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ABSTRACT 

Ever since COVID-19 pandemic, online shopping had been skyrocketed. To handle the 

enormous volume of deliveries, last-mile delivery route planning and optimization had become 

more significant than ever for logistics services. Last-mile logistics are referring to the final 

stage of the delivery process, where goods are transported from a distribution hub to the end 

destination, typically a residential or commercial address. Last-mile logistics had always been 

the costliest part in the overall supply chain. Numerous last-mile route optimization 

models/frameworks are proposed and been practiced in logistics services, to reduce operation 

costs while attempt to fulfill customers’ satisfaction. However, existing pure optimization 

frameworks often overlooked that in real-world practices, the prescribed routes may be not 

followed by delivery drivers, as they may prioritize personal knowledges and experiences. 

Deviation of prescribed delivery routes by delivery drivers may be due to various underlying 

reasons, including but not limited to traffics conditions, and customers’ preferences. In this 

project, we proposed a Simple R-NN model to uncover the underlying relationship/pattern 

between customers’ acceptable delivery time windows and deviations of prescribed delivery 

routes by drivers. The proposed model, Simple R-NN model aims to predicts possible delivery 

routes by drivers, then output an optimized delivery route that seems acceptable for the drivers 

to actual adapts in actual delivery operation.  
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CHAPTER 1  

 

Project Background 

 

1.1  Introduction  

In the intricate dance of supply chains, last-mile delivery is where the grand finale 

unfolds. It’s the moment when a product or goods, routed through factories, 

warehouses, and highways, finally reaches to their end users. While remaining as the 

cost driver of the overall supply chain, a continuous rise demanding for last-mile 

delivery operations are observed. [1] suggested that the global parcel volume is 

projected to hit a staggering 200 billion by 2025. Moreover, last-mile delivery also 

accountable to customer satisfactory towards both the business and partnering logistics 

company. Nowadays, most online customers are expecting swifter yet reliable 

deliveries. In short, the study of optimization on last-mile logistics are pivotal for the 

growth of business and then overall economy. 

 Travelling Salesman Problem (TSP) is a classic combinatorial optimization 

problem in mathematics and computer science, where given a scenario of a salesperson 

are tasked to visit a set of cities (location points) and returns to the starting point while 

covering the shortest possible route. In the context of last-mile delivery, this translates 

to finding the most efficient path for a delivery agent to serve multiple customers and 

return to the delivery centre. For a long time, TSP models had been widely practiced 

optimizing traditional logistics criteria like overall travel time [2]. 

 Despite that, [3] points out that, real-world delivery route optimization goes 

beyond only identifying the shortest delivery route. Real-world factors, including but 

not limited only to traffics, parking, as well as customer delivery preferences should be 

considered in last-mile delivery route optimization. [3], [4] also mentioned that by 

leveraging drivers’ delivery routes patterns, it may have a positive influence on real-

world delivery route optimization. 

  



CHAPTER 1 

2 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

1.2  Problem Statement and Motivation 

Inefficient deliveries in the last mile of the supply chain had grown significant concern 

over time for businesses across the world, as possible leads to collapsed operations, 

increased in delivery costs, etc.  

 In recent years, extensive research on last-mile delivery route optimization had 

been done, covering approaches such as TSP or vehicle routing problem (VRP), in 

regards of both computational costs and solution quality [5]. Most of the corresponding 

solutions prioritize optimization on traditional logistics factors such as depot. However, 

the studies often overlook the driver on-road knowledge and behavior, the often-

underestimated attributes in the optimization equation [4]. This is supported by [3], [4], 

[5], where the studies mentioned that, in practice, most of the drivers tend to deviate 

from provided optimal routes, prioritizing to drivers’ personal knowledge and daily 

experience gained on the delivery area. When considering of on-road factors, such as 

knowledge on temporal traffic/road conditions, drivers’ deviations may lead to possible 

profit gain in operation. On the contrary, given drivers’ actual routes inferior to 

suggested routes may lead to operating loss. According to a study on daily commuting 

habits of drivers in both Japan and the Philippines conducted by [6], they concluded 

that drivers tend to deviate from recommendations routes by the navigation system in 

favor of familiar routes. Still, drivers’ deviation of prescribed route had raised 

uncertainties in context of last-mile route optimization. 

 In the meantime, to provide quality-of-life improvements to their customers, 

logistics providers nowadays do provide preferred delivery time window options for 

customers. However, having delivery time preferences add complexity into last-mile 

route optimization. To demonstrate, given a delivery zone, there will be various 

delivery time preferences by the customers. In a business standpoint, other than 

minimizing operational costs, maximizing customers satisfactions are key in 

organizational success. 

 In [3], [4], [5], using machine learning models approach, by learning drivers’ 

delivery route pattern, to achieve last-mile delivery optimization while allowing 

drivers’ deviations on prescribed route, to some extent. However, with further studies, 

on the effects of real-world factor (customer preferences/acceptable delivery time 
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window) on delivery drivers’ deviations on prescribed route, may provide useful 

insights for stakeholders, improve state-of-the-art last-mile route optimization system.  

 The project aims to introduce a novel model for driver’s delivery route 

predictions and optimizations used in last-mile delivery, using machine learning 

technique. The motivation of this projects is to continuously optimize the as-is last-mile 

delivery frameworks and increase efficiency of overall supply chain. To achieve such 

goal, the expected outcome in this project is to output a drivers’ delivery routes 

prediction and optimization model, based on the driving pattern from historical delivery 

data. From the model’s output, then imply the underlying factor, specifically customers’ 

acceptable delivery time windows, and its effects on drivers’ deviation of prescribed 

routes. 

 

1.3 Research Objectives 

The aim of the thesis is to explore the effects of real-world factors on possible delivery 

routes deviations by drivers. The ultimate intention of the thesis is to enable effective 

minimizing operation costs in real-world last-mile logistics, while maximizing business 

profit and growth from achieving high customer satisfactory. 

The specific research objectives of last-mile route optimization model are: 

(i) To study and derives the possible factors affecting deviation of delivery 

routes by drivers (i.e., customer acceptable delivery time windows) from the 

actual drivers’ delivery routes patterns. 

(ii) To proposed Simple Recurrent Neutral Network (Simple-RNN) for this 

project that able to identify the drivers’ delivery routes pattern and performs 

routes prediction and optimization tasks. 

(iii) To evaluate the proposed solution in terms of disparity performance metrics. 
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1.4 Project Scope 

The model proposed will be developed in Python programming language on Google 

Collaboratory. In this project, machine learning techniques will be utilised to learn 

drivers’ delivery pattern from historical real-world data, to output a prediction on 

drivers’ possible delivery routes for last-mile delivery. From the model’s output, we 

then study and identify relationships between customer acceptable delivery time 

windows and the drivers’ delivery routes patterns. By having better understanding on 

the effects of real-world factors towards deviations of prescribed delivery routes, could 

improve last-mile route optimization model and being practiced in real world scenarios. 

 

1.5 Contributions 

Our project aims to explicitly study and understand the effects of customers’ acceptable 

delivery time windows on drivers’ deviation on prescribed routes, by utilizing machine 

learning model to unfold the relationship between them. It will provide useful insights 

for real-world last-mile route optimization as identifying and realizing how customers 

preferences can impacts the overall actual delivery route by drivers. This project also 

aims to perform predictions on potential delivery routes by drivers and utilizing 

optimization approach used in operation research to optimize the best delivery routes 

for drivers. By learning drivers’ delivery patterns, it allows actual adaptations of 

prescribed routes by drivers in real-world delivery. 

 

1.6 Report Organisation 

The remainder of this report is structured as follows. In Chapter 2, we reviewed 

previous research publications, methodologies proposed related to this paper. In 

Chapter 3, we covered our proposed methodology, including a detailed discussion of 

the model architecture. In Chapter 4, we present the project setup and flow. In Chapter 

5, we discuss the system implementation in detail. Chapter 6 provides the model 

evaluation and discussion of the results. Finally, Chapter 7 concludes the report with a 

summary of the entire project.
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CHAPTER 2  

 

Literature Review 

 

2.1  Previous Work 

2.1.1 Delivery route prediction using machine learning models 

As mentioned in Chapter 1, capturing tacit knowledges are crucial for future last-mile 

route optimisation system. This is due to traditional last-mile routes optimisation 

systems simply does not take in accounts of real-world factors faced by delivery drivers 

(e.g. temporal traffic conditions, drivers’ preferences). In recent years, several research, 

including, but not limited only to [3], [4], [5], by feeding in machine learning models 

with real-world delivery routes sequences, in order to capture and predicts possible 

delivery route being practiced by drivers.  

[3] proposed, by transforming historical delivery routes data into a natural 

language sentence, (i.e., in a delivery route, each delivery stops are represented as a 

“word” element, and “word” element are arranged in exact order based on the actual 

delivery route order.), following with the use of Word2Vec approach in natural 

language processing (NLP) to learn vector representations of “words” in delivery 

behaviour sentence, and finally the real-world delivery route are inferred from the 

output word vector (from previous step), utilising a tailored chain-reaction-based 

algorithm. Figure 2.1.1 demonstrates the overall framework of the proposed model. 

The idea of treating every zone or delivery station in a delivery route as an 

element found in sentence, and word ordering in sentences are similar to the drivers’ 

travel trajectories, are proposed by [3]. Then, by utilizing Word2Vec algorithms, found 

commonly in natural language processing (NLP), to learn the vector representation of 

‘word’ elements in a delivery behaviour ‘sentences’. After obtaining the word vector, 

inference on delivery behaviour are done based on a tailored chain-reaction-based 

algorithm. 
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Figure 2.1.1  Overall framework of the route prediction model by [3]. 

 

 The algorithm proposed by [3], elaborate in Figure 2.1.2, took inspiration from 

basic stages of chain rection, namely initiation, propagation, and termination. Given an 

unsorted zone sequence, as an initiation, delivery station are always the starting node. 

From there, propagation phase, where the algorithm, paired with word vectors obtained 

from earlier stages, it will iteratively find the next delivery zones. Finally, iterative 

search of next delivery zones come to termination when all zones are covered. 

 

 

 

Figure 2.1.2 

Tailored chain-reaction-

based algorithm, 

proposed by [3]. 
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 In [5], authors use combinational of seq2seq modelling and pair-wise attention-

based pointer neural network (NN) that learn both local (ASNN Attention-based Spatial 

NN) and global (Encoder-Decoder LSTM) relationship between delivery stops. Then, 

using greedy algorithm to generate possible delivery sequences with different initial 

stops (to improve model’s accuracy), and select the one with the lowest operational cost 

[5]. It is worth noting that [3], [5] approaches are to tackle interzone sequencing only 

and assuming drivers always take optimal routes in intrazonal level due to principle of 

local optimality.  

 For model training, [5] introduced a seq2seq modelling framework, for an 

arbitrarily ordered sequence as an input, the seq2seq model, with a recurrent neural 

network, computes the conditional probabilities of actual route trajectories (c1, … , cn) 

given S (all training routes), and theta, θ (parameters learnt by empirical risk 

minimization). Then, [5] uses two LSTM layers, encoder-decoder combo, having time 

step = 1, obtaining a vector representation by reading input sequence, then extracts the 

output sequence. Inherently, LSTM encoder-decoder, embeds input sequence to hidden 

vectorization, are powerful algorithm to obtain the global patterns of the input data. In 

[5], they proposed by adding attention technique (i.e., pair-wise), masking over the 

input sequence then make predictions with LSTM encoder-decoder. Attention 

techniques proposed are targeted to obtain the local view of the input sequence, such as 

relationship between two nodes. Then, by feeding in input sequence, the pair-wise 

attention-based pointer NN, will output a learnt parameter, theta θ. 

 

Figure 2.1.3  Overall architecture of attention-based pointer NN, proposed by [5]. 
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 At sequence inference stage, using greedy algorithm, [5] generate a list of 

sequences with different initial stops, and the route sequence with the lowest 

operational cost are selected, as an output route sequence. The route sequence inference, 

by [5], are elaborated in Figure 2.1.4. 

 

Figure 2.1.4  Route Sequence Inference algorithm, by [5]. 

 

 On the other hand, [4] suggested that, for any machine learning model that are 

capable to make discrete classification, can be employed, given the nature of presented 

approach (i.e., dataset provided by [7]). Using a feedforward NN as prediction 

architecture, [4]’s prediction model are divided into two phases, interzone phase, and 

intrazonal phase. The sequence of delivery zones is predicted, then, within each 

delivery zone, the sequence of delivery stops is only then predicted. Figure 2.1.5 

presents the features applied in predicting the inter-zone sequence, proposed by [4]. 

 

 

Figure 2.1.5  Features applied in inter-zone sequence prediction, by [4]. 
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 After data preprocessing, dataset is feed into a feed-forward neural network, 

with three hidden layers, and rectified linear (ReLU) activation functions. The loss 

function selected by [4] for the NN model is Binary Cross Entropy loss. Figure 2.1.6 

presents the architecture of the feedforward NN model proposed by [4]. Then, using 

ASHA algorithm, hyperparameter tuning for the NN model are done, results seen in 

Figure 2.1.7. 

 

Figure 2.1.6  Architecture model of feedforward NN model, proposed by [4]. 

 

 

 

Figure 2.1.7  Best Hyperparameters found for NN model, using ASHA algorithm. 
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2.1.2 Delivery route optimization 

TSP is a classic NP-hard problem, and have seen in various real-world application, such 

as logistics, circuit design and even DNA sequencing. Over the years, the problem had 

been studied extensively, resulting in various TSP variants, solving specific concern, as 

products. 

 In last-mile delivery applications, some packages can be time-sensitive, leading 

to the introduction of time window constraints into the delivery process, which is TSP 

with time window (TSPTW). In solving TSP problems, it is generally divided into exact 

approaches and approximate approaches. For  small scales TSP problems (i.e., up to 50 

nodes), exact approaches, including algorithms like branch-and-bound [8], branch-and-

cut [9], are utilised and able to tackle the problem optimally. To solve large scales TSP 

problems (>200 nodes), approximate approaches, heuristics including local search, 

insertion, simulated annealing, etc. are used instead. 

 In [4], authors extend the TSPTW formulation by adding an upper bound of 

allowed deviation between actual tour, T and predicted tour, T', as constraint, presenting 

formulation of TSPTW and deviation (TSPTW-Dev). In optimizing the intrazonal level 

delivery routes, [4] draw in Variable Neighbourhood Search (VNS), employing three 

neighbourhood structures and 2-opt local search operators, to improve the predicted 

tour solutions, output by their ML model.  
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2.2 Results 

The evaluation metrics used in [5] are both disparity score, and prediction accuracy.  

Disparity score, introduced by Amazon Last Mile Routing Research Challenge, are 

used by Amazon to evaluate the quality of predicted delivery trajectories, output by 

models. The disparity score, is a metrics that portrays how well the output delivery 

sequences able to mimics the delivery route, preferred by experienced delivery driver. 

(The lower the disparity score, the better) Aside from disparity score, prediction 

accuracy of first four zones for every routes are also evaluated by [5]. 

 

Below defines the mathematical equation of the disparity score:  

(For detailed equation explanation, see [5]). 

𝑅(𝐴, 𝐵) =  
𝑆 𝐷 (𝐴, 𝐵) ∙  𝐸𝑅𝑃𝑛𝑜𝑟𝑚(𝐴, 𝐵)

𝐸𝑅𝑃𝑒(𝐴, 𝐵)
 (1)    

 

Below defines the mathematical equation of the prediction accuracy: 

(For detailed equation explanation, see [5]). 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 =  
∑ 𝕝

{𝐴𝑖
(𝑚)=𝐵𝑖

(𝑚)}
𝑀
𝑚=1

𝑀
 (2) 

 

The results obtained from [5]’s proposed model, shows positive results. In terms of 

disparity score, the model obtained a score of 0.0369, comparing to all other traditional 

operation research solver, [5] outperforms them. When compared to Amazon Last-Mile 

Routing Research Challenge (ALMRRC) winning teams solution, the pair-wise 

attention-based pointer NN model, is behind than the first-place team, with score of 

0.0198. In terms of prediction accuracy scores, the model outperformed all other 

traditional operation research solver, in every first four zone, yielding higher accuracy 

score. Figure 2.2.1 shows the performance table of proposed model by [5], and other 

benchmarking model.
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Figure 2.2.1  Pair-wise Attention-based NN model Performance Table. Sourced from [5]. 
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2.3 Summarization of findings 

Table 2.3.1 summarizes the key differences of some of the existing model for last-mile delivery route prediction and optimization. 

Table 2.3.1  Summary of Route Prediction and Optimization Studies 

Study Model Significances Limitations 

[3] NLP + tailored chain-reaction-

based algorithm 

- Extracting tacit driver knowledge, by 

converting historical delivery routes 

into natural language sentences and 

feeding into NLPs. 

- Relatively low computational time. 

compared to traditional TSP solutions. 

- High adaptability. 

- Average error value increases as length 

of targeted sequence prediction 

increases. 

- Due to weak correlations between 

inputs and outputs in longer sequences. 

[5] seq2seq model (a deep learning 

model) + pair-wise attention-based 

pointer NN 

- Predicts possible stop sequences similar 

to high quality TSP solutions (replacing 

TSP optimizations model). 

- Utilizing LSTM encoder to capture 

global view of input (i.e., overall tour 

sequence pattern). 

- Relatively higher computational time 

due to system network complexity. 

- Disparity score can be improved by 

incorporating local search rules 
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-  Utilizing  ASNN Attention-based 

Spatial NN to capture local view of 

input (i.e., relationship between 2 

distinct stops in tour sequence). 

[4] Feedforward NN + VNS - Allow decision maker to alter level of 

deviation and the penalized effect of 

time window constraint based on 

preferences. 

- Prediction and optimization on both 

interzone and intrazonal level routes. 

- Sequence deviation measures (Jaro & 

LCSS) does not consider geographical 

distance between two stop nodes. 

- May results in significant changes in 

suggested delivery routes when 

swapping to-be customer node, 

especially when two stop nodes are 

further away from each other. 

- Lack of proper model benchmarking on 

both machine learning model and 

optimization approach (due to the focus 

on proposing novel hybrid framework) 
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2.4 Proposed Method 

In this project, our main objective is to infer the possible factors that might cause 

possible deviations of pre-planned routes by delivery drivers. Before inferencing 

possible factors affecting delivery trajectories, we should be able to predict delivery 

routes using neural network.  

 For model selection, the idea of utilizing NLP, by [3] faces possible errors as 

the targeted prediction sequence increases, due to as the sequence spans, correlations 

between inputs and outputs are increasingly lower. Next, although the pair-wise 

attention-based pointer NN model are the best performing state-of-art machine learning 

solution for delivery trajectories, the computation complexity of the model and higher 

computation resources required, are not feasible. 

 After considering on the existing works and the objectives of this project, in this 

paper, we are proposing a simple RNN model to learn the delivery route trajectories, 

backed by suggestion from [4]. In the following chapter, the proposed methodology is 

elaborated. 
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CHAPTER 3  

 

System Methodology 

 

This section first introduced the high level seq2seq modeling framework and followed 

by elaboration of the architecture of (1) proposing model, Simple RNN Encoder-

Decoder (Simple RNN E-D), as well as (2) modified LSTM Encoder-Decoder with 

Pair-Wise Attention (LSTM E-D with Attention) adapted from [5]. 

 

3.1 Sequence-to-sequence (seq2seq) modeling framework 

Given an arbitrary-ordered input route sequence, (𝑠1, …, 𝑠𝑛) ∈ 𝑆. Let the predicted 

route sequence as ( 𝑠̂(1) , …, 𝑠̂(𝑛) ), and 𝑐𝑖  be the positional index of stop 𝑠̂(𝑖) 

corresponding to the input sequence (where 𝑐𝑖  ∈  {1, . . . , 𝑛}) [5]. In this seq2seq model 

framework, by utilizing Recurrent-NN, the conditional probability Ρ(𝑐1, . . . , 𝑐𝑛 | 𝑆;  𝜃), 

with parameter 𝜃, can be calculated as followed: 

 

Ρ(𝑐1, . . . , 𝑐𝑛 | 𝑆, 𝑋𝑆;  𝜃)  

=  Ρ(𝑐1 | 𝑆, 𝑋𝑆;  𝜃)  ∙  ∏ Ρ(𝑐𝑖 |  𝑐1 . . . , 𝑐𝑖−1, 𝑆, 𝑋𝑆;  𝜃)

𝑛

𝑖 = 2

  
(3) [5]  

 

where 𝑋𝑆 is the features of stops in 𝑆. The calculation of Ρ(𝑐1, . . . , 𝑐𝑛 | 𝑆, 𝑋𝑆;  𝜃) for the 

two model (i.e., Simple RNN E-D, and LSTM E-D with Attention) are documented 

later in this chapter. 

 

3.2 Simple RNN Encoder-Decoder (Simple RNN E-D) Model 

A Simple Recurrent Neural Network (RNN) is a type of neural network with internal 

memory that captures temporal dependencies between inputs, allowing them to retain 
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information from previous sequential inputs. Figure 3.2 shows the architecture of 

LSTM E-D with Attention model, presented at four-step. The entire prediction process 

uses a SimpleRNN encoder to extract feature vectors, followed by a SimpleRNN 

decoder to process the last visited stop's feature vector. The decoder incorporates a 

simplified attention mechanism by averaging the encoder outputs, which helps provide 

global context when predicting the next stop in the sequence. The model is designed to 

leverage the SimpleRNN encoder-decoder framework to capture the overall sequence 

pattern of the route, while the context mechanism focuses on combining both global 

and local sequence relationships between the last visited stop and potential next stops. 

 

 

Figure 3.2  Overall architecture of Simple RNN E-D Model 

 

3.2.1 Simple RNN encoder 

The role of the Simple RNN encoder in the Simple RNN E-D model is to gather and 

aggregated each stop information. The input for encoder model is features of the stop 

𝑠𝑖 , 𝑥𝑖  ∈  ℝ𝐾  in a given arbitrary stop sequence (𝑠1 , …, 𝑠𝑛), where 𝑥𝑖  may include 

geographical information and package information of the stop 𝑠𝑖. 𝐾 is the number of 

features. The output of the encoder model will be a sequence of encoder output vectors 

(𝑒1, …, 𝑒𝑛) through calculation, expressed in: 
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ℎ𝐸
𝑖 , 𝑒𝑖  =  𝑆𝑖𝑚𝑝𝑙𝑒𝑅𝑁𝑁(𝑥𝑖, ℎ𝐸

𝑖−1;  𝜃𝐸)  ∀𝑖 =  1, . . . , 𝑛 (4) [5]  

 

where (1) the encoder hidden vector, ℎ𝐸
𝑖  ∈  ℝ𝐾, with ℎ𝐸

0 ∶=  0; 

 (2) the encoder output vector, 𝑒𝑖  ∈  ℝ𝐾𝑒; 

 (3) the corresponding vector dimensions are defined as 𝐾𝐸
ℎ 𝑎𝑛𝑑 𝐾𝑒 

The final step hidden vector ℎ𝐸
𝑛  is used for input of Simple RNN decoder, consisting 

global features of entire input route sequence. 

 

 

3.2.2 Simple RNN decoder 

The role of the Simple RNN decoder is to predict the next stop for every timestep, later 

forming a route sequence. In the proposing Simple RNN decoder model, aggregation 

of both local information (previous visited stop features 𝑥(𝑖), previous RNN hidden 

state, , ℎ𝐷
(𝑖)) and global information (encoder outputs, 𝑒) .  

ℎ𝐷
(𝑖+1) , 𝑑(𝑖)  = 𝑆𝑖𝑚𝑝𝑙𝑒𝑅𝑁𝑁(𝑥(𝑖) , ℎ𝐷

(𝑖);  𝜃𝐷)  ∀𝑖 =  0, 1, . . . , 𝑛 (5) 

 

where (1) the decoder hidden vector, ℎ𝐷
(𝑖)  ∈  ℝ𝐾𝐷

ℎ , with ℎ𝐷
(0) ∶=  ℎ𝐸

𝑛; 

 (2) the decoder output vector, 𝑑(𝑖)  ∈  ℝ𝐾𝑑; 

 (3) the corresponding vector dimensions are defined as 𝐾𝐷
ℎ 𝑎𝑛𝑑 𝐾𝑑; 

 (4) the features of last visited stops, 𝑥(𝑖); 

For depot station case, 𝑥(0)  =  𝑥(𝐷) and 𝑑(0)  =  𝑑(𝐷) . 
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𝑙𝑜𝑔𝑖𝑡𝑠 = 𝑓𝑐(𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝐷
(𝑖+1), 𝜇𝑒))  ∀𝑖 =  0, 1, . . . , 𝑛 (6) 

 

where (1) the decoder hidden vector at current timestep (𝑖 + 1), ℎ𝐷
(𝑖+1); 

 (2) the mean of encoder outputs, 𝑒 across all timesteps, 𝜇𝑒; 

 

The model performs prediction on all candidate stops based on conditional 

probabilities. The conditional probabilities for next possible stops are calculated, and 

prediction 𝑠̂(𝑖+1), expressed in: 

Ρ(𝑐𝑖+1  =  𝑗  |  𝑐1 … , 𝑐𝑖, 𝑆, 𝑋𝑆;  𝜃)  = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑜𝑔𝑖𝑡𝑠)   

∀𝑖 =  0, 1, … , 𝑛 

𝑗  =  1, . . . , n 

(7) 

 

𝑠̂(𝑖+1)  =  argmax
𝑠𝑗 ∈ 𝑆\𝑆𝑉

(𝑖)

Ρ(𝑐𝑖+1  =  𝑗  |  𝑐1 … , 𝑐𝑖, 𝑆, 𝑋𝑆;  𝜃)    

∀𝑖 =  0,1, … , 𝑛 

𝑗  =  1, . . . , n 

(8) 

 

where (1) the set of visited/predicted stops until decoder step 𝑖, 𝑆𝑉
(𝑖)  =  {𝑠̂(1), . . . , 𝑠̂(𝑖)}  

 

3.3 LSTM Encoder-Decoder with Pair-Wise Attention Model 

The LSTM with Attention model architecture is adapted from [5] with slight 

modification. Figure 2.1.3 shows the architecture of LSTM E-D with Attention model, 

presented at four-step. The entire prediction processes use an LSTM encoder to extract 

feature vectors, an LSTM decoder to extract last visited feature vector, then 

incorporates pairwise attention mechanism to the predict the next stop sequence. The 

idea is to utilize LSTM encoder-decoder framework to captures global perspective of 
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the overall sequence pattern, while the Attention mechanism focuses on local 

relationships between two stop pairs (i.e., last visited stop, and candidate stops). 

 

3.3.1 LSTM encoder 

The role of the LSTM encoder in the LSTM E-D with Attention model is similar to 

Simple RNN encoder model, which is to gather and aggregated each stop information. 

The primary difference between LSTM and Simple RNN is that LSTM are more 

capable to retain long term dependencies (overcome vanishing gradients), which makes 

LSTM a superior choice for complex tasks (long route sequence). The input for encoder 

model is features of the stop 𝑠𝑖, 𝑥𝑖  ∈  ℝ𝐾 in a given arbitrary stop sequence (𝑠1, …, 

𝑠𝑛), where 𝑥𝑖 may include geographical information and package information of the 

stop 𝑠𝑖. 𝐾 is the number of features. The output of the encoder model will be a sequence 

of encoder output vectors (𝑒1, …, 𝑒𝑛) through calculation, expressed in: 

ℎ𝐸
𝑖  , 𝑒𝑖  =  𝐿𝑆𝑇𝑀(𝑥𝑖 , ℎ𝐸

𝑖−1;  𝜃𝐸)  ∀𝑖 =  1, . . . , 𝑛 (9) [5]  

where (1) the encoder hidden vector, ℎ𝐸
𝑖  ∈  ℝ𝐾, with ℎ𝐸

0 ∶=  0; 

 (2) the encoder output vector, 𝑒𝑖  ∈  ℝ𝐾𝑒; 

 (3) the corresponding vector dimensions are defined as 𝐾𝐸
ℎ 𝑎𝑛𝑑 𝐾𝑒 

The final step hidden vector ℎ𝐸
𝑛  is used for input of Simple RNN decoder, consisting 

global features of entire input route sequence. 

 

3.3.2 LSTM decoder 

Following [5], the role of the LSTM decoder in the LSTME-D with Attention model is 

to produce last visit stop vectors, which are used for the attention mechanism to predict 

next zone sequence. Denote the output route sequence (𝑠̂(1), …, 𝑠̂(𝑛)). Given features 

of the stop 𝑠̂(𝑖), 𝑥(𝑖). At each decoder timestep, 𝑖, the process can be expressed in: 
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ℎ𝐷
(𝑖+1) , 𝑑(𝑖)  =  𝐿𝑆𝑇𝑀(𝑐𝑜𝑛𝑐𝑎𝑡(𝑥(𝑖), 𝜔(𝑖)), ℎ𝐷

(𝑖);  𝜃𝐷)  ∀𝑖 =  0, 1, . . . , 𝑛 (10) [5]  

 

where (1) the decoder hidden vector, ℎ𝐷
(𝑖)  ∈  ℝ𝐾𝐷

ℎ , with ℎ𝐷
(0) ∶=  ℎ𝐸

𝑛; 

 (2) the decoder output vector, 𝑑(𝑖)  ∈  ℝ𝐾𝑑; 

 (3) the corresponding vector dimensions are defined as 𝐾𝐷
ℎ 𝑎𝑛𝑑 𝐾𝑑; 

 (4) the context vector is computed from attention layer, 𝜔(𝑖); 

For depot station case, 𝑥(0)  =  𝑥(𝐷) and 𝑑(0)  =  𝑑(𝐷) . 

 

3.3.3 Pair-Wise Attention Layer 

The role of pair wise attention layer is predicting next possible stop by aggregating both 

global and local information in a given sequence of stops (𝑠1, …, 𝑠𝑛). The mechanism 

works as at each decoder time step 𝑖 ∈  {0, . . . , 𝑛}, after identifying the last visited stop, 

𝑠̂(𝑖) , the model perform prediction on 𝑠̂(𝑖+1)  from all candidates stops (all valid, 

unvisited zone), 𝑠̂(𝑗)  ∈  𝑆 . The input for attention layer, denoted as 𝑣𝑗
(𝑖) , consists 

information of the stop pair 𝑠̂(𝑖) and 𝑠𝑗, which can be expressed by: 

𝑣𝑗
(𝑖)  =  𝑐𝑜𝑛𝑐𝑎𝑡(𝑡𝑗

(𝑖), 𝑑(𝑖), 𝑒𝑗) (11)  

 

where (1) the travel time features between stop pair 𝑠̂(𝑖) 𝑎𝑛𝑑 𝑠𝑗, 𝑡𝑗
(𝑖); 

 (2) decoder output vector, 𝑑(𝑖); 

 (3) encoder output vector, 𝑒𝑗; 

 

The attention of stop pairs are calculated, following the equation: 
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𝑢𝑗
(𝑖)  =  𝑀𝐿𝑃(𝑣𝑗

(𝑖);  𝜃𝐴)  ∀𝑖, 𝑗 =  1, . . . , 𝑛 (12) [5]  

 

𝑎𝑗
(𝑖)  =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑢𝑗

(𝑖))  ∀𝑖, 𝑗 =  1, . . . , 𝑛 (13) [5]  

 

where the attention of stop 𝑠̂(𝑖) 𝑡𝑜 𝑠𝑗, 𝑎𝑗
(𝑖)  ∈  ℝ; 

 

Then, conditional probability for each stop pairs are calculated, and prediction 𝑠̂(𝑖+1), 

expressed in: 

𝑠̂(𝑖+1)  =  argmax
𝑠𝑗 ∈ 𝑆\𝑆𝑉

(𝑖)

𝑎𝑗
(𝑖)    ∀𝑖 =  0,1, . . . , 𝑛 (14) [5]  

 

where (1) the set of visited/predicted stops until decoder step 𝑖, 𝑆𝑉
(𝑖)  =  {𝑠̂(1), . . . , 𝑠̂(𝑖)}  

 

In addition, context vector, 𝜔(𝑖) which is a weighted sum of all encoder output vectors 

with attention as weights. 𝜔(𝑖) is introduced to leverages the attention information as 

the decoder input for timestep 𝑖 +1. The formulation of context vector can be expressed: 

𝜔(𝑖) = ∑ 𝑎𝑗
(𝑖)  ∙ 

𝑛

𝑗=1

 𝑒𝑗 (15) [5]  
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CHAPTER 4  

 

Experimental Setup 

 

4.1 System Requirements 

4.1.1 Hardware 

The hardware involved in this project is personal computer. Table 3.1.1 shows the 

detailed specification of the hardware involved. 

Table 4.1.1  Specifications of laptop. 

Description Specifications 

Model LENOVO 81WD 

Processor Intel® Core™ i5-1035G4 CPU @ 1.10GHz 1.50 GHz 

Operating System Windows 10 Home Single Language 64-bit 

Graphic Intel® Iris® Plus Graphics 

Memory 12.0 GB (11.7 GB usable) DDR4 RAM 

Storage 477 GB SSD ROM 

 

 

4.1.2 Software 

The software involved in this project are listed as below: 

(i) Google Collaboratory (Google Colab). 

Google Colab is a cloud based Jupyter Notebook service that provides free 

access to computing resources, including GPUs and TPUs. With Google 

Colab, users do not require to install libraries, and packages on personal 

devices, and running codes does not consume resources of the working 

system (hardware). 
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(ii) Google Drive. 

Google Drive is a cloud storage service provided by Google, that allows 

users to store, synchronise, share files across the platform. Google Drive 

also integrates with Google Colab, allows data storage and retrieval from 

the drive. 

 

(iii) Tensorflow with Keras. 

Tensorflow is an open-source deep learning framework provided by Google. 

With Keras, a python-based high-level neural network Application 

Programming Interface (API), running on top of Tensorflow, the combo 

provides users libraries, and tools to conduct experimentation with neural 

networks. 

 

 

4.1.3 Data Source 

The project will be using real-world data provided by Amazon Last-Mile Routing 

Research Challenge [7]. The dataset consists of 6112 historical drivers last mile 

delivery routes, which was collected between July and August 2018 in five metropolitan 

areas of United States (U.S.), namely Austin, Boston, Chicago, Los Angeles, and 

Seattle [5]. Each route is characterized by a variety of route-level, stop-level, package-

level features, route quality attributes, delivery defects, driver experience, customer 

satisfaction, and productivity; dataset is summarised, and explained in Table 3.1.2 [7]. 

Besides, each route is labelled according to its perceived route quality (i.e., low, 

medium, and high). The entire dataset can be visualised and represented in the form of 

an Entity relationship diagram (ERD), seen in Figure 3.1.1. 
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Figure 4.1.1  ERD for Amazon Last-Mile Routing Research Challenge Dataset. 

Sourced from [10]. 
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Figure 4.1.2  Sample Delivery Route, in Irvine, California. 

Soured from [11]. 
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Table 4.1.2  Data Description on provided Amazon Last-Mile Routing Research Challenge Dataset. Sourced from [7]. 

Data Field Description Unit/Format 

Route information 

Route ID Unique and anonymized identifier of each route. - 

Station code Unique identifier for a depot station. (alphanumeric string) 

Date Date of route execution. YYYY-MM-DD 

Departure time Time when vehicle leaves depot. - 

Executor capacity Volumetric capacity of vehicle. cm3 

Stops A list of each stop in route. - 

Observed sequence Actual sequence in which stops were visited. - 

Route score Quality of the observed sequence. 
Categorical  

(i.e., high, medium, or low) 

   

Stop information 

Stop ID Unique identifier of each stop on a route. - 

Latitude/Longitude Obfuscated coordinates of each stop. - 

Type Type of stop. 
Categorical 

(i.e., station or drop-off) 

Zone ID Geographical planning area in which the stop falls. - 
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Packages A list of packages to be delivered at each stop. - 

Transit time Estimated transit time to every other stop on route Seconds 

   

Package information 

Package ID Unique and anonymized identifier of each package. - 

Status Delivery status of package. 

Categorical 

(i.e., DELIVERED, 

DELIVERY_ATTEMPTED, or 

REJECTED) 

Time window Start and end time window, when applicable. 
(if not specified, fields are filled 

with value ‘NaN’) 

Planned service time Time that serving the package is expected to require. Seconds 

Dimensions Length, width, and height of package. cm 
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4.2 System Design 

The proposed framework is outlined (see Figure 4.2.1), with the input data of real-world 

historical delivery routes data and output of optimized delivery routes, which similar to 

real-world drivers’ preferences. 

 

 

Figure 4.2.1  Overall project framework. Adapted from [4]. 

 

4.2.1 Data Analysis 

 After obtaining the historical data (more data information, refer Chapter 4.1.3), 

data analysis and visualisation is performed as project initial step. Basic data analysis 

was performed on the dataset, allowing us to easily grasp complex information, identify 

outliers, and communicate findings to others. Built-in library such as seaborn and 

matplot are utilized to provide graph visualisation. By performing data analysis, we 

could imply factors that cause drivers deviate from the pre-planned route (i.e., time-

sensitive packages.) 
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4.2.2 Data Preprocessing 

Then, data preprocessing will be performed before feeding into the machine learning 

model. Data preprocessing steps include feature selection, data cleaning(i.e., filling 

missing values), data splitting, data transformation, and data reduction. Data 

preprocessing are essential steps, as data quality defined the output of machine learning 

model. With high quality data input, machine learning models are able to converge 

effectively and produce accurate predictions. Figure 4.2.2 shows the steps taken in Data 

Preprocessing process. 

 

 

Figure 4.2.2  Steps involved in Data Preprocessing. 

 

 In this project, we chose to focus only on the 2718 routes with ‘High’ route 

scorings. This is because, in both validation and testing datasets, all routes are rated 

‘High’. Besides, dropping ‘Low’ tiered routes are due to routes rated ‘Low’ only 

contribute around 1.6%, having only 102 routes out of the overall datasets (6112 routes), 

which might cause biased outcomes. Then, we dropped all packaged-level features, 

includes ‘pack_ID’, ‘time_window_start’, ‘time_window_end’. The reason behind the 

action, is in this project, we would like to focus on delivery zone level sequencing, 

following [3], stating drivers tends to stick to the shortest path within intra-zonal 

delivery. Furthermore, the findings also display only around 7% of the parcels are time 

sensitive, filling missing values with a random value might produce possible biased 

outcomes. Moreover, we dropped time-related features (i.e., date, and departure time) 

as departure time for all routes are within an hour period, 9.00 – 10 a.m. period. 

 For data cleaning steps, we filled up all stops with null are filled with value 

‘NA’. Then, for all station type records, indicate by sequence id = 0, the field, zone id 
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with value ‘@-0.0@’, as initial zone. Moreover, for every route, with missing or invalid 

zone_id, are filled with zone_id value, by filling with nearest zone id, determined by 

travel distances between valid zones and target (stops with missing or invalid zone id). 

 After data cleaning steps, dataset is now split into train set X and train set y. The 

motivation behind action splitting data into train and test set, is that the provided dataset 

from AWS is divided into train set (model_build), test set (eval_model_apply) 

respectively, where test set data are completely independent from train set. 

 

4.2.2 Model  Building and Training 

After data preprocessing, two machine learning model (i.e., Simple RNN E-D Model, 

and LSTM E-D with Attention Model) are built to fulfil the project task, (i.e., predict 

the zone sequence Id for every route). Both Simple RNN E-D Model, and LSTM E-D 

with Attention Model are built with Keras library, which are an established library for 

deep learning model building and training operations. Detailed model methodology, as 

well as architecture are discussed in Chapter 3. Then, pre-processed data (historical 

delivery routes) are fed into the machine learning model for pattern convergence. For 

detailed model building and model training are documented in Chapter 5. 

 

4.2.3 Model Evaluation 

Model evaluation, including cross validation on model built are performed, to ensure 

proposed model able to predict good routes, aligning the project objectives. For 

performance metrics, [5] mentioned that accuracy metric does not differentiate “how 

wrong an erroneous prediction is”, in contrast, disparity score does not negatively 

impact too much when predicted stop, sp are geographically closed towards the actual 

stop, sa. The output of the model (quality of predicted delivery route) is then evaluated. 

All results and evaluation are discussed in Chapter 6. 
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4.3 Timeline 

Figure 4.3.1 presents the Gantt chart for all the works done with the corresponding 

timeline in Final Year Project 1. Works including, but not limited to, performing project 

initiation and planning, data understanding and visualisation, data preprocessing, model 

training, report writing, and FYP presentation preparation. 

In Figure 4.3.2, Gantt chart for Final Year Project 2 is roughly drafted and outlined, 

with works to be done with corresponding timeline during upcoming trimester. Works 

including, but not limited to, review and revise previous work done, further research on 

relevant papers or works, model training and evaluation, model tuning, report writing 

and FYP presentation preparation. 
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Figure 4.3.1  Gantt Chart for Project 1. 
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Figure 4.3.2  Gantt Chart for Project 2 
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CHAPTER 5  

 

System Implementation 

 

 

 

5.1 Data Findings 

Route Score 

Below code, from line 1 to 6, obtained the number of routes for each scoring (i.e., Low, 

Medium, and High). Line 7 obtained all number of routes, by summing up the number 

of routes, for each class. Finally, line 8, output the percentage of routes with low 

scorings over all routes. 

 

Line  

01 num_low_route = rt.filter(rt['route_score'] ==  

02   'Low').select('route_id').unique().height 

03 num_high_route = rt.filter(rt['route_score'] ==  

04   'High').select('route_id').unique().height 

05 num_medium_route = rt.filter(rt['route_score'] ==  

06   'Medium').select('route_id').unique().height 

07 num_route = num_low_route + num_high_route + num_medium_route 

08 print('Percentage of low scoring routes: ', (num_low_route /  

09   num_route)*100 , '%') 

 

• Routes with scoring ‘Low’ take up only 1.6% of overall routes. 
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Below code obtained the value of unique route with high scorings. 

Line  

01 rt.filter(rt['route_score'] == 'High').select('route_id').unique().height 

 

• There are total of 2718 unique routes with ‘High’ scorings. 

 

 

Time Windows Sensitivity 

Below code, line 1 obtained the number of packages in all 6,142 routes, whereas line 2 

obtained the number of packages without time window stated from all 6,142 routes. 

Then, line 4 and 5-6, output the total number of packages and the total number of 

packages without time window, respectively. Finally, line 7-8, output the percentage of 

packages without time window. 

 

Line  

01 num_package= rt.filter(pl.col('pack_ID').is_not_null()).height 

02 num_package_wo_tw = rt.filter(pl.col('type').eq('Dropoff')).filter( 

03   pl.col('time_window_start').is_null()).height 

04 print('Total number of packages: ', num_package) 

05 print('Total number of packages without time window: ',  

06   num_package_wo_tw) 

07 print('Percentage of packages without time window: ',  

08   (num_package_wo_tw / num_package)*100 , '%') 

 

• Out of 1,457,175 packages, 1,343,182 packages do not have specified delivery time 

windows. 

• Over 92.27% of delivery packages are considered time window insensitive. 
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Below code, sort the dataframe, rt, for every unique route, calculate the number of 

packages without specified time window, and then sorted the dataframe based on 

number of packages without time window, in ascending order. The range for number 

of delivery packages without specified time window per route are [92, 302]. 

 

Line  

01 rt.filter(pl.col('type').eq('Dropoff')).groupby('route_id').agg(num_pkgwotw  

02  = pl.col('time_window_end').is_null().sum()).sort( 

03  by = 'num_pkgwotw) 

 

Output: 

 

Figure 5.1.1  Range of delivery package without time windows for each route. 

 

Figure 5.1.2 shows histogram of the distribution of the number of packages with a time 

window per route. It suggests that majority of routes, around 2500, have between 0 and 

10 packages with time windows only. 

 

Inference: 

• The limited number of packages with time windows in most routes suggests that 

the overall influence of time-sensitive deliveries on driver behavior may be 

minimal for most routes. 
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Figure 5.1.2  Distribution of Number of Packages with Time Window per Route 

 

 

Route 

Below code, sort the dataframe, rt, for every unique route, calculate the number of 

packages, and then sorted the dataframe based on number of packages, in ascending 

order. The range for number of delivery packages per route are [151, 305]. 

Line  

01 rt.groupby('route_id').agg(num_package = pl.count()).sort(by =  

02    'num_package') 

 

Output: 

 

Figure 5.1.3  Range of delivery package for each route. 
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Below code, at line 1-2, number of stops for each route are obtained and sorted. Then, 

from line 3-8, histogram of the ‘Distribution of Number of Stops per Route’ are plotted, 

accessing the matploblib library. Matplotlib is a plotting library for Python language. 

 

Line  

01 num_stop_df = rt.groupby('route_id').agg(num_stop = (pl.col('type') ==  

02   'Dropoff').count()).sort(by = 'num_stop') 

03 plt.hist(num_stop_df["num_stop"], bins=10, edgecolor="black") 

04 plt.xlabel("Number of Stops") 

05 plt.ylabel("Number of Routes") 

06 plt.title("Distribution of Number of Stops per Route") 

07 plt.grid(True) 

08 plt.show() 

 

Output: 

 

Figure 5.1.4  Distribution of Number of Stops per Route. 

 

Inference: 

• Most of the routes have around 230 – 260 number of stops. 
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Below code, at line 1-2, number of zones for each route are obtained and sorted. Then, 

from line 3-8, histogram of the ‘Distribution of Number of Zone per Route’ are plotted, 

again utilizing the matploblib library. 

Line  

01 num_zone_df = rt.groupby('route_id').agg(num_zone =  

02   pl.col('zone_id').n_unique()).sort(by = 'num_zone') 

03 plt.hist(num_zone_df["num_zone"], bins=5, edgecolor="black") 

04 plt.xlabel("Number of Zone") 

05 plt.ylabel("Number of Routes") 

06 plt.title("Distribution of Number of Zone per Route") 

07 plt.grid(True) 

08 plt.show() 

 

Output: 

 

Figure 5.1.5  Distribution of Number of Zone per Route. 

 

Inference: 

• Most of the routes serves about 20 zones per route. 
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Zones 

The function below extracts zone data features (i.e., zone ID and stop sequences) to 

visualize the zone IDs and the overall route sequence. 

 

Figure 5.1.6  Function for Extraction Zone Data Features 

 

After extracting the zone IDs and their corresponding sequences for each route, we 

inspected the data visually to understand how drivers move through zones. The code 

below used for this inspection sorts the zone IDs based on the stop sequences, groups 

the stops by their associated zone IDs, and then aggregates the sequences accordingly. 

We are able to visualize how stops within a particular zone are served in order, and how 

the sequence progresses as the driver moves from one zone to the next. 
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Line  

01 zone_data = [{"zone_id": zone_id, "stop_seq": stop_seq} 

02   for zone_id, zone_info in data["zone_features"].items() 

03   for stop_seq in zone_info["stop_seq"]] 

04 df = pd.DataFrame(zone_data) 

05 pd.set_option('display.max_rows', None) 

06 df_sorted = df.sort_values(by="stop_seq") 

07 df_aggregated = df_sorted.groupby('zone_id').agg({'stop_seq': 

08    list}).reset_index() 

09 df_aggregated['first_stop_seq'] = df_aggregated['stop_seq'].apply( 

10        lambda x: x[0]) 

11 df_aggregated = df_aggregated.sort_values(by='first_stop_seq').drop( 

12       columns='first_stop_seq') 

13 print(df_aggregated) 

 

Output: 

 

Figure 5.1.7  Zone ID Order sequence, aggregated from stop sequence for Route1 
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Figure 5.1.8  Zone ID Order sequence, aggregated from stop sequence for Route2 

 

Based on multiple route cases shown in Figures 5.1.7 and 5.1.8, we observed the stop 

sequences associated with various zone IDs. For example, zone ‘C-3.2B’ includes the 

stops in the sequence [1, 2, 3, ..., 9], while zone ‘C-3.1B’ covers stops [10, 11, 12, ..., 

18]. This pattern is repeated across all zones in a structured manner, suggesting that 

within each zone, stops are served sequentially before moving on to the next zone. This 

pattern suggesting that drivers tend to focus on completing all stops within a given zone 

before moving to the next zone. 

 

Inference: 

• Driver behavior can be inferred based on the stop sequence data within each zone. 

• Drivers tend to complete all stops within the current zone before moving on to the 

next zone, suggesting a zone-based delivery pattern. 
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Relationship of Zone IDs 

Based on previous insights (i.e., drivers serve all stops within the current zone before 

moving to next zone), we conducted further inspections of zone IDs in the route 

sequence. Below shows the Zone ID Order sequence for Route 0. Note that ‘@-0.0@’ 

represent Depot zone. 

Outputs: 

 

Figure 5.1.9  Zone ID Order sequence for Route0 

 

Based on the output, we noticed that zone IDs can be broken down into four parts: (i) 

super-super clusters, (ii) super clusters, (iii) clusters, and (iv) zones. For example, in 

the zone ID ‘D-18.2J’ the starting letter ‘D’ represent the super-super cluster. When 

paired with next integer value, in this case ‘D-18’ formed a super cluster. The ending 

letter ‘J’ represent the cluster, making ‘D-18.-J’. Finally, the decimal value ‘.2’ 

completes the zone ID, with ‘D-18.J’ represent the full zone ID. 
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Table 5.1  Zone Order sequence for Route0, arranged by cluster 

Cluster Zone 1 Zone 2 Zone 3 

J  D-18.2J D-18.3J 

H D-18.3H D-18.2H D-18.1H 

G D-18.1G D-18.2G D-18.3G 

E D-18.1E   

D D-18.1D D-18.2D D-18.3D 

C D-18.3C D-18.2C D-18.1C 

B D-18.1B   

 

 Next, for a given route, the sequence pattern of zone IDs can be identified. 

Based on Table 5.1, we observed that the zone IDs within each cluster follow either an 

ascending or descending order, depending on the sequence of the previous cluster. 

 

Inference: 

• The relationship of zone IDs within a given route are identified. 

• Each zone ID is structured in a hierarchical manner, starting with the super-super 

cluster, followed by the super cluster, cluster, and zone. 

• The pattern of zone IDs within a route appears to follow a specific pattern (either 

ascending or descending) within each cluster, which may indicate a systematic 

approach to how delivery zones are being clustered. 
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5.2 Data Preprocessing 

In this project, we focus on zone level sequence prediction, justified by [3], explained 

in previous chapter. For the route data, we select only routes with a score rated as 'High,' 

prioritizing quality data for better pattern learning from model. To prepare zone level 

data, relevant features are selected and aggregated from stop-level data. Stop-level 

features, including, latitude, longitude, stop type (indicating Depot or Dropoff), travel 

times between stop pairs, and corresponding actual route sequence (at stop level) are 

aggregated by zone IDs. Package-level features, such as time windows, planned service 

times, and dimensions, are excluded. This decision is based on the justification provided 

in previous sub chapter, stating that over 92.27% packages are considered time 

windows insensitive. 

 

To begin, all route files are classified and separated based on their route score. Function 

classify_route reads the ‘route_data.json’ file and returns three distinct lists: 

‘low_routes’, ‘medium_routes’, and ‘high_routes’, which contain the corresponding 

route IDs based on their score. Next, all relevant route data are sorted into their 

respective directories using the function move_files. 

Function classify_route 

def classify_routes(input_file): 

    with open(input_file, 'r') as f: 

        data = json.load(f) 

        for route_id, route_info in data.items(): 

            route_score = route_info.get("route_score", "Uncategorized") 

            if route_score == "Low": 

                low_routes.append(route_id) 

            elif route_score == "Medium": 

                medium_routes.append(route_id) 

            elif route_score == "High": 

                high_routes.append(route_id) 
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Function move_files 

def move_files(input_directory, output_directory): 

    for filename in os.listdir(input_directory): 

        if filename.endswith(".json"): 

 shutil.move(os.path.join(input_directory, filename), 

      os.path.join(output_directory, filename)) 

 

The function preprocesses all routes data are defined as preprocess_route(), with seven 

defined functions, namely parse_zone_id, is_valid_zone_id, 

assign_zone_id_for_dropoffs, encode_zone_id, extract_zone_features, 

calculate_mean_travel_times, convert_stop_sequence_to_zone_sequence. The 

preprocessing function takes in lists: (1) route_id, (2) all_route_data, (3) 

all_travel_times, (4) all_package_data, and (5) all_actual_seq, and return lists; (i) 

zone_features, and (ii) mean_travel_times. 

 

Function preprocess_route 

def preprocess_route(route_id, all_route_data, all_travel_times, all_package_data, 

all_actual_seq): 

    route_data = all_route_data[route_id]['stops'] 

    travel_times = all_travel_times[route_id] 

    package_data = all_package_data[route_id] 

actual_seq = all_actual_seq[route_id]['actual']  

route_data = assign_zone_id_for_dropoffs(route_data, travel_times) 

encoded_zones, station_zone = encode_zone_id(route_data) 

    zone_features = extract_zone_features(encoded_zones, station_zone,   

   package_data) 

    mean_travel_times = calculate_mean_travel_times(zone_features, travel_times, 

   encoded_zones) 

    zone_seq_map = convert_stop_sequence_to_zone_sequence(actual_seq,  

   route_data) 

    for zone_id in zone_features.keys(): 
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        if zone_id == station_zone: zone_features[zone_id]['zone_seq'] = 0 

        else: zone_features[zone_id]['zone_seq'] = zone_seq_map.get(zone_id, 1e6) 

return zone_features, mean_travel_times 

 

The preprocessing pipeline is structured around the preprocess_route function, which 

coordinates the entire data preparation process for each route. It begins by handling 

missing zone IDs using the assign_zone_id_for_dropoffs function. This step assigns the 

nearest valid zone ID to dropoff stops without a valid zone ID based on travel times, 

ensuring that all stops have valid zone data. The assignation of nearest zone can be 

expressed in the following mathematical expression: 

Let: 

(1) The dropoff stop with a missing or invalid zone ID, 𝑠𝑚  ∈ 𝑆, a set of stops in 

given route. 

(2) A valid stop with a known zone ID, 𝑧𝑖  ∈ 𝑆. 

(3) The travel time between stop 𝑠𝑚 and 𝑠𝑣, 𝑡(𝑠𝑚, 𝑧𝑖). 

 

𝑍𝑛𝑒𝑎𝑟𝑒𝑠𝑡 = 𝑎𝑟𝑔 min
𝑖

𝑡(𝑠𝑚, 𝑧𝑖) (16) 

 

where 𝑍𝑛𝑒𝑎𝑟𝑒𝑠𝑡 is the zone ID of the nearest stop, which is identified by finding the stop 

𝑧𝑖 that yields the minimum travel time 𝑡(𝑠𝑚, 𝑧𝑖). 

 

The function is_valid_zone_id function is called to validate the zone_id format. A valid 

zone id is defined in format: '^[A-Z]-\d{1,2}\.\d[A-Z]$'. 

 

Function assign_zone_id_for_dropoffs 

def assign_zone_id_for_dropoffs(route_data, travel_times): 

    for stop_id, stop_data in route_data.items(): 

        zone_id = stop_data.get('zone_id') 

        if zone_id is None or not is_valid_zone_id(zone_id): 

            if stop_data['type'] == 'Dropoff': 
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                nearest_zone = None 

                min_travel_time = float('inf') 

 

                # Find the nearest stop with a valid zone_id 

                for neighbor_stop_id, travel_time in travel_times.get(stop_id, {}).items(): 

                    neighbor_zone_id = route_data[neighbor_stop_id].get('zone_id') 

 

                    if neighbor_zone_id and is_valid_zone_id(neighbor_zone_id): 

                        if travel_time < min_travel_time: 

                            min_travel_time = travel_time 

                            nearest_zone = neighbor_zone_id 

 

                # Assign the nearest zone_id to the dropoff stop 

                if nearest_zone: 

                    route_data[stop_id]['zone_id'] = nearest_zone 

                else: 

                    # If no valid zone_id is found, assign a default 

                    route_data[stop_id]['zone_id'] = "[-9.9]" 

    return route_data 

 

Function is_valid_zone_id 

def is_valid_zone_id(zone_id): 

    if not isinstance(zone_id, str): 

        return False  # If zone_id is not a string, it's invalid 

    pattern = re.compile(r'^[A-Z]-\d{1,2}\.\d[A-Z]$') 

    # If the zone_id does not match the pattern, it is invalid 

    if not pattern.match(zone_id): 

        return False 

    return True 

 

Next, the encode_zone_id function processes the zone IDs for every stop, by calling 

function parse_zone_id, to split the zone ids into four components (super-super cluster, 
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super cluster, cluster, zone) and obtain each stop features such as latitude, longitude, 

and whether the stop is a station. For station stop, default zone ID ‘@-0.0@’ is assigned. 

This step creates a structured representation of each stop's zone information. 

 

Function encode_zone_id 

def encode_zone_id(route_data): 

    default_station_zone = "@-0.0@" 

    dropoff_with_missing_zone = [] 

    encoded_zones = {} 

    station_zone = None 

    for stop_id, stop_data in route_data.items(): 

        zone_id = stop_data.get('zone_id') 

 

        # Check for NaN values in various forms 

        if zone_id is None or zone_id in ['NaN', 'nan'] or (isinstance(zone_id, float) and 

  np.isnan(zone_id)): 

            if stop_data['type'] == 'Station': 

                zone_id = default_station_zone 

                station_zone = default_station_zone  # Mark the station zone 

        parsed_zone = parse_zone_id(zone_id) 

        # Add the encoded zone and other features to the dictionary 

        encoded_zones[stop_id] = { 

            'zone_id': zone_id, 

            'super_super_cluster': parsed_zone['super_super_cluster'], 

            'integer_part': parsed_zone['integer_part'], 

            'decimal_part': parsed_zone['decimal_part'], 

            'super_cluster': parsed_zone['super_cluster'], 

            'is_station': 1 if stop_data['type'] == 'Station' else 0, 

            'lat': stop_data['lat'], 

            'lng': stop_data['lng'] 

        } 

    return encoded_zones, station_zone 
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Function parse_zone_id 

def parse_zone_id(zone_id): 

    temp = zone_id.split('-') 

    super_super_cluster = ord(temp[0]) - 64 

    temp2 = temp[1].split('.') 

    integer_part = int(temp2[0]) 

    decimal_part = int(temp2[1][:-1]) 

    super_cluster = ord(temp2[1][-1]) - 64 

 

    return { 

        'super_super_cluster': super_super_cluster, 

        'integer_part': integer_part, 

        'decimal_part': decimal_part, 

        'super_cluster': super_cluster 

    } 

 

 

The pipeline then proceeds to the extract_zone_features function, which aggregates 

stop-level data at the zone level. This includes counting the number of stops in each 

zone, calculating the minimum, maximum, and mean latitudes and longitudes, and 

determining the number of packages handled in each zone. Station zones are marked as 

‘1’ for feature ‘is_station’. 

Function extract_zone_features 

def extract_zone_features(encoded_zones, station_zone, package_data): 

    zone_features = defaultdict(lambda: { 

        'super_super_cluster': None, 

        'super_cluster': None, 

        'integer_part': None, 

        'decimal_part': None, 

        'is_station': 0, 

        'num_stops': 0, 
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        'latitudes': [], 

        'longitudes': [], 

        'num_of_packages': 0 

    }) 

 

    for stop_id, stop_data in encoded_zones.items(): 

        zone_id = stop_data['zone_id'] 

 

        # Aggregate zone_id features 

       zone_features[zone_id]['super_super_cluster'] =  

      stop_data['super_super_cluster'] 

        zone_features[zone_id]['super_cluster'] = stop_data['super_cluster'] 

        zone_features[zone_id]['integer_part'] = stop_data['integer_part'] 

        zone_features[zone_id]['decimal_part'] = stop_data['decimal_part'] 

 

        # Count the number of stops and collect latitudes/longitudes 

        zone_features[zone_id]['num_stops'] += 1 

        zone_features[zone_id]['latitudes'].append(stop_data['lat']) 

        zone_features[zone_id]['longitudes'].append(stop_data['lng']) 

 

        # Mark if the stop is a station 

        if stop_data['is_station']: 

            zone_features[zone_id]['is_station'] = 1 

 

        # Count the number of packages at each stop and aggregate at the zone level 

        if stop_id in package_data: 

            zone_features[zone_id]['num_of_packages'] += len(package_data[stop_id]) 

 

    # Compute min, mean, max lat/lng for each zone 

    for zone_id, features in zone_features.items(): 

        features['min_lat'] = min(features['latitudes']) 

        features['max_lat'] = max(features['latitudes']) 

        features['mean_lat'] = np.mean(features['latitudes']) 
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        features['min_lng'] = min(features['longitudes']) 

        features['max_lng'] = max(features['longitudes']) 

        features['mean_lng'] = np.mean(features['longitudes']) 

 

    return zone_features 

 

After the zone features are aggregated, the calculate_mean_travel_times function 

computes the mean travel times between different zones based on the travel times 

between individual stops in different zones. The mean travel times between two zones 

can be expressed in the below mathematical equation: 

Given: 

(1) The travel time between stop 𝑖 in zone A and stop 𝑗 in zone B, 𝑇𝑖𝐴𝑗𝐵
 . 

(2) The total number of stop pairs between zone A and zone B, 𝑁. 

𝜇𝐴𝐵 =
1

𝑁
 ∑ 𝑇𝑖𝐴𝑗𝐵

𝑁

𝑖=1

 (17) 

 

where 𝜇𝐴𝐵  is the mean travel time between zone 𝐴 and zone 𝐵. 𝑁 is the number of 

travel times between the stop pairs of zone 𝐴  and zone 𝐵 . 𝑇𝑖𝐴𝑗𝐵
 represents the 

individual travel time between stop 𝑖 (in zone 𝐴) and stop 𝑗 (in zone 𝐵). 

 

Function calculate_mean_travel_times 

def calculate_mean_travel_times(zone_features, travel_times, encoded_zones): 

    zone_travel_times = defaultdict(lambda: defaultdict(list)) 

 

    for from_stop, to_stops in travel_times.items(): 

        from_zone = encoded_zones[from_stop]['zone_id'] 

        for to_stop, travel_time in to_stops.items(): 

            to_zone = encoded_zones[to_stop]['zone_id'] 
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            if from_zone != to_zone: 

                zone_travel_times[from_zone][to_zone].append(travel_time) 

 

    mean_travel_times = {} 

    for from_zone, to_zones in zone_travel_times.items(): 

        mean_travel_times[from_zone] = {} 

        for to_zone, times in to_zones.items(): 

            mean_travel_times[from_zone][to_zone] = np.mean(times) 

 

    return mean_travel_times 

 

Finally, the convert_stop_sequence_to_zone_sequence function translates the stop-

level route sequence into a zone-level sequence, ensuring that the correct order of zones 

is captured. The zone-level sequence is then added to the zone features. 

Function convert_stop_sequence_to_zone_sequence 

def convert_stop_sequence_to_zone_sequence(actual_seq, stop_data): 

    # Sort the actual sequence based on the stop positions 

    sorted_stops = sorted(actual_seq, key=actual_seq.get)   

    seen_zones = set()  # Track zones we've already encountered 

    zone_seq_map = {}   # Map to store zone_id and its sequence index 

    seq_index = 0       # Sequence index starts at 0 

 

    for stop_id in sorted_stops: 

        # Get the zone_id for the current stop 

        zone_id = stop_data[stop_id]['zone_id'] 

 

        # Add the zone to the sequence if it's the first time we encounter it 

        if zone_id not in seen_zones: 

            zone_seq_map[zone_id] = seq_index 

            seen_zones.add(zone_id) 

            seq_index += 1 

    return zone_seq_map 
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5.3 Data Transformation and Padding 

5.3.1 Data Transformation 

The extract_zone_features_and_sequences function is responsible for transforming 

route data into training data (X_train and Y_train) for use in zone-level sequence 

prediction models. This function takes in all preprocessed data, from previous step and 

constructs feature vectors (X_train) for each zone, consisting of (1) super-super cluster, 

(2) super cluster, (3) cluster, (4) zone, (5) number of stops in the zone, (6) number of 

packages in the zone, (7) mean latitude of zone, (8) mean longitude of zone, (9) all 

interzonal travel times in the route. During the transformation, the depot station zone is 

explicitly placed at the first zone in every route. For Y_train, the sequence index of each 

zone is stored, indicating the order in which the zones are visited. By the end of the 

process, X_train contains feature vectors for each zone, including the travel times, and 

Y_train holds the sequence indices corresponding to the visit order of the zones. 

 

Function extract_zone_features_and_sequences 

def extract_zone_features_and_sequences(route_data): 

    X_train = [] 

    Y_train = [] 

    travel_times = route_data['mean_travel_times'] 

    depot_zone = None 

    non_depot_zones = [] 

    final_zone_order = [] 

 

    # Separate the depot and non-depot zones 

    for zone_id, zone_data in route_data['zone_features'].items(): 

        # Create feature vector for the zone 

        feature_vector = [ 

            zone_data['super_super_cluster'], 

            zone_data['super_cluster'], 

            zone_data['integer_part'], 

            zone_data['decimal_part'], 
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            zone_data['num_stops'], 

            zone_data['num_of_packages'], 

            zone_data['mean_lat'], 

            zone_data['mean_lng'] 

        ] 

 

        # Check if it's a Depot (is_station == 1) 

        if zone_data['is_station'] == 1: 

            depot_zone = (zone_id, feature_vector, zone_data['zone_seq'])   

        else: 

            non_depot_zones.append((zone_id, feature_vector, zone_data['zone_seq']))  

 

    # Ensure Depot is the first input and output 

    if depot_zone: 

        final_zone_order.append(depot_zone[0])  

        X_train.append(depot_zone[1])   

        Y_train.append(depot_zone[2])   

 

    # Append the non-depot zones after the depot in the original input order 

    for zone in non_depot_zones: 

        final_zone_order.append(zone[0])   

        X_train.append(zone[1])   

        Y_train.append(zone[2])   

 

    # Now that final_zone_order is established, add travel times for each zone based 

on this order 

    for idx, zone_id in enumerate(final_zone_order): 

        travel_distances = [] 

        for dest_zone_id in final_zone_order:  

            if zone_id == dest_zone_id: 

                travel_distances.append(0.0)  # Travel time to self is 0 

            elif zone_id in travel_times and dest_zone_id in travel_times[zone_id]: 

                travel_distances.append(travel_times[zone_id][dest_zone_id]) 
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            #else: 

                #travel_distances.append(9999)  # Use default if travel time is missing 

 

        # Add travel distances to the feature vector 

        X_train[idx].extend(travel_distances) 

 

    return X_train, Y_train 

 

 

5.3.2 Padding 

Padding is essential for handling input data (X) with varying lengths, ensuring 

consistent input dimensions for model feeding in the later process. The target variable 

(Y) is also padded to maintain a consistent shape. The pad_route_features function is 

used to perform padding on X data at two levels: (1)  zone-level, (2) feature-level. This 

ensures that each route in the dataset has a consistent number of zones by padding routes 

that have fewer zones than the maximum number of zones observed across all routes. 

In our case, the maximum number of zones across all routes are identified with code 

below, which is 48. 

max_zones = max([len(route) for route in X_train_all]) 

 

The function takes the data (X) and the value of the maximum number of zones as input. 

For each route, X is padded at the feature level by iterating over the route features, 

which represent the features for each zone within a route. Each zone's feature set is 

divided into two parts: the first 8 elements are static features (such as zone ID, number 

of stops, etc.), and the remaining elements represent the travel distances between zones. 

If the number of travel distances for a zone is less than max_zones (the maximum 

number of zones across all routes), the travel distances are padded with zeros using 

np.pad. The zeros ensure that the length of travel distances matches max_zones, 

ensuring consistency in feature dimensions. After padding the travel distances, the static 

features and padded travel distances are concatenated to form a complete padded 

feature vector for that zone. 



CHAPTER 5 

58 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

 Once all zones in a route are processed, the function performs padding at the 

zone level. For routes that contain fewer than 48 zones, additional zero-filled feature 

vectors are appended to the route until the total number of zones equals max_zones. 

This ensures that even routes with fewer zones are padded to match the maximum zone 

length, creating a consistent data structure across all routes. As a result, X will have a 

consistent dimension of (None, 48, 56). 

 

Function pad_route_features 

def pad_route_features(route_features, max_zones): 

    padded_routes = [] 

    # Pad existing zones with actual features 

    for features in route_features: 

        static_features = features[:8] 

        travel_distances = features[8:] 

        # Pad travel distances to match the max_zones 

        padded_travel_distances = np.pad(travel_distances,  

      (0, max_zones - len(travel_distances)), 

                                        mode='constant', constant_values=0) 

        # Combine static features and padded travel distances 

        padded_features = np.concatenate((static_features, padded_travel_distances)) 

        padded_routes.append(padded_features) 

 

    # If the route has fewer zones than max_zones, pad the remaining zones with zeros 

    num_existing_zones = len(route_features) 

    if num_existing_zones < max_zones: 

        # Create zero-filled feature vectors for the non-existent zones 

        zero_padding = [np.zeros(len(padded_routes[0]))] *  

   (max_zones - num_existing_zones) 

        padded_routes.extend(zero_padding) 

 

    return padded_routes 
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For data Y, np.pad is used, where shorter route sequences are padded with -1 at the end, 

making every sequence the same length. This padding ensures the data is ready for 

model input, with -1 marking the padded, non-existent zones. 

padded_Y = [np.pad(seq, (0, max_zones - len(seq)),  

    mode='constant', constant_values=-1) for seq in Y_all] 
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5.4 Model Building 

5.4.1 Simple RNN Encoder-Decoder 

For Simple RNN Encoder-Decoder model implementation, the model structure is 

constructed following methodology proposed in Chapter 3. For both the Simple RNN 

encoder and decoder, the hidden unit sizes are set to 128. 

 The Simple RNN Encoder consists of four embedding layers for zone id features 

(super-super cluster, super cluster, cluster, and zone), followed by a SimpleRNN layer 

that outputs both the encoder output and the hidden state. The expected input for Simple 

RNN Encoder is zones features (split into i. super-super cluster, ii. cluster, iii. super 

cluster, iv. zone, v. other continuous zone features) and a valid zone mask, that indicates 

valid zones in given route input. All the encoder inputs are concatenate before feeding 

into the Simple RNN cells. 

 

Class Simple RNN Encoder Model 

class SimpleRNNEncoder(tf.keras.Model): 

    def __init__(self, hidden_size): 

        super(SimpleRNNEncoder, self).__init__() 

        self.embedding_1 = tf.keras.layers.Embedding(input_dim=28, output_dim=4, 

         mask_zero=True) 

        self.embedding_2 = tf.keras.layers.Embedding(input_dim=28, output_dim=10,  

        mask_zero=True) 

        self.embedding_3 = tf.keras.layers.Embedding(input_dim=101,  

      output_dim=10, mask_zero=True) 

        self.embedding_4 = tf.keras.layers.Embedding(input_dim=11, output_dim=6,  

        mask_zero=True) 

 

        self.simple_rnn = tf.keras.layers.SimpleRNN(hidden_size, 

   return_sequences=True, return_state=True, name="encoder_rnn") 
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def call(self, input_feature_1, input_feature_2, input_feature_3, input_feature_4,  

      input_continuous, masked_input): 

 

        embedding_1 = self.embedding_1(input_feature_1) 

        embedding_2 = self.embedding_2(input_feature_2) 

        embedding_3 = self.embedding_3(input_feature_3) 

        embedding_4 = self.embedding_4(input_feature_4) 

 

        concat_embeddings = tf.keras.layers.Concatenate(axis=-1)([embedding_1,  

     embedding_2, embedding_3, embedding_4]) 

        final_input = tf.keras.layers.Concatenate(axis=-1)([concat_embeddings,  

        input_continuous]) 

 

        masked_input = tf.keras.layers.Masking(mask_value=0.0)(final_input) 

 

        encoder_output, encoder_state = self.simple_rnn(masked_input) 

 

        return encoder_output, encoder_state 

 

Building Simple RNN Encoder Model 

def build_encoder(hidden_size): 

    input_feature_1 = tf.keras.Input(shape=(None,), name="feature_1_input") 

    input_feature_2 = tf.keras.Input(shape=(None,), name="feature_2_input") 

    input_feature_3 = tf.keras.Input(shape=(None,), name="feature_3_input") 

    input_feature_4 = tf.keras.Input(shape=(None,), name="feature_4_input") 

    input_continuous = tf.keras.Input(shape=(None, 52), name="continuous_input") 

    mask_input = tf.keras.Input(shape=(None,), name="mask_input") 

 

encoder = SimpleRNNEncoder(hidden_size) 

 

 

    encoder_output, encoder_state = encoder( 
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        input_feature_1, input_feature_2, input_feature_3, input_feature_4,  

 input_continuous, mask_input) 

 

    encoder_model = tf.keras.Model( 

        inputs=[input_feature_1, input_feature_2, input_feature_3, input_feature_4,  

  input_continuous, mask_input], 

        outputs=[encoder_output, encoder_state] 

    ) 

 

return encoder_model 

 

SimpleRNN_encoder = build_encoder(hidden_size) 

 

The Simple RNN Decoder takes in the last visited zone features, previous 

decoder state,  encoder outputs and a valid zone mask, that indicates valid and unvisted 

zones in given route input, as input. The last visited zone features with previous decoder 

state is processed through a SimpleRNN layer and combine the output with the mean 

of the encoder outputs to produce logits. These logits are passed through a dense layer 

with a vocabulary size of 48, followed by masking. Finally, a softmax layer is applied 

on the logits produced, to predict the next output in the sequence. 

 

Class Simple RNN Decoder Model 

class SimpleRNNDecoder(tf.keras.Model): 

    def __init__(self, hidden_size, vocab_size): 

        super(SimpleRNNDecoder, self).__init__() 

        self.hidden_size = hidden_size 

        self.simple_rnn = tf.keras.layers.SimpleRNN(hidden_size, return_state=True) 

        self.fc = tf.keras.layers.Dense(vocab_size) 

 

    def call(self, decoder_input, decoder_state, encoder_outputs, mask): 
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        decoder_input = tf.expand_dims(decoder_input, 1) 

 

        rnn_output, decoder_state = self.simple_rnn(decoder_input,  

       initial_state=decoder_state) 

        combined_output = tf.concat([rnn_output, tf.reduce_mean(encoder_outputs,  

        axis=1)], axis=-1) 

        logits = self.fc(combined_output) 

 

        if mask is not None: 

            logits += (mask * -1e9) 

 

        probabilities = Softmax()(logits) 

        predictions = tf.argmax(probabilities, axis=-1) 

        return logits, predictions, decoder_state 

 

Building Simple RNN Decoder Model 

def build_decoder(hidden_size, vocab_size): 

 

    decoder_input = tf.keras.Input(shape=(52,), name="decoder_input") 

decoder_state_input = tf.keras.Input(shape=(hidden_size,),  

      name="decoder_state_input") 

encoder_outputs_input = tf.keras.Input(shape=(None, hidden_size),  

      name="encoder_outputs_input") 

    mask_input = tf.keras.Input(shape=(None,), name="mask_input") 

 

    decoder = SimpleRNNDecoder(hidden_size, vocab_size) 

 

    logits, predictions, decoder_state = decoder( 

        decoder_input, 

        decoder_state_input, 

        encoder_outputs_input, 

        mask_input 



CHAPTER 5 

64 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

    ) 

 

    decoder_model = tf.keras.Model( 

        inputs=[decoder_input, decoder_state_input, encoder_outputs_input,  

  mask_input], 

        outputs=[logits, predictions, decoder_state] 

    ) 

 

return decoder_model 

 

SimpleRNN_decoder = build_decoder(hidden_size, vocab_size) 

 

 

5.4.2 LSTM Encoder-Decoder with Attention 

For LSTM Encoder-Decoder with Attention model implementation, the model structure 

is constructed proposed in Chapter 3. For both the LSTM encoder and decoder with 

Attention, the hidden unit sizes are set to 128. 

 The LSTM Encoder consists of four embedding layers for zone id features 

(super-super cluster, super cluster, cluster, and zone), followed by a LSTM layer that 

outputs both the encoder output and the hidden state. The expected input for Simple 

RNN Encoder is zones features (split into i. super-super cluster, ii. cluster, iii. super 

cluster, iv. zone, v. other continuous zone features) and a valid zone mask, that indicates 

valid zones in given route input. All the encoder inputs are concatenate before feeding 

into the LSTM cells. 

 

Class LSTM Encoder Model 

class Encoder(tf.keras.Model): 

    def __init__(self, hidden_size): 

        super(Encoder, self).__init__() 

        self.embedding_1 = tf.keras.layers.Embedding(input_dim=28, output_dim=4,  
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        mask_zero=True) 

        self.embedding_2 = tf.keras.layers.Embedding(input_dim=28, output_dim=10,  

        mask_zero=True) 

        self.embedding_3 = tf.keras.layers.Embedding(input_dim=101, output_dim=8,  

        mask_zero=True) 

        self.embedding_4 = tf.keras.layers.Embedding(input_dim=11, output_dim=6,  

        mask_zero=True) 

 

        self.lstm = tf.keras.layers.LSTM(hidden_size, return_sequences=True,  

     return_state=True, name="encoder_lstm") 

 

def call(self, input_feature_1, input_feature_2, input_feature_3, input_feature_4,  

  input_continuous, masked_input): 

        embedding_1 = self.embedding_1(input_feature_1) 

        embedding_2 = self.embedding_2(input_feature_2) 

        embedding_3 = self.embedding_3(input_feature_3) 

        embedding_4 = self.embedding_4(input_feature_4) 

 

        concat_embeddings = tf.keras.layers.Concatenate(axis=-1)([embedding_1,  

     embedding_2, embedding_3, embedding_4]) 

        final_input = tf.keras.layers.Concatenate(axis=-1)([concat_embeddings,  

        input_continuous]) 

 

        masked_input = tf.keras.layers.Masking(mask_value=0.0)(final_input) 

 

        encoder_output, encoder_hidden, encoder_cell = self.lstm(masked_input) 

 

        return encoder_output, encoder_hidden, encoder_cell 

 

Building LSTM Encoder Model 

def build_encoder(hidden_size): 
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    input_feature_1 = tf.keras.Input(shape=(None,), name="feature_1_input") 

    input_feature_2 = tf.keras.Input(shape=(None,), name="feature_2_input") 

    input_feature_3 = tf.keras.Input(shape=(None,), name="feature_3_input") 

    input_feature_4 = tf.keras.Input(shape=(None,), name="feature_4_input") 

input_continuous = tf.keras.Input(shape=(None, 52),  

   name="continuous_input")  # Continuous features input 

    mask_input = tf.keras.Input(shape=(None,), name="mask_input") 

 

    encoder = Encoder(hidden_size) 

 

    encoder_output, encoder_hidden, encoder_cell = encoder( 

        input_feature_1, input_feature_2, input_feature_3, input_feature_4,  

 input_continuous, mask_input 

    ) 

 

    encoder_model = tf.keras.Model( 

        inputs=[input_feature_1, input_feature_2, input_feature_3, input_feature_4,  

  input_continuous, mask_input], 

        outputs=[encoder_output, encoder_hidden, encoder_cell] 

    ) 

 

    return encoder_model 

 

APNN_encoder = build_encoder(hidden_size) 

 

The LSTM Decoder with Attention takes in last visited zone index, last visited 

zone features, previous decoder state, encoder outputs, a valid zone mask, that indicates 

valid and unvisted zones in given route input, and timestep index, as input.  

At timestep 0, context vector, 𝜔  (see Chapter 3) and attention index are 

initialized with the value of 0. The next zone features (here referring to depot zone 

features) with initial context vector, 𝜔(0)  =  0, is processed through a LSTM layer to 
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produce hidden decoder state, and logits. These logits are passed through a dense layer 

with a vocabulary size of 48. 

At subsequent timestep, context vector, 𝜔(𝑖)(see Chapter 3) and attention index 

are determined from the attention model. The next zone features (determined by 

attention index) with the corresponding context vector, 𝜔(𝑖), is processed through a 

LSTM layer to produce hidden decoder state, and logits. 

 For next zone predictions, the attention layer, with hidden layer of 128 produced 

context vectors, 𝜔(𝑗), along with attention weights, 𝛼𝑗
(𝑖) for every candidate stops, 𝑠𝑗. 

For calculation of attention weights and context vector, see Chapter 3. The next zone 

prediction is determined by the highest attention weights of given candidate stops, 𝑠𝑗. 

 

Class LSTM Decoder with Attention Model 

class DecoderWithAttention(tf.keras.Model): 

    def __init__(self, hidden_size, vocab_size): 

        super(DecoderWithAttention, self).__init__() 

        self.hidden_size = hidden_size 

        self.lstm = tf.keras.layers.LSTM(hidden_size, return_sequences=False,  

        return_state=True) 

        self.attention = PointerAttention(hidden_size) 

        self.fc = tf.keras.layers.Dense(vocab_size) 

 

def call(self, last_visited_idx, decoder_input, decoder_hidden, decoder_output,  

  encoder_outputs, zone_features, mask, timestep): 

        batch_size = tf.shape(encoder_outputs)[0] 

        seq_len = tf.shape(encoder_outputs)[1] 

 

        decoder_initial_state = decoder_hidden 

 

        def timestep_zero(): 

            context_vector = tf.zeros([batch_size, self.hidden_size]) 

            attention_idx = tf.zeros([batch_size], dtype=tf.int64) 
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            selected_zone_features = tf.gather(zone_features, attention_idx,  

      batch_dims=1) 

            decoder_input_with_context = tf.concat([tf.expand_dims(context_vector, 1),  

    tf.expand_dims(selected_zone_features, 1)], axis=-1) 

            lstm_output, decoder_hidden, decoder_cell = self.lstm( 

  decoder_input_with_context, initial_state=decoder_initial_state) 

            logits = self.fc(lstm_output) 

            return lstm_output, decoder_hidden, decoder_cell, logits, attention_idx 

 

        def timestep_n(): 

            context_vector, attention_weights = self.attention(last_visited_idx,  

   encoder_outputs, decoder_output, zone_features, mask) 

            attention_idx = tf.argmax(attention_weights, axis=1) 

            selected_zone_features = tf.gather(zone_features, attention_idx,  

      batch_dims=1) 

            decoder_input_with_context = tf.concat([tf.expand_dims(context_vector, 1),  

    tf.expand_dims(selected_zone_features, 1)], axis=-1) 

            lstm_output, decoder_hidden, decoder_cell = self.lstm( 

  decoder_input_with_context, initial_state=decoder_initial_state) 

            logits = self.fc(lstm_output) 

            return lstm_output, decoder_hidden, decoder_cell, logits, attention_idx 

 

        lstm_output, decoder_hidden_out, decoder_cell, logits, attention_idx = tf.cond( 

            tf.equal(timestep, 0), 

            timestep_zero, 

            timestep_n 

        ) 

        return lstm_output, decoder_hidden_out, decoder_cell, logits, attention_idx 

 

Class Pointer Attention 

class PointerAttention(layers.Layer): 

    def __init__(self, hidden_size): 
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        super(PointerAttention, self).__init__() 

        self.hidden_size = hidden_size 

        self.mlp = layers.Dense(1) 

 

def call(self, last_visited_idx, encoder_outputs, decoder_hidden, zone_features,  

  mask): 

        seq_len = tf.shape(encoder_outputs)[1] 

 

        travel_time_index_w = last_visited_idx + 4 

 

        seq_indices = tf.range(seq_len)[tf.newaxis, :] 

 

        travel_time_index_w_tiled = tf.tile(travel_time_index_w[:, tf.newaxis], [1,  

      seq_len]) 

        travel_time_indices = tf.stack([tf.zeros_like(seq_indices), seq_indices,  

     travel_time_index_w_tiled], axis=-1) 

        travel_times = tf.gather_nd(zone_features, travel_time_indices) 

        travel_times = tf.expand_dims(travel_times, -1) 

        decoder_hidden_with_time_axis = tf.expand_dims(decoder_hidden, 1) 

        decoder_hidden_tiled = tf.tile(decoder_hidden_with_time_axis, [1, seq_len, 1]) 

        v_j = tf.concat([travel_times, decoder_hidden_tiled, encoder_outputs], axis=-1) 

 

        u_j = self.mlp(v_j) 

        u_j = tf.squeeze(u_j, -1) 

 

        if mask is not None: 

            u_j += (mask * -1e9) 

 

        a_j = tf.nn.softmax(u_j, axis=1) 

 

        context_vector = tf.reduce_sum(a_j[:, :, tf.newaxis] * encoder_outputs, axis=1) 

 

        return context_vector, a_j 
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Building LSTM Decoder with Attention Model 

def build_decoder(hidden_size, attention_layer): 

 

last_visited_idx = tf.keras.Input(shape=(), dtype=tf.int32,  

     name="last_visited_idx_input") 

    decoder_input = tf.keras.Input(shape=(52,), name="decoder_input") 

decoder_hidden_input = tf.keras.Input(shape=(hidden_size,),  

     name="decoder_hidden_input") 

decoder_cell_input = tf.keras.Input(shape=(hidden_size,),  

     name="decoder_cell_input") 

encoder_output_input = tf.keras.Input(shape=(None, hidden_size),  

     name="encoder_output_input") 

    continuous_input = tf.keras.Input(shape=(None, 52), name="continuous_input") 

    mask_input = tf.keras.Input(shape=(None,), name="mask_input") 

    t_input = tf.keras.Input(shape=(), dtype=tf.int32, name="timestep_input") 

last_decoder_output = tf.keras.Input(shape=(hidden_size,),  

      name="decoder_output") 

 

    decoder = DecoderWithAttention(hidden_size, attention_layer) 

 

    decoder_output, decoder_hidden, decoder_cell, logits, predictions = decoder( 

        last_visited_idx, 

        decoder_input, 

        [decoder_hidden_input, decoder_cell_input], 

        last_decoder_output, 

        encoder_output_input, 

        continuous_input, 

        mask_input, 

        t_input, 

    ) 

 

    decoder_model = tf.keras.Model( 
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        inputs=[last_visited_idx, decoder_input, decoder_hidden_input,  

  decoder_cell_input, last_decoder_output, encoder_output_input,  

  continuous_input, mask_input, t_input], 

        outputs=[decoder_output, decoder_hidden, decoder_cell, logits, predictions] 

    ) 

 

    return decoder_model 

 

APNN_decoder = build_decoder(hidden_size, vocab_size) 
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5.5 Model Training 

For Model Training, custom training loops are defined, with main training process 

defined at Function train_model, and for each timestep, process are defined in Function 

train_steps. For the detailed process, including process at every timestep at decoder, 

inputs, are defined at Chapter 3. 

 

Function train_model 

def train_model(encoder_model, decoder_model, X_train, Y_train, optimizer, 

epochs): 

    

    for epoch in range(epochs): 

        epoch_loss = 0.0 

        epoch_accuracy = 0.0 

 

        # Shuffle the training data at the start of each epoch 

        X_train_shuffled, Y_train_shuffled = shuffle_data(X_train, Y_train) 

 

        for route_idx in range(len(X_train_shuffled)): 

            inputs = X_train_shuffled[route_idx] 

            targets = Y_train_shuffled[route_idx] 

            targets = transpose_target_Y(targets) 

            inputs = np.array(inputs) 

            targets = np.array(targets) 

            avg_loss, predicted_Y = train_step(inputs, targets, encoder_model,  

      decoder_model, optimizer) 

            route_accuracy = evaluate_predictions(predicted_Y[tf.newaxis, ...],  

       targets[tf.newaxis, ...]) 

            epoch_loss += avg_loss.numpy() 

            epoch_accuracy += route_accuracy 

        epoch_loss /= len(X_train_shuffled) 

        epoch_accuracy /= len(X_train_shuffled) 
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        print(f'\nEpoch {epoch + 1}/{epochs}, Loss: {epoch_loss}, Accuracy: 

[{epoch_accuracy}]') 

 

Function train_step 

def train_step(inputs, targets, encoder_model, decoder_model, optimizer): 

    loss = 0 

    predicted_Y = [] 

 

    with tf.GradientTape() as tape: 

        # Prepare inputs for the encoder 

        input_feature_1 = inputs[:, 0] 

        input_feature_2 = inputs[:, 1] 

        input_feature_3 = inputs[:, 2] 

        input_feature_4 = inputs[:, 3] 

        input_continuous = inputs[:, 4:] 

 

        x_mask = create_x_mask(inputs[tf.newaxis, ...]) 

        y_mask = create_y_mask(targets[tf.newaxis, ...]) 

 

        # Run the encoder 

        encoder_outputs, encoder_hidden, _ = encoder_model( 

            [input_feature_1[tf.newaxis, ...], 

             input_feature_2[tf.newaxis, ...], 

             input_feature_3[tf.newaxis, ...], 

             input_feature_4[tf.newaxis, ...], 

             input_continuous[tf.newaxis, ...], 

             x_mask] 

        ) 

 

        # Initialize decoder state 

        decoder_input = input_continuous[0]  # Start with the first location 

        decoder_hidden = encoder_hidden 
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        last_visited_idx = tf.constant(0, dtype=tf.int32) 

        decoder_cell = tf.zeros_like(encoder_hidden) 

        decoder_output = tf.zeros_like(encoder_hidden) 

        visited_mask = tf.zeros_like(x_mask[0]) 

        check_mask = tf.ones_like(x_mask[0]) 

 

        seq_len = tf.shape(inputs)[0] 

 

        for t in range(seq_len): 

            combined_mask = combine_masks(x_mask, visited_mask) 

            if tf.reduce_all(tf.equal(combined_mask, check_mask)): 

              break 

            decoder_output, decoder_hidden, decoder_cell, logits, predictions =  

 decoder_model( 

                [last_visited_idx[tf.newaxis, ...], 

                 decoder_input[tf.newaxis, ...], 

                 decoder_hidden, 

                 decoder_cell, 

                 decoder_output, 

                 encoder_outputs, 

                 input_continuous[tf.newaxis, ...], 

                 combined_mask[tf.newaxis, ...], 

                 tf.constant(t, dtype=tf.int32)] 

            ) 

 

            predicted_Y.append(predictions) 

            loss += tf.keras.losses.sparse_categorical_crossentropy(targets[t:t+1], logits,  

        from_logits=True) 

            decoder_input = input_continuous[t] 

            last_visited_idx = targets[t] 

            visited_mask = visited_mask + tf.one_hot(last_visited_idx, depth=seq_len) 

 

        avg_loss = loss / tf.reduce_sum(y_mask) 
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gradients = tape.gradient(avg_loss, encoder_model.trainable_variables +  

      decoder_model.trainable_variables) 

optimizer.apply_gradients(zip(gradients, encoder_model.trainable_variables +  

      decoder_model.trainable_variables)) 

 

    predicted_Y = tf.stack(predicted_Y) 

    predicted_Y = tf.squeeze(predicted_Y) 

 

    return avg_loss, predicted_Y 

 

For function create_x_mask and create_y_mask, is to create masking for input X and 

Y. For input X, masking are done at both zones and features level, for padding values 

with ‘0’. On the other hand, for input Y, masking is done at sequence, marked as ‘-1’ 

Masking is to ensure exclusion padding values during model training, evaluation. 

 

Function create_x_mask 

def create_x_mask(X): 

    _, num_zones, num_features = X.shape 

    mask = np.zeros((num_zones)) 

    for i in range(num_zones): 

      if np.all(X[0][i] == 0): 

        mask[i] = 1 

    return tf.convert_to_tensor(mask, dtype=tf.float32) 

 

Function create_y_mask 

def create_y_mask(Y): 

    return tf.cast(Y != -1, tf.float32) 
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For function combine_masks, it is used to create an updated valid zone mask (valid and 

unvisited zone) at every timestep. The function combine x_mask and visited_mask 

together. 

 

Function combine_masks 

def combine_masks(x_mask, visited_mask): 

    combined_mask = tf.maximum(x_mask, visited_mask) 

    return combined_mask 

 

Function transpose_target_Y is to rearrange the target sequence target_Y such that each 

zone's position is mapped to its corresponding index in X. Essentially, it "transposes" 

the target sequence so that the indices of the zones in the sequence align with the order 

of features in X. 

 

Function transpose_target_Y 

def transpose_target_Y(target_Y): 

    transposed_Y = np.zeros_like(target_Y) 

    valid_positions = target_Y[target_Y != -1] 

    for idx, zone in enumerate(valid_positions): 

        transposed_Y[zone] = idx 

    return transposed_Y[target_Y != -1] 
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Function shuffle_data are used to shuffle the sequence of input training data, to ensure 

that the model are not learning the input sequential pattern. 

 

Function shuffle_data 

def shuffle_data(X, Y): 

    """Shuffle the X and Y data while maintaining correspondence.""" 

    indices = np.arange(len(X)) 

    shuffled_indices = shuffle(indices) 

    return [X[i] for i in shuffled_indices], [Y[i] for i in shuffled_indices] 

 

Function evaluate_predictions is to evaluate the average accuracy of the predicted route 

compared to the actual sequence (target). 

 

Function evaluate_predicitons 

def evaluate_predictions(predicted_Y, targets): 

    accuracy = 0 

assert len(predicted_Y) == len(targets), "Predicted and target sequences must have  

      the same length." 

correct_predictions = tf.reduce_sum(tf.cast(tf.equal(predicted_Y, targets),  

      dtype=tf.int32)) 

    total_elements = tf.size(targets) 

    accuracy = correct_predictions / tf.cast(total_elements, dtype=tf.int32) 

    return accuracy 
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5.6 Model Evaluation 

For Model Evaluation, custom evaluation loops are defined, align with training loops. 

The custom model evaluation function return information includes average loss, 

average accuracy, first four zone accuracy, average disparity score, standard deviations 

of disparity score, list of disparity scores, with the list of all predictions, all targets, all 

X, uses for visualization later on. 

 

Function evaluate model 

def evaluate_model(encoder_model, decoder_model, X_data, Y_data): 

    total_loss = 0.0 

    total_accuracy = 0.0 

    total_disparity_score = 0.0 

    total_routes = len(X_data) 

    all_predictions = [] 

    all_targets = [] 

    all_X = [] 

 

    good_predictions = [] 

    good_targets = [] 

    good_X = [] 

 

    bad_predictions = [] 

    bad_targets = [] 

    bad_X = [] 

 

    disparity_scores = [] 

    first_correct = 0 

 

    X_data_shuffled, Y_data_shuffled = shuffle_data(X_data, Y_data) 

 

    for route_idx in range(total_routes): 



CHAPTER 5 

79 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

        inputs = X_data_shuffled[route_idx] 

        targets = Y_data_shuffled[route_idx] 

        targets = transpose_target_Y(targets) 

 

        inputs = np.array(inputs) 

        targets = np.array(targets) 

        # Prepare inputs for the encoder 

        input_feature_1 = inputs[:, 0] 

        input_feature_2 = inputs[:, 1] 

        input_feature_3 = inputs[:, 2] 

        input_feature_4 = inputs[:, 3] 

        input_continuous = inputs[:, 4:] 

 

        x_mask = create_x_mask(inputs[tf.newaxis, ...]) 

        y_mask = create_y_mask(targets[tf.newaxis, ...]) 

 

        # Run the encoder 

        encoder_outputs, encoder_hidden, _ = encoder_model( 

            [input_feature_1[tf.newaxis, ...], 

             input_feature_2[tf.newaxis, ...], 

             input_feature_3[tf.newaxis, ...], 

             input_feature_4[tf.newaxis, ...], 

             input_continuous[tf.newaxis, ...], 

             x_mask[tf.newaxis, ...]], training=False 

        ) 

 

        # Initialize decoder state 

        decoder_input = input_continuous[0] 

        decoder_hidden = encoder_hidden 

        last_visited_idx = tf.constant(0, dtype=tf.int32) 

        decoder_cell = tf.zeros_like(encoder_hidden) 

        decoder_output = tf.zeros_like(encoder_hidden) 
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        visited_mask = tf.zeros_like(x_mask[0]) 

        check_mask = tf.ones_like(x_mask[0]) 

 

        seq_len = tf.shape(inputs)[0] 

        predicted_Y = [] 

        route_loss = 0 

 

        for t in range(seq_len): 

            combined_mask = combine_masks(x_mask, visited_mask) 

 

            if tf.reduce_all(tf.equal(combined_mask, check_mask)): 

                break 

 

            decoder_output, decoder_hidden, decoder_cell, logits, predictions =  

 decoder_model( 

                [last_visited_idx[tf.newaxis, ...], 

                 decoder_input[tf.newaxis, ...], 

                 decoder_hidden, 

                 decoder_cell, 

                 decoder_output, 

                 encoder_outputs, 

                 input_continuous[tf.newaxis, ...], 

                 combined_mask[tf.newaxis, ...], 

                 tf.constant(t, dtype=tf.int32)[tf.newaxis, ...]] 

            ) 

 

            predicted_Y.append(predictions) 

            route_loss += tf.keras.losses.sparse_categorical_crossentropy(targets[t:t+1],  

       logits, from_logits=True) 

 

            pred_idx = predictions[-1].numpy() 

 

            decoder_input = input_continuous[pred_idx] 
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            last_visited_idx = pred_idx 

            visited_mask = visited_mask + tf.one_hot(last_visited_idx, depth=seq_len) 

 

        predicted_Y = tf.stack(predicted_Y) 

        predicted_Y = tf.squeeze(predicted_Y) 

 

        route_accuracy = evaluate_predictions(predicted_Y[tf.newaxis, ...],  

       targets[tf.newaxis, ...]) 

 

        if predicted_Y[1] == targets[1]: 

            first_correct += 1 

 

        time_matrix = np.zeros((len(targets), len(targets))) 

        for i in range(len(targets)): 

            for j in range(len(targets)): 

                time_matrix[i, j] = input_continuous[i][j+4] 

 

        disparity_score = calculate_disparity_score(targets, predicted_Y.numpy(),  

       time_matrix) 

 

        total_loss += route_loss / tf.reduce_sum(y_mask) 

        total_accuracy += route_accuracy 

        total_disparity_score += disparity_score 

        disparity_scores.append(disparity_score) 

 

        # Store predictions and targets 

        all_predictions.append(predicted_Y.numpy()) 

        all_targets.append(targets) 

        all_X.append(inputs) 

 

        if route_accuracy > 0.80: 

            good_predictions.append(predicted_Y.numpy()) 

            good_targets.append(targets) 
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            good_X.append(inputs) 

        elif route_accuracy < 0.5: 

            bad_predictions.append(predicted_Y.numpy()) 

            bad_targets.append(targets) 

            bad_X.append(inputs) 

 

        progress = ((route_idx + 1) / total_routes) * 100 

        print(f'\rProgress: {progress:.2f}% - Route {route_idx + 1}/{total_routes}, ' 

              f'Loss: {(route_loss / tf.reduce_sum(y_mask)).numpy()}, ' 

              f'Accuracy: {route_accuracy:.4f}, ' 

              f'Disparity Score: {disparity_score:.4f}', end='') 

 

    avg_loss = total_loss / total_routes 

    avg_accuracy = total_accuracy / total_routes 

    avg_disparity_score = total_disparity_score / total_routes 

    disparity_score_std = np.std(disparity_scores) 

    first_zone_accuracy = first_correct / total_routes 

 

    print(f'\nEvaluation complete. Average Loss: {avg_loss:}, ' 

          f'Average Accuracy: {avg_accuracy:}, ' 

          f'Average Disparity Score: {avg_disparity_score:}, ' 

          f'Disparity Score Std: {disparity_score_std:}') 

 

    return (avg_loss, avg_accuracy, first_zone_accuracy, 

            avg_disparity_score, disparity_score_std, disparity_scores, 

            all_predictions, all_targets, all_X, 

            good_predictions, good_targets, good_X, 

            bad_predictions, bad_targets, bad_X) 

 

 

  



CHAPTER 5 

83 

Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

For function calculate_disparity_score is to calculate the disparity score given target 

sequence and predicted sequence. The mathematical formula is defined in Chapter 

6.2.1. 

 

Function calculate_disparity_score 

def calculate_disparity_score(actual_transposed, predicted, time_matrix): 

    sd = calculate_sequence_deviation(actual_transposed, predicted) 

    erp_norm = calculate_erp_norm(actual_transposed, predicted, time_matrix) 

    erp_e = calculate_erp_e(actual_transposed, predicted) 

    if erp_e == 0:  # Perfect prediction 

        return 0 

    return (sd * erp_norm) / erp_e 

 

Function calculate_sequence_deviation 

def calculate_sequence_deviation(actual, predicted): 

    n = len(actual) 

    c = {stop: idx for idx, stop in enumerate(actual)} 

    sd = 0 

    for i in range(1, n): 

        sd += abs(c[predicted[i]] - c[predicted[i-1]]) - 1 

    return (2 / (n * (n - 1))) * sd 

 

Function calculate_erp_norm 

def calculate_erp_norm(actual, predicted, time_matrix): 

    if len(actual) == 1 or len(predicted) == 1: 

        return 0 

    first_actual, first_predicted = actual[0], predicted[0] 

time_norm = time_matrix[first_actual, first_predicted] / np.sum( 

       time_matrix[first_actual, :]) 

    return calculate_erp_norm(actual[1:], predicted[1:], time_matrix) + time_norm 
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Function calculate_erp_e 

def calculate_erp_e(actual, predicted): 

    m, n = len(actual), len(predicted) 

    dp = [[0] * (n + 1) for _ in range(m + 1)] 

    for i in range(m + 1): 

        dp[i][0] = i 

    for j in range(n + 1): 

        dp[0][j] = j 

    for i in range(1, m + 1): 

        for j in range(1, n + 1): 

            if actual[i-1] == predicted[j-1]: 

                dp[i][j] = dp[i-1][j-1] 

            else: 

                dp[i][j] = 1 + min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) 

    return dp[m][n] 

 

Function k_fold_cross_validation are custom k fold cross validation which call custom 

training loops and evaluation functions. 

 

Function k_fold_cross_validation 

def k_fold_cross_validation(X, Y, k=5, hidden_size=128, vocab_size=48, 

epochs=10, learning_rate=0.0001, 

                            patience=3, min_delta=0.001): 

    kf = KFold(n_splits=k, shuffle=True, random_state=42) 

    fold_results = [] 

 

    sequence_indices = np.arange(len(X)) 

 

    for fold, (train_index, val_index) in enumerate(kf.split(sequence_indices), 1): 

        print(f"\nFold {fold}/{k}") 
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        # Split the data 

        X_train, X_val = [X[i] for i in train_index], [X[i] for i in val_index] 

        Y_train, Y_val = [Y[i] for i in train_index], [Y[i] for i in val_index] 

 

        # Build and compile the model 

        encoder = build_encoder(hidden_size) 

        decoder = build_decoder(hidden_size, vocab_size) 

        optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) 

 

        best_val_loss = float('inf') 

        best_encoder = None 

        best_decoder = None 

        patience_counter = 0 

 

        for epoch in range(epochs): 

            print(f"Epoch {epoch + 1}/{epochs}") 

 

            train_model(encoder, decoder, X_train, Y_train, optimizer, 1) 

 

            # Evaluate on validation set 

            val_results = evaluate_model(encoder, decoder, X_val, Y_val) 

            val_loss, val_accuracy, val_first_zone_accuracy = val_results[0],  

      val_results[1], val_results[2] 

            val_disparity, val_disparity_std = val_results[3], val_results[4] 

 

            print(f"Validation Set - Loss: {val_loss}, Accuracy: {val_accuracy}, " 

                  f"First zone Accuracy: {val_first_zone_accuracy}," 

                  f"Disparity Score: {val_disparity}, Disparity Std: {val_disparity_std}") 

 

            # Check if this is the best model so far 

            if val_loss < best_val_loss - min_delta: 

                best_val_loss = val_loss 

                best_encoder = tf.keras.models.clone_model(encoder) 
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                best_encoder.set_weights(encoder.get_weights()) 

                best_decoder = tf.keras.models.clone_model(decoder) 

                best_decoder.set_weights(decoder.get_weights()) 

                patience_counter = 0 

            else: 

                patience_counter += 1 

 

            # Check if we should stop training 

            if patience_counter >= patience: 

                print(f"Early stopping triggered at epoch {epoch + 1}") 

                break 

 

        final_val_results = evaluate_model(best_encoder, best_decoder, X_val, Y_val) 

 

        (val_loss, val_accuracy, val_first_zone_accuracy, 

 val_disparity, val_disparity_std, val_disparity_scores, 

          val_predictions, val_targets, val_X, 

          good_val_predictions, good_val_targets, good_val_X, 

          bad_val_predictions, bad_val_targets, bad_val_X) = final_val_results 

 

        print(f"Final Validation Set - Loss: {val_loss}, Accuracy: {val_accuracy}, " 

              f"Disparity Score: {val_disparity}, Disparity Std: {val_disparity_std}") 

 

        fold_results.append({ 

            'loss': val_loss, 

            'accuracy': val_accuracy, 

            'first_zone_accuracy': val_first_zone_accuracy, 

            'disparity': val_disparity, 

            'disparity_std': val_disparity_std 

        }) 

 

    # Calculate average metrics across all folds 

    avg_loss = np.mean([fold['loss'] for fold in fold_results]) 
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    avg_accuracy = np.mean([fold['accuracy'] for fold in fold_results]) 

    avg_disparity = np.mean([fold['disparity'] for fold in fold_results]) 

    avg_disparity_std = np.mean([fold['disparity_std'] for fold in fold_results]) 

 

    print("\nAverage results across all folds:") 

    print(f"Loss: {avg_loss}") 

    print(f"Accuracy: {avg_accuracy}") 

    print(f"Disparity Score: {avg_disparity}") 

    print(f"Disparity Score Std: {avg_disparity_std}") 

 

return fold_results 
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5.7 Result Visualization 

Finally, predicted route and target route are used to visualize how the predicted route 

compared to target route. 

 

Visualization with Plot Graph 

 

Function plot_route_comparison 

def plot_route_comparison(route_idx, predicted_sequences, actual_sequences): 

    predicted_route = predicted_sequences[route_idx] 

    actual_route = actual_sequences[route_idx] 

 

    # Filter out padded zones (-1) 

    predicted_route = [zone for zone in predicted_route if zone != -1] 

    actual_route = [zone for zone in actual_route if zone != -1] 

 

    # Plot the sequences 

    plt.figure(figsize=(10, 6)) 

    plt.plot(predicted_route, label="Predicted Route", marker='o', linestyle='--', 

color='blue') 

    plt.plot(actual_route, label="Actual Route", marker='x', linestyle='-', 

color='green') 

    plt.title(f"Route Prediction vs Actual (Route {route_idx})") 

    plt.xlabel("Zone Index") 

    plt.ylabel("Zone ID") 

    plt.legend() 

    plt.grid(True) 

    plt.show() 
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Example: 

 

Figure 5.2.1  Plot Graph for predicted vs actual at Route 821 

 

Figure 5.2.2  Plot Graph for predicted vs actual at Route 27 
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Route Visualization with Leaflet 

 

Function create_map_with_sequence 

def create_map_with_sequence(X, Y): 

    stops_sequence = [X[idx] for idx in Y] 

    avg_lat = sum([stop[6] for stop in stops_sequence]) / len(stops_sequence) 

    avg_lng = sum([stop[7] for stop in stops_sequence]) / len(stops_sequence) 

    folium_map = folium.Map(location=[avg_lat, avg_lng], zoom_start=10) 

    stop_coordinates = [] 

    for stop_idx, stop in enumerate(stops_sequence): 

        lat = stop[6] 

        lng = stop[7] 

 

        # Construct the stop name 

        feature_1 = chr(int(stop[0]) + 64) 

        feature_2 = chr(int(stop[1]) + 64) 

        feature_3 = str(int(stop[2])) 

        feature_4 = str(int(stop[3])) 

        name = f"{feature_1}-{feature_3}.{feature_4}{feature_2}" 

 

        color = generate_random_color() 

 

        folium.map.Marker( 

            [lat, lng], 

            icon=folium.DivIcon( 

                icon_size=(50, 60), 

                html=f""" 

                <div style=" 

                    background-color: {color}; 

                    border-radius: 10px; 

                    padding: 2px; 

                    text-align: center; 
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                    font-size: 8pt; 

                    color: white; 

                    width: 50px;"> 

                    <b>{stop_idx}</b><br>{name} 

                </div>""" 

            ) 

        ).add_to(folium_map) 

 

        stop_coordinates.append((lat, lng)) 

 

    for i in range(len(stop_coordinates) - 1): 

        start_lat, start_lng = stop_coordinates[i] 

        end_lat, end_lng = stop_coordinates[i + 1] 

 

        route = get_osrm_route(start_lat, start_lng, end_lat, end_lng) 

 

        folium.PolyLine(locations=route, color='blue', weight=2.5,  

    opacity=0.7).add_to(folium_map) 

 

    start_lat, start_lng = stop_coordinates[-1] 

    end_lat, end_lng = stop_coordinates[0] 

    return_route = get_osrm_route(start_lat, start_lng, end_lat, end_lng) 

 

folium.PolyLine(locations=return_route, color='blue', weight=2.5,  

   opacity=0.7).add_to(folium_map) 

 

    return folium_map 
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Function get_orsm_route 

def get_osrm_route(start_lat, start_lng, end_lat, end_lng): 

osrm_url = f"http://router.project-osrm.org/route/v1/driving/ 

  {start_lng},{start_lat};{end_lng},{end_lat} 

  ?overview=full&geometries=geojson" 

    response = requests.get(osrm_url) 

    if response.status_code == 200: 

        data = response.json() 

        route = data['routes'][0]['geometry']['coordinates']  

        route = [(lat, lng) for lng, lat in route]  # Convert to [(lat, lng)] format 

        return route 

    else: 

        print(f"Error fetching route: {response.status_code}") 

        return [] 

 

Function genereate_random_color 

def generate_random_color(): 

return "#{:02x}{:02x}{:02x}".format(random.randint(0, 255),  

  random.randint(0, 255), random.randint(0, 255)) 
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Example: 

 

Figure 5.2.3  Actual Route0 shown using Leaflet 
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Figure 5.2.4  Predicted Route0 shown using Leaflet 
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Figure 5.2.5  Actual Route20 shown using Leaflet 
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Figure 5.2.6  Predicted Route20 shown using Leaflet  
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5.8 Implementation Issues and Challenges 

Cloud-Based Computing Resources 

The project is implemented on Google Colab, a cloud-based Jupyter Notebook.  Due to 

the nature of cloud-based computing, computing process are strongly reliant on internet 

connections. Poor Internet connection or internet outbreaks hinders project progress. 

Moreover, Google Colab also comes with idle time constraints given a period of time. 

When running time consuming codes, such as model training, and cross validation, 

Google Colab may disconnect due to reaching limit of  idle time, causing session to be 

halted. Therefore, it might be potential bottleneck for the project. 
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CHAPTER 6  

 

System Evaluation and Discussion 

 

 

6.1 Driver Behaviours in Last-Mile Delivery 

In this project, data analysis was conducted using the dataset from the Amazon Last 

Mile Routing Research Challenge [7]. The dataset consists of over 6,112 actual last-

mile delivery routes, providing valuable insights into how drivers navigate their routes, 

particularly in zone-based deliveries. The analysis reveals that within delivery zones, 

drivers show a strong preference for completing all stops in a single zone before moving 

on to the next. This sequential pattern suggests that driver behavior is heavily 

influenced by the structure of the zones rather than by individual package constraints, 

such as preferred delivery time windows. For instance, in zone ‘C-3.2B,’ drivers follow 

a fixed sequence of stops [1, 2, 3, ..., 9], while zone ‘C-3.1B’ covers stops [10, 11, 12, 

..., 18] (refer to Figure 5.1.7). This consistent zone-focused approach implies a 

systematic method for reducing route deviations by organizing deliveries within 

specific geographic clusters. 

 Further analysis into how routes are planned uncovered a hierarchical structure 

in the zone IDs used in delivery routes. Each zone ID can be broken down into four 

components: the super-super cluster, the super cluster, the cluster, and the individual 

zone. For example, in the zone ID ‘D-18.2J,’ the letter ‘D’ represents the super-super 

cluster, while ‘D-18’ forms the super cluster, and ‘J’ represents the cluster. The final 

decimal value ‘.2’ identifies the specific delivery zone. This hierarchical structure plays 

a crucial role in determining the order in which drivers approach their deliveries. The 

data indicates that the zone IDs tend to follow either an ascending or descending order, 

pointing to a systematic clustering approach that drivers likely follow. This structured 

pattern helps minimize deviations by ensuring drivers adhere to an organized route 

across multiple clusters and zones. 

 Another key finding from the analysis is that over 92.27% of the delivery 

packages are time-window insensitive. Out of the 1,457,175 packages, 1,343,182 
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lacked specified delivery time windows. This overwhelming percentage suggests that 

time-sensitive deliveries are not a major factor influencing most routes. Consequently, 

the impact of time-sensitive delivery constraints on driver decisions is minimal, 

allowing drivers to focus on other factors such as route efficiency, traffic patterns, and 

overall distance traveled. 

 In conclusion, the findings emphasize the minimal role that time-sensitive 

deliveries play in influencing driver behavior. Instead, driver behavior is primarily 

driven by zone-based delivery patterns, where stops within a given zone are completed 

sequentially before moving to the next. The hierarchical structure of zone IDs further 

supports a systematic approach to delivery route planning, indicating that geographic 

clustering of stops is the primary factor affecting route deviations. By understanding 

the factors that may cause drivers to deviate from pre-planned delivery routes and last-

mile delivery behavior, we can better select features and preprocess data for model 

training. This, in turn, will lead to more accurate and reliable delivery predictions. 
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6.2 Model Performance 

6.2.1 Performance metrics 

Disparity score metrics 

For this route prediction problem, the quality of predicted zone sequences is evaluated 

using ‘disparity score’, aligning with the Amazon Last Mile Routing Research 

Challenge, provided by [5], with the mathematical formula of: 

R(A, B) =  
SD(A, B) ∙ ERPnorm(A, B)

ERPe(A, B)
 (1)  

 

where (i) the disparity score for the actual sequence A and predicted sequence 𝐵,  

  denoted by 𝑅(𝐴, 𝐵); and  

 (ii) the sequence deviation between actual sequence A and predicted sequence 

  B, denoted as 𝑆𝐷(𝐴, 𝐵) are expressed in following: 

SD(A, B) =  
2

𝑛(𝑛 − 1)
∑(|𝑐[𝐵𝑖] − 𝑐[𝐵𝑖−1]| − 1)

𝑛

𝑖=2

 (18) 

 

where (i) total number of zones found in a given route, denoted by n; 

 (ii) the 𝑖th zone of sequence 𝐵, denoted by 𝐵𝑖;  

 (iii) the index of zone 𝐵𝑖 in the actual sequence 𝐴, denoted by 𝑐[𝐵𝑖]. 

For every perfect predicted case, where sequence 𝐴 is completely equals to sequence 𝐵, 

𝑆𝐷(𝐴,𝐵) return value of 0. 

 

Next, the recursive function, Edited Distance with Real Penalty (ERP), denoted by 

ERPnorm(A, B)  are used to calculate the penalty score for every deviated zone, 

compared to the actual sequences. It can be expressed as: 

ERPnorm(A, B) =  ERPnorm(𝐴2:|𝐴|, 𝐵2:|𝐵|) +  TIMEnorm(𝐴1, 𝐵1) (19) 
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where the normalized travel time between zone zi and zj, expressed in: 

TIMEnorm(𝑧𝑖, 𝑧𝑗) =  
TIME(𝑧𝑖, 𝑧𝑗)

∑ TIME(𝑧𝑖, 𝑧𝑗′)𝑗′∈{1,…,𝑛}

 (20) 

 

𝐸𝑅𝑃e(𝐴,𝐵) provide the number of modify operations (i.e., insertions, substitutions, 

deletions) needed to convert sequence A to sequence B while computing the recursive 

function, ERPnorm(A, B) [5]. Given that the ratio of 
ERPnorm(A,B)

ERPe(A,B)
 provides the average 

TIMEnorm(𝑧𝑖, 𝑧𝑗) involved in every ERP modification operation. Note that a score of 

zero indicates a perfect prediction, hence the lower the metrics tells positive model 

performance.  

 The motivation for choosing the disparity score over traditional accuracy 

metrics as the primary evaluation metric lies in its ability to provide a more meaningful 

assessment of route prediction performance. While accuracy metrics focus solely on 

how well the predicted route matches the actual sequence, they do not account for the 

quality or efficiency of the predictions. In contrast, the disparity score evaluates the 

predicted route in terms of its deviation from optimality, penalizing errors based on the 

travel distance between the actual and predicted zones at each step. This approach offers 

a clearer understanding of "how suboptimal" a predicted route is, emphasizing the 

importance of minimizing travel distance and improving overall route efficiency. 

 

Prediction accuracy 

Moreover, along with the disparity score, we assess the prediction accuracy of the first 

four zones in each given route as every route contains at least four zones. Let the 

predicted sequence for the Let the predicted sequence of the 𝑚 th route be 𝐴(𝑚) and the 

actual sequence be 𝐵(𝑚). The prediction accuracy of the 𝑖 th zone is defined as: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖  =  
∑ 𝕝{𝐴𝑖

(𝑚)= 𝐵𝑖
(𝑚)}

𝑀
𝑚=1

𝑀
 (2) 
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where 𝑀 is the total number of testing samples, and 𝕝{𝐴𝑖
(𝑚)= 𝐵𝑖

(𝑚)}  is an indicator 

function that returns 1 when the condition is met and 0 otherwise. 

 

6.2.2 Train Result Evaluation 

After model training, the performance of both the Simple RNN E-D and LSTM E-D 

with Attention models is evaluated on the training data using two primary metrics: 

Disparity Score and Prediction Accuracy for the first four zones in the route. As 

explained the disparity score assesses how far the predicted route deviates from the 

optimal route, while the prediction accuracy measures the model's ability to correctly 

predict the sequence of the first four zones. The evaluation results are obtained and 

tabulated, shown in Table 6.1. As shown in Table 6.1, the LSTM E-D with Attention 

model outperformed the Simple RNN E-D with a significantly lower mean disparity 

score of 0.0091 compared to 0.0209. The smaller standard deviation (0.0059) in the 

LSTM E-D with Attention model's disparity score also suggests more consistent 

predictions across different routes. 

 Moreover, according to Table 6.1, the LSTM E-D with Attention model 

demonstrated a higher prediction accuracy across all four zones, particularly achieving 

0.190 accuracy for the first zone, but gradually decrease to 0.117 for the fourth zone. 

The Simple RNN model, on the other hand, had lower accuracy across the first four 

zones, with its best performance being 0.069 for the first zone and declining to 0.057 

for the fourth zone. This demonstrates that the LSTM with Attention model is better at 

predicting the early part of the route. Based on the result obtained, it suggests that the 

LSTM E-D with Attention model offers both lower disparity scores and higher 

prediction accuracies, making it a better fit for this route prediction problem on the 

training data. 

Table 6.1  Model Performance on Training Data 

Model Disparity Score Prediction accuracy (zone) 

Mean Std. Dev 1st 2nd  3rd  4th  

Simple RNN E-D 0.0209 0.0063 0.069 0.055 0.065 0.057 

LSTM E-D with Attention 0.0091 0.0059 0.190 0.153 0.136 0.117 
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Figure 6.1 and Figure 6.2 shows the disparity score distribution of Simple RNN E-D 

Model and LSTM E-D with Attention Model, respectively. Based on the disparity score 

distribution for LSTM E-D with Attention Model histogram (shown in Figure 6.2), it 

shows that most disparity scores are concentrated between 0.005 and 0.015, with the 

mean disparity score of 0.0091 and a median of 0.0081. This indicates that the LSTM 

E-D with Attention model produces relatively low disparity scores for most of the 

routes, implying that the predicted routes are close to the actual routes. The tight 

distribution around the mean shows consistency in the model's performance across 

different routes. 

 On the other hand, the disparity score distribution for Simple RNN E-D Model 

histogram (shown in Figure 6.1) displays a wider spread of disparity scores, with most 

routes concentrated between 0.01 and 0.03, with the mean disparity score being 0.021 

and a median of 0.020. As comparison, the larger spread in the disparity scores, along 

with a higher mean and median compared to the LSTM E-D model, it indicates that the 

Simple RNN E-D model is less consistent in its route prediction and more prone to 

produces routes that deviate significantly from the optimal route. In addition, the tail of 

the distribution extends further, with several routes showing disparity scores greater 

than 0.03, which highlights more frequent suboptimal predictions. 

 

Figure 6.1  Disparity Score Distribution of Simple RNN E-D 
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Figure 6.2  Disparity Score Distribution of LSTM E-D with Attention 

 

6.2.3 Cross-Validation Results 

Table 6.2 and Table 6.3 shows the cross-validation results for both the Simple RNN 

E-D and LSTM E-D with Attention, respectively. In this evaluation, we used 5-fold 

cross-validation, where the training data was split into 5 subsets (folds), and each fold 

was used as the validation set while the remaining folds were used for training. The 

mean and standard deviation of the disparity score across all folds are reported. 

 Based on Table 6.2, it suggests that the Simple RNN E-D model performs fairly 

consistent across all the 5 folds. The mean disparity score across multiple folds ranges 

from 0.023017 to 0.023764, with the standard deviation around 0.006 across all folds. 

The results from the cross-validation confirm the earlier training results, with consistent 

disparity scores across all folds. The mean disparity score is around 0.023, indicating a 

moderate deviation from the actual route. 
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Table 6.2  Simple RNN E-D Cross Validation Results 

Model: 

Simple RNN 

Disparity Score 

Mean Std. Dev 

Fold 1 0.023460 0.006667 

Fold 2 0.023764 0.006907 

Fold 3 0.023075 0.006357 

Fold 4 0.023017 0.006159 

Fold 5 0.023648 0.006748 

 

 On the other hand, the LSTM E-D with Attention model shows stronger 

performance across the 5 folds, with lower disparity scores compared to the Simple 

RNN, shown in Table 6.3. However, at Fold 3, the model produces a higher disparity 

score (0.032001) than the others, which could be due to outliers or more difficult routes 

in that fold. Despite the anomaly in Fold 3, the LSTM E-D with Attention model 

outperforms the Simple RNN E-D overall, with an average disparity score around 0.009 

across most folds. This supports the conclusion that the LSTM model produces more 

accurate and efficient route predictions, particularly in comparison to the Simple RNN. 

 

Table 6.3  LSTM E-D with Attention Cross Validation Results 

Model: 

LSTM with Attention 

Disparity Score 

Mean Std. Dev 

Fold 1 0.009096 0.005643 

Fold 2 0.009280 0.005772 

Fold 3 0.032001 0.008083 

Fold 4 0.009828 0.005921 

Fold 5 0.009233 0.005630 

 

 In short, both models show consistency in performance across different folds, 

with the LSTM E-D with Attention model having a significant advantage over the 

Simple RNN E-D in terms of lower disparity scores.   
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6.2.4 Test Result Evaluation 

Finally, both models (i.e, Simple RNN E-D and LSTM E-D with Attention) were 

evaluated on a test set consisting of 906 unseen routes. This evaluation aims to assess 

the model's generalization capability by measuring its performance on completely new 

data that was not part of the training process. The evaluation results are obtained and 

tabulated, shown in Table 6.4. As shown in Table 6.4, Simple RNN E-D model 

achieved a mean disparity score of 0.0220 with a standard deviation of 0.0070. This 

suggests that while the model can make predictions, the deviation from the optimal 

route is moderate. LSTM E-D with Attention model, on the other hand, performed 

significantly better, with a mean disparity score of 0.0091 and a standard deviation of 

0.0061, indicating that the LSTM E-D with Attention model's predictions on the unseen 

test data are much closer to the optimal route compared to the Simple RNN E-D model. 

 In terms of prediction accuracy, the Simple RNN E-D model showed a 

prediction accuracy of only 0.066 for the first zone, and steadily declined to 0.050 by 

the fourth zone. The decline in accuracy highlights the model's difficulty in making 

accurate predictions for the later parts of the route. As for LSTM E-D with Attention 

model, the model demonstrated a much stronger performance, with prediction accuracy 

starting at 0.194 for the first zone and decreasing more gradually to 0.128 by the fourth 

zone.  

 

Table 6.4  Model Performance on Test Data 

Model Disparity Score Prediction accuracy (zone) 

Mean Std. Dev 1st 2nd  3rd  4th  

Simple RNN 0.0220 0.0070 0.066 0.057 0.061 0.050 

LSTM with Attention 0.0091 0.0061 0.194 0.152 0.151 0.128 

 

Figure 6.3 and Figure 6.4 shows the disparity score distribution of Simple RNN E-D 

Model and LSTM E-D with Attention Model, respectively. Based on the disparity score 

distribution for LSTM E-D with Attention Model histogram (shown in Figure 6.4), 

most disparity scores are concentrated between 0.005 and 0.015, with a mean disparity 

score of 0.0091 and a median of 0.0079. It indicates a relatively symmetrical 
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distribution with a slight rightward skew. Most of the routes exhibit low disparity, with 

very few routes deviating significantly from the optimal route. This distribution further 

demonstrates the LSTM model's efficiency, making predictions close to the actual route 

and producing only minor deviations. 

 

Figure 6.3  Disparity Score Distribution of Simple RNN E-D 

 

Figure 6.4  Disparity Score Distribution of LSTM E-D with Attention 
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6.2.5 Benchmarking 

In the benchmark comparison, the LSTM E-D with Attention model shows respectable, 

though not competitive, results when compared to other state-of-the-art models. The 

prediction accuracy for the LSTM E-D with Attention model starts at 0.194 for the first 

zone and decreases to 0.128 for the fourth zone. In contrast, the model proposed by [5] 

using self-proposed Algorithm achieves a notably higher performance, with a 

consistent prediction accuracy starting at 0.320 for the first zone and 0.314 at the fourth 

zone. 

 It is important to note that the disparity scores for the LSTM E-D with Attention 

and Simple RNN E-D models in this project are evaluated at the zone level, while the 

benchmark models' disparity scores are evaluated at the stop level. This difference in 

evaluation granularity indicates that our models focus on optimizing predictions across 

broader zones, whereas the benchmark models assess performance on a more detailed, 

stop-by-stop basis. As a result, direct comparison of disparity scores between the 

models is excluded to avoid misleading conclusions due to this difference in evaluation 

criteria. 

Table 6.5  Model Performance with Benchmark model 

Model Disparity Score Prediction accuracy (zone) 

Mean Std. Dev 1st 2nd  3rd  4th  

[5] Tour TSP 0.044 0.0289 0.207 0.185 0.163 0.168 

[5] Open-tour TSP 0.043 0.0302 0.270 0.244 0.227 0.232 

[12] 0.0198 N/A N/A N/A N/A N/A 

[5] using Greedy 

Algorithm 

0.0417 0.0306 0.241 0.231 0.224 0.221 

[5] using Algorithm 

proposed 

0.0369 0.0301 0.320 0.310 0.303 0.314 

Simple RNN 0.0220 0.0070 0.066 0.057 0.061 0.050 

LSTM with Attention 0.0091 0.0061 0.194 0.152 0.151 0.128 
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6.3 Objective Evaluation 

Through extensive data analysis, we discovered that time-sensitive deliveries have 

minimal influence on driver behavior. Instead, the primary factor influencing delivery 

routes is zone-based delivery patterns. Drivers tend to complete all stops within a 

designated delivery zone sequentially before moving to the next, highlighting the 

geographic clustering of stops as a possible factor. The hierarchical structure of zone 

IDs further supports this behavior. This insight into the last-mile delivery behavior and 

deviations allows us to refine feature selection and data preprocessing for improved 

model accuracy and reliability in predicting delivery routes. 

 Then, we developed and implemented a Simple RNN encoder-decoder model 

to predict delivery routes. While the model was able to capture some of the delivery 

route patterns, its performance in terms of route optimization was moderate. The model 

achieved a mean disparity score of 0.0220 with a standard deviation of 0.0070, 

indicating some deviation from the optimal route. The prediction accuracy for the first 

zone was 0.066, but it steadily declined to 0.050 by the fourth zone, illustrating the 

model's limitations in retaining long sequential data and making accurate predictions 

for the later stages of the route. 

 After evaluating the Simple RNN model, we identified its shortcomings, 

particularly in maintaining prediction accuracy for longer routes. As a result, we 

explored an LSTM encoder-decoder model with an attention mechanism. This model 

significantly outperformed the Simple RNN, achieving a mean disparity score of 

0.0091 with a standard deviation of 0.0061. The LSTM model's prediction accuracy 

started at 0.194 for the first zone, with a more gradual decline to 0.128 by the fourth 

zone. 
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CHAPTER 7  

 

Conclusion 

 

In conclusion, in the entire supply chain, last-mile logistics are the finale character to 

deliver the final goods to the end users. Although the modern logistics industry utilizes 

operation research tools to minimize operation costs, last-mile logistics remains as the 

most expensive part of the entire supply chain. However, ever since pandemic, e-

commerce had taken off, so as the demands for last-mile logistics remain soaring. In 

topics of last-mile optimization, delivery driver, with their tacit experience, could 

provide valuable real-life on-the-road knowledge to the table. The objective of the 

project was to study and derives possible factors causing deviation of pre-planned 

delivery routes by drivers. The motivation behind this project was to develop a machine 

learning model that able to capture drivers’ tacit knowledges from historical delivery 

routes, thereafter, continuously optimize the as-is last-mile delivery frameworks and 

increase efficiency of the overall supply chain. In this project, we proposed a Simple 

R-NN model to output possible delivery routes, preferable by delivery drivers, learning 

from a set of historical delivery routes provided by Amazon. However, the project 

process faced challenges as the limitation of cloud computing unit and resources (i.e., 

idle time constraint), that hinders project progress when executing time consuming 

tasks. For future work, we will include focusing on fine-tuning (parameter tuning), as 

well as applied greedy algorithm, adapted from [5], into the proposed model in this 

project, continuous research effort on models that allows making inference on possible 

factors affects drivers’ deviations from pre-planned routes. 
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