

ESPORT VALORANT: OPTIMIZING HYPERPARAMETERS OF WIN RATE

PREDICTION MODEL USING DERIVATIVE FREE METHOD

BY

CHANG YANG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2024

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: ESPORT VALORANT: OPTIMIZING HYPERPARAMETERS OF WIN RATE

PREDICTION MODEL USING DERIVATIVE FREE METHOD

Academic Session: _JUNE 2024_

I _____________________CHANG YANG___________________________

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 29, LORONG 2/SS5,

 BANDAR TASEK MUTIARA Tseu Kwan Lee

 14120, SIMPANG AMPAT Supervisor’s name

 Date: 18/07/2024 Date: ____9/9/2024___

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 18/7/2024

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that ______CHANG YANG_____ (ID No: __19ACB05073) has completed

this final year project entitled “____ESPORT VALORANT: OPTIMIZING HYPERPARAMETERS

OF WIN RATE PREDICTION MODEL USING DERIVATIVE FREE METHOD_” under the

supervision of __Ms. Tseu Kwan Lee_ (Supervisor) from the Department of __Computer Science__,

Faculty of __Information and Communication Technology .

I understand that University will upload softcopy of my final year project / dissertation/ thesis* in pdf

format into UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

CHANG YANG

*Delete whichever not applicable

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “ESPORT VALORANT: OPTIMIZING

HYPERPARAMETERS OF WIN RATE PREDICTION MODEL USING

DERIVATIVE FREE METHOD” is my own work except as cited in the references. The

report has not been accepted for any degree and is not being submitted concurrently in

candidature for any degree or other award.

Signature : _________________________

Name : ____CHANG YANG_____

Date : ____18/07/2024_________

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

ACKNOWLEDGEMENTS

I would like to express sincere gratitude to Ms. Tseu Kwan Lee, my supervisor, for her

guidance and support throughout the project. Her expertise and feedback were very helpful in

developing the project successfully. I appreciate her always pushing me to improve my work.

I also want to thank my family and friends for their encouragement during this project.

Their support helped me stay focused and motivated.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

ABSTRACT

This research investigates the application of machine learning to predict outcomes in Valorant,

a rapidly-growing first-person shooter game within the esports field. This project developed

two predictive models, neural network and XGBoost, and optimized using Bayesian

optimization and random search to optimize their hyperparameters. The findings shows that

the efficiency and capability of Bayesian optimization over random search in terms of both

model performance and computational efficiency. To enhance public accessibility and

usability, this project has created web APIs and a user-friendly graphical interface. This

research contributes significantly to the field of esports analytics and provides practical tools

for predicting Valorant gameplay outcomes. By offering a robust and efficient predictive

system, this research aims to support informed decision-making, enhance the overall

experience for pro-players and enthusiasts of this popular game, and potentially suggest

strategic development within the Valorant community. Furthermore, the findings of this project

may serve as a valuable reference for future research exploring the application of machine

learning to other esports games. Specifically, this research provides insights into the

effectiveness of Bayesian optimization in optimizing machine learning models for complex

tasks. By comparing Bayesian optimization to random search, it highlights the benefits of

Bayesian optimization's ability to intelligently balance between explore and exploit the

hyperparameter search space, leading to more efficient and effective model optimization.

Additionally, our study noted that the importance of developing user-friendly interfaces and

APIs to make win rate prediction tools accessible to a wider audience, fostering collaboration

and innovation within the esports community.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES x

LIST OF TABLES xii

LIST OF SYMBOLS xiii

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 2

1.2 Objective 2

1.3 Project Scope 3

1.4 Contributions 3

1.5 Report Organization 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Previous Work Review 5

2.1.1 Optimal Spending Decision based on win probability 5

2.1.2 Predicting round result in CS:GO using Machine Learning 6

2.1.3 Previous works issues and proposed solutions 6

2.2 Hyperparameter Optimization Techniques 7

2.2.1 Exhaustive Search (Grid Search / Random Search) 7

2.2.2 Bayesian Optimization 9

2.3 Comparison of Hyperparameter Optimization Techniques 13

CHAPTER 3 System Methodology/Approach 15

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

3.1 Project Overview 15

 3.1.1 Model Optimization 15

 3.1.2 API and GUI development 16

 3.2 Machine Learning models and hyperparameters 18

 3.2.1 Neural Network 18

 3.2.2 XGBoost Classifier 21

 3.3 Gantt Chart 24

CHAPTER 4 SYSTEM DESIGN 25

 4.1 Data Acquisition 25

 4.2 Data Cleaning and Preprocessing 28

 4.3 Model Building, Training, and Hyperparameters Optimization 30

 4.3.1 General Procedure 30

 4.3.2 Neural Network 31

 4.3.3 XGBoost Classifier 31

 4.3.4 Hyperparameter Optimization 32

 4.4 API Development 33

 4.5 GUI Development 34

CHAPTER 5 SYSTEM IMPLEMENTATION 36

 5.1 Hardware Setup 36

 5.2 Software Setup and Configuration 37

 5.2.1 Data Acquisition and Preprocessing 37

 5.2.2 Model Training and Hyperparameter Optimization 39

 5.2.3 Web Service API 42

 5.2.4 GUI 44

 5.3 Implementation Issues and Challenges 44

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 46

6.1 System Evaluation and Performance Metrics 46

 6.2 Testing Result 47

 6.2.1 Model Evaluation 47

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

 6.2.2 API and GUI testing 52

 6.3 Project Challenges 55

 6.4 Objectives Evaluation 56

CHAPTER 7 CONCLUSION AND RECOMMENDATION 57

 7.1 Conclusion 57

 7.2 Recommendation 58

REFERENCES 59

APPENDIX 62

WEEKLY LOG 63

POSTER 69

PLAGIARISM CHECK RESULT 70

FYP2 CHECKLIST 72

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1 Log-loss result by map for candidate models [1] 5

Figure 2.1.2 Accuracy of each classification algorithms with TrueSkill

values [2]

6

Figure 2.2.1(a) Illustration of Grid Search and Random Search [6] 7

Figure 2.2.1(b) Generic Random Search Algorithm [7] 8

Figure 2.2.2(a) Illustration of Bayesian Optimization [6] 9

Figure 2.2.2(b) Bayesian Optimization algorithm [8] 10

Figure 2.2.2(c) Regressed function (also known as Surrogated Function) [9] 11

Figure 2.2.2(d) Acquisition function with different kappa value [9] 11

Figure 2.2.2(e) Sampling process of BO-GP with different kappa value [9] 12

Figure 2.2.2(f) Final optimization result for different kappa value [9] 13

Figure 3.1.1 Flowchart of the model training process 15

Figure 3.1.2 Use case diagram of the system 16

Figure 3.2.1(a) General Structure of a neural network [10] 18

Figure 3.2.1(b) Algorithm of Gradient Descent [11] 19

Figure 3.2.1(c) Impact of different learning rate α [11] 20

Figure 3.2.1(d) Illustration of Momentum and momentum equation [12] 21

Figure 3.2.2(a) Illustration of Decision Tree [13] 21

Figure 3.2.2(b) Illustration of Boosting [14] 22

Figure 3.2.2(c) XGBoost hyperparameters according to importance and

description [16]

23

Figure 3.3 Gantt Chart of the project 24

Figure 4.1(a) Flowchart of the Python Scrapping script 25

Figure 4.1(b) Event tab shows all ongoing/completed international events [17] 26

Figure 4.1(c) Matches for all stages in each event [17] 26

Figure 4.1(d) Sample table of gameplay data and maps from vlr.gg [17] 27

Figure 4.1(e) View of the scrapped dataset 27

Figure 4.2(a) Correlation Heatmap for numerical data 28

Figure 4.2(b) Data distribution of numerical data 29

Figure 4.3.1 Illustration of 5-fold cross validation [19] 30

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Figure 4.3.2 Flowchart of neural network development 31

Figure 4.3.3 Flowchart of XGBoost model development 31

Figure 4.3.4(a) Flowchart of Random Serach hyperparameter optimization

using Optuna

32

Figure 4.3.4(b) Flowchart of Bayesian hyperparameter optimization using

Optuna

32

Figure 4.4 Sequence diagram of API development 33

Figure 4.5(a) Sequence diagram of GUI operation 34

Figure 4.5(b) GUI wireframe design 35

Figure 5.2.1(a) Library required to scrape data from vlr.gg 37

Figure 5.2.1(b) Library required for data cleaning and data distribution

visualization

38

Figure 5.2.1(c): Library required for data preprocessing 38

Figure 5.2.2(a) Connect to Google Drive in Google Colab 39

Figure 5.2.2(b) Libraries required for training neural network 39

Figure 5.2.2(c) Libraries required for training XGBoost Classifier 40

Figure 5.2.2(d) Libraries required for data splitting and data batching 40

Figure 5.2.2(e) Customized batch dataset class for neural network 41

Figure 5.2.2(f) Evaluation functions 41

Figure 5.2.2(g) Libraries required for hyperparameter optimization 41

Figure 5.2.2(h) Optuna Dashboard for optimization process visualization 42

Figure 5.2.3(a) Libraries required to develop model API 42

Figure 5.2.3(b) Input and output format validation 43

Figure 5.2.3(c) Start server on specified IP address and port using Uvicorn 43

Figure 5.2.3(d) Command to start web services on Render 44

Figure 5.2.4(a) Libraries required for GUI development 44

Figure 6.1 Illustration of Precision and Recall [21] 46

Figure 6.2.2(a) API testing demonstration 52

Figure 6.2.2(b) API response with win rate 52

Figure 6.2.2(c) GUI of the project 53

Figure 6.2.2(d) Model selection including localhost API 54

Figure 6.2.2(e) Timeout if no respond from API 54

Figure 6.2.2(f) Prediction result visualization and display on GUI 55

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF TABLES

Table Number Title Page

Table 2.2.3 Comparison between different optimization methods 14

Table 3.1.2: Use case description 17

Table 5.1(a) Specifications of laptop 36

Table 5.1(b) Google Colab instance specifications 36

Table 5.1(c) Render.com web service instance specifications 36

Table 6.2.1(a) Model Evaluation for neural networks 47

Table 6.2.1(b) Table of metrics plot using test set for neural networks 48

Table 6.2.1(c) Model Evaluation for XGBoost Classifier 50

Table 6.2.1(d) Table of metrics plot using test set for XGBoost 51

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF SYMBOLS

α Learning rate

β Momentum

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiv

LIST OF ABBREVIATIONS

FPS First Person Shooting

CS2 Counter-Strike 2

CS:GO Counter-Strike: Global Offensive

GUI Graphical User Interface

API Application Programming Interface

BO-GP Bayesian Optimization with Gaussian Process

ROC Receiver-Operating Characteristic curve

AUC Area Under the Curve

JSON JavaScript Object Notation

HTML Hypertext Transfer Markup Language

SGD Stochastic Gradient Descent

BGD Batch Gradient Descent

MGD Mini-batch Gradient Descent

HTTP HyperText Transfer Protocol

PIL Python Image Library

PRC Precision-Recall Curve

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

Valorant is a 5 versus 5 First Person Shooting (FPS) video game, where 10 players are split

into 2 teams, each players select different agent with different ability to cast in game. A team

will play to defend site while another will attack site to plant the spike. After 12 rounds, the

attacker and defender will swap. The game ends when one of the team reach 13 round wins

with the condition that the number of round wins by the team is 2 rounds leading to their

opponent. Valorant is released in mid-2020 by Riot Games and it has won the 2022 “Best E-

sport Game” award at the The Game Award (TGA). It shows that the game has recognized by

the FPS community, and it starts gaining attentions by millions of players worldwide.

On the other hand, another FPS game that have the same popularity among the community

is the Counter Strike 2 (CS2 formerly known as CS:GO) launched in 2012 by Valve, which is

8 years earlier than Valorant. There are a lot of studies are done within these 8 years by the

researchers especially from the Computer Science and Machine Learning field. For example,

there are research are made based on CS2 where the researchers developed a machine learning

model to predict optimal buying strategy to have higher win rate [1]. The model able to suggest

the players to buy wisely instead of always fully spend the money on equipment or guns. In

contrast, currently there are not many studies and research available based on Valorant.

The gameplay style of CS2 is similar to Valorant, However, unlike Valorant, all the players

in CS2 does not have different roles and abilities, all players can buy the same equipment such

as smoke, flashbang, grenade, etc. While in Valorant, there are 23 different agents with unique

ability set currently in the agent pool, each agent can be categorized into a role such as duelist,

initiator, controller, or sentinel. Each role have their own responsibilities in game, for example,

duelist responsibilities is to initiate a 1 versus 1 fight with the enemies, using their abilities to

create advantages and eventually take down the opponents, creating the number advantages,

while initiator are responsible for helping teams to initiate the fight with enemies by using a

flashbang or location-revealing abilities, causing enemies to lose sight for a few second and

reveal the location of the enemies, create time advantages for the teams to win the fight.

Therefore, the composition of the agent in teams and the unique abilities created many

unpredictable yet complex elements in Valorant compared to CS2.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

This project aimed to build a machine learning model that able to take players performance

data in past games in Valorant and predict the win rate of the team to win the game with the

agent and the map selected by the players, using Neural Network model and XGBoost Tree

model. In order to let the models to achieve it optimal performance, the model needs to undergo

hyperparameter optimization. However, due to the complexity of the Neural Network model

and XGBoost Tree model, commonly used method such as Grid Search and Random Search

might not be the best fit solution. Therefore, this project also will implement different

optimization techniques to investigate how does different optimization techniques affect the

optimization process.

1.1 Problem Statement and Motivation

There are a few issues that causing the model unable to perform well. Based on the previous

research paper, the author mentioned that the models are not tuned to its optimum form since

they are only searched within a small search space. Therefore, the authors suggested to explore

more hyperparameters and also try wider search space to further improve the models [2].

In the previous research paper, the authors use common search method such as Grid Search

or Random Search to perform hyperparameter optimization, however these common search

methods are inefficient especially when the dimension and the search space of hyperparameter

is complex [3]. These search methods emphasize only on exploration on the search space but

does not exploit specific area where possibly consist of the global minimum point of the entire

search space [4]. Therefore, there are higher chance to miss the optimum point for the model

to perform at its best. Some papers suggested an effective optimization method to optimize

models with hyperparameters that are high dimension and wide search space, meanwhile it

balanced both exploration and exploitation to the search space, which is Bayesian Optimization

using Gaussian Process.

1.2 Objectives

The objective of the project is to investigate the impact to the model’s performance when

applying different optimization methods on complex models such as Neural Network and

XGBoost Tree. The optimization focuses on enhancing the validation accuracy of the models,

in order to improve the ability of the model to predict the result of the game based on unforeseen

data.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

 This project will also compare different optimization methods in terms of time

effectiveness and performance improvement when applied on Neural Network and XGBoost.

Both of the models are having sensitive and complex hyperparameters that required to be tuned

carefully. Hyperparameter optimization usually require high computing power and time

consuming, therefore this project aim to find out which optimization method are more effective

to optimize complex models. This can be evaluated based on some model evaluation metrics

such as accuracy, precision, recall, etc., as well as the time taken for the optimization to

complete.

1.3 Project Scope and Direction

The project will deliver optimized machine learning models that takes Valorant gameplay data

as input and predict the win rate of both teams. The models will be deployed as web services,

user or developer can access the services through API when required, the API will be free

access and available to everyone.

The project will also develop a Graphical User Interface (GUI) that allow user to select

preferred model, input prediction data and visualize the prediction results. The GUI act as a

basic interface that using the API to access the web service and let the user to access to the

model easily.

1.4 Contributions

This project able to contribute to multiple fields in the E-sports as well as the research area.

First of all, the model can serve as a reference for game developers to balance the game

environment. Valorant is a complex game and usually it is hard to balance in terms of the

strength of agent’s abilities, map preferences, weapon strength, economy growth, player

distribution, etc. The models from this project can be a useful tool for game developers to adjust

the game to become more balance, so that all the players can have a better gaming experience.

 Meanwhile for professional players and teams that plays in international event such as

Valorant Champion Tour (VCT), which is one of the biggest tournaments hosted by Riot

Games, the models and the GUI from this project are powerful tools for them. The teams can

utilize the GUI to predict the probability to win the game, and further optimize the win rate of

the team by changing the team compositions and map selection.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

 This project also able to contribute to machine learning and hyperparameter optimization

field. This project experimented and compared different optimization methods on 2 different

models, Neural Network and XGBoost Tree model when performing prediction using high

dimensional E-sports data. Hence, the findings of this project can act as a reference for future

research especially in E-sport machine learning and hyperparameter optimization field.

1.5 Report Organization

This report is organized into 7 chapters: Chapter 1 Introduction, Chapter 2 Literature Review,

Chapter 3 System Methodology, Chapter 4 System Design, Chapter 5 System Implementation,

Chapter 6 System Evaluation and Discussion, and Chapter 7 Conclusion and Recommendation.

Chapter 1 introduced the problem statement, objectives, scope of the project. Chapter 2

reviewed some previously done research and discussed how different optimization methods

work in details, then further compare each methods algorithm and implementation complexity.

Chapter 3 gives an overview of how the project is going to be developed, including model

training and API/GUI development, it also briefly discussed how each machine learning model

works and introduced the hyperparameters chosen to be tuned in this project. Chapter 4

discussed in detail about how each part of the project is developed, including flowchart of each

script used in the project. Chapter 5 is about how to implement the parts mentioned in chapter

4, including the hardware/software setup, and challenges faced during implementation phase.

Chapter 6 reviewed the result based on the performance metrics, and also discussed the project

challenges. Chapter 7 concluded the project and recommended future work that can further

improve this project.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

Chapter 2

Literature Review

2.1 Previous Works Review

2.1.1 Optimal Spending Decision based on win probability

Several win rate prediction projects have been conducted prior to this study. For instance,

research in [1], the authors developed multiple prediction models for CS:GO, using machine

learning models such as logistic regression, XGBoost, and neural networks. The primary goal

of this project was to establish guidelines for players to make optimal weapon purchase

decisions based on predicted win probability. The authors initially predicted game win rates

using various classification algorithms and subsequently utilize these probabilities to assess

optimal spending strategies. A metric termed Optimal Spending Error was introduced by the

authors to evaluate the discrepancy between player decisions and optimal choices. Results

indicated that XGBoost and neural networks outperformed logistic regression in terms of log-

loss.

Figure 2.1.1: Log-loss result by map for candidate models [1]

Based on Figure 2.1.1. the log-loss results of both XGBoost and Neural Network for each

map are lower than logistic regression, meaning that both of these models are performing better

than logistic regression. The performance between XGBoost and Neural Network can be said

as similar. However, the result shows that Neural Network are slightly better than XGBoost.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

2.1.2 Predicting round result in CS:GO using Machine Learning

Another research [2] has been made based on the research [1] to further improve the win rate

prediction models, the authors modified the training dataset by implementing TrueSkill value

to improve dataset quality. TrueSkill is a ranking system developed by Microsoft based on

ELO rating system to estimate the quality of the game. Most of the games utilized this

algorithm to match up players with similar skills [2]. The aim of this project is to investigate

which models are able to have better accuracy when performing win rate predictions.

Figure 2.1.2: Accuracy of each classification algorithms with TrueSkill values [2]

 In the research, the authors used 5 common models including Decision Tree, GBDT,

XGBoost, Logistic Regression, and Neural Network. Figure 2.1.2 shows the results of the

experiment. Based on the authors of [2], generally the model will have improvement of 0.2%

on train accuracy while 1% on test accuracy, while for neural network, the train and test

accuracy both increased by 1%. Hence the implementation of TrueSkill value able to increase

the dimension of the data to provide more information, therefore improve the model

performance.

2.1.3 Previous works issues and proposed solutions

Several limitations are pointed out within the models presented in the research papers. Firstly,

the models have not yet reached their optimal performance, hence the models require further

hyperparameter optimization [1]. Additionally, the datasets employed could be enhanced by

including prediction results from other machine learning models into the datasets [2].

Furthermore, optimizing hyperparameters for complex models such as XGBoost and

Neural Networks using traditional methods like grid search and random search is

computationally expensive and often yields suboptimal hyperparameters [3]. These methods

exhaustively explore the hyperparameter space, leading to inefficiency of optimization. Hence,

using grid search or random search are not the best solution for complex model optimization

[5]. Alternative optimization techniques, such as Bayesian optimization, have shown the

potential to achieve high-performing hyperparameters more efficiently. Unlike grid search and

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

random search methods that only focusing on exploration on the wide search space, Bayesian

Optimization balanced both exploration and exploitation of the search space [4], therefore it

able to find a comparable point where the hyperparameters can provide decent performance,

meanwhile consume only a short period of time. It also has higher chance to find out the global

optimum point due to its exploitation nature where it will search within niche spaces that

possibly contain optimum point.

2.2 Hyperparameter Optimization Techniques

2.2.1 Exhaustive Search (Grid Search / Random Search)

Figure 2.2.1(a): Illustration of Grid Search and Random Search [6]

Both grid search and random search are commonly used by researchers to optimize models

because they are easier to implement in code and have a great ability to explore wide search

space. However, there are some weaknesses on these methods when optimizing complex

models.

 Grid search is an optimization method that optimize model by trying every possible

combination of hyperparameters from a defined search space. Figure 2.2.1 shows the

hyperparameters are chosen in a uniform distribution and the objective is to obtain

hyperparameters that have lowest loss. It is able to observe that grid search is computationally

expensive because it has to try all combination of hyperparameters. Many values of

hyperparameters might have to be probed before finding a value that leads to improved model

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

performance [6]. Moreover, there is no guarantee if the optimal hyperparameters was included

in the defined search space [6]. As the search space dimension grow, the required exploration

of search space grows exponentially as well. This is inefficient especially to optimize complex

models that have many hyperparameters to optimize.

 Random search is similar to grid search. However, random search fixed the issues of high

number of combinations in grid search by randomly select hyperparameters from search space.

In random search, user can define number of trials for the search algorithm to sample

hyperparameters from the search space by either uniform or normal distribution, this allows

user to control the time consumed by the algorithm to perform optimization. Figure 2.2.1(b)

shows the generic random search algorithm. According to the authors of [7], the random search

algorithm consists of two basic procedures, which is generator that generate candidates points

and update the generator for next candidate generation. Random search usually uses single-

point generator to generate candidate point based on the combination of current point and

previous points. The generator algorithm can be express as the equation:

Vk+1 = Xk + Sk Dk [7]

Where candidate point is generated by taking step Sk from current point Xk in direction Dk

on iteration k. The direction Dk can be determined by gradient information or can be generated

according to a uniform distribution on a hypersphere, while step Sk might be the result of a line

search. [7].

Figure 2.2.1(b): Generic Random Search Algorithm [7]

 However, despite random search is better than grid search given that user able to define the

number of trials, it is still not an effective solution to optimize models that have wide search

space. Since the random search point is sampled randomly using uniform distribution, the

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

algorithm does not promise the next sampled point has better performance. Random search

does not take previous generated points into account to consider which point to choose in the

next iteration. Compared to sophisticated methods such as Bayesian optimization, random

search does not have exploit the knowledge of well-performing search space [4].

2.2.2 Bayesian Optimization

Figure 2.2.2(a): Illustration of Bayesian Optimization [6]

Bayesian optimization is widely used to optimize complex models that have high dimensional

hyperparameters such as neural networks and XGBoost. Bayesian Optimization learn from

previous points and based on the knowledge to sample next point that most probably will

provide a promising result. From Figure 2.2.2(a), it is observed that the sampled point clustered

at the minimum loss point of both hyperparameter. Compared to random search, the sampled

point is scattered around the entire search space, which means that Bayesian Optimization has

higher chance to search for the most optimum point. This is due to the nature of balance

between exploration and exploitation of search space in Bayesian Optimization. In Bayesian

Optimization, the model not only will explore the search space, if certain area of search space

is getting promising optimization results, it will start exploiting that area to find out the best

point within that area.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

Figure 2.2.2(b): Bayesian Optimization algorithm [8]

 From Figure 2.2.2(b), notice that the Bayesian optimization algorithm is unlike grid search

and random search that search the entire search space in a brute force way or randomly sample

points and hope it able to find the optimal point. Bayesian optimization relies on a regressor

function, sometimes referred as mean function [8], or surrogate function. This project will

focus only on using Gaussian Process Regressor as the surrogate function, hence Bayesian

optimization with Gaussian Process usually will be written as BO-GP. In the first few trial,

BO-GP will randomly select a few points from the search space and evaluate the performance

of the hyperparameter selected. Then, Gaussian Process Regressor will simulate and predict

the overall pattern of the optimization objective based on the search space. This method able

to reduce the computational cost to model the validation accuracy of the entire search space.

The Gaussian Process Regressor will train multiple models to fit the point selected in the first

few trials.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

Figure 2.2.2(c): Regressed function (also known as Surrogated Function) [9]

Figure 2.2.2(c) shows the functions generated by the regressor, the pink points are the

sampled points in the first few trials, the blue line indicates the mean of all the models train

from the regressor and the yellow region indicate the uncertainty or standard deviation of the

functions. The uncertainty region became smaller when nearer to the sampled point as it

become more predictable.

Figure 2.2.2(d): Acquisition function with different kappa value [9]

 Acquisition function is a function modeled from the surrogate model where it provides

information for the algorithm to sample the possible optimal point. In Figure 2.2.2(c), the

authors wanted to minimize the target, therefore the lower confidence bound of the surrogate

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

model are chosen as acquisition function. The acquisition function is expressed as the equation

below:

𝐴(𝑥) = 𝑓(𝑥) − 𝑘𝑎𝑝𝑝𝑎 × 𝑠𝑡𝑑(𝑓(𝑥))[9]

 Where kappa is a hyperparameter of the acquisition function that will determine the

optimization process tends to be locally or globally [9]. The hyperparameter kappa act as a

magnifier of the uncertainties. When the uncertainties are magnified for 10 times (kappa = 10),

the uncertainties in global scope will arise as well. BO-GP algorithms strategy is to search for

region that have lowest acquisition function value, where the region is most probably have the

optimal point. From Figure 2.2.2(d), in kappa = 10, the region with very low acquisition

function value is spread over the entire search space, compared to kappa = 1 which the

acquisition function is smoother and the region with low acquisition function value is between

4 and 6 only. In other words, when kappa = 1, the algorithm tends to exploit the region to find

the local optima point, while when kappa = 10, the algorithm tends to explore than exploit the

search space and eventually able to find the global optima point.

Figure 2.2.2(e): Sampling process of BO-GP with different kappa value [9]

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

Figure 2.2.2(f): Final optimization result for different kappa value [9]

 Figure 2.2.2(f) shows the final optimized results for different kappa value. The kappa = 1

able to obtain the local optima where the value sits between 4 and 6, while for kappa = 10, it

able to obtain the global optima where the target value is slightly lower than the first result.

Therefore, kappa value is important to determine the quality and the time required for the

optimization. If the kappa is too low, it tends to be stuck at local optima and it is hard to escape,

while if kappa is too high, the algorithm tends to explore instead exploiting the search space,

and it will take longer time or more trials to obtain the global optima. It is important to balance

between quality of the results and the efficiency of the optimization.

2.3 Comparison of Hyperparameter Optimization techniques

Methods Grid Search Random Search Bayesian Optimization

Implementation Easy Easy Complex

Optimization

Strategy

Brute force by trying each

combination of

hyperparameter

Random sample

hyperparameters from

search space

Based on surrogated model

and acquisition function to

make smart guess of next

point

Computational

Power required

Expensive for high

dimensional

hyperparameter

Depends on number of

trials

Balanced between

consumption and result

quality

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

Algorithm 1. start optimization from

the first point in the

defined search space

2. obtain the result

3. obtain next point in the

search space

4. repeat from step 2 until

all combination is tried.

1. start optimization by

randomly sample a point

from defined search space

2. obtain the result

3. randomly sample next

point from the search space

4. repeat step 2 until

defined number of trials.

1. start optimization by

randomly sample few

points from search space

2. obtain the result

3. regress a surrogated

model

4. obtain acquisition

function

5. sample the point with

optimum acquisition

function value

6. repeat step 2 until

defined number of trials.

Table 2.2.3: Comparison between different optimization methods

 Table 2.2.3 shows the comparison between the optimization methods mentioned above, the

table compared multiple aspect of the optimization algorithms. To determine whether the

optimization method is suitable for optimizing complex models like neural network or

XGBoost, the algorithm efficiency and the computational power required need to be focused.

Under the circumstances of high dimensional hyperparameters, Grid search has the simplest

algorithm, but it requires more computational power in order to perform model training for

each combination. While for Bayesian Optimization, it also consumes computational power

due to its complex algorithm needs to regress a new surrogate model and calculate latest

acquisition function based on the previously evaluated points, but the complex algorithm

helped to reduce the number of iterations needed to obtain quality hyperparameters. While for

Random Search, although the algorithm is not as complex as Bayesian optimization, and the

power consumption can be controlled by user by defining number of iterations, however it does

not always produce promising results due to its random nature. Therefore, random search and

Bayesian Optimization are better ways to optimize hyperparameter of complex models

efficiently. This leads to the project problem statement, which methods works better in this

project? The answer will be revealed in the following chapters.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

Chapter 3

System Methodology/Approach

3.1 Project Overview

This project contains 2 major parts, which is model optimization and API/GUI development.

The main focus will be on optimizing models and compare the performance of each model.

Meanwhile this project also will develop an Application Programming Interface (API) that

allow developers to access and use the optimized model, as well as a Graphical User Interface

(GUI) to ease normal user to interact with the optimized model and perform game predictions.

3.1.1 Model Optimization

Figure 3.1.1: Flowchart of the model training process

The first part of the project will be focused on creating the models. Before the models can be

trained, the data needs to be well prepared. The preparation steps include data acquisition, data

cleaning and train/test set splitting. Once these steps are completed, the model is ready to be

trained. First, models that is highly customizable such as neural network, need to define its

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

structure such as number of layers, number of neurons, learning rate, momentum, etc. After a

default model is decided, the model go through normal training process without any

optimization involved will act as baseline model. In the meantime, another exact same model

is created to go through hyperparameter optimization using Random Search and Bayesian

Optimization. The optimized models and baseline models will go through comparison and

finally, 2 best model will be selected as the final model of the project.

3.1.2 API and GUI development

 Figure 3.1.2: Use case diagram of the system

Use case name: Win rate prediction with GUI

Actor: User

Summary Description: This use case describes the process of predicting player data

using a machine learning model. The user interacts with a

graphical user interface (GUI) to input player data and initiate

the prediction process. The system then sends an HTTP request

to an API, which validates and processes the data before

invoking ML model for prediction. The predicted results are

returned to the user for visualization.

Priority: Optional

Status: Medium level of details

Pre-condition: The API and ML model is online and ready to serve

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

Post-condition: The predicted player data is displayed to the user

Normal flow: 1. User Input: The user enters player data into the GUI.

2. Initiate Prediction: The user clicks the "Predict" button.

3. Send HTTP Request: The system sends an HTTP request to

the API with the player data.

4. Receive HTTP Request: The API receives the HTTP request.

5. Preprocess Data: The API preprocesses the received player

data.

6. Validate Data: The API validates the preprocessed data for

correctness and completeness.

7. Invoke ML Model: The API invokes the ML model to

perform the prediction.

8. Perform Prediction: The ML model processes the validated

data and generates a prediction.

9. Send Response: The API sends a response to the system

containing the predicted results.

10. Receive Response: The system receives the response from

the API.

11. Display Results: The system displays the predicted win rate

to the user.

Alternative flow: 3a: Timeout: If the API does not receive a response from the ML

model within a specified timeout, it sends a timeout message to

the system, which is then displayed to the user.

10a: Error Message: If the API encounters an error during data

validation or model invocation, it sends an error message to the

system, which is then displayed to the user.

12: Change Model: The user may choose to change the ML

model being used for prediction. This would involve selecting a

different model from the GUI and repeating the prediction

process.

Table 3.1.2: Use case description

After the final model is done, the model is saved as a pretrain model file. To create a web

service that allows user to access the model’s prediction function, the model needs to be loaded

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

into the web services program. In the program, an API is created that accept user input in JSON

format, perform preprocessing, prediction on the input, and finally return the prediction result

of the model in JSON format to user. The web service program is then uploaded to web service

hosting server and the service is ready to be accessed publicly. Besides, a GUI is developed

with basic function included such as allow user input, interact with the web services, and

display the result returned by the server and visualize the result. This purpose of this GUI is to

allow people with or without IT knowledge to access to the model easily.

 Figure 3.1.2 is the use case diagram of the system. The figure shows the processes involved

in each part of the systems including GUI and API. User input player data into GUI. GUI will

process the input data to suit the data format used by HTTP. Then the data is sent to web service

API using POST method. When the data is received by the web service hosted, the processed

player data is extracted and preprocessed to fit in the model and perform prediction. The result

is returned to GUI. GUI received the result and will visualize the result to user.

3.2 Machine Learning Models and hyperparameters

From the previous research [1], [2], both authors trained multiple kinds of machine learning

model to predict the winning teams of the game. These models included decision tree, logistic

regression, Gradient Boosted Decision Tree (GBDT), XGBoost and Neural Network. The

result from both research shows that neural network and XGBoost classifier are having the top

performance among the models. This subchapter will discuss about the models’ structures and

their hyperparameters.

3.2.1 Neural Network

Figure 3.2.1(a): General Structure of a neural network [10]

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

The figure above shows the general structure of a neural network. It consists of 3 major parts,

which are input layer, hidden layers, and output layer. Input layer is a single layer, and it is the

first layer of every neural network, it is the input from user. The shape of input layer is

depending on how many features in a data contains. The last layer of the neural network is the

output layer, this is the layer that will output the decision, or the prediction. The shape of the

output layer is depending on the task, or the objective of the neural network. For example, if

the neural network is used to perform single class binary classification, then the output layer

should be a single neuron. However, if the neural network is used to perform multi-class

classification, then the output should be multiple neurons.

The layers between the input and the output layer are called hidden layers. Hidden layers

are where the neural network extract and learn high level features from the input layer. It is the

hyperparameters that determine the structure and the modeling ability of the network.

Therefore, the wider and deeper the hidden layer, the model most likely able to learn higher

level features and improve the ability of the model to perform prediction. However, high ability

to learn complex features also means that it also possibly to have overfitting issues, where the

model learnt low level pattern of the datasets, causing the model unable to perform well on

unforeseen dataset.

Beside number of hidden layers and number of neurons for each hidden layer, the learning

rate, batch size, number of epochs, and momentum are important hyperparameters as they

determined the training efficiency of the model. In the neural network training process, gradient

descent is used to optimize the parameters in the neural network by using the gradient

information, it is an optimization algorithm to find a local minimum of a differentiable function

[11].

Figure 3.2.1(b): Algorithm of Gradient Descent [11]

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

Figure 3.2.1(b) shows the algorithm of gradient descent. In the algorithm, the learning rate

α is multiplied with the gradient and the product is subtracted with the current xi to get the xi

for next iteration. Therefore, the learning rate plays an important role in order to control the

efficiency of the training process. Figure 3.2.1(c) shows the impact of different learning rate.

An optimum learning rate allows the model to converge fast in a short time, increasing the

training efficiency.

Figure 3.2.1(c): Impact of different learning rate α [11]

The hyperparameter batch size determine the size of data per batch. A basic batch gradient

descent (BGD) updates the parameters by computes the activation and gradient of all sample.

This method is slow especially when the number of samples is huge [12]. Hence, mini-batch

gradient descent (MGD) is more commonly used method, where the whole dataset is split into

mini-batches, the model parameter will update once a mini-batch of data is trained. An

optimum batch size can have regularization effect, making the model less overfitting to the

dataset [12]. Another hyperparameter, number of epochs, is the number of iterations that the

neural network needs to go through the entire dataset. A neural network that trained with

multiple epochs able to reinforce the knowledge learnt by the model. However, too many

epochs will lead to overfitting issues as well.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

Figure 3.2.1(d): Illustration of Momentum and momentum equation [12]

Meanwhile, momentum β is an optional tuning hyperparameters in neural networks. The

existence of momentum is to tackle the issue of gradient oscillation in orthogonal direction

especially in plateau area of the space [12]. By introducing momentum in the training process,

it able to use exponentially weighted average of previous gradient to make the gradient update

smoother by reducing the oscillation effect of normal update [12].

There are 6 hyperparameters that affect the performance of neural network the most, which

are the number of hidden layers, number of neurons for each layer, learning rate (α), momentum

(β), batch size, and number of epochs. In order to focus on comparing optimization algorithms,

the project decided to fix the number of hidden layers at 5 layers to reduce the optimization

time, in the meantime it ensures the ability of the model to learn high-level features through

these layers. The rest of the hyperparameters will be tuned by the algorithms.

3.2.2 XGBoost Classifier

Figure 3.2.2(a): Illustration of Decision Tree [13]

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

XGBoost (acronym of eXtreme Gradient Boosting) is an enhanced machine learning model

based on decision tree model. From Figure 3.2.2(a), a decision tree made its decision based on

a series of conditions. In a tree model, it consists of a root node that act as the initial condition

for classifying instance into category, then the classified instance will be further fed into

decision node that consists of another rules [13]. The steps iteratively go through the decision

tree until it reach the leave nodes that provide the final classification of the instance [13]. In

particular, XGBoost is a decision tree that using Gradient Boosting algorithm to train the model,

usually it is simplified as GBDT.

Figure 3.2.2(b): Illustration of Boosting [14]

Boosting is an ensemble modelling technique that build a classifier from weak classifiers

[14]. An initial model is built from training data, then based on the errors in the first model, the

second model is built, tries to correct the errors in the first model, and the steps are repeated

until the maximum number of models built [14]. According to the author of [15], gradient

boosting is like playing golf, every trial is to correct the direction and of the ball moving to the

desired goal. In XGBoost, weights are assigned to all independent variables and fed into the

decision tree to predict the result, the weight of the variables that are wrongly predicted is

increased and the wrongly predicted variable is fed into the second tree to improve the model

performance [14].

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

Figure 3.2.2(c): XGBoost hyperparameters according to importance and description [16]

Figure 3.2.2(c) shows the list of XGBoost hyperparameters by importance based on the

author of [16]. According to the statement of the author [16], learning rate affect the stability

of the model the most. In this project, 5 of the hyperparameters will be tuned as well, the top 3

hyperparameters was selected to tuned because they determined the structure of the model.

However, XGBoost prone to overfitting especially when trained on small dataset or too many

trees used in the model. Therefore, instead of selecting the top 5 most important

hyperparameters, this project chooses to tune L1 and L2 regularization term, which is

reg_lambda and reg_alpha to reduce the overfitting issues. In short, the target hyperparameters

to tuned in this project include learning rate, n_estimators, max_depth, reg_lambda, and

reg_alpha.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

3.3 Gantt Chart

Figure 3.3: Gantt Chart of the project

Phase

Task / Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Acquisition

Data Preprocessing

Model Building and Training (NN)

Hyperparameter Optimization (NN)

Model Evaluation (NN)

Report Writing

Presentation

Model building and Training (XGBoost)

Hyperparameter Optimization

Model Evaluation

API development

GUI development

System testing

Report Writing

Presentation

FYP1 FYP2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Chapter 4

System Design

4.1 Data Acquisition

Figure 4.1(a): Flowchart of the Python Scrapping script

Data acquisition has been done during FYP 1, the scrapping process is done by using a Python

script with Selenium and BeautifulSoup (BS4) to automate the scrapping process. The target

event data is 10000 matches, and the script will stop scrape for new match.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

Figure 4.1(b): Event tab shows all ongoing/completed international events [17]

Figure 4.1(c): Matches for all stages in each event [17]

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

Figure 4.1(d): Sample table of gameplay data and maps from vlr.gg [17]

 Once the Selenium WebDriver launched, the page in Figure 4.1(b) will be shown. Using

Selenium to locate the event list, the script will go through all the event to scrape the matches

happened in the event. Figure 4.1(c) shows the page after an event is clicked. In an event, there

usually have a group stage to select seeded teams, and a playoff stage, the official matches that

decide the winner of the tournament. The script target to scrape all matches in group stage and

playoff stage, therefore, the stage filter needs to show all stages. Then, the script will further

locate the match for everyday as shown in Figure 4.1(c) and click the match. Figure 4.1(d)

shows the page after the match is clicked. The target match data is in each map. Hence, the

script will go through the map element above, and scrape the data below as shown in Figure

4.1(d). All the scrapped data will be stored into a .csv file as shown in Figure 4.1(e).

Figure 4.1(e): View of the scrapped dataset

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

4.2 Data Cleaning and Preprocessing

Once the .csv file contains 10000 data, the next steps are to perform data cleaning and

preprocessing using a Python script with Pandas data frame. In data cleaning process, the main

steps are to remove and replace unknown values. For example, an empty cell in the website

table is represented as a null symbol, and it appears in the .csv file as “\xa0” string. The string

is removed and leaved empty for further process. Hence, the dataset now consists of data that

have null value. The next step is to remove the entire row that contain null value instead of

filling in with mean or median value, which is commonly used in data cleaning steps. Then,

the numeric data that are scrapped as string, are converted to float type data.

 After data cleaning, the data will undergo preprocessing. Before performing any

preprocessing, categorical data needed to be encoded using label encoder. Then, the correlation

and distribution between all the numerical data is calculated. Figure 4.2(a) shows the

correlation heatmap between all numerical data, visualized using matplotlib.

Figure 4.2(a): Correlation Heatmap for numerical data

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

 The correlation heatmap contains all numerical data and some categorical data that are

encoded as numerical label. The numerical labels are ignored. Noticed that in numerical data,

only the Headshot percentage (HS%), is not correlated to any data in the entire dataset.

Therefore, HS% is dropped to reduce the dimension of dataset. By observing the visualized

chart of numerical data distribution, data such as Rating (R), Average Combat Score (ACS),

Average Damage per Round (ADR) is normalized, while Kill, Assist, Survived, Traded

percentage (KAST) is not normalized based on the skewed pattern in all KAST graph.

According to [18], normalized data able to improve model performance by speeding up the

convergence and also speed up gradient descent. Normalization process is done to KAST using

MinMaxScaler from Scikit-learn. Then, all the numerical data that are not represented in

percentage undergo standardization process using StandardScaler from Scikit-learn. This is

because standardized data able to improve the convergence speed by ensuring all features have

the same scale [18]. Standardizing the data also can facilitate Gradient Descent by preventing

the gradient descent optimization skewed due to different feature scale [18]. These data include

R, ACS, ADR. Then, all the Label Encoder, Standard Scaler, and MinMax Scaler object is

stored as a .pkl (pickle) file for future use.

Figure 4.2(b): Data distribution of numerical data

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

4.3 Model Building, Training, and Hyperparameter Optimization

4.3.1 General Procedures

This subchapter introduces the general steps that have to be done regardless of the model type.

Before training any model, the data has to be prepared properly. First of all, the preprocessed

data needs to be loaded as a Pandas data frame. Then, the features and the result of the data is

splitted as X (features) and y (ground truth). The X and y are then further split into train set

and test set, where the ratio of train set versus test set is 80:20 with stratify to ensure the

distribution of the data in both datasets are same. The test set will not involve in any training

process. The purpose of test set is to evaluate the model under unforeseen data. The training

and validation process will be performed only using the train set. In cross validation, the train

set will be further split into ratio of 80:20 for 5-fold as shown in Figure 4.3.1. To facilitate the

development process, some helper functions are created to reduce the redundancy of codes.

The helper functions included perform prediction function, evaluate performance, plot curves,

train functions, cross validation, etc.

Figure 4.3.1: Illustration of 5-fold cross validation [19]

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

4.3.2 Neural Network

Figure 4.3.2: Flowchart of neural network development

The main library used in this project for neural network is PyTorch. To start building and

training the base model of neural network, the dataset needs to be loaded into a data loader as

the project implement mini-batch training for the neural network. To achieve this, the X_train

(features in training set) and the y_train (ground truths of training set) is packed as a Dataset

object. Then, the Dataset object is loaded into the DataLoader object with the specific batch

size.

 Next, a customized class, Net, that allows layer size customization is created to make the

hyperparameter optimization easier. The class take an integer tuple as parameter and append

the neuron layers with specified number of neurons into the neural network. Then, the first

neural network can be trained, with the handpicked hyperparameters (number of epochs,

learning rate, batch size, and number of neurons for each layer. Momentum default = 0.9).

Using the train function in the helper functions to train the model. Then, using the evaluate

function to evaluate the model. The result obtained will be the baseline result for the project,

and the optimized model should have a better result than the baseline model.

4.3.3 XGBoost Classifier

Figure 4.3.3: Flowchart of XGBoost model development

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

XGboost library is mainly used in this part of the project. Unlike neural network, training

XGBoost is simpler than training a neural network. The XGBoost library provides useful API

to ease the training process. XGBoost also does not implement mini-batch training method,

therefore the training of XGBoost and its development is relatively easy. In the beginning, a

baseline model is initialized with handpicked hyperparameters (n_estimators and max_depth).

The cross-validation result of baseline model is recorded for future reference.

4.3.4 Hyperparameter Optimization

Figure 4.3.4(a): Flowchart of Random Serach hyperparameter optimization using Optuna

Figure 4.3.4(b): Flowchart of Bayesian hyperparameter optimization using Optuna

The project uses Optuna hyperparameter optimization framework to perform optimization. The

library provides both random search optimization and Bayesian optimization, as well as

optimization process visualization to allow user to have a better view and able to compare the

differences between both methods.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

 First, an objective function is required to decide the hyperparameters need to be tuned and

the objective value that determine the result. Optuna only support single objective

hyperparameters optimization for Bayesian optimization, hence the project chooses to

maximize the model’s average validation accuracy in 5-fold as the ultimate objective of the

optimization. The number of trials is set to 30 trials per optimization.

Before the optimization starts, an Optuna storage object is created and passed into the

optimization function. The purpose of the storage is to record and store the results of each trial,

the storage is also used to visualize the optimization results for analysis purpose. The time of

start and end of the optimization is recorded and compared between different models and

optimization methods.

After 30 trials of optimization, the best trial hyperparameters is accessed and the models

are trained again with the best hyperparameters as the optimized model. Then, using the

evaluation helper function, evaluate the optimized model with entire train set and test set data

to check whether the models suffer from overfitting issues. Other than validation accuracy, the

other metrics such as ROC-AUC, precision-recall curve, confusion matrix, etc., are evaluated

and plotted using matplotlib for better visualization of the model’s capabilities. The optimized

model is saved using PyTorch save() method for neural network and XGB model object

save_model() method for XGBoost for API implementation in the next step.

4.4 API Development

Figure 4.4: Sequence diagram of API development

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

The API development process uses multiple libraries such as FastAPI as API development

framework, Pydantic for data input verification, Uvicorn as web server, and so on. Before the

API can launch, the saved models, encoders and scalers in the previous subchapter need to be

loaded. The encoders and scalers are to ensure the new input data is preprocessed identically

as in the training dataset. When the server receive data from user, the API first preprocess the

data using the encoders and scalers. Then the model able to take the preprocessed data to

perform prediction. The prediction is then return to user in JSON format. Once the API method

is defined, the Uvicorn server is launched and hosted on IP address of 0.0.0.0 and on port 8000.

 To make the API available on the Internet instead of only hosting it on a machine locally,

the API code is uploaded to GitHub and deployed on a web hosting service called Render [20].

Render is a company that provides web hosting services, and it has a free option to host any

web services with basic performance, which is suitable for this project. After ensuring the API

can run properly on local machine, a requirements.txt, which describe the current Python

environment, is generated and uploaded to Render to ensure that the environment on Render is

same as local machine so it can run as expected. Once the API is deployed successfully on

Render, the API is tested with dummy data using Postman to ensure the API is working and it

can return the result to the user.

4.5 GUI Development

Figure 4.5(a): Sequence diagram of GUI operation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

Figure 4.5(b) shows the wireframe of the GUI design. The interface has a map input field, a

model selection input field, and defender and attacker field. Inside defender and attacker consist

of 5 players, each players have 5 input field including Agent, Rating, ACS, KAST, and ADR.

Below the fields are a predict button that will compile the input data and convert it from plain

text to JavaScript Object Notation (JSON) format. Then, the GUI will send the compiled JSON

data using POST method to the respective API of the selected model. After receiving the

response from the API, the GUI will utilize the response data and visualize the win rate into a

horizontal bar chart using matplotlib.

Note that the main purpose of developing this GUI is to ease the normal user to access the

model using a simple graphical interface, it is not the main focus of this project. Instead, the

API is the main deliverable of the project. Therefore, the GUI only provide simple function

like communicate with selected API, display prediction result and visualize the result in bar

chart.

Figure 4.5(b): GUI wireframe design

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

Chapter 5

System Implementation

5.1 Hardware Setup

Table 5.1(a) shows the specification of the laptop used in this project. Besides using this laptop,

this project also utilized some cloud computing instance such as in Google Colab and Render.

The specification of both instance is listed in Table 5.1(b) and (c).

Description Specifications

Model Asus VivoBook A510U

Processor Intel i5-8250U

Operating System Windows 11 Home Edition

Graphic Intel UHD Graphics 620 + NVIDIA GeForce MX150

Memory 16GB DDR4 2400MHz

Storage 512 GB SATA SSD + 1TB HDD

Table 5.1(a): Specifications of laptop

Description Specifications

Hardware accelerator CPU

Runtime type Python 3

System RAM 12.7GB

Disk 107.7GB

Table 5.1(b): Google Colab instance specifications

Description Specificaitons

Runtime (Language) Python 3

Region Singapore (SEA)

RAM 512MB

CPU 0.1 compute unit

Table 5.1(c): Render.com web service instance specifications

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

Note that the Google Colab and Render instance used in this project is free version. A free

version of instance usually only provides basic functionality and sufficient system resources

for a simple application. For Google Colab, the free CPU instance is used to train the models

to ensure the computational power is consistent along the project, so the comparison of the

optimization methods and models training time in this project is more referrable.

While for Render hosting, this project is using a free version as well. The only downside

for the free version of Render is the instance will be suspended after some time of idle, and

restart the instance will take up some time, it will make the GUI to be not responding for the

first few minutes, after the instances is restarted, everything will work as normal and responsive

(respond time around 200ms).

5.2 Software Setup and Configuration

In this project, the main programming language is Python 3, to be specific, the version of

Python used is 3.11.9 from Anaconda for the entire project to ensure that the compatibility of

the code. The editor used are Microsoft Visual Studio Code (VSCode) with the Python and

Jupyter Notebook extensions installed for better development experience. The source codes are

uploaded to GitHub public repository and the link to the repository is attached in the appendix

of this report.

5.2.1 Data Acquisition and Preprocessing

selenium
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.common.by import By
from webdriver_manager.chrome import ChromeDriverManager
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.chrome.options import Options

other libraries needed
import time
import pandas as pd
import csv

bs4
from bs4 import BeautifulSoup

Figure 5.2.1(a): Library required to scrape data from vlr.gg

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

Figure 5.2.1(a) shows the required library for scrapping the data from vlr.gg. Selenium is

the library that automate the browser action using the web driver. The time library is to create

some short pause within the script when the page is redirected to ensure that the script can run

smoothly. While pandas and csv library are to arrange the data in desired format and save into

.csv file. BeautifulSoup library allows the script to interact with HTML elements on the website

and extract the desired data from the HTML.

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

import joblib
from scipy import stats
import seaborn as sns

Figure 5.2.1(b): Library required for data cleaning and data distribution visualization

 After the data acquisition is completed, the data needs to undergo cleaning and

preprocessing. In data cleaning, the required library is shown in Figure 5.2.1(b), the pandas

library here is to load the raw .csv file into a data frame so that the following process is easier

to be performed. Meanwhile, matplotlib and seaborn is to visualize the data distribution and

correlation heatmap, so that the irrelevant data can be removed, and determine how the

preprocessing steps is going to be implemented.

standardize numerical data
from sklearn.preprocessing import StandardScaler, MinMaxScaler
standard_scaler = StandardScaler()
minmax_scaler = MinMaxScaler()

from sklearn.preprocessing import LabelEncoder
label encoding string type data
le = LabelEncoder()

Figure 5.2.1(c): Library required for data preprocessing

 In data preprocessing, all the categorical data is converted to integer label using

LabelEncoder from Scikit-learn. Using the matplotlib and seaborn generated correlation

heatmap and data distribution chart, certain features will undergo normalization and

standardization using MinMaxScaler and StandardScaler. The preprocessed data is then

exported as another .csv file to avoid confusion with raw data file. After preprocessing is done,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

the Scalers and Encoder objects are saved as .pkl file using joblib library. The objects are

needed in API development.

5.2.2 Model Training and Hyperparameter Optimization

The model training and hyperparameter optimization steps are done on Google Colab, therefore

the Jupyter notebook has to be connected to Google Drive first with personal account signed

in as shown in Figure 5.2.2(a), in order to utilize the CPU power from Google Colab instance.

Figure 5.2.2(a): Connect to Google Drive in Google Colab

 Since the Google Colab does not necessarily have the library required by our project, some

of the libraries such as scikit-plot, torchinfo, optuna, etc., are installed using “! pip” command

directly in Google Colab. Before start, ensure all the required files such as the preprocessed

data .csv file are in the Google Drive, and directory is changed as the .csv file using “cd”

command.

import pandas as pd
import numpy as np
import torch.nn.functional as F
import torch
import matplotlib.pyplot as plt

from torch import nn
import torch.optim as optim

from torchinfo import summary

Figure 5.2.2(b): Libraries required for training neural network

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

import xgboost as xgb
from xgboost import XGBClassifier
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random

Figure 5.2.2(c): Libraries required for training XGBoost Classifier

Figure 5.2.2(b) shows the main library used in the neural network training process. Besides

pandas and numpy for reading the .csv file, the PyTorch (torch) library is the main framework

to build and train a neural network, including “nn.functional” for cross entropy functionality,

“torch.optim” for the SGD optimizer, and the “torchinfo” for a brief view of the neural network

created. While for XGBoost, the required libraries are relatively lesser than neural network. As

shown in Figure 5.2.2(c), the only difference is the XGBoost library is used instead of multiple

torch libraries.

split train test set
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader, Dataset

Figure 5.2.2(d): Libraries required for data splitting and data batching

 Figure 5.2.2(d) shows the libraries and classes required to import to the notebook to perform

data splitting. The main function required is the train_test_split from sklearn. The purpose of

the function is to split the dataset into a train set and a test set by a given ratio and the

distribution of the data in both set is equal. For neural network model, it requires further action

to convert the train set into batches using DataLoader and Dataset classes. The batch class is

shown in Figure 5.2.2(e).

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

Customize Dataset

class MyDataset(Dataset):
 def __init__(self, data, labels):
 self.data = data
 self.labels = labels

 def __len__(self):
 return len(self.data)

 def __getitem__(self, idx):
 # Get data and label from your dataframe
 data = torch.tensor(self.data.iloc[idx].to_numpy(), requires_grad=True,
dtype=torch.float32)# Replace with your feature columns
 label = torch.tensor(self.labels.iloc[idx], requires_grad=True,
dtype=torch.float32) # Replace with your label column

 return data, label

Figure 5.2.2(e): Customized batch dataset class for neural network

K-fold cross val
from sklearn.model_selection import KFold

from sklearn.metrics import accuracy_score, recall_score, precision_score,
f1_score, roc_auc_score
from scikitplot.metrics import plot_roc, plot_confusion_matrix,
plot_precision_recall

Figure 5.2.2(f): Evaluation functions

 Figure 5.2.2(f) shows libraries and functions required to perform model evaluation. The

model evaluation and training process is written as a helper functions, so that the function can

be reused in future easily. The KFold class is used to perform cross validation on the train set.

Once the cross validation is completed, the performance of each validation is recorded, and

average of the performance is calculated. Besides, some plots such as ROC, confusion matrix,

precision-recall curve, is plotted to have a better view of how well the model performs.

import optuna
from optuna import samplers, pruners
import optuna_dashboard
import time
import joblib

import threading
from google.colab import output
from optuna_dashboard import run_server

Figure 5.2.2(g): Libraries required for hyperparameter optimization

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

 The library used in hyperparameters optimization is Optuna. The samplers class is to decide

which sampler to be used in the optimization process, in this case is sampler.RandomSampler()

for Random Search and sampler.GPsampler() for Bayesian Optimization (Gaussian Process).

The threading and optuna dashboard are used to visualize the optimization process. A

dashboard will be created and stored in an optuna.storage object. The object can be saved using

joblib. The threading library is to create a thread to host the dashboard website, so that the

optimization results can be shown as a website as shown in Figure 5.2.2(h).

Figure 5.2.2(h): Optuna Dashboard for optimization process visualization

5.2.3 Web Service API

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import torch
from torch import nn
import numpy as np
from typing import List
from sklearn.preprocessing import MinMaxScaler, StandardScaler, LabelEncoder
import joblib
import pandas as pd

Figure 5.2.3(a): Libraries required to develop model API

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

In web service API development, instead of using Jupyter Notebook, a standard Python

script (.py) is used. FastAPI is the main framework used to initialize the script as an API

application. The BaseModel from Pydantic and the List is used to validate the user input and

standardize the output of the API returned to the user. The class is shown in Figure 5.2.3(b).

The torch library is used to load the neural network model in the API. If the API intend to serve

XGBoost model, then the library here should be XGBoost library. The joblib and the

preprocessing library is used here as well in order to load the previously saved Scaler and

Encoder object and perform same preprocessing to the new input data from user.

class PredictionInput(BaseModel):
 data: List[str]

class PredictionOutput(BaseModel):
 ct_prediction: str
 ct_proba: float
 t_prediction: str
 t_proba: float

Figure 5.2.3(b): Input and output format validation

if __name__ == "__main__":
 import uvicorn
 uvicorn.run(app, host="127.0.0.1", port=8000)
run on Render use 0.0.0.0

Figure 5.2.3(c): Start server on specified IP address and port using Uvicorn

In Figure 5.2.3(c) shows the library used to run the API on a Uvicorn server. By default,

the application should be hosted at address 127.0.0.1 on port 8000 if the hosting is on local

machine. The port number can be different if multiple API applications required to run on the

same time on local machine. However, if the application is ready to deploy on Render, the

address should be changed to 0.0.0.0 to ensure success deployment.

Next, to deploy the API to Render, first login to Render using the GitHub account where

the API application code is pushed to the repository. Then, the website will prompt to connect

GitHub repository from the existing in the GitHub account. Select the one where the API

application code is. After that, back to the Python script and open a command prompt to export

a requirements.txt that includes the required environment and libraries. The requirements.txt is

then uploaded to the same repository as the application code. Then, in the Build Command

section, type in the command as shown in Figure 5.2.3(d) to let Render’s Python runtime install

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

the required libraries. In the start command section, type in command as shown in the figure

below. Finally, select “Deploy Web Service” button, the service will deploy automatically and

startup right after deployment is successful. The link to access the API will be shown in the

web service dashboard.

Figure 5.2.3(d): Command to start web services on Render

5.2.4 GUI

import tkinter as tk
from tkinter import ttk, scrolledtext
import requests
import json
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
import io
from PIL import Image, ImageTk

Figure 5.2.4(a): Libraries required for GUI development

 Figure 5.2.4(a) shows the libraries used to develop a simple GUI. The main library used is

TKinter to create the GUI as shown in Figure 4.5(b). The request library is used to send HTTP

POST request together with user input data in JSON format to the API created in previous

subchapter. Once the response from API is received, using matplotlib library to plot a bar chart

and embed the bar chart to the GUI using FigureCanvasTkAgg. The Python Image Library

(PIL) is to load image as the GUI application logo. The logo will show as the application logo

on the top left corner of the window as well as on the taskbar.

5.3 Implementation Issues and Challenges

The issues encountered during the project is Python Environment management. This happened

Between FYP1 and FYP2 where Numpy released new version (Numpy 2.0) and it does not

compatible with the previous work done in FYP1. Therefore, the Numpy version needs to be

manually downgraded back to Numpy 1.24.3 instead of using the new Numpy 2.0 version.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

Besides Numpy, Python also has been updated to version 3.12, and some libraries such as

scikit-plot is not compatible with the new versions, therefore it also required manual

downgrade to Python 3.11.9 to ensure the compatibility of the entire project.

 Another issue is regarding to the API deployment. During deployment testing phase, the

API is tested on local machine which everything works fine. However, when deploy on Render,

some of the code is not functioning as it was on local machine. Specifically, the issue is the

datatype used in neural network needs to be specified as float datatype instead of leaving it

undefined, which is usually done when coding in Python. It is believed that the instance is

running on different operating systems such as Linux, causing the datatype needs to be

specified.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

Chapter 6

System Evaluation and Discussion

6.1 System Evaluation and Performance Metrics

The objective of model testing is to observe the improvement from baseline model to optimized

model, as well as between models optimized using different optimization method to compare

the efficiency. The metrics include accuracy, recall, precision, F1-score, and ROC-AUC score.

Accuracy indicates the number of correct predictions over the total number of predictions

made. Recall is the ratio of true positive samples over all the actual positive samples. While

precision is the ratio of true positive samples over the samples that are predicted as positive.

To balance out both precision and recall, the ultimate metric to evaluate model is the F1-score,

it takes both precision and recall into account [21]. Receiver-Operating Characteristic curve

(ROC) is a curve that represent the model performance across all thresholds using True Positive

Rate versus False Positive Rate [22]. The curve is drawn by calculating the True Positive Rate

and False Positive Rate at every threshold possible [22]. From ROC, another important metric

can be read which is the Area Under the Curve (AUC). AUC represent the probability of a

model to differentiate positive and negative samples [22].

Figure 6.1: Illustration of Precision and Recall [21]

 While for the API and GUI testing, the objective is relatively simple, the API must be able

to receive HTTP POST response, validate the user input, perform prediction, and return the

prediction result as JSON. While for GUI, it must allow user to input data, send data to the

correct web services based on the model selected, receive response from API, visualize and

display the result correctly as a bar chart.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

6.2 Testing Result

To test the system, the testing is separated into 2 parts, the model testing and the API/GUI

testing.

6.2.1 Model Evaluation

1) Neural Network

The baseline model, random optimized model, and Bayesian optimized model result of neural

networks are shown in Table 6.2.1(a) and Table 6.2.1(b) below.

Model Baseline model (Handpick

hyperparameters)

Random optimized model Bayesian optimized model

Hyper

params.

lr: 0.005,

num_neuron: (200, 300, 100,

70, 50),

momentum: 0.9,

batch_size: 128,

num_of_epoch: 24

lr: 0.0657571637680928,

num_layer_1: 99,

num_layer_2: 192,

num_layer_3: 149,

num_layer_4: 75,

num_layer_5: 52,

momentum:

0.7279355045846245,

num_of_epoch: 54,

batch_size: 44

lr: 0.062392167602705856,

num_layer_1: 89,

num_layer_2: 117,

num_layer_3: 78,

num_layer_4: 143,

num_layer_5: 200,

momentum:

0.553127569798693,

num_of_epoch: 42,

batch_size: 75

Avg.

Training

metrics

Avg training accuracy: 0.8876

Avg training recall: 0.8092

Avg training precision: 0.9141

Avg training f1: 0.8497

Avg training ROC score: 0.9730

Avg training accuracy: 0.9084

Avg training recall: 0.8854

Avg training precision: 0.8979

Avg training f1: 0.8879

Avg training ROC score: 0.9792

Avg training accuracy: 0.9126

Avg training recall: 0.9007

Avg training precision: 0.8873

Avg training f1: 0.8928

Avg training ROC score: 0.9774

Cross

Validation

(5-fold)

Avg validation accuracy: 0.8827

Avg validation recall: 0.7992

Avg validation precision:0.9056

Avg validation f1: 0.8399

Avg validation ROC score:0.9695

Avg validation accuracy: 0.9003

Avg validation recall: 0.8689

Avg validation precision:0.8871

Avg validation f1: 0.8742

Avg validation ROC score: 0.9741

Avg validation accuracy: 0.9041

Avg validation recall: 0.8878

Avg validation precision:0.8758

Avg validation f1: 0.8800

Avg validation ROC score: 0.9728

Test Set

inference

N/A recall score: 0.9666

Precision score: 0.7526

F1 score: 0.8463

ROC_AUC score: 0.9712

Accuracy Score: 0.8577

recall score: 0.9399

Precision score: 0.8421

F1 score: 0.8883

ROC_AUC score: 0.9719

Accuracy Score: 0.9042

Opt. time N/A 2516.2435 seconds 1829.28 seconds

Table 6.2.1(a): Model Evaluation for neural networks

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

Model Random Optimized model Bayesian Optimized model

Conf.

Matrix

ROC

PRC

Table 6.2.1(b): Table of metrics plot using test set for neural networks

 By comparing the results of baseline model and both optimized models, the optimized

models have improvement around 2% on training and validation accuracy. There are also

improvements on other metrics such as recall, F1-score, and ROC score.

Comparing both optimized models, the Bayesian optimized model has better performance

in terms of accuracy. Other metrics such as recall, precision, F1-score and ROC-score are

almost similar. When comparing the time taken to optimize the model, random optimization

takes 2516 seconds to complete, which is taking lot more time compared to Bayesian

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

optimization (1829 seconds). Based on the training and validation accuracy of both models,

both models are suffering from a very minor overfitting issues that can be ignored.

In baseline model, although it already has acceptable performance based on its accuracy

(0.88) and ROC score (0.97). However, it has lowest recall (0.7992) among all the models. On

the other hand, random optimized model has significant improvement in accuracy, recall,

precision and ROC score (highest among the models). Basically, it outperforms baseline model

in multiple metrics. Bayesian optimized model have a more significant improvement compared

to random optimized model and baseline model. It has better accuracy, recall, and F1-score

compared to random optimized model, and better ROC score than baseline model.

Based on the metrics plot from Table 6.2.1(b), the confusion matrix and ROC of both neural

network models are having almost similar result. From the confusion matrix, it can be observed

that Random search optimized model is slightly more capable to classify class “0” samples,

while Bayesian optimized model are more balanced in classifying both classes. From the

Precision-Recall Curve (PRC), the curve of class “1” is not as smooth as it does in class “0”

for random search optimized model. While Bayesian optimized model are having quite balance

performance for both class “0” and class “1” based on the curve.

Both optimized models are performing well and able to output promising predictions on

unforeseen data (test set), but Bayesian optimized model are performing better based on the

test set accuracy. In terms of efficiency, Bayesian optimization perform better since it uses

lesser optimization time to obtain a comparable results as random search. In short, Bayesian

optimization is the preferred method to optimize neural network based on the comparison

above.

2) XGBoost Classifier

The baseline model, random optimized model, and Bayesian optimized model result of

XGBoost classifier are shown in Table 6.2.1(c) and Table 6.2.1(d) below.

Model Baseline model (default

hyperparameters)

Random optimized model Bayesian optimized model

Hyper

params.

lr: 0.3(default)

n_estimator: 0

max_depth: 6

reg_alpha: 0

lr: 0.26111698321090004,

n_estimators: 16,

max_depth: 3,

lr: 0.31502659178445475,

n_estimators: 20,

max_depth: 2,

reg_lambda: 0.001,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

reg_lambda: 0 reg_lambda:

0.7605182325138011,

reg_alpha:0.1138252888021954

reg_alpha:

0.10630287998071727

Avg.

Training

metrics

Avg training accuracy: 0.9939

Avg training recall: 0.9929

Avg training precision: 0.9922

Avg training f1: 0.9925

Avg training ROC score: 0.9998

Avg training accuracy: 0.9614

Avg training recall: 0.9516

Avg training precision: 0.9531

Avg training f1: 0.9523

Avg training ROC score: 0.9943

Avg training accuracy: 0.9585

Avg training recall: 0.9471

Avg training precision: 0.9502

Avg training f1: 0.9486

Avg training ROC score: 0.9933

Cross

validation

(5-fold)

Avg validation accuracy: 0.9490

Avg validation recall: 0.9378

Avg validation precision: 0.9365

Avg validation f1: 0.9371

Avg validation ROC score: 0.9908

Avg validation accuracy: 0.9506

Avg validation recall: 0.9379

Avg validation precision: 0.9400

Avg validation f1: 0.9390

Avg validation ROC score: 0.9909

Avg validation accuracy: 0.9528

Avg validation recall: 0.9409

Avg validation precision: 0.9424

Avg validation f1: 0.9416

Avg validation ROC score: 0.9910

Test Set

inference

N/A recall score: 0.9493

Precision score: 0.9480

F1 score: 0.9486

ROC_AUC score: 0.9934

Accuracy Score: 0.9583

recall score: 0.9453

Precision score: 0.9440

F1 score: 0.9446

ROC_AUC score: 0.9921

Accuracy Score: 0.9551

Opt. time N/A 55.0504 seconds 59.9904 seconds

Table 6.2.1(c): Model Evaluation for XGBoost Classifier

Model Random Optimized model Bayesian Optimized model

Conf.

Matrix

ROC

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

PRC

Table 6.2.1(d): Table of metrics plot using test set for XGBoost

From the comparison table above, the baseline model of XGBoost Classifier is suffering

severe overfitting issues, most of the metrics in baseline model hits 0.99 but all of the metrics

drop significantly during validation.

After optimized, both optimized models having relatively better validation performance

compared to baseline model. Also, the overfitting effect are reduced in both optimized models,

especially for Bayesian optimized model, the gap between training and validation metrics is

the smallest. Random search optimized model overfitting issues are slightly worse than

Bayesian optimized model, but it is still way better than the baseline model. Bayesian

optimized model outperformed random search model in all of the validation metrics. This

indicates that Bayesian optimized model are better in every aspect when encountering

unforeseen data.

From Table 6.2.1(d), based on the confusion matrix of both models, the capability to

classify both class “0” and class “1” is similar. Even the pattern of the ROC and PRC is having

almost similar pattern. The area under PRC for Bayesian optimized model is having a micro-

disadvantage compared to the random optimized model, however the difference is too small,

and the performance based on PRC is indistinguishable. Both models are having decent

performance.

Comparing both optimized model, Bayesian optimized model are slightly better than

random optimized model in every metrics. In test set inference, both models are having similar

performance in terms of test accuracy. In terms of optimization time, random optimization uses

5 seconds lesser than Bayesian optimization, which is only a small difference.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

When optimizing XGBoost, although both random optimization and Bayesian optimization

are having good overall performance. However, in average validation, Bayesian optimized

model’s accuracy is better and it only cost slightly more optimization time. In other words,

Bayesian optimized model has averagely better performance when dealing with unforeseen

data. Hence, Bayesian optimization is a more preferred method when tuning XGBoost model.

6.2.2 API and GUI Testing

1) API testing

To test the API deployed on Render, a HTTP post request needs to be sent to the API. The

testing tool for testing an API is using Postman, an API development platform. Using Postman

to customize the request as shown in Figure 6.2.2(a). Select “POST” method and enter the API

link. In the request body, select “raw” and insert dummy JSON data that follows the format

allowed by the API.

Figure 6.2.2(a): API testing demonstration

Figure 6.2.2(b): API response with win rate

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

If the API is online, it will respond the win rate for both teams as shown in Figure 6.2.2(b).

However, as mentioned in Chapter 5.1, Render does not ensure the web service instance always

online and ready to serve. Therefore, in the testing phase of API, it will wait for the response

from API for a very long time (around 1 – 5 minutes). Once the service is online, the response

time will be as low as 120ms shown in Figure 6.2.2(b).

2) GUI testing

Figure 6.2.2(c): GUI of the project

Figure 6.2.2(c) shows the GUI developed based on the wireframe showed in Figure 4.5(b).

Each input fields are labeled for better understanding and enhanced user experience. The fields

with drop down menu are categorical data which only allows specific inputs. Note that the GUI

allows to connect to API hosted on local machine as shown in Figure 6.2.2(d) to avoid API

downtime issue caused by Render instance. Besides, to avoid the API to stuck on waiting for

response from offline Render instance, the timeout is set to 10 seconds as shown in Figure

6.2.2(e) to allow users to change to local hosted API.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

Figure 6.2.2(d): Model selection including localhost API

Figure 6.2.2(e): Timeout if no respond from API

Figure 6.2.2(f) shows the result display in bar chart, the bar chart shows the win rate of

each team. Blue color indicates the winning team. The simplified result in text format also

shown below the bar chart.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

Figure 6.2.2(f): Prediction result visualization and display on GUI

6.3 Project Challenge

The first challenge faced in this project is the system design, specifically when designing the

optimization process. Due to lack of understanding of the properties of both optimization

method, the number of trials for each optimization method was set to 150 trials in the beginning,

without considering the time efficiency of optimization. These issues lead to the optimization

process is too lengthy and show not much difference between both random search and Bayesian

optimization. This is because in 150 trials, both random search and Bayesian optimization are

able to explore the search space equally. This will reduce the advantages of Bayesian

optimization, where it balances between exploitation and exploration. Also due to high number

of trials, the time taken by Bayesian optimization is a lot longer than random search due to its

complexity of algorithms is higher than random search. After some research and studies, the

number of trials is reduced to 30 trial per optimization. This is to observe which optimization

method can perform better under a stricter constraint of 30 trials. Result prove that Bayesian

optimization is still a better option for optimizing complex model due to its efficiency and

hyperparameters quality.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

 The second challenge is budget limitation. The entire project is developed without spending

any money, including the model training process and web service hosting, which usually

require service subscription. Also, the project wishes to allow public to use the API and GUI

for free, therefore the project have to sacrifice user experience by choosing free services such

as Render web hosting, that does not guarantee 100% availability time.

6.4 Objective Evaluation

As a recap, the objective of this project is to:

1) Investigate the impact of optimization method on model performance (Baseline model vs.

optimized model).

2) Compare different optimization methods in terms of time efficiency and performance

improvement (Random search vs. Bayesian Optimization).

For first objective, the impact of both optimization methods toward baseline model is

observable from its performance metrics before and after optimized. The model does not only

improve in accuracy, meanwhile it also reduced the overfitting issues occurred on the model.

By reducing the overfitting issues in the model, the model able to produce a more promising

result. Besides, based on the improvement of metrics such as F1-score and ROC-score, it also

shows that the overall ability of the model when dealing with unforeseen data is getting

significant improvements from optimizing their hyperparameters.

 For the second objective, the efficiency of the optimization methods is depending on the

complexity of the model hyperparameters. Although neural network seems to have same

number of hyperparameters as XGBoost, however the number of neurons for each layer in

neuron network is treated as multiple hyperparameters as there are multiple layers, and each

layer is considered as a hyperparameter. Therefore, in terms of dimension of hyperparameters

in this project, neural network is definitely having higher dimension of hyperparameters

compared to XGBoost. As the result, when optimizing neural network, Bayesian Optimization

is taking lesser time to obtain better result than Random search optimized model. In contrast,

when optimizing XGBoost, the Random search takes less time to achieve similar result as

Bayesian optimized model. However, no matter which model it is, Bayesian optimized model

are getting better result in average. Hence, Bayesian optimization is still the preferred option

when performing optimization.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

In conclusion, this project briefly introduced FPS game and the potential growth of FPS game

in e-sports. The FPS game that was investigated in this project is Valorant which is a 5 versus

5, tactical gunfight game which does not have much research done yet based on this game. This

project also reviewed previously done research, and further discussed about different machine

learning model used by other researchers on E-sport prediction field, especially in FPS game,

and the well-performed model include neural network and XGBoost classifier. In previous

research on other FPS game, most of the author mentioned that the final model is not well-

optimized, and they recommended to improve the model performance by optimizing the

hyperparameters.

There are multiple ways to optimize models and the most common methods are not efficient

when dealing with complex models. Some of the research suggested to use Bayesian

optimization method instead of common methods such as grid search and random search due

to its nature of exploration and exploitation. The objective of this project is to develop 2

prediction model using neural network and XGBoost. Then, the model will be further

optimized using 2 different methods, which is Random Search and Bayesian optimization. The

performance of each model is compared. At the end of the project also concluded which method

is more suitable for optimizing complex models.

 The project starts with obtaining the data from internet, cleaning data, and preprocess the

data. After that the models are trained with the data using handpicked / default hyperparameters

as baseline model. Then, the models undergo hyperparameters optimization using Bayesian

optimization and random search. For each model, the baseline model, Bayesian optimized

model and random search optimized model is evaluated and compared. The comparison shows

that the Bayesian optimized model perform better in terms of performance and time efficiency.

Besides the model, this project also developed 2 web API that allows developers to access the

best optimized models from this project. The project even developed a GUI to allow normal

users to access the model easily.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

7.2 Recommendation

Due to time constraint, the project has to sacrifice some features and ideas that possibly able to

improve the project quality. Therefore, this subchapter will discuss the possible future

improvement to this project.

1) Deeper data analysis

The models in this project only able to provide a simple info, which is the winning team win

rate. In future, the model can be improved by further analyze the data, or increase the feature

of the data and further combines the features to provide useful suggestions such as team

compositions, map and agent ban/pick (future update), strategy suggestion, etc. These features

can be useful to professionals’ team and players to make wise decisions based on their opponent

they are playing. It will be a game changer if these features can be introduced to the e-sports

gaming scene.

3) Improve GUI

With the new information provided in point (1) above, the GUI also have to be optimized to

display enriched information. The GUI also can be improved by adding new features such as

dark mode, developer options to modify some settings in the GUI and so on.

2) Introduce new optimization method

As discussed in previous chapters, different optimization methods have their own properties.

For example, random search only focuses on search space exploration, while Bayesian

optimization balance between exploration and exploitation. In future, maybe these methods can

be combined and used together to optimize a model. With the wide exploration property from

random search, combines with high efficiency and explore-exploit balanced advantages from

Bayesian optimization, it might be the next state-of-the-art optimization methods used by

everyone in machine learning field.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

REFERENCES

[1] P. Xenopoulos, B. Coelho, and C. Silva, “Optimal Team Economic Decisions in

Counter-Strike,” Sep. 2021, [Online]. Available: http://arxiv.org/abs/2109.12990

[2] W. Xu Huang, J. Wang, and Y. Xu, “Predicting Round Result in Counter-Strike:

Global Offensive Using Machine Learning,” in 2022 7th International Conference on

Intelligent Computing and Signal Processing, ICSP 2022, Institute of Electrical and

Electronics Engineers Inc., 2022, pp. 1685–1691. doi:

10.1109/ICSP54964.2022.9778597.

[3] RITHP, “Optimizing XGBoost: A Guide to Hyperparameter Tuning,” medium.com.

Accessed: Sep. 01, 2023. [Online]. Available:

https://medium.com/@rithpansanga/optimizing-xgboost-a-guide-to-hyperparameter-

tuning-

77b6e48e289d#:~:text=Bayesian%20optimization%20is,a%20more%20sophisticated

[4] S. Shekhar, A. Bansode, and A. Salim, “A Comparative study of Hyper-Parameter

Optimization Tools,” Jan. 2022, [Online]. Available: http://arxiv.org/abs/2201.06433

[5] hiepnguyen034, “Improving neural network’s performance with Bayesian

Optimization,” Medium.com. Accessed: Sep. 11, 2023. [Online]. Available:

https://medium.com/@hiepnguyen034/improving-neural-networks-performance-with-

bayesian-optimization-efbaa801ad26

[6] D. Passos and P. Mishra, “A tutorial on automatic hyperparameter tuning of deep

spectral modelling for regression and classification tasks,” Apr. 15, 2022, Elsevier B.V.

doi: 10.1016/j.chemolab.2022.104520.

[7] Z. B. Zabinsky, “Random Search Algorithms,” 2009.

[8] Wim de Villiers, “Bayesian Optimization with Gaussian Processes Part 1,”

Medium.com. Accessed: Apr. 19, 2024. [Online]. Available:

https://medium.com/@de.villiers.wim/bayesian-optimization-with-gaussian-processes-

part-1-83bcc291802b

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

[9] paretos, “Bayesian Optimization (Bayes Opt): Easy explanation of popular

hyperparameter tuning method,” 2021. Accessed: Aug. 13, 2024. [Online]. Available:

https://youtu.be/M-NTkxfd7-8?si=3AOy0gbLEPPR7bvL

[10] Amzhao, “Quantum Neural Networks,” MIT 6.s089 - Intro to Quantum Computing.

Accessed: Aug. 22, 2024. [Online]. Available: https://medium.com/mit-6-s089-intro-

to-quantum-computing/quantum-neural-networks-7b5bc469d984

[11] Tan Hung Khoon, “Lecture 1: Introduction to Neural Network with Logistic

Regression,” 2024.

[12] Tan Hung Khoon, “L09: Training the Neural Network,” 2024.

[13] Shruti Misra, “Interpretable AI: Decision Trees,” Medium.com. Accessed: Aug. 24,

2024. [Online]. Available: https://medium.com/@shrutimisra/interpretable-ai-decision-

trees-f9698e94ef9b

[14] pawangfg, “XGBoost,” GeeksforGeeks. Accessed: Aug. 24, 2024. [Online]. Available:

https://www.geeksforgeeks.org/xgboost/

[15] Super Data Science: ML & AI Podcast with Jon Krohn, “What is XGBoost,” 2023.

Accessed: Aug. 24, 2024. [Online]. Available:

https://www.youtube.com/watch?v=BC99nCeZ7t8

[16] Matt Dancho, “XGBoost: Tuning the Hyperparameters (My Secret 2 Step Process in

R),” Business Science. Accessed: Aug. 24, 2024. [Online]. Available:

https://www.business-science.io/code-tools/2024/01/12/xgboost-hyperparameter-

tuning.html

[17] “Vlr.gg.” Accessed: Aug. 26, 2024. [Online]. Available: https://www.vlr.gg/

[18] Vikram Singh, “Normalization vs Standardization,” Shiksha Online. Accessed: Aug.

28, 2024. [Online]. Available: https://www.shiksha.com/online-

courses/articles/normalization-and-

standardization/#:~:text=Improves%20Convergence%20Speed%3A%20Standardizatio

n%20can,features%20have%20the%20same%20scale.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

[19] scikit-learn developers, “3.1. Cross-validation: evaluating estimator performance,”

Scikit-Learn. Accessed: Aug. 28, 2024. [Online]. Available: https://scikit-

learn.org/stable/modules/cross_validation.html

[20] “Render,” Render. Accessed: Sep. 04, 2024. [Online]. Available: https://render.com/

[21] Christopher Riggio, “What’s the deal with Accuracy, Precision, Recall and F1?,”

Medium.com. Accessed: Sep. 08, 2024. [Online]. Available:

https://towardsdatascience.com/whats-the-deal-with-accuracy-precision-recall-and-f1-

f5d8b4db1021

[22] “Machine Learning: ML Concepts,” Google for Developers. Accessed: Sep. 08, 2024.

[Online]. Available: https://developers.google.com/machine-learning/crash-

course/classification/roc-and-auc

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

APPENDIX

GitHub link of the project:

1) Data Acquisition, preprocessing scripts and datasets:

https://github.com/changyang666/Vlrgg-scrapper-project-file.git

2) Neural Network training / optimizing script, pretrain models:

https://github.com/changyang666/Neural-network.git

3) XGBoost training / optimizing script, pretrain models:

https://github.com/changyang666/XGBoost.git

4) API development scripts:

https://github.com/changyang666/API-dev.git

5) GUI development scripts and .exe file for instant access to GUI:

https://github.com/changyang666/GUI.git

Render web services API access link:

1) Neural network (Bayesian optimized):

https://api-dev-gsts.onrender.com/predict (POST)

2) XGBoost Classifier (Bayesian optimized):

https://xgb-val-predict.onrender.com/predict (POST)

https://github.com/changyang666/Vlrgg-scrapper-project-file.git
https://github.com/changyang666/Neural-network.git
https://github.com/changyang666/XGBoost.git
https://github.com/changyang666/API-dev.git
https://github.com/changyang666/GUI.git
https://api-dev-gsts.onrender.com/predict
https://xgb-val-predict.onrender.com/predict

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y4S1 Study week no.: 1&2

Student Name & ID: Chang Yang 1905073

Supervisor: Ms. Tseu Kwan Lee

Project Title: ESPORT VALORANT: OPTIMIZING HYPERPARAMETERS OF WIN RATE

PREDICTION MODEL USING DERIVATIVE FREE METHOD

1. WORK DONE

- study and build XGBoost model

2. WORK TO BE DONE

- run optimization on XGBoost model

3. PROBLEMS ENCOUNTERED

- unable to determine which hyperparameters to choose

4. SELF EVALUATION OF THE PROGRESS

- problem resolved, done research on optimizing XGBoost and concluded top 5

hyperparameters to optimize

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y4S1 Study week no.: 3&4

Student Name & ID: Chang Yang 1905073

Supervisor: Ms. Tseu Kwan Lee

Project Title: ESPORT VALORANT: OPTIMIZING HYPERPARAMETERS OF WIN RATE

PREDICTION MODEL USING DERIVATIVE FREE METHOD

1. WORK DONE

- optimized XGBoost model with 2 different methods

- evaluated models

2. WORK TO BE DONE

- API development

3. PROBLEMS ENCOUNTERED

- XGBoost easily overfitted and need to be tuned carefully

- optimization result not tally with research done

4. SELF EVALUATION OF THE PROGRESS

- problem resolved. Done some research on exploration and exploitation, understand the

concept and decided to reduce number of trials. Manage to achieve result as in research

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y4S1 Study week no.: 5&6

Student Name & ID: Chang Yang 1905073

Supervisor: Ms. Tseu Kwan Lee

Project Title: ESPORT VALORANT: OPTIMIZING HYPERPARAMETERS OF WIN RATE

PREDICTION MODEL USING DERIVATIVE FREE METHOD

1. WORK DONE

- API developed and tested

2. WORK TO BE DONE

- GUI development and testing

3. PROBLEMS ENCOUNTERED

- most of the hosting service require payment subscription

4. SELF EVALUATION OF THE PROGRESS

- Problem solved, manage to find free hosting services and successfully deployed API.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y4S1 Study week no.: 7&8

Student Name & ID: Chang Yang 1905073

Supervisor: Ms. Tseu Kwan Lee

Project Title: ESPORT VALORANT: OPTIMIZING HYPERPARAMETERS OF WIN RATE

PREDICTION MODEL USING DERIVATIVE FREE METHOD

1. WORK DONE

- GUI development and testing

2. WORK TO BE DONE

- Project refinement

3. PROBLEMS ENCOUNTERED

- Hard to decide which framework to choose when developing GUI

4. SELF EVALUATION OF THE PROGRESS

- Problem solved, choosed tkinter as GUI development framework.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y4S1 Study week no.: 9&10

Student Name & ID: Chang Yang 1905073

Supervisor: Ms. Tseu Kwan Lee

Project Title: ESPORT VALORANT: OPTIMIZING HYPERPARAMETERS OF WIN RATE

PREDICTION MODEL USING DERIVATIVE FREE METHOD

1. WORK DONE

- added features to GUI such as change model, allow local hosting API for offline purpose

2. WORK TO BE DONE

- Report writing

3. PROBLEMS ENCOUNTERED

- Render free hosting suspend instance after period of inactivity, causing GUI no

responding on startup.

4. SELF EVALUATION OF THE PROGRESS

- add in timeout to GUI, allow user to switch to local hosted API

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y4S1 Study week no.: 11&12

Student Name & ID: Chang Yang 1905073

Supervisor: Ms. Tseu Kwan Lee

Project Title: ESPORT VALORANT: OPTIMIZING HYPERPARAMETERS OF WIN RATE

PREDICTION MODEL USING DERIVATIVE FREE METHOD

1. WORK DONE

- report writing

- presentation slides preparation

2. WORK TO BE DONE

-

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

- progressed as planned

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

POSTER

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

CHANG YANG

ID Number(s)

19ACB05073

Programme / Course BACHELOR OF COMPUTER SCIENCE (HONOURS)

Title of Final Year Project ESPORT VALORANT: OPTIMIZING HYPERPARAMETERS OF WIN RATE

PREDICTION MODEL USING DERIVATIVE FREE METHOD

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds the
limits approved by UTAR)

Overall similarity index: ___ 9 %

Similarity by source
Internet Sources: ______8 _____ %
Publications: __4___ %
Student Papers: ____3__ %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report to

Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: _______Tseu Kwan Lee ______

 Name: __________________________

Date: _9/9/2024 Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 19ACB05073

Student Name CHANG YANG

Supervisor Name MS. TSEU KWAN LEE

TICK (√) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Title Page

√ Signed Report Status Declaration Form

√ Signed FYP Thesis Submission Form

√ Signed form of the Declaration of Originality

√ Acknowledgement

√ Abstract

√ Table of Contents

√ List of Figures (if applicable)

√ List of Tables (if applicable)

√ List of Symbols (if applicable)

√ List of Abbreviations (if applicable)

√ Chapters / Content

√ Bibliography (or References)

√ All references in bibliography are cited in the thesis, especially in the chapter of

literature review

√ Appendices (if applicable)

√ Weekly Log

√ Poster

√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my

report.

(Signature of Student)

Date:

10/9/2024

