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ABSTRACT 

 

This research investigates the application of machine learning to predict outcomes in Valorant, 

a rapidly-growing first-person shooter game within the esports field. This project developed 

two predictive models, neural network and XGBoost, and optimized using Bayesian 

optimization and random search to optimize their hyperparameters. The findings shows that 

the efficiency and capability of Bayesian optimization over random search in terms of both 

model performance and computational efficiency. To enhance public accessibility and 

usability, this project has created web APIs and a user-friendly graphical interface. This 

research contributes significantly to the field of esports analytics and provides practical tools 

for predicting Valorant gameplay outcomes. By offering a robust and efficient predictive 

system, this research aims to support informed decision-making, enhance the overall 

experience for pro-players and enthusiasts of this popular game, and potentially suggest 

strategic development within the Valorant community. Furthermore, the findings of this project 

may serve as a valuable reference for future research exploring the application of machine 

learning to other esports games. Specifically, this research provides insights into the 

effectiveness of Bayesian optimization in optimizing machine learning models for complex 

tasks. By comparing Bayesian optimization to random search, it highlights the benefits of 

Bayesian optimization's ability to intelligently balance between explore and exploit the 

hyperparameter search space, leading to more efficient and effective model optimization. 

Additionally, our study noted that the importance of developing user-friendly interfaces and 

APIs to make win rate prediction tools accessible to a wider audience, fostering collaboration 

and innovation within the esports community. 

  



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    vii 

 

TABLE OF CONTENTS 

 

TITLE PAGE i 

REPORT STATUS DECLARATION FORM ii 

FYP THESIS SUBMISSION FORM iii 

DECLARATION OF ORIGINALITY iv 

ACKNOWLEDGEMENTS v 

ABSTRACT vi 

TABLE OF CONTENTS vii 

LIST OF FIGURES x 

LIST OF TABLES xii 

LIST OF SYMBOLS xiii 

LIST OF ABBREVIATIONS xiv 

  

CHAPTER 1 INTRODUCTION 1 

1.1 Problem Statement and Motivation 2 

1.2 Objective 2 

1.3 Project Scope 3 

1.4 Contributions 3 

1.5 Report Organization 4 

  

CHAPTER 2 LITERATURE REVIEW 5 

2.1 Previous Work Review 5 

2.1.1 Optimal Spending Decision based on win probability  5 

2.1.2 Predicting round result in CS:GO using Machine Learning  6 

2.1.3 Previous works issues and proposed solutions  6 

2.2 Hyperparameter Optimization Techniques 7 

2.2.1 Exhaustive Search (Grid Search / Random Search) 7 

2.2.2 Bayesian Optimization 9 

2.3 Comparison of Hyperparameter Optimization Techniques 13 

  

CHAPTER 3 System Methodology/Approach 15 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    viii 

 

3.1 Project Overview 15 

  3.1.1 Model Optimization 15 

  3.1.2 API and GUI development 16 

 3.2 Machine Learning models and hyperparameters 18 

  3.2.1 Neural Network 18 

  3.2.2 XGBoost Classifier 21 

 3.3 Gantt Chart 24 

  

CHAPTER 4 SYSTEM DESIGN 25 

 4.1 Data Acquisition 25 

 4.2 Data Cleaning and Preprocessing 28 

 4.3 Model Building, Training, and Hyperparameters Optimization 30 

  4.3.1 General Procedure 30 

  4.3.2 Neural Network 31 

  4.3.3 XGBoost Classifier 31 

  4.3.4 Hyperparameter Optimization 32 

 4.4 API Development 33 

 4.5 GUI Development 34 

  

CHAPTER 5 SYSTEM IMPLEMENTATION  36 

 5.1 Hardware Setup 36 

 5.2 Software Setup and Configuration 37 

  5.2.1 Data Acquisition and Preprocessing 37 

  5.2.2 Model Training and Hyperparameter Optimization 39 

  5.2.3 Web Service API 42 

  5.2.4 GUI 44 

 5.3 Implementation Issues and Challenges 44 

  

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 46 

6.1 System Evaluation and Performance Metrics 46 

 6.2 Testing Result 47 

  6.2.1 Model Evaluation 47 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    ix 

 

  6.2.2 API and GUI testing 52 

 6.3 Project Challenges 55 

 6.4 Objectives Evaluation 56 

  

CHAPTER 7 CONCLUSION AND RECOMMENDATION 57 

 7.1 Conclusion 57 

 7.2 Recommendation 58 

  

REFERENCES 59 

APPENDIX 62 

WEEKLY LOG  63 

POSTER  69 

PLAGIARISM CHECK RESULT 70 

FYP2 CHECKLIST  72 

  



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    x 

 

LIST OF FIGURES 

 

Figure Number Title Page 

Figure 2.1.1 Log-loss result by map for candidate models [1] 5 

Figure 2.1.2 Accuracy of each classification algorithms with TrueSkill 

values [2] 

6 

Figure 2.2.1(a) Illustration of Grid Search and Random Search [6] 7 

Figure 2.2.1(b) Generic Random Search Algorithm [7] 8 

Figure 2.2.2(a) Illustration of Bayesian Optimization [6] 9 

Figure 2.2.2(b) Bayesian Optimization algorithm [8] 10 

Figure 2.2.2(c) Regressed function (also known as Surrogated Function) [9] 11 

Figure 2.2.2(d) Acquisition function with different kappa value [9] 11 

Figure 2.2.2(e) Sampling process of BO-GP with different kappa value [9] 12 

Figure 2.2.2(f) Final optimization result for different kappa value [9] 13 

Figure 3.1.1 Flowchart of the model training process 15 

Figure 3.1.2 Use case diagram of the system 16 

Figure 3.2.1(a) General Structure of a neural network [10] 18 

Figure 3.2.1(b) Algorithm of Gradient Descent [11] 19 

Figure 3.2.1(c) Impact of different learning rate α [11] 20 

Figure 3.2.1(d) Illustration of Momentum and momentum equation [12] 21 

Figure 3.2.2(a) Illustration of Decision Tree [13] 21 

Figure 3.2.2(b) Illustration of Boosting [14] 22 

Figure 3.2.2(c) XGBoost hyperparameters according to importance and 

description [16] 

23 

Figure 3.3 Gantt Chart of the project 24 

Figure 4.1(a) Flowchart of the Python Scrapping script 25 

Figure 4.1(b) Event tab shows all ongoing/completed international events [17] 26 

Figure 4.1(c) Matches for all stages in each event [17] 26 

Figure 4.1(d) Sample table of gameplay data and maps from vlr.gg [17] 27 

Figure 4.1(e) View of the scrapped dataset 27 

Figure 4.2(a) Correlation Heatmap for numerical data 28 

Figure 4.2(b) Data distribution of numerical data 29 

Figure 4.3.1 Illustration of 5-fold cross validation [19] 30 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    xi 

 

Figure 4.3.2 Flowchart of neural network development 31 

Figure 4.3.3 Flowchart of XGBoost model development 31 

Figure 4.3.4(a) Flowchart of Random Serach hyperparameter optimization 

using Optuna 

32 

Figure 4.3.4(b) Flowchart of Bayesian hyperparameter optimization using 

Optuna 

32 

Figure 4.4 Sequence diagram of API development 33 

Figure 4.5(a) Sequence diagram of GUI operation 34 

Figure 4.5(b) GUI wireframe design 35 

Figure 5.2.1(a) Library required to scrape data from vlr.gg 37 

Figure 5.2.1(b) Library required for data cleaning and data distribution 

visualization 

38 

Figure 5.2.1(c):  Library required for data preprocessing 38 

Figure 5.2.2(a) Connect to Google Drive in Google Colab 39 

Figure 5.2.2(b) Libraries required for training neural network 39 

Figure 5.2.2(c) Libraries required for training XGBoost Classifier 40 

Figure 5.2.2(d) Libraries required for data splitting and data batching 40 

Figure 5.2.2(e) Customized batch dataset class for neural network 41 

Figure 5.2.2(f) Evaluation functions 41 

Figure 5.2.2(g) Libraries required for hyperparameter optimization 41 

Figure 5.2.2(h) Optuna Dashboard for optimization process visualization 42 

Figure 5.2.3(a) Libraries required to develop model API 42 

Figure 5.2.3(b) Input and output format validation 43 

Figure 5.2.3(c) Start server on specified IP address and port using Uvicorn 43 

Figure 5.2.3(d) Command to start web services on Render 44 

Figure 5.2.4(a) Libraries required for GUI development 44 

Figure 6.1 Illustration of Precision and Recall [21] 46 

Figure 6.2.2(a) API testing demonstration 52 

Figure 6.2.2(b) API response with win rate 52 

Figure 6.2.2(c) GUI of the project 53 

Figure 6.2.2(d) Model selection including localhost API 54 

Figure 6.2.2(e) Timeout if no respond from API 54 

Figure 6.2.2(f) Prediction result visualization and display on GUI 55 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    xii 

 

LIST OF TABLES 

 

Table Number Title Page 

Table 2.2.3 Comparison between different optimization methods 14 

Table 3.1.2: Use case description 17 

Table 5.1(a) Specifications of laptop 36 

Table 5.1(b) Google Colab instance specifications 36 

Table 5.1(c) Render.com web service instance specifications 36 

Table 6.2.1(a) Model Evaluation for neural networks 47 

Table 6.2.1(b) Table of metrics plot using test set for neural networks 48 

Table 6.2.1(c) Model Evaluation for XGBoost Classifier 50 

Table 6.2.1(d) Table of metrics plot using test set for XGBoost 51 

 

  



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    xiii 

 

LIST OF SYMBOLS 

 

α Learning rate 

β Momentum 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    xiv 

 

LIST OF ABBREVIATIONS 

 

FPS First Person Shooting 

CS2 Counter-Strike 2 

CS:GO Counter-Strike: Global Offensive 

GUI Graphical User Interface 

API Application Programming Interface 

BO-GP Bayesian Optimization with Gaussian Process 

ROC Receiver-Operating Characteristic curve 

AUC Area Under the Curve 

JSON JavaScript Object Notation 

HTML Hypertext Transfer Markup Language 

SGD Stochastic Gradient Descent 

BGD Batch Gradient Descent 

MGD Mini-batch Gradient Descent 

HTTP HyperText Transfer Protocol 

PIL Python Image Library 

PRC Precision-Recall Curve 

 

 

  



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    1 

 

Chapter 1 

 

Introduction 

Valorant is a 5 versus 5 First Person Shooting (FPS) video game, where 10 players are split 

into 2 teams, each players select different agent with different ability to cast in game. A team 

will play to defend site while another will attack site to plant the spike. After 12 rounds, the 

attacker and defender will swap. The game ends when one of the team reach 13 round wins 

with the condition that the number of round wins by the team is 2 rounds leading to their 

opponent. Valorant is released in mid-2020 by Riot Games and it has won the 2022 “Best E-

sport Game” award at the The Game Award (TGA). It shows that the game has recognized by 

the FPS community, and it starts gaining attentions by millions of players worldwide. 

On the other hand, another FPS game that have the same popularity among the community 

is the Counter Strike 2 (CS2 formerly known as CS:GO) launched in 2012 by Valve, which is 

8 years earlier than Valorant. There are a lot of studies are done within these 8 years by the 

researchers especially from the Computer Science and Machine Learning field. For example, 

there are research are made based on CS2 where the researchers developed a machine learning 

model to predict optimal buying strategy to have higher win rate [1]. The model able to suggest 

the players to buy wisely instead of always fully spend the money on equipment or guns. In 

contrast, currently there are not many studies and research available based on Valorant. 

The gameplay style of CS2 is similar to Valorant, However, unlike Valorant, all the players 

in CS2 does not have different roles and abilities, all players can buy the same equipment such 

as smoke, flashbang, grenade, etc. While in Valorant, there are 23 different agents with unique 

ability set currently in the agent pool, each agent can be categorized into a role such as duelist, 

initiator, controller, or sentinel. Each role have their own responsibilities in game, for example, 

duelist responsibilities is to initiate a 1 versus 1 fight with the enemies, using their abilities to 

create advantages and eventually take down the opponents, creating the number advantages, 

while initiator are responsible for helping teams to initiate the fight with enemies by using a 

flashbang or location-revealing abilities, causing enemies to lose sight for a few second and 

reveal the location of the enemies, create time advantages for the teams to win the fight. 

Therefore, the composition of the agent in teams and the unique abilities created many 

unpredictable yet complex elements in Valorant compared to CS2. 
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This project aimed to build a machine learning model that able to take players performance 

data in past games in Valorant and predict the win rate of the team to win the game with the 

agent and the map selected by the players, using Neural Network model and XGBoost Tree 

model. In order to let the models to achieve it optimal performance, the model needs to undergo 

hyperparameter optimization. However, due to the complexity of the Neural Network model 

and XGBoost Tree model, commonly used method such as Grid Search and Random Search 

might not be the best fit solution. Therefore, this project also will implement different 

optimization techniques to investigate how does different optimization techniques affect the 

optimization process. 

1.1  Problem Statement and Motivation 

There are a few issues that causing the model unable to perform well. Based on the previous 

research paper, the author mentioned that the models are not tuned to its optimum form since 

they are only searched within a small search space. Therefore, the authors suggested to explore 

more hyperparameters and also try wider search space to further improve the models [2]. 

In the previous research paper, the authors use common search method such as Grid Search 

or Random Search to perform hyperparameter optimization, however these common search 

methods are inefficient especially when the dimension and the search space of hyperparameter 

is complex [3]. These search methods emphasize only on exploration on the search space but 

does not exploit specific area where possibly consist of the global minimum point of the entire 

search space [4]. Therefore, there are higher chance to miss the optimum point for the model 

to perform at its best. Some papers suggested an effective optimization method to optimize 

models with hyperparameters that are high dimension and wide search space, meanwhile it 

balanced both exploration and exploitation to the search space, which is Bayesian Optimization 

using Gaussian Process. 

1.2  Objectives 

The objective of the project is to investigate the impact to the model’s performance when 

applying different optimization methods on complex models such as Neural Network and 

XGBoost Tree. The optimization focuses on enhancing the validation accuracy of the models, 

in order to improve the ability of the model to predict the result of the game based on unforeseen 

data. 
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 This project will also compare different optimization methods in terms of time 

effectiveness and performance improvement when applied on Neural Network and XGBoost. 

Both of the models are having sensitive and complex hyperparameters that required to be tuned 

carefully. Hyperparameter optimization usually require high computing power and time 

consuming, therefore this project aim to find out which optimization method are more effective 

to optimize complex models. This can be evaluated based on some model evaluation metrics 

such as accuracy, precision, recall, etc., as well as the time taken for the optimization to 

complete.  

1.3  Project Scope and Direction  

The project will deliver optimized machine learning models that takes Valorant gameplay data 

as input and predict the win rate of both teams. The models will be deployed as web services, 

user or developer can access the services through API when required, the API will be free 

access and available to everyone.  

The project will also develop a Graphical User Interface (GUI) that allow user to select 

preferred model, input prediction data and visualize the prediction results. The GUI act as a 

basic interface that using the API to access the web service and let the user to access to the 

model easily. 

1.4  Contributions 

This project able to contribute to multiple fields in the E-sports as well as the research area. 

First of all, the model can serve as a reference for game developers to balance the game 

environment. Valorant is a complex game and usually it is hard to balance in terms of the 

strength of agent’s abilities, map preferences, weapon strength, economy growth, player 

distribution, etc. The models from this project can be a useful tool for game developers to adjust 

the game to become more balance, so that all the players can have a better gaming experience. 

 Meanwhile for professional players and teams that plays in international event such as 

Valorant Champion Tour (VCT), which is one of the biggest tournaments hosted by Riot 

Games, the models and the GUI from this project are powerful tools for them. The teams can 

utilize the GUI to predict the probability to win the game, and further optimize the win rate of 

the team by changing the team compositions and map selection.  
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 This project also able to contribute to machine learning and hyperparameter optimization 

field. This project experimented and compared different optimization methods on 2 different 

models, Neural Network and XGBoost Tree model when performing prediction using high 

dimensional E-sports data. Hence, the findings of this project can act as a reference for future 

research especially in E-sport machine learning and hyperparameter optimization field. 

1.5  Report Organization 

This report is organized into 7 chapters: Chapter 1 Introduction, Chapter 2 Literature Review, 

Chapter 3 System Methodology, Chapter 4 System Design, Chapter 5 System Implementation, 

Chapter 6 System Evaluation and Discussion, and Chapter 7 Conclusion and Recommendation.  

Chapter 1 introduced the problem statement, objectives, scope of the project. Chapter 2 

reviewed some previously done research and discussed how different optimization methods 

work in details, then further compare each methods algorithm and implementation complexity. 

Chapter 3 gives an overview of how the project is going to be developed, including model 

training and API/GUI development, it also briefly discussed how each machine learning model 

works and introduced the hyperparameters chosen to be tuned in this project. Chapter 4 

discussed in detail about how each part of the project is developed, including flowchart of each 

script used in the project. Chapter 5 is about how to implement the parts mentioned in chapter 

4, including the hardware/software setup, and challenges faced during implementation phase. 

Chapter 6 reviewed the result based on the performance metrics, and also discussed the project 

challenges. Chapter 7 concluded the project and recommended future work that can further 

improve this project. 
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Chapter 2 

 

Literature Review 

2.1 Previous Works Review 

2.1.1 Optimal Spending Decision based on win probability 

Several win rate prediction projects have been conducted prior to this study. For instance, 

research in [1], the authors developed multiple prediction models for CS:GO, using machine 

learning models such as logistic regression, XGBoost, and neural networks. The primary goal 

of this project was to establish guidelines for players to make optimal weapon purchase 

decisions based on predicted win probability. The authors initially predicted game win rates 

using various classification algorithms and subsequently utilize these probabilities to assess 

optimal spending strategies. A metric termed Optimal Spending Error was introduced by the 

authors to evaluate the discrepancy between player decisions and optimal choices. Results 

indicated that XGBoost and neural networks outperformed logistic regression in terms of log-

loss. 

 

Figure 2.1.1: Log-loss result by map for candidate models [1] 

Based on Figure 2.1.1. the log-loss results of both XGBoost and Neural Network for each 

map are lower than logistic regression, meaning that both of these models are performing better 

than logistic regression. The performance between XGBoost and Neural Network can be said 

as similar. However, the result shows that Neural Network are slightly better than XGBoost. 
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2.1.2 Predicting round result in CS:GO using Machine Learning 

Another research [2] has been made based on the research [1] to further improve the win rate 

prediction models, the authors modified the training dataset by implementing TrueSkill value 

to improve dataset quality. TrueSkill is a ranking system developed by Microsoft based on 

ELO rating system to estimate the quality of the game. Most of the games utilized this 

algorithm to match up players with similar skills [2]. The aim of this project is to investigate 

which models are able to have better accuracy when performing win rate predictions. 

 

Figure 2.1.2: Accuracy of each classification algorithms with TrueSkill values [2] 

 In the research, the authors used 5 common models including Decision Tree, GBDT, 

XGBoost, Logistic Regression, and Neural Network. Figure 2.1.2 shows the results of the 

experiment. Based on the authors of [2], generally the model will have improvement of 0.2% 

on train accuracy while 1% on test accuracy, while for neural network, the train and test 

accuracy both increased by 1%. Hence the implementation of TrueSkill value able to increase 

the dimension of the data to provide more information, therefore improve the model 

performance. 

2.1.3 Previous works issues and proposed solutions 

Several limitations are pointed out within the models presented in the research papers. Firstly, 

the models have not yet reached their optimal performance, hence the models require further 

hyperparameter optimization [1]. Additionally, the datasets employed could be enhanced by 

including prediction results from other machine learning models into the datasets [2].  

Furthermore, optimizing hyperparameters for complex models such as XGBoost and 

Neural Networks using traditional methods like grid search and random search is 

computationally expensive and often yields suboptimal hyperparameters [3]. These methods 

exhaustively explore the hyperparameter space, leading to inefficiency of optimization. Hence, 

using grid search or random search are not the best solution for complex model optimization 

[5]. Alternative optimization techniques, such as Bayesian optimization, have shown the 

potential to achieve high-performing hyperparameters more efficiently. Unlike grid search and 
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random search methods that only focusing on exploration on the wide search space, Bayesian 

Optimization balanced both exploration and exploitation of the search space [4], therefore it 

able to find a comparable point where the hyperparameters can provide decent performance, 

meanwhile consume only a short period of time. It also has higher chance to find out the global 

optimum point due to its exploitation nature where it will search within niche spaces that 

possibly contain optimum point. 

2.2 Hyperparameter Optimization Techniques 

2.2.1 Exhaustive Search (Grid Search / Random Search) 

 

Figure 2.2.1(a): Illustration of Grid Search and Random Search [6] 

Both grid search and random search are commonly used by researchers to optimize models 

because they are easier to implement in code and have a great ability to explore wide search 

space. However, there are some weaknesses on these methods when optimizing complex 

models. 

  Grid search is an optimization method that optimize model by trying every possible 

combination of hyperparameters from a defined search space. Figure 2.2.1 shows the 

hyperparameters are chosen in a uniform distribution and the objective is to obtain 

hyperparameters that have lowest loss. It is able to observe that grid search is computationally 

expensive because it has to try all combination of hyperparameters. Many values of 

hyperparameters might have to be probed before finding a value that leads to improved model 
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performance [6]. Moreover, there is no guarantee if the optimal hyperparameters was included 

in the defined search space [6]. As the search space dimension grow, the required exploration 

of search space grows exponentially as well. This is inefficient especially to optimize complex 

models that have many hyperparameters to optimize.  

 Random search is similar to grid search. However, random search fixed the issues of high 

number of combinations in grid search by randomly select hyperparameters from search space. 

In random search, user can define number of trials for the search algorithm to sample 

hyperparameters from the search space by either uniform or normal distribution, this allows 

user to control the time consumed by the algorithm to perform optimization. Figure 2.2.1(b) 

shows the generic random search algorithm. According to the authors of [7], the random search 

algorithm consists of two basic procedures, which is generator that generate candidates points 

and update the generator for next candidate generation. Random search usually uses single-

point generator to generate candidate point based on the combination of current point and 

previous points. The generator algorithm can be express as the equation: 

Vk+1 = Xk + Sk Dk [7] 

Where candidate point is generated by taking step Sk from current point Xk in direction Dk 

on iteration k. The direction Dk can be determined by gradient information or can be generated 

according to a uniform distribution on a hypersphere, while step Sk might be the result of a line 

search. [7].  

 

Figure 2.2.1(b): Generic Random Search Algorithm [7] 

 However, despite random search is better than grid search given that user able to define the 

number of trials, it is still not an effective solution to optimize models that have wide search 

space. Since the random search point is sampled randomly using uniform distribution, the 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    9 

 

algorithm does not promise the next sampled point has better performance. Random search 

does not take previous generated points into account to consider which point to choose in the 

next iteration. Compared to sophisticated methods such as Bayesian optimization, random 

search does not have exploit the knowledge of well-performing search space [4]. 

2.2.2 Bayesian Optimization 

 

Figure 2.2.2(a): Illustration of Bayesian Optimization [6] 

Bayesian optimization is widely used to optimize complex models that have high dimensional 

hyperparameters such as neural networks and XGBoost. Bayesian Optimization learn from 

previous points and based on the knowledge to sample next point that most probably will 

provide a promising result. From Figure 2.2.2(a), it is observed that the sampled point clustered 

at the minimum loss point of both hyperparameter. Compared to random search, the sampled 

point is scattered around the entire search space, which means that Bayesian Optimization has 

higher chance to search for the most optimum point. This is due to the nature of balance 

between exploration and exploitation of search space in Bayesian Optimization. In Bayesian 

Optimization, the model not only will explore the search space, if certain area of search space 

is getting promising optimization results, it will start exploiting that area to find out the best 

point within that area. 
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Figure 2.2.2(b): Bayesian Optimization algorithm [8] 

 From Figure 2.2.2(b), notice that the Bayesian optimization algorithm is unlike grid search 

and random search that search the entire search space in a brute force way or randomly sample 

points and hope it able to find the optimal point. Bayesian optimization relies on a regressor 

function, sometimes referred as mean function [8], or surrogate function. This project will 

focus only on using Gaussian Process Regressor as the surrogate function, hence Bayesian 

optimization with Gaussian Process usually will be written as BO-GP. In the first few trial, 

BO-GP will randomly select a few points from the search space and evaluate the performance 

of the hyperparameter selected. Then, Gaussian Process Regressor will simulate and predict 

the overall pattern of the optimization objective based on the search space. This method able 

to reduce the computational cost to model the validation accuracy of the entire search space. 

The Gaussian Process Regressor will train multiple models to fit the point selected in the first 

few trials.  
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Figure 2.2.2(c): Regressed function (also known as Surrogated Function) [9] 

Figure 2.2.2(c) shows the functions generated by the regressor, the pink points are the 

sampled points in the first few trials, the blue line indicates the mean of all the models train 

from the regressor and the yellow region indicate the uncertainty or standard deviation of the 

functions. The uncertainty region became smaller when nearer to the sampled point as it 

become more predictable.  

 

Figure 2.2.2(d): Acquisition function with different kappa value [9] 

 Acquisition function is a function modeled from the surrogate model where it provides 

information for the algorithm to sample the possible optimal point. In Figure 2.2.2(c), the 

authors wanted to minimize the target, therefore the lower confidence bound of the surrogate 
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model are chosen as acquisition function. The acquisition function is expressed as the equation 

below: 

𝐴(𝑥) =  𝑓(𝑥) −  𝑘𝑎𝑝𝑝𝑎 ×  𝑠𝑡𝑑(𝑓(𝑥))[9]  

 Where kappa is a hyperparameter of the acquisition function that will determine the 

optimization process tends to be locally or globally [9]. The hyperparameter kappa act as a 

magnifier of the uncertainties. When the uncertainties are magnified for 10 times (kappa = 10), 

the uncertainties in global scope will arise as well. BO-GP algorithms strategy is to search for 

region that have lowest acquisition function value, where the region is most probably have the 

optimal point. From Figure 2.2.2(d), in kappa = 10, the region with very low acquisition 

function value is spread over the entire search space, compared to kappa = 1 which the 

acquisition function is smoother and the region with low acquisition function value is between 

4 and 6 only. In other words, when kappa = 1, the algorithm tends to exploit the region to find 

the local optima point, while when kappa = 10, the algorithm tends to explore than exploit the 

search space and eventually able to find the global optima point. 

 

Figure 2.2.2(e): Sampling process of BO-GP with different kappa value [9] 
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Figure 2.2.2(f): Final optimization result for different kappa value [9] 

 Figure 2.2.2(f) shows the final optimized results for different kappa value. The kappa = 1 

able to obtain the local optima where the value sits between 4 and 6, while for kappa = 10, it 

able to obtain the global optima where the target value is slightly lower than the first result. 

Therefore, kappa value is important to determine the quality and the time required for the 

optimization. If the kappa is too low, it tends to be stuck at local optima and it is hard to escape, 

while if kappa is too high, the algorithm tends to explore instead exploiting the search space, 

and it will take longer time or more trials to obtain the global optima. It is important to balance 

between quality of the results and the efficiency of the optimization. 

2.3 Comparison of Hyperparameter Optimization techniques 

Methods Grid Search Random Search Bayesian Optimization 

Implementation Easy Easy Complex 

Optimization 

Strategy 

Brute force by trying each 

combination of 

hyperparameter 

Random sample 

hyperparameters from 

search space 

Based on surrogated model 

and acquisition function to 

make smart guess of next 

point 

Computational 

Power required 

Expensive for high 

dimensional 

hyperparameter 

Depends on number of 

trials 

Balanced between 

consumption and result 

quality 
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Algorithm 1. start optimization from 

the first point in the 

defined search space 

2. obtain the result 

3. obtain next point in the 

search space 

4. repeat from step 2 until 

all combination is tried. 

1. start optimization by 

randomly sample a point 

from defined search space 

2. obtain the result 

3. randomly sample next 

point from the search space 

4. repeat step 2 until 

defined number of trials. 

1. start optimization by 

randomly sample few 

points from search space 

2. obtain the result 

3. regress a surrogated 

model 

4. obtain acquisition 

function 

5. sample the point with 

optimum acquisition 

function value 

6. repeat step 2 until 

defined number of trials. 

Table 2.2.3: Comparison between different optimization methods 

  Table 2.2.3 shows the comparison between the optimization methods mentioned above, the 

table compared multiple aspect of the optimization algorithms. To determine whether the 

optimization method is suitable for optimizing complex models like neural network or 

XGBoost, the algorithm efficiency and the computational power required need to be focused. 

Under the circumstances of high dimensional hyperparameters, Grid search has the simplest 

algorithm, but it requires more computational power in order to perform model training for 

each combination. While for Bayesian Optimization, it also consumes computational power 

due to its complex algorithm needs to regress a new surrogate model and calculate latest 

acquisition function based on the previously evaluated points, but the complex algorithm 

helped to reduce the number of iterations needed to obtain quality hyperparameters. While for 

Random Search, although the algorithm is not as complex as Bayesian optimization, and the 

power consumption can be controlled by user by defining number of iterations, however it does 

not always produce promising results due to its random nature. Therefore, random search and 

Bayesian Optimization are better ways to optimize hyperparameter of complex models 

efficiently. This leads to the project problem statement, which methods works better in this 

project? The answer will be revealed in the following chapters.  
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Chapter 3 

 

System Methodology/Approach 

3.1 Project Overview 

This project contains 2 major parts, which is model optimization and API/GUI development. 

The main focus will be on optimizing models and compare the performance of each model. 

Meanwhile this project also will develop an Application Programming Interface (API) that 

allow developers to access and use the optimized model, as well as a Graphical User Interface 

(GUI) to ease normal user to interact with the optimized model and perform game predictions. 

3.1.1 Model Optimization  

 

Figure 3.1.1: Flowchart of the model training process 

The first part of the project will be focused on creating the models. Before the models can be 

trained, the data needs to be well prepared. The preparation steps include data acquisition, data 

cleaning and train/test set splitting. Once these steps are completed, the model is ready to be 

trained. First, models that is highly customizable such as neural network, need to define its 
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structure such as number of layers, number of neurons, learning rate, momentum, etc. After a 

default model is decided, the model go through normal training process without any 

optimization involved will act as baseline model. In the meantime, another exact same model 

is created to go through hyperparameter optimization using Random Search and Bayesian 

Optimization. The optimized models and baseline models will go through comparison and 

finally, 2 best model will be selected as the final model of the project. 

3.1.2 API and GUI development 

 

 Figure 3.1.2: Use case diagram of the system 

Use case name: Win rate prediction with GUI 

Actor: User 

Summary Description: This use case describes the process of predicting player data 

using a machine learning model. The user interacts with a 

graphical user interface (GUI) to input player data and initiate 

the prediction process. The system then sends an HTTP request 

to an API, which validates and processes the data before 

invoking ML model for prediction. The predicted results are 

returned to the user for visualization. 

Priority: Optional 

Status: Medium level of details 

Pre-condition: The API and ML model is online and ready to serve 
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Post-condition: The predicted player data is displayed to the user 

Normal flow: 1. User Input: The user enters player data into the GUI. 

2. Initiate Prediction: The user clicks the "Predict" button. 

3. Send HTTP Request: The system sends an HTTP request to 

the API with the player data. 

4. Receive HTTP Request: The API receives the HTTP request. 

5. Preprocess Data: The API preprocesses the received player 

data. 

6. Validate Data: The API validates the preprocessed data for 

correctness and completeness. 

7. Invoke ML Model: The API invokes the ML model to 

perform the prediction. 

8. Perform Prediction: The ML model processes the validated 

data and generates a prediction. 

9. Send Response: The API sends a response to the system 

containing the predicted results. 

10. Receive Response: The system receives the response from 

the API. 

11. Display Results: The system displays the predicted win rate 

to the user. 

Alternative flow: 3a: Timeout: If the API does not receive a response from the ML 

model within a specified timeout, it sends a timeout message to 

the system, which is then displayed to the user. 

10a: Error Message: If the API encounters an error during data 

validation or model invocation, it sends an error message to the 

system, which is then displayed to the user. 

12: Change Model: The user may choose to change the ML 

model being used for prediction. This would involve selecting a 

different model from the GUI and repeating the prediction 

process. 

Table 3.1.2: Use case description 

After the final model is done, the model is saved as a pretrain model file. To create a web 

service that allows user to access the model’s prediction function, the model needs to be loaded 
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into the web services program. In the program, an API is created that accept user input in JSON 

format, perform preprocessing, prediction on the input, and finally return the prediction result 

of the model in JSON format to user. The web service program is then uploaded to web service 

hosting server and the service is ready to be accessed publicly. Besides, a GUI is developed 

with basic function included such as allow user input, interact with the web services, and 

display the result returned by the server and visualize the result. This purpose of this GUI is to 

allow people with or without IT knowledge to access to the model easily.  

 Figure 3.1.2 is the use case diagram of the system. The figure shows the processes involved 

in each part of the systems including GUI and API. User input player data into GUI. GUI will 

process the input data to suit the data format used by HTTP. Then the data is sent to web service 

API using POST method. When the data is received by the web service hosted, the processed 

player data is extracted and preprocessed to fit in the model and perform prediction. The result 

is returned to GUI. GUI received the result and will visualize the result to user. 

3.2 Machine Learning Models and hyperparameters 

From the previous research [1], [2], both authors trained multiple kinds of machine learning 

model to predict the winning teams of the game. These models included decision tree, logistic 

regression, Gradient Boosted Decision Tree (GBDT), XGBoost and Neural Network. The 

result from both research shows that neural network and XGBoost classifier are having the top 

performance among the models. This subchapter will discuss about the models’ structures and 

their hyperparameters. 

3.2.1 Neural Network 

 

Figure 3.2.1(a): General Structure of a neural network [10] 
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The figure above shows the general structure of a neural network. It consists of 3 major parts, 

which are input layer, hidden layers, and output layer. Input layer is a single layer, and it is the 

first layer of every neural network, it is the input from user. The shape of input layer is 

depending on how many features in a data contains. The last layer of the neural network is the 

output layer, this is the layer that will output the decision, or the prediction. The shape of the 

output layer is depending on the task, or the objective of the neural network. For example, if 

the neural network is used to perform single class binary classification, then the output layer 

should be a single neuron. However, if the neural network is used to perform multi-class 

classification, then the output should be multiple neurons.  

The layers between the input and the output layer are called hidden layers. Hidden layers 

are where the neural network extract and learn high level features from the input layer. It is the 

hyperparameters that determine the structure and the modeling ability of the network. 

Therefore, the wider and deeper the hidden layer, the model most likely able to learn higher 

level features and improve the ability of the model to perform prediction. However, high ability 

to learn complex features also means that it also possibly to have overfitting issues, where the 

model learnt low level pattern of the datasets, causing the model unable to perform well on 

unforeseen dataset. 

Beside number of hidden layers and number of neurons for each hidden layer, the learning 

rate, batch size, number of epochs, and momentum are important hyperparameters as they 

determined the training efficiency of the model. In the neural network training process, gradient 

descent is used to optimize the parameters in the neural network by using the gradient 

information, it is an optimization algorithm to find a local minimum of a differentiable function 

[11]. 

 

Figure 3.2.1(b): Algorithm of Gradient Descent [11] 
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Figure 3.2.1(b) shows the algorithm of gradient descent. In the algorithm, the learning rate 

α is multiplied with the gradient and the product is subtracted with the current xi to get the xi 

for next iteration. Therefore, the learning rate plays an important role in order to control the 

efficiency of the training process. Figure 3.2.1(c) shows the impact of different learning rate. 

An optimum learning rate allows the model to converge fast in a short time, increasing the 

training efficiency. 

 

Figure 3.2.1(c): Impact of different learning rate α [11] 

The hyperparameter batch size determine the size of data per batch. A basic batch gradient 

descent (BGD) updates the parameters by computes the activation and gradient of all sample. 

This method is slow especially when the number of samples is huge [12]. Hence, mini-batch 

gradient descent (MGD) is more commonly used method, where the whole dataset is split into 

mini-batches, the model parameter will update once a mini-batch of data is trained. An 

optimum batch size can have regularization effect, making the model less overfitting to the 

dataset [12]. Another hyperparameter, number of epochs, is the number of iterations that the 

neural network needs to go through the entire dataset. A neural network that trained with 

multiple epochs able to reinforce the knowledge learnt by the model. However, too many 

epochs will lead to overfitting issues as well.  
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Figure 3.2.1(d): Illustration of Momentum and momentum equation [12] 

Meanwhile, momentum β is an optional tuning hyperparameters in neural networks. The 

existence of momentum is to tackle the issue of gradient oscillation in orthogonal direction 

especially in plateau area of the space [12]. By introducing momentum in the training process, 

it able to use exponentially weighted average of previous gradient to make the gradient update 

smoother by reducing the oscillation effect of normal update [12].  

There are 6 hyperparameters that affect the performance of neural network the most, which 

are the number of hidden layers, number of neurons for each layer, learning rate (α), momentum 

(β), batch size, and number of epochs. In order to focus on comparing optimization algorithms, 

the project decided to fix the number of hidden layers at 5 layers to reduce the optimization 

time, in the meantime it ensures the ability of the model to learn high-level features through 

these layers. The rest of the hyperparameters will be tuned by the algorithms. 

3.2.2 XGBoost Classifier 

 

Figure 3.2.2(a): Illustration of Decision Tree [13] 
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XGBoost (acronym of eXtreme Gradient Boosting) is an enhanced machine learning model 

based on decision tree model. From Figure 3.2.2(a), a decision tree made its decision based on 

a series of conditions. In a tree model, it consists of a root node that act as the initial condition 

for classifying instance into category, then the classified instance will be further fed into 

decision node that consists of another rules [13]. The steps iteratively go through the decision 

tree until it reach the leave nodes that provide the final classification of the instance [13]. In 

particular, XGBoost is a decision tree that using Gradient Boosting algorithm to train the model, 

usually it is simplified as GBDT. 

 

Figure 3.2.2(b): Illustration of Boosting [14] 

Boosting is an ensemble modelling technique that build a classifier from weak classifiers 

[14]. An initial model is built from training data, then based on the errors in the first model, the 

second model is built, tries to correct the errors in the first model, and the steps are repeated 

until the maximum number of models built [14]. According to the author of [15], gradient 

boosting is like playing golf, every trial is to correct the direction and of the ball moving to the 

desired goal. In XGBoost, weights are assigned to all independent variables and fed into the 

decision tree to predict the result, the weight of the variables that are wrongly predicted is 

increased and the wrongly predicted variable is fed into the second tree to improve the model 

performance [14]. 
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Figure 3.2.2(c): XGBoost hyperparameters according to importance and description [16] 

Figure 3.2.2(c) shows the list of XGBoost hyperparameters by importance based on the 

author of [16]. According to the statement of the author [16], learning rate affect the stability 

of the model the most. In this project, 5 of the hyperparameters will be tuned as well, the top 3 

hyperparameters was selected to tuned because they determined the structure of the model. 

However, XGBoost prone to overfitting especially when trained on small dataset or too many 

trees used in the model. Therefore, instead of selecting the top 5 most important 

hyperparameters, this project chooses to tune L1 and L2 regularization term, which is 

reg_lambda and reg_alpha to reduce the overfitting issues. In short, the target hyperparameters 

to tuned in this project include learning rate, n_estimators, max_depth, reg_lambda, and 

reg_alpha. 
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3.3 Gantt Chart 

 

Figure 3.3: Gantt Chart of the project 

 

Phase

Task / Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Acquisition

Data Preprocessing

Model Building and Training (NN)

Hyperparameter Optimization (NN)

Model Evaluation (NN)

Report Writing

Presentation

Model building and Training (XGBoost)

Hyperparameter Optimization

Model Evaluation

API development

GUI development

System testing

Report Writing

Presentation

FYP1 FYP2
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Chapter 4 

 

System Design 

4.1 Data Acquisition 

 

Figure 4.1(a): Flowchart of the Python Scrapping script 

Data acquisition has been done during FYP 1, the scrapping process is done by using a Python 

script with Selenium and BeautifulSoup (BS4) to automate the scrapping process. The target 

event data is 10000 matches, and the script will stop scrape for new match.  
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Figure 4.1(b): Event tab shows all ongoing/completed international events [17] 

 

Figure 4.1(c): Matches for all stages in each event [17] 
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Figure 4.1(d): Sample table of gameplay data and maps from vlr.gg [17] 

 Once the Selenium WebDriver launched, the page in Figure 4.1(b) will be shown. Using 

Selenium to locate the event list, the script will go through all the event to scrape the matches 

happened in the event. Figure 4.1(c) shows the page after an event is clicked. In an event, there 

usually have a group stage to select seeded teams, and a playoff stage, the official matches that 

decide the winner of the tournament. The script target to scrape all matches in group stage and 

playoff stage, therefore, the stage filter needs to show all stages. Then, the script will further 

locate the match for everyday as shown in Figure 4.1(c) and click the match. Figure 4.1(d) 

shows the page after the match is clicked. The target match data is in each map. Hence, the 

script will go through the map element above, and scrape the data below as shown in Figure 

4.1(d). All the scrapped data will be stored into a .csv file as shown in Figure 4.1(e). 

 

Figure 4.1(e): View of the scrapped dataset 
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4.2 Data Cleaning and Preprocessing 

Once the .csv file contains 10000 data, the next steps are to perform data cleaning and 

preprocessing using a Python script with Pandas data frame. In data cleaning process, the main 

steps are to remove and replace unknown values. For example, an empty cell in the website 

table is represented as a null symbol, and it appears in the .csv file as “\xa0” string. The string 

is removed and leaved empty for further process. Hence, the dataset now consists of data that 

have null value. The next step is to remove the entire row that contain null value instead of 

filling in with mean or median value, which is commonly used in data cleaning steps. Then, 

the numeric data that are scrapped as string, are converted to float type data.  

 After data cleaning, the data will undergo preprocessing. Before performing any 

preprocessing, categorical data needed to be encoded using label encoder. Then, the correlation 

and distribution between all the numerical data is calculated. Figure 4.2(a) shows the 

correlation heatmap between all numerical data, visualized using matplotlib.  

 

Figure 4.2(a): Correlation Heatmap for numerical data 
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 The correlation heatmap contains all numerical data and some categorical data that are 

encoded as numerical label. The numerical labels are ignored. Noticed that in numerical data, 

only the Headshot percentage (HS%), is not correlated to any data in the entire dataset. 

Therefore, HS% is dropped to reduce the dimension of dataset. By observing the visualized 

chart of numerical data distribution, data such as Rating (R), Average Combat Score (ACS), 

Average Damage per Round (ADR) is normalized, while Kill, Assist, Survived, Traded 

percentage (KAST) is not normalized based on the skewed pattern in all KAST graph. 

According to [18], normalized data able to improve model performance by speeding up the 

convergence and also speed up gradient descent. Normalization process is done to KAST using 

MinMaxScaler from Scikit-learn. Then, all the numerical data that are not represented in 

percentage undergo standardization process using StandardScaler from Scikit-learn. This is 

because standardized data able to improve the convergence speed by ensuring all features have 

the same scale [18]. Standardizing the data also can facilitate Gradient Descent by preventing 

the gradient descent optimization skewed due to different feature scale [18]. These data include 

R, ACS, ADR. Then, all the Label Encoder, Standard Scaler, and MinMax Scaler object is 

stored as a .pkl (pickle) file for future use. 

 

Figure 4.2(b): Data distribution of numerical data  
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4.3 Model Building, Training, and Hyperparameter Optimization 

4.3.1 General Procedures 

This subchapter introduces the general steps that have to be done regardless of the model type. 

Before training any model, the data has to be prepared properly. First of all, the preprocessed 

data needs to be loaded as a Pandas data frame. Then, the features and the result of the data is 

splitted as X (features) and y (ground truth). The X and y are then further split into train set 

and test set, where the ratio of train set versus test set is 80:20 with stratify to ensure the 

distribution of the data in both datasets are same. The test set will not involve in any training 

process. The purpose of test set is to evaluate the model under unforeseen data. The training 

and validation process will be performed only using the train set. In cross validation, the train 

set will be further split into ratio of 80:20 for 5-fold as shown in Figure 4.3.1. To facilitate the 

development process, some helper functions are created to reduce the redundancy of codes. 

The helper functions included perform prediction function, evaluate performance, plot curves, 

train functions, cross validation, etc. 

 

Figure 4.3.1: Illustration of 5-fold cross validation [19] 
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4.3.2 Neural Network 

 

Figure 4.3.2: Flowchart of neural network development 

The main library used in this project for neural network is PyTorch. To start building and 

training the base model of neural network, the dataset needs to be loaded into a data loader as 

the project implement mini-batch training for the neural network. To achieve this, the X_train 

(features in training set) and the y_train (ground truths of training set) is packed as a Dataset 

object. Then, the Dataset object is loaded into the DataLoader object with the specific batch 

size.  

 Next, a customized class, Net, that allows layer size customization is created to make the 

hyperparameter optimization easier. The class take an integer tuple as parameter and append 

the neuron layers with specified number of neurons into the neural network. Then, the first 

neural network can be trained, with the handpicked hyperparameters (number of epochs, 

learning rate, batch size, and number of neurons for each layer. Momentum default = 0.9). 

Using the train function in the helper functions to train the model. Then, using the evaluate 

function to evaluate the model. The result obtained will be the baseline result for the project, 

and the optimized model should have a better result than the baseline model. 

4.3.3 XGBoost Classifier 

 

Figure 4.3.3: Flowchart of XGBoost model development 
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XGboost library is mainly used in this part of the project. Unlike neural network, training 

XGBoost is simpler than training a neural network. The XGBoost library provides useful API 

to ease the training process. XGBoost also does not implement mini-batch training method, 

therefore the training of XGBoost and its development is relatively easy. In the beginning, a 

baseline model is initialized with handpicked hyperparameters (n_estimators and max_depth). 

The cross-validation result of baseline model is recorded for future reference. 

4.3.4 Hyperparameter Optimization 

 

Figure 4.3.4(a): Flowchart of Random Serach hyperparameter optimization using Optuna  

 

Figure 4.3.4(b): Flowchart of Bayesian hyperparameter optimization using Optuna 

The project uses Optuna hyperparameter optimization framework to perform optimization. The 

library provides both random search optimization and Bayesian optimization, as well as 

optimization process visualization to allow user to have a better view and able to compare the 

differences between both methods. 
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 First, an objective function is required to decide the hyperparameters need to be tuned and 

the objective value that determine the result. Optuna only support single objective 

hyperparameters optimization for Bayesian optimization, hence the project chooses to 

maximize the model’s average validation accuracy in 5-fold as the ultimate objective of the 

optimization. The number of trials is set to 30 trials per optimization.  

Before the optimization starts, an Optuna storage object is created and passed into the 

optimization function. The purpose of the storage is to record and store the results of each trial, 

the storage is also used to visualize the optimization results for analysis purpose. The time of 

start and end of the optimization is recorded and compared between different models and 

optimization methods. 

After 30 trials of optimization, the best trial hyperparameters is accessed and the models 

are trained again with the best hyperparameters as the optimized model. Then, using the 

evaluation helper function, evaluate the optimized model with entire train set and test set data 

to check whether the models suffer from overfitting issues. Other than validation accuracy, the 

other metrics such as ROC-AUC, precision-recall curve, confusion matrix, etc., are evaluated 

and plotted using matplotlib for better visualization of the model’s capabilities. The optimized 

model is saved using PyTorch save() method for neural network and XGB model object 

save_model() method for XGBoost for API implementation in the next step. 

4.4 API Development 

  

Figure 4.4: Sequence diagram of API development 
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The API development process uses multiple libraries such as FastAPI as API development 

framework, Pydantic for data input verification, Uvicorn as web server, and so on. Before the 

API can launch, the saved models, encoders and scalers in the previous subchapter need to be 

loaded. The encoders and scalers are to ensure the new input data is preprocessed identically 

as in the training dataset. When the server receive data from user, the API first preprocess the 

data using the encoders and scalers. Then the model able to take the preprocessed data to 

perform prediction. The prediction is then return to user in JSON format. Once the API method 

is defined, the Uvicorn server is launched and hosted on IP address of 0.0.0.0 and on port 8000.  

 To make the API available on the Internet instead of only hosting it on a machine locally, 

the API code is uploaded to GitHub and deployed on a web hosting service called Render [20]. 

Render is a company that provides web hosting services, and it has a free option to host any 

web services with basic performance, which is suitable for this project. After ensuring the API 

can run properly on local machine, a requirements.txt, which describe the current Python 

environment, is generated and uploaded to Render to ensure that the environment on Render is 

same as local machine so it can run as expected. Once the API is deployed successfully on 

Render, the API is tested with dummy data using Postman to ensure the API is working and it 

can return the result to the user. 

4.5 GUI Development 

  

Figure 4.5(a): Sequence diagram of GUI operation 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    35 

 

Figure 4.5(b) shows the wireframe of the GUI design. The interface has a map input field, a 

model selection input field, and defender and attacker field. Inside defender and attacker consist 

of 5 players, each players have 5 input field including Agent, Rating, ACS, KAST, and ADR. 

Below the fields are a predict button that will compile the input data and convert it from plain 

text to JavaScript Object Notation (JSON) format. Then, the GUI will send the compiled JSON 

data using POST method to the respective API of the selected model. After receiving the 

response from the API, the GUI will utilize the response data and visualize the win rate into a 

horizontal bar chart using matplotlib. 

Note that the main purpose of developing this GUI is to ease the normal user to access the 

model using a simple graphical interface, it is not the main focus of this project. Instead, the 

API is the main deliverable of the project. Therefore, the GUI only provide simple function 

like communicate with selected API, display prediction result and visualize the result in bar 

chart.  

 

Figure 4.5(b): GUI wireframe design  
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Chapter 5  

 

System Implementation 

5.1 Hardware Setup 

Table 5.1(a) shows the specification of the laptop used in this project. Besides using this laptop, 

this project also utilized some cloud computing instance such as in Google Colab and Render. 

The specification of both instance is listed in Table 5.1(b) and (c). 

Description Specifications 

Model Asus VivoBook A510U 

Processor Intel i5-8250U 

Operating System Windows 11 Home Edition 

Graphic Intel UHD Graphics 620 + NVIDIA GeForce MX150 

Memory 16GB DDR4 2400MHz 

Storage 512 GB SATA SSD + 1TB HDD 

Table 5.1(a): Specifications of laptop 

Description Specifications 

Hardware accelerator CPU 

Runtime type Python 3 

System RAM 12.7GB 

Disk 107.7GB 

Table 5.1(b): Google Colab instance specifications 

Description Specificaitons 

Runtime (Language) Python 3 

Region Singapore (SEA) 

RAM 512MB 

CPU 0.1 compute unit 

Table 5.1(c): Render.com web service instance specifications 
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Note that the Google Colab and Render instance used in this project is free version. A free 

version of instance usually only provides basic functionality and sufficient system resources 

for a simple application. For Google Colab, the free CPU instance is used to train the models 

to ensure the computational power is consistent along the project, so the comparison of the 

optimization methods and models training time in this project is more referrable.  

While for Render hosting, this project is using a free version as well. The only downside 

for the free version of Render is the instance will be suspended after some time of idle, and 

restart the instance will take up some time, it will make the GUI to be not responding for the 

first few minutes, after the instances is restarted, everything will work as normal and responsive 

(respond time around 200ms). 

5.2 Software Setup and Configuration 

In this project, the main programming language is Python 3, to be specific, the version of 

Python used is 3.11.9 from Anaconda for the entire project to ensure that the compatibility of 

the code. The editor used are Microsoft Visual Studio Code (VSCode) with the Python and 

Jupyter Notebook extensions installed for better development experience. The source codes are 

uploaded to GitHub public repository and the link to the repository is attached in the appendix 

of this report. 

5.2.1 Data Acquisition and Preprocessing 

# selenium 
from selenium import webdriver 
from selenium.webdriver.chrome.service import Service 
from selenium.webdriver.common.by import By 
from webdriver_manager.chrome import ChromeDriverManager 
from selenium.webdriver.common.keys import Keys 
from selenium.webdriver.common.action_chains import ActionChains 
from selenium.webdriver.support.ui import WebDriverWait 
from selenium.webdriver.support import expected_conditions as EC 
from selenium.webdriver.chrome.options import Options 
 
# other libraries needed 
import time 
import pandas as pd 
import csv 
 
# bs4 
from bs4 import BeautifulSoup 

Figure 5.2.1(a): Library required to scrape data from vlr.gg 
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Figure 5.2.1(a) shows the required library for scrapping the data from vlr.gg. Selenium is 

the library that automate the browser action using the web driver. The time library is to create 

some short pause within the script when the page is redirected to ensure that the script can run 

smoothly. While pandas and csv library are to arrange the data in desired format and save into 

.csv file. BeautifulSoup library allows the script to interact with HTML elements on the website 

and extract the desired data from the HTML. 

 
import pandas as pd 
import matplotlib.pyplot as plt 
import numpy as np 
 
import joblib 
from scipy import stats 
import seaborn as sns 

Figure 5.2.1(b): Library required for data cleaning and data distribution visualization 

 After the data acquisition is completed, the data needs to undergo cleaning and 

preprocessing. In data cleaning, the required library is shown in Figure 5.2.1(b), the pandas 

library here is to load the raw .csv file into a data frame so that the following process is easier 

to be performed. Meanwhile, matplotlib and seaborn is to visualize the data distribution and 

correlation heatmap, so that the irrelevant data can be removed, and determine how the 

preprocessing steps is going to be implemented. 

# standardize numerical data 
from sklearn.preprocessing import StandardScaler, MinMaxScaler 
standard_scaler = StandardScaler() 
minmax_scaler = MinMaxScaler() 
 
from sklearn.preprocessing import LabelEncoder 
# label encoding string type data 
le = LabelEncoder() 

Figure 5.2.1(c): Library required for data preprocessing 

 In data preprocessing, all the categorical data is converted to integer label using 

LabelEncoder from Scikit-learn. Using the matplotlib and seaborn generated correlation 

heatmap and data distribution chart, certain features will undergo normalization and 

standardization using MinMaxScaler and StandardScaler. The preprocessed data is then 

exported as another .csv file to avoid confusion with raw data file. After preprocessing is done, 
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the Scalers and Encoder objects are saved as .pkl file using joblib library. The objects are 

needed in API development. 

5.2.2 Model Training and Hyperparameter Optimization 

The model training and hyperparameter optimization steps are done on Google Colab, therefore 

the Jupyter notebook has to be connected to Google Drive first with personal account signed 

in as shown in Figure 5.2.2(a), in order to utilize the CPU power from Google Colab instance. 

 

Figure 5.2.2(a): Connect to Google Drive in Google Colab 

 Since the Google Colab does not necessarily have the library required by our project, some 

of the libraries such as scikit-plot, torchinfo, optuna, etc., are installed using “! pip” command 

directly in Google Colab. Before start, ensure all the required files such as the preprocessed 

data .csv file are in the Google Drive, and directory is changed as the .csv file using “cd” 

command. 

import pandas as pd 
import numpy as np 
import torch.nn.functional as F 
import torch 
import matplotlib.pyplot as plt 
 
from torch import nn 
import torch.optim as optim 

from torchinfo import summary 

Figure 5.2.2(b): Libraries required for training neural network 

 

 

 

 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    40 

 

import xgboost as xgb 
from xgboost import XGBClassifier 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import random 

Figure 5.2.2(c): Libraries required for training XGBoost Classifier 

Figure 5.2.2(b) shows the main library used in the neural network training process. Besides 

pandas and numpy for reading the .csv file, the PyTorch (torch) library is the main framework 

to build and train a neural network, including “nn.functional” for cross entropy functionality, 

“torch.optim” for the SGD optimizer, and the “torchinfo” for a brief view of the neural network 

created. While for XGBoost, the required libraries are relatively lesser than neural network. As 

shown in Figure 5.2.2(c), the only difference is the XGBoost library is used instead of multiple 

torch libraries. 

# split train test set 
from sklearn.model_selection import train_test_split 
from torch.utils.data import DataLoader, Dataset 

Figure 5.2.2(d): Libraries required for data splitting and data batching 

 Figure 5.2.2(d) shows the libraries and classes required to import to the notebook to perform 

data splitting. The main function required is the train_test_split from sklearn. The purpose of 

the function is to split the dataset into a train set and a test set by a given ratio and the 

distribution of the data in both set is equal. For neural network model, it requires further action 

to convert the train set into batches using DataLoader and Dataset classes. The batch class is 

shown in Figure 5.2.2(e). 
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# Customize Dataset 
 
class MyDataset(Dataset): 
  def __init__(self, data, labels): 
    self.data = data 
    self.labels = labels 
 
  def __len__(self): 
    return len(self.data) 
 
  def __getitem__(self, idx): 
    # Get data and label from your dataframe 
    data = torch.tensor(self.data.iloc[idx].to_numpy(), requires_grad=True, 
dtype=torch.float32)# Replace with your feature columns 
    label = torch.tensor(self.labels.iloc[idx], requires_grad=True, 
dtype=torch.float32)  # Replace with your label column 
 
    return data, label 

Figure 5.2.2(e): Customized batch dataset class for neural network 

# K-fold cross val 
from sklearn.model_selection import KFold 
 
from sklearn.metrics import accuracy_score, recall_score, precision_score, 
f1_score, roc_auc_score 
from scikitplot.metrics import plot_roc, plot_confusion_matrix, 
plot_precision_recall 

Figure 5.2.2(f): Evaluation functions 

 Figure 5.2.2(f) shows libraries and functions required to perform model evaluation. The 

model evaluation and training process is written as a helper functions, so that the function can 

be reused in future easily. The KFold class is used to perform cross validation on the train set. 

Once the cross validation is completed, the performance of each validation is recorded, and 

average of the performance is calculated. Besides, some plots such as ROC, confusion matrix, 

precision-recall curve, is plotted to have a better view of how well the model performs. 

import optuna 
from optuna import samplers, pruners 
import optuna_dashboard 
import time 
import joblib 
 
import threading 
# from google.colab import output 
from optuna_dashboard import run_server 

Figure 5.2.2(g): Libraries required for hyperparameter optimization 
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 The library used in hyperparameters optimization is Optuna. The samplers class is to decide 

which sampler to be used in the optimization process, in this case is sampler.RandomSampler() 

for Random Search and sampler.GPsampler() for Bayesian Optimization (Gaussian Process). 

The threading and optuna dashboard are used to visualize the optimization process. A 

dashboard will be created and stored in an optuna.storage object. The object can be saved using 

joblib. The threading library is to create a thread to host the dashboard website, so that the 

optimization results can be shown as a website as shown in Figure 5.2.2(h). 

 

Figure 5.2.2(h): Optuna Dashboard for optimization process visualization 

5.2.3 Web Service API 

from fastapi import FastAPI, HTTPException 
from pydantic import BaseModel 
import torch 
from torch import nn 
import numpy as np 
from typing import List 
from sklearn.preprocessing import MinMaxScaler, StandardScaler, LabelEncoder 
import joblib 
import pandas as pd 

Figure 5.2.3(a): Libraries required to develop model API 
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In web service API development, instead of using Jupyter Notebook, a standard Python 

script (.py) is used. FastAPI is the main framework used to initialize the script as an API 

application. The BaseModel from Pydantic and the List is used to validate the user input and 

standardize the output of the API returned to the user. The class is shown in Figure 5.2.3(b). 

The torch library is used to load the neural network model in the API. If the API intend to serve 

XGBoost model, then the library here should be XGBoost library. The joblib and the 

preprocessing library is used here as well in order to load the previously saved Scaler and 

Encoder object and perform same preprocessing to the new input data from user. 

class PredictionInput(BaseModel): 
    data: List[str] 
 
class PredictionOutput(BaseModel): 
    ct_prediction: str 
    ct_proba: float 
    t_prediction: str 
    t_proba: float 

Figure 5.2.3(b): Input and output format validation 

if __name__ == "__main__": 
    import uvicorn 
    uvicorn.run(app, host="127.0.0.1", port=8000) 
# run on Render use 0.0.0.0 

Figure 5.2.3(c): Start server on specified IP address and port using Uvicorn 

In Figure 5.2.3(c) shows the library used to run the API on a Uvicorn server. By default, 

the application should be hosted at address 127.0.0.1 on port 8000 if the hosting is on local 

machine. The port number can be different if multiple API applications required to run on the 

same time on local machine. However, if the application is ready to deploy on Render, the 

address should be changed to 0.0.0.0 to ensure success deployment. 

Next, to deploy the API to Render, first login to Render using the GitHub account where 

the API application code is pushed to the repository. Then, the website will prompt to connect 

GitHub repository from the existing in the GitHub account. Select the one where the API 

application code is. After that, back to the Python script and open a command prompt to export 

a requirements.txt that includes the required environment and libraries. The requirements.txt is 

then uploaded to the same repository as the application code. Then, in the Build Command 

section, type in the command as shown in Figure 5.2.3(d) to let Render’s Python runtime install 
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the required libraries. In the start command section, type in command as shown in the figure 

below. Finally, select “Deploy Web Service” button, the service will deploy automatically and 

startup right after deployment is successful. The link to access the API will be shown in the 

web service dashboard. 

 

Figure 5.2.3(d): Command to start web services on Render 

5.2.4 GUI 

import tkinter as tk 
from tkinter import ttk, scrolledtext 
import requests 
import json 
import matplotlib.pyplot as plt 
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg 
import io 
from PIL import Image, ImageTk 

Figure 5.2.4(a): Libraries required for GUI development 

 Figure 5.2.4(a) shows the libraries used to develop a simple GUI. The main library used is 

TKinter to create the GUI as shown in Figure 4.5(b). The request library is used to send HTTP 

POST request together with user input data in JSON format to the API created in previous 

subchapter. Once the response from API is received, using matplotlib library to plot a bar chart 

and embed the bar chart to the GUI using FigureCanvasTkAgg. The Python Image Library 

(PIL) is to load image as the GUI application logo. The logo will show as the application logo 

on the top left corner of the window as well as on the taskbar. 

5.3 Implementation Issues and Challenges 

The issues encountered during the project is Python Environment management. This happened 

Between FYP1 and FYP2 where Numpy released new version (Numpy 2.0) and it does not 

compatible with the previous work done in FYP1. Therefore, the Numpy version needs to be 

manually downgraded back to Numpy 1.24.3 instead of using the new Numpy 2.0 version. 
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Besides Numpy, Python also has been updated to version 3.12, and some libraries such as 

scikit-plot is not compatible with the new versions, therefore it also required manual 

downgrade to Python 3.11.9 to ensure the compatibility of the entire project. 

 Another issue is regarding to the API deployment. During deployment testing phase, the 

API is tested on local machine which everything works fine. However, when deploy on Render, 

some of the code is not functioning as it was on local machine. Specifically, the issue is the 

datatype used in neural network needs to be specified as float datatype instead of leaving it 

undefined, which is usually done when coding in Python. It is believed that the instance is 

running on different operating systems such as Linux, causing the datatype needs to be 

specified. 
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Chapter 6  

 

System Evaluation and Discussion 

6.1 System Evaluation and Performance Metrics 

The objective of model testing is to observe the improvement from baseline model to optimized 

model, as well as between models optimized using different optimization method to compare 

the efficiency. The metrics include accuracy, recall, precision, F1-score, and ROC-AUC score. 

Accuracy indicates the number of correct predictions over the total number of predictions 

made. Recall is the ratio of true positive samples over all the actual positive samples. While 

precision is the ratio of true positive samples over the samples that are predicted as positive. 

To balance out both precision and recall, the ultimate metric to evaluate model is the F1-score, 

it takes both precision and recall into account [21]. Receiver-Operating Characteristic curve 

(ROC) is a curve that represent the model performance across all thresholds using True Positive 

Rate versus False Positive Rate [22]. The curve is drawn by calculating the True Positive Rate 

and False Positive Rate at every threshold possible [22]. From ROC, another important metric 

can be read which is the Area Under the Curve (AUC). AUC represent the probability of a 

model to differentiate positive and negative samples [22].  

 

Figure 6.1: Illustration of Precision and Recall [21] 

 While for the API and GUI testing, the objective is relatively simple, the API must be able 

to receive HTTP POST response, validate the user input, perform prediction, and return the 

prediction result as JSON. While for GUI, it must allow user to input data, send data to the 

correct web services based on the model selected, receive response from API, visualize and 

display the result correctly as a bar chart.  
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6.2 Testing Result 

To test the system, the testing is separated into 2 parts, the model testing and the API/GUI 

testing. 

6.2.1 Model Evaluation 

1) Neural Network 

The baseline model, random optimized model, and Bayesian optimized model result of neural 

networks are shown in Table 6.2.1(a) and Table 6.2.1(b) below. 

Model Baseline model (Handpick 

hyperparameters) 

Random optimized model Bayesian optimized model 

Hyper 

params. 

lr: 0.005,  

num_neuron: (200, 300, 100, 

70, 50),  

momentum: 0.9,  

batch_size: 128,  

num_of_epoch: 24 

 

lr: 0.0657571637680928, 

num_layer_1: 99,  

num_layer_2: 192, 

num_layer_3: 149,  

num_layer_4: 75,  

num_layer_5: 52,  

momentum: 

0.7279355045846245, 

num_of_epoch: 54,  

batch_size: 44 

lr: 0.062392167602705856, 

num_layer_1: 89,  

num_layer_2: 117,  

num_layer_3: 78, 

num_layer_4: 143,  

num_layer_5: 200,  

momentum: 

0.553127569798693, 

num_of_epoch: 42,  

batch_size: 75 

Avg. 

Training 

metrics 

Avg training accuracy:  0.8876 

Avg training recall:  0.8092 

Avg training precision: 0.9141 

Avg training f1:   0.8497 

Avg training ROC score: 0.9730 

Avg training accuracy: 0.9084 

Avg training recall:  0.8854 

Avg training precision: 0.8979 

Avg training f1:   0.8879 

Avg training ROC score: 0.9792 

Avg training accuracy: 0.9126 

Avg training recall:  0.9007 

Avg training precision: 0.8873 

Avg training f1:   0.8928 

Avg training ROC score: 0.9774 

Cross 

Validation 

(5-fold) 

Avg validation accuracy: 0.8827 

Avg validation recall: 0.7992 

Avg validation precision:0.9056 

Avg validation f1: 0.8399 

Avg validation ROC score:0.9695 

Avg validation accuracy: 0.9003 

Avg validation recall: 0.8689 

Avg validation precision:0.8871 

Avg validation f1: 0.8742 

Avg validation ROC score: 0.9741 

Avg validation accuracy: 0.9041 

Avg validation recall: 0.8878 

Avg validation precision:0.8758 

Avg validation f1: 0.8800 

Avg validation ROC score: 0.9728 

Test Set 

inference 

N/A recall score:   0.9666 

Precision score:  0.7526 

F1 score:    0.8463 

ROC_AUC score:   0.9712 

Accuracy Score:   0.8577 

recall score:   0.9399 

Precision score:  0.8421 

F1 score:    0.8883 

ROC_AUC score:   0.9719 

Accuracy Score:   0.9042 

Opt. time N/A 2516.2435 seconds 1829.28 seconds 

Table 6.2.1(a): Model Evaluation for neural networks 
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Model Random Optimized model Bayesian Optimized model 

Conf. 

Matrix 

  
ROC 

  
PRC 

  

Table 6.2.1(b): Table of metrics plot using test set for neural networks 

 By comparing the results of baseline model and both optimized models, the optimized 

models have improvement around 2% on training and validation accuracy. There are also 

improvements on other metrics such as recall, F1-score, and ROC score.  

Comparing both optimized models, the Bayesian optimized model has better performance 

in terms of accuracy. Other metrics such as recall, precision, F1-score and ROC-score are 

almost similar. When comparing the time taken to optimize the model, random optimization 

takes 2516 seconds to complete, which is taking lot more time compared to Bayesian 
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optimization (1829 seconds). Based on the training and validation accuracy of both models, 

both models are suffering from a very minor overfitting issues that can be ignored.  

In baseline model, although it already has acceptable performance based on its accuracy 

(0.88) and ROC score (0.97). However, it has lowest recall (0.7992) among all the models. On 

the other hand, random optimized model has significant improvement in accuracy, recall, 

precision and ROC score (highest among the models). Basically, it outperforms baseline model 

in multiple metrics. Bayesian optimized model have a more significant improvement compared 

to random optimized model and baseline model. It has better accuracy, recall, and F1-score 

compared to random optimized model, and better ROC score than baseline model. 

Based on the metrics plot from Table 6.2.1(b), the confusion matrix and ROC of both neural 

network models are having almost similar result. From the confusion matrix, it can be observed 

that Random search optimized model is slightly more capable to classify class “0” samples, 

while Bayesian optimized model are more balanced in classifying both classes. From the 

Precision-Recall Curve (PRC), the curve of class “1” is not as smooth as it does in class “0” 

for random search optimized model. While Bayesian optimized model are having quite balance 

performance for both class “0” and class “1” based on the curve. 

Both optimized models are performing well and able to output promising predictions on 

unforeseen data (test set), but Bayesian optimized model are performing better based on the 

test set accuracy. In terms of efficiency, Bayesian optimization perform better since it uses 

lesser optimization time to obtain a comparable results as random search. In short, Bayesian 

optimization is the preferred method to optimize neural network based on the comparison 

above. 

2) XGBoost Classifier 

The baseline model, random optimized model, and Bayesian optimized model result of 

XGBoost classifier are shown in Table 6.2.1(c) and Table 6.2.1(d) below. 

Model Baseline model (default 

hyperparameters) 

Random optimized model Bayesian optimized model 

Hyper 

params. 

lr: 0.3(default) 

n_estimator: 0 

max_depth: 6 

reg_alpha: 0 

lr: 0.26111698321090004, 

n_estimators: 16,  

max_depth: 3,  

lr: 0.31502659178445475, 

n_estimators: 20,  

max_depth: 2,  

reg_lambda: 0.001,  
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reg_lambda: 0 reg_lambda: 

0.7605182325138011, 

reg_alpha:0.1138252888021954 

reg_alpha: 

0.10630287998071727 

Avg. 

Training 

metrics 

Avg training accuracy:  0.9939 

Avg training recall:  0.9929 

Avg training precision: 0.9922 

Avg training f1:   0.9925 

Avg training ROC score: 0.9998 

Avg training accuracy:  0.9614 

Avg training recall:  0.9516 

Avg training precision: 0.9531 

Avg training f1:   0.9523 

Avg training ROC score: 0.9943 

Avg training accuracy: 0.9585 

Avg training recall:  0.9471 

Avg training precision: 0.9502 

Avg training f1:   0.9486 

Avg training ROC score: 0.9933 

Cross 

validation 

(5-fold) 

Avg validation accuracy: 0.9490 

Avg validation recall:  0.9378 

Avg validation precision: 0.9365 

Avg validation f1:  0.9371 

Avg validation ROC score: 0.9908 

Avg validation accuracy: 0.9506 

Avg validation recall:  0.9379 

Avg validation precision: 0.9400 

Avg validation f1:  0.9390 

Avg validation ROC score: 0.9909 

Avg validation accuracy: 0.9528 

Avg validation recall:  0.9409 

Avg validation precision: 0.9424 

Avg validation f1:  0.9416 

Avg validation ROC score: 0.9910 

Test Set 

inference 

N/A recall score:  0.9493 

Precision score: 0.9480 

F1 score:   0.9486 

ROC_AUC score:  0.9934 

Accuracy Score:  0.9583 

recall score:  0.9453 

Precision score: 0.9440 

F1 score:   0.9446 

ROC_AUC score:  0.9921 

Accuracy Score:  0.9551 

Opt. time N/A 55.0504 seconds 59.9904 seconds 

Table 6.2.1(c): Model Evaluation for XGBoost Classifier 

Model Random Optimized model Bayesian Optimized model 

Conf. 

Matrix 

  

ROC 
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PRC 

  

Table 6.2.1(d): Table of metrics plot using test set for XGBoost 

From the comparison table above, the baseline model of XGBoost Classifier is suffering 

severe overfitting issues, most of the metrics in baseline model hits 0.99 but all of the metrics 

drop significantly during validation.  

After optimized, both optimized models having relatively better validation performance 

compared to baseline model. Also, the overfitting effect are reduced in both optimized models, 

especially for Bayesian optimized model, the gap between training and validation metrics is 

the smallest. Random search optimized model overfitting issues are slightly worse than 

Bayesian optimized model, but it is still way better than the baseline model. Bayesian 

optimized model outperformed random search model in all of the validation metrics. This 

indicates that Bayesian optimized model are better in every aspect when encountering 

unforeseen data.  

From Table 6.2.1(d), based on the confusion matrix of both models, the capability to 

classify both class “0” and class “1” is similar. Even the pattern of the ROC and PRC is having 

almost similar pattern. The area under PRC for Bayesian optimized model is having a micro-

disadvantage compared to the random optimized model, however the difference is too small, 

and the performance based on PRC is indistinguishable. Both models are having decent 

performance. 

Comparing both optimized model, Bayesian optimized model are slightly better than 

random optimized model in every metrics. In test set inference, both models are having similar 

performance in terms of test accuracy. In terms of optimization time, random optimization uses 

5 seconds lesser than Bayesian optimization, which is only a small difference.  
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When optimizing XGBoost, although both random optimization and Bayesian optimization 

are having good overall performance. However, in average validation, Bayesian optimized 

model’s accuracy is better and it only cost slightly more optimization time. In other words, 

Bayesian optimized model has averagely better performance when dealing with unforeseen 

data. Hence, Bayesian optimization is a more preferred method when tuning XGBoost model. 

6.2.2 API and GUI Testing 

1) API testing  

To test the API deployed on Render, a HTTP post request needs to be sent to the API. The 

testing tool for testing an API is using Postman, an API development platform. Using Postman 

to customize the request as shown in Figure 6.2.2(a). Select “POST” method and enter the API 

link. In the request body, select “raw” and insert dummy JSON data that follows the format 

allowed by the API.  

 

Figure 6.2.2(a): API testing demonstration 

 

Figure 6.2.2(b): API response with win rate 
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If the API is online, it will respond the win rate for both teams as shown in Figure 6.2.2(b). 

However, as mentioned in Chapter 5.1, Render does not ensure the web service instance always 

online and ready to serve. Therefore, in the testing phase of API, it will wait for the response 

from API for a very long time (around 1 – 5 minutes). Once the service is online, the response 

time will be as low as 120ms shown in Figure 6.2.2(b). 

2) GUI testing 

 

Figure 6.2.2(c): GUI of the project 

Figure 6.2.2(c) shows the GUI developed based on the wireframe showed in Figure 4.5(b). 

Each input fields are labeled for better understanding and enhanced user experience. The fields 

with drop down menu are categorical data which only allows specific inputs. Note that the GUI 

allows to connect to API hosted on local machine as shown in Figure 6.2.2(d) to avoid API 

downtime issue caused by Render instance. Besides, to avoid the API to stuck on waiting for 

response from offline Render instance, the timeout is set to 10 seconds as shown in Figure 

6.2.2(e) to allow users to change to local hosted API. 
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Figure 6.2.2(d): Model selection including localhost API 

 

Figure 6.2.2(e): Timeout if no respond from API 

Figure 6.2.2(f) shows the result display in bar chart, the bar chart shows the win rate of 

each team. Blue color indicates the winning team. The simplified result in text format also 

shown below the bar chart. 
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Figure 6.2.2(f): Prediction result visualization and display on GUI 

6.3 Project Challenge 

The first challenge faced in this project is the system design, specifically when designing the 

optimization process. Due to lack of understanding of the properties of both optimization 

method, the number of trials for each optimization method was set to 150 trials in the beginning, 

without considering the time efficiency of optimization. These issues lead to the optimization 

process is too lengthy and show not much difference between both random search and Bayesian 

optimization. This is because in 150 trials, both random search and Bayesian optimization are 

able to explore the search space equally. This will reduce the advantages of Bayesian 

optimization, where it balances between exploitation and exploration. Also due to high number 

of trials, the time taken by Bayesian optimization is a lot longer than random search due to its 

complexity of algorithms is higher than random search. After some research and studies, the 

number of trials is reduced to 30 trial per optimization. This is to observe which optimization 

method can perform better under a stricter constraint of 30 trials. Result prove that Bayesian 

optimization is still a better option for optimizing complex model due to its efficiency and 

hyperparameters quality. 
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 The second challenge is budget limitation. The entire project is developed without spending 

any money, including the model training process and web service hosting, which usually 

require service subscription. Also, the project wishes to allow public to use the API and GUI 

for free, therefore the project have to sacrifice user experience by choosing free services such 

as Render web hosting, that does not guarantee 100% availability time.  

6.4 Objective Evaluation 

As a recap, the objective of this project is to: 

1) Investigate the impact of optimization method on model performance (Baseline model vs. 

optimized model). 

2) Compare different optimization methods in terms of time efficiency and performance 

improvement (Random search vs. Bayesian Optimization). 

For first objective, the impact of both optimization methods toward baseline model is 

observable from its performance metrics before and after optimized. The model does not only 

improve in accuracy, meanwhile it also reduced the overfitting issues occurred on the model. 

By reducing the overfitting issues in the model, the model able to produce a more promising 

result. Besides, based on the improvement of metrics such as F1-score and ROC-score, it also 

shows that the overall ability of the model when dealing with unforeseen data is getting 

significant improvements from optimizing their hyperparameters. 

 For the second objective, the efficiency of the optimization methods is depending on the 

complexity of the model hyperparameters. Although neural network seems to have same 

number of hyperparameters as XGBoost, however the number of neurons for each layer in 

neuron network is treated as multiple hyperparameters as there are multiple layers, and each 

layer is considered as a hyperparameter. Therefore, in terms of dimension of hyperparameters 

in this project, neural network is definitely having higher dimension of hyperparameters 

compared to XGBoost. As the result, when optimizing neural network, Bayesian Optimization 

is taking lesser time to obtain better result than Random search optimized model. In contrast, 

when optimizing XGBoost, the Random search takes less time to achieve similar result as 

Bayesian optimized model. However, no matter which model it is, Bayesian optimized model 

are getting better result in average. Hence, Bayesian optimization is still the preferred option 

when performing optimization.  
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Chapter 7 

 

Conclusion and Recommendation 

7.1 Conclusion 

In conclusion, this project briefly introduced FPS game and the potential growth of FPS game 

in e-sports. The FPS game that was investigated in this project is Valorant which is a 5 versus 

5, tactical gunfight game which does not have much research done yet based on this game. This 

project also reviewed previously done research, and further discussed about different machine 

learning model used by other researchers on E-sport prediction field, especially in FPS game, 

and the well-performed model include neural network and XGBoost classifier. In previous 

research on other FPS game, most of the author mentioned that the final model is not well-

optimized, and they recommended to improve the model performance by optimizing the 

hyperparameters.  

There are multiple ways to optimize models and the most common methods are not efficient 

when dealing with complex models. Some of the research suggested to use Bayesian 

optimization method instead of common methods such as grid search and random search due 

to its nature of exploration and exploitation. The objective of this project is to develop 2 

prediction model using neural network and XGBoost. Then, the model will be further 

optimized using 2 different methods, which is Random Search and Bayesian optimization. The 

performance of each model is compared. At the end of the project also concluded which method 

is more suitable for optimizing complex models. 

 The project starts with obtaining the data from internet, cleaning data, and preprocess the 

data. After that the models are trained with the data using handpicked / default hyperparameters 

as baseline model. Then, the models undergo hyperparameters optimization using Bayesian 

optimization and random search. For each model, the baseline model, Bayesian optimized 

model and random search optimized model is evaluated and compared. The comparison shows 

that the Bayesian optimized model perform better in terms of performance and time efficiency. 

Besides the model, this project also developed 2 web API that allows developers to access the 

best optimized models from this project. The project even developed a GUI to allow normal 

users to access the model easily. 
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7.2 Recommendation 

Due to time constraint, the project has to sacrifice some features and ideas that possibly able to 

improve the project quality. Therefore, this subchapter will discuss the possible future 

improvement to this project. 

1) Deeper data analysis 

The models in this project only able to provide a simple info, which is the winning team win 

rate. In future, the model can be improved by further analyze the data, or increase the feature 

of the data and further combines the features to provide useful suggestions such as team 

compositions, map and agent ban/pick (future update), strategy suggestion, etc. These features 

can be useful to professionals’ team and players to make wise decisions based on their opponent 

they are playing. It will be a game changer if these features can be introduced to the e-sports 

gaming scene. 

3) Improve GUI 

With the new information provided in point (1) above, the GUI also have to be optimized to 

display enriched information. The GUI also can be improved by adding new features such as 

dark mode, developer options to modify some settings in the GUI and so on.  

2) Introduce new optimization method 

As discussed in previous chapters, different optimization methods have their own properties. 

For example, random search only focuses on search space exploration, while Bayesian 

optimization balance between exploration and exploitation. In future, maybe these methods can 

be combined and used together to optimize a model. With the wide exploration property from 

random search, combines with high efficiency and explore-exploit balanced advantages from 

Bayesian optimization, it might be the next state-of-the-art optimization methods used by 

everyone in machine learning field. 
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APPENDIX 

 

GitHub link of the project: 

1) Data Acquisition, preprocessing scripts and datasets:  

https://github.com/changyang666/Vlrgg-scrapper-project-file.git 

2) Neural Network training / optimizing script, pretrain models: 

https://github.com/changyang666/Neural-network.git 

3) XGBoost training / optimizing script, pretrain models: 

https://github.com/changyang666/XGBoost.git 

4) API development scripts: 

https://github.com/changyang666/API-dev.git 

5) GUI development scripts and .exe file for instant access to GUI: 

https://github.com/changyang666/GUI.git 

Render web services API access link: 

1) Neural network (Bayesian optimized): 

https://api-dev-gsts.onrender.com/predict (POST) 

2) XGBoost Classifier (Bayesian optimized): 

https://xgb-val-predict.onrender.com/predict (POST) 

  

https://github.com/changyang666/Vlrgg-scrapper-project-file.git
https://github.com/changyang666/Neural-network.git
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https://github.com/changyang666/API-dev.git
https://github.com/changyang666/GUI.git
https://api-dev-gsts.onrender.com/predict
https://xgb-val-predict.onrender.com/predict
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