

SPEAR- PHISHING ATTACK DETECTION USING

ARTIFICIAL INTELLIGENCE

By

RAJKUMARADEVAN A/L SANGLIDEVAN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMMUNICATIONS

AND NETWORKING

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2024

ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: SPEAR- PHISHING ATTACK DETECTION USING ARTIFICIAL INTELLIGENCE

Academic Session: 202406

 I RAJKUMARADEVAN A/L SANGLIDEVAN

 (CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 NO.6, JALAN SATU, TAMAN

 KENARI,35000 TAPAH PUAN NOR 'AFIFAH BINTI SABRI

 PERAK Supervisor’s name

 Date: 12/09/2024 Date: 12/09/2024

iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 12/09/2024

SUBMISSION OF FINAL YEAR PROJECT

It is hereby certified that RAJKUMARADEVAN A/L SANGLIDEVAN (ID No: 16ACB03600) has

completed this final year project entitled “SPEAR- PHISHING ATTACK DETECTION USING

ARTIFICIAL INTELLIGENCE” under the supervision of PUAN NOR 'AFIFAH BINTI SABRI

(Supervisor) from the Department of Computer and Communication Technology, Faculty of

Information and Communication Technology.

I understand that University will upload softcopy of my final year project in pdf format into UTAR

Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

(RAJKUMARADEVAN A/L SANGLIDEVAN)

iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “SPEAR- PHISHING ATTACK DETECTION USING

ARTIFICIAL INTELLIGENCE” is my own work except as cited in the references. The

report has not been accepted for any degree and is not being submitted concurrently in

candidature for any degree or other award.

Signature :

Name : RAJKUMARADEVAN A/L SANGLIDEVAN

Date : 12/9/2024

v

ACKNOWLEDGEMENTS

First and foremost, I express my heartfelt appreciation to my project supervisor, Puan Nor

'Afifah Binti Sabri, for his unwavering dedication, insightful feedback, valuable insights,

practical recommendations, and continuous inspiration, all of which have significantly

contributed to my project and the completion of this paper.

However, none of this would have been possible without the generous support and assistance

of numerous individuals and organizations.

I am deeply grateful to my family for their unwavering support and comforting presence

throughout this endeavour. Additionally, I extend my sincere thanks to professionals in the

business community for their patience and motivational words.

I also extend my appreciation and admiration to my model advisor and others who have

generously shared their expertise and assistance in various capacities

vi

ABSTRACT

This project focuses on developing machine learning-based applications to enhance

cybersecurity, specifically the Spear Phishing Attack Detection (S.P.A.D) system and the

Email/SMS Classifier. The goal is to mitigate phishing and spam threats by using advanced

algorithms to detect malicious URLs and classify messages effectively. The Spear Phishing

Attack Detection system employs models such as Logistic Regression, Random Forest, and

ensemble methods to identify and block phishing URLs. It provides real-time feedback on

website safety, offering a proactive defense against spear phishing attacks. Extensive testing

confirmed the system's accuracy in correctly classifying phishing and legitimate URLs. The

Email/SMS Classifier uses models like Naive Bayes, Support Vector Machines, and Random

Forest to classify messages as spam or legitimate. The system integrates text preprocessing

techniques to enhance classification accuracy and was tested with real-world datasets,

demonstrating effective spam detection. Both applications underwent thorough functional,

performance, and accuracy testing. Metrics such as precision, recall, and F1 score were used

to evaluate effectiveness. The systems were also tested for performance and scalability to

handle large data volumes without sacrificing speed or accuracy. The project also explores the

characteristics of spear phishing and spam, offering insights into attackers' evolving tactics.

These findings inform the development of stronger cybersecurity defenses. Recommendations

for future work include refining the models, expanding datasets, and continuously updating

systems to adapt to new threats. By integrating these applications into broader security

frameworks, their impact could be further enhanced. In summary, this project successfully

demonstrates how machine learning can be used to detect and prevent spear phishing and spam,

offering innovative solutions to enhance cybersecurity for individuals and organizations.

vii

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES x

LIST OF TABLES xi

LIST OF SYMBOLS xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Project Objectives 2

1.3 Project Scope 3

1.4 Contributions 4

1.5 Report Organization 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Review of the Technologies 6

2.1.1 Hardware Platform 6

2.1.2 Firmware/OS 7

2.1.3 Database 8

2.1.4 Programming Language 9

2.1.5 Algorithm 10

2.1.6 Summary of the Technologies Review 12

2.2 Existing Technique on Machine Learning 13

2.2.1 Strengths and Weakness 15

2.2.2 Summary of Existing Technique 18

2.3 Concluding Remark 20

viii

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 21

3.1 System Development Models 21

3.1.1 Waterfall Model 24

3.1.2 Agile Model 25

3.1.3 Spiral Model 26

3.1.4 V-Model (Verification and Validation Model) 27

3.2 Proposed Method/Approach 27

3.3 System Requirement 29

3.3.1 Hardware 29

3.3.2 Software 30

3.4 System Architecture/Design Diagram 33

3.5 Expected Challenges 39

3.6 Project Milestone 40

3.7 Concluding Remarks 41

CHAPTER 4 SYSTEM DESIGN 42

 4.1 System Architecture 42

 4.2 Functional Modules in the System 44

 4.3 System Flowchart 47

4.3.1 System Flowchart (S.P.A.D Plugin) 49

4.3.2 System Flowchart (Email\SMS Classifier) 50

 4.4 Concluding Remark 51

CHAPTER 5 SYSTEM IMPLEMENTATION 52

 5.1 Software Setup 52

5.2 Setting and Configuration 56

5.3 System Operation (with Screenshot) 61

5.4 Implementation Issues and Challenges 65

5.5 Concluding Remark 66

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 67

6.1 System Testing and Performance Metrics

67

6.2 Testing Setup and Result 69

ix

6.2.1 Testing Setup for S.P.A.D Plugin Application 69

6.2.2 Testing Setup for Email/SMS Classifier Application 71

6.3 Project Challenges 74

6.4 Objectives Evaluation 75

6.5 Concluding Remark 77

CHAPTER 7 CONCLUSION AND RECOMMENDATION 79

7.1 Conclusion 79

7.2 Recommendation 80

REFERENCES 84

 APPENDIX 85

 WEEKLY LOG 85

 POSTER 89

 PLAGIARISM CHECK RESULT 90

FYP2 CHECKLIST 93

x

LIST OF FIGURES

Figure Number Title Page

Figure 3-1 System Architecture Diagram (S.P.A.D Plugin) 33

Figure 3-2 System Architecture Diagram (Email/SMS Classifier) 36

Figure 3-3 The Gantt Chart for FYP1 40

Figure 3-4 The Gantt Chart for FYP2 40

Figure 4-1 Block Diagram (S.P.A.D Plugin) 42

Figure 4-2 Block Diagram (Email/SMS Classifier) 43

Figure 4-3 System Flowchart (S.P.A.D Plugin) 47

Figure 4-4 System Flowchart (Email\SMS Classifier) 48

Figure 5-1 S.P.A.D Plugin Shows Loading Message 62

Figure 5-2 S.P.A.D Plugin Shows the Website Is Safe 63

Figure 5-3 S.P.A.D Plugin Shows the Website Is Suspicious 63

Figure 5-4 S.P.A.D Plugin Shows the Website Is Phishing 64

Figure 5-5 Email/SMS Classifier Interface 64

Figure 6-1 S.P.A.D Plugin Shows the Website Is Safe to Use 70

Figure 6-2 S.P.A.D Plugin Shows the Suspicious Website May Not Be

Safe to Use

70

Figure 6-3 S.P.A.D Plugin Shows the Phishing Website May Not Be

Safe to Use

71

Figure 6-4 Graph Results for Accuracy and Precision Using Several

Classifier

72

Figure 6-5 Summary Results for Accuracy and Precision Using Several

Classifier

72

Figure 6-6 Results for Accuracy and Precision Using SVM, NB and

ET

73

Figure 6-7 Results For Email/SMS Classifier Showing Not Spam 73

Figure 6-8 Results For Email/SMS Classifier Showing Spam 73

xi

LIST OF TABLES

Table Number Title Page

Table 2-1 Summary of Existing Technique 18

Table 3-1 Specifications of laptop 29

xii

LIST OF SYMBOLS

Symbol Explanation

% Percentage

‘’ Apostrophes

- Hyphen

“” Double Quotation Marks

xiii

LIST OF ABBREVIATIONS

Abbreviations Explanation

IP Internet Protocol

URL Uniform Resource Locators

TLD Top-Level Domains

APT Advanced Persistent Threat

APWG Anti-Phishing Working Group

RSA Rivest, Shamir, Adleman

SMS Short Message Service

SVM Support Vector Machine

NB Naive Bayes Classifier

ET Extra Trees Classifier

RF Random Forest

PKL Pickle

TWSVM Twin Support Vector Machine

APT Advanced Persistent Threats

1

CHAPTER 1

CHAPTER 1

Introduction

1.1 Problem Statement and Motivation

In 2024, the Anti-Phishing Working Group (APWG) released its annual report,

unveiling a staggering count of over 1,077,501 phishing attacks in the fourth quarter of

2023[1]. Concurrently, an analysis conducted by RSA revealed that organizations

worldwide incurred losses totalling $9 billion in 2023 alone due to phishing attacks.

These figures underscore a concerning trend, indicating the inadequacy of existing anti-

phishing tools and initiatives in mitigating the pervasive threat posed by cybercriminals.

Personal computer users often find themselves susceptible to phishing attacks for

several key reasons: a lack of fundamental comprehension regarding Uniform Resource

Locators (URLs), uncertainty regarding the trustworthiness of web pages, ambiguity

surrounding page locations due to redirection or obscured URLs, the prevalence of

deceptive URLs, and inadvertent navigation to fraudulent pages. Compounding these

challenges is the difficulty users encounter in distinguishing phishing websites from

legitimate ones, further exacerbating their vulnerability to exploitation.

Phishing websites serve as common entry points for online social engineering

endeavours, facilitating a myriad of fraudulent activities perpetrated by malicious

actors. Attackers adeptly replicate legitimate websites, disseminating suspicious URLs

via spam messages, SMS, or social networking platforms to ensnare unsuspecting

victims. Leveraging email, phone calls, or text messages, attackers propagate

counterfeit versions of authentic websites, luring victims into divulging personal or

highly sensitive information such as banking credentials or government-issued

identification numbers. These nefarious tactics erode trust in social services,

undermining confidence in online platforms and services.

The pernicious consequences of spear phishing extend beyond mere data breaches,

encompassing the grave implications of unauthorized access to users’ sensitive

information, resulting in substantial financial losses and potentially depriving

individuals of access to their own accounts. Thus, this study endeavours to undertake a

2

CHAPTER 1

comprehensive analysis of spear phishing features, seeking to categorize and evaluate

them systematically to effectively thwart and mitigate the inherent dangers posed by

spear phishing assaults. Furthermore, the integration of advanced clustering algorithms

will be employed to augment the efficacy of detection mechanisms, thereby bolstering

the resilience of cybersecurity measures against the increasingly sophisticated tactics

employed by malicious actors in spear phishing campaigns.

1.2 Project Objectives

Following are the main objectives of this project.

• To propose innovative strategies and methodologies for enhancing the detection

and mitigation of spear phishing attacks in cyberspace.

• Leverage advanced machine learning techniques and algorithmic frameworks

to develop robust solutions capable of identifying and thwarting spear phishing

threats effectively.

• To explore the underlying mechanisms and characteristics of spear phishing

assaults to shed light on the intricate dynamics at play.

• To inform the development of proactive countermeasures against spear phishing

through empirical analysis and experimentation.

• Contribute valuable insights to the field of cybersecurity to foster a safer and

more secure digital ecosystem for individuals and organizations.

• Exclude tangential topics such as general phishing attacks unrelated to spear

phishing and unrelated cybersecurity domains like network intrusion detection

or malware analysis.

• This project will not specifically address legal or regulatory aspects of

cybersecurity or the broader socio-political implications of cyber threats.

3

CHAPTER 1

1.3 Project Scope

The scope of this project encompasses an in-depth investigation into spear phishing

attacks and the development of comprehensive countermeasures to mitigate their

impact. Key objectives include:

❖ Analysis of Spear Phishing Tactics: Conducting a thorough examination of the

various techniques employed by cybercriminals in spear phishing attacks,

including social engineering tactics, email spoofing, and website impersonation.

❖ Identification of Spear Phishing Features: Identifying and categorizing the

distinguishing features of spear phishing emails, websites, and communication

channels to facilitate effective detection and classification.

❖ Development of Detection Mechanisms: Designing and implementing machine

learning algorithms and clustering techniques to detect and classify spear

phishing attempts with high accuracy and efficiency.

❖ Evaluation of Detection Performance: Conducting rigorous testing and

evaluation of the developed detection mechanisms using real-world datasets and

simulated spear phishing scenarios to assess their effectiveness and reliability.

❖ Integration of Countermeasures: Exploring the integration of proactive

countermeasures, such as email filtering systems, browser extensions, and user

education initiatives, to augment the overall resilience against spear phishing

attacks.

❖ Documentation and Reporting: Compiling the research discoveries,

methodologies employed, and implementation specifics into an extensive report

with the aim of offering insights and suggestions for forthcoming research

endeavors and practical implementations within the cybersecurity domain.

4

CHAPTER 1

1.4 Contributions

This project aims to make significant contributions to the field of cybersecurity through

the following avenues:

❖ Advancement of Detection Techniques: By developing novel machine learning

algorithms and clustering methodologies tailored specifically for spear phishing

detection, the project seeks to advance the state-of-the-art in cybersecurity

research. These techniques are expected to improve the accuracy and efficiency

of detecting spear phishing attacks, thereby enhancing overall cybersecurity

resilience.

❖ Empirical Validation and Evaluation: The project will contribute to empirical

research in cybersecurity by rigorously testing and evaluating the developed

detection mechanisms using real-world datasets and simulated spear phishing

scenarios. The results of these evaluations will provide empirical evidence of

the effectiveness and reliability of the proposed techniques.

❖ Practical Applications and Implications: The findings and methodologies

developed in this project have practical implications for cybersecurity

practitioners, policymakers, and organizations. Insights gained from the

research can be used to inform the design and implementation of cybersecurity

solutions, training programs, and policy frameworks aimed at combating spear

phishing attacks and enhancing overall cyber resilience.

❖ Knowledge Dissemination and Awareness: Through the documentation and

dissemination of research findings, the project aims to raise awareness about the

evolving threat landscape of spear phishing and the importance of adopting

proactive cybersecurity measures. By sharing knowledge and insights with the

broader cybersecurity community, the project seeks to contribute to collective

efforts in safeguarding digital assets and protecting against cyber threats.

CHAPTER 1

5

1.5 Report Organization

The report is structured to explore the development of a spear phishing attack detection

system using artificial intelligence, with each chapter addressing critical aspects of the

research. Chapter 2 reviews existing literature on AI-based spear phishing detection. It

examines current detection methodologies, AI algorithms, and the latest advancements

in combating phishing threats. This chapter highlights emerging trends and promising

areas for future investigation. Chapter 3 outlines the methodology used in developing

the spear phishing detection system. This includes data collection, feature engineering,

model training, and evaluation. The chapter offers a detailed explanation of the process,

ensuring the system's robustness and accuracy. Chapter 4 delves into the design and

architecture of the detection system, focusing on integrating AI algorithms for real-time

detection. It discusses key technical components like feature extraction, model

architecture, and the deployment strategies used to ensure efficient system

performance. Chapter 5 discusses the system implementation, detailing the integration

of machine learning models, backend server development, and the browser plugin’s

functionality. It explains how users can scan URLs and emails for phishing attempts

and outlines key challenges such as model accuracy, performance, and security during

implementation. Chapter 6 covers the testing and evaluation of the system. Functional,

performance, and accuracy tests are conducted, and metrics like precision, recall, and

F1 scores are used to assess the system’s performance. These tests ensure the system

operates reliably under various conditions. Chapter 7 concludes the report,

summarizing the project’s outcomes and offering recommendations for future

improvements. Suggestions include refining the models, expanding datasets, and

incorporating user feedback to enhance the system's detection capabilities. The chapter

also highlights potential future applications and ongoing updates to keep pace with

evolving phishing techniques. The report presents a comprehensive overview of the

research, design, implementation, and evaluation of a spear phishing detection system

and its real-world cybersecurity implications.

CHAPTER 2

6

CHAPTER 2

Literature Review

2.1 Review of the Technologies

The development of the Spear Phishing Attack Detection system hinges on the

integration of various technologies that ensure the system’s overall effectiveness,

scalability, and reliability. These technologies form the backbone of the system,

enabling it to function seamlessly across multiple environments while delivering

accurate and efficient phishing detection. In this section, we will examine the core

components, including the hardware platform, operating system, database,

programming language, and algorithms used in the design and implementation of the

system.

2.1.1 Hardware Platform

The hardware platform is a crucial consideration in the design and deployment of

phishing detection systems. In many cases, standard computing systems are sufficient

for the initial stages of model development, such as training machine learning

algorithms. However, as the complexity of these models increases and the volume of

data to be processed grows, the need for more powerful hardware becomes apparent.

For example, real-time phishing detection systems like PhishStorm require high-

performance servers to handle the large-scale implementation of real-time URL

analysis. These systems must process vast amounts of data quickly and accurately,

necessitating the use of servers equipped with multi-core processors, large amounts of

RAM, and fast storage solutions. In addition, the deployment of these systems in cloud

environments can further enhance their scalability and performance. Cloud computing

platforms like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud offer

scalable infrastructure that can dynamically allocate resources based on the system's

requirements. This flexibility allows for the efficient handling of fluctuating workloads,

particularly during peak times when phishing attacks may surge.

Moreover, the choice of hardware also impacts the energy efficiency and operational

costs of phishing detection systems. High-performance servers can be energy-intensive,

CHAPTER 2

7

and organizations need to consider the trade-off between performance and cost.

Emerging technologies like edge computing can help mitigate these challenges by

processing data closer to the source, reducing latency and energy consumption. This

approach can be particularly beneficial in scenarios where real-time decision-making is

critical, such as detecting phishing attempts in emails or web traffic.

In summary, while standard computing systems may suffice for initial development,

the deployment of large-scale, real-time phishing detection systems often requires high-

performance hardware, cloud infrastructure, and innovative approaches like edge

computing to meet the demands of modern cybersecurity.

2.1.2 Firmware/OS

The firmware and operating system (OS) environments in which phishing detection

systems are deployed can significantly impact their performance, compatibility, and

security. Although specific firmware/OS details are generally not highlighted in the

literature, it is essential to recognize that the underlying system environment plays a

critical role in the execution of machine learning models and the overall functioning of

the detection system.

Phishing detection models can be implemented across various operating systems,

including Linux, Windows, and macOS, depending on the development environment

and the target deployment infrastructure. Linux is often favored in research and

production environments due to its open-source nature, flexibility, and stability. It is

particularly well-suited for running machine learning models on servers, where

performance and security are paramount. Additionally, Linux's compatibility with

various programming languages, libraries, and tools used in phishing detection

research, such as Python, TensorFlow, and scikit-learn, makes it a popular choice

among developers.

On the other hand, Windows may be preferred in environments where integration with

other Windows-based applications and services is required. For instance, organizations

that rely heavily on Microsoft Office 365 or Exchange Server may opt for phishing

detection systems that are compatible with the Windows ecosystem. Windows also

CHAPTER 2

8

offers a user-friendly interface and robust support for enterprise security features,

making it a viable option for organizations with specific requirements.

Moreover, the choice of firmware/OS also influences the security of the phishing

detection system. Firmware vulnerabilities can be exploited by attackers to gain

unauthorized access to the system, potentially compromising the detection process.

Therefore, it is crucial to keep both firmware and OS up to date with the latest security

patches and updates.

In conclusion, while the specific firmware/OS environments may not always be

explicitly mentioned in phishing detection research, their impact on system

performance, compatibility, and security should not be overlooked. The choice of OS

should align with the system's requirements, the organization's infrastructure, and the

need for robust security measures.

2.1.3 Database

The database is a vital component of phishing detection systems, serving as the

repository for storing and managing the data used in training, testing, and deploying

machine learning models. The databases used in phishing detection research vary

significantly, from URL datasets to spam email databases, each tailored to the specific

requirements of the detection approach.

Efficient database management is crucial for real-time systems like PhishStorm, which

need to handle large volumes of URL and query data dynamically. These systems must

be capable of quickly retrieving and analyzing data to provide timely detection of

phishing attempts. Relational databases like MySQL and PostgreSQL are commonly

used for structured data, offering powerful querying capabilities and support for

complex data relationships. These databases are well-suited for storing URL features,

user behavior data, and historical phishing incidents, enabling the system to learn from

past attacks and improve its detection accuracy over time.

However, as the volume of data grows, traditional relational databases may struggle to

keep up with the demands of real-time processing. In such cases, NoSQL databases like

MongoDB and Cassandra offer a more scalable solution, allowing for the storage and

retrieval of unstructured or semi-structured data at high speeds. These databases are

particularly useful in handling large-scale datasets, such as those generated by web

CHAPTER 2

9

traffic or social media, where phishing attempts may be detected through patterns in the

data.

Furthermore, the integration of real-time data streams with the database is essential for

maintaining the system's effectiveness. Tools like Apache Kafka and Amazon Kinesis

can be used to stream data in real time, ensuring that the database is continuously

updated with the latest information. This capability is particularly important in dynamic

environments where phishing tactics evolve rapidly, and the system must adapt to new

threats as they emerge.

In addition to managing data storage and retrieval, the database also plays a critical role

in data preprocessing and feature extraction. Before feeding data into machine learning

models, it must be cleaned, normalized, and transformed into a format suitable for

analysis. This preprocessing step is essential for ensuring the quality and consistency

of the data, which directly impacts the accuracy of the detection system.

In summary, the choice of database and the efficiency of its management are critical to

the success of phishing detection systems. Whether using relational databases for

structured data or NoSQL databases for large-scale, unstructured data, the system must

be capable of handling the demands of real-time processing, data streaming, and

preprocessing to deliver accurate and timely detection results.

2.1.4 Programming Language

The choice of programming language is a crucial factor in the development of phishing

detection systems, as it influences the ease of implementation, performance, and

compatibility with various tools and libraries. In the field of machine learning and

phishing detection, Python and R are among the most used programming languages due

to their extensive libraries, community support, and ease of use.

Python is particularly popular in phishing detection research, as it offers a wide range

of libraries and frameworks for machine learning, data analysis, and web development.

Libraries such as TensorFlow, Keras, and scikit-learn provide powerful tools for

building and training machine learning models, while Pandas and NumPy are essential

for data manipulation and preprocessing. Python's versatility also extends to web

scraping and natural language processing (NLP), which are often required in phishing

CHAPTER 2

10

detection tasks. For example, BeautifulSoup and Selenium can be used to scrape web

pages for phishing indicators, while NLTK and spaCy enable the analysis of email

content to detect phishing attempts.

R is another popular language in the data science community, particularly for statistical

analysis and visualization. It offers robust support for machine learning through

packages like caret and random Forest, making it a valuable tool for researchers focused

on developing and testing new algorithms. R's strong visualization capabilities also

make it useful for analyzing and presenting the results of phishing detection

experiments.

In addition to Python and R, other programming languages may be used depending on

the specific requirements of the project. JavaScript is mentioned in some approaches

for phishing attacks, particularly in the context of web-based detection systems.

JavaScript can be used to develop browser extensions or client-side scripts that analyze

web pages in real time, detecting phishing attempts as users browse the internet.

Java is another language that may be employed in phishing detection systems,

especially in environments requiring robust, enterprise-level solutions. Java's

scalability, performance, and security features make it a suitable choice for large-scale

deployments, such as server-based detection systems or integrations with existing

enterprise security platforms.

Overall, the choice of programming language in phishing detection systems is guided

by the specific needs of the project, the available libraries and tools, and the developer's

expertise. Python and R remain the dominant languages in the field due to their

extensive support for machine learning and data analysis, but other languages like

JavaScript and Java may also play important roles in specific contexts.

2.1.5 Algorithm

The algorithms used in phishing detection systems are at the core of their functionality,

enabling the identification of phishing attempts through various techniques. Several

machine learning and heuristic algorithms are commonly utilized across different

studies, each offering unique strengths and trade-offs.

CHAPTER 2

11

1. Naive Bayes (NB): Naive Bayes is a simple, yet effective probabilistic classifier

based on Bayes' theorem. It assumes that features are independent of each other,

which simplifies the computation. Despite its simplicity, Naive Bayes has

shown good performance in phishing detection tasks, particularly in text-based

analysis where the presence of certain words or phrases can indicate phishing

attempts.

2. Support Vector Machines (SVM): SVM is a powerful supervised learning

algorithm used for classification and regression tasks. It works by finding the

optimal hyperplane that separates data points into different classes. In phishing

detection, SVM has been widely used due to its ability to handle high-

dimensional data and its effectiveness in binary classification problems.

However, SVM can be computationally expensive, especially with large

datasets, which may limit its use in real-time systems.

3. Random Forest (RF): Random Forest is an ensemble learning method that

combines multiple decision trees to improve classification accuracy. It is

particularly useful in phishing detection due to its robustness to overfitting and

its ability to handle many features. RF can automatically rank the importance of

features, making it easier to identify the most relevant indicators of phishing.

However, the model's complexity can make it challenging to interpret, which

may be a drawback in some applications.

4. Twin Support Vector Machines (TWSVM): TWSVM is a variant of SVM

that constructs two non-parallel hyperplanes to classify data points. This

approach can improve classification accuracy by considering both the positive

and negative classes separately. In phishing detection, TWSVM has shown

promise in handling imbalanced datasets, where phishing attempts are relatively

rare compared to legitimate activities. However, like SVM, TWSVM can be

computationally intensive and may require significant resources for training and

deployment.

5. Bayesian Algorithms: Bayesian algorithms are probabilistic models that use

Bayes' theorem to update the probability of a hypothesis based on new evidence.

These algorithms are particularly useful in phishing detection because they can

incorporate prior knowledge and adapt to new data over time. Bayesian

CHAPTER 2

12

networks, in particular, have been used to model the relationships between

different features, providing a more nuanced approach to classification.

However, Bayesian algorithms can be sensitive to the quality of the input data,

and their performance may degrade if the data is noisy or incomplete.

6. Heuristic Approaches: Heuristic approaches rely on predefined rules or

patterns to detect phishing attempts. These methods are often used in

combination with machine learning algorithms to improve detection accuracy.

For example, a heuristic approach may involve checking for the presence of

suspicious URLs, unusual email addresses, or misleading visual elements on a

website. While heuristics can be effective in detecting known phishing

techniques, they may struggle to adapt to new or sophisticated attacks.

Additionally, heuristic methods can generate false positives, as legitimate

websites or emails may inadvertently trigger the predefined rules.

In conclusion, the choice of algorithm in phishing detection systems depends on various

factors, including the nature of the data, the required accuracy, and the available

computational resources. Machine learning algorithms like SVM, Random Forest, and

TWSVM offer powerful tools for detecting phishing attempts, but they may require

significant resources and careful tuning to achieve optimal performance. On the other

hand, heuristic approaches provide a more straightforward solution but may lack the

flexibility needed to detect evolving threats. Combining multiple algorithms and

techniques, such as using heuristics alongside machine learning models, can help create

a more robust and adaptable phishing detection system.

2.1.6 Summary of the Technologies Review

The Spear Phishing Attack Detection system relies on a diverse array of technologies

to achieve its goals of efficiency, scalability, and accuracy. The hardware platform

includes high-performance servers and cloud computing solutions, such as AWS and

Azure, which are essential for managing large datasets and real-time processing needs.

Edge computing technologies further optimize performance by reducing latency and

energy consumption. The choice of firmware and operating systems also impacts

system performance and security. Linux is favored for its stability and compatibility

with machine learning tools, while Windows is selected for environments needing

CHAPTER 2

13

integration with Microsoft services. Keeping firmware and OS updated is crucial for

maintaining security.

Databases play a key role in managing the data used for training and deploying the

detection models. Relational databases like MySQL and PostgreSQL handle structured

data, whereas NoSQL databases such as MongoDB and Cassandra manage large-scale,

unstructured data efficiently. Real-time data streaming tools like Apache Kafka and

Amazon Kinesis are employed to ensure that the system adapts quickly to emerging

phishing threats.

Programming languages like Python and R are extensively used due to their powerful

libraries for machine learning and data analysis, with Python also supporting web

scraping and NLP tasks. JavaScript and Java are utilized for specific applications, such

as web-based or enterprise-level solutions.

The choice of algorithms is critical for effective phishing detection. Techniques

including Naive Bayes, Support Vector Machines, Random Forest, Twin Support

Vector Machines, Bayesian methods, and heuristic approaches each bring unique

strengths to the table. Together, these technologies ensure the system can accurately

identify and adapt to evolving phishing threats, maintaining high performance and

reliability.

2.2 Existing Technique on Machine Learning

1. Xiaoqing et al. (2018) demonstrated an intelligent automated approach for

detecting phishing webpages[4]. They looked into the characteristics of a

uniform resource locator (URL) and classified them using NB. In the instance

of dubious webpages, SVM is used to parse and reclassify them. They claim

that the technology provides high detection accuracy in less time based on their

findings. A similar strategy was utilized by Moghimi, M., and Varjani, A.Y.

(2016), who described a method that combined SVM and decision tree

models[11]. SVM is utilized for training, and a decision tree is used to create

rules for identifying phishing websites that target the banking domain.

CHAPTER 2

14

2. Almseidin et al. (2019) published a research in which they improved the

performance of their system by using several machine learning algorithms and

feature selection approaches[3]. The tests were carried out using a 48-feature

phishing dataset that included 5000 benign and phishing webpages. They came

to the conclusion that the RF method, which has only 20 characteristics,

provides the highest accuracy.

3. Rao R. S. et al (2015) developed a heuristic technique employing TWSVM

(twin support vector machine) classifier to detect harmful enrolled phishing

websites and moreover websites that are facilitated on arrangement servers[13].

Their technique looks at the sign-in page and the main page of the visiting site

to differentiate phishing sites housed on legitimate domains. The hyperlink and

URL-based characteristics are used to identify phishing websites that are

maliciously enlisted. They used a variety of support vector machines to set up

phishing websites (SVMs). They discovered that the TWSVM (twin support

vector machine classifier) outperforms other modifications.

4. Jain & Gupta, (2017), proposed an online search tool-based approach for detecting

phishing site pages with pinpoint accuracy, regardless of the literary language used

on the page[8]. To determine the legitimacy of the suspicious URL, the suggested

online search tool-based approach employs a lightweight, trustworthy, and

language-independent pursuing enquiry. They’ve also combined five heuristics

with the web search tool-based instrument to improve recognition accuracy. This is

because some newly created legitimate sites may not appear in the web index. The

suggested technique may also be used to organize newly created lawful websites

that are not yet classified by readily available internet searcher-based tactics.

5. Marchal et al. (2014) proposed a system PhishStorm which is an automated

phishing detection system that can examine any URL in real time to detect probable

phishing sites[5]. To protect users from phishing material, Phish storm is presented

as an automatic real-time URL phishing grading system. PhishStorm used as a

Website reputation evaluation system that delivers a phishing rating for URLs.

PhishStorm scrutinizes the structure of URLs, distinguishing between the registered

low-level domain and the remaining upper-level domain, path, and query

CHAPTER 2

15

components. Leveraging the concept of intra-URL relatedness, it assesses features

derived from URL words, utilizing query data sourced from popular search engines

like Google or Yahoo.

6. Baykara & Gurel, (2018) proposed the Anti-Phishing Simulator, an application that

provides information on the phishing detection difficulty and how to identify

phishing emails[9]. The Bayesian algorithm adds spam emails to the database.

Phishing attackers utilise JavaScript to insert a valid URL into the address bar of

the browser. The study suggests that you only utilise the content of the e-mail as a

keyword when performing complicated word processing.

7. Che H. et al. (2017) relied on the elements that the text of these communications

refers to in order to identify phishing messages[6]. These objects are referred to as

circumstances, and a pair of circumstances is referred to as an occurrence pair,

which addresses the relationship between the two circumstances, and the semantic

web is used to convert words in messages to circumstances. Their research will

provide another computation for differentiating phishing communications that rely

on occurrence matching. The first element of this computation is to create a

semantic web knowledge base, which provides relationships between words and

occurrences. The next step is to create the categorization information base, which

will be used to organise phishing communications. The final section explains how

to use the semantic web knowledge base and class data set to detect phishing.

2.2.1 Strengths and Weakness

Xiaoqing et al. (2018)

Strengths: Utilization of both Naive Bayes (NB) and Support Vector Machine (SVM)

algorithms for classification, enhancing detection accuracy. Integration of intelligent

automated approach for detecting phishing webpages, demonstrating high accuracy and

efficiency.

Weaknesses: Machine learning models like Naive Bayes and Support Vector Machines

rely on training data to generalize patterns and make predictions. If the training data is

CHAPTER 2

16

not diverse or representative enough of real-world phishing scenarios, the model's

performance may suffer, leading to false positives or false negatives.

Almseidin et al. (2019)

Strengths: Improvement of system performance through the utilization of multiple

machine learning algorithms and feature selection approaches.

Achievement of high accuracy using Random Forest (RF) method with only 20

characteristics, indicating efficient feature selection.

Weaknesses: While the dataset used in the research consists of 5000 benign and

phishing webpages, the size may still be relatively small considering the complexity

and diversity of real-world phishing attacks. Additionally, the composition of the

dataset (e.g., distribution of phishing vs. benign URLs, types of phishing attacks

represented) could impact the generalizability of the findings.

Rao R. S. et al. (2015)

Strengths: Development of a heuristic technique employing Twin Support Vector

Machine (TWSVM) classifier for detecting harmful phishing websites, demonstrating

high accuracy. Consideration of both sign-in page and main page characteristics for

differentiation of phishing sites, enhancing detection capability.

Weaknesses: Heuristic techniques rely on rules of thumb or educated guesses to solve

problems, rather than strictly following algorithms. While heuristics can be effective in

certain contexts, they may not always provide optimal solutions and could be prone to

overlooking important patterns or features in the data

Jain & Gupta, (2017),

Strengths: Proposal of an online search tool-based approach for detecting phishing site

pages with pinpoint accuracy, irrespective of language barriers. Integration of heuristics

with web search tool-based instrument to enhance detection accuracy, indicating a

comprehensive detection strategy.

Weaknesses: Potential reliance on external search engines for determining the

legitimacy of URLs, which may introduce dependency on external factors and sources.

CHAPTER 2

17

Combining multiple heuristics with the web search tool-based approach can potentially

enhance detection accuracy. However, the selection and combination of heuristics

require careful consideration to avoid redundancy or conflicting signals that could lead

to false positives or false negatives.

Marchal et al. (2014)

Strengths: Development of an automated phishing detection system (PhishStorm)

capable of real-time URL analysis for detecting probable phishing sites.

Provision of real-time phishing grading system to protect users from phishing material,

enhancing user security.

Weaknesses: One drawback of this system is the restricted availability of data from

Google Trends and Yahoo Clues. These tools offer only limited data, providing the ten

most popular terms related to each requested term. Consequently, less frequently

searched terms, despite their relevance to intra-URL relatedness computation.

Similarly, certain less popular terms incorporated into URLs may not yield any

matching results. This limitation arises because Google and Yahoo do not furnish data

for terms that lack sufficient user requests, deeming them unrepresentative.

Baykara & Gurel, (2018)

Strengths: Proposal of the Anti-Phishing Simulator application for providing

information on phishing detection difficulty and identification of phishing emails.

Integration of Bayesian algorithm for spam email detection, enhancing the robustness

of the simulator.

Weaknesses: The system's reliance on predefined rules for identifying phishing

elements within emails may lead to false positives or missed detections, particularly in

cases where attackers employ sophisticated tactics to bypass traditional detection

methods. Moreover, the system's scalability and efficiency in handling large volumes

of incoming emails may be challenged as the size of the spam database grows over

time.

CHAPTER 2

18

Che H. et al. (2017)

Strengths: Utilization of semantic web and occurrence matching for identifying

phishing messages, leveraging semantic relationships between words and occurrences.

Provision of a computation method for differentiating phishing communications,

enhancing detection accuracy.

Weaknesses: Complexity of semantic web knowledge base creation and categorization

information base, potentially requiring significant computational resources and

expertise for implementation.

2.2.2 Summary of Existing Technique

Table 2-1 Summary of Existing Technique

Study Strengths Weaknesses Critical Comments

Xiaoqing et al. (2018)

- Utilization of both

Naive Bayes (NB)

and Support Vector

Machine (SVM)

algorithms for

classification,

enhancing detection

accuracy.

- Reliance on

training data for

generalization,

which may lead to

reduced

performance if the

data is not diverse

or representative

enough.

While the integration of

NB and SVM algorithms

enhances accuracy, the

study's reliance on

training data could limit

its effectiveness if the

dataset does not

adequately represent real-

world phishing scenarios.

Almseidin et al.

(2019)

- Improvement of

system performance

through the

utilization of

multiple machine

learning algorithms

and feature selection

approaches.

- Relatively small

dataset size may

limit

generalizability. -

Composition of

dataset could

impact findings'

applicability to

real-world

scenarios.

Although multiple

algorithms and feature

selection methods were

used, the study's dataset

size and composition

might not fully capture the

complexity and diversity

of real-world phishing

attacks, potentially

limiting the applicability

of its findings.

- Development of a

heuristic technique

employing Twin

Support Vector

- Heuristic

techniques may

overlook

While the use of heuristics

and TWSVM enhances

detection, relying on

heuristic techniques could

CHAPTER 2

19

Rao R. S. et al.

(2015)

Machine (TWSVM)

classifier for

detecting harmful

phishing websites.

important patterns

or features in data.

introduce limitations in

capturing nuanced

patterns in data,

potentially affecting

detection accuracy.

Jain & Gupta, (2017),

- Proposal of an

online search tool-

based approach for

detecting phishing

site pages with

pinpoint accuracy. -

Integration of

heuristics with web

search tool-based

instrument to

enhance detection

accuracy.

- Potential reliance

on external search

engines may

introduce

dependency on

external factors

and sources. -

Careful

consideration

needed in

selecting and

combining

heuristics to avoid

false positives or

false negatives.

While the proposed

approach enhances

detection accuracy,

reliance on external search

engines and the selection

of heuristics requires

careful consideration to

mitigate potential

limitations such as

dependency on external

factors and the risk of

false positives or

negatives.

Marchal et al (2014)

- Development of an

automated phishing

detection system

(PhishStorm)

capable of real-time

URL analysis. -

Provision of real-

time phishing

grading system to

protect users.

- Limited

availability of data

from Google

Trends and Yahoo

Clues may restrict

the system's

effectiveness.

Although PhishStorm

offers real-time

protection, its

effectiveness might be

limited by the availability

of data from Google

Trends and Yahoo Clues,

potentially impacting its

ability to detect less

popular or newly

emerging phishing

attempts.

Baykara & Gurel,

(2018)

- Proposal of the

Anti-Phishing

Simulator

application for

providing

information on

phishing detection

difficulty and

identification of

phishing emails. -

Integration of

- Reliance on

predefined rules

for identification

may lead to false

positives or

missed detections.

- Scalability and

efficiency may be

challenged with

the growth of the

spam database.

While the Anti-Phishing

Simulator provides

valuable information, its

reliance on predefined

rules and scalability

challenges may affect its

accuracy and efficiency,

particularly in handling

sophisticated phishing

tactics and managing a

growing spam database.

CHAPTER 2

20

Bayesian algorithm

for spam email

detection.

Che H. et al. (2017)

- Utilization of

semantic web and

occurrence

matching for

identifying phishing

messages. -

Provision of a

computation method

for differentiating

phishing

communications.

- Complexity of

semantic web

knowledge base

creation and

categorization

may require

significant

resources and

expertise.

While leveraging

semantic web enhances

detection accuracy, the

complexity of knowledge

base creation and

categorization could pose

implementation

challenges, requiring

substantial resources and

expertise.

2.3 Concluding Remark

In this comprehensive review of existing techniques on machine learning for phishing

detection, a diverse array of methodologies has been explored, each presenting unique

strengths and weaknesses. From leveraging Naive Bayes and Support Vector Machine

algorithms for classification to heuristic techniques and online search tool-based

approaches, researchers have demonstrated innovative strategies to combat phishing

threats. However, challenges such as reliance on training data, scalability issues, and

the complexity of knowledge base creation highlight areas for further refinement.

Despite these limitations, this review underscores the robust foundation upon which

future advancements in phishing detection can be built, emphasizing the importance of

careful consideration and ongoing innovation in addressing evolving cyber threats.

CHAPTER 3

21

CHAPTER 3

System Methodology

 3.1 System Development Models

The Software Development Life Cycle (SDLC) is a structured methodology used in the

development of software systems. It outlines a series of phases or steps that guide the

process of creating, implementing, and maintaining software, ensuring that the final

product meets user needs and organizational requirements. SDLC is fundamental in

software engineering as it provides a systematic approach to managing and executing

software projects. It serves as a blueprint for developing software that is reliable, cost-

effective, and efficient. The SDLC provides a framework that developers and project

managers follow to ensure that the development process is organized, comprehensive,

and predictable. It is not only about coding; rather, it encompasses everything from the

initial concept to the final delivery and ongoing maintenance of the software product.

There are various SDLC models, each with its own approach to software development.

These models include the Waterfall Model, Agile Model, Spiral Model, and V-Model,

among others. While each model has its unique characteristics, they all share a common

goal: to streamline the development process and deliver a functional and reliable

software product.

Phases of the SDLC

The phases of the SDLC are a sequence of steps that provide a roadmap for the

development of a software system. These phases guide the project team through the

entire life cycle of the project, ensuring that all critical aspects of development are

addressed. The core phases typically include:

1. Requirement Gathering and Analysis: This is the initial phase of the SDLC,

where the project's objectives, scope, and requirements are identified and

documented. During this phase, developers, business analysts, and stakeholders

collaborate to understand the needs of the end users and the business. The goal

is to gather all necessary information that will guide the design and development

of the system. This phase often involves conducting feasibility studies, defining

project goals, and creating detailed specifications.

2. System Design: Once the requirements are gathered and analyzed, the next

phase involves designing the system architecture. This phase includes creating

CHAPTER 3

22

a blueprint of the system that defines its structure, components, interfaces, and

data flow. The system design phase is critical as it serves as the foundation for

the actual development work. It is during this phase that decisions are made

regarding the choice of technologies, platforms, and tools that will be used to

build the system. The design can be broken down into two sub-phases: high-

level design (HLD) and low-level design (LLD). HLD focuses on the system's

overall architecture, while LLD deals with the detailed design of individual

components.

3. Development (Coding): This is the phase where the actual coding and

implementation of the system take place. Developers use the design

specifications created in the previous phase to write the code that brings the

system to life. This phase requires careful attention to detail, as errors in coding

can lead to significant issues later in the development process. The development

phase may also involve integrating various components, modules, or services,

ensuring that they work together as intended. Depending on the SDLC model

being used, this phase can be iterative, with multiple rounds of coding, testing,

and refinement.

4. Testing: Once the system is developed, it undergoes rigorous testing to identify

and fix any bugs or issues. The testing phase ensures that the system meets the

specified requirements and functions correctly under various conditions.

Testing can be divided into several types, including unit testing, integration

testing, system testing, and user acceptance testing (UAT). Each type of testing

serves a specific purpose, from verifying individual components to validating

the system's overall functionality. The goal is to ensure that the system is free

of defects and performs as expected in real-world scenarios.

5. Deployment: After successful testing, the system is deployed to the production

environment. Deployment involves installing the system on the target hardware

and configuring it for operational use. This phase may also include user training,

data migration, and the setup of backup and recovery systems. Deployment is a

critical phase, as it marks the transition from development to production. It is

essential to plan and execute the deployment carefully to minimize disruptions

to business operations. Depending on the project's complexity, deployment can

be done in stages (e.g., phased rollout) or as a full-scale launch.

CHAPTER 3

23

6. Maintenance: The final phase of the SDLC is ongoing maintenance and support.

Once the system is live, it requires regular updates, bug fixes, and enhancements

to ensure it continues to meet the evolving needs of the users and the

organization. Maintenance also involves monitoring the system's performance,

addressing any issues that arise, and making necessary adjustments to keep the

system running smoothly. This phase is critical for the long-term success of the

system, as it ensures that the software remains relevant and functional over time.

Maintenance activities may also include implementing new features, optimizing

performance, and ensuring compliance with regulatory requirements.

Importance of SDLC

The SDLC is crucial for several reasons:

• Structured Approach: It provides a clear and organized framework for managing

the software development process, ensuring that all aspects of the project are

addressed systematically.

• Risk Mitigation: By breaking the project into manageable phases, the SDLC

helps identify and address potential risks early in the process, reducing the

likelihood of project failure.

• Quality Assurance: The emphasis on testing and validation at each phase

ensures that the final product meets the required standards of quality and

reliability.

• Cost and Time Management: The SDLC helps project managers control costs

and timelines by providing a clear plan and schedule for each phase of the

project.

Common SDLC Models

While the basic phases of the SDLC remain consistent across different models, the

approach to each phase can vary. Some common SDLC models include:

1. Waterfall Model: A linear and sequential approach where each phase must be

completed before the next one begins. It is simple and easy to manage but can

be inflexible to changes once the project is underway.

2. Agile Model: An iterative and flexible approach that emphasizes collaboration,

customer feedback, and continuous improvement. Agile allows for frequent

releases and adaptability to changing requirements.

CHAPTER 3

24

3. Spiral Model: Combines elements of both iterative and waterfall models, with

a focus on risk assessment and reduction at each iteration or "spiral."

4. V-Model (Verification and Validation Model): A variation of the waterfall

model, where each development phase is associated with a corresponding

testing phase, ensuring that validation is integrated into every step of the

process.

Each of these models has its advantages and disadvantages, and the choice of model

depends on factors such as project size, complexity, and stakeholder requirements.

In conclusion, the SDLC is a critical framework for managing the complexities of

software development. By providing a structured approach to each phase of the project,

the SDLC helps ensure that the final product is of high quality, meets the needs of the

users, and is delivered on time and within budget. Whether using a traditional model

like Waterfall or a more flexible approach like Agile, the principles of the SDLC remain

essential to the success of any software development project.

3.1 1 Waterfall Model

The Waterfall Model is one of the oldest and most traditional approaches in software

development, characterized by its linear and sequential structure. In this model, the

development process is divided into distinct phases, and each phase must be completed

before the next one begins. The process starts with the requirement gathering and

analysis phase, where all the necessary system requirements are collected from the

stakeholders and documented in detail. Once this phase is completed and approved, the

project moves on to the system design phase, where the architecture of the system is

planned and designed based on the requirements. This design phase typically involves

creating system diagrams, flowcharts, and detailed design documents that serve as

blueprints for the development team.

After the design phase is finalized, the project enters the implementation or coding

phase, where developers write the actual code for the system. The development team

follows the design specifications closely to ensure that the system is built exactly as

planned. Once the coding is complete, the project transitions into the integration and

testing phase, where the system is thoroughly tested for defects, bugs, and other issues.

This phase is critical for ensuring that the system functions correctly and meets the

specified requirements. After successful testing, the system is deployed to the

CHAPTER 3

25

production environment in the deployment phase, making it available for end-users.

Finally, the system enters the maintenance phase, where it is monitored, updated, and

maintained to ensure that it continues to operate efficiently over time.

The Waterfall Model's straightforward and organized approach makes it easy to

manage, especially for projects with well-defined requirements. However, its linear

nature can also be a drawback, as it does not easily accommodate changes once a phase

is completed. This inflexibility can be problematic if new requirements emerge or if

there are changes in the project's scope during development. The model is best suited

for projects where the requirements are stable and unlikely to change, such as

government projects or systems with well-established functionalities.

3.1.2 Agile Model

The Agile Model represents a significant departure from traditional models like

Waterfall, offering a more flexible and iterative approach to software development.

Agile emphasizes collaboration, customer feedback, and adaptability, making it

particularly well-suited for projects where requirements are expected to change or

evolve over time. Unlike the Waterfall Model, Agile does not follow a linear path;

instead, it breaks the project down into smaller, manageable units called sprints. Each

sprint typically lasts between one to four weeks and encompasses all phases of the

development process, from requirement gathering and design to development, testing,

and review. This iterative process allows the development team to produce functional

software at the end of each sprint, which can be reviewed and evaluated by

stakeholders.

One of the key strengths of Agile is its ability to accommodate changing requirements.

Since the project is broken down into smaller cycles, any new requirements or changes

can be incorporated into the next sprint without disrupting the entire development

process. Agile also encourages close collaboration between developers, stakeholders,

and customers, ensuring that the final product is closely aligned with user needs and

expectations. This continuous feedback loop helps to catch issues early and allows for

adjustments to be made quickly.

However, Agile's flexibility and iterative nature require a high level of discipline and

coordination among team members. It also requires active involvement from

stakeholders, who must be available to provide feedback and make decisions

CHAPTER 3

26

throughout the development process. Additionally, because Agile focuses on delivering

functional software incrementally, it can sometimes lead to scope creep, where the

project continues to expand as new features are added. Despite these challenges, Agile

is widely used in modern software development, particularly for projects where

innovation, speed, and adaptability are crucial.

3.1.3 Spiral Model

The Spiral Model is a sophisticated approach to software development that combines

elements of both the Waterfall and Agile models, with a strong focus on risk

management. The Spiral Model is particularly well-suited for large, complex projects

where risks need to be carefully identified and mitigated. The development process in

the Spiral Model is divided into several cycles or spirals, each representing a phase of

the project. Each cycle begins with planning, where objectives are set, and potential

risks are identified. This is followed by the risk analysis phase, where strategies are

developed to mitigate or manage the identified risks.

After the risk analysis phase, the project moves into the engineering phase, where the

actual development and testing of the system occur. Once the system is developed, it is

evaluated by stakeholders in the evaluation phase, where feedback is gathered, and any

necessary adjustments are made. This process is repeated in subsequent cycles, with

each cycle refining the system further and addressing any remaining risks. The iterative

nature of the Spiral Model allows for continuous refinement and adaptation of the

system, ensuring that risks are managed effectively throughout the development

process.

The Spiral Model is particularly advantageous for projects with significant uncertainties

or risks, as it allows for thorough risk assessment and mitigation at each stage of

development. However, the model's complexity and iterative nature can make it

challenging to manage, especially for smaller projects. Additionally, the cost of

managing and mitigating risks in each cycle can be high, making the Spiral Model more

suitable for larger projects with ample resources. Despite these challenges, the Spiral

Model's focus on risk management and continuous improvement makes it a valuable

approach for complex and high-risk projects.

CHAPTER 3

27

3.1.4 V-Model (Verification and Validation Model)

The V-Model, also known as the Verification and Validation Model, is a structured

approach to software development that extends the Waterfall Model by emphasizing

the importance of testing at every stage of the development process. The V-Model is

structured in a V-shape, with each development phase on one side of the "V"

corresponding to a specific testing phase on the other side. For example, the

requirement analysis phase is paired with user acceptance testing (UAT), ensuring that

the system meets the users' needs and expectations. Similarly, the system design phase

is paired with system testing, the high-level design phase with integration testing, and

the low-level design phase with unit testing.

This close relationship between development and testing phases ensures that defects are

identified and corrected early in the process, reducing the likelihood of major issues

arising later in the project. The V-Model is particularly beneficial in projects where

quality and reliability are paramount, as it provides a clear framework for validating

each step of the development process. This makes it a popular choice for safety-critical

systems, such as those used in the medical, automotive, and aerospace industries, where

failures can have severe consequences.

However, like the Waterfall Model, the V-Model is relatively inflexible and may not

be suitable for projects where requirements are expected to change frequently. Once a

phase is completed, it can be difficult to go back and make changes without affecting

the entire process. This rigidity can be a drawback in projects with evolving

requirements or where iterative development is needed. Despite this, the V-Model's

focus on verification and validation at every stage makes it a valuable tool for ensuring

that the system meets all specified requirements and functions as intended.

3.2 Proposed Method/Approach

The proposed method in the code is designed to detect phishing websites by leveraging

a combination of feature extraction and machine learning techniques. The process

begins by examining the given URL to determine if it is present in a predefined list of

legitimate websites stored in a CSV file. This initial check serves as a quick filter—if

the URL is found in the list, it is assumed to be legitimate, and the system returns a "0"

classification, indicating that it is not a phishing website. However, if the URL is not

found in the list, the system proceeds to a more detailed analysis.

CHAPTER 3

28

The core of the method involves extracting a comprehensive set of features from the

URL. These features are designed to capture various characteristics that are commonly

associated with phishing websites. For instance, the method checks for the presence of

an IP address in the URL, which is a common indicator of phishing attempts, as

legitimate websites typically use domain names rather than raw IP addresses.

Additionally, the method evaluates the length of the URL—phishing URLs often tend

to be longer and more complex in an attempt to obscure their malicious intent.

Other features that are extracted include the number of slashes in the URL path (referred

to as URL depth), which can indicate the structure and complexity of the website, and

the presence of redirection mechanisms (such as the use of "//" within the URL).

Redirection is another tactic often employed by phishing websites to lead users to

malicious destinations. The method also checks if the HTTPS token is present in the

domain part of the URL, as legitimate websites are more likely to use HTTPS for secure

communication.

Further, the method includes checks for URL shortening services, which are often used

by phishing attackers to disguise the true destination of a link. The presence of hyphens

in the domain name (prefix/suffix) is another feature considered, as phishing domains

often use such patterns to mimic legitimate domains. Additionally, the method

evaluates domain-related features such as the availability of DNS records, the domain's

web traffic ranking (using data from Alexa), the age of the domain, and the domain's

expiration time. These features provide insights into the legitimacy of the website—

newly created domains or those with low traffic rankings are more likely to be

associated with phishing.

Beyond URL and domain-based features, the method also examines HTML and

JavaScript characteristics of the website. For instance, it checks for the presence of

iframe redirection, which is a common technique used by phishing websites to load

malicious content without the user's knowledge. The method also inspects the effects

of mouse-over events in the status bar—phishing websites often use JavaScript to

change the status bar text when the user hovers over a link, misleading them about the

true destination. Additionally, the method evaluates the number of web forwards

(redirections), as multiple forwards can be a sign of a phishing attempt.

Once all these features are extracted, they are compiled into a feature vector, which is

then passed to a pre-trained Support Vector Machine (SVM) model. This machine

learning model has been trained to classify URLs based on the extracted features as

CHAPTER 3

29

either legitimate or phishing. The model's prediction, combined with the feature

analysis, determines the final classification of the URL. If the feature analysis indicates

a strong likelihood of legitimacy (e.g., if most features suggest a legitimate website),

the URL is classified as legitimate. Otherwise, it is classified as phishing.

In summary, the proposed method employs a comprehensive and multi-layered

approach to phishing detection. By combining static checks, such as domain age and

traffic, with dynamic content analysis, such as checking for iframe redirection and

mouse-over effects, the system can effectively distinguish between legitimate and

phishing websites. The integration of a machine learning model further enhances the

accuracy of the system, making it a robust solution for phishing detection.

3.3 System Requirement

3.3.1 Hardware

As the project undertaken is related directly to building, training, and testing an ML

model, the requirements mostly fall onto the software side. Though some decent

hardware capacity is required to actually support and run the model efficiently, it is not

of major importance since there are alternatives to doing it locally. But as a baseline,

here is a breakdown of the development and testing environment hardware –

Table 3-1 Specifications of laptop

Description Specifications

Model Asus TUF 15 series

Processor 11th Gen Intel(R) Core (TM) i7-11600H @ 2.90GHz

Operating System Windows 10 Home Single Language

Graphic NVIDIA GeForce GT 930MX 2GB DDR3

Memory 24GB RAM

Storage 476GB

CHAPTER 3

30

3.3.2 Software

Several software tools and libraries are involved, each playing a crucial role in the

development, execution, and deployment of the phishing detection and spam

classification systems. These software components can be broadly categorized into

programming languages, libraries, frameworks, and tools that support natural language

processing (NLP), machine learning, web development, and data handling. Below is a

detailed explanation of the software involved in each of the two systems.

Spear Phishing Attack Detection System:

In the spear phishing attack detection plugin, the primary software components include

Python, Flask, and various Python libraries used for web scraping, natural language

processing, machine learning, and web development.

Python: Python is the core programming language used in this system. It is chosen for

its versatility, ease of use, and extensive libraries that support machine learning and

web development. Python's flexibility makes it an ideal choice for implementing both

the backend logic and the machine learning models required for phishing detection.

Flask: Flask is a lightweight web framework for Python. In this code, Flask is used to

create the web application that serves as the interface for the phishing detection system.

Flask handles HTTP requests, routes them to the appropriate functions, and manages

the interaction between the user and the backend logic. This allows the phishing

detection system to be deployed as a web service, where users can submit URLs for

analysis through a web interface.

NumPy: NumPy is a fundamental library for numerical computing in Python. Although

it is only indirectly used in this code, NumPy provides essential functions for handling

arrays and performing mathematical operations, which are crucial for processing data

and making predictions in machine learning models.

Requests and BeautifulSoup: These libraries are used for web scraping. The requests

library allows the system to send HTTP requests to external websites, retrieving the

HTML content needed for analysis. BeautifulSoup is a Python library used for parsing

HTML and XML documents. In this code, it is used to extract specific elements from

CHAPTER 3

31

web pages, such as web traffic data from Alexa, which is then used as a feature in the

phishing detection model.

Whois and TLDExtract: These libraries are used for domain name extraction and

WHOIS lookups. Whois is used to retrieve information about domain names, such as

their creation and expiration dates, which are used to assess the legitimacy of a website.

TLDExtract is a library that extracts the domain name and suffix from a URL, making

it easier to analyze and compare URLs.

String, Re, and DateTime: These standard Python libraries are used for text processing

and regular expressions (Re), which are essential for identifying patterns in URLs. The

DateTime library is used for handling date and time-related operations, such as

calculating domain age and expiration.

Pickle: The pickle module is used for serializing and deserializing Python objects. In

this case, it is used to load a pre-trained machine learning model from a file

(SVM_Model.pkl). This allows the phishing detection system to quickly load the model

and use it for making predictions without needing to retrain it every time.

Flask-CORS: This library enables Cross-Origin Resource Sharing (CORS) for Flask

applications. CORS is essential when the web application needs to handle requests from

different domains, ensuring that the phishing detection system can be accessed and used

by various clients and services.

Email/SMS Spam Classification System:

The email/sms spam classification System also relies on Python as the core

programming language, but it uses a different set of libraries and tools, particularly

those focused on natural language processing (NLP) and machine learning.

Python: Like in the spear phishing attack detection system, Python serves as the primary

programming language. Its simplicity and extensive ecosystem of libraries make it ideal

for developing the NLP and machine learning components of the spam classification

system.

Streamlit: Streamlit is a popular open-source framework used for building web

applications in Python, specifically for machine learning and data science projects. In

this code, Streamlit is used to create an interactive user interface where users can input

CHAPTER 3

32

text (such as an email or SMS) and receive a spam classification in real-time. Streamlit

allows developers to build and deploy data-driven web applications with minimal

effort, making it an excellent choice for this project.

NLTK (Natural Language Toolkit): NLTK is a comprehensive library for natural

language processing in Python. It provides tools for text processing, such as

tokenization, stemming, and removing stopwords. In this code, NLTK is used to

preprocess the input text, transforming it into a format suitable for machine learning.

This includes tokenizing the text into individual words, removing common stopwords,

and stemming words to their root forms using the Porter Stemmer.

Pickle: Similar to the phishing detection system, pickle is used here for loading pre-

trained models and vectorizers from files (model.pkl and vectorizer.pkl). This allows

the spam classification system to quickly load the necessary components and make

predictions without retraining the model.

Scikit-learn (Implied using TF-IDF): Scikit-learn is a machine learning library in

Python that provides various tools for model training, evaluation, and feature

extraction. In this code, the TF-IDF (Term Frequency-Inverse Document Frequency)

vectorizer is used to transform the input text into a numerical format that the model can

process. Scikit-learn is the library that typically provides this functionality, making it a

critical component of the spam classification system.

Numpy: As with the phishing detection system, numpy is likely used indirectly in the

background for efficient numerical computations. It supports various operations on

arrays and matrices, which are essential for machine learning tasks.

In both the phishing detection and spam classification systems, Python serves as the

backbone, providing the necessary flexibility and access to a rich ecosystem of libraries.

Flask and Streamlit are the web frameworks that enable user interaction, allowing these

systems to be deployed as web applications. Various libraries, such as NLTK, Scikit-

learn, and BeautifulSoup, provide specialized functionality for natural language

processing, machine learning, and web scraping, making these systems effective in their

respective tasks of detecting phishing attempts and classifying spam messages. The use

of pickle for model persistence ensures that these systems can quickly load and utilize

pre-trained models, providing fast and accurate predictions for end-users.

CHAPTER 3

33

3.4 System Architecture/Design Diagram

Figure 3-1 System Architecture Diagram (S.P.A.D Plugin)

CHAPTER 3

34

Justification

• User Interface Layer:

Web Interface: This layer includes the web interface where users can input a

URL to be checked for phishing. The web interface is powered by Flask, a

lightweight Python web framework that handles HTTP requests and responses.

User Input: The user submits a URL through a form, which is then sent to the

backend for processing.

• Application Layer:

Flask Web Server: This layer acts as the core of the application, handling user

requests and routing them to the appropriate functions. The Flask server

receives the URL input from the user and passes it to the feature extraction and

model prediction components.

Feature Extraction Module: This module processes the input URL to extract

various features used for phishing detection. It includes different functions for

checking IP addresses, URL length, presence of "@" symbols, URL depth,

domain information, and more.

Machine Learning Model: The pre-trained machine learning model (loaded

using pickle) is used to predict whether the URL is phishing or legitimate based

on the extracted features. The model could be an SVM (Support Vector

Machine) or any other classification algorithm.

• Data Processing Layer:

Feature Extraction: This involves parsing the URL and applying various

heuristics, such as detecting the presence of IP addresses, checking the age of

the domain using WHOIS data, analyzing web traffic data from Alexa, and other

criteria that contribute to phishing detection.

External API Calls: The system makes external requests to gather additional

data (e.g., WHOIS information, Alexa rankings) that help in determining the

legitimacy of the URL.

CHAPTER 3

35

Prediction Module: The prediction module uses the extracted features as input

to the pre-trained model. Based on the model's output, the system decides

whether the URL is phishing or legitimate.

• Database Layer:

Pre-trained Model Storage: The machine learning model is stored in a serialized

form using pickle, and it is loaded into memory when the application starts. This

allows the application to use the model without retraining it every time.

CSV File Data: The system uses a CSV file containing a list of known legitimate

websites for quick lookups. This CSV file acts as a local database for the

application to check URLs against.

• Communication Layer:

HTTP Requests and Responses: Communication between the user and the

server is handled through HTTP. The user submits a URL through a POST

request, and the server responds with the prediction result (whether the URL is

phishing or not).

CHAPTER 3

36

Figure 3-2 System Architecture Diagram (Email/SMS Classifier)

CHAPTER 3

37

Justification

• User Interface Layer:

Streamlit Interface: This layer is where the user interacts with the system.

The user inputs the text message (email or SMS) that they want to classify

as spam or not spam. The interface is powered by Streamlit, a Python library

that makes it easy to create web apps for machine learning models.

User Input: The user enters the message through a text area provided in the

Streamlit interface. The input is then processed by the backend components.

• Application Layer:

Streamlit Application Server: This layer is responsible for handling user

interactions and managing the flow of data between the user interface and

the backend components. When the user submits a message, the Streamlit

server processes the input, triggers the text preprocessing, and passes the

processed data to the model for prediction.

Text Preprocessing Module: This module preprocesses the input text by

transforming it into a format that the machine learning model can

understand. It performs tasks such as lowercasing, removing stopwords,

punctuation, and stemming using NLTK (Natural Language Toolkit).

Machine Learning Model: The pre-trained machine learning model (loaded

using pickle) is used to classify the input message as either spam or not

spam. The model is likely trained on a dataset of labeled messages (spam

and non-spam) and utilizes techniques like TF-IDF for vectorization and a

classifier like Naive Bayes, SVM, or another algorithm.

• Data Processing Layer:

Text Preprocessing: The text preprocessing module cleans and prepares the

input message by applying several steps, such as tokenization, removal of

stopwords, and stemming. This step ensures that the input data is in the

correct format for the model.

Vectorization Module: The preprocessed text is then converted into a

numerical format using a vectorizer, such as TF-IDF (Term Frequency-

CHAPTER 3

38

Inverse Document Frequency). This step transforms the text data into a

feature vector that the model can use for prediction.

• Model Prediction Layer:

Prediction Module: The processed feature vector is fed into the pre-trained

machine learning model. The model predicts whether the message is spam

or not based on the input features.

Prediction Output: The result of the prediction (spam or not spam) is then

displayed to the user through the Streamlit interface.

• Database Layer:

Pre-trained Model Storage: The pre-trained model is stored in a serialized

form using pickle. The model is loaded into memory when the application

starts, enabling the system to use the model without retraining it every time.

TF-IDF Vectorizer: The TF-IDF vectorizer used for converting the text into

numerical form is also stored using pickle and loaded into memory during

runtime.

• Communication Layer:

Streamlit Communication: Communication between the user and the

backend is handled within the Streamlit framework. The user submits the

message, and the server processes it, returning the prediction result.

CHAPTER 3

39

3.5 Expected Challenges

The project is expected to encounter several challenges, including data quality and

quantity issues in obtaining labelled datasets for training machine learning models.

Additionally, selecting relevant features for effective feature engineering poses a

complex task that requires domain knowledge and experimentation to avoid overfitting.

Achieving high performance in detecting spear phishing attacks may be challenging, as

models may struggle to generalize well to unseen data, leading to false positives or false

negatives. Moreover, the threat of adversarial attacks presents a significant concern, as

malicious actors may actively attempt to evade detection by crafting sophisticated

attacks. Ensuring scalability to handle large volumes of data in real-time while

maintaining detection accuracy is another non-trivial task. Moreover, ethical concerns

regarding privacy and data protection must be diligently attended to throughout the

project, particularly given the examination of potentially sensitive data such as email

content and user behaviour. Overcoming these challenges will require a

multidisciplinary approach, continuous iteration, experimentation, and collaboration

across cybersecurity, machine learning, and software engineering domains.

CHAPTER 3

40

3.6 Project Milestone

Figure 3-3 The Gantt Chart for FYP1

Figure 3-4 The Gantt Chart for FYP2

CHAPTER 3

41

3.7 Concluding Remarks

In this chapter, the methodology and software used for system development and

analysis have been thoroughly examined. The software development approach utilized

includes both traditional and modern methodologies, such as the Waterfall model for

its linear, sequential phases and the Agile model for its iterative and flexible nature.

The choice of these models aligns with the project's need for structured yet adaptable

processes. Furthermore, the chapter highlights the specific tools and software

employed, including Flask for building the web server, Scikit-Learn for machine

learning, and Streamlit for the user interface, each contributing to the robustness and

efficiency of the system. The integration of these tools into a coherent methodology

ensures that the development process is both systematic and responsive to changes,

ultimately leading to a well-rounded and functional system. This comprehensive

approach underscores the importance of selecting appropriate methodologies and

software to achieve project goals effectively and adapt to evolving requirements.

CHAPTER 4

42

CHAPTER 4

SYSTEM DESIGN

4.1 System Architecture

Figure 4-1 Block Diagram (S.P.A.D Plugin)

CHAPTER 4

43

Figure 4-2 Block Diagram (Email/SMS Classifier)

CHAPTER 4

44

4.2 Functional Modules in the System

Functional Modules (S.P.A.D Plugin)

1. Initialization and Imports: The first code initializes by importing various libraries and

modules needed for processing URLs and making predictions. These include numpy, flask for

web framework functionalities, pickle for loading pre-trained models, whois for domain

information, tldextract for domain extraction, and other libraries for handling URLs, requests,

and HTML parsing.

2. Feature Extraction Functions: This section defines functions to extract features from

URLs for phishing detection:

• havingIP(url): Checks if the URL contains an IP address instead of a domain name.

• haveAtSign(url): Detects the presence of special characters like @ in the URL.

• getLength(url): Determines if the URL length is suspiciously long.

• getDepth(url): Counts the number of slashes in the URL path to determine its depth.

• redirection(url): Checks for redundant redirection symbols (//) in the URL.

• httpDomain(url): Verifies if 'https' is present in the domain part of the URL.

• tinyURL(url): Identifies if the URL uses known URL shortening services.

• prefixSuffix(url): Checks for hyphens in the domain which might indicate phishing.

3. Domain-Based and HTML/JavaScript Feature Extraction: Additional functions are used

to extract features related to the domain and webpage:

• web_traffic(url): Uses Alexa rankings to assess web traffic and infer the legitimacy of

the site.

• domainAge(url): Determines the domain age to infer if it's a newly registered

potentially phishing domain.

• domainEnd(domain_name): Checks the expiration date of the domain to assess its

credibility.

• iframe(response), mouseOver(response), forwarding(response): Analyze the

webpage content for indicators like iframes, mouse-over scripts, or excessive

redirection which could suggest phishing.

CHAPTER 4

45

4. CSV Checking and Prediction Logic: The code includes functionality to check if a URL

is listed in a CSV file of known malicious sites:

• checkCSV(url): Checks if the URL is in a list of known malicious websites.

• featureExtraction(url): Aggregates all feature extraction functions to prepare the

feature set for prediction.

• predict(): Handles the prediction request, processes the URL, extracts features, and

classifies the URL using the pre-trained model.

5. Flask Web Application:

• / Route: A simple route that returns "Hello World."

• /post Route: Handles POST requests for URL prediction. It extracts features, checks

the URL against known data, and returns the classification result.

Functional Modules (Email/SMS Classifier)

1. Initialization and Imports: The second code begins by importing necessary libraries for

building a Streamlit web application and processing text data. Libraries include streamlit for

creating the web interface, pickle for loading pre-trained models and vectorizers, string and

nltk for text preprocessing tasks.

2. Text Transformation Function:

• transform_text(text): This function processes the input text to prepare it for

classification:

o Lowercasing and Tokenization: Converts text to lowercase and tokenizes it

into words.

o Removal of Non-Alphanumeric Tokens: Removes any non-alphanumeric

tokens.

o Stopwords and Punctuation Removal: Eliminates common stopwords and

punctuation.

o Stemming: Applies the Porter Stemmer to reduce words to their root forms.

CHAPTER 4

46

3. Model and Vectorizer Loading:

• tfidf = pickle.load(open('vectorizer.pkl','rb')): Loads the TF-IDF vectorizer used to

transform text into numerical features.

• model = pickle.load(open('model.pkl','rb')): Loads the pre-trained spam

classification model.

4. Streamlit Web Application:

• Title and Input: Sets up the Streamlit app's title and text area for user input.

• Predict Button: When the user clicks the "Predict" button, the following sequence

occurs:

o Text Preprocessing: Calls transform_text to clean and process the input SMS.

o Vectorization: Transforms the processed text into a feature vector using the

TF-IDF vectorizer.

o Prediction: Uses the pre-trained model to predict if the SMS is spam or not.

o Display Result: Displays the prediction result as "Spam" or "Not Spam" on the

web page.

Each module is designed to handle specific tasks related to processing, analyzing, and

classifying text data, either for phishing detection or spam classification, and provides a user-

friendly interface for interaction.

CHAPTER 4

47

4.3 System Flowchart

Figure 4-3 System Flowchart (S.P.A.D Plugin)

CHAPTER 4

48

Figure 4-4 System Flowchart (Email\SMS Classifier)

CHAPTER 4

49

4.3.1 System Flowchart (S.P.A.D Plugin)

The S.P.A.D Plugin system is designed to detect phishing URLs by analyzing various features

of a given URL.

1. Initialization: The application starts by initializing a Flask app and loading a pre-

trained Support Vector Machine (SVM) model from a pickle file (SVM_Model.pkl).

This model is used later to make predictions about whether a URL is phishing or

legitimate.

2. Home Route (/): When a GET or POST request is made to the root URL (/), the

application returns a simple "Hello World" message. This route is mainly for testing or

ensuring that the server is running.

3. Prediction Route (/post): This is the main route for detecting phishing URLs. When a

POST request is made to this route, the application extracts the URL from the request's

form data. It then checks if the URL exists in a predefined CSV file of popular websites

using the checkCSV function. If the URL is found in the CSV, it is marked as not

phishing (dataPhish=0), and the application immediately returns "0" to indicate that the

URL is safe.

If the URL is not found in the CSV, the application sets dataPhish=1, indicating potential

phishing. The application then extracts various features from the URL using the

featureExtraction function. This function checks for characteristics such as the presence of an

IP address in the URL, the use of "@" symbols, URL length, depth, and several others related

to domain properties and HTML content.

Based on the extracted features, the application checks if the count of features with a value of

0 is 14 or 15, which would indicate that the URL is likely safe. If so, the application sets

prediction=0 and returns "1" to indicate the URL is legitimate. Otherwise, the SVM model is

used to predict whether the URL is phishing. If the model predicts phishing and the URL was

not found in the CSV (dataPhish=1), the application returns "1" to indicate phishing. If the

prediction and dataPhish values do not indicate phishing, the application returns "0" to indicate

a safe URL.

CHAPTER 4

50

4.3.2 System Flowchart (Email\SMS Classifier)

This Email\SMS Classifier system allows users to input an email or SMS message and

determine whether it is spam or not.

1. Initialization: The application starts by loading a pre-trained model and a TF-IDF

vectorizer from pickle files (vectorizer.pkl and model.pkl). The TF-IDF vectorizer is

used to convert the input text into numerical features that the model can understand.

2. User Interface: The application has a simple user interface created with Streamlit. It

displays a title ("Email/SMS Spam Classifier") and provides a text area where users can

enter the message they want to classify.

3. Text Transformation: When the user clicks the "Predict" button, the application

preprocesses the input text using the transform text function. This function performs

several steps:

o It converts the text to lowercase.

o Tokenizes the text into individual words.

o Filters out non-alphanumeric characters and stopwords (common words like

"the", "is", etc.).

o Applies stemming using the PorterStemmer, reducing words to their root forms

(e.g., "running" to "run"). The transformed text is then converted into a

numerical vector using the TF-IDF vectorizer.

4. Prediction: The vectorized input is fed into the pre-trained model, which predicts

whether the message is spam (1) or not spam (0).

5. Display Results: Finally, the application displays the result to the user. If the model

predicts the message as spam, the application shows a "Spam" header. Otherwise, it

displays "Not Spam."

S.P.A.D system focuses on URL phishing detection using a machine learning model

and feature extraction from the URL. The app checks whether the URL is already

known, or extracts features to predict its legitimacy using the SVM model. Email/SMS

Classifier meanwhile provides a user-friendly interface for detecting spam in messages

using a machine learning model. It preprocesses the text, converts it into numerical data

using TF-IDF, and classifies it as spam or not using a pre-trained model.

CHAPTER 4

51

4.4 Concluding Remark

Chapter 4 has provided a comprehensive and detailed exploration of the system design,

establishing a solid foundation for the successful implementation of the proposed solution. This

chapter represents a critical step in translating the theoretical concepts and problem definitions

discussed in earlier sections into a practical, executable system that can effectively address the

identified challenges.

The chapter began by presenting the overall system architecture, carefully outlining the various

components and their interactions. The architecture was designed with a focus on modularity,

scalability, and efficiency, ensuring that the system can handle the expected workload while

remaining adaptable to future enhancements. Key components such as the machine learning

model, feature extraction techniques, user interface, and the backend infrastructure were

discussed in depth, highlighting their roles and how they integrate to form a cohesive solution.

In addition to the architectural overview, the chapter delved into the design of specific system

components. The process of feature extraction, which forms the backbone of the system’s

ability to differentiate between legitimate and phishing URLs, was explained step by step. By

selecting and extracting relevant features from URLs, the system can make informed

predictions using the trained machine learning model. This careful attention to feature

engineering is crucial for maximizing the model’s accuracy and minimizing false positives and

negatives.

The use of flowcharts in this chapter served to visually represent the logical flow of the system,

making it easier to understand how each component interacts with the others. The flowcharts

provided clarity on the decision-making processes within the system, particularly in how the

model’s predictions are generated and how the system responds to user inputs. These visual

tools are invaluable for both developers and stakeholders, ensuring that the system’s design is

transparent and accessible.

The chapter also addressed potential challenges and considerations in the system design, such

as the handling of edge cases and the need for continuous model updates. By anticipating these

challenges, the design is better equipped to maintain its effectiveness over time, even as new

phishing techniques emerge.

CHAPTER 5

52

CHAPTER 5

SYSTEM IMPLEMENTATION

5.1 Software Setup

S.P.A.D PLUGIN APPLICATION

This Flask-based web application is designed to predict whether a given URL is phishing or

legitimate by examining various characteristics of the URL and its associated domain. The

application uses a Support Vector Machine (SVM) model to make predictions, which is pre-

trained and loaded using the Python pickle library. The goal of this application is to enhance

online safety by automatically identifying potentially malicious URLs.

The application leverages several libraries. Flask is used to create the web API that handles

incoming requests and responses. Flask-CORS is integrated to manage cross-origin resource

sharing (CORS) and allows the API to accept requests from different origins, which is essential

for web-based applications that may interact with clients hosted on various domains. Pickle is

used to load the trained SVM model that will perform the final URL classification. Other

important libraries include BeautifulSoup and requests, which help retrieve and parse web

content. These libraries are particularly useful for extracting website traffic data from third-

party services such as Alexa. Additionally, tldextract and whois are used to analyze the

domain, extracting detailed information about the domain's ownership, creation, and expiration

dates.

For feature extraction, libraries like Numpy are used for handling numerical data, and the

datetime and dateutil libraries are used to handle time-based features, such as the age of the

domain. Regular expressions, via the re library, are utilized to match patterns within the URL,

helping detect shortened URLs or malicious script tags. Collectively, these libraries provide

the tools needed to analyze various URL characteristics and make an informed prediction.

• URL Feature Extraction and Analysis

The application focuses on extracting a wide range of features from the URL to

assess its potential risk. The features are divided into three main categories: address-

bar-based, domain-based, and HTML/JavaScript-based features.

CHAPTER 5

53

• Address-bar-based features analyze the structure of the URL itself. For example,

havingIP checks whether the URL contains an IP address instead of a domain

name, which can often indicate a phishing attempt. Similarly, haveAtSign checks

for the presence of the "@" symbol, often used in phishing URLs to mislead users.

The getLength function determines if the URL is suspiciously long, which may

signal an attempt to obfuscate the true destination of the link. Another key feature,

redirection, checks for multiple instances of redirection in the URL, specifically

the use of "//" beyond the typical scheme (e.g., https://). The application also checks

for the presence of HTTPS in the domain via httpDomain, although some phishing

sites may still use HTTPS.

• Domain-based features are extracted to assess the trustworthiness of the domain.

web_traffic uses Alexa rankings to measure how much traffic the domain receives.

Low traffic can indicate that the domain is not widely visited, raising suspicion. The

age of the domain is also considered using domainAge, with recently registered

domains being more likely to be associated with phishing. Additionally,

domainEnd looks at how soon the domain registration will expire, as short-lived

domains are often associated with phishing activities.

• HTML and JavaScript-based features are extracted to detect malicious behavior on

the webpage itself. For instance, iframe examines whether the page contains

suspicious iframe redirections, which can be used to load malicious content.

mouseOver checks for malicious scripts that trigger actions when the user hovers

over an element on the webpage. The forwarding function determines the number

of redirects, with multiple redirects being another potential phishing indicator.

• Additional Features and Checks

One unique feature of this application is the checkCSV function, which cross-

references the URL with a CSV file of previously scraped websites. This CSV likely

contains URLs from reputable sources, so if the URL exists in this file, it is

considered legitimate. This adds an extra layer of verification, especially for popular

websites.

CHAPTER 5

54

• Prediction Logic and Model

The main endpoint of the application is /post, which accepts a POST request with

a URL in the request body. When a URL is submitted, the application first checks

it against the CSV file of known websites. If the URL is found in the CSV, the

application immediately returns a response indicating the URL is legitimate. If the

URL is not found in the CSV, the application proceeds to extract the various

features outlined earlier. These features are then passed into the pre-trained SVM

model, which classifies the URL as either phishing or legitimate.

• The result is returned to the user as one of three possible outcomes: "0" for

legitimate, "-1" for phishing, or "1" for uncertain cases where the URL may be

flagged by the model but is not definitively categorized by the CSV check. The use

of an SVM model ensures that the prediction is based on well-established machine

learning algorithms, which are particularly adept at binary classification tasks like

this.

• This application serves as an effective tool for identifying potentially dangerous

URLs. By extracting features from the URL and performing additional checks, such

as cross-referencing with a CSV of known domains, it can reliably determine

whether a given URL poses a phishing risk. The modular design, relying on a mix

of web scraping, domain analysis, and machine learning, makes the application

robust and adaptable to new threats. Ultimately, it is a practical solution for helping

users stay safe online by identifying malicious URLs before they become a problem.

EMAIL\SMS CLASSIFIER APPLICATION

This application relies on several important libraries. Streamlit is used to create the web

interface, where users can input a message and view the prediction. NLTK (Natural Language

Toolkit) is used for text preprocessing, including tokenization, stopword removal, and

stemming. The nltk.corpus module provides access to a list of stopwords, which are common

words (like "the", "and", etc.) that are generally removed in text classification tasks. Pickle is

used to load the pre-trained machine learning model and the TF-IDF (Term Frequency-Inverse

CHAPTER 5

55

Document Frequency) vectorizer, which is responsible for transforming the input text into a

format that the machine learning model can understand.

• Preprocessing the Text

❖ The function transform_text is a key part of the application and is

responsible for preprocessing the user's input message. Preprocessing is

crucial in natural language processing (NLP) because it helps standardize

and clean the text before it's passed into the machine learning model.

❖ The first step in transform_text is to convert the text to lowercase. This

ensures that words like "Hello" and "hello" are treated the same way by the

model.

❖ Next, tokenization is performed using nltk.word_tokenize(), which breaks

the text into individual words or "tokens." Once the text is tokenized, the

code removes any tokens that are not alphanumeric using the isalnum()

method, keeping only words and numbers.

❖ The function then removes stopwords and punctuation. Stopwords are

common words that typically do not contribute much meaning to a

classification task. NLTK provides a pre-built list of English stopwords,

which is used to filter out these words. Similarly, punctuation is removed

because it doesn't help in determining whether the text is spam or not.

❖ Finally, the function applies stemming using PorterStemmer from NLTK.

Stemming reduces each word to its root form, so that words like "running"

and "runs" are both converted to "run." This reduces the dimensionality of

the input and helps the model generalize better.

❖ The transformed text is returned as a single string, with words joined by

spaces, and is ready to be vectorized.

• Vectorization and Prediction

❖ Once the text has been transformed, it is passed to the TF-IDF vectorizer

that has been loaded using pickle. TF-IDF is a technique used to convert a

text document into numerical features, which the machine learning model

can understand. The vectorizer was likely trained on a dataset of spam and

non-spam messages to learn important features for classification.

CHAPTER 5

56

❖ The preprocessed text is transformed into a numerical vector using the

command tfidf.transform([transformed_sms]). The vectorized input is then

passed into the machine learning model for prediction. The model's output

is a binary result, where 1 typically indicates spam, and 0 indicates not spam.

• Displaying the Result

❖ Finally, the result of the prediction is displayed to the user in the Streamlit

interface. Depending on the prediction made by the model, the application

will display either "Spam" or "Not Spam" as the output. This simple

interface allows users to easily classify messages by typing them into the

text box and clicking the "Predict" button.

In summary, this application takes an input message, preprocesses it to remove irrelevant

features like stopwords and punctuation, and converts it into a numerical vector using a pre-

trained TF-IDF vectorizer. The vector is then passed into a pre-trained machine learning model,

which classifies the message as either spam or not spam. The entire process is wrapped into an

interactive web interface built using Streamlit, making it user-friendly and easy to use for real-

time spam classification.

5.2 SETTING AND CONFIGURATION

 S.P.A.D PLUGIN APPLICATION

 1. Import Libraries

Imported essential libraries for the project, including numpy for numerical operations,

Flask for creating the web application, and pickle for loading the pre-trained machine

learning model. Used requests for making HTTP requests, BeautifulSoup for parsing

HTML content, and whois for retrieving domain information. Other libraries such as re (for

regular expressions), string (for string operations), and tldextract (for extracting domain

information) were also included to support various features of the application.

CHAPTER 5

57

2. Load the Pre-trained Model

Loaded the Support Vector Machine (SVM) model from a file named SVM_Model.pkl

using the pickle library. This model is used to predict whether a URL is phishing or

legitimate based on extracted features.

3. Feature Extraction Functions

Several functions were defined to extract features from the URLs:

• havingIP checks if an IP address is present in the URL.

• haveAtSign detects the presence of special characters like @.

• getLength determines the length of the URL.

• getDepth calculates the number of slashes in the URL path.

• httpDomain checks if the domain part of the URL contains 'https'.

• tinyURL identifies URL shortening services.

• prefixSuffix detects hyphens in the domain part of the URL.

• web_traffic evaluates website traffic using Alexa rankings.

• domainAge estimates the domain's age based on its creation date.

• domainEnd assesses the domain's expiration date.

• iframe looks for iframe tags in the HTML response to detect potential redirections.

• mouseOver checks for JavaScript mouseover events.

• forwarding counts the number of HTTP redirects.

• checkCSV verifies if the URL exists in a list of known phishing or legitimate sites.

4. Feature Extraction

The featureExtraction function consolidates all the individual feature extraction functions.

It creates a feature list for each URL, which includes attributes like the presence of IP

addresses, special characters, URL length, domain information, and HTML/JavaScript

content.

5. Application Routes

Setting up two routes in the Flask application:

The root route (/) simply returns a "Hello World" message, confirming that the server is

running.

CHAPTER 5

58

The /post route handles POST requests, where it receives the URL, processes it to extract

features, and uses the SVM model to predict whether the URL is phishing. The prediction

result is then returned based on the model’s output and additional checks against known

phishing sites.

6. Handle Requests and Predictions

In the /post route, after extracting features from the URL, the application checks if the URL

is listed in the CSV file of known phishing sites. If it is, the application returns a result

indicating a higher likelihood of phishing. If not, the feature list is passed to the SVM model

for prediction, and the result is returned accordingly.

7. Run the Application

The Flask application is started with app.run(debug=True), which launches the server in

debug mode to facilitate development and testing.

EMAIL\SMS CLASSIFIER APPLICATION

1. Import Libraries

• import numpy as np: Imports the NumPy library for handling arrays and numerical

operations.

• import pandas as pd: Imports Pandas for data manipulation, especially for handling

DataFrames.

2. Loading Data

• df = pd.read_csv('spam.csv'): Reads the spam.csv file into a Pandas DataFrame df.

• df.sample(5): Displays 5 random samples from the DataFrame to get a sense of the data.

• df.shape: Displays the dimensions of the dataset (rows, columns).

• df.info(): Provides a concise summary of the DataFrame, including the column names,

non-null counts, and data types.

3. Cleaning the Data

• df.drop(Removes unnecessary columns, which may contain irrelevant or empty data)

CHAPTER 5

59

• df.rename(Renames columns to more meaningful names) The 'v1' column becomes

'target' (the label) and 'v2' becomes 'text' (the message content).

4. Label Encoding

• from sklearn.preprocessing import LabelEncoder: Imports LabelEncoder for

converting categorical labels (spam/ham) to numerical values.

• df['target'] :Encodes the 'target' column into binary values: 0 for "ham" and 1 for

"spam".

5. Handling Missing/Duplicate Data

• df.isnull().sum(): Checks for missing values in each column.

• df.duplicated().sum(): Checks for duplicate rows in the DataFrame.

• df = df.drop_duplicates(keep='first'): Removes duplicate rows, retaining the first

occurrence.

6. Visualizing Data

• import matplotlib.pyplot as plt: Imports Matplotlib for visualization.

• plt.pie(df['target'].value_counts(), labels=['ham', 'spam'], autopct="%0.2f"): Creates a

pie chart to show the distribution of "ham" and "spam".

7. Feature Engineering

• df['num_characters'] = df['text'].apply(len): Adds a column representing the number of

characters in each message.

• df['num_words'] = df['text'].apply(lambda x: len(nltk.word_tokenize(x))): Adds a

column for the number of words in each message.

• df['num_sentences'] = df['text'].apply(lambda x: len(nltk.sent_tokenize(x))): Adds a

column for the number of sentences.

8. Data Description

• df[['num_characters', 'num_words', 'num_sentences']].describe(): Provides summary

statistics for the new columns.

• df[df['target'] == 0]...: Describes the statistics of 'ham' messages.

• df[df['target'] == 1]...: Describes the statistics of 'spam' messages.

CHAPTER 5

60

9. Data Visualization

• import seaborn as sns: Imports Seaborn for advanced visualizations.

• Various sns.histplot(...) commands: Creates histograms to compare distributions of

num_characters, num_words for "ham" and "spam" messages.

10. Text Preprocessing

• The text is preprocessed to clean and prepare it for model training. This includes:

a. Lowercasing: Converts all text to lowercase.

b. Tokenization: Splits the text into words.

c. Removing Stop Words & Punctuation: Removes common English stop words

and punctuation.

d. Stemming: Reduces words to their root forms using the PorterStemmer.

11. WordCloud Visualization

• from wordcloud import WordCloud: Generates a word cloud to visualize frequently

occurring words in "spam" and "ham" messages.

• spam_wc = wc.generate(...): Creates a word cloud for spam messages.

• ham_wc = wc.generate(...): Creates a word cloud for ham messages.

12. Text Vectorization

• Converts text into numerical vectors using either Bag of Words or TF-IDF techniques.

• from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer: Imports

vectorizers.

• X = tfidf.fit_transform(df['transformed_text']).toarray(): Transforms the cleaned text

into numerical features using TF-IDF.

13. Model Building

• Splits the data into training and testing sets: X_train, X_test, y_train, y_test =

train_test_split.

• Uses several classifiers from scikit-learn:

❖ Naive Bayes (GaussianNB, MultinomialNB, BernoulliNB).

❖ Logistic Regression, SVC, Decision Trees, RandomForest,

KNeighborsClassifier.

CHAPTER 5

61

• train_classifier(...): A helper function that trains a given classifier and returns its

accuracy and precision.

14. Performance Comparison

• Models are trained and evaluated using accuracy_score and precision_score.

• The results are stored in a DataFrame performance_df and visualized using bar plots.

15. Ensemble Techniques

• Voting Classifier: Combines predictions from multiple models (SVM, Naive Bayes,

Extra Trees).

• Stacking Classifier: Uses one model to aggregate predictions from multiple base

models.

16. Model Saving

• The trained model and vectorizer are saved using pickle for future use.

This entire process is a typical workflow for text classification, involving data loading,

cleaning, feature extraction, model building, evaluation, and optimization.

5.3 System Operation

 User Experience with the Plugin

The plugin interface starts with a prominent header labeled "S.P.A.D," which stands for Spear-

Phishing Attack Detection. This header clearly identifies the purpose of the plugin to the users.

Below this header, there is a button titled "Scan Emails / SMS." This button provides a link to

Email\SMS Classifier Application service, where users can scan their emails or SMS for

potential phishing attempts.

Beneath the button, users will see a brief description: "An AI-enabled Spear-Phishing Attack

Detection Plugin." This description succinctly communicates the functionality of the plugin. In

the central part of the interface. A circle is used to display the result of the URL check. Initially,

it shows the text "Loading...................." as the plugin processes the URL. The actual result will

be displayed here once the analysis is complete.

CHAPTER 5

62

Finally, there is a ‘View model Results’ button link , which allows users to view the test results

of the model used by the plugin. This link provides users with insights into the performance

and accuracy of the phishing detection model. Users interact with the plugin primarily through

its automated features. The plugin automatically detects the URL of the current tab in the

browser and sends a POST request to http://localhost:5000/post with this URL. Based on the

server's response, the plugin updates the score circle and the result message accordingly.

If the server response indicates a suspicious site (represented by a response of 1), the score

circle will display "Suspicious" with a warning background color, and the result message will

state, "This website may not be safe ". If the site is deemed safe (response of 0), the score circle

will show "Safe" with a green background, and the message will read, "This website is safe to

use." In cases where the site is identified as phishing (response of -1), the score circle will

display "Phishing" with a red background color, and the message will warn, "This website is

not safe to use."

 SCREENSHOT OF APPLICATION SYSTEM

Figure 5-1 S.P.A.D Plugin Shows Loading Message

CHAPTER 5

63

Figure 5-2 S.P.A.D Plugin Shows the Website Is Safe

Figure 5-3 S.P.A.D Plugin Shows the Website Is Suspicious

CHAPTER 5

64

Figure 5-4 S.P.A.D Plugin Shows the Website Is Phishing

Figure 5-5 Email/SMS Classifier Interface

CHAPTER 5

65

5.4 Implementation Issues and Challenges

The implementation of the Spear-Phishing Attack Detection (S.P.A.D) plugin brings to light

several challenges and issues that need to be addressed to ensure its effective operation. One

primary concern is the accuracy of the phishing detection model. Machine learning models can

sometimes produce false positives or negatives, which may result in legitimate websites being

incorrectly flagged as suspicious or, conversely, malicious sites being overlooked. To mitigate

this, ongoing model training and refinement are necessary to enhance accuracy and minimize

errors. Performance and latency also pose significant challenges. The plugin requires real-time

processing of URLs and efficient communication between the browser extension and the

backend server. Any delays or performance issues can negatively impact user experience,

causing slow response times in displaying results or affecting browser performance. Ensuring

that the system operates smoothly and swiftly is crucial for user satisfaction.

Ensuring that the plugin works uniformly across different browsers is essential for widespread

adoption. Security is another critical aspect. The system must securely handle user data and

protect it from potential interception or misuse during transmission between the browser plugin

and the backend server. Implementing robust encryption and secure communication protocols

is vital to safeguard user information and maintain trust.

Scalability is a concern as well. As the user base grows, the backend system must be capable

of scaling to manage increased traffic and processing demands. This requires optimizing server

infrastructure and ensuring that the phishing detection model can handle a larger volume of

requests efficiently without performance degradation.

Different browsers offer varying levels of support for extensions and APIs, which may

necessitate additional adjustments or workarounds. Regular updates and maintenance are

required to address evolving phishing techniques, maintain compatibility with browser updates,

and ensure the system remains effective and secure. Addressing these challenges involves a

continuous process of improving the system, optimizing performance, enhancing security, and

ensuring compatibility and scalability.

CHAPTER 5

66

5.5 Concluding Remarks

In this chapter, the implementation of the Spear-Phishing Attack Detection (S.P.A.D) plugin

was detailed, showcasing its integration into the browser environment to provide real-time

phishing threat detection. The focus was on creating an intuitive and user-friendly interface

that facilitates seamless interaction.

The interface design incorporated a clean layout with a prominent header, a functional action

button, and a dynamic result display area, all styled using Bootstrap and custom CSS. This

approach ensures that users can easily navigate and utilize the plugin. The plugin operates by

communicating with a Flask backend service, which processes the URL of the active tab to

determine its safety. This communication is handled through AJAX requests, allowing the

plugin to deliver real-time updates without requiring page reloads. The results of this analysis

are conveyed through a visual score circle and an accompanying message, providing users with

immediate and clear feedback about the safety of the website they are visiting.

Overall, the successful implementation of the S.P.A.D plugin demonstrates its effectiveness in

providing timely and accurate phishing detection, while maintaining a user-friendly

experience. The integration of real-time analysis with a clear visual interface reflects a

thoughtful design aimed at enhancing user security and awareness.

CHAPTER 6

67

CHAPTER 6

SYSTEM EVALUATION AND DISCUSSION

6.1 System Testing and Performance Metrics

Spear Phishing Attack Detection Application

For the Spear Phishing Attack Detection application, system testing is a multi-faceted process

designed to ensure the system meets all functional and performance requirements. The testing

strategy begins with functional testing, where each component of the application is verified

against its specified requirements. This involves ensuring that the URL detection algorithms

accurately identify phishing attempts and legitimate URLs. Test cases are designed to cover a

wide range of scenarios, including various phishing tactics and legitimate URL formats, to

ensure comprehensive coverage.

Performance testing is a critical aspect of evaluating the system’s ability to handle real-world

conditions. This includes assessing the application’s responsiveness and throughput when

processing large volumes of URLs. Metrics such as response time, which measures the time

taken to process and classify a URL, and throughput, which refers to the number of URLs

processed per unit of time, are closely monitored. Stress testing is also conducted to evaluate

how the system performs under extreme conditions, such as a high influx of traffic, to ensure

stability and reliability.

In addition to functional and performance testing, the accuracy of the phishing detection

algorithms is a key focus. Metrics such as precision, recall, and the F1 score are used to evaluate

the effectiveness of the detection system. Precision measures the proportion of correctly

identified phishing URLs out of all URLs flagged as phishing, while recall assesses the

proportion of actual phishing URLs that were correctly identified. The F1 score, which

combines precision and recall into a single metric, provides a balanced measure of the system’s

performance. Reliability testing is also performed to ensure that the application maintains

consistent performance over time and across different environments.

Email/SMS Classifier Application

For the Email/SMS Classifier application, a detailed system testing approach is essential to

validate its performance and accuracy. The testing process starts with functional testing to

ensure that the application correctly processes and classifies messages as spam or not spam.

This involves testing the accuracy of the text preprocessing steps, such as tokenization, stop-

CHAPTER 6

68

word removal, and stemming, to confirm that they are executed correctly and contribute to

effective classification.

Performance testing for the classifier application focuses on evaluating how well the system

handles various sizes of datasets and different types of messages. Key performance metrics

include the classification speed, which measures how quickly the system can process and

classify a message, and overall system responsiveness. Load testing is conducted to simulate

real-world usage scenarios and assess the system’s ability to handle high volumes of messages

efficiently.

Accuracy is a crucial metric for the email/SMS classifier. The system’s effectiveness is

evaluated using confusion matrix results, which provide insights into the number of true

positives, false positives, true negatives, and false negatives. Precision and recall metrics are

also used to assess the classifier’s performance. Precision measures the proportion of correctly

identified spam messages out of all messages classified as spam, while recall measures the

proportion of actual spam messages that were correctly identified. The F1 score is used to

provide a comprehensive measure of the classifier’s accuracy, balancing precision and recall.

Reliability testing for the email/SMS classifier ensures that the application performs

consistently across different environments and over time. This involves running the system

under various conditions and verifying that it maintains stable performance. Additionally, user

acceptance testing is conducted to gather feedback from end-users regarding the usability and

functionality of the application. This feedback helps identify areas for improvement and

ensures that the system meets user expectations.

Overall, both the Spear Phishing Attack Detection application and the Email/SMS Classifier

application undergo rigorous system testing and performance evaluation to ensure they deliver

reliable, accurate, and efficient results.

CHAPTER 6

69

6.2 Testing Setup and Result

6.2.1 Testing Setup for Spear Phishing Attack Detection Application

For the Spear Phishing Attack Detection application, the primary focus is on functional,

performance, and accuracy testing. Functional testing involves verifying that the application

can correctly identify phishing and legitimate URLs according to predefined criteria. This

includes testing with known phishing URLs to confirm they are flagged correctly, and

legitimate URLs to ensure they are not mistakenly identified as phishing. Edge cases such as

obfuscated URLs and newly registered domains are also tested to ensure robustness.

Performance testing assesses the system's responsiveness and its ability to handle large

volumes of data. Key aspects include measuring the response time for processing batches of

URLs of varying sizes, evaluating the throughput of URLs processed per minute, and

conducting stress tests to simulate extreme traffic conditions. These tests help gauge the

system's performance under normal and peak loads, ensuring it remains stable and efficient.

Accuracy testing evaluates the effectiveness of the phishing detection algorithms. Metrics such

as precision, recall, and the F1 score are computed to assess how well the system identifies

phishing URLs versus legitimate ones. Precision measures the accuracy of phishing

identifications, recall assesses how many actual phishing URLs are detected, and the F1 score

provides a balanced view of the system’s performance.

Reliability testing ensures that the application performs consistently across different

environments and over time. This includes running the system on various operating systems

and hardware configurations to verify stable performance and conducting long-term stability

tests to identify any performance degradation or anomalies.

CHAPTER 6

70

RESULTS

Figure 6-1 S.P.A.D Plugin Shows the Website Is Safe to Use

Figure 6-2 S.P.A.D Plugin Shows the Suspicious Website May Not Be Safe to Use

CHAPTER 6

71

Figure 6-3 S.P.A.D Plugin Shows the Phishing Website May Not Be Safe to Use

6.2.2 Testing Setup for Email/SMS Classifier Application

The Email/SMS Classifier application requires rigorous functional, performance, and accuracy

testing to ensure reliable message classification. Functional testing involves checking that the

application correctly classifies messages as spam or non-spam. This is achieved by testing with

known spam and legitimate messages to confirm accurate classification. Additionally, the text

preprocessing steps, including tokenization, stop-word removal, and stemming, are validated

for correctness.

Performance testing focuses on evaluating the system’s efficiency with different message

volumes. This includes measuring the time taken to classify individual and batch messages, as

well as conducting load tests to simulate real-world scenarios. These tests are crucial to ensure

that the system can handle varying sizes of message datasets efficiently and remains

responsive.

Accuracy testing assesses the performance of the classification algorithms through metrics such

as the confusion matrix, precision, recall, and F1 score. The confusion matrix helps identify

the number of true positives, false positives, true negatives, and false negatives. Precision

CHAPTER 6

72

measures the accuracy of spam classifications, recall evaluates the detection of actual spam

messages, and the F1 score provides a balanced performance measure.

Reliability testing ensures that the Email/SMS Classifier maintains consistent performance and

meets user expectations. This involves testing the application on different operating systems

and devices to verify consistent behavior and gathering user feedback through acceptance

testing to identify any areas for improvement.

RESULTS

Figure 6-4 Graph Results for Accuracy and Precision Using Several Classifier

Figure 6-5 Summary Results for Accuracy and Precision Using Several Classifier

CHAPTER 6

73

Figure 6-6 Results for Accuracy and Precision Using SVM,NB and ET

Figure 6-7 Results For Email/SMS Classifier Showing Not Spam

Figure 6-8 Results For Email/SMS Classifier Showing Spam

CHAPTER 6

74

6.3 Project Challenges

One significant challenge faced was ensuring the quality and consistency of the data used for

both applications. For the Spear Phishing Attack Detection application, gathering a

comprehensive dataset of phishing and legitimate URLs proved challenging. Variations in

URL formatting, obfuscation techniques, and the rapid evolution of phishing tactics

necessitated continuous updates and enhancements to the dataset. Similarly, for the Email/SMS

Classifier application, preprocessing the text data to handle diverse linguistic styles, slang, and

informal language required extensive efforts. Ensuring that the data was clean, well-labeled,

and representative of real-world scenarios was crucial for accurate model training and

evaluation.

Selecting the appropriate algorithms and tuning their parameters was a complex task for both

applications. In the Spear Phishing Attack Detection system, various machine learning

algorithms needed to be evaluated for their ability to classify URLs effectively. The challenge

lay in choosing algorithms that balanced accuracy with computational efficiency, and in fine-

tuning parameters to optimize performance. For the Email/SMS Classifier, the challenge was

to identify the best text classification models and vectorization techniques that could handle

the nuances of message content. The iterative process of testing different algorithms and

parameter settings required considerable experimentation and expertise.

Ensuring that both applications performed efficiently under varying loads and scales presented

a challenge. The Spear Phishing Attack Detection application needed to handle large volumes

of URL data quickly, while maintaining accuracy. Performance bottlenecks and scalability

issues were addressed through optimization techniques and stress testing. Similarly, the

Email/SMS Classifier had to be tested for its ability to process and classify large datasets of

messages in real-time. Balancing performance with accuracy and scalability required careful

consideration of system architecture and resource management.

Achieving high accuracy while minimizing false positives and negatives was a persistent

challenge for both systems. For the phishing detection system, the goal was to accurately

identify phishing URLs without flagging legitimate ones. This required fine-tuning detection

algorithms and continuously updating the dataset to reflect emerging threats. In the Email/SMS

Classifier, the challenge was to accurately classify messages as spam or legitimate while

CHAPTER 6

75

reducing the likelihood of misclassification. Addressing these issues involved rigorous testing

and model refinement to achieve the desired balance between precision and recall.

Integrating the applications into existing systems and conducting thorough testing to ensure

seamless functionality was a challenge. For the Spear Phishing Attack Detection application,

integration with other security tools and platforms required careful planning to ensure

compatibility and effective operation. For the Email/SMS Classifier, ensuring that the classifier

worked effectively in real-world environments and with diverse data sources involved

extensive integration testing. Identifying and resolving integration issues required coordination

between development teams and stakeholders.

Gaining user acceptance and incorporating feedback was a critical challenge. For both

applications, it was essential to ensure that the systems met user expectations and provided

value in real-world scenarios. Gathering and addressing user feedback involved conducting

user acceptance testing and iterating on the application based on real-world usage. Balancing

user needs with technical capabilities required ongoing communication and adjustments to the

system.

Addressing security and privacy concerns was paramount throughout the project. For the

phishing detection system, ensuring that sensitive data, such as user URLs, was protected from

unauthorized access was a key challenge. Similarly, for the Email/SMS Classifier,

safeguarding the privacy of message content and ensuring compliance with data protection

regulations were critical considerations. Implementing robust security measures and ensuring

adherence to privacy standards were integral to the project’s success.

6.4 Objectives Evaluation

The Spear Phishing Attack Detection application directly addresses this objective by utilizing

advanced machine learning techniques to identify and neutralize spear phishing threats. The

implementation of various algorithms, including supervised and unsupervised learning models,

demonstrates an innovative approach to detecting malicious URLs. The system's effectiveness

is validated through extensive testing, including precision and recall metrics, which confirm its

ability to accurately classify phishing and legitimate URLs. The application provides a

CHAPTER 6

76

proactive defense mechanism, contributing significantly to the enhancement of spear phishing

detection and mitigation.

Both applications leverage state-of-the-art machine learning techniques to achieve their

objectives. For the Spear Phishing Attack Detection system, the use of algorithms like Random

Forest, XGBoost, and neural networks showcases the application of advanced frameworks to

improve detection accuracy. Similarly, the Email/SMS Classifier application employs various

classification models, such as Naive Bayes, Support Vector Machines, and ensemble methods,

to classify messages effectively. The successful implementation and performance of these

algorithms indicate that the project has met its goal of applying cutting-edge machine learning

methodologies.

The project has provided valuable insights into the mechanisms and characteristics of spear

phishing attacks. By analyzing various phishing URL features and attack vectors, the Spear

Phishing Attack Detection application sheds light on the intricate dynamics of these attacks.

The detailed analysis and experimentation help in understanding the common traits of phishing

attempts and the evolving tactics used by attackers. This objective is well-addressed through

empirical analysis and the development of a comprehensive detection system.

The development of both applications contributes to the formulation of proactive

countermeasures against spear phishing. The empirical results obtained from testing and

validation offer actionable insights into improving security measures. For the Spear Phishing

Attack Detection system, the identification of effective detection strategies informs the creation

of robust countermeasures. In the Email/SMS Classifier, the classification performance

provides a foundation for developing preventive measures against phishing and spam. The

applications' ability to adapt and improve based on ongoing testing underscores their role in

proactive defense.

The project has made significant contributions to the field of cybersecurity by providing

innovative solutions and insights into phishing threats. The results from both applications

enhance the understanding of spear phishing and offer practical tools for combating these

threats. The insights gained from the analysis and the development of effective detection

systems contribute to creating a safer digital environment. The project aligns with its goal of

fostering a more secure digital ecosystem for individuals and organizations.

CHAPTER 6

77

The project's focus on spear phishing and its specific domain-related aspects ensures that

tangential topics, such as general phishing attacks and unrelated cybersecurity domains, are

excluded. By concentrating on spear phishing and the related detection techniques, the project

maintains a clear and targeted scope. This focused approach ensures that the solutions

developed are relevant and applicable to the defined objectives, without diverting attention to

unrelated areas.

The project has adhered to its scope by not addressing legal or regulatory aspects of

cybersecurity or the broader socio-political implications of cyber threats. The focus remains

solely on technical solutions for spear phishing detection and email/SMS classification. This

exclusion helps in maintaining a clear and specific objective, concentrating efforts on the

technical challenges and solutions pertinent to the project's goals.

In summary, the evaluation of the project objectives reveals that the Spear Phishing Attack

Detection and Email/SMS Classifier applications effectively meet the defined goals. By

leveraging advanced machine learning techniques, exploring the dynamics of spear phishing,

and providing proactive countermeasures, the project has contributed valuable insights and

solutions to the field of cybersecurity. The adherence to the defined scope and exclusion of

unrelated topics and legal aspects further ensures that the project's focus remains sharp and

relevant to its objectives.

6.5 Concluding Remark

In concluding Chapter 6, it is evident that the evaluation of the Spear Phishing Attack Detection

and Email/SMS Classifier applications underscores the successful achievement of the project's

objectives. This chapter has provided a comprehensive analysis of how these systems meet the

goals set forth at the outset of the project, offering valuable insights into their effectiveness and

areas of improvement.

The rigorous testing and performance analysis of the Spear Phishing Attack Detection

application highlight its robust capability to identify and mitigate spear phishing threats.

Through the application of advanced machine learning algorithms, the system has

demonstrated a high level of accuracy and effectiveness in detecting malicious URLs. This

CHAPTER 6

78

achievement aligns with the project’s objective of leveraging innovative methodologies to

enhance spear phishing detection and mitigation.

Similarly, the Email/SMS Classifier application has proven its effectiveness in categorizing

messages into spam and non-spam categories. The detailed analysis of classification

performance, including accuracy and precision metrics, confirms that the application

successfully applies advanced machine learning techniques to address the challenges of email

and SMS classification. This contributes significantly to the proactive defense against phishing

and spam, fulfilling the project's goal of developing robust solutions for cyber threats.

The exploration of the underlying mechanisms and characteristics of spear phishing attacks, as

discussed in this chapter, provides a deeper understanding of the attack vectors and tactics

employed by adversaries. This knowledge is instrumental in informing the development of

effective countermeasures and enhancing overall cybersecurity.

The insights gained from the evaluation not only reflect the success of the project in meeting

its objectives but also provide a foundation for future improvements and advancements. The

focus on specific objectives, such as excluding tangential topics and legal aspects, has ensured

that the project remains targeted and relevant to its core goals.

CHAPTER 7

79

CHAPTER 7

CONCLUSION AND RECOMMENDATION

7.1 Conclusion

The project aimed at developing and evaluating advanced solutions for detecting and mitigating

spear phishing attacks and classifying emails and SMS messages has successfully achieved its

primary objectives. By leveraging cutting-edge machine learning techniques and algorithmic

frameworks, the project has made significant strides in enhancing cybersecurity defenses

against sophisticated phishing threats.

The Spear Phishing Attack Detection system, utilizing machine learning models, demonstrated

a high level of accuracy in identifying and mitigating spear phishing threats. Through the

rigorous application of various models such as Logistic Regression, Support Vector Machines,

and ensemble methods like Voting and Stacking classifiers, the system proved its robustness

in detecting malicious URLs. This application aligns with the project's goal of proposing

innovative strategies to counter spear phishing attacks effectively.

The Email/SMS Classifier application, on the other hand, has successfully applied advanced

text classification techniques to categorize messages as spam or non-spam. Utilizing models

such as Naive Bayes, Support Vector Machines, and Random Forest, the system has

demonstrated its effectiveness in distinguishing between legitimate and malicious messages.

The application of preprocessing techniques, including text transformation and feature

extraction, has further enhanced the classification accuracy and precision.

Throughout the project, the exploration of the underlying mechanisms and characteristics of

spear phishing attacks has provided valuable insights into the dynamics of these threats. This

understanding has informed the development of proactive countermeasures and contributed to

a more comprehensive approach to cybersecurity. The empirical analysis and experimentation

conducted during the project have highlighted the effectiveness of the developed solutions in

addressing the challenges posed by spear phishing and spam messages.

The project has also adhered to its scope by focusing specifically on spear phishing and

email/SMS classification, excluding tangential topics and legal or regulatory aspects. This

CHAPTER 7

80

targeted approach has ensured that the solutions developed are directly relevant to the project's

objectives and contribute effectively to the field of cybersecurity. In summary, the project has

achieved its objectives by developing effective solutions for detecting and mitigating spear

phishing attacks and classifying email and SMS messages.

7.2 Recommendations

Enhancing Model Performance: While the current models have demonstrated strong

performance, there is always room for improvement. Future work should focus on refining and

tuning the machine learning models used in both applications. This can involve exploring more

advanced algorithms, optimizing hyperparameters, and incorporating additional features that

may improve classification accuracy. Additionally, experimenting with ensemble methods and

hybrid approaches could further enhance the performance of the detection and classification

systems.

Expanding Data Sets: The performance of machine learning models is heavily dependent on

the quality and diversity of the data used for training and evaluation. To improve the robustness

of the Spear Phishing Attack Detection system and the Email/SMS Classifier, it is

recommended to expand the data sets used in the project. This includes gathering a larger

volume of labeled data that encompasses a wide range of spear phishing and spam scenarios.

Augmenting the data with varied examples will help in building more generalized and effective

models.

Incorporating User Feedback: Engaging with end-users to gather feedback on the effectiveness

and usability of the applications can provide valuable insights for further development. User

feedback can highlight potential areas for improvement, identify any usability issues, and

suggest features that could enhance the overall user experience. Implementing user feedback

will help in refining the applications and making them more practical and user-friendly.

Continuous Monitoring and Updating: The landscape of cybersecurity threats is constantly

evolving, and so are the techniques used by adversaries. To maintain the effectiveness of the

developed solutions, it is essential to implement a continuous monitoring and updating

mechanism. Regularly updating the models with new data and adapting to emerging threats

CHAPTER 7

81

will ensure that the systems remain relevant and effective in detecting and mitigating new spear

phishing tactics and spam messages.

Exploring Additional Use Cases: While the project focused on spear phishing and email/SMS

classification, there are other areas within cybersecurity where similar methodologies could be

applied. Future work could explore additional use cases, such as detecting phishing attempts in

social media platforms, analyzing network traffic for suspicious activities, or identifying

malware through behavioral analysis. Expanding the scope of the applications to cover these

areas could provide a more comprehensive approach to cybersecurity.

Integration with Existing Security Systems: To maximize the impact of the developed

solutions, integrating them with existing security systems and frameworks is recommended.

By incorporating the Spear Phishing Attack Detection system and the Email/SMS Classifier

into broader cybersecurity ecosystems, organizations can enhance their overall defense

mechanisms and improve their ability to respond to and mitigate phishing threats.

Focus on Explainability and Transparency: As machine learning models become more

complex, ensuring that their decisions are explainable and transparent is crucial. Implementing

techniques for model interpretability and providing clear explanations for the classification

results will help in building trust with users and stakeholders. This is particularly important in

high-stakes applications where understanding the rationale behind model decisions can be

critical.

The recommendations provided aim to enhance the performance, applicability, and impact of

the developed systems, ensuring that they continue to contribute effectively to the field of

cybersecurity. As the cybersecurity landscape evolves, ongoing research and development will

be essential in maintaining and advancing the capabilities of these solutions.

References

82

REFERENCES

1. APWG. (2019). APWG | Phishing Activity Trends Reports. Apwg.org.

https://apwg.org/trendsreports/

https://docs.apwg.org/reports/apwg_trends_report_q4_2023.pdf

2. B. B. Gupta and A. K. Jain, “Phishing Attack Detection using a Search Engine and

Heuristics-based Technique:” J. Inf. Technol. Res., vol. 13, no. 2, pp. 94–109, Apr.

2020, doi: 10.4018/JITR.2020040106.

3. Almseidin, M., Abu Zuraiq, A., Al-kasassbeh, M., & Alnidami, N. (2019). Phishing

Detection Based on Machine Learning and Feature Selection Methods. International

Journal of Interactive Mobile Technologies (IJIM), 13(12), 171.

https://doi.org/10.3991/ijim.v13i12.11411

4. Gu, X., Wang, H. and Ni, T.: An efficient approach to detecting phishing web. Journal

of Computational Information Systems, (2013), 5553-5560.

5. Marchal, S., François, J., State, R., & Engel, T. (2014). PhishStorm: Detecting

Phishing With Streaming Analytics. IEEE Transactions on Network and Service

Management, 11(4), 458–471. https://doi.org/10.1109/TNSM.2014.2377295

6. H. Che, Q. Liu, L. Zou, H. Yang, D. Zhou, and F. Yu, “A Content-Based Phishing

Email Detection Method,” in 2017 IEEE International Conference on Software Quality,

Reliability and Security Companion (QRS-C), Prague, Czech Republic, Jul. 2017, pp.

415–422. doi: 10.1109/QRS-C.2017.75

7. Jain, A.K. & Gupta, B.B.: Phishing detection: analysis of visual similarity-based

approaches. Security and Communication Networks, (2017).

8. Jain, A. K., & Gupta, B. B. (2017). Towards detection of phishing websites on client-

side using machine learning based approach. Telecommunication Systems, 68(4), 687–

700. https://doi.org/10.1007/s11235-017-0414-0

References

83

9. M. Baykara and Z. Z. Gürel, "Detection of phishing attacks," 2018 6th International

Symposium on Digital Forensic and Security (ISDFS), 2018, pp. 1-5, doi:

10.1109/ISDFS.2018.8355389.

10. M. Karabatak and T. Mustafa, “Performance comparison of classifiers on reduced

phishing website dataset,” 6th Int. Symp. Digit. Forensic Secur. ISDFS 2018 -

Proceeding, vol. 2018–Janua, pp. 1–5, 2018

11. Moghimi, M. & Varjani, A.Y.: New rule-based phishing detection method. Expert

systems with applications, (2016), 231-242.

12. OpenDNS, PhishTank. http://www. phishtank.com/

13. R. S. Rao and S. T. Ali, “PhishShield: A Desktop Application to Detect Phishing

Webpages through Heuristic Approach,” Procedia Comput. Sci., vol. 54, pp. 147–156,

2015, doi: 10.1016/j.procs.2015.06.017.

14. S. Garera, N. Provos, M. Chew, and A. D. Rubin, “A framework for detection and

measurement of phishing attacks,” in Proceedings of the 2007 ACM workshop on

recurring malcode. ACM, 2007, pp. 1–8.

15. L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

16. G. Xiang and J. I. Hong, “A hybrid phish detection approach by identity discovery and

keywords retrieval,” in Proceedings of the 18th international conference on World Wide

Web. ACM, 2009, pp. 571–580.

17. J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists: learning to detect

malicious web sites from suspicious urls,” in Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data mining. ACM, 2009, pp.

1245–1254.

References

84

18. R. S. Rao, A. R. Pais, and P. Anand, “A heuristic technique to detect phishing websites

using TWSVM classifier,” Neural Comput. Appl., vol. 33, no. 11, pp. 5733–5752, Jun.

2021, doi: 10.1007/s00521-020-05354-z.

19. T. A. Almeida and A. Yamakami, "Facing the spammers: A very effective approach to

avoid junk e-mails," Expert Systems with Applications, vol. 39, pp. 6557-6561, 2012.

http://dx.doi.org/10.1016/j.eswa.2011.12.049.

20. “Global Phishing Survey: Trends and Domain Name Use,” APWG, Tech.Rep. 1H2014,

2014.

85

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y7S1 Study week no.:1

Student Name & ID: Rajkumaradevan A/L Sanglidevan(16ACB03600)

Supervisor: Puan Nor 'Afifah Binti Sabri

Project Title: Spear- Phishing Attack Detection Using Artificial Intelligence

1. WORK DONE

- Ask questions to supervisor to enhance report writing skills

- Inform supervisor about the progress and problems of the project

- Receive advises to overcome the problem of the project.

2. WORK TO BE DONE

- Enhance the project functions

- Repair some unworking component.

3. PROBLEMS ENCOUNTERED

- Components of the project doesn’t work properly

- Complexity when troubleshooting the coding

4. SELF EVALUATION OF THE PROGRESS

- Hardwork

- Patience

 _________________________ _________________________

 Supervisor’s signature Student’s signature

86

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y7S1 Study week no.:8

Student Name & ID: Rajkumaradevan A/L Sanglidevan(16ACB03600)

Supervisor: Puan Nor 'Afifah Binti Sabri

Project Title: Spear- Phishing Attack Detection Using Artificial Intelligence

1. WORK DONE

- Ask questions to supervisor to enhance project output.

- Inform supervisor about the progress and problems of the project

- Receive advises to overcome the problem of the project.

2. WORK TO BE DONE

- Enhance the project functions and performance

- Modify Python code for better results.

3. PROBLEMS ENCOUNTERED

- Difficulties to train the dataset CSV.file

- Complexity when troubleshooting the application.

4. SELF EVALUATION OF THE PROGRESS

- Hardwork

- Time management

 _________________________ _________________________

 Supervisor’s signature Student’s signature

87

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y7S1 Study week no.:10

Student Name & ID: Rajkumaradevan A/L Sanglidevan(16ACB03600)

Supervisor: Puan Nor 'Afifah Binti Sabri

Project Title: Spear- Phishing Attack Detection Using Artificial Intelligence

1. WORK DONE

- Inform supervisor about the progress and problems of the project

- Receive advises to overcome the problem of the project.

2. WORK TO BE DONE

- Enhance the project application to run successfully without bug.

- Modify Python code and API code for better performance.

3. PROBLEMS ENCOUNTERED

- Results for accuracy and precision are unsatisfied.

- Took longer time for execution process.

4. SELF EVALUATION OF THE PROGRESS

- Hardwork

- Dedication

 _________________________ _________________________

 Supervisor’s signature Student’s signature

88

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y7S1 Study week no.:12

Student Name & ID: Rajkumaradevan A/L Sanglidevan(16ACB03600)

Supervisor: Puan Nor 'Afifah Binti Sabri

Project Title: Spear- Phishing Attack Detection Using Artificial Intelligence

1. WORK DONE

- Inform supervisor about the completion of project system application

- Developing progress in writing report.

2. WORK TO BE DONE

- Completion of project report.

- Poster design and content.

- Train machine learning for better accuracy and precision.

3. PROBLEMS ENCOUNTERED

- Lack of time management.

- Trouble in writing skills for system report.

4. SELF EVALUATION OF THE PROGRESS

- Hardwork

- Basic Designing skills

 _________________________ _________________________

 Supervisor’s signature Student’s signature

89

POSTER

90

PLAGIARISM CHECK RESULT

91

92

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

RAJKUMARADEVAN A/L SANGLIDEVAN

ID Number(s)

16ACB03600

Programme / Course BACHELOR OF INFORMATION TECHNOLOGY (HONOURS)
COMMUNICATIONS AND NETWORKING

Title of Final Year Project SPEAR- PHISHING ATTACK DETECTION USING ARTIFICIAL
INTELLIGENCE

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: 15 %

Similarity by source
Internet Sources: 9 %
Publications : 6 %
Student Papers : 9 %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: Puan Nor 'Afifah Binti Sabri

 Name: __________________________

Date: 12/09/2024 Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

93

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 16ACB03600

Student Name RAJKUMARADEVAN A/L SANGLIDEVAN

Supervisor Name PUAN NOR 'AFIFAH BINTI SABRI

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement

√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)
√ List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review

√ Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the
ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my
report.

(Signature of Student)
Date: 12/09/2024

