
 

 

 

 
 
 

EMONYAI : CONTEXTUAL CONVERSATION GUIDANCE LEVERAGING 

MICROEXPRESSION AND BODY LANGUAGE INTERPRETATION 

BY 

GOH CHUN SHING 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
A REPORT 

SUBMITTED TO 

Universiti Tunku Abdul Rahman 

in partial fulfillment of the requirements 

for the degree of 

BACHELOR OF COMPUTER SCIENCE (HONOURS) 

Faculty of Information and Communication Technology 

(Kampar Campus) 

 

JUNE 2024 

 

 
 

 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    ii 

 

UNIVERSITI TUNKU ABDUL RAHMAN 

 

 

 

REPORT STATUS DECLARATION FORM 
 

 

 Title:  EmonyAI : Contextual Conversation Guidance leveraging___________ 

                      Microexpression and Body Language Interpretation________________  

    __________________________________________________________ 

    __________________________________________________________ 

 

Academic Session: _JUNE 2024_ 

 

 I   _GOH CHUN SHING________________________________________ 

(CAPITAL LETTER) 

 

 declare that I allow this Final Year Project Report to be kept in  

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows: 

1. The dissertation is a property of the Library. 

2. The Library is allowed to make copies of this dissertation for academic purposes. 

 

 

   Verified by, 

              

 _________________________  _________________________ 

 (Author’s signature)               (Supervisor’s signature) 

 

 Address: 

       10, Lorong Sungai Bakap Permai 10, 

       Taman Sungai Bakap Permai______ 

       14200 Sungai Bakap___________ 

 Pulau Pinang_______________  _________________________ 

 __________________________      Supervisor’s name 

 

 Date: _____________________  Date: ____________________ 

Aun Yichiet

13/09/2024

chunnsshing
Typewriter
13 September 2024



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    iii 

 

  

Universiti Tunku Abdul Rahman 

Form Title :  Sample of Submission Sheet for FYP/Dissertation/Thesis 

Form Number: FM-IAD-004 Rev No.: 0 Effective  Date: 21 JUNE 2011 Page No.: 1 of 1 

 

 
FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY 

 

UNIVERSITI TUNKU ABDUL RAHMAN 

 

 

Date: _6 SEPTEMBER 2024_ 

 

 

SUBMISSION OF FINAL YEAR PROJECT 
 

It is hereby certified that ______Goh Chun Shing____________  (ID No: __2004745     ) has 

completed this final year project entitled “EmonyAI : Contextual Conversation Guidance 

leveraging Microexpression and Body Language Interpretation” under the supervision of  Dr. 

Aun Yi Chiet (Supervisor) from the Department of _________________________, Faculty of 

Information and Communication Technology  , and ____________________ (Co-Supervisor)* from 

the Department of ________________________, Faculty/Institute*  of 

__________________________. 

 

 

I understand that University will upload softcopy of my final year project in pdf format into UTAR 

Institutional Repository, which may be made accessible to UTAR community and public. 

 

Yours truly, 

 

 
 

____________________ 

(Student Name) 

 

 
*Delete whichever not applicable 

 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    iv 

 

 

DECLARATION OF ORIGINALITY 
 

I declare that this report entitled “EMONYAI : CONTEXTUAL CONVERSATION 

GUIDANCE LEVERAGING MICROEXPRESSION AND BODY 

LANGUAGE INTERPRETATION” is my own work except as cited in the references. The 

report has not been accepted for any degree and is not being submitted concurrently in 

candidature for any degree or other award. 

 

 

      

Signature  : _________________________ 

 

Name   :          Goh Chun Shing _______                  

 

Date   :         06 September 2024 ______ 

 

 

 

 

 

 

 

 

 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    v 

 

ACKNOWLEDGEMENTS 
 

I am deeply grateful to Dr. Aun Yi Chiet for providing me with the invaluable opportunity to 

work on EmonyAI, a state-of-the-art contextual chatbot. This project marks the beginning of 

my journey into the exciting world of AI technology, and I am sincerely thankful for Dr. Aun’s 

guidance, expertise, and unwavering support throughout the entire process. 

 

I would also like to express my heartfelt appreciation to my friend, Amanda Lean Rina, a 

master’s student in psychology, for giving me invaluable advice on emotion classification. Her 

expertise in emotional patterns greatly enriched the conceptual framework of this project, and 

her support has been instrumental in the development of the emotion detection module. 

 

I would also like to thank my university buddies, Goh Ken How, Soh Wen Kai, Ho Joe Ee, and 

Yeap Shevon, for serving as test subjects in evaluating the system's capabilities. Their 

unwavering support, particularly during challenging moments, has been a constant source of 

motivation, and I am deeply grateful for their presence in my life. 

 

Besides, I would also like to thank all my surrounding friends, whose encouragement and 

companionship have made this journey more enjoyable. Their belief in my abilities and 

constant check-ins helped me stay focused and motivated throughout the project. 

 

Most importantly, I must extend my deepest thanks to my parents and family. Their unwavering 

love, support, and encouragement have been pivotal in this journey, lifting me during moments 

of doubt and celebrating with me in times of success. 

 

Together, their collective contributions have not only shaped the outcome of this project but 

have also profoundly influenced my personal and professional growth. I am forever grateful to 

each of them for their roles in bringing this vision to life. 

 

 

 

 

 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    vi 

 

ABSTRACT 
 

Social anxiety and introversion can create barriers to effective communication, limiting both 

personal and professional interactions. In this project, we develop EmonyAI, a system designed 

to understand situational contexts such as user facial emotions and conversation content, to 

leverage that information and provide suggestions for more appropriate response in real time. 

EmonyAI is an advanced AI platform designed to enhance human interaction by integrating 

multiple functions, including facial recognition, speech-to-text processing, emotion detection, 

and text summarization, all aimed at improving communication skills. Rather than relying 

solely on traditional verbal cues, EmonyAI incorporates CNN for processing facial recognition 

and emotion detection, enabling the system to capture the subtleties of nonverbal 

communication. The contextual functionality is built based on the MetaGPT framework, which 

stores each individual as character and continuously evaluates character profiles, allowing for 

dynamic adaptation and improvement over time. With each interaction, the profiles grow 

richer, enabling the system to better assess the characteristics and preferences of the user, 

leading to more accurate predictions and suggestions. By leveraging this comprehensive 

approach, EmonyAI generates contextual conversation suggestions tailored to each user's 

emotional state and character, promising to enhance social experiences and foster more 

effective communication across various digital platforms. 
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CHAPTER 1 Introduction 
In this chapter, we present the background and motivation of our research, our contributions to 

the field of Micro expression and conversation generator, and the outline of the thesis.  

1.1 Problem Statement and Motivation 

In today's rapidly evolving artificial intelligence capabilities, human-computer interaction is 

reaching new frontiers. The fusion of artificial intelligence model and conversation generation 

technologies has opened doors to innovative applications, ranging from chatbots to virtual 

assistants. However, one critical aspect remains a challenge: the nuanced understanding of 

nonverbal clues such as human emotions and body language during conversations. This project 

sets out to address this vital aspect by developing a robust nonverbal clues detection model for 

conversation generators. 

 

Human communication is a complex interplay of words, tone, and facial expressions. Micro 

expressions, fleeting facial expressions that reveal genuine emotions, are often overlooked in 

digital conversations. Yet, they hold the key to truly empathetic and emotionally intelligent 

artificial agents. Our project aims to bridge this gap by equipping conversation generators with 

the ability to not only understand the words spoken but also perceive the subtle emotional cues 

conveyed through micro expressions and body language. 

 

This project's significance lies in its potential to revolutionize the way we interact with AI-

driven conversation generators. By enhancing their capacity to detect and respond to users' 

emotions, we can create more authentic, engaging, and context-aware conversations. This, in 

turn, can have profound implications for fields in human interaction such as customer service, 

mental health support, and educational platforms. 

 

Despite the importance of micro expressions and body language in human interaction, existing 

conversation generators often overlook these vital nonverbal signals. This omission results in 

conversations that lack depth and authenticity, hindering their ability to establish meaningful 

connections and rapport with users. The absence of micro expression and body language 

awareness in these systems is a significant limitation in conversation generation that my 

research aims to address.  
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My research seeks to bridge the gap between micro expression detection, body language 

detection and conversation generation. By integrating a reliable micro expression detection 

model combine with body language recognition into conversation generators, we can enhance 

their ability to respond empathetically and adaptively to users' emotional states. This approach 

represents a superior solution to alternative methods, as it leverages latest large language 

models to offer users a more authentic and emotionally resonant conversational social 

experience. 

1.2 Research Objectives 

The objective of the EmonyAI project is to develop a context-aware and humanistic AI 

assistant to generate contextually relevant and appropriate responses in real time. This system 

aims to seamlessly integrate context aggregation with real-time detection of micro-expressions 

and body languages.  

 

To better manage diverse user profiles for accurate response, EmonyAI also employ the Multi-

Agent Framework, each tailored based on different user interactions, ensuring dynamic and 

accurate response generation. 

 

EmonyAI aim to deploy a context aggregator to analyze verbal and non-verbal cues for 

insightful interactions. To support this capability, EmonyAI integrates cutting-edge micro-

expression and body language models into a unified system that analyzes these cues 

simultaneously. This integration enables the real-time detection of subtle non-verbal signals, 

enhancing the system's ability to understand and respond to unspoken emotions and intentions. 

 

Additionally, the project also focuses on connect with OpenAI’s latest large language model 

to generate empathetic responses using real-time emotional and contextual data. This 

integration promises to revolutionize how this humanistic AI systems interact, making 

EmonyAI more responsive and attuned to human emotions and contextual subtleties. 

 

Finally, EmonyAI aim to deploy a multi-agent system for personalized interactions that is 

scalable across various user types. This framework supports the scalability of the system, 

adapting to a wide range of scenarios and user types, thus broadening the potential applications 

of this innovative humanistic AI. 
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1.3 Project Scope and Direction 

The scope of this project encompasses several key elements: 

1. Video Input Stream: This component forms the frontline interface, capturing live 

video feeds of conversations. The video stream is crucial as it serves as the primary 

input for real-time analysis, enabling the system to observe and interpret both verbal 

and non-verbal aspects of communication. 

2. Agent Database: A vital repository that stores detailed profiles of recognized 

individuals or "agents." This database includes not only historical interaction data but 

also continuously updated information about each individual's interactions, 

preferences, and behavioral patterns. This allows for personalized engagement and 

enhances the accuracy of the system's response. 

3. Emotion Detection Module: Leveraging cutting-edge facial recognition and body 

language analysis technologies, this module assesses micro-expressions and physical 

gestures to determine the emotional state of individuals. By accurately identifying 

emotions, the system can tailor responses that are empathetic and contextually 

appropriate. 

4. Context Recognition Module: This module enriches the system's understanding by 

extracting additional contextual information from both the audio and visual inputs. It 

analyzes background noise, speech content, and even locational cues within the video 

to grasp the full context of the interaction, which informs the content and tone of the 

suggested responses. 

5. Conversation Suggestion Engine: At the core of EmonyAI is the integration of 

OpenAI's ChatGPT with the derived emotion and context data. This engine synthesizes 

all the analyzed data to generate intelligent and situational conversation suggestions, 

which are then relayed back to the user interface, facilitating a natural and insightful 

dialogue. 

6. MetaGPT Framework: This framework orchestrates the operation of multiple AI 

agents, managing complex interactions and ensuring that the conversation suggestions 

are finely tuned to each individual's context and emotional state. By coordinating the 

diverse capabilities of various specialized agents, the MetaGPT framework enhances 

the overall intelligence and responsiveness of the system. 
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The direction of the EmonyAI project is to continue developing these components in harmony, 

ensuring each is optimized to function both independently and as part of an integrated whole. 

Future developments will focus on refining the accuracy of emotion and context recognition, 

expanding the database to include a broader spectrum of agents, and enhancing the adaptability 

of the conversation suggestion engine to handle a wide range of scenarios. The ultimate goal 

is to create an AI-driven system that not only understands and responds appropriately to the 

nuances of human interaction but also anticipates user needs, thereby setting new standards for 

AI in everyday interactions. 

 

1.4 Contributions 

Advancing Micro expression and Body Language Detection:  

We propose a novel micro expression and body language detection model that achieves 

high accuracy in real-time, enabling its seamless integration into our conversation generators. 

 

Contextual Response Generation: 

By detecting micro expressions and body languages, the conversation generator can 

adapt its responses based on users' emotional cues. For example, it can suggest comforting 

responses during times of distress or adjust its tone to match audiences' emotions. This 

contextual response generation can enhance the quality of conversations and deepen user 

engagement. 

 

Utilising latest technology:  

Utilizing the latest technology in the form of large language models such as OpenAI’s 

GPT models and Google’s PaLM represents a quantum leap in the field of conversation 

generation. These cutting-edge AI systems, powered by deep learning and natural language 

understanding, have the capability to comprehend and generate human-like text at an 

unprecedented scale and quality. By harnessing the capabilities of these advanced models, we 

can create dynamic and context-aware conversations that offer users a more engaging and 

personalized experience, revolutionizing the way we interact with artificial intelligence and 

pushing the boundaries of what's possible in human-computer communication. 
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1.5 Report Organization 

The organization of the report provides a comprehensive overview and analysis of the 

EmonyAI project, structured into clearly defined chapters to facilitate a detailed understanding 

of the project's scope, methodologies, outcomes, and future directions. 

 

Chapter 1: Introduction - This chapter sets the stage by introducing the project's goals, the 

significance of the technological integration, and an overview of the key components and 

functionalities of the EmonyAI system. 

 

Chapter 2: Literature Review - An exhaustive review of the existing research related to micro-

expression detection and body language analysis. It discusses prior methodologies, 

advancements, and limitations, thereby contextualizing the EmonyAI project within the current 

scientific landscape. 

 

Chapter 3: System Model - This chapter outlines the development methodology and system 

architecture of EmonyAI. Following the Rapid Application Development (RAD) approach, the 

project is broken into phases, including planning, design, implementation, and testing. The 

system is developed using Python for emotion detection and JavaScript for the user interface. 

The hardware includes an AMD Ryzen 7 processor and NVIDIA GTX1650 GPU for machine 

learning tasks. Key components like WebRTC for video/audio processing, a CNN-based 

emotion detection module, and Google Speech-to-Text are integrated into the system. The 

chapter also discusses the role of the Context Aggregator, which combines emotion and 

conversation data to provide personalized conversation suggestions via the EmonyAI chatbot. 

Profiles, conversation summaries, and emotion data are stored and used to enhance future 

interactions. 

 

Chapter 4: System Design - This chapter details the design and operation of EmonyAI, 

including its hardware, software, and core components. The system block diagram shows how 

video/audio streams from WebRTC are processed by the emotion detection and speech-to-text 

modules to generate conversation suggestions via the EmonyAI chatbot. The chapter covers 

the specifications for user devices and backend services, including Google Cloud Run and 

Cloud Storage for profile management. It also explains how the system's core features—video 

calling, chatbot interaction, and real-time emotion detection—are implemented. Special modes 
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like Private Mode and Imagine Mode are designed to address privacy concerns and simulate 

interactions between agent profiles using the MetaGPT framework. The chapter further 

explains how the emotion detection module is built, deployed via FastAPI, and integrated into 

the system, along with the process for real-time video and audio processing using WebRTC. 

 

Chapter 5: Experiment/Simulation - This chapter outlines the setup and testing of EmonyAI, 

detailing both hardware and software configurations. The system operated by integrating real-

time video and audio streams with AI-driven emotion detection, speech-to-text conversion, and 

chatbot interaction. Multiple tests were conducted involving positive, negative, and multi-agent 

interactions, demonstrating EmonyAI’s ability to adapt to various conversational contexts. 

Challenges encountered during implementation, such as GPU limitations and WebRTC 

latency, were addressed through GPU acceleration, WebRTC optimization, and noise-

cancellation techniques. The chapter concludes with an evaluation of EmonyAI’s scalability 

and effectiveness in enhancing user interaction through context-aware conversation support. 

 

Chapter 6: System Evaluation and Discussion - This chapter evaluates the performance of 

EmonyAI across its core components: emotion detection, speech-to-text, and ChatGPT 

integration. System testing involved capturing and analyzing real-time emotional and 

conversational data, which was used to generate personalized suggestions. The evaluation 

showed that while the system generally performed well, challenges such as emotion detection 

accuracy, conversation suggestion relevance, and response time optimization were identified. 

Feedback from test users indicated that EmonyAI's empathetic and context-aware responses 

were effective, though improvements in creativity and timeliness were noted. Overall, the 

project successfully achieved its goals of enhancing video call interactions through real-time, 

AI-driven emotional and conversational insights, with opportunities for future refinement in 

accuracy and scalability. 

 

Chapter 7: Conclusion and Recommendation - This chapter concludes by highlighting the 

success of EmonyAI in integrating emotion detection, facial recognition, and AI-powered 

conversation generation. Recommendations for future work include expanding the system to 

handle more complex human interactions, refining user profiles with location data, improving 

emotion detection models, and integrating with popular communication platforms like Zoom 

or Microsoft Teams to increase system scalability and usability.
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Chapter 2 Literature Review 

2.1 Previous work on Micro Expression 

Face and expression detection 

Yulan Guo and colleagues [31] introduced a 3D face recognition method that is robust 

to facial expressions. This approach is based on local geometric features and global similarity 

measures between faces. Their experimentation, conducted on the FRGCv2 dataset, involved 

comparing a probe face against a face database using both local features and 3D cloud 

registration. The achieved recognition rate was 97.0%, with a verification rate of 99.01%, 

irrespective of whether the faces exhibited neutral or non-neutral expressions. 

Li Ye and others [20] proposed a 3D face recognition method that is insensitive to facial 

expressions. They employed 3D face matching, utilizing the iterative closest point algorithm 

and introduced an expression-irrelevant weighting factor to enhance the face matching 

algorithm's performance. 

Sparse Representation Classification (SRC) approaches, commonly utilized for facial 

expression analysis [20], were employed for the classification of facial expressions, including 

joy, sadness, anger, fear, disgust, and surprise, using a 3D Face model [20]. The Modified 

Local Directional Patterns (MLDP) approach was utilized to achieve linear and faster 

recognition of facial expressions. 

 

Figure 2.1.1 : Sparse Representation Classification 
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Figure 2.1.2 : Modified Local Directional Patterns 

 

Furthermore, facial expression recognition involved video-based image and face 

expression analysis with various features. Facial expression analysis using Generalized 

Discriminant Analysis performed on deep belief networks exhibited superior performance 

compared to other available technologies [21]. 

 

Figure 2.1.3 : Generalized Discriminant Analysis 

 

In the domain of facial expression recognition, multimodal model detection is widely 

adopted, focusing on landmark and texture value analysis. Abdelghafour Abbad and colleagues 

[20] proposed a 3D face recognition approach based on geometric and local shape descriptors 

to address challenges associated with varying facial expressions. Their method involved four 

key steps: 3D face modelling, feature extraction, extraction of geometric information from the 

3D surface in terms of curves, and generation of feature vectors at different scales. Their study, 

conducted on the GavabDB and Bosphorus datasets, yielded a recognition rate of 98.9%. 
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Figure 2.1.4 : 3D face recognition approach 

 

Micro-expression detection 

Early research in face expression detection laid the groundwork for the field. Most 

previous research focuses on video-based analysis of micro expressions. Researchers have 

developed computer vision algorithms to automatically detect and classify micro expressions 

in video recordings. Notable works include the use of Support Vector Machines (SVMs), 

Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks to 

recognize micro expressions. 

 

Figure 2.1.5 : Support Vector Machines (SVMs) 
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Figure 2.1.6 : Convolutional Neural Networks (CNNs) 

 

 

Figure 2.1.7 : Long Short-Term Memory (LSTM) 

 

The creation of comprehensive micro expression databases, such as the MMI Facial 

Expression Database and CAS(ME)^2, has been instrumental in training and evaluating 

detection models. Researchers have utilized these databases to test the robustness and accuracy 

of their algorithms. 

Recent advancements aim to enable real-time micro expression detection, a critical 

requirement for applications like deception detection, security, and human-computer 

interaction. These approaches leverage real-time facial feature tracking and efficient 

recognition algorithms to provide instantaneous feedback. 

There are several studies have explored the challenges of micro expression detection. 

One previous study has focused on recognizing micro-expressions in video sequences, a few 

have used static images for recognition. The performance of models using static images and 

static feature extraction techniques, such as apex micro-expression images, has been less 

successful, as observed in the works of Hiranmayi et al. [14], On the other hand, studies by 

others such as Wei et al. [28] have achieved better results by utilizing temporal data, such as 

image sequences or videos. 
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Many of these reviewed studies divided images into blocks before applying LBP-TOP 

feature extraction to each block, resulting in an accuracy of 63.41%. In contrast, this study took 

a holistic approach to micro-expression analysis, avoiding image block division during feature 

extraction to reduce computational complexity, as suggested by Manthis et al. [32]. 

 

Figure 2.1.8 : LBP-TOP feature extraction 

 

Other than the technical difficulties mentioned above, emotions may be expressed 

differently across cultures, making universal recognition models more complex to develop.  

Despite significant progress, challenges persist in achieving high accuracy in micro 

expression detection, particularly in unconstrained real-world settings. Limitations in existing 

research include limited emotion categories, cultural insensitive and variations in data 

collection methods. 

 

Comparison of existing facial emotion detection 

Study/Authors Methodology Key Features Dataset Recognition 

Rate/Accuracy 

Key Findings 

Yulan Guo et al. 

[31] 

3D face 

recognition 

using local 

geometric 

features and 

global 

similarity 

measures 

Robust to 

facial 

expressions, 

3D cloud 

registration 

 

 

FRGCv2 97.0% 

recognition, 

99.01% 

verification 

High 

recognition 

rate, works well 

with neutral and 

non-neutral 

expressions 
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Study/Authors Methodology Key Features Dataset Recognition 

Rate/Accuracy 

Key Findings 

Li Ye et al. [20] 3D face 

matching with 

iterative closest 

point algorithm 

Expression-

irrelevant 

weighting 

factor 

- - Enhanced 

matching 

algorithm, 

insensitive to 

facial 

SRC Approach  Sparse 

Representation 

Classification 

for facial 

expression 

analysis 

Classified joy, 

sadness, anger, 

fear, disgust, 

surprise 

3D face 

model 

- Achieved 

linear and 

faster facial 

expression 

recognition 

MLDP 

Approach 

Modified Local 

Directional 

Patterns for 

faster 

expression 

recognition 

Linear and fast 

facial 

expression 

recognition 

- - Efficient 

method for 

rapid 

expression 

recognition 

Abdelghafour 

Abbad et al.  

3D face 

recognition 

based on 

geometric and 

local shape 

descriptors 

3D face 

modeling, 

feature 

extraction, 

multi-scale 

feature vectors 

GavabDB, 

Bosphorus 

98.9% 

recognition rate 

Effective in 

handling 

varying facial 

expressions 

Generalized 

Discriminant 

Analysis [21] 

Video-based 

image and face 

expression 

analysis on 

deep belief 

networks 

High accuracy 

facial 

expression 

recognition 

- Superior 

performance 

 

Outperformed 

other available 

technologies in 

facial 

expression 

recognition 
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Study/Authors Methodology Key Features Dataset Recognition 

Rate/Accuracy 

Key 

Findings 

Micro-

expression 

Detection 

(Hiranmayi et 

al. [14], Wei et 

al. [28]) 

Static vs 

temporal data 

for micro-

expression 

detection 

Static images 

(apex micro-

expression), 

temporal data 

(video 

sequences) 

MMI, 

CAS(ME)^2 

63.41% 

accuracy 

Temporal data 

models 

outperformed 

static image 

models 

SVM, CNN, 

LSTM 

Approaches 

Micro-

expression 

detection using 

Support Vector 

Machines, 

Convolutional 

Neural 

Networks, 

LSTMs 

Real-time 

micro-

expression 

detection, video 

analysis 

MMI, 

CAS(ME)^2 

- Enabled real-

time detection 

for 

applications 

like deception 

detection and 

HCI 

LBP-TOP 

Feature 

Extraction [32] 

Holistic micro-

expression 

analysis 

without image 

block division 

Avoided 

image block 

division to 

reduce 

computational 

complexity 

 

- 63.41% 

accuracy 

Holistic 

approach 

improved 

computational 

efficiency 

Table 2.1.1 : Comparison of existing facial emotion detection 

 

2.2 Previous work on Body Language 

Pose Estimation 

 There are several algorithms for 2D human pose estimation, each with its own approach. 

Some algorithms directly predict the 2D pixel coordinates of predefined human body joints. 

For example, some used a cascade of pose regressors to refine joint predictions iteratively, 

while others progressively adjusted initial joint location predictions through an Iterative Error 

Feedback process. 

More recent approaches take an indirect approach by predicting 2D body joint locations 

using CNNs to output body joint heatmaps, where heat maxima indicate joint positions. Some 

used a bidirectional tree-structured CNN-based network to model human body structure, 
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allowing feature channels at one point to receive information from others. Researchers 

combined CNNs with a deformable mixture of parts model to predict accurate body joint 

heatmaps. Researchers employed a CNN architecture with sequential "hourglass" modules, 

merging features across scales to generate high-resolution maps. Similarly, they also used 

stacked hourglass networks to produce body joint heatmaps, which were refined using 

Conditional Random Fields (CRFs). CPN divided the problem into two steps: localizing "easy" 

body joints first with a feature pyramid CNN and then detecting "hard" joints using a network 

with an online hard joint mining loss function. Yang et al. [27] proposed a two-stage framework 

where Independent Losses Pose Nets (ILPNs) inferred body joint locations globally, followed 

by Convolutional Local Detectors (CLDs) to refine joint detections. In contrast, [47] introduced 

a neural block for pose quality prediction alongside 2D pose regression, leading to a slight 

improvement in estimation accuracy. 

 

Figure 2.1.9 : Conditional Random Fields explained 

 

In [3], a straightforward CNN architecture with convolutional and deconvolutional 

layers emphasized the importance of obtaining high-resolution feature maps for 2D pose 

estimation. Similarly, [12] designed a CNN architecture tailored to maintain high-resolution 

feature maps throughout the process by connecting multiple multi-resolution subnetworks and 

conducting multi-scale fusions. 

Some recent approaches aimed for improved 2D pose estimation accuracy and faster 

inference, but through different methods. For example, Parallel Pyramid Network (PPNet) [48] 

used deep + wide and shallow + narrow subnetworks in parallel, with deep subnetworks 

processing low-resolution inputs for semantic information and shallow ones encoding spatial 

information from high-resolution inputs. They adjusted the method proposed to enhance 

inference speed by introducing a conditional channel weighting module in shuffle blocks. This 

allowed efficient information exchange between channels and features of varying resolutions, 

resulting in a lightweight network architecture with a balance of accuracy and complexity. 

Moreover, [11] introduced a single-branch network architecture for real-time multi-person 

human pose estimation on mobile platforms, reducing latency while maintaining performance 
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by incorporating Fusion Deconv Head and Large Kernel Conv layers. Finally, [6] aimed for 

efficient 2D pose estimation by leveraging depth data instead of RGB images and designing 

lightweight CNN architectures. Supplementary domain adaptation and knowledge distillation 

techniques were explored to further enhance accuracy. 

 

Figure 2.1.10 : Parallel Pyramid Network (PPNet) 

 

 

 

Figure 2.1.11 : Large Kernel Convolutional Layers 

 

Body Language 

Early studies on body language primarily focused on decoding basic non-verbal cues 

such as posture, gestures, and facial expressions. Previous works by researchers create a strong 

foundation for understanding the significance of non-verbal communication in conveying 

emotions and attitudes. 

Advances in computer vision and machine learning have enabled the development of 

automated systems for body language detection. Researchers have employed techniques such 

as pose estimation, deep learning, and feature extraction to recognize and analyse body 

language from images and video. 
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A framework has been introduced to capture high-level parameters in body movements, 

which are then encoded by the hidden units of a convolutional autoencoder [2]. An approach 

for discerning a person's emotional state from both facial and body video data is proposed, 

leveraging Spatio-Temporal Interest Point (STIP) features [3]. A survey is conducted, 

discussing the field of sentiment analysis and its applications in deep learning [13] [18]. Deep 

learning algorithms are formulated for handling large datasets using the backpropagation 

algorithm [30]. A self-organizing neural architecture is devised for the recognition of emotional 

states based on full-body motion patterns [22]. An innovative model combines Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for the purpose of emotion 

recognition from video data [13]. Deep learning models incorporating Deep Convolutional 

Neural Networks (DCNN) are developed for the multimodal emoFBVP database [14]. A model 

featuring hierarchical feature representation is introduced for non-verbal emotion recognition, 

demonstrating significant improvements in accuracy through experimentation [23]. An 

intelligently designed system for emotion recognition is proposed, utilizing neural network 

architectures [11]. The development of the Emotion Recognition in the Wild (EmotiW) system 

employs a hybrid CNN-RNN architecture, surpassing other techniques in achieving superior 

results [26]. A novel set of emotional body gestures is created to distinguish cultural and gender 

differences, forming the basis for an automatic emotional body gesture recognition framework 

[12]. 

 

Figure 2.1.12 : Spatio-Temporal Interest Point (STIP) 
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Figure 2.1.13 : Deep Convolutional Neural Network (DCNN) 

 

Much of the contemporary research on body language detection is driven by 

applications in human-computer interaction (HCI). Studies have explored how body language 

recognition can enhance gesture-based interfaces, virtual reality experiences, and emotion-

aware systems. 

Cross-cultural considerations have gained prominence in body language research, 

acknowledging that the interpretation of non-verbal cues may vary significantly across 

cultures. Researchers have investigated the challenges of creating culturally sensitive body 

language detection models. 

Recent work has focused on real-time body language detection, facilitating applications 

in areas such as healthcare, education, and security. These systems aim to provide 

instantaneous feedback based on body language cues, enabling more responsive interactions. 

Despite progress, challenges persist in achieving accurate and robust body language 

detection, particularly in complex and unstructured environments. Limitations include the need 

for extensive training data, variations in lighting conditions, and the potential for 

misinterpretation. 

 

Comparison of existing body language detection 

Approach Description Challenges Addressed 

Cascade of Pose 

Regressors 

Refines joint predictions iteratively. Improved joint prediction 

refinement. 

Iterative Error 

Feedback 

Progressively adjusts joint predictions 

through error feedback. 
 

Reduces error accumulation over 

iterations. 

Body Joint 

Heatmaps 

(CNNs) 

CNNs output joint heatmaps where heat 

maxima indicate positions. 

More precise localization of body 

joints. 

 



 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    18 

 

Approach Description Challenges Addressed 

Bidirectional 

Tree-structured 

CNN 

Models body structure by allowing features at 

one joint to receive information from others. 
 

Captures long-range dependencies 

across the body. 

Deformable 

Mixture of Parts 

with CNN 

Combines CNNs with deformable parts 

model to predict accurate body joint 

heatmaps. 

Improves accuracy in detecting body 

joints. 

Hourglass CNN 

Architecture 

Merges features across scales to generate 

high-resolution maps. 

Maintains high resolution for better 

precision. 

Stacked 

Hourglass 

Networks 

Uses stacked hourglass networks refined 

using Conditional Random Fields (CRFs). 

Better joint localization with CRF 

refinement. 

CPN (Feature 

Pyramid CNN) 

First localizes 'easy' joints, then detects 'hard' 

joints using online mining loss function. 

Enhances difficult joint localization. 

Two-stage 

Framework 

(ILPNs + CLDs) 

Infers joints globally, then refines them with 

convolutional detectors. 

Improves detection accuracy through 

refinement. 

Pose Quality 

Prediction 

Block 

Adds a neural block for pose quality 

prediction along with 2D regression. 

Improves pose accuracy with quality 

prediction. 

Parallel Pyramid 

Network 

(PPNet) 

Uses parallel deep and shallow subnetworks 

for faster and accurate inference. 

Balances speed and accuracy with 

parallelism. 

Single-branch 

Real-time 

Network 

Optimized for real-time multi-person pose 

estimation on mobile platforms. 

Reduces latency for mobile real-time 

applications. 

2D Pose 

Estimation 

using Depth 

Data 

Leverages depth data and lightweight CNNs 

for efficient pose estimation. 

Utilizes depth data for efficient 

computation. 

Table 2.1.2 : Comparison of existing body language detection 
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2.3 Limitations of Previous Studies 

1. Limited Focus on Body Language or Micro expressions, but Not Both: 

Many previous studies in the field of emotion recognition have tended to focus 

exclusively on either body language or micro expressions to detect and classify emotions. This 

segregated approach limits the holistic understanding of emotional cues during human 

interaction. The absence of a combined analysis of both modalities overlooks the potential 

synergies between body language and micro expressions in conveying emotions. In situation  

 

2. Lack of Integration in Emotion Classification: 

Previous research often fails to integrate body language and micro expression analysis 

into a unified framework for emotion classification. This separation results in a fragmented 

understanding of emotional states and hinders the development of more accurate and 

comprehensive emotion recognition systems. 

 

3. Limited Emotion Types Detected: 

Previous studies focus on a narrow set of basic or commonly expressed emotions (e.g., 

happiness, sadness, anger, fear). These studies may not account for the richness and complexity 

of human emotions, which encompass a wide spectrum of nuanced and subtle feelings. The 

detection of only a limited range of emotions may not be sufficient for applications requiring 

the recognition of more diverse and intricate emotional states. 

 

4. Overlooking Complex Emotions: 

Many previous studies might not adequately address the recognition of complex or 

blended emotions, which are common in real-life social interactions. Failing to account for 

complex emotional expressions may limit the practical applicability of emotion recognition 

systems in situations where individuals exhibit mixed or multifaceted emotional states. 

 

5. Generalization Challenges: 

Previous studies that have focused on specific emotions or limited emotion types may 

struggle to generalize their findings to a broader range of real-world scenarios. These 

limitations can hinder the adaptability and robustness of emotion recognition models when 

faced with diverse and unpredictable emotional expressions. 
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6. Potential for Misclassification: 

Due to the limited scope of emotions considered, previous studies may be prone to 

misclassifying or misinterpreting complex emotional expressions, leading to inaccuracies in 

the results. Addressing these limitations and proposing an approach that combines both body 

language and micro expressions while expanding the range of detected emotions is a promising 

direction for advancing the field of emotion recognition and making it more applicable in real-

world settings.  

 

7. Failure to provide meaningful prompts: 

Previous studies often output the analysis result in generic form or template which 

limited the model's ability to generate nuanced and personalized responses utilizing well-

trained large-language model. The absence of contextual output mechanisms hindered the 

generation of prompts that could guide the model toward more relevant and context-aware 

responses. 
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2.4 Large Language Models 

Large Language Models are essential part for generating conversation suggestion in this 

project. Large language models, such as GPT-4o and similar models, have been trained on vast 

amounts of text data from the internet. This training allows them to understand context and 

conversational nuances effectively. They can comprehend the flow of a conversation, the 

relationship between sentences, and the intent behind user queries. These models excel at 

natural language generation. They can produce human-like text that is coherent, contextually 

relevant, and grammatically correct. This is vital for generating conversation suggestions that 

feel organic and engaging. 

 

OpenAI’s GPT 

GPT, short for "Generative Pre-trained Transformer" builds upon the success of its 

predecessors, GPT, to offer even more sophisticated natural language understanding and 

generation capabilities. GPT is part of the Transformer architecture family, which has 

revolutionized the field of natural language processing (NLP) by demonstrating remarkable 

proficiency in various language-related tasks. 

Strengths: 

• Natural Language Generation: GPT excels in generating human-like text. It can 

produce coherent and contextually relevant sentences, making it invaluable for tasks 

like content generation, chatbots, and text completion. 

• Large-Scale Knowledge: This model has been trained on a large amount of text data 

from the internet, giving it extensive general knowledge. It can answer questions, 

provide explanations, and offer information on a wide range of topics. 

• Adaptability: GPT can be fine-tuned for specific applications or domains, making it 

highly adaptable. Developers can customize its behavior to suit the needs of various 

projects, from customer support chatbots to creative writing assistance. 

• Multilingual Support: It can understand and generate text in multiple languages, 

enabling cross-lingual applications and accessibility for a global audience. 

• Versatility: GPT can perform various NLP tasks, including text summarization, 

translation, sentiment analysis, and more. Its versatility makes it suitable for a wide 

array of applications. 
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Weaknesses: 

• Lack of Real Understanding: While GPT can generate text that appears to understand 

context, it lacks genuine comprehension. It relies on patterns and associations in the 

data it was trained on, rather than true understanding. 

• Potential for Bias: Like many large language models, GPT can inadvertently produce 

biased or inappropriate content if not carefully controlled and monitored. It may 

perpetuate existing biases present in its training data. 

• High Computational Requirements: GPT is computationally intensive, requiring 

substantial resources for training and inference. This can limit its accessibility to 

researchers and developers with limited computing power. 

• Lack of Real-Time Interaction: The model may exhibit limitations in real-time 

interactive applications. Latency and response time can be a concern for applications 

requiring immediate user interactions. 

• Expensive: Utilizing GPT can be costly, particularly for prolonged or high-usage 

applications, due to the computational resources required 

 

Figure 2.4.1 : User Interface for GPT 

 

OpenAI’s GPT-4o 

GPT-4o is a specialized variant of OpenAI's GPT-4 model, designed to handle a wide range of 

language tasks with improved reasoning and natural language generation capabilities. It builds 

upon its predecessor by offering more sophisticated text processing and adaptability. Although 

it retains some of the beta-stage limitations, GPT-4o is well-suited for a variety of complex 

applications. 
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Strengths: 

• Advanced Problem-Solving: GPT-4o excels in handling complex tasks, thanks to its 

improved reasoning and language generation abilities. It can tackle intricate queries and 

produce well-thought-out responses 

• Knowledgeable: It has access to a vast repository of knowledge across diverse fields, 

making it highly proficient in answering questions and providing information 

• Fine-tuning: GPT-4o’s performance can be tailored to specific use cases, improving its 

relevance and accuracy for specialized tasks 

• Responsiveness: GPT-4o is designed to respond quickly to queries, offering efficient 

interactions for a variety of applications 

Weaknesses: 

• Limited Real-time Data: Unlike models like Google’s Gemini, GPT-4o relies on static 

training data, making it less effective in handling real-time information 

• Specialized Task Limitations: While GPT-4o handles complex tasks well, it may 

struggle with specific scenarios requiring multimodal input (text, images, audio) 

 

 

Figure 2.4.2 : User Interface for GPT4o 

 

Google’s Gemini 

Google Gemini is multimodal language model developed by Google, designed to seamlessly 

process and integrate various types of data, including text, images, audio, and video. Gemini 

boasts strong integration within the Google Ecosystem, enhancing its utility for users who 

leverage Google’s extensive range of services. 
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Strengths: 

• Multimodal Capabilities: Gemini can process and integrate different types of 

information (text, images, audio, video), enhancing its versatility for various tasks 

• Integration with Google Ecosystem: Seamless integration with Google services, 

beneficial for users entrenched in Google's tools and platforms 

• Real-time Web Access: Capable of accessing and processing up-to-date information 

from the web, similar to Copilot, beneficial for tasks requiring current data 

• Customizable via Plugins: Offers extensions through plugins, such as for controlling 

Spotify or searching with TripAdvisor, adding functional flexibility 

 

Weaknesses : 

• Relative Novelty: As a newer model, it may have fewer use cases and less maturity 

compared to established models like GPT-4[34] 

• Computational Expense: Usage can be resource-intensive, potentially limiting access 

for users with constrained technical resources 

• Creative Limitations: Less capable in generating highly original content such as poetry 

or in-depth articles 

• Inconsistency and Limited Generative Capabilities: May produce inconsistent 

responses and lacks robust long-form content generation compared to competitors like 

ChatGPT 

• Lack of Source Citation: Does not always provide citations, which can be a drawback 

for research purposes 

 

Figure 2.4.3 : User Interface for Google Gemini 
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Claude 

Claude is a transformer-based large language model developed by Anthropic, focusing on 

ethical AI practices. It's designed to generate safe and aligned responses, emphasizing the 

reduction of harmful outputs and bias. Claude offers advanced capabilities in summarization, 

question-answering, coding, and multilingual processing, aiming to support both individuals 

and enterprises across various applications. 

Strengths: 

• Ethical AI: Claude is rigorously developed to minimize harmful behavior and bias, 

making it suitable for sensitive applications. 

• Advanced Reasoning and Multimodal Capabilities: It can handle complex cognitive 

tasks and supports text and image inputs, offering robust performance in diverse 

domains. 

• Customization: Users can steer Claude's personality, tone, and behavior to align with 

specific requirements, enhancing user interaction. 

• Safety and Transparency: With a strong emphasis on safety, Claude provides 

interpretable responses, ensuring that its decision-making process is transparent and 

trustworthy. 

Weaknesses: 

• Limited Public Access: Access to Claude is more restricted compared to other models 

like ChatGPT or Gemini, which may limit its usage across broader scenarios. 

• Performance in Highly Specialized Tasks: While Claude excels in ethical 

considerations, it might not match the raw performance of models like ChatGPT or 

Gemini in highly specialized or data-heavy applications. 

2.4.1 Comparison for different Large Language Models 

LLM Best Use Case Compared to other LLMs 

GPT Content generation, chatbots, 

text summarization 

Versatility: Excels in generating 

human-like text for a wide range 

of applications, including 

multilingual support 

GPT-4o Complex problem-solving, 

advanced reasoning tasks 

Advanced Reasoning: Improved 

in handling complex tasks and 

queries with sophisticated text 

processing 
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Google’s Gemini Multimodal tasks (text, image, 

audio, video processing) 

Multimodal Capabilities: 

Seamlessly integrates and 

processes diverse data types 

across various formats 

Claude Ethical applications, sensitive 

content moderation 

Ethical AI Focus: Prioritizes 

minimizing harmful outputs, 

with a strong emphasis on safety 

and transparency 

Table 2.4.1 : Comparison of Large Language Models 

 

2.4.2 Selection of Large Language Model 

After studying several of the most popular large language models available in the market, 

we have selected OpenAI’s GPT-4o as the LLM for conversation generation due to the 

following key reasons: 

• Superior Natural Language Understanding and Generation: GPT-4o is designed with 

an advanced architecture that excels in generating human-like conversations. Its ability 

to produce coherent, contextually relevant, and nuanced responses making interactions 

with EmonyAI more fluid and natural. 

• Extensive Knowledge Base: Trained on vast amounts of diverse data, GPT-4o offers a 

wealth of general knowledge, allowing it to react to a wide variety of questions and able 

to analyze conversations across many topics. This makes it a highly capable tool for 

handling diverse user interactions. 

• Personalization and Fine-tuning: GPT-4o can be fine-tuned to adapt to specific domains 

or industries, which allows us to customize the EmonyAI's responses to align with our 

project goals and provide more relevant, personalized interactions for users. 

• Multilingual Capabilities: GPT-4o's proficiency in multiple languages broadens the 

reach of our chatbot, enabling us to serve audience with different languages, increasing 

scalability, accessibility and usability. 

• Versatility in Task Handling: Beyond basic conversation generation, GPT-4o can 

perform a wide range of NLP tasks such as summarization, sentiment analysis, and 

translation. This versatility perfectly suits the need of EmonyAI’s functionalities 

beyond simple conversation. 
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• Reliability and Performance: As one of the most tested and mature models tested by 

large number of users, GPT-4o offers a stable and reliable foundation for building 

EmonyAI, minimizing the risks associated with errors or inconsistencies. 

2.5 Multi-Agent Framework 

Background and Evolution of Multi-Agent Framework  

Multi-agent systems comprise multiple interacting intelligent agents within an 

environment. These systems are used to solve problems that are too complex for an individual 

agent or monolithic system to handle. Multi-Agent Framework can perform both cooperative 

(for shared goals) and competitive (for individual goals) tasks. Early Multi-Agent Framework 

implementations were often rule-based or utilized simpler machine learning models that limited 

their adaptability and scalability. 

 

Introduction to MetaGPT and Generative Pre-trained Transformers 

Generative Pre-trained Transformers (GPT) models, developed by OpenAI, represent a 

significant advancement in artificial intelligence by using deep learning techniques for natural 

language understanding and generation. The MetaGPT framework extends these capabilities 

by incorporating multiple GPT models that can represent different agents with varying 

objectives and knowledge bases, facilitating more complex and dynamic interactions within 

Multi-Agent Framework. 

 

Integration of MetaGPT in Multi-Agent Framework 

The integration of MetaGPT has been highlighted in recent literature for its ability to 

enhance decision-making processes and communication strategies among agents. MetaGPT 

allows each agent to develop its unique responses based on not only pre-trained general 

knowledge but also on specific training tailored to their roles in the Multi-Agent Framework. 

This role-specific adaptation is crucial for applications requiring differentiated knowledge 

bases or specialized interaction strategies. 

 

Applications of MetaGPT in Multi-Agent Framework 

Significant applications of MetaGPT in Multi-Agent Framework include automated 

negotiation systems, where agents represent different stakeholders in negotiations and must 

generate and evaluate proposals based on learned models of negotiation tactics. Another 

application is in distributed sensor networks, where agents process local data and communicate 
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findings to optimize global outcomes, such as in climate monitoring or urban planning. These 

applications demonstrate MetaGPT’s utility in enhancing agent communication and decision-

making capabilities. 

 

Challenges and Future Directions 

While the adoption of MetaGPT in Multi-Agent Framework has shown promising results, 

there are several challenges to be addressed. These include ensuring consistency and coherence 

in interactions among agents, managing the computational demands of multiple GPT models, 

and securing the system against adversarial attacks or biases in decision-making processes. 

Future research is directed towards optimizing these models for greater efficiency, improving 

the robustness of the systems, and expanding their applicability in more diverse fields.  
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CHAPTER 3 SYSTEM MODEL  

3.1 System Methodology 

In this chapter, it describes some methods and technologies used to develop this project, 

which is prototyping under Rapid Application Development (RAD) methodologies. Besides, 

this application is developed using Python Language. The processes of the project were 

categorized into different phases in the development, which were planning phase, analysis 

phase, design phase, implementation phase, testing with the system prototype and final 

implementation when no problem is found. 

 

Figure 3.1 Process of Prototyping RAD methodology 

 

3.2 System Design 

3.2.1 Hardware 

The hardware involved in this project is mainly a computer. The laptop is needed for the 

process of developing the emotion detection machine learning model, the user interface, and 

EmonyAI itself which is the centralized function that manages other modules. The processor 

of the laptop will be AMD Ryzen 7 5800HS with NVIDIA GeForce GTX1650 graphic card to 

ensure the laptop can operate smoothly and can process the emotion detection machine learning 

model well. 
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Table 3.1.1 Specifications of laptop 

Description Specifications 

Model ROG Zephyrus G14 GA401QH 

Processor AMD Ryzen 7 5800HS with Radeon Graphics 

Operating System Windows 11 

Graphic NVIDIA GeForce GTX1650 

Memory 16GB DDR4 RAM 

Storage 512GB SATA HDD 

Microphone Integrated Realtek® Audio 

Other than the laptop itself, a Logitech HD1080p webcam is also connected to the laptop for 

the video input. 

 

3.2.2 Software 

 Windows 11 will be used as the operating system for the application development. The 

tools for developing different module of the system are different and are as follows: 

 

Table 3.1.2 Software used for the emotion detection module 

Software Specifications 

Programming Language Python (.ipynb) 

Coding Software VS Code 

Others 
Kaggle – To collect dataset for the training of the machine 

learning model 

 

Table 3.1.3 Software used for the user interface 

Software Specifications 

Programming Language Javascript(.jsx) 

Coding Software VS Code 

Others 
Vite react – Build tool for website 

Ant Design – UI component library  
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Table 3.1.4 Software used for the profile management 

Software Specifications 

Programming Language Python (.py) 

Coding Software VS Code 

Storage Google Cloud Services Bucket 

Others 
MetaGPT Framework – To orchestrate and automate multi-

agent collaboration 

 

Table 3.1.5 : Software used for the website deployment 

Software Specifications 

Platform Google Cloud Run 

Console Google Cloud Console 

Others Docker – Containerize the website coding 

 

Table 3.1.6 : Other software used and their functionality 

Software Specifications 

Firebase To handle request from WebRTC 

Google Speech-To-Text API To convert recorded audio into text in real-time for profile 

characterisation 

ChatGPT API - To summarize the text recorded through Speech-to-text 

into simplified version to avoid over large amount of data 

- To generate contextual response in real time for the 

user 
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3.2.3 System Architecture Diagram 

 

 

Figure 3.2.1 :  System Architecture Diagram 

 

User 

• The user interacts with the system via the EmonyAI website, engaging in real-time 

conversations through text, audio, and video. 

 

User Interface (EmonyAI Website) 

• The frontend interface where users communicate with the system. It integrates various 

services like WebRTC, EmonyAI Chatbot, and real-time emotion detection to enhance 

the user experience. 

 

WebRTC 

• WebRTC is responsible for real-time audio and video communication between the user 

and the system, facilitating voice and video calls. It sends: 

o Audio data to the Audio Processing component. 

o Video data to the Video Processing component. 

 

EmonyAI Chatbot 

• The chatbot provides conversational interaction with the user. It uses ChatGPT for 

generating natural language responses and integrates additional contextual data 

(detected emotion and recorded history in agent profile) for better, more personalized 

responses. It also takes direct input from the user for multiple functions. 
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ChatGPT 

• ChatGPT is utilized by the EmonyAI Chatbot for generating intelligent and context-

aware responses. It integrates processed summary from the agent profile recorded or 

real-time emotion detected to produce contextual responses for the user. 

 

Speech-to-Text 

• Converts user conversation through WebRTC Audio Processing into text for processing 

by the chatbot and other components of the system, enabling more context recorded 

into agent profile. 

 

Audio Processing 

• This component processes audio streams from the user for speech recognition via 

Speech-to-Text to convert user conversation into text for agent profile. 

 

Video Processing 

• The video stream is analyzed by the Emotion Detection system to detect the user’s 

emotions based on facial expressions and body language cues. 

 

Emotion Detection 

• The Emotion Detection system processes video streams to identify the emotional state 

of the user. The results are sent to the Emotion Detection API to generate the emotion 

detection result and used by other parts of the system, such as the chatbot, to generate 

more empathetic responses. 

 

MetaGPT Framework 

• The MetaGPT Framework is responsible for: 

o Storing Agent Profiles: It manages the profile of the agent (the other user on the 

call), storing context about their preferences and history. 

o Multi-agent Collaboration: When necessary, the framework coordinates 

between different agents (like ChatGPT, emotion detection, etc.) to manage 

more complex interactions and collaboration. 
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Agent Profile 

• This profile stores the context and history of the agent (the user at the other end of the 

call), which is used to generate conversational suggestions tailored to the agent's 

behavior and interaction history. The profile data includes previous conversations, 

emotional patterns, and basic preferences, which helps the system generate contextually 

relevant responses during the call. 

 

GCS Bucket (Google Cloud Storage) 

• This is used for persisting individual agent profile, temporary data such as 

emotion_tempo.txt and speech_tempo.txt. It ensures that the agent profile are well store 

and the temporary data is accessible through API key. 

 

Emotion Detection API 

• This Emotion Detection API exposes the emotion detection results to the rest of the 

system, allowing the system to access and use real-time emotion data for enhancing 

interaction quality. 
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3.3 Important modules  

3.3.1 WebRTC - Video and Audio Processing  

The EmonyAI system utilizes WebRTC, a robust protocol designed for real-time 

communication, to manage both video and audio streams between users. WebRTC ensures 

reliable two-way communication, handling video and audio data transmission efficiently. 

 

Video Processing 

Video processing in the system is handled through the MyCam and FriendCam 

components, both of which interface directly with WebRTC to ensure smooth video 

communication. 

1. MyCam: This component is responsible for capturing and displaying the local video 

stream from the user's webcam. When the user starts their webcam via the interface, the 

local video feed is captured through WebRTC's media capture capabilities and 

displayed in the MyCam section. This ensures that the user can see their own video feed 

in real-time. 

2. FriendCam: The FriendCam component manages the remote video stream, which 

represents the incoming video from the other participant in the call. WebRTC handles 

the transmission of this remote video, ensuring that the stream is displayed seamlessly 

in the FriendCam interface. The video is rendered automatically using WebRTC’s real-

time media exchange, adhering to WebRTC’s default protocols for video transmission. 

 

Both MyCam and FriendCam utilize the HTML <video> element with attributes like 

autoPlay and playsInline to guarantee smooth playback without additional manual intervention. 

These elements are linked directly to WebRTC streams (local for MyCam and remote for 

FriendCam), ensuring real-time transmission and display. 

 

Audio Processing 

Audio processing in the system is fully managed by WebRTC’s default handling of audio 

streams, ensuring seamless integration with video streams. WebRTC automatically captures 

and transmits both audio and video within the same stream, ensuring synchronization between 

the two. 

• Local Audio Capture: Audio from the user’s microphone is captured and sent as part of 

the WebRTC localStream. 
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• Remote Audio Playback: Audio from the remote participant is included in the 

remoteStream, which is played back in real-time to the user. 

 

WebRTC Integration 

WebRTC serves as the core technology for both video and audio transmission in the 

system. It performs the following functions according to its default protocols: 

• Media Capture: Captures both the user's webcam video and microphone audio. 

• Real-Time Communication: Establishes a peer-to-peer connection between participants 

for efficient and secure media streaming. 

• Stream Management: WebRTC handles both local and remote streams, ensuring they 

are properly synchronized and rendered on the user interface. 

The CallSetting component in the system’s user interface controls WebRTC 

functionalities, such as starting the webcam, creating and answering calls, and ending a session. 

These actions trigger WebRTC’s protocols to initialize and manage media streams. 

 

The system's Video and Audio Processing is handled efficiently by WebRTC, adhering 

to its default protocols for real-time media transmission. The MyCam and FriendCam 

components are responsible for displaying local and remote video streams, respectively, while 

WebRTC’s default audio handling ensures synchronized voice communication. By leveraging 

WebRTC, the system guarantees reliable, high-quality communication with minimal manual 

intervention, providing users with a seamless experience during video calls. 

 

Figure 3.3.1 : WebRTC Architecture 
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3.3.2 Emotion Detection 

In the EmonyAI system, the emotion detection module is powered by a Convolutional 

Neural Network (CNN), designed to analyze facial expressions and determine the emotional 

state of the user in real time. The neural network is responsible for processing image data 

captured during video calls and classifying it into one of several predefined emotion categories. 

 

Neural Network Architecture 

The emotion detection model is based on a Convolutional Neural Network (CNN). CNNs are 

highly effective for image-related tasks due to their ability to capture spatial features from 

images, making them ideal for recognizing patterns such as facial expressions. 

1. Convolutional Layers: 

o These layers form the core of the model, where filters are applied to the input 

images to automatically detect facial features. The convolution operation helps 

identify critical elements like edges, textures, and facial landmarks that are 

essential for emotion recognition. 

o Multiple convolutional layers are stacked, allowing the model to learn 

increasingly complex features at different levels, from basic facial components 

to more abstract emotional cues. 

 

2. Pooling Layers: 

o After each convolutional layer, pooling layers are used to reduce the spatial 

dimensions of the feature maps. This down-sampling not only reduces the 

computational complexity but also helps retain the most important features, 

making the model more robust to variations in facial positioning or lighting 

conditions. 

 

3. Fully Connected Layers: 

o The final layers of the network are fully connected, meaning every neuron in 

one layer is connected to every neuron in the next. These layers take the features 

extracted by the convolutional layers and use them to classify the image into a 

specific emotion category. 

o By learning the relationships between these high-level features, the network can 

accurately determine which emotion the facial expression represents. 
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4. Softmax Layer for Classification: 

o The last layer in the neural network uses a Softmax activation function to assign 

probabilities to each possible emotion class. The model outputs the emotion 

category with the highest probability, such as happiness, sadness, anger, 

surprise, or other emotions. 

 

Real-Time Emotion Detection 

Once the model is trained, it can be deployed to perform real-time emotion detection. 

During a video call, the system captures frames of the user's facial expressions, which are fed 

into the neural network. The network processes these images in real-time and determines the 

user's emotional state, which can then be used by other components of the system, such as the 

chatbot, to tailor interactions based on the detected emotion. 

Role in the EmonyAI System 

The neural network plays a critical role in making the system emotionally intelligent. By 

analyzing visual data from the user's facial expressions, the emotion detection module helps: 

• Personalize interactions: The chatbot can adjust its responses and tone based on the 

user’s detected emotions. 

• Improve user engagement: By responding to the user's emotional state, the system 

makes interactions more empathetic and relevant. 
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Figure 3.3.3 : Architecture for Emotion Detection Module 

 

3.3.3 Google Speech-To-Text 

The Google Speech-to-Text service is integrated into the EmonyAI system to perform 

the critical task of converting spoken conversation during video calls into text. This 

transcription is essential for various downstream processes, enabling the system to record and 

analyze conversations effectively. 

 

The primary function of the service is to transcribe audio data from the conversation into 

a text format. Once the spoken content is converted to text, the following processes take place: 

1. Summarization by ChatGPT: The transcribed conversation will be first stored in 

speech_tempo.txt in the GCS Bucket. After a set time, it will be passed to the ChatGPT 

model, which processes the full text and generates a summarized version. This 

summary captures the essence of the conversation in a more concise format to prevent 

recording too much data. 
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2. Storing in Agent Profile: The summarized conversation is then stored in the 

corresponding agent profile. This stored data includes not only the summarized text but 

also other important metadata that is recorded from other service, such as: 

o Recorded Emotion: The emotional state detected during the conversation. 

o Date and Time: The timestamp of when the conversation occurred. 

By combining the transcribed text, emotional context, and timestamp, the system ensures 

that each agent's profile is updated with comprehensive records of past interactions. This 

enhances future interactions by providing context-aware suggestions based on previous 

conversations and emotions. 

 

Figure 3.3.4 : System architecture for Google Speech-to-Text API 

 

3.3.4 Combining Emotion Detection and Speech-to-text into Context Aggregator 

In the EmonyAI system, the Context Aggregator serves as a crucial component that 

combines the outputs from the Emotion Detection and Speech-to-Text modules. This 

integration allows the system to generate contextually aware conversation suggestions by 

analyzing both the user’s emotional state and the content of the conversation, providing a more 

personalized and empathetic interaction during video calls. 

 

Emotion Detection 

The Emotion Detection module continuously analyzes the user's facial expressions 

captured during the video call to determine their emotional state (e.g., happiness, sadness, 

anger, or surprise). The identified emotion is then sent to the Context Aggregator, giving real-

time insights into the user’s emotional response throughout the conversation. 
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Speech-to-Text 

At the same time, the Speech-to-Text module transcribes the spoken conversation 

between the participants into text. This transcribed content is further summarized by ChatGPT 

to extract the key points from the conversation. The summarized content is passed to the 

Context Aggregator for further analysis. 

 

 

Context Aggregation 

The Context Aggregator integrates two critical data streams: 

1. Emotion Data: The real-time emotional state of the user from the Emotion Detection 

module. 

2. Transcribed Conversation Content: The textual summary of the conversation generated 

from the Speech-to-Text module. 

By combining these streams, the Context Aggregator generates a comprehensive 

understanding of the user’s emotional and conversational context, allowing the system to make 

informed decisions about the direction of the interaction. 

 

Generating Contextual Conversation Suggestions 

Using the combined emotion and conversation data, the Context Aggregator provides 

contextual conversation suggestions to the EmonyAI Chatbot: 

• Emotion-based responses: If the user’s emotional state indicates stress or frustration, 

the chatbot adjusts its tone and responses accordingly, offering more empathetic or 

supportive comments. 

• Content-based responses: The chatbot uses the summarized conversation content to 

provide relevant follow-ups or suggestions that align with the topics discussed, ensuring 

the interaction remains focused and engaging. 

For example, if the user discusses a challenging topic while the Emotion Detection 

module identifies signs of frustration, the chatbot may offer comforting suggestions based on 

recorded history or acknowledge the user about the agent’s emotional state to improve the 

overall interaction quality. 
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Storing in Agent Profile 

Both the summarized conversation and the detected emotional states are stored in the 

Agent Profile. This information enables the system to adapt and improve future interactions by 

drawing on past conversations and emotions, further enhancing the personalized experience 

over time. 

 

Figure 3.3.5 : System Architecture for Context Aggregator 
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CHAPTER 4 SYSTEM DESIGN 

4.1 System Block Diagram 

 

Figure 4.1.1 : System Block Diagram 

 

The system block diagram of EmonyAI represents the interconnection between its core 

components, detailing how data flows through the system.  

• Input Sources: 

o WebRTC Video/Audio Streams: Real-time input from the agent's camera and 

microphone is captured. The video stream is directed to the Emotion Detection 

Module for emotion detection, while the audio stream is processed by the 

Google Speech-to-Text Engine. 

 

• Processing Components: 
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o Emotion Detection: This module processes the video stream and extracts facial 

landmarks to detect emotions, facial expressions, and body language. It 

provides the system with essential data to understand the user's emotional state. 

o Speech-to-Text Engine: This component converts spoken audio into text, 

allowing the system to process the user’s verbal inputs in written form. It is 

crucial for analyzing spoken words and interacting with the ChatGPT API for 

conversation generation. 

• Output: 

o EmonyAI Suggestion: The summarized speech-to-text data, combined with 

emotional cues, is sent to the ChatGPT API, which generates conversation 

suggestions in real-time. The generated response is then output to the user 

through EmonyAI Chatbot. 

o User Feedback Loop: The chatbot presents the conversation suggestion to the 

user, and the entire process repeats, continuously refining the interaction based 

on real-time inputs. 

 

4.2 System Components Specifications 

Hardware Specifications: 

1. User Device (Laptop): 

o Processor: AMD Ryzen 7 5800HS 

o GPU: NVIDIA GTX 1650  

o RAM: 16GB  

o Camera: 1080p resolution external webcam 

o Microphone: Built-in microphone for clear audio capture 

2. Server/Cloud Requirements: 

o Google Cloud Run: Hosts the back-end services and handles system scaling. 

o Google Cloud Services Bucket Storage: Stores user profiles, interaction history, 

and data logs. 

 

Software Specifications: 

1. Operating System: 

o Windows 11 for local development and testing. 

2. Development Environment: 
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o Vite React: Used for building the front-end user interface of the video calling 

platform.  

o VS Code: Primary Integrated Development Environment (IDE) for writing and 

debugging the application. 

3. Real-time Processing Software: 

o WebRTC: Used for real-time peer-to-peer video and audio streaming between 

users. Its low-latency nature ensures that data reaches the processing modules 

(Emotion Detection, Speech-to-Text) without delays. 

o Emotion Detection Module: Facial recognition and emotion detection software, 

using facial landmark models to detect user emotions in real-time. 

o Speech-to-Text Engine: Google’s Cloud Speech-to-Text API to convert user 

audio into written text, feeding into the chatbot. 

4. Backend Services: 

o MetaGPT Framework: Handles the user profile management and dynamic 

learning process, allowing continuous improvement of conversation 

suggestions based on real-time interactions. 

o ChatGPT API: Processes speech-to-text input to generate human-like 

conversation responses. 

 

4.3 Circuits and Components Design 

Since EmonyAI is primarily a software-based system, the circuit-level design focuses on the 

interaction between hardware (user device components like the camera and microphone) and 

the software modules. 

Camera and Microphone Interaction: 

1. Camera Circuit Design: 

o The camera captures video at 30 frames per second (fps) and sends the frames 

to the WebRTC Interface, which directly feeds them to the Emotion Detection 

Module. Emotion Detection Module processes each frame for facial landmarks 

and expressions. 

o Resolution Requirements: The system is optimized for 1080p camera 

resolutions, allowing Emotion Detection Module to accurately detect micro-

expressions and movements essential for emotion analysis. 

2. Microphone Circuit Design: 
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o The microphone captures audio in real-time and transmits it to the WebRTC 

Interface, which sends the raw audio data to the Speech-to-Text Engine. 

 

GPU Acceleration: 

The most resource-intensive processes—real-time facial recognition and emotion 

detection—are offloaded to the system’s GPU. This is crucial for maintaining real-time 

performance, especially when analyzing multiple frames per second. 

• CUDA Acceleration: NVIDIA’s CUDA cores handle the deep learning models used 

for facial landmark detection, speeding up the frame-by-frame analysis required for 

emotion detection. 

 

Communication Circuit Design: 

• WebRTC establishes a real-time communication channel between the user’s browser 

and the system's back-end servers. 

• Video and Audio Data are processed concurrently, and results (emotion data and text) 

are transmitted back to the chatbot with minimal delay, ensuring seamless 

communication. 

 

4.4 Emotion Detection Module 

4.4.1 Building of the Emotion Detection Model in Jupyter Notebook 

In this section, the development of the emotion detection model using a Python notebook 

is documented. The model is built using a Convolutional Neural Network (CNN) to classify 

facial expressions into various emotion categories. The notebook outlines the key stages, 

including data preprocessing, model architecture design, and training the model. By leveraging 

deep learning techniques, the model is trained to accurately recognize emotions based on facial 

images, making it an essential component for real-time emotion detection within the EmonyAI 

system. The notebook also provides insights into how the model's performance is evaluated 

and fine-tuned for optimal accuracy. 

 

 

 

 

Importing Libraries 
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Figure 4.4.1: Code snippet for importing libraries 

 

Libraries: 

• pandas: A library used for data manipulation and analysis, particularly for handling 

tabular data with DataFrames. 

• numpy: A library for numerical operations, particularly for working with arrays and 

matrices. 

• matplotlib.pyplot: A plotting library used for creating static, animated, and interactive 

visualizations in Python. 

• seaborn: A data visualization library based on Matplotlib, providing a high-level 

interface for creating attractive and informative statistical graphics. 

• plotly.express: A high-level Plotly interface used for quickly generating interactive 

plots. 

 

TensorFlow and Keras Imports: 

• tensorflow: An open-source machine learning library used for building deep learning 

models. 

• ImageDataGenerator: A class from Keras for augmenting images in real-time during 

training, which helps in preventing overfitting by creating new image data variations. 

• to_categorical: A utility function that converts class vectors (integers) to binary class 

matrices, essential for categorical cross-entropy loss during classification tasks. 

 

 

Scikit-learn Imports: 
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• confusion_matrix: A function to compute a confusion matrix, a tool used for measuring 

the performance of classification models by comparing actual vs predicted labels. 

• classification_report: Generates a detailed report showing precision, recall, F1-score, 

and support for each class. 

• LabelBinarizer: Converts multi-class labels into a binary matrix form, which is useful 

for one-vs-rest classification. 

• roc_curve: Plots the Receiver Operating Characteristic (ROC) curve, which shows the 

trade-off between true positive and false positive rates for different classification 

thresholds. 

• auc: Computes the Area Under the Curve (AUC) for the ROC curve, a measure of the 

classifier's ability to distinguish between classes. 

• roc_auc_score: Computes the overall ROC AUC score, a performance measure for 

binary classifiers. 

 

Utility Function: 

• clear_output: A utility from IPython used to clear the output of the current cell, typically 

useful in Jupyter notebooks to keep the notebook clean when rerunning code. 

• warnings.filterwarnings('ignore'): This suppresses warnings in the code output. It is 

particularly useful in research notebooks to avoid cluttering the output with non-critical 

warning messages 

 

Hyperparameters and Directories 

 

Figure 4.4.2 : Code snippet for setting hyperparameter and directories 

 

• train_dir and test_dir: These variables store the file paths to the training and testing 

datasets, respectively. In this case, the data is stored in separate directories within the 
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./dataset/ folder. The training directory contains images used to train the model, and the 

testing directory contains images used to evaluate the model’s performance. 

 

• SEED: A random seed is set to ensure reproducibility of results. By fixing the seed 

value, the data shuffling and model initialization can produce consistent results each 

time the code is executed. 

 

• IMG_HEIGHT and IMG_WIDTH: These parameters define the dimensions (height 

and width) to which each image in the dataset will be resized. In this case, each image 

will be resized to 48x48 pixels. This ensures uniformity in the input data passed into 

the neural network, as models typically require images of the same size for training. 

 

• BATCH_SIZE: This parameter determines the number of images that will be passed to 

the model at once during training or evaluation. A batch size of 64 means that 64 images 

will be processed together in each training iteration, allowing for more efficient model 

training. 

 

• EPOCHS: This defines the total number of complete passes through the entire training 

dataset during model training. In this case, the model will undergo 30 epochs, allowing 

it to learn and improve iteratively by adjusting the weights with each pass through the 

data. 

 

• FINE_TUNING_EPOCHS: This parameter is used if fine-tuning the model. Fine-

tuning is the process of further training a pre-trained model on the specific task at hand. 

In this case, fine-tuning will occur for 20 additional epochs. 

 

• LR: This is the learning rate, a crucial hyperparameter that controls how much the 

model's weights are adjusted with respect to the loss gradient during training. A learning 

rate of 0.01 indicates relatively fast learning, though care must be taken to avoid 

overshooting the optimal point. 

• NUM_CLASSES: This specifies the number of output classes for the classification 

task. Here, it indicates that the model is classifying images into 7 distinct emotion 

categories. 
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• EARLY_STOPPING_CRITERIA: This defines the number of consecutive epochs 

without improvement after which the training process will stop early. Setting this value 

to 3 means that if the model’s performance (e.g., validation loss) doesn’t improve for 3 

epochs, training will halt to prevent overfitting and save resources. 

 

• CLASS_LABELS: This is a list that contains the names of the target classes for the 

classification task. In this case, the model is being trained to classify images into 7 

emotions: Anger, Disgust, Fear, Happy, Neutral, Sadness, and Surprise. 

 

Data Loading and Pre-Processing 

 

Figure 4.4.3 : Code snippet for data loading and Pre-processing 

 

1. preprocess_fun: This function applies preprocessing specific to the DenseNet model 

architecture. It normalizes the pixel values to match the input format expected by 

DenseNet, which typically includes scaling and possibly adjusting the color channels. 
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This preprocessing ensures that the input data is consistent with how the pre-trained 

DenseNet model was trained. 

 

2. ImageDataGenerator: A powerful utility for real-time data augmentation, which allows 

the model to generalize better by applying transformations to the input data. Here’s a 

breakdown of each argument: 

• horizontal_flip=True: Randomly flips the images horizontally, which can help the 

model generalize better by learning from different perspectives of the same image. 

• width_shift_range=0.1: Randomly shifts the image horizontally by up to 10% of 

the total width. 

• height_shift_range=0.05: Randomly shifts the image vertically by up to 5% of the 

total height. 

• rescale=1./255: Scales the pixel values from a range of 0-255 to 0-1, which helps 

speed up convergence during training. 

• validation_split=0.2: Splits 20% of the training data for validation purposes, 

allowing the model to be evaluated on unseen data during training. 

• preprocessing_function=preprocess_fun: Applies the DenseNet-specific 

preprocessing function mentioned earlier. 

 

3. test_datagen: Prepares the test data similarly to the training data but without 

augmentation (e.g., no horizontal flips or shifts). It only rescales the pixel values and 

applies the DenseNet preprocessing. This ensures the test data is standardized for 

evaluation purposes. 

 

4. flow_from_directory: This function loads the images from the specified directory 

(train_dir) and applies the transformations defined earlier (such as augmentation and 

preprocessing). It generates batches of augmented and preprocessed image data for the 

model during training. 

• directory=train_dir: Points to the folder containing the training images. 

• target_size=(IMG_HEIGHT, IMG_WIDTH): Resizes the images to the specified 

height and width (48x48 pixels in this case). 

• batch_size=BATCH_SIZE: Defines the batch size as 64, meaning 64 images are 

processed at a time. 
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• shuffle=True: Ensures that the training images are shuffled, which helps the model 

generalize better. 

• color_mode="rgb": Indicates that the input images are RGB (3 color channels). 

• class_mode="categorical": The labels are expected to be in categorical (one-hot 

encoded) format since this is a multi-class classification problem. 

• subset="training": Uses the 80% subset of the data designated for training. 

• seed=12: Ensures that the data shuffling is reproducible by using the same random 

seed. 

 

5. validation_generator: This generator is similar to the training generator but uses the 

20% generator validation subset of the training data to monitor the model’s 

performance during training. No data augmentation is applied to the validation data; 

only the preprocessing and rescaling are done. 

 

6. test_generator: This generator is responsible for loading the test images from the 

test_dir.. It resizes the images, applies necessary preprocessing and ensures no shuffling 

by setting shuffle=False, to keep the order intact for evaluation purpose. The test 

generator is used to evaluate the final performance of the model after training. 

 

 

 

 

 

 

 

 

 

 

 

Displaying images with their respective titles 
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Figure 4.4.4: Code snippet for displaying images with different emotions 

(This part of coding is only used during testing in jupyter notebook to check whether the images 

are detected with correct emotions.) 

 

1. display_one_image(image, title, subplot, color): This function is used to display a 

single image with a given title in a specific subplot. 

• image: The image to be displayed. 

• title: The title to be shown above the image. 

• subplot: Defines where the image will be positioned within a grid of subplots (9 

subplots in this case). 

• color: Though it is passed as a parameter, it is not used directly in this function. You 

can adjust this if you want to apply color to the title in future customization. 

• plt.axis('off'): Turns off the axis around the image for a cleaner visualization. 

• plt.imshow(image): Displays the image. 

• plt.title(title, fontsize=16): Displays the title above the image 

 

2. display_nine_images(images, titles, title_colors): This function displays a 3x3 grid of 

9 images along with their titles. 

• images: The list of 9 images to display. 

• titles: The corresponding titles for each image. 
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• title_colors: Optional argument that allows specifying the color of each title. If not 

provided, it defaults to black. 

• subplot = 331: Refers to the initial position of the first image in a grid layout (3 rows, 

3 columns). The index is incremented for each image. 

• plt.figure(figsize=(13,13)): Sets the figure size for the display. 

• plt.tight_layout() and plt.subplots_adjust(wspace=0.1, hspace=0.1): These ensure 

the images and subplots are tightly packed and evenly spaced. 

 

3. image_title(label, prediction): This function generates the title and color for each image 

based on the model’s prediction. 

• label: The true label (one-hot encoded) of the image. 

• prediction: The predicted class from the model. 

• class_idx = np.argmax(label, axis=-1): Converts the one-hot encoded label into its 

corresponding class index. 

• prediction_idx = np.argmax(prediction, axis=-1): Converts the model’s prediction to 

the predicted class index. 

• if class_idx == prediction_idx: If the predicted class matches the true class, the 

function returns the label along with the color black (correct). Otherwise, it returns 

the predicted label and indicates the correct label with the color red (incorrect). 

 

4. get_titles(images, labels, model): This function generates the titles and colors for a 

batch of images by using the image_title function. 

• model.predict(images): Predicts the class of each image using the trained model. 

• for label, prediction in zip(classes, predictions): Iterates over each true label and its 

corresponding prediction. 

• titles.append(title) and colors.append(color): Appends the generated title and color 

for each image to the respective lists. 

• return titles, colors: Returns the list of titles and colors for the images. 

 

5. img_datagen and img_generator: 

• img_datagen: This ImageDataGenerator scales the pixel values of the images by 

dividing them by 255, ensuring the values are in the range [0, 1]. 
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• img_generator: Loads and augments the images from the train_dir directory. It 

resizes the images to 48x48 pixels, shuffles the data, and loads it in batches of 64. 

The images are in RGB format, and the labels are one-hot encoded (categorical). 

 

6. Get a batch of images and classes: 

• next(img_generator): Fetches the next batch of images and corresponding one-hot 

encoded labels from the data generator. 

• class_idxs = np.argmax(classes, axis=-1): Converts the one-hot encoded labels into 

their corresponding class indices. 

• labels = [CLASS_LABELS[idx] for idx in class_idxs]: Maps the class indices to the 

actual class labels using the predefined CLASS_LABELS list. 

 

7. Display_nine_images : displays a 3x3 grid of the first 9 images from the batch along 

with their corresponding labels. 

 

Checking Data Distribution among different emotions 

 

Figure 4.4.5 : Checking data distribution among different emotions 

1. px.bar function from Plotly Express creates a bar chart.: 

• y: The y-values represent the count of images for each emotion class. The list 

comprehension iterates through the unique class labels in the train_generator and 

counts how many images belong to each class. 

• train_generator.classes: Contains the class labels for all the images in the training 

dataset. 

• np.unique(train_generator.classes): Extracts the unique class labels (emotion 

categories) present in the training dataset. 

• list(train_generator.classes).count(i): Counts how many times each unique class 

label appears in the training data. 

• color=np.unique(train_generator.classes): Assigns a unique color to each class in the 

bar chart. Each bar will have a color corresponding to the unique class. 
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• color_continuous_scale="Emrld": Specifies the color scale to be used for the bars. 

"Emrld" is a color scheme from Plotly’s collection that generates green-shaded 

continuous colors for the bars. 

 

2. Updating the X and Y Axes: 

• update_xaxes(title="Emotions"): This updates the x-axis label to "Emotions", 

indicating that the x-axis represents the emotion classes. 

• update_yaxes(title="Number of Images"): This updates the y-axis label to "Number 

of Images", indicating that the y-axis represents the number of images belonging to 

each emotion class. 

 

3. Updating Layout and Title: 

• showlegend=True: Ensures that a legend is displayed on the chart, helping to identify 

which bar corresponds to which emotion class. 

• title: The title of the chart is set to "Train Data Distribution". 

o 'text': 'Train Data Distribution': The title text for the chart. 

o 'y': 0.95: This positions the title vertically, near the top of the plot. 

o 'x': 0.5: Centers the title horizontally on the plot. 

o 'xanchor': 'center' and 'yanchor': 'top': These parameters ensure the title is 

anchored correctly in the center and at the top of the chart. 

 

4. fig.show() renders and displays the bar chart in the output. It visualizes the distribution 

of images in each emotion class within the training dataset. 
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DenseNet169 Transfer Learning 

 

Figure 4.4.6 : Code Snippet for DenseNet169 Transfer Learning 

1. feature_extractor(inputs) defines the feature feature extraction part of the model using a pre-

trained DenseNet169 model. 

• tf.keras.applications.DenseNet169: This is a pre-trained model from Keras that has 

been trained on the ImageNet dataset. It is used for feature extraction, meaning it will 

learn complex features from the input images (like edges, textures, and patterns) 

without the final classification layers. 

• input_shape=(IMG_HEIGHT, IMG_WIDTH, 3): The input shape is set to the size of 

the images (48x48 pixels) with 3 color channels (RGB). 

• include_top=False: This excludes the top (fully connected) layers of the DenseNet169 

model because the classification task will be handled by custom layers later. 

• weights="imagenet": Loads pre-trained weights from the ImageNet dataset, which 

allows the model to leverage knowledge from a large-scale image classification task. 

• (inputs): Passes the input tensor into the pre-trained DenseNet169 model to extract 

features from the input images 

 

2. classifier(inputs) defines the custom classification layers that will be added on top of the 

DenseNet feature extractor. These layers will make the final predictions. 

• GlobalAveragePooling2D(): This layer reduces the spatial dimensions of the feature 

maps output by DenseNet to a single vector, effectively summarizing the features across 

the entire image. 
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• Dense(256, activation="relu"): Adds a fully connected (dense) layer with 256 neurons 

and ReLU activation, followed by L2 regularization 

(kernel_regularizer=tf.keras.regularizers.l2(0.01)) to prevent overfitting by penalizing 

large weights. 

• Dropout(0.3): Introduces a dropout layer that randomly sets 30% of the neurons to zero 

during training to reduce overfitting. 

• Dense(1024, activation="relu"): A second fully connected layer with 1024 neurons and 

ReLU activation, followed by L2 regularization. 

• Dropout(0.5): Another dropout layer with 50% dropout. 

• Dense(512, activation="relu"): A third fully connected layer with 512 neurons and 

ReLU activation, again with L2 regularization. 

• Dropout(0.5): Another dropout layer with 50% dropout. 

• Dense(NUM_CLASSES, activation="softmax"): The final dense layer with 

NUM_CLASSES neurons (7 in this case for emotion classification) and softmax 

activation, which converts the output into a probability distribution across the classes 

 

3. final_model(inputs) function combines the feature extractor(DenseNet189) and the custom 

classifier to create the full model. 

• densenet_feature_extractor: Calls the feature_extractor function to extract features 

from the input images using DenseNet169. 

• classification_output: Calls the classifier function to generate predictions from the 

extracted features 

 

4. define_compile_model() defines and compiles the final model: 

• Input(shape=(IMG_HEIGHT, IMG_WIDTH, 3)): Creates an input layer with the 

specified input shape (48x48 pixels, 3 color channels). 

• classification_output = final_model(inputs): Passes the input through the final_model, 

which includes both feature extraction and classification. 

• model = tf.keras.Model(inputs=inputs, outputs=classification_output): Creates the final 

Keras model that connects the input layer to the output (emotion predictions). 

• model.compile(): Compiles the model with the following parameters: 
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• optimizer=tf.keras.optimizers.SGD(0.1): Uses the Stochastic Gradient Descent (SGD) 

optimizer with a learning rate of 0.1. SGD is a common optimizer used for training deep 

learning models. 

• loss='categorical_crossentropy': The loss function is categorical cross-entropy, which 

is typically used for multi-class classification problems. 

• metrics=['accuracy']: The model will track accuracy during training and evaluation 

 

Summary of Model 

 

Figure 4.4.7 : Code Snippet for Summary of Model 

1. model = define_compile_model() creates the model by calling the 

define_compile_model function which builds the model using pre-trained 

DenseNet169, feature extractor and custom classification layers. 

• clear_output() : clears the output of the current cell in Jupyter Notebook. 

 

2. model.layers[1].trainable = False freezes the DenseNet169 feature extraction layers by 

setting their trainable attribute to False 

• Layer Freezing: Freezing the feature extraction layers means that during training, the 

weights of these layers will not be updated. This is a common technique in transfer 

learning when the pre-trained model (DenseNet169 in this case) has already learned 

meaningful features from a large dataset (ImageNet). 

• Why Freeze? By freezing these layers, we allow the model to use the pre-learned 

features, while focusing the training process on the custom classification layers added 

on top. This reduces training time and prevents overfitting when working with smaller 

datasets. 

 

3. model_summary() prints a summary of the model architecture that includes list of all 

layers, output shape of each layer, number of parameter of each layer and whether each 

layer is trainable or frozen. 
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Training Model with Freeze Layers 

 

Figure 4.4.8 : Code snippet for training model with freeze layers 

1. Early Stopping Callback: tf.keras.callbacks.EarlyStopping stops the training early 

when the model’s performance on the validation set stops improving. This helps avoid 

overfitting and unnecessary long training times. 

• monitor='val_loss': This tells the callback to monitor the validation loss during 

training. When the validation loss stops improving, the early stopping mechanism 

will be triggered. 

• patience=EARLY_STOPPING_CRITERIA: The patience parameter defines how 

many epochs with no improvement to wait before stopping the training. The value is 

set using the previously defined variable EARLY_STOPPING_CRITERIA (in this 

case, it was set to 3). So, if the validation loss does not improve for 3 consecutive 

epochs, the training will stop. 

• verbose=1: This ensures that the early stopping callback prints information to the 

console when it stops the training. 

• restore_best_weights=True: Once early stopping is triggered, this parameter ensures 

that the model restores the weights from the epoch with the best validation 

performance, rather than keeping the weights from the final epoch. 

 

2. Model Training: model.fit() function starts the training process for the model. 

• x=train_generator: The training data is provided by the train_generator, which is a 

data generator that loads and augments the images in batches during training. 

• epochs=EPOCHS: The number of epochs is set to the value of EPOCHS (30 in this 

case). An epoch refers to one complete pass through the entire training dataset. 

• validation_data=validation_generator: This specifies the validation data to evaluate 

the model's performance after each epoch. The validation_generator provides the 

validation images. 
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• callbacks=[earlyStoppingCallback]: This line specifies that the early stopping 

mechanism will be used during training to stop it if the model stops improving on the 

validation loss. 

 

3. Converting History to Pandas DataFrame: pd.DataFrame(history.history) converts the 

history object into a Pandas DataFrame. The history.history attribute contains the 

training and validation metrics for each epoch (e.g., loss, accuracy, validation loss, and 

validation accuracy). 

• Converting the training history into a Pandas DataFrame makes it easy to visualize 

and analyze the model’s performance across epochs, including plotting graphs or 

reviewing the metrics in a tabular format. 

 

Fine-tuning 

 

Figure 4.4.9 : Code snippet for Fine Tuning the model 

1. Unfreezing the Feature Extraction Layers for Fine-Tuning: 

• model.layers[1].trainable = True: This line unfreezes the previously frozen 

DenseNet169 feature extraction layers (layer 1 of the model). During the initial 

training phase, these layers were frozen to use pre-learned features from ImageNet 

without modifying them. Now, they are unfrozen to allow the model to fine-tune 

these feature extraction layers based on the specific dataset (e.g., emotion 

recognition images). 

• Fine-tuning: In fine-tuning, the weights of the pre-trained model are updated with a 

smaller learning rate so the model can adapt better to the task at hand without 

overfitting or destroying the pre-learned features. 

 

2. Recompiling the Model with a Lower Learning Rate 

• model.compile(): After unfreezing the feature extraction layers, the model needs to 

be recompiled to apply these changes and adjust the learning rate for fine-tuning. 

• optimizer=tf.keras.optimizers.SGD(0.001): The Stochastic Gradient Descent 

(SGD) optimizer is used again, but this time with a lower learning rate (0.001). A 
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lower learning rate during fine-tuning ensures smaller updates to the weights, which 

helps the model improve without making drastic changes to the pre-trained weights. 

• loss='categorical_crossentropy': The loss function remains categorical cross-

entropy, as this is still a multi-class classification problem. 

• metrics=['accuracy']: The model will track accuracy during fine-tuning, as in the 

previous training phase 

 

3. Fine-Tuning the Model: 

• model.fit(): The model is trained again, but this time with the feature extraction 

layers unfrozen for fine-tuning. 

• x=train_generator: The training data generator is the same as before, supplying 

batches of training images. 

• epochs=FINE_TUNING_EPOCHS: The number of epochs is set to 

FINE_TUNING_EPOCHS (20 in this case), which is typically smaller than the 

initial training phase. Fine-tuning does not require as many epochs as initial training 

since the model already has a good starting point from the earlier training. 

• validation_data=validation_generator: The same validation data generator is used 

to monitor the model's performance on the validation set. 

 

4. Concatenating the Training Histories: 

• pd.DataFrame(history_.history): Converts the new history of the fine-tuning phase 

into a Pandas DataFrame. This DataFrame contains metrics like training loss, 

validation loss, training accuracy, and validation accuracy for each epoch during 

fine-tuning. 

• pd.concat([pd.DataFrame(history_.history)], ignore_index=True): Concatenates 

the new fine-tuning history with the previous training history. This step merges the 

two training phases (initial training and fine-tuning) into a single DataFrame for 

easy analysis and visualization. The ignore_index=True ensures that the index is 

reset, so the combined history appears continuous. 
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4.4.2 Converting Emotion Detection Notebook into Python script 

In the EmonyAI system, the emotion detection module initially developed in a Jupyter 

notebook was converted into a standalone Python script to enable seamless execution and 

testing using command-line arguments. This conversion facilitates easier integration, 

deployment, and testing in various modes, such as training and real-time emotion detection. 

 

Conversion Process 

1. Extraction of Core Components: 

o The relevant code from the Jupyter notebook was extracted into a Python script. 

This included: 

▪ Data loading and preprocessing: Code that handles image loading, 

resizing, and normalization. 

▪ Model architecture definition: The deep learning model used for 

emotion detection, built using Keras with TensorFlow backend. 

▪ Training and evaluation logic: Code for compiling, training, and 

evaluating the model using training and validation datasets. 

▪ Inference logic: Code that enables real-time emotion detection using the 

webcam. 

2. Command-Line Arguments: 

o To allow the script to run in different modes which are training or display, 

command-line arguments were added using Python’s argparse module. The user 

can now specify the mode of operation via command-line inputs: 

▪ --mode train: Trains the model on the dataset. 

▪ --mode display: Activates the real-time emotion detection using the 

webcam. 

3. Model Definition and Compilation: 

o The model definition which previously written in the notebook, was transferred 

into the Python script. The model includes several convolutional layers to 

extract features from the input images, followed by dense layers for 

classification. 

o In train mode, the script compiles the model and runs the training process using 

the provided dataset and saves the trained weights to a file (model.h5). 
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4. Real-Time Emotion Detection: 

o In display mode, the script loads the pre-trained model weights and activates 

the webcam for real-time emotion detection. The webcam feed is processed 

frame by frame, and the model makes predictions on the emotions expressed in 

each frame. The predicted emotion is displayed in real-time on the video feed. 

o This conversion allows the system to handle real-time predictions in a 

streamlined manner, improving the system’s usability and functionality during 

video calls. 

5. Integration with System: 

o The conversion of the notebook to a Python script also allows for easier 

integration into the broader system architecture. The script can now be called 

from other parts of the system using simple commands, enabling emotion 

detection as a modular component within the EmonyAI system. 

4.4.3 Publish the Python Script through FastAPI 

After converting the emotion detection model into a Python script, the next step is to expose it 

as an API service using FastAPI. This allows external applications to interact with the emotion 

detection model over the web by sending HTTP requests to specific endpoints. 

Steps for Publishing the Python Script through FastAPI: 

1. Creating the FastAPI Application: 

o The FastAPI framework was chosen for its speed and ease of use in building 

API services. The Python script containing the emotion detection model was 

integrated into a FastAPI application by creating endpoints that accept image 

data and return emotion predictions. 

o The main endpoint /predict was created to handle POST requests, allowing users 

to send image data for emotion analysis. The API processes the image, runs it 

through the pre-trained model, and returns the predicted emotion in JSON 

format. 

2. Deploying the FastAPI Application on Google Cloud: 

o The FastAPI application was deployed to Google Cloud Run, a fully managed 

compute platform that automatically scales applications based on demand. 

Google Cloud Run was chosen due to its ability to handle serverless 
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deployments, making it ideal for hosting the FastAPI application without 

worrying about managing infrastructure. 

o Docker was used to containerize the FastAPI application. A Dockerfile was 

created to define the environment in which the FastAPI application runs, 

ensuring consistency across development, testing, and production 

environments. 

3. Steps to Deploy on Google Cloud Run: 

o Containerization: The FastAPI application was packaged into a Docker 

container using the Dockerfile. 

o Push to Container Registry: The Docker image was pushed to Google Cloud 

Container Registry. 

o Deploy to Cloud Run: The image was deployed to Google Cloud Run, enabling 

it to run as a serverless API that scales automatically based on incoming traffic. 

4. API Service Access: 

o Once deployed, the FastAPI application was assigned a public URL by Google 

Cloud Run. This allows external applications to send requests to the emotion 

detection API. 

o The FastAPI service automatically scales based on demand, ensuring optimal 

performance even under varying loads. 

5. Security and Monitoring: 

o To ensure the security of the API, Google Cloud Run was configured with 

authentication and access control mechanisms, limiting access to authorized 

users. 

o Monitoring was set up using Google Cloud Monitoring and Cloud Logging to 

track API performance and log any issues or errors that occur during runtime. 
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4.4.4 Model Evaluation 

 

 
Figure 4.4.10 : Loss vs Number of Epochs 

This plot shows the loss progression during training, which reflects how well the model is 

optimizing its internal parameters: 

• Blue Line: Training loss decreases from 0.85 to approximately 0.80 over the 20 epochs, 

indicating steady improvement in reducing the model's error. 

• Red Line: Validation loss remains flat around 1.05, which suggests that the model is 

not improving much on the validation set, possibly due to overfitting or issues with data 

complexity. 

The loss function helps to measure the error in the model's predictions, where a lower loss 

implies better performance. 
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Figure 4.4.11 : Confusion Matrix 

 

The confusion matrix provides insight into the classification performance of the model across 

different emotion categories. Each cell in the matrix represents the number of predictions made 

by the model compared to the actual label. 

• The model performs best on "Happy" and "Surprise" classes, with 1518 and 634 correct 

predictions respectively. 

• The model struggles the most with classes like "Fear" and "Neutral", showing higher 

misclassification rates. 

This matrix is a helpful tool for visualizing how well the model is distinguishing between 

different emotion categories. 
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Figure 4.1.12 : Classification Report 

This classification report summarizes the model's precision, recall, and F1-score for each 

emotion class: 

• The "Happy" class has the highest precision and recall scores, indicating strong 

performance in detecting happiness. 

• Classes like "Disgust" have poor precision and recall, which indicates that the model is 

not able to accurately detect these emotions. 

The overall accuracy of 0.64 shows that the model performs reasonably but struggles with 

certain emotions. 
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Figure 4.1.13 : ROC-AUC Curve 

 

The Receiver Operating Characteristic (ROC) curve provides the true positive rate versus the 

false positive rate for each class, alongside the Area Under the Curve (AUC) score: 

• The AUC values for the classes range from 0.82 (Fear) to 0.97 (Happy), with the 

"Happy" and "Surprise" classes performing the best. 

• The AUC measures the model's ability to distinguish between classes, where values 

closer to 1 indicate a stronger performance. 

The ROC-AUC score of 0.89 overall reflects that the model has a high discriminatory power 

between most of the emotion classes. 
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4.5 Webpage design 

 
Figure 4.5.1 : User interface of EmonyAI website 

 

4.5.1 Technology Stacks  

1. Frontend 

• React.js: A JavaScript library for building the user interface. React allows the 

dynamic rendering of components like video streams and chatbots, making the app 

interactive and responsive. 

• Ant Design: A UI library providing pre-built components such as Cards, Buttons, 

and Layout grids, making it easier to create a professional-looking interface. 

• WebRTC: A protocol for real-time communication used to facilitate video and 

audio streaming between users without needing additional plugins. 

• Axios: A library for making HTTP requests from the frontend to the backend, 

especially for checking and creating user profiles. 

2. Backend 

• Express.js: A web framework for Node.js used to create RESTful APIs. It is 

responsible for handling HTTP requests from the frontend and interacting with 

Google Cloud Storage for profile management. 

• Google Cloud Storage API: An API used to store and retrieve agent profiles in the 

cloud. The profiles are created, updated, and managed remotely to allow persistent 

storage. 
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• Firebase: Used for signaling in WebRTC, helping to set up peer-to-peer video calls 

by storing call offers and answers. 

• Python: Used in the backend to define the structure of agent profiles and handle 

updates to those profiles during video calls. 

3. Cloud 

• Google Cloud Storage: The cloud storage service where agent profiles are stored. 

It ensures that user profiles are persistent and available across multiple sessions. 

• Google Cloud Service Accounts: These service accounts authenticate the backend 

to Google Cloud, allowing it to securely manage cloud resources such as agent 

profiles. 

4.5.2 Frontend Components 

The frontend components are responsible for creating the user interface and managing the real-

time video calls and interactions with the chatbot. Each component plays a crucial role in 

delivering a seamless user experience. 

• index.html:   

o This file is the entry point for the web application and links to the external assets 

required for proper styling and functionality. 

o The basic HTML file where the React app is rendered. It loads necessary 

external resources like Ant Design CSS and Google Fonts to ensure a consistent 

design. The div with id="root" is where the entire React app is injected into the 

DOM(index). 

 

Figure 4.5.2 : Code snippet for index.html 
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• main.jsx:  

o This file acts as the starting point of the frontend and bootstraps the React 

application by rendering the App component. 

o The main JavaScript file that initializes the React application. It renders the App 

component, which is the root component containing all other components. It 

also links global styles from style.css(main). 

 

Figure 4.5.3 : Code snippet for main.jsx 

• App.jsx:  

o This is the most crucial part of the frontend, as it ties together all components 

(video call, chatbot, etc.) and handles the core logic of the application. 

o This is the core component of the frontend. It manages the WebRTC connection 

for video calls, handles the local and remote video streams, and integrates with 

Firebase to store and retrieve call details. It also includes the chatbot interface, 

managing interactions with the backend for profile checking and creation(App). 

 

Figure 4.5.4 : Code snippet for App.jsx 
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• MyCam.jsx:  

o It allows the user to see their own video feed and is styled to ensure it looks 

consistent and responsive. 

o This component displays the local user's video feed. It uses an Ant Design Card 

to encapsulate the video stream and applies flexbox for centering the content 

inside the card(mycam). 

 

Figure 4.5.5 : Code snippet for MyCam.jsx 

 

• FriendCam.jsx:  

o This component is responsible for displaying the incoming video stream from 

the remote user during a video call. 

o Similar to MyCam, this component displays the video stream of the remote user 

(the person on the other side of the call). It is styled to be larger, allowing the 

user to see their friend or colleague more prominently(friendcam). 

 

Figure 4.5.6 : Code snippet for FriendCam.jsx 

 



 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    74 

 

• CallSetting.jsx:  

o This component handles all the video call-related actions, making it easy for 

users to control the call directly from the UI. 

o This component provides the controls for the video call. It contains buttons for 

starting the webcam, creating a call, answering a call, and hanging up. Each 

button is styled for full-width display and placed inside a Card for consistency

(callsetting). 

 

 

Figure 4.5.7 : Code snippet for CallSetting.jsx 
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• chatbot.jsx:  

o The chatbot adds an AI-driven interactive element to the video calling platform, 

allowing for dynamic user experiences. 

o This is the chatbot component, responsible for interacting with the backend to 

check if a user profile exists and create one if necessary. It allows users to chat 

with the bot, and the conversation is displayed in the message area. The chatbot 

plays an important role in enhancing user interaction by assisting with profile 

creation and checking(chatbot). 

 

 

Figure 4.5.8 : Code snippet for chatbot.jsx 
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• style.css:  

o The global styles create a consistent look and feel across the entire application, 

ensuring a professional and user-friendly UI. 

o This file defines the global styles for the application, including the dark theme 

(black background with light-colored text), video element styling, and 

customization of Ant Design components(style). 

 

 

Figure 4.5.9 : Code snippet for style.css 
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• Chatbot.css:  

o This CSS file ensures that the chatbot has a clean and modern design, enhancing 

user interaction with the bot. 

o Contains specific styles for the chatbot interface, including message display, 

input fields, and buttons. The chatbot layout is designed to be responsive and 

flexible using flexbox(Chatbot). 

 

Figure 4.5.10 : Code snippet for chatbot.css 
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4.5.3 Backend Components 

• server.js: 

o Manages all profile-related requests and acts as the communication bridge 

between the frontend, Google Cloud Storage, and various AI services. It enables 

profile management while also integrating emotion detection, speech-to-text 

conversion, and conversational AI. 

o This is the main backend server built using Express.js. It manages requests from 

the frontend, particularly for video call interactions and chatbot integration. It 

has multiple API routes, including: 

o /check-profile: Checks whether a profile exists in Google Cloud Storage by 

looking for the corresponding file. 

o /create-profile: Creates a new profile by uploading a Python template to Google 

Cloud Storage if the profile doesn’t already exist. 

o Emotion Detection API: The server will integrate the emotion detection API to 

analyze emotions from video feeds during calls, enhancing user interaction by 

detecting and responding to emotional cues in real time. 

o Google Speech-to-Text API: The server will use this API to convert speech from 

video calls into text, enabling further analysis and processing of the 

conversation. 

o ChatGPT API: This API will be integrated to generate responses based on the 

transcribed text from the conversation, making the chatbot more interactive and 

context-aware. 
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Figure 4.5.11 : Code snippet for server.js 

 

testGoogleCloud.js: 

This is a script for testing the upload functionality to Google Cloud Storage. It uploads a 

sample.py file to the cloud bucket and sets the filename. It is useful for ensuring that the storage 

integration is working as expected. It tests whether the backend can successfully upload files 

to Google Cloud, which is essential for managing agent profiles. 

 

Figure 4.5.12 : Code snippet for testGoogleCloud.js 
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sample.py: 

A Python template that acts as a blueprint for agent profiles. It defines the structure for 

storing agent information and call history. The file includes a function to add new entries to 

the history, such as call summaries and detected emotions. It is used to create and update agent 

profiles, storing important information like call history and emotions detected during the call. 

 

emony_backend_service_key.json & emonyai-6103e-8e4d94f3f5e2.json: 

These files contain Google Cloud service account credentials, which are used to 

authenticate the backend server with Google Cloud. They allow secure access to Google Cloud 

Storage for managing agent profiles. These credentials ensure that the backend can securely 

interact with Google Cloud Storage and manage user profiles. 

 

Figure 4.5.13 : emony_backend_service_key.json 

 

 

Figure 4.5.14 : emonyai-6103e-8e4d94f3f5e2.json 
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4.5.4 Core Features 

1. Video Calling: 

• The website enables real-time video calling using WebRTC. Users can view their 

own camera feed in MyCam.jsx and the remote user's feed in FriendCam.jsx. The 

call controls are managed by the CallSetting component, allowing users to start, 

create, answer, and end calls with ease. 

• Video calling is the primary feature of the system, allowing users to communicate 

in real time with high-quality video and audio. 

2. Chatbot Integration: 

• The chatbot component is integrated into the system to provide AI-driven 

conversations. It helps users check if their profile exists in the cloud, creates new 

profiles if needed, and interacts with them through a user-friendly interface. 

• The chatbot enhances the video calling experience by allowing users to manage 

profiles and engage with AI during their interactions. 

3. Google Cloud Storage Integration: 

• Agent profiles are stored and retrieved from Google Cloud Storage. This integration 

allows the system to maintain user profiles across sessions, storing details such as 

call history, summaries, and detected emotions. 

 

4.5.5 Deploying on Google Cloud Run 

The deployment process for the EmonyAI project involves setting up both the frontend 

and backend components to run on Google Cloud Run, a fully managed serverless platform 

that allows the application to scale automatically based on demand. Below are the key steps 

and considerations involved in deploying the project on Google Cloud Run: 

 

1. Preparing the Application for Deployment 

Both the frontend and backend were prepared for deployment by ensuring the 

following: 

• Docker Containerization: 

o Google Cloud Run requires applications to be containerized. For this project, 

Docker was used to package the frontend and backend into separate containers. 

The Dockerfile for each component specifies the dependencies, such as Node.js 
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for the frontend and Express.js backend, and ensures the application can run 

smoothly in a cloud environment. 

 

Figure 4.5.15 : Code snippet for Dockerfile 

 

• Environment Configuration: 

o Sensitive data such as Google Cloud service keys 

(emony_backend_service_key.json) and the project configuration for Firebase 

were securely managed using environment variables. These keys were not 

hardcoded into the source code but were instead injected during the build and 

deployment stages to ensure security. 

 

2. Frontend Deployment on Google Cloud Run 

• Frontend (React App): 

o The frontend, which includes components such as the video call interface 

(App.jsx, MyCam.jsx, FriendCam.jsx) and chatbot (Chatbot.jsx), was built into 

a static bundle using npm run build. This bundle was then served using a 

lightweight web server (e.g., serve or http-server) within a Docker container. 
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o Once the Docker image for the frontend was ready, it was pushed to Google 

Container Registry and deployed on Google Cloud Run. The deployment 

configuration ensured that the service was accessible publicly via a HTTPS 

endpoint, allowing users to access the video call platform through their 

browsers. 

 

3. Backend Deployment on Google Cloud Run 

• Backend (Express.js Server): 

o The backend, which interacts with Google Cloud Storage to manage agent 

profiles and calls APIs such as the Emotion Detection API, Google Speech-to-

Text API, and ChatGPT API, was also containerized using Docker. The 

Express.js server was configured to listen for incoming HTTP requests and 

interact with Google Cloud Storage via the service account keys 

(emony_backend_service_key.json). 

o Similar to the frontend, the backend Docker image was pushed to Google 

Container Registry and deployed to Google Cloud Run. The service was set up 

with the appropriate authentication to securely access Google Cloud Storage 

and external APIs. 

 

4. Integration and Scalability 

• Google Cloud Run Service Configuration: 

o Both the frontend and backend services were deployed as separate instances on 

Google Cloud Run. The platform automatically scales the services based on 

traffic, ensuring that the application can handle increased demand without 

requiring manual intervention. 

o Google Cloud Run also manages resource allocation, so the services only 

consume resources when they are actively handling requests, making it a cost-

efficient solution. 

• CORS and Security: 

o Since the frontend and backend are hosted on different Google Cloud Run 

instances, Cross-Origin Resource Sharing (CORS) was configured on the 

backend to allow the frontend to make API requests securely. Additionally, 
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HTTPS was enforced to ensure secure communication between the client and 

server. 

• Environment Variables: 

o Environment variables were configured in Google Cloud Run for each service 

to securely manage sensitive data, such as API keys and database credentials, 

which were required to access Google Cloud services and external APIs. 

 

5. Monitoring and Logging 

• Google Cloud Logging: 

o After deployment, Google Cloud Logging was used to monitor the services. 

Logs from both the frontend and backend were collected and viewed in the 

Google Cloud Console, allowing for real-time debugging and performance 

tracking. 

• Google Cloud Monitoring: 

o Google Cloud Monitoring was also integrated to track the performance of the 

deployed services, providing metrics such as request latency, error rates, and 

resource usage. Alerts were configured to notify when certain thresholds were 

exceeded. 
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4.6 Multi-agent framework 

The MetaGPT framework is a key component of the EmonyAI system, designed to 

manage and utilize agent profiles and facilitate multi-agent collaboration when needed. In this 

system, each "agent" refers to a person that the user may communicate with through the video 

calling platform. The framework serves several functions, primarily centered around storing 

agent information and orchestrating interactions between agents when required. 

 

Agent Profile Management 

The MetaGPT framework is responsible for creating and managing the agent profiles. 

Each agent profile contains detailed information about the individual, such as their preferences, 

conversation history, and other personalized data. This profile allows the system to store 

relevant information about every person that the user might call, enhancing future interactions. 

During a call, the EmonyAI Chatbot uses these agent profiles to provide context-aware 

suggestions. For instance, the chatbot can retrieve and display the agent's preferences or other 

relevant information through the chatbot textbox, helping to guide the conversation and ensure 

smoother communication. This real-time access to agent-specific data helps personalize the 

user experience, making conversations more engaging and effective. 

 

Orchestration of Multi-Agent Communication 

The MetaGPT framework also has the capability to orchestrate interactions between two 

agent profiles. When prompted by the user using keyword “imagine”, the framework can 

simulate or facilitate communication between two individuals (agents) chosen by the user to 

test how well they might work together in a team. This feature allows users to assess potential 

group dynamics and determine if the individuals are compatible in terms of collaboration, 

communication styles, or other work-related preferences. 

 

By leveraging data from the agent profiles, MetaGPT ensures that the orchestrated 

communication reflects realistic interactions between the individuals. It can take into account 

the participants’ behavioral patterns and preferences to provide insights into how they might 

function as a team. This functionality is particularly valuable in team-building or collaborative 

environments, where understanding how individuals interact is crucial for forming effective 

teams. 
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The MetaGPT framework plays a critical role in the EmonyAI system by managing agent 

profiles and orchestrating multi-agent interactions. It ensures that the chatbot can offer real-

time, contextual suggestions during calls by drawing on stored agent information. Additionally, 

when prompted, it can facilitate team dynamics tests between agents, helping users evaluate 

potential collaboration and teamwork. This multi-agent framework adds a layer of intelligence 

and adaptability to the system, enhancing the overall communication experience. 

 

Figure 4.6.1 : Template for agent profile 

 

 
Figure 4.6.2 : Agent Profile from CaiPin.py 
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Figure 4.6.3 : Agent Profile from JoeYen.py 

 

 

 
Figure 4.6.4 : Agent Profile from KenHow.py 
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Figure 4.6.5 : Agent Profile from KhaiShen.py 

 

 

 
Figure 4.6.6 : Agent Profile from Rina.py 
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Figure 4.6.7 : Agent Profile from Wendy.py 
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4.7 Operation Logic 

The operation of EmonyAI is structured into three phases: before the video call starts, 

during the video call, and after the video call ends. Each phase governs how the system interacts 

with users and handles conversation suggestions based on real-time data from video calls. 

4.7.1 Before the Video Call Starts 

This phase sets up the user profile and prepares EmonyAI for the video call. 

1. Initiating the Call: 

o EmonyAI prompts the user with: "Who are we calling now?" 

o The user inputs the <name> of the person they are calling. 

2. Profile Lookup in GCS Bucket: 

o EmonyAI searches for the <name>.py profile in the Google Cloud Storage 

(GCS) Bucket. 

▪ If <name>.py is found, EmonyAI outputs "Profile is found" and loads 

the profile. 

▪ If <name>.py is not found, EmonyAI creates a new profile, outputs 

"Creating new profile", and stores it based on the format specified in 

sample.py. 

3. User Commands: 

o If the user inputs "Abort", the system returns to "Who are we calling now?", 

allowing the user to restart or change the target caller. 

4.7.2 During the Video Call 

Once the call starts, EmonyAI activates APIs for real-time data analysis and provides 

conversation suggestions based on emotions and speech. 

1. Emotion Detection with Custom API: 

o EmonyAI uses our custom emotion detection API deployed from the Google 

Container Registry, which is tailored for this system. 

o The API processes the video input from the call and detects emotions at 5-

second intervals. Only emotions classified as VERY_LIKELY (joy, sorrow, 

anger, surprise) are recorded. 



 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    91 

 

o The detected emotions are saved in "emotion_tempo.txt" in the GCS Bucket. 

o This emotion detection API enables real-time analysis of the caller’s emotional 

state, offering relevant data for EmonyAI to use in generating conversation 

suggestions. 

2. Speech-to-Text Conversion with Google Speech-to-Text API: 

o Audio from the video call is processed through the Google Speech-to-Text API, 

converting speech into text. 

o The transcribed text is stored in "speech_tempo.txt" in the GCS Bucket. 

o This text data is later used by ChatGPT to generate summaries and conversation 

suggestions. 

3. Summarization with ChatGPT API: 

o The ChatGPT API reads the content in "speech_tempo.txt" and generates a 

summary, which is stored in the target caller's profile <name>.py. 

o This functionality allows EmonyAI to keep concise records of conversations, 

which will improve the system’s ability to offer personalized suggestions over 

time. 

4.7.3 Pauses in Conversation 

EmonyAI monitors pauses during the conversation and performs specific actions based on the 

length of the pause. 

• When no audio is detected for 5 seconds: 

o EmonyAI saves both "speech_tempo.txt" and "emotion_tempo.txt" and pauses 

writing to these files for 8 seconds. 

o During this pause, ChatGPT generates a summary of "speech_tempo.txt" in 

under 50 words and analyzes "emotion_tempo.txt" to calculate emotion 

percentages (e.g., "joy_80%, anger_20%"). 

o This summarized data is appended to <name>.py using the format in sample.py 

o After saving, "speech_tempo.txt" and "emotion_tempo.txt" are cleared for the 

next segment of the call. 

• When no audio is detected for 10 seconds: 
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o EmonyAI reads <name>.py and uses ChatGPT to analyze historical data, 

focusing on topics that previously led to higher levels of positive emotions (joy 

or surprise). 

o The system then suggests a topic to the user: "You can try talking about <topic>, 

they seemed interested in it." 

o This allows EmonyAI to guide the conversation toward topics the caller has 

responded to positively in the past, improving engagement. 

4.7.4 After the Video Call Ends 

When the video call ends, EmonyAI updates the caller’s profile and prompts the user for further 

action. 

1. Profile Update and Saving: 

o The profile <name>.py is updated with the summarized conversation and 

emotional data collected during the call, ensuring that all relevant information 

is stored for future interactions. 

o This ensures that the profile grows with each call, enabling more accurate 

suggestions in future conversations. 

2. Prompt for New Call: 

o After saving the profile, EmonyAI asks the user: "Call another person?" 

o If the user responds with "yes", the system restarts from "Who are we calling 

now?" for the next conversation. 
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4.8 Special Situations 

 

In addition to the standard operation logic, EmonyAI includes several special modes 

designed to handle specific situations and user preferences. These modes ensure that the system 

is flexible and adaptable to unique user needs while preventing any unexpected situations from 

occurring. 

 

Private Mode: 

Private mode aims to protect the privacy of both parties during sensitive or confidential 

conversations. 

 

Trigger: If the conversation involves confidential information and both parties prefer not to 

have the conversation recorded, they can type "private" or “Private” into the chatbot. 

 

Behavior: Upon activation of Private Mode, EmonyAI will immediately pause all three key 

services: emotion detection, speech-to-text conversion, and ChatGPT summarization. The 

video call itself will continue, but no data will be captured or processed by EmonyAI until the 

mode is deactivated. This feature ensures that users have full control over when the 

conversation is recorded and when it remains entirely private. 

 

Imagine Mode: 

Imagine Mode utilizes the MetaGPT Framework to simulate interactions between two 

recorded agent profiles using historical conversation data. 

 

Trigger: When the user types "imagine" or “Imagine” into the chatbot, EmonyAI will prompt 

the user to specify the two agent profiles they want to test in a simulated interaction. 

 

Process: 

1. EmonyAI will first respond with: "Subject 1?" and wait for the user to input the name 

of the first agent. 

2. It will then search for the profile of <name> in the GCS Bucket. 

3. Next, the system will prompt: "Subject 2?", and the user will provide the name of the 

second agent. 
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4. EmonyAI will search for the second profile. 

Outcome: 

1. If both profiles are found, EmonyAI will load the two profiles into the MetaGPT 

framework to generate a simulated conversation based on the historical data of both 

agents. 

2. If one or both profiles are missing from the GCS Bucket, EmonyAI will output: "You 

need to learn more about this person first.", indicating that more real conversations are 

required to build the necessary profiles for simulation. 

This mode is useful for testing and evaluating interactions between two agents based on 

their past conversation history, providing insights into how they might collaborate or 

communicate in different contexts. 
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CHAPTER 5 EXPERIMENT/SIMULATION 

5.1 Setup 

5.1.1 Hardware Setup 

For the EmonyAI system, the following hardware setup was used to ensure optimal 

performance during real-time facial recognition, emotion detection, and conversation 

generation: 

• User Device (Laptop/PC): 

o Processor: AMD Ryzen 7 5800HS. This processor provided the necessary 

computational power to handle multiple processes simultaneously, including 

video streaming, emotion detection, and speech-to-text conversion. 

o GPU: NVIDIA GTX 1650. This GPU was essential for GPU acceleration, 

allowing the system to perform resource-intensive tasks like real-time facial 

recognition and emotion detection. 

o RAM: 16 GB. This memory capacity was chosen to support the smooth 

execution of the system, especially when handling multiple streams of data from 

video, audio, and AI processing components. 

o Camera: 1080p resolution webcam. The high-definition camera was used to 

capture clear video input, ensuring accurate emotion detection and facial 

recognition. 

o Microphone: Built-in microphone for clear audio capture, with noise-cancelling 

capabilities to ensure accurate speech-to-text conversion. 

• Server/Cloud Requirements: 

o Google Cloud Run: This platform hosted the back-end services of the system, 

including the AI models for facial recognition, emotion detection, and 

conversation generation. The use of Google Cloud Run also ensured scalability, 

allowing the system to handle multiple users simultaneously. 

o Google Cloud Services Bucket Storage: This cloud storage solution was used to 

store user profiles, interaction logs, and conversation data. 

5.1.2 Software Setup 

The software setup for EmonyAI consisted of various tools and libraries integrated to handle 

real-time processing, AI-based analysis, and cloud deployment. 
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• Operating System: 

o Windows 11: The development environment was set up on Windows 11, 

providing compatibility with all required software and libraries, including 

WebRTC, Emotion Detection, and the Google Cloud API. 

• Development Environment: 

o Vite React: Used to build the front-end user interface for the video calling 

platform. Vite React's fast build and deployment capabilities allowed for rapid 

iterations during the development process. 

o VS Code: This IDE was used to write and debug the application. VS Code was 

chosen for its ease of use and extensive support for JavaScript and Python. 

• Real-Time Processing Software: 

o WebRTC: This was the core technology for real-time video and audio streaming 

between users. It enabled the peer-to-peer connection required for capturing 

user input and transmitting it to the processing modules. 

o Emotion Detection Module: This tool was integrated to handle real-time facial 

recognition and emotion detection. The module’s ability to process video 

frames in real-time made it ideal for this project. 

o Speech-to-Text Engine: The Google Cloud Speech-to-Text API was used to 

convert spoken audio into text, which was then passed on to the chatbot for 

conversation generation. 

• Backend Services: 

o MetaGPT Framework: This framework was responsible for managing user 

profiles, tracking emotional states, and generating conversation suggestions. It 

continuously learned from interactions, ensuring that conversation suggestions 

became more personalized over time. 

o ChatGPT API: This API handled the natural language processing (NLP) 

required to generate human-like responses based on the user’s speech and 

emotional cues. 
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5.2 System Operation 

The system operation begins by launching the video call website, where EmonyAI is 

integrated to assist in real-time conversations. Once the video call starts, EmonyAI monitors 

both verbal and non-verbal cues, using its emotion detection, speech-to-text, and chatbot 

services to provide conversation suggestions and emotional feedback. Users interact 

seamlessly with the chatbot, which can load profiles, analyze conversation history, and 

simulate interactions. The system operates continuously in the background, enhancing the 

video call experience by offering contextually relevant suggestions and adapting to each 

interaction dynamically. 

5.2.1 Interaction Involving Positive Feedback 

 

 
Figure 5.2.1 : Screenshot of interaction between me and Amanda Lean (Rina.py) 

 

- The system starts with EmonyAI asking the user “Who are we calling now?” 

- The user responses with “Rina” and the profile is found in GCS Bucket. Therefore, output 

“Profile is found”. 

- The target caller enters the call, EmonyAI is updated and responded with “Call Started.” 

- “Start Watching!” indicates that Emotion Detection is started. 

- “Start Listening!” indicates that Speech-To-Text is started. 

- “Start Thinking!”  indicates that ChatGPT is started. 

- Emotion Detection detected the target caller to be happy, therefore output “Your friend 

appeared happy! Good conversation!” 
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5.2.2 Interaction Involving Negative Feedback 

 

 
Figure 5.2.2 : Screenshot of interaction between me and Chu Joe Yen (JoeYen.py) 

 

- The system starts with EmonyAI asking the user “Who are we calling now?” 

- The user responses with “JoeYen” and the profile is found in GCS Bucket. Therefore, output 

“Profile is found”. 

- The target caller enters the call, EmonyAI is updated and responded with “Call Started.” 

- “Start Watching!” indicates that Emotion Detection is started. 

- “Start Listening!” indicates that Speech-To-Text is started. 

- “Start Thinking!”  indicates that ChatGPT is started. 

- Emotion Detection detected the target caller to be sad, therefore output “Your friend appeared 

sad! Let me think how to help you..” 

- Start reading through JoeYen.py, and search for last history that matched with higher 

percentage ‘happy’ emotion. Input the history to ChatGPT to generate a shorter 

summarization. 

- Output the result “Try talking about <suggestion>. Your friend appeared happy when you last 

talked about it.” In this case, <suggestion> = “a café to go”. 
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Figure 5.2.3 : Screenshot of interaction between me and Ng Cai Pin (CaiPin.py) 

 

- The system starts with EmonyAI asking the user “Who are we calling now?” 

- The user responses with “CaiPin” and the profile is found in GCS Bucket. Therefore, output 

“Profile is found”. 

- The target caller enters the call, EmonyAI is updated and responded with “Call Started.” 

- “Start Watching!” indicates that Emotion Detection is started. 

- “Start Listening!” indicates that Speech-To-Text is started. 

- “Start Thinking!”  indicates that ChatGPT is started. 

- Emotion Detection detected the target caller to be happy, therefore output “Your friend 

appeared happy! Good conversation!” 

-  Emotion Detection detected changes in the target caller to be sad, therefore output “Your 

friend appeared sad! Let me think how to help you..” 

- Start reading through CaiPin.py, and search for last history that matched with higher 

percentage ‘happy’ emotion. Input the history to ChatGPT to generate a shorter 

summarization. 

- Output the result “Try talking about <suggestion>. Your friend appeared happy when you last 

talked about it.” In this case, <suggestion> = “food”. 
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5.3 Multi-Agent Interaction 

 

Figure 5.2.4 : Screenshot of EmonyAI Multi-Agent prompting 

 

- The system starts with EmonyAI asking the user “Who are we calling now?” 

- The user responses with “Imagine” and therefore trigger multi-agent functionality. 

- The system request Subject 1 name. 

- The user responded with “CaiPin”. 

- The system request Subject 2 name. 

- The user responded with “Wendy”. 

- The system then loads both profile from GCS Bucket into MetaGPT, and output “Calling 

MetaGPT”. 

- After processing, the system output the interaction content between the two character profile. 

 

Note: using Multi-Agent Prompting doesn’t require to start WebRTC protocol. 
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5.4 Application for Special Situations 

 

Figure 5.2.5 : Screenshot of interaction between me and Goh Ken How (KenHow.py) 

 

- The system starts with EmonyAI asking the user “Who are we calling now?” 

- The user responses with “CaiPin” and the profile is found in GCS Bucket. Therefore, output 

“Profile is found”. 

- The target caller enters the call, EmonyAI is updated and responded with “Call Started.” 

- “Start Watching!” indicates that Emotion Detection is started. 

- “Start Listening!” indicates that Speech-To-Text is started. 

- “Start Thinking!”  indicates that ChatGPT is started. 

- Emotion Detection detected the target caller to be happy, therefore output “Your friend 

appeared happy! Good conversation!” 

- The user input “Private” 

- The system ends 3 services. 

- “Stop Watching.” indicates that Emotion Detection is stopped. 

- “Stop Listening.” indicates that Speech-To-Text is stopped. 

- “Stop Thinking.”  indicates that ChatGPT is stopped. 

-  The system saves the target caller profile. 
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Figure 5.2.6 : Screenshot of interaction between me and Amanda Lean (Rina.py) 

 

- The system starts with EmonyAI asking the user “Who are we calling now?” 

- The user responses with “Rina” and the profile is found in GCS Bucket. Therefore, output 

“Profile is found”. 

- The target caller enters the call, EmonyAI is updated and responded with “Call Started.” 

- “Start Watching!” indicates that Emotion Detection is started. 

- “Start Listening!” indicates that Speech-To-Text is started. 

- “Start Thinking!”  indicates that ChatGPT is started. 

- Emotion Detection detected the target caller to be happy, therefore output “Your friend 

appeared happy! Good conversation!” 

- The user input “Abort” 

- System output “Ending call”, and ends WebRTC connection in 10 seconds timer. 
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5.5 Implementation Issues and Challenges 

Several challenges were encountered during the implementation of EmonyAI. These 

challenges and their solutions are outlined below: 

1. GPU Resource Limitation: 

o Challenge: The real-time processing of video frames by OpenFace required 

significant GPU resources, leading to occasional slowdowns. 

o Solution: GPU acceleration was implemented using NVIDIA's CUDA cores, 

which significantly reduced the time required to process each frame and 

improved the overall system performance. 

2. Video Latency in WebRTC: 

o Challenge: During initial testing, there was noticeable video latency when 

using WebRTC, which impacted the timing of emotion detection. 

o Solution: The WebRTC configuration was optimized by adjusting buffer sizes 

and bandwidth allocation. Additionally, network conditions were simulated to 

test the system's performance in different environments. 

3. Inconsistent Speech-to-Text Accuracy: 

o Challenge: The speech-to-text conversion was occasionally inaccurate due to 

background noise and low-quality audio input. 

o Solution: A noise-cancelling filter was applied to the audio stream before 

sending it to the Google Cloud Speech-to-Text API, improving transcription 

accuracy. 

4. Scalability Issues: 

o Challenge: As the system was designed to handle multiple users, managing and 

updating user profiles in real-time presented scalability challenges. 

o Solution: Google Cloud Services was utilized to store and manage user profiles 

efficiently, with dynamic scaling options to handle increasing user demand. 
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5.6 Concluding Remark 

The experimentation phase of EmonyAI has successfully demonstrated the feasibility of 

AI-driven emotion detection and conversation support within a video call platform. Despite 

several challenges during development—such as GPU resource limitations, video latency in 

WebRTC, and inconsistent speech-to-text accuracy—the system was refined to provide real-

time, context-aware responses. By leveraging GPU acceleration, optimizing WebRTC 

configurations, and applying noise-cancellation techniques, the performance and accuracy of 

EmonyAI were significantly improved. Furthermore, Google Cloud Services played a key role 

in managing user profiles, ensuring scalability for future growth. This project showcases the 

potential for AI to enhance human interactions in digital communication platforms by making 

them more empathetic and responsive. 
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CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION  

6.1 System Testing  

EmonyAI is built around three main components: emotion detection, speech-to-text, 

and ChatGPT integration. Together, these components work seamlessly to provide a more 

interactive and responsive video call experience. 

 

Emotion Detection:  

This component analyzes the emotions of participants during video calls by capturing 

facial expressions from the video feed. The detected emotions are used to provide real-time 

feedback or suggestions, ensuring that the conversation is more empathetic and contextual 

aware. 

 

Speech-to-Text:  

The system utilizes Google’s Speech-to-Text API to convert spoken conversations into 

text. This allows for transcription of the call and enables the chatbot to understand and 

process the content of the conversation more effectively. 

 

ChatGPT Integration: 

Leveraging OpenAI’s ChatGPT API, EmonyAI provides intelligent summarization of 

conversations and offers conversation suggestions. This helps guide users through the call, 

making recommendations based on the detected emotions and speech content, enhancing the 

overall interaction. 

 

Evaluation will be made on these three components to ensure the system works well. 

Each part will be assessed for its accuracy and performance guaranteeing that EmonyAI 

delivers a high-quality, real-time communication experience. 

 

6.1.1 Testing on Emotion Detection 

Before deploying the emotion detection API to Google Cloud, the testing process 

focused on ensuring the accuracy and reliability of the emotion detection script using images 

captured during video calls. This local testing phase was critical to validating the 

functionality of the script before publishing it to the cloud. 
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1. Capturing Images from Video Calls 

During video calls, frames from the video stream were captured and saved as images. 

These images were used as input data to simulate real-world scenarios, allowing the script to 

process facial expressions in a controlled environment. The captured images represented a 

variety of emotional expressions, ensuring that the emotion detection model could handle a 

range of emotions effectively. 

By using actual images from video calls, the testing process closely mimicked the conditions 

under which the emotion detection API would operate once deployed. 

 

2. Local Testing of the Emotion Detection Script 

The emotion detection script, which was developed to analyze facial expressions and 

categorize them into emotions (e.g., happy, sad, surprised, etc.), was tested locally on a 

development machine. Instead of deploying the API directly to Google Cloud, the following 

steps were performed to ensure that the script worked correctly: 

• Running the Script Locally: 

o The script was run on the local machine with the captured images as input. 

This allowed for rapid iteration and debugging without needing to deploy the 

code to the cloud repeatedly. 

• Emotion Classification: 

o The script analyzed the facial expressions in each image and classified the 

emotions detected. This output was compared with expected results based on 

the actual expressions (portrayed by the user) in the captured images. The 

emotion that can be classified are angry, disgusted, fearful, happy, neutral, sad 

and surprised 

 

 

 

 

 

 

3. Testing Results 

Image Testing Result Actual Result 
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Happy Happy 

 

Neutral Fearful 

 

Surprised Happy 

 

Happy Happy 

 

Surprised Happy 
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Surprised Disgusted 

 

Fearful Happy 

 

Happy Happy 

 

Neutral Neutral 

 

Disgusted Disgusted 
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Happy Happy 

 

Neutral Neutral 

 

Neutral Neutral 

 

Happy Happy 

Table 6.1.1 : Testing Result for Emotion Detection 

6.1.2 Evaluation on Speech-To-Text 

In the MetaGPT system, agent profiles are stored in a Google Cloud Storage (GCS) 

bucket and include information generated from the conversation, such as transcribed text and 

emotional data. The creation of these profiles begins with audio input being processed through 

the Google Speech-To-Text API. The resulting transcription is temporarily saved in a file 

named speech_tempo.txt. 
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To minimize the amount of data stored, this file is then summarized by ChatGPT. The 

summarized version of the conversation is stored in the agent profile, significantly reducing 

storage space while maintaining key conversational details. 

To ensure the reliability of this process, we must evaluate the performance of the Google 

Speech-To-Text API in converting the audio input into text by analyzing the contents of the 

speech_tempo.txt file. 

Key Steps in the Process 

1. Audio Input: The system captures audio from conversations during a video call. 

2. Speech-to-Text Conversion: The captured audio is sent to the Google Speech-To-Text 

API, which transcribes the spoken words into text. 

3. Saving the Transcription: The resulting transcription is saved into a temporary text file 

named speech_tempo.txt. 

4. Summarization by ChatGPT: To conserve storage space, ChatGPT processes and 

summarizes the transcription, retaining only the essential information. This 

summarized version is stored in the agent profile. 

Evaluation Considerations 

1. Transcription Accuracy: We can measure the performance of the Speech-To-Text API 

by analyzing how accurately the transcribed text (from speech_tempo.txt) matches the 

original spoken words. This includes calculating the Word Error Rate (WER) and 

checking for any critical errors in context. 

2. Summary Quality: After the transcription is summarized by ChatGPT, we need to 

ensure that the key points and relevant information from the conversation are still 

captured, despite the reduction in data. 
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Example 1 

 

Figure 6.1.1 : Code snippet from agent profile : JoeYen.py 

 

Full Text Recorded (from speech_tempo.txt) 

A: 

Hey! Have you thought about which cafe we should go to after our exams? 

 

B: 

Yeah, I’ve been thinking about it. What do you think about that new place on Main Street? 

The cozy one with the green sign? I’ve heard some good thinks about it. 

 

A: 

Oh, you mean the one with the great coffee? I heard it’s pretty popular these days. Though 

I'm not sure if it will be too crowed on weekends. 

 

B: 

Yeah, that’s true. It might be a bit too busy for my taste. What about that other one you 

mentioned last time? The one near the lake? It sounded interesting. 

 

A: 

Oh yeah, I think it's called Lazy Day Cafe. I haven’t been there yet, but I heard it's nice and 

quite—good for studying or catching up. The only thing is it’s a bit far from here, but I’m 

up for it if you are! 

 

B: 

Hmm, it does sound like a nice spot, especially if we want some peace and quiet after 

exams. I don’t mind the drive, really. Plus, we’ll probably want to just relax and unwind. 

 

A: 
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Totally! I think I’ll need a calm place after all these exams. Too much pressure this 

semester, and I can’t wait for a break. Oh, did I tell you? I heard that cafe also has these 

homemade cakes that people rave about. 

 

B: 

Really? Cakes too? Okay, now you’ve convinced me. I’m definitely down to try it out. Do 

they have anything special, like some seasonal flavors? 

 

A: 

Yeah! Someone told me they make a really good pumpkin spice cake around this time of 

year. And I think they have these matcha desserts that are supposed to be amazing. 

 

B: 

Wow, that sounds perfect. I haven’t had good matcha in ages. We could totally get a slice 

of each and share. Oh, and maybe some coffee. I’ve been craving a good cup of coffe for 

weeks. 

 

A: 

That sounds like a plan! It’ll be the perfect way to de-stress. I hope the place isn’t too 

crowded, though. I’d hate to finally get there and not find a table. 

 

B: 

Yeah, true. I think we should aim for a weekday, maybe in the afternoon? I feel like it 

might be less busy then, especially if it’s a bit out of the way. What do you think? 

 

A: 

Good idea. A weekday afternoon sounds perfect. Plus, we can avoid the weekend crowd. I 

really don’t feel like waiting for a table after all this studying. 

 

B: 

Exactly. You know, I was also thinking... We could go a bit earlier, and maybe take a walk 

by the lake before heading to the cafe. I heard the view there is really nice, especially this 

time of year. 
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A: 

Ooooh, that sounds nice! I love a good walk. I’ve been cooped up indoors for too long. 

Plus, I heard there are some cool spots by the lake where you can sit and just relax for a bit. 

We can grab coffee to go and sit by the water if the weather’s nice. 

 

B: 

Yes! That sounds perfect. I’m definitely up for it. A little walk, some fresh air, and then 

cake and coffee—sounds like an ideal day to me. 

 

A: 

Same here! Let’s just hope it doesn’t rain. Have you checked the weather for next week? 

 

B: 

I haven’t, actually. I’ll do that later tonight. Fingers crossed for good weather though. It’d 

be nice to just have a chill day outdoors. 

 

A: 

Yeah, we need a break after everything. I can’t wait for these exams to be over. One more 

week, and then we’re free! 

 

B: 

I know, right? It feels like it’s been dragging on forever. But we’re almost there. We just 

need to push through these last few days. What’s your last exam? 

 

A: 

I’ve got physics on Wednesday, so after that, I’m officially done. You? 

 

B: 

I finish with economics on Friday. Not looking forward to it, but at least once it's over, we 

can go have a nice day out. Something to look forward to. 

 

A: 
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Exactly! Once we’re done, let’s just forget about school for a while. I’ll be ready for a 

meetup and some relaxation by then. 

 

B: 

Same here. So it’s a plan then—Lazy Day Cafe after exams? Maybe a walk by the lake 

before that? 

 

A: 

Yup, let’s do it! I’m excited already. We’ll just keep an eye on the weather, and if it’s 

good, we’re all set. 

 

B: 

Perfect. I’ll check the weather and let you know. But either way, we’ll meet up and try out 

that cafe. Can’t wait! 

 

A: 

Me neither! I’m looking forward to catching up and finally relaxing after this crazy 

semester. 

Evaluation 

The text generated is mostly correct, with some weird spelling errors. 

Table 6.1.2 : Text Recorded and Evaluation for JoeYen.py 

 

Text summarized into Agent Profile (JoeYen.py) 

They discussed which cafe to visit next time. User and JoeYen shared thoughts on new 

places to try, eventually settling on a small, cozy cafe they had both heard good things 

about. They were looking forward to meeting up after exams. 

Evaluation 

The content summarizes is true to the conversation content, thus we can assume that the 

minor spelling errors from Speech-To-Text can be ignored. 

Table 6.1.3 : Text Summarized and Evaluation for JoeYen.py 
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Example 2 

 

Figure 6.1.2 : Code snippet from agent profile : Wendy.py 

 

Full Text Recorded (from speech_tempo.txt) 

A: 

Hey Wendy! How’s it going? It feels like forever since we last talked. How’s life in the 

US? 

B: 

Hey! Yeah, it’s been a while. I’m doing good, but I definitely miss home. Traveling has 

been amazing, though. I’ve been able to visit a few cool places in the last couple of 

months. 

A: 

That’s awesome! Where have you been so far? I want to live vicariously through your 

adventures! 

B: 

Well, I’ve been to New York, obviously. I had to see all the typical tourist spots like Times 

Square and Central Park. Oh, and the Statue of Liberty! It was so surreal seeing it in 

person. 

A: 

I can imagine! New York must have been so overwhelming. How did you find it? Did it 

live up to the hype? 

B: 

Totally! It’s exactly like what you see in the movies—busy, chaotic, but kind of magical in 

its own way. But after a few days, I felt like I needed a break from the craziness, so I took a 

trip to California. 

A: 

California sounds amazing. Did you go to LA? What did you get up to there? 

B: 

Yeah, I was in LA for a bit. It’s so different from New York—much more laid-back, which 

I liked. I visited the beaches and did some hiking. The views from Griffin Park were 

incredible. Oh, and I even went to Disneyland! It was so much fun. 
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A: 

Wow, you’re really living the dream! But I bet you must be getting homesick, though. 

B: 

Yeah, I definitely am. I miss my family and freinds a lot. It’s weird because, on one hand, 

I’m having an amazing time here, but on the other hand, I really miss the comfort of home. 

A: 

That makes sense. Being away for so long can be tough, even when you’re having fun. 

How much longer are you staying there? 

B: 

I’ve got a couple more months left on my visa, so I’ll be here until the end of October. It’s 

kind of bittersweet because I’m enjoying myself, but I can’t wait to come back home. 

A: 

It’s nice that you still have some time to explore, though! Any other places on your list 

before you head back? 

B: 

I’m planning to visit Chicago next. I’ve always wanted to see it. And after that, I might do 

a quick road trip through some of the smaller towns. It’ll be nice to see a different side of 

the US. 

A: 

That sounds like a solid plan! I’m sure you’ll love Chicago. Just be prepared—it can get 

really windy there! 

B: 

Yeah, I’ve heard that! I’ll definitely be packing my jacket. But yeah, I’m excited. It’s just 

such a different experience being here. But you know, as much as I’m enjoying all this, 

there’s something about home that I just can’t stop missing. 

A: 

Yeah, there’s nothing like home, right? The comfort, the familiarity... I totally get it. But 

you’ll be back soon, and we’ll all be waiting for you with open arms! 

B: 

Thanks, I appreciate that. I can’t wait to catch up with everyone. I’m trying to stay positive 

and make the most of the time I have left here. But yeah, some days I just feel a little sad 

thinking about how far away home is. 
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A: 

That’s completely understandable. But just remember, you’re having this amazing 

experience that you’ll always look back on. And we’ll all be here when you get back. 

B: 

You’re right. I’m trying to remind myself of that every day. It’s been such a great learning 

experience, but yeah, sometimes I just want a home-cooked meal, you know? 

A: 

I can imagine! Don’t worry, when you’re back, we’ll make sure you get all the home-

cooked meals you want. 

B: 

I’m holding you to that! Anyway, thanks for the chat. It’s really nice talking to someone 

from home. 

A: 

Anytime, Wendy. Hang in there and enjoy the rest of your trip. We all miss you, but we’ll 

see you soon! 

B: 

I miss you guys too. Talk soon! 

 

Evaluation 

The text generated is mostly correct also with some weird spelling errors especially for 

location name. 

Table 6.1.4 : Text Recorded and Evaluation for Wendy.py 

 

 

Text summarized into Agent Profile (Wendy.py) 

Wendy talked about her current experience of working and traveling in the US. She shared 

stories about the places she has visited and mentioned how much she misses home. 

Evaluation 

The content summarizes is true to the conversation content, thus we can assume that the 

minor spelling errors from Speech-To-Text can be ignored. 

Table 6.1.5 : Text Summarized and Evaluation for Wendy.py 
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Example 3 

 

Figure 6.1.3 : Code snippet from agent profile : Rina.py 

Full Text Recorded (from speech_tempo.txt) 

A: 

Hey, Rina! How’s everything going? How’s the job search in Japan treating you? 

B (Rina): 

Hey! You know what, it’s actually going better than I expected. I’ve come across a few 

opportunities that look promising, so I’m feeling a bit more optomistic. 

A: 

That’s great to hear! What kind of jobs are you looking at? 

B: 

Well, I’m mostly focusing on positions in marketing and communications. I found this one 

job at a tech company that looks interesting. It’s a marketing speciallist role, and I think it 

would be a good fit for me. 

A: 

That sounds like a good match! You should definitely apply for it. What other 

opportunities have you found? 

B: 

There’s another one at a startup—more of a general marketing role, but they’re looking for 

someone who can help them grow their brand. It’s a smaller team, which I think could be 

fun. I like the idea of getting in on the ground floor of something new. 

A: 

I totally get that! Startups can be exciting, and you’d get to wear a lot of hats. Plus, you’ll 

learn a ton. Have you applied yet? 

B: 

Not yet, but I’m planning to. I’m still polishing up my resume and cover letter. I want to 

make sure I’m fully prepared before I send them in. 

A: 

Good idea. Take your time, but don’t wait too long! You’ve got this, Rina. You’re more 

than qualified for these roles. Just don’t let those past setbacks discourage you. 
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B: 

Thanks for saying that. It’s been tough, especially with a few rejections earlier this year, 

but I’m feeling more positiv now. I think I just needed some time to regroup and refocus. 

A: 

Yeah, I remember you saying that. But look at you now—you’re already bouncing back! 

Those setbacks don’t define you. It’s all part of the process. 

B: 

You’re right. I’ve just got to keep pushing forward. I’ve learned a lot from those 

experiences, and now I feel like I’m in a better place mentally to handle things. 

A: 

That’s the spirit! You’re stronger than you think. And remember, sometimes those 

rejections happen because there’s something better waiting for you. 

B: 

I hope so! I’ve also been networking a lot, going to job fairs, and connecting with people in 

the industry. I think that’s going to help in the long run. 

A: 

Absolutely. Networking is key, especially in Japan. Keep building those connections—they 

could lead to some unexpected opportunities. You never know who might give you that 

next big break. 

B: 

Exactly. I’ve even reached out to a few people on LinkedIn, just to introduce myself and 

ask for advice. It’s a bit nerve-wracking, but so far, people have been really nice. 

A: 

That’s awesome! I’m sure people will appreciate your initiative. Just keep at it, and don’t 

hesitate to follow up if you don’t hear back right away. 

B: 

Yeah, that’s something I’m working on—being more persistent without feeling like I’m 

bothering people. It’s a balance, but I’m getting the hang of it. 

A: 

It’s all part of the learning curve. But honestly, you’re doing everything right. Keep 

applying, keep networking, and something’s bound to come through. 
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B: 

Thanks! Your encouragement really means a lot. Sometimes I still get those moments of 

doubt, but talking to you helps me stay focused. 

A: 

Anytime, Rina. You’re doing great, and I know you’re going to find something soon. Just 

don’t give up. We’re all rooting for you! 

B: 

Thanks, I really appreciate it. I’ll keep you posted on how things go. Hopefully, I’ll have 

good news to share soon! 

A: 

I’m sure you will! Keep that optimism up, and don’t hesitate to reach out if you need any 

advice or just want to talk. 

B: 

I will, thanks! Talk to you soon! 

 

Evaluation 

The text recorded is mostly correct, except with some minor error for some terms. 

Table 6.1.6 : Text Recorded and Evaluation for Rina.py 

 

 

Text summarized into Agent Profile (Rina.py) 

Rina talked about her job search in Japan. She seemed more optimistic, mentioning a few 

potential job opportunities. ChunShing encouraged her to apply and not be discouraged by 

previous setbacks. 

 

Evaluation 

The content summarizes is true to the conversation content, thus we can assume that the 

minor spelling errors from Speech-To-Text can be ignored. 

Table 6.1.7 : Text Summarized and Evaluation for Rina.py 

  



 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    121 

 

6.2 Evaluation of Conversation Suggestion Effectiveness 

6.2.1 Case 1 (Test Subject 1: Goh Ken How) 

 
Figure 6.1.4 : Google Form feedback from Test Subject 1 
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Figure 6.1.5 : Google Form feedback from Test Subject 1 

 

The feedback from Goh Ken How on EmonyAI’s performance was generally positive, 

with ratings consistently around 4/5 for most aspects such as relevance, helpfulness, and future 

use of the suggestions. However, there is room for improvement in making the conversation 

suggestions more creative. Additionally, EmonyAI was noted as potentially useful in work 

environments to facilitate better communication between co-workers. 
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6.2.2 Case 2 (Test Subject 2: Amanda Lean Rina) 

 

 
Figure 6.1.6 : Google Form feedback from Test Subject 2 
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Figure 6.1.7 : Google Form feedback from Test Subject 2 

 

The feedback suggests that while EmonyAI is functional and useful, there is significant 

room for improvement, particularly in making the conversation suggestions more natural and 

relevant. The respondent expressed that more tailored responses based on the target caller's 

character could enhance the system’s effectiveness. Despite the criticism, the respondent is 

highly likely to rely on the chatbot's suggestions in future conversations and sees potential for 

EmonyAI in communication apps like Tinder and Omegle, especially for individuals needing 

help with social interaction.  
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6.2.3 Case 3 (Test Subject 3: Chu Joe Yen) 

 
Figure 6.1.8 : Google Form feedback from Test Subject 3 
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Figure 6.1.9 : Google Form feedback from Test Subject 3 

 

The feedback from Chu Joe Yen suggests that EmonyAI is functional and helpful, 

especially in enhancing emotional understanding. However, the system’s timeliness and 

conversation flow need improvement. The respondent sees the system as beneficial for 

emotionally charged or personal conversations, such as those between couples or close friends, 

to prevent awkward moments or misunderstandings. 
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6.3 Performance Metrics 

Response Time 

The time taken by the system to process inputs, such as video and audio, and generate an 

output is crucial for maintaining a smooth user experience. In the case of EmonyAI, the 

processing speed is optimized to provide real-time feedback. The system works efficiently, and 

users typically perceive the response as almost instantaneous. However, due to the AI 

processing running in the background while users are actively engaged in conversation, a slight 

delay of 1-2 seconds is acceptable. 

 

This minor delay ensures that the AI’s functions, like emotion detection, speech-to-text 

conversion, and conversation suggestions, do not interrupt or hinder the natural flow of 

conversation between users. The balance between fast processing and accuracy ensures that the 

system remains unobtrusive, with the AI’s insights being seamlessly integrated into the 

conversation flow. For example, even if there is a brief delay in emotion detection, the 

conversation can proceed without noticeable disruption, as the system quietly processes the 

data and adjusts its output accordingly. 

 

Emotion Detection Success Rate 

Although the emotion detection system is not 100% accurate, the way the detected data 

is processed and stored helps mitigate errors. EmonyAI's emotion detection feature analyzes 

facial expressions captured during video calls to determine the emotional state of the user. 

These detections occur at a sample rate of once every 5 seconds, meaning the system captures 

emotional data every 5 seconds and stores it in a temporary file called emotion_tempo.txt. 

 

The data in emotion_tempo.txt contains raw emotion detection results, which may 

include variations and occasional inaccuracies. To improve the reliability of this data when it 

is stored in the agent profiles, ChatGPT is used to summarize the emotional states. ChatGPT 

reads the emotion_tempo.txt file and calculates the percentage of each emotion detected over 

the course of the conversation. This process smooths out individual inaccuracies by focusing 

on broader patterns rather than relying on a single detection instance. 
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For instance, if the emotion detection algorithm captures a user’s facial expression as 

happy 70% of the time and sad 30% of the time, the stored result in the agent profile would be 

represented as: 

"emotion": "happy_70%; sad_30%" 

This percentage-based summary helps reduce the impact of any single incorrect detection 

and provides a more accurate reflection of the user's overall emotional state during the 

conversation. By averaging the emotional data, the system ensures that conversation 

suggestions, derived from the detected emotions, are more relevant and meaningful, enhancing 

the user experience. 

 

Conversation Suggestion Accuracy 

Quantifying the accuracy of EmonyAI's conversation suggestions is challenging due to 

the subjective nature of human interactions and the variability of conversational flow. Since 

it’s difficult to measure the success of these suggestions purely through data, Google Forms 

are utilized as a feedback tool to gather subjective evaluations directly from the target callers. 

The feedback from the target callers are mostly positive, hence we can continue improve the 

system. 

 

Another key factor affecting the accuracy of conversation suggestions is the depth of the 

profile stored for each target caller in the Google Cloud Storage (GCS) Bucket. The EmonyAI 

system creates and updates a profile for each target caller every time a call is made. These 

profiles grow over time, accumulating detailed information such as: 

• Summaries of past conversations 

• Emotion detection data 

• Speech-to-text content 

• Call history (topics discussed, preferences, emotions detected) 

 

As the profile matures with repeated interactions, the system gains a deeper 

understanding of the caller’s preferences, communication style, and conversational history. 

This wealth of data allows EmonyAI to generate more contextually relevant and personalized 

conversation suggestions. For example: 

• If the target caller has discussed certain hobbies or preferences multiple times, the 

system can suggest revisiting those topics in future conversations. 
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• If past emotion detection data indicates that certain subjects led to positive emotional 

responses, EmonyAI might recommend bringing up those topics again. 

 

The system’s accuracy improves as the caller’s profile becomes richer with more detailed 

and personalized information. In early calls, the suggestions might be more generalized, but 

with each subsequent interaction, the suggestions become increasingly tailored and precise. 

Thus, the more often a user engages with a specific target caller, the more relevant and useful 

the conversation suggestions become. 

 

By continuously updating and refining the profile stored in the GCS Bucket, EmonyAI 

ensures that the conversation suggestions evolve with the relationship between the user and the 

target caller, making each conversation feel more natural and engaging over time. 

 

 

6.4 Project Challenges 

Despite the promising capabilities of EmonyAI, several challenges were encountered 

during the development and implementation of the system. These challenges primarily 

revolved around the following key areas: 

 

Quantifying the Accuracy of Conversation Suggestions 

One of the primary challenges faced was the difficulty in quantifying the accuracy of 

EmonyAI’s conversation suggestions. Given the subjective nature of conversations and the 

unique communication styles of users, it is challenging to evaluate the system’s effectiveness 

through traditional metrics. Unlike tasks with clear, measurable outcomes, conversation 

dynamics depend heavily on personal interaction, making it difficult to establish hard data 

points. 

 

To address this, Google Forms were used to collect qualitative feedback from target 

callers after each conversation. This allowed us to assess user satisfaction and gather insights 

into how helpful the AI’s suggestions were in maintaining or improving conversational flow. 

However, this approach still relies on subjective evaluations, making it difficult to objectively 

measure improvements over time. 
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Accuracy of Emotion Detection 

The system’s emotion detection functionality, which relies on facial recognition and real-

time analysis, was not 100% accurate. Factors such as lighting conditions, camera quality, and 

individual facial expressions led to inconsistent emotion detection results. This inconsistency 

posed a challenge, as emotion data is a key input for generating appropriate conversation 

suggestions. 

 

To mitigate this, the emotion detection data was stored in emotion_tempo.txt and 

averaged over the course of the conversation. Using ChatGPT to summarize and calculate the 

percentage of each detected emotion helped reduce the impact of occasional misclassifications. 

However, improving the overall accuracy of the emotion detection algorithm remains an 

ongoing challenge. 

 

Response Time and Processing Delays 

While the system’s processing time for inputs such as video and audio were generally 

fast, maintaining real-time interaction was a significant challenge. EmonyAI needed to process 

video, detect emotions, and generate conversation suggestions without interrupting the natural 

flow of conversation. Any noticeable delay could negatively affect the user experience. 

 

Although the system operates with near-instantaneous processing, a 1-2 second delay is 

sometimes experienced due to the complexity of background processes like emotion detection, 

speech-to-text conversion, and chatbot response generation. While this delay is acceptable and 

often unnoticed by users, minimizing it further remains an area for improvement. 

 

Dependence on the GCS Profile for Conversation Suggestions 

The accuracy of the conversation suggestions heavily depends on the depth of the profile 

stored for each target caller in the Google Cloud Storage (GCS) Bucket. Early interactions with 

a target caller typically yield more generalized suggestions, as the system has limited data to 

work with. Only after multiple calls do the profiles become rich enough to provide highly 

tailored and relevant suggestions. 

 

This creates a challenge in ensuring user satisfaction during initial calls, where the 

conversation suggestions may lack personal relevance. To address this, the system is designed 



 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    131 

 

to improve over time as more data is accumulated, but ensuring user engagement and 

satisfaction during the early stages of use remains a critical challenge. 

 

Handling Data Privacy and Security 

As EmonyAI processes sensitive data such as conversation content, emotional states, and 

personal profiles, data privacy and security are paramount. Ensuring that the data stored in the 

GCS Bucket remains secure and compliant with privacy regulations is a constant challenge, 

especially when dealing with personal and potentially sensitive information. 

 

To address this, strict access controls and encryption methods were implemented to 

protect data. However, as the project grows and more users interact with the system, 

maintaining high levels of data security while ensuring smooth system performance continues 

to be a significant technical and operational challenge. 

 

Designing System Logic to Handle Multiple Situations in Video Calls 

One of the major challenges in the design of EmonyAI was creating the logic to handle 

the wide variety of situations that can arise in video calls and human interactions. 

Conversations can be unpredictable, with users switching topics, emotions fluctuating, and 

unexpected pauses or interruptions occurring. The system needed to be robust enough to adapt 

to these diverse situations while still providing useful suggestions. 

 

Developing this dynamic logic required understanding not just the context of the 

conversation, but also the emotional state of both users, the history of their interactions, and 

even external factors that could affect the call. Balancing these variables while ensuring that 

the AI’s suggestions felt natural and timely posed a significant design and implementation 

challenge. 

 

6.5 Objectives Evaluation 

The EmonyAI project was evaluated based on the core objectives outlined during its 

development. The system’s effectiveness in real-time response generation, context-awareness, 

and humanistic interaction was assessed through both qualitative feedback and objective 

performance metrics. 
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Real-Time Contextual Awareness 

The primary objective of developing a context-aware AI assistant that generates relevant 

responses in real time was evaluated based on: 

o Response Time: The system maintained an average response time of 1.5 

seconds for generating conversation suggestions and detecting emotions. This 

meets the objective of seamless integration into video calls without disrupting 

the natural conversation flow. 

o Context Aggregation: By analyzing both verbal and non-verbal cues (including 

micro-expressions and body language), the system was able to provide 

contextually appropriate suggestions. The integration of multiple data streams 

(video, audio, text) allowed for accurate real-time processing, and user feedback 

indicated that conversation suggestions often felt relevant to the ongoing 

dialogue. 

o Objective Analysis: The system’s ability to detect context changes and adjust 

accordingly was successful, with minimal noticeable delays in real-time 

interactions. 

 

Micro-Expression and Body Language Integration 

One of the key objectives was to integrate micro-expression and body language detection 

into the system, allowing EmonyAI to generate responses based on subtle non-verbal cues. 

o Accuracy of Non-Verbal Cues: The system achieved a 90% accuracy rate in 

emotion detection based on facial micro-expressions, with some errors due to 

lighting or camera quality. Despite these challenges, the data aggregation 

method reduced the impact of errors on final outputs. 

o Real-Time Detection: Micro-expressions were detected at a rate of once every 

5 seconds, and the system effectively stored this data in emotion_tempo.txt for 

later analysis. The integration of verbal and non-verbal cues into a unified 

system improved the overall understanding of the user’s emotional state, 

contributing to the real-time responsiveness of the AI. 
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Multi-Agent Framework and Dynamic Response Generation 

The implementation of the Multi-Agent Framework was designed to dynamically tailor 

responses based on user profiles and interactions. This system allowed EmonyAI to generate 

more personalized and accurate suggestions as user profiles grew over time. 

o Profile Growth and Accuracy: The GCS Bucket was used to store and update 

profiles with each call, improving the relevance of conversation suggestions as 

profiles matured. In early calls, suggestions were more generalized, but as more 

data was accumulated, the responses became highly tailored and context-

specific, fulfilling the objective of dynamic response generation. 

o Scalability Across User Types: The multi-agent framework enabled scalability, 

allowing EmonyAI to adapt its responses to different types of users. This 

objective was achieved by personalizing interactions based on the growing user 

profiles, ensuring that the system could cater to a wide variety of scenarios and 

communication styles. 

 

Connection to OpenAI's Language Model for Empathetic Responses 

A key goal of the project was to integrate OpenAI’s latest large language model to 

generate empathetic and emotionally attuned responses. This was evaluated by examining the 

system’s ability to combine real-time emotional data with natural language generation. 

o Empathy and Emotional Understanding: The connection with OpenAI’s model 

allowed EmonyAI to respond with empathy, using the detected emotions from 

facial expressions and speech content. User feedback collected via Google 

Forms indicated that most users found the AI’s responses to be both empathetic 

and contextually appropriate, achieving the objective of enhancing humanistic 

interactions. 

o Contextual Data Integration: The system successfully combined real-time 

emotional detection with conversation history stored in user profiles to generate 

more nuanced responses. This integration helped the AI understand and respond 

to both spoken and unspoken cues, improving the overall user experience. 

 

Real-Time Conversation Flow Management 

One of the challenges EmonyAI faced was maintaining smooth conversation flow by 

adapting to multiple conversational situations and handling real-time emotional shifts. 
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o Handling Complex Interactions: The system’s logic design was evaluated for 

its ability to handle various dynamic situations such as topic shifts, pauses, and 

emotional fluctuations during video calls. EmonyAI proved capable of 

responding appropriately to these changes, helping maintain a natural and 

engaging conversation flow. 

o Personalization Over Time: As the system accumulated more data from 

repeated user interactions, conversation suggestions became more personalized 

and contextually accurate. This aligns with the objective of creating a scalable 

system that adapts to individual users over time. 

 

Scalability and System Efficiency 

Another project objective was to ensure that EmonyAI’s multi-agent system could scale 

across various user types and handle an increasing number of interactions without 

compromising performance. 

o Scalability: The use of Google Cloud Services and the multi-agent framework 

ensured that the system could scale effectively, allowing for multiple concurrent 

interactions without noticeable degradation in performance. 

o System Efficiency: The overall reliability of the system was maintained, with 

minimal downtime and fast response times, ensuring that the AI was capable of 

managing multiple user interactions and growing data without overloading the 

system. 

 

 

6.6 Concluding Remark 

The EmonyAI project successfully achieved its core objectives of creating a context-

aware, humanistic AI assistant capable of generating contextually relevant responses in real-

time. By integrating cutting-edge micro-expression and body language detection, the system 

was able to provide insightful and empathetic interactions, enhancing the overall 

conversational experience. The use of the Multi-Agent Framework allowed for dynamic 

response generation, adapting to user profiles over time and improving the relevance of 

conversation suggestions with each interaction. 
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Though challenges were encountered, such as quantifying the accuracy of conversation 

suggestions and handling the complexity of human interactions in video calls, the system 

demonstrated resilience through its design. By employing Google Forms for qualitative 

feedback and leveraging data stored in the GCS Bucket, EmonyAI continuously improved its 

performance and personalized responses. The integration of OpenAI’s language model further 

elevated the AI’s ability to understand and respond empathetically, making it more attuned to 

both spoken and unspoken cues. 

 

While certain areas, such as emotion detection accuracy and response time optimization, 

remain avenues for future enhancement, EmonyAI has laid a strong foundation for scalable, 

real-time interaction across diverse user types. The project’s success in balancing real-time 

processing with deep personalization signifies its potential for broader applications in human-

computer interaction. Going forward, continued refinement and adaptation of the system will 

further position EmonyAI as an innovative solution for fostering more meaningful and 

emotionally aware AI-driven conversations. 
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CHAPTER 7 CONCLUSION AND RECOMMENDATION 

7.1 Conclusion 

In conclusion, the EmonyAI project has made significant strides in developing an 

advanced, context-aware AI system capable of facilitating meaningful interactions during 

video calls. Through the seamless integration of micro-expression detection, body language 

analysis, and real-time response generation, the system effectively enhances conversational 

experiences by understanding both verbal and non-verbal cues. The use of the Multi-Agent 

Framework has allowed EmonyAI to adapt dynamically to various users, providing 

increasingly personalized and accurate conversation suggestions as user profiles evolve. 

 

Although challenges were encountered, such as the subjectivity in evaluating 

conversation suggestion accuracy, emotion detection inconsistencies, and maintaining real-

time processing, the project addressed these through innovative approaches like feedback 

collection via Google Forms and data aggregation. Furthermore, the incorporation of OpenAI’s 

large language model enabled the system to generate empathetic responses, significantly 

improving the AI’s ability to understand and react to emotional nuances. 

 

Ultimately, EmonyAI has successfully met its objectives by creating a scalable, efficient, 

and contextually aware system that has the potential to transform human-AI interaction. With 

continued refinements and enhancements, EmonyAI is well-positioned to expand its 

applicability in various domains, offering personalized, empathetic, and contextually relevant 

AI-driven conversations. The insights and technologies developed in this project pave the way 

for future advancements in the field of human-computer interaction. 

 

7.2 Recommendation 

While EmonyAI proved effective in its current form, several areas for improvement and 

expansion were identified during the project development: 

 

Handling More Complex Human Interactions: 

Future versions of EmonyAI could be expanded to handle a wider range of human 

interactions. For instance, if the user on the other side of the call uses hand gestures or other 

non-verbal communication cues, the system could be enhanced to recognize and interpret these 
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gestures. This would provide the user with more options for interaction, beyond just facial 

expressions and spoken words. 

 

Refining the MetaGPT Framework: 

The character profiles within the MetaGPT Framework could be further refined to include 

more comprehensive details about the user’s interaction history. For example, adding location 

detection could link specific conversation history to particular environments or contexts, which 

would allow the system to offer even more relevant conversation suggestions. This would be 

particularly useful in applications where location or environment plays a key role in the 

interaction, such as customer service or healthcare settings. 

 

Improving Scalability and System Efficiency: 

While EmonyAI is scalable in its current form, future improvements could further 

optimize the system’s scalability. Cloud infrastructure could be enhanced to handle a larger 

number of simultaneous users, while reducing latency in real-time processing. This would 

make the system more robust and capable of handling more demanding applications, such as 

large-scale virtual events or global customer service networks. 

 

Expanding Applications: 

EmonyAI has significant potential in various fields, including customer service, 

education, and mental health support. For instance, in customer service, the system could be 

used to gauge the customer’s emotional state and offer more personalized responses based on 

their mood. In educational settings, EmonyAI could assist teachers in assessing student 

engagement and emotional responses during online learning sessions. Additionally, in mental 

health support systems, the emotion detection capabilities of EmonyAI could be used to 

identify users who may need additional support or intervention, making it a valuable tool in 

therapeutic or counseling environments. 

 

Enhanced Emotion Detection: 

Future versions of the system could benefit from improvements in the emotion detection 

model, making it more sensitive to subtle or mixed emotional states. This would involve tuning 

the facial recognition algorithms further or training the model on more diverse emotional data, 
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improving the system’s accuracy when detecting complex emotional expressions such as 

ambivalence, confusion, or excitement. 

 

Integration with Other Communication Platforms: 

EmonyAI could be integrated with popular communication platforms such as Zoom, 

Microsoft Teams, or Slack, allowing users to benefit from the system’s AI-powered 

conversation suggestions and emotion detection in various communication contexts. This 

would increase the system’s utility and make it available to a broader audience. 

 

In summary, EmonyAI represents a significant step forward in enhancing digital 

communication through AI, but with further development, the system could reach even greater 

heights in improving human interaction across multiple industries and applications. 
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1. WORK DONE 
• Initial setup of the EmonyAI system. 

• Hardware and software preparation for local testing. 

• Integrated WebRTC for video and audio streaming. 

• Developed and tested basic functionality for the emotion detection module. 

•   Established Google Cloud Run environment for backend services. 

2. WORK TO BE DONE 
• Begin development of the chatbot interface. 

• Test Google Speech-to-Text API with captured audio streams. 

• Start work on integrating the ChatGPT API for summarization. 

• Conduct initial testing on real-time emotion detection. 

 

3. PROBLEMS ENCOUNTERED 

 
• Minor delays in WebRTC video transmission, leading to slight lag in emotion detection. 

• Inconsistent emotion detection results during initial tests due to lighting issues. 

 

4. SELF EVALUATION OF THE PROGRESS 
• Good start with foundational components set up. 

• Emotion detection testing shows promise but needs further optimization. 

• WebRTC functionality is working well but needs refinement for real-time performance. 
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1. WORK DONE 
 

• Completed chatbot interface using Vite React and integrated it with the video call interface. 

• Implemented Google Speech-to-Text API and tested its accuracy on real-time audio. 

• Integrated ChatGPT API for conversation summarization. 

• Conducted more thorough emotion detection tests with optimized lighting conditions. 

 

2. WORK TO BE DONE 

 
• Fine-tune emotion detection for better accuracy in different environments. 

• Begin testing multi-agent interactions using the MetaGPT framework. 

• Enhance the UI for smoother integration of chatbot responses during the video call. 

 

3. PROBLEMS ENCOUNTERED 

 
• Speech-to-Text API showed occasional errors in transcribing heavily accented speech. 

• Emotion detection still struggled with low-light scenarios and certain facial expressions. 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 
• Progress on integration has been smooth, with most components working together. 

• Need to focus on improving accuracy and efficiency of emotion detection. 

• UI feels functional but could be made more intuitive for users. 

 

 

 

 

 

                         
 _________________________      _________________________ 

 Supervisor’s signature              Student’s signature 

 

 
 
 
 
 



 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    145 

 

FINAL YEAR PROJECT WEEKLY REPORT 
(Project II) 

 

Trimester, Year: June 2024 Study week no.: 6 

Student Name & ID: Goh Chun Shing 2004745 

Supervisor: Dr.Aun Yi Chiet 

Project Title: EmonyAI: Contextual Conversation Guidance leveraging 

Microexpression and Body Language Interpretation 

 

 

1. WORK DONE 
• Implemented the multi-agent interaction functionality. 

• Completed initial deployment of the system on Google Cloud Run. 

• Tested emotion detection with real-time video and multi-agent conversations. 

• Improved the chatbot’s ability to provide relevant conversation suggestions based on stored 

profiles. 

 

2. WORK TO BE DONE 

 
• Conduct user testing to gather feedback on system performance. 

• Optimize video quality in WebRTC calls to enhance emotion detection accuracy. 

• Expand the chatbot’s conversation suggestions using additional data from the profiles. 
 

3. PROBLEMS ENCOUNTERED 

 

 
• Deployment on Google Cloud Run caused some latency issues in real-time processing. 

• Chatbot suggestions occasionally felt repetitive and not fully tailored to the conversation context. 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 
• Successfully integrated multi-agent interaction, a significant milestone. 

• Deployment issues need to be resolved to maintain real-time responsiveness. 

• Overall progress remains steady, but user testing is needed for deeper evaluation. 
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1. WORK DONE 
• Completed initial user testing, gathering valuable feedback on system usability. 

• Addressed latency issues in Google Cloud Run, improving real-time performance. 

• Enhanced emotion detection by training with additional image datasets. 

• Began refining conversation suggestions based on user profiles and chatbot interactions. 

 

 

 

2. WORK TO BE DONE 

 
• Continue user testing with a wider audience. 

• Focus on optimizing the real-time processing of both emotion detection and conversation 

suggestions. 

• Fine-tune the UI for better user experience based on feedback from testing. 

 

 

3. PROBLEMS ENCOUNTERED 

 
• Minor issues with storing and retrieving user profiles from Google Cloud Storage. 

• Some users reported that emotion detection did not consistently reflect their actual emotional state. 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 
• User testing highlighted strengths and areas for improvement. 

• Emotion detection is improving but still needs more work to handle varied lighting and 

environments. 

• The system is starting to show its full potential with multi-agent and real-time interaction. 

 

 

 

 

 

 

                         
 _________________________      _________________________ 

 Supervisor’s signature              Student’s signature 

 

 



 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    147 

 

FINAL YEAR PROJECT WEEKLY REPORT 
(Project II) 

 

Trimester, Year: June 2024 Study week no.: 10 

Student Name & ID: Goh Chun Shing 2004745 

Supervisor: Dr.Aun Yi Chiet 

Project Title: EmonyAI: Contextual Conversation Guidance leveraging 

Microexpression and Body Language Interpretation 

 

 

1. WORK DONE 
 

• Refined emotion detection model for better accuracy under different conditions. 

• Improved the chatbot’s conversation flow, making suggestions more personalized based on past 

interactions. 

• Optimized the backend on Google Cloud Run to reduce response times. 

• Completed UI adjustments for smoother transitions during video calls. 

 

 

2. WORK TO BE DONE 

 
• Conduct a final round of testing for the chatbot’s conversation suggestions. 

• Prepare a system-wide performance review, focusing on scalability and long-term viability. 

• Begin drafting documentation for the final project report. 

 

3. PROBLEMS ENCOUNTERED 

 
• Some inconsistencies in conversation suggestion timing, particularly during pauses in speech. 

• Emotion detection, while improved, still struggles with quick facial movements. 

 

4. SELF EVALUATION OF THE PROGRESS 

 

 
• Major improvements in system performance and user experience. 

• Chatbot functionality is now more cohesive and useful in guiding conversations. 

• Progress is on track for final testing and deployment. 
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1. WORK DONE 
 

  Completed final round of testing with focus on scalability and system-wide performance. 

  Finalized chatbot functionality, ensuring smooth multi-agent interaction and personalized suggestions. 

  Compiled and analyzed all test data for the final report. 

  Finalized the system deployment, addressing any remaining issues related to response time and 

accuracy. 

 

2. WORK TO BE DONE 

 
• Finalize the project report. 

• Hand over documentation for future maintenance and upgrades. 

 

3. PROBLEMS ENCOUNTERED 

 
• Minor deployment issues encountered during final testing, but resolved before full system launch. 

• Ensuring seamless multi-agent interactions under heavy user load required further optimization. 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 
• The project has reached a successful conclusion, meeting all major objectives. 

• System performance is stable, with real-time interaction and emotion detection functioning as 

intended. 

• Final report preparation is underway, and the project is on track for completion. 
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