
i

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LAST-MILE ROUTE OPTIMISATION WITH MACHINE LEARNING

By

CHAN TZE KEET

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2024

ii

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

UNIVERSITI TUNKU ABDUL RAHMAN

LAST-MILE ROUTE OPTIMISATION

USING MACHINE LEARNING

June 2024

CHAN TZE KEET

58, Jalan Pasir Kuning,

Taman Kaya Shatin,

31650 Ipoh, Perak

Ms Tseu Kwan Lee

11/09/2024 11/09/2024

iii

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 11/09/2024

SUBMISSION OF FINAL YEAR PROJECT

It is hereby certified that CHAN TZE KEET (ID No: 20ACB04193) has completed this

final year project entitled “ LAST-MILE ROUTE OPTIMISATION WITH MACHINE

LEARNING ” under the supervision of MS. TSEU KWAN LEE (Supervisor) from the

Department of Computer Science , Faculty of Information And Communication Technology.

I understand that University will upload softcopy of my final year project in pdf format into UTAR

Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

(CHAN TZE KEET)

*Delete whichever not applicable

iv

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “LAST-MILE ROUTE OPTIMISATION WITH

MACHINE LEARNING” is my own work except as cited in the references. The report has

not been accepted for any degree and is not being submitted concurrently in candidature for

any degree or other award.

Signature :

Name : CHAN TZE KEET

Date : 11-09-2024

v

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Ms. Tseu Kwan

Lee, who has given me this bright opportunity to engage in a route optimisation project,

utilising machine learning techniques. Thank you for the guidance, patience, and

understandings throughout the project. This project provides me the opportunity to conduct

extensive research on existing real-world application of machines learning techniques, to be

specific, logistics field. A million thanks to you. Besides, I also would like to thank my parents

and my family for their love, support, and continuous encouragement throughout the course.

vi

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

Ever since COVID-19 pandemic, online shopping had been skyrocketed. To handle the

enormous volume of deliveries, last-mile delivery route planning and optimization had become

more significant than ever for logistics services. Last-mile logistics are referring to the final

stage of the delivery process, where goods are transported from a distribution hub to the end

destination, typically a residential or commercial address. Last-mile logistics had always been

the costliest part in the overall supply chain. Numerous last-mile route optimization

models/frameworks are proposed and been practiced in logistics services, to reduce operation

costs while attempt to fulfill customers’ satisfaction. However, existing pure optimization

frameworks often overlooked that in real-world practices, the prescribed routes may be not

followed by delivery drivers, as they may prioritize personal knowledges and experiences.

Deviation of prescribed delivery routes by delivery drivers may be due to various underlying

reasons, including but not limited to traffics conditions, and customers’ preferences. In this

project, we proposed a Simple R-NN model to uncover the underlying relationship/pattern

between customers’ acceptable delivery time windows and deviations of prescribed delivery

routes by drivers. The proposed model, Simple R-NN model aims to predicts possible delivery

routes by drivers, then output an optimized delivery route that seems acceptable for the drivers

to actual adapts in actual delivery operation.

vii

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES x

LIST OF TABLES xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 PROJECT BACKGROUND 1

1.1 Introduction 1

1.2 Problem Statement and Motivation 2

1.3 Research Objectives 3

1.4 Project Scope 4

1.5 Contributions 4

1.6 Report Organisation 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Previous Works

 2.1.1 Delivery route prediction using machine

 learning model

 2.1.2 Delivery route optimization

5

5

10

2.2 Results 11

2.3 Summarization of findings 13

2.4 Proposed Method 15

CHAPTER 3 SYSTEM METHODOLOGY 16

3.1 Sequence-to-sequence (seq2seq) modelling framework 16

3.2 Simple RNN Encoder-Decoder (Simple RNN E-D) Model 16

viii

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 3.2.1 Simple RNN encoder

 3.2.2 Simple RNN decoder

17

18

3.3 LSTM Encoder-Decoder with Pair-Wise Attention Model

 3.3.1 LSTM encoder

 3.3.2 LSTM decoder

 3.3.3 Pair-Wise Attention Layer

19

20

20

21

CHAPTER 4 EXPERIMENTAL SETUP 23

4.1 System Requirements

 4.1.1 Hardware

 4.1.2 Software

4.1.3 Data Source

23

23

23

24

4.2 System Design

 4.2.1 Data Analysis

 4.2.2 Data Preprocessing

 4.2.3 Model Building and Training

4.2.4 Model Evaluation

29

29

30

31

31

4.3 Timeline 32

CHAPTER 5 SYSTEM IMPLEMENTATION 35

5.1 Data Findings 35

5.2 Data Preprocessing 46

5.3 Data Transformation

 5.3.1 Data Transformation

 5.3.2 Padding

55

55

57

5.4 Model Building

 5.4.1 Simple RNN Encoder-Decoder

 5.4.2 LSTM Encoder-Decoder with Attention

60

60

64

5.5 Model Training 72

5.6 Model Evaluation 78

5.7 Result Visualization 88

5.8 Implementation Issues and Challenges 97

ix

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 98

 6.1 Driver Behaviours in Last Mile Delivery 98

 6.2 Model Performance

 6.2.1 Performance metrics

 6.2.2 Train Result Evaluation

 6.2.3 Cross-Validation Results

 6.2.4 Test Result Evaluation

 6.2.5 Benchmarking

100

100

102

104

106

108

 6.3 Objective Evaluation 109

CHAPTER 7 CONCLUSION 110

REFERENCES 111

APPENDIX

 A1 Weekly Report

 A2 Poster

A-1

A-7

PLAGARISM CHECK RESULT

CHECK LISTS

x

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1 Overall framework of the route prediction model by [3]. 6

Figure 2.1.2 Tailored chain-reaction-based algorithm, proposed by

[3].

6

Figure 2.1.3 Overall architecture of attention-based pointer NN,

proposed by [5].

7

Figure 2.1.4 Route Sequence Inference algorithm, by [5]. 8

Figure 2.1.5 Features applied in inter-zone sequence prediction, by

[4].

8

Figure 2.1.6 Architecture model of feedforward NN model, proposed

by [4].

9

Figure 2.1.7 Best Hyperparameters found for NN model, using ASHA

algorithm.

9

Figure 2.2.1 Pair-wise Attention-based NN model Performance Table. 12

Figure 3.2 Overall architecture of Simple RNN E-D Model 17

Figure 4.1.1 ERD for Amazon Last-Mile Routing Research Challenge

Dataset .

25

Figure 4.1.2 Sample Delivery Route, in Irvine, California. 26

Figure 4.2.1 Overall project framework. 29

Figure 4.2.2 Steps involved in Data Preprocessing. 30

Figure 4.3.1 Gantt Chart for Project 1. 33

Figure 4.3.2 Gantt Chart for Project 2. 34

Figure 5.1.1 Range of delivery package without time windows for

each route.

37

Figure 5.1.2 Distribution of Number of Packages with Time Window

per Route

38

Figure 5.1.3 Range of delivery package for each route. 38

Figure 5.1.4 Distribution of Number of Stops per Route. 39

Figure 5.1.5 Distribution of Number of Zone per Route. 40

xi

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure Number Title Page

Figure 5.1.6 Function for Extraction Zone Data Features. 41

Figure 5.1.7 Zone ID Order sequence, aggregated from stop sequence

for Route1

42

Figure 5.1.8 Zone ID Order sequence, aggregated from stop sequence

for Route2

43

Figure 5.1.9 Zone ID Order sequence for Route0 44

Figure 5.2.1 Plot Graph for predicted vs actual at Route 821 89

Figure 5.2.2 Plot Graph for predicted vs actual at Route 27 89

Figure 5.2.3 Actual Route0 shown using Leaflet 93

Figure 5.2.4 Predicted Route0 shown using Leaflet 94

Figure 5.2.5 Actual Route20 shown using Leaflet 95

Figure 5.2.6 Predicted Route20 shown using Leaflet 96

Figure 6.1 Disparity Score Distribution of Simple RNN E-D 103

Figure 6.2 Disparity Score Distribution of LSTM E-D with

Attention

104

Figure 6.3 Disparity Score Distribution of Simple RNN E-D 107

Figure 6.4 Disparity Score Distribution of LSTM E-D with

Attention

107

xii

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 2.3.1 Summary of Route Prediction and Optimization Studies. 13

Table 4.1.1 Specifications of laptop. 23

Table 4.1.2 Data Description on provided Amazon Last-Mile

Routing Research Challenge Dataset

27

Table 5.1 Zone Order sequence for Route0, arranged by cluster 45

Table 6.1 Model Performance on Training Data 102

Table 6.2 Simple RNN E-D Cross Validation Results 105

Table 6.3 LSTM E-D with Attention Cross Validation Results 105

Table 6.4 Model Performance on Test Data 106

Table 6.5 Model Performance with Benchmark model 108

xiii

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

TSP Travelling Salesman Problem

VRP Vehicle Routing Problem

TSPTW Travelling Salesman Problem with Time Windows

TSPTW-Dev Travelling Salesman Problem with Time Windows and Deviation

VNS Variable Neighborhood Search

ML Machine Learning

NLP Natural Language Processing

NN Neural Network

ReLU Rectified Linear

ALMRRC Amazon Last-Mile Routing Research Challenge

API Application Programming Interface

US United States

ERD Entity Relationship Diagram

LSTM Long Short-Term Memory

GIGO Garbage In Garbage Out

FYP Final Year Project

CHAPTER 1

1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

Project Background

1.1 Introduction

In the intricate dance of supply chains, last-mile delivery is where the grand finale

unfolds. It’s the moment when a product or goods, routed through factories,

warehouses, and highways, finally reaches to their end users. While remaining as the

cost driver of the overall supply chain, a continuous rise demanding for last-mile

delivery operations are observed. [1] suggested that the global parcel volume is

projected to hit a staggering 200 billion by 2025. Moreover, last-mile delivery also

accountable to customer satisfactory towards both the business and partnering logistics

company. Nowadays, most online customers are expecting swifter yet reliable

deliveries. In short, the study of optimization on last-mile logistics are pivotal for the

growth of business and then overall economy.

 Travelling Salesman Problem (TSP) is a classic combinatorial optimization

problem in mathematics and computer science, where given a scenario of a salesperson

are tasked to visit a set of cities (location points) and returns to the starting point while

covering the shortest possible route. In the context of last-mile delivery, this translates

to finding the most efficient path for a delivery agent to serve multiple customers and

return to the delivery centre. For a long time, TSP models had been widely practiced

optimizing traditional logistics criteria like overall travel time [2].

 Despite that, [3] points out that, real-world delivery route optimization goes

beyond only identifying the shortest delivery route. Real-world factors, including but

not limited only to traffics, parking, as well as customer delivery preferences should be

considered in last-mile delivery route optimization. [3], [4] also mentioned that by

leveraging drivers’ delivery routes patterns, it may have a positive influence on real-

world delivery route optimization.

CHAPTER 1

2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.2 Problem Statement and Motivation

Inefficient deliveries in the last mile of the supply chain had grown significant concern

over time for businesses across the world, as possible leads to collapsed operations,

increased in delivery costs, etc.

 In recent years, extensive research on last-mile delivery route optimization had

been done, covering approaches such as TSP or vehicle routing problem (VRP), in

regards of both computational costs and solution quality [5]. Most of the corresponding

solutions prioritize optimization on traditional logistics factors such as depot. However,

the studies often overlook the driver on-road knowledge and behavior, the often-

underestimated attributes in the optimization equation [4]. This is supported by [3], [4],

[5], where the studies mentioned that, in practice, most of the drivers tend to deviate

from provided optimal routes, prioritizing to drivers’ personal knowledge and daily

experience gained on the delivery area. When considering of on-road factors, such as

knowledge on temporal traffic/road conditions, drivers’ deviations may lead to possible

profit gain in operation. On the contrary, given drivers’ actual routes inferior to

suggested routes may lead to operating loss. According to a study on daily commuting

habits of drivers in both Japan and the Philippines conducted by [6], they concluded

that drivers tend to deviate from recommendations routes by the navigation system in

favor of familiar routes. Still, drivers’ deviation of prescribed route had raised

uncertainties in context of last-mile route optimization.

 In the meantime, to provide quality-of-life improvements to their customers,

logistics providers nowadays do provide preferred delivery time window options for

customers. However, having delivery time preferences add complexity into last-mile

route optimization. To demonstrate, given a delivery zone, there will be various

delivery time preferences by the customers. In a business standpoint, other than

minimizing operational costs, maximizing customers satisfactions are key in

organizational success.

 In [3], [4], [5], using machine learning models approach, by learning drivers’

delivery route pattern, to achieve last-mile delivery optimization while allowing

drivers’ deviations on prescribed route, to some extent. However, with further studies,

on the effects of real-world factor (customer preferences/acceptable delivery time

CHAPTER 1

3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

window) on delivery drivers’ deviations on prescribed route, may provide useful

insights for stakeholders, improve state-of-the-art last-mile route optimization system.

 The project aims to introduce a novel model for driver’s delivery route

predictions and optimizations used in last-mile delivery, using machine learning

technique. The motivation of this projects is to continuously optimize the as-is last-mile

delivery frameworks and increase efficiency of overall supply chain. To achieve such

goal, the expected outcome in this project is to output a drivers’ delivery routes

prediction and optimization model, based on the driving pattern from historical delivery

data. From the model’s output, then imply the underlying factor, specifically customers’

acceptable delivery time windows, and its effects on drivers’ deviation of prescribed

routes.

1.3 Research Objectives

The aim of the thesis is to explore the effects of real-world factors on possible delivery

routes deviations by drivers. The ultimate intention of the thesis is to enable effective

minimizing operation costs in real-world last-mile logistics, while maximizing business

profit and growth from achieving high customer satisfactory.

The specific research objectives of last-mile route optimization model are:

(i) To study and derives the possible factors affecting deviation of delivery

routes by drivers (i.e., customer acceptable delivery time windows) from the

actual drivers’ delivery routes patterns.

(ii) To proposed Simple Recurrent Neutral Network (Simple-RNN) for this

project that able to identify the drivers’ delivery routes pattern and performs

routes prediction and optimization tasks.

(iii) To evaluate the proposed solution in terms of disparity performance metrics.

CHAPTER 1

4

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.4 Project Scope

The model proposed will be developed in Python programming language on Google

Collaboratory. In this project, machine learning techniques will be utilised to learn

drivers’ delivery pattern from historical real-world data, to output a prediction on

drivers’ possible delivery routes for last-mile delivery. From the model’s output, we

then study and identify relationships between customer acceptable delivery time

windows and the drivers’ delivery routes patterns. By having better understanding on

the effects of real-world factors towards deviations of prescribed delivery routes, could

improve last-mile route optimization model and being practiced in real world scenarios.

1.5 Contributions

Our project aims to explicitly study and understand the effects of customers’ acceptable

delivery time windows on drivers’ deviation on prescribed routes, by utilizing machine

learning model to unfold the relationship between them. It will provide useful insights

for real-world last-mile route optimization as identifying and realizing how customers

preferences can impacts the overall actual delivery route by drivers. This project also

aims to perform predictions on potential delivery routes by drivers and utilizing

optimization approach used in operation research to optimize the best delivery routes

for drivers. By learning drivers’ delivery patterns, it allows actual adaptations of

prescribed routes by drivers in real-world delivery.

1.6 Report Organisation

The remainder of this report is structured as follows. In Chapter 2, we reviewed

previous research publications, methodologies proposed related to this paper. In

Chapter 3, we covered our proposed methodology, including a detailed discussion of

the model architecture. In Chapter 4, we present the project setup and flow. In Chapter

5, we discuss the system implementation in detail. Chapter 6 provides the model

evaluation and discussion of the results. Finally, Chapter 7 concludes the report with a

summary of the entire project.

CHAPTER 2

5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Literature Review

2.1 Previous Work

2.1.1 Delivery route prediction using machine learning models

As mentioned in Chapter 1, capturing tacit knowledges are crucial for future last-mile

route optimisation system. This is due to traditional last-mile routes optimisation

systems simply does not take in accounts of real-world factors faced by delivery drivers

(e.g. temporal traffic conditions, drivers’ preferences). In recent years, several research,

including, but not limited only to [3], [4], [5], by feeding in machine learning models

with real-world delivery routes sequences, in order to capture and predicts possible

delivery route being practiced by drivers.

[3] proposed, by transforming historical delivery routes data into a natural

language sentence, (i.e., in a delivery route, each delivery stops are represented as a

“word” element, and “word” element are arranged in exact order based on the actual

delivery route order.), following with the use of Word2Vec approach in natural

language processing (NLP) to learn vector representations of “words” in delivery

behaviour sentence, and finally the real-world delivery route are inferred from the

output word vector (from previous step), utilising a tailored chain-reaction-based

algorithm. Figure 2.1.1 demonstrates the overall framework of the proposed model.

The idea of treating every zone or delivery station in a delivery route as an

element found in sentence, and word ordering in sentences are similar to the drivers’

travel trajectories, are proposed by [3]. Then, by utilizing Word2Vec algorithms, found

commonly in natural language processing (NLP), to learn the vector representation of

‘word’ elements in a delivery behaviour ‘sentences’. After obtaining the word vector,

inference on delivery behaviour are done based on a tailored chain-reaction-based

algorithm.

CHAPTER 2

6

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.1 Overall framework of the route prediction model by [3].

 The algorithm proposed by [3], elaborate in Figure 2.1.2, took inspiration from

basic stages of chain rection, namely initiation, propagation, and termination. Given an

unsorted zone sequence, as an initiation, delivery station are always the starting node.

From there, propagation phase, where the algorithm, paired with word vectors obtained

from earlier stages, it will iteratively find the next delivery zones. Finally, iterative

search of next delivery zones come to termination when all zones are covered.

Figure 2.1.2

Tailored chain-reaction-

based algorithm,

proposed by [3].

CHAPTER 2

7

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 In [5], authors use combinational of seq2seq modelling and pair-wise attention-

based pointer neural network (NN) that learn both local (ASNN Attention-based Spatial

NN) and global (Encoder-Decoder LSTM) relationship between delivery stops. Then,

using greedy algorithm to generate possible delivery sequences with different initial

stops (to improve model’s accuracy), and select the one with the lowest operational cost

[5]. It is worth noting that [3], [5] approaches are to tackle interzone sequencing only

and assuming drivers always take optimal routes in intrazonal level due to principle of

local optimality.

 For model training, [5] introduced a seq2seq modelling framework, for an

arbitrarily ordered sequence as an input, the seq2seq model, with a recurrent neural

network, computes the conditional probabilities of actual route trajectories (c1, … , cn)

given S (all training routes), and theta, θ (parameters learnt by empirical risk

minimization). Then, [5] uses two LSTM layers, encoder-decoder combo, having time

step = 1, obtaining a vector representation by reading input sequence, then extracts the

output sequence. Inherently, LSTM encoder-decoder, embeds input sequence to hidden

vectorization, are powerful algorithm to obtain the global patterns of the input data. In

[5], they proposed by adding attention technique (i.e., pair-wise), masking over the

input sequence then make predictions with LSTM encoder-decoder. Attention

techniques proposed are targeted to obtain the local view of the input sequence, such as

relationship between two nodes. Then, by feeding in input sequence, the pair-wise

attention-based pointer NN, will output a learnt parameter, theta θ.

Figure 2.1.3 Overall architecture of attention-based pointer NN, proposed by [5].

CHAPTER 2

8

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 At sequence inference stage, using greedy algorithm, [5] generate a list of

sequences with different initial stops, and the route sequence with the lowest

operational cost are selected, as an output route sequence. The route sequence inference,

by [5], are elaborated in Figure 2.1.4.

Figure 2.1.4 Route Sequence Inference algorithm, by [5].

 On the other hand, [4] suggested that, for any machine learning model that are

capable to make discrete classification, can be employed, given the nature of presented

approach (i.e., dataset provided by [7]). Using a feedforward NN as prediction

architecture, [4]’s prediction model are divided into two phases, interzone phase, and

intrazonal phase. The sequence of delivery zones is predicted, then, within each

delivery zone, the sequence of delivery stops is only then predicted. Figure 2.1.5

presents the features applied in predicting the inter-zone sequence, proposed by [4].

Figure 2.1.5 Features applied in inter-zone sequence prediction, by [4].

CHAPTER 2

9

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 After data preprocessing, dataset is feed into a feed-forward neural network,

with three hidden layers, and rectified linear (ReLU) activation functions. The loss

function selected by [4] for the NN model is Binary Cross Entropy loss. Figure 2.1.6

presents the architecture of the feedforward NN model proposed by [4]. Then, using

ASHA algorithm, hyperparameter tuning for the NN model are done, results seen in

Figure 2.1.7.

Figure 2.1.6 Architecture model of feedforward NN model, proposed by [4].

Figure 2.1.7 Best Hyperparameters found for NN model, using ASHA algorithm.

CHAPTER 2

10

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.2 Delivery route optimization

TSP is a classic NP-hard problem, and have seen in various real-world application, such

as logistics, circuit design and even DNA sequencing. Over the years, the problem had

been studied extensively, resulting in various TSP variants, solving specific concern, as

products.

 In last-mile delivery applications, some packages can be time-sensitive, leading

to the introduction of time window constraints into the delivery process, which is TSP

with time window (TSPTW). In solving TSP problems, it is generally divided into exact

approaches and approximate approaches. For small scales TSP problems (i.e., up to 50

nodes), exact approaches, including algorithms like branch-and-bound [8], branch-and-

cut [9], are utilised and able to tackle the problem optimally. To solve large scales TSP

problems (>200 nodes), approximate approaches, heuristics including local search,

insertion, simulated annealing, etc. are used instead.

 In [4], authors extend the TSPTW formulation by adding an upper bound of

allowed deviation between actual tour, T and predicted tour, T', as constraint, presenting

formulation of TSPTW and deviation (TSPTW-Dev). In optimizing the intrazonal level

delivery routes, [4] draw in Variable Neighbourhood Search (VNS), employing three

neighbourhood structures and 2-opt local search operators, to improve the predicted

tour solutions, output by their ML model.

CHAPTER 2

11

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Results

The evaluation metrics used in [5] are both disparity score, and prediction accuracy.

Disparity score, introduced by Amazon Last Mile Routing Research Challenge, are

used by Amazon to evaluate the quality of predicted delivery trajectories, output by

models. The disparity score, is a metrics that portrays how well the output delivery

sequences able to mimics the delivery route, preferred by experienced delivery driver.

(The lower the disparity score, the better) Aside from disparity score, prediction

accuracy of first four zones for every routes are also evaluated by [5].

Below defines the mathematical equation of the disparity score:

(For detailed equation explanation, see [5]).

𝑅(𝐴, 𝐵) =
𝑆 𝐷 (𝐴, 𝐵) ∙ 𝐸𝑅𝑃𝑛𝑜𝑟𝑚(𝐴, 𝐵)

𝐸𝑅𝑃𝑒(𝐴, 𝐵)
 (1)

Below defines the mathematical equation of the prediction accuracy:

(For detailed equation explanation, see [5]).

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 =
∑ 𝕝

{𝐴𝑖
(𝑚)=𝐵𝑖

(𝑚)}
𝑀
𝑚=1

𝑀
 (2)

The results obtained from [5]’s proposed model, shows positive results. In terms of

disparity score, the model obtained a score of 0.0369, comparing to all other traditional

operation research solver, [5] outperforms them. When compared to Amazon Last-Mile

Routing Research Challenge (ALMRRC) winning teams solution, the pair-wise

attention-based pointer NN model, is behind than the first-place team, with score of

0.0198. In terms of prediction accuracy scores, the model outperformed all other

traditional operation research solver, in every first four zone, yielding higher accuracy

score. Figure 2.2.1 shows the performance table of proposed model by [5], and other

benchmarking model.

CHAPTER 2

12

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.1 Pair-wise Attention-based NN model Performance Table. Sourced from [5].

CHAPTER 2

13

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.3 Summarization of findings

Table 2.3.1 summarizes the key differences of some of the existing model for last-mile delivery route prediction and optimization.

Table 2.3.1 Summary of Route Prediction and Optimization Studies

Study Model Significances Limitations

[3] NLP + tailored chain-reaction-

based algorithm

- Extracting tacit driver knowledge, by

converting historical delivery routes

into natural language sentences and

feeding into NLPs.

- Relatively low computational time.

compared to traditional TSP solutions.

- High adaptability.

- Average error value increases as length

of targeted sequence prediction

increases.

- Due to weak correlations between

inputs and outputs in longer sequences.

[5] seq2seq model (a deep learning

model) + pair-wise attention-based

pointer NN

- Predicts possible stop sequences similar

to high quality TSP solutions (replacing

TSP optimizations model).

- Utilizing LSTM encoder to capture

global view of input (i.e., overall tour

sequence pattern).

- Relatively higher computational time

due to system network complexity.

- Disparity score can be improved by

incorporating local search rules

CHAPTER 2

14

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

- Utilizing ASNN Attention-based

Spatial NN to capture local view of

input (i.e., relationship between 2

distinct stops in tour sequence).

[4] Feedforward NN + VNS - Allow decision maker to alter level of

deviation and the penalized effect of

time window constraint based on

preferences.

- Prediction and optimization on both

interzone and intrazonal level routes.

- Sequence deviation measures (Jaro &

LCSS) does not consider geographical

distance between two stop nodes.

- May results in significant changes in

suggested delivery routes when

swapping to-be customer node,

especially when two stop nodes are

further away from each other.

- Lack of proper model benchmarking on

both machine learning model and

optimization approach (due to the focus

on proposing novel hybrid framework)

CHAPTER 2

15

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.4 Proposed Method

In this project, our main objective is to infer the possible factors that might cause

possible deviations of pre-planned routes by delivery drivers. Before inferencing

possible factors affecting delivery trajectories, we should be able to predict delivery

routes using neural network.

 For model selection, the idea of utilizing NLP, by [3] faces possible errors as

the targeted prediction sequence increases, due to as the sequence spans, correlations

between inputs and outputs are increasingly lower. Next, although the pair-wise

attention-based pointer NN model are the best performing state-of-art machine learning

solution for delivery trajectories, the computation complexity of the model and higher

computation resources required, are not feasible.

 After considering on the existing works and the objectives of this project, in this

paper, we are proposing a simple RNN model to learn the delivery route trajectories,

backed by suggestion from [4]. In the following chapter, the proposed methodology is

elaborated.

CHAPTER 3

16

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

System Methodology

This section first introduced the high level seq2seq modeling framework and followed

by elaboration of the architecture of (1) proposing model, Simple RNN Encoder-

Decoder (Simple RNN E-D), as well as (2) modified LSTM Encoder-Decoder with

Pair-Wise Attention (LSTM E-D with Attention) adapted from [5].

3.1 Sequence-to-sequence (seq2seq) modeling framework

Given an arbitrary-ordered input route sequence, (𝑠1, …, 𝑠𝑛) ∈ 𝑆. Let the predicted

route sequence as (𝑠̂(1) , …, 𝑠̂(𝑛)), and 𝑐𝑖 be the positional index of stop 𝑠̂(𝑖)

corresponding to the input sequence (where 𝑐𝑖 ∈ {1, . . . , 𝑛}) [5]. In this seq2seq model

framework, by utilizing Recurrent-NN, the conditional probability Ρ(𝑐1, . . . , 𝑐𝑛 | 𝑆; 𝜃),

with parameter 𝜃, can be calculated as followed:

Ρ(𝑐1, . . . , 𝑐𝑛 | 𝑆, 𝑋𝑆; 𝜃)

= Ρ(𝑐1 | 𝑆, 𝑋𝑆; 𝜃) ∙ ∏ Ρ(𝑐𝑖 | 𝑐1 . . . , 𝑐𝑖−1, 𝑆, 𝑋𝑆; 𝜃)

𝑛

𝑖 = 2

(3) [5]

where 𝑋𝑆 is the features of stops in 𝑆. The calculation of Ρ(𝑐1, . . . , 𝑐𝑛 | 𝑆, 𝑋𝑆; 𝜃) for the

two model (i.e., Simple RNN E-D, and LSTM E-D with Attention) are documented

later in this chapter.

3.2 Simple RNN Encoder-Decoder (Simple RNN E-D) Model

A Simple Recurrent Neural Network (RNN) is a type of neural network with internal

memory that captures temporal dependencies between inputs, allowing them to retain

CHAPTER 3

17

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

information from previous sequential inputs. Figure 3.2 shows the architecture of

LSTM E-D with Attention model, presented at four-step. The entire prediction process

uses a SimpleRNN encoder to extract feature vectors, followed by a SimpleRNN

decoder to process the last visited stop's feature vector. The decoder incorporates a

simplified attention mechanism by averaging the encoder outputs, which helps provide

global context when predicting the next stop in the sequence. The model is designed to

leverage the SimpleRNN encoder-decoder framework to capture the overall sequence

pattern of the route, while the context mechanism focuses on combining both global

and local sequence relationships between the last visited stop and potential next stops.

Figure 3.2 Overall architecture of Simple RNN E-D Model

3.2.1 Simple RNN encoder

The role of the Simple RNN encoder in the Simple RNN E-D model is to gather and

aggregated each stop information. The input for encoder model is features of the stop

𝑠𝑖 , 𝑥𝑖 ∈ ℝ𝐾 in a given arbitrary stop sequence (𝑠1 , …, 𝑠𝑛), where 𝑥𝑖 may include

geographical information and package information of the stop 𝑠𝑖. 𝐾 is the number of

features. The output of the encoder model will be a sequence of encoder output vectors

(𝑒1, …, 𝑒𝑛) through calculation, expressed in:

CHAPTER 3

18

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ℎ𝐸
𝑖 , 𝑒𝑖 = 𝑆𝑖𝑚𝑝𝑙𝑒𝑅𝑁𝑁(𝑥𝑖, ℎ𝐸

𝑖−1; 𝜃𝐸) ∀𝑖 = 1, . . . , 𝑛 (4) [5]

where (1) the encoder hidden vector, ℎ𝐸
𝑖 ∈ ℝ𝐾, with ℎ𝐸

0 ∶= 0;

 (2) the encoder output vector, 𝑒𝑖 ∈ ℝ𝐾𝑒;

 (3) the corresponding vector dimensions are defined as 𝐾𝐸
ℎ 𝑎𝑛𝑑 𝐾𝑒

The final step hidden vector ℎ𝐸
𝑛 is used for input of Simple RNN decoder, consisting

global features of entire input route sequence.

3.2.2 Simple RNN decoder

The role of the Simple RNN decoder is to predict the next stop for every timestep, later

forming a route sequence. In the proposing Simple RNN decoder model, aggregation

of both local information (previous visited stop features 𝑥(𝑖), previous RNN hidden

state, , ℎ𝐷
(𝑖)) and global information (encoder outputs, 𝑒) .

ℎ𝐷
(𝑖+1) , 𝑑(𝑖) = 𝑆𝑖𝑚𝑝𝑙𝑒𝑅𝑁𝑁(𝑥(𝑖) , ℎ𝐷

(𝑖); 𝜃𝐷) ∀𝑖 = 0, 1, . . . , 𝑛 (5)

where (1) the decoder hidden vector, ℎ𝐷
(𝑖) ∈ ℝ𝐾𝐷

ℎ , with ℎ𝐷
(0) ∶= ℎ𝐸

𝑛;

 (2) the decoder output vector, 𝑑(𝑖) ∈ ℝ𝐾𝑑;

 (3) the corresponding vector dimensions are defined as 𝐾𝐷
ℎ 𝑎𝑛𝑑 𝐾𝑑;

 (4) the features of last visited stops, 𝑥(𝑖);

For depot station case, 𝑥(0) = 𝑥(𝐷) and 𝑑(0) = 𝑑(𝐷) .

CHAPTER 3

19

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

𝑙𝑜𝑔𝑖𝑡𝑠 = 𝑓𝑐(𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝐷
(𝑖+1), 𝜇𝑒)) ∀𝑖 = 0, 1, . . . , 𝑛 (6)

where (1) the decoder hidden vector at current timestep (𝑖 + 1), ℎ𝐷
(𝑖+1);

 (2) the mean of encoder outputs, 𝑒 across all timesteps, 𝜇𝑒;

The model performs prediction on all candidate stops based on conditional

probabilities. The conditional probabilities for next possible stops are calculated, and

prediction 𝑠̂(𝑖+1), expressed in:

Ρ(𝑐𝑖+1 = 𝑗 | 𝑐1 … , 𝑐𝑖, 𝑆, 𝑋𝑆; 𝜃) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑜𝑔𝑖𝑡𝑠)

∀𝑖 = 0, 1, … , 𝑛

𝑗 = 1, . . . , n

(7)

𝑠̂(𝑖+1) = argmax
𝑠𝑗 ∈ 𝑆\𝑆𝑉

(𝑖)

Ρ(𝑐𝑖+1 = 𝑗 | 𝑐1 … , 𝑐𝑖, 𝑆, 𝑋𝑆; 𝜃)

∀𝑖 = 0,1, … , 𝑛

𝑗 = 1, . . . , n

(8)

where (1) the set of visited/predicted stops until decoder step 𝑖, 𝑆𝑉
(𝑖) = {𝑠̂(1), . . . , 𝑠̂(𝑖)}

3.3 LSTM Encoder-Decoder with Pair-Wise Attention Model

The LSTM with Attention model architecture is adapted from [5] with slight

modification. Figure 2.1.3 shows the architecture of LSTM E-D with Attention model,

presented at four-step. The entire prediction processes use an LSTM encoder to extract

feature vectors, an LSTM decoder to extract last visited feature vector, then

incorporates pairwise attention mechanism to the predict the next stop sequence. The

idea is to utilize LSTM encoder-decoder framework to captures global perspective of

CHAPTER 3

20

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

the overall sequence pattern, while the Attention mechanism focuses on local

relationships between two stop pairs (i.e., last visited stop, and candidate stops).

3.3.1 LSTM encoder

The role of the LSTM encoder in the LSTM E-D with Attention model is similar to

Simple RNN encoder model, which is to gather and aggregated each stop information.

The primary difference between LSTM and Simple RNN is that LSTM are more

capable to retain long term dependencies (overcome vanishing gradients), which makes

LSTM a superior choice for complex tasks (long route sequence). The input for encoder

model is features of the stop 𝑠𝑖, 𝑥𝑖 ∈ ℝ𝐾 in a given arbitrary stop sequence (𝑠1, …,

𝑠𝑛), where 𝑥𝑖 may include geographical information and package information of the

stop 𝑠𝑖. 𝐾 is the number of features. The output of the encoder model will be a sequence

of encoder output vectors (𝑒1, …, 𝑒𝑛) through calculation, expressed in:

ℎ𝐸
𝑖 , 𝑒𝑖 = 𝐿𝑆𝑇𝑀(𝑥𝑖 , ℎ𝐸

𝑖−1; 𝜃𝐸) ∀𝑖 = 1, . . . , 𝑛 (9) [5]

where (1) the encoder hidden vector, ℎ𝐸
𝑖 ∈ ℝ𝐾, with ℎ𝐸

0 ∶= 0;

 (2) the encoder output vector, 𝑒𝑖 ∈ ℝ𝐾𝑒;

 (3) the corresponding vector dimensions are defined as 𝐾𝐸
ℎ 𝑎𝑛𝑑 𝐾𝑒

The final step hidden vector ℎ𝐸
𝑛 is used for input of Simple RNN decoder, consisting

global features of entire input route sequence.

3.3.2 LSTM decoder

Following [5], the role of the LSTM decoder in the LSTME-D with Attention model is

to produce last visit stop vectors, which are used for the attention mechanism to predict

next zone sequence. Denote the output route sequence (𝑠̂(1), …, 𝑠̂(𝑛)). Given features

of the stop 𝑠̂(𝑖), 𝑥(𝑖). At each decoder timestep, 𝑖, the process can be expressed in:

CHAPTER 3

21

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ℎ𝐷
(𝑖+1) , 𝑑(𝑖) = 𝐿𝑆𝑇𝑀(𝑐𝑜𝑛𝑐𝑎𝑡(𝑥(𝑖), 𝜔(𝑖)), ℎ𝐷

(𝑖); 𝜃𝐷) ∀𝑖 = 0, 1, . . . , 𝑛 (10) [5]

where (1) the decoder hidden vector, ℎ𝐷
(𝑖) ∈ ℝ𝐾𝐷

ℎ , with ℎ𝐷
(0) ∶= ℎ𝐸

𝑛;

 (2) the decoder output vector, 𝑑(𝑖) ∈ ℝ𝐾𝑑;

 (3) the corresponding vector dimensions are defined as 𝐾𝐷
ℎ 𝑎𝑛𝑑 𝐾𝑑;

 (4) the context vector is computed from attention layer, 𝜔(𝑖);

For depot station case, 𝑥(0) = 𝑥(𝐷) and 𝑑(0) = 𝑑(𝐷) .

3.3.3 Pair-Wise Attention Layer

The role of pair wise attention layer is predicting next possible stop by aggregating both

global and local information in a given sequence of stops (𝑠1, …, 𝑠𝑛). The mechanism

works as at each decoder time step 𝑖 ∈ {0, . . . , 𝑛}, after identifying the last visited stop,

𝑠̂(𝑖) , the model perform prediction on 𝑠̂(𝑖+1) from all candidates stops (all valid,

unvisited zone), 𝑠̂(𝑗) ∈ 𝑆 . The input for attention layer, denoted as 𝑣𝑗
(𝑖) , consists

information of the stop pair 𝑠̂(𝑖) and 𝑠𝑗, which can be expressed by:

𝑣𝑗
(𝑖) = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑡𝑗

(𝑖), 𝑑(𝑖), 𝑒𝑗) (11)

where (1) the travel time features between stop pair 𝑠̂(𝑖) 𝑎𝑛𝑑 𝑠𝑗, 𝑡𝑗
(𝑖);

 (2) decoder output vector, 𝑑(𝑖);

 (3) encoder output vector, 𝑒𝑗;

The attention of stop pairs are calculated, following the equation:

CHAPTER 3

22

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

𝑢𝑗
(𝑖) = 𝑀𝐿𝑃(𝑣𝑗

(𝑖); 𝜃𝐴) ∀𝑖, 𝑗 = 1, . . . , 𝑛 (12) [5]

𝑎𝑗
(𝑖) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑢𝑗

(𝑖)) ∀𝑖, 𝑗 = 1, . . . , 𝑛 (13) [5]

where the attention of stop 𝑠̂(𝑖) 𝑡𝑜 𝑠𝑗, 𝑎𝑗
(𝑖) ∈ ℝ;

Then, conditional probability for each stop pairs are calculated, and prediction 𝑠̂(𝑖+1),

expressed in:

𝑠̂(𝑖+1) = argmax
𝑠𝑗 ∈ 𝑆\𝑆𝑉

(𝑖)

𝑎𝑗
(𝑖) ∀𝑖 = 0,1, . . . , 𝑛 (14) [5]

where (1) the set of visited/predicted stops until decoder step 𝑖, 𝑆𝑉
(𝑖) = {𝑠̂(1), . . . , 𝑠̂(𝑖)}

In addition, context vector, 𝜔(𝑖) which is a weighted sum of all encoder output vectors

with attention as weights. 𝜔(𝑖) is introduced to leverages the attention information as

the decoder input for timestep 𝑖 +1. The formulation of context vector can be expressed:

𝜔(𝑖) = ∑ 𝑎𝑗
(𝑖) ∙

𝑛

𝑗=1

 𝑒𝑗 (15) [5]

CHAPTER 4

23

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Experimental Setup

4.1 System Requirements

4.1.1 Hardware

The hardware involved in this project is personal computer. Table 3.1.1 shows the

detailed specification of the hardware involved.

Table 4.1.1 Specifications of laptop.

Description Specifications

Model LENOVO 81WD

Processor Intel® Core™ i5-1035G4 CPU @ 1.10GHz 1.50 GHz

Operating System Windows 10 Home Single Language 64-bit

Graphic Intel® Iris® Plus Graphics

Memory 12.0 GB (11.7 GB usable) DDR4 RAM

Storage 477 GB SSD ROM

4.1.2 Software

The software involved in this project are listed as below:

(i) Google Collaboratory (Google Colab).

Google Colab is a cloud based Jupyter Notebook service that provides free

access to computing resources, including GPUs and TPUs. With Google

Colab, users do not require to install libraries, and packages on personal

devices, and running codes does not consume resources of the working

system (hardware).

CHAPTER 4

24

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

(ii) Google Drive.

Google Drive is a cloud storage service provided by Google, that allows

users to store, synchronise, share files across the platform. Google Drive

also integrates with Google Colab, allows data storage and retrieval from

the drive.

(iii) Tensorflow with Keras.

Tensorflow is an open-source deep learning framework provided by Google.

With Keras, a python-based high-level neural network Application

Programming Interface (API), running on top of Tensorflow, the combo

provides users libraries, and tools to conduct experimentation with neural

networks.

4.1.3 Data Source

The project will be using real-world data provided by Amazon Last-Mile Routing

Research Challenge [7]. The dataset consists of 6112 historical drivers last mile

delivery routes, which was collected between July and August 2018 in five metropolitan

areas of United States (U.S.), namely Austin, Boston, Chicago, Los Angeles, and

Seattle [5]. Each route is characterized by a variety of route-level, stop-level, package-

level features, route quality attributes, delivery defects, driver experience, customer

satisfaction, and productivity; dataset is summarised, and explained in Table 3.1.2 [7].

Besides, each route is labelled according to its perceived route quality (i.e., low,

medium, and high). The entire dataset can be visualised and represented in the form of

an Entity relationship diagram (ERD), seen in Figure 3.1.1.

CHAPTER 4

25

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.1.1 ERD for Amazon Last-Mile Routing Research Challenge Dataset.

Sourced from [10].

CHAPTER 4

26

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.1.2 Sample Delivery Route, in Irvine, California.

Soured from [11].

CHAPTER 4

27

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 4.1.2 Data Description on provided Amazon Last-Mile Routing Research Challenge Dataset. Sourced from [7].

Data Field Description Unit/Format

Route information

Route ID Unique and anonymized identifier of each route. -

Station code Unique identifier for a depot station. (alphanumeric string)

Date Date of route execution. YYYY-MM-DD

Departure time Time when vehicle leaves depot. -

Executor capacity Volumetric capacity of vehicle. cm3

Stops A list of each stop in route. -

Observed sequence Actual sequence in which stops were visited. -

Route score Quality of the observed sequence.
Categorical

(i.e., high, medium, or low)

Stop information

Stop ID Unique identifier of each stop on a route. -

Latitude/Longitude Obfuscated coordinates of each stop. -

Type Type of stop.
Categorical

(i.e., station or drop-off)

Zone ID Geographical planning area in which the stop falls. -

CHAPTER 4

28

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Packages A list of packages to be delivered at each stop. -

Transit time Estimated transit time to every other stop on route Seconds

Package information

Package ID Unique and anonymized identifier of each package. -

Status Delivery status of package.

Categorical

(i.e., DELIVERED,

DELIVERY_ATTEMPTED, or

REJECTED)

Time window Start and end time window, when applicable.
(if not specified, fields are filled

with value ‘NaN’)

Planned service time Time that serving the package is expected to require. Seconds

Dimensions Length, width, and height of package. cm

CHAPTER 4

29

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 System Design

The proposed framework is outlined (see Figure 4.2.1), with the input data of real-world

historical delivery routes data and output of optimized delivery routes, which similar to

real-world drivers’ preferences.

Figure 4.2.1 Overall project framework. Adapted from [4].

4.2.1 Data Analysis

 After obtaining the historical data (more data information, refer Chapter 4.1.3),

data analysis and visualisation is performed as project initial step. Basic data analysis

was performed on the dataset, allowing us to easily grasp complex information, identify

outliers, and communicate findings to others. Built-in library such as seaborn and

matplot are utilized to provide graph visualisation. By performing data analysis, we

could imply factors that cause drivers deviate from the pre-planned route (i.e., time-

sensitive packages.)

CHAPTER 4

30

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2.2 Data Preprocessing

Then, data preprocessing will be performed before feeding into the machine learning

model. Data preprocessing steps include feature selection, data cleaning(i.e., filling

missing values), data splitting, data transformation, and data reduction. Data

preprocessing are essential steps, as data quality defined the output of machine learning

model. With high quality data input, machine learning models are able to converge

effectively and produce accurate predictions. Figure 4.2.2 shows the steps taken in Data

Preprocessing process.

Figure 4.2.2 Steps involved in Data Preprocessing.

 In this project, we chose to focus only on the 2718 routes with ‘High’ route

scorings. This is because, in both validation and testing datasets, all routes are rated

‘High’. Besides, dropping ‘Low’ tiered routes are due to routes rated ‘Low’ only

contribute around 1.6%, having only 102 routes out of the overall datasets (6112 routes),

which might cause biased outcomes. Then, we dropped all packaged-level features,

includes ‘pack_ID’, ‘time_window_start’, ‘time_window_end’. The reason behind the

action, is in this project, we would like to focus on delivery zone level sequencing,

following [3], stating drivers tends to stick to the shortest path within intra-zonal

delivery. Furthermore, the findings also display only around 7% of the parcels are time

sensitive, filling missing values with a random value might produce possible biased

outcomes. Moreover, we dropped time-related features (i.e., date, and departure time)

as departure time for all routes are within an hour period, 9.00 – 10 a.m. period.

 For data cleaning steps, we filled up all stops with null are filled with value

‘NA’. Then, for all station type records, indicate by sequence id = 0, the field, zone id

CHAPTER 4

31

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

with value ‘@-0.0@’, as initial zone. Moreover, for every route, with missing or invalid

zone_id, are filled with zone_id value, by filling with nearest zone id, determined by

travel distances between valid zones and target (stops with missing or invalid zone id).

 After data cleaning steps, dataset is now split into train set X and train set y. The

motivation behind action splitting data into train and test set, is that the provided dataset

from AWS is divided into train set (model_build), test set (eval_model_apply)

respectively, where test set data are completely independent from train set.

4.2.2 Model Building and Training

After data preprocessing, two machine learning model (i.e., Simple RNN E-D Model,

and LSTM E-D with Attention Model) are built to fulfil the project task, (i.e., predict

the zone sequence Id for every route). Both Simple RNN E-D Model, and LSTM E-D

with Attention Model are built with Keras library, which are an established library for

deep learning model building and training operations. Detailed model methodology, as

well as architecture are discussed in Chapter 3. Then, pre-processed data (historical

delivery routes) are fed into the machine learning model for pattern convergence. For

detailed model building and model training are documented in Chapter 5.

4.2.3 Model Evaluation

Model evaluation, including cross validation on model built are performed, to ensure

proposed model able to predict good routes, aligning the project objectives. For

performance metrics, [5] mentioned that accuracy metric does not differentiate “how

wrong an erroneous prediction is”, in contrast, disparity score does not negatively

impact too much when predicted stop, sp are geographically closed towards the actual

stop, sa. The output of the model (quality of predicted delivery route) is then evaluated.

All results and evaluation are discussed in Chapter 6.

CHAPTER 4

32

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 Timeline

Figure 4.3.1 presents the Gantt chart for all the works done with the corresponding

timeline in Final Year Project 1. Works including, but not limited to, performing project

initiation and planning, data understanding and visualisation, data preprocessing, model

training, report writing, and FYP presentation preparation.

In Figure 4.3.2, Gantt chart for Final Year Project 2 is roughly drafted and outlined,

with works to be done with corresponding timeline during upcoming trimester. Works

including, but not limited to, review and revise previous work done, further research on

relevant papers or works, model training and evaluation, model tuning, report writing

and FYP presentation preparation.

CHAPTER 4

33

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.1 Gantt Chart for Project 1.

CHAPTER 4

34

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.2 Gantt Chart for Project 2

CHAPTER 5

35

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

System Implementation

5.1 Data Findings

Route Score

Below code, from line 1 to 6, obtained the number of routes for each scoring (i.e., Low,

Medium, and High). Line 7 obtained all number of routes, by summing up the number

of routes, for each class. Finally, line 8, output the percentage of routes with low

scorings over all routes.

Line

01 num_low_route = rt.filter(rt['route_score'] ==

02 'Low').select('route_id').unique().height

03 num_high_route = rt.filter(rt['route_score'] ==

04 'High').select('route_id').unique().height

05 num_medium_route = rt.filter(rt['route_score'] ==

06 'Medium').select('route_id').unique().height

07 num_route = num_low_route + num_high_route + num_medium_route

08 print('Percentage of low scoring routes: ', (num_low_route /

09 num_route)*100 , '%')

• Routes with scoring ‘Low’ take up only 1.6% of overall routes.

CHAPTER 5

36

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Below code obtained the value of unique route with high scorings.

Line

01 rt.filter(rt['route_score'] == 'High').select('route_id').unique().height

• There are total of 2718 unique routes with ‘High’ scorings.

Time Windows Sensitivity

Below code, line 1 obtained the number of packages in all 6,142 routes, whereas line 2

obtained the number of packages without time window stated from all 6,142 routes.

Then, line 4 and 5-6, output the total number of packages and the total number of

packages without time window, respectively. Finally, line 7-8, output the percentage of

packages without time window.

Line

01 num_package= rt.filter(pl.col('pack_ID').is_not_null()).height

02 num_package_wo_tw = rt.filter(pl.col('type').eq('Dropoff')).filter(

03 pl.col('time_window_start').is_null()).height

04 print('Total number of packages: ', num_package)

05 print('Total number of packages without time window: ',

06 num_package_wo_tw)

07 print('Percentage of packages without time window: ',

08 (num_package_wo_tw / num_package)*100 , '%')

• Out of 1,457,175 packages, 1,343,182 packages do not have specified delivery time

windows.

• Over 92.27% of delivery packages are considered time window insensitive.

CHAPTER 5

37

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Below code, sort the dataframe, rt, for every unique route, calculate the number of

packages without specified time window, and then sorted the dataframe based on

number of packages without time window, in ascending order. The range for number

of delivery packages without specified time window per route are [92, 302].

Line

01 rt.filter(pl.col('type').eq('Dropoff')).groupby('route_id').agg(num_pkgwotw

02 = pl.col('time_window_end').is_null().sum()).sort(

03 by = 'num_pkgwotw)

Output:

Figure 5.1.1 Range of delivery package without time windows for each route.

Figure 5.1.2 shows histogram of the distribution of the number of packages with a time

window per route. It suggests that majority of routes, around 2500, have between 0 and

10 packages with time windows only.

Inference:

• The limited number of packages with time windows in most routes suggests that

the overall influence of time-sensitive deliveries on driver behavior may be

minimal for most routes.

CHAPTER 5

38

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.1.2 Distribution of Number of Packages with Time Window per Route

Route

Below code, sort the dataframe, rt, for every unique route, calculate the number of

packages, and then sorted the dataframe based on number of packages, in ascending

order. The range for number of delivery packages per route are [151, 305].

Line

01 rt.groupby('route_id').agg(num_package = pl.count()).sort(by =

02 'num_package')

Output:

Figure 5.1.3 Range of delivery package for each route.

CHAPTER 5

39

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Below code, at line 1-2, number of stops for each route are obtained and sorted. Then,

from line 3-8, histogram of the ‘Distribution of Number of Stops per Route’ are plotted,

accessing the matploblib library. Matplotlib is a plotting library for Python language.

Line

01 num_stop_df = rt.groupby('route_id').agg(num_stop = (pl.col('type') ==

02 'Dropoff').count()).sort(by = 'num_stop')

03 plt.hist(num_stop_df["num_stop"], bins=10, edgecolor="black")

04 plt.xlabel("Number of Stops")

05 plt.ylabel("Number of Routes")

06 plt.title("Distribution of Number of Stops per Route")

07 plt.grid(True)

08 plt.show()

Output:

Figure 5.1.4 Distribution of Number of Stops per Route.

Inference:

• Most of the routes have around 230 – 260 number of stops.

CHAPTER 5

40

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Below code, at line 1-2, number of zones for each route are obtained and sorted. Then,

from line 3-8, histogram of the ‘Distribution of Number of Zone per Route’ are plotted,

again utilizing the matploblib library.

Line

01 num_zone_df = rt.groupby('route_id').agg(num_zone =

02 pl.col('zone_id').n_unique()).sort(by = 'num_zone')

03 plt.hist(num_zone_df["num_zone"], bins=5, edgecolor="black")

04 plt.xlabel("Number of Zone")

05 plt.ylabel("Number of Routes")

06 plt.title("Distribution of Number of Zone per Route")

07 plt.grid(True)

08 plt.show()

Output:

Figure 5.1.5 Distribution of Number of Zone per Route.

Inference:

• Most of the routes serves about 20 zones per route.

CHAPTER 5

41

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Zones

The function below extracts zone data features (i.e., zone ID and stop sequences) to

visualize the zone IDs and the overall route sequence.

Figure 5.1.6 Function for Extraction Zone Data Features

After extracting the zone IDs and their corresponding sequences for each route, we

inspected the data visually to understand how drivers move through zones. The code

below used for this inspection sorts the zone IDs based on the stop sequences, groups

the stops by their associated zone IDs, and then aggregates the sequences accordingly.

We are able to visualize how stops within a particular zone are served in order, and how

the sequence progresses as the driver moves from one zone to the next.

CHAPTER 5

42

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Line

01 zone_data = [{"zone_id": zone_id, "stop_seq": stop_seq}

02 for zone_id, zone_info in data["zone_features"].items()

03 for stop_seq in zone_info["stop_seq"]]

04 df = pd.DataFrame(zone_data)

05 pd.set_option('display.max_rows', None)

06 df_sorted = df.sort_values(by="stop_seq")

07 df_aggregated = df_sorted.groupby('zone_id').agg({'stop_seq':

08 list}).reset_index()

09 df_aggregated['first_stop_seq'] = df_aggregated['stop_seq'].apply(

10 lambda x: x[0])

11 df_aggregated = df_aggregated.sort_values(by='first_stop_seq').drop(

12 columns='first_stop_seq')

13 print(df_aggregated)

Output:

Figure 5.1.7 Zone ID Order sequence, aggregated from stop sequence for Route1

CHAPTER 5

43

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.1.8 Zone ID Order sequence, aggregated from stop sequence for Route2

Based on multiple route cases shown in Figures 5.1.7 and 5.1.8, we observed the stop

sequences associated with various zone IDs. For example, zone ‘C-3.2B’ includes the

stops in the sequence [1, 2, 3, ..., 9], while zone ‘C-3.1B’ covers stops [10, 11, 12, ...,

18]. This pattern is repeated across all zones in a structured manner, suggesting that

within each zone, stops are served sequentially before moving on to the next zone. This

pattern suggesting that drivers tend to focus on completing all stops within a given zone

before moving to the next zone.

Inference:

• Driver behavior can be inferred based on the stop sequence data within each zone.

• Drivers tend to complete all stops within the current zone before moving on to the

next zone, suggesting a zone-based delivery pattern.

CHAPTER 5

44

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Relationship of Zone IDs

Based on previous insights (i.e., drivers serve all stops within the current zone before

moving to next zone), we conducted further inspections of zone IDs in the route

sequence. Below shows the Zone ID Order sequence for Route 0. Note that ‘@-0.0@’

represent Depot zone.

Outputs:

Figure 5.1.9 Zone ID Order sequence for Route0

Based on the output, we noticed that zone IDs can be broken down into four parts: (i)

super-super clusters, (ii) super clusters, (iii) clusters, and (iv) zones. For example, in

the zone ID ‘D-18.2J’ the starting letter ‘D’ represent the super-super cluster. When

paired with next integer value, in this case ‘D-18’ formed a super cluster. The ending

letter ‘J’ represent the cluster, making ‘D-18.-J’. Finally, the decimal value ‘.2’

completes the zone ID, with ‘D-18.J’ represent the full zone ID.

CHAPTER 5

45

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 5.1 Zone Order sequence for Route0, arranged by cluster

Cluster Zone 1 Zone 2 Zone 3

J D-18.2J D-18.3J

H D-18.3H D-18.2H D-18.1H

G D-18.1G D-18.2G D-18.3G

E D-18.1E

D D-18.1D D-18.2D D-18.3D

C D-18.3C D-18.2C D-18.1C

B D-18.1B

 Next, for a given route, the sequence pattern of zone IDs can be identified.

Based on Table 5.1, we observed that the zone IDs within each cluster follow either an

ascending or descending order, depending on the sequence of the previous cluster.

Inference:

• The relationship of zone IDs within a given route are identified.

• Each zone ID is structured in a hierarchical manner, starting with the super-super

cluster, followed by the super cluster, cluster, and zone.

• The pattern of zone IDs within a route appears to follow a specific pattern (either

ascending or descending) within each cluster, which may indicate a systematic

approach to how delivery zones are being clustered.

CHAPTER 5

46

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2 Data Preprocessing

In this project, we focus on zone level sequence prediction, justified by [3], explained

in previous chapter. For the route data, we select only routes with a score rated as 'High,'

prioritizing quality data for better pattern learning from model. To prepare zone level

data, relevant features are selected and aggregated from stop-level data. Stop-level

features, including, latitude, longitude, stop type (indicating Depot or Dropoff), travel

times between stop pairs, and corresponding actual route sequence (at stop level) are

aggregated by zone IDs. Package-level features, such as time windows, planned service

times, and dimensions, are excluded. This decision is based on the justification provided

in previous sub chapter, stating that over 92.27% packages are considered time

windows insensitive.

To begin, all route files are classified and separated based on their route score. Function

classify_route reads the ‘route_data.json’ file and returns three distinct lists:

‘low_routes’, ‘medium_routes’, and ‘high_routes’, which contain the corresponding

route IDs based on their score. Next, all relevant route data are sorted into their

respective directories using the function move_files.

Function classify_route

def classify_routes(input_file):

 with open(input_file, 'r') as f:

 data = json.load(f)

 for route_id, route_info in data.items():

 route_score = route_info.get("route_score", "Uncategorized")

 if route_score == "Low":

 low_routes.append(route_id)

 elif route_score == "Medium":

 medium_routes.append(route_id)

 elif route_score == "High":

 high_routes.append(route_id)

CHAPTER 5

47

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Function move_files

def move_files(input_directory, output_directory):

 for filename in os.listdir(input_directory):

 if filename.endswith(".json"):

 shutil.move(os.path.join(input_directory, filename),

 os.path.join(output_directory, filename))

The function preprocesses all routes data are defined as preprocess_route(), with seven

defined functions, namely parse_zone_id, is_valid_zone_id,

assign_zone_id_for_dropoffs, encode_zone_id, extract_zone_features,

calculate_mean_travel_times, convert_stop_sequence_to_zone_sequence. The

preprocessing function takes in lists: (1) route_id, (2) all_route_data, (3)

all_travel_times, (4) all_package_data, and (5) all_actual_seq, and return lists; (i)

zone_features, and (ii) mean_travel_times.

Function preprocess_route

def preprocess_route(route_id, all_route_data, all_travel_times, all_package_data,

all_actual_seq):

 route_data = all_route_data[route_id]['stops']

 travel_times = all_travel_times[route_id]

 package_data = all_package_data[route_id]

actual_seq = all_actual_seq[route_id]['actual']

route_data = assign_zone_id_for_dropoffs(route_data, travel_times)

encoded_zones, station_zone = encode_zone_id(route_data)

 zone_features = extract_zone_features(encoded_zones, station_zone,

 package_data)

 mean_travel_times = calculate_mean_travel_times(zone_features, travel_times,

 encoded_zones)

 zone_seq_map = convert_stop_sequence_to_zone_sequence(actual_seq,

 route_data)

 for zone_id in zone_features.keys():

CHAPTER 5

48

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 if zone_id == station_zone: zone_features[zone_id]['zone_seq'] = 0

 else: zone_features[zone_id]['zone_seq'] = zone_seq_map.get(zone_id, 1e6)

return zone_features, mean_travel_times

The preprocessing pipeline is structured around the preprocess_route function, which

coordinates the entire data preparation process for each route. It begins by handling

missing zone IDs using the assign_zone_id_for_dropoffs function. This step assigns the

nearest valid zone ID to dropoff stops without a valid zone ID based on travel times,

ensuring that all stops have valid zone data. The assignation of nearest zone can be

expressed in the following mathematical expression:

Let:

(1) The dropoff stop with a missing or invalid zone ID, 𝑠𝑚 ∈ 𝑆, a set of stops in

given route.

(2) A valid stop with a known zone ID, 𝑧𝑖 ∈ 𝑆.

(3) The travel time between stop 𝑠𝑚 and 𝑠𝑣, 𝑡(𝑠𝑚, 𝑧𝑖).

𝑍𝑛𝑒𝑎𝑟𝑒𝑠𝑡 = 𝑎𝑟𝑔 min
𝑖

𝑡(𝑠𝑚, 𝑧𝑖) (16)

where 𝑍𝑛𝑒𝑎𝑟𝑒𝑠𝑡 is the zone ID of the nearest stop, which is identified by finding the stop

𝑧𝑖 that yields the minimum travel time 𝑡(𝑠𝑚, 𝑧𝑖).

The function is_valid_zone_id function is called to validate the zone_id format. A valid

zone id is defined in format: '^[A-Z]-\d{1,2}\.\d[A-Z]$'.

Function assign_zone_id_for_dropoffs

def assign_zone_id_for_dropoffs(route_data, travel_times):

 for stop_id, stop_data in route_data.items():

 zone_id = stop_data.get('zone_id')

 if zone_id is None or not is_valid_zone_id(zone_id):

 if stop_data['type'] == 'Dropoff':

CHAPTER 5

49

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 nearest_zone = None

 min_travel_time = float('inf')

 # Find the nearest stop with a valid zone_id

 for neighbor_stop_id, travel_time in travel_times.get(stop_id, {}).items():

 neighbor_zone_id = route_data[neighbor_stop_id].get('zone_id')

 if neighbor_zone_id and is_valid_zone_id(neighbor_zone_id):

 if travel_time < min_travel_time:

 min_travel_time = travel_time

 nearest_zone = neighbor_zone_id

 # Assign the nearest zone_id to the dropoff stop

 if nearest_zone:

 route_data[stop_id]['zone_id'] = nearest_zone

 else:

 # If no valid zone_id is found, assign a default

 route_data[stop_id]['zone_id'] = "[-9.9]"

 return route_data

Function is_valid_zone_id

def is_valid_zone_id(zone_id):

 if not isinstance(zone_id, str):

 return False # If zone_id is not a string, it's invalid

 pattern = re.compile(r'^[A-Z]-\d{1,2}\.\d[A-Z]$')

 # If the zone_id does not match the pattern, it is invalid

 if not pattern.match(zone_id):

 return False

 return True

Next, the encode_zone_id function processes the zone IDs for every stop, by calling

function parse_zone_id, to split the zone ids into four components (super-super cluster,

CHAPTER 5

50

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

super cluster, cluster, zone) and obtain each stop features such as latitude, longitude,

and whether the stop is a station. For station stop, default zone ID ‘@-0.0@’ is assigned.

This step creates a structured representation of each stop's zone information.

Function encode_zone_id

def encode_zone_id(route_data):

 default_station_zone = "@-0.0@"

 dropoff_with_missing_zone = []

 encoded_zones = {}

 station_zone = None

 for stop_id, stop_data in route_data.items():

 zone_id = stop_data.get('zone_id')

 # Check for NaN values in various forms

 if zone_id is None or zone_id in ['NaN', 'nan'] or (isinstance(zone_id, float) and

 np.isnan(zone_id)):

 if stop_data['type'] == 'Station':

 zone_id = default_station_zone

 station_zone = default_station_zone # Mark the station zone

 parsed_zone = parse_zone_id(zone_id)

 # Add the encoded zone and other features to the dictionary

 encoded_zones[stop_id] = {

 'zone_id': zone_id,

 'super_super_cluster': parsed_zone['super_super_cluster'],

 'integer_part': parsed_zone['integer_part'],

 'decimal_part': parsed_zone['decimal_part'],

 'super_cluster': parsed_zone['super_cluster'],

 'is_station': 1 if stop_data['type'] == 'Station' else 0,

 'lat': stop_data['lat'],

 'lng': stop_data['lng']

 }

 return encoded_zones, station_zone

CHAPTER 5

51

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Function parse_zone_id

def parse_zone_id(zone_id):

 temp = zone_id.split('-')

 super_super_cluster = ord(temp[0]) - 64

 temp2 = temp[1].split('.')

 integer_part = int(temp2[0])

 decimal_part = int(temp2[1][:-1])

 super_cluster = ord(temp2[1][-1]) - 64

 return {

 'super_super_cluster': super_super_cluster,

 'integer_part': integer_part,

 'decimal_part': decimal_part,

 'super_cluster': super_cluster

 }

The pipeline then proceeds to the extract_zone_features function, which aggregates

stop-level data at the zone level. This includes counting the number of stops in each

zone, calculating the minimum, maximum, and mean latitudes and longitudes, and

determining the number of packages handled in each zone. Station zones are marked as

‘1’ for feature ‘is_station’.

Function extract_zone_features

def extract_zone_features(encoded_zones, station_zone, package_data):

 zone_features = defaultdict(lambda: {

 'super_super_cluster': None,

 'super_cluster': None,

 'integer_part': None,

 'decimal_part': None,

 'is_station': 0,

 'num_stops': 0,

CHAPTER 5

52

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 'latitudes': [],

 'longitudes': [],

 'num_of_packages': 0

 })

 for stop_id, stop_data in encoded_zones.items():

 zone_id = stop_data['zone_id']

 # Aggregate zone_id features

 zone_features[zone_id]['super_super_cluster'] =

 stop_data['super_super_cluster']

 zone_features[zone_id]['super_cluster'] = stop_data['super_cluster']

 zone_features[zone_id]['integer_part'] = stop_data['integer_part']

 zone_features[zone_id]['decimal_part'] = stop_data['decimal_part']

 # Count the number of stops and collect latitudes/longitudes

 zone_features[zone_id]['num_stops'] += 1

 zone_features[zone_id]['latitudes'].append(stop_data['lat'])

 zone_features[zone_id]['longitudes'].append(stop_data['lng'])

 # Mark if the stop is a station

 if stop_data['is_station']:

 zone_features[zone_id]['is_station'] = 1

 # Count the number of packages at each stop and aggregate at the zone level

 if stop_id in package_data:

 zone_features[zone_id]['num_of_packages'] += len(package_data[stop_id])

 # Compute min, mean, max lat/lng for each zone

 for zone_id, features in zone_features.items():

 features['min_lat'] = min(features['latitudes'])

 features['max_lat'] = max(features['latitudes'])

 features['mean_lat'] = np.mean(features['latitudes'])

CHAPTER 5

53

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 features['min_lng'] = min(features['longitudes'])

 features['max_lng'] = max(features['longitudes'])

 features['mean_lng'] = np.mean(features['longitudes'])

 return zone_features

After the zone features are aggregated, the calculate_mean_travel_times function

computes the mean travel times between different zones based on the travel times

between individual stops in different zones. The mean travel times between two zones

can be expressed in the below mathematical equation:

Given:

(1) The travel time between stop 𝑖 in zone A and stop 𝑗 in zone B, 𝑇𝑖𝐴𝑗𝐵
 .

(2) The total number of stop pairs between zone A and zone B, 𝑁.

𝜇𝐴𝐵 =
1

𝑁
 ∑ 𝑇𝑖𝐴𝑗𝐵

𝑁

𝑖=1

 (17)

where 𝜇𝐴𝐵 is the mean travel time between zone 𝐴 and zone 𝐵. 𝑁 is the number of

travel times between the stop pairs of zone 𝐴 and zone 𝐵 . 𝑇𝑖𝐴𝑗𝐵
 represents the

individual travel time between stop 𝑖 (in zone 𝐴) and stop 𝑗 (in zone 𝐵).

Function calculate_mean_travel_times

def calculate_mean_travel_times(zone_features, travel_times, encoded_zones):

 zone_travel_times = defaultdict(lambda: defaultdict(list))

 for from_stop, to_stops in travel_times.items():

 from_zone = encoded_zones[from_stop]['zone_id']

 for to_stop, travel_time in to_stops.items():

 to_zone = encoded_zones[to_stop]['zone_id']

CHAPTER 5

54

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 if from_zone != to_zone:

 zone_travel_times[from_zone][to_zone].append(travel_time)

 mean_travel_times = {}

 for from_zone, to_zones in zone_travel_times.items():

 mean_travel_times[from_zone] = {}

 for to_zone, times in to_zones.items():

 mean_travel_times[from_zone][to_zone] = np.mean(times)

 return mean_travel_times

Finally, the convert_stop_sequence_to_zone_sequence function translates the stop-

level route sequence into a zone-level sequence, ensuring that the correct order of zones

is captured. The zone-level sequence is then added to the zone features.

Function convert_stop_sequence_to_zone_sequence

def convert_stop_sequence_to_zone_sequence(actual_seq, stop_data):

 # Sort the actual sequence based on the stop positions

 sorted_stops = sorted(actual_seq, key=actual_seq.get)

 seen_zones = set() # Track zones we've already encountered

 zone_seq_map = {} # Map to store zone_id and its sequence index

 seq_index = 0 # Sequence index starts at 0

 for stop_id in sorted_stops:

 # Get the zone_id for the current stop

 zone_id = stop_data[stop_id]['zone_id']

 # Add the zone to the sequence if it's the first time we encounter it

 if zone_id not in seen_zones:

 zone_seq_map[zone_id] = seq_index

 seen_zones.add(zone_id)

 seq_index += 1

 return zone_seq_map

CHAPTER 5

55

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3 Data Transformation and Padding

5.3.1 Data Transformation

The extract_zone_features_and_sequences function is responsible for transforming

route data into training data (X_train and Y_train) for use in zone-level sequence

prediction models. This function takes in all preprocessed data, from previous step and

constructs feature vectors (X_train) for each zone, consisting of (1) super-super cluster,

(2) super cluster, (3) cluster, (4) zone, (5) number of stops in the zone, (6) number of

packages in the zone, (7) mean latitude of zone, (8) mean longitude of zone, (9) all

interzonal travel times in the route. During the transformation, the depot station zone is

explicitly placed at the first zone in every route. For Y_train, the sequence index of each

zone is stored, indicating the order in which the zones are visited. By the end of the

process, X_train contains feature vectors for each zone, including the travel times, and

Y_train holds the sequence indices corresponding to the visit order of the zones.

Function extract_zone_features_and_sequences

def extract_zone_features_and_sequences(route_data):

 X_train = []

 Y_train = []

 travel_times = route_data['mean_travel_times']

 depot_zone = None

 non_depot_zones = []

 final_zone_order = []

 # Separate the depot and non-depot zones

 for zone_id, zone_data in route_data['zone_features'].items():

 # Create feature vector for the zone

 feature_vector = [

 zone_data['super_super_cluster'],

 zone_data['super_cluster'],

 zone_data['integer_part'],

 zone_data['decimal_part'],

CHAPTER 5

56

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 zone_data['num_stops'],

 zone_data['num_of_packages'],

 zone_data['mean_lat'],

 zone_data['mean_lng']

]

 # Check if it's a Depot (is_station == 1)

 if zone_data['is_station'] == 1:

 depot_zone = (zone_id, feature_vector, zone_data['zone_seq'])

 else:

 non_depot_zones.append((zone_id, feature_vector, zone_data['zone_seq']))

 # Ensure Depot is the first input and output

 if depot_zone:

 final_zone_order.append(depot_zone[0])

 X_train.append(depot_zone[1])

 Y_train.append(depot_zone[2])

 # Append the non-depot zones after the depot in the original input order

 for zone in non_depot_zones:

 final_zone_order.append(zone[0])

 X_train.append(zone[1])

 Y_train.append(zone[2])

 # Now that final_zone_order is established, add travel times for each zone based

on this order

 for idx, zone_id in enumerate(final_zone_order):

 travel_distances = []

 for dest_zone_id in final_zone_order:

 if zone_id == dest_zone_id:

 travel_distances.append(0.0) # Travel time to self is 0

 elif zone_id in travel_times and dest_zone_id in travel_times[zone_id]:

 travel_distances.append(travel_times[zone_id][dest_zone_id])

CHAPTER 5

57

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 #else:

 #travel_distances.append(9999) # Use default if travel time is missing

 # Add travel distances to the feature vector

 X_train[idx].extend(travel_distances)

 return X_train, Y_train

5.3.2 Padding

Padding is essential for handling input data (X) with varying lengths, ensuring

consistent input dimensions for model feeding in the later process. The target variable

(Y) is also padded to maintain a consistent shape. The pad_route_features function is

used to perform padding on X data at two levels: (1) zone-level, (2) feature-level. This

ensures that each route in the dataset has a consistent number of zones by padding routes

that have fewer zones than the maximum number of zones observed across all routes.

In our case, the maximum number of zones across all routes are identified with code

below, which is 48.

max_zones = max([len(route) for route in X_train_all])

The function takes the data (X) and the value of the maximum number of zones as input.

For each route, X is padded at the feature level by iterating over the route features,

which represent the features for each zone within a route. Each zone's feature set is

divided into two parts: the first 8 elements are static features (such as zone ID, number

of stops, etc.), and the remaining elements represent the travel distances between zones.

If the number of travel distances for a zone is less than max_zones (the maximum

number of zones across all routes), the travel distances are padded with zeros using

np.pad. The zeros ensure that the length of travel distances matches max_zones,

ensuring consistency in feature dimensions. After padding the travel distances, the static

features and padded travel distances are concatenated to form a complete padded

feature vector for that zone.

CHAPTER 5

58

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Once all zones in a route are processed, the function performs padding at the

zone level. For routes that contain fewer than 48 zones, additional zero-filled feature

vectors are appended to the route until the total number of zones equals max_zones.

This ensures that even routes with fewer zones are padded to match the maximum zone

length, creating a consistent data structure across all routes. As a result, X will have a

consistent dimension of (None, 48, 56).

Function pad_route_features

def pad_route_features(route_features, max_zones):

 padded_routes = []

 # Pad existing zones with actual features

 for features in route_features:

 static_features = features[:8]

 travel_distances = features[8:]

 # Pad travel distances to match the max_zones

 padded_travel_distances = np.pad(travel_distances,

 (0, max_zones - len(travel_distances)),

 mode='constant', constant_values=0)

 # Combine static features and padded travel distances

 padded_features = np.concatenate((static_features, padded_travel_distances))

 padded_routes.append(padded_features)

 # If the route has fewer zones than max_zones, pad the remaining zones with zeros

 num_existing_zones = len(route_features)

 if num_existing_zones < max_zones:

 # Create zero-filled feature vectors for the non-existent zones

 zero_padding = [np.zeros(len(padded_routes[0]))] *

 (max_zones - num_existing_zones)

 padded_routes.extend(zero_padding)

 return padded_routes

CHAPTER 5

59

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

For data Y, np.pad is used, where shorter route sequences are padded with -1 at the end,

making every sequence the same length. This padding ensures the data is ready for

model input, with -1 marking the padded, non-existent zones.

padded_Y = [np.pad(seq, (0, max_zones - len(seq)),

 mode='constant', constant_values=-1) for seq in Y_all]

CHAPTER 5

60

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 Model Building

5.4.1 Simple RNN Encoder-Decoder

For Simple RNN Encoder-Decoder model implementation, the model structure is

constructed following methodology proposed in Chapter 3. For both the Simple RNN

encoder and decoder, the hidden unit sizes are set to 128.

 The Simple RNN Encoder consists of four embedding layers for zone id features

(super-super cluster, super cluster, cluster, and zone), followed by a SimpleRNN layer

that outputs both the encoder output and the hidden state. The expected input for Simple

RNN Encoder is zones features (split into i. super-super cluster, ii. cluster, iii. super

cluster, iv. zone, v. other continuous zone features) and a valid zone mask, that indicates

valid zones in given route input. All the encoder inputs are concatenate before feeding

into the Simple RNN cells.

Class Simple RNN Encoder Model

class SimpleRNNEncoder(tf.keras.Model):

 def __init__(self, hidden_size):

 super(SimpleRNNEncoder, self).__init__()

 self.embedding_1 = tf.keras.layers.Embedding(input_dim=28, output_dim=4,

 mask_zero=True)

 self.embedding_2 = tf.keras.layers.Embedding(input_dim=28, output_dim=10,

 mask_zero=True)

 self.embedding_3 = tf.keras.layers.Embedding(input_dim=101,

 output_dim=10, mask_zero=True)

 self.embedding_4 = tf.keras.layers.Embedding(input_dim=11, output_dim=6,

 mask_zero=True)

 self.simple_rnn = tf.keras.layers.SimpleRNN(hidden_size,

 return_sequences=True, return_state=True, name="encoder_rnn")

CHAPTER 5

61

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

def call(self, input_feature_1, input_feature_2, input_feature_3, input_feature_4,

 input_continuous, masked_input):

 embedding_1 = self.embedding_1(input_feature_1)

 embedding_2 = self.embedding_2(input_feature_2)

 embedding_3 = self.embedding_3(input_feature_3)

 embedding_4 = self.embedding_4(input_feature_4)

 concat_embeddings = tf.keras.layers.Concatenate(axis=-1)([embedding_1,

 embedding_2, embedding_3, embedding_4])

 final_input = tf.keras.layers.Concatenate(axis=-1)([concat_embeddings,

 input_continuous])

 masked_input = tf.keras.layers.Masking(mask_value=0.0)(final_input)

 encoder_output, encoder_state = self.simple_rnn(masked_input)

 return encoder_output, encoder_state

Building Simple RNN Encoder Model

def build_encoder(hidden_size):

 input_feature_1 = tf.keras.Input(shape=(None,), name="feature_1_input")

 input_feature_2 = tf.keras.Input(shape=(None,), name="feature_2_input")

 input_feature_3 = tf.keras.Input(shape=(None,), name="feature_3_input")

 input_feature_4 = tf.keras.Input(shape=(None,), name="feature_4_input")

 input_continuous = tf.keras.Input(shape=(None, 52), name="continuous_input")

 mask_input = tf.keras.Input(shape=(None,), name="mask_input")

encoder = SimpleRNNEncoder(hidden_size)

 encoder_output, encoder_state = encoder(

CHAPTER 5

62

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 input_feature_1, input_feature_2, input_feature_3, input_feature_4,

 input_continuous, mask_input)

 encoder_model = tf.keras.Model(

 inputs=[input_feature_1, input_feature_2, input_feature_3, input_feature_4,

 input_continuous, mask_input],

 outputs=[encoder_output, encoder_state]

)

return encoder_model

SimpleRNN_encoder = build_encoder(hidden_size)

The Simple RNN Decoder takes in the last visited zone features, previous

decoder state, encoder outputs and a valid zone mask, that indicates valid and unvisted

zones in given route input, as input. The last visited zone features with previous decoder

state is processed through a SimpleRNN layer and combine the output with the mean

of the encoder outputs to produce logits. These logits are passed through a dense layer

with a vocabulary size of 48, followed by masking. Finally, a softmax layer is applied

on the logits produced, to predict the next output in the sequence.

Class Simple RNN Decoder Model

class SimpleRNNDecoder(tf.keras.Model):

 def __init__(self, hidden_size, vocab_size):

 super(SimpleRNNDecoder, self).__init__()

 self.hidden_size = hidden_size

 self.simple_rnn = tf.keras.layers.SimpleRNN(hidden_size, return_state=True)

 self.fc = tf.keras.layers.Dense(vocab_size)

 def call(self, decoder_input, decoder_state, encoder_outputs, mask):

CHAPTER 5

63

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 decoder_input = tf.expand_dims(decoder_input, 1)

 rnn_output, decoder_state = self.simple_rnn(decoder_input,

 initial_state=decoder_state)

 combined_output = tf.concat([rnn_output, tf.reduce_mean(encoder_outputs,

 axis=1)], axis=-1)

 logits = self.fc(combined_output)

 if mask is not None:

 logits += (mask * -1e9)

 probabilities = Softmax()(logits)

 predictions = tf.argmax(probabilities, axis=-1)

 return logits, predictions, decoder_state

Building Simple RNN Decoder Model

def build_decoder(hidden_size, vocab_size):

 decoder_input = tf.keras.Input(shape=(52,), name="decoder_input")

decoder_state_input = tf.keras.Input(shape=(hidden_size,),

 name="decoder_state_input")

encoder_outputs_input = tf.keras.Input(shape=(None, hidden_size),

 name="encoder_outputs_input")

 mask_input = tf.keras.Input(shape=(None,), name="mask_input")

 decoder = SimpleRNNDecoder(hidden_size, vocab_size)

 logits, predictions, decoder_state = decoder(

 decoder_input,

 decoder_state_input,

 encoder_outputs_input,

 mask_input

CHAPTER 5

64

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

)

 decoder_model = tf.keras.Model(

 inputs=[decoder_input, decoder_state_input, encoder_outputs_input,

 mask_input],

 outputs=[logits, predictions, decoder_state]

)

return decoder_model

SimpleRNN_decoder = build_decoder(hidden_size, vocab_size)

5.4.2 LSTM Encoder-Decoder with Attention

For LSTM Encoder-Decoder with Attention model implementation, the model structure

is constructed proposed in Chapter 3. For both the LSTM encoder and decoder with

Attention, the hidden unit sizes are set to 128.

 The LSTM Encoder consists of four embedding layers for zone id features

(super-super cluster, super cluster, cluster, and zone), followed by a LSTM layer that

outputs both the encoder output and the hidden state. The expected input for Simple

RNN Encoder is zones features (split into i. super-super cluster, ii. cluster, iii. super

cluster, iv. zone, v. other continuous zone features) and a valid zone mask, that indicates

valid zones in given route input. All the encoder inputs are concatenate before feeding

into the LSTM cells.

Class LSTM Encoder Model

class Encoder(tf.keras.Model):

 def __init__(self, hidden_size):

 super(Encoder, self).__init__()

 self.embedding_1 = tf.keras.layers.Embedding(input_dim=28, output_dim=4,

CHAPTER 5

65

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 mask_zero=True)

 self.embedding_2 = tf.keras.layers.Embedding(input_dim=28, output_dim=10,

 mask_zero=True)

 self.embedding_3 = tf.keras.layers.Embedding(input_dim=101, output_dim=8,

 mask_zero=True)

 self.embedding_4 = tf.keras.layers.Embedding(input_dim=11, output_dim=6,

 mask_zero=True)

 self.lstm = tf.keras.layers.LSTM(hidden_size, return_sequences=True,

 return_state=True, name="encoder_lstm")

def call(self, input_feature_1, input_feature_2, input_feature_3, input_feature_4,

 input_continuous, masked_input):

 embedding_1 = self.embedding_1(input_feature_1)

 embedding_2 = self.embedding_2(input_feature_2)

 embedding_3 = self.embedding_3(input_feature_3)

 embedding_4 = self.embedding_4(input_feature_4)

 concat_embeddings = tf.keras.layers.Concatenate(axis=-1)([embedding_1,

 embedding_2, embedding_3, embedding_4])

 final_input = tf.keras.layers.Concatenate(axis=-1)([concat_embeddings,

 input_continuous])

 masked_input = tf.keras.layers.Masking(mask_value=0.0)(final_input)

 encoder_output, encoder_hidden, encoder_cell = self.lstm(masked_input)

 return encoder_output, encoder_hidden, encoder_cell

Building LSTM Encoder Model

def build_encoder(hidden_size):

CHAPTER 5

66

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 input_feature_1 = tf.keras.Input(shape=(None,), name="feature_1_input")

 input_feature_2 = tf.keras.Input(shape=(None,), name="feature_2_input")

 input_feature_3 = tf.keras.Input(shape=(None,), name="feature_3_input")

 input_feature_4 = tf.keras.Input(shape=(None,), name="feature_4_input")

input_continuous = tf.keras.Input(shape=(None, 52),

 name="continuous_input") # Continuous features input

 mask_input = tf.keras.Input(shape=(None,), name="mask_input")

 encoder = Encoder(hidden_size)

 encoder_output, encoder_hidden, encoder_cell = encoder(

 input_feature_1, input_feature_2, input_feature_3, input_feature_4,

 input_continuous, mask_input

)

 encoder_model = tf.keras.Model(

 inputs=[input_feature_1, input_feature_2, input_feature_3, input_feature_4,

 input_continuous, mask_input],

 outputs=[encoder_output, encoder_hidden, encoder_cell]

)

 return encoder_model

APNN_encoder = build_encoder(hidden_size)

The LSTM Decoder with Attention takes in last visited zone index, last visited

zone features, previous decoder state, encoder outputs, a valid zone mask, that indicates

valid and unvisted zones in given route input, and timestep index, as input.

At timestep 0, context vector, 𝜔 (see Chapter 3) and attention index are

initialized with the value of 0. The next zone features (here referring to depot zone

features) with initial context vector, 𝜔(0) = 0, is processed through a LSTM layer to

CHAPTER 5

67

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

produce hidden decoder state, and logits. These logits are passed through a dense layer

with a vocabulary size of 48.

At subsequent timestep, context vector, 𝜔(𝑖)(see Chapter 3) and attention index

are determined from the attention model. The next zone features (determined by

attention index) with the corresponding context vector, 𝜔(𝑖), is processed through a

LSTM layer to produce hidden decoder state, and logits.

 For next zone predictions, the attention layer, with hidden layer of 128 produced

context vectors, 𝜔(𝑗), along with attention weights, 𝛼𝑗
(𝑖) for every candidate stops, 𝑠𝑗.

For calculation of attention weights and context vector, see Chapter 3. The next zone

prediction is determined by the highest attention weights of given candidate stops, 𝑠𝑗.

Class LSTM Decoder with Attention Model

class DecoderWithAttention(tf.keras.Model):

 def __init__(self, hidden_size, vocab_size):

 super(DecoderWithAttention, self).__init__()

 self.hidden_size = hidden_size

 self.lstm = tf.keras.layers.LSTM(hidden_size, return_sequences=False,

 return_state=True)

 self.attention = PointerAttention(hidden_size)

 self.fc = tf.keras.layers.Dense(vocab_size)

def call(self, last_visited_idx, decoder_input, decoder_hidden, decoder_output,

 encoder_outputs, zone_features, mask, timestep):

 batch_size = tf.shape(encoder_outputs)[0]

 seq_len = tf.shape(encoder_outputs)[1]

 decoder_initial_state = decoder_hidden

 def timestep_zero():

 context_vector = tf.zeros([batch_size, self.hidden_size])

 attention_idx = tf.zeros([batch_size], dtype=tf.int64)

CHAPTER 5

68

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 selected_zone_features = tf.gather(zone_features, attention_idx,

 batch_dims=1)

 decoder_input_with_context = tf.concat([tf.expand_dims(context_vector, 1),

 tf.expand_dims(selected_zone_features, 1)], axis=-1)

 lstm_output, decoder_hidden, decoder_cell = self.lstm(

 decoder_input_with_context, initial_state=decoder_initial_state)

 logits = self.fc(lstm_output)

 return lstm_output, decoder_hidden, decoder_cell, logits, attention_idx

 def timestep_n():

 context_vector, attention_weights = self.attention(last_visited_idx,

 encoder_outputs, decoder_output, zone_features, mask)

 attention_idx = tf.argmax(attention_weights, axis=1)

 selected_zone_features = tf.gather(zone_features, attention_idx,

 batch_dims=1)

 decoder_input_with_context = tf.concat([tf.expand_dims(context_vector, 1),

 tf.expand_dims(selected_zone_features, 1)], axis=-1)

 lstm_output, decoder_hidden, decoder_cell = self.lstm(

 decoder_input_with_context, initial_state=decoder_initial_state)

 logits = self.fc(lstm_output)

 return lstm_output, decoder_hidden, decoder_cell, logits, attention_idx

 lstm_output, decoder_hidden_out, decoder_cell, logits, attention_idx = tf.cond(

 tf.equal(timestep, 0),

 timestep_zero,

 timestep_n

)

 return lstm_output, decoder_hidden_out, decoder_cell, logits, attention_idx

Class Pointer Attention

class PointerAttention(layers.Layer):

 def __init__(self, hidden_size):

CHAPTER 5

69

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 super(PointerAttention, self).__init__()

 self.hidden_size = hidden_size

 self.mlp = layers.Dense(1)

def call(self, last_visited_idx, encoder_outputs, decoder_hidden, zone_features,

 mask):

 seq_len = tf.shape(encoder_outputs)[1]

 travel_time_index_w = last_visited_idx + 4

 seq_indices = tf.range(seq_len)[tf.newaxis, :]

 travel_time_index_w_tiled = tf.tile(travel_time_index_w[:, tf.newaxis], [1,

 seq_len])

 travel_time_indices = tf.stack([tf.zeros_like(seq_indices), seq_indices,

 travel_time_index_w_tiled], axis=-1)

 travel_times = tf.gather_nd(zone_features, travel_time_indices)

 travel_times = tf.expand_dims(travel_times, -1)

 decoder_hidden_with_time_axis = tf.expand_dims(decoder_hidden, 1)

 decoder_hidden_tiled = tf.tile(decoder_hidden_with_time_axis, [1, seq_len, 1])

 v_j = tf.concat([travel_times, decoder_hidden_tiled, encoder_outputs], axis=-1)

 u_j = self.mlp(v_j)

 u_j = tf.squeeze(u_j, -1)

 if mask is not None:

 u_j += (mask * -1e9)

 a_j = tf.nn.softmax(u_j, axis=1)

 context_vector = tf.reduce_sum(a_j[:, :, tf.newaxis] * encoder_outputs, axis=1)

 return context_vector, a_j

CHAPTER 5

70

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Building LSTM Decoder with Attention Model

def build_decoder(hidden_size, attention_layer):

last_visited_idx = tf.keras.Input(shape=(), dtype=tf.int32,

 name="last_visited_idx_input")

 decoder_input = tf.keras.Input(shape=(52,), name="decoder_input")

decoder_hidden_input = tf.keras.Input(shape=(hidden_size,),

 name="decoder_hidden_input")

decoder_cell_input = tf.keras.Input(shape=(hidden_size,),

 name="decoder_cell_input")

encoder_output_input = tf.keras.Input(shape=(None, hidden_size),

 name="encoder_output_input")

 continuous_input = tf.keras.Input(shape=(None, 52), name="continuous_input")

 mask_input = tf.keras.Input(shape=(None,), name="mask_input")

 t_input = tf.keras.Input(shape=(), dtype=tf.int32, name="timestep_input")

last_decoder_output = tf.keras.Input(shape=(hidden_size,),

 name="decoder_output")

 decoder = DecoderWithAttention(hidden_size, attention_layer)

 decoder_output, decoder_hidden, decoder_cell, logits, predictions = decoder(

 last_visited_idx,

 decoder_input,

 [decoder_hidden_input, decoder_cell_input],

 last_decoder_output,

 encoder_output_input,

 continuous_input,

 mask_input,

 t_input,

)

 decoder_model = tf.keras.Model(

CHAPTER 5

71

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 inputs=[last_visited_idx, decoder_input, decoder_hidden_input,

 decoder_cell_input, last_decoder_output, encoder_output_input,

 continuous_input, mask_input, t_input],

 outputs=[decoder_output, decoder_hidden, decoder_cell, logits, predictions]

)

 return decoder_model

APNN_decoder = build_decoder(hidden_size, vocab_size)

CHAPTER 5

72

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5 Model Training

For Model Training, custom training loops are defined, with main training process

defined at Function train_model, and for each timestep, process are defined in Function

train_steps. For the detailed process, including process at every timestep at decoder,

inputs, are defined at Chapter 3.

Function train_model

def train_model(encoder_model, decoder_model, X_train, Y_train, optimizer,

epochs):

 for epoch in range(epochs):

 epoch_loss = 0.0

 epoch_accuracy = 0.0

 # Shuffle the training data at the start of each epoch

 X_train_shuffled, Y_train_shuffled = shuffle_data(X_train, Y_train)

 for route_idx in range(len(X_train_shuffled)):

 inputs = X_train_shuffled[route_idx]

 targets = Y_train_shuffled[route_idx]

 targets = transpose_target_Y(targets)

 inputs = np.array(inputs)

 targets = np.array(targets)

 avg_loss, predicted_Y = train_step(inputs, targets, encoder_model,

 decoder_model, optimizer)

 route_accuracy = evaluate_predictions(predicted_Y[tf.newaxis, ...],

 targets[tf.newaxis, ...])

 epoch_loss += avg_loss.numpy()

 epoch_accuracy += route_accuracy

 epoch_loss /= len(X_train_shuffled)

 epoch_accuracy /= len(X_train_shuffled)

CHAPTER 5

73

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 print(f'\nEpoch {epoch + 1}/{epochs}, Loss: {epoch_loss}, Accuracy:

[{epoch_accuracy}]')

Function train_step

def train_step(inputs, targets, encoder_model, decoder_model, optimizer):

 loss = 0

 predicted_Y = []

 with tf.GradientTape() as tape:

 # Prepare inputs for the encoder

 input_feature_1 = inputs[:, 0]

 input_feature_2 = inputs[:, 1]

 input_feature_3 = inputs[:, 2]

 input_feature_4 = inputs[:, 3]

 input_continuous = inputs[:, 4:]

 x_mask = create_x_mask(inputs[tf.newaxis, ...])

 y_mask = create_y_mask(targets[tf.newaxis, ...])

 # Run the encoder

 encoder_outputs, encoder_hidden, _ = encoder_model(

 [input_feature_1[tf.newaxis, ...],

 input_feature_2[tf.newaxis, ...],

 input_feature_3[tf.newaxis, ...],

 input_feature_4[tf.newaxis, ...],

 input_continuous[tf.newaxis, ...],

 x_mask]

)

 # Initialize decoder state

 decoder_input = input_continuous[0] # Start with the first location

 decoder_hidden = encoder_hidden

CHAPTER 5

74

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 last_visited_idx = tf.constant(0, dtype=tf.int32)

 decoder_cell = tf.zeros_like(encoder_hidden)

 decoder_output = tf.zeros_like(encoder_hidden)

 visited_mask = tf.zeros_like(x_mask[0])

 check_mask = tf.ones_like(x_mask[0])

 seq_len = tf.shape(inputs)[0]

 for t in range(seq_len):

 combined_mask = combine_masks(x_mask, visited_mask)

 if tf.reduce_all(tf.equal(combined_mask, check_mask)):

 break

 decoder_output, decoder_hidden, decoder_cell, logits, predictions =

 decoder_model(

 [last_visited_idx[tf.newaxis, ...],

 decoder_input[tf.newaxis, ...],

 decoder_hidden,

 decoder_cell,

 decoder_output,

 encoder_outputs,

 input_continuous[tf.newaxis, ...],

 combined_mask[tf.newaxis, ...],

 tf.constant(t, dtype=tf.int32)]

)

 predicted_Y.append(predictions)

 loss += tf.keras.losses.sparse_categorical_crossentropy(targets[t:t+1], logits,

 from_logits=True)

 decoder_input = input_continuous[t]

 last_visited_idx = targets[t]

 visited_mask = visited_mask + tf.one_hot(last_visited_idx, depth=seq_len)

 avg_loss = loss / tf.reduce_sum(y_mask)

CHAPTER 5

75

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

gradients = tape.gradient(avg_loss, encoder_model.trainable_variables +

 decoder_model.trainable_variables)

optimizer.apply_gradients(zip(gradients, encoder_model.trainable_variables +

 decoder_model.trainable_variables))

 predicted_Y = tf.stack(predicted_Y)

 predicted_Y = tf.squeeze(predicted_Y)

 return avg_loss, predicted_Y

For function create_x_mask and create_y_mask, is to create masking for input X and

Y. For input X, masking are done at both zones and features level, for padding values

with ‘0’. On the other hand, for input Y, masking is done at sequence, marked as ‘-1’

Masking is to ensure exclusion padding values during model training, evaluation.

Function create_x_mask

def create_x_mask(X):

 _, num_zones, num_features = X.shape

 mask = np.zeros((num_zones))

 for i in range(num_zones):

 if np.all(X[0][i] == 0):

 mask[i] = 1

 return tf.convert_to_tensor(mask, dtype=tf.float32)

Function create_y_mask

def create_y_mask(Y):

 return tf.cast(Y != -1, tf.float32)

CHAPTER 5

76

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

For function combine_masks, it is used to create an updated valid zone mask (valid and

unvisited zone) at every timestep. The function combine x_mask and visited_mask

together.

Function combine_masks

def combine_masks(x_mask, visited_mask):

 combined_mask = tf.maximum(x_mask, visited_mask)

 return combined_mask

Function transpose_target_Y is to rearrange the target sequence target_Y such that each

zone's position is mapped to its corresponding index in X. Essentially, it "transposes"

the target sequence so that the indices of the zones in the sequence align with the order

of features in X.

Function transpose_target_Y

def transpose_target_Y(target_Y):

 transposed_Y = np.zeros_like(target_Y)

 valid_positions = target_Y[target_Y != -1]

 for idx, zone in enumerate(valid_positions):

 transposed_Y[zone] = idx

 return transposed_Y[target_Y != -1]

CHAPTER 5

77

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Function shuffle_data are used to shuffle the sequence of input training data, to ensure

that the model are not learning the input sequential pattern.

Function shuffle_data

def shuffle_data(X, Y):

 """Shuffle the X and Y data while maintaining correspondence."""

 indices = np.arange(len(X))

 shuffled_indices = shuffle(indices)

 return [X[i] for i in shuffled_indices], [Y[i] for i in shuffled_indices]

Function evaluate_predictions is to evaluate the average accuracy of the predicted route

compared to the actual sequence (target).

Function evaluate_predicitons

def evaluate_predictions(predicted_Y, targets):

 accuracy = 0

assert len(predicted_Y) == len(targets), "Predicted and target sequences must have

 the same length."

correct_predictions = tf.reduce_sum(tf.cast(tf.equal(predicted_Y, targets),

 dtype=tf.int32))

 total_elements = tf.size(targets)

 accuracy = correct_predictions / tf.cast(total_elements, dtype=tf.int32)

 return accuracy

CHAPTER 5

78

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.6 Model Evaluation

For Model Evaluation, custom evaluation loops are defined, align with training loops.

The custom model evaluation function return information includes average loss,

average accuracy, first four zone accuracy, average disparity score, standard deviations

of disparity score, list of disparity scores, with the list of all predictions, all targets, all

X, uses for visualization later on.

Function evaluate model

def evaluate_model(encoder_model, decoder_model, X_data, Y_data):

 total_loss = 0.0

 total_accuracy = 0.0

 total_disparity_score = 0.0

 total_routes = len(X_data)

 all_predictions = []

 all_targets = []

 all_X = []

 good_predictions = []

 good_targets = []

 good_X = []

 bad_predictions = []

 bad_targets = []

 bad_X = []

 disparity_scores = []

 first_correct = 0

 X_data_shuffled, Y_data_shuffled = shuffle_data(X_data, Y_data)

 for route_idx in range(total_routes):

CHAPTER 5

79

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 inputs = X_data_shuffled[route_idx]

 targets = Y_data_shuffled[route_idx]

 targets = transpose_target_Y(targets)

 inputs = np.array(inputs)

 targets = np.array(targets)

 # Prepare inputs for the encoder

 input_feature_1 = inputs[:, 0]

 input_feature_2 = inputs[:, 1]

 input_feature_3 = inputs[:, 2]

 input_feature_4 = inputs[:, 3]

 input_continuous = inputs[:, 4:]

 x_mask = create_x_mask(inputs[tf.newaxis, ...])

 y_mask = create_y_mask(targets[tf.newaxis, ...])

 # Run the encoder

 encoder_outputs, encoder_hidden, _ = encoder_model(

 [input_feature_1[tf.newaxis, ...],

 input_feature_2[tf.newaxis, ...],

 input_feature_3[tf.newaxis, ...],

 input_feature_4[tf.newaxis, ...],

 input_continuous[tf.newaxis, ...],

 x_mask[tf.newaxis, ...]], training=False

)

 # Initialize decoder state

 decoder_input = input_continuous[0]

 decoder_hidden = encoder_hidden

 last_visited_idx = tf.constant(0, dtype=tf.int32)

 decoder_cell = tf.zeros_like(encoder_hidden)

 decoder_output = tf.zeros_like(encoder_hidden)

CHAPTER 5

80

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 visited_mask = tf.zeros_like(x_mask[0])

 check_mask = tf.ones_like(x_mask[0])

 seq_len = tf.shape(inputs)[0]

 predicted_Y = []

 route_loss = 0

 for t in range(seq_len):

 combined_mask = combine_masks(x_mask, visited_mask)

 if tf.reduce_all(tf.equal(combined_mask, check_mask)):

 break

 decoder_output, decoder_hidden, decoder_cell, logits, predictions =

 decoder_model(

 [last_visited_idx[tf.newaxis, ...],

 decoder_input[tf.newaxis, ...],

 decoder_hidden,

 decoder_cell,

 decoder_output,

 encoder_outputs,

 input_continuous[tf.newaxis, ...],

 combined_mask[tf.newaxis, ...],

 tf.constant(t, dtype=tf.int32)[tf.newaxis, ...]]

)

 predicted_Y.append(predictions)

 route_loss += tf.keras.losses.sparse_categorical_crossentropy(targets[t:t+1],

 logits, from_logits=True)

 pred_idx = predictions[-1].numpy()

 decoder_input = input_continuous[pred_idx]

CHAPTER 5

81

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 last_visited_idx = pred_idx

 visited_mask = visited_mask + tf.one_hot(last_visited_idx, depth=seq_len)

 predicted_Y = tf.stack(predicted_Y)

 predicted_Y = tf.squeeze(predicted_Y)

 route_accuracy = evaluate_predictions(predicted_Y[tf.newaxis, ...],

 targets[tf.newaxis, ...])

 if predicted_Y[1] == targets[1]:

 first_correct += 1

 time_matrix = np.zeros((len(targets), len(targets)))

 for i in range(len(targets)):

 for j in range(len(targets)):

 time_matrix[i, j] = input_continuous[i][j+4]

 disparity_score = calculate_disparity_score(targets, predicted_Y.numpy(),

 time_matrix)

 total_loss += route_loss / tf.reduce_sum(y_mask)

 total_accuracy += route_accuracy

 total_disparity_score += disparity_score

 disparity_scores.append(disparity_score)

 # Store predictions and targets

 all_predictions.append(predicted_Y.numpy())

 all_targets.append(targets)

 all_X.append(inputs)

 if route_accuracy > 0.80:

 good_predictions.append(predicted_Y.numpy())

 good_targets.append(targets)

CHAPTER 5

82

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 good_X.append(inputs)

 elif route_accuracy < 0.5:

 bad_predictions.append(predicted_Y.numpy())

 bad_targets.append(targets)

 bad_X.append(inputs)

 progress = ((route_idx + 1) / total_routes) * 100

 print(f'\rProgress: {progress:.2f}% - Route {route_idx + 1}/{total_routes}, '

 f'Loss: {(route_loss / tf.reduce_sum(y_mask)).numpy()}, '

 f'Accuracy: {route_accuracy:.4f}, '

 f'Disparity Score: {disparity_score:.4f}', end='')

 avg_loss = total_loss / total_routes

 avg_accuracy = total_accuracy / total_routes

 avg_disparity_score = total_disparity_score / total_routes

 disparity_score_std = np.std(disparity_scores)

 first_zone_accuracy = first_correct / total_routes

 print(f'\nEvaluation complete. Average Loss: {avg_loss:}, '

 f'Average Accuracy: {avg_accuracy:}, '

 f'Average Disparity Score: {avg_disparity_score:}, '

 f'Disparity Score Std: {disparity_score_std:}')

 return (avg_loss, avg_accuracy, first_zone_accuracy,

 avg_disparity_score, disparity_score_std, disparity_scores,

 all_predictions, all_targets, all_X,

 good_predictions, good_targets, good_X,

 bad_predictions, bad_targets, bad_X)

CHAPTER 5

83

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

For function calculate_disparity_score is to calculate the disparity score given target

sequence and predicted sequence. The mathematical formula is defined in Chapter

6.2.1.

Function calculate_disparity_score

def calculate_disparity_score(actual_transposed, predicted, time_matrix):

 sd = calculate_sequence_deviation(actual_transposed, predicted)

 erp_norm = calculate_erp_norm(actual_transposed, predicted, time_matrix)

 erp_e = calculate_erp_e(actual_transposed, predicted)

 if erp_e == 0: # Perfect prediction

 return 0

 return (sd * erp_norm) / erp_e

Function calculate_sequence_deviation

def calculate_sequence_deviation(actual, predicted):

 n = len(actual)

 c = {stop: idx for idx, stop in enumerate(actual)}

 sd = 0

 for i in range(1, n):

 sd += abs(c[predicted[i]] - c[predicted[i-1]]) - 1

 return (2 / (n * (n - 1))) * sd

Function calculate_erp_norm

def calculate_erp_norm(actual, predicted, time_matrix):

 if len(actual) == 1 or len(predicted) == 1:

 return 0

 first_actual, first_predicted = actual[0], predicted[0]

time_norm = time_matrix[first_actual, first_predicted] / np.sum(

 time_matrix[first_actual, :])

 return calculate_erp_norm(actual[1:], predicted[1:], time_matrix) + time_norm

CHAPTER 5

84

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Function calculate_erp_e

def calculate_erp_e(actual, predicted):

 m, n = len(actual), len(predicted)

 dp = [[0] * (n + 1) for _ in range(m + 1)]

 for i in range(m + 1):

 dp[i][0] = i

 for j in range(n + 1):

 dp[0][j] = j

 for i in range(1, m + 1):

 for j in range(1, n + 1):

 if actual[i-1] == predicted[j-1]:

 dp[i][j] = dp[i-1][j-1]

 else:

 dp[i][j] = 1 + min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1])

 return dp[m][n]

Function k_fold_cross_validation are custom k fold cross validation which call custom

training loops and evaluation functions.

Function k_fold_cross_validation

def k_fold_cross_validation(X, Y, k=5, hidden_size=128, vocab_size=48,

epochs=10, learning_rate=0.0001,

 patience=3, min_delta=0.001):

 kf = KFold(n_splits=k, shuffle=True, random_state=42)

 fold_results = []

 sequence_indices = np.arange(len(X))

 for fold, (train_index, val_index) in enumerate(kf.split(sequence_indices), 1):

 print(f"\nFold {fold}/{k}")

CHAPTER 5

85

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 # Split the data

 X_train, X_val = [X[i] for i in train_index], [X[i] for i in val_index]

 Y_train, Y_val = [Y[i] for i in train_index], [Y[i] for i in val_index]

 # Build and compile the model

 encoder = build_encoder(hidden_size)

 decoder = build_decoder(hidden_size, vocab_size)

 optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

 best_val_loss = float('inf')

 best_encoder = None

 best_decoder = None

 patience_counter = 0

 for epoch in range(epochs):

 print(f"Epoch {epoch + 1}/{epochs}")

 train_model(encoder, decoder, X_train, Y_train, optimizer, 1)

 # Evaluate on validation set

 val_results = evaluate_model(encoder, decoder, X_val, Y_val)

 val_loss, val_accuracy, val_first_zone_accuracy = val_results[0],

 val_results[1], val_results[2]

 val_disparity, val_disparity_std = val_results[3], val_results[4]

 print(f"Validation Set - Loss: {val_loss}, Accuracy: {val_accuracy}, "

 f"First zone Accuracy: {val_first_zone_accuracy},"

 f"Disparity Score: {val_disparity}, Disparity Std: {val_disparity_std}")

 # Check if this is the best model so far

 if val_loss < best_val_loss - min_delta:

 best_val_loss = val_loss

 best_encoder = tf.keras.models.clone_model(encoder)

CHAPTER 5

86

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 best_encoder.set_weights(encoder.get_weights())

 best_decoder = tf.keras.models.clone_model(decoder)

 best_decoder.set_weights(decoder.get_weights())

 patience_counter = 0

 else:

 patience_counter += 1

 # Check if we should stop training

 if patience_counter >= patience:

 print(f"Early stopping triggered at epoch {epoch + 1}")

 break

 final_val_results = evaluate_model(best_encoder, best_decoder, X_val, Y_val)

 (val_loss, val_accuracy, val_first_zone_accuracy,

 val_disparity, val_disparity_std, val_disparity_scores,

 val_predictions, val_targets, val_X,

 good_val_predictions, good_val_targets, good_val_X,

 bad_val_predictions, bad_val_targets, bad_val_X) = final_val_results

 print(f"Final Validation Set - Loss: {val_loss}, Accuracy: {val_accuracy}, "

 f"Disparity Score: {val_disparity}, Disparity Std: {val_disparity_std}")

 fold_results.append({

 'loss': val_loss,

 'accuracy': val_accuracy,

 'first_zone_accuracy': val_first_zone_accuracy,

 'disparity': val_disparity,

 'disparity_std': val_disparity_std

 })

 # Calculate average metrics across all folds

 avg_loss = np.mean([fold['loss'] for fold in fold_results])

CHAPTER 5

87

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 avg_accuracy = np.mean([fold['accuracy'] for fold in fold_results])

 avg_disparity = np.mean([fold['disparity'] for fold in fold_results])

 avg_disparity_std = np.mean([fold['disparity_std'] for fold in fold_results])

 print("\nAverage results across all folds:")

 print(f"Loss: {avg_loss}")

 print(f"Accuracy: {avg_accuracy}")

 print(f"Disparity Score: {avg_disparity}")

 print(f"Disparity Score Std: {avg_disparity_std}")

return fold_results

CHAPTER 5

88

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.7 Result Visualization

Finally, predicted route and target route are used to visualize how the predicted route

compared to target route.

Visualization with Plot Graph

Function plot_route_comparison

def plot_route_comparison(route_idx, predicted_sequences, actual_sequences):

 predicted_route = predicted_sequences[route_idx]

 actual_route = actual_sequences[route_idx]

 # Filter out padded zones (-1)

 predicted_route = [zone for zone in predicted_route if zone != -1]

 actual_route = [zone for zone in actual_route if zone != -1]

 # Plot the sequences

 plt.figure(figsize=(10, 6))

 plt.plot(predicted_route, label="Predicted Route", marker='o', linestyle='--',

color='blue')

 plt.plot(actual_route, label="Actual Route", marker='x', linestyle='-',

color='green')

 plt.title(f"Route Prediction vs Actual (Route {route_idx})")

 plt.xlabel("Zone Index")

 plt.ylabel("Zone ID")

 plt.legend()

 plt.grid(True)

 plt.show()

CHAPTER 5

89

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Example:

Figure 5.2.1 Plot Graph for predicted vs actual at Route 821

Figure 5.2.2 Plot Graph for predicted vs actual at Route 27

CHAPTER 5

90

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Route Visualization with Leaflet

Function create_map_with_sequence

def create_map_with_sequence(X, Y):

 stops_sequence = [X[idx] for idx in Y]

 avg_lat = sum([stop[6] for stop in stops_sequence]) / len(stops_sequence)

 avg_lng = sum([stop[7] for stop in stops_sequence]) / len(stops_sequence)

 folium_map = folium.Map(location=[avg_lat, avg_lng], zoom_start=10)

 stop_coordinates = []

 for stop_idx, stop in enumerate(stops_sequence):

 lat = stop[6]

 lng = stop[7]

 # Construct the stop name

 feature_1 = chr(int(stop[0]) + 64)

 feature_2 = chr(int(stop[1]) + 64)

 feature_3 = str(int(stop[2]))

 feature_4 = str(int(stop[3]))

 name = f"{feature_1}-{feature_3}.{feature_4}{feature_2}"

 color = generate_random_color()

 folium.map.Marker(

 [lat, lng],

 icon=folium.DivIcon(

 icon_size=(50, 60),

 html=f"""

 <div style="

 background-color: {color};

 border-radius: 10px;

 padding: 2px;

 text-align: center;

CHAPTER 5

91

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 font-size: 8pt;

 color: white;

 width: 50px;">

 {stop_idx}
{name}

 </div>"""

)

).add_to(folium_map)

 stop_coordinates.append((lat, lng))

 for i in range(len(stop_coordinates) - 1):

 start_lat, start_lng = stop_coordinates[i]

 end_lat, end_lng = stop_coordinates[i + 1]

 route = get_osrm_route(start_lat, start_lng, end_lat, end_lng)

 folium.PolyLine(locations=route, color='blue', weight=2.5,

 opacity=0.7).add_to(folium_map)

 start_lat, start_lng = stop_coordinates[-1]

 end_lat, end_lng = stop_coordinates[0]

 return_route = get_osrm_route(start_lat, start_lng, end_lat, end_lng)

folium.PolyLine(locations=return_route, color='blue', weight=2.5,

 opacity=0.7).add_to(folium_map)

 return folium_map

CHAPTER 5

92

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Function get_orsm_route

def get_osrm_route(start_lat, start_lng, end_lat, end_lng):

osrm_url = f"http://router.project-osrm.org/route/v1/driving/

 {start_lng},{start_lat};{end_lng},{end_lat}

 ?overview=full&geometries=geojson"

 response = requests.get(osrm_url)

 if response.status_code == 200:

 data = response.json()

 route = data['routes'][0]['geometry']['coordinates']

 route = [(lat, lng) for lng, lat in route] # Convert to [(lat, lng)] format

 return route

 else:

 print(f"Error fetching route: {response.status_code}")

 return []

Function genereate_random_color

def generate_random_color():

return "#{:02x}{:02x}{:02x}".format(random.randint(0, 255),

 random.randint(0, 255), random.randint(0, 255))

CHAPTER 5

93

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Example:

Figure 5.2.3 Actual Route0 shown using Leaflet

CHAPTER 5

94

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.4 Predicted Route0 shown using Leaflet

CHAPTER 5

95

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.5 Actual Route20 shown using Leaflet

CHAPTER 5

96

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.6 Predicted Route20 shown using Leaflet

CHAPTER 5

97

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.8 Implementation Issues and Challenges

Cloud-Based Computing Resources

The project is implemented on Google Colab, a cloud-based Jupyter Notebook. Due to

the nature of cloud-based computing, computing process are strongly reliant on internet

connections. Poor Internet connection or internet outbreaks hinders project progress.

Moreover, Google Colab also comes with idle time constraints given a period of time.

When running time consuming codes, such as model training, and cross validation,

Google Colab may disconnect due to reaching limit of idle time, causing session to be

halted. Therefore, it might be potential bottleneck for the project.

CHAPTER 6

98

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

System Evaluation and Discussion

6.1 Driver Behaviours in Last-Mile Delivery

In this project, data analysis was conducted using the dataset from the Amazon Last

Mile Routing Research Challenge [7]. The dataset consists of over 6,112 actual last-

mile delivery routes, providing valuable insights into how drivers navigate their routes,

particularly in zone-based deliveries. The analysis reveals that within delivery zones,

drivers show a strong preference for completing all stops in a single zone before moving

on to the next. This sequential pattern suggests that driver behavior is heavily

influenced by the structure of the zones rather than by individual package constraints,

such as preferred delivery time windows. For instance, in zone ‘C-3.2B,’ drivers follow

a fixed sequence of stops [1, 2, 3, ..., 9], while zone ‘C-3.1B’ covers stops [10, 11, 12,

..., 18] (refer to Figure 5.1.7). This consistent zone-focused approach implies a

systematic method for reducing route deviations by organizing deliveries within

specific geographic clusters.

 Further analysis into how routes are planned uncovered a hierarchical structure

in the zone IDs used in delivery routes. Each zone ID can be broken down into four

components: the super-super cluster, the super cluster, the cluster, and the individual

zone. For example, in the zone ID ‘D-18.2J,’ the letter ‘D’ represents the super-super

cluster, while ‘D-18’ forms the super cluster, and ‘J’ represents the cluster. The final

decimal value ‘.2’ identifies the specific delivery zone. This hierarchical structure plays

a crucial role in determining the order in which drivers approach their deliveries. The

data indicates that the zone IDs tend to follow either an ascending or descending order,

pointing to a systematic clustering approach that drivers likely follow. This structured

pattern helps minimize deviations by ensuring drivers adhere to an organized route

across multiple clusters and zones.

 Another key finding from the analysis is that over 92.27% of the delivery

packages are time-window insensitive. Out of the 1,457,175 packages, 1,343,182

CHAPTER 6

99

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

lacked specified delivery time windows. This overwhelming percentage suggests that

time-sensitive deliveries are not a major factor influencing most routes. Consequently,

the impact of time-sensitive delivery constraints on driver decisions is minimal,

allowing drivers to focus on other factors such as route efficiency, traffic patterns, and

overall distance traveled.

 In conclusion, the findings emphasize the minimal role that time-sensitive

deliveries play in influencing driver behavior. Instead, driver behavior is primarily

driven by zone-based delivery patterns, where stops within a given zone are completed

sequentially before moving to the next. The hierarchical structure of zone IDs further

supports a systematic approach to delivery route planning, indicating that geographic

clustering of stops is the primary factor affecting route deviations. By understanding

the factors that may cause drivers to deviate from pre-planned delivery routes and last-

mile delivery behavior, we can better select features and preprocess data for model

training. This, in turn, will lead to more accurate and reliable delivery predictions.

CHAPTER 6

100

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2 Model Performance

6.2.1 Performance metrics

Disparity score metrics

For this route prediction problem, the quality of predicted zone sequences is evaluated

using ‘disparity score’, aligning with the Amazon Last Mile Routing Research

Challenge, provided by [5], with the mathematical formula of:

R(A, B) =
SD(A, B) ∙ ERPnorm(A, B)

ERPe(A, B)
 (1)

where (i) the disparity score for the actual sequence A and predicted sequence 𝐵,

 denoted by 𝑅(𝐴, 𝐵); and

 (ii) the sequence deviation between actual sequence A and predicted sequence

 B, denoted as 𝑆𝐷(𝐴, 𝐵) are expressed in following:

SD(A, B) =
2

𝑛(𝑛 − 1)
∑(|𝑐[𝐵𝑖] − 𝑐[𝐵𝑖−1]| − 1)

𝑛

𝑖=2

 (18)

where (i) total number of zones found in a given route, denoted by n;

 (ii) the 𝑖th zone of sequence 𝐵, denoted by 𝐵𝑖;

 (iii) the index of zone 𝐵𝑖 in the actual sequence 𝐴, denoted by 𝑐[𝐵𝑖].

For every perfect predicted case, where sequence 𝐴 is completely equals to sequence 𝐵,

𝑆𝐷(𝐴,𝐵) return value of 0.

Next, the recursive function, Edited Distance with Real Penalty (ERP), denoted by

ERPnorm(A, B) are used to calculate the penalty score for every deviated zone,

compared to the actual sequences. It can be expressed as:

ERPnorm(A, B) = ERPnorm(𝐴2:|𝐴|, 𝐵2:|𝐵|) + TIMEnorm(𝐴1, 𝐵1) (19)

CHAPTER 6

101

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

where the normalized travel time between zone zi and zj, expressed in:

TIMEnorm(𝑧𝑖, 𝑧𝑗) =
TIME(𝑧𝑖, 𝑧𝑗)

∑ TIME(𝑧𝑖, 𝑧𝑗′)𝑗′∈{1,…,𝑛}

 (20)

𝐸𝑅𝑃e(𝐴,𝐵) provide the number of modify operations (i.e., insertions, substitutions,

deletions) needed to convert sequence A to sequence B while computing the recursive

function, ERPnorm(A, B) [5]. Given that the ratio of
ERPnorm(A,B)

ERPe(A,B)
 provides the average

TIMEnorm(𝑧𝑖, 𝑧𝑗) involved in every ERP modification operation. Note that a score of

zero indicates a perfect prediction, hence the lower the metrics tells positive model

performance.

 The motivation for choosing the disparity score over traditional accuracy

metrics as the primary evaluation metric lies in its ability to provide a more meaningful

assessment of route prediction performance. While accuracy metrics focus solely on

how well the predicted route matches the actual sequence, they do not account for the

quality or efficiency of the predictions. In contrast, the disparity score evaluates the

predicted route in terms of its deviation from optimality, penalizing errors based on the

travel distance between the actual and predicted zones at each step. This approach offers

a clearer understanding of "how suboptimal" a predicted route is, emphasizing the

importance of minimizing travel distance and improving overall route efficiency.

Prediction accuracy

Moreover, along with the disparity score, we assess the prediction accuracy of the first

four zones in each given route as every route contains at least four zones. Let the

predicted sequence for the Let the predicted sequence of the 𝑚 th route be 𝐴(𝑚) and the

actual sequence be 𝐵(𝑚). The prediction accuracy of the 𝑖 th zone is defined as:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 =
∑ 𝕝{𝐴𝑖

(𝑚)= 𝐵𝑖
(𝑚)}

𝑀
𝑚=1

𝑀
 (2)

CHAPTER 6

102

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

where 𝑀 is the total number of testing samples, and 𝕝{𝐴𝑖
(𝑚)= 𝐵𝑖

(𝑚)} is an indicator

function that returns 1 when the condition is met and 0 otherwise.

6.2.2 Train Result Evaluation

After model training, the performance of both the Simple RNN E-D and LSTM E-D

with Attention models is evaluated on the training data using two primary metrics:

Disparity Score and Prediction Accuracy for the first four zones in the route. As

explained the disparity score assesses how far the predicted route deviates from the

optimal route, while the prediction accuracy measures the model's ability to correctly

predict the sequence of the first four zones. The evaluation results are obtained and

tabulated, shown in Table 6.1. As shown in Table 6.1, the LSTM E-D with Attention

model outperformed the Simple RNN E-D with a significantly lower mean disparity

score of 0.0091 compared to 0.0209. The smaller standard deviation (0.0059) in the

LSTM E-D with Attention model's disparity score also suggests more consistent

predictions across different routes.

 Moreover, according to Table 6.1, the LSTM E-D with Attention model

demonstrated a higher prediction accuracy across all four zones, particularly achieving

0.190 accuracy for the first zone, but gradually decrease to 0.117 for the fourth zone.

The Simple RNN model, on the other hand, had lower accuracy across the first four

zones, with its best performance being 0.069 for the first zone and declining to 0.057

for the fourth zone. This demonstrates that the LSTM with Attention model is better at

predicting the early part of the route. Based on the result obtained, it suggests that the

LSTM E-D with Attention model offers both lower disparity scores and higher

prediction accuracies, making it a better fit for this route prediction problem on the

training data.

Table 6.1 Model Performance on Training Data

Model Disparity Score Prediction accuracy (zone)

Mean Std. Dev 1st 2nd 3rd 4th

Simple RNN E-D 0.0209 0.0063 0.069 0.055 0.065 0.057

LSTM E-D with Attention 0.0091 0.0059 0.190 0.153 0.136 0.117

CHAPTER 6

103

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.1 and Figure 6.2 shows the disparity score distribution of Simple RNN E-D

Model and LSTM E-D with Attention Model, respectively. Based on the disparity score

distribution for LSTM E-D with Attention Model histogram (shown in Figure 6.2), it

shows that most disparity scores are concentrated between 0.005 and 0.015, with the

mean disparity score of 0.0091 and a median of 0.0081. This indicates that the LSTM

E-D with Attention model produces relatively low disparity scores for most of the

routes, implying that the predicted routes are close to the actual routes. The tight

distribution around the mean shows consistency in the model's performance across

different routes.

 On the other hand, the disparity score distribution for Simple RNN E-D Model

histogram (shown in Figure 6.1) displays a wider spread of disparity scores, with most

routes concentrated between 0.01 and 0.03, with the mean disparity score being 0.021

and a median of 0.020. As comparison, the larger spread in the disparity scores, along

with a higher mean and median compared to the LSTM E-D model, it indicates that the

Simple RNN E-D model is less consistent in its route prediction and more prone to

produces routes that deviate significantly from the optimal route. In addition, the tail of

the distribution extends further, with several routes showing disparity scores greater

than 0.03, which highlights more frequent suboptimal predictions.

Figure 6.1 Disparity Score Distribution of Simple RNN E-D

CHAPTER 6

104

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2 Disparity Score Distribution of LSTM E-D with Attention

6.2.3 Cross-Validation Results

Table 6.2 and Table 6.3 shows the cross-validation results for both the Simple RNN

E-D and LSTM E-D with Attention, respectively. In this evaluation, we used 5-fold

cross-validation, where the training data was split into 5 subsets (folds), and each fold

was used as the validation set while the remaining folds were used for training. The

mean and standard deviation of the disparity score across all folds are reported.

 Based on Table 6.2, it suggests that the Simple RNN E-D model performs fairly

consistent across all the 5 folds. The mean disparity score across multiple folds ranges

from 0.023017 to 0.023764, with the standard deviation around 0.006 across all folds.

The results from the cross-validation confirm the earlier training results, with consistent

disparity scores across all folds. The mean disparity score is around 0.023, indicating a

moderate deviation from the actual route.

CHAPTER 6

105

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 6.2 Simple RNN E-D Cross Validation Results

Model:

Simple RNN

Disparity Score

Mean Std. Dev

Fold 1 0.023460 0.006667

Fold 2 0.023764 0.006907

Fold 3 0.023075 0.006357

Fold 4 0.023017 0.006159

Fold 5 0.023648 0.006748

 On the other hand, the LSTM E-D with Attention model shows stronger

performance across the 5 folds, with lower disparity scores compared to the Simple

RNN, shown in Table 6.3. However, at Fold 3, the model produces a higher disparity

score (0.032001) than the others, which could be due to outliers or more difficult routes

in that fold. Despite the anomaly in Fold 3, the LSTM E-D with Attention model

outperforms the Simple RNN E-D overall, with an average disparity score around 0.009

across most folds. This supports the conclusion that the LSTM model produces more

accurate and efficient route predictions, particularly in comparison to the Simple RNN.

Table 6.3 LSTM E-D with Attention Cross Validation Results

Model:

LSTM with Attention

Disparity Score

Mean Std. Dev

Fold 1 0.009096 0.005643

Fold 2 0.009280 0.005772

Fold 3 0.032001 0.008083

Fold 4 0.009828 0.005921

Fold 5 0.009233 0.005630

 In short, both models show consistency in performance across different folds,

with the LSTM E-D with Attention model having a significant advantage over the

Simple RNN E-D in terms of lower disparity scores.

CHAPTER 6

106

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.4 Test Result Evaluation

Finally, both models (i.e, Simple RNN E-D and LSTM E-D with Attention) were

evaluated on a test set consisting of 906 unseen routes. This evaluation aims to assess

the model's generalization capability by measuring its performance on completely new

data that was not part of the training process. The evaluation results are obtained and

tabulated, shown in Table 6.4. As shown in Table 6.4, Simple RNN E-D model

achieved a mean disparity score of 0.0220 with a standard deviation of 0.0070. This

suggests that while the model can make predictions, the deviation from the optimal

route is moderate. LSTM E-D with Attention model, on the other hand, performed

significantly better, with a mean disparity score of 0.0091 and a standard deviation of

0.0061, indicating that the LSTM E-D with Attention model's predictions on the unseen

test data are much closer to the optimal route compared to the Simple RNN E-D model.

 In terms of prediction accuracy, the Simple RNN E-D model showed a

prediction accuracy of only 0.066 for the first zone, and steadily declined to 0.050 by

the fourth zone. The decline in accuracy highlights the model's difficulty in making

accurate predictions for the later parts of the route. As for LSTM E-D with Attention

model, the model demonstrated a much stronger performance, with prediction accuracy

starting at 0.194 for the first zone and decreasing more gradually to 0.128 by the fourth

zone.

Table 6.4 Model Performance on Test Data

Model Disparity Score Prediction accuracy (zone)

Mean Std. Dev 1st 2nd 3rd 4th

Simple RNN 0.0220 0.0070 0.066 0.057 0.061 0.050

LSTM with Attention 0.0091 0.0061 0.194 0.152 0.151 0.128

Figure 6.3 and Figure 6.4 shows the disparity score distribution of Simple RNN E-D

Model and LSTM E-D with Attention Model, respectively. Based on the disparity score

distribution for LSTM E-D with Attention Model histogram (shown in Figure 6.4),

most disparity scores are concentrated between 0.005 and 0.015, with a mean disparity

score of 0.0091 and a median of 0.0079. It indicates a relatively symmetrical

CHAPTER 6

107

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

distribution with a slight rightward skew. Most of the routes exhibit low disparity, with

very few routes deviating significantly from the optimal route. This distribution further

demonstrates the LSTM model's efficiency, making predictions close to the actual route

and producing only minor deviations.

Figure 6.3 Disparity Score Distribution of Simple RNN E-D

Figure 6.4 Disparity Score Distribution of LSTM E-D with Attention

CHAPTER 6

108

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.5 Benchmarking

In the benchmark comparison, the LSTM E-D with Attention model shows respectable,

though not competitive, results when compared to other state-of-the-art models. The

prediction accuracy for the LSTM E-D with Attention model starts at 0.194 for the first

zone and decreases to 0.128 for the fourth zone. In contrast, the model proposed by [5]

using self-proposed Algorithm achieves a notably higher performance, with a

consistent prediction accuracy starting at 0.320 for the first zone and 0.314 at the fourth

zone.

 It is important to note that the disparity scores for the LSTM E-D with Attention

and Simple RNN E-D models in this project are evaluated at the zone level, while the

benchmark models' disparity scores are evaluated at the stop level. This difference in

evaluation granularity indicates that our models focus on optimizing predictions across

broader zones, whereas the benchmark models assess performance on a more detailed,

stop-by-stop basis. As a result, direct comparison of disparity scores between the

models is excluded to avoid misleading conclusions due to this difference in evaluation

criteria.

Table 6.5 Model Performance with Benchmark model

Model Disparity Score Prediction accuracy (zone)

Mean Std. Dev 1st 2nd 3rd 4th

[5] Tour TSP 0.044 0.0289 0.207 0.185 0.163 0.168

[5] Open-tour TSP 0.043 0.0302 0.270 0.244 0.227 0.232

[12] 0.0198 N/A N/A N/A N/A N/A

[5] using Greedy

Algorithm

0.0417 0.0306 0.241 0.231 0.224 0.221

[5] using Algorithm

proposed

0.0369 0.0301 0.320 0.310 0.303 0.314

Simple RNN 0.0220 0.0070 0.066 0.057 0.061 0.050

LSTM with Attention 0.0091 0.0061 0.194 0.152 0.151 0.128

CHAPTER 6

109

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.3 Objective Evaluation

Through extensive data analysis, we discovered that time-sensitive deliveries have

minimal influence on driver behavior. Instead, the primary factor influencing delivery

routes is zone-based delivery patterns. Drivers tend to complete all stops within a

designated delivery zone sequentially before moving to the next, highlighting the

geographic clustering of stops as a possible factor. The hierarchical structure of zone

IDs further supports this behavior. This insight into the last-mile delivery behavior and

deviations allows us to refine feature selection and data preprocessing for improved

model accuracy and reliability in predicting delivery routes.

 Then, we developed and implemented a Simple RNN encoder-decoder model

to predict delivery routes. While the model was able to capture some of the delivery

route patterns, its performance in terms of route optimization was moderate. The model

achieved a mean disparity score of 0.0220 with a standard deviation of 0.0070,

indicating some deviation from the optimal route. The prediction accuracy for the first

zone was 0.066, but it steadily declined to 0.050 by the fourth zone, illustrating the

model's limitations in retaining long sequential data and making accurate predictions

for the later stages of the route.

 After evaluating the Simple RNN model, we identified its shortcomings,

particularly in maintaining prediction accuracy for longer routes. As a result, we

explored an LSTM encoder-decoder model with an attention mechanism. This model

significantly outperformed the Simple RNN, achieving a mean disparity score of

0.0091 with a standard deviation of 0.0061. The LSTM model's prediction accuracy

started at 0.194 for the first zone, with a more gradual decline to 0.128 by the fourth

zone.

Chapter 7

110

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7

Conclusion

In conclusion, in the entire supply chain, last-mile logistics are the finale character to

deliver the final goods to the end users. Although the modern logistics industry utilizes

operation research tools to minimize operation costs, last-mile logistics remains as the

most expensive part of the entire supply chain. However, ever since pandemic, e-

commerce had taken off, so as the demands for last-mile logistics remain soaring. In

topics of last-mile optimization, delivery driver, with their tacit experience, could

provide valuable real-life on-the-road knowledge to the table. The objective of the

project was to study and derives possible factors causing deviation of pre-planned

delivery routes by drivers. The motivation behind this project was to develop a machine

learning model that able to capture drivers’ tacit knowledges from historical delivery

routes, thereafter, continuously optimize the as-is last-mile delivery frameworks and

increase efficiency of the overall supply chain. In this project, we proposed a Simple

R-NN model to output possible delivery routes, preferable by delivery drivers, learning

from a set of historical delivery routes provided by Amazon. However, the project

process faced challenges as the limitation of cloud computing unit and resources (i.e.,

idle time constraint), that hinders project progress when executing time consuming

tasks. For future work, we will include focusing on fine-tuning (parameter tuning), as

well as applied greedy algorithm, adapted from [5], into the proposed model in this

project, continuous research effort on models that allows making inference on possible

factors affects drivers’ deviations from pre-planned routes.

REFERENCES

111

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] S. Srivatsa Srinivas and M. S. Gajanand, “Vehicle routing problem and driver

behaviour: a review and framework for analysis,” Transp Rev, vol. 37, no. 5, pp.

590–611, Sep. 2017, doi: 10.1080/01441647.2016.1273276.

[2] J. W. Ohlmann and B. W. Thomas, “A Compressed-Annealing Heuristic for the

Traveling Salesman Problem with Time Windows,” INFORMS J Comput, vol.

19, no. 1, pp. 80–90, Feb. 2007, doi: 10.1287/ijoc.1050.0145.

[3] Y. Liu, F. Wu, Z. Liu, K. Wang, F. Wang, and X. Qu, “Can language models be

used for real-world urban-delivery route optimization?,” Innovation, vol. 4, no.

6, Nov. 2023, doi: 10.1016/j.xinn.2023.100520.

[4] P. Dieter, M. Caron, and G. Schryen, “Integrating driver behavior into last-mile

delivery routing: Combining machine learning and optimization in a hybrid

decision support framework,” Eur J Oper Res, vol. 311, no. 1, pp. 283–300, Nov.

2023, doi: 10.1016/j.ejor.2023.04.043.

[5] B. Mo, Q. Wang, X. Guo, M. Winkenbach, and J. Zhao, “Predicting drivers’

route trajectories in last-mile delivery using a pair-wise attention-based pointer

neural network,” Transp Res E Logist Transp Rev, vol. 175, Jul. 2023, doi:

10.1016/j.tre.2023.103168.

[6] B. P. V. Samson and Y. Sumi, “Exploring Factors that Influence Connected

Drivers to (Not) Use or Follow Recommended Optimal Routes,” in Proceedings

of the 2019 CHI Conference on Human Factors in Computing Systems, New

York, NY, USA: ACM, May 2019, pp. 1–14. doi: 10.1145/3290605.3300601.

[7] D. Merchán et al., “2021 Amazon Last Mile Routing Research Challenge: Data

Set,” Transportation Science, vol. 58, no. 1, pp. 8–11, Jan. 2024, doi:

10.1287/trsc.2022.1173.

[8] R. Salman, F. Ekstedt, and P. Damaschke, “Branch-and-bound for the

Precedence Constrained Generalized Traveling Salesman Problem,” Operations

Research Letters, vol. 48, no. 2, pp. 163–166, Mar. 2020, doi:

10.1016/j.orl.2020.01.009.

REFERENCES

112

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[9] Y. Yuan, D. Cattaruzza, M. Ogier, and F. Semet, “A branch-and-cut algorithm

for the generalized traveling salesman problem with time windows,” Eur J Oper

Res, vol. 286, no. 3, pp. 849–866, Nov. 2020, doi: 10.1016/j.ejor.2020.04.024.

[10] S. Nagula, “Last Mile Routing Research Challenge,” Medium.

[11] William Cook, Stephan Held, and Keld Helsgaun, “Just Passing Through |

Routes.”

[12] William Cook, Stephan Held, and Keld Helsgaun, “Just Passing Through |

Routes.”

APPENDIX

A-1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 2

Student Name & ID: CHAN TZE KEET, 2004193

Supervisor: Ms. Tseu Kwan Lee

Project Title: LAST-MILE ROUTE OPTIMISATION WITH MACHINE

LEARNING

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Code tidying and review from FYP I.

2. WORK TO BE DONE

Getting more study materials for further research.

3. PROBLEMS ENCOUNTERED

No problem encountered.

4. SELF EVALUATION OF THE PROGRESS

Lack of knowledge to proceed, for model improvement.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

A-2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 4

Student Name & ID: CHAN TZE KEET, 2004193

Supervisor: Ms. Tseu Kwan Lee

Project Title: LAST-MILE ROUTE OPTIMISATION WITH MACHINE

LEARNING

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Successfully retrieved important feature (i.e., travel times between stops) from data

file.

2. WORK TO BE DONE

Perform data cleaning and transformation with newest feature for model feeding.

3. PROBLEMS ENCOUNTERED

No problem encountered.

4. SELF EVALUATION OF THE PROGRESS

More attention required for better project progression.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

A-3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 6

Student Name & ID: CHAN TZE KEET, 2004193

Supervisor: Ms. Tseu Kwan Lee

Project Title: LAST-MILE ROUTE OPTIMISATION WITH MACHINE

LEARNING

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Done data processing and transformation.

2. WORK TO BE DONE

Build model.

3. PROBLEMS ENCOUNTERED

No problem encountered.

4. SELF EVALUATION OF THE PROGRESS

More attention required for better project progression.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

A-4

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 8

Student Name & ID: CHAN TZE KEET, 2004193

Supervisor: Ms. Tseu Kwan Lee

Project Title: LAST-MILE ROUTE OPTIMISATION WITH MACHINE

LEARNING

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Model Building.

2. WORK TO BE DONE

Model Training and Evaluation.

3. PROBLEMS ENCOUNTERED

Limited Cloud Computing Unit from Google Colab, which hinder the project

progression.

4. SELF EVALUATION OF THE PROGRESS

More attention required for better project progression.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

A-5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 10

Student Name & ID: CHAN TZE KEET, 2004193

Supervisor: Ms. Tseu Kwan Lee

Project Title: LAST-MILE ROUTE OPTIMISATION WITH MACHINE

LEARNING

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Model Evaluation.

2. WORK TO BE DONE

Research on model. Design better model architecture.

3. PROBLEMS ENCOUNTERED

Masking problem in model leading to bad route prediction.

4. SELF EVALUATION OF THE PROGRESS

More attention required for better project progression.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

A-6

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 12

Student Name & ID: CHAN TZE KEET, 2004193

Supervisor: Ms. Tseu Kwan Lee

Project Title: LAST-MILE ROUTE OPTIMISATION WITH MACHINE

LEARNING

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Design additional model for better prediction.

2. WORK TO BE DONE

Model Evaluation and Report writing.

3. PROBLEMS ENCOUNTERED

No problem encountered.

4. SELF EVALUATION OF THE PROGRESS

On track.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

A-7

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

PLAGARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

PLAGARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

CHAN TZE KEET

ID Number(s)

2004193

Programme / Course BACHELOR OF COMPUTER SCIENCE (HONOURS)

Title of Final Year Project LAST-MILE ROUTE OPTIMISATION WITH MACHINE LEARNING

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceed
the limits approved by UTAR)

Overall similarity index: 15 %

Similarity by source

Internet Sources: 11 %
Publications: 9 %
Student Papers: 8 %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required, and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note: Supervisor/Candidate(s) is/are required to provide softcopy of full set of the

originality report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the

Final Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor Signature of Co-Supervisor

Name:__________________________ Name:__________________________

Date: ___________________________ Date: ___________________________

Form Title: Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

Ms. Tseu Kwan Lee

11/09/2024

FYP2 CHECKLIST

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FYP 2 CHECKLIST

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB04193

Student Name CHAN TZE KEET

Supervisor Name MS. TSEU KWAN LEE

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)
√ List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
√ Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)
√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in
my report.

(Signature of Student)
Date: 11/09/2024

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1 Project Background
	1.1 Introduction
	1.2 Problem Statement and Motivation
	1.3 Research Objectives
	1.4 Project Scope
	1.5 Contributions
	1.6 Report Organisation

	CHAPTER 2 Literature Review
	2.1 Previous Work
	2.1.1 Delivery route prediction using machine learning models
	2.1.2 Delivery route optimization

	2.2 Results
	2.3 Summarization of findings
	2.4 Proposed Method

	CHAPTER 3 System Methodology
	3.1 Sequence-to-sequence (seq2seq) modeling framework
	3.2 Simple RNN Encoder-Decoder (Simple RNN E-D) Model
	3.2.1 Simple RNN encoder
	3.2.2 Simple RNN decoder

	3.3 LSTM Encoder-Decoder with Pair-Wise Attention Model
	3.3.1 LSTM encoder
	3.3.2 LSTM decoder
	3.3.3 Pair-Wise Attention Layer

	CHAPTER 4 Experimental Setup
	4.1 System Requirements
	4.1.1 Hardware
	4.1.2 Software
	4.1.3 Data Source

	4.2 System Design
	4.2.1 Data Analysis
	4.2.2 Data Preprocessing
	4.2.2 Model Building and Training
	4.2.3 Model Evaluation

	4.3 Timeline

	CHAPTER 5 System Implementation
	5.1 Data Findings
	5.2 Data Preprocessing
	5.3 Data Transformation and Padding
	5.3.1 Data Transformation
	5.3.2 Padding

	5.4 Model Building
	5.4.1 Simple RNN Encoder-Decoder
	5.4.2 LSTM Encoder-Decoder with Attention

	5.5 Model Training
	5.6 Model Evaluation
	5.7 Result Visualization
	5.8 Implementation Issues and Challenges

	System Evaluation and Discussion
	6.1 Driver Behaviours in Last-Mile Delivery
	6.2 Model Performance
	6.2.1 Performance metrics
	6.2.2 Train Result Evaluation
	6.2.3 Cross-Validation Results
	6.2.4 Test Result Evaluation
	6.2.5 Benchmarking

	6.3 Objective Evaluation

	CHAPTER 7 Conclusion
	REFERENCES
	APPENDIX
	PLAGARISM CHECK RESULT
	FYP 2 CHECKLIST

