LAST-MILE ROUTE OPTIMISATION WITH MACHINE LEARNING
By
CHAN TZE KEET

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER SCIENCE (HONOURYS)

Faculty of Information and Communication Technology
(Kampar Campus)

JUNE 2024

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

LAST-MILE ROUTE OPTIMISATION
USING MACHINE LEARNING

Academic Session: M

CHAN TZE KEET

(CAPITAL LETTER)

declare that I zllow this Final Year Project Fepart to be kept in

Universith Tunkn Abdul Fahman Library subject to the regulations as follows:
1. The dizsertation is a property of the Library.
2. The Library is allowed to make coples of this dissertation for academic purposes.

WVerified by,

o %

-

(Author's signature) {Supervisor's signature)

Address:
58, Jalan Pasir Kuning,

Taman Kaya Shatin, Ms Tseu Kwan Lee

31650 Ipoh, Perak Supervisor's name

Dare. | 11/09/2024 . 11/09/2024

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 11/09/2024

SUBMISSION OF FINAL YEAR PROJECT

It is hereby certified that _ CHAN TZE KEET (ID No: __20ACB04193) has completed this
final year project entitled “ LAST-MILE ROUTE OPTIMISATION WITH MACHINE
LEARNING ” under the supervision of MS. TSEU KWAN LEE (Supervisor) from the

Department of _ Computer Science , Faculty of _Information And Communication Technology.

I understand that University will upload softcopy of my final year project in pdf format into UTAR

Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

/
- / ,4

L)
L./

/
/’j/ l'/

(CHAN TZE KEET)

iii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “LAST-MILE ROUTE OPTIMISATION WITH
MACHINE LEARNING” is my own work except as cited in the references. The report has
not been accepted for any degree and is not being submitted concurrently in candidature for

any degree or other award.

ok

Signature : g
Name : CHAN TZE KEET
Date : 11-09-2024

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Ms. Tseu Kwan
Lee, who has given me this bright opportunity to engage in a route optimisation project,
utilising machine learning techniques. Thank you for the guidance, patience, and
understandings throughout the project. This project provides me the opportunity to conduct
extensive research on existing real-world application of machines learning techniques, to be
specific, logistics field. A million thanks to you. Besides, | also would like to thank my parents

and my family for their love, support, and continuous encouragement throughout the course.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

Ever since COVID-19 pandemic, online shopping had been skyrocketed. To handle the
enormous volume of deliveries, last-mile delivery route planning and optimization had become
more significant than ever for logistics services. Last-mile logistics are referring to the final
stage of the delivery process, where goods are transported from a distribution hub to the end
destination, typically a residential or commercial address. Last-mile logistics had always been
the costliest part in the overall supply chain. Numerous last-mile route optimization
models/frameworks are proposed and been practiced in logistics services, to reduce operation
costs while attempt to fulfill customers’ satisfaction. However, existing pure optimization
frameworks often overlooked that in real-world practices, the prescribed routes may be not
followed by delivery drivers, as they may prioritize personal knowledges and experiences.
Deviation of prescribed delivery routes by delivery drivers may be due to various underlying
reasons, including but not limited to traffics conditions, and customers’ preferences. In this
project, we proposed a Simple R-NN model to uncover the underlying relationship/pattern
between customers’ acceptable delivery time windows and deviations of prescribed delivery
routes by drivers. The proposed model, Simple R-NN model aims to predicts possible delivery
routes by drivers, then output an optimized delivery route that seems acceptable for the drivers

to actual adapts in actual delivery operation.

vi
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE

REPORT STATUS DECLARATION FORM
DECLARATION OF ORIGINALITY
ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

CHAPTER 1 PROJECT BACKGROUND

11
1.2
1.3
1.4
1.5
1.6

Introduction

Problem Statement and Motivation
Research Objectives

Project Scope

Contributions

Report Organisation

CHAPTER 2 LITERATURE REVIEW

2.1

2.2
2.3
2.4

Previous Works

2.1.1 Delivery route prediction using machine
learning model

2.1.2 Delivery route optimization

Results

Summarization of findings

Proposed Method

CHAPTER 3 SYSTEM METHODOLOGY

3.1 Sequence-to-sequence (seg2seq) modelling framework
3.2 Simple RNN Encoder-Decoder (Simple RNN E-D) Model

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Vi

vii

xii

Xiii

A D D W N R R

o1

10
11
13
15

16
16
16

Vii

3.3

3.2.1 Simple RNN encoder
3.2.2 Simple RNN decoder

LSTM Encoder-Decoder with Pair-Wise Attention Model

3.3.1 LSTM encoder
3.3.2 LSTM decoder
3.3.3 Pair-Wise Attention Layer

CHAPTER 4 EXPERIMENTAL SETUP

4.1

4.2

4.3

System Requirements

4.1.1 Hardware

4.1.2 Software

4.1.3 Data Source

System Design

4.2.1 Data Analysis

4.2.2 Data Preprocessing

4.2.3 Model Building and Training
424 Model Evaluation

Timeline

CHAPTER 5 SYSTEM IMPLEMENTATION

5.1
5.2
5.3

5.4

5.5
5.6
5.7
5.8

Data Findings
Data Preprocessing

Data Transformation

5.3.1 Data Transformation
5.3.2 Padding
Model Building

54.1 Simple RNN Encoder-Decoder

54.2 LSTM Encoder-Decoder with Attention
Model Training

Model Evaluation

Result Visualization

Implementation Issues and Challenges

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

17
18

20
20
21

23
23
23
23
24
29
29
30
31
31
32

35
35
46
55
55
57
60
60
64
72
78
88
97

viii

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION
6.1 Driver Behaviours in Last Mile Delivery
6.2 Model Performance
6.2.1 Performance metrics
6.2.2 Train Result Evaluation
6.2.3 Cross-Validation Results
6.2.4 Test Result Evaluation
6.2.5 Benchmarking

6.3 Objective Evaluation

CHAPTER 7 CONCLUSION
REFERENCES
APPENDIX
Al Weekly Report
A2 Poster
PLAGARISM CHECK RESULT
CHECK LISTS

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

98

98
100
100
102
104
106
108
109

110
111

A-1
A-7

Figure Number

Figure 2.1.1
Figure 2.1.2

Figure 2.1.3

Figure 2.1.4
Figure 2.1.5

Figure 2.1.6

Figure 2.1.7

Figure 2.2.1
Figure 3.2
Figure 4.1.1

Figure 4.1.2
Figure 4.2.1
Figure 4.2.2
Figure 4.3.1
Figure 4.3.2
Figure 5.1.1

Figure 5.1.2

Figure 5.1.3

Figure 5.1.4
Figure 5.1.5

LIST OF FIGURES

Title

Overall framework of the route prediction model by [3].

Tailored chain-reaction-based algorithm, proposed by
[3].

Overall architecture of attention-based pointer NN,
proposed by [5].

Route Sequence Inference algorithm, by [5].

Features applied in inter-zone sequence prediction, by
[4].

Architecture model of feedforward NN model, proposed
by [4].

Best Hyperparameters found for NN model, using ASHA
algorithm.

Pair-wise Attention-based NN model Performance Table.
Overall architecture of Simple RNN E-D Model

ERD for Amazon Last-Mile Routing Research Challenge
Dataset .

Sample Delivery Route, in Irvine, California.

Overall project framework.

Steps involved in Data Preprocessing.

Gantt Chart for Project 1.

Gantt Chart for Project 2.

Range of delivery package without time windows for
each route.

Distribution of Number of Packages with Time Window
per Route

Range of delivery package for each route.

Distribution of Number of Stops per Route.

Distribution of Number of Zone per Route.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

(o]

12
17
25

26
29
30
33
34

38

38

39
40

Figure Number

Figure 5.1.6
Figure 5.1.7

Figure 5.1.8

Figure 5.1.9
Figure 5.2.1
Figure 5.2.2
Figure 5.2.3
Figure 5.2.4
Figure 5.2.5
Figure 5.2.6
Figure 6.1

Figure 6.2

Figure 6.3
Figure 6.4

Title Page

Function for Extraction Zone Data Features. 41
Zone ID Order sequence, aggregated from stop sequence 42
for Routel
Zone ID Order sequence, aggregated from stop sequence 43
for Route2

Zone ID Order sequence for Route0 44
Plot Graph for predicted vs actual at Route 821 89
Plot Graph for predicted vs actual at Route 27 89
Actual Route0 shown using Leaflet 93
Predicted RouteO shown using Leaflet 94
Actual Route20 shown using Leaflet 95
Predicted Route20 shown using Leaflet 96
Disparity Score Distribution of Simple RNN E-D 103

Disparity Score Distribution of LSTM E-D with 104
Attention
Disparity Score Distribution of Simple RNN E-D 107
Disparity Score Distribution of LSTM E-D with 107
Attention

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xi

LIST OF TABLES

Table Number Title Page
Table 2.3.1 Summary of Route Prediction and Optimization Studies. 13
Table 4.1.1 Specifications of laptop. 23
Table 4.1.2 Data Description on provided Amazon Last-Mile 27
Routing Research Challenge Dataset

Table 5.1 Zone Order sequence for Route0, arranged by cluster 45
Table 6.1 Model Performance on Training Data 102
Table 6.2 Simple RNN E-D Cross Validation Results 105
Table 6.3 LSTM E-D with Attention Cross Validation Results 105
Table 6.4 Model Performance on Test Data 106
Table 6.5 Model Performance with Benchmark model 108

xii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TSP

VRP
TSPTW
TSPTW-Dev
VNS

ML

NLP

NN

ReLU
ALMRRC
API

US

ERD
LSTM
GIGO
FYP

LIST OF ABBREVIATIONS

Travelling Salesman Problem

Vehicle Routing Problem

Travelling Salesman Problem with Time Windows
Travelling Salesman Problem with Time Windows and Deviation
Variable Neighborhood Search

Machine Learning

Natural Language Processing

Neural Network

Rectified Linear

Amazon Last-Mile Routing Research Challenge
Application Programming Interface

United States

Entity Relationship Diagram

Long Short-Term Memory

Garbage In Garbage Out

Final Year Project

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xiii

CHAPTER 1

CHAPTER 1

Project Background

1.1 Introduction

In the intricate dance of supply chains, last-mile delivery is where the grand finale
unfolds. It’s the moment when a product or goods, routed through factories,
warehouses, and highways, finally reaches to their end users. While remaining as the
cost driver of the overall supply chain, a continuous rise demanding for last-mile
delivery operations are observed. [1] suggested that the global parcel volume is
projected to hit a staggering 200 billion by 2025. Moreover, last-mile delivery also
accountable to customer satisfactory towards both the business and partnering logistics
company. Nowadays, most online customers are expecting swifter yet reliable
deliveries. In short, the study of optimization on last-mile logistics are pivotal for the
growth of business and then overall economy.

Travelling Salesman Problem (TSP) is a classic combinatorial optimization
problem in mathematics and computer science, where given a scenario of a salesperson
are tasked to visit a set of cities (location points) and returns to the starting point while
covering the shortest possible route. In the context of last-mile delivery, this translates
to finding the most efficient path for a delivery agent to serve multiple customers and
return to the delivery centre. For a long time, TSP models had been widely practiced
optimizing traditional logistics criteria like overall travel time [2].

Despite that, [3] points out that, real-world delivery route optimization goes
beyond only identifying the shortest delivery route. Real-world factors, including but
not limited only to traffics, parking, as well as customer delivery preferences should be
considered in last-mile delivery route optimization. [3], [4] also mentioned that by
leveraging drivers’ delivery routes patterns, it may have a positive influence on real-

world delivery route optimization.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

1.2 Problem Statement and Motivation

Inefficient deliveries in the last mile of the supply chain had grown significant concern
over time for businesses across the world, as possible leads to collapsed operations,
increased in delivery costs, etc.

In recent years, extensive research on last-mile delivery route optimization had
been done, covering approaches such as TSP or vehicle routing problem (VRP), in
regards of both computational costs and solution quality [5]. Most of the corresponding
solutions prioritize optimization on traditional logistics factors such as depot. However,
the studies often overlook the driver on-road knowledge and behavior, the often-
underestimated attributes in the optimization equation [4]. This is supported by [3], [4],
[5], where the studies mentioned that, in practice, most of the drivers tend to deviate
from provided optimal routes, prioritizing to drivers’ personal knowledge and daily
experience gained on the delivery area. When considering of on-road factors, such as
knowledge on temporal traffic/road conditions, drivers’ deviations may lead to possible
profit gain in operation. On the contrary, given drivers’ actual routes inferior to
suggested routes may lead to operating loss. According to a study on daily commuting
habits of drivers in both Japan and the Philippines conducted by [6], they concluded
that drivers tend to deviate from recommendations routes by the navigation system in
favor of familiar routes. Still, drivers’ deviation of prescribed route had raised

uncertainties in context of last-mile route optimization.

In the meantime, to provide quality-of-life improvements to their customers,
logistics providers nowadays do provide preferred delivery time window options for
customers. However, having delivery time preferences add complexity into last-mile
route optimization. To demonstrate, given a delivery zone, there will be various
delivery time preferences by the customers. In a business standpoint, other than
minimizing operational costs, maximizing customers satisfactions are key in

organizational success.

In [3], [4], [5], using machine learning models approach, by learning drivers’
delivery route pattern, to achieve last-mile delivery optimization while allowing
drivers’ deviations on prescribed route, to some extent. However, with further studies,

on the effects of real-world factor (customer preferences/acceptable delivery time

2
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

window) on delivery drivers’ deviations on prescribed route, may provide useful

insights for stakeholders, improve state-of-the-art last-mile route optimization system.

The project aims to introduce a novel model for driver’s delivery route
predictions and optimizations used in last-mile delivery, using machine learning
technique. The motivation of this projects is to continuously optimize the as-is last-mile
delivery frameworks and increase efficiency of overall supply chain. To achieve such
goal, the expected outcome in this project is to output a drivers’ delivery routes
prediction and optimization model, based on the driving pattern from historical delivery
data. From the model’s output, then imply the underlying factor, specifically customers’
acceptable delivery time windows, and its effects on drivers’ deviation of prescribed

routes.

1.3 Research Objectives

The aim of the thesis is to explore the effects of real-world factors on possible delivery
routes deviations by drivers. The ultimate intention of the thesis is to enable effective
minimizing operation costs in real-world last-mile logistics, while maximizing business

profit and growth from achieving high customer satisfactory.
The specific research objectives of last-mile route optimization model are:

Q) To study and derives the possible factors affecting deviation of delivery
routes by drivers (i.e., customer acceptable delivery time windows) from the
actual drivers’ delivery routes patterns.

(i) To proposed Simple Recurrent Neutral Network (Simple-RNN) for this
project that able to identify the drivers’ delivery routes pattern and performs
routes prediction and optimization tasks.

(ili) Toevaluate the proposed solution in terms of disparity performance metrics.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

1.4 Project Scope

The model proposed will be developed in Python programming language on Google
Collaboratory. In this project, machine learning techniques will be utilised to learn
drivers’ delivery pattern from historical real-world data, to output a prediction on
drivers’ possible delivery routes for last-mile delivery. From the model’s output, we
then study and identify relationships between customer acceptable delivery time
windows and the drivers’ delivery routes patterns. By having better understanding on
the effects of real-world factors towards deviations of prescribed delivery routes, could

improve last-mile route optimization model and being practiced in real world scenarios.

15 Contributions

Our project aims to explicitly study and understand the effects of customers’ acceptable
delivery time windows on drivers’ deviation on prescribed routes, by utilizing machine
learning model to unfold the relationship between them. It will provide useful insights
for real-world last-mile route optimization as identifying and realizing how customers
preferences can impacts the overall actual delivery route by drivers. This project also
aims to perform predictions on potential delivery routes by drivers and utilizing
optimization approach used in operation research to optimize the best delivery routes
for drivers. By learning drivers’ delivery patterns, it allows actual adaptations of

prescribed routes by drivers in real-world delivery.

1.6 Report Organisation

The remainder of this report is structured as follows. In Chapter 2, we reviewed
previous research publications, methodologies proposed related to this paper. In
Chapter 3, we covered our proposed methodology, including a detailed discussion of
the model architecture. In Chapter 4, we present the project setup and flow. In Chapter
5, we discuss the system implementation in detail. Chapter 6 provides the model
evaluation and discussion of the results. Finally, Chapter 7 concludes the report with a

summary of the entire project.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

CHAPTER 2

Literature Review

2.1 Previous Work

2.1.1 Delivery route prediction using machine learning models

As mentioned in Chapter 1, capturing tacit knowledges are crucial for future last-mile
route optimisation system. This is due to traditional last-mile routes optimisation
systems simply does not take in accounts of real-world factors faced by delivery drivers
(e.g. temporal traffic conditions, drivers’ preferences). In recent years, several research,
including, but not limited only to [3], [4], [5], by feeding in machine learning models
with real-world delivery routes sequences, in order to capture and predicts possible

delivery route being practiced by drivers.

[3] proposed, by transforming historical delivery routes data into a natural
language sentence, (i.e., in a delivery route, each delivery stops are represented as a
“word” element, and “word” element are arranged in exact order based on the actual
delivery route order.), following with the use of Word2Vec approach in natural
language processing (NLP) to learn vector representations of “words” in delivery
behaviour sentence, and finally the real-world delivery route are inferred from the
output word vector (from previous step), utilising a tailored chain-reaction-based

algorithm. Figure 2.1.1 demonstrates the overall framework of the proposed model.

The idea of treating every zone or delivery station in a delivery route as an
element found in sentence, and word ordering in sentences are similar to the drivers’
travel trajectories, are proposed by [3]. Then, by utilizing Word2Vec algorithms, found
commonly in natural language processing (NLP), to learn the vector representation of
‘word’ elements in a delivery behaviour ‘sentences’. After obtaining the word vector,
inference on delivery behaviour are done based on a tailored chain-reaction-based

algorithm.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Repr ion of delivery behavi
F Realyardicelveniotis \ Delivery behavior sentence
o T_, $!
TR JEESCENES > |
L o
: d«—o0+0 : ﬁﬂ[ﬂ
,,,,,,,,,,,,,,,,,,,,,,,,,,, 6—0+0 |

Learning of delivery behavior ’

Word vector

--9 .

Inferred delivery sequence

Word in the delivery
behavior sentence

Inference of delivery behavior '

Word vectors for new delivery

i) - W

Tailored chain reaction-based algorithm

Figure 2.1.1 Overall framework of the route prediction model by [3].

The algorithm proposed by [3], elaborate in Figure 2.1.2, took inspiration from
basic stages of chain rection, namely initiation, propagation, and termination. Given an
unsorted zone sequence, as an initiation, delivery station are always the starting node.
From there, propagation phase, where the algorithm, paired with word vectors obtained
from earlier stages, it will iteratively find the next delivery zones. Finally, iterative

search of next delivery zones come to termination when all zones are covered.

Algorithm 1. Tailored chain-reaction-based algorithm

Input: Word vector for the delivery station vg, word vector for zone v, €
W\{vq}, delivery station ID z§, and zone ID z}, e D"\{z}}.

Output: Zone ID sequence.
1: Initialization: R < {z5}, S«{va}, r<vp

2: while D* — R+ do .
Figure 2.1.2

3: Find max similarity(r, vm)
VmE - - -
Tailored chain-reaction-

4: Find zone ID z;;, that corresponds to vy, then output z;,

5:R—RU{z5} based algorithm,
6:S=SU {vn} proposed by [3].
T re—vpy

8: end while

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

In [5], authors use combinational of seq2seq modelling and pair-wise attention-
based pointer neural network (NN) that learn both local (ASNN Attention-based Spatial
NN) and global (Encoder-Decoder LSTM) relationship between delivery stops. Then,
using greedy algorithm to generate possible delivery sequences with different initial
stops (to improve model’s accuracy), and select the one with the lowest operational cost
[5]. It is worth noting that [3], [5] approaches are to tackle interzone sequencing only
and assuming drivers always take optimal routes in intrazonal level due to principle of

local optimality.

For model training, [5] introduced a seq2seq modelling framework, for an
arbitrarily ordered sequence as an input, the seq2seq model, with a recurrent neural
network, computes the conditional probabilities of actual route trajectories (cy, ..., cn)
given S (all training routes), and theta, 6 (parameters learnt by empirical risk
minimization). Then, [5] uses two LSTM layers, encoder-decoder combo, having time
step = 1, obtaining a vector representation by reading input sequence, then extracts the
output sequence. Inherently, LSTM encoder-decoder, embeds input sequence to hidden
vectorization, are powerful algorithm to obtain the global patterns of the input data. In
[5], they proposed by adding attention technique (i.e., pair-wise), masking over the
input sequence then make predictions with LSTM encoder-decoder. Attention
techniques proposed are targeted to obtain the local view of the input sequence, such as
relationship between two nodes. Then, by feeding in input sequence, the pair-wise

attention-based pointer NN, will output a learnt parameter, theta 0.

ASNN Attention Component

Predict next is S5 1 I l

Predictnextiss; J | |

}
l
Predict nextis s, [¥ | |
¥

Predict nextis s; | ! !

-§

i A

1
1
& ‘ [: . - 5
1
1

Sl ‘ Sz I ‘ SIS 54 DS ‘ 54 Sz ’ Sl : 53
N — - 7
~ ~"
Encoder Decoder

Figure 2.1.3 Overall architecture of attention-based pointer NN, proposed by [5].

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

At sequence inference stage, using greedy algorithm, [5] generate a list of
sequences with different initial stops, and the route sequence with the lowest
operational cost are selected, as an output route sequence. The route sequence inference,
by [5], are elaborated in Figure 2.1.4.

Algorithm 1 Sequence generation

Input: Trained model, S
Output: Predicted stop sequence
1: for s in S do
2: Let the first predicted stop be 5, = s
3: Predict the following stop sequence (5. ..., §,)) using the greedy algorithm. Denote the predicted sequence as P,.
4

Calculate the total operation cost of the whole sequence (including depot), denoted as OC,.
return P. where s* = argmin _; OC,

Figure 2.1.4 Route Sequence Inference algorithm, by [5].

On the other hand, [4] suggested that, for any machine learning model that are
capable to make discrete classification, can be employed, given the nature of presented
approach (i.e., dataset provided by [7]). Using a feedforward NN as prediction
architecture, [4]’s prediction model are divided into two phases, interzone phase, and
intrazonal phase. The sequence of delivery zones is predicted, then, within each
delivery zone, the sequence of delivery stops is only then predicted. Figure 2.1.5

presents the features applied in predicting the inter-zone sequence, proposed by [4].

Features to predict next cluster chosen by driver .

No. Feature

1 Average travel time and geographical distance from current cluster to
candidate cluster

2 Average travel time and geographical distance from the candidate
cluster to not yet visited clusters

3 Average travel time and geographical distance from current cluster to
the depot

4 One-hot encoded vector representing opening hours

5 Percentage of customers already visited

Figure 2.1.5 Features applied in inter-zone sequence prediction, by [4].

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

After data preprocessing, dataset is feed into a feed-forward neural network,
with three hidden layers, and rectified linear (ReLU) activation functions. The loss
function selected by [4] for the NN model is Binary Cross Entropy loss. Figure 2.1.6
presents the architecture of the feedforward NN model proposed by [4]. Then, using
ASHA algorithm, hyperparameter tuning for the NN model are done, results seen in
Figure 2.1.7.

RelLU activation

Input hidden| |hidden| |hidden| [|Output
Layer | |layer 1| [layer 2| [layer 3 Layer

sigmoid

Figure 2.1.6 Architecture model of feedforward NN model, proposed by [4].

Hyperparameters of feedforward neural network .

Phase Hidden layer size one Hidden layer size two Hidden layer size three Learning rate Batch size
Cluster 128 64 16 0.00113 32
Customer 64 32] 0.000589 4

Figure 2.1.7 Best Hyperparameters found for NN model, using ASHA algorithm.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.1.2 Delivery route optimization

TSP is a classic NP-hard problem, and have seen in various real-world application, such
as logistics, circuit design and even DNA sequencing. Over the years, the problem had
been studied extensively, resulting in various TSP variants, solving specific concern, as

products.

In last-mile delivery applications, some packages can be time-sensitive, leading
to the introduction of time window constraints into the delivery process, which is TSP
with time window (TSPTW). In solving TSP problems, it is generally divided into exact
approaches and approximate approaches. For small scales TSP problems (i.e., up to 50
nodes), exact approaches, including algorithms like branch-and-bound [8], branch-and-
cut [9], are utilised and able to tackle the problem optimally. To solve large scales TSP
problems (>200 nodes), approximate approaches, heuristics including local search,

insertion, simulated annealing, etc. are used instead.

In [4], authors extend the TSPTW formulation by adding an upper bound of
allowed deviation between actual tour, T and predicted tour, T', as constraint, presenting
formulation of TSPTW and deviation (TSPTW-Dev). In optimizing the intrazonal level
delivery routes, [4] draw in Variable Neighbourhood Search (VNS), employing three
neighbourhood structures and 2-opt local search operators, to improve the predicted

tour solutions, output by their ML model.

10
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.2 Results

The evaluation metrics used in [5] are both disparity score, and prediction accuracy.

Disparity score, introduced by Amazon Last Mile Routing Research Challenge, are
used by Amazon to evaluate the quality of predicted delivery trajectories, output by
models. The disparity score, is a metrics that portrays how well the output delivery
sequences able to mimics the delivery route, preferred by experienced delivery driver.
(The lower the disparity score, the better) Aside from disparity score, prediction

accuracy of first four zones for every routes are also evaluated by [5].

Below defines the mathematical equation of the disparity score:

(For detailed equation explanation, see [5]).

_ SD(AB) " ERPyorm(4A,B)
R(4,B) = ERP,(A,B) @

Below defines the mathematical equation of the prediction accuracy:

(For detailed equation explanation, see [5]).

=1l am_p (m
Zm:l {Ai()=p; (M) (2)

Prediction accuracy; = [

The results obtained from [5]’s proposed model, shows positive results. In terms of
disparity score, the model obtained a score of 0.0369, comparing to all other traditional
operation research solver, [5] outperforms them. When compared to Amazon Last-Mile
Routing Research Challenge (ALMRRC) winning teams solution, the pair-wise
attention-based pointer NN model, is behind than the first-place team, with score of
0.0198. In terms of prediction accuracy scores, the model outperformed all other
traditional operation research solver, in every first four zone, yielding higher accuracy
score. Figure 2.2.1 shows the performance table of proposed model by [5], and other

benchmarking model.

11
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Model performance.

Sequence generation Model Disparity score Prediction accuracy
Mean Std. Dev 1st zone 2nd zone 3rd zone 4th zone
- Tour TSP 0.0443 0.0289 0.207 0.185 0.163 0.168
- Open-tour TSP 0.0430 0.0302 0.270 0.244 0.227 0.232
ASNN 0.0470 0.0289 0.150 0.141 0.119 0.123
Greed LSTM-E-D 0.0503 0.0313 0.207 0.183 0.161 0.166
Y Pnt Net 0.0460 0.0309 0.224 0.204 0.186 0.165
Ours 0.0417 0.0306 0.241 0.231 0.224 0.221
ASNN 0.0429 0.0299 0.221 0.213 0.203 0.195
Algorithm 1 LSTM-E-D 0.0501 0.0305 0.182 0.156 0.142 0.149
& Pnt Net 0.0382 0.0301 0.286 0.273 0.262 0.274
Ours 0.0369 0.0301 0.320 0.310 0.303 0.314
Amazon Last-Mile Cook et al. (2022) 0.0198 N.A. N.A. N.A. N.A. N.A.
Routing Research Challenge Guo et al. (2023) 0.0381 N.A. N.A. N.A. N.A. N.A.
Winning Teams Solutions Arslan and Abay (2021) 0.0367 N.A. N.A. N.A. N.A. N.A.

Figure 2.2.1 Pair-wise Attention-based NN model Performance Table. Sourced from [5].

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

12

CHAPTER 2

2.3

Summarization of findings

Table 2.3.1 summarizes the key differences of some of the existing model for last-mile delivery route prediction and optimization.

model) + pair-wise attention-based

pointer NN

to high quality TSP solutions (replacing
TSP optimizations model).

Utilizing LSTM encoder to capture
global view of input (i.e., overall tour

sequence pattern).

Table 2.3.1 Summary of Route Prediction and Optimization Studies
Study Model Significances Limitations
[3] NLP + tailored chain-reaction- | - Extracting tacit driver knowledge, by | - Average error value increases as length
based algorithm converting historical delivery routes of targeted sequence prediction
into natural language sentences and increases.
feeding into NLPs. - Due to weak correlations between
- Relatively low computational time. inputs and outputs in longer sequences.
compared to traditional TSP solutions.
- High adaptability.
[5] seg2seq model (a deep learning | - Predicts possible stop sequences similar | - Relatively higher computational time

due to system network complexity.
Disparity score can be improved by

incorporating local search rules

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

ASNN Attention-based

Spatial NN to capture local view of

Utilizing

input (i.e., relationship between 2

distinct stops in tour sequence).

[4] Feedforward NN + VNS

Allow decision maker to alter level of
deviation and the penalized effect of
time window constraint based on
preferences.

Prediction and optimization on both

interzone and intrazonal level routes.

Sequence deviation measures (Jaro &
LCSS) does not consider geographical
distance between two stop nodes.

May results in significant changes in
suggested delivery routes when
swapping to-be customer node,
especially when two stop nodes are
further away from each other.

Lack of proper model benchmarking on
both machine learning model and
optimization approach (due to the focus

on proposing novel hybrid framework)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

14

CHAPTER 2

2.4 Proposed Method

In this project, our main objective is to infer the possible factors that might cause
possible deviations of pre-planned routes by delivery drivers. Before inferencing
possible factors affecting delivery trajectories, we should be able to predict delivery

routes using neural network.

For model selection, the idea of utilizing NLP, by [3] faces possible errors as
the targeted prediction sequence increases, due to as the sequence spans, correlations
between inputs and outputs are increasingly lower. Next, although the pair-wise
attention-based pointer NN model are the best performing state-of-art machine learning
solution for delivery trajectories, the computation complexity of the model and higher

computation resources required, are not feasible.

After considering on the existing works and the objectives of this project, in this
paper, we are proposing a simple RNN model to learn the delivery route trajectories,
backed by suggestion from [4]. In the following chapter, the proposed methodology is

elaborated.

15
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

CHAPTER 3

System Methodology

This section first introduced the high level seq2seq modeling framework and followed
by elaboration of the architecture of (1) proposing model, Simple RNN Encoder-
Decoder (Simple RNN E-D), as well as (2) modified LSTM Encoder-Decoder with
Pair-Wise Attention (LSTM E-D with Attention) adapted from [5].

3.1 Sequence-to-sequence (seg2seq) modeling framework

Given an arbitrary-ordered input route sequence, (s;, ..., S,) € S. Let the predicted
route sequence as (S¢y, ..., Smy), and ¢; be the positional index of stop 3
corresponding to the input sequence (where ¢; € {1, ...,n})[5]. Inthis seq2seq model
framework, by utilizing Recurrent-NN, the conditional probability P(cy,...,c, | S; 0),

with parameter 6, can be calculated as followed:

P(cy,...,cn | S, X5; 6)

S - S (3) [5]
= P(c, | S, XS; 0) - ﬂp(m Crorn Ci, S, XS;)

i=2

where X is the features of stops in S. The calculation of P(cy,...,c, | S, X5; 6) forthe
two model (i.e., Simple RNN E-D, and LSTM E-D with Attention) are documented

later in this chapter.

3.2 Simple RNN Encoder-Decoder (Simple RNN E-D) Model

A Simple Recurrent Neural Network (RNN) is a type of neural network with internal
memory that captures temporal dependencies between inputs, allowing them to retain
16

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

information from previous sequential inputs. Figure 3.2 shows the architecture of
LSTM E-D with Attention model, presented at four-step. The entire prediction process
uses a SimpleRNN encoder to extract feature vectors, followed by a SimpleRNN
decoder to process the last visited stop's feature vector. The decoder incorporates a
simplified attention mechanism by averaging the encoder outputs, which helps provide
global context when predicting the next stop in the sequence. The model is designed to
leverage the SimpleRNN encoder-decoder framework to capture the overall sequence
pattern of the route, while the context mechanism focuses on combining both global

and local sequence relationships between the last visited stop and potential next stops.

Encoder Decoder

SimpleRNN P»{ SimplaRNN }4{ SimpleRNN %-»

é

SimpleRNN

SIS I

SimpleRNN }—) SimpleRNN H SimnplaRNN H SimpleRNN }—)

Figure 3.2 Overall architecture of Simple RNN E-D Model

3.2.1 Simple RNN encoder

The role of the Simple RNN encoder in the Simple RNN E-D model is to gather and
aggregated each stop information. The input for encoder model is features of the stop
s;, x; € RXin a given arbitrary stop sequence (s;, ..., s,,), Where x; may include
geographical information and package information of the stop s;. K is the number of
features. The output of the encoder model will be a sequence of encoder output vectors

(eq, ..., ep) through calculation, expressed in:

17
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

hE,,e; = SimpleRNN(x;, ht,_; 65) Vi=1,...,n

where (1) the encoder hidden vector, hf; € RX, with hE, := 0;
(2) the encoder output vector, e; € RFKe;

(3) the corresponding vector dimensions are defined as K&, and K,

(4) [3]

The final step hidden vector h,, is used for input of Simple RNN decoder, consisting

global features of entire input route sequence.

3.2.2 Simple RNN decoder

The role of the Simple RNN decoder is to predict the next stop for every timestep, later

forming a route sequence. In the proposing Simple RNN decoder model, aggregation

of both local information (previous visited stop features x;, previous RNN hidden

state, , h? (i)) and global information (encoder outputs, e) .

hD(H_l) ,d(i) = SlmpleRNN(x(l) ,hD(i); HD) vi=0,1,...,n

where (1) the decoder hidden vector, h” ;) € Rk, with hP o) 1= hEp;
(2) the decoder output vector, d(;, € R¥¢;

(3) the corresponding vector dimensions are defined as K?,, and Kj;

(4) the features of last visited stops, x;;

For depot station case, xoy = x(py and dgy = d(p) -

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

()

18

CHAPTER 3

logits = fc(concat(h® 41y, 1)) Vi= 0,1,...,n (6)

where (1) the decoder hidden vector at current timestep (i + 1), h” ;41);

(2) the mean of encoder outputs, e across all timesteps, u,;

The model performs prediction on all candidate stops based on conditional
probabilities. The conditional probabilities for next possible stops are calculated, and

prediction §(;41), expressed in:

P(ciy1 = Jj | ¢1 oo €, S, X5, 0) = Softmax(logits)

Vi=0,1,..,n @)
j =1,...,n
$4+1) = argmax P(cyyq = j | ¢1 6,8, X% 6)
SjES\SV(i)
vVi=10,1,..,n ®

where (1) the set of visited/predicted stops until decoder step i, SV@ = {§(1), . §(l-)}

3.3 LSTM Encoder-Decoder with Pair-Wise Attention Model

The LSTM with Attention model architecture is adapted from [5] with slight
modification. Figure 2.1.3 shows the architecture of LSTM E-D with Attention model,
presented at four-step. The entire prediction processes use an LSTM encoder to extract
feature vectors, an LSTM decoder to extract last visited feature vector, then
incorporates pairwise attention mechanism to the predict the next stop sequence. The
idea is to utilize LSTM encoder-decoder framework to captures global perspective of

19

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

the overall sequence pattern, while the Attention mechanism focuses on local

relationships between two stop pairs (i.e., last visited stop, and candidate stops).

3.3.1 LSTM encoder

The role of the LSTM encoder in the LSTM E-D with Attention model is similar to
Simple RNN encoder model, which is to gather and aggregated each stop information.
The primary difference between LSTM and Simple RNN is that LSTM are more
capable to retain long term dependencies (overcome vanishing gradients), which makes
LSTM a superior choice for complex tasks (long route sequence). The input for encoder
model is features of the stop s;, x; € RX in a given arbitrary stop sequence (s, ...,
s,), Where x; may include geographical information and package information of the
stop s;. K is the number of features. The output of the encoder model will be a sequence

of encoder output vectors (e, ..., e,) through calculation, expressed in:

hEi,ei = LSTM(xi,hEi_l; HE) Vi = 1,...,Tl (9) [5]

where (1) the encoder hidden vector, hf; € RX, with hf, := 0;
(2) the encoder output vector, e; € RXe;
(3) the corresponding vector dimensions are defined as K%, and K,

The final step hidden vector h,, is used for input of Simple RNN decoder, consisting

global features of entire input route sequence.

3.3.2 LSTM decoder

Following [5], the role of the LSTM decoder in the LSTME-D with Attention model is
to produce last visit stop vectors, which are used for the attention mechanism to predict

next zone sequence. Denote the output route sequence (3, ..., $(n)). Given features

of the stop $;), x(;). At each decoder timestep, i, the process can be expressed in:

20
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

hD(iH),d(i) = LSTM(concat(x(i),w(i)),hD(i); %) vi= 0,1,...,n (10) [5]

where (1) the decoder hidden vector, h” ;) € Rk, with h® gy := hEp;
(2) the decoder output vector, d;, € R¥d;
(3) the corresponding vector dimensions are defined as K%, and Kj;
(4) the context vector is computed from attention layer, w;;

For depot station case, xy = x(py and dpy = d(p) -

3.3.3 Pair-Wise Attention Layer

The role of pair wise attention layer is predicting next possible stop by aggregating both
global and local information in a given sequence of stops (s, ..., S,). The mechanism
works as at each decoder time step i € {0,...,n}, after identifying the last visited stop,

S, the model perform prediction on 3, from all candidates stops (all valid,
unvisited zone), 3, € S. The input for attention layer, denoted as vf(l-), consists

information of the stop pair §;) and s;, which can be expressed by:

vj(i) = concat(tj(i). d(i). ej) (1)

where (1) the travel time features between stop pair $;y and s;, t/ ()
(2) decoder output vector, d;);

(3) encoder output vector, e;;

The attention of stop pairs are calculated, following the equation:

21
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

uj(i) = MLP(U](l), HA) Vl,] = 1,...,7’1 (12) [5]

al;y = Softmax(u ;) Vi,j=1,...,n (13) [5]

where the attention of stop $; to s;, a’ o € R;

Then, conditional probability for each stop pairs are calculated, and prediction $;,.1),

expressed in:

$iay = argmax al;y Vi= 0,1,...,n
S (14) [5]

where (1) the set of visited/predicted stops until decoder step i, SV(i) = {§(1), . §(L-)}

In addition, context vector, w;y which is a weighted sum of all encoder output vectors
with attention as weights. w;y is introduced to leverages the attention information as

the decoder input for timestep i +1. The formulation of context vector can be expressed:

n

Dy = z iy g (15) [5]

j=1

22
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

CHAPTER 4

Experimental Setup

4.1 System Requirements

41.1 Hardware

The hardware involved in this project is personal computer. Table 3.1.1 shows the

detailed specification of the hardware involved.

Table 4.1.1 Specifications of laptop.

Description Specifications

Model LENOVO 81WD

Processor Intel® Core™ j5-1035G4 CPU @ 1.10GHz 1.50 GHz
Operating System Windows 10 Home Single Language 64-bit

Graphic Intel® Iris® Plus Graphics

Memory 12.0 GB (11.7 GB usable) DDR4 RAM

Storage 477 GB SSD ROM

4.1.2 Software
The software involved in this project are listed as below:

Q) Google Collaboratory (Google Colab).
Google Colab is a cloud based Jupyter Notebook service that provides free
access to computing resources, including GPUs and TPUs. With Google
Colab, users do not require to install libraries, and packages on personal
devices, and running codes does not consume resources of the working

system (hardware).

23
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

(i) Google Drive.
Google Drive is a cloud storage service provided by Google, that allows
users to store, synchronise, share files across the platform. Google Drive
also integrates with Google Colab, allows data storage and retrieval from

the drive.

(i) Tensorflow with Keras.
Tensorflow is an open-source deep learning framework provided by Google.
With Keras, a python-based high-level neural network Application
Programming Interface (API), running on top of Tensorflow, the combo
provides users libraries, and tools to conduct experimentation with neural

networks.

4.1.3 Data Source

The project will be using real-world data provided by Amazon Last-Mile Routing
Research Challenge [7]. The dataset consists of 6112 historical drivers last mile
delivery routes, which was collected between July and August 2018 in five metropolitan
areas of United States (U.S.), namely Austin, Boston, Chicago, Los Angeles, and
Seattle [5]. Each route is characterized by a variety of route-level, stop-level, package-
level features, route quality attributes, delivery defects, driver experience, customer
satisfaction, and productivity; dataset is summarised, and explained in Table 3.1.2 [7].
Besides, each route is labelled according to its perceived route quality (i.e., low,
medium, and high). The entire dataset can be visualised and represented in the form of

an Entity relationship diagram (ERD), seen in Figure 3.1.1.

24
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Route_data

Route_stops 1 Stop

Stop_packages

PK

Route_ID

Station_code
Date_of_delivery
Departure_time

Delivery vehicle_capacity
Route_quality

Figure 4.1.1 ERD for Amazon Last-Mile Routing Research Challenge Dataset.

PK, FK |Route_ID PK |Stop_ID
PK, FK |Stop_ID L—J Latitude
Longitude
Stop_type

Actual Seq
Route_ID
Stop_ID

Seq_num

Sourced from [10].

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

%L

Zone_id

PK

FK

Package_ID
Stop_ID
Scan_status
Service_time
Time_window

Dimensions

25

CHAPTER 4

@ Seat Map

O Grayscale
8 Markers
Carson Street Carson Street Lincoln Avenue llnrnln_AveyJLE—;

@ Driver Tour
[] © ATSP Tour
© Zone Tour
O JPT Tour

O None

/aiian
dens

Newm

PAIE }|EMION
(=]
5)
N .

!23rd Street

1991 Ao

H
a
aq j9a13s 1uueqg

Cypress

Orange Avenue Oran

orardeAyen] o) [
0 e g 1

B -
m 1| n3 w2z 19

m 17w W09 108
4 B P
|
wlf m 9 o P
V“ g"ﬂ_mtm = - O\\
o 95 2 :

N Norwalk Blvd
199418 10} |BM\

(=]
\ £ |
100115 Weyesn

140 Road Ball Doad Bz

== Leafist | Map © OpenStraetMap, contnbutors © CARTO

Figure 4.1.2 Sample Delivery Route, in Irvine, California.
Soured from [11].

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Table 4.1.2 Data Description on provided Amazon Last-Mile Routing Research Challenge Dataset. Sourced from [7].

Data Field Description Unit/Format
Route information
Route ID Unique and anonymized identifier of each route. -

Station code

Date

Departure time
Executor capacity
Stops

Observed sequence

Route score

Unique identifier for a depot station.
Date of route execution.

Time when vehicle leaves depot.
Volumetric capacity of vehicle.

A list of each stop in route.

Actual sequence in which stops were visited.

Quality of the observed sequence.

(alphanumeric string)
YYYY-MM-DD
cm?®

Categorical
(i.e., high, medium, or low)

Stop information

Stop ID
Latitude/Longitude

Type

Zone ID

Bachelor of Computer Science (Honours)

Unique identifier of each stop on a route.

Obfuscated coordinates of each stop.

Type of stop.

Geographical planning area in which the stop falls.

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Categorical

(i.e., station or drop-off)

27

CHAPTER 4

Packages A list of packages to be delivered at each stop. -
Transit time Estimated transit time to every other stop on route Seconds
Package information
Package ID Unique and anonymized identifier of each package. -
Categorical
) (i.e., DELIVERED,
Status Delivery status of package.
DELIVERY_ATTEMPTED, or
REJECTED)
))))) (if not specified, fields are filled
Time window Start and end time window, when applicable.

Planned service time

Dimensions

Bachelor of Computer Science (Honours)

Time that serving the package is expected to require.

Length, width, and height of package.

Faculty of Information and Communication Technology (Kampar Campus), UTAR

with value ‘NaN”)
Seconds

cm

28

CHAPTER 4

4.2 System Design

The proposed framework is outlined (see Figure 4.2.1), with the input data of real-world
historical delivery routes data and output of optimized delivery routes, which similar to

real-world drivers’ preferences.

Historical Data Preprocessing

Data

Route Prediction
{Machine Learning)

v
Model Building:
Data Analysis - Simple RNN E-D
- LSTM E-D with Attention

b d
e

o Model Training
Data Visualisation

D:

S

v
Suggested
Model Evaluation optimized routes

—

Imply factors cause
drivers' deviation of

route and its effects

Figure 4.2.1 Overall project framework. Adapted from [4].

4.2.1 Data Analysis

After obtaining the historical data (more data information, refer Chapter 4.1.3),
data analysis and visualisation is performed as project initial step. Basic data analysis
was performed on the dataset, allowing us to easily grasp complex information, identify
outliers, and communicate findings to others. Built-in library such as seaborn and
matplot are utilized to provide graph visualisation. By performing data analysis, we
could imply factors that cause drivers deviate from the pre-planned route (i.e., time-

sensitive packages.)

29
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

4.2.2 Data Preprocessing

Then, data preprocessing will be performed before feeding into the machine learning
model. Data preprocessing steps include feature selection, data cleaning(i.e., filling
missing values), data splitting, data transformation, and data reduction. Data
preprocessing are essential steps, as data quality defined the output of machine learning
model. With high quality data input, machine learning models are able to converge
effectively and produce accurate predictions. Figure 4.2.2 shows the steps taken in Data

Preprocessing process.

Data Preprocessing

Dropping attributes Filling NA H Data splitting HData transformation}

Figure 4.2.2 Steps involved in Data Preprocessing.

In this project, we chose to focus only on the 2718 routes with ‘High’ route
scorings. This is because, in both validation and testing datasets, all routes are rated
‘High’. Besides, dropping ‘Low’ tiered routes are due to routes rated ‘Low’ only
contribute around 1.6%, having only 102 routes out of the overall datasets (6112 routes),
which might cause biased outcomes. Then, we dropped all packaged-level features,
includes ‘pack ID’, ‘time window_start’, ‘time_window_end’. The reason behind the
action, is in this project, we would like to focus on delivery zone level sequencing,
following [3], stating drivers tends to stick to the shortest path within intra-zonal
delivery. Furthermore, the findings also display only around 7% of the parcels are time
sensitive, filling missing values with a random value might produce possible biased
outcomes. Moreover, we dropped time-related features (i.e., date, and departure time)

as departure time for all routes are within an hour period, 9.00 — 10 a.m. period.

For data cleaning steps, we filled up all stops with null are filled with value

‘NA’. Then, for all station type records, indicate by sequence id = 0, the field, zone id

30
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

with value ‘@-0.0@’, as initial zone. Moreover, for every route, with missing or invalid
zone_id, are filled with zone_id value, by filling with nearest zone id, determined by

travel distances between valid zones and target (stops with missing or invalid zone id).

After data cleaning steps, dataset is now split into train set X and train sety. The
motivation behind action splitting data into train and test set, is that the provided dataset
from AWS is divided into train set (model_build), test set (eval_model_apply)

respectively, where test set data are completely independent from train set.

4.2.2 Model Building and Training

After data preprocessing, two machine learning model (i.e., Simple RNN E-D Model,
and LSTM E-D with Attention Model) are built to fulfil the project task, (i.e., predict
the zone sequence Id for every route). Both Simple RNN E-D Model, and LSTM E-D
with Attention Model are built with Keras library, which are an established library for
deep learning model building and training operations. Detailed model methodology, as
well as architecture are discussed in Chapter 3. Then, pre-processed data (historical
delivery routes) are fed into the machine learning model for pattern convergence. For

detailed model building and model training are documented in Chapter 5.

4.2.3 Model Evaluation

Model evaluation, including cross validation on model built are performed, to ensure
proposed model able to predict good routes, aligning the project objectives. For
performance metrics, [5] mentioned that accuracy metric does not differentiate “how
wrong an erroneous prediction is”, in contrast, disparity score does not negatively
impact too much when predicted stop, sp are geographically closed towards the actual
stop, sa. The output of the model (quality of predicted delivery route) is then evaluated.
All results and evaluation are discussed in Chapter 6.

31
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

4.3 Timeline

Figure 4.3.1 presents the Gantt chart for all the works done with the corresponding
timeline in Final Year Project 1. Works including, but not limited to, performing project
initiation and planning, data understanding and visualisation, data preprocessing, model

training, report writing, and FYP presentation preparation.

In Figure 4.3.2, Gantt chart for Final Year Project 2 is roughly drafted and outlined,
with works to be done with corresponding timeline during upcoming trimester. Works
including, but not limited to, review and revise previous work done, further research on
relevant papers or works, model training and evaluation, model tuning, report writing

and FYP presentation preparation.

32
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Final Year Project 1
v Project Initiation and Planning

Drafting Project Gantt Chart

v Data Understanding and Visualisation
Study on project dataset
Perform Correlation Coefficient
Review relevant previous works

Produce visualisation graphs/charts on dataset

v Data Preprocessing
Review relevant previous works

Perform data preprocessing on dataset

v Model Training
Review relevant previous works
Explore machine learning libraries, and models
Initiate model training

Validate model output

v Report Writing
Report Writing 1
Report Writing 2

Report Submission

v Presentation
Preparation of PowerPoints Slides

FYP1 Presentation

Bachelor of Computer Science (Honours)

Progress

76%

100%
100%

100%
100%
100%
100%
100%

100%
100%
100%

100%
100%
100%
100%
100%

93%
100%
100%

0%

0%
0%
0%

FEB 2024 MAR 2024 APR 2024

n 18 Ly 3 10 17 24 A 7 14

Figure 4.3.1 Gantt Chart for Project 1.

Faculty of Information and Communication Technology (Kampar Campus), UTAR

28

12

MAY 2024

19

CHAPTER 4

Title
Review and Revise previous work done
Further Researches on relevant works
Model Training and Evaluation
Model Tuning
Report Writing
Report Submissicn
Presentation Slides Preparation

FYP2 Presentation

Start Time

06/24/2024
07/01/2024
07/22/2024
08/05/2024
038/26/2024
09/06/2024
09/09/2024
09/12/2024

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

End Time

06/30/2024
07/21/2024
07/28/2024
08/25/2024
09/05/2024
09/06/2024
09/11/2024
09/20/2024

Jun Jul
09-15 16-22 23-29 30-06 07-13 | 14-20 21-27
]
|

Figure 4.3.2 Gantt Chart for Project 2

28-03

Aug
04-10 11-17 18-24
|

25-31

01-07

08-14

Sep

15-21

22-28

34

CHAPTER 5

CHAPTER 5

System Implementation

5.1 Data Findings

Route Score

Below code, from line 1 to 6, obtained the number of routes for each scoring (i.e., Low,
Medium, and High). Line 7 obtained all number of routes, by summing up the number
of routes, for each class. Finally, line 8, output the percentage of routes with low

scorings over all routes.

Line

01 num_low_route = rt.filter(rt['route_score'] ==

02 ‘Low").select(‘route_id").unique().height

03 num_high_route = rt.filter(rt['route_score'] ==

04 'High').select(‘route_id").unique().height

05 num_medium_route = rt.filter(rt['route_score] ==

06 '‘Medium’).select(‘route_id").unique().height

07 num_route = num_low_route + num_high_route + num_medium_route
08 print(‘Percentage of low scoring routes: ', (hum_low_route /

09 num_route)*100 , '%")

e Routes with scoring ‘Low’ take up only 1.6% of overall routes.

35
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Below code obtained the value of unique route with high scorings.

Line

01 rt.filter(rt['route_score] == 'High").select(‘'route_id").unique().height

e There are total of 2718 unique routes with ‘High’ scorings.

Time Windows Sensitivity

Below code, line 1 obtained the number of packages in all 6,142 routes, whereas line 2
obtained the number of packages without time window stated from all 6,142 routes.

Then, line 4 and 5-6, output the total number of packages and the total number of
packages without time window, respectively. Finally, line 7-8, output the percentage of

packages without time window.

Line
01 num_package= rt.filter(pl.col('pack _ID").is_not_null()).height
02 num_package_wo_tw = rt.filter(pl.col(‘type’).eq('Dropoft’)).filter(

03 pl.col(‘time_window_start’).is_null()).height

04 print(‘Total number of packages: ', num_package)

05 print("Total number of packages without time window: ',

06 num_package wo_tw)

07 print(‘Percentage of packages without time window: ',

08 (num_package_wo_tw / num_package)*100 , '%")

e Outof 1,457,175 packages, 1,343,182 packages do not have specified delivery time
windows.

e Over 92.27% of delivery packages are considered time window insensitive.

36
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Below code, sort the dataframe, rt, for every unique route, calculate the number of
packages without specified time window, and then sorted the dataframe based on
number of packages without time window, in ascending order. The range for number

of delivery packages without specified time window per route are [92, 302].

Line
01 rt.filter(pl.col('type’).eq('Dropoff’)).groupby(‘route_id").agg(num_pkgwotw

02 = pl.col('time_window_end").is_null().sum()).sort(
03 by ='num_pkgwotw)
Output:

route_id num_null zones

str u3iz. e e -
" as
"RoutelD_a5d547 99 RoutelD_edfdbc... 295
"RoutelD_abdfea.. 296

"RoutelD_e7737d.. 106
"RoutelD_9ec69b.. 296

"RoutelD_13ad9c.. 107
- "'RoutelD_4e9d93.. 296

" T, 0
RoutelD_934623 "3 "RoutelD_aad088._ 2967
"RoutelD_6daf34 . 13 "RoutelD acabi?.. 298
"RoutelD_fid16e. . 13 "RoutelD_e1adbf.. 302

Figure 5.1.1 Range of delivery package without time windows for each route.

Figure 5.1.2 shows histogram of the distribution of the number of packages with a time
window per route. It suggests that majority of routes, around 2500, have between 0 and

10 packages with time windows only.

Inference:

e The limited number of packages with time windows in most routes suggests that
the overall influence of time-sensitive deliveries on driver behavior may be
minimal for most routes.

37
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Distribution of Number of Packages with time window per Route

2500 4

2000 +

1500 A

1000 A

Number of Routes

e

|
N

500 A

0 20 40 60

T
80 100

Number of Packages with time window

Figure 5.1.2 Distribution of Number of Packages with Time Window per Route

Route

Below code, sort the dataframe, rt, for every unique route, calculate the number of

packages, and then sorted the dataframe based on number of packages, in ascending

order. The range for number of delivery packages per route are [151, 305].

Line

01 rt.groupby(‘route_id").agg(num_package = pl.count()).sort(by =

02 'num_package’)
Output:
route id num package .o ieip fa7c7s.
str u3z2
"RoutelD_6dbIf2...
RoutelD_6d4c14... 151 spoutelD 5896ac...
RoutelD_13addc... 151 outelD_oeTen7 .
"RoutelD_b02475... 151
- "RoutelD_d0483a...
"RoutelD_e96d63... 152
- "RoutelD_c9e851...
"RoutelD_6d8f34... 152

[TRST _ pr acn

Figure 5.1.3 Range of delivery package for each route.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

"RoutelD_e1a4bf...

300

300

300

300

300

300

305

38

CHAPTER 5

Below code, at line 1-2, number of stops for each route are obtained and sorted. Then,

from line 3-8, histogram of the ‘Distribution of Number of Stops per Route’ are plotted,

accessing the matploblib library. Matplotlib is a plotting library for Python language.

Line

01
02
03
04
05
06
07
08

Output:

num_stop_df = rt.groupby(‘route_id").agg(num_stop = (pl.col(‘type’) ==
'‘Dropoff').count()).sort(by = 'num_stop")

plt.hist(num_stop_df["num_stop"], bins=10, edgecolor="black")

plt.xlabel(**"Number of Stops")

plt.ylabel("Number of Routes™)

plt.title("Distribution of Number of Stops per Route™)

plt.grid(True)

plt.show()

Distribution of Number of Stops per Route

1200 A

1000 +

800 ~

600

Number of Routes

400 ~

200 A

160 180 200 220 240 260 280 300
Number of Stops

Figure 5.1.4 Distribution of Number of Stops per Route.

Inference:

Most of the routes have around 230 — 260 number of stops.

39

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Below code, at line 1-2, number of zones for each route are obtained and sorted. Then,

from line 3-8, histogram of the ‘Distribution of Number of Zone per Route’ are plotted,

again utilizing the matploblib library.

Line

01
02
03
04
05
06
07
08

Output:

num_zone_df = rt.groupby(‘route_id').agg(num_zone =
pl.col('zone_id").n_unique()).sort(by = 'num_zone')

plt.hist(num_zone_df["num_zone"], bins=5, edgecolor="black")

plt.xlabel("Number of Zone™)

plt.ylabel("Number of Routes")

plt.title("Distribution of Number of Zone per Route")

plt.grid(True)

plt.show()

Distribution of Number of Zone per Route

3000

2500

2000

1500 ~

Number of Routes

1000 ~

500 +

10 20 30 40 50
Number of Zone

Figure 5.1.5 Distribution of Number of Zone per Route.

Inference:

Most of the routes serves about 20 zones per route.

40

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Zones

The function below extracts zone data features (i.e., zone ID and stop sequences) to

visualize the zone IDs and the overall route sequence.

def preprocess route simple(route id, all route data, all actual seq):

route data = all route data[route_id][stops']
actual seq = all actual seq[route_id][actual’]

zone_features = {}

for stop id, stop data in route data.items():
zone id = stop data['zone id']
stop seq = actual seq.get(stop id, 1leg)

if zone_id in zone features:
zone_features[zone id].append(stop seq)
else:
zone_features[zone id] = [stop_seq]

for zone id in zone features:
zone_features[zone id].sort()

formatted zone features = {

zone_id: {'stop seq': stop_seq list}
for zone id, stop seq list in zone features.items()

return formatted zone features

Figure 5.1.6 Function for Extraction Zone Data Features

After extracting the zone IDs and their corresponding sequences for each route, we
inspected the data visually to understand how drivers move through zones. The code
below used for this inspection sorts the zone 1Ds based on the stop sequences, groups
the stops by their associated zone IDs, and then aggregates the sequences accordingly.
We are able to visualize how stops within a particular zone are served in order, and how

the sequence progresses as the driver moves from one zone to the next.

41
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Line

01 zone_data = [{"zone_id": zone_id, "stop_seq": stop_seq}

02 for zone_id, zone_info in data["'zone_features"].items()
03 for stop_seq in zone_info["'stop_seq"]]

04 df = pd.DataFrame(zone_data)

05 pd.set_option(‘display.max_rows', None)

06 df_sorted = df.sort_values(by="stop_seq")

07 df_aggregated = df_sorted.groupby(‘'zone_id").agg({'stop_seq":

08 list}).reset_index()
09 df_aggregated['first_stop_seq'] = df_aggregated['stop_seq'].apply(
10 lambda x: x[0])

11 df_aggregated = df_aggregated.sort_values(by="first_stop_seq").drop(
12 columns="first_stop_seq’)

13 print(df_aggregated)

Output:
zone_id stop_seq
-3.2B [1, 2, 3, 4, 5, 6, 7, 8, 9]
-3.1B [18, 11, 12, 13, 14, 15, 16, 17, 18]
-3.1c [1%9, 2@, 21, 22, 23, 24, 25, 26, 27, 28, 29, 3...
-3.2C [34, 35, 36, 37, 3B, 39, 46, 41, 42, 43]
-3.3C [44, 45, 46, 47, 48, 49, 58, 51, 52, 53, 54]

.30 [55, 56, 57, 58, 59, 6@, 61, 62, 63, 64, 65, 6...
.20 [7e, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 8...
.10 [85, 86, 87, 88, 89, 9@, 91, 92, 93, 94, 95, 9...
.1E [99, 188, 1e1, 182, 1e3, 184, 105, 186, 107, 188]
.2E [189, 118, 111, 112, 113, 114]
.3E [115, 116, 117, 118, 119, 128, 121, 122, 123,

.36 [125, 126, 127, 128, 129, 138, 131, 132, 133,

.26 [138, 130, 148, 141, 142, 143, 144, 145, 146]

ﬂﬂﬂﬂﬂn?ﬂﬂﬂﬂﬂﬂﬂ
L ¥ W N W N Y TN+

Figure 5.1.7 Zone ID Order sequence, aggregated from stop sequence for Routel

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

zone_id stop_seq
D-3.1H [1, 2, 3, 4, 5, 6, 7]
D-3.2H [8, @, 18, 11, 12]
D-3.3H [13, 14, 15, 16, 17, 18, 19, 28, 21, 22, 23, 2...
D-3.3] [26, 27, 28, 29, 3@, 31, 32, 33, 34, 35, 36, 3...
D-3.23 [49, 58, 51, 52, 53, 54]
D-3.13 [55, 56, 57, 58, 59, 6@, 61, 62, 63, 64, 65]
D-2.13] [66, 67, BE, 69, 78]
D-2.23] [71, 72, 73, 74, 75, 76, 77, 78]
D-2.3] [72, 88, B1, 82, B3]
D-2.3H [84, 85, 86, 87]
D-2.2H [88, 82, %@, 91, 92, 93, 94, 85, 9§]
D-2.1H [97, 98, 99, 188, 181, 182]
D-2.1G [183, 1@4, 185, 186, 187, 1858, 16%, 118]
D-2.2G [111, 112, 113]
D-2.3G [114, 115, 116, 117, 118]
D-2.3E [119, 128, 121]
D-2.1E [122, 123, 124, 125]
D-2.1D [126, 127, 128, 129, 136, 131, 132, 133]
D-2.2D0 [134, 135, 1348, 137, 138, 139, 148]
D-2.3D [141, 142, 143, 144, 145, 146, 147, 143, 149]
D-2.3C [15@, 151]
D-2.2C [152, 153, 154, 155, 156, 157, 158, 152, 168]
D-2.1C [1e1, 162, 163, 164, 165, 167, 168, 189, 17@,
D-2.1B [172, 173, 174, 175, 176, 177, 178]

Figure 5.1.8 Zone ID Order sequence, aggregated from stop sequence for Route2

Based on multiple route cases shown in Figures 5.1.7 and 5.1.8, we observed the stop
sequences associated with various zone IDs. For example, zone ‘C-3.2B’ includes the
stops in the sequence [1, 2, 3, ..., 9], while zone ‘C-3.1B’ covers stops [10, 11, 12, ...,
18]. This pattern is repeated across all zones in a structured manner, suggesting that
within each zone, stops are served sequentially before moving on to the next zone. This
pattern suggesting that drivers tend to focus on completing all stops within a given zone

before moving to the next zone.

Inference:

e Driver behavior can be inferred based on the stop sequence data within each zone.
e Drivers tend to complete all stops within the current zone before moving on to the
next zone, suggesting a zone-based delivery pattern.

43
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Relationship of Zone IDs

Based on previous insights (i.e., drivers serve all stops within the current zone before
moving to next zone), we conducted further inspections of zone IDs in the route
sequence. Below shows the Zone ID Order sequence for Route 0. Note that ‘@-0.0@°
represent Depot zone.

Outputs:

zone_id zone_seq

@-0.0@ 0
D-18.2J 1
D-18.3J 2
D-18.3H 3
D-18.2H 4
D-18.1H 5
D-18.1G 6
D-18.2G 7
D-18.3G 8
D-18.1E g
D-18.1D 10
D-18.2D 11
D-18.3D 12
D-18.3C 13
D-18.2C 14
D-18.1C 15
D-18.1B 16

Figure 5.1.9 Zone ID Order sequence for Route0

Based on the output, we noticed that zone 1Ds can be broken down into four parts: (i)
super-super clusters, (ii) super clusters, (iii) clusters, and (iv) zones. For example, in
the zone ID ‘D-18.2)’ the starting letter ‘D’ represent the super-super cluster. When
paired with next integer value, in this case ‘D-18 formed a super cluster. The ending
letter ‘J* represent the cluster, making ‘D-18.-J’. Finally, the decimal value ‘.2’
completes the zone 1D, with ‘D-18.J’ represent the full zone ID.

44
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Table 5.1 Zone Order sequence for Route0, arranged by cluster

Cluster Zone 1 Zone 2 Zone 3

J D-18.2] D-18.3J
H D-18.3H D-18.2H D-18.1H
G D-18.1G D-18.2G D-18.3G
E D-18.1E

D D-18.1D D-18.2D D-18.3D
C D-18.3C D-18.2C D-18.1C
B D-18.1B

Next, for a given route, the sequence pattern of zone IDs can be identified.

Based on Table 5.1, we observed that the zone IDs within each cluster follow either an

ascending or descending order, depending on the sequence of the previous cluster.

Inference:

e The relationship of zone IDs within a given route are identified.

e Each zone ID is structured in a hierarchical manner, starting with the super-super

cluster, followed by the super cluster, cluster, and zone.

e The pattern of zone IDs within a route appears to follow a specific pattern (either
ascending or descending) within each cluster, which may indicate a systematic
approach to how delivery zones are being clustered.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

45

CHAPTER 5

5.2 Data Preprocessing

In this project, we focus on zone level sequence prediction, justified by [3], explained
in previous chapter. For the route data, we select only routes with a score rated as 'High,'
prioritizing quality data for better pattern learning from model. To prepare zone level
data, relevant features are selected and aggregated from stop-level data. Stop-level
features, including, latitude, longitude, stop type (indicating Depot or Dropoff), travel
times between stop pairs, and corresponding actual route sequence (at stop level) are
aggregated by zone IDs. Package-level features, such as time windows, planned service
times, and dimensions, are excluded. This decision is based on the justification provided
in previous sub chapter, stating that over 92.27% packages are considered time

windows insensitive.

To begin, all route files are classified and separated based on their route score. Function
classify_route reads the °‘route data.json’ file and returns three distinct lists:
‘low_routes’, ‘medium_routes’, and ‘high_routes’, which contain the corresponding
route IDs based on their score. Next, all relevant route data are sorted into their

respective directories using the function move_files.

Function classify_route

def classify_routes(input_file):
with open(input_file, 'r') as f:
data = json.load(f)
for route_id, route_info in data.items():
route_score = route_info.get("route_score", "Uncategorized™)
if route_score == "Low":
low_routes.append(route_id)
elif route_score == "Medium":
medium_routes.append(route_id)
elif route_score == "High™:

high_routes.append(route_id)

46
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Function move_files

def move_files(input_directory, output_directory):
for filename in os.listdir(input_directory):
if filename.endswith(".json"):
shutil.move(os.path.join(input_directory, filename),

os.path.join(output_directory, filename))

The function preprocesses all routes data are defined as preprocess_route(), with seven
defined functions, namely parse_zone_id, is_valid_zone_id,
assign_zone_id_for_dropoffs, encode_zone_id, extract_zone_features,
calculate_mean_travel times, convert_stop_sequence_to_zone_sequence. The
preprocessing function takes in lists: (1) route_id, (2) all _route data, (3)
all_travel_times, (4) all_package data, and (5) all_actual_seq, and return lists; (i)

zone_features, and (ii) mean_travel_times.

Function preprocess_route

def preprocess_route(route_id, all_route_data, all_travel_times, all_package_data,
all_actual_seq):
route_data = all_route_data[route_id]['stops’]
travel_times = all_travel_times[route_id]
package data = all_package_data[route _id]
actual_seq = all_actual_seq[route_id]['actual’]
route_data = assign_zone_id_for_dropoffs(route_data, travel_times)
encoded_zones, station_zone = encode_zone_id(route_data)
zone_features = extract_zone_features(encoded_zones, station_zone,
package data)
mean_travel_times = calculate_mean_travel times(zone_features, travel times,
encoded_zones)
zone_seq_map = convert_stop_sequence_to_zone_sequence(actual_seq,
route_data)

for zone_id in zone_features.keys():

47
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

if zone_id == station_zone: zone_features[zone_id]['zone_seq] =0

else: zone_features[zone_id]['zone_seq'] = zone_seq_map.get(zone_id, 1e6)

return zone_features, mean_travel times

The preprocessing pipeline is structured around the preprocess_route function, which
coordinates the entire data preparation process for each route. It begins by handling
missing zone IDs using the assign_zone_id_for_dropoffs function. This step assigns the
nearest valid zone ID to dropoff stops without a valid zone 1D based on travel times,
ensuring that all stops have valid zone data. The assignation of nearest zone can be
expressed in the following mathematical expression:
Let:

(1) The dropoff stop with a missing or invalid zone ID, s,,, € S, a set of stops in

given route.

(2) A valid stop with a known zone ID, z; € S.
(3) The travel time between stop s, and s,,, t(Sy, Z;)-

Znearest = Ty ml.in t(sm» z;) (16)

where Z,,.qres¢ 1S the zone ID of the nearest stop, which is identified by finding the stop

z; that yields the minimum travel time t(s,,, z;).

The function is_valid_zone_id function is called to validate the zone_id format. A valid
zone id is defined in format: '""[A-Z]-\d{1,2}\\d[A-Z]$".

Function assign_zone_id_for_dropoffs

def assign_zone_id_for_dropoffs(route_data, travel_times):
for stop_id, stop_data in route_data.items():
zone_id = stop_data.get('zone_id')
if zone_id is None or not is_valid_zone_id(zone_id):

if stop_data['type’] == 'Dropoff"

48
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

nearest_zone = None

min_travel_time = float('inf")

Find the nearest stop with a valid zone_id
for neighbor_stop_id, travel_time in travel_times.get(stop_id, {}).items():

neighbor_zone_id = route_data[neighbor_stop_id].get('zone_id')

if neighbor_zone_id and is_valid_zone_id(neighbor_zone_id):
if travel _time < min_travel_time:
min_travel_time = travel_time

nearest_zone = neighbor_zone_id

Assign the nearest zone_id to the dropoff stop
if nearest_zone:

route_data[stop_id]['zone_id'] = nearest_zone
else:

If no valid zone_id is found, assign a default

route_data[stop_id]['zone_id] = "[-9.9]"

return route_data

Function is_valid_zone _id

def is_valid_zone_id(zone_id):
if not isinstance(zone_id, str):
return False # If zone_id is not a string, it's invalid
pattern = re.compile(r'"[A-Z]-\d{1,2}\\d[A-Z]$")
If the zone_id does not match the pattern, it is invalid
if not pattern.match(zone_id):
return False

return True

Next, the encode_zone_id function processes the zone IDs for every stop, by calling
function parse_zone_id, to split the zone ids into four components (super-super cluster,

49
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

super cluster, cluster, zone) and obtain each stop features such as latitude, longitude,
and whether the stop is a station. For station stop, default zone ID ‘@-0.0@’ is assigned.

This step creates a structured representation of each stop's zone information.

Function encode_zone_id

def encode_zone_id(route_data):
default_station_zone = "@-0.0@"
dropoff_with_missing_zone =[]
encoded_zones = {}
station_zone = None
for stop_id, stop_data in route_data.items():

zone_id = stop_data.get(‘'zone_id")

Check for NaN values in various forms
if zone_id is None or zone_id in ['NaN’, 'nan’] or (isinstance(zone_id, float) and
np.isnan(zone_id)):
if stop_data['type] == 'Station':
zone_id = default_station_zone
station_zone = default_station_zone # Mark the station zone
parsed_zone = parse_zone_id(zone_id)
Add the encoded zone and other features to the dictionary
encoded_zones[stop_id] = {
'zone_id": zone_id,
'super_super_cluster': parsed_zone['super_super_cluster'],
‘integer_part': parsed_zone['integer_part1],
‘decimal_part': parsed_zone['decimal_part'],
'super_cluster": parsed_zone['super_cluster],
'is_station': 1 if stop_data['type’] == 'Station’ else 0,
'lat": stop_data['lat"],
'Ing": stop_data['Ing']
¥

return encoded_zones, station_zone

50
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Function parse_zone_id

def parse_zone_id(zone_id):
temp = zone_id.split(’-")
super_super_cluster = ord(temp[0]) - 64
temp2 = temp[1].split(".")
integer_part = int(temp2[0])
decimal_part = int(temp2[1][:-1])
super_cluster = ord(temp2[1][-1]) - 64

return {
'super_super_cluster": super_super_cluster,
'integer_part': integer_part,
‘decimal_part': decimal_part,

'super_cluster": super_cluster

The pipeline then proceeds to the extract _zone_features function, which aggregates
stop-level data at the zone level. This includes counting the number of stops in each
zone, calculating the minimum, maximum, and mean latitudes and longitudes, and
determining the number of packages handled in each zone. Station zones are marked as

‘1’ for feature ‘is_station’.

Function extract_zone_features

def extract_zone_features(encoded_zones, station_zone, package data):
zone_features = defaultdict(lambda: {
'super_super_cluster': None,
'super_cluster': None,
'integer_part": None,
‘decimal_part": None,
'Iis_station": 0,

‘num_stops": 0,

51
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

latitudes’: [],
'longitudes": [],
'num_of_packages': 0

)

for stop_id, stop_data in encoded_zones.items():
zone_id = stop_data['zone_id']

Aggregate zone_id features
zone_features[zone_id]['super_super_cluster'] =
stop_data['super_super_cluster']
zone_features[zone_id]['super_cluster] = stop_data['super_cluster']
zone_features[zone_id]['integer_part'] = stop_data['integer_part']

zone_features[zone_id]['decimal_part] = stop_data['decimal_part']

Count the number of stops and collect latitudes/longitudes
zone_features[zone_id]['num_stops] +=1
zone_features[zone_id]['latitudes'].append(stop_data['lat'])

zone_features[zone_id]['longitudes'].append(stop_data['Ing])

Mark if the stop is a station
if stop_data['is_station']:

zone_features[zone_id]['is_station] =1

Count the number of packages at each stop and aggregate at the zone level
if stop_id in package_data:
zone_features[zone_id]['num_of packages'] += len(package_data[stop_id])

Compute min, mean, max lat/Ing for each zone

for zone_id, features in zone_features.items():
features['min_lat'] = min(features['latitudes’])
features['max_lat"] = max(features['latitudes'])

features['mean_lat'] = np.mean(features['latitudes'])

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

52

CHAPTER 5

features['min_Ing'] = min(features['longitudes'])
features['max_Ing'] = max(features['longitudes'])

features['mean_Ing'] = np.mean(features['longitudes])

return zone_features

After the zone features are aggregated, the calculate_mean_travel times function
computes the mean travel times between different zones based on the travel times
between individual stops in different zones. The mean travel times between two zones

can be expressed in the below mathematical equation:

Given:
(1) The travel time between stop i in zone A and stop j in zone B, T;

AJB

(2) The total number of stop pairs between zone A and zone B, N.

N
z Tiajs (17)
i=1

2|

Uap =

where u,5 is the mean travel time between zone A and zone B. N is the number of

travel times between the stop pairs of zone A and zone B. T;,;. represents the

AJB

individual travel time between stop i (in zone A) and stop j (in zone B).

Function calculate_mean_travel_times

def calculate_mean_travel times(zone_features, travel_times, encoded_zones):
zone_travel_times = defaultdict(lambda: defaultdict(list))

for from_stop, to_stops in travel _times.items():
from_zone = encoded_zones[from_stop]['zone_id']
for to_stop, travel_time in to_stops.items():

to_zone = encoded_zones[to_stop]['zone_id']

53
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

if from_zone !'=to_zone:

zone_travel_times[from_zone][to_zone].append(travel_time)

mean_travel_times = {}

for from_zone, to_zones in zone_travel_times.items():
mean_travel_times[from_zone] = {}
for to_zone, times in to_zones.items():

mean_travel_times[from_zone][to_zone] = np.mean(times)

return mean_travel times

Finally, the convert_stop_sequence_to_zone_sequence function translates the stop-
level route sequence into a zone-level sequence, ensuring that the correct order of zones

is captured. The zone-level sequence is then added to the zone features.

Function convert_stop_sequence_to_zone_sequence

def convert_stop_sequence_to_zone_sequence(actual_seq, stop_data):
Sort the actual sequence based on the stop positions
sorted_stops = sorted(actual_seq, key=actual_seq.get)
seen_zones = set() # Track zones we've already encountered
zone_seq_map ={} # Map to store zone_id and its sequence index

seg_index=0 # Sequence index starts at 0

for stop_id in sorted_stops:
Get the zone_id for the current stop

zone_id = stop_data[stop_id]['zone_id']

Add the zone to the sequence if it's the first time we encounter it
if zone_id not in seen_zones:

zone_seq_map[zone_id] = seq_index

seen_zones.add(zone_id)

seq_index +=1

return zone_seq_map

54
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.3 Data Transformation and Padding

5.3.1 Data Transformation

The extract_zone features_and_sequences function is responsible for transforming
route data into training data (X_train and Y_train) for use in zone-level sequence
prediction models. This function takes in all preprocessed data, from previous step and
constructs feature vectors (X_train) for each zone, consisting of (1) super-super cluster,
(2) super cluster, (3) cluster, (4) zone, (5) number of stops in the zone, (6) number of
packages in the zone, (7) mean latitude of zone, (8) mean longitude of zone, (9) all
interzonal travel times in the route. During the transformation, the depot station zone is
explicitly placed at the first zone in every route. For Y_train, the sequence index of each
zone is stored, indicating the order in which the zones are visited. By the end of the
process, X_train contains feature vectors for each zone, including the travel times, and

Y_train holds the sequence indices corresponding to the visit order of the zones.

Function extract_zone_features_and_sequences

def extract_zone_features and_sequences(route_data):
X_train =]
Y _train =]
travel times = route_data['mean_travel times']
depot_zone = None
non_depot_zones =[]

final_zone_order =]

Separate the depot and non-depot zones
for zone_id, zone_data in route_data['zone_features'].items():
Create feature vector for the zone
feature_vector = [
zone_data['super_super_cluster'],
zone_data['super_cluster],
zone_data['integer_part'],
zone_data['decimal_partT],

55
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

zone_data['num_stops'],
zone_data['num_of_packages'],
zone_data['mean_lat1],

zone_data['mean_Ing']

Check if it's a Depot (is_station == 1)
if zone_data['is_station’] == 1:

depot_zone = (zone_id, feature_vector, zone_data['zone_seq'])
else:

non_depot_zones.append((zone_id, feature_vector, zone_data['zone_seq']))

Ensure Depot is the first input and output
if depot_zone:
final_zone_order.append(depot_zone[0])
X_train.append(depot_zone[1])
Y _train.append(depot_zone[2])

Append the non-depot zones after the depot in the original input order
for zone in non_depot_zones:

final_zone_order.append(zone[0])

X_train.append(zone[1])

Y _train.append(zone[2])

Now that final_zone_order is established, add travel times for each zone based
on this order
for idx, zone_id in enumerate(final_zone_order):
travel_distances =[]
for dest_zone_id in final_zone_order:
if zone_id == dest_zone_id:
travel_distances.append(0.0) # Travel time to selfis 0
elif zone_id in travel_times and dest_zone_id in travel_times[zone_id]:

travel _distances.append(travel _times[zone_id][dest_zone_id])

56
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

#else:

#travel_distances.append(9999) # Use default if travel time is missing

Add travel distances to the feature vector

X_train[idx].extend(travel _distances)

return X_train, Y_train

5.3.2 Padding

Padding is essential for handling input data (X) with varying lengths, ensuring
consistent input dimensions for model feeding in the later process. The target variable
(Y) is also padded to maintain a consistent shape. The pad_route_features function is
used to perform padding on X data at two levels: (1) zone-level, (2) feature-level. This
ensures that each route in the dataset has a consistent number of zones by padding routes
that have fewer zones than the maximum number of zones observed across all routes.
In our case, the maximum number of zones across all routes are identified with code

below, which is 48.

max_zones = max([len(route) for route in X_train_all])

The function takes the data (X) and the value of the maximum number of zones as input.
For each route, X is padded at the feature level by iterating over the route features,
which represent the features for each zone within a route. Each zone's feature set is
divided into two parts: the first 8 elements are static features (such as zone 1D, number
of stops, etc.), and the remaining elements represent the travel distances between zones.
If the number of travel distances for a zone is less than max_zones (the maximum
number of zones across all routes), the travel distances are padded with zeros using
np.pad. The zeros ensure that the length of travel distances matches max_zones,
ensuring consistency in feature dimensions. After padding the travel distances, the static
features and padded travel distances are concatenated to form a complete padded

feature vector for that zone.

57
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Once all zones in a route are processed, the function performs padding at the
zone level. For routes that contain fewer than 48 zones, additional zero-filled feature
vectors are appended to the route until the total number of zones equals max_zones.
This ensures that even routes with fewer zones are padded to match the maximum zone
length, creating a consistent data structure across all routes. As a result, X will have a

consistent dimension of (None, 48, 56).

Function pad_route_features

def pad_route_features(route_features, max_zones):
padded_routes =]
Pad existing zones with actual features
for features in route_features:
static_features = features[:8]
travel distances = features[8:]
Pad travel distances to match the max_zones
padded_travel_distances = np.pad(travel_distances,
(0, max_zones - len(travel_distances)),
mode="constant’, constant_values=0)
Combine static features and padded travel distances
padded_features = np.concatenate((static_features, padded_travel_distances))
padded_routes.append(padded_features)

If the route has fewer zones than max_zones, pad the remaining zones with zeros
num_existing_zones = len(route_features)
if num_existing_zones < max_zones:
Create zero-filled feature vectors for the non-existent zones
zero_padding = [np.zeros(len(padded_routes[0]))] *
(max_zones - num_existing_zones)

padded_routes.extend(zero_padding)

return padded_routes

58
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

For data Y, np.pad is used, where shorter route sequences are padded with -1 at the end,
making every sequence the same length. This padding ensures the data is ready for

model input, with -1 marking the padded, non-existent zones.

padded_Y = [np.pad(seq, (0, max_zones - len(seq)),

mode="constant’, constant_values=-1) for seqin Y_all]

59
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

54 Model Building

5.4.1 Simple RNN Encoder-Decoder

For Simple RNN Encoder-Decoder model implementation, the model structure is
constructed following methodology proposed in Chapter 3. For both the Simple RNN

encoder and decoder, the hidden unit sizes are set to 128.

The Simple RNN Encoder consists of four embedding layers for zone id features
(super-super cluster, super cluster, cluster, and zone), followed by a SimpleRNN layer
that outputs both the encoder output and the hidden state. The expected input for Simple
RNN Encoder is zones features (split into i. super-super cluster, ii. cluster, iii. super
cluster, iv. zone, v. other continuous zone features) and a valid zone mask, that indicates
valid zones in given route input. All the encoder inputs are concatenate before feeding
into the Simple RNN cells.

Class Simple RNN Encoder Model

class SimpleRNNEncoder(tf.keras.Model):
def __init_ (self, hidden_size):

super(SimpleRNNEnNcoder, self).__init__()

self.embedding_1 = tf.keras.layers.Embedding(input_dim=28, output_dim=4,
mask_zero=True)

self.embedding_2 = tf.keras.layers.Embedding(input_dim=28, output_dim=10,
mask_zero=True)

self.embedding_3 = tf keras.layers.Embedding(input_dim=101,

output_dim=10, mask_zero=True)
self.embedding_4 = tf.keras.layers.Embedding(input_dim=11, output_dim=6,

mask_zero=True)

self.simple_rnn = tf keras.layers.SimpleRNN(hidden_size,

return_sequences=True, return_state=True, name="encoder_rnn")

60
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

def call(self, input_feature_1, input_feature 2, input_feature_3, input_feature 4,

input_continuous, masked_input):

embedding_1 = self.embedding_1(input_feature_1)
embedding_2 = self.embedding_2(input_feature_2)
embedding_3 = self.embedding_3(input_feature_3)
embedding_4 = self.embedding_4(input_feature_4)

concat_embeddings = tf.keras.layers.Concatenate(axis=-1)([embedding_1,
embedding_2, embedding_3, embedding_4])
final_input = tf.keras.layers.Concatenate(axis=-1)([concat_embeddings,
input_continuous])
masked_input = tf.keras.layers.Masking(mask_value=0.0)(final_input)

encoder_output, encoder_state = self.simple_rnn(masked_input)

return encoder_output, encoder_state

Building Simple RNN Encoder Model

def build_encoder(hidden_size):
input_feature_1 = tf.keras.Input(shape=(None,), name="feature_1 input")
input_feature_2 = tf.keras.Input(shape=(None,), name="feature_2_input")
input_feature_3 = tf.keras.Input(shape=(None,), name="feature_3 _input")
input_feature_4 = tf.keras.Input(shape=(None,), name="feature_4 input")
input_continuous = tf.keras.Input(shape=(None, 52), name="continuous_input")

mask_input = tf.keras.Input(shape=(None,), name="mask_input")

encoder = SimpleRNNEncoder(hidden_size)

encoder_output, encoder_state = encoder(

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

61

CHAPTER 5

input_feature_1, input_feature 2, input_feature_3, input_feature_4,

input_continuous, mask_input)
encoder_model = tf.keras.Model(
inputs=[input_feature_1, input_feature_2, input_feature_3, input_feature_4,
input_continuous, mask_input],
outputs=[encoder_output, encoder_state]

return encoder_model

SimpleRNN_encoder = build_encoder(hidden_size)

The Simple RNN Decoder takes in the last visited zone features, previous
decoder state, encoder outputs and a valid zone mask, that indicates valid and unvisted
zones in given route input, as input. The last visited zone features with previous decoder
state is processed through a SimpleRNN layer and combine the output with the mean
of the encoder outputs to produce logits. These logits are passed through a dense layer
with a vocabulary size of 48, followed by masking. Finally, a softmax layer is applied

on the logits produced, to predict the next output in the sequence.

Class Simple RNN Decoder Model

class SimpleRNNDecoder(tf.keras.Model):
def __init_ (self, hidden_size, vocab_size):
super(SimpleRNNDecoder, self).__init_ ()
self.hidden_size = hidden_size
self.simple_rnn = tf keras.layers.SimpleRNN(hidden_size, return_state=True)

self.fc = tf.keras.layers.Dense(vocab_size)

def call(self, decoder_input, decoder_state, encoder_outputs, mask):

62

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

decoder_input = tf.expand_dims(decoder_input, 1)

rnn_output, decoder_state = self.simple_rnn(decoder_input,

initial_state=decoder_state)

axis=1)], axis=-1)
logits = self.fc(combined_output)

if mask is not None:

logits += (mask * -1e9)

probabilities = Softmax()(logits)
predictions = tf.argmax(probabilities, axis=-1)

return logits, predictions, decoder_state

combined_output = tf.concat([rnn_output, tf.reduce_mean(encoder_outputs,

Building Simple RNN Decoder Model

def build_decoder(hidden_size, vocab_size):

decoder_input = tf.keras.Input(shape=(52,), name="decoder_input")

decoder_state_input = tf.keras.Input(shape=(hidden_size,),
name="decoder_state_input")

encoder_outputs_input = tf keras.Input(shape=(None, hidden_size),
name="encoder_outputs_input")

mask_input = tf.keras.Input(shape=(None,), name="mask_input")

decoder = SimpleRNNDecoder(hidden_size, vocab_size)

logits, predictions, decoder_state = decoder(
decoder_input,
decoder_state input,
encoder_outputs_input,

mask_input

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

63

CHAPTER 5

decoder_model = tf.keras.Model(
inputs=[decoder_input, decoder_state_input, encoder_outputs_input,
mask_input],

outputs=[logits, predictions, decoder_state]

return decoder_model

SimpleRNN_decoder = build_decoder(hidden_size, vocab_size)

5.4.2 LSTM Encoder-Decoder with Attention

For LSTM Encoder-Decoder with Attention model implementation, the model structure
is constructed proposed in Chapter 3. For both the LSTM encoder and decoder with
Attention, the hidden unit sizes are set to 128.

The LSTM Encoder consists of four embedding layers for zone id features
(super-super cluster, super cluster, cluster, and zone), followed by a LSTM layer that
outputs both the encoder output and the hidden state. The expected input for Simple
RNN Encoder is zones features (split into i. super-super cluster, ii. cluster, iii. super
cluster, iv. zone, v. other continuous zone features) and a valid zone mask, that indicates
valid zones in given route input. All the encoder inputs are concatenate before feeding
into the LSTM cells.

Class LSTM Encoder Model

class Encoder(tf.keras.Model):
def __init_ (self, hidden_size):
super(Encoder, self). _init_ ()

self.embedding_1 = tf.keras.layers.Embedding(input_dim=28, output_dim=4,

64
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

mask_zero=True)
self.embedding_2 = tf.keras.layers.Embedding(input_dim=28, output_dim=10,

mask_zero=True)
self.embedding_3 = tf.keras.layers.Embedding(input_dim=101, output_dim=8,

mask_zero=True)
self.embedding_4 = tf.keras.layers.Embedding(input_dim=11, output_dim=6,

mask_zero=True)

self.Istm = tf.keras.layers.LSTM(hidden_size, return_sequences=True,

return_state=True, name="encoder_Istm")

def call(self, input_feature_1, input_feature 2, input_feature 3, input_feature 4,
input_continuous, masked_input):
embedding_1 = self.embedding_1(input_feature_1)
embedding_2 = self.embedding_2(input_feature_2)
embedding_3 = self.embedding_3(input_feature_3)
embedding_4 = self.embedding_4(input_feature_4)

concat_embeddings = tf.keras.layers.Concatenate(axis=-1)([embedding_1,
embedding_2, embedding_3, embedding_4])
final_input = tf.keras.layers.Concatenate(axis=-1)([concat_embeddings,
input_continuous])
masked_input = tf.keras.layers.Masking(mask_value=0.0)(final_input)

encoder_output, encoder_hidden, encoder_cell = self.Istm(masked_input)

return encoder_output, encoder_hidden, encoder_cell

Building LSTM Encoder Model

def build_encoder(hidden_size):

65

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

input_feature_1 = tf.keras.Input(shape=(None,), name="feature_1 input")
input_feature_2 = tf.keras.Input(shape=(None,), name="feature_2_input")
input_feature_3 = tf.keras.Input(shape=(None,), name="feature_3 _input")
input_feature_4 = tf.keras.Input(shape=(None,), name="feature_4 input")
input_continuous = tf.keras.Input(shape=(None, 52),
name="continuous_input") # Continuous features input

mask_input = tf.keras.Input(shape=(None,), name="mask_input")
encoder = Encoder(hidden_size)
encoder_output, encoder_hidden, encoder_cell = encoder(

input_feature_1, input_feature 2, input_feature_3, input_feature 4,

input_continuous, mask_input

encoder_model = tf.keras.Model(
inputs=[input_feature_1, input_feature_2, input_feature_3, input_feature_4,
input_continuous, mask_input],

outputs=[encoder_output, encoder_hidden, encoder_cell]

return encoder_model

APNN_encoder = build_encoder(hidden_size)

The LSTM Decoder with Attention takes in last visited zone index, last visited

zone features, previous decoder state, encoder outputs, a valid zone mask, that indicates

valid and unvisted zones in given route input, and timestep index, as input.

At timestep 0, context vector, w (see Chapter 3) and attention index are

initialized with the value of 0. The next zone features (here referring to depot zone

features) with initial context vector, wy = 0, is processed through a LSTM layer to

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

produce hidden decoder state, and logits. These logits are passed through a dense layer

with a vocabulary size of 48.

At subsequent timestep, context vector, w;)(see Chapter 3) and attention index

are determined from the attention model. The next zone features (determined by

attention index) with the corresponding context vector, w;, is processed through a

LSTM layer to produce hidden decoder state, and logits.

For next zone predictions, the attention layer, with hidden layer of 128 produced
context vectors, wjy, along with attention weights, a’ « for every candidate stops, s;.

For calculation of attention weights and context vector, see Chapter 3. The next zone

prediction is determined by the highest attention weights of given candidate stops, s;.

Class LSTM Decoder with Attention Model

class DecoderWithAttention(tf.keras.Model):
def __init_ (self, hidden_size, vocab_size):
super(DecoderWithAttention, self). _init_ ()
self.hidden_size = hidden_size
self.Istm = tf.keras.layers.LSTM(hidden_size, return_sequences=False,
return_state=True)
self.attention = PointerAttention(hidden_size)

self.fc = tf.keras.layers.Dense(vocab_size)

def call(self, last_visited_idx, decoder_input, decoder_hidden, decoder_output,
encoder_outputs, zone_features, mask, timestep):
batch_size = tf.shape(encoder_outputs)[0]
seq_len = tf.shape(encoder_outputs)[1]

decoder _initial_state = decoder_hidden
def timestep_zero():

context_vector = tf.zeros([batch_size, self.hidden_size])

attention_idx = tf.zeros([batch_size], dtype=tf.int64)

67
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

selected_zone_features = tf.gather(zone_features, attention_idx,
batch_dims=1)
decoder_input_with_context = tf.concat([tf.expand_dims(context_vector, 1),
tf.expand_dims(selected_zone_features, 1)], axis=-1)
Istm_output, decoder_hidden, decoder_cell = self.Istm(
decoder_input_with_context, initial_state=decoder_initial_state)
logits = self.fc(Istm_output)

return Istm_output, decoder_hidden, decoder_cell, logits, attention_idx

def timestep_n():
context_vector, attention_weights = self.attention(last_visited_idx,
encoder_outputs, decoder_output, zone_features, mask)
attention_idx = tf.argmax(attention_weights, axis=1)
selected_zone_features = tf.gather(zone_features, attention_idx,
batch_dims=1)

decoder_input_with_context = tf.concat([tf.expand_dims(context_vector, 1),
tf.expand_dims(selected_zone_features, 1)], axis=-1)

Istm_output, decoder_hidden, decoder_cell = self.Istm(

decoder_input_with_context, initial_state=decoder _initial_state)
logits = self.fc(Istm_output)

return Istm_output, decoder_hidden, decoder_cell, logits, attention_idx

Istm_output, decoder_hidden_out, decoder_cell, logits, attention_idx = tf.cond(
tf.equal(timestep, 0),
timestep_zero,
timestep_n

)

return Istm_output, decoder_hidden_out, decoder_cell, logits, attention_idx

Class Pointer Attention

class PointerAttention(layers.Layer):
def __init__ (self, hidden_size):

68
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

super(PointerAttention, self). _init_ ()
self.hidden_size = hidden_size
self.mlp = layers.Dense(1)

def call(self, last_visited_idx, encoder_outputs, decoder_hidden, zone_features,
mask):

seq_len = tf.shape(encoder_outputs)[1]

travel_time_index_w = last_visited_idx + 4

seq_indices = tf.range(seq_len)[tf.newaxis, :]

travel_time_index_w _tiled = tf.tile(travel time_index_w[:, tf.newaxis], [1,
seqg_len])

travel_time_indices = tf.stack([tf.zeros_like(seq_indices), seq_indices,
travel_time_index_w_tiled], axis=-1)

travel times = tf.gather_nd(zone_features, travel_time_indices)

travel_times = tf.expand_dims(travel _times, -1)

decoder_hidden_with_time_axis = tf.expand_dims(decoder_hidden, 1)

decoder_hidden_tiled = tf.tile(decoder_hidden_with_time_axis, [1, seq_len, 1])

v_j = tf.concat([travel_times, decoder_hidden _tiled, encoder_outputs], axis=-1)

u_j = self.mlp(v_j)
u_j = tf.squeeze(u_j, -1)

if mask is not None:

u_j +=(mask * -1e9)

a_j = tf.nn.softmax(u_j, axis=1)

context_vector = tf.reduce_sum(a_j[:, :, tf.newaxis] * encoder_outputs, axis=1)

return context_vector, a_j

69
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Building LSTM Decoder with Attention Model

def build_decoder(hidden_size, attention_layer):

last_visited_idx = tf.keras.Input(shape=(), dtype=tf.int32,
name="last_visited_idx_input")
decoder_input = tf.keras.Input(shape=(52,), name="decoder_input")
decoder_hidden_input = tf.keras.Input(shape=(hidden_size,),
name="decoder_hidden_input™)
decoder_cell_input = tf.keras.Input(shape=(hidden_size,),
name="decoder_cell_input™)
encoder_output_input = tf.keras.Input(shape=(None, hidden_size),
name="encoder_output_input")
continuous_input = tf.keras.Input(shape=(None, 52), name="continuous_input")
mask_input = tf.keras.Input(shape=(None,), name="mask_input")
t_input = tf.keras.Input(shape=(), dtype=tf.int32, name="timestep_input")
last_decoder_output = tf.keras.Input(shape=(hidden_size,),
name="decoder_output")

decoder = DecoderWithAttention(hidden_size, attention_layer)

decoder_output, decoder_hidden, decoder_cell, logits, predictions = decoder(
last_visited_idx,
decoder_input,
[decoder_hidden_input, decoder_cell_input],
last_decoder_output,
encoder_output_input,
continuous_input,
mask_input,

t_input,

decoder_model = tf.keras.Model(

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

70

CHAPTER 5

inputs=[last_visited_idx, decoder_input, decoder_hidden_input,
decoder_cell_input, last_decoder_output, encoder_output_input,
continuous_input, mask_input, t_input],

outputs=[decoder_output, decoder_hidden, decoder_cell, logits, predictions]

return decoder_model

APNN _decoder = build_decoder(hidden_size, vocab_size)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

71

CHAPTER 5

5.5 Model Training

For Model Training, custom training loops are defined, with main training process
defined at Function train_model, and for each timestep, process are defined in Function
train_steps. For the detailed process, including process at every timestep at decoder,

inputs, are defined at Chapter 3.

Function train_model

def train_model(encoder_model, decoder_model, X train, Y _train, optimizer,

epochs):

for epoch in range(epochs):
epoch_loss =0.0

epoch_accuracy = 0.0

Shuffle the training data at the start of each epoch
X_train_shuffled, Y _train_shuffled = shuffle_data(X_train, Y_train)

for route_idx in range(len(X_train_shuffled)):

inputs = X_train_shuffled[route_idx]

targets = Y_train_shuffled[route_idx]

targets = transpose_target_Y (targets)

inputs = np.array(inputs)

targets = np.array(targets)

avg_loss, predicted_Y = train_step(inputs, targets, encoder_model,

decoder_model, optimizer)

route_accuracy = evaluate_predictions(predicted_Y[tf.newaxis, ...],
targets[tf.newaxis, ...])

epoch_loss += avg_loss.numpy()

epoch_accuracy += route_accuracy

epoch_loss /= len(X_train_shuffled)

epoch_accuracy /= len(X_train_shuffled)

72
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

[{epoch_accuracy}])

print(f\nEpoch {epoch + 1}/{epochs}, Loss: {epoch_loss}, Accuracy:

Function train_step

def train_step(inputs, targets, encoder_model, decoder_model, optimizer):
loss=0
predicted_Y =]

with tf.GradientTape() as tape:
Prepare inputs for the encoder
input_feature_1 = inputs[:, 0]
input_feature_2 = inputs[:, 1]
input_feature_3 = inputs[:, 2]
input_feature_4 = inputs[:, 3]
input_continuous = inputs[:, 4:]

X_mask = create_x_mask(inputs[tf.newaxis, ...])

y_mask = create_y mask(targets[tf.newaxis, ...])

Run the encoder
encoder_outputs, encoder_hidden, _ = encoder_model(
[input_feature 1[tf.newaxis, .

input_feature_3[tf.newaxis, .

-]
input_feature_2[tf.newaxis, ...],
-]
-]

input_feature_4[tf.newaxis, ...],

input_continuous|tf.newaxis, ...],

X_mask]

Initialize decoder state
decoder_input = input_continuous[0] # Start with the first location

decoder_hidden = encoder_hidden

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

73

CHAPTER 5

last_visited_idx = tf.constant(0, dtype=tf.int32)
decoder_cell = tf.zeros_like(encoder_hidden)
decoder_output = tf.zeros_like(encoder_hidden)
visited_mask = tf.zeros_like(x_mask[0])

check_mask = tf.ones_like(x_mask[0])

seq_len = tf.shape(inputs)[0]

for t in range(seq_len):
combined_mask = combine_masks(x_mask, visited_mask)
if tf.reduce_all(tf.equal(combined_mask, check_mask)):
break
decoder_output, decoder_hidden, decoder_cell, logits, predictions =
decoder_model(
[last_visited_idx[tf.newaxis, ...],
decoder_input[tf.newaxis, ...],
decoder_hidden,
decoder_cell,
decoder_output,
encoder_outputs,
input_continuous[tf.newaxis, ...],
combined_mask[tf.newaxis, ...],
tf.constant(t, dtype=tf.int32)]

predicted_Y .append(predictions)

loss += tf.keras.losses.sparse_categorical_crossentropy(targets[t:t+1], logits,
from_logits=True)

decoder_input = input_continuous|t]

last_visited_idx = targets[t]

visited_mask = visited_mask + tf.one_hot(last_visited idx, depth=seq_len)

avg_loss = loss / tf.reduce_sum(y_mask)

74
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

gradients = tape.gradient(avg_loss, encoder_model.trainable_variables +
decoder_model.trainable_variables)
optimizer.apply_gradients(zip(gradients, encoder_model.trainable_variables +

decoder_model.trainable_variables))

predicted_Y = tf.stack(predicted_Y)
predicted_Y = tf.squeeze(predicted_Y))

return avg_loss, predicted Y

For function create_x_mask and create_y mask, is to create masking for input X and
Y. For input X, masking are done at both zones and features level, for padding values
with ‘0’. On the other hand, for input Y, masking is done at sequence, marked as ‘-1’

Masking is to ensure exclusion padding values during model training, evaluation.

Function create_Xx_mask

def create_x_mask(X):
_, hum_zones, num_features = X.shape
mask = np.zeros((num_zones))
for i in range(num_zones):
if np.all(X[0][i] == 0):
mask[i] = 1

return tf.convert_to_tensor(mask, dtype=tf.float32)

Function create_y mask

def create_y_mask(Y):
return tf.cast(Y != -1, tf.float32)

75
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

For function combine_masks, it is used to create an updated valid zone mask (valid and
unvisited zone) at every timestep. The function combine x_mask and visited_mask

together.

Function combine_masks

def combine_masks(x_mask, visited_mask):
combined_mask = tf.maximum(x_mask, visited_mask)

return combined_mask

Function transpose_target Y is to rearrange the target sequence target_Y such that each
zone's position is mapped to its corresponding index in X. Essentially, it "transposes”
the target sequence so that the indices of the zones in the sequence align with the order

of features in X.

Function transpose_target_Y

def transpose_target Y (target_Y):
transposed_Y = np.zeros_like(target_Y)
valid_positions = target_Y/[target_Y I=-1]
for idx, zone in enumerate(valid_positions):

transposed_Y[zone] = idx

return transposed_Y [target_Y I=-1]

76
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Function shuffle_data are used to shuffle the sequence of input training data, to ensure

that the model are not learning the input sequential pattern.

Function shuffle_data

def shuffle_data(X, Y):
""'Shuffle the X and Y data while maintaining correspondence.""
indices = np.arange(len(X))
shuffled_indices = shuffle(indices)
return [X[i] for i in shuffled_indices], [Y[i] for i in shuffled_indices]

Function evaluate_predictions is to evaluate the average accuracy of the predicted route

compared to the actual sequence (target).

Function evaluate_predicitons

def evaluate_predictions(predicted_Y, targets):

accuracy =0

assert len(predicted_Y) == len(targets), "Predicted and target sequences must have
the same length."”

correct_predictions = tf.reduce_sum(tf.cast(tf.equal(predicted_Y, targets),
dtype=tf.int32))

total_elements = tf.size(targets)

accuracy = correct_predictions / tf.cast(total_elements, dtype=tf.int32)

return accuracy

77
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.6 Model Evaluation

For Model Evaluation, custom evaluation loops are defined, align with training loops.

The custom model evaluation function return information includes average loss,

average accuracy, first four zone accuracy, average disparity score, standard deviations

of disparity score, list of disparity scores, with the list of all predictions, all targets, all

X, uses for visualization later on.

Function evaluate model

def evaluate_model(encoder_model, decoder_model, X_data, Y_data):
total loss =0.0
total_accuracy = 0.0
total_disparity_score = 0.0
total_routes = len(X_data)
all_predictions = []
all_targets =]
all_ X =]

good_predictions = []
good_targets =]
good_X =1]

bad_predictions = []
bad_targets = []

bad X =]

disparity_scores =[]

first_correct =0

X _data_shuffled, Y _data_shuffled = shuffle_data(X data, Y_data)

for route_idx in range(total_routes):

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

78

CHAPTER 5

inputs = X_data_shuffled[route_idx]
targets = Y_data_shuffled[route_idx]
targets = transpose_target_Y (targets)

inputs = np.array(inputs)
targets = np.array(targets)

Prepare inputs for the encoder
input_feature_1 = inputs[:, 0]
input_feature_2 = inputs[:, 1]
input_feature_3 = inputs[:, 2]
input_feature_4 = inputs[:, 3]

input_continuous = inputs[:, 4:]

X_mask = create_x_mask(inputs[tf.newaxis, ...])

y_mask = create_y mask(targets[tf.newaxis, ...])

Run the encoder
encoder_outputs, encoder_hidden, _ = encoder_model(
[input_feature_1[tf.newaxis, ...],

input_feature_2[tf.newaxis,

input_feature_3[tf.newaxis,

]
o
]
input_feature_4[tf.newaxis, ...],
input_continuous[tf.newaxis, ...],

x_mask[tf.newaxis, ...]], training=False

Initialize decoder state

decoder_input = input_continuous[0]
decoder_hidden = encoder_hidden
last_visited_idx = tf.constant(0, dtype=tf.int32)
decoder_cell = tf.zeros_like(encoder_hidden)

decoder_output = tf.zeros_like(encoder_hidden)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

79

CHAPTER 5

visited_mask = tf.zeros_like(x_mask[0])

check_mask = tf.ones_like(x_mask[0])

seq_len = tf.shape(inputs)[0]
predicted_Y =[]
route_loss =0

for t in range(seq_len):

combined_mask = combine_masks(x_mask, visited _mask)

if tf.reduce_all(tf.equal(combined_mask, check_mask)):
break

decoder_output, decoder_hidden, decoder_cell, logits, predictions =
decoder_model(
[last_visited_idx[tf.newaxis, ...],
decoder_input[tf.newaxis, ...],
decoder_hidden,
decoder_cell,
decoder_output,
encoder_outputs,
input_continuous[tf.newaxis, ...],
combined_mask[tf.newaxis, ...],
tf.constant(t, dtype=tf.int32)[tf.newaxis, ...]]

predicted Y .append(predictions)
route_loss += tf.keras.losses.sparse_categorical_crossentropy(targets[t:t+1],
logits, from_logits=True)

pred_idx = predictions[-1].numpy()

decoder_input = input_continuous[pred_idx]

80

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

last_visited_idx = pred_idx

visited_mask = visited_mask + tf.one_hot(last_visited_idx, depth=seq_len)

predicted_Y = tf.stack(predicted_Y)
predicted_Y = tf.squeeze(predicted_Y)

route_accuracy = evaluate_predictions(predicted_Y[tf.newaxis, ...],

targets[tf.newaxis, ...])

if predicted_Y[1] == targets[1]:
first_correct +=1

time_matrix = np.zeros((len(targets), len(targets)))
for i in range(len(targets)):
for j in range(len(targets)):
time_matrix[i, j] = input_continuous[i][j+4]

disparity_score = calculate_disparity_score(targets, predicted_Y.numpy(),

time_matrix)

total_loss += route_loss / tf.reduce_sum(y_mask)
total_accuracy += route_accuracy
total_disparity_score += disparity_score

disparity_scores.append(disparity_score)

Store predictions and targets
all_predictions.append(predicted_Y.numpy())
all_targets.append(targets)
all_X.append(inputs)

if route_accuracy > 0.80:
good_predictions.append(predicted_Y.numpy())
good_targets.append(targets)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

good_X.append(inputs)

elif route_accuracy < 0.5:
bad_predictions.append(predicted_Y.numpy())
bad_targets.append(targets)
bad_X.append(inputs)

progress = ((route_idx + 1) / total_routes) * 100

print(f\rProgress: {progress:.2f}% - Route {route_idx + 1}/{total_routes},"
f'Loss: {(route_loss / tf.reduce_sum(y_mask)).numpy()}, '
f'Accuracy: {route_accuracy:.4f}, '
f'Disparity Score: {disparity_score:.4f}', end=")

avg_loss = total_loss / total_routes

avg_accuracy = total_accuracy / total_routes
avg_disparity_score = total_disparity_score / total_routes
disparity_score_std = np.std(disparity_scores)

first_zone_accuracy = first_correct / total_routes

print(f\nEvaluation complete. Average Loss: {avg_loss:},
f'Average Accuracy: {avg_accuracy:}, "
f'Average Disparity Score: {avg_disparity_score:}, '
f'Disparity Score Std: {disparity_score_std:}')

return (avg_loss, avg_accuracy, first_zone_accuracy,
avg_disparity_score, disparity_score_std, disparity_scores,
all_predictions, all_targets, all_X,
good_predictions, good_targets, good_X,
bad_predictions, bad_targets, bad_X)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

82

CHAPTER 5

For function calculate_disparity_score is to calculate the disparity score given target
sequence and predicted sequence. The mathematical formula is defined in Chapter
6.2.1.

Function calculate_disparity_score

def calculate_disparity_score(actual_transposed, predicted, time_matrix):
sd = calculate_sequence_deviation(actual_transposed, predicted)
erp_norm = calculate_erp_norm(actual_transposed, predicted, time_matrix)
erp_e = calculate_erp_e(actual_transposed, predicted)
if erp_e == 0: # Perfect prediction

return O

return (sd * erp_norm) / erp_e

Function calculate_sequence_deviation

def calculate_sequence_deviation(actual, predicted):
n = len(actual)
¢ = {stop: idx for idx, stop in enumerate(actual)}
sd=0
for i in range(1, n):
sd += abs(c[predicted[i]] - c[predicted[i-1]]) - 1
return (2/(n * (n - 1))) * sd

Function calculate_erp_norm

def calculate_erp_norm(actual, predicted, time_matrix):
if len(actual) == 1 or len(predicted) == 1:
return O
first_actual, first_predicted = actual[0], predicted[0]
time_norm = time_matrix[first_actual, first_predicted] / np.sum(
time_matrix[first_actual, :])

return calculate_erp_norm(actual[1:], predicted[1:], time_matrix) + time_norm

83
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Function calculate_erp_e

def calculate_erp_e(actual, predicted):
m, n = len(actual), len(predicted)
dp =[[0] * (n + 1) for _inrange(m + 1)]
for i in range(m + 1):
dp[i][0] = i
for j in range(n + 1):
dp[O][i] = j
foriinrange(l, m + 1):
for jinrange(1, n + 1):
if actual[i-1] == predicted[j-1]:
dp[i][i] = dp[i-1][-1]
else:
dp[i][i] = 1 + min(dp[i-1][], dp[i][j-11, dp[i-1][-1])
return dp[m][n]

Function k_fold_cross_validation are custom k fold cross validation which call custom

training loops and evaluation functions.

Function k_fold_cross_validation

def Kk fold _cross_validation(X, Y, k=5, hidden_size=128, vocab_size=48,
epochs=10, learning_rate=0.0001,
patience=3, min_delta=0.001):
kf = KFold(n_splits=k, shuffle=True, random_state=42)
fold_results =[]

sequence_indices = np.arange(len(X))

for fold, (train_index, val_index) in enumerate(kf.split(sequence_indices), 1):
print(f"\nFold {fold}/{k}")

84
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Split the data
X_train, X_val = [X[i] for i in train_index], [X[i] for i in val_index]
Y _train, Y_val = [Y[i] for i in train_index], [Y[i] for i in val_index]

Build and compile the model
encoder = build_encoder(hidden_size)
decoder = build_decoder(hidden_size, vocab_size)

optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

best_val_loss = float('inf")
best_encoder = None
best_decoder = None

patience_counter = 0

for epoch in range(epochs):
print(f"Epoch {epoch + 1}/{epochs}")

train_model(encoder, decoder, X_train, Y_train, optimizer, 1)

Evaluate on validation set

val_results = evaluate_model(encoder, decoder, X_val, Y_val)

val_loss, val_accuracy, val_first_zone_accuracy = val_results[0],
val_results[1], val_results[2]

val_disparity, val_disparity_std = val_results[3], val_results[4]

print(f*Validation Set - Loss: {val_loss}, Accuracy: {val_accuracy}, "
f"First zone Accuracy: {val_first_zone_accuracy},”
f"Disparity Score: {val_disparity}, Disparity Std: {val_disparity_std}")

Check if this is the best model so far
if val_loss < best_val_loss - min_delta:
best_val loss = val_loss

best_encoder = tf.keras.models.clone_model(encoder)

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

best_encoder.set_weights(encoder.get_weights())
best_decoder = tf.keras.models.clone_model(decoder)
best_decoder.set_weights(decoder.get_weights())
patience_counter = 0

else:

patience_counter += 1

Check if we should stop training

if patience_counter >= patience:
print(f"Early stopping triggered at epoch {epoch + 1}")
break

final_val_results = evaluate_model(best_encoder, best_decoder, X val, Y_val)

(val_loss, val_accuracy, val_first_zone_accuracy,
val_disparity, val_disparity_std, val_disparity_scores,
val_predictions, val_targets, val_X,
good_val_predictions, good_val_targets, good_val X,

bad_val_predictions, bad_val_targets, bad_val_X) = final_val_results

print(f"Final Validation Set - Loss: {val_loss}, Accuracy: {val_accuracy}, "

f'Disparity Score: {val_disparity}, Disparity Std: {val_disparity_std}")

fold_results.append({
'loss': val_loss,
‘accuracy': val_accuracy,
first_zone_accuracy': val_first_zone_accuracy,
'disparity": val_disparity,
'disparity_std': val_disparity_std
by,

Calculate average metrics across all folds

avg_loss = np.mean([fold['loss"] for fold in fold_results])

86
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

avg_accuracy = np.mean([fold['accuracy'] for fold in fold_results])
avg_disparity = np.mean([fold['disparity'] for fold in fold_results])
avg_disparity_std = np.mean([fold['disparity_std'] for fold in fold_results])

print("\nAverage results across all folds:")
print(f'Loss: {avg_loss}")

print(f"Accuracy: {avg_accuracy}")
print(f*Disparity Score: {avg_disparity}")
print(f*Disparity Score Std: {avg_disparity std}")

return fold_results

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

87

CHAPTER 5

5.7 Result Visualization

Finally, predicted route and target route are used to visualize how the predicted route

compared to target route.

Visualization with Plot Graph

Function plot_route_comparison

def plot_route_comparison(route_idx, predicted_sequences, actual_sequences):
predicted_route = predicted_sequences[route_idx]

actual_route = actual_sequences[route_idx]

Filter out padded zones (-1)
predicted_route = [zone for zone in predicted_route if zone !=-1]

actual_route = [zone for zone in actual_route if zone !'=-1]

Plot the sequences
plt.figure(figsize=(10, 6))
plt.plot(predicted_route, label="Predicted Route", marker='0", linestyle="--',
color="blue")
plt.plot(actual_route, label="Actual Route”, marker="x', linestyle="-',
color='green’)
plt.title(f"Route Prediction vs Actual (Route {route_idx})"™)
plt.xlabel("Zone Index")
plt.ylabel(*Zone ID")
plt.legend()
plt.grid(True)
plt.show()

88
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Example:

Route Prediction vs Actual (Route 821)

—®- Predicted Route
—»— Actual Route

al suozZ

Zone Index

Figure 5.2.1 Plot Graph for predicted vs actual at Route 821

Route Prediction vs Actual (Route 27)

.,...,.......
l...\.....-,. |m
——
——-
.MMMI
- O
T osc-e
=
- u
== T F e
|...|||I||..||.H||.Ui.
ST
llllllll -l _
||||||||||||| [©
@=7777 o~
b
==T I
== =]
llllll o
P = & =
== ol - ©
-l o o
\\\\\\\\\ 53
= 3 m Fa
TTree & <
llllllllll 1
O 4 +
|||||||||||||||||| °
llllllll === =]
[SEF
TTe-rsae
In\-l‘
oI _
111111 Sk
§-—====——""T LA
\
=
\\\\\
-~
=~Le
[y
JJJJJJJ o
T T T T T T T
(=] i = u (=] [Ta] (=]
(] ™~ ™~ — —~
al auoz

Zone Index

89

Figure 5.2.2 Plot Graph for predicted vs actual at Route 27

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Route Visualization with Leaflet

Function create_map_with_sequence

def create_map_with_sequence(X, Y):

stops_sequence = [X[idx] for idx in Y]
avg_lat = sum([stop[6] for stop in stops_sequence]) / len(stops_sequence)
avg_Ing = sum([stop[7] for stop in stops_sequence]) / len(stops_sequence)
folium_map = folium.Map(location=[avg_lat, avg_Ing], zoom_start=10)
stop_coordinates = []
for stop_idx, stop in enumerate(stops_sequence):

lat = stop[6]

Ing = stop[7]

Construct the stop hame

feature_1 = chr(int(stop[0]) + 64)

feature_2 = chr(int(stop[1]) + 64)

feature_3 = str(int(stop[2]))

feature_4 = str(int(stop[3]))

name = f"{feature_1}-{feature_3}.{feature_4}{feature_2}"

color = generate_random_color()

folium.map.Marker(
[lat, Ing],
icon=folium.Divlcon(
icon_size=(50, 60),
html=f""
<div style="
background-color: {color};
border-radius: 10px;
padding: 2px;
text-align: center;

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

90

CHAPTER 5

font-size: 8pt;

color: white;

width: 50px;">

{stop_idx}
{name}
</div>"""

)
).add_to(folium_map)

stop_coordinates.append((lat, Ing))

for i in range(len(stop_coordinates) - 1):
start_lat, start_Ing = stop_coordinates[i]
end_lat, end_Ing = stop_coordinates[i + 1]

route = get_osrm_route(start_lat, start_Ing, end_lat, end_Ing)

folium.PolyLine(locations=route, color="blue’, weight=2.5,

opacity=0.7).add_to(folium_map)

start_lat, start_Ing = stop_coordinates[-1]
end_lat, end_Ing = stop_coordinates[0]

return_route = get_osrm_route(start_lat, start_Ing, end_lat, end_Ing)

folium.PolyLine(locations=return_route, color="blue’, weight=2.5,

opacity=0.7).add_to(folium_map)

return folium_map

91
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Function get_orsm_route

def get_osrm_route(start_lat, start_Ing, end_lat, end_Ing):
osrm_url = f"http://router.project-osrm.org/route/v1/driving/
{start_Ing},{start_lat};{end Ing}{end lat}
?overview=full&geometries=geojson"
response = requests.get(osrm_url)
if response.status_code == 200:
data = response.json()
route = data['routes’][0]['geometry']['coordinates’]
route = [(lat, Ing) for Ing, lat in route] # Convert to [(lat, Ing)] format
return route
else:
print(f"Error fetching route: {response.status_code}")
return []

Function genereate_random_color

def generate_random_color():
return "#{:02x}{:02x}{:02x}".format(random.randint(0, 255),
random.randint(0, 255), random.randint(0, 255))

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

92

CHAPTER 5

Example:
, BTV, Rl e AL EL e
: . 1i ‘ Park
‘7\ 1 9 |
Feiell 14 = |
| Hallcre?laou|§Vde &8, 00d R ———— Pincay Drive - West 90th St
{/ | c N
| | |
A s 5 lWes(Arbor Vitag
3 | : L i
| ; -
K-10.3F 14 v ‘ .w{._jp/mpod P
- 102; Park
12 ‘ K-10.1A \
K-10.3A W}
2 — S L BN g DD e e R AR TAR
W U N e e
..... T |
West 104th Street - — - - West 104th Sy
I~ West 108th 5t

[
!
|
1
i
i
5
|

~West 1 18t Street -

anuaay yuIg l

! ! N
£ : :
I | g ! ! | e
by 1S i a T e
T rEEE] Gy
2 P ' Hawthorne :
'y I < | Municipal
Broadway . | ; ¥ Airport

e ek N O TG PIAGE TGS

_anuany yaalg.

k|
s

Figure 5.2.3 Actual Route0 shown using Leaflet

93
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

s e — T o s D ey o £ T e
| | Park
il 1 il
——West Hillcrest Boulevard, | — pincay Drive West 90th Stre
: T et l\I\IestAr‘meitaeS
.«hfjolty»gpod P
~Park
P | TS || S Sqe BCisel AR EJE TN
,,,,,,, = T L = e
(]
West 104th Street - ~-West 104th Str|
L West108th, Strd
I
i
l
1
i
g
e R Ik | P
: | T L P N e v R g TS
| @ = |, p—t f
| g |
l ; AN s : :
< ~West 118th Street § - :
g B pe 3 B | e
0) I § i - —Jl LA
12 T —
5 e |
> e -
| 2 o ! Howthorne A
. o S A e .
: | [it | Municipal =
| | i i “ Airport
S 020V, L“,\,’§ e ek NOR G RIAGE T
| {181 =g I = |
- | 1 i | i
H |
Jisen Y FSol B g LT) PR L i o i e
e i T A b | I N] T |
HE creer 3, i

Figure 5.2.4 Predicted Route0 shown using Leaflet

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

94

CHAPTER 5

LT

)

B

5
f;
E

, [
B
o

Figure 5.2.5 Actual Route20 shown using Leaflet

95
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Figure 5.2.6 Predicted Route20 shown using Leaflet

96
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.8 Implementation Issues and Challenges

Cloud-Based Computing Resources

The project is implemented on Google Colab, a cloud-based Jupyter Notebook. Due to
the nature of cloud-based computing, computing process are strongly reliant on internet
connections. Poor Internet connection or internet outbreaks hinders project progress.
Moreover, Google Colab also comes with idle time constraints given a period of time.
When running time consuming codes, such as model training, and cross validation,
Google Colab may disconnect due to reaching limit of idle time, causing session to be

halted. Therefore, it might be potential bottleneck for the project.

97
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

CHAPTER 6

System Evaluation and Discussion

6.1 Driver Behaviours in Last-Mile Delivery

In this project, data analysis was conducted using the dataset from the Amazon Last
Mile Routing Research Challenge [7]. The dataset consists of over 6,112 actual last-
mile delivery routes, providing valuable insights into how drivers navigate their routes,
particularly in zone-based deliveries. The analysis reveals that within delivery zones,
drivers show a strong preference for completing all stops in a single zone before moving
on to the next. This sequential pattern suggests that driver behavior is heavily
influenced by the structure of the zones rather than by individual package constraints,
such as preferred delivery time windows. For instance, in zone ‘C-3.2B,’ drivers follow
a fixed sequence of stops [1, 2, 3, ..., 9], while zone ‘C-3.1B’ covers stops [10, 11, 12,
..., 18] (refer to Figure 5.1.7). This consistent zone-focused approach implies a
systematic method for reducing route deviations by organizing deliveries within

specific geographic clusters.

Further analysis into how routes are planned uncovered a hierarchical structure
in the zone IDs used in delivery routes. Each zone ID can be broken down into four
components: the super-super cluster, the super cluster, the cluster, and the individual
zone. For example, in the zone ID ‘D-18.2], the letter ‘D’ represents the super-super
cluster, while ‘D-18’ forms the super cluster, and ‘J’ represents the cluster. The final
decimal value ‘.2’ identifies the specific delivery zone. This hierarchical structure plays
a crucial role in determining the order in which drivers approach their deliveries. The
data indicates that the zone IDs tend to follow either an ascending or descending order,
pointing to a systematic clustering approach that drivers likely follow. This structured
pattern helps minimize deviations by ensuring drivers adhere to an organized route

across multiple clusters and zones.

Another key finding from the analysis is that over 92.27% of the delivery

packages are time-window insensitive. Out of the 1,457,175 packages, 1,343,182

98
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

lacked specified delivery time windows. This overwhelming percentage suggests that
time-sensitive deliveries are not a major factor influencing most routes. Consequently,
the impact of time-sensitive delivery constraints on driver decisions is minimal,
allowing drivers to focus on other factors such as route efficiency, traffic patterns, and

overall distance traveled.

In conclusion, the findings emphasize the minimal role that time-sensitive
deliveries play in influencing driver behavior. Instead, driver behavior is primarily
driven by zone-based delivery patterns, where stops within a given zone are completed
sequentially before moving to the next. The hierarchical structure of zone IDs further
supports a systematic approach to delivery route planning, indicating that geographic
clustering of stops is the primary factor affecting route deviations. By understanding
the factors that may cause drivers to deviate from pre-planned delivery routes and last-
mile delivery behavior, we can better select features and preprocess data for model

training. This, in turn, will lead to more accurate and reliable delivery predictions.

99
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

6.2 Model Performance

6.2.1 Performance metrics
Disparity score metrics

For this route prediction problem, the quality of predicted zone sequences is evaluated
using ‘disparity score’, aligning with the Amazon Last Mile Routing Research

Challenge, provided by [5], with the mathematical formula of:

_ SD(A,B) - ERP,orm (A, B)
R(A B) = ERP.(A, B) @

where (i) the disparity score for the actual sequence A and predicted sequence B,
denoted by R(A4, B); and

(i) the sequence deviation between actual sequence A and predicted sequence

B, denoted as SD (4, B) are expressed in following:

2 n
SD(A,B) = m;dcwi] — -y = D (18)

where (i) total number of zones found in a given route, denoted by n;
(ii) the ith zone of sequence B, denoted by B;;
(i) the index of zone B; in the actual sequence 4, denoted by c(g,}.

For every perfect predicted case, where sequence A is completely equals to sequence B,
SD(A,B) return value of 0.

Next, the recursive function, Edited Distance with Real Penalty (ERP), denoted by
ERP,,rm(A,B) are used to calculate the penalty score for every deviated zone,

compared to the actual sequences. It can be expressed as:
ERPoorm (A, B) = ERPaorm(Azap B2:js) + TIMEnorm (41, By) (19)
100

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

where the normalized travel time between zone zj and z;j, expressed in:

TIME(z;, z;)
% jreqa...n) TIME(2;, 21)

TIMEorm (i, z) = (20)

ERPe(A,B) provide the number of modify operations (i.e., insertions, substitutions,

deletions) needed to convert sequence A to sequence B while computing the recursive

ERPnorm (A'B)

function, ERP, 4, (A, B) [5]. Given that the ratio of ERPL(AB)

provides the average

TIME ,orm (2i, z;) involved in every ERP modification operation. Note that a score of
zero indicates a perfect prediction, hence the lower the metrics tells positive model

performance.

The motivation for choosing the disparity score over traditional accuracy
metrics as the primary evaluation metric lies in its ability to provide a more meaningful
assessment of route prediction performance. While accuracy metrics focus solely on
how well the predicted route matches the actual sequence, they do not account for the
quality or efficiency of the predictions. In contrast, the disparity score evaluates the
predicted route in terms of its deviation from optimality, penalizing errors based on the
travel distance between the actual and predicted zones at each step. This approach offers
a clearer understanding of "how suboptimal™ a predicted route is, emphasizing the

importance of minimizing travel distance and improving overall route efficiency.

Prediction accuracy

Moreover, along with the disparity score, we assess the prediction accuracy of the first
four zones in each given route as every route contains at least four zones. Let the
predicted sequence for the Let the predicted sequence of the 7zth route be A™ and the

actual sequence be B, The prediction accuracy of the /th zone is defined as:

M
=11, m m
Ym=1 {A;;I)= p,m) @

Prediction accuracy; =

101
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

where A7 is the total number of testing samples, and H{Ai(m)=Bi(m)} is an indicator

function that returns 1 when the condition is met and 0 otherwise.

6.2.2 Train Result Evaluation

After model training, the performance of both the Simple RNN E-D and LSTM E-D
with Attention models is evaluated on the training data using two primary metrics:
Disparity Score and Prediction Accuracy for the first four zones in the route. As
explained the disparity score assesses how far the predicted route deviates from the
optimal route, while the prediction accuracy measures the model's ability to correctly
predict the sequence of the first four zones. The evaluation results are obtained and
tabulated, shown in Table 6.1. As shown in Table 6.1, the LSTM E-D with Attention
model outperformed the Simple RNN E-D with a significantly lower mean disparity
score of 0.0091 compared to 0.0209. The smaller standard deviation (0.0059) in the
LSTM E-D with Attention model's disparity score also suggests more consistent

predictions across different routes.

Moreover, according to Table 6.1, the LSTM E-D with Attention model
demonstrated a higher prediction accuracy across all four zones, particularly achieving
0.190 accuracy for the first zone, but gradually decrease to 0.117 for the fourth zone.
The Simple RNN model, on the other hand, had lower accuracy across the first four
zones, with its best performance being 0.069 for the first zone and declining to 0.057
for the fourth zone. This demonstrates that the LSTM with Attention model is better at
predicting the early part of the route. Based on the result obtained, it suggests that the
LSTM E-D with Attention model offers both lower disparity scores and higher
prediction accuracies, making it a better fit for this route prediction problem on the

training data.

Table 6.1 Model Performance on Training Data

Model Disparity Score Prediction accuracy (zone)
Mean | Std. Dev 18t 2nd 3rd 4t

Simple RNN E-D 0.0209 | 0.0063 0.069 | 0.055 | 0.065 |0.057

LSTM E-D with Attention | 0.0091 | 0.0059 0.190 | 0.153 | 0.136 | 0.117

102
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Figure 6.1 and Figure 6.2 shows the disparity score distribution of Simple RNN E-D
Model and LSTM E-D with Attention Model, respectively. Based on the disparity score
distribution for LSTM E-D with Attention Model histogram (shown in Figure 6.2), it
shows that most disparity scores are concentrated between 0.005 and 0.015, with the
mean disparity score of 0.0091 and a median of 0.0081. This indicates that the LSTM
E-D with Attention model produces relatively low disparity scores for most of the
routes, implying that the predicted routes are close to the actual routes. The tight
distribution around the mean shows consistency in the model's performance across

different routes.

On the other hand, the disparity score distribution for Simple RNN E-D Model
histogram (shown in Figure 6.1) displays a wider spread of disparity scores, with most
routes concentrated between 0.01 and 0.03, with the mean disparity score being 0.021
and a median of 0.020. As comparison, the larger spread in the disparity scores, along
with a higher mean and median compared to the LSTM E-D model, it indicates that the
Simple RNN E-D model is less consistent in its route prediction and more prone to
produces routes that deviate significantly from the optimal route. In addition, the tail of
the distribution extends further, with several routes showing disparity scores greater

than 0.03, which highlights more frequent suboptimal predictions.

Histogram of Disparity Scores

---- Mean: 0.020978
---- Median: 0.019957

400 ~

300 ~

Count

200

100 -

T T T
0.01 0.02 0.03 0.04 0.05 0.06 0.07
Disparity Scores

Figure 6.1 Disparity Score Distribution of Simple RNN E-D

103
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Histogram of Disparity Scores

---- Mean: 0.009111
---- Median: 0.008061

400 4

350 A

300 A

250 +

Count

200 A

150 A

100 +

50 1

— U T
0.00 0.01 0.02 0.03 0.04 0.05
Disparity Scores

Figure 6.2 Disparity Score Distribution of LSTM E-D with Attention

6.2.3 Cross-Validation Results

Table 6.2 and Table 6.3 shows the cross-validation results for both the Simple RNN
E-D and LSTM E-D with Attention, respectively. In this evaluation, we used 5-fold
cross-validation, where the training data was split into 5 subsets (folds), and each fold
was used as the validation set while the remaining folds were used for training. The

mean and standard deviation of the disparity score across all folds are reported.

Based on Table 6.2, it suggests that the Simple RNN E-D model performs fairly
consistent across all the 5 folds. The mean disparity score across multiple folds ranges
from 0.023017 to 0.023764, with the standard deviation around 0.006 across all folds.
The results from the cross-validation confirm the earlier training results, with consistent
disparity scores across all folds. The mean disparity score is around 0.023, indicating a

moderate deviation from the actual route.

104
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Table 6.2 Simple RNN E-D Cross Validation Results

Model: Disparity Score

Simple RNN Mean Std. Dev
Fold 1 0.023460 0.006667
Fold 2 0.023764 0.006907
Fold 3 0.023075 0.006357
Fold 4 0.023017 0.006159
Fold 5 0.023648 0.006748

On the other hand, the LSTM E-D with Attention model shows stronger

performance across the 5 folds, with lower disparity scores compared to the Simple

RNN, shown in Table 6.3. However, at Fold 3, the model produces a higher disparity

score (0.032001) than the others, which could be due to outliers or more difficult routes
in that fold. Despite the anomaly in Fold 3, the LSTM E-D with Attention model

outperforms the Simple RNN E-D overall, with an average disparity score around 0.009

across most folds. This supports the conclusion that the LSTM model produces more

accurate and efficient route predictions, particularly in comparison to the Simple RNN.

Table 6.3 LSTM E-D with Attention Cross Validation Results

Model: Disparity Score

LSTM with Attention Mean Std. Dev
Fold 1 0.009096 0.005643
Fold 2 0.009280 0.005772
Fold 3 0.032001 0.008083
Fold 4 0.009828 0.005921
Fold 5 0.009233 0.005630

In short, both models show consistency in performance across different folds,

with the LSTM E-D with Attention model having a significant advantage over the

Simple RNN E-D in terms of lower disparity scores.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

105

CHAPTER 6

6.2.4 Test Result Evaluation

Finally, both models (i.e, Simple RNN E-D and LSTM E-D with Attention) were
evaluated on a test set consisting of 906 unseen routes. This evaluation aims to assess
the model's generalization capability by measuring its performance on completely new
data that was not part of the training process. The evaluation results are obtained and
tabulated, shown in Table 6.4. As shown in Table 6.4, Simple RNN E-D model
achieved a mean disparity score of 0.0220 with a standard deviation of 0.0070. This
suggests that while the model can make predictions, the deviation from the optimal
route is moderate. LSTM E-D with Attention model, on the other hand, performed
significantly better, with a mean disparity score of 0.0091 and a standard deviation of
0.0061, indicating that the LSTM E-D with Attention model's predictions on the unseen

test data are much closer to the optimal route compared to the Simple RNN E-D model.

In terms of prediction accuracy, the Simple RNN E-D model showed a
prediction accuracy of only 0.066 for the first zone, and steadily declined to 0.050 by
the fourth zone. The decline in accuracy highlights the model's difficulty in making
accurate predictions for the later parts of the route. As for LSTM E-D with Attention
model, the model demonstrated a much stronger performance, with prediction accuracy
starting at 0.194 for the first zone and decreasing more gradually to 0.128 by the fourth

zone.
Table 6.4 Model Performance on Test Data
Model Disparity Score Prediction accuracy (zone)
Mean | Std. Dev 1t 2nd 3 4
Simple RNN 0.0220 | 0.0070 0.066 | 0.057 | 0.061 | 0.050
LSTM with Attention 0.0091 | 0.0061 0.194 | 0.152 | 0.151 |0.128

Figure 6.3 and Figure 6.4 shows the disparity score distribution of Simple RNN E-D
Model and LSTM E-D with Attention Model, respectively. Based on the disparity score
distribution for LSTM E-D with Attention Model histogram (shown in Figure 6.4),
most disparity scores are concentrated between 0.005 and 0.015, with a mean disparity

score of 0.0091 and a median of 0.0079. It indicates a relatively symmetrical

106
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

distribution with a slight rightward skew. Most of the routes exhibit low disparity, with
very few routes deviating significantly from the optimal route. This distribution further
demonstrates the LSTM model's efficiency, making predictions close to the actual route

and producing only minor deviations.

Histogram of Disparity Scores

---- Mean: 0.009145
---- Median: 0.007951

120

Count

0.00 0.01 0.02 0.03 0.04
Disparity Scores

Figure 6.3 Disparity Score Distribution of Simple RNN E-D

Histogram of Disparity Scores

140 1 ;

---- Mean: 0.021966
---- Median: 0.020741

120 ~
100 ~

80

Count

60 4

40

201

0.01 0.02 0.03 0.04 0.05 0.06 0.07
Disparity Scores

Figure 6.4 Disparity Score Distribution of LSTM E-D with Attention

107
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

6.2.5 Benchmarking

In the benchmark comparison, the LSTM E-D with Attention model shows respectable,
though not competitive, results when compared to other state-of-the-art models. The
prediction accuracy for the LSTM E-D with Attention model starts at 0.194 for the first
zone and decreases to 0.128 for the fourth zone. In contrast, the model proposed by [5]
using self-proposed Algorithm achieves a notably higher performance, with a
consistent prediction accuracy starting at 0.320 for the first zone and 0.314 at the fourth

Z0ne.

It is important to note that the disparity scores for the LSTM E-D with Attention
and Simple RNN E-D models in this project are evaluated at the zone level, while the
benchmark models' disparity scores are evaluated at the stop level. This difference in
evaluation granularity indicates that our models focus on optimizing predictions across
broader zones, whereas the benchmark models assess performance on a more detailed,
stop-by-stop basis. As a result, direct comparison of disparity scores between the

models is excluded to avoid misleading conclusions due to this difference in evaluation

criteria.
Table 6.5 Model Performance with Benchmark model
Model Disparity Score Prediction accuracy (zone)
Mean | Std. Dev 1t 2nd |3 4t
[5] Tour TSP 0.044 |0.0289 0.207 | 0.185 | 0.163 | 0.168
[5] Open-tour TSP 0.043 | 0.0302 0.270 | 0.244 | 0.227 | 0.232
[12] 0.0198 | N/A N/A [N/A | N/A | NA
[5] using Greedy | 0.0417 | 0.0306 0.241 | 0.231 | 0.224 |0.221
Algorithm
[5] using Algorithm | 0.0369 | 0.0301 0.320 | 0.310 | 0.303 | 0.314
proposed
Simple RNN 0.0220 | 0.0070 0.066 | 0.057 | 0.061 | 0.050
LSTM with Attention 0.0091 | 0.0061 0.194 | 0.152 | 0.151 | 0.128

108
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

6.3 Objective Evaluation

Through extensive data analysis, we discovered that time-sensitive deliveries have
minimal influence on driver behavior. Instead, the primary factor influencing delivery
routes is zone-based delivery patterns. Drivers tend to complete all stops within a
designated delivery zone sequentially before moving to the next, highlighting the
geographic clustering of stops as a possible factor. The hierarchical structure of zone
IDs further supports this behavior. This insight into the last-mile delivery behavior and
deviations allows us to refine feature selection and data preprocessing for improved

model accuracy and reliability in predicting delivery routes.

Then, we developed and implemented a Simple RNN encoder-decoder model
to predict delivery routes. While the model was able to capture some of the delivery
route patterns, its performance in terms of route optimization was moderate. The model
achieved a mean disparity score of 0.0220 with a standard deviation of 0.0070,
indicating some deviation from the optimal route. The prediction accuracy for the first
zone was 0.066, but it steadily declined to 0.050 by the fourth zone, illustrating the
model's limitations in retaining long sequential data and making accurate predictions

for the later stages of the route.

After evaluating the Simple RNN model, we identified its shortcomings,
particularly in maintaining prediction accuracy for longer routes. As a result, we
explored an LSTM encoder-decoder model with an attention mechanism. This model
significantly outperformed the Simple RNN, achieving a mean disparity score of
0.0091 with a standard deviation of 0.0061. The LSTM model's prediction accuracy
started at 0.194 for the first zone, with a more gradual decline to 0.128 by the fourth

Z0ne.

109
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 7

CHAPTER 7

Conclusion

In conclusion, in the entire supply chain, last-mile logistics are the finale character to
deliver the final goods to the end users. Although the modern logistics industry utilizes
operation research tools to minimize operation costs, last-mile logistics remains as the
most expensive part of the entire supply chain. However, ever since pandemic, e-
commerce had taken off, so as the demands for last-mile logistics remain soaring. In
topics of last-mile optimization, delivery driver, with their tacit experience, could
provide valuable real-life on-the-road knowledge to the table. The objective of the
project was to study and derives possible factors causing deviation of pre-planned
delivery routes by drivers. The motivation behind this project was to develop a machine
learning model that able to capture drivers’ tacit knowledges from historical delivery
routes, thereafter, continuously optimize the as-is last-mile delivery frameworks and
increase efficiency of the overall supply chain. In this project, we proposed a Simple
R-NN model to output possible delivery routes, preferable by delivery drivers, learning
from a set of historical delivery routes provided by Amazon. However, the project
process faced challenges as the limitation of cloud computing unit and resources (i.e.,
idle time constraint), that hinders project progress when executing time consuming
tasks. For future work, we will include focusing on fine-tuning (parameter tuning), as
well as applied greedy algorithm, adapted from [5], into the proposed model in this
project, continuous research effort on models that allows making inference on possible

factors affects drivers’ deviations from pre-planned routes.

110
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

S. Srivatsa Srinivas and M. S. Gajanand, “Vehicle routing problem and driver
behaviour: a review and framework for analysis,” Transp Rev, vol. 37, no. 5, pp.
590-611, Sep. 2017, doi: 10.1080/01441647.2016.1273276.

J. W. Ohlmann and B. W. Thomas, “A Compressed-Annealing Heuristic for the
Traveling Salesman Problem with Time Windows,” INFORMS J Comput, vol.
19, no. 1, pp. 80-90, Feb. 2007, doi: 10.1287/ijoc.1050.0145.

Y. Liu, F. Wu, Z. Liu, K. Wang, F. Wang, and X. Qu, “Can language models be
used for real-world urban-delivery route optimization?,” Innovation, vol. 4, no.
6, Nov. 2023, doi: 10.1016/j.xinn.2023.100520.

P. Dieter, M. Caron, and G. Schryen, “Integrating driver behavior into last-mile
delivery routing: Combining machine learning and optimization in a hybrid
decision support framework,” Eur J Oper Res, vol. 311, no. 1, pp. 283-300, Nov.
2023, doi: 10.1016/j.ejor.2023.04.043.

B. Mo, Q. Wang, X. Guo, M. Winkenbach, and J. Zhao, “Predicting drivers’
route trajectories in last-mile delivery using a pair-wise attention-based pointer
neural network,” Transp Res E Logist Transp Rev, vol. 175, Jul. 2023, doi:
10.1016/j.tre.2023.103168.

B. P. V. Samson and Y. Sumi, “Exploring Factors that Influence Connected
Drivers to (Not) Use or Follow Recommended Optimal Routes,” in Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems, New
York, NY, USA: ACM, May 2019, pp. 1-14. doi: 10.1145/3290605.3300601.

D. Merchan et al., “2021 Amazon Last Mile Routing Research Challenge: Data
Set,” Transportation Science, vol. 58, no. 1, pp. 8-11, Jan. 2024, doi:
10.1287/trsc.2022.1173.

R. Salman, F. Ekstedt, and P. Damaschke, “Branch-and-bound for the
Precedence Constrained Generalized Traveling Salesman Problem,” Operations
Research Letters, vol. 48, no. 2, pp. 163-166, Mar. 2020, doi:
10.1016/j.0r1.2020.01.009.

111

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[91 Y. Yuan, D. Cattaruzza, M. Ogier, and F. Semet, “A branch-and-cut algorithm

for the generalized traveling salesman problem with time windows,” Eur J Oper

Res, vol. 286, no. 3, pp. 849-866, Nov. 2020, doi: 10.1016/j.ejor.2020.04.024.
[10] S. Nagula, “Last Mile Routing Research Challenge,” Medium.

[11] William Cook, Stephan Held, and Keld Helsgaun, “Just Passing Through |

Routes.”

[12] William Cook, Stephan Held, and Keld Helsgaun, “Just Passing Through |

Routes.”

112
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT
(Project I1)

Trimester, Year: Trimester 3, Year 3 | Study week no.: 2

Student Name & ID: CHAN TZE KEET, 2004193

Supervisor: Ms. Tseu Kwan Lee

Project Title: LAST-MILE ROUTE OPTIMISATION WITH MACHINE
LEARNING

1. WORK DONE
[Please write the details of the work done in the last fortnight.]
Code tidying and review from FYP I.

2. WORK TO BE DONE

Getting more study materials for further research.

3. PROBLEMS ENCOUNTERED

No problem encountered.

4. SELF EVALUATION OF THE PROGRESS

Lack of knowledge to proceed, for model improvement.

9 Zh

Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-1

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT
(Project I1)

Trimester, Year: Trimester 3, Year 3 | Study week no.: 4

Student Name & ID: CHAN TZE KEET, 2004193

Supervisor: Ms. Tseu Kwan Lee

Project Title: LAST-MILE ROUTE OPTIMISATION WITH MACHINE
LEARNING

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Successfully retrieved important feature (i.e., travel times between stops) from data
file.

2. WORK TO BE DONE

Perform data cleaning and transformation with newest feature for model feeding.

3. PROBLEMS ENCOUNTERED

No problem encountered.

4. SELF EVALUATION OF THE PROGRESS

More attention required for better project progression.

9 Tkt

Supervisor’s signature Student’s signature

A-2
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT
(Project I1)

Trimester, Year: Trimester 3, Year 3 | Study week no.: 6

Student Name & ID: CHAN TZE KEET, 2004193

Supervisor: Ms. Tseu Kwan Lee

Project Title: LAST-MILE ROUTE OPTIMISATION WITH MACHINE
LEARNING

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Done data processing and transformation.

2. WORK TO BE DONE

Build model.

3. PROBLEMS ENCOUNTERED

No problem encountered.

4. SELF EVALUATION OF THE PROGRESS

More attention required for better project progression.

i Tt

Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-3

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT
(Project I1)

Trimester, Year: Trimester 3, Year 3 | Study week no.: 8

Student Name & ID: CHAN TZE KEET, 2004193

Supervisor: Ms. Tseu Kwan Lee

Project Title: LAST-MILE ROUTE OPTIMISATION WITH MACHINE
LEARNING

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Model Building.

2. WORK TO BE DONE

Model Training and Evaluation.

3. PROBLEMS ENCOUNTERED

Limited Cloud Computing Unit from Google Colab, which hinder the project
progression.

4. SELF EVALUATION OF THE PROGRESS

More attention required for better project progression.

o bt

Supervisor’s signature Student’s signature

A-4
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT
(Project I1)

Trimester, Year: Trimester 3, Year 3 | Study week no.: 10

Student Name & ID: CHAN TZE KEET, 2004193

Supervisor: Ms. Tseu Kwan Lee

Project Title: LAST-MILE ROUTE OPTIMISATION WITH MACHINE
LEARNING

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Model Evaluation.

2. WORK TO BE DONE

Research on model. Design better model architecture.

3. PROBLEMS ENCOUNTERED

Masking problem in model leading to bad route prediction.

4. SELF EVALUATION OF THE PROGRESS

More attention required for better project progression.

i Tk

Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-5

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT
(Project I1)

Trimester, Year: Trimester 3, Year 3 | Study week no.: 12

Student Name & ID: CHAN TZE KEET, 2004193

Supervisor: Ms. Tseu Kwan Lee

Project Title: LAST-MILE ROUTE OPTIMISATION WITH MACHINE
LEARNING

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Design additional model for better prediction.

2. WORK TO BE DONE

Model Evaluation and Report writing.

3. PROBLEMS ENCOUNTERED

No problem encountered.

4. SELF EVALUATION OF THE PROGRESS

On track.

9 L

Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-6

APPENDIX

POSTER

BACHELOR OF COMPUTER SCIENCE (HONOURS)

UTOR

UNIVERSITI TUNKU ABDUL RAHNMAN

Wholly owned by UTAR Education Foundation
(Co No. 578227M)
OUOINA)

INTRODUCTION

Last-mile logistics
ensures goods are
delivered to every
doorstep of end users.

Remains most expensive
operation in entire supply
chain logistics.

Tacit knowledge of
drivers are often
overlooked.

Encoder Decoder

A CHALLENGES:

&) Limtation of cloud
computing resources.

METHODOLOGY:

Done by: Chan Tze Keet

Supervisor: Ms. Tseu Kwan Lee

OBJECTIVES

To study and derives
possible factors affecting

from the

arivers daeviate

LAST-MILE ROUTE OPTIMISATION
WITH MACHINE LEARNING

MOTIVATION

To develop a machine
learning model (ie,
Simple R-NN model) that

pre-planned delivery R GBcapture delivery
routes. drivers’ tacit knowledge
from historical routes.
To proposed Simple-
RNN for route
prediction. FUTURE WORK
To evaluate the proposed To fine-tuned proposed
solution in terms of .model as well as
accuracy performance implement greedy
Tnetrice algorithms.
—
o
_'1 Wett licrest Boulevard '{OOd Py
.,|.
463
!’ t\ sHollywood

Park

eeeee

Prediction

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

A-7

PLAGARISM CHECK RESULT

PLAGARISM CHECK RESULT

FYP2_20ACB04193

ORIGINALITY REPORT
15, 114 Oy S
SIMILARITY IMDEX INTERMET SOURCES PUBLICATIONS STUDENT PAPERS
PRIMARY SOURCES
www.mit.edu 2
Internet Source %

Submitted to Universiti Tunku Abdul Rahman 1 %

Student Paper

BaichL.Jan M.o, Qingyi Wtang, Xiaotong Guo, 1 %
Matthias Winkenbach, Jinhua Zhao.
"Predicting drivers’ route trajectories in last-
mile delivery using a pair-wise attention-
based pointer neural network",
Transportation Research Part E: Logistics and
Transportation Review, 2023

Publication

github.com 4

Internet Source %

=

www.coursehero.com 1

Internet Source %

=

Submitted to University of North Texas “
Student Paper %

pubsonline.informs.org 1

Internet Source %

=1

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Submitted to Leiden Universi
Student Paper ty <1 %
n Yang Liu, Fanyou Wu, Zhiyuan Liu, Kai Wang, <1 %
Feiyue Wang, Xiaobo Qu. "Can language
models be used for real-world urban-delivery
route optimization?", The Innovation, 2023
Publication
dokumen.pub
Internet Source p <1 %
Peter Dieter, Matthew Caron, Guido Schryen. <1
"Integrating driver behavior into last-mile %
delivery routing: Combining machine learning
and optimization in a hybrid decision support
framework", European Journal of Operational
Research, 2023
Publication
M huggingface.co ‘
12 Inter%e?SuucF]ce < %
N programtalk.com /
13 IFn)ternE']t Source { %
Poornachandra Sarang. "Artificial Neural <
Networks with TensorFlow 2", Springer %
Science and Business Media LLC, 2021
Publication
Submitted to Instituto de Empress S.L. < 1 %

Student Paper

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Submitted to King's College

Student Paper < %
Submitted to University of Hertfordshire “
Student Paper ty { %
Submitted to University of Glasgow “
Student Paper }r g < %
. Submitted to UCL “
Student Paper < %
20 Pedro Zattoni Scroccaro, Piet van Beek, < /
Peyman Mohajerin Esfahani, Bilge Atasoy. %
"Inverse Optimization for Routing Problems",
Transportation Science, 2024
Publication
Submitted to Harrisburg University of Science < 1 %
and Technology
Student Paper
e Submitted to University of Surre
Student Paper ty Y < 1 %
Submitted to American Public University < 1 %
System
Student Paper
A Submitted to Bilkent Universit
Student Paper y < 1 %
Submitted to Monash University <1 %

Student Paper

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

ela.kpi.ua

Internet Source

J
)]

Submitted to Macquarie University

Student Paper

s
]

Submitted to University of Adelaide

Student Paper

e
H

tensorflow.google.cn

Internet Source

J
W

panamahitek.com

Internet Source

(7]
8

www.analyticsvidhya.com

31 [nternet Source

By Submitted to Sikkim Manipal University
mll Student Paper

P¥] e-jamet.org

Internet Source

www.ncbi.nlm.nih.gov

Internet Source

L
B

tensorflow.classcat.com

Internet Source

W
L

www.appypie.com

Internet Source

B
)

0

Submitted to The Robert Gordon University

Student Paper

L
]

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Submitted to University of East London
Student Paper

(78]
co

Submitted to University of Nebraska at

Omaha
Student Paper

L
W

hdl.handle.net

Internet Source

B

Submitted to University of Glamorgan
Student Paper

B
—h

gspace.library.queensu.ca

Internet Source

H

M rdrrio

Internet Source

Yonghua Zhu, Weilin Zhang, Yihai Chen,
Honghao Gao. "A novel approach to workload
prediction using attention-based LSTM
encoder-decoder network in cloud
environment”, EURASIP Journal on Wireless
Communications and Networking, 2019

Publication

B
_r':.

ey www.isl21.org

Internet Source

E

Submitted to Associatie K.U.Leuven
Student Paper

5
(93]

issuehub.io

Internet Source

47

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

<l%
sandipanweb.wordpress.com 1
Internet Spu-urce p < %
Submitted to Middle East Technical University <
Student Paper %
Santanu Pattanaygk. “Chapter 4 Ne!tural < %
Language Processing", Springer Science and
Business Media LLC, 2023
Publication
Submitted to The University of Manchester <
Student Paper %
Submitted to UT, Dallas 1
Student Paper < %
Sgbmitted to University of Alabama at < %
Birmingham
Student Paper
Submitted to University of Southampton
Student Paper }r p {1 %
55 Xiao Yang, Ramesh Bist, Bidur Paneru, Lilong <1 %

Chai. "Monitoring Activity Index and
Behaviors of Cage-free Hens with Advanced

Deep Learning Technologies"”, Poultry Science,
2024

Publication

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

aiforsocialgood.ca

Internet Source

56

kandi.openweaver.com

Internet Source

Ln
E

mafiadoc.com

Internet Source

LN
oo

Daniel Merchan, Jatin Arora, Julian Pachon,
Karthik Konduri, Matthias Winkenbach,
Steven Parks, Joseph Noszek. "2021 Amazon
Last Mile Routing Research Challenge: Data
Set", Transportation Science, 2024

Publication

H

9

Submitted to University of Warwick

Student Paper

o
o

Submitted to Brunel University

Student Paper

2
—

blog.csdn.net

Internet Source

2]]
3

tind-customer-uchicago.s3.amazonaws.com

Internet Source

www. kluniversity.in

Internet Source

Submitted to Katholieke Universiteit Leuven

Student Paper

h
Ln

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

E businessdocbox.com

Internet Source

hybrid-analysis.com

Internet Source

kipdf.com

Internet Source

ucf.digital.flvc.org

Internet Source

forum.posit.co

Internet Source

iruitm.edu.my

Internet Source

"CS2-PC-24_HR.pdf", ActEd

Publication

Jyotsna Kumar Mandal, Sanjay, Jyoti Sekhar
Banerjee, Somen Nayak. "Applications of
Machine Intelligence in Engineering -
Proceedings of 2 Global Conference on
Artificial Intelligence and Applications IGCAIA,
2021), September 8-10, 2021, Jaipur, India",
Routledge, 2022

Publication

Lei Wang, Chanying Li, Michael Z. Q. Chen,
Qing-Guo Wang, Fei Tao. "Connectivity-Based
Accessibility for Public Bicycle Sharing

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Systems", IEEE Transactions on Automation
Science and Engineering, 2018

Publication

75 Mohamed Abdel-Basset, Hossam Hawash, <1 %
Laila Abdel-Fatah. "Artificial Intelligence and
Internet of Things in Smart Farming", CRC
Press, 2024
Publication
Sougata Sheet, Ranjan Ghosh, Anupam <1
. . 04
Ghosh. "Recognition of cancer mediating
genes using MLP-SDAE model", Systems and
Soft Computing, 2024
Publication
assets.publishing.service.gov.uk “
Internet SuuFr)ce g g < %
debuggercafe.com ‘
Internet Sguglrce < %
dl.lib.mrt.ac.lk /
Internet Source < %
forums.mcafee.com “
Internet Source { %
meridian.allenpress.com ‘
Internet Source p < %
- thonlang.dev ‘
8"‘ IFn)tye.rnet Source g < %

www.mdpi.com

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Internet Source

83 <1
o <Tw
Mehdi Ghayoumi. "Generative Adversarial <
Networks in Practice", CRC Press, 2023 %
Publication
86 Mohamed Abdel-Basset, Nour Moustafa, 1
6) . . <l%
Hossam Hawash, Zahir Tari. "Responsible
Graph Neural Networks", CRC Press, 2023
Publication
Titus A. Beu. "Introduction to Numerical <1
Programming - A Practical Guide for Scientists %
and Engineers Using Python and C/C++", CRC
Press, 2019
Publication
@ "Cognitive Informatics and Soft Computing"”, {1 %
Springer Science and Business Media LLC,
2021
Publication
E S. Putman. "Integrated Urban Models Volume <’|
%

1:Policy Analysis of Transportation and Land
Use (RLE: The City)", Routledge, 2013

Publication

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Exclude quotes Exclude matches

Exclude bibliography

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGARISM CHECK RESULT

Form Title: Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 | Rev No.: 0 | Effective Date: 01/10/2013 | Page No.: 1of 1

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of CHAN TZE KEET

Candidate(s)

ID Number(s) 2004193

Programme / Course BACHELOR OF COMPUTER SCIENCE (HONOURS)

Title of Final Year Project | AST-MILE ROUTE OPTIMISATION WITH MACHINE LEARNING

P . Supervisor’s Comments
Similarity (Compulsory if parameters of originality exceed
the limits approved by UTAR)

Overall similarity index: 15 %

Similarity by source

Internet Sources: 11 %
Publications: 9 %
Student Papers: 8 %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required, and limits approved by UTAR are as Follows:
(i) Owverall similarity index is 20% and below, and
(i) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words
Note: Parameters (i) — (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note: Supervisor/Candidate(s) is/are required to provide softcopy of full set of the
originality report to Faculty/Institute

Based on the above results, | hereby declare that | am satisfied with the originality of the
Final Year Project Report submitted by my student(s) as named above.

%

Signature of Supervisor Signature of Co-Supervisor
Name: Ms. Tseu Kwan Lee Name:
Date: 11/09/2024 Date:

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

FYP2 CHECKLIST

FYP 2 CHECKLIST

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id

20ACB04193

Student Name CHAN TZE KEET

Supervisor Name MS. TSEU KWAN LEE

TICK (V)

DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have
checked your report with respect to the corresponding item.

Title Page

Signed Report Status Declaration Form

Signed FYP Thesis Submission Form

Signed form of the Declaration of Originality

Acknowledgement

Abstract

Table of Contents

List of Figures (if applicable)

List of Tables (if applicable)

List of Symbols (if applicable)

List of Abbreviations (if applicable)

Chapters / Content

Bibliography (or References)

All references in bibliography are cited in the thesis, especially in the chapter
of literature review

Appendices (if applicable)

Weekly Log

Poster

Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-1AD-005)

212121212 2l (2122122122 12 |

| agree 5 marks will be deducted due to incorrect format, declare wrongly the
ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

[, the author, have checked and confirmed all the items listed in the table are included in
my report.

/
L

(Signature of Student)
Date: 11/09/2024

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1 Project Background
	1.1 Introduction
	1.2 Problem Statement and Motivation
	1.3 Research Objectives
	1.4 Project Scope
	1.5 Contributions
	1.6 Report Organisation

	CHAPTER 2 Literature Review
	2.1 Previous Work
	2.1.1 Delivery route prediction using machine learning models
	2.1.2 Delivery route optimization

	2.2 Results
	2.3 Summarization of findings
	2.4 Proposed Method

	CHAPTER 3 System Methodology
	3.1 Sequence-to-sequence (seq2seq) modeling framework
	3.2 Simple RNN Encoder-Decoder (Simple RNN E-D) Model
	3.2.1 Simple RNN encoder
	3.2.2 Simple RNN decoder

	3.3 LSTM Encoder-Decoder with Pair-Wise Attention Model
	3.3.1 LSTM encoder
	3.3.2 LSTM decoder
	3.3.3 Pair-Wise Attention Layer

	CHAPTER 4 Experimental Setup
	4.1 System Requirements
	4.1.1 Hardware
	4.1.2 Software
	4.1.3 Data Source

	4.2 System Design
	4.2.1 Data Analysis
	4.2.2 Data Preprocessing
	4.2.2 Model Building and Training
	4.2.3 Model Evaluation

	4.3 Timeline

	CHAPTER 5 System Implementation
	5.1 Data Findings
	5.2 Data Preprocessing
	5.3 Data Transformation and Padding
	5.3.1 Data Transformation
	5.3.2 Padding

	5.4 Model Building
	5.4.1 Simple RNN Encoder-Decoder
	5.4.2 LSTM Encoder-Decoder with Attention

	5.5 Model Training
	5.6 Model Evaluation
	5.7 Result Visualization
	5.8 Implementation Issues and Challenges

	System Evaluation and Discussion
	6.1 Driver Behaviours in Last-Mile Delivery
	6.2 Model Performance
	6.2.1 Performance metrics
	6.2.2 Train Result Evaluation
	6.2.3 Cross-Validation Results
	6.2.4 Test Result Evaluation
	6.2.5 Benchmarking

	6.3 Objective Evaluation

	CHAPTER 7 Conclusion
	REFERENCES
	APPENDIX
	PLAGARISM CHECK RESULT
	FYP 2 CHECKLIST

