apps that appear legal. One noteworthy instance concerned the program built

by mSpy, which gave the impression of being a legitimate parental monitoring app.

Paradoxically, in May 2015, mSpy was compromised, demonstrating that even software that

appears to be "safe" can be exploited [10].

Unwanted advertisements have gained notoriety in the digital age, especially when they are

delivered using Adware. Because adware uses a lot of background resources, it can cause a

user's device to run much slower by constantly bombarding it with intrusive adverts. In more

serious situations, sexual content may be displayed by Adware. A quarter of all malware

instances worldwide in 2022 were caused by adware [5][7]. Mobile malware cases increased

dramatically during the fourth quarter of 2022, with Adware accounting for 38.36% of newly

identified cases. In the first quarter of 2023, this percentage decreased somewhat to 34.76%

[4]. Adware continued to be the most dangerous threat, impacting 62.65% of all mobile users

attacked in Q2 2023, even though Kaspersky's newly discovered Adware cases decreased from

34.79% in Q1 2023 to 22.69% in Q2 2023 [17].

When using a mobile phone, everyone looks for a secure environment because these devices

store a lot of sensitive and personal information. Attacks by malware on mobile devices have

increased, especially when users do private tasks like paying bills and transacting with banks.

As digital banking systems expand quickly, people are adopting online banking due to its ease,

efficiency, portability, and perceived security. Attackers consequently concentrate more on

banking systems, which causes people to inadvertently download malicious software from

untrusted sources, giving hackers access to their usernames and passwords. Figure 1.3, " Trojan

Installers for Mobile Banking Were Found," provides essential information.

5

Figure 1.3 Trojan Installers for Mobile Banking Were Found

There were found over 100,000 Trojans related to mobile banking in 2022, a notable increase

from 2019 [7] as illustrated in Figure 1.3. Malaysian banks have increased their vigilance in

response to multiple incidences during the COVID-19 outbreak where people were duped by

fake banking websites or applications. In 2022, an elderly woman suffered a financial loss of

RM476,100 as a result of a bogus investing app [15]. Given the frequency of these types of

incidents, Malaysia has an urgent need for effective malware detection and prevention systems.

There are numerous methods for identifying and preventing malware, such as hybrid signature-

based detection, behavioural signature-based detection, and static signature-based detection.

Techniques based on static, dynamic, or hybrid signatures can also be used for anomaly

detection. Regretfully, these solutions don't take proactive measures to stop problems before

they start; instead, they just concentrate on detection. As a result of their heavy human

configuration and maintenance requirements, these systems are vulnerable to false positives

and may find it difficult to combat new malware threats. This project suggests creating an

Intrusion Detection and Prevention System (IDPS), which can stop malicious software and

malware in addition to detecting them, in order to address these issues.

6

1.2 Research Objectives

This final year project aims to accomplish three key objectives:

• To build a strong intrusion detection and prevention system

• To recognize and identify malware

• To look on ways to prevent mobile malware

1.3 Project Scope and Direction

By employing a thorough approach that prioritizes the identification and stopping of malware

intrusions as well as the prevention of unwanted activity on mobile devices, this project seeks

to improve mobile device security. The monitoring methods used will assist in spotting illicit

activity and malicious conduct that could point to the existence of malware. By comparing

known assaults to pre-existing malware attack signatures, the system will identify and prevent

them through the use of static signature-based detection. By identifying malware based on its

action, the system will be able to stop its propagation with the help of behavioural signature

detection. Network-based assaults that take advantage of network vulnerabilities can be

stopped by the system by examining attack patterns and keeping an eye on any suspicious

activity associated with these patterns. Furthermore, as new threats are identified, machine

learning models will be integrated to continuously detect and update malware signatures. The

system will be enhanced using signature-based detection algorithms to make it easier to identify

and remove known malware from mobile devices.

1.4 Contributions

Our study has made the following primary contributions, which we highlight in this section:

• Experiments to validate behaviour-based and signature-based methods for malware

prevention and detection were planned.

• Through the recognition of well-established attack patterns, intrusion detection

systems are able to discover malware signatures.

• Network packet analysis is used to find malware network behaviour and patterns of

malicious activity.

• Machine learning models that have been trained on large amounts of data have the

ability to recognize malware that has encrypted signature headers and anticipate

potentially dangerous attacks.

7

• To stop additional harm, a quarantine mechanism is put in place to isolate particular

files or IP addresses that these systems find.

• Whenever new malware is discovered, automatic updates to malware signatures are

carried out, improving the system's attack pattern database.

1.5 Report Organization

The ensuing chapters go over the specifics of this study. The Literature Review is presented in

Chapter 2. The Malware IDPS system's methodology and approach are described in Chapter 3.

The Malware IDPS System Design is covered in Chapter 4. Furthermore, Chapter 6 discusses

the System Evaluation and Discussion, whereas Chapter 5 concentrates on the System

Implementation. Chapter 7 offers the Final Year Project II of the Malware IDPS's Conclusion.

1.6 Summary

This chapter provides an overview of the environment surrounding cybersecurity risks, namely

malware and how it affects mobile devices. It draws attention to many types of malware,

including worms, ransomware, Trojan horses, and spyware, emphasizing how they can harm

users by stealing their personal data. It also describes the project's objective, highlighting the

necessity of malware detection and prevention systems in light of the rise in malware attacks

on mobile devices. The study goals, which include creating an efficient Intrusion Detection and

Prevention System (IDPS) for mobile malware detection, are presented in the chapter's

conclusion.

8

Chapter 2:

Literature Review

Prior to analysing existing solutions, a comprehensive assessment of pertinent research is

carried out, providing a basis for comprehending the current status of the area.

2.1 Previous Works on Mobile Malware Detection

Mobile malware has emerged as one of the most significant hazards in our globally

interconnected world due to the swift progress made in mobile technology and communication.

Researchers have looked into a number of methods for efficiently detecting mobile viruses. An

overview of pertinent data is provided in below Figure 2.1, Methods for Mobile Malware

Detection.

Figure 2.1 Methods for Mobile Malware Detection

An overview of earlier studies on mobile malware detection strategies is shown in Figure 2.1,

with particular attention paid to static and dynamic anomaly-based detection methods, as well

as behaviour signature-based and static detection methods.

2.1.1 Static Signature-based Detection

Static signature-based malware detection works by identifying malware using a list or database

of known malware signatures. This technique compares the target application's attributes to

known malware signatures to see if the program has any characteristics. It offers a high degree

of accuracy in detecting known malware threats on mobile devices, making it one of the most

9

effective approaches for doing so. The pertinent data is displayed as shown in below Figure

2.2, Signature-based Static Detection.

Figure 2.2 Signature-based Static Detection

A low-complexity static signature-based detection technique is shown in Figure 2.2. This

method filters out malware signatures that coexist with benign signatures, then testing is done.

The malware signature is then updated in the database in case it is later found to not be

malicious.

2.1.2 Behavior Signature-based Detection

Like static signature-based detection, behaviour-based signature detection works in a similar

way. To determine the type of assault, it keeps an eye on the data that a program gathers from

users, how it gathers it, and the techniques it employs while it's running. This method is

predicated on an established database of recognized attack patterns. The system that relies on

behaviour signatures to detect suspicious activity is activated when the actions of an application

come together. In contrast to static detection, this approach necessitates the execution of the

application in order to watch its behaviour and identify possible dangers. Relevant data is

displayed in below Figure 2.3 Signature-based Behaviour Detection.

10

Figure 2.3 Signature-based Behaviour Detection

The use of API interception to gather application data is shown in Figure 2.3. Dynamic

Analysis and Behaviour Detection modules are then used to examine the data further. Together,

these modules assess the gathered information in order to detect any potentially harmful

activity or suspect activity based on how the application interacts with the system.

2.1.3 Static Anomalies-based Detection

Through the examination of source code, static analysis enables the detection of certain code

fragments, questionable features, and behavioural patterns in potentially harmful mobile

applications without the requirement for execution. Compared to dynamic anomaly-based

detection, this offers a significant advantage because it does not require the malicious payload

to be activated. On the other hand, this method's increased risk of false positives is a major

disadvantage.

Static analysis examines potentially hazardous applications using a number of detection

patterns. To examine the application's code for questionable elements, these include opcode

frequency distributions, control flow graphs, syntactic library calls, byte-sequence n-grams,

string signatures, and control flow graphs. Relevant data is displayed in Figure 2.4 Anomaly-

based Static Identification below.

11

Figure 2.4 Anomaly-based Static Identification

The Anomaly-based Static Identification approach is shown in Figure 2.4. It compares fresh or

incoming permission requests to a set of normal or usual requests for each category. This

technique aids in the detection of possible abnormalities that can point to malevolent activity

by highlighting departures from the accepted standard.

2.1.4 Dynamic Anomaly-based Detection

On the other hand, malware is identified by dynamic anomaly-based detection, which depends

on the functioning of mobile applications. Accurate models of typical behaviour are

constructed in the training phase and are subsequently employed in the detection phase to

identify deviations. While this approach is quite good at detecting malware on mobile devices,

it takes a lot of time and resources, which makes it difficult to scale. Relevant data is displayed

in Figure 2.5 Dynamic Detection of Anomalies below.

Figure 2.5 Dynamic Detection of Anomalies

12

The Dynamic Detection of Anomalies model, trained on data from typical behaviour patterns,

is shown in Figure 2.5. The model is used for real-time detection following this training phase,

where it looks for departures from the accepted norm in order to spot possible anomalies or

malicious activities.

2.1.5 Machine Learning Approaches

Machine learning methods like association rules, decision trees, and random forests can also

be used to detect mobile malware. These techniques make it possible to categorize malware

samples and mark questionable ones for additional examination. The use of complex evasion

strategies by some malware samples, including obtaining kernel-mode capabilities without

utilizing the system call interface, poses a serious obstacle to machine learning-based

categorization and further muddies the waters. Relevant data is displayed in Figure 2.6

Malware detection powered by machine learning below.

Figure 2.6 Malware detection powered by machine learning

The process of utilizing machine learning to detect malware is shown in Figure 2.6, wherein a

model is trained on known malware samples in order to extract important properties. When

malware is detected, the system first looks for hash matches using the TLSH technique; if none

are discovered, machine learning models are used to assess and categorize possible malware.

13

2.2 Strengths and Weakness

Static Signature-based Detection

It turns out that Static Signature-based Detection is a useful technique for identifying malware

that is currently in circulation online. By matching a prospective threat's digital fingerprint, or

signature, to a precompiled database of recognized malware fingerprints, this method detects

threats. As soon as a match is discovered, the program instantly flags it as malicious, thereby

displaying a virtual "no entry" sign.

There is a drawback to this tactic, too. Despite being incredibly effective, it might overlook

more recent malware strains that haven't been seen online yet. It's like when a detective

recognizes criminals they've dealt with before with ease, but finds it difficult to identify

strangers.

Behavior Signature-based Detection

Signature-based behaviour Instead of relying on pre-established malware signatures, detection

makes great use of its database to analyse assault patterns in order to find adware. Because it

compares the behaviour patterns of newly discovered adware strains to those already defined

in the database, this method is especially useful for flagging unknown threats based on actions

that are comparable.

It's crucial to recognize this method's limits, though. Its incapacity to identify attacks that

deviate from the established attack patterns is a significant flaw. As a result, the risks that

Behaviour Signature-based Detection can identify are restricted to those that are specifically

listed in its database [11].

Static Anomalies-based Detection

This method's ability to identify adware without actually needing the installation of malicious

payloads on devices is one of its main advantages. The system can detect any threats before

any harm is done thanks to the proactive detection approach. The technique efficiently finds

adware early by closely examining the source code of harmful mobile applications and

identifying patterns and behaviours that are frequently linked to such infestations.

It's crucial to recognize one possible disadvantage of this strategy, though. A concern

14

associated with this technique is false positives because it looks at different parts of the source

code, including byte sequences, syntactic library calls, and n-grams.

Dynamic Anomaly-based Detection

This approach is very special since it can identify new adware strains with accuracy. When

rogue programs that cause harm are encountered, the underlying model can quickly identify

anomalies since it has been educated on typical behaviour patterns. The method also performs

exceptionally well in detecting zero-day malware, indicating its versatility in detecting threats

even in the absence of prior knowledge.

It is imperative to take into account any possible disadvantages associated with the ongoing

functioning of the system on devices following deployment. The extended duration of this

operation could result in significant resource usage, which would affect the system's overall

performance. Careful tuning is needed to maintain optimal efficiency and avoid false positives

in order to address this [13].

Machine Learning Approaches

Machine learning has gained popularity as a practical and efficient way for identifying mobile

malware since it is adaptable and efficient when used in conjunction with other detection

techniques. Because it is so easily scaled and modified to new advancements, it is very popular.

These models get more and more proficient at detecting threats as a result of regular upgrades

that incorporate newly discovered malware samples.

Still, this strategy carries drawbacks in addition to its benefits. One noteworthy problem is that

some malware samples are able to obtain kernel-mode privileges without using the system call

interface. These situations make the categorization process more difficult and put the model's

accuracy in detection to the test. Given the intricacy of these sophisticated malware activities,

it is possible that the model will have difficulty correctly identifying and categorizing these

dangerous threats.

15

2.3 Summary

An extensive review of earlier studies on mobile malware detection methods is given in this

chapter. It goes over the main techniques for detecting malware, such as anomaly-based

detection and detection based on static and behavioural signatures. The chapter also discusses

the benefits and drawbacks of machine learning techniques for identifying mobile viruses. It

offers a basis for comprehending the difficulties connected with each detection approach as

well as the operation of the existing systems.

16

Chapter 3:

System Methodology/Approach

3.1 System Design Diagram/Equation

The Intrusion Detection and Prevention System (IDPS) on an Android platform was developed

using a system design methodology that is described in this section. A feature-driven approach

was employed throughout the development process, with each feature being developed

separately before being integrated into the system as a whole. A complete overview of the

system architecture, important use cases, and activity processes may be found in the sections

that follow.

3.1.1 System Architecture Diagram

The IDPS's general organizational structure is shown in the system architecture diagram. The

system has been divided down into different parts, each of which is in charge of a certain

function, like file isolation, virus scanning, and online browser monitoring. These elements and

how they work together are shown in the diagram below. Below is Figure 3.1 System

Architecture Diagram showing relevant data.

Figure 3.1 System Architecture Diagram

17

Based on the Figure 3.1, the system is made up of several important parts:

1. MalwarePreventionSystem: In charge of starting scans, maintaining files in quarantine, and

handling the whole malware prevention process.

2. FileScanner: Manages the process of looking for potentially malicious files within

directories.

3. UrlAnalysis: Keeps track of and examines URLs the user visits in order to identify

potentially harmful conduct.

4. QuarantineManager: Oversees the secure storage of identified malicious files off of the user's

device by managing their isolation.

3.1.2 Use Case Diagram and Description

The main interactions a user may have with the system, like running malware scans, keeping

an eye on online activity, and isolating malware that has been found, is shown in the use case

diagram below. Below is Figure 3.2 Use Case Diagram showing relevant data.

Figure 3.2 Use Case Diagram

Based on the Figure 3.2, here is a description of each use case:

1. Run a Malware Scan: To find any dangerous files on the device, the user launches a scan.

The technology finds possible dangers by scanning designated directories.

18

2. Monitor Web Browsing: The system keeps track of the URLs that users visit and compares

them to databases of websites that are known to be harmful. The technology prevents access to

the website if it finds a threat.

3. Isolate Malicious Files: To stop malware from damaging the device, the system quarantines

the file after detecting it.

3.1.3 Activity Diagram

The processes for several important system functions, including file isolation and virus

detection, are shown in the activity diagrams below. These flowcharts illustrate the sequential

steps that the system takes to guarantee that the user is in a secure environment. Below is Figure

3.3, an Activity Diagram for Malware Scanning, showing the relevant process.

Figure 3.3 Activity Diagram for Malware IDPS

19

Based on Figure 3.3, it visually represents the steps involved in protecting a computer from

malware through scanning and web monitoring. It starts with the system checking each file and

website against a known list of threats. If a threat is detected, actions such as quarantining the

file or blocking the website are taken to prevent harm. This ensures that the user's device

remains safe from malicious attacks without requiring deep technical knowledge.

3.2 Summary

Chapter 3 describes the methodology and approach used in the development of the Malware

IDPS system. It includes system architecture and design, as well as key processes such as file

scanning, web browsing monitoring, and file quarantine. The use case and activity diagrams

demonstrate the system's main functions and how users interact with the system to detect and

isolate malware. The chapter also covers the architecture of various system components,

including the scanning engine, quarantine manager, and URL analysis module.

20

Chapter 4:

System Design

4.1 System Block Diagram

A top-down view of the IDPS is given by the system block diagram below, which shows the

key parts and how they interact. This diagram represents the architecture of the complete

system, illustrating the connections between several modules including the URL analysis,

quarantine control, and scanning engine. Below is Figure 4.1, a System Block Diagram of

Malware IDPS, showing the relevant process.

Figure 4.1 System Block Diagram of Malware IDPS

Based on Figure 4.1, every block in the diagram stands for an essential part of the system:

21

1. Scanning Engine: In charge of starting and overseeing the device's malware scans.

2. Quarantine Manager: Manages the safe storage and isolation of harmful files that have been

identified.

3. URL Analysis Module: Checks for any security risks by tracking and analyzing URLs that

the user accesses.

4.2 System Components Specifications

The specifications of every system component are described in depth in this section. It covers

the database structure, implementation procedures, and descriptions of the classes and methods

used in the Android application.

Classes and Methods

The functionality of the system depends on the classes and methods listed below:

1. MalwarePreventionSystem: Manages the system's overall performance, coordinating efforts

amongst many parts to identify and stop malware.

2. DirectoryScanner: It searches the device's directories for any malware and takes additional

action if any threats are found.

3. UrlAnalysis: Examines user-accessed URLs to find and prohibit dangerous websites.

Database

The system uses a SQLite database to store information about detected malware and analyzed

URLs. The following SQL commands are used to create and manage the database.

SQL Commands for Malware Database:

CREATE TABLE malware_signatures (

 id INTEGER PRIMARY KEY AUTOINCREMENT,

 hash TEXT UNIQUE

);

CREATE INDEX index_hash ON malware_signatures (hash);

INSERT INTO malware_signatures (hash) VALUES (?);

SELECT hash FROM malware_signatures WHERE hash = ?;

DELETE FROM malware_signatures WHERE hash = ?;

22

SQL Commands for Hostname Database:

CREATE TABLE hostnames (

 id INTEGER PRIMARY KEY AUTOINCREMENT,

 hostname TEXT,

 status TEXT

);

INSERT INTO hostnames (hostname, status) VALUES (?, ?);

SELECT status FROM hostnames WHERE hostname = ?;

SELECT * FROM hostnames;

DELETE FROM hostnames WHERE hostname = ?;

Implementation Steps

The steps that were taken to create and implement the system are outlined below:

1. Development Environment: Android Studio was used to create the system, and an Android

emulator was used for testing.

2. Compilation and Deployment: To enable testing and deployment, the program was uploaded

to an Android device after being compiled in Android Studio.

4.3 Circuits and Components Design

As this is a software project, this section focuses on the logical design of the software

components rather than physical circuitry. The following flow diagrams illustrate the

interactions between different classes and methods, highlighting the logical flow of data

through the system. Below is Figure 4.2, a System Flow of Malware IDPS, showing the

relevant process.

23

24

Figure 4.2 System Flow of Malware IDPS

Based on the Figure 4.2, it outlines the process of malware detection, prevention, and file

quarantine within the system. The system begins with tasks such as scanning files, updating

the signature database, and checking for permissions. When files or URLs are analyzed, the

system compares them against known threats, either quarantining or logging malicious content

if detected. If URLs are deemed unsafe, users are redirected, and malicious files are isolated

for further action. The system allows users to either recover quarantined files or permanently

delete them based on the analysis and user selection. This ensures comprehensive protection

from malware, keeping both files and web activity secure. Below is Figure 4.3 and Figure 4.4,

a Logical System Flow Charts of Malware IDPS, showing the relevant process.

25

Figure 4.3 Logical Flow of Malware IDPS

26

Figure 4.3 Logical Flow of Malware IDPS

27

4.4 System Components Interaction Operations

Based on the Figure 4.2 and 4.3, the functioning of the system's component parts is explained

in this section. The steps that follow describe how important system functions including URL

analysis, quarantine management, and virus scanning are carried out:

1. Scanning Engine Interaction: To identify and separate malware, the scanning engine

communicates with the quarantine manager and file scanner.

2. Quarantine Management: Malware that has been identified is safely relocated to a quarantine

area, where it is kept separate from the main system.

3. URL Analysis Interaction: The URL analysis module keeps track of all online activity,

examines each URL, and prevents access to websites that are known to be harmful.

4.5 Summary

This chapter focuses on the detailed design of the Malware IDPS system. It includes system

block diagrams and logical flowcharts that depict how different components of the system

interact to perform malware detection and prevention. The chapter outlines the core

components and explains their roles in ensuring the security of mobile devices by scanning

files, updating malware signatures, and quarantining malicious content. It also covers the

design and interaction of the system’s scanning, quarantine management, and URL analysis

features.

28

Chapter 5:

System Implementation

5.1 Hardware Setup

The hardware components used in this project are a computer and an Android emulator. Python

programming is developed on the computer to run within the Android environment, as well as

machine learning models to identify malware. Tests and deployments of this malware detection

and prevention system are conducted on a mobile device. Below is the Table 1.1, Specifications

of System showing relevant data.

Table 1.1 Specifications of System

Description Specifications

Model Msi Katana GF66

Processor Intel Core i5-11400H

Operating System Android 14

Graphic NVIDIA GEFORCE 3060 6GB

Memory 8GB DDR4 RAM

Storage 25GB SSD

Based on the Table 1.1, it provides the specifications of the laptop used to run an Android

emulator for the project. The laptop is an MSI Katana GF66, equipped with an Intel Core i5-

11400H processor, an NVIDIA GEFORCE 3060 graphics card (6GB), 8GB of RAM, and

25GB of SSD storage. The system runs the Android 14 operating system through the Android

Studio emulator, allowing for testing and development of mobile applications on a laptop.

5.2 Software Setup

In Malware IDPS, some of the software been used during development and real time detection.

Below is the list of software been used by IDPS:

1. Android Studio Koala | 2024.1.1

2. Android Emulator: Pixel 5 API 34

3. Google Safe Browsing API

4. VirusTotal API

29

5. Jupyter NoteBook (AI Model Training Used)

5.3 Setting and Configuration

In this section, we outline the critical setup and configuration steps required to enable key

functionalities in the system, such as malware detection and URL analysis. These

configurations ensure that the system can access necessary resources like Google Safe

Browsing and VirusTotal for analyzing URLs and files, as well as handling specific Android

permissions that enable file access and overlay display. Below are the steps for configuring the

Google Safe Browsing API, VirusTotal API, and granting Android system permissions such

as "All Files Access" and "Display Over Other Apps" to allow the smooth functioning of the

application:

Google Safe Browsing API Configuration:

1. Create a Google Cloud Project: Log into your Google Cloud account and access the

project dashboard.

2. Create a New Project: Click the "Create Project" button and name the project "Safe-

Browsing-API".

3. Navigate to API & Services: Go to the API & Services dashboard within your Google

Cloud console.

4. Enable Google Safe Browsing API: Search for 'Google Safe Browsing API' and enable

it for your project.

5. Create API Key: In the API & Services dashboard, create credentials by selecting "API

key". This key will be used to authenticate your requests to the Safe Browsing API.

VirusTotal API Configuration:

1. Login to VirusTotal Account: Log in to your VirusTotal account or create an account

if necessary.

2. Access API Key: Navigate to the "API Key" section in your account settings to retrieve

the key required for API integration.

All Files Access Permission (Android):

1. Open Settings: In your Android emulator or physical device, open the "Settings" app.

2. Privacy Section: Scroll down and select "Privacy".

3. Permission Manager: Under the Privacy section, tap on "Permission Manager".

30

4. Files and Media Permission: Scroll down to "Files and Media" and tap on it.

5. Select Application: In the list of applications, find and select your app (e.g., "Malware

IDPSystem").

6. Grant Permission: Tap "Allow access to manage all files" to grant your app permission

to manage all files, which is necessary for malware scanning.

Display Over Other Apps Permission (Android):

1. Open Settings: In the Android emulator, open the "Settings" app.

2. Search for Special App Access: Use the search bar in the Settings app to find "Special

App Access". Alternatively, navigate to "Apps" > "Special App Access" manually.

3. Display Over Other Apps: Scroll down to find "Display over other apps" and tap on it.

4. Select Your Application: Find your app in the list and tap on it.

5. Enable Permission: Toggle the option for "Allow display over other apps" to enable the

app to display information as an overlay, which is crucial for user warnings and

notifications.

5.4 System Operation

In this section, the system operation will be demonstrated for each of the main features

developed in this system, including the Scanning Features, Web Browsing Monitoring

Features, and Malicious Files Quarantine Features, along with their operation results. Below is

the operation and demo result for each of the main features developed in this system.

31

Below are Figure 5.1 and 5.2, which show the Scanning Options and Results (Safe).

Figure 5.1 Scanning Options Figure 5.2 Quick Scan Result

Based on the Figure 5.1 and 5.2 above, it shows that the Quick Scan was selected as the

scanning method, and the operation result for the Quick Scan has been initiated.

Below are Figures 5.3 and 5.4, which show the Scanning Options and Results (Malicious).

Figure 5.3 Specific Scan Result Figure 5.4 Malicious Detected

Based on the Figure 5.3 and 5.4, it shows that when a malicious file is detected, a message

will pop up, and the file will be quarantined immediately.

32

Below are Figure 5.5 and 5.6, which show the Web Monitoring and Results (safe).

 Figure 5.5 Default Page Figure 5.6 Normal Web Browse

Based on the Figure 5.5 and 5.6 shown above, the website is able to show without any blocking

when the URL is not detected as malicious URL.

Below are Figure 5.7 and 5.8, which show the Web Monitoring and Results (Malicious).

Figure 5.7 Malicious Web Browse Figure 5.8 Blocked Website

Based on the Figure 5.7 and 5.8, the website is able to show without any blocking when the

URL is not detected as malicious URL.

33

Below are Figure 5.9 and 5.10, which show the Web Download Files and Results (safe).

 Figure 5.9 Downloading File Figure 5.10 File detected as Safe

Based on the Figure 5.9 and 5.10 above, when a file is downloaded during web browsing, it

will be scanned immediately. If no issues are found, the user can access the file in the folder

without any problems.

Below are Figure 5.11 and 5.12, which show the Web Download Files and Results (malicious).

 Figure 5.11 Downloading File Figure 5.12 File Detected as Malicious

34

Based on the Figure 5.11 and 5.12 above, when a downloaded file is detected as malicious, it

will be quarantined immediately to prevent the user from executing the file on their system.

Below are Figure 5.13 and 5.14, which show the Quarantine Page and Results:

Figure 5.13 Quarantine File List Figure 5.14 Remove File Permanently

Based on the Figure 5.13 and 5.14, the results above show that the user can choose to

permanently delete the quarantined file or recover it if it was falsely detected as malicious.

35

5.5 Implementation Issues and Challenges

Throughout the system's implementation, numerous challenges emerged that necessitated

extensive troubleshooting and adjustments. One of the main issues involved the signature

detection process, which resulted in both memory leaks and increased latency. As the system

handled a large volume of malware signatures, it became clear that the memory management

was inefficient, leading to leaks that negatively impacted overall performance. These problems

were compounded by latency during file scans, which caused delays in malware detection and

prolonged the time required to process large file sets.

Another hurdle was the slow URL loading in the WebProtector feature. This slowdown

primarily occurred when the system queried external APIs, like VirusTotal and Google Safe

Browsing, to verify URLs. Since the system had to wait for these external responses before

determining whether to allow or block a URL, it considerably slowed down browsing, resulting

in a poor user experience.

Additionally, Android's limitations on network monitoring created a significant obstacle. The

initial plan was to use a VPN service to capture and analyze network packets, identify potential

threats, and reroute the traffic back. However, due to constraints in Android's VPN

implementation, the system failed to properly reroute traffic post-analysis, making this

approach impractical. Consequently, an alternative method using WebView for URL detection

and protection was adopted, eliminating the need for direct packet analysis.

Lastly, the system encountered memory and CPU overload when importing large malware

signature databases. The sheer volume of signatures, often housed in encrypted .xlsx files, led

to excessive resource consumption during the import process. This triggered spikes in both

memory and CPU usage, further degrading system performance and requiring optimization to

handle large datasets more efficiently.

36

5.6 Concluding Remark

The implementation process generally proceeded smoothly, though a few challenges were

encountered along the way. Thanks to effective troubleshooting and additional effort, the

system was developed nearly according to plan. The only area where it diverged from the

original design was in network monitoring, where Android’s VPN limitations caused

complications. However, adopting WebView for URL detection proved to be an effective

alternative. All other system components functioned as intended, with some even surpassing

initial expectations.

Reflecting on the outcome of the Malware IDPSystem, the development stayed on track and

was completed within the expected timeframe. In my view, the system is capable of handling

a significant portion of real-world tasks for malware protection, demonstrating its strong

potential for practical application.

For future enhancements, a key improvement would be to continuously update the database.

While the current system includes hundreds of thousands of hash values, expanding this

database over time would improve detection accuracy and further enhance the system’s ability

to identify malware.

37

Chapter 6:

System Evaluation And Discussion

6.1 System Testing and Performance Metrics

In this section, multiple tables are given to show the system testing and performance metrics

results for this system.

Below is the table of Malicious URL Detection Testing result:

 Table 2.1 Malicious URL Detection Testing Result

URL EXPECTED ACTUAL ACCURACY
https://utar.edu.my/ Allow Allow Correct

https://testsafebrowsing.appspot.com/ Block Allow
False

Negative
https://testsafebrowsing.appspot.com/malware.html Block Block Correct

Based on the results in Table 2.1, the URL was successfully blocked when the malware.html

page was detected as malicious. However, the page containing multiple malicious URLs was

not detected or blocked, which could pose a potential risk when a regular user accesses that

page.

Below is the table of Download File Detection Testing result:

Table 2.2 Download File Detection Testing Result

FILE NAME EXPECTED ACTUAL ACCURACY
eicar.com Block Block Correct
eicar.zip Block Block Correct

eicar2.zip Block Block Correct
Acedemic_Calendar_Yr_2024_10052024.jpg Allow Allow Correct

As tested, Table 2.2 shows that the download file detection test was successfully executed for

both malicious and normal files, including multiple file types such as zip, jpg, and bin files.

38

Below is the table of Resource Utilization Testing result:

Table 2.3 Resource Utilization Testing Result

OPERATION CPU MEMORY (MB)
IDLE 1% 77.9
QUICK SCAN (NO DETECTED) 39% 85.1
QUICK SCAN (DETECTED) 40% 85.8
FULL SCAN (NO DETECTED) 40% 88.9
FULL SCAN (DETECTED) 43% 93.9
SPECIFIC SCAN (NO DETECTED) 24% 89.1
SPECIFIC SCAN (DETECTED) 28% 91.5
START WEB SERVICE 41% 136.5

Based on Table 2.3, the system's resource consumption was planned to remain at a stable level.

Tasks such as quick scan, full scan, specific scan, and web service did not overload the CPU

or memory, with most tasks keeping CPU usage around 50%, which is considered optimal.

6.2 Testing Setup and Result

The system underwent testing in three main areas: Malicious URL Detection, Download File

Detection, and Resource Utilization. The tests involved a combination of real-world and

synthetic scenarios on an Android emulator. The setup included enabling network and file

access permissions, configuring the Google Safe Browsing and VirusTotal APIs, and providing

necessary file access and overlay display permissions in the Android environment.

Malicious URL Detection Testing:

This test evaluated the system’s effectiveness in identifying and blocking malicious URLs. It

successfully allowed legitimate URLs and blocked some malicious ones as expected. However,

one false negative was encountered with a test URL (https://testsafebrowsing.appspot.com/),

where the system incorrectly allowed a URL that should have been blocked. This result

indicates a potential area for improvement in enhancing the accuracy of URL detection. Below

is the Figure 6.1 to showing the relevant data.

https://testsafebrowsing.appspot.com/

39

Figure 6.1 Malicious URL Testing Accuracy Chart

Based on Figure 6.1, it shows the accuracy of Malicious URL Testing, including correct

results and false negatives. The detected malicious URLs achieved over 66% accuracy, with

only around 33% resulting in false negatives, according to the testing results.

Download File Detection Testing:

The system was evaluated using a range of test files, including the well-known EICAR test

files. In these tests, all malicious files were successfully blocked, while non-malicious files

were allowed without issue. The results were fully in line with expectations, demonstrating a

100% accuracy in detecting and processing both malicious and safe files. Below is Figure 6.2

that shows the relevant data.

Figure 6.2 Download File Detection Testing Accuracy Chart

40

Based on the results of Figure 6.2, it shows that downloaded file detection during web browsing

achieved significant success in testing, successfully identifying both malicious and normal

files.

Resource Utilization Testing:

The resource utilization tests assessed the system's impact on CPU and memory usage during

different tasks, including idle states, quick scans, full scans, and web service initialization. CPU

usage showed a notable increase during full scans and web service startup, while memory usage

remained generally stable, with the exception of a spike observed when the web service was

initiated. Overall, the system demonstrated efficient resource management across most tasks.

Below is the Figure 6.3 that showing relevant data.

Figure 6.3 Resource Utilization Testing Chart

Based on Figure 6.3, it shows that the system was able to run smoothly with CPU usage

remaining around 50% in various scenarios, including IDLE, Scanning, and Web Service.

Additionally, memory usage was well managed to prevent app crashes and ensure consistent

performance.

6.3 Project Challenges

This project encountered a range of both technical and non-technical challenges. A major

technical challenge was monitoring network traffic. Although the system was able to capture

traffic successfully, reintegrating it into the network flow proved challenging, resulting in

internet outages during emulator testing. Additionally, the system's ability to handle URL

41

protection was tested by the large volume of URLs transmitted during communication. The

need to examine each URL without introducing significant latency posed another major hurdle.

Setting up APIs to capture, filter, and verify URL responses was problematic as well, since any

errors during the extraction process could lead to failures in malware detection. Importing large

datasets also led to memory and CPU overloads, which caused the emulator to crash.

Non-technical challenges included the need to develop a clear and effective implementation

plan, as well as choosing the right algorithms and system flow to integrate detection and

prevention methods in the Malware IDPS. Time management emerged as a significant issue,

with technical problems often requiring more time to resolve than anticipated—sometimes

taking over a week to address a single issue.

Had these challenges not been overcome, users might have experienced substantial latency

while browsing websites, and the system might have failed to properly detect and block

malware from downloads or malicious websites. While the planned VPN-based network

monitoring feature could not be successfully implemented, the project adapted by switching to

WebView for URL detection and protection. As part of this adaptation, a new feature was

added that allows the system to scan all downloaded files during browsing, further enhancing

the protection provided to users.

6.4 Objectives Evaluation

Upon reviewing the objectives set during the initial phase of this final year project, it is clear

that most have been successfully achieved, though a few challenges remain. The first

objective—identifying and detecting malware—was largely met through the implementation

of signature-based detection and AI techniques. The system proved effective in detecting

known malware, but it struggled with identifying newly emerging malware due to limitations

in the detection techniques.

The second objective, which was to develop an effective Intrusion Detection and Prevention

System (IDPS), was fulfilled by using various scanning and prevention methods. These

methods resulted in a fully functioning system.

The third objective—exploring countermeasures against mobile malware—was achieved

through the implementation of a prevention system that quarantines detected files. This system

42

renames, encrypts, and restricts all read, write, and execute capabilities of the files. However,

updating the database signature to match current market standards was limited by the lack of

free, up-to-date data available on the internet.

6.5 Concluding Remark

In conclusion, the system developed during this project has demonstrated strong capabilities in

detecting and preventing malware. It achieved a high level of accuracy in both file and URL

detection. The combination of signature-based detection and AI techniques enabled robust

identification of known threats, and the quarantine mechanism effectively protected the system

by isolating malicious files. Even under stress—during operations like full scans and web

service initialization—the system maintained stable CPU and memory usage.

However, there are still some limitations. The system faces challenges in detecting newly

emerging malware, and network monitoring via VPN could not be fully implemented.

Additionally, accessing a frequently updated signature database remains a challenge due to the

limited availability of free resources. Despite these constraints, the system is largely ready for

real-world deployment, with opportunities for future improvements, such as enhancing

detection accuracy for new malware and refining the network monitoring functionality. This

project highlighted the importance of balancing system performance with comprehensive

protection, and the need for regular testing and updates to keep pace with evolving security

threats.

43

Chapter 7:

Conclusion and Recommendation

7.1 Conclusion

This project aimed to strengthen mobile security by developing an Intrusion Detection and

Prevention System (IDPS) capable of detecting and preventing malware on Android devices.

Throughout the development phase, the system combined various detection techniques,

including signature-based and AI-based methods, to offer a comprehensive solution for

malware detection. Most of the project's objectives were successfully met, with the system

efficiently identifying known malware and quarantining infected files through encryption and

isolation. Although some challenges, such as the inability to fully implement network

monitoring and difficulty detecting newly emerging malware, were encountered, the system

performed well in testing. It maintained stable resource utilization, and detection accuracy was

high for file-based malware and certain URLs. The project also provided valuable insights into

managing large datasets and integrating external APIs, such as Google Safe Browsing and

VirusTotal, for real-time threat detection.

Key lessons from this project include the necessity of keeping detection methods continuously

updated to adapt to evolving malware threats, and the importance of optimizing resource usage

in mobile environments. Effective time management and troubleshooting were essential in

overcoming obstacles, ensuring the development process remained smooth despite its

complexities. With further enhancements, especially in improving detection techniques for

unknown malware, the system shows strong potential for real-world application in

safeguarding mobile devices.

7.2 Recommendation

While the core features of an IDPS for mobile devices were successfully implemented, there

remains room for improvement and future development. First, the system could benefit from

incorporating more advanced AI models to enhance detection of newly emerging malware,

addressing current limitations in signature-based detection. Training the AI model on a larger

dataset would improve its predictive accuracy. Second, further stress testing and security

penetration tests are recommended to assess the system's robustness under real-world

44

conditions. This would ensure the system can handle higher malware volumes and network

traffic without degrading performance.

Another suggestion is to broaden the system’s scope by exploring alternative methods for

network monitoring, given the limitations encountered with the VPN-based approach in this

project. Enhancing the system's database by continuously integrating up-to-date malware

signatures would improve its detection accuracy and overall effectiveness. Collaborating with

external cybersecurity databases or research institutions could also provide access to more

comprehensive signature data. Finally, improving the user interface and user experience would

make the system more user-friendly for non-technical users, increasing its practical value and

encouraging wider adoption.

45

REFERENCES

[1] A. Petrosyan. “Annual number of malware attacks worldwide from 2015 to 2022.” Satista.

https://www.statista.com/statistics/873097/malware-attacks-per-year-worldwide/ (accessed

Aug 24, 2023)

[2] A. Petrosyan. “Distribution of cyber attacks across worldwide in industries in 2022.”

Satista. https://www.statista.com/statistics/1315805/cyber-attacks-top-industries-worldwide/

(accessed Aug 24, 2023)

[3] A. Petrosyan. “Average weekly number of malware attacks in organizations worldwide in

2022, by industry.” Satista. https://www.statista.com/statistics/1377217/average-weekly-

number-attacks-global-by-industry/ (accessed Aug 24, 2023)

[4] A. Kivva. “IT threat evolution Q1 2023. Mobile statistics.” SECURELIST.

https://securelist.com/it-threat-evolution-q1-2023-mobile-statistics/109893/ (accessed Aug 24,

2023)

[5] A. Petrosyan. “Distribution of mobile malware worldwide in 2022, by type.” Satista.

https://www.statista.com/statistics/653688/distribution-of-mobile-malware-type/ (accessed

Aug 24, 2023)

[6] N. James. “30+ Malware Statistics You Need To Know In 2023.” Astra.

https://www.getastra.com/blog/security-audit/malware-

statistics/#:~:text=all%20cyber%20attacks.-

,There's%20a%20cyber%20attack%20every%2039%20seconds,of%20malware%20are%20c

reated%20daily. (accessed Aug. 23, 2023)

[7] T. Shishkova. “The mobile malware threat landscape in 2022.”. SECURELIST.

https://securelist.com/mobile-threat-report-

2022/108844/#:~:text=Distribution%20of%20attacks%20by%20type%20of%20software%20

used,-

Distribution%20of%20attacks&text=Similarly%20to%20previous%20years%2C%202022,2.

38%25%20in%202021%2C%20respectively. (accessed Aug 2, 2023)

[8] W. Baig. “Ten Crucial Privacy Statistics That May Surprise You.”. SECURITY TODAY.

https://securitytoday.com/articles/2020/05/18/ten-crucial-privacy-statistics-that-may-surprise-

you.aspx

[9] V. Nair. “Nearly RM40,000 lost to scammers within minutes of mobile app use.”. TheStar.

https://www.thestar.com.my/metro/metro-news/2022/08/29/nearly-rm40000-lost-to-

scammers-within-minutes-of-mobile-app-use

[10] Kaspersky. “Mobile Malware.”. kaspersky. https://usa.kaspersky.com/resource-

center/threats/mobile-malware

[11] V. KOULIARIDIS, K. BARMPATSALOU, G. KAMBOURAKIS, and S. CHEN, “A

Survey on Mobile Malware Detection Techniques,” IEICE Transactions on Information and

Systems, vol. E103.D, no. 2, pp. 204–211, Feb. 2020, doi:

https://doi.org/10.1587/transinf.2019ini0003.

46

[12] E. Gandotra, D. Bansal, and S. Sofat, “Malware Analysis and Classification: A

Survey,” Journal of Information Security, vol. 05, no. 02, pp. 56–64, 2014, doi:

https://doi.org/10.4236/jis.2014.52006.

[13] Abdelfattah Amamra, Chamseddine Talhi, and J.-M. Robert, “Smartphone malware

detection: From a survey towards taxonomy,” Oct. 2012, doi:

https://doi.org/10.1109/malware.2012.6461012.

[14] A. Sharifi, F. F. Zad, F. Farokhmanesh, A. Noorollahi, and J. Sharif, “An Overview of

Intrusion Detection and Prevention Systems (IDPS) and Security Issues,” IOSR Journal of

Computer Engineering, vol. 16, no. 1, pp. 47–52, 2014, doi: https://doi.org/10.9790/0661-

16114752.

[15] MalayMail. “In N. Sembilan, housewife loses RM480,000 to investment scam.”.

MalayMail. https://www.malaymail.com/news/malaysia/2022/11/22/in-n-sembilan-

housewife-loses-rm480000-to-investment-scam/41343

[16] A. Petrosyan. “Number of detected malicious installation packages on mobile devices

worldwide from 4th quarter 2015 to 3rd quarter 2023.” Satista.

https://www.statista.com/statistics/653680/volume-of-detected-mobile-malware-

packages/#:~:text=During%20the%20third%20quarter%20of,the%20first%20quarter%20of

%202021. (accessed March 3, 2024)

[17] A. Kivva. “IT threat evolution Q2 2023. Mobile statistics.” SECURELIST.

https://securelist.com/it-threat-evolution-q2-2023-mobile-statistics/110427/ (accessed Mar 3,

2024)

[18] A. Kivva. “IT threat evolution Q3 2023. Mobile statistics.” SECURELIST.

https://securelist.com/it-threat-evolution-q3-2023-mobile-statistics/111224/ (accessed Mar 3,

2024)

47

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Jun 2024 Study week no.: 2

Student Name & ID: LEOW YU HONG 2005558

Supervisor: Dr Abdulrahman Aminu Ghali

Project Title: Detecting Malware Attack in Mobile Phone using Intrusion Detection and

Prevention System (IDPS)

1. WORK DONE

- Reviewed related literature on mobile malware detection techniques, focusing on signature-based and AI

approaches.

- Initial planning and setup of the project environment and tools required for development.

2. WORK TO BE DONE

- Start designing system architecture and outlining the functional components of the

IDPS.

- Begin exploring potential APIs for real-time malware detection.

3. PROBLEMS ENCOUNTERED

- Stuck in mindset on how to start and where to begin building the system.

4. SELF EVALUATION OF THE PROGRESS

- Despite the initial challenges in mindset, progress was made in setting up the

groundwork for the project.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

48

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Jun 2024 Study week no.: 4

Student Name & ID: LEOW YU HONG 2005558

Supervisor: Dr Abdulrahman Aminu Ghali

Project Title: Detecting Malware Attack in Mobile Phone using Intrusion Detection and

Prevention System (IDPS)

1. WORK DONE

- Designed the system architecture for the IDPS and finalized the components to be used.

- Began working on the algorithm for scanning and detecting malware.

2. WORK TO BE DONE

- Continue refining the file search algorithm and test its performance across different

devices.

- Explore machine learning models for unknown malware detection.

3. PROBLEMS ENCOUNTERED

- Building a suitable and effective algorithm for searching files in the entire system took

longer than expected.

4. SELF EVALUATION OF THE PROGRESS

- Progress has been steady. The architecture design is complete, and an initial algorithm

has been created, though refinement is necessary.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

49

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Jun 2024 Study week no.: 6

Student Name & ID: LEOW YU HONG 2005558

Supervisor: Dr Abdulrahman Aminu Ghali

Project Title: Detecting Malware Attack in Mobile Phone using Intrusion Detection and

Prevention System (IDPS)

1. WORK DONE

- Implemented and tested the file search algorithm within the IDPS.

- Added functionality to retrieve file information after malware is detected.

2. WORK TO BE DONE

- Integrate the quarantine system to handle detected malware.

- Work on the reporting system to log detected threats and actions taken.

3. PROBLEMS ENCOUNTERED

- Issues with retrieving file information post-detection; the retrieval process caused some

delays in system response.

4. SELF EVALUATION OF THE PROGRESS

- Significant progress in the detection and response mechanism. Some delays in

information retrieval were encountered but are being worked on.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

50

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Jun 2024 Study week no.: 8

Student Name & ID: LEOW YU HONG 2005558

Supervisor: Dr Abdulrahman Aminu Ghali

Project Title: Detecting Malware Attack in Mobile Phone using Intrusion Detection and

Prevention System (IDPS)

1. WORK DONE

- Implemented the quarantine mechanism and tested it with several known malware samples.

- Started working on network monitoring using VPN-based methods.

2. WORK TO BE DONE

- Refine the quarantine system and continue testing.

- Finalize the network monitoring setup and troubleshoot routing issues.

3. PROBLEMS ENCOUNTERED

- The network monitoring using a VPN-based solution faced routing issues, where traffic

could not redirect back correctly.

4. SELF EVALUATION OF THE PROGRESS

- Progress on quarantine functionality is good, but the network monitoring aspect still

requires work to resolve routing problems.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

51

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Jun 2024 Study week no.: 10

Student Name & ID: LEOW YU HONG 2005558

Supervisor: Dr Abdulrahman Aminu Ghali

Project Title: Detecting Malware Attack in Mobile Phone using Intrusion Detection and

Prevention System (IDPS)

1. WORK DONE

- Continued testing and debugging the VPN-based network monitoring system.

- Began optimizing the WebView component to handle a large number of URL requests.

2. WORK TO BE DONE

- Improve the performance of WebView to avoid slowdowns when processing large

numbers of URLs.

- Complete the implementation of the URL detection and blocking feature.

3. PROBLEMS ENCOUNTERED

- The WebView became slow due to the large volume of URL requests being sent for

scanning.

4. SELF EVALUATION OF THE PROGRESS

- While there is steady progress in developing core features, the performance issues with

WebView need urgent attention.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

52

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Jun 2024 Study week no.: 12

Student Name & ID: LEOW YU HONG 2005558

Supervisor: Dr Abdulrahman Aminu Ghali

Project Title: Detecting Malware Attack in Mobile Phone using Intrusion Detection and

Prevention System (IDPS)

1. WORK DONE

- Improved WebView performance by optimizing URL handling and request processing.

- Finalized the system evaluation metrics for testing.

2. WORK TO BE DONE

- Conduct final tests on all components, focusing on performance and accuracy.

- Prepare for the final project presentation.

3. PROBLEMS ENCOUNTERED

- Minor performance issues during full scans, but overall system stability has improved.

4. SELF EVALUATION OF THE PROGRESS

- The system is now in its final stages, with most features functioning as intended. Only

minor adjustments are required to ensure optimal performance.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

53

POSTER

54

PLAGIARISM CHECK RESULT

55

56

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

LEOW YU HONG

ID Number(s)

20ACB05558

Programme / Course FICT-CN

Title of Final Year Project Detecting Malware Attack in Mobile Phone using Intrusion
Detection and Prevention System (IDPS)

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: _8%_ %

Similarity by source
Internet Sources: _____3______%
Publications: ___1___ %
Student Papers: _____6__ %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: Dr Abdulrahman Aminu Ghali

 Name: __________________________

Date:11 September 2024_____________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

57

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB05558

Student Name LEOW YU HONG

Supervisor Name Dr Abdulrahman Aminu Ghali

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)

 List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
√ Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the
ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my
report.

________ ______________
(Signature of Student)
Date: 11 September 2024

