

APPLICATION OF BLUETOOTH LOW ENERGY (BLE)

FOR OUTDOOR ASSET TRACKING

YEAP TUCK KEONG

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Engineering (Hons) Electronic Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

January 2024

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : YEAP TUCK KEONG

ID No. : 19AGB03935

Date : 06/09/2024

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “APPLICATION OF BLUETOOTH LOW

ENERGY FOR OUTDOOR ASSET TRACKING” was prepared by YEAP TUCK

KEONG has met the required standard for submission in partial fulfilment of the

requirements for the award of Bachelor of Engineering (Hons) Electronic Engineering

at Universiti Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Ir Dr. Teh Peh Chiong

Date : _________________________

7.9.2024

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2024, YEAP TUCK KEONG. All right reserved.

v

APPLICATION OF BLUETOOTH LOW ENERGY (BLE) FOR OUTDOOR

ASSET TRACKING

ABSTRACT

Outdoor asset tracking enables organisations to efficiently monitor and manage

valuable assets, which is beneficial in industries such as logistics, construction, and

agriculture. The benefits of using Bluetooth Low Energy (BLE) technology for

outdoor asset tracking include low cost, compatibility with a wide range of devices,

and ease of use. However, the implementation of standard Bluetooth technology has

been found to have limitations in outdoor environments due to signal attenuation and

interference, as well as being restricted by a limited range, which poses challenges in

establishing reliable outdoor asset tracking. The lowest layer of the BLE stack is found

to be the Physical Layer (PHY); the solution presented to mitigate or overcome these

challenges is the implementation of Coded PHY. Several improvements can be

identified using Coded PHY technology, such as increased reliability and range

through the use of forward error correction techniques that allow the transmitted

signals to tolerate interference and reach greater distances.

This research aims to utilize the STEVAL-IDB012V1 development board

equipped with Bluetooth version 5.3 for outdoor asset tracking using Coded PHY in

BLE. By comparing Coded PHY with 1M PHY in terms of distance through RSSI

readings, the study highlights the advantages of employing Coded PHY. Despite its

higher power consumption, Coded PHY is preferred for distance-critical applications

like outdoor asset tracking. Additionally, a log distance path loss model can be

employed to estimate the distance between the receiving devices such as the

smartphone and the evaluation board based on RSSI values, facilitating easy location

tracking of belongings.

Type text here

vi

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xix

LIST OF APPENDICES xxii

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statements 6

1.3 Aims and Objectives 7

1.4 Scope 7

1.5 Outline 8

2 LITERATURE REVIEW 10

2.1 Introduction 10

2.2 Background of study – Bluetooth 10

2.2.1 Introduction to Bluetooth Classic 11

2.2.2 Introduction to Bluetooth Low Energy (BLE) 13

2.2.3 Comparisons between Bluetooth Classic and

BLE 19

2.2.4 Measurement of signal strength 24

vii

2.2.5 Factors affect the range of Bluetooth devices 25

2.3 Journals review 25

2.3.1 Testing the Communication Range of Ibeacon

Technology by Boros, Kuffa, and Skýpalová 26

2.3.2 An analysis of Bluetooth 5 in comparison to

Bluetooth 4.2 by Lyatuu 27

2.3.3 Calibration of BLE beacons and its impact on

distance estimation using the log-distance path loss

model by Vanzin and Oyamada 28

2.3.4 Development of Localization Technique using

Trilateration Algorithm for E-Puck2 Robot by

Harmanda, Priandana, and Hardhienata 31

2.3.5 Indoor Localization in BLE using Mean and

Median Filtered RSSI Values by Venkatesh, Mittal, and

Tammana 34

2.3.6 Moving averaging method of RSSI based

distance estimation for wireless capsule localization by

Hany, Akter, and Hossain 35

2.3.7 Research of RSSI indoor ranging algorithm

based on Gaussian-Kalman linear filtering by Zhang,

Zhang, and Wan 37

2.3.8 RSSI based indoor localization for smartphone

using fixed and mobile wireless node by Gani, OBrien,

Ahamed, and Smith 40

2.4 Introduction to Hardware 42

2.4.1 BlueNRG-LPS (SoC) 42

2.4.2 STEVAL-IDB012V1 (Development board) 44

2.5 Introduction to Software 45

2.5.1 BlueNRG-LPS DK SW package 45

2.5.2 WiSE STUDIO 46

2.5.3 AIDA64 for Android 47

2.5.4 nRF Connect for Android 48

2.5.5 Putty 49

viii

3 METHODOLOGY 50

3.1 Introduction 50

3.2 Bluetooth version of hardware applied 50

3.3 Comparison between 1M PHY and Coded PHY 53

3.3.1 Maximum distance 60

3.4 Distance and Direction Estimation 70

3.4.1 RSSI based only -Trilateration 72

3.4.2 RSSI based and Sensors 76

4 RESULTS AND DISCUSSIONS 91

4.1 Comparison between 1M PHY and Coded PHY 91

4.1.1 Maximum distance in an indoor environment 92

4.1.2 Maximum distance in an outdoor environment 98

4.2 Comparison of filters applied to RSSI readings 103

4.2.1 Fixed distance 103

4.2.2 Variable distance 105

4.2.3 Summary 107

4.3 Trilateration (RSSI based only) 108

4.3.1 Distance 108

4.3.2 Position 114

4.3.3 Summary 120

4.4 Combination of sensors and RSSI values 121

4.4.1 Distance 122

4.4.2 Direction 124

5 CONCLUSION AND RECOMMENDATIONS 129

5.1 Conclusion 129

5.2 Limitations 130

5.3 Recommendations for improvements 131

REFERENCES 133

APPENDICES 139

ix

LIST OF TABLES

 TABLE TITLE PAGE

2.1 Relationship between RSSI and signal strength (Li,

2022). 24

4.1 Combination of devices to be tested. 91

4.2 Comparison between PHYs at different heights. 92

4.3 Percent change between PHYs at different heights. 93

4.4 Percent change between transmit powers at the same

PHY. 94

4.5 Comparison between PHYs at different transmit

powers. 95

4.6 Percent change between PHYs at different transmit

powers. 96

4.7 Percent change between transmit powers at the same

PHY. 97

4.8 Comparison between PHYs at different heights. 98

4.9 Percent change between PHYs at different heights. 99

4.10 Comparison between PHYs at different transmit

powers. 101

4.11 Percent change between PHYs at different heights. 102

4.12 Path loss exponent for each beacon. 108

4.13 RSSI collected at different points. 109

4.14 Distance estimated of a mobile device and beacons. 110

4.15 Comparison between real distance and estimated

values. 113

x

4.16 Distance difference between estimated and real

positions. 116

4.17 Testing environments involved in the test. 121

4.18 Comparison between estimated and real distances. 123

4.19 Comparison between estimated and real directions at

1m. 125

4.20 Comparison between estimated and real directions at

5m. 126

xi

LIST OF FIGURES

 FIGURE TITLE PAGE

1.1 Transmitter and receiver in a wireless communication

system (muRata, 2023). 2

1.2 Modulation and demodulation applied for wireless

communication (muRata, 2023). 2

1.3 Comparison between Bluetooth Classic and Bluetooth

Low Energy (Bluetooth®, n.d.). 4

2.1 Modulation techniques in Bluetooth Classic (Argenox,

2020). 11

2.2 Three classes in Bluetooth Classic (Ezurio, n.d.). 12

2.3 Bandwidth divided into 79 channels in Bluetooth

Classic (Agarwal, 2021). 12

2.4 Bandwidth divided into 40 channels in BLE

(MathWorks, n.d.) 14

2.5 BLE stack (Woolley, 2017). 15

2.6 Advertising types available (Afaneh, 2023). 17

2.7 Operation of central initiates PHY Update Procedure

(Afaneh, 2023). 18

2.8 Operation of peripheral initiates PHY Update

Procedure (Afaneh, 2023). 18

2.9 Comparison between LE physical layers (Woolley,

2017). 19

2.10 Comparison between power consumption in both

Bluetooth Classic and BLE (MathWorks, n.d.). 20

2.11 Comparison between modulation and data rate in both

Bluetooth Classic and BLE (Bluetooth®, n.d.). 21

xii

2.12 Comparison in communication mode between

Bluetooth Classic and BLE (NORDIC, 2021). 22

2.13 Applications that are suitable for Bluetooth Classic

and BLE (NORDIC, 2021). 23

2.14 Average RSSI value recorded for multiple devices at

different distances (Boros, Kuffa, and Skýpalová,

2022). 26

2.15 Average throughput collected for different PHYs at

different distances (Lyatuu, 2022). 28

2.16 Results collected for Beacon A (Vanzin and Oyamada,

2021). 30

2.17 Results collected for Beacon B (Vanzin and Oyamada,

2021). 30

2.18 Results collected for Beacon C (Vanzin and Oyamada,

2021). 31

2.19 Trilateration algorithm (Harmanda, Priandana, and

Hardhienata, 2020). 32

2.20 Average RSSI value of each beacon at different

distances (Harmanda, Priandana, and Hardhienata,

2020). 33

2.21 Distance estimated based on the average RSSI value

of each beacon at different distances (Harmanda,

Priandana, and Hardhienata, 2020). 33

2.22 Distance estimated based on median or mean filtered

RSSI value (Venkatesh, Mittal, and Tammana,

2021). 35

2.23 Comparison between unfiltered and moving average

filtered in Distance estimation (Hany, Akter, and

Hossain, 2016). 36

2.24 Comparison between unfiltered and moving average

filtered in Distance estimation error (Hany, Akter,

and Hossain, 2016). 37

2.25 Different parameters were recorded for RSSI readings

at (a) the conference hall, (b) the empty warehouse,

and (c) the parking lot (Zhang, Zhang, and Wan,

2016). 39

xiii

2.26 Relative error among unfiltered and filtered processes

(Zhang, Zhang, and Wan, 2016). 40

2.27 Mathematical model to obtain the direction and

distance (Gani, OBrien, Ahamed, and Smith, 2013).

 41

2.28 Accuracy of the developed system under indoor and

outdoor environments (Gani, OBrien, Ahamed, and

Smith, 2013). 42

2.29 BLUENRG-LPS SoC available (STMicroelectronics,

n.d.). 43

2.30 STEVAL-IDB012V1 evaluation board

(STMicroelectronics, n.d.). 44

2.31 STSW-BNRGLP-DK for BlueNRG-LPS

(STMicroelectronics, n.d.). 46

2.32 WiSE-Studio IDE (STMicroelectronics, n.d.). 47

2.33 Showing system information of a device (FinalWire,

2015). 48

2.34 nRF Connect for Mobile (Nordic Semiconductor, n.d.).

 48

2.35 Putty application (Rushax, n.d.). 49

3.1 Options available in AIDA64 for Andriod. 51

3.2 Bluetooth version in Mi 9T Pro is 5.0. 51

3.3 Bluetooth version of SAMSUNG Tab S7 is 5.0. 51

3.4 Options available in nRF Connect for Android. 52

3.5 2M PHY and Coded PHY are supported by both

devices. 52

3.6 Applications available to be tested. 54

3.7 BLE-related applications available to be tested. 54

3.8 Client and server selection for long-range applications.

 55

3.9 LED1, LED2, and LED3 on STEVAL-IDB012V1. 55

xiv

3.10 Binking LED3 indicates boards are communicating. 56

3.11 LED3 blinks and LED1 is on, indicating Coded PHY

to be used. 57

3.12 Evaluation board (Node) is discovered in the

application. 58

3.13 Set preferred PHY option is available in the

application. 59

3.14 Coded PHY can be switched from 1M PHY. 59

3.15 Coded PHY is updated after setting Coded PHY as the

preferred PHY. 59

3.16 LED1 of the board is on, indicating Coded PHY is

applied. 60

3.17 Two boards are separated to get the distance

measurement. 61

3.18 Maximum distance is obtained when LED2 stops

blinking. 61

3.19 Additional 50m to be tested after LED2 stops blinking.

 61

3.20 Distance measurement between a mobile device and

one evaluation board. 62

3.21 Flowchart of distance measurement 63

3.22 Measure distance option is available in Google Maps. 64

3.23 A board is attached to an extension pole. 65

3.24 Different heights are applied using extension poles. 65

3.25 CMSIS-DAP is recognised after connecting the board

to a laptop. 66

3.26 Project imported into WiSE-STUDIO. 66

3.27 Code fragment to set the value of transmit power based

on the characteristic value. 67

3.28 Build options are provided in WiSE-Studio after

editing the code. 67

xv

3.29 CMSIS-DAP is selected under Run/ Debug

Configurations. 68

3.30 Run or Debug options are available to boot the code

into the board. 68

3.31 PUSH1 button is pressed and held, RESET button is

then pressed. 68

3.32 Settings of Serial line (COM) and Speed. 69

3.33 Enabling [Implicit CR in every LF] option to increase

readability. 69

3.34 Transmit power is observed if the characteristic value

is read. 69

3.35 Transmit power is updated if a new characteristic value

is written. 70

3.36 Extended Advertising Beacon example is available. 72

3.37 Beacon is detected in the application. 73

3.38 RSSI graph is available to read the RSSI of beacons. 74

3.39 Flowchart illustrates the process of estimating the

distance. 77

3.40 Flowchart illustrates the process of estimating the

direction. 78

3.41 Essential permissions to perform Bluetooth features. 79

3.42 ScanFilters allows the devices to be filtered based on

device address. 79

3.43 The board is the only device to be detected. 80

3.44 User interface linked after the connection is made. 81

3.45 setPreferredPhy allows the physical layer of the device

to be modified. 81

3.46 LED1 of the board is on once connecting to the mobile

device. 82

3.47 User interface linked after pressing the sensor button. 83

xvi

3.48 Transmit power characteristic allows users to read and

write. 83

3.49 getSystemService allows the phones’ data to be

accessed. 84

3.50 User interface linked after pressing the calibration

button. 85

3.51 User interface linked after pressing the find device

button. 86

3.52 Code fragment of controlling the I/O pin. 87

3.53 Flowchart illustrates the operation of controlling the

I/O pin. 87

3.54 A buzzer is attached to the I/O pin. 88

3.55 Operation in rotating the mobile device to estimate the

direction. 89

3.55 Orientation of the mobile device in direction

estimation. 89

3.56 Percentage and message converted based on RSSI

readings. 90

4.1 Comparison of PHYs at different heights. 93

4.2 Comparison of PHYs at different transmit powers. 96

4.3 Comparison of PHYs at different heights. 99

4.4 Comparison of PHYs and environments at each height.

 100

4.5 Comparison of PHYs at different transmit powers. 101

4.6 Comparison of PHYs and environments at each

transmit power. 103

4.7 Placement of the board and mobile device in the fixed

distance test. 104

4.8 The unfiltered and filtered RSSI values at 5m. 104

4.9 Comparison between filtered and unfiltered data. 105

xvii

4.10 Placement of the board and mobile device in the

variable distance test. 106

4.11 The unfiltered and filtered RSSI values at variable

distance test. 106

4.12 Comparison between filtered and unfiltered data. 107

4.13 Position of beacons. 109

4.14 Distances between the beacons and the object at

position V. 110

4.15 Distances between the beacons and the object at

position W. 111

4.16 Distances between the beacons and the object at

position X. 111

4.17 Distances between the beacons and the object at

position Y. 112

4.18 Distances between the beacons and the object at

position Z. 112

4.19 Percent error of different positions to each beacon. 114

4.20 Coordinate of the beacons. 115

4.21 Converted positions’ value of the beacons. 115

4.22 Solving trilateration using estimated distance and

converted position. 115

4.2 Substitution is applied to solve the position of the

object. 116

4.24 Coordinates of the object are converted into DMS. 116

4.25 DMS data of the estimated and real positions. 116

4.26 Estimated and real position V. 118

4.27 Estimated and real position W. 118

4.28 Estimated and real position X. 119

4.29 Estimated and real position Y. 119

4.30 Estimated and real position Z. 120

xviii

4.31 Slope is calculated using linear regression to get path

loss exponent. 122

4.32 Percent error of each case at different distances. 124

4.33 Estimated direction at 1m. 127

4.34 Estimated direction at 5m. 127

xix

LIST OF SYMBOLS / ABBREVIATIONS

GHz Gigahertz

MHz Megahertz

Mbps Megabits per second

Kbps Kilobits per second

m Metre

dBm Decibel milliwatts

dB Decibel

RSSId0 Reference Received Signal Strength Indication, dBm

RSSI Received Signal Strength Indication, dBm

d Distance, m

d0 Reference distance, m

n Path loss exponent

Xσ Zero-mean normal random variable with standard deviation

h Height, m

GPS Global Positioning System

EM Electromagnetic

WLAN Wireless Local Area Network

Wi-Fi Wireless Fidelity

GSM Global System for Mobiles

CDMA Code-Division Multiple Access

2G Second-Generation Cellular Network

3G Third-Generation Cellular Network

4G Forth-Generation Cellular Network

LTE Long-term Evolution

5G Fifth-Generation Cellular Network

IoT Internet of Things

xx

PAN Personal Area Network

LE Low Energy

BLE Bluetooth Low Energy

EDR Enhanced Data Rate

BR Basic Rate

ISM Industrial, Scientific, and Medical

FHSS Frequency Hopping Spread Spectrum

RFID Radio Frequency Identification

PHY Physical Layer

GFSK Gaussian Frequency Shift Keying

DQPSK Differential Quadrature Phase Shift Keying

HSP Headset Profile

HFP Hands-Free Profile

A2DP Advanced Audio Distribution Profile

SPP Serial Port Profile

GATT Generic Attribute Profile

GAP Generic Access Profile

L2CAP Logical Link Control and Adaptation Protocol

ATT Attribute Protocol

1M PHY 1 Megabit Physical Layer

2M PHY 2 Megabit Physical Layer

CRC Cyclic Redundancy Check

NR Signal-to-Noise Ratio

FEC Forward Error Correction

RF Radio Frequency

RSSI Received Signal Strength Indication

SoC System-on-Chip

AoA Angle of Arrival

AoD Angle of Departure

AES Advanced Encryption Standard

MEMS Micro-Electro-Mechanical Systems

PC Personal Computer

3D Three-dimensional

GCC CNU Compiler Collection

xxi

GDB GNU Debugger

SWD Serial Wire Debug

CMSIS Common Microcontroller Software Interface Standard

DAP Debug Access Port

IDE Integrated Development Environment

CPU Central Processing Unit

SIG Special Interest Group

DFU Device Firmware Update

USB Universal Serial Bus

LED Ligh-Emitting Diode

MA Moving Average

Tx Transmit

EMA Exponential Moving Average

DMS Degrees Minutes Seconds

DD Decimal Degrees

MTU Maximum Transmission Unit

xxii

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Code needed for BLE RC Long Range application 139

B Code needed for BLE Beacons application 187

C Codes needed for BLE Android application 195

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

Wireless communication differs from wired communication, in which data

transmission is conducted by connecting cables or wires physically. Wireless

communication refers to the transfer of information or signals between two or more

ends that are not connected by electrical conductors (Moozakis, 2023). It uses

electromagnetic waves to transfer data across short or large distances. This technology

has completely transformed the way we communicate, providing seamless

connectivity without the limitations of physical lines. Wireless communication relies

on the electromagnetic spectrum, which encompasses frequencies ranging from low-

frequency radio waves to high-frequency gamma rays. Various wireless technologies

utilize different portions of this spectrum. A variety of wireless communication

technologies are available, such as satellite communication, which provides global

coverage regardless of the density of the population; it offers telecommunication

(Satellite Phones) and positioning and navigation (GPS) in transmitting signals over

long distances to achieve global connectivity (Teja, 2024). Furthermore, infrared

communication is available to use infrared waves of the EM spectrum for short-range

communication, such as remote control, cars, and audio equipment. Bluetooth is a low-

range wireless communication system, that allows users to connect various devices

and provides signal transmission among the devices. Wireless Local Area Network

(WLAN) or Wi-Fi permits users to access the internet wirelessly by connecting devices

to an access point such as a Wi-Fi router. Cellular communication is supported by two

2

standards such as the Global System for Mobiles (GSM) and Code-Division Multiple

Access (CDMA) in the early days of cellular networking (Moozakis, 2023); it

encompasses 2G, 3G, 4G/LTE, and 5G, performs voice and data transmission between

devices over long distances via cellular networks.

Some key components needed in a wireless communication system are the

transmitter and receiver which can be illustrated as shown in Figure 1.1. A transmitter

converts data into electromagnetic signals suitable for wireless transmission, while a

receiver records and decodes electromagnetic signals back into the original data

(muRata, 2023). An antenna facilitates electromagnetic wave transmission and

reception. In addition, the processes of modulation and demodulation are considered

in the wireless communication system as shown in Figure 1.2. The modulation

involves encoding information onto a carrier signal and allows the transmission of data

over long distances, while demodulation involves extracting the original information

from the modulated signal in reverse.

Figure 1.1: Transmitter and receiver in a wireless communication system (muRata,

2023).

Figure 1.2: Modulation and demodulation applied for wireless communication

(muRata, 2023).

3

Wireless communication is widely used in various fields, including automotive

(vehicle-to-vehicle communication), satellite communication (GPS), Internet of

Things (IoT) devices, wireless network communication (Wi-Fi and Bluetooth), mobile

communication, and healthcare (wireless monitoring devices) (muRata, 2023).

However, wireless communication encounters several barriers or challenges, including

interference from other wireless devices, signal attenuation over distance,

environmental factors such as weather conditions, and security issues such as data

interception and illegal access (Agarwal, 2020).

As mentioned earlier, Bluetooth technology is found to be one of the wireless

communications, that enables communication between devices without cables or wires.

Bluetooth uses a short-range radio frequency and any devices incorporating the

technology will be able to communicate with it as it is within the required distance. Its

purpose is to facilitate data transfer over short distances, enabling a range of devices

such as computers, tablets, smartphones, headphones, and IoT devices to communicate

directly without the need wireless router or access point (Intel, n.d.). Bluetooth utilises

low-power radio waves to create personal area networks (PANs) and operates within

the 2.4 GHz frequency band (GeeksforGeeks, 2024). This makes it ideal for

applications such as file sharing, hands-free telephony, wireless audio streaming, and

Internet of Things connectivity. Bluetooth Classic and Bluetooth Low Energy (LE) are

two Bluetooth standards in use today as hsown in Figure 1.3 (Bluetooth®, n.d.).

Enhanced Data Rate (EDR) and Bluetooth Basic Rate (BR) are referred to as Bluetooth

Classic and are primarily used to support wireless audio streaming. With its low power

consumption, Bluetooth Low Energy is a popular choice for locating devices.

Operating in the 2.4 GHz ISM (Industrial, Scientific, and Medical) band and using

Frequency Hopping Spread Spectrum (FHSS) for channel utilisation are the

similarities between the two standards. The two technologies differ significantly in

terms of power consumption; BLE uses less energy than Bluetooth Classic, extending

the battery life of devices. In addition, Bluetooth Classic offers higher data rates than

BLE which is up to 3 Mbps, while BLE can only offer data rates of around 1 Mbps.

Bluetooth technology is a widely used and versatile wireless communication standard

due to several key features. Firstly, it operates in the 2.4 GHz ISM frequency band as

mentioned previously, making it compatible with a wide range of devices worldwide.

4

Additionally, its low power consumption is ideal for battery-powered devices, which

helps to extend the life of portable electronics. Bluetooth uses short-range radio waves

that can typically reach up to 10 metres. However, newer versions of Bluetooth, such

as Bluetooth 5.0, significantly increase this range, making it easier to connect over

larger areas (Jones, 2020). Another distinguishing feature is its ability to accommodate

multiple connections simultaneously, enabling efficient data flow between different

devices within a Bluetooth network. Bluetooth technology includes strong security

features such as encryption and authentication methods to ensure safe data transfer and

prevent unwanted access (Agarwal, 2021).

Figure 1.3: Comparison between Bluetooth Classic and Bluetooth Low Energy

(Bluetooth®, n.d.).

5

Asset monitoring is a critical procedure for companies and organizations to

effectively manage and maximize the use of their physical assets throughout their

lifetime. These assets can take many forms, including equipment, vehicles, tools, and

more, all of which are essential resources for business operations (Rittenberg &

Bottorff, 2022). Asset tracking systems gather real-time data on the location, status,

and condition of assets using various technologies such as Bluetooth, RFID (Radio

Frequency Identification), GPS (Global Positioning System), and barcodes (Jonker,

2023). This enables enterprises to obtain valuable information on asset utilization,

movement patterns, and maintenance requirements. It can lead to improvements in

operational efficiency, decreased expenses, improved risk management, and reduced

risk of theft or loss (Fatima, 2023). Asset tracking is essential for enhancing security

measures, attaining regulatory compliance, and optimizing resource allocation and

inventory management. In simple terms, asset monitoring is crucial for the efficient

administration and care of tangible assets, enabling businesses to maximize their value

and streamline their processes.

Bluetooth technology offers several advantages for tracking assets in indoor or

short-range outdoor locations. Bluetooth Low Energy (BLE) technology enables long-

term asset tracking without the need for regular battery replacement, thus extending

the battery life of tracking devices. Additionally, Bluetooth-enabled tracking devices

are a cost-effective alternative for tracking assets in restricted spaces, as they are

typically less expensive than other asset tracking solutions such as RFID and GPS-

based systems (CAMPORESOFT, 2019). Indoor asset tracking is well-suited to

Bluetooth technology because GPS signals may be unreliable or unavailable in such

environments (Sokolova, 2023). By using Bluetooth beacons or tags, enterprises can

accurately track the location of their assets in real-time. Bluetooth is particularly useful

in settings such as warehouses, healthcare, or manufacturing facilities where precise

asset location within a specific area is necessary due to its excellent accuracy in short-

range tracking (Link Labs, 2021). Bluetooth technology also provides built-in security

features such as authentication and encryption, ensuring that asset-tracking data is kept

safe and shielded from unwanted access (ToolSense, 2023).

6

1.2 Problem Statements

Asset tracking enables companies and organisations in a wide range of industries to

successfully manage their assets. From inventory management and loss prevention to

resource optimisation and regulatory compliance, asset tracking offers many benefits

that are critical to ensuring operational efficiency, reducing risk, and driving business

success. Organisations can access data instantly and reduce the risk of asset theft or

loss through effective asset tracking. It also helps to analyse the condition of assets,

eliminate costly ghost assets, and create efficient maintenance plans.

BLE, GPS, and RFID are the common technologies used to track assets. RFID

systems use radio frequency signals to locate and monitor tagged assets. RFID is often

used in environments such as manufacturing plants, warehouses, and retail outlets to

track high volume of assets. Satellites are used by GPS to provide precise location data

for tracked assets outdoors. When high-value assets, equipment, and vehicles need to

be monitored over a wide area, GPS-based asset tracking systems are often used. Low-

power, short-range communication is the focus of BLE. Hospitals, airports, and

industrial facilities are among the environments where BLE-based asset-tracking

technologies are commonly used.

Bluetooth technology is generally more cost-effective than GPS and RFID,

especially for indoor and close-range outdoor applications. In general, the costs of

Bluetooth solutions are lower in terms of infrastructure and hardware than GPS and

RFID. BLE is also designed to use minimal power, making it suitable for battery-

powered devices that need to operate for long periods of time without battery

replacement or recharging. This makes Bluetooth a practical option for asset-tracking

applications where battery life is critical. Smartphones, tablets, and other mobile

devices support Bluetooth technology, making it easy for users to interact with and

manage tracked assets using their current devices. As a result, Bluetooth-based asset

tracking systems are easier to use and more accessible. Hence, BLE was discussed and

implemented for outdoor asset tracking applications in this project.

7

1.3 Aims and Objectives

The objectives of this project are shown as follows:

i) To understand the BLE (Bluetooth 5) technology for asset tracking.

ii) To understand the important parameters for BLE asset tracking.

iii) To demonstrate the application of BLE for outdoor asset tracking.

1.4 Scope

This project focuses on implementing outdoor asset tracking using Bluetooth Low

Energy (BLE). Previous discussions have highlighted the suitability of Bluetooth

technology for short to medium-range tracking, making it ideal for monitoring assets

in confined spaces such as buildings, campuses, or industrial facilities. However, long-

range monitoring for outdoor asset tracking typically requires the use of technologies

such as GPS.

To overcome the limitations of Bluetooth technology in distance detection

compared to other technologies, this project will explore and consider the use of a

feature offered in BLE known as Coded PHY. Coded PHY has the potential to extend

the effective range of asset tracking, thereby making the project's goal of outdoor asset

tracking more practical and feasible. By leveraging Coded PHY, we aim to enhance

the range and reliability of Bluetooth-based asset tracking, enabling effective

monitoring of assets even in outdoor environments with greater distances between the

tracker and the asset.

8

1.5 Outline

This report consists of five chapters, including Introduction, Literature Review,

Methodology, Results and Discussions, and Conclusions and Recommendations. The

background, problem statement, and objectives of this project are mentioned in

Chapter 1 (Introduction).

Furthermore, Chapter 2 (Literature Review) reviews the contextual framework

of the study concerning Bluetooth technology, including both Bluetooth Classic and

BLE. A comparative analysis between Bluetooth Classic and BLE will be conducted

to discuss their distinctive characteristics. Additionally, parameters related to range in

Bluetooth devices will be examined to understand the fundamental elements for

extending range. Studies concerning BLE will be reviewed to enhance the

understanding of BLE concepts and align them with the objective of this project.

Moreover, the hardware and software used in this project will be introduced as well.

Additionally, Chapter 3 (Methodology) mentions the approaches to be used to

achieve the objectives of this project. The detailed execution steps in conducting the

experiments will be included. The key parameters and data analysis methods identified

in the research reviewed from the previous chapter will be studied and implemented

in this project as well.

Chapter 4 (Results and Discussions) will focus on the presentation of the results

and the discussion around them. This will involve documenting the results of the

project and thoroughly explaining the results collected. The comparison between the

physical layers which are Coded PHY and 1M PHY is examined. Additionally, the

accuracy of the distance estimation using the path loss model is discussed. Furthermore,

the direction prediction using techniques such as trilateration and sensor integration is

performed. By examining these findings in detail, the aim is to ensure and verify the

accuracy and reliability, thereby strengthening the credibility of the project's

conclusions.

9

In Chapter 5 (Conclusions and Recommendations), the focus shifts to

summarising the project's findings and validating the original objectives.

Recommendations for future action are also provided and discussed in detail. These

recommendations are intended to improve the conduct of similar projects in the future,

to achieve more accurate and insightful results.

10

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

This chapter examines the existing literature to gain insight into the research topic,

highlighting its significance and relevance within the field of study. The literature

review plays a crucial role in providing the basic concepts necessary to carry out this

project.

The background study reviews Bluetooth technology, including discussions of

its two standards: Bluetooth Classic and Bluetooth Low Energy. It also identifies key

range parameters when using Bluetooth technology for outdoor asset tracking. It also

summarises relevant studies, including literature reviews and theoretical analyses. The

studies contribute to a better understanding of BLE-related concepts, and the

experiments conducted in these studies validate the theories discussed.

2.2 Background of study – Bluetooth

A study is carried out on Bluetooth technology, looking at two standards: Bluetooth

Classic and BLE, focusing on their respective characteristics. Furthermore, the

physical layers within BLE are analysed in terms of data transfer rates and distance

capabilities. A comparison is also made between Bluetooth Classic and BLE, taking

11

into account their unique characteristics. Additionally, the factors influencing the

devices connected via Bluetooth technology are examined.

2.2.1 Introduction to Bluetooth Classic

Bluetooth Classic refers to one of the Bluetooth standards in wireless communication

technology that operates in the physical layer of the Bluetooth protocol stack.

Bluetooth Classic connects devices within a short range using radio signals in the 2.4

GHz ISM band. The transmission power levels, frequency hopping patterns, and

modulation strategies that enable reliable communication are all included in the

physical layer. The modulation techniques available for Bluetooth Classic's two modes

(BR and EDR) are 1 Mbps GFSK for BR, up to 2 Mbps for π/4-DQPSK and up to 3

Mbps for 8DPSK in the case of EDR as shown in Figure 2.1 (electronicsnotes, n.d.).

Bluetooth BR/EDR can transmit high-definition video and audio at higher data rates

due to its higher data rates. High data rates are required for high-quality audio, which

BLE typically cannot deliver (Argenox, 2020).

Figure 2.1: Modulation techniques in Bluetooth Classic (Argenox, 2020).

12

Bluetooth Classic devices are categorised into three groups according to the

transmission power of the devices such as Class 1, Class 2, and Class 3 as shown in

Figure 2.2 (Ezurio, n.d.). With a range of up to 100 metres, Class 1 devices have the

highest transmitting power, up to about +20 dBm. These devices are typically used in

long-range communication applications. Class 2 devices, which have a range of up to

10 metres and can transmit up to +4 dBm. With a range of up to one metre and the

lowest output power (+0 dBm), Class 3 devices are often used in applications that

require close-range communication.

Figure 2.2: Three classes in Bluetooth Classic (Ezurio, n.d.).

Channels and bandwidth allocation are concepts defined by the Bluetooth

Classic physical layer. Using frequency hopping spread spectrum technology,

Bluetooth Classic transmits data over 79 channels in the 2.4 GHz ISM band. By

hopping in different directions, this pattern reduces interference from other wireless

technologies using the same frequency band. A total of 79 MHz of bandwidth is

available for Bluetooth Classic transmission, with a bandwidth of 1 MHz for each

channel from 2402 MHz to 2480 MHz as shown in Figure 2.3 (Argenox, 2020).

Figure 2.3: Bandwidth divided into 79 channels in Bluetooth Classic (Agarwal,

2021).

13

The features and functionality of Bluetooth Classic devices are largely

determined by their profiles. The way Bluetooth devices connect and communicate

with each other to perform specific functions or services is defined by a profile. For

instance, the Headset Profile (HSP) for hands-free calling, the Hands-Free Profile

(HFP) for hands-free audio, the Advanced Audio Distribution Profile (A2DP) for high-

quality audio streaming, and the Serial Port Profile (SPP) for creating virtual serial

connections between devices are examples of common Bluetooth Classic profiles

(JIMBLOM, n.d.). Each profile describes in detail the protocols, data formats and

communication techniques that are required to achieve its intended functionality.

2.2.2 Introduction to Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE), also known as Bluetooth Smart, is a low-power, short-

range wireless communication protocol for devices (BasuMallick, 2022). BLE was

incorporated into the Bluetooth 4.0 protocol in 2010 to address the growing need for

low-power wireless connectivity in many applications.

The physical radio data rate, or the speed at which the radio transmits data,

defines the data throughput of BLE. For Bluetooth versions below 5.0, the rate is fixed

at 1Mbps, but for Bluetooth versions 5.0 and above, the rate varies depending on the

mode and PHY. The rate can be 1Mbps which is similar to previous iterations, or

2Mbps when using the high-speed feature. The rate drops to 500 or 125 Kbps if the

long-range option is applied (AFANEH, 2022).

BLE uses 40 channels and frequency hopping spread spectrum to operate in

the 2.4 GHz ISM band in terms of channels and bandwidth as shown in Figure 2.4

(MathWorks, n.d.). With 2 MHz bandwidth per channel, a total of 80 MHz bandwidth

is available for BLE communications. Its architecture not only reduces interference

from other wireless technologies but also makes communication durable and resilient.

14

Figure 2.4: Bandwidth divided into 40 channels in BLE (MathWorks, n.d.)

The Bluetooth LE protocol stack is also known as Bluetooth Low Energy

architecture. The application layer, host layer and controller layer are the three key

components that make up the BLE protocol stack architecture as shown in Figure 2.5

(Woolley, 2017). The hardware component of the Bluetooth Low Energy architecture

is the controller. The physical layer, which is the lowest layer, is defined as the actual

radio used for modulation and demodulation of the data and communication. The Link

Layer sits on top of this and is responsible for packet transport, device discovery and

connection establishment. Generic Attribute Profile (GATT), Generic Access Profile

(GAP), Logical Link Control and Adaptation Protocol (L2CAP) and Attribute Protocol

(ATT) are components of the host layer (BasuMallick, 2022). The L2CAP acts as a

protocol multiplexer, combining multiple protocols into a single BLE packet, while

the ATT and GATT govern data exchange between BLE devices. Key components of

device behaviour, such as connection establishment, device discovery and security

management, are managed by the GAP. The part of the Bluetooth Low Energy stack

architecture that communicates directly with users is called the application layer. It

includes the general application architecture, application logic and user interface.

15

Figure 2.5: BLE stack (Woolley, 2017).

2.2.2.1 Introduction to 1 Mbps PHY in BLE

LE 1M PHY, the Physical Layer (PHY) utilized in Bluetooth 4, employs Gaussian

Frequency Shift Keying modulation with a symbol rate of 1 mega symbol per second

(Ms/s) (Woolley, 2017). In practical terms, this symbol rate directly translates to a bit

rate of 1 Mb/s, as each symbol corresponds to one data bit. Notably, LE 1M remains a

mandatory and available option for use in Bluetooth 5, ensuring compatibility and

continuity across BLE implementations.

2.2.2.2 Introduction to 2 Mbps PHY in BLE

The introduction of the new LE 2M PHY in Bluetooth 5 enables higher data rates,

operating at 2 mega symbols per second (Ms/s), surpassing the capabilities of the LE

16

1M PHY used in Bluetooth 4. Both the LE 2M and LE 1M PHYs are classified as

Uncoded PHYs as they use a 1-symbol representation per data bit.

It is important to note that the feature of doubling the data speed of Bluetooth

5 may require updates to hardware or software stacks in older devices, as not all

chipsets may support this enhancement. In addition, to achieve the higher throughput

of the LE 2M PHY, both communicating Bluetooth devices must support this new

PHY (Afaneh, 2023). However, there are limitations to using the LE 2M PHY, such

as the inability to transmit primary advertisements on the primary channels, unlike the

mandatory LE 1M PHY. Therefore, not all chipsets claiming Bluetooth 5 compatibility

may support the higher data rates of the LE 2M PHY. Advertising and discovery can

still take place on the LE 1M PHY, with connections established on the secondary

advertising channel using the LE 2M PHY.

2.2.2.3 Introduction to Coded PHY in BLE

The Coded PHY, introduced in Bluetooth Low Energy (BLE) with Bluetooth 5, aims

to improve communication range and robustness in complex wireless environments,

extending the applicability of BLE. Unlike traditional uncoded PHYs such as LE 1M

and LE 2M, which use a one-to-one bit-to-symbol mapping, the Coded PHY uses a 2-

symbol (S=2) or 8-symbol (S=8) representation per bit.

While Bluetooth 4 BLE only detects errors using a method known as Cyclic

Redundancy Check (CRC), Bluetooth 5 introduces error correction, allowing data to

be accurately decoded even at a lower Signal-to-Noise Ratio (SNR), thereby extending

the transmission range. Using Forward Error Correction (FEC), the Coded PHY

encodes data redundantly, enabling receivers to reconstruct lost or corrupted data,

increasing communication reliability.

The choice between S=2 and S=8 encoding schemes affects range and data rate.

S=2 doubles the range, while S=8 quadruples it. However, this increases the number

of symbols transmitted and reduces the overall data rate (Woolley, 2017). At lower

17

data rates (125 Kbps to 2 Mbps), the coded PHY prioritises range over throughput.

This trade-off improves signal penetration and resilience to obstructions and

interference. Particularly beneficial for applications requiring extended range, such as

outdoor asset tracking and industrial monitoring, the Coded PHY ensures reliable BLE

communication in challenging RF environments.

2.2.2.3.1 Implementation of Coded PHY

There are two approaches to using Coded PHY in Bluetooth Low Energy (BLE)

communication: advertising-only state and connection state (Afaneh, 2023). In

advertising-only mode, Coded PHY is used to advertise, allowing other devices that

support Coded PHY to discover the advertisements. When a connection is established

between two BLE devices, one device advertises using Coded PHY while the other

device searches or scans for these advertisements on the same PHY. Extended

Advertisement is applied in this scenario because it allows Coded PHY to be the

primary channel, unlike other types of advertising as shown in Figure 2.6. Choosing

the suitable advertisement type is essential in enabling BLE applications under Coded

PHY.

Figure 2.6: Advertising types available (Afaneh, 2023).

In addition, the PHY Update Procedure facilitates the transition to Coded PHY,

allowing it to be switched from the previous connections such as 1M PHY. This PHY

Update Procedure can be conducted by either the central or peripheral device; the PHY

18

Update Procedure initiated by the central can be illustrated as shown in Figure 2.7

while the operation in Figure 2.8 shows the peripheral starts the update procedure.

Figure 2.7: Operation of central initiates PHY Update Procedure (Afaneh, 2023).

Figure 2.8: Operation of peripheral initiates PHY Update Procedure (Afaneh, 2023).

2.2.2.4 Comparison among physical layers in BLE

The differences between the various physical layers in BLE are outlined based on their

data rate and range characteristics as shown in Figure 2.9. Each PHY offers unique

Type text here

19

trade-offs in terms of data rate, symbol representation, range, and application

suitability. While the LE 1M and LE 2M PHYs are suitable for typical applications

with moderate data throughput requirements, the LE Coded PHY offers extended

range capabilities at a reduced data rate, making it particularly suitable for scenarios

where communication range is a priority.

Figure 2.9: Comparison between LE physical layers (Woolley, 2017).

2.2.3 Comparisons between Bluetooth Classic and BLE

The study examines and contrasts Bluetooth Classic and BLE across several key

metrics, including power consumption, range, data throughput, communication mode,

and application suitability. From the comparison results, a summary is provided, and

scenarios or operations are identified where each technology is best suited.

2.2.3.1 Power consumption

As mentioned before, Bluetooth Low Energy (BLE) is designed to operate at

significantly reduced power levels compared to traditional Bluetooth, resulting in

20

lower power consumption and longer battery life. BLE achieves this by effectively

managing its power consumption, particularly through its ability to enter a sleep mode

when not actively transmitting data. On the other hand, Bluetooth Classic lacks this

ability and remains either fully powered on or fully powered off, with no in-between

states (PROCTOR, 2023). Furthermore, BLE transmits data in smaller increments

even during active transmission, further reducing power consumption compared to

Bluetooth Classic, which typically requires more power for similar data transfers

which can be illustrated as shown in Figure 2.10. Hence, BLE is a compelling choice

for battery-powered devices and applications that require low-power wireless

communication because of its optimised power management and efficient data transfer,

which helps to extend battery life.

Figure 2.10: Comparison between power consumption in both Bluetooth Classic and

BLE (MathWorks, n.d.).

2.2.3.2 Range

Bluetooth Classic and BLE differ in the range they can communicate with. Bluetooth

Classic typically has a greater range than BLE, making it suitable for applications that

require wider coverage (How To Electronics, 2023). Conversely, BLE's shorter range

makes it more suitable for applications that require more localised coverage, such as

indoor navigation or location-based services.

For Bluetooth Classic devices, Class 1 devices can achieve ranges of up to 100

metres, Class 2 devices up to 10 metres, and Class 3 devices up to 1 metre in optimal

conditions. In contrast, BLE devices typically have a range of 10-100 metres in

standard mode, which is influenced by factors such as transmission power,

environmental conditions, and antenna design.

21

Bluetooth Classic generally has a longer range than BLE. However, the long-

range mode of BLE, also known as Coded PHY introduced with Bluetooth 5.0,

significantly extends its range. This enhancement allows BLE devices to achieve

distances of up to several hundred metres in optimal conditions.

2.2.3.3 Data Throughput

Both Bluetooth Classic and BLE utilize Gaussian Frequency Shift Keying (GFSK)

modulation for data transmission. However, Bluetooth Classic has additional

modulation techniques such as π/4-Differential Quadrature Phase Shift Keying (π/4-

DQPSK) and 8-Differential Phase Shift Keying (8DPSK). As mentioned previously,

the modulation techniques available in Bluetooth Classic depend on the mode: Basic

Rate (BR) mode supports 1 Mbps GFSK, while Enhanced Data Rate (EDR) mode

supports up to 2 Mbps for π/4-DQPSK and up to 3 Mbps for 8DPSK. On the other

hand, BLE supports multiple data rates using different physical layers (PHY). It offers

1 Mbps in LE 1M PHY and 2 Mbps in LE 2M PHY. Additionally, BLE supports lower

data rates of 125 Kbps and 500 Kbps using LE Coded PHY. These lower data rates are

achieved by applying coding schemes to optimise power consumption for various

applications.

The difference between Bluetooth Classic and BLE in modulation techniques

and data rate can be illustrated as shown in Figure 2.11. Hence, Bluetooth Classic's

data rates depend on the mode (BR or EDR), while BLE supports multiple data rates

through different PHYs, including lower data rates achieved through coding schemes

for power optimisation.

Figure 2.11: Comparison between modulation and data rate in both Bluetooth Classic

and BLE (Bluetooth®, n.d.).

22

2.2.3.4 Communication mode

Bluetooth Classic operates in a point-to-point communication mode, enabling direct

connections between two devices for tasks such as streaming audio, file transfer, and

hands-free calling. On the other hand, Bluetooth Low Energy (BLE) supports multiple

communication topologies, including point-to-point, broadcast, and mesh networking.

Like Bluetooth Classic, BLE enables point-to-point communication for tasks such as

connecting smartphones to wearable fitness trackers or smart home devices (NORDIC,

2021). In addition, BLE supports broadcast communication, which allows a single

device to send data to multiple recipients simultaneously, commonly used for

proximity sensing and location-based services. Notably, a key advantage of BLE is its

native support for mesh networking, which enables decentralised communication

between multiple devices, ideal for applications such as smart lighting, home

automation, and large-scale sensor networks. In essence, the difference in

communication mode between Bluetooth Classic and BLE is summarized as shown in

Figure 2.12, in which both Bluetooth Classic and BLE offer point-to-point

communication, BLE's additional support for mesh networking enhances its suitability

for distributed and scalable applications.

Figure 2.12: Comparison in communication mode between Bluetooth Classic and

BLE (NORDIC, 2021).

23

2.2.3.5 Application

Bluetooth Classic is typically used in scenarios that require high data throughput, and

continuous communication, such as audio streaming, file transfer, and hands-free

calling in a variety of devices including automotive systems, headphones, speakers,

and smartphones. In contrast, Bluetooth Low Energy (BLE) is well suited to

applications where low power consumption, intermittent communication, and

extended battery life are important. Applications related to data transfer, location

services, and device networking are well suited to BLE. It is widely used in IoT devices,

wearables, health and fitness trackers, smart home devices, proximity sensors, and

location-based services. BLE's energy-efficient communication mode makes it

particularly suitable for devices that rely on battery power for extended periods of time.

The application scenarios for both Bluetooth Classic and BLE can be illustrated as

shown in Figure 2.13.

Figure 2.13: Applications that are suitable for Bluetooth Classic and BLE (NORDIC,

2021).

2.2.3.6 Summary

Both Bluetooth Low Energy (BLE) and Bluetooth Classic are Bluetooth-based

wireless communication technologies, but they have different functions and features.

Where power sources are readily available and high data rates are required, Bluetooth

Classic will be the better option for this case. On the other hand, BLE will be best

24

suited for low-power, low-data-rate applications, especially Internet of Things devices

that rely on small batteries.

2.2.4 Measurement of signal strength

RSSI, or Received Signal Strength Indication, is a key parameter in wireless

communication systems such as Bluetooth that measures the strength of the signal a

device receives from a transmitter. Usually expressed in decibels (dB), and RSSI does

not represent the speed of a Bluetooth connection, but rather the strength of the signal

(Li, 2022). The relationship between the signal strength and RSSI value is summarized

as shown in Table 2.1. In fact, RSSI values can vary significantly between chipset

manufacturers such as the same RSSI reading on two different smartphones with

different chipsets may indicate different signal strengths (Gao, 2015).

Table 2.1: Relationship between RSSI and signal strength (Li, 2022).

RSSI Signal Strength

Below -50 dBm Good

-70 dBm to -80 dBm Fair

-100 dBm No Signal

For Bluetooth, RSSI is an important indicator of signal strength and connection

quality. Higher RSSI values generally indicate stronger signals and better connection

quality. In addition, RSSI helps to estimate the proximity between Bluetooth devices.

By tracking changes in RSSI over time, applications can measure the distance between

devices, facilitating features such as location tracking and asset management.

Moreover, monitoring RSSI values can detect potential problems with the stability of

the connection. Abrupt fluctuations or drops in RSSI can indicate interference,

obstructions, or environmental factors affecting the wireless link.

25

2.2.5 Factors affect the range of Bluetooth devices

The range of connected devices is influenced by a number of factors, including the

radio spectrum used by Bluetooth technology, which is advantageous for wireless

communication. The physical layer (PHY) defines essential aspects of radio usage

such as data rate, error detection and correction methods, interference protection, and

signal clarity techniques over different ranges (Franklin & Pollette, n.d.). Furthermore,

receiver sensitivity is critical since it measures the minimum signal strength for correct

data decoding. In addition, transmit power plays an important role in this case, higher

transmit signal strength correlates with longer achievable ranges. However, the cost of

increased battery consumption needs to be considered (Li, 2022). Moreover, antenna

design and placement have a significant impact on range and signal strength, with

antenna gain playing a critical role in converting electrical signals to radio waves and

vice versa. Pathloss, which is influenced by factors such as distance, humidity, and

transmission medium, must be considered as it weakens signals as they propagate.

Hence, these factors affect the range and reliability of Bluetooth communications and

require careful consideration during device design and deployment in order to achieve

a long distance between connected devices.

2.3 Journals review

Journals reviewed are related to Bluetooth technology, such as testing the

communication range using beacons, comparison between Bluetooth version 5 and

Bluetooth version 4.2, and distance estimation based on the log-distance path loss

model. They emphasize the RSSI value differs between different devices, mentioning

the advantage provided by the new physical layer introduced in Bluetooth 5 compared

to the physical layer in Bluetooth 4, and highlighting the importance of path loss

exponent in getting an accurate distance estimation.

26

2.3.1 Testing the Communication Range of Ibeacon Technology by Boros,

Kuffa, and Skýpalová

This study investigated the utilization of iBeacon technology and evaluated signal

strength between various devices using RSSI values. The same beacon chip was

employed to establish connections with four different receiving devices featuring

different Bluetooth versions. These devices included two minicomputers (Raspberry

Pi® 4B and Raspberry Pi® Zero) and two mobile phones (Samsung Galaxy A12 and

iPhone 13 Pro) (Boros, Kuffa, and Skýpalová, 2022). An application was installed on

each receiving device to scan for the beacon and collect real-time RSSI values.

During the tests, the receiving devices were stationed at fixed points (the

starting point of measured distance), while the beacon was positioned at specific

distances ranging from 1 to 40 metres. Each distance was tested multiple times, and

the average of 1000 RSSI values was calculated for analysis. The results recorded as

shown in Figure 2.14, indicated a minimal difference in RSSI values between the

minicomputers and similarly between the mobile phones. The signal quality between

minicomputers and mobile phones varied from -15 dBm to -20 dBm.

Figure 2.14: Average RSSI value recorded for multiple devices at different distances

(Boros, Kuffa, and Skýpalová, 2022).

27

The study's analysis highlighted that the type of receiving device significantly

influenced the RSSI values in iBeacon technology. Furthermore, it emphasized the

necessity of involving various devices to determine the maximum range between the

receiving device and beacon accurately, as RSSI fluctuations impact result precision

significantly. For instance, the study observed a difference of -25 dBm at a distance of

10 meters for the case of the Raspberry Pi Zero, indicating the importance of multiple

receiving devices in the test of range measurement.

2.3.2 An analysis of Bluetooth 5 in comparison to Bluetooth 4.2 by Lyatuu

This study compared the performance of Bluetooth 5 and Bluetooth 4.2 in terms of

power consumption, range capabilities, and data throughput. It utilised two identical

system-on-chip (SoC) devices supporting Bluetooth 5, such as the nRF52840 from

Nordic Semiconductor (Lyatuu, 2022). One kit served as the master connected to a PC,

while the other acted as the slave. Both kits were loaded with throughput-related

firmware from Nordic Semiconductor for testing.

The study examined three physical layers available in Bluetooth 5 which are

1M PHY (supported in Bluetooth 4.2), 2M PHY, and Coded PHY. Tests were

conducted over distances ranging from 2 to 450 meters between the two kits. The graph

plotted from the results as shown in Figure 2.15, illustrated an inverse relationship

between distance and throughput across all Bluetooth versions, indicating that longer

distances result in lower throughput. Coded PHY in Bluetooth 5 demonstrated better

range capabilities compared to other PHYs, as expected due to its design focusing on

longer distances for the connection.

28

Figure 2.15: Average throughput collected for different PHYs at different distances

(Lyatuu, 2022).

Furthermore, power consumption tests were conducted across different PHYs,

indicating that 2M PHY consumes less power than others. This was explained due to

its higher data rate, allowing for shorter transmission times and increased energy

efficiency. The study concluded that Bluetooth 5 was improved compared to Bluetooth

4.2 in terms of range and data rate. The lower data rate of 1M PHY in Bluetooth 4.2

resulted in higher power consumption compared to 2M PHY. Although Coded PHY

offered an extended range, its lower data rate required longer data transfer times, and

higher energy consumption compared to others.

2.3.3 Calibration of BLE beacons and its impact on distance estimation using

the log-distance path loss model by Vanzin and Oyamada

This study examined the use of BLE beacons for object localization, with a focus on

estimating distances between beacons and smartphones using RSSI measurements.

The beacons were designed using HM-10 BLE boards, and transmit signals to

smartphones acting as receiving devices (Vanzin and Oyamada, 2021). Log-distance

29

path loss model was introduced to determine the RSSI values based on calculation as

shown in Equation (2.1).

𝑅𝑆𝑆𝐼 = 𝑅𝑆𝑆𝑑0 − 10𝑛 × log10 (
𝑑

𝑑0
) + 𝑋𝜎 (2.1)

The reference RSSI (𝑅𝑆𝑆𝑑0), representing the RSSI value at a reference

distance (𝑑0). In this study, the reference distance was set to 1m and the reference

RSSI was detected using the BLE scanner application installed. The zero-mean normal

random variable with standard deviation (𝑋𝜎) was set to zero as the tests were

performed in an open environment without shadows. The path loss exponent (𝑛),

indicating the rate of signal loss with distance, is dependent on the environment and

obstacles. The 𝑛-value was initially set to 2, but it was not optimal due to several

factors such as hardware and environment. It was later optimized to obtain more

accurate distance estimation. To determine the optimal 𝑛-value, the values of 𝑑0 and

𝑋𝜎 were set to zero, the equation was rewritten as shown in Equation (2.2). Once the

optimal 𝑛-value was obtained, the corresponding distance (𝑑) to the specific RSSI can

be calculated as shown in Equation (2.3).

𝑛 =
𝑅𝑆𝑆𝑑0 − 𝑅𝑆𝑆𝐼

10 × log10(𝑑)
 (2.2)

𝑑 = 10(
𝑅𝑆𝑆𝑑0−𝑅𝑆𝑆𝐼

10×𝑛
)
 (2.3)

The beacons were defined with an individual Minor value and grouped under

the same Major value. The experiments were conducted with distances ranging from

0.5 to 5 metres, with variations of 0.5 metres between each distance. The RSSI reading

collected from the BLE scanner reflected the actual RSSI for each beacon at different

distances. The comparison of calculated RSSI between the 𝑛=2 and a custom 𝑛-value

to the actual RSSI value in each beacon was presented based on the graph plotted as

shown in Figure 2.16, Figure 2.17, and Figure 2.18.

30

Figure 2.16: Results collected for Beacon A (Vanzin and Oyamada, 2021).

Figure 2.17: Results collected for Beacon B (Vanzin and Oyamada, 2021).

31

Figure 2.18: Results collected for Beacon C (Vanzin and Oyamada, 2021).

Based on the results recorded, the study identified a custom 𝑛 -value that

yielded closer matches to actual RSSI values compared to the default 𝑛=2. Moreover,

the study demonstrated the importance of tuning the 𝑛-value in the log-distance path

loss model, as the percentage error between actual RSSI values and the RSSI

calculated using the custom 𝑛-values were lower compared to using 𝑛=2. The findings

suggest that a common 𝑛-value is not optimal across different devices, highlighting

the need to determine an optimal 𝑛 -value for each scenario to improve distance

estimation accuracy.

2.3.4 Development of Localization Technique using Trilateration Algorithm

for E-Puck2 Robot by Harmanda, Priandana, and Hardhienata

This paper explores indoor localization techniques for E-Puck2 robots, specifically

focusing on helping the robots determine their positions within a predefined

environment. The study implements the Trilateration algorithm to locate the E-Puck2

robot based on Received Signal Strength Indication (RSSI) values obtained from

Bluetooth Low Energy (BLE) beacons (Harmanda, Priandana, and Hardhienata, 2020).

These beacons are placed in different fixed points, and the RSSI values from the BLE

signals are recorded. The RSSI data and the beacons' position are transmitted via a

32

serial port to a server, the Trilateration algorithm is then used to process them to

determine the robot's location.

The Trilateration algorithm determines an object's position by using range

measurements from three or more reference points with known locations. The object's

position can be obtained by finding the intersection based on the distances between the

object and the three or more reference points. The Trilateration algorithm applied can

be illustrated as shown in Figure 2.19.

Figure 2.19: Trilateration algorithm (Harmanda, Priandana, and Hardhienata, 2020).

In this study, BLE signals emitted by the E-Puck2 robot are captured by BLE

beacons from different positions for localization purposes. These signals are RSSI

values, which are then used to compute the distance between each beacon and the robot.

The equation used to determine the position (𝑥, 𝑦) of an object in the Trilateration

algorithm can be found in Equation (2.4). Based on this equation, the process of

calculation for three stations or beacons can be defined as shown in Equation (2.5),

Equation (2.6), and Equation (2.7).

(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)
2 = 𝑑𝑖

2 (2.4)

33

(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2 = 𝑑1
2 (2.5)

(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2 = 𝑑2
2 (2.6)

(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 + (𝑧 − 𝑧3)2 = 𝑑3
2 (2.7)

Using the distances derived from the RSSI values, the robot's position is

determined and compared to its actual position. Additionally, tests were conducted to

examine how the distance between the robot and the beacons affects the RSSI values

captured. For each distance (50 cm, 100 cm, and 200 cm), 47 RSSI values were

recorded, and the average RSSI value for each beacon was calculated as shown in

Figure 2.20. This average was then used to estimate the distance and was compared

with the actual distance as shown in Figure 2.21.

Figure 2.20: Average RSSI value of each beacon at different distances (Harmanda,

Priandana, and Hardhienata, 2020).

Figure 2.21: Distance estimated based on the average RSSI value of each beacon at

different distances (Harmanda, Priandana, and Hardhienata, 2020).

34

Based on the results, it showed that the estimated distances from the RSSI

values did not accurately represent the real distances. Therefore, it was concluded that

the RSSI values at specific distances between the robot and the beacons were

inconsistent, and the distances calculated from these values were not reliable indicators

of the actual distances.

2.3.5 Indoor Localization in BLE using Mean and Median Filtered RSSI

Values by Venkatesh, Mittal, and Tammana

The use of RSSI values is applied for indoor localization applications using BLE

technology, but these values are affected by variations due to environmental factors.

This paper suggests overcoming this issue by stabilizing the received power using

mean and median filters.

When a Bluetooth device starts searching for nearby Bluetooth devices, it

measures the RSSI for each detected device. A more negative RSSI value indicates

that the peer device is farther away. Various factors such as multipath fading, a high

density of obstacles, and low transmitter power can cause fluctuations in RSSI values.

These variations can lead to inaccuracies in detecting which transmitter is closest to

the scanning device.

To address these fluctuations, a Bluetooth device is placed at a fixed location

to collect RSSI data from surrounding Bluetooth beacons and send it to a server in real

time. By placing the server at fixed distances from the beacons, it can estimate the

variations and provide feedback to the user (mobile terminal) to correct the RSSI in

real time. Outliers can be removed using mean and median filters. If there is an odd

number of RSSI values, the median is the middle value of the sorted list. If there is an

even number, the median is calculated by adding the two middle values and dividing

by two.

The Bluetooth controller connects to reference devices using connection

handles (Connection handle 1 to Reference-1 and Connection handle 2 to Reference-

35

2). Once these connections are established, the RSSI values for each connection handle

are obtained. The mean and median filters are then applied to stabilize the RSSI values.

Tests were conducted at different distances, such as 1 m, 2.5 m, 4 m, 6 m, and 7.5 m,

using mean and median filtered values. Based on the results as shown in Figure 22, the

distance estimated based on median or mean filtered RSSI is similar to the real distance.

The results showed that both filters improved the accuracy of localization.

Figure 2.22: Distance estimated based on median or mean filtered RSSI value

(Venkatesh, Mittal, and Tammana, 2021).

2.3.6 Moving averaging method of RSSI based distance estimation for wireless

capsule localization by Hany, Akter, and Hossain

This study introduces a method for estimating the distance of a wireless capsule

endoscope (WCE) using the received signal strength indicator (RSSI). Since RSSI

weakens with increasing distance, it can be utilized for distance estimation. To address

the fluctuation in RSSI measurements, this study proposes a moving average approach

for smoothing path loss to estimate the capsule's distance more accurately.

A moving average filter works by replacing each data point with the average

of its surrounding points within a defined range as shown in Equation (2.8), effectively

acting as a lowpass filter with smoothing characteristics represented by a difference

equation.

36

𝑃𝐿𝑠(𝑑𝑖) =
1

2𝑁 + 1
∑ 𝑃𝐿(𝑑𝑘)

𝑖+𝑁

𝑘=𝑖−𝑁

 (2.8)

A simulation model was created using MATLAB, featuring eight receiver

sensors positioned at the corners of a 3D sensor array. These sensors are employed to

localize the capsule as it moves through the small intestine by estimating the distance

between the transmitter and receivers.

The path loss data appears randomly scattered due to the unpredictable

deviations caused by the non-uniform medium of propagation, causing the distance

estimates based on scattered path loss are inaccurate and can differ significantly from

the actual distance. To enhance the accuracy of these estimations, the moving

averaging method is implemented to address the random nature of path loss. The study

also examined how the number of data points affects the accuracy of the proposed

moving average method, the best accuracy found for this current application in this

study is achieved with 201 data points. By applying a moving average (MA) filter to

201 neighbouring data points (N = 201), the random deviations are minimized,

resulting in estimated distances that closely match the actual distances as shown in

Figure 2.23.

Figure 2.23: Comparison between unfiltered and moving average filtered in Distance

estimation (Hany, Akter, and Hossain, 2016).

37

Based on the observation in Figure 2.24, clearly shows that the distance

estimation error was found to be significantly reduced when using the moving average

method compared to estimates without it.

Figure 2.24: Comparison between unfiltered and moving average filtered in Distance

estimation error (Hany, Akter, and Hossain, 2016).

2.3.7 Research of RSSI indoor ranging algorithm based on Gaussian-Kalman

linear filtering by Zhang, Zhang, and Wan

Due to the complex propagation characteristics of the RSSI signal and the presence of

various disturbances, achieving accurate indoor localization solely based on RSSI is

challenging and unreliable, this study introduces a filtering algorithm to process the

RSSI signal more effectively. The Gaussian-Kalman filtering algorithm is applied to

the RSSI signals, demonstrating improved performance in terms of rejecting

perturbations, enhancing accuracy, and maintaining stability.

When using the RSSI-based ranging formula to calculate the location of

unknown points, one major challenge is determining the values of the environmental

parameters such as reference RSSI (A) and path loss exponent (n). The ranging

formula indicates that varying these parameters can significantly impact the accuracy

38

of the estimated distance. To ensure the formula accurately reflects the transmission

characteristics of the current indoor environment and maintains precise RSSI-based

ranging, A and n are optimized through linear regression to find the values most

suitable for the specific environment. The linear regression applied to estimate the

environmental impact parameters A and n can be illustrated as shown in the following

equations.

𝑑̅ =
1

𝑛
∑ 𝑑𝑖

𝑛

𝑖=1

 (2.9)

𝑅𝑆𝑆𝐼̅̅ ̅̅ ̅̅ =
1

𝑛
∑ 𝑅𝑆𝑆𝐼𝑖

𝑛

𝑖=1

 (2.10)

∴ 𝑛 = ∑(𝑑 − 𝑑̅)

𝑛

𝑖=1

𝑅𝑆𝑆𝐼𝑖/ ∑(𝑑 − 𝑑̅)
2

𝑛

𝑖=1

 (2.11)

∴ 𝐴 = 𝑅𝑆𝑆𝐼̅̅ ̅̅ ̅̅ − 𝑛𝑑̅ (2.12)

In this study, it utilizes the CC2540 chip from Texas Instruments as the

transmitter, constructing a platform based on BLE low-power Bluetooth technology.

Its transmission power is set at -4 dBm and is used as the base station to measure RSSI

values in various indoor settings. The RSSI signals are then collected in different

environments and locations such as conference halls, empty warehouses, and parking

lots. The collected data is analyzed using linear regression to assess the RSSI-distance

measurement under different conditions as illustrated in Figure 2.25, showing that

stable and smooth changes in RSSI values can be obtained using suitable

environmental impact parameters.

39

(a) (b)

(c)

Figure 2.25: Different parameters were recorded for RSSI readings at (a) the

conference hall, (b) the empty warehouse, and (c) the parking lot (Zhang, Zhang, and

Wan, 2016).

Other than just implementing the linear regression in smoothing the RSSI

readings, this study also applied the Gausion filter, Kalman filter, and Gausion-Kalman

filtering to further improve the accuracy of measuring results. The comparison

between these filtering methods can be illustrated as shown in Figure 2.26. Based on

the graph, shows that the relative error of improved filtering (Gaussian-Kalman

filtering) gives the lowest relative error compared to others, ensuring the precision and

stability of the ranging.

40

Figure 2.26: Relative error among unfiltered and filtered processes (Zhang, Zhang,

and Wan, 2016).

2.3.8 RSSI based indoor localization for smartphone using fixed and mobile

wireless node by Gani, OBrien, Ahamed, and Smith

This paper introduces a system for localization that functions effectively both indoors

and outdoors. A mathematical model is developed to estimate the location (both

distance and direction) of a mobile device using wireless technology. The RSSI values

are collected in both indoor and outdoor environments. A low-pass filtering technique

was then applied to reduce noise in the RSSI signals caused by various environmental

factors. This filtering improves the reliability and usability of the RSSI values as a

parameter for estimating the distance and direction of a mobile node from a

smartphone. In this case, the Roving Networks WiFly RN-131GSX is used as a mobile

Wi-Fi router.

Using both Android and iPhone devices, RSSI values are recorded at distances

ranging from 10 feet to 80 feet between the smartphone and the mobile Wi-Fi node, in

2-foot intervals. For each distinct location, these distance-RSSI pairs are stored. The

smartphone's accelerometer and magnetometer sensors are used to determine direction

relative to true north. The mathematical model is applied to predict the distance and

direction of the mobile Wi-Fi node.

41

The variation of RSSI value and the orientation of the mobile device and the

Wi-Fi node is examined. To mitigate the effect of orientation, we collected RSSI

values while rotating the smartphone 360 degrees on the horizontal plane. The mean

of these values was used to calculate the distance. It was observed that rotating the

smartphone minimized the impact of orientation on the RSSI value. In this case, the

RSSI value was found to be the strongest when the smartphone directly faced the Wi-

Fi node (line of sight). Using this observation, the direction is calculated as the angle

from true north at which the strongest RSSI signal was recorded. To compute the

heading, filtered accelerometer and magnetometer sensor data are used, while

simultaneously gathering RSSI values for each degree of rotation. The mathematical

model was then used to predict the distance and direction of the mobile node from the

smartphone as shown in Figure 2.27.

Figure 2.27: Mathematical model to obtain the direction and distance (Gani, OBrien,

Ahamed, and Smith, 2013).

The exponential regression was employed using the Nelder-Mead Simplex

Search method, and the resulting regression function was used to estimate the location.

A working prototype of this model was developed for both Android and iPhone

platforms. An evaluation of the accuracy of the systems for both indoor and outdoor

environments was done. The experimental results on these smartphones demonstrated

good accuracy, with an error margin of less than 2.5 meters as shown in Figure 2.28.

42

Figure 2.28: Accuracy of the developed system under indoor and outdoor

environments (Gani, OBrien, Ahamed, and Smith, 2013).

2.4 Introduction to Hardware

The hardware used in this project is highlighted which is BlueNRG-LPS supported

with Bluetooth version 5.3. Furthermore, the development board such as STEVAL-

IDB012V1 which is equipped with BlueNRG-332AC SoC from BlueNRG-LPS, is

used to perform BLE applications.

2.4.1 BlueNRG-LPS (SoC)

BlueNRG-LPS is a programmable Bluetooth® Low Energy wireless SoC solution that

uses STMicroelectronics 2.4 GHz radio IPs for optimal performance and battery life.

The order code of BlueNRG-LPS from the STMicroelectronics online website is

BlueNRG-332xy and the relevant SoCs available to be ordered such as BLUENRG-

332AC, BLUENRG-332VT, BLURNRG-332AT, and BLUENRG-332VC as shown

in Figure 2.29 (STMicroelectronics, n.d.).

43

Figure 2.29: BLUENRG-LPS SoC available (STMicroelectronics, n.d.).

It complies with Bluetooth Low Energy SIG core specification version 5.3,

which enables reliable point-to-point connectivity and Bluetooth Mesh networking. It

supports features such as 2 Mbps data rate, long-range mode (Coded PHY),

advertisement extensions, GATT cache, direction finding such as AoA and AoD,

hardware support for simultaneous connection, and more. It also offers advanced

security hardware support, including a true random number generator, AES encryption

up to 128-bit security processor, public key accelerator, CRC calculation unit, 64-bit

unique identifier, and flash read and write protection. BlueNRG-LPS can be

configured to support standalone or network processor applications and supports

standard and advanced communication interfaces. It operates in a temperature range

of -40 °C to +105 °C and a power supply range of 1.7 V to 3.6 V, ensuring a power-

saving mode exists to execute the low-power application. Furthermore, two package

versions are offered to perform the functionality of BlueNRG-LPS such as the QFN32

and WLCSP36 packages.

44

2.4.2 STEVAL-IDB012V1 (Development board)

The STEVAL-IDB012V1 as shown in Figure 2.30, is an evaluation board launched by

STMicroelectronics to perform the applications of BLE using BlueNRG-LPS SoC

(BlueNRG-332AC) in a QFN32 package, which supports various BLE roles such as

master, slave, and simultaneous master and slave, and provides long-range

communication at a data rate of 2 Mbps, as well as direction finding using Angle of

Arrival (AoA) and Angle of Departure (AoD) (STMicroelectronics, n.d.). This

evaluation board integrates BLE features such as data length extension, extended

advertisement and scanning, GATT caching, LE ping procedure, power control, and

path loss monitoring.

Figure 2.30: STEVAL-IDB012V1 evaluation board (STMicroelectronics, n.d.).

With programmable output power up to +8 dBm and great receiver sensitivity,

it ensures efficient radio performance with minimal power consumption. In addition

to user LEDs and buttons for interaction, it embeds MEMS sensors for environmental

monitoring and provides Arduino R3 connectors for extended functionality.

Furthermore, it supports multiple power options as the board can be powered on using

either USB, battery, or external power supply.

45

2.5 Introduction to Software

The software used in this project is introduced which is the BlueNRG-LPS DK SW

package used to program the development board that is equipped with BlueNRG-LPS

SoC to implement the BLE application. Furthermore, WiSE STUDIO refers to IDE

software that provides features to employ user applications such as compiling and

debugging. Moreover, AIDA64 for Android is found to allow Android users to

discover their phone's hardware and software information. Additionally, nRF Connect

for Android refers to an application to be used for scanning the BLE devices, and the

feature of generating RSSI values on the connected device is offered as well.

2.5.1 BlueNRG-LPS DK SW package

The STSW-BNRGLP-DK software package as shown in Figure 2.31, supports

BlueNRG-LP and BlueNRG-LPS BLE SoC. It offers a comprehensive set of APIs and

event callbacks for accessing Bluetooth LE functionality. Additionally, the package

includes demo applications illustrating various BLE use cases, each accompanied by

header and source files (STMicroelectronics, n.d.).

46

Figure 2.31: STSW-BNRGLP-DK for BlueNRG-LPS (STMicroelectronics, n.d.).

The package provides examples utilizing the low-level driver for the 2.4 GHz

radio, serving as references for building other applications leveraging BlueNRG-LP

and BlueNRG-LPS radio capabilities. Furthermore, it includes the BlueNRG-LP and

BlueNRG-LPS navigators PC applications, offering an intuitive interface for selecting

and running demo applications without additional hardware. It also offers a 3D view

of available kits and information about associated hardware components.

2.5.2 WiSE STUDIO

The STSW-WISE-STUDIO package provides the WiSE-Studio Eclipse IDE

compatible with the BlueNRG family of BLE system-on-chips such as BlueNRG-1,

BlueNRG-2, BlueNRG-LPS, BlueNRG-LP and their respective evaluation platforms

such as STEVAL-IDB012V1 (STMicroelectronics, n.d.). This IDE supports Eclipse,

the GCC toolchain, and GDB-based debugging, providing a comprehensive

development environment for creating and debugging user applications. Furthermore,

47

the toolchain is freely available and uses the standard GCC C/C++ compiler. Users

can compile, assemble, and link applications for their chosen device and debug via

supported SWD channels such as CMSIS-DAP, J-Link or ST-Link/V2. The package

also includes the IO Mapper tool, which allows the configuration of pin assignments,

peripherals, and device settings for BlueNRG-LP and BlueNRG-LPS, and the

generation of associated header and source files for IDE projects. Additionally, WiSE-

Studio is compatible with multiple operating systems such as Windows, Linux, and

MacOS, with separate software packages available for each platform.

Figure 2.32: WiSE-Studio IDE (STMicroelectronics, n.d.).

2.5.3 AIDA64 for Android

AIDA64 for Android is used to gather and display the hardware and software

information of Android devices (FinalWire, 2015). Installing the software into an

Android-based phone, users are allowed to detect the details of the phone in terms of

hardware and software easily. It is introduced to be a user-friendly application, a clean

user interface displays the supported device categories, allowing users to get familiar

with the options provided in the application within a short time. Several diagnostic

information can be observed for devices such as phones, tablets, and smartwatches

such as system information, including device mode, total memory and storage space,

48

and Bluetooth version as shown in Figure 2.33. Additionally, CPU detection and real-

time core measurement are available for users to discover. Furthermore, display-

related information can be obtained from the application such as screen dimensions,

pixel density, and refresh rate. Moreover, the battery level and temperature monitoring

features are provided for users to analyse the battery status.

Figure 2.33: Showing system information of a device (FinalWire, 2015).

2.5.4 nRF Connect for Android

nRF Connect for Mobile is an application launched by Nordic Semiconductor, is a

powerful tool to be installed in mobile devices; it allows users to scan and discover the

BLE devices. Several Bluetooth SIG-adopted profiles and Device Firmware Update

profiles (DFU) from Nordic Semiconductor or Eddystone from Google are supported

by this application (Nordic Semiconductor, n.d.).

Figure 2.34: nRF Connect for Mobile (Nordic Semiconductor, n.d.).

49

Some features offered in this application are scanning for the BLE devices,

showing RSSI graphs, connecting to BLE devices that are connectable, and

interpreting the advertisement data. Android users will benefit from the additional

features provided in this application, such as GATT server configuration, listing of

paired devices, BLE advertising (peripheral role), support for Eddystone beacons and

iBeacons, and the ability to simultaneously advertise and maintain multiple

connections.

2.5.5 Putty

The terminal emulator program PuTTY is available for free and is open-source.

PuTTY is a popular tool for securely connecting to remote systems and carrying out

operations like system administration and remote file transfers. PuTTY is a vital tool

for managing networks and servers as it supports terminal emulation, which enables

users to interact with remote systems. In addition, PuTTY supports SSH, guaranteeing

secure connections to remote servers, which is an important feature for safeguarding

confidential information. Furthermore, PuTTY facilitates serial communication,

allowing connections to hardware such as switches and serial consoles (Rushax, n.d.).

Figure 2.35: Putty application (Rushax, n.d.).

50

CHAPTER 3

3 METHODOLOGY

3.1 Introduction

This chapter describes the system's idea to carry out the goal of the project which is

outdoor asset tracking using BLE. The hardware used in the project is mentioned and

the experiment continues after the Bluetooth specification supported by the hardware

implemented in this study is discussed. Furthermore, the details of the experiment

setup in different applications are included as well.

3.2 Bluetooth version of hardware applied

Four devices contribute to the hardware in this study: two mobile devices and two

evaluation boards (both STEVAL-IDB012V1). The mobile devices used in this

instance are the Mi 9T pro and the Samsung Tab S7. As previously stated, the

evaluation board, STEVAL-IDB012V1, has BlueNRG-LPS (BlueNRG-332AC),

making it take advantage of Bluetooth 5.3's features. The Android-based mobile

devices that need to be tested are supported by AIDA64 for Android and nRF Connect

for Android, which collect the necessary information. Determining the system

information of devices is the primary goal of using AIDA 64 for Android. The

Bluetooth versions of two mobile devices are focused after selecting the system choice

offered by the application, as shown in Figure 3.1; both are compatible with Bluetooth

5.0, as shown in Figures 3.2 and 3.3.

51

Figure 3.1: Options available in AIDA64 for Andriod.

Figure 3.2: Bluetooth version in Mi 9T Pro is 5.0.

Figure 3.3: Bluetooth version of SAMSUNG Tab S7 is 5.0.

52

Instead of using the AIDA64 for Android to obtain the Bluetooth version, the

application of nRF Connect for Android is used as well to collect information such as

hardware, Bluetooth-related features supported, and screen quality. Using the nRF

Connect for Android, the Device information option is chosen as shown in Figure 3.4

to detect the Bluetooth capabilities of the devices. The BLE is focused, both mobile

devices appear to support the physical layers of Bluetooth 5, including 2M PHY and

Coded PHY, as shown in Figure 3.5.

Figure 3.4: Options available in nRF Connect for Android.

Figure 3.5: 2M PHY and Coded PHY are supported by both devices.

53

Hence, all of the devices used in this experiment have Bluetooth technology

that supports at least Bluetooth version 5.0, allowing for the testing and completion of

BLE applications like asset tracking.

3.3 Comparison between 1M PHY and Coded PHY

As mentioned previously, the differences among the physical layers can be classified

into data throughput, power consumption, and distance. However, the distance

between different physical layers will be the main focus to be compared and discussed

in this study. The maximum range between the Bluetooth devices with the setting of

1M PHY and Coded PHY is determined based on the observation of RSSI values. The

set of devices applied to determine the effect of different PHY in terms of maximum

distance are two evaluation boards, mobile devices such as the Mi 9T pro, and the

Samsung Tab S7 to one evaluation board. Hence, the experiment can tell the

difference in RSSI readings among different devices under the same settings in

physical layer and distance.

To access the difference in distance between Bluetooth devices under 1M PHY

and Coded PHY by using two evaluation boards, the relevant code is needed for them

to switch between different physical layers. The BlueNRG-LPS in the evaluation

boards is supported by the software package (STSW-BNRGLP-DK), which serves

to carry out the software programming to communicate the boards. By choosing the

BLE RC Long Range from the BLE demonstration and test applications, as shown in

Figures 3.6 and 3.7, the program allows users an example of a way to boot the

application code into the boards directly and test the connection under 1M PHY and

Coded PHY. The page that appears after selecting the long-range related option

outlines how to test the PHYs. It also provides options for operating the board as a

server or client, as shown in Figure 3.8. In this case, the idea of PHY testing falls under

connection mode. To put it another way, the devices need initially be connected to a

1M PHY, then switching to a Coded PHY is allowable. In this long-range application,

three LEDs identified as LED1, LED2, and LED3 are focused, Figure 3.9 illustrates

54

the exact position of these LEDs. Further explanation of these LEDs' indications will

be provided.

Figure 3.6: Applications available to be tested.

Figure 3.7: BLE-related applications available to be tested.

55

Figure 3.8: Client and server selection for long-range applications.

Figure 3.9: LED1, LED2, and LED3 on STEVAL-IDB012V1.

One board is booted as a client and the other performs the function of a server

via a USB cable to enable communication between the two boards. Both boards can

be powered on via a USB cable or a battery after they are successfully programmed.

The LED2 of a board blinks once it is powered on, and searches for another board. As

demonstrated in Figure 3.10, once both boards are powered on, LED2 will be on

constantly which indicates that they are connected, and the blinking of LED3 signifies

that they are connected or communicating with one another. When evaluating

Bluetooth device range under various PHYs, the 1M PHY is initially applied to both

LED1

LED3
LED2

56

boards. In this stage of testing the 1M PHY, the LEDs focused are only LED2 and

LED3.

Figure 3.10: Binking LED3 indicates boards are communicating.

One of the boards is set up at the end as the starting point, while the other board

is moved to a different location. Once LED3 is no longer powered on, it indicates the

devices are disconnected, and the distance under a specific PHY is examined, as the

state of LED3 indicates the state of communication. As observed in Figure 3.11, to

effectively switch their physical layer to Coded PHY, one of the boards' PUSH1

buttons must be pressed and the LED1 turns on constantly, indicating the transition

from 1M PHY and Coded PHY is successful. To get the distance result for Coded PHY,

the procedure used before to get the distance of devices under 1M PHY is repeated

between two boards after pressing the button.

57

Figure 3.11: LED3 blinks and LED1 is on, indicating Coded PHY to be used.

To perform the test between different physical layers using a mobile device

and an evaluation board, the software package (STSW-BNRGLP-DK) needs to be

used to boot the code into the board. However, one evaluation board only is applied in

this case and it acts as the server. Mobile devices such as the Mi 9T pro and the

Samsung Tab S7 are treated to be client. To scan and discover the evaluation board,

the application (nRF Connect for Mobile) is needed for mobile devices to

communicate with the evaluation board. Once the server is booted into the evaluation

board, the LED2 starts to blink. The application will search for the surrounding

Bluetooth devices, and the board will be shown in the scanning list as shown in Figure

3.12.

58

Figure 3.12: Evaluation board (Node) is discovered in the application.

By clicking the connect option provided in the application, they will

communicate with each other under connection mode, and the services and

characteristics of the board can be accessed. In this case, the LED3 is no longer to be

the indicator to check the status of communication, instead, we observe it based on the

application from the side of mobile devices. Once the mobile device is disconnected

from the evaluation board, a disconnected message will be printed out in the

application, and the maximum distance for the specific physical layer will be

determined.

The 1M PHY is initially accessed, and the board and the mobile device can be

switched from 1M PHY to Coded PHY by pressing the PUSH1 button. Alternatively,

we can set the preferred phy from the application to modify the desired physical layer

as shown in Figure 3.13. By selecting the Coded PHY to be the preferred physical

layer as shown in Figure 3.14, the Coded PHY is updated from 1M PHY as shown in

Figure 3.15. The status of the LED1 on the evaluation board is powered on, showing

the Coded PHY is implemented successfully in the communication between two

devices as shown in Figure 3.16.

59

Figure 3.13: Set preferred PHY option is available in the application.

Figure 3.14: Coded PHY can be switched from 1M PHY.

Figure 3.15: Coded PHY is updated after setting Coded PHY as the preferred PHY.

60

Figure 3.16: LED1 of the board is on, indicating Coded PHY is applied.

3.3.1 Maximum distance

To perform the test using two evaluation boards, both of the boards are switched on

and connected initially. One of the boards (Board A) is placed at the starting point

(point A), and the other board (Board B) is then carried and moved away from Board

A until the LED3 stops blinking as shown in Figure 3.17. At that moment, the current

position (point B) of Board B is treated to be the ending point, and the distance between

the point A and point B will be considered as the maximum distance as illustrated as

shown in Figure 3.18.

61

Figure 3.17: Two boards are separated to get the distance measurement.

Figure 3.18: Maximum distance is obtained when LED2 stops blinking.

To ensure the accuracy of the results in getting the maximum distance, we will

keep moving forward at 50m (point C) from point B to observe the status of LED2 as

shown in Figure 3.19. If the LED2 is not powered on or blinking from point B to point

C, then the distance between point A and point B is the maximum distance; otherwise,

the maximum distance measurement will be continued. This test is to improve the

results of distance measurement by considering the low data throughput in Coded PHY.

Figure 3.19: Additional 50m to be tested after LED2 stops blinking.

62

To conduct the distance test between the mobile device and one evaluation

board, the previous process is repeated as shown in Figure 3.20, but the disconnected

message is the signal to get the maximum distance between the two devices.

Figure 3.20: Distance measurement between a mobile device and one evaluation

board.

A flowchart is used to illustrate the operation of conducting distance

measurement as shown in Figure 3.21. After collecting the distance between devices

for 1M PHY, the Coded PHY is then switched from 1M PHY and the distance

measurement is repeated to get the maximum distance.

63

Figure 3.21: Flowchart of distance measurement

3.3.1.1 Tested in different environments (Indoor and Outdoor)

To test the effect of both physical layers in distance, the environment is one of the

factors to be considered. In this case, the environments to be examined are indoor and

outdoor. The indoor environment test is conducted in building (Block E) in the campus

area, while the outdoor environment test is performed in open area spaces. The

measuring tape is used to measure the indoor distance to ensure accurate results are

collected, while Google Maps is the software tool for us to use in measuring the

distance between the two devices based on the measure distance option available as

shown in Figure 3.22, for users to get the distance from point A to point B.

64

Figure 3.22: Measure distance option is available in Google Maps.

3.3.1.2 Tested in different heights

Other than examining the difference in environments, height is also considered to be

one of the important factors in distance measurement. In this case, an extension pole

is used and the boards or mobile devices are attached to the pole to get different height

settings as shown in Figure 3.23. In this case, the height to be adjusted is 1.4 m, 2 m,

and 3 m to perform the distance test as shown in Figure 3.24. Once the pole is set to

the desired height and the device is attached to it, then the distance measurement is

started.

Type text here

65

Figure 3.23: A board is attached to an extension pole.

Figure 3.24: Different heights are applied using extension poles.

3.3.1.3 Tested in different transmit (Tx) powers

Furthermore, the transmit power is taken into account as it will be affecting the

distance of the signal to be transmitted based on its value. In this case, the value of

66

transmit power such as 0 dBm and 8 dBm are considered. For the boards that are coded

based on the long-range application from the software package, the transmit power is

initially set to 0 dBm. To increase the transmit power to 8 dBm, the code needs to be

modified and programmed into the board using IDE software such as WiSE STUDIO.

to meet the settings.

The evaluation board is recognised as a CMSIS-DAP device on Windows once

it is powered on through a USB cable as shown in Figure 3.25. BLE long-range

application needs to be imported to WiSE_STUDIO before updating the code to

modify the transmit power as shown in Figure 3.26. A service and characteristic are

created for modification on transmit power value, the characteristic value to be

identified and set into transmit power value as shown in Figure 3.27.

Figure 3.25: CMSIS-DAP is recognised after connecting the board to a laptop.

Figure 3.26: Project imported into WiSE-STUDIO.

67

Figure 3.27: Code fragment to set the value of transmit power based on the

characteristic value.

To programme the modified code into the board, WiSE-STUDIO is used to

build the project after the modification is made on the code as shown in Figure 3.28,

the CMSIS-DAP is confirmed to be selected before debugging as shown in Figure 3.29,

then debug or run the simulation to boot the modified code into the board and Figure

3.30. Note that the board requires to be reset before booting the code into it. To do the

reset action, the PUSH1 button needs to be pressed and held, the RESET button is then

pressed as demonstrated as shown in Figure 3.31. By doing so, it activates the internal

UART bootloader, and the simulation can be performed and the code can be sent to

the board properly.

Figure 3.28: Build options are provided in WiSE-Studio after editing the code.

68

Figure 3.29: CMSIS-DAP is selected under Run/ Debug Configurations.

Figure 3.30: Run or Debug options are available to boot the code into the board.

Figure 3.31: PUSH1 button is pressed and held, RESET button is then pressed.

69

By connecting the board to the laptop through a USB cable, the application of

Putty is then implemented to open the serial terminal to read the information from the

board. With the settings as shown in Figure 3.32 and Figure 3.33, the information

printed from the board can be read. Once both boards are connected, the latest transmit

power can be read in the serial terminal by reading the characteristic value as shown

in Figure 3.34, the serial terminal also shows the changes in the transmit power for

debugging and validation of the transmit power after updating the transmit power as

shown in Figure 3.35.

Figure 3.32: Settings of Serial line (COM) and Speed.

Figure 3.33: Enabling [Implicit CR in every LF] option to increase readability.

Figure 3.34: Transmit power is observed if the characteristic value is read.

70

Figure 3.35: Transmit power is updated if a new characteristic value is written.

Once the modified code is successfully booted into the boards, the transmit

power can be easily updated based on reading or writing the relevant characteristic

value, then the distance measurement under the specific transmit power (0 dBm or 8

dBm) can be conducted.

3.4 Distance and Direction Estimation

In this section, the distance and direction estimation is focused to meet the purpose of

asset tracking. The Coded PHY is the physical layer to be focused on in this case. The

RSSI-based estimation technique which is the trilateration method, performs the

distance and position estimation based on RSSI values among beacons. Other than that,

the distance and direction estimation is also performed based on the developed

Android application using Android Studio. This will be the combination of RSSI

reading and sensors’ data to determine distance and direction, which will collect the

sensors’ value from the mobile device and predict the direction of the mobile device

relative to the evaluation board.

Both methods perform distance estimation based on RSSI readings; the log-

distance path loss model is implemented to estimate the distance between the devices.

Based on Equation (2.3), the distance estimation formula requires inputs such as RSSI

readings and path loss exponent (n). These are the parameters that are highly affected

by obstacles like walls, multipath interference, and signal reflection. In other words,

fluctuations can easily occur in these environmental impact factors (RSSI reading and

71

path loss exponent), leading to inaccurate distance estimation and wrong information

for users. Hence, the optimal path-loss exponent and stable RSSI readings are essential

to obtain an accurate distance estimation.

The optimal path-loss exponent (n) is obtained by performing linear regression

after collecting the RSSI values at different distances and the reference RSSI value.

To perform the linear regression, Equation (2.1) can be rearranged into Equation (3.1),

then the linear equation can be defined as Equation (3.2).

𝑅𝑆𝑆𝐼 = 𝑅𝑆𝑆𝑑0 − 10𝑛 × log10 (
𝑑

𝑑0
) + 𝑋𝜎 from Equation (2.1)

⇓

𝑅𝑆𝑆𝐼 − 𝑅𝑆𝑆𝐼𝑑0 = −10𝑛 × log10 (
𝑑

𝑑0
) + 𝑋𝜎 (3.1)

𝑅𝑆𝑆𝐼′ = −10𝑛 × 𝐷 + 𝑋𝜎 (3.2)

where

𝑅𝑆𝑆𝐼′ = 𝑅𝑆𝑆𝐼 − 𝑅𝑆𝑆𝐼𝑑0, 𝐷 = log10 𝑑

𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑋𝜎 = 0, 𝑆𝑒𝑡𝑡𝑖𝑛𝑔 𝑑0 = 1𝑚, 𝑅𝑆𝑆𝐼𝑑0 = 𝑅𝑆𝑆𝐼1𝑚

Based on Equation (3.2), the slope (b) of the line can be written as −10 × 𝑛,

which the path loss exponent can be recalculated based on the slope value obtained

based on RSSI and distance values. In this case, the RSSI values at 1 m, 2 m, 5 m, and

10 m are recorded, and the unknowns such as 𝑅𝑆𝑆𝐼′ and 𝐷 are recorded. After that, the

mean of 𝐷 and the mean of 𝑅𝑆𝑆𝐼′ are calculated as shown in Equation (3.3) and

Equation (3.4).

𝐷̅ =
1

𝑛
∑ 𝐷𝑖

𝑛

𝑖=1

 (3.3)

𝑅𝑆𝑆𝐼′̅̅ ̅̅ ̅̅ ̅ =
1

𝑛
∑ 𝑅𝑆𝑆𝐼′𝑖

𝑛

𝑖=1

 (3.4)

72

The slope (b) in linear regression can be calculated based on Equation (3.5).

By solving Equation (3.5) using these mean values, the slope (b) is obtained and used

to get the path loss exponent by dividing the value by ten. The path loss exponent will

be suitable for the particular spaces and is then used in Equation (2.3) to estimate the

distance between two devices.

𝑏 =
∑ (𝐷𝑖

𝑛
𝑖=1 − 𝐷̅) × (𝑅𝑆𝑆𝐼′ − 𝑅𝑆𝑆𝐼′̅̅ ̅̅ ̅̅ ̅)

∑ (𝐷𝑖
𝑛
𝑖=1 − 𝐷̅)2

 (3.5)

3.4.1 RSSI based only -Trilateration

This method is implemented using the Samsung Tab S7 and one evaluation board, the

RSSI readings are collected using nRF Connect for Mobile from the Samsung Tab S7.

In this case, multiple boards are needed to send the signal from different positions to

the mobile device for trilateration. Hence, the implementation of beacons to the board

is important as it allows the devices to communicate without needing a connection,

making the collection of RSSI values from different devices available. The software

package (STSW-BNRGLP-DK) provides an extended advertising example for users

to code the boards as beacons using Coded PHY as shown in Figure 3.36. By uploading

the code into the board, the board will be iBeacon and advertise the signal to

surrounding Bluetooth devices. The WiSE-STUDIO is also needed in this case to

modify, build, and run the code into the boards, allowing multiple boards to perform

as the beacons simultaneously.

Figure 3.36: Extended Advertising Beacon example is available.

73

Once the beacon is booted with the relevant code to perform the beacon

application, it can be found in the nRF Connect for Mobile during the scanning stage

from the Samsung Tab S7 as shown in Figure 3.37. The option for connection is not

available in this case, the RSSI graph is generated based on the beacon in the

application for users to record the RSSI readings as shown in Figure 3.38. In this case,

there are 100 RSSI values obtained at different distances (1 m, 2 m, 5 m, and 10 m),

and the average value at each distance is counted for generating the optimum path loss

exponent.

Figure 3.37: Beacon is detected in the application.

74

Figure 3.38: RSSI graph is available to read the RSSI of beacons.

The distance between the mobile device and the beacon can be obtained based

on Equation (2.3) after calculating the path loss exponent. To perform the Trilateration

algorithm into the calculation, Equation (3.6) will be considered. By understanding the

position of three beacons, and their distance relative to the mobile device based on

RSSI values and Equation (2.3), the position of the mobile device can be predicted. In

this case, the test is performed in an outdoor environment to determine the advantage

of Coded PHY using the trilateration method. The position of three beacons is found

and pointed using Google Maps. Their position is fixed, the moving object or the asset

is the mobile device itself.

(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)
2 = 𝑑𝑖

2 (3.6)

Equation (3.6) is modified to Equation (3.7), Equation (3.8), and Equation (3.9)

to suit three beacons application in the implementation of trilateration. These equations

are further expanded and simplified as shown in Equation (3.10), Equation (3.11), and

Equation (3.12). Based on Equation (3.11) and (3.12), the position (x, y) of the asset

or mobile device can be calculated using a method such as substitution. However, the

positions of the beacons are obtained using Google Maps as mentioned earlier, which

75

are in the format of geographical coordinates (latitude and longitude). They cannot be

directly pasted into the calculation to get the expected results. Hence, the conversion

for latitude and longitude to metres is crucial in this case by considering the

approximate constants in Equation (3.13) and Equation (3.14).

(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 = 𝑑1
2 (3.7)

(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 = 𝑑2
2 (3.8)

(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 = 𝑑3
2 (3.9)

(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 − (𝑥 − 𝑥2)2 − (𝑦 − 𝑦2)2 = 𝑑1
2 − 𝑑2

2 (3.10)

(𝑥2 − 𝑥1)𝑥 + (𝑦2 − 𝑦1)𝑦 =
𝑑1

2 − 𝑑2
2 + 𝑥2

2 − 𝑥1
2 + 𝑦2

2 − 𝑦1
2

2

∴ 𝑨𝟏𝒙 + 𝑩𝟏𝒚 = 𝑪𝟏 (3.11)

where

𝐴1 = 𝑥2 − 𝑥1, 𝐵1 = 𝑦2 − 𝑦1, 𝐶1 =
𝑑1

2 − 𝑑2
2 + 𝑥2

2 − 𝑥1
2 + 𝑦2

2 − 𝑦1
2

2

(𝑥3 − 𝑥1)𝑥 + (𝑦3 − 𝑦1)𝑦 =
𝑑1

2 − 𝑑3
2 + 𝑥3

2 − 𝑥1
2 + 𝑦3

2 − 𝑦1
2

2

∴ 𝑨𝟐𝒙 + 𝑩𝟐𝒚 = 𝑪𝟐 (3.12)

where

𝐴2 = (𝑥3 − 𝑥1), 𝐵2 = (𝑦3 − 𝑦1), 𝐶2 =
𝑑1

2 − 𝑑3
2 + 𝑥3

2 − 𝑥1
2 + 𝑦3

2 − 𝑦1
2

2

1 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≈ 111,320𝑚 (3.13)

1 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑙𝑜𝑛𝑔𝑡𝑖𝑡𝑢𝑑𝑒 ≈ 111,320 × cos (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ×
𝜋

180
) (3.14)

where

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 =
𝑥1 + 𝑥2 + 𝑥3

3

76

After converting the latitude and longitude data of the beacons’ position to

metres, the trilateration algorithm is used to calculate the position (x,y) of the object

successfully. Once the position of the object is obtained, the values of x and y in metres

need to be converted back into latitude and longitude values using the conversion

values for searching the real positions in Google Maps. To locate the points in Google

Maps, the latitude and longitude data in Decimal Degrees (DD) still need to be

converted to Degrees Minutes Seconds (DMS) using Equation (3.15), Equation (3.16)

and Equation (3.17). A comparison between the real position and the position estimate

for the mobile device is made to determine the accuracy of trilateration using Coded

PHY in an outdoor environment.

𝐷𝑒𝑔𝑟𝑒𝑒𝑠, 𝐷 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑜𝑓 𝐷𝐷

Where

𝐷𝐷 = 𝐷𝑒𝑐𝑖𝑚𝑎𝑙 𝐷𝑒𝑔𝑟𝑒𝑒𝑠

(3.15)

𝑀𝑖𝑛𝑢𝑡𝑒𝑠, 𝑀 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑜𝑓 (|𝐷𝐷 − 𝐷|) × 60 (3.16)

𝑆𝑒𝑐𝑜𝑛𝑑𝑠, 𝑆 = (|𝐷𝐷| − |𝐷| −
𝑀

60
) × 3600 (3.17)

3.4.2 RSSI based and Sensors

This method is carried out using the Mi 9T Pro and one evaluation board, the RSSI

readings are collected using a developed Android application. By implementing the

filters to reduce the noise in obtaining RSSI readings, the RSSI fluctuation can be

avoided. There are hundreds of EMA-filtered RSSI values at different distances (1 m,

2 m, 5 m, and 10 m), the average of the RSSI values are recorded to be the RSSI value

for each distance and used to obtain a suitable path loss exponent for the area. It is

done by placing the board away from the mobile device at a specific distance, and then

run the Android application to record the RSSI values. Once the suitable path loss

exponent is collected, it will be substituted into Equation (2.3) to estimate the distance.

77

To further improve the distance estimation and obtain stable distance readings for users,

the mean of ten distance values is taken to ensure the variation of distance values

between two devices under the same distance is small. The flowchart is generated to

illustrate how to obtain the distance as shown in Figure 3.39.

Figure 3.39: Flowchart illustrates the process of estimating the distance.

To obtain the direction of the mobile device relative to the board, the phone’s

sensors such as accelerometer and magnetometer are needed. The mobile device will

be required to rotate in eight angles on the horizontal level, then sensors are used to

detect the current angle and the placement of the mobile device, then collect twenty

RSSI values and the mean of RSSI values at each angle will be compared. The angle

that records the highest mean RSSI value is predicted to be the direction of the phone

relative to the board. A flowchart is generated to capture the operation of estimating

the direction as shown in Figure 3.40.

78

Figure 3.40: Flowchart illustrates the process of estimating the direction.

3.4.2.1 Android Application Development

The Android application is designed using Android Studio, providing user interfaces

for users to access the features of scanning, connecting, and controlling the ble devices.

The permissions are critical in developing an Android application to perform the

Bluetooth features as shown in Figure 3.41. In this case, the BLE-related permission

is inserted, ensuring the BLE parameters can be applied in the code.

79

Figure 3.41: Essential permissions to perform Bluetooth features.

The scanning features available in the application, allow users to detect the

surrounding ble devices. In this case, the device address of the board is known based

on the C code provided in long-range applications from the software package.

Alternatively, the device address can be found using nRF Connect for Mobile. Hence,

the device address is highlighted in the code to ensure the Android application is only

scanning for the specific board by filtering the device address using ScanFiters as

shown in Figure 3.42. A scan button is inserted in the first layout of the Android

application for scanning the board, which can be illustrated as shown in Figure 3.43.

Figure 3.42: ScanFilters allows the devices to be filtered based on device address.

80

Figure 3.43: The board is the only device to be detected.

The details such as device type, advertising type, and RSSI values can be

observed once the board is scanned. By clicking on the board from the page, the board

will be connected to the mobile device. A new layout will be linked to show users

more details, as shown in Figure 3.44. For instance, the services and characteristics of

the board are discovered, and the MTU size can be requested after the connection is

made. By finding all services and characteristics offered by the board, users are

allowed to click on the characteristics to perform the actions that are set in the

characteristic. The log section is prepared to display information such as reading,

writing, and notifying events in the system. For example, the update of the value in a

specific characteristic will be displayed in the log after the writing action is done,

making users easily debug the error or observe the changes in the value.

Furthermore, the RSSI values and the distance estimation can also be observed

and recorded in the application. Moreover, the physical layer of the board can also be

reviewed, in this case, the Android application is coded to set the physical layer of the

board to be Coded PHY once the connection is made by using setPreferredPhy as

shown in Figure 3.45. The LED1 on the board is also powered on after the connection

is made, indicating that the physical layer is successfully updated to Coded PHY as

shown in Figure 3.46.

81

Figure 3.44: User interface linked after the connection is made.

Figure 3.45: setPreferredPhy allows the physical layer of the device to be modified.

82

Figure 3.46: LED1 of the board is on once connecting to the mobile device.

Three interactive buttons are available for users after the connection between

the mobile device and the board is established which are sensor, calibration, and find

device. Users are allowed to select one of the buttons to explore more details regarding

the board or the phone. A new layout will be presented to users by clicking the sensor

button, as shown in Figure 3.47. This page gathers the sensors’ data of the connected

board as well as the phone sensors’ data. In this study, the evaluation board (STEVAL-

IDB012V1) is used to be the BLE device to communicate with mobile devices, it is

equipped with multiple sensors such as the accelerometer, gyroscope, and temperature

sensors. There are several services and characteristics created for these sensors, to store

the sensors’ data. By setting the operation to trigger and read these characteristics after

clicking the sensor button, the real-time sensors’ data can always be updated for users.

The method of presenting the transmit power of the board is also done by generating

a specific characteristic and reading the value stored in the characteristic. The

characteristic is created to allow users to perform the read and write action as shown

83

in Figure 3.48. Hence, users can easily set the transmit power value of the board to

control the communication distance or power consumption.

Figure 3.47: User interface linked after pressing the sensor button.

Figure 3.48: Transmit power characteristic allows users to read and write.

84

The phone sensors’ data are obtained using getSystemService as shown in

Figure 3.49, showing the orientation and the movement of the phone based on the

accelerometer and gyroscope inputs. In addition, a switch PHY button at the bottom of

the screen allows the physical layer to switch between 1M PHY and Coded PHY by

toggling the button. For example, the board is initially set at 1M PHY, and updated to

Coded PHY once the application is run and connected to it, the button allows the

physical layer to be switched remotely without pressing the PUSH1 button of the board

physically. Overall, this page is developed to collect the information related to the

board and the phone, and a simple control button on the physical layer, providing

convenience for users to perform debugging and developing future project

Figure 3.49: getSystemService allows the phones’ data to be accessed.

In the case of pressing the calibration button, the user interface connected to

this button can be illustrated as shown in Figure 3.50. This page has mainly operated

for determining the optimum path loss exponent for the system to get better results in

distance estimation, which is to carry out the operation explained in the flowchart as

shown in Figure 3.39. By considering different suitable path loss exponent for different

areas, and users cannot reach the designing software to modify the constants of RSSI

at different distances to get the path loss exponent, this page is designed for this

scenario. Four buttons indicate different distances, users need to move the board away

from the phone at a specific distance, and then press the relevant distance button to

perform calibration. The system will start to collect a hundred of RSSI values, and the

average value at the specific distance will be updated and displayed to the user.

85

Figure 3.50: User interface linked after pressing the calibration button.

Other than displaying the real-time RSSI value, the RSSI value at different

distances and the path loss exponent value are displayed to users. The number of RSSI

values at different distances is initially set in the software and the path loss exponent

calculated based on them is only suitable for a particular space. The results in distance

estimation may be not desired if they are tested in other environments without

conducting calibration. Hence, users perform the calibration for four distances on this

page, a new and optimum path loss exponent is determined and the accuracy of

distance estimation for the current space is now improved.

In the case of pressing the find device button, the layout displayed to users can

be illustrated as shown in Figure 3.51. There are two buttons available on this page

which are play sound and direction. The play sound button is created to control one of

the I/O pins on the board. The code for controlling the I/O pin can be illustrated as

shown in Figure 3.52. A service and characteristic are defined for it, and the read and

86

write actions are permitted, the output of the I/O pin is based on the characteristic value.

In this case, if the characteristic value is inputted by 0x04, then a blinking output is

performed by the I/O pin, otherwise, a zero output will be observed if the characteristic

value is stored by 0x00. A flowchart is created to demonstrate the operation of

controlling the I/O pin as shown in Figure 3.53.

Figure 3.51: User interface linked after pressing the find device button.

87

Figure 3.52: Code fragment of controlling the I/O pin.

Figure 3.53: Flowchart illustrates the operation of controlling the I/O pin.

A buzzer is connected to that I/O pin as shown in Figure 3.54, the buzzer will

be powered on and beeping once the play sound button is pressed. The operation of

the buzzer can be controlled by toggling the button, allowing users to discover the

board or asset instantly when it is near to the user. The direction button is used to

determine the direction of the mobile device relative to the board. The bottom of the

screen displays the information that is related to the direction button such as the current

88

angle that is determined based on the magnetometer of the phone. By pressing this

button, the system will display the instruction message at the bottom of the screen to

ask users to rotate the phone to different angles on the horizontal plane and collect the

mean RSSI value from different angles. The comparison is done to predict the direction

of the phone relative to the board, which performs the operation that was explained

earlier using the flowchart as shown in Figure 3.40. Figure 3.55 shows how users

performs the direction finding on their mobile devices using the Android application.

The distances between the mobile device and the board are set at 1 m and 5 m

respectively and three orientations of the mobile device will be tested to determine the

effect of phone placement on the accuracy of the direction estimation as shown in

Figure 3.56.

Figure 3.54: A buzzer is attached to the I/O pin.

89

Figure 3.55: Operation in rotating the mobile device to estimate the direction.

Figure 3.56: Orientation of the mobile device in direction estimation.

The circles at the centre of the screen provide an animation to show users based

on the RSSI received. In the case of getting a higher signal strength or RSSI readings,

the visibility of the circles is increased. Furthermore, the distance estimation is also

90

performed in this case, and displays the estimated distance message to users; the

operation is explained previously in the flowchart as shown in Figure 3.39.

Moreover, the signal strength percentage and message are printed based on the

RSSI value. Based on the converted messages from RSSI values, users can easily

identify the communication strength between the board and the mobile device. The

range of RSSI value is set from -125 dBm to -20 dBm, the converted messages are

defined as shown in Figure 3.57. The RSSI value that is smaller than -125 dBm is

assumed to be extremely low signal strength, indicating that the mobile device cannot

detect the board or asset.

Figure 3.57: Percentage and message converted based on RSSI readings.

91

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Comparison between 1M PHY and Coded PHY

The comparison between different physical layers which are 1M PHY and Coded PHY

is done in terms of maximum distance. Some factors are considered in conducting the

distance measurement such as environment, height, and transmit power (Tx). The

devices involved in this test are evaluation boards, and mobile devices such as Mi 9T

Pro, and Samsung Tab S7.

Table 4.1: Combination of devices to be tested.

Combination Devices

A Two evaluation boards

B Samsung Tab S7 + 1 evaluation board

C Mi 9T pro + 1 evaluation board

The classification of the combination to be applied in the test can be illustrated

as shown in Table 4.1. The following sections show the results collected under indoor

and outdoor environments with the variable factors (height and Tx power) that are

mentioned above, and the discussion is done to verify the advantage of Coded PHY

over 1M PHY.

92

4.1.1 Maximum distance in an indoor environment

4.1.1.1 Tested in different heights

The variable settings in this test are the physical layers (1M PHY and Coded PHY)

and heights (1.4 m, 2.0 m, and 3.0 m). The transmit power of the evaluation board is

set to 0 dBm for this test.

Table 4.2: Comparison between PHYs at different heights.

PHY Height, h (m) Combination Distance, d (m)

1M

1.4

A 61.80

B 65.80

C 63.00

2.0

A 121.10

B 124.80

C 118.30

3.0

A 125.60

B 130.30

C 123.30

Coded

1.4

A 80.40

B 82.90

C 77.40

2.0

A 179.90

B 177.60

C 176.50

3.0

A 185.40

B 178.10

C 184.00

The results of different devices under different physical layers against different

heights (h) are recorded as shown in Table 4.2. The comparison of physical layers in

distance at different heights is plotted in the bar chart as shown in Figure 4.1.

93

Figure 4.1: Comparison of PHYs at different heights.

Table 4.3: Percent change between PHYs at different heights.

Height,

h (m)
Combination

Distance, d (m) Percent

change

(%)
1M Coded

1.4

A 61.80

63.53

80.40

80.23 26.29 B 65.80 82.90

C 63.00 77.40

2.0

A 121.10

121.4

179.90

178.00 46.62 B 124.80 177.60

C 118.30 176.50

3.0

A 125.60

126.4

185.40

182.50 44.38 B 130.30 178.10

C 123.30 184.00

The comparison of physical layers among different heights is summarized and

the percent change in distance is calculated using Equation (4.1) as shown in Table 4.3.

94

The average distance of different combinations is obtained to calculate the percent

difference between different physical layers.

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 (%) =
𝑑𝐶𝑜𝑑𝑒𝑑 − 𝑑1𝑀

𝑑
× 100 (4.1)

Table 4.4: Percent change between transmit powers at the same PHY.

PHY
Distance, d (m) Percent

change (%) 𝒉 = 𝟏. 𝟒𝒎 𝒉 = 𝟐. 𝟎𝒎 𝒉 = 𝟑. 𝟎𝒎

1M

63.53 121.4 91.09

63.53 126.4 98.96

 121.4 126.4 4.19

Coded

80.23 178.00 121.86

80.23 182.50 127.47

 178.00 182.50 2.52

Based on the observation in Table 4.3, the percent change shows that the

distance under Coded PHY increases up to 26.29%, compared to 1M PHY at 1.4 m.

The percent change recorded for 2.0 m and 3.0 m, shows the Coded PHY increase the

distance above 40 % compared to 1M PHY. Based on these bar charts and positive

percent change, the Coded PHY is found to have a longer distance compared to 1M

PHY at the same height. Comparing the percent change at different heights shows that

the increase in height can further increase the communication range and the difference

in distance between Coded PHY and 1M PHY. Furthermore, based on the observation

in Table 4.4, the distance is increased when the height is increased under the same

physical layer such as the distance under 1.4 m is doubled when the height is increased

to 2.0 m or 3.0 m, concludes the height is one of the important factors that affect the

communication range between the devices.

The longer distance is recorded by applying a higher height, which can be

explained by the reduction in obstructions such as walls and people that leads to

blocking or attenuating the signals. Furthermore, the interference from other devices

that operate in a similar frequency range (2.4 GHz) as Bluetooth such as Wi-Fi, and

cordless phones can be reduced, so the distance data can be improved.

95

Other than focusing on the distance difference between the physical layers, the

difference distance in different combinations is noticed in this test. It can be found that

under the same settings such as physical layer and height, the distance measurement

of each combination is observed to be slightly different compared to others. This is

because, the factors such as hardware like antenna design and quality, Bluetooth

version, firmware, and software optimization of these devices are different from each

other, resulting in the signal strength between devices being different compared to

others at identical heights and physical layers.

4.1.1.2 Tested in different transmit (Tx) powers

The variable settings in this test are the physical layers (1M PHY and Coded PHY)

and transmit powers (0 dBm and 8 dBm) The height setting for the evaluation board is

set to 1.4 m for this test.

Table 4.5: Comparison between PHYs at different transmit powers.

PHY Tx Power (dBm) Combination Distance, d (m)

1M

0.0

A 61.80

B 65.80

C 63.00

8.0

A 130.80

B 144.80

C 132.60

Coded

0.0

A 80.40

B 82.90

C 77.40

8.0

A 159.80

B 177.60

C 162.60

96

The results of different devices under different physical layers against different

transmit power are recorded as shown in Table 4.5. The comparison of physical layers

in distance at different transmit powers is plotted in the bar chart as shown in Figure

4.2.

Figure 4.2: Comparison of PHYs at different transmit powers.

Table 4.6: Percent change between PHYs at different transmit powers.

Tx

Power

(dBm)

Combination

Distance, d (m) Percent

change

(%)
1M Coded

0.0

A 61.80

63.53

80.40

80.23 26.29 B 65.80 82.90

C 63.00 77.40

8.0

A 130.80

136.07

159.80

166.67 22.49 B 144.80 177.60

C 132.60 162.60

97

The comparison of physical layers among different transmit powers is

summarized and the percent change in distance is calculated using as shown in Table

4.6. The average distance of different combinations is obtained to calculate the

percentage difference between different physical layers. Based on the observation in

Table 4.6, the percent change shows that the distance under Coded PHY increases up

to 26.29 %, compared to 1M PHY at 0 dBm transmit power. The percent change

recorded for 8 dBm transmit power, shows the Coded PHY increase the distance above

22.49 % compared to 1M PHY.

Table 4.7: Percent change between transmit powers at the same PHY.

PHY Combination

Distance, d (m) Percent

change

(%)
Tx = 0 dBm Tx = 8 dBm

1M

A 61.80

63.53

130.80

136.07 114.18 B 65.80 144.80

C 63.00 132.60

Coded

A 80.40

80.23

159.80

166.67 107.74 B 82.90 177.60

C 77.40 162.60

By observing the percent changes of 0 dBm and 8 dBm, the difference between

the Coded PHY and 1M PHY is smaller at 8 dBm Tx power, but the distance under

the same physical layer is doubled when it is switched from 0 dBm to 8 dBm, showing

the effect of extending the communication range of the devices as shown in Table 4.7.

In addition, based on these bar charts and positive percent change, the Coded PHY is

determined to have a longer distance compared to 1M PHY at the same transmit power.

The higher transmit power allows the Bluetooth signal to travel further and

increase the communication range because the stronger signal exists to penetrate

obstacles compared to 0 dBm transmit power. Furthermore, the higher transmit power

also ensures signal reliability to reduce packet loss. However, there is a trade-off that

needs to be considered when increasing the transmit power, which leads to higher

power consumption, shortening the battery life of the devices.

98

4.1.2 Maximum distance in an outdoor environment

In this case, combination A and combination B are included in the testing of measuring

the maximum distance in an outdoor environment.

4.1.2.1 Tested in different heights

The variable settings in this test are the physical layers (1M PHY and Coded PHY)

and heights (1.4 m, 2.0 m, and 3.0 m). The transmit power of the evaluation board is

set to 0 dBm for this test.

Table 4.8: Comparison between PHYs at different heights.

PHY Height, h (m) Combination Distance, d (m)

1M

1.4
A 197.62

B 230.41

2.0
A 419.91

B 466.17

3.0
A 479.91

B 525.17

Coded

1.4
A 387.48

B 416.59

2.0
A 878.23

B 911.48

3.0
A 961.23

B 963.48

99

The results of different devices under different physical layers against different

heights (h) are recorded as shown in Table 4.8. The comparison of physical layers in

distance at different heights is plotted in the bar chart as shown in Figure 4.3.

Figure 4.3: Comparison of PHYs at different heights.

Table 4.9: Percent change between PHYs at different heights.

Height,

h (m)
Combination

Distance, d (m) Percent

change

(%)
1M Coded

1.4m
A 197.62

214.02
387.48

402.04 87.85
B 230.41 416.59

2.0m
A 419.91

443.31
878.23

894.86 101.86
B 466.17 911.48

3.0m
A 479.91

502.54
961.23

962.36 91.43
B 525.17 963.48

Based on the observation in Table 4.9, the percent change shows that the

distance under Coded PHY increases up to 87.85 %, compared to 1M PHY at 1.4 m.

The percent change recorded for 2.0 m and 3.0 m, showing the Coded PHY increased

100

the distance by around 100 % compared to 1M PHY. Based on these bar charts and

positive percent change, the Coded PHY is found to have a longer distance compared

to 1M PHY at the same height, which further verifies the observation conducted on

height changes to distance in the indoor environment. Based on Figure 4.4, a

comparison is done for the results at different heights in the indoor and outdoor

environments, finding an increase in the distance under the same physical layers. The

distance data collected in the indoor environment is found to be smaller than in the

outdoor environment. This is because the indoor results are collected within the

building, and the Bluetooth signals are attenuated based on many factors such as

obstructions and physical barriers, multipath interference, and material absorption,

resulting in the distance measured in the indoor environment being shorter than the

outdoor results.

Figure 4.4: Comparison of PHYs and environments at each height.

101

4.1.2.2 Tested in different transmit (Tx) powers

The variable settings in this test are the physical layers (1M PHY and Coded PHY)

and transmit powers (0 dBm and 8 dBm) The height setting for the evaluation board is

set to 1.4 m for this test.

Table 4.10: Comparison between PHYs at different transmit powers.

PHY Tx Power (dBm) Combination Distance, d (m)

1M

0.0
A 197.62

B 230.41

8.0
A 368.62

B 394.41

Coded

0.0
A 387.48

B 416.59

8.0
A 781.48

B 800.59

The results of different devices under different physical layers against different

transmit power are recorded as shown in Table 4.10. The comparison of physical layers

in distance at different transmit powers is plotted in the bar chart as shown in Figure

4.5.

Figure 4.5: Comparison of PHYs at different transmit powers.

102

Table 4.11: Percent change between PHYs at different heights.

Tx

Power

(dBm)

Combination

Distance, d (m) Percent

change

(%)
1M Coded

0.0
A 197.62

214.02
387.48

402.04 87.85
B 230.41 416.59

8.0
A 368.62

381.52
781.48

791.04 107.34
B 394.41 800.59

The comparison of physical layers among different transmit powers is

summarized and the percent change in distance is calculated using as shown in Table

4.11. The average distance of different combinations is obtained to calculate the

percentage difference between different physical layers. Based on the observation in

Table 4.11, the percent change shows that the distance under Coded PHY increases up

to 87.85 %, compared to 1M PHY at 0 dBm transmit power. The percent change

recorded for 8 dBm transmit power, shows the Coded PHY increase the distance above

107.34 % compared to 1M PHY. Based on Figure 4.6, a comparison is done for the

results at different transmit powers in the indoor and outdoor environments, finding an

increase in the distance under the same physical layers. It can also be discovered that

the outdoor results are longer than the indoor results, due to less attenuation in signal

transmission as mentioned previously, which needs to be considered in the indoor

environment.

103

Figure 4.6: Comparison of PHYs and environments at each transmit power.

4.2 Comparison of filters applied to RSSI readings

Based on the studies reviewed in the previous section, the RSSI readings are unstable

and unreliable, as the RSSI can be varied by environmental interference and noise, and

the fading effect in the signal leads to fluctuation. In this case, some filters are used to

smooth the RSSI value, preventing the unexpected fluctuation in RSSI values. The

filters implemented are the moving average (MA) filter, exponential moving average

(EMA) filter, Kalman filter, and median filter. The tests conducted can be classified

into two scenarios: placing the board at a fixed distance and carrying the mobile device

to different points. There are 120 values of unfiltered RSSI values and filtered RSSI

values to be collected and compared.

4.2.1 Fixed distance

A mobile device (Mi 9T Pro) and a board are involved in the test, the board is placed

5 m away from the mobile device as shown in Figure 4.7, the height is 1.4 m and the

104

transmit power is 0 dBm. There are 100 values of unfiltered RSSI values and filtered

RSSI values to be collected and compared. The results collected for unfiltered and

filtered RSSI values are plotted as shown in Figure 4.8. Based on the plot, the

fluctuation of raw RSSI values exists although the board is treated to be a stationary

object. Observing the effect of each filter on the RSSI values as shown in Figure 4.9,

shows that the filtering methods are useful and critical to alleviate the fluctuation of

RSSI values, as the spikes in raw RSSI values are reduced or lowered compared to

filtered RSSI values.

Figure 4.7: Placement of the board and mobile device in the fixed distance test.

Figure 4.8: The unfiltered and filtered RSSI values at 5 m.

105

Figure 4.9: Comparison between filtered and unfiltered data.

4.2.2 Variable distance

A mobile device (Mi 9T Pro) and a board are involved in the test, the mobile device is

carried to move to other points as shown in Figure 4.10, and the height is 1.4 m and

the transmit power is 0 dBm. There are 120 values of unfiltered RSSI values and

filtered RSSI values to be collected and compared. The results collected for unfiltered

and filtered RSSI values are plotted as shown in Figure 4.11. Based on the plot, the

shape of the RSSI curve is close to a U-shaped graph which is expected based on the

test conducted. Observing the effect of each filter on the RSSI values as shown in

Figure 4.12, shows that the filtering methods are still useful to smooth the signal output

when the asset is moving.

106

Figure 4.10: Placement of the board and mobile device in the variable distance test.

Figure 4.11: The unfiltered and filtered RSSI values at variable distance test.

107

Figure 4.12: Comparison between filtered and unfiltered data.

4.2.3 Summary

Based on the previous results collected as shown in Figure 4.9 and Figure 4.12, all the

filtered RSSI values are better than the raw RSSI values as all of them are observed to

reduce the noise or spike of the raw RSSI values, improving the reliability.

Furthermore, their characteristics are found, in the moving average (MA) filter, it is

easy to implement, but a fixed delay is found as it is dependent on the size of the

window to get the average of the data. The larger size of window can be used to further

smooth the data, but the lag is increased. For the exponential moving average (EMA)

filter, there will be less lag as it is not dependent on the window size, which will also

be more responsive to recent data compared to the MA filter. Furthermore, a smoothing

factor (alpha) is available to further smooth the data based on the requirements.

 In addition, the Kalman filter is introduced to be an adaptive filter that

estimates the current state based on the previous state estimates and noisy

measurements, making it effective in dynamic environments which can be proved

based on the Kalman filtered RSSI values in Figure 4.12, showing that it is better than

in generating the similar RSSI graph from raw data compared to other filtering

techniques while smoothing the data. Based on the advantage of adaptive filtering and

108

predictive in the Kalman filter, it is suitable for tracking but the implementation is

more complex than others.

 In terms of the median filter, it obtains the median of neighbouring data points

in window size, it can effectively remove the outliers or the noise spikes. However,

unlike the other filters, it is a non-linear filter, it preserves edges and sharp transitions,

making the results to be not smooth compared to other filters.

4.3 Trilateration (RSSI based only)

The distance estimation for the beacon and mobile device (Samsung Tab S7) is

obtained using Equation (2.3) while the position of the mobile device or the asset is

determined using Equation (3.6). The mobile device is moved to five different

positions and the RSSI values to other beacons are recorded. The distance and position

estimated will be compared to the real distance and position that are obtained in Google

Maps for the outdoor environment test.

4.3.1 Distance

Table 4.12: Path loss exponent for each beacon.

Beacon 𝑹𝑺𝑺𝑰𝟏𝒎(𝒅𝑩𝒎) 𝑹𝑺𝑺𝑰𝟏𝟎𝟎𝒎(𝒅𝑩𝒎) 𝒏

A -53.0 -85.5 𝑛 =
−53 − (−85.5)

10 × log10(100)
→ 1.625

B -51.5 -92.4 𝑛 =
−51.5 − (−92.4)

10 × log10(100)
→ 2.045

C -48.0 -92.7 𝑛 =
−48 − (−92.7)

10 × log10(100)
→ 2.235

109

Table 4.13: RSSI collected at different points.

 Position of the object
RSSI (dBm)

Beacon A Beacon B Beacon C

V -87.1 -103.0 -101.3

W -91.3 -99.8 -98.1

X -90.0 -102.0 -98.4

Y -94.5 -92.3 -96.8

Z -93.2 -95.8 -96.2

The beacons are placed at three different points as shown in Figure 4.13, and

the mobile device is moved to five different positions to record the RSSI values. The

path loss exponent in this case is recalculated for each beacon based on their

environment using Equation (2.2), with the reference RSSI value at 1 m. The data of

RSSI value at 100 m is recorded and used to estimate the optimum path loss exponent

based on the environment as shown in Table 4.12. The RSSI values obtained by the

object to each beacon at different positions are recorded as shown in Table 4.13. Based

on the RSSI values, the distance between the mobile device and the beacon can be

estimated using Equation (2.3).

Figure 4.13: Position of beacons.

110

Table 4.14: Distance estimated of a mobile device and beacons.

 Position of the object
Distance, d (m)

Beacon A Beacon B Beacon C

V 125.45 329.87 242.54

W 227.47 230.07 174.43

X 189.20 294.74 179.90

Y 357.97 98.88 152.56

Z 297.75 146.64 143.42

The distances of the mobile device to each beacon are estimated and recorded

in Table 4.14. The real distances between the mobile device and beacons are

determined using the software as shown in Figure 4.14, Figure 4.15, Figure 4.16,

Figure 4.17, and Figure 4.18.

Figure 4.14: Distances between the beacons and the object at position V.

111

Figure 4.15: Distances between the beacons and the object at position W.

Figure 4.16: Distances between the beacons and the object at position X.

112

Figure 4.17: Distances between the beacons and the object at position Y.

Figure 4.18: Distances between the beacons and the object at position Z.

113

Table 4.15: Comparison between real distance and estimated values.

Position of

the object
Beacon

Distance, d (m) Percent error

(%) Estimated Real

V

A 125.45 144.75 13.33

B 329.87 325.40 1.37

C 242.54 247.26 1.91

W

A 227.47 243.09 6.43

B 230.07 220.22 4.47

C 174.43 168.53 3.50

X

A 189.20 208.72 9.35

B 294.74 259.12 13.75

C 179.90 209.36 14.07

Y

A 357.97 347.96 2.88

B 98.88 115.46 14.36

C 152.56 139.55 9.33

Z

A 297.75 310.17 4.00

B 146.64 164.15 10.67

C 143.42 131.16 9.35

A comparison between the estimated distance and the real distance is done in

Table 4.15, and their percent error is calculated using Equation (4.2). Percent error on

the distance between each beacon to different positions shows the difference between

the estimated distance and real distance is lower than 15 % as shown in Figure 4.19,

indicating the suitable path loss exponent helps to estimate the distance but this

variation is still focused as it will significantly affect the position estimation using

trilateration algorithms. Furthermore, the overall percent error value of the distance

between position X and different beacons is found to be higher than in other cases, so

it may lead to more error in position calculation compared to others. Moreover, the

overall percent error at position W is lower than in other cases, so the position

estimation will be expected to be more accurate compared to others.

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 (%) =
|𝑑𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑑𝑟𝑒𝑎𝑙|

𝑑𝑟𝑒𝑎𝑙
× 100 (4.2)

114

Figure 4.19: Percent error of different positions to each beacon.

4.3.2 Position

The positions of each beacon are recorded in latitude and longitude format as shown

in Figure 4.20. The process of estimating the position can be illustrated in the figures

below. Figure 4.21 shows the converted positions’ value of each beacon from latitude

and longitude data using Equation (3.13) and Equation (3.14) before performing the

trilateration algorithm. By collecting the converted positions’ values and the estimated

distance using the path loss model in the previous section, the trilateration is applied

using Equation (3.11) and Equation (3.12), as shown in Figure 4.22. The substitution

method is selected to solve the position of the mobile device, and the results are

converted back into latitude and longitude data as shown in Figure 4.23. The results

are converted into Degrees Minutes Seconds (DMS) from coordinate data using

Equation (3.15), Equation (3.16), and Equation (3.17) as shown in Figure 4.24 for

determining the estimated positions on Google Maps. The DMS data of the estimated

and real positions of the mobile device can be illustrated as shown in Figure 4.25.

115

Figure 4.20: Coordinate of the beacons.

Figure 4.21: Converted positions’ value of the beacons.

Figure 4.22: Solving trilateration using estimated distance and converted position.

116

Figure 4.23: Substitution is applied to solve the position of the object.

Figure 4.24: Coordinates of the object are converted into DMS.

Figure 4.25: DMS data of the estimated and real positions.

Table 4.16: Distance difference between estimated and real positions.

117

Position
Coordinate in DMS Distance

difference (m) Estimated Real

V
4° 19' 4.33606"

101° 7' 58.73911"

4°19'03.6"N

101°07'58.8"E
23.75

W
4° 19' 1.75399"

101° 7' 56.77957"

4°19'01.6"N

101°07'56.4"E
16.29

X
4° 19' 4.52828"

101° 7' 56.66849"

4°19'01.9"N

101°07'57.7"E
88.81

Y
4° 18' 58.37464"

101° 7' 54.24694"

4°18'58.9"N

101°07'53.8"E
21.60

Z
4° 18' 59.74258"

101° 7' 55.40004"

4°19'00.4"N

101°07'54.6"E
32.73

The estimated values for different positions of the mobile device are pointed

on Google Maps and recorded as shown in Figure 4.26, Figure 4.27, Figure, 4.28,

Figure 4.29, and Figure 4.30. The difference in distance between the estimated and

real positions is tabulated in Table 4.16. Based on the observation in Table 4.16,

displaying position X has a higher error compared to other cases as expected due to its

higher error in distance estimation discussed in the previous section. Vice-versa, the

estimated position W is found to have a lower difference in distance to the real point

due to better performance in distance estimation.

118

Figure 4.26: Estimated and real position V.

Figure 4.27: Estimated and real position W.

119

Figure 4.28: Estimated and real position X.

Figure 4.29: Estimated and real position Y.

120

Figure 4.30: Estimated and real position Z.

4.3.3 Summary

Performing the trilateration for the outdoor environment involves the known positions

of three beacons, and estimating the distance from these points to predict an unknown

position of the object. The RSSI values are recorded and the distance is determined

based on path loss mode. The suitable path loss exponent is calculated to improve the

accuracy. By deploying the beacons at known positions, their coordinate can be used

to estimate the position of the object or asset.

 Selecting the Coded PHY to be the physical layer in communication between

devices, helps to get the greater distance as it improves the signal range and penetration

through outdoor obstacles. Hence, the presence of Coded PHY in Bluetooth

technology provides an opportunity to perform long-distance communication

compared to other physical layers, making the test not only restricted in an indoor

environment.

121

Based on the results obtained for distance and position, the distance is proved

to affect the position significantly. In other words, the lower the accuracy in the

distance measurement, the worse performance in position determination. Furthermore,

the distance difference in the estimated and real positions is found to be below 100 m,

showing that the combination of trilateration techniques and Coded PHY is executable

but the improvement in distance estimation needs to be taken into account for better

results.

4.4 Combination of sensors and RSSI values

An Android application is developed to gather the sensor's data and record the RSSI

values. The application is installed on a mobile device (Mi 9T Pro) and is used to scan

and connect to the evaluation board. The Coded PHY is switched from 1M PHY once

the connection is made to ensure that long-range communication between the devices

is applicable. The EMA filter is applied on RSSI readings in this case due to its simple

implementation and good smoothing techniques.

Table 4.17: Testing environments involved in the test.

Case Testing Environments

A In a laboratory within a building

B In an open area within a building

C Outside the building

The tests are conducted in different environments to check the performance of

estimating the distance and direction. The testing environments are in a lab within a

building, an open area within a building, and outside the building.

122

4.4.1 Distance

The distance between the mobile device and the board is estimated using the log

distance path loss model as well. By running the Android application and connecting

to the board, the filtered RSSI values are recorded, and the optimization of the path

loss exponent or calibration implementation in the Android application is done at each

testing environment to get better performance in estimating the distance. The reference

RSSI at 1 m, 2 m, 5 m, and 10 m are recorded and different path loss exponent values

are calculated for different testing environments. Figure 4.31 shows the process of

getting the path loss exponent using the linear regression equation and the slope.

Figure 4.31: Slope is calculated using linear regression to get path loss exponent.

123

Table 4.18: Comparison between estimated and real distances.

Case Real distance (m)
Estimated

distance (m)

Percent error

(%)

A

3.00 2.148 28.40

4.00 2.403 39.93

6.00 5.572 7.13

8.00 4.532 43.35

B

3.00 3.359 11.97

4.00 4.467 11.68

6.00 6.644 10.73

8.00 7.756 3.05

12.00 11.435 4.71

C

3.00 2.576 14.13

4.00 3.896 2.60

6.00 5.578 7.03

8.00 7.739 3.26

12.00 11.355 5.38

Unlike the trilateration applied in the previous section, there is one path loss

exponent value needed for each case. Once the path loss exponent is calculated, it is

applied to distance estimation. To increase the stability of distance calculation and

reduce the effect of small changes in RSSI values, the average distance with 10

samples is used and displayed to users. The board is placed at different distances, and

the average of fifty distance values is obtained based on RSSI and compared with the

real distance, and the percent error is calculated as shown in Table 4.18. Figure 4.32

shows the overall percent error in case A is higher than in other cases, indicating the

accuracy of distance estimation in the laboratory is lower compared to other areas.

124

Figure 4.32: Percent error of each case at different distances.

The performance of distance estimation in case A is worse than in other cases

due to the multipath interference such as radio signals often bouncing off walls,

ceilings, and electronic equipment in a room. Furthermore, interference from other

devices exists, such as computers, Wi-Fi routers, and other wireless devices operating

in a similar frequency band, leading to unstable RSSI readings.

4.4.2 Direction

The test is conducted using a combination of sensors and RSSI readings to estimate

the direction. The sensors used in this case are the accelerometer and magnetometer

from the mobile device. The accelerometer is used to determine the orientation of the

mobile device; the magnetometer is applied to identify the reference direction (true

north), measuring angles to this direction. Three orientations of the mobile devices

are tested such as A: vertical (90 degrees), B: diagonal (45 degrees), and C: horizontal

(0 degrees) to the horizontal plane.

125

Table 4.19: Comparison between estimated and real directions at 1 m.

NO.
Estimated Direction

Orientation A Orientation B Orientation C

1 315 0 45

2 0 0 0

3 0 0 0

4 0 45 45

5 0 270 0

6 0 0 0

7 315 270 180

8 315 0 0

9 45 45 270

10 0 315 45

11 270 180 45

12 0 0 270

13 0 45 0

14 0 180 270

15 45 0 45

16 315 315 315

17 45 270 270

18 90 0 315

19 0 45 0

20 0 270 0

126

Table 4.20: Comparison between estimated and real directions at 5 m.

NO.
Estimated Direction

Orientation A Orientation B Orientation C

1 270 270 225

2 0 225 315

3 315 135 315

4 315 180 45

5 270 135 0

6 45 45 0

7 45 135 45

8 0 270 90

9 270 0 135

10 45 90 180

11 135 135 180

12 0 135 270

13 135 45 180

14 180 270 45

15 45 45 90

16 45 225 45

17 315 0 90

18 45 180 90

19 270 90 0

20 0 45 225

The test is conducted in an indoor environment and the board is placed at 1 m

and 5 m respectively on the mobile device with three different orientations of the

mobile devices. The board is placed in the true north direction (0 degrees) of the mobile

device. The comparison between the estimated and real direction is done at each

orientation of the mobile device as shown in Table 4.19 and Table 4.20. The estimated

direction results are also plotted as shown in Figure 4.33 and Figure 4.34.

127

Figure 4.33: Estimated direction at 1 m.

Figure 4.34: Estimated direction at 5 m.

Based on observations in Figure 4.33 and Figure 4.34, the performance of

direction estimation is found to be better if the devices are placed in a shorter distance.

The orientation A (the mobile device is held horizontally), is found to be more accurate

128

compared to other orientations. By observing the data collected for orientation A at 5

m as shown in Figure 4.34, it can be found that the accuracy of the direction estimation

(to 0 degrees) is reduced, but the result is still close which can be determined based on

high occurrence at 45 and 315 degrees. The effect of orientation in this direction in

this case is determined, there are different outcomes when the phone is held in different

orientations; it is considered to be dependent on the hardware such as the design and

the quality of the antenna, leading to difference performance in other orientations.

129

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The comparison between 1M PHY and Coded PHY is done in terms of distance, the

advantage of Coded PHY over 1M PHY in distance measurement is verified, and an

increase in distance is observed once the devices are communicated in Coded PHY

from 1M PHY. The factors such as height and transmit powers are included in the tests

to determine their effect on distance measurement. Based on the results obtained based

on these variable factors in outdoor and indoor environments, they are observed to

further increase the distance by increasing these values. However, the power

consumption needs to be taken into account as increasing the transmit power of the

device, the higher battery drain is required by the device. Furthermore, the different

devices with Bluetooth connections are found to have different signal strengths and

communication ranges due to the dissimilarity in hardware and software. Furthermore,

by comparing the results in the indoor and outdoor environments under the same

settings of the height and transmit power, finding that the indoor distance results are

shorter than the outdoor environment; it is expected due to the Bluetooth signals in a

building are affected and attenuated due to the noise and interference.

In addition, the purpose of the filters applied to the signal is discussed. The

filters such as MA, EMA, Kalman, and median filters are implemented, they can

smooth the signal by reducing the fluctuation in the signal, improving the stability and

reliability of the system.

130

Moreover, the trilateration is performed using Coded PHY in the

communication between devices to estimate the distance and position of the asset.

Based on the results, the accuracy of position estimation is highly dependent on the

distance. By improving the distance estimation, the position is expected to be estimated

more accurately. This test also proves that the Coded PHY and beacons in Bluetooth

technology and the application of the trilateration algorithm can be one of the methods

for performing long-range asset tracking.

Furthermore, an Android application is developed to gather the sensors’ data

and utilize them with RSSI values to estimate the distance and direction of the mobile

device relative to the board or the asset. Using linear regression and slope to get the

optimum path loss exponent, the accuracy of the distance estimation is better than

guessing the random path loss exponent. By taking advantage of sensors, the

orientation of the phone and the angle of the phone to the board are considered, and

the direction estimation is executable by using the sensors and RSSI readings only.

5.2 Limitations

In this study, the application of Coded PHY in asset tracking is highly dependent on

the RSSI readings. It is usable to meet the objectives if the connection between the

devices is done in environments that are not noisy or have less interference. This is

because the RSSI is significantly affected by environmental factors. For instance,

signal attenuation and reflection can be found in environmental conditions such as

obstacles, walls, and people, leading to signal fluctuations. Furthermore, the signal

fading and many similar frequency bands of 2.4 GHz exist in the surroundings, making

the data measured based on RSSI less accurate.

In addition, a buzzer solution is introduced to address the problem of finding

assets at different height levels. By applying a buzzer and controlling it with a remote

button on the Android application, users can easily detect their asset based on the signal

strength and feedback of the buzzer if the asset is near to users. The buzzer is designed

to be triggered under specific conditions. However, the power consumption needs to

131

be considered, as the battery drains more in this solution, compared to the application

without any other outputs.

The direction estimation using the sensors’ data of the mobile device and the

RSSI readings, is found to be limited at distance. In this case, this technique is used to

gather the information from the accelerometer and magnetometer to get the orientation

and angle and check the mean RSSI readings, but it is found that the accuracy drops

when the distance is increased.

5.3 Recommendations for improvements

The improvement that can be done in the application to get more accurate results is

conducting more calibrations to get an optimum path loss exponent for the current

environment. By doing calibration when the devices are moved to different

environments, the distance estimation based on the path loss model can be better.

Furthermore, by increasing the sets of reference RSSI in linear regression and slope

methods to get the path loss exponent, a more suitable value can be obtained and used

to increase the accuracy of distance estimation.

Furthermore, the combination of filtering techniques can be implemented to

get a more smooth and stable RSSI reading. Instead of taking advantage of a single

filter, the combination of filters provides different benefits, helping the fluctuation and

the noise of the signal to be alleviated or eliminated.

In addition, multiple data sources are recommended if the budget constraint is

not mainly focused. For instance, the integration data from the sensors such as

accelerometer, gyroscope, magnetometer, and barometer. They can be used in dead

reckoning and correcting drift in the estimation, operating with RSSI values, to get

better results.

To improve the direction estimation, the direction-specific techniques available

in the latest BLE technology such as angle of arrival (AoA) and angle of departure

132

(AoD). They are advertised to measure the angle at which the signal is received or

transmitted, ensuring a more accurate direction estimation. However, to apply AoA

and AoD, devices need specialized hardware, making this technology is still not

commonly supported by most mobile devices, resulting in the implementation not

being easily accessible.

133

REFERENCES

Afaneh, M., 2022. Bluetooth Low Energy (BLE): A Complete Guide. [Online]

Available at: https://novelbits.io/bluetooth-low-energy-ble-complete-guide/

[Accessed 14 April 2024].

Afaneh, M., 2023. Bluetooth 5 speed: How to achieve maximum throughput for your

BLE application. [Online]

Available at: https://novelbits.io/bluetooth-5-speed-maximum-throughput/

[Accessed 14 April 2024].

Afaneh, M., 2023. Coded PHY: Bluetooth’s Long-Range Feature. [Online]

Available at: https://novelbits.io/bluetooth-long-range-coded-phy/

[Accessed 15 April 2024].

Agarwal, T., 2020. Different Types of Wireless Communication with Applications.

[Online]

Available at: https://www.elprocus.com/types-of-wireless-communication-

applications/

[Accessed 13 April 2024].

Agarwal, T., 2021. What is Bluetooth : Architecture & Its Working. [Online]

Available at: https://www.elprocus.com/how-does-bluetooth-work/

[Accessed 13 April 2024].

Argenox, 2020. INTRODUCTION TO BLUETOOTH CLASSIC. [Online]

Available at: https://www.argenox.com/library/bluetooth-classic/introduction-to-

bluetooth-classic/

[Accessed 14 April 2024].

Arponen, K. & Björkman, A., 2023. Investigating the impact of physical layer

transmission for Bluetooth LE Audio.

BasuMallick, C., 2022. What Is Bluetooth LE? Meaning, Working, Architecture, Uses,

and Benefits. [Online]

Available at: https://www.spiceworks.com/tech/iot/articles/what-is-bluetooth-le/

[Accessed 14 April 2024].

Bluetooth®, n.d.. Bluetooth® Wireless Technology. [Online]

Available at: https://www.bluetooth.com/learn-about-bluetooth/tech-overview/

[Accessed 13 April 2024].

134

CAMPORESOFT, 2019. How Bluetooth Asset Tracking Can Enhance Tracking in the

Workplace. [Online]

Available at: https://comparesoft.com/assets-tracking-

software/bluetooth/#:~:text=What%20Is%20Bluetooth%20Asset%20Tracking%3

F,communication%20to%20locate%20the%20object.

[Accessed 13 April 2024].

electronicsnotes, n.d.. Bluetooth Classic: how it works. [Online]

Available at: https://www.electronics-

notes.com/articles/connectivity/bluetooth/bluetooth-classic-technology-

operation.php

[Accessed 14 April 2024].

Ezurio, n.d.. What is Bluetooth Class?. [Online]

Available at: https://www.ezurio.com/support/faqs/what-bluetooth-class

[Accessed 14 April 2024].

Fatima, R., 2023. What is Asset Tracking? Best Practices, Benefits, and Examples.

[Online]

Available at: https://ezo.io/ezofficeinventory/blog/asset-tracking/

[Accessed 14 April 2024].

FinalWire, 2015. AIDA64 for Android Must-have app for hard core users of the most

popular mobile platform around the world. [Online]

Available at: https://www.aida64.com/news/aida64-

android#:~:text=AIDA64%20for%20Android%20features%20include,Fi%20and

%20cellular%20network%20information

[Accessed 17 April 2024].

Franklin, C. & Pollette, C., n.d.. How Bluetooth Works. [Online]

Available at: https://electronics.howstuffworks.com/bluejacking.htm

[Accessed 14 April 2024].

Gao, V., 2015. Proximity and RSSI. [Online]

Available at: https://www.bluetooth.com/blog/proximity-and-rssi/

[Accessed 15 April 2024].

GeeksforGeeks, 2024. What is Bluetooth?. [Online]

Available at: https://www.geeksforgeeks.org/bluetooth/

[Accessed 13 April 2024].

How To Electronics, 2023. Bluetooth Low Energy Basics: Classic Bluetooth Vs.

Bluetooth LE. [Online]

Available at: https://how2electronics.com/classic-bluetooth-vs-bluetooth-low-

energy-comparison/

[Accessed 14 April 2024].

Intel, n.d.. What Is Bluetooth® Technology?. [Online]

Available at:

https://www.intel.com/content/www/us/en/products/docs/wireless/what-is-

135

bluetooth.html

[Accessed 13 April 2024].

JIMBLOM, n.d.. Bluetooth Basics. [Online]

Available at: https://learn.sparkfun.com/tutorials/bluetooth-basics/all

[Accessed 14 April 2024].

Jones, S., 2020. 5 WAYS BLUETOOTH 5 MAKES WIRELESS AUDIO BETTER.

[Online]

Available at: https://pro.harman.com/insights/harman-pro/5-ways-bluetooth-5-

makes-wireless-audio-better/

[Accessed 13 April 2024].

Jonker, A., 2023. What is asset tracking?. [Online]

Available at: https://www.ibm.com/topics/asset-tracking

[Accessed 14 April 2024].

Li, M., 2022. Understanding the Measures of Bluetooth RSSI. [Online]

Available at: https://www.mokoblue.com/measures-of-bluetooth-

rssi/#:~:text=Bluetooth%20RSSI%20(Received%20Signal%20Strength,device%2

0scans%20for%20Bluetooth%20devices.

[Accessed 15 April 2024].

Link Labs, 2021. 5 Fast Facts About Bluetooth Low Energy (LE) for Asset Tracking.

[Online]

Available at: https://www.link-labs.com/blog/5-fast-facts-about-bluetooth-low-

energy-asset-tracking

[Accessed 14 April 2024].

MathWorks, n.d.. Bluetooth LE Channel Selection Algorithms. [Online]

Available at: https://www.mathworks.com/help/bluetooth/ug/bluetooth-le-

channel-selection-algorithms.html

[Accessed 14 April 2024].

MathWorks, n.d.. Comparison of Bluetooth BR/EDR and Bluetooth LE Specifications.

[Online]

Available at: https://www.mathworks.com/help/bluetooth/gs/comparison-of-

bluetooth-bredr-and-bluetooth-le.html

[Accessed 14 April 2024].

Moozakis, C., 2023. What is wireless communications? Everything you need to know.

[Online]

Available at:

https://www.techtarget.com/searchmobilecomputing/definition/wireless

[Accessed 13 April 2024].

muRata, 2023. Basic Knowledge of Wireless Communication: Wireless Mechanism (1).

[Online]

Available at: https://article.murata.com/en-sg/article/basics-of-wireless-

communication-1

[Accessed 13 April 2024].

136

Nordic Semiconductor, 2021. The Difference Between Classic Bluetooth and

Bluetooth Low Energy. [Online]

Available at: https://blog.nordicsemi.com/getconnected/the-difference-between-

classic-bluetooth-and-bluetooth-low-energy

[Accessed 14 April 2024].

Nordic Semiconductor, n.d.. nRF Connect for Mobile. [Online]

Available at: https://www.nordicsemi.com/Products/Development-tools/nRF-

Connect-for-mobile

[Accessed 17 April 2024].

PROCTOR, B., 2023. Bluetooth Vs. Bluetooth Low Energy: What's The Difference?

[2023 Update]. [Online]

Available at: https://www.link-labs.com/blog/bluetooth-vs-bluetooth-low-energy

[Accessed 14 April 2024].

Rittenberg, J. & Bottorff, C., 2022. What Is Asset Tracking? Benefits & How It Works.

[Online]

Available at: https://www.forbes.com/advisor/business/what-is-asset-tracking/

[Accessed 14 April 2024].

Rushax, n.d.. What is PuTTY? A Comprehensive Guide. [Online]

Available at: https://rushax.com/what-is-putty-a-comprehensive-guide/

[Accessed 16 April 2024].

Sokolova, B., 2023. Everything you need to know about BLE asset tracking. [Online]

Available at: https://www.mapon.com/en/blog/2023/05/everything-to-know-

about-ble-asset-tracking

[Accessed 14 April 2024].

STMicroelectronics, n.d.. BlueNRG-LP, BlueNRG-LPS DK SW package. [Online]

Available at: https://www.st.com/en/embedded-software/stsw-bnrglp-

dk.html#overview

[Accessed 17 April 2024].

STMicroelectronics, n.d.. Evaluation platform based on the BlueNRG-LPS system-on-

chip. [Online]

Available at: https://www.st.com/en/evaluation-tools/steval-

idb012v1.html#overview

[Accessed 16 April 2024].

STMicroelectronics, n.d.. Programmable Bluetooth Low Energy 5.3 Wireless SoC.

[Online]

Available at: https://www.st.com/en/wireless-connectivity/bluenrg-lps.html

[Accessed 17 April 2024].

STMicroelectronics, n.d.. WiSE-Studio free IDE for Windows, Linux, MAC OS.

[Online]

Available at: https://www.st.com/en/embedded-software/stsw-wise-studio.html

[Accessed 16 April 2024].

137

Teja, R., 2024. Wireless Communication: Introduction, Types and Applications.

[Online]

Available at: https://www.electronicshub.org/wireless-communication-

introduction-types-applications/

[Accessed 13 April 2024].

ToolSense, 2023. How to Get Your Assets Under Control With Bluetooth Equipment

Tracking. [Online]

Available at: https://toolsense.io/equipment-management/bluetooth-equipment-

tracking/#:~:text=Bluetooth%20equipment%20tracking%20is%20a,volume%20d

esign%20and%20security%20measures.

[Accessed 13 April 2024].

Woolley, M., 2017. Exploring Bluetooth 5 - Going the Distance. [Online]

Available at: https://www.bluetooth.com/blog/exploring-bluetooth-5-going-the-

distance/

[Accessed 14 April 2024].

Boros, M., Kuffa, R. and Skýpalová, E., 2022, November. Testing the Communication

Range of Ibeacon Technology. In 2022 6th International Conference on System

Reliability and Safety (ICSRS) (pp. 400-403). IEEE.

Lyatuu, C.A., 2022. An analysis of bluetooth 5 in comparison to bluetooth 4.2.

Europub Journal of Education Research, 3(1), pp.112-120.

Vanzin, L. and Oyamada, M.S., 2021, November. Calibration of BLE beacons and its

impact on distance estimation using the log-distance path loss model. In 2021 10th

Latin-American Symposium on Dependable Computing (LADC) (pp. 1-4). IEEE.

Harmanda, T.T., Priandana, K. and Hardhienata, M.K., 2020, February. Development

of Localization Technique using Trilateration Algorithm for E-Puck2 Robot. In

2020 International Conference on Smart Technology and Applications (ICoSTA)

(pp. 1-6). IEEE.

Venkatesh, R., Mittal, V. and Tammana, H., 2021, June. Indoor localization in BLE

using mean and median filtered RSSI values. In 2021 5th International Conference

on Trends in Electronics and Informatics (ICOEI) (pp. 227-234). IEEE.

Hany, U., Akter, L. and Hossain, M.F., 2016, December. Moving averaging method

of RSSI based distance estimation for wireless capsule localization. In 2016

International Conference on Medical Engineering, Health Informatics and

Technology (MediTec) (pp. 1-5). IEEE.

Zhang, K., Zhang, Y. and Wan, S., 2016, October. Research of RSSI indoor ranging

algorithm based on Gaussian-Kalman linear filtering. In 2016 IEEE Advanced

Information Management, Communicates, Electronic and Automation Control

Conference (IMCEC) (pp. 1628-1632). IEEE.

138

Gani, M.O., OBrien, C., Ahamed, S.I. and Smith, R.O., 2013, July. RSSI based indoor

localization for smartphone using fixed and mobile wireless node. In 2013 IEEE

37th Annual Computer Software and Applications Conference (pp. 110-117). IEEE.

139

APPENDICES

APPENDIX A: Code needed for BLE RC Long Range application

BLE_RC_LongRange_main.c

#include <stdio.h>

#include <string.h>

#include "rf_device_it.h"

#include "ble_const.h"

#include "bluenrg_lp_stack.h"

#include "rf_driver_hal_power_manager.h"

#include "rf_driver_hal_vtimer.h"

#include "bluenrg_lp_evb_com.h"

#include "rc.h"

#include "RemoteControl_config.h"

#include "bleplat.h"

#include "nvm_db.h"

#include "pka_manager.h"

#include "rng_manager.h"

#include "aes_manager.h"

#include "ble_controller.h"

#include "rf_driver_ll_rcc.h"

#include "rf_driver_ll_bus.h"

#include "rf_driver_ll_gpio.h"

#include "rf_driver_ll_system.h"

#include "rf_driver_ll_utils.h"

#include "rf_driver_hal_rcc.h"

#include "rf_driver_hal_gpio.h"

#ifndef DEBUG

#define DEBUG 1

#endif

140

BLE_RC_LongRange_main.c

#if DEBUG

#include <stdio.h>

#define PRINTF(...) printf(__VA_ARGS__)

#else

#define PRINTF(...)

#endif

#define BLE_RC_VERSION_STRING "1.0.0"

NO_INIT(uint32_t dyn_alloc_a[DYNAMIC_MEMORY_SIZE>>2]);

#define LED2_PIN LL_GPIO_PIN_6

#define LED2_GPIO_PORT GPIOB

#define LED2_GPIO_CLK_ENABLE()

LL_AHB_EnableClock(LL_AHB_PERIPH_GPIOB)

void ModulesInit(void)

{

 uint8_t ret;

 BLE_STACK_InitTypeDef BLE_STACK_InitParams =

BLE_STACK_INIT_PARAMETERS;

 LL_AHB_EnableClock(LL_AHB_PERIPH_PKA|LL_AHB_PERIPH_RNG);

 BLECNTR_InitGlobal();

 HAL_VTIMER_InitType VTIMER_InitStruct = {HS_STARTUP_TIME,

INITIAL_CALIBRATION, CALIBRATION_INTERVAL};

 HAL_VTIMER_Init(&VTIMER_InitStruct);

 BLEPLAT_Init();

 if (PKAMGR_Init() == PKAMGR_ERROR)

 {

 while(1);

 }

 if (RNGMGR_Init() != RNGMGR_SUCCESS)

 {

 while(1);

 }

 AESMGR_Init();

 ret = BLE_STACK_Init(&BLE_STACK_InitParams);

141

BLE_RC_LongRange_main.c

 if (ret != BLE_STATUS_SUCCESS) {

 printf("Error in BLE_STACK_Init() 0x%02x\r\n", ret);

 while(1);

 }

}

void ModulesTick(void)

{

 HAL_VTIMER_Tick();

 BLE_STACK_Tick();

 NVMDB_Tick();

}

void Configure_GPIO(void);

static void MX_GPIO_Init(void);

int main(void)

{

 uint8_t ret;

 WakeupSourceConfig_TypeDef wakeupIO;

 PowerSaveLevels stopLevel;

 if (SystemInit(SYSCLK_64M, BLE_SYSCLK_32M) != SUCCESS)

 {

 while(1);

 }

 BSP_IO_Init();

 BSP_PB_Init(BSP_PUSH1, BUTTON_MODE_EXTI);

#if CLIENT

 BSP_PB_Init(BSP_PUSH2, BUTTON_MODE_EXTI);

#endif

 BSP_COM_Init(BSP_COM_RxDataUserCb);

 BSP_LED_Init(BSP_LED1);

 BSP_LED_Init(BSP_LED2);

 BSP_LED_Init(BSP_LED3);

 ModulesInit();

 ret = RC_DeviceInit();

 if (ret != BLE_STATUS_SUCCESS) {

142

BLE_RC_LongRange_main.c

 PRINTF("RC_DeviceInit() failed: 0x%02x\r\n", ret);

 while(1);

 }

 PRINTF("BlueNRG-LP BLE Remote Control Application (version: %s)\r\n",

BLE_RC_VERSION_STRING);

 wakeupIO.IO_Mask_High_polarity = WAKEUP_PA10;

 wakeupIO.IO_Mask_Low_polarity = 0;

 wakeupIO.RTC_enable = 0;

 wakeupIO.LPU_enable = 0;

 Configure_GPIO();

 MX_GPIO_Init();

 LL_GPIO_WriteOutputPin(LED2_GPIO_PORT,

LED2_PIN,LL_GPIO_OUTPUT_LOW);

 while(1) {

 ModulesTick();

 APP_Tick();

#if ENABLE_LOW_POWER_MODE

 HAL_PWR_MNGR_Request(POWER_SAVE_LEVEL_STOP_WITH_TIMER,

wakeupIO, &stopLevel);

#else

 HAL_PWR_MNGR_Request(POWER_SAVE_LEVEL_CPU_HALT,

wakeupIO, &stopLevel);

#endif

 }

}

PowerSaveLevels App_PowerSaveLevel_Check(PowerSaveLevels level)

{

 if(BSP_COM_TxFifoNotEmpty() || BSP_COM_UARTBusy())

 return POWER_SAVE_LEVEL_RUNNING;

 return POWER_SAVE_LEVEL_STOP_NOTIMER;

}

void hci_hardware_error_event(uint8_t Hardware_Code)

{

143

BLE_RC_LongRange_main.c

 if (Hardware_Code <= 0x03)

 {

 NVIC_SystemReset();

 }

}

void aci_hal_fw_error_event(uint8_t FW_Error_Type,

 uint8_t Data_Length,

 uint8_t Data[])

{

 if (FW_Error_Type <= 0x03)

 {

 uint16_t connHandle;

 connHandle = LE_TO_HOST_16(Data);

 aci_gap_terminate(connHandle,

BLE_ERROR_TERMINATED_REMOTE_USER);

 }

}

#if ENABLE_LOW_POWER_MODE

void HAL_PWR_MNGR_WakeupIOCallback(uint32_t source)

{

 extern uint8_t button1_pressed;

 if (source & WAKEUP_PA10) {

 button1_pressed = TRUE;

 }

}

#endif

void Configure_GPIO(void)

{

 LED2_GPIO_CLK_ENABLE();

 LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN,

LL_GPIO_MODE_OUTPUT);

 LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN,

LL_GPIO_OUTPUT_PUSHPULL);

 LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN,

LL_GPIO_SPEED_FREQ_LOW);

 LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_NO);

144

BLE_RC_LongRange_main.c

}

static void MX_GPIO_Init(void)

{

 LL_GPIO_InitTypeDef GPIO_InitStruct = {0};

 LED2_GPIO_CLK_ENABLE();

 LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN);

 GPIO_InitStruct.Pin = LED2_PIN;

 GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;

 GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;

 GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;

 GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;

 LL_GPIO_Init(LED2_GPIO_PORT, &GPIO_InitStruct);

}

#ifdef USE_FULL_ASSERT

void assert_failed(uint8_t* file, uint32_t line)

{

 while (1)

 {}

}

#endif

rc_server.c

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "rf_device_it.h"

#include "ble_const.h"

#include "bluenrg_lp_stack.h"

#include "rf_driver_hal_vtimer.h"

#include "bluenrg_lp_evb_com.h"

#include "rc.h"

#include "gatt_db.h"

#include "app_state.h"

#include "gap_profile.h"

#include "rf_driver_hal_gpio.h"

#include "clock.h"

145

rc_server.c

#ifndef SENSOR_EMULATION /* User Real sensor: lps22hh (pressure and

temperature) */

#include "bluenrg_lp_evb_config.h"

#endif

uint8_t button1_pressed = FALSE;

#define DEBOUNCE_TIMEOUT_MS 300

#ifndef DEBUG

#define DEBUG 1

#endif

#if DEBUG

#include <stdio.h>

#define PRINTF(...) printf(__VA_ARGS__)

#else

#define PRINTF(...)

#endif

#define UPDATE_CONN_PARAM 1 //0

#define INT(x) ((int)(x))

#define FRACTIONAL(x) (x>0)? ((int) (((x) - INT(x)) * 10)) : ((int) ((INT(x) -

(x)) * 10))

#define BLE_RC_VERSION_STRING "1.0.0"

uint32_t start_time = 0;

static uint8_t sensor_update_timer_expired = FALSE;

volatile int app_flags = SET_CONNECTABLE;

volatile uint16_t connection_handle = 0;

static uint8_t debounce_timeout_occurred = TRUE;

static VTIMER_HandleType debounce_timer;

#if DISCONNECTION_TIMEOUT

static VTIMER_HandleType disconnectTimerHandle;

#endif

static VTIMER_HandleType sensorTimerHandle;

static VTIMER_HandleType advertisingLEDTimerHandle;

static uint8_t scan_resp_data[] = { 0x05,

AD_TYPE_COMPLETE_LOCAL_NAME, 'N', 'o', 'd', 'e' };

146

rc_server.c

#define TEMP_OFFSET 8

uint8_t adv_data[2][10] =

 {

 { 0x02, AD_TYPE_FLAGS,

FLAG_BIT_LE_GENERAL_DISCOVERABLE_MODE

 |

FLAG_BIT_BR_EDR_NOT_SUPPORTED, 0x06,

 AD_TYPE_MANUFACTURER_SPECIFIC_DATA, 0x30, 0x00, 0x05,

 0xFF, 0xFF }, { 0x02,

AD_TYPE_FLAGS,

 FLAG_BIT_LE_GENERAL_DISCOVERABLE_MODE

 |

FLAG_BIT_BR_EDR_NOT_SUPPORTED, 0x06,

 AD_TYPE_MANUFACTURER_SPECIFIC_DATA, 0x30, 0x00, 0x05,

 0xFF, 0xFF } };

uint8_t adv_data_index = 0;

static uint8_t phy = LE_1M_PHY;

#ifndef SENSOR_EMULATION

lps22hh_ctx_t pressureHandle;

#endif

volatile uint8_t request_free_fall_notify = FALSE;

BOOL sensor_board = FALSE;

#if UPDATE_CONN_PARAM

#define UPDATE_TIMER 2

static VTIMER_HandleType l2cap_TimerHandle;

int l2cap_request_sent = FALSE;

static uint8_t l2cap_req_timer_expired = FALSE;

#endif

#define SENSOR_TIMER 1

#define ACC_UPDATE_INTERVAL_MS 200

#ifndef SENSOR_ACCELEROMETER_EMULATION

147

rc_server.c

lsm6dsox_ctx_t inertialHandle;

#endif

#ifndef SENSOR_PRESSURE_TEMPERATURE_EMULATION

lps22hh_ctx_t pressureHandle;

#endif

void SensorUpdateTimeoutCB(void*);

void DisconnectTimeoutCB(void*);

void AdvertisingLEDTimeoutCB(void *param);

void DebounceTimeoutCB(void *param);

static Advertising_Set_Parameters_t Advertising_Set_Parameters[1];

#ifndef SENSOR_ACCELEROMETER_EMULATION

void Init_Accelerometer(void) {

 uint8_t rst;

 inertialHandle.write_reg = BSP_SPI_Write;

 inertialHandle.read_reg = BSP_SPI_Read;

 BSP_SPI_Init();

 lsm6dsox_reset_set(&inertialHandle, PROPERTY_ENABLE);

 do {

 lsm6dsox_reset_get(&inertialHandle, &rst);

 } while (rst);

 lsm6dsox_block_data_update_set(&inertialHandle,

PROPERTY_ENABLE);

 lsm6dsox_xl_full_scale_set(&inertialHandle, LSM6DSOX_2g);

 lsm6dsox_gy_full_scale_set(&inertialHandle, LSM6DSOX_2000dps);

 lsm6dsox_xl_data_rate_set(&inertialHandle,

LSM6DSOX_XL_ODR_12Hz5);

 lsm6dsox_gy_data_rate_set(&inertialHandle,

LSM6DSOX_GY_ODR_12Hz5);

148

rc_server.c

}

#endif

#ifndef SENSOR_PRESSURE_TEMPERATURE_EMULATION

void Init_Pressure_Temperature_Sensor(void) {

 uint8_t rst;

 pressureHandle.write_reg = BSP_I2C_Write;

 pressureHandle.read_reg = BSP_I2C_Read;

 BSP_I2C_Init();

 lps22hh_reset_set(&pressureHandle, PROPERTY_ENABLE);

 do {

 lps22hh_reset_get(&pressureHandle, &rst);

 } while (rst);

 lps22hh_block_data_update_set(&pressureHandle,

PROPERTY_ENABLE);

 lps22hh_data_rate_set(&pressureHandle, LPS22HH_1_Hz_LOW_NOISE);

}

#endif

void Init_Temperature_Sensor(void) {

#ifndef SENSOR_EMULATION

 uint8_t rst;

 pressureHandle.write_reg = BSP_I2C_Write;

 pressureHandle.read_reg = BSP_I2C_Read;

 BSP_I2C_Init();

 lps22hh_reset_set(&pressureHandle, PROPERTY_ENABLE);

 do {

 lps22hh_reset_get(&pressureHandle, &rst);

 } while (rst);

 lps22hh_block_data_update_set(&pressureHandle,

PROPERTY_ENABLE);

149

rc_server.c

 lps22hh_data_rate_set(&pressureHandle, LPS22HH_1_Hz_LOW_NOISE);

#endif

}

void Update_Temperature(void) {

 float temperature_degC;

 uint8_t status = 1;

#ifdef SENSOR_EMULATION

 temperature_degC = 26 + ((uint64_t)rand()*15)/RAND_MAX;

#else

 axis1bit16_t data_raw_temperature;

 lps22hh_reg_t reg;

 lps22hh_read_reg(&pressureHandle, LPS22HH_STATUS, (uint8_t*)

®, 1);

 status = reg.status.t_da;

 if (status) {

 lps22hh_temperature_raw_get(&pressureHandle,

 data_raw_temperature.u8bit);

 temperature_degC = lps22hh_from_lsb_to_celsius(

 data_raw_temperature.i16bit);

 }

#endif

 if (status) {

 HOST_TO_LE_16(adv_data[adv_data_index]+TEMP_OFFSET,

 (int16_t)temperature_degC);

 aci_gap_set_advertising_data(0, ADV_COMPLETE_DATA,

sizeof(adv_data[0]),

 adv_data[adv_data_index]);

 if (++adv_data_index == 2)

 adv_data_index = 0;

 PRINTF("Updated temperature: %d.%d C deg\n",

INT(temperature_degC),

 FRACTIONAL(temperature_degC));

 }

}

int8_t OUTPUT_POWER_LEVEL = 8;

150

rc_server.c

void TX_Update(uint8_t tx_power_level) {

 aci_hal_set_tx_power_level(1, tx_power_level);

}

uint8_t RC_DeviceInit(void) {

 uint8_t role = GAP_PERIPHERAL_ROLE;

 uint8_t bdaddr[] = { BD_ADDR_SLAVE };

 uint8_t device_name[] = { 'N', 'o', 'd', 'e' };

 uint8_t ret;

 uint16_t service_handle, dev_name_char_handle, appearance_char_handle;

 Init_Temperature_Sensor();

#ifndef SENSOR_ACCELEROMETER_EMULATION

 Init_Accelerometer();

#endif

#ifndef SENSOR_PRESSURE_TEMPERATURE_EMULATION

 Init_Pressure_Temperature_Sensor();

#endif

 ret = aci_hal_write_config_data(CONFIG_DATA_PUBADDR_OFFSET,

 CONFIG_DATA_PUBADDR_LEN, bdaddr);

 if (ret != BLE_STATUS_SUCCESS) {

 PRINTF("aci_hal_write_config_data() failed: 0x%02x\r\n", ret);

 return ret;

 }

 TX_Update(OUTPUT_POWER_LEVEL);

 ret = aci_gatt_srv_init();

 if (ret) {

 PRINTF("aci_gatt_srv_init() failed: 0x%02x\r\n", ret);

 return ret;

 }

 ret = aci_gap_init(role, 0, 0x07, 0x00, &service_handle,

 &dev_name_char_handle, &appearance_char_handle);

 if (ret) {

 PRINTF("aci_gap_Init() failed: 0x%02x\r\n", ret);

 return ret;

 }

151

rc_server.c

 ret = Gap_profile_set_dev_name(0, sizeof(device_name), device_name);

 if (ret) {

 PRINTF("Gap_profile_set_dev_name() failed: 0x%02x\r\n", ret);

 return ret;

 }

 ret = aci_gap_set_io_capability(IO_CAP_DISPLAY_ONLY);

 if (ret) {

 PRINTF("aci_gap_set_io_capability() failed: 0x%02x\r\n", ret);

 return ret;

 }

 ret = aci_gap_set_authentication_requirement(BONDING,

 MITM_PROTECTION_REQUIRED,

 SC_IS_NOT_SUPPORTED,

 KEYPRESS_IS_NOT_SUPPORTED, 7, 16,

 USE_FIXED_PIN_FOR_PAIRING, 123456);

 if (ret) {

 PRINTF("aci_gap_set_authentication_requirement failed:

0x%02x\r\n",

 ret);

 return ret;

 }

 ret = Add_RC_Service();

 if (ret != BLE_STATUS_SUCCESS) {

 PRINTF("ADD_RC_Service() failed: 0x%02x\r\n", ret);

 return ret;

 }

 ret = Add_Acc_Service();

 if (ret == BLE_STATUS_SUCCESS) {

 PRINTF("Acceleration service added successfully.\n");

 } else {

 PRINTF("Error while adding Acceleration service: 0x%02x\r\n",

ret);

 return ret;

 }

 ret = Add_Environmental_Sensor_Service();

 if (ret == BLE_STATUS_SUCCESS) {

 PRINTF("Environmental service added successfully.\n");

152

rc_server.c

 } else {

 PRINTF("Error while adding Environmental service: 0x%04x\r\n",

ret);

 return ret;

 }

 ret = Add_Tx_Service();

 if (ret != BLE_STATUS_SUCCESS) {

 PRINTF("ADD_Tx_Service() failed: 0x%02x\r\n", ret);

 return ret;

 }

#if DISCONNECTION_TIMEOUT

 disconnectTimerHandle.callback = DisconnectTimeoutCB;

#endif

 debounce_timer.callback = DebounceTimeoutCB;

 sensorTimerHandle.callback = SensorUpdateTimeoutCB;

 advertisingLEDTimerHandle.callback = AdvertisingLEDTimeoutCB;

 ret = HAL_VTIMER_StartTimerMs(&sensorTimerHandle,

ACC_UPDATE_INTERVAL_MS);

 if (ret != BLE_STATUS_SUCCESS) {

 PRINTF("HAL_VTIMER_StartTimerMs() failed; 0x%02x\r\n",

ret);

 return ret;

 } else {

 sensor_update_timer_expired = FALSE;

 }

 return BLE_STATUS_SUCCESS;

}

#if UPDATE_CONN_PARAM

void l2cap_UpdateTimeoutCB(void *param) {

 l2cap_req_timer_expired = TRUE;

}

#endif

void Start_Advertising(void) {

 uint8_t ret;

 uint16_t adv_properties;

 Advertising_Set_Parameters_t Advertising_Set_Parameters[1];

153

rc_server.c

 if (phy == LE_1M_PHY) {

 adv_properties = ADV_PROP_CONNECTABLE |

ADV_PROP_SCANNABLE

 | ADV_PROP_LEGACY;

 } else {

 adv_properties = ADV_PROP_CONNECTABLE;

 }

 uint8_t peer_address[6] = { BD_ADDR_MASTER };

 ret = aci_gap_set_advertising_configuration(0,

 GAP_MODE_GENERAL_DISCOVERABLE,

adv_properties,

 ADV_INTERVAL_MIN,

 ADV_INTERVAL_MAX,

 ADV_CH_ALL,

 PUBLIC_ADDR, peer_address,

 ADV_NO_WHITE_LIST_USE, 0,

 phy,

 0,

 phy,

 0,

 0);

 printf("Advertising configuration %02X\n", ret);

 ret = aci_gap_set_advertising_data(0, ADV_COMPLETE_DATA,

 sizeof(adv_data[0]), adv_data[adv_data_index]);

 if (ret != BLE_STATUS_SUCCESS) {

 PRINTF("aci_gap_set_advertising_data() failed: 0x%02x\r\n", ret);

 }

 if (phy == LE_1M_PHY) {

 ret = aci_gap_set_scan_response_data(0, sizeof(scan_resp_data),

 scan_resp_data);

 if (ret != BLE_STATUS_SUCCESS) {

 PRINTF("hci_le_set_scan_response_data() failed:

0x%02x\r\n", ret);

 }

 }

 Update_Temperature();

 Advertising_Set_Parameters[0].Advertising_Handle = 0;

154

rc_server.c

 Advertising_Set_Parameters[0].Duration = 0;

 Advertising_Set_Parameters[0].Max_Extended_Advertising_Events = 0;

 ret = aci_gap_set_advertising_enable(ENABLE, 1,

Advertising_Set_Parameters);

 if (ret != BLE_STATUS_SUCCESS) {

 printf("Error in aci_gap_set_advertising_enable(): 0x%02x\r\n",

ret);

 return;

 } else

 printf("aci_gap_set_advertising_enable() --> SUCCESS\r\n");

 printf("Start Advertising phy %d\r\n", phy);

 HAL_VTIMER_StartTimerMs(&advertisingLEDTimerHandle,

 ADVSCAN_LED_INTERVAL_MS);

}

void Stop_Advertising(void) {

 aci_gap_set_advertising_enable(DISABLE, 0, NULL);

 HAL_VTIMER_StopTimer(&advertisingLEDTimerHandle);

 BSP_LED_Off(ADVSCAN_CONN_LED);

}

void APP_Tick(void) {

 if (APP_FLAG(SET_CONNECTABLE)) {

 sensor_update_timer_expired = TRUE;

 Start_Advertising();

 APP_FLAG_CLEAR(SET_CONNECTABLE);

 }

 if (button1_pressed && debounce_timeout_occurred) {

 button1_pressed = FALSE;

 debounce_timeout_occurred = FALSE;

 HAL_VTIMER_StartTimerMs(&debounce_timer,

DEBOUNCE_TIMEOUT_MS);

 if (APP_FLAG(CONNECTED)) {

 if (phy == LE_1M_PHY) {

 PRINTF("Switch to LE CODED PHY\n");

 hci_le_set_phy(connection_handle, 0,

LE_CODED_PHY_BIT,

155

rc_server.c

 LE_CODED_PHY_BIT, 2);

 } else {

 hci_le_set_phy(connection_handle, 0,

LE_1M_PHY_BIT,

 LE_1M_PHY_BIT, 2);

 PRINTF("Switch to LE 1M PHY\n");

 }

 } else {

 Stop_Advertising();

 if (phy == LE_1M_PHY) {

 phy = LE_CODED_PHY;

 BSP_LED_On(LONG_RANGE_LED);

 } else {

 phy = LE_1M_PHY;

 BSP_LED_Off(LONG_RANGE_LED);

 }

 APP_FLAG_SET(SET_CONNECTABLE);

 }

 }

 if (sensor_update_timer_expired) {

 sensor_update_timer_expired = FALSE;

 HAL_VTIMER_StartTimerMs(&sensorTimerHandle,

TEMPERATURE_UPDATE_RATE);

 Update_Temperature();

 if (HAL_VTIMER_StartTimerMs(&sensorTimerHandle,

 ACC_UPDATE_INTERVAL_MS) !=

BLE_STATUS_SUCCESS)

 sensor_update_timer_expired = TRUE;

 if (APP_FLAG(CONNECTED)) {

 AxesRaw_t x_axes, g_axes;

 if (GetAccAxesRaw(&x_axes, &g_axes)) {

 Acc_Update(&x_axes, &g_axes);

 }

 GetFreeFallStatus();

 }

 }

156

rc_server.c

 if (request_free_fall_notify == TRUE) {

 request_free_fall_notify = FALSE;

 Free_Fall_Notify();

 }

}

#if DISCONNECTION_TIMEOUT

void DisconnectTimeoutCB(void *param)

{

 aci_gap_terminate(connection_handle,0x13);

}

#endif

void DebounceTimeoutCB(void *param) {

 debounce_timeout_occurred = TRUE;

 button1_pressed = FALSE;

}

void SensorUpdateTimeoutCB(void *param) {

 sensor_update_timer_expired = TRUE;

}

void AdvertisingLEDTimeoutCB(void *param) {

 BSP_LED_Toggle(ADVSCAN_CONN_LED);

 HAL_VTIMER_StartTimerMs(&advertisingLEDTimerHandle,

 ADVSCAN_LED_INTERVAL_MS);

}

void hci_le_connection_complete_event(uint8_t Status,

 uint16_t Connection_Handle, uint8_t Role, uint8_t

Peer_Address_Type,

 uint8_t Peer_Address[6], uint16_t Conn_Interval, uint16_t

Conn_Latency,

 uint16_t Supervision_Timeout, uint8_t Master_Clock_Accuracy)

{

 if (Status != BLE_STATUS_SUCCESS)

 return;

 APP_FLAG_SET(CONNECTED);

 connection_handle = Connection_Handle;

157

rc_server.c

 printf("Connected\n");

 BSP_LED_On(ADVSCAN_CONN_LED);

 sensor_update_timer_expired = FALSE;

 HAL_VTIMER_StopTimer(&sensorTimerHandle);

#if DISCONNECTION_TIMEOUT

 HAL_VTIMER_StartTimerMs(&disconnectTimerHandle,

DISCONNECTION_TIMEOUT);

#endif

 HAL_VTIMER_StopTimer(&advertisingLEDTimerHandle);

 start_time = HAL_VTIMER_GetCurrentSysTime();

}

void hci_le_enhanced_connection_complete_event(uint8_t Status,

 uint16_t Connection_Handle, uint8_t Role, uint8_t

Peer_Address_Type,

 uint8_t Peer_Address[6], uint8_t

Local_Resolvable_Private_Address[6],

 uint8_t Peer_Resolvable_Private_Address[6], uint16_t

Conn_Interval,

 uint16_t Conn_Latency, uint16_t Supervision_Timeout,

 uint8_t Master_Clock_Accuracy) {

 hci_le_connection_complete_event(Status, Connection_Handle, Role,

 Peer_Address_Type, Peer_Address, Conn_Interval,

Conn_Latency,

 Supervision_Timeout, Master_Clock_Accuracy);

}

void hci_disconnection_complete_event(uint8_t Status,

 uint16_t Connection_Handle, uint8_t Reason) {

 APP_FLAG_CLEAR(CONNECTED);

 APP_FLAG_SET(SET_CONNECTABLE);

 printf("Disconnected\n");

 BSP_LED_Off(ADVSCAN_CONN_LED);

#if DISCONNECTION_TIMEOUT

158

rc_server.c

 HAL_VTIMER_StopTimer(&disconnectTimerHandle);

#endif

}

void aci_l2cap_connection_update_resp_event(uint16_t Connection_Handle,

 uint16_t Result) {

 if (Result) {

 PRINTF("> Connection parameters rejected.\n");

 } else {

 PRINTF("> Connection parameters accepted.\n");

 }

}

void hci_le_phy_update_complete_event(uint8_t Status,

 uint16_t Connection_Handle, uint8_t TX_PHY, uint8_t RX_PHY)

{

 PRINTF("PHY changed: %d %d\n", TX_PHY, RX_PHY);

 if (TX_PHY == LE_CODED_PHY && RX_PHY == LE_CODED_PHY)

{

 BSP_LED_On(LONG_RANGE_LED);

 phy = LE_CODED_PHY;

 } else if (TX_PHY == LE_1M_PHY && RX_PHY == LE_1M_PHY) {

 BSP_LED_Off(LONG_RANGE_LED);

 phy = LE_1M_PHY;

 } else {

 PRINTF("Unexpected\n");

 BSP_LED_Off(LONG_RANGE_LED);

 }

}

rc_client.c

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "rf_device_it.h"

#include "ble_const.h"

#include "bluenrg_lp_stack.h"

#include "rf_driver_hal_vtimer.h"

#include "bluenrg_lp_evb_com.h"

#include "bluenrg_lp_evb_button.h"

#include "rc.h"

159

rc_client.c

#include "gatt_db.h"

#include "app_state.h"

#include "gap_profile.h"

#include "gatt_profile.h"

uint8_t button1_pressed = FALSE, button2_pressed = FALSE;

#define DEBOUNCE_TIMEOUT_MS 300

#define STATS_INTERVAL_MS 10000

#ifndef DEBUG

#define DEBUG 1

#endif

#if DEBUG

#include <stdio.h>

#define PRINTF(...) printf(__VA_ARGS__)

#else

#define PRINTF(...)

#endif

#define BLE_RC_VERSION_STRING "1.0.0"

volatile int app_flags = SET_CONNECTABLE;

volatile uint16_t connection_handle = 0;

static uint8_t debounce_timeout_occurred = TRUE;

static VTIMER_HandleType debounce_timer;

static VTIMER_HandleType scanningLEDTimerHandle;

static VTIMER_HandleType writeTimerHandle;

static VTIMER_HandleType statsTimerHandle;

static uint8_t phy = LE_1M_PHY;

static llc_conn_per_statistic_st per_statistic_ptr;

#if DO_NOT_USE_VTIMER_CB

 static uint32_t last_time;

#endif

void ScanningLEDTimeoutCB(void *param);

void writeTimeoutCB(void *param);

void statsTimeoutCB(void *param);

void toggle_LED(void);

160

rc_client.c

void DebounceTimeoutCB(void *param);

uint8_t RC_DeviceInit(void)

{

 uint8_t role = GAP_CENTRAL_ROLE;

 uint8_t bdaddr[] = {BD_ADDR_MASTER};

 uint8_t device_name[]={'N', 'o', 'd', 'e'};

 uint8_t ret;

 uint16_t service_handle, dev_name_char_handle, appearance_char_handle;

 ret = aci_hal_write_config_data(CONFIG_DATA_PUBADDR_OFFSET,

CONFIG_DATA_PUBADDR_LEN, bdaddr);

 if(ret != BLE_STATUS_SUCCESS) {

 PRINTF("aci_hal_write_config_data() failed: 0x%02x\r\n", ret);

 return ret;

 }

 aci_hal_set_tx_power_level(0, OUTPUT_POWER_LEVEL);

 ret = aci_gatt_srv_init();

 if(ret){

 PRINTF("aci_gatt_srv_init() failed: 0x%02x\r\n", ret);

 return ret;

 }

 ret = aci_gap_init(role, 0, 0x07, 0x00, &service_handle,

&dev_name_char_handle, &appearance_char_handle);

 if(ret){

 PRINTF("aci_gap_Init() failed: 0x%02x\r\n", ret);

 return ret;

 }

 ret = Gap_profile_set_dev_name(0, sizeof(device_name), device_name);

 if(ret){

 PRINTF("Gap_profile_set_dev_name() failed: 0x%02x\r\n", ret);

 return ret;

 }

 ret = aci_gap_set_io_capability(IO_CAP_DISPLAY_ONLY);

 if(ret){

 PRINTF("aci_gap_set_io_capability() failed: 0x%02x\r\n", ret);

 return ret;

161

rc_client.c

 }

 ret = aci_gap_set_authentication_requirement(BONDING,

 MITM_PROTECTION_REQUIRED,

 SC_IS_NOT_SUPPORTED,

 KEYPRESS_IS_NOT_SUPPORTED,

 7,

 16,

 USE_FIXED_PIN_FOR_PAIRING,

 123456);

 if(ret){

 PRINTF("aci_gap_set_authentication_requirement failed: 0x%02x\r\n", ret);

 return ret;

 }

 ret = aci_gap_set_scan_configuration(DUPLICATE_FILTER_ENABLED,

SCAN_ACCEPT_ALL, LE_1M_PHY_BIT, PASSIVE_SCAN,

SCAN_INTERVAL, SCAN_WINDOW);

 printf("Scan configuration for LE_1M_PHY: 0x%02X\n", ret);

 ret = aci_gap_set_scan_configuration(DUPLICATE_FILTER_ENABLED,

SCAN_ACCEPT_ALL, LE_CODED_PHY_BIT, PASSIVE_SCAN,

SCAN_INTERVAL, SCAN_WINDOW);

 printf("Scan configuration for LE_CODED_PHY: 0x%02X\n", ret);

 ret = aci_gap_set_connection_configuration(LE_1M_PHY_BIT,

CONN_INTERVAL_MIN, CONN_INTERVAL_MAX, 0,

SUPERVISION_TIMEOUT, CE_LENGTH, CE_LENGTH);

 printf("Connection configuration for LE_1M_PHY: 0x%02X\n", ret);

 ret = aci_gap_set_connection_configuration(LE_CODED_PHY_BIT,

CONN_INTERVAL_MIN, CONN_INTERVAL_MAX, 0,

SUPERVISION_TIMEOUT, CE_LENGTH, CE_LENGTH);

 printf("Connection configuration for LE_CODED_PHY: 0x%02X\n", ret);

 debounce_timer.callback = DebounceTimeoutCB;

 scanningLEDTimerHandle.callback = ScanningLEDTimeoutCB;

 writeTimerHandle.callback = writeTimeoutCB;

 statsTimerHandle.callback = statsTimeoutCB;

 return BLE_STATUS_SUCCESS;

}

162

rc_client.c

void Connect(void)

{

 tBleStatus ret;

 uint8_t phy_bit;

 tBDAddr bdaddr = {BD_ADDR_SLAVE};

 if(phy == LE_1M_PHY){

 phy_bit = LE_1M_PHY_BIT;

 BSP_LED_Off(LONG_RANGE_LED);

 }

 else {

 phy_bit = LE_CODED_PHY_BIT;

 BSP_LED_On(LONG_RANGE_LED);

 }

 ret = aci_gap_create_connection(phy_bit, PUBLIC_ADDR, bdaddr);

 if (ret != BLE_STATUS_SUCCESS)

 {

 printf("Error while starting connection: 0x%02x\r\n", ret);

 return;

 }

 printf("Connecting on phy %d...\n", phy);

 HAL_VTIMER_StartTimerMs(&scanningLEDTimerHandle,

ADVSCAN_LED_INTERVAL_MS);

}

void CancelConnect(void)

{

aci_gap_terminate_proc(GAP_DIRECT_CONNECTION_ESTABLISHMENT_P

ROC);

 HAL_VTIMER_StopTimer(&scanningLEDTimerHandle);

 BSP_LED_Off(ADVSCAN_CONN_LED);

}

void APP_Tick(void)

{

 if(APP_FLAG(SET_CONNECTABLE))

163

rc_client.c

 {

 Connect();

 APP_FLAG_CLEAR(SET_CONNECTABLE);

 }

 if(button1_pressed && debounce_timeout_occurred){

 button1_pressed = FALSE;

 debounce_timeout_occurred = FALSE;

 HAL_VTIMER_StartTimerMs(&debounce_timer,

DEBOUNCE_TIMEOUT_MS);

 if(APP_FLAG(CONNECTED)){

 if(phy == LE_1M_PHY){

 hci_le_set_phy(connection_handle, 0, LE_CODED_PHY_BIT,

LE_CODED_PHY_BIT, 2);

 PRINTF("Switch to LE CODED PHY\n");

 }

 else {

 hci_le_set_phy(connection_handle, 0, LE_1M_PHY_BIT,

LE_1M_PHY_BIT, 2);

 PRINTF("Switch to LE 1M PHY\n");

 }

 }

 else{

 CancelConnect();

 if(phy == LE_1M_PHY){

 phy = LE_CODED_PHY;

 }

 else {

 phy = LE_1M_PHY;

 }

 }

 }

#if AUTO_TOGGLE_LED == 0

 if(APP_FLAG(CONNECTED) && button2_pressed &&

debounce_timeout_occurred){

 button2_pressed = FALSE;

 debounce_timeout_occurred = FALSE;

164

rc_client.c

 HAL_VTIMER_StartTimerMs(&debounce_timer,

DEBOUNCE_TIMEOUT_MS);

 toggle_LED();

 }

#else

#if DO_NOT_USE_VTIMER_CB

 if(APP_FLAG(CONNECTED) &&

HAL_VTIMER_DiffSysTimeMs(HAL_VTIMER_GetCurrentSysTime(),

last_time) > DEBOUNCE_TIMEOUT_MS){

 toggle_LED();

 last_time = HAL_VTIMER_GetCurrentSysTime();

 }

#endif

#endif

}

void toggle_LED(void)

{

 tBleStatus ret;

 static uint8_t val = 1<<CONTROL_LED;

 if(val==0){

 BSP_LED_On(CONTROL_LED);

 val = 1<<CONTROL_LED;

 }

 else {

 BSP_LED_Off(CONTROL_LED);

 val = 0;

 }

 ret = aci_gatt_clt_write(connection_handle, 0x0012, 1, &val);

 PRINTF("Write 0x%02X to handle 0x0012, 0x%02X\n", val, ret);

}

void statsTimeoutCB(void *param)

{

165

rc_client.c

 uint8_t CRC_errs_perc =

(uint32_t)per_statistic_ptr.num_crc_err*100/per_statistic_ptr.num_pkts;

 uint8_t missed_pckt_perc =

(uint32_t)per_statistic_ptr.num_miss_evts*100/(per_statistic_ptr.num_pkts+per_st

atistic_ptr.num_miss_evts);

 uint8_t packet_err_rate =

(uint32_t)(per_statistic_ptr.num_crc_err+per_statistic_ptr.num_miss_evts)*100/(p

er_statistic_ptr.num_pkts+per_statistic_ptr.num_miss_evts);

 PRINTF("- CRC errs = %d%%\n- Missed packets = %d%%\n", CRC_errs_perc,

missed_pckt_perc);

 PRINTF("- PER = %d%%\n", packet_err_rate);

 llc_conn_per_statistic(connection_handle, &per_statistic_ptr);

 HAL_VTIMER_StartTimerMs(&statsTimerHandle, STATS_INTERVAL_MS);

}

void DebounceTimeoutCB(void *param)

{

 debounce_timeout_occurred = TRUE;

 button1_pressed = FALSE;

 button2_pressed = FALSE;

}

void ScanningLEDTimeoutCB(void *param)

{

 BSP_LED_Toggle(ADVSCAN_CONN_LED);

 HAL_VTIMER_StartTimerMs(&scanningLEDTimerHandle,

ADVSCAN_LED_INTERVAL_MS);

}

void writeTimeoutCB(void *param)

{

 toggle_LED();

 HAL_VTIMER_StartTimerMs(&writeTimerHandle, WRITE_INTERVAL_MS);

}

void hci_le_connection_complete_event(uint8_t Status,

 uint16_t Connection_Handle,

 uint8_t Role,

166

rc_client.c

 uint8_t Peer_Address_Type,

 uint8_t Peer_Address[6],

 uint16_t Conn_Interval,

 uint16_t Conn_Latency,

 uint16_t Supervision_Timeout,

 uint8_t Master_Clock_Accuracy)

{

 if(Status == BLE_ERROR_UNKNOWN_CONNECTION_ID)

 {

 APP_FLAG_SET(SET_CONNECTABLE);

 return;

 }

 else if(Status != 0)

 return;

 APP_FLAG_SET(CONNECTED);

 connection_handle = Connection_Handle;

 printf("Connected\n");

 BSP_LED_On(ADVSCAN_CONN_LED);

 HAL_VTIMER_StopTimer(&scanningLEDTimerHandle);

 llc_conn_per_statistic(connection_handle, &per_statistic_ptr);

 HAL_VTIMER_StartTimerMs(&statsTimerHandle, STATS_INTERVAL_MS);

#if AUTO_TOGGLE_LED

#if DO_NOT_USE_VTIMER_CB

 last_time = HAL_VTIMER_GetCurrentSysTime();

#else

 HAL_VTIMER_StartTimerMs(&writeTimerHandle,

WRITE_INTERVAL_MS);

#endif

#endif

}

void hci_le_enhanced_connection_complete_event(uint8_t Status,

167

rc_client.c

 uint16_t Connection_Handle,

 uint8_t Role,

 uint8_t Peer_Address_Type,

 uint8_t Peer_Address[6],

 uint8_t Local_Resolvable_Private_Address[6],

 uint8_t Peer_Resolvable_Private_Address[6],

 uint16_t Conn_Interval,

 uint16_t Conn_Latency,

 uint16_t Supervision_Timeout,

 uint8_t Master_Clock_Accuracy)

{

 hci_le_connection_complete_event(Status,

 Connection_Handle,

 Role,

 Peer_Address_Type,

 Peer_Address,

 Conn_Interval,

 Conn_Latency,

 Supervision_Timeout,

 Master_Clock_Accuracy);

}

void hci_disconnection_complete_event(uint8_t Status,

 uint16_t Connection_Handle,

 uint8_t Reason)

{

 APP_FLAG_CLEAR(CONNECTED);

 APP_FLAG_SET(SET_CONNECTABLE);

 printf("Disconnected\n");

 BSP_LED_Off(ADVSCAN_CONN_LED);

 BSP_LED_Off(CONTROL_LED);

 HAL_VTIMER_StopTimer(&statsTimerHandle);

#if AUTO_TOGGLE_LED

#if !DO_NOT_USE_VTIMER_CB

 HAL_VTIMER_StopTimer(&writeTimerHandle);

#endif

#endif

168

rc_client.c

}

void aci_l2cap_connection_update_resp_event(uint16_t Connection_Handle,

 uint16_t Result)

{

 if(Result) {

 PRINTF("> Connection parameters rejected.\n");

 } else {

 PRINTF("> Connection parameters accepted.\n");

 }

}

void hci_le_phy_update_complete_event(uint8_t Status,

 uint16_t Connection_Handle,

 uint8_t TX_PHY,

 uint8_t RX_PHY)

{

 PRINTF("PHY changed: %d %d\n", TX_PHY, RX_PHY);

 if(TX_PHY == LE_CODED_PHY && RX_PHY == LE_CODED_PHY){

 BSP_LED_On(LONG_RANGE_LED);

 phy = LE_CODED_PHY;

 }

 else if(TX_PHY == LE_1M_PHY && RX_PHY == LE_1M_PHY){

 BSP_LED_Off(LONG_RANGE_LED);

 phy = LE_1M_PHY;

 }

 else {

 PRINTF("Unexpected\n");

 BSP_LED_Off(LONG_RANGE_LED);

 }

 HAL_VTIMER_StopTimer(&statsTimerHandle);

 llc_conn_per_statistic(connection_handle, &per_statistic_ptr);

 HAL_VTIMER_StartTimerMs(&statsTimerHandle, STATS_INTERVAL_MS);

}

gatt_db.c

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

169

gatt_db.c

#include "ble_const.h"

#include "bluenrg_lp_stack.h"

#include "app_state.h"

#include "gatt_db.h"

#include "osal.h"

#include "bluenrg_lp_evb_config.h"

#include "rc.h"

#include "clock.h"

#include "gp_timer.h"

#include "osal.h"

#include "SensorDemo_config.h"

#include "gatt_profile.h"

#include "gap_profile.h"

#include "OTA_btl.h"

#include "rf_driver_hal_gpio.h"

#include "rf_driver_hal_gpio_ex.h"

#include "rf_driver_hal.h"

#include "rf_driver_hal_vtimer.h"

#ifndef DEBUG

#define DEBUG 1

#endif

#define ENABLE_SECURITY 0

#if DEBUG

#include <stdio.h>

#define PRINTF(...) printf(__VA_ARGS__)

#else

#define PRINTF(...)

#endif

#define LED_NUMBER 3

#define LED2_PIN LL_GPIO_PIN_6

#define LED2_GPIO_PORT GPIOB

#define INT(x) ((int)(x))

#define FRACTIONAL(x) (x>0)? ((int) (((x) - INT(x)) * 10)) : ((int) ((INT(x) -

(x)) * 10))

170

gatt_db.c

#define RC_SRVC_UUID

0xba,0x5c,0xf7,0x93,0x3b,0x12,0xd3,0x89,0xe4,0x11,0x0d,0x9b,0x2e,0xf6,0x0e,

0xed

#define RC_CONTROL_POINT_UUID

0xba,0x5c,0xf7,0x93,0x3b,0x12,0xd3,0x89,0xe4,0x11,0x0d,0x9b,0x1a,0xfb,0x0e,

0xed

#define ACC_SERVICE_UUID

0x1b,0xc5,0xd5,0xa5,0x02,0x00,0xb4,0x9a,0xe1,0x11,0x3a,0xcf,0x80,0x6e,0x36,

0x02

#define FREE_FALL_UUID

0x1b,0xc5,0xd5,0xa5,0x02,0x00,0xfc,0x8f,0xe1,0x11,0x4a,0xcf,0xa0,0x78,0x3e,0

xe2

#define ACC_UUID

0x1b,0xc5,0xd5,0xa5,0x02,0x00,0x36,0xac,0xe1,0x11,0x4b,0xcf,0x80,0x1b,0x0a,

0x34

#define ENV_SENS_SERVICE_UUID

0x1b,0xc5,0xd5,0xa5,0x02,0x00,0xd0,0x82,0xe2,0x11,0x77,0xe4,0x40,0x1a,0x82

,0x42

#define TEMP_CHAR_UUID

0x1b,0xc5,0xd5,0xa5,0x02,0x00,0xe3,0xa9,0xe2,0x11,0x77,0xe4,0x20,0x55,0x2e

,0xa3

#define PRESS_CHAR_UUID

0x1b,0xc5,0xd5,0xa5,0x02,0x00,0x0b,0x84,0xe2,0x11,0x8b,0xe4,0x80,0xc4,0x20

,0xcd

#define PWR_SRVC_UUID

0x66,0x9a,0x0c,0x20,0x00,0x08,0x96,0x9e,0xe2,0x11,0x9e,0xb1,0xe0,0xf2,0x73,

0xd9

#define TX_CHR_UUID

0x66,0x9a,0x0c,0x20,0x00,0x08,0x96,0x9e,0xe2,0x11,0x9e,0xb1,0xe1,0xf2,0x73,

0xd9

uint16_t accServHandle, freeFallCharHandle, accCharHandle;

uint16_t envSensServHandle, tempCharHandle, pressCharHandle;

uint16_t pwrSensServHandle, txCharHandle;

extern uint16_t connection_handle;

extern BOOL sensor_board;

#ifndef SENSOR_ACCELEROMETER_EMULATION

extern lsm6dsox_ctx_t inertialHandle;

171

gatt_db.c

#endif

extern uint32_t start_time;

#ifndef SENSOR_PRESSURE_TEMPERATURE_EMULATION

extern lps22hh_ctx_t pressureHandle;

#endif

static const ble_gatt_chr_def_t rc_chars[] = {

 #if ENABLE_SECURITY

 {

 .properties = BLE_GATT_SRV_CHAR_PROP_READ |

BLE_GATT_SRV_CHAR_PROP_WRITE |

BLE_GATT_SRV_CHAR_PROP_WRITE_NO_RESP |

BLE_GATT_SRV_CHAR_PROP_AUTH_SIGN_WRITE,

 .permissions =

BLE_GATT_SRV_PERM_AUTHEN_READ|BLE_GATT_SRV_PERM_AUTH

EN_WRITE,

 .min_key_size = BLE_GATT_SRV_MAX_ENCRY_KEY_SIZE,

 .uuid = BLE_UUID_INIT_128(RC_CONTROL_POINT_UUID),

 },

#else

 {

 .properties = BLE_GATT_SRV_CHAR_PROP_READ |

BLE_GATT_SRV_CHAR_PROP_WRITE_NO_RESP|

BLE_GATT_SRV_CHAR_PROP_WRITE,

 .permissions = BLE_GATT_SRV_PERM_NONE,

 .min_key_size = BLE_GATT_SRV_MAX_ENCRY_KEY_SIZE,

 .uuid = BLE_UUID_INIT_128(RC_CONTROL_POINT_UUID),

 },

#endif

};

static const ble_gatt_srv_def_t rc_service = {

 .type = BLE_GATT_SRV_PRIMARY_SRV_TYPE,

 .uuid = BLE_UUID_INIT_128(RC_SRVC_UUID),

 .chrs = {

 .chrs_p = (ble_gatt_chr_def_t *)rc_chars,

 .chr_count = 1U,

 },

};

172

gatt_db.c

BLE_GATT_SRV_CCCD_DECLARE(free_fall,

 NUM_LINKS,

 BLE_GATT_SRV_CCCD_PERM_DEFAULT,

 BLE_GATT_SRV_OP_MODIFIED_EVT_ENABLE_FLAG);

BLE_GATT_SRV_CCCD_DECLARE(accell,

 NUM_LINKS,

 BLE_GATT_SRV_CCCD_PERM_DEFAULT,

 BLE_GATT_SRV_OP_MODIFIED_EVT_ENABLE_FLAG);

static ble_gatt_chr_def_t acc_chars[] = {

 {

 .properties = BLE_GATT_SRV_CHAR_PROP_NOTIFY,

 .permissions = BLE_GATT_SRV_PERM_NONE,

 .min_key_size = BLE_GATT_SRV_MAX_ENCRY_KEY_SIZE,

 .uuid = BLE_UUID_INIT_128(FREE_FALL_UUID),

 .descrs = {

 .descrs_p = &BLE_GATT_SRV_CCCD_DEF_NAME(free_fall),

 .descr_count = 1,

 },

 },

 {

 .properties = BLE_GATT_SRV_CHAR_PROP_NOTIFY |

BLE_GATT_SRV_CHAR_PROP_READ,

 .permissions = BLE_GATT_SRV_PERM_NONE,

 .min_key_size = BLE_GATT_SRV_MAX_ENCRY_KEY_SIZE,

 .uuid = BLE_UUID_INIT_128(ACC_UUID),

 .descrs = {

 .descrs_p = &BLE_GATT_SRV_CCCD_DEF_NAME(accell),

 .descr_count = 1,

 },

 }

};

static ble_gatt_srv_def_t acc_service = {

 .type = BLE_GATT_SRV_PRIMARY_SRV_TYPE,

 .uuid = BLE_UUID_INIT_128(ACC_SERVICE_UUID),

 .chrs = {

 .chrs_p = (ble_gatt_chr_def_t *)acc_chars,

 .chr_count = 2U,

 },

};

173

gatt_db.c

static charactFormat temp_char_format = {

 .format = FORMAT_SINT16,

 .exp = -1,

 .unit = UNIT_TEMP_CELSIUS,

 .name_space = 0,

 .desc = 0,

};

static charactFormat press_char_format = {

 .format = FORMAT_SINT24,

 .exp = -5,

 .unit = UNIT_PRESSURE_BAR,

 .name_space = 0,

 .desc = 0,

};

static ble_gatt_val_buffer_def_t env_descr_val_buffers[] =

{

 {

 .buffer_len = 7,

 .buffer_p = (uint8_t *)&temp_char_format,

 },

 {

 .buffer_len = 7,

 .buffer_p = (uint8_t *)&press_char_format,

 }

};

static ble_gatt_descr_def_t env_descrs[] =

{

 {

 .uuid = BLE_UUID_INIT_16(CHAR_FORMAT_DESC_UUID),

 .permissions = BLE_GATT_SRV_PERM_NONE,

 .properties = BLE_GATT_SRV_DESCR_PROP_READ,

 .min_key_size = BLE_GATT_SRV_MAX_ENCRY_KEY_SIZE,

 .val_buffer_p = &env_descr_val_buffers[0],

 },

 {

 .uuid = BLE_UUID_INIT_16(CHAR_FORMAT_DESC_UUID),

 .permissions = BLE_GATT_SRV_PERM_NONE,

 .properties = BLE_GATT_SRV_DESCR_PROP_READ,

 .min_key_size = BLE_GATT_SRV_MAX_ENCRY_KEY_SIZE,

 .val_buffer_p = &env_descr_val_buffers[1],

174

gatt_db.c

 },

};

static ble_gatt_chr_def_t env_chars[] = {

 {

 .properties = BLE_GATT_SRV_CHAR_PROP_READ,

 .permissions = BLE_GATT_SRV_PERM_NONE,

 .min_key_size = BLE_GATT_SRV_MAX_ENCRY_KEY_SIZE,

 .uuid = BLE_UUID_INIT_128(TEMP_CHAR_UUID),

 .descrs = {

 .descrs_p = &env_descrs[0],

 .descr_count = 1,

 },

 },

 {

 .properties = BLE_GATT_SRV_CHAR_PROP_READ,

 .permissions = BLE_GATT_SRV_PERM_NONE,

 .min_key_size = BLE_GATT_SRV_MAX_ENCRY_KEY_SIZE,

 .uuid = BLE_UUID_INIT_128(PRESS_CHAR_UUID),

 .descrs = {

 .descrs_p = &env_descrs[1],

 .descr_count = 1,

 },

 },

};

static ble_gatt_srv_def_t env_service = {

 .type = BLE_GATT_SRV_PRIMARY_SRV_TYPE,

 .uuid = BLE_UUID_INIT_128(ENV_SENS_SERVICE_UUID),

 .chrs = {

 .chrs_p = (ble_gatt_chr_def_t *)env_chars,

 .chr_count = 2U,

 },

};

static const ble_gatt_chr_def_t pwr_chars[] = {

 {

 .properties = BLE_GATT_SRV_CHAR_PROP_READ|

BLE_GATT_SRV_CHAR_PROP_WRITE ,

 .permissions = BLE_GATT_SRV_PERM_NONE,

 .min_key_size = BLE_GATT_SRV_MAX_ENCRY_KEY_SIZE,

 .uuid = BLE_UUID_INIT_128(TX_CHR_UUID),

 },

175

gatt_db.c

};

static ble_gatt_srv_def_t pwr_service = {

 .type = BLE_GATT_SRV_PRIMARY_SRV_TYPE,

 .uuid = BLE_UUID_INIT_128(PWR_SRVC_UUID),

 .chrs = {

 .chrs_p = (ble_gatt_chr_def_t *)pwr_chars,

 .chr_count = 1U,

 },

};

uint8_t GetAccAxesRaw(AxesRaw_t * acceleration_data, AxesRaw_t *

gyro_data)

{

#ifndef SENSOR_ACCELEROMETER_EMULATION

 uint8_t tmp = 0;

 (void)tmp;

 axis3bit16_t data_raw_acceleration;

 axis3bit16_t data_raw_angular_rate;

 lsm6dsox_xl_flag_data_ready_get(&inertialHandle, &tmp);

 if(tmp)

 {

 memset(data_raw_acceleration.u8bit, 0x00, 3 * sizeof(int16_t));

 lsm6dsox_acceleration_raw_get(&inertialHandle, data_raw_acceleration.u8bit);

 acceleration_data->AXIS_X =

(int32_t)lsm6dsox_from_fs2_to_mg(data_raw_acceleration.i16bit[0]);

 acceleration_data->AXIS_Y =

(int32_t)lsm6dsox_from_fs2_to_mg(data_raw_acceleration.i16bit[1]);

 acceleration_data->AXIS_Z =

(int32_t)lsm6dsox_from_fs2_to_mg(data_raw_acceleration.i16bit[2]);

 }

 lsm6dsox_gy_flag_data_ready_get(&inertialHandle, &tmp);

 if(tmp) {

 lsm6dsox_angular_rate_raw_get(&inertialHandle,

data_raw_angular_rate.u8bit);

 gyro_data->AXIS_X =

(int32_t)lsm6dsox_from_fs2000_to_mdps(data_raw_angular_rate.i16bit[0]);

 gyro_data->AXIS_Y =

(int32_t)lsm6dsox_from_fs2000_to_mdps(data_raw_angular_rate.i16bit[1]);

176

gatt_db.c

 gyro_data->AXIS_Z =

(int32_t)lsm6dsox_from_fs2000_to_mdps(data_raw_angular_rate.i16bit[2]);

 }

#else

 uint8_t tmp = 1;

 acceleration_data->AXIS_X = ((uint64_t)rand()) % X_OFFSET;

 acceleration_data->AXIS_Y = ((uint64_t)rand()) % Y_OFFSET;

 acceleration_data->AXIS_Z = ((uint64_t)rand()) % Z_OFFSET;

#endif

 return(tmp);

}

void GetFreeFallStatus(void)

{

#ifndef SENSOR_ACCELEROMETER_EMULATION

 lsm6dsox_all_sources_t all_source;

 lsm6dsox_all_sources_get(&inertialHandle, &all_source);

 if (all_source.wake_up_src.ff_ia)

 {

 request_free_fall_notify = TRUE;

 }

#endif

}

uint16_t controlPointHandle;

uint16_t controlPointHandle1;

uint8_t GetTemperature(float * temperature_degC);

tBleStatus Add_RC_Service(void)

{

 tBleStatus ret;

 ret = aci_gatt_srv_add_service((ble_gatt_srv_def_t *)&rc_service);

 if (ret != BLE_STATUS_SUCCESS)

 {

 goto fail;

 }

 controlPointHandle = aci_gatt_srv_get_char_decl_handle((ble_gatt_chr_def_t

*)&rc_chars[0]);

177

gatt_db.c

 PRINTF("RC Service added.\nControl Point Char Handle %04X\n",

controlPointHandle);

 return BLE_STATUS_SUCCESS;

fail:

 PRINTF("Error while adding RC service.\n");

 return BLE_STATUS_ERROR ;

}

static uint8_t leds_value[2] = {0,0};

VTIMER_HandleType led2_blink_timer;

void LED2_BlinkTimerCallback(void *param)

{

 static uint8_t led_on = 0;

 if (led_on)

 {

 LL_GPIO_WriteOutputPin(LED2_GPIO_PORT, LED2_PIN,

LL_GPIO_OUTPUT_LOW);

 led_on = 0;

 }

 else

 {

 LL_GPIO_WriteOutputPin(LED2_GPIO_PORT, LED2_PIN,

LL_GPIO_OUTPUT_HIGH);

 led_on = 1;

 }

 HAL_VTIMER_StartTimerMs(&led2_blink_timer, 500);

}

void Attribute_Modified_CB(uint16_t handle, uint8_t data_length, uint8_t

*att_data)

{

 if (handle == controlPointHandle + 1)

 {

 leds_value[0] = att_data[0];

 leds_value[1] = att_data[1];

178

gatt_db.c

 PRINTF("\nAttribute modified: leds_value[0] = 0x%02X, leds_value[1] =

0x%02X\n\n", leds_value[0], leds_value[1]);

 if (att_data[0] & (1 << CONTROL_LED))

 {

 BSP_LED_On(CONTROL_LED);

 led2_blink_timer.callback = LED2_BlinkTimerCallback;

 HAL_VTIMER_StartTimerMs(&led2_blink_timer, 500);

 }

 else

 {

 BSP_LED_Off(CONTROL_LED);

 LL_GPIO_WriteOutputPin(LED2_GPIO_PORT, LED2_PIN,

LL_GPIO_OUTPUT_LOW);

 HAL_VTIMER_StopTimer(&led2_blink_timer);

 }

 }

 else if (handle == txCharHandle + 1)

 {

 if (data_length == 1)

 {

 int8_t new_power_level = (int8_t)att_data[0];

 OUTPUT_POWER_LEVEL = new_power_level;

 TX_Update((uint8_t)OUTPUT_POWER_LEVEL);

 PRINTF("Updated TX Power Level: %d dBm\n",

OUTPUT_POWER_LEVEL);

 }

 else

 {

 PRINTF("Error: Invalid data length for TX power level update.\n");

 }

 }

}

tBleStatus Add_Acc_Service(void)

{

 tBleStatus ret;

179

gatt_db.c

 ret = aci_gatt_srv_add_service((ble_gatt_srv_def_t *)&acc_service);

 if (ret != BLE_STATUS_SUCCESS)

 {

 goto fail;

 }

 accServHandle = aci_gatt_srv_get_service_handle(&acc_service);

 freeFallCharHandle = aci_gatt_srv_get_char_decl_handle((ble_gatt_chr_def_t

*)&acc_chars[0]);

 accCharHandle = aci_gatt_srv_get_char_decl_handle((ble_gatt_chr_def_t

*)&acc_chars[1]);

 PRINTF("Service ACC added. Handle 0x%04X, Free fall Charac handle:

0x%04X, Acc Charac handle: 0x%04X\n",

 accServHandle, freeFallCharHandle, accCharHandle);

 return BLE_STATUS_SUCCESS;

 fail:

 PRINTF("Error while adding ACC service at step: 0x%04X\n", __LINE__);

 return BLE_STATUS_ERROR;

}

tBleStatus Free_Fall_Notify(void)

{

 uint8_t val;

 tBleStatus ret;

 val = 0x01;

 ret = aci_gatt_srv_notify(connection_handle, freeFallCharHandle + 1, 0, 1,

&val);

 if (ret != BLE_STATUS_SUCCESS){

 PRINTF("Error while updating Free Fall characteristic: 0x%02X\n",ret) ;

 return BLE_STATUS_ERROR ;

 }

 return BLE_STATUS_SUCCESS;

}

tBleStatus Acc_Update(AxesRaw_t *x_axes, AxesRaw_t *g_axes)

{

 uint8_t buff[2+2*6];

 tBleStatus ret;

180

gatt_db.c

 uint32_t time =

HAL_VTIMER_DiffSysTimeMs(HAL_VTIMER_GetCurrentSysTime(),

start_time);

 HOST_TO_LE_16(buff,time);

 HOST_TO_LE_16(buff+2,-x_axes->AXIS_Y);

 HOST_TO_LE_16(buff+4, x_axes->AXIS_X);

 HOST_TO_LE_16(buff+6,-x_axes->AXIS_Z);

 HOST_TO_LE_16(buff+8,g_axes->AXIS_Y);

 HOST_TO_LE_16(buff+10,g_axes->AXIS_X);

 HOST_TO_LE_16(buff+12,g_axes->AXIS_Z);

 ret = aci_gatt_srv_notify(connection_handle, accCharHandle + 1, 0, 2+2*6,

buff);

 if (ret != BLE_STATUS_SUCCESS){

 PRINTF("Error while updating Acceleration characteristic: 0x%02X\n",ret) ;

 return BLE_STATUS_ERROR ;

 }

 return BLE_STATUS_SUCCESS;

}

tBleStatus Add_Environmental_Sensor_Service(void)

{

 tBleStatus ret;

 ret = aci_gatt_srv_add_service((ble_gatt_srv_def_t *)&env_service);

 if (ret != BLE_STATUS_SUCCESS)

 {

 goto fail;

 }

 envSensServHandle = aci_gatt_srv_get_service_handle(&env_service);

 tempCharHandle = aci_gatt_srv_get_char_decl_handle((ble_gatt_chr_def_t

*)&env_chars[0]);

 pressCharHandle = aci_gatt_srv_get_char_decl_handle((ble_gatt_chr_def_t

*)&env_chars[1]);

 PRINTF("Service ENV_SENS added. Handle 0x%04X, TEMP Charac handle:

0x%04X, PRESS Charac handle: 0x%04X\n",envSensServHandle,

tempCharHandle, pressCharHandle);

181

gatt_db.c

 return BLE_STATUS_SUCCESS;

 fail:

 PRINTF("Error while adding ENV_SENS service at step: 0x%04X\n",

__LINE__);

 return BLE_STATUS_ERROR;

}

tBleStatus Add_Tx_Service(void)

{

 tBleStatus ret;

 ret = aci_gatt_srv_add_service((ble_gatt_srv_def_t *)&pwr_service);

 if (ret != BLE_STATUS_SUCCESS)

 {

 goto fail;

 }

 pwrSensServHandle = aci_gatt_srv_get_service_handle(&pwr_service);

 txCharHandle = aci_gatt_srv_get_char_decl_handle((ble_gatt_chr_def_t

*)&pwr_chars[0]);

 PRINTF("Service Tx added. Handle 0x%04X, Tx Charac handle: 0x%04X, Rx

Charac handle: 0x%04X\n",pwrSensServHandle, txCharHandle);

 return BLE_STATUS_SUCCESS;

 fail:

 PRINTF("Error while adding Tx service at step: 0x%04X\n", __LINE__);

 return BLE_STATUS_ERROR;

}

tBleStatus Temp_Update(int16_t temp)

{

 tBleStatus ret;

 ret = aci_gatt_srv_notify(connection_handle, tempCharHandle + 1, 0, 2, (uint8_t

*)&temp);

 if (ret != BLE_STATUS_SUCCESS){

 PRINTF("Error while updating TEMP characteristic: 0x%02X\n",ret);

 return BLE_STATUS_ERROR ;

 }

 return BLE_STATUS_SUCCESS;

182

gatt_db.c

}

tBleStatus Press_Update(int32_t press)

{

 tBleStatus ret;

 ret = aci_gatt_srv_notify(connection_handle, pressCharHandle + 1, 0, 3, (uint8_t

*)&press);

 if (ret != BLE_STATUS_SUCCESS){

 PRINTF("Error while updating Pressure characteristic: 0x%02X\n",ret);

 return BLE_STATUS_ERROR;

 }

 return BLE_STATUS_SUCCESS;

}

#ifndef SENSOR_PRESSURE_TEMPERATURE_EMULATION

uint8_t GetPressure(float * pressure_hPa)

{

 axis1bit32_t data_raw_pressure;

 lps22hh_reg_t reg;

 data_raw_pressure.i32bit = 0;

 lps22hh_read_reg(&pressureHandle, LPS22HH_STATUS, (uint8_t *)®, 1);

 if (reg.status.p_da)

 {

 lps22hh_pressure_raw_get(&pressureHandle, data_raw_pressure.u8bit);

 *pressure_hPa = lps22hh_from_lsb_to_hpa(data_raw_pressure.i32bit);

 }

 return (reg.status.p_da);

}

uint8_t GetTemperature(float * temperature_degC)

{

 axis1bit16_t data_raw_temperature;

 lps22hh_reg_t reg;

 lps22hh_read_reg(&pressureHandle, LPS22HH_STATUS, (uint8_t *)®, 1);

 if (reg.status.t_da)

 {

183

gatt_db.c

 lps22hh_temperature_raw_get(&pressureHandle,

data_raw_temperature.u8bit);

 *temperature_degC =

lps22hh_from_lsb_to_celsius(data_raw_temperature.i16bit);

 }

 return (reg.status.t_da);

}

#endif

void aci_gatt_srv_write_event(uint16_t Connection_Handle, uint8_t

Resp_Needed, uint16_t Attribute_Handle, uint16_t Data_Length, uint8_t Data[])

{

 uint8_t att_error = BLE_ATT_ERR_NONE;

 Attribute_Modified_CB(Attribute_Handle, Data_Length, Data);

 if (Resp_Needed == 1U)

 {

 aci_gatt_srv_resp(Connection_Handle, 0, att_error, 0, NULL);

 }

}

void aci_gatt_srv_read_event(uint16_t Connection_Handle, uint16_t

Attribute_Handle, uint16_t Data_Offset)

{

 uint8_t att_err;

 uint8_t buff[6], *data_p;

 uint16_t data_len;

 int16_t temp_val;

 int32_t press_val;

 float fdata;

#ifdef SENSOR_PRESSURE_TEMPERATURE_EMULATION

 uint16_t udata;

#endif

 att_err = BLE_ATT_ERR_NONE;

 if(Attribute_Handle == controlPointHandle + 1)

 {

 aci_gatt_srv_resp(Connection_Handle, Attribute_Handle, att_err, 2,

leds_value);

 PRINTF ("RC operation was accessed.\n");

184

gatt_db.c

 PRINTF("Read leds_value: 0x%02X\n", leds_value[0]);

 if (leds_value[0] == 0x04)

 {

 PRINTF("Buzzer is on.\n");

 }

 else

 {

 PRINTF("Buzzer is off.\n\n");

 }

 }

 else if(Attribute_Handle == accCharHandle + 1)

 {

 AxesRaw_t x_axes, g_axes;

 if (GetAccAxesRaw(&x_axes, &g_axes))

 {

 uint32_t time =

HAL_VTIMER_DiffSysTimeMs(HAL_VTIMER_GetCurrentSysTime(),

start_time);

 HOST_TO_LE_16(buff, time);

 PRINTF("Accelerometer Data - X: %d, Y: %d, Z: %d\n",

x_axes.AXIS_X, x_axes.AXIS_Y, x_axes.AXIS_Z);

 HOST_TO_LE_16(buff+2, -x_axes.AXIS_Y);

 HOST_TO_LE_16(buff+4, x_axes.AXIS_X);

 HOST_TO_LE_16(buff+6, -x_axes.AXIS_Z);

 PRINTF("Gyroscope Data - X: %d, Y: %d, Z: %d\n", g_axes.AXIS_X,

g_axes.AXIS_Y, g_axes.AXIS_Z);

 HOST_TO_LE_16(buff+8, g_axes.AXIS_Y);

 HOST_TO_LE_16(buff+10, g_axes.AXIS_X);

 HOST_TO_LE_16(buff+12, g_axes.AXIS_Z);

 data_p = buff;

 data_len = 2 + 2 * 6;

 PRINTF("Buffer content: ");

 for (int i = 0; i < data_len; i++) {

185

gatt_db.c

 PRINTF("%02X ", buff[i]);

 }

 PRINTF("\n");

 }

 else

 {

 att_err = BLE_ATT_ERR_APPL_MIN;

 PRINTF("Error in reading ACC values\n");

 }

 aci_gatt_srv_resp(Connection_Handle, Attribute_Handle, att_err, data_len,

data_p);

 }

 else if (Attribute_Handle == tempCharHandle + 1)

 {

 #ifdef SENSOR_PRESSURE_TEMPERATURE_EMULATION

 fdata = 27 + ((uint64_t)rand() * 15) / RAND_MAX;

 #else

 if (GetTemperature(&fdata) != 1)

 {

 att_err = BLE_ATT_ERR_APPL_MIN;

 }

 #endif

 data_len = 2;

 temp_val = (int16_t)(fdata * 10);

 data_p = (uint8_t *)&temp_val;

 PRINTF("Temperature Value: %d.%d C deg\n", INT(fdata),

FRACTIONAL(fdata));

 aci_gatt_srv_resp(Connection_Handle, Attribute_Handle, att_err, data_len,

data_p);

 }

 else if (Attribute_Handle == pressCharHandle + 1)

 {

 #ifdef SENSOR_PRESSURE_TEMPERATURE_EMULATION

 fdata = 1000 + ((uint64_t)rand() * 1000) / RAND_MAX;

 #else

 if (GetPressure(&fdata) != 1)

 {

 att_err = BLE_ATT_ERR_APPL_MIN;

 }

 #endif

186

gatt_db.c

 data_len = 3;

 press_val = (int32_t)(fdata * 100);

 data_p = (uint8_t *)&press_val;

 PRINTF("Pressure Value: %d.%d hpa\n", INT(fdata), FRACTIONAL(fdata));

 aci_gatt_srv_resp(Connection_Handle, Attribute_Handle, att_err, data_len,

data_p);

 }

 else if (Attribute_Handle == txCharHandle + 1)

 {

 int8_t txPowerLevel = OUTPUT_POWER_LEVEL;

 data_len = 1;

 data_p = (uint8_t *)&txPowerLevel;

 PRINTF("TX Power Level: %d dBm\n", txPowerLevel);

 aci_gatt_srv_resp(Connection_Handle, Attribute_Handle, att_err, data_len,

data_p);

 }

}

187

APPENDIX B: Code needed for BLE Beacons application

BLE_Beacon_main.c

#include <stdio.h>

#include <string.h>

#include "rf_device_it.h"

#include "ble_const.h"

#include "bluenrg_lp_stack.h"

#include "Beacon_config.h"

#include "OTA_btl.h"

#include "rf_driver_hal_power_manager.h"

#include "rf_driver_hal_vtimer.h"

#include "bluenrg_lp_evb_com.h"

#include "bleplat.h"

#include "nvm_db.h"

#include "pka_manager.h"

#include "rng_manager.h"

#include "aes_manager.h"

#include "ble_controller.h"

#include "miscutil.h"

#define BLE_BEACON_VERSION_STRING "2.1"

#define LEGACY_ADV_INTERVAL 160

#if PERIODIC_ADV

#define EXT_ADV_INTERVAL 1600

#else

#define EXT_ADV_INTERVAL 160

#endif

#define PERIODIC_ADV_INTERVAL 240

#define DEVICE_NAME_IN_ADV 1

#define EXT_ADV_PHY LE_CODED_PHY

#define CTE_LENGTH 20

188

BLE_Beacon_main.c

#define CTE_TYPE 0

#define CTE_COUNT 4

#define ANTENNA_IDS {0,1}

#ifdef DEBUG

#include <stdio.h>

#define PRINTF(...) printf(__VA_ARGS__)

#else

#define PRINTF(...)

#endif

#define SHORT_ADV_DATA_LENGTH (27 + 3)

static uint8_t adv_data[] = {

 0x02, 0x01, 0x06,

 26,

 AD_TYPE_MANUFACTURER_SPECIFIC_DATA,

 0x4C, 0x00,

 0x02,

 0x15,

 0xE2, 0x0A, 0x39, 0xF4, 0x73, 0xF5, 0x4B, 0xC4,

 0xA1, 0x2F, 0x17, 0xD1, 0xAD, 0x07, 0xA9, 0x61,

 0x00, 0x05,

 0x00, 0x07,

 (uint8_t)-56,

#if DEVICE_NAME_IN_ADV

 15,

 0x09,'E','x','t','e','n','d','e','d','B','e','a','c','o','n'

#endif

};

NO_INIT(uint32_t dyn_alloc_a[DYNAMIC_MEMORY_SIZE>>2]);

void ModulesInit(void)

{

 uint8_t ret;

 BLE_STACK_InitTypeDef BLE_STACK_InitParams =

BLE_STACK_INIT_PARAMETERS;

 LL_AHB_EnableClock(LL_AHB_PERIPH_PKA|LL_AHB_PERIPH_RNG);

 BLECNTR_InitGlobal();

189

BLE_Beacon_main.c

 HAL_VTIMER_InitType VTIMER_InitStruct = {HS_STARTUP_TIME,

INITIAL_CALIBRATION, CALIBRATION_INTERVAL};

 HAL_VTIMER_Init(&VTIMER_InitStruct);

 BLEPLAT_Init();

 if (PKAMGR_Init() == PKAMGR_ERROR)

 {

 while(1);

 }

 if (RNGMGR_Init() != RNGMGR_SUCCESS)

 {

 while(1);

 }

 AESMGR_Init();

 ret = BLE_STACK_Init(&BLE_STACK_InitParams);

 if (ret != BLE_STATUS_SUCCESS) {

 printf("Error in BLE_STACK_Init() 0x%02x\r\n", ret);

 while(1);

 }

}

void ModulesTick(void)

{

 HAL_VTIMER_Tick();

 BLE_STACK_Tick();

 NVMDB_Tick();

}

void Device_Init(void)

{

 uint8_t ret;

 uint16_t service_handle;

 uint16_t dev_name_char_handle;

 uint16_t appearance_char_handle;

 uint8_t address[CONFIG_DATA_PUBADDR_LEN] =

{0x66,0x77,0x88,0xE1,0x80,0x02};

#if (CTE_TYPE == 1) || (CTE_TYPE == 2)

 aci_hal_set_antenna_switch_parameters(0x06,

 1,

190

BLE_Beacon_main.c

 0x00,

 1);

#endif

 aci_hal_write_config_data(CONFIG_DATA_PUBADDR_OFFSET,

CONFIG_DATA_PUBADDR_LEN, address);

 ret = aci_hal_set_tx_power_level(1, 8);

 if(ret != 0) {

 PRINTF ("Error in aci_hal_set_tx_power_level() 0x%04xr\n", ret);

 while(1);

 }

 ret = aci_gap_init(GAP_BROADCASTER_ROLE, 0x00, 0x08,

PUBLIC_ADDR, &service_handle, &dev_name_char_handle,

&appearance_char_handle);

 if (ret != 0)

 {

 PRINTF ("Error in aci_gap_init() 0x%04x\r\n", ret);

 }

 else

 {

 PRINTF ("aci_gap_init() --> SUCCESS\r\n");

 }

}

static void Start_Beaconing(void)

{

 uint8_t ret;

 Advertising_Set_Parameters_t Advertising_Set_Parameters[2];

 uint8_t adv_sets = 0;

#ifdef EXTENDED_ADV

 ret = aci_gap_set_advertising_configuration(1,

GAP_MODE_GENERAL_DISCOVERABLE,

 ADV_PROP_NONE,

 EXT_ADV_INTERVAL, EXT_ADV_INTERVAL,

 ADV_CH_ALL,

 0,NULL,

 ADV_NO_WHITE_LIST_USE,

 0,

 LE_CODED_PHY,

 0,

191

BLE_Beacon_main.c

 LE_CODED_PHY,

 0,

 0);

 if (ret != BLE_STATUS_SUCCESS)

 {

 PRINTF("Error in aci_gap_set_advertising_configuration() 0x%02x\r\n", ret);

 return;

 }

 ret = aci_gap_set_advertising_data(1, ADV_COMPLETE_DATA,

sizeof(adv_data), adv_data);

 if (ret != BLE_STATUS_SUCCESS)

 {

 PRINTF("Error in aci_gap_set_advertising_data() 0x%02x\r\n", ret);

 return;

 }

 printf("Extended advertising configured\n");

 Advertising_Set_Parameters[adv_sets].Advertising_Handle = 1;

 Advertising_Set_Parameters[adv_sets].Duration = 0;

 Advertising_Set_Parameters[adv_sets].Max_Extended_Advertising_Events = 0;

 adv_sets++;

#endif

#ifdef PERIODIC_ADV

 ret = aci_gap_set_periodic_advertising_configuration(1,

PERIODIC_ADV_INTERVAL, PERIODIC_ADV_INTERVAL, 0);

 if (ret != BLE_STATUS_SUCCESS)

 {

 PRINTF("Error in aci_gap_set_periodic_advertising_configuration()

0x%02x\r\n", ret);

 return;

 }

 ret = aci_gap_set_periodic_advertising_data(1,

SHORT_ADV_DATA_LENGTH, adv_data);

 if (ret != BLE_STATUS_SUCCESS)

 {

 PRINTF("Error in aci_gap_set_periodic_advertising_data() 0x%02x\r\n", ret);

 return;

192

BLE_Beacon_main.c

 }

#if CTE_TAG

 uint8_t antenna_ids[] = ANTENNA_IDS;

 ret = hci_le_set_connectionless_cte_transmit_parameters(1, CTE_LENGTH,

CTE_TYPE, CTE_COUNT, sizeof(antenna_ids), antenna_ids);

 if (ret != BLE_STATUS_SUCCESS)

 {

 PRINTF("Error in hci_le_set_connectionless_cte_transmit_parameters()

0x%02x\r\n", ret);

 return;

 }

 ret = hci_le_set_connectionless_cte_transmit_enable(1, 1);

 printf("CTE configured\n");

#endif

 ret = aci_gap_set_periodic_advertising_enable(ENABLE, 1);

 if (ret != BLE_STATUS_SUCCESS)

 {

 PRINTF("Error in aci_gap_set_periodic_advertising_enable() 0x%02x\r\n",

ret);

 return;

 }

 printf("Periodic advertising configured\n");

#endif

 ret = aci_gap_set_advertising_enable(ENABLE, adv_sets,

Advertising_Set_Parameters);

 if (ret != BLE_STATUS_SUCCESS)

 {

 PRINTF ("Error in aci_gap_set_advertising_enable() 0x%02x\r\n", ret);

 return;

 }

 printf("Advertising started\n");

}

193

BLE_Beacon_main.c

int main(void)

{

 WakeupSourceConfig_TypeDef wakeupIO;

 PowerSaveLevels stopLevel;

 if (SystemInit(SYSCLK_64M, BLE_SYSCLK_32M) != SUCCESS)

 {

 while(1);

 }

 BSP_IO_Init();

 BSP_COM_Init(NULL);

 ModulesInit();

 Device_Init();

#if CONFIG_OTA_USE_SERVICE_MANAGER

 BSP_PB_Init(USER_BUTTON, BUTTON_MODE_GPIO);

#endif

 printf("BlueNRG-X Bluetooth LE Beacon Application (version: %s)",

BLE_BEACON_VERSION_STRING);

#if defined(CTE_TAG)

 printf(", with CTE tag\r\n");

#elif defined(PERIODIC_ADV)

 printf(", with Periodic advertising\r\n");

#elif defined (EXTENDED_ADV)

 printf(", with Extended advertising (DEVICE_NAME_IN_ADV: %d)\r\n",

DEVICE_NAME_IN_ADV);

#else

 printf("\r\n");

#endif

 Start_Beaconing();

 wakeupIO.IO_Mask_High_polarity = 0;

 wakeupIO.IO_Mask_Low_polarity = 0;

 wakeupIO.RTC_enable = 0;

 wakeupIO.LPU_enable = 0;

 while(1)

 {

 ModulesTick();

 HAL_PWR_MNGR_Request(POWER_SAVE_LEVEL_STOP_NOTIMER,

wakeupIO, &stopLevel);

194

BLE_Beacon_main.c

#if CONFIG_OTA_USE_SERVICE_MANAGER

 if (BSP_PB_GetState(USER_BUTTON) == SET)

 {

 OTA_Jump_To_Service_Manager_Application();

 }

#endif

 }

}

PowerSaveLevels App_PowerSaveLevel_Check(PowerSaveLevels level)

{

 if(BSP_COM_TxFifoNotEmpty() || BSP_COM_UARTBusy())

 return POWER_SAVE_LEVEL_RUNNING;

 return POWER_SAVE_LEVEL_STOP_NOTIMER;

}

void hci_hardware_error_event(uint8_t Hardware_Code)

{

 if (Hardware_Code <= 0x03)

 {

 NVIC_SystemReset();

 }

}

#ifdef USE_FULL_ASSERT

void assert_failed(uint8_t* file, uint32_t line)

{

 while (1)

 {

 }

}

#endif

195

APPENDIX C: Codes needed for BLE Android application

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?> <!-- default setting -->

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 >

 <uses-permission android:name="android.permission.BLUETOOTH"

 android:maxSdkVersion="30" />

 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN"

 android:maxSdkVersion="30" />

 <uses-permission

android:name="android.permission.ACCESS_COARSE_LOCATION"

 android:maxSdkVersion="30" />

 <uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION"

 android:maxSdkVersion="30" />

 <uses-permission android:name="android.permission.BLUETOOTH_SCAN"

 android:usesPermissionFlags="neverForLocation"

 tools:targetApi="s" />

 <uses-permission

android:name="android.permission.BLUETOOTH_CONNECT" />

 <uses-feature

 android:name="android.hardware.bluetooth_le"

 android:required="true" />

 <application

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme"

 tools:ignore="GoogleAppIndexingWarning">

196

AndroidManifest.xml

 <activity android:name=".BleTracker"

 android:exported="false"

 />

 <activity android:name=".SensorReadings"

 android:exported="false"

 />

 <activity android:name=".BleOperationsActivity"

 android:exported="false"

 />

 <activity android:name=".MainActivity"

 android:exported="true"

 >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

MainActivity

package com.punchthrough.blestarterappandroid

import android.Manifest

import android.annotation.SuppressLint

import android.app.Activity

import android.app.AlertDialog

import android.bluetooth.BluetoothAdapter

import android.bluetooth.BluetoothDevice

import android.bluetooth.BluetoothManager

import android.bluetooth.le.ScanCallback

import android.bluetooth.le.ScanFilter

import android.bluetooth.le.ScanResult

import android.bluetooth.le.ScanSettings

import android.content.ActivityNotFoundException

import android.content.Context

import android.content.Intent

import android.content.pm.PackageManager

import android.net.Uri

import android.os.Build

197

MainActivity

import android.os.Bundle

import android.os.Handler

import android.os.Looper

import android.provider.Settings

import android.view.View

import android.widget.Toast

import androidx.activity.result.contract.ActivityResultContracts

import androidx.annotation.RequiresApi

import androidx.annotation.UiThread

import androidx.appcompat.app.AppCompatActivity

import androidx.core.app.ActivityCompat

import androidx.recyclerview.widget.LinearLayoutManager

import androidx.recyclerview.widget.RecyclerView

import androidx.recyclerview.widget.SimpleItemAnimator

import com.punchthrough.blestarterappandroid.ble.ConnectionEventListener

import com.punchthrough.blestarterappandroid.ble.ConnectionManager

import com.punchthrough.blestarterappandroid.databinding.ActivityMainBinding

import timber.log.Timber

private const val PERMISSION_REQUEST_CODE = 1

@RequiresApi(Build.VERSION_CODES.UPSIDE_DOWN_CAKE)

class MainActivity : AppCompatActivity() {

 private val deviceAddress = "02:80:E1:00:00:E1"

 private val scanDuration = 30000

 private var deviceFound = false

 private lateinit var binding: ActivityMainBinding

 private val bluetoothAdapter: BluetoothAdapter by lazy {

 val bluetoothManager =

getSystemService(Context.BLUETOOTH_SERVICE) as BluetoothManager

 bluetoothManager.adapter

 }

 private val bleScanner by lazy {

 bluetoothAdapter.bluetoothLeScanner

 }

 private val scanSettings = ScanSettings.Builder()

 .setScanMode(ScanSettings.SCAN_MODE_LOW_LATENCY)

198

MainActivity

 .build()

 private val filterSetting =

listOf(ScanFilter.Builder().setDeviceAddress(deviceAddress).build())

 private var isScanning = false

 set(value) {

 field = value

 runOnUiThread {

 binding.scanButton.text = if (value) "STOP SCAN" else "START

SCAN"

 if (value) {

 binding.scanButton.backgroundTintList =

 getColorStateList(android.R.color.holo_red_dark)

 } else {

 binding.scanButton.backgroundTintList =

 getColorStateList(android.R.color.holo_green_dark)

 }

 }

 }

 private val scanResults = mutableListOf<ScanResult>()

 private val scanResultAdapter: ScanResultAdapter by lazy {

 ScanResultAdapter(scanResults) { result ->

 if (isScanning) {

 stopBleScan()

 }

 with(result.device) {

 Timber.w("Connecting to $address")

 ConnectionManager.connect(this, this@MainActivity)

 }

 }

 }

 private val bluetoothEnablingResult = registerForActivityResult(

 ActivityResultContracts.StartActivityForResult()

) { result ->

 if (result.resultCode == Activity.RESULT_OK) {

 Timber.i("Bluetooth is enabled, good to go")

 } else {

 Timber.e("User dismissed or denied Bluetooth prompt")

 promptEnableBluetooth()

 }

199

MainActivity

 }

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 binding = ActivityMainBinding.inflate(layoutInflater)

 setContentView(binding.root)

 if (BuildConfig.DEBUG) {

 Timber.plant(Timber.DebugTree())

 }

 binding.scanButton.setOnClickListener {

 if (isScanning){

 Toast.makeText(this, "Stop Scanning", Toast.LENGTH_SHORT).show()

 stopBleScan()

 }

 else{

 Toast.makeText(this, "Start Scanning", Toast.LENGTH_SHORT).show()

 startBleScan()

 }

 }

 setupRecyclerView()

 }

 override fun onResume() {

 super.onResume()

 ConnectionManager.registerListener(connectionEventListener)

 if (!bluetoothAdapter.isEnabled) {

 promptEnableBluetooth()

 }

 }

 override fun onPause() {

 super.onPause()

 if (isScanning) {

 stopBleScan()

 }

 ConnectionManager.unregisterListener(connectionEventListener)

 }

 override fun onRequestPermissionsResult(

 requestCode: Int,

 permissions: Array<out String>,

 grantResults: IntArray

200

MainActivity

) {

 super.onRequestPermissionsResult(requestCode, permissions, grantResults)

 if (requestCode != PERMISSION_REQUEST_CODE) {

 return

 }

 if (permissions.isEmpty() && grantResults.isEmpty()) {

 Timber.e("Empty permissions and grantResults array in

onRequestPermissionsResult")

 Timber.w("This is likely a cancellation due to user interaction interrupted")

 return

 }

 // Log permission request outcomes

 val resultsDescriptions = grantResults.map {

 when (it) {

 PackageManager.PERMISSION_DENIED -> "Denied"

 PackageManager.PERMISSION_GRANTED -> "Granted"

 else -> "Unknown"

 }

 }

 Timber.w("Permissions: ${permissions.toList()}, grant results:

$resultsDescriptions")

 val containsPermanentDenial =

permissions.zip(grantResults.toTypedArray()).any {

 it.second == PackageManager.PERMISSION_DENIED &&

 !ActivityCompat.shouldShowRequestPermissionRationale(this, it.first)

 }

 val containsDenial = grantResults.any { it ==

PackageManager.PERMISSION_DENIED }

 val allGranted = grantResults.all { it ==

PackageManager.PERMISSION_GRANTED }

 when {

 containsPermanentDenial -> {

 Timber.e("User permanently denied granting of permissions")

 Timber.e("Requesting for manual granting of permissions from App

Settings")

 promptManualPermissionGranting()

 }

 containsDenial -> {

requestRelevantBluetoothPermissions(PERMISSION_REQUEST_CODE)

 }

201

MainActivity

 allGranted && hasRequiredBluetoothPermissions() -> {

 startBleScan()

 }

 else -> {

 Timber.e("Unexpected scenario encountered when handling

permissions")

 recreate()

 }

 }

 }

 private fun promptEnableBluetooth() {

 if (hasRequiredBluetoothPermissions() && !bluetoothAdapter.isEnabled) {

 Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE).apply {

 bluetoothEnablingResult.launch(this)

 }

 }

 }

 @SuppressLint("MissingPermission, NotifyDataSetChanged")

 private fun startBleScan() {

 deviceFound = false

 binding.scanResultsTitle.visibility= View.INVISIBLE

 binding.divider.visibility=View.INVISIBLE

 if (!hasRequiredBluetoothPermissions()) {

 requestRelevantBluetoothPermissions(PERMISSION_REQUEST_CODE)

 } else {

 scanResults.clear()

 scanResultAdapter.notifyDataSetChanged()

 bleScanner.startScan(filterSetting, scanSettings, scanCallback)

 isScanning = true

 Handler(Looper.getMainLooper()).postDelayed({

 if (!deviceFound){

 bleScanner.stopScan(scanCallback)

 Toast.makeText(this, "Device not found",

Toast.LENGTH_SHORT).show()

 isScanning = false

 }

 }, scanDuration.toLong())

 }

 }

202

MainActivity

 @SuppressLint("MissingPermission")

 private fun stopBleScan() {

 if (hasRequiredBluetoothPermissions()) {

 bleScanner.stopScan(scanCallback)

 isScanning = false

 }

 }

 @UiThread

 private fun setupRecyclerView() {

 binding.scanResultsRecyclerView.apply {

 adapter = scanResultAdapter

 layoutManager = LinearLayoutManager(

 this@MainActivity,

 RecyclerView.VERTICAL,

 false

)

 isNestedScrollingEnabled = false

 itemAnimator.let {

 if (it is SimpleItemAnimator) {

 it.supportsChangeAnimations = false

 }

 }

 }

 }

 @UiThread

 private fun promptManualPermissionGranting() {

 AlertDialog.Builder(this)

 .setTitle(R.string.please_grant_relevant_permissions)

 .setMessage(R.string.app_settings_rationale)

 .setPositiveButton(R.string.app_settings) { _, _ ->

 try {

 startActivity(

Intent(Settings.ACTION_APPLICATION_DETAILS_SETTINGS).apply {

 data = Uri.parse("package:$packageName")

 addFlags(Intent.FLAG_ACTIVITY_NEW_TASK)

 }

)

 } catch (e: ActivityNotFoundException) {

 if (!isFinishing) {

 Toast.makeText(

203

MainActivity

 this,

 R.string.cannot_launch_app_settings,

 Toast.LENGTH_LONG

).show()

 }

 }

 finish()

 }

 .setNegativeButton(R.string.quit) { _, _ -> finishAndRemoveTask() }

 .setCancelable(false)

 .show()

 }

 @SuppressLint("MissingPermission")

 private val scanCallback = object : ScanCallback() {

 override fun onScanResult(callbackType: Int, result: ScanResult) {

 val indexQuery = scanResults.indexOfFirst { it.device.address ==

result.device.address }

 if (indexQuery != -1) {

 scanResults[indexQuery] = result

 scanResultAdapter.notifyItemChanged(indexQuery)

 } else {

 with(result.device) {

 Timber.i("Found BLE device! Name: ${name ?: "Unnamed"},

address: $address")

 }

 scanResults.add(result)

 scanResultAdapter.notifyItemInserted(scanResults.size - 1)

 }

 if (result.device.address == deviceAddress){

 deviceFound = true

 binding.scanResultsTitle.visibility= View.VISIBLE

 binding.divider.visibility=View.VISIBLE

 }

 }

 override fun onScanFailed(errorCode: Int) {

 Timber.e("onScanFailed: code $errorCode")

 }

 }

 private val connectionEventListener by lazy {

204

MainActivity

 ConnectionEventListener().apply {

 onConnectionSetupComplete = { gatt ->

 Intent(this@MainActivity, BleOperationsActivity::class.java).also {

 it.putExtra(BluetoothDevice.EXTRA_DEVICE, gatt.device)

 startActivity(it)

 }

 }

 @SuppressLint("MissingPermission")

 onDisconnect = {

 val deviceName = if (hasRequiredBluetoothPermissions()) {

 it.name

 } else {

 "device"

 }

 runOnUiThread {

 AlertDialog.Builder(this@MainActivity)

 .setTitle(R.string.disconnected)

 .setMessage(

getString(R.string.disconnected_or_unable_to_connect_to_device, deviceName)

)

 .setPositiveButton(R.string.ok, null)

 .show()

 }

 }

 }

 }

}

ScanResultAdapter

package com.punchthrough.blestarterappandroid

import android.annotation.SuppressLint

import android.bluetooth.BluetoothDevice

import android.bluetooth.le.ScanResult

import android.os.Build

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import android.widget.TextView

import androidx.annotation.RequiresApi

import androidx.recyclerview.widget.RecyclerView

205

ScanResultAdapter

class ScanResultAdapter(

 private val items: List<ScanResult>,

 private val onClickListener: ((device: ScanResult) -> Unit)

) : RecyclerView.Adapter<ScanResultAdapter.ViewHolder>() {

 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int):

ViewHolder {

 val view = LayoutInflater.from(parent.context).inflate(

 R.layout.row_scan_result,

 parent,

 false

)

 return ViewHolder(view, onClickListener)

 }

 override fun getItemCount() = items.size

 @RequiresApi(Build.VERSION_CODES.UPSIDE_DOWN_CAKE)

 override fun onBindViewHolder(holder: ViewHolder, position: Int) {

 val item = items[position]

 holder.bind(item)

 }

 class ViewHolder(

 private val view: View,

 private val onClickListener: ((device: ScanResult) -> Unit)

) : RecyclerView.ViewHolder(view) {

 @RequiresApi(Build.VERSION_CODES.UPSIDE_DOWN_CAKE)

 @SuppressLint("MissingPermission", "SetTextI18n")

 fun bind(result: ScanResult) {

 view.findViewById<TextView>(R.id.device_name).text =

 if (view.context.hasRequiredBluetoothPermissions()) {

 result.device.name ?: "Unnamed"

 } else {

 error("Missing required Bluetooth permissions")

 }

 view.findViewById<TextView>(R.id.mac_address).text =

result.device.address

 view.findViewById<TextView>(R.id.signal_strength).text =

"${result.rssi} dBm"

 view.setOnClickListener { onClickListener.invoke(result) }

206

ScanResultAdapter

 val deviceType = getDeviceType(result.device.type)

 view.findViewById<TextView>(R.id.device_type).text = "Device type:

$deviceType"

 view.findViewById<TextView>(R.id.advertising_type).text =

 if (result.isLegacy) "Advertising type: Legacy" else "Advertising type:

Bluetooth 5 Advertising Extension"

 val primaryPhy = getPhy(result.primaryPhy)

 val secondaryPhy = getPhy(result.secondaryPhy)

 if (secondaryPhy != "null") { // if have no secondary advertising channel

 view.findViewById<TextView>(R.id.primary_phy).text = "Primary

PHY: $primaryPhy"

 view.findViewById<TextView>(R.id.secondary_phy).text =

 "Secondary PHY: $secondaryPhy"

 }

 }

 private fun getDeviceType(deviceType: Int): String {

 return when (deviceType) {

 BluetoothDevice.DEVICE_TYPE_CLASSIC -> "Classic only"

 BluetoothDevice.DEVICE_TYPE_LE -> "LE only"

 BluetoothDevice.DEVICE_TYPE_DUAL -> " Classic and LE"

 BluetoothDevice.DEVICE_TYPE_UNKNOWN -> "Unknown"

 else -> "Unknown"

 }

 }

 private fun getPhy (phy: Int): String {

 return when (phy) {

 BluetoothDevice.PHY_LE_1M -> "LE 1M"

 BluetoothDevice.PHY_LE_2M -> "LE 2M"

 BluetoothDevice.PHY_LE_CODED -> "LE Coded"

 ScanResult.PHY_UNUSED -> "null"

 else -> "Unknown"

 }

 }

 }

}

207

CharacteristicAdapter

package com.punchthrough.blestarterappandroid

import android.bluetooth.BluetoothGattCharacteristic

import android.view.LayoutInflater

import android.view.View

import android.view.ViewGroup

import android.widget.TextView

import androidx.recyclerview.widget.RecyclerView

import com.punchthrough.blestarterappandroid.ble.printProperties

class CharacteristicAdapter(

 private val items: List<BluetoothGattCharacteristic>,

 private val onClickListener: ((characteristic: BluetoothGattCharacteristic) ->

Unit)

) : RecyclerView.Adapter<CharacteristicAdapter.ViewHolder>() {

 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int):

ViewHolder {

 val view = LayoutInflater.from(parent.context).inflate(

 R.layout.row_characteristic,

 parent,

 false

)

 return ViewHolder(view, onClickListener)

 }

 override fun getItemCount() = items.size

 override fun onBindViewHolder(holder: ViewHolder, position: Int) {

 val item = items[position]

 holder.bind(item)

 }

 class ViewHolder(

 private val view: View,

 private val onClickListener: ((characteristic: BluetoothGattCharacteristic) ->

Unit)

) : RecyclerView.ViewHolder(view) {

 fun bind(characteristic: BluetoothGattCharacteristic) {

 view.findViewById<TextView>(R.id.characteristic_uuid).text =

 characteristic.uuid.toString()

 view.findViewById<TextView>(R.id.characteristic_properties).text =

208

CharacteristicAdapter

 characteristic.printProperties()

 view.setOnClickListener { onClickListener.invoke(characteristic) }

 }

 }

}

ConnectionManager

package com.punchthrough.blestarterappandroid.ble

import android.annotation.SuppressLint

import android.bluetooth.BluetoothDevice

import android.bluetooth.BluetoothGatt

import android.bluetooth.BluetoothGattCallback

import android.bluetooth.BluetoothGattCharacteristic

import android.bluetooth.BluetoothGattDescriptor

import android.bluetooth.BluetoothGattService

import android.bluetooth.BluetoothProfile

import android.content.BroadcastReceiver

import android.content.Context

import android.content.Intent

import android.content.IntentFilter

import android.os.Build

import android.os.Handler

import android.os.Looper

import android.os.Parcelable

import androidx.annotation.RequiresApi

import timber.log.Timber

import java.lang.ref.WeakReference

import java.util.Timer

import java.util.TimerTask

import java.util.UUID

import java.util.concurrent.ConcurrentHashMap

import java.util.concurrent.ConcurrentLinkedQueue

/** Maximum BLE MTU size as defined in gatt_api.h. */

private const val GATT_MAX_MTU_SIZE = 517

private const val GATT_MIN_MTU_SIZE = 23

@SuppressLint("MissingPermission")

object ConnectionManager {

 private var listeners: MutableSet<WeakReference<ConnectionEventListener>>

209

ConnectionManager

= mutableSetOf()

 private val listenersAsSet

 get() = listeners.toSet()

 val deviceGattMap = ConcurrentHashMap<BluetoothDevice, BluetoothGatt>()

 private val operationQueue = ConcurrentLinkedQueue<BleOperationType>()

 private var pendingOperation: BleOperationType? = null

 private var gatt: BluetoothGatt? = null

 fun getGatt(): BluetoothGatt? {

 return gatt

 }

 fun servicesOnDevice(device: BluetoothDevice): List<BluetoothGattService>?

=

 deviceGattMap[device]?.services

 fun listenToBondStateChanges(context: Context) {

 context.applicationContext.registerReceiver(

 broadcastReceiver,

 IntentFilter(BluetoothDevice.ACTION_BOND_STATE_CHANGED)

)

 }

 fun registerListener(listener: ConnectionEventListener) {

 if (listeners.map { it.get() }.contains(listener)) { return }

 listeners.add(WeakReference(listener))

 listeners = listeners.filter { it.get() != null }.toMutableSet()

 Timber.d("Added listener $listener, ${listeners.size} listeners total")

 }

 fun unregisterListener(listener: ConnectionEventListener) {

 var toRemove: WeakReference<ConnectionEventListener>? = null

 listenersAsSet.forEach {

 if (it.get() == listener) {

 toRemove = it

 }

 }

 toRemove?.let {

 listeners.remove(it)

 Timber.d("Removed listener ${it.get()}, ${listeners.size} listeners total")

210

ConnectionManager

 }

 }

 fun connect(device: BluetoothDevice, context: Context) {

 gatt = device.connectGatt(context, false, callback)

 if (device.isConnected()) {

 Timber.e("Already connected to ${device.address}!")

 } else {

 enqueueOperation(Connect(device, context.applicationContext))

 }

 }

 fun disconnect() {

 gatt?.disconnect()

 gatt?.close()

 gatt = null

 }

 fun teardownConnection(device: BluetoothDevice) {

 if (device.isConnected()) {

 enqueueOperation(Disconnect(device))

 } else {

 Timber.e("Not connected to ${device.address}, cannot teardown

connection!")

 }

 }

 fun readCharacteristic(device: BluetoothDevice, characteristic:

BluetoothGattCharacteristic) {

 if (device.isConnected() && characteristic.isReadable()) {

 enqueueOperation(CharacteristicRead(device, characteristic.uuid))

 } else if (!characteristic.isReadable()) {

 Timber.e("Attempting to read ${characteristic.uuid} that isn't readable!")

 } else if (!device.isConnected()) {

 Timber.e("Not connected to ${device.address}, cannot perform

characteristic read")

 }

 }

 fun writeCharacteristic(

 device: BluetoothDevice,

211

ConnectionManager

 characteristic: BluetoothGattCharacteristic,

 payload: ByteArray

) {

 val writeType = when {

 characteristic.isWritable() ->

BluetoothGattCharacteristic.WRITE_TYPE_DEFAULT

 characteristic.isWritableWithoutResponse() -> {

 BluetoothGattCharacteristic.WRITE_TYPE_NO_RESPONSE

 }

 else -> {

 Timber.e("Characteristic ${characteristic.uuid} cannot be written to")

 return

 }

 }

 if (device.isConnected()) {

 enqueueOperation(CharacteristicWrite(device, characteristic.uuid,

writeType, payload))

 } else {

 Timber.e("Not connected to ${device.address}, cannot perform

characteristic write")

 }

 }

 fun readDescriptor(device: BluetoothDevice, descriptor:

BluetoothGattDescriptor) {

 if (device.isConnected() && descriptor.isReadable()) {

 enqueueOperation(DescriptorRead(device, descriptor.uuid))

 } else if (!descriptor.isReadable()) {

 Timber.e("Attempting to read ${descriptor.uuid} that isn't readable!")

 } else if (!device.isConnected()) {

 Timber.e("Not connected to ${device.address}, cannot perform descriptor

read")

 }

 }

 fun writeDescriptor(

 device: BluetoothDevice,

 descriptor: BluetoothGattDescriptor,

 payload: ByteArray

) {

 if (device.isConnected() && (descriptor.isWritable() || descriptor.isCccd())) {

 enqueueOperation(DescriptorWrite(device, descriptor.uuid, payload))

 } else if (!device.isConnected()) {

212

ConnectionManager

 Timber.e("Not connected to ${device.address}, cannot perform descriptor

write")

 } else if (!descriptor.isWritable() && !descriptor.isCccd()) {

 Timber.e("Descriptor ${descriptor.uuid} cannot be written to")

 }

 }

 fun enableNotifications(device: BluetoothDevice, characteristic:

BluetoothGattCharacteristic) {

 if (device.isConnected() &&

 (characteristic.isIndicatable() || characteristic.isNotifiable())

) {

 enqueueOperation(EnableNotifications(device, characteristic.uuid))

 } else if (!device.isConnected()) {

 Timber.e("Not connected to ${device.address}, cannot enable

notifications")

 } else if (!characteristic.isIndicatable() && !characteristic.isNotifiable()) {

 Timber.e("Characteristic ${characteristic.uuid} doesn't support

notifications/indications")

 }

 }

 fun disableNotifications(device: BluetoothDevice, characteristic:

BluetoothGattCharacteristic) {

 if (device.isConnected() &&

 (characteristic.isIndicatable() || characteristic.isNotifiable())

) {

 enqueueOperation(DisableNotifications(device, characteristic.uuid))

 } else if (!device.isConnected()) {

 Timber.e("Not connected to ${device.address}, cannot disable

notifications")

 } else if (!characteristic.isIndicatable() && !characteristic.isNotifiable()) {

 Timber.e("Characteristic ${characteristic.uuid} doesn't support

notifications/indications")

 }

 }

 fun requestMtu(device: BluetoothDevice, mtu: Int) {

 if (device.isConnected()) {

 enqueueOperation(MtuRequest(device,

mtu.coerceIn(GATT_MIN_MTU_SIZE, GATT_MAX_MTU_SIZE)))

 } else {

 Timber.e("Not connected to ${device.address}, cannot request MTU

213

ConnectionManager

update!")

 }

 }

 @Synchronized

 private fun enqueueOperation(operation: BleOperationType) {

 operationQueue.add(operation)

 if (pendingOperation == null) {

 doNextOperation()

 }

 }

 @Synchronized

 private fun signalEndOfOperation() {

 Timber.d("End of $pendingOperation")

 pendingOperation = null

 if (operationQueue.isNotEmpty()) {

 doNextOperation()

 }

 }

 /**

 @Synchronized

 private fun doNextOperation() {

 if (pendingOperation != null) {

 Timber.e("doNextOperation() called when an operation is pending!

Aborting.")

 return

 }

 val operation = operationQueue.poll() ?: run {

 Timber.v("Operation queue empty, returning")

 return

 }

 pendingOperation = operation

 if (operation is Connect) {

 with(operation) {

 Timber.w("Connecting to ${device.address}")

 device.connectGatt(context, false, callback)

 }

214

ConnectionManager

 return

 }

 val gatt = deviceGattMap[operation.device]

 ?: this@ConnectionManager.run {

 Timber.e("Not connected to ${operation.device.address}! Aborting

$operation operation.")

 signalEndOfOperation()

 return

 }

 when (operation) {

 is Disconnect -> with(operation) {

 Timber.w("Disconnecting from ${device.address}")

 gatt.close()

 deviceGattMap.remove(device)

 listenersAsSet.forEach { it.get()?.onDisconnect?.invoke(device) }

 signalEndOfOperation()

 }

 is CharacteristicWrite -> with(operation) {

 gatt.findCharacteristic(characteristicUuid)?.executeWrite(

 gatt,

 payload,

 writeType

) ?: this@ConnectionManager.run {

 Timber.e("Cannot find $characteristicUuid to write to")

 signalEndOfOperation()

 }

 }

 is CharacteristicRead -> with(operation) {

 gatt.findCharacteristic(characteristicUuid)?.let { characteristic ->

 gatt.readCharacteristic(characteristic)

 } ?: this@ConnectionManager.run {

 Timber.e("Cannot find $characteristicUuid to read from")

 signalEndOfOperation()

 }

 }

 is DescriptorWrite -> with(operation) {

 gatt.findDescriptor(descriptorUuid)?.executeWrite(

 gatt,

 payload

) ?: this@ConnectionManager.run {

 Timber.e("Cannot find $descriptorUuid to write to")

215

ConnectionManager

 signalEndOfOperation()

 }

 }

 is DescriptorRead -> with(operation) {

 gatt.findDescriptor(descriptorUuid)?.let { descriptor ->

 gatt.readDescriptor(descriptor)

 } ?: this@ConnectionManager.run {

 Timber.e("Cannot find $descriptorUuid to read from")

 signalEndOfOperation()

 }

 }

 is EnableNotifications -> with(operation) {

 gatt.findCharacteristic(characteristicUuid)?.let { characteristic ->

 val cccdUuid = UUID.fromString(CCC_DESCRIPTOR_UUID)

 val payload = when {

 characteristic.isIndicatable() ->

 BluetoothGattDescriptor.ENABLE_INDICATION_VALUE

 characteristic.isNotifiable() ->

 BluetoothGattDescriptor.ENABLE_NOTIFICATION_VALUE

 else ->

 error("${characteristic.uuid} doesn't support

notifications/indications")

 }

 characteristic.getDescriptor(cccdUuid)?.let { cccDescriptor ->

 if (!gatt.setCharacteristicNotification(characteristic, true)) {

 Timber.e("setCharacteristicNotification failed for

${characteristic.uuid}")

 signalEndOfOperation()

 return

 }

 cccDescriptor.executeWrite(gatt, payload)

 } ?: this@ConnectionManager.run {

 Timber.e("${characteristic.uuid} doesn't contain the CCC

descriptor!")

 signalEndOfOperation()

 }

 } ?: this@ConnectionManager.run {

 Timber.e("Cannot find $characteristicUuid! Failed to enable

notifications.")

 signalEndOfOperation()

 }

 }

216

ConnectionManager

 is DisableNotifications -> with(operation) {

 gatt.findCharacteristic(characteristicUuid)?.let { characteristic ->

 val cccdUuid = UUID.fromString(CCC_DESCRIPTOR_UUID)

 characteristic.getDescriptor(cccdUuid)?.let { cccDescriptor ->

 if (!gatt.setCharacteristicNotification(characteristic, false)) {

 Timber.e("setCharacteristicNotification failed for

${characteristic.uuid}")

 signalEndOfOperation()

 return

 }

 cccDescriptor.executeWrite(

 gatt,

 BluetoothGattDescriptor.DISABLE_NOTIFICATION_VALUE

)

 } ?: this@ConnectionManager.run {

 Timber.e("${characteristic.uuid} doesn't contain the CCC

descriptor!")

 signalEndOfOperation()

 }

 } ?: this@ConnectionManager.run {

 Timber.e("Cannot find $characteristicUuid! Failed to disable

notifications.")

 signalEndOfOperation()

 }

 }

 is MtuRequest -> with(operation) {

 gatt.requestMtu(mtu)

 }

 else -> error("Unsupported operation: $operation")

 }

 }

 private val rssiTimer = Timer() // Implement timer

 private const val rssi_Interval: Long = 500 // 0.5 second to refresh rssi value

 private fun startRssiRead(gatt: BluetoothGatt) {

 rssiTimer.scheduleAtFixedRate(object : TimerTask() {

 override fun run() {

 gatt.readRemoteRssi() //Ensure the rssi value is accessed

 }

 }, 0, rssi_Interval)

217

ConnectionManager

 }

 private fun stopRssiRead() {

 rssiTimer.cancel() // Stop timer

 }

 private fun readPhy(gatt: BluetoothGatt) {

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {

 gatt.readPhy()

 }

 }

 @RequiresApi(Build.VERSION_CODES.O)

 private fun preferredPhy (gatt: BluetoothGatt){

 gatt.setPreferredPhy(

 BluetoothDevice.PHY_LE_CODED_MASK,

 BluetoothDevice.PHY_LE_CODED_MASK,

 BluetoothDevice.PHY_OPTION_S8

)

 }

 var txphydisplay: Int? = null

 var rxphydisplay: Int? = null

 var deviceName: String? =null

 private val callback = object : BluetoothGattCallback() {

 override fun onConnectionStateChange(gatt: BluetoothGatt, status: Int,

newState: Int) {

 val deviceAddress = gatt.device.address

 if (status == BluetoothGatt.GATT_SUCCESS) {

 if (newState == BluetoothProfile.STATE_CONNECTED) {

 startRssiRead(gatt)

 Timber.w("onConnectionStateChange: connected to $deviceAddress")

 deviceGattMap[gatt.device] = gatt

 Handler(Looper.getMainLooper()).post {

 gatt.discoverServices()

 }

 } else if (newState == BluetoothProfile.STATE_DISCONNECTED) {

 stopRssiRead()

 Timber.e("onConnectionStateChange: disconnected from

$deviceAddress")

218

ConnectionManager

 teardownConnection(gatt.device)

 }

 } else {

 Timber.e("onConnectionStateChange: status $status encountered for

$deviceAddress!")

 if (pendingOperation is Connect) {

 signalEndOfOperation()

 }

 stopTempRead()

 stopRssiRead()

 teardownConnection(gatt.device)

 }

 }

 @RequiresApi(Build.VERSION_CODES.O)

 override fun onServicesDiscovered(gatt: BluetoothGatt, status: Int) {

 with(gatt) {

 if (status == BluetoothGatt.GATT_SUCCESS) {

 gatt.services?.forEach { service ->

 Timber.d("Service discovered: ${service.uuid}")

 service.characteristics.forEach { characteristic ->

 Timber.d("Characteristic discovered: ${characteristic.uuid}")

 }

 }

 val deviceNameCharacteristic =

gatt.getService(UUID.fromString("00001800-0000-1000-8000-00805f9b34fb"))

 ?.getCharacteristic(UUID.fromString("00002a00-0000-1000-8000-

00805f9b34fb"))

 if (deviceNameCharacteristic != null) {

 gatt.readCharacteristic(deviceNameCharacteristic)

 } else {

 Timber.e("Device Name characteristic not found.")

 }

 readPhy(gatt)

 preferredPhy(gatt)

 Timber.w("Discovered ${services.size} services for

${device.address}.")

 printGattTable()

 requestMtu(device, GATT_MAX_MTU_SIZE)

219

ConnectionManager

 listenersAsSet.forEach

{ it.get()?.onConnectionSetupComplete?.invoke(this) }

 } else {

 Timber.e("Service discovery failed due to status $status")

 teardownConnection(gatt.device)

 }

 }

 if (pendingOperation is Connect) {

 signalEndOfOperation()

 }

 }

 override fun onReadRemoteRssi(gatt: BluetoothGatt, rssi: Int, status: Int) {

 super.onReadRemoteRssi(gatt, rssi, status)

 if (status == BluetoothGatt.GATT_SUCCESS){

 listenersAsSet.forEach

{ it.get()?.onReadRemoteRSSI?.invoke(gatt.device, rssi) }

 }

 }

 override fun onPhyRead(gatt: BluetoothGatt, txPhy: Int, rxPhy: Int, status:

Int) {

 super.onPhyRead(gatt, txPhy, rxPhy, status)

 if (status == BluetoothGatt.GATT_SUCCESS) {

 Timber.i("TxPHY: $txPhy, RxPHY: $rxPhy")

 txphydisplay = txPhy

 rxphydisplay = rxPhy

 } else {

 Timber.e("Failed to display PHY")

 }

 }

 override fun onPhyUpdate(gatt: BluetoothGatt, txPhy: Int, rxPhy: Int, status:

Int) {

 super.onPhyUpdate(gatt, txPhy, rxPhy, status)

 if (status == BluetoothGatt.GATT_SUCCESS) {

 listenersAsSet.forEach { it.get()?.onPhyUpdate?.invoke(gatt.device,

txPhy, rxPhy) }

 Timber.i("TxPHY_updated: $txPhy, RxPHY_updated: $rxPhy")

 } else {

 Timber.e("Failed to update PHY")

220

ConnectionManager

 }

 }

 override fun onMtuChanged(gatt: BluetoothGatt, mtu: Int, status: Int) {

 Timber.w("ATT MTU changed to $mtu, success: ${status ==

BluetoothGatt.GATT_SUCCESS}")

 listenersAsSet.forEach { it.get()?.onMtuChanged?.invoke(gatt.device,

mtu) }

 if (pendingOperation is MtuRequest) {

 signalEndOfOperation()

 }

 }

 private val tempTimer = Timer() // Implement timer

 private val temp_Interval: Long = 500

 private fun startTempRead(

 gatt: BluetoothGatt,

 characteristic: BluetoothGattCharacteristic,

) {

 tempTimer.scheduleAtFixedRate(object : TimerTask() {

 override fun run() {

 gatt.readCharacteristic(characteristic)

 }

 }, 0, temp_Interval)

 }

 private fun stopTempRead() {

 tempTimer.cancel() // Stop timer

 }

 @Deprecated("Deprecated for Android 13+")

 @Suppress("DEPRECATION")

 override fun onCharacteristicRead(

 gatt: BluetoothGatt,

 characteristic: BluetoothGattCharacteristic,

 status: Int

) {

 with(characteristic) {

 when (status) {

 BluetoothGatt.GATT_SUCCESS -> {

221

ConnectionManager

 Timber.i("Read characteristic $uuid | value:

${value.toHexString()}")

 listenersAsSet.forEach {

 it.get()?.onCharacteristicRead?.invoke(

 gatt.device,

 this,

 value

)

 }

 val characteristicUUID = characteristic.uuid

 Timber.d("Characteristic UUID: $characteristicUUID read

successfully.")

 Timber.d("Characteristic value:

${characteristic.value?.toHexString()}")

 when (characteristicUUID) {

 UUID.fromString("00002a00-0000-1000-8000-00805f9b34fb")

-> {

 deviceName = characteristic.value?.toString(Charsets.UTF_8)

 if (deviceName != null) {

 Timber.i("Device Name: $deviceName")

 } else {

 Timber.e("Failed to read device name or value is null.")

 }

 // After reading the Device Name, read the Temperature

characteristic

 readTemperatureCharacteristic(gatt)

 }

 UUID.fromString("a32e5520-e477-11e2-a9e3-00002a5d5c51b")

-> {

 Timber.d("Temperature characteristic detected.")

 handleTemperatureCharacteristic(gatt, characteristic)

 // Read the Acceleration+Gyroscope characteristic

 readAccGyroCharacteristic(gatt)

 }

 UUID.fromString("340a1b80-cf4b-11e1-ac36-0002a5d5c51b")

-> {

 Timber.d("Acceleration+Gyroscope characteristic detected.")

222

ConnectionManager

 handleAccGyroCharacteristic(gatt, characteristic)

 readTxCharacteristic(gatt)

 }

 UUID.fromString("d973f2e1-b19e-11e2-9e96-0800200c9a66")

-> {

 Timber.d("TX characteristic detected.")

 handleTxCharacteristic(gatt, characteristic)

 }

 else -> {

 Timber.d("Unknown characteristic UUID:

$characteristicUUID")

 }

 }

 }

 BluetoothGatt.GATT_READ_NOT_PERMITTED -> {

 Timber.e("Read not permitted for $uuid!")

 }

 else -> {

 Timber.e("Characteristic read failed for $uuid, error: $status")

 }

 }

 }

 if (pendingOperation is CharacteristicRead) {

 signalEndOfOperation()

 }

 }

 private fun readTemperatureCharacteristic(gatt: BluetoothGatt) {

 val temperatureCharacteristic =

 gatt.getService(UUID.fromString("42821a40-e477-11e2-82d0-

0002a5d5c51b"))

 ?.getCharacteristic(UUID.fromString("a32e5520-e477-11e2-a9e3-

00002a5d5c51b"))

 if (temperatureCharacteristic != null) {

 startTempRead(gatt, temperatureCharacteristic)

 } else {

223

ConnectionManager

 Timber.e("Temperature characteristic not found.")

 }

 }

 private fun handleTemperatureCharacteristic(gatt: BluetoothGatt,

characteristic: BluetoothGattCharacteristic) {

 val value = characteristic.value

 if (value != null && value.size >= 2) {

 Timber.d("Temperature value received: ${value.joinToString("-")

{ String.format("%02X", it) }}")

 val msb = value[1].toInt() and 0xFF

 val lsb = value[0].toInt() and 0xFF

 val temperatureValue = ((msb shl 8) or lsb) / 10.0

 Timber.i("Converted Temperature Value: $temperatureValue °C")

 listenersAsSet.forEach { it.get()?.onTempUpdate?.invoke(gatt.device,

temperatureValue) }

 } else {

 Timber.e("Invalid temperature value received or value array size is less

than 2.")

 }

 }

 private fun readAccGyroCharacteristic(gatt: BluetoothGatt) {

 val accCharacteristic =

 gatt.getService(UUID.fromString("02366e80-cf3a-11e1-9ab4-

0002a5d5c51b"))

 ?.getCharacteristic(UUID.fromString("340a1b80-cf4b-11e1-ac36-

0002a5d5c51b"))

 if (accCharacteristic != null) {

 gatt.readCharacteristic(accCharacteristic)

 } else {

 Timber.e("Acceleration+Gyroscope characteristic not found.")

 }

 }

 private fun handleAccGyroCharacteristic(gatt: BluetoothGatt, characteristic:

BluetoothGattCharacteristic) {

 val value = characteristic.value

 if (value != null && value.size >= 14) {

224

ConnectionManager

 Timber.d("Characteristic value received: ${value.joinToString("-")

{ String.format("%02X", it) }}")

 val time = (value[1].toInt() and 0xFF shl 8) or (value[0].toInt() and

0xFF)

 val yAxisAccelerationInverted = (value[2].toInt() and 0xFF) or

((value[3].toInt() and 0xFF) shl 8)

 val xAxisAccelerationInverted = (value[4].toInt() and 0xFF) or

((value[5].toInt() and 0xFF) shl 8)

 val zAxisAccelerationInverted = (value[6].toInt() and 0xFF) or

((value[7].toInt() and 0xFF) shl 8)

 val yAxisGyroscope = (value[8].toInt() and 0xFF) or ((value[9].toInt()

and 0xFF) shl 8)

 val xAxisGyroscope = (value[10].toInt() and 0xFF) or ((value[11].toInt()

and 0xFF) shl 8)

 val zAxisGyroscope = (value[12].toInt() and 0xFF) or ((value[13].toInt()

and 0xFF) shl 8)

 val yAxisAcceleration = if (yAxisAccelerationInverted > 32767)

yAxisAccelerationInverted - 65536 else yAxisAccelerationInverted

 val xAxisAcceleration = if (xAxisAccelerationInverted > 32767)

xAxisAccelerationInverted - 65536 else xAxisAccelerationInverted

 val zAxisAcceleration = if (zAxisAccelerationInverted > 32767)

zAxisAccelerationInverted - 65536 else zAxisAccelerationInverted

 val yAxisGyro = if (yAxisGyroscope > 32767) yAxisGyroscope - 65536

else yAxisGyroscope

 val xAxisGyro = if (xAxisGyroscope > 32767) xAxisGyroscope - 65536

else xAxisGyroscope

 val zAxisGyro = if (zAxisGyroscope > 32767) zAxisGyroscope - 65536

else zAxisGyroscope

 Timber.i("Time: $time ms")

 Timber.i("Y-Axis Acceleration: $yAxisAcceleration")

 Timber.i("X-Axis Acceleration: $xAxisAcceleration")

 Timber.i("Z-Axis Acceleration: $zAxisAcceleration")

 Timber.i("Y-Axis Gyroscope: $yAxisGyro")

 Timber.i("X-Axis Gyroscope: $xAxisGyro")

 Timber.i("Z-Axis Gyroscope: $zAxisGyro")

 listenersAsSet.forEach {

 it.get()?.onSensorDataUpdate?.invoke(

 gatt.device,

225

ConnectionManager

 time,

 yAxisAcceleration,

 xAxisAcceleration,

 zAxisAcceleration,

 yAxisGyro,

 xAxisGyro,

 zAxisGyro

)

 }

 } else {

 Timber.e("Invalid characteristic value received or value array size is less

than expected.")

 }

 }

 private fun readTxCharacteristic(gatt: BluetoothGatt) {

 val txCharUuid = UUID.fromString("d973f2e1-b19e-11e2-9e96-

0800200c9a66")

 val serviceUuid = UUID.fromString("d973f2e0-b19e-11e2-9e96-

0800200c9a66")

 val service = gatt.getService(serviceUuid)

 val txCharacteristic = service?.getCharacteristic(txCharUuid)

 if (txCharacteristic != null) {

 gatt.readCharacteristic(txCharacteristic)

 Timber.i("Requested read for TX characteristic.")

 } else {

 Timber.e("TX characteristic not found.")

 }

 }

 private fun handleTxCharacteristic(gatt: BluetoothGatt, characteristic:

BluetoothGattCharacteristic) {

 val txValueBytes = characteristic.value

 val txValue = if (txValueBytes != null && txValueBytes.isNotEmpty()) {

 txValueBytes[0].toInt()

 } else {

 0

 }

 listenersAsSet.forEach { it.get()?.onTxUpdate?.invoke(gatt.device,

txValue) }

 Timber.i("TX Value: $txValue")

226

ConnectionManager

 }

 override fun onCharacteristicRead(

 gatt: BluetoothGatt,

 characteristic: BluetoothGattCharacteristic,

 value: ByteArray,

 status: Int

) {

 val uuid = characteristic.uuid

 when (status) {

 BluetoothGatt.GATT_SUCCESS -> {

 Timber.i("Read characteristic $uuid | value: ${value.toHexString()}")

 listenersAsSet.forEach {

 it.get()?.onCharacteristicRead?.invoke(gatt.device, characteristic,

value)

 }

 }

 BluetoothGatt.GATT_READ_NOT_PERMITTED -> {

 Timber.e("Read not permitted for $uuid!")

 }

 else -> {

 Timber.e("Characteristic read failed for $uuid, error: $status")

 }

 }

 if (pendingOperation is CharacteristicRead) {

 signalEndOfOperation()

 }

 }

 override fun onCharacteristicWrite(

 gatt: BluetoothGatt,

 characteristic: BluetoothGattCharacteristic,

 status: Int

) {

 val writtenValue = (pendingOperation as? CharacteristicWrite)?.payload

 with(characteristic) {

 when (status) {

 BluetoothGatt.GATT_SUCCESS -> {

 Timber.i("Wrote to characteristic $uuid | value:

${writtenValue?.toHexString()}")

 listenersAsSet.forEach

227

ConnectionManager

{ it.get()?.onCharacteristicWrite?.invoke(gatt.device, this) };

 }

 BluetoothGatt.GATT_WRITE_NOT_PERMITTED -> {

 Timber.e("Write not permitted for $uuid!")

 }

 else -> {

 Timber.e("Characteristic write failed for $uuid, error: $status")

 }

 }

 }

 if (pendingOperation is CharacteristicWrite) {

 signalEndOfOperation()

 }

 }

 @Deprecated("Deprecated for Android 13+")

 @Suppress("DEPRECATION")

 override fun onCharacteristicChanged(

 gatt: BluetoothGatt,

 characteristic: BluetoothGattCharacteristic

) {

 with(characteristic) {

 Timber.i("Characteristic $uuid changed | value:

${value.toHexString()}")

 listenersAsSet.forEach {

 it.get()?.onCharacteristicChanged?.invoke(gatt.device, this, value)

 }

 }

 }

 override fun onCharacteristicChanged(

 gatt: BluetoothGatt,

 characteristic: BluetoothGattCharacteristic,

 value: ByteArray

) {

 Timber.i("Characteristic ${characteristic.uuid} changed | value:

${value.toHexString()}")

 listenersAsSet.forEach {

 it.get()?.onCharacteristicChanged?.invoke(gatt.device, characteristic,

value)

228

ConnectionManager

 }

 }

 @Deprecated("Deprecated for Android 13+")

 @Suppress("DEPRECATION")

 override fun onDescriptorRead(

 gatt: BluetoothGatt,

 descriptor: BluetoothGattDescriptor,

 status: Int

) {

 with(descriptor) {

 when (status) {

 BluetoothGatt.GATT_SUCCESS -> {

 Timber.i("Read descriptor $uuid | value: ${value.toHexString()}")

 listenersAsSet.forEach {

 it.get()?.onDescriptorRead?.invoke(gatt.device, this, value)

 }

 }

 BluetoothGatt.GATT_READ_NOT_PERMITTED -> {

 Timber.e("Read not permitted for $uuid!")

 }

 else -> {

 Timber.e("Descriptor read failed for $uuid, error: $status")

 }

 }

 }

 if (pendingOperation is DescriptorRead) {

 signalEndOfOperation()

 }

 }

 override fun onDescriptorRead(

 gatt: BluetoothGatt,

 descriptor: BluetoothGattDescriptor,

 status: Int,

 value: ByteArray

) {

 val uuid = descriptor.uuid

 when (status) {

 BluetoothGatt.GATT_SUCCESS -> {

 Timber.i("Read descriptor $uuid | value: ${value.toHexString()}")

 listenersAsSet.forEach {

229

ConnectionManager

 it.get()?.onDescriptorRead?.invoke(gatt.device, descriptor, value)

 }

 }

 BluetoothGatt.GATT_READ_NOT_PERMITTED -> {

 Timber.e("Read not permitted for $uuid!")

 }

 else -> {

 Timber.e("Descriptor read failed for $uuid, error: $status")

 }

 }

 if (pendingOperation is DescriptorRead) {

 signalEndOfOperation()

 }

 }

 override fun onDescriptorWrite(

 gatt: BluetoothGatt,

 descriptor: BluetoothGattDescriptor,

 status: Int

) {

 val operationType = pendingOperation

 with(descriptor) {

 when (status) {

 BluetoothGatt.GATT_SUCCESS -> {

 Timber.i("Wrote to descriptor $uuid | operation type:

$operationType")

 if (isCccd() &&

 (operationType is EnableNotifications || operationType is

DisableNotifications)

) {

 onCccdWrite(gatt, characteristic, operationType)

 } else {

 listenersAsSet.forEach {

 it.get()?.onDescriptorWrite?.invoke(gatt.device, this)

 }

 }

 }

 BluetoothGatt.GATT_WRITE_NOT_PERMITTED -> {

 Timber.e("Write not permitted for $uuid!")

 }

 else -> {

230

ConnectionManager

 Timber.e("Descriptor write failed for $uuid, error: $status")

 }

 }

 }

 val isNotificationsOperation = descriptor.isCccd() &&

 (operationType is EnableNotifications || operationType is

DisableNotifications)

 val isManualWriteOperation = !descriptor.isCccd() && operationType is

DescriptorWrite

 if (isNotificationsOperation || isManualWriteOperation) {

 signalEndOfOperation()

 }

 }

 private fun onCccdWrite(

 gatt: BluetoothGatt,

 characteristic: BluetoothGattCharacteristic,

 operationType: BleOperationType

) {

 val charUuid = characteristic.uuid

 when (operationType) {

 is EnableNotifications -> {

 Timber.w("Notifications or indications ENABLED on $charUuid")

 listenersAsSet.forEach {

 it.get()?.onNotificationsEnabled?.invoke(

 gatt.device,

 characteristic

)

 }

 }

 is DisableNotifications -> {

 Timber.w("Notifications or indications DISABLED on $charUuid")

 listenersAsSet.forEach {

 it.get()?.onNotificationsDisabled?.invoke(

 gatt.device,

 characteristic

)

 }

 }

 else -> {

 Timber.e("Unexpected operation type of $operationType on CCCD of

231

ConnectionManager

$charUuid")

 }

 }

 }

 }

 private val broadcastReceiver = object : BroadcastReceiver() {

 override fun onReceive(context: Context, intent: Intent) {

 with(intent) {

 if (action == BluetoothDevice.ACTION_BOND_STATE_CHANGED) {

 val device =

parcelableExtraCompat<BluetoothDevice>(BluetoothDevice.EXTRA_DEVICE)

 val previousBondState =

getIntExtra(BluetoothDevice.EXTRA_PREVIOUS_BOND_STATE, -1)

 val bondState = getIntExtra(BluetoothDevice.EXTRA_BOND_STATE,

-1)

 val bondTransition =

"${previousBondState.toBondStateDescription()} to " +

 bondState.toBondStateDescription()

 Timber.w("${device?.address} bond state changed |

$bondTransition")

 }

 }

 }

 private fun Int.toBondStateDescription() = when (this) {

 BluetoothDevice.BOND_BONDED -> "BONDED"

 BluetoothDevice.BOND_BONDING -> "BONDING"

 BluetoothDevice.BOND_NONE -> "NOT BONDED"

 else -> "ERROR: $this"

 }

 }

 private fun BluetoothDevice.isConnected() = deviceGattMap.containsKey(this)

 internal inline fun <reified T : Parcelable> Intent.parcelableExtraCompat(key:

String): T? = when {

 Build.VERSION.SDK_INT > Build.VERSION_CODES.TIRAMISU ->

getParcelableExtra(key, T::class.java)

 else -> @Suppress("DEPRECATION") getParcelableExtra(key) as? T

 }

}

232

BleOperationsActivity

package com.punchthrough.blestarterappandroid

import android.annotation.SuppressLint

import android.app.Activity

import android.app.AlertDialog

import android.bluetooth.BluetoothDevice

import android.bluetooth.BluetoothGattCharacteristic

import android.content.Context

import android.content.Intent

import android.os.Bundle

import android.view.MenuItem

import android.view.View

import android.view.WindowManager

import android.view.inputmethod.InputMethodManager

import android.widget.EditText

import androidx.appcompat.app.AppCompatActivity

import androidx.recyclerview.widget.LinearLayoutManager

import androidx.recyclerview.widget.RecyclerView

import androidx.recyclerview.widget.SimpleItemAnimator

import com.punchthrough.blestarterappandroid.ble.ConnectionEventListener

import com.punchthrough.blestarterappandroid.ble.ConnectionManager

import

com.punchthrough.blestarterappandroid.ble.ConnectionManager.parcelableExtraC

ompat

import com.punchthrough.blestarterappandroid.ble.isIndicatable

import com.punchthrough.blestarterappandroid.ble.isNotifiable

import com.punchthrough.blestarterappandroid.ble.isReadable

import com.punchthrough.blestarterappandroid.ble.isWritable

import com.punchthrough.blestarterappandroid.ble.isWritableWithoutResponse

import com.punchthrough.blestarterappandroid.ble.toHexString

import

com.punchthrough.blestarterappandroid.databinding.ActivityBleOperationsBindin

g

import timber.log.Timber

import java.text.SimpleDateFormat

import java.util.Date

import java.util.Locale

import java.util.UUID

import kotlin.math.pow

class BleOperationsActivity : AppCompatActivity() {

233

BleOperationsActivity

 private lateinit var binding: ActivityBleOperationsBinding

 private val device: BluetoothDevice by lazy {

 intent.parcelableExtraCompat(BluetoothDevice.EXTRA_DEVICE)

 ?: error("Missing BluetoothDevice from MainActivity!")

 }

 private val dateFormatter = SimpleDateFormat("MMM d, HH:mm:ss",

Locale.US)

 private val characteristics by lazy {

 ConnectionManager.servicesOnDevice(device)?.flatMap { service ->

 service.characteristics ?: listOf()

 } ?: listOf()

 }

 private val characteristicProperties by lazy {

 characteristics.associateWith { characteristic ->

 mutableListOf<CharacteristicProperty>().apply {

 if (characteristic.isNotifiable()) add(CharacteristicProperty.Notifiable)

 if (characteristic.isIndicatable()) add(CharacteristicProperty.Indicatable)

 if (characteristic.isReadable()) add(CharacteristicProperty.Readable)

 if (characteristic.isWritable()) add(CharacteristicProperty.Writable)

 if (characteristic.isWritableWithoutResponse()) {

 add(CharacteristicProperty.WritableWithoutResponse)

 }

 }.toList()

 }

 }

 private val characteristicAdapter: CharacteristicAdapter by lazy {

 CharacteristicAdapter(characteristics) { characteristic ->

 showCharacteristicOptions(characteristic)

 }

 }

 private val notifyingCharacteristics = mutableListOf<UUID>()

 @SuppressLint("SetTextI18n")

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 ConnectionManager.registerListener(connectionEventListener)

 binding = ActivityBleOperationsBinding.inflate(layoutInflater)

 setContentView(binding.root)

 supportActionBar?.apply {

 setDisplayHomeAsUpEnabled(true)

 setDisplayShowTitleEnabled(true)

234

BleOperationsActivity

 setDisplayShowTitleEnabled(true)

 title = getString(R.string.ble_playground)

 }

 binding.findDeviceButton.setOnClickListener{

 Intent(this, BleTracker::class.java).also {

 startActivity(it)

 }

 }

 binding.calibrationButton.setOnClickListener{

 Intent(this, Calibration::class.java).also {

 startActivity(it)

 }

 }

 binding.sensorReadingButton.setOnClickListener {

 Intent(this, SensorReadings::class.java).also {

 startActivity(it)

 }

 }

 setupRecyclerView()

 binding.requestMtuButton.setOnClickListener {

 val userInput = binding.mtuField.text

 if (userInput.isNotEmpty() && userInput.isNotBlank()) {

 userInput.toString().toIntOrNull()?.let { mtu ->

 log("Requesting for MTU value of $mtu")

 ConnectionManager.requestMtu(device, mtu)

 } ?: log("Invalid MTU value: $userInput")

 } else {

 log("Please specify a numeric value for desired ATT MTU (23-517)")

 }

 hideKeyboard()

 }

 }

 override fun onDestroy() {

 ConnectionManager.unregisterListener(connectionEventListener)

 ConnectionManager.teardownConnection(device)

 super.onDestroy()

 }

235

BleOperationsActivity

 override fun onOptionsItemSelected(item: MenuItem): Boolean {

 when (item.itemId) {

 android.R.id.home -> {

 onBackPressed()

 return true

 }

 }

 return super.onOptionsItemSelected(item)

 }

 private fun setupRecyclerView() {

 binding.characteristicsRecyclerView.apply {

 adapter = characteristicAdapter

 layoutManager = LinearLayoutManager(

 this@BleOperationsActivity,

 RecyclerView.VERTICAL,

 false

)

 isNestedScrollingEnabled = false

 itemAnimator.let {

 if (it is SimpleItemAnimator) {

 it.supportsChangeAnimations = false

 }

 }

 }

 }

 @SuppressLint("SetTextI18n")

 private fun log(message: String) {

 val formattedMessage = "${dateFormatter.format(Date())}: $message"

 runOnUiThread {

 val uiText = binding.logTextView.text

 val currentLogText = uiText.ifEmpty { "Beginning of log." }

 binding.logTextView.text = "$currentLogText\n$formattedMessage"

 binding.logScrollView.post

{ binding.logScrollView.fullScroll(View.FOCUS_DOWN) }

 }

 }

 // Moving Average Filter - start

 val windowSizeMA = 5

236

BleOperationsActivity

 val rssiValuesMA = mutableListOf<Int>()

 fun updateRssiMovingAverage(rssi: Int): Double {

 if (rssiValuesMA.size >= windowSizeMA) {

 rssiValuesMA.removeAt(0)

 }

 rssiValuesMA.add(rssi)

 return rssiValuesMA.average()

 }

 // Moving Average Filter - end

 // EMA filter - start

 private var emaRssi: Double? = null

 private val alphaE = 0.3 // Smoothing factor

 private fun updateRssiEMA(newRssi: Int): Double {

 if (emaRssi == null) {

 emaRssi = newRssi.toDouble()

 } else {

 emaRssi = alphaE * newRssi + (1 - alphaE) * emaRssi!!

 }

 return emaRssi!!

 }

 // EMA filter - end

 // Kalman Filter - start

 val processNoise = 1.0

 val measurementNoise = 1.0

 var estimatedError = 1.0

 var estimate = 0.0

 fun updateRssiKalman(rssi: Int): Double {

 // Prediction step

 estimatedError += processNoise

 // Update step

 val kalmanGain = estimatedError / (estimatedError + measurementNoise)

 estimate += kalmanGain * (rssi - estimate)

 estimatedError *= (1 - kalmanGain)

 return estimate

 }

237

BleOperationsActivity

 // Kalman Filter - end

 // Median Filter - start

 val windowSizeM = 5

 val rssiValuesM = mutableListOf<Int>()

 fun updateRssiMedian(rssi: Int): Double {

 if (rssiValuesM.size >= windowSizeM) {

 rssiValuesM.removeAt(0)

 }

 rssiValuesM.add(rssi)

 return rssiValuesM.sorted()[rssiValuesM.size / 2].toDouble()

 }

 //Median Filter - end

 @SuppressLint("SetTextI18n", "DefaultLocale")

 private fun onRssiUpdate(rssi: Int) {

 val d = 1

 val filteredRssiMedian = updateRssiMedian(rssi)

 Timber.i("Median Filter, at $d m, RSSI: $filteredRssiMedian")

 val filteredRssiKalman= updateRssiKalman(rssi)

 Timber.i("Kalman Filter, at $d m, RSSI: $filteredRssiKalman")

 val filteredRssiEMA= updateRssiEMA(rssi)

 Timber.i("EMA Filter, at $d m, RSSI: $filteredRssiEMA")

 val filteredRssiMovingAverage = updateRssiMovingAverage(rssi)

 Timber.i("Moving Average Filter, at $d m, RSSI:

$filteredRssiMovingAverage")

 Timber.i("No Filter (Raw value), at $d m, RSSI: $rssi")

 val rawRssi = rssi.toDouble()

 val distance = getDistanceFromRssi(filteredRssiEMA) // change the suitable

filtered rssi and calculate the distance (in this case, EMA filter is chosen)

 // Maintain a list of distances for averaging

 updateDistanceList(distance)

 // Calculate the mean of the recent distance values

 val averageDistance = getAverageDistance()

 binding.rssiValue.text = "${String.format("%.3f", filteredRssiEMA)} dBm" //

display the rssi value of a connected ble device

 binding.distanceValue.text = "${String.format("%.2f", averageDistance)}

238

BleOperationsActivity

meters" // display the distance based on filtered rssi value

 Timber.i ("Distance estimated: $averageDistance")

 }

 // List to store recent distances for averaging

 private val distanceList = mutableListOf<Double>()

 private val MAX_DISTANCE_SAMPLES = 10 // Maximum number of

distance samples to store for averaging

 // Function to update the distance list with a new value

 private fun updateDistanceList(newDistance: Double) {

 if (distanceList.size >= MAX_DISTANCE_SAMPLES) {

 distanceList.removeAt(0) // Remove the oldest distance value if the list is

full

 }

 distanceList.add(newDistance) // Add the new distance value to the list

 }

 // Function to calculate the average of the stored distances

 private fun getAverageDistance(): Double {

 return if (distanceList.isNotEmpty()) {

 distanceList.average() // Calculate and return the mean distance

 } else {

 0.0 // Return 0 if no distances are available

 }

 }

 object RssiData {

 // Shared RSSI values

 val rssiValues = mutableListOf(-66.5, -76.2, -88.7, -93.3) // dBm

 var rssi0 = rssiValues[0] // Reference RSSI at 1 meter distance

 }

 fun calculateDistanceConstant(): Double { // Calibration on the distance

estimation

 val distances = arrayOf(1.0, 2.0, 5.0, 10.0) // meters

 // Calculate log distances

 val logDistances = distances.map { Math.log10(it) }

 val adjustedRssi = RssiData.rssiValues.map { it - RssiData.rssi0 }

 // Calculate means

239

BleOperationsActivity

 val meanLogDist = logDistances.average()

 val meanRssi = adjustedRssi.average()

 // Calculate numerator and denominator for the slope

 var numerator = 0.0

 var denominator = 0.0

 for (i in logDistances.indices) {

 val logDistDiff = logDistances[i] - meanLogDist

 val rssiDiff = adjustedRssi[i] - meanRssi

 numerator += logDistDiff * rssiDiff

 denominator += logDistDiff * logDistDiff

 }

 // Calculate slope (b) and path loss exponent (n)

 val slope = -numerator / denominator

 val pathLossExponent = slope / 10.0

 Timber.i("Path Loss Exponent is calculated: $pathLossExponent")

 return pathLossExponent

 }

 private fun getDistanceFromRssi(rssi: Double): Double {

 val txPower = RssiData.rssi0 // RSSI value at 1 meter distance

 val n = calculateDistanceConstant() // Path loss exponent

 return 10.0.pow((txPower - rssi) / (10 * n))

 }

 private fun phyToString(phy: Int?): String {

 return when (phy) {

 BluetoothDevice.PHY_LE_1M -> "LE 1M"

 BluetoothDevice.PHY_LE_2M -> "LE 2M"

 BluetoothDevice.PHY_LE_CODED -> "LE Coded"

 else -> "Unknown"

 }

 }

 @SuppressLint("SetTextI18n")

 fun updatePHY (txPhy:Int?, rxPhy: Int?) {

 val txPhyString = phyToString(txPhy)

 val rxPhyString = phyToString(rxPhy)

 binding.txPhyValue.text = txPhyString

 binding.rxPhyValue.text = rxPhyString

240

BleOperationsActivity

 }

 private fun updateTemp (temp: Double)

 {

 val tempValue = temp.toString()

 Timber.i("Temperature value displayed: $tempValue")

 }

 private fun updateAcc(yAxisAcceleration: Int, xAxisAcceleration: Int,

zAxisAcceleration: Int)

 {

 val xAccValue = xAxisAcceleration.toString()

 val yAccValue = yAxisAcceleration.toString()

 val zAccValue = zAxisAcceleration.toString()

 private fun updateGyro (yAxisGyro: Int, xAxisGyro: Int, zAxisGyro: Int)

 {

 val xGyroValue = xAxisGyro.toString()

 val yGyroValue = yAxisGyro.toString()

 val zGyroValue = zAxisGyro.toString()

 }

 private fun showCharacteristicOptions(

 characteristic: BluetoothGattCharacteristic

) = runOnUiThread {

 characteristicProperties[characteristic]?.let { properties ->

 AlertDialog.Builder(this)

 .setTitle("Select an action to perform")

 .setItems(properties.map { it.action }.toTypedArray()) { _, i ->

 when (properties[i]) {

 CharacteristicProperty.Readable -> {

 log("Reading from ${characteristic.uuid}")

 ConnectionManager.readCharacteristic(device, characteristic)

 }

 CharacteristicProperty.Writable,

CharacteristicProperty.WritableWithoutResponse -> {

 showWritePayloadDialog(characteristic)

 }

 CharacteristicProperty.Notifiable,

CharacteristicProperty.Indicatable -> {

 if (notifyingCharacteristics.contains(characteristic.uuid)) {

 log("Disabling notifications on ${characteristic.uuid}")

 ConnectionManager.disableNotifications(device,

241

BleOperationsActivity

characteristic)

 } else {

 log("Enabling notifications on ${characteristic.uuid}")

 ConnectionManager.enableNotifications(device,

characteristic)

 }

 }

 }

 }

 .show()

 }

 }

 @SuppressLint("InflateParams")

 private fun showWritePayloadDialog(characteristic:

BluetoothGattCharacteristic) {

 val hexField = layoutInflater.inflate(R.layout.edittext_hex_payload, null) as

EditText

 AlertDialog.Builder(this)

 .setView(hexField)

 .setPositiveButton("Write") { _, _ ->

 with(hexField.text.toString()) {

 if (isNotBlank() && isNotEmpty()) {

 val bytes = hexToBytes()

 log("Writing to ${characteristic.uuid}: ${bytes.toHexString()}")

 ConnectionManager.writeCharacteristic(device, characteristic,

bytes)

 } else {

 log("Please enter a hex payload to write to ${characteristic.uuid}")

 }

 }

 }

 .setNegativeButton("Cancel", null)

 .create()

 .apply {

 window?.setSoftInputMode(

 WindowManager.LayoutParams.SOFT_INPUT_STATE_VISIBLE

)

 hexField.showKeyboard()

 show()

 }

 }

242

BleOperationsActivity

 private val connectionEventListener by lazy {

 ConnectionEventListener().apply {

 onDisconnect = {

 runOnUiThread {

 AlertDialog.Builder(this@BleOperationsActivity)

 .setTitle("Disconnected")

 .setMessage("Disconnected from device.")

 .setPositiveButton("OK") { _, _ -> onBackPressed() }

 .show()

 }

 }

 onCharacteristicRead = { _, characteristic, value ->

 log("Read from ${characteristic.uuid}: ${value.toHexString()}")

 }

 onCharacteristicWrite = { _, characteristic ->

 log("Wrote to ${characteristic.uuid}")

 }

 onMtuChanged = { _, mtu ->

 log("MTU updated to $mtu")

 }

 onCharacteristicChanged = { _, characteristic, value ->

 log("Value changed on ${characteristic.uuid}: ${value.toHexString()}")

 }

 onNotificationsEnabled = { _, characteristic ->

 log("Enabled notifications on ${characteristic.uuid}")

 notifyingCharacteristics.add(characteristic.uuid)

 }

 onNotificationsDisabled = { _, characteristic ->

 log("Disabled notifications on ${characteristic.uuid}")

 notifyingCharacteristics.remove(characteristic.uuid)

 }

 onReadRemoteRSSI = { _, rssi ->

 runOnUiThread {

 onRssiUpdate(rssi)

 }

 }

243

BleOperationsActivity

 onPhyUpdate = { _, txPhy, rxPhy ->

 runOnUiThread {

 updatePHY(txPhy, rxPhy)

 }

 }

 onTempUpdate = { _, temp ->

 runOnUiThread {

 updateTemp(temp)

 }

 }

 onSensorDataUpdate = { _, time, yAxisAcceleration, xAxisAcceleration,

zAxisAcceleration, yAxisGyro, xAxisGyro, zAxisGyro ->

 runOnUiThread {

 updateAcc(yAxisAcceleration, xAxisAcceleration,

zAxisAcceleration)

 Timber.i("Acceleration data is updated.")

 updateGyro(yAxisGyro, xAxisGyro, zAxisGyro)

 Timber.i("Gyroscope data is updated.")

 }

 }

 }

 }

 private enum class CharacteristicProperty {

 Readable,

 Writable,

 WritableWithoutResponse,

 Notifiable,

 Indicatable;

 val action

 get() = when (this) {

 Readable -> "Read"

 Writable -> "Write"

 WritableWithoutResponse -> "Write Without Response"

 Notifiable -> "Toggle Notifications"

 Indicatable -> "Toggle Indications"

 }

 }

244

BleOperationsActivity

 private fun Activity.hideKeyboard() {

 hideKeyboard(currentFocus ?: View(this))

 }

 private fun Context.hideKeyboard(view: View) {

 val inputMethodManager =

getSystemService(Activity.INPUT_METHOD_SERVICE) as

InputMethodManager

 inputMethodManager.hideSoftInputFromWindow(view.windowToken, 0)

 }

 private fun EditText.showKeyboard() {

 val inputMethodManager =

getSystemService(Context.INPUT_METHOD_SERVICE) as

InputMethodManager

 requestFocus()

 inputMethodManager.showSoftInput(this,

InputMethodManager.SHOW_IMPLICIT)

 }

 private fun String.hexToBytes() =

 this.chunked(2).map

{ it.uppercase(Locale.US).toInt(16).toByte() }.toByteArray()

}

BleTracker

package com.punchthrough.blestarterappandroid

import android.annotation.SuppressLint

import android.bluetooth.BluetoothGatt

import android.bluetooth.BluetoothGattCharacteristic

import android.content.Context

import android.hardware.Sensor

import android.hardware.SensorEvent

import android.hardware.SensorEventListener

import android.hardware.SensorManager

import android.os.Build

import android.os.Bundle

import android.widget.Toast

import androidx.annotation.RequiresApi

import androidx.appcompat.app.AppCompatActivity

245

BleTracker

import com.punchthrough.blestarterappandroid.ble.ConnectionEventListener

import com.punchthrough.blestarterappandroid.ble.ConnectionManager

import com.punchthrough.blestarterappandroid.ble.DirectionFinder

import

com.punchthrough.blestarterappandroid.databinding.DistanceTrackerBinding

import timber.log.Timber

import java.util.UUID

import kotlin.math.pow

class BleTracker : AppCompatActivity() {

 private lateinit var sensorManager: SensorManager

 private lateinit var accelerometer: Sensor

 private lateinit var magnetometer: Sensor

 private var sensorEventListener: SensorEventListener? = null

 private var currentAzimuth: Float = 0f

 private val targetAngles = listOf(0, 45, 90, 135, 180, 225, 270, 315)

 private var currentTargetIndex = 0

 private var isRecording = false

 private var isWaitingForAngle = false

 private val rssiValuesByAngle = mutableMapOf<Int, MutableList<Int>>()

 private var latestRssi: Int = 0

 private var isDirectionButtonPressed = false

 private lateinit var binding: DistanceTrackerBinding

 private lateinit var directionFinder: DirectionFinder

 private var isPlayingSound = false

 set(value) {

 field = value

 runOnUiThread {

 binding.playSoundButtonText.text = if (value) "STOP" else "PLAY

SOUND"

 binding.playSoundButtonIcon.setImageResource(if (value)

R.drawable.stop_button else R.drawable.play_button)

 }

 }

 @RequiresApi(Build.VERSION_CODES.M)

246

BleTracker

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 ConnectionManager.registerListener(connectionEventListener)

 binding = DistanceTrackerBinding.inflate(layoutInflater)

 setContentView(binding.root)

 supportActionBar?.hide() // hide action bar

 val deviceName = ConnectionManager.deviceName

 Timber.i("Device Name is sent: $deviceName")

 binding.deviceNameText.text = deviceName

 binding.playSoundButton.setOnClickListener {

 if (isPlayingSound) {

 Toast.makeText(this, "Stop Ringing", Toast.LENGTH_SHORT).show()

 actionPlaySoundEnd()

 } else {

 Toast.makeText(this, "Start Ringing", Toast.LENGTH_SHORT).show()

 actionPlaySoundStart()

 }

 }

 binding.directionButton.setOnClickListener {

 startMeasurement()

 }

 setupCompass()

 }

 private fun setupCompass() {

 sensorManager = getSystemService(Context.SENSOR_SERVICE) as

SensorManager

 val accelerometer =

sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER)

 val magnetometer =

sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD)

 sensorEventListener = object : SensorEventListener {

 private val gravity = FloatArray(3)

 private val geomagnetic = FloatArray(3)

 @SuppressLint("SetTextI18n")

 override fun onSensorChanged(event: SensorEvent) {

 if (event.sensor.type == Sensor.TYPE_ACCELEROMETER) {

247

BleTracker

 gravity[0] = event.values[0]

 gravity[1] = event.values[1]

 gravity[2] = event.values[2]

 } else if (event.sensor.type == Sensor.TYPE_MAGNETIC_FIELD) {

 geomagnetic[0] = event.values[0]

 geomagnetic[1] = event.values[1]

 geomagnetic[2] = event.values[2]

 }

 val R = FloatArray(9)

 val I = FloatArray(9)

 if (SensorManager.getRotationMatrix(R, I, gravity, geomagnetic)) {

 val orientation = FloatArray(3)

 SensorManager.getOrientation(R, orientation)

 currentAzimuth =

Math.toDegrees(orientation[0].toDouble()).toFloat()

 if (!isDirectionButtonPressed) {

 // Update message when button is not pressed

 binding.directionText.text = "Current angle:

${currentAzimuth.toInt()}°.\n" + "Tap DIRECTION to start."

 } else {

 handleOrientationUpdate(currentAzimuth)

 }

 }

 }

 override fun onAccuracyChanged(sensor: Sensor?, accuracy: Int) {}

 }

 sensorEventListener?.let {

 sensorManager.registerListener(it, accelerometer,

SensorManager.SENSOR_DELAY_UI)

 sensorManager.registerListener(it, magnetometer,

SensorManager.SENSOR_DELAY_UI)

 }

 }

 @SuppressLint("SetTextI18n")

 private fun handleOrientationUpdate(azimuth: Float) {

 // Normalize azimuth to be in range 0° to 360°

 currentAzimuth = (azimuth + 360) % 360

 if (currentTargetIndex < targetAngles.size) {

248

BleTracker

 val targetAngle = targetAngles[currentTargetIndex]

 // Display current angle and target angle

 binding.directionText.text = "Current Angle: ${currentAzimuth.toInt()}°\n"

+

 "Rotate to ${targetAngle}°."

 if (isWaitingForAngle) {

 if (isAngleCloseEnough(currentAzimuth, targetAngle)) {

 if (!isRecording) {

 binding.directionText.text = "Reached $targetAngle°. Hold still,

recording RSSI..."

 recordRssiForAngle(targetAngle)

 }

 } else {

 binding.directionText.text = "Current Angle:

${currentAzimuth.toInt()}°\n" + "Rotate to ${targetAngle}°."

 }

 }

 }

 }

 private fun isAngleCloseEnough(currentAngle: Float, targetAngle: Int):

Boolean {

 val tolerance = 5f // Tolerance in degrees

 val angleDifference = Math.abs(currentAngle - targetAngle)

 return angleDifference <= tolerance || angleDifference >= (360 - tolerance)

 }

 @SuppressLint("SetTextI18n")

 private fun startMeasurement() {

 isDirectionButtonPressed = true

 currentTargetIndex = 0

 rssiValuesByAngle.clear()

 isWaitingForAngle = true

 binding.directionText.text = "Rotate to

${targetAngles[currentTargetIndex]}°."

 }

 private fun recordRssiForAngle(angle: Int) {

 isRecording = true

 val rssiValues = mutableListOf<Int>()

249

BleTracker

 for (i in 1..20) {

 val rssi = getCurrentRssi()

 rssiValues.add(rssi)

 Thread.sleep(100)

 }

 rssiValuesByAngle[angle] = rssiValues

 Timber.i("RSSI values for $angle°: $rssiValues")

 moveToNextTargetAngle()

 }

 @SuppressLint("SetTextI18n")

 private fun moveToNextTargetAngle() {

 currentTargetIndex++

 if (currentTargetIndex < targetAngles.size) {

 binding.directionText.text = "Rotate to

${targetAngles[currentTargetIndex]}°."

 } else {

 computeDirection()

 }

 isRecording = false

 isWaitingForAngle = true

 }

 @SuppressLint("SetTextI18n")

 private fun computeDirection() {

 var bestAngle = -1

 var highestMeanRssi = Double.NEGATIVE_INFINITY

 for ((angle, rssiList) in rssiValuesByAngle) {

 val meanRssi = rssiList.average()

 Timber.i("Mean RSSI at $angle°: $meanRssi")

 if (meanRssi > highestMeanRssi) {

 highestMeanRssi = meanRssi

 bestAngle = angle

 }

 }

 binding.directionText.text = "Estimated direction: $bestAngle°"

 }

250

BleTracker

 private fun getCurrentRssi(): Int {

 return latestRssi

 }

 override fun onPause() {

 super.onPause()

 sensorEventListener?.let {

 sensorManager.unregisterListener(it)

 }

 }

 override fun onResume() {

 super.onResume()

 setupCompass()

 }

 override fun onDestroy() {

 ConnectionManager.unregisterListener(connectionEventListener)

 super.onDestroy()

 }

 private fun actionPlaySoundStart() {

 val payload = byteArrayOf(0x04) // The value to start

 val characteristicUUID = UUID.fromString("ed0efb1a-9b0d-11e4-89d3-

123b93f75cba")

 writeToCharacteristic(payload, characteristicUUID)

 Timber.i("Attempting to write to characteristic to start playing sound")

 isPlayingSound = true

 }

 @RequiresApi(Build.VERSION_CODES.M)

 private fun actionPlaySoundEnd() {

 val payload = byteArrayOf(0x00) // The value to stop

 val characteristicUUID = UUID.fromString("ed0efb1a-9b0d-11e4-89d3-

123b93f75cba")

 writeToCharacteristic(payload, characteristicUUID)

 Timber.i("Attempting to write to characteristic to stop playing sound")

 isPlayingSound = false

 }

 @SuppressLint("MissingPermission")

 private fun writeToCharacteristic(payload: ByteArray, characteristicUUID:

UUID) {

251

BleTracker

 val gatt = ConnectionManager.getGatt()

 val device = gatt?.device

 val serviceUUID = UUID.fromString("ed0ef62e-9b0d-11e4-89d3-

123b93f75cba")

 val rCCharacteristic =

gatt?.getService(serviceUUID)?.getCharacteristic(characteristicUUID)

 Timber.i("Attempting to write to characteristic.")

 if (rCCharacteristic != null) {

 // Check if the characteristic is writable

 if ((rCCharacteristic.properties and

BluetoothGattCharacteristic.PROPERTY_WRITE) != 0) {

 rCCharacteristic.value = payload

 rCCharacteristic.writeType =

BluetoothGattCharacteristic.WRITE_TYPE_DEFAULT // Ensure write with

response

 val success = gatt?.writeCharacteristic(rCCharacteristic)

 if (success == true) {

 Timber.i("Write operation successfully initiated for characteristic:

$characteristicUUID")

 } else {

 Timber.e("Failed to initiate write operation. Retrying...")

 retryWrite(gatt, rCCharacteristic, payload)

 }

 } else {

 Timber.e("Characteristic is not writable.")

 }

 } else {

 Timber.e("Characteristic not found. Service UUID: $serviceUUID,

Characteristic UUID: $characteristicUUID")

 }

 }

 @SuppressLint("MissingPermission")

 private fun retryWrite(gatt: BluetoothGatt?, characteristic:

BluetoothGattCharacteristic, payload: ByteArray, retryCount: Int = 3) {

 var attempt = 1

 while (attempt <= retryCount) {

 Timber.i("Retrying write operation (attempt $attempt)...")

 val success = gatt?.writeCharacteristic(characteristic)

 if (success == true) {

252

BleTracker

 Timber.i("Write operation succeeded on attempt $attempt.")

 break

 } else {

 Timber.e("Write operation failed on attempt $attempt.")

 Thread.sleep((1000 * (attempt * attempt)).toLong()) // Exponential

backoff

 attempt++

 }

 }

 }

 private val connectionEventListener by lazy {

 ConnectionEventListener().apply {

 onReadRemoteRSSI = { _, rssi ->

 runOnUiThread {

 onRssiUpdate(rssi)

 updateSignalStrengthUI(rssi)

 updateProximityIndicator(rssi)

 }

 }

 }

 }

 private var emaRssi: Double? = null

 private val alphaE = 0.3 // Smoothing factor

 private fun updateRssiEMA(newRssi: Int): Double {

 if (emaRssi == null) {

 emaRssi = newRssi.toDouble()

 } else {

 emaRssi = alphaE * newRssi + (1 - alphaE) * emaRssi!!

 }

 return emaRssi!!

 }

 @SuppressLint("SetTextI18n", "DefaultLocale")

 private fun onRssiUpdate(rssi: Int) {

 val filteredRssiEMA= updateRssiEMA(rssi)

253

BleTracker

 latestRssi = filteredRssiEMA.toInt()

 val distance = getDistanceFromRssi(filteredRssiEMA) // change the suitable

filtered rssi and calculate the distance (in this case, EMA filter is chosen)

 // Maintain a list of distances for averaging

 updateDistanceList(distance)

 // Calculate the mean of the recent distance values

 val averageDistance = getAverageDistance()

 binding.distanceText.text = "${String.format("%.2f", averageDistance)}

meters" // display the distance based on filtered rssi value

 Timber.i ("Distance estimated: $averageDistance")

 }

 // List to store recent distances for averaging

 private val distanceList = mutableListOf<Double>()

 private val MAX_DISTANCE_SAMPLES = 10 // Maximum number of

distance samples to store for averaging

 // Function to update the distance list with a new value

 private fun updateDistanceList(newDistance: Double) {

 if (distanceList.size >= MAX_DISTANCE_SAMPLES) {

 distanceList.removeAt(0) // Remove the oldest distance value if the list is

full

 }

 distanceList.add(newDistance) // Add the new distance value to the list

 }

 // Function to calculate the average of the stored distances

 private fun getAverageDistance(): Double {

 return if (distanceList.isNotEmpty()) {

 distanceList.average() // Calculate and return the mean distance

 } else {

 0.0 // Return 0 if no distances are available

 }

 }

 private fun calculateDistanceConstant(): Double { // Calibration on the distance

estimation

 val distances = arrayOf(1.0, 2.0, 5.0, 10.0) // meters

 // Calculate log distances

254

BleTracker

 val logDistances = distances.map { Math.log10(it) }

 val adjustedRssi = BleOperationsActivity.RssiData.rssiValues.map { it -

BleOperationsActivity.RssiData.rssi0 }

 // Calculate means

 val meanLogDist = logDistances.average()

 val meanRssi = adjustedRssi.average()

 // Calculate numerator and denominator for the slope

 var numerator = 0.0

 var denominator = 0.0

 for (i in logDistances.indices) {

 val logDistDiff = logDistances[i] - meanLogDist

 val rssiDiff = adjustedRssi[i] - meanRssi

 numerator += logDistDiff * rssiDiff

 denominator += logDistDiff * logDistDiff

 }

 // Calculate slope (b) and path loss exponent (n)

 val slope = -numerator / denominator

 val pathLossExponent = slope / 10.0

 Timber.i("Path Loss Exponent is calculated: $pathLossExponent")

 return pathLossExponent

 }

 private fun getDistanceFromRssi(rssi: Double): Double {

 val txPower = BleOperationsActivity.RssiData.rssi0 // RSSI value at 1 meter

distance

 val n = calculateDistanceConstant() // Path loss exponent

 return 10.0.pow((txPower - rssi) / (10 * n))

 }

 private fun getSignalStrength(rssi: Int): Pair<Int, String> {

 val (percentage, message) = when {

 rssi >= -20 -> Pair(100, "Excellent signal - The device is extremely close to

you.")

 rssi >= -30 -> Pair(95, "Very strong signal - The device is very close.")

 rssi >= -40 -> Pair(90, "Strong signal - The device is nearby.")

 rssi >= -50 -> Pair(85, "Good signal - The device is within a reasonable

range.")

255

BleTracker

 rssi >= -60 -> Pair(80, "Moderate signal - The device is within range.")

 rssi >= -70 -> Pair(75, "Fair signal - The device is at a moderate distance.")

 rssi >= -80 -> Pair(65, "Weak signal - The device is somewhat far.")

 rssi >= -85 -> Pair(55, "Poor signal - The device is quite distant.")

 rssi >= -90 -> Pair(45, "Very poor signal - The device is far away.")

 rssi >= -95 -> Pair(35, "Extremely weak signal - Try to move closer.")

 rssi >= -100 -> Pair(25, "Almost no signal - The device is very far.")

 rssi >= -105 -> Pair(15, "No signal - The device is likely out of range.")

 rssi >= -110 -> Pair(10, "No signal - Device not reachable.")

 rssi >= -115 -> Pair(5, "No signal - Device definitely out of range.")

 rssi >= -120 -> Pair(2, "No signal - Too far to detect.")

 rssi >= -125 -> Pair(0, "No signal - Device completely out of range.")

 else -> Pair(0, "No signal - Device completely out of range.")

 }

 return Pair(percentage, message)

 }

 private fun updateSignalStrengthUI(rssi: Int) {

 val (percentage, message) = getSignalStrength(rssi)

 binding.signalStrengthText.text = "$percentage%"

 binding.statusText.text = message

 }

 private fun updateProximityIndicator(rssi: Int) {

 // Define the range for RSSI

 val minRssi = -125

 val maxRssi = -25

 val normalizedRssi = maxOf(minRssi, minOf(maxRssi, rssi))

 val alpha = (normalizedRssi + 125) / 100f // Convert RSSI to a range of 0 to 1

 if (rssi < minRssi || rssi > maxRssi) {

 // Out of range: make all circles transparent

 binding.outerCircle.alpha = 0f

 binding.middleCircle.alpha = 0f

 binding.innerCircle.alpha = 0f

 } else {

 // Update circle visibility based on normalized alpha value

 binding.outerCircle.alpha = alpha

 binding.middleCircle.alpha = if (alpha > 0.33f) 1f else 0f

256

BleTracker

 binding.innerCircle.alpha = if (alpha > 0.66f) 1f else 0f

 }

 }

}

SensorReadings

package com.punchthrough.blestarterappandroid

import android.annotation.SuppressLint

import android.bluetooth.BluetoothDevice

import android.hardware.Sensor

import android.hardware.SensorEvent

import android.hardware.SensorEventListener

import android.hardware.SensorManager

import android.os.Build

import android.os.Bundle

import androidx.annotation.RequiresApi

import androidx.appcompat.app.AppCompatActivity

import com.punchthrough.blestarterappandroid.ble.ConnectionEventListener

import com.punchthrough.blestarterappandroid.ble.ConnectionManager

import com.punchthrough.blestarterappandroid.databinding.SensorDataBinding

import timber.log.Timber

class SensorReadings : AppCompatActivity(), SensorEventListener {

 private lateinit var binding: SensorDataBinding

 private lateinit var sensorManager: SensorManager

 private var accelerometer: Sensor? = null

 private var gyroscope: Sensor? = null

 private var isUsing1MPhy = true

 set(value) {

 field = value

 runOnUiThread {

 binding.phyButton.text = if (value) "1M PHY" else "CODED PHY"

 }

 }

 @RequiresApi(Build.VERSION_CODES.O)

 @SuppressLint("MissingPermission")

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 ConnectionManager.registerListener(connectionEventListener)

257

SensorReadings

 binding = SensorDataBinding.inflate(layoutInflater)

 setContentView(binding.root)

 supportActionBar?.hide() // hide action bar

 // Initialize SensorManager and sensors

 sensorManager = getSystemService(SENSOR_SERVICE) as SensorManager

 accelerometer =

sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER)

 gyroscope = sensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE)

 val deviceName = ConnectionManager.deviceName

 Timber.i("Device Name is sent: $deviceName")

 binding.deviceNameValue.text = deviceName

 binding.phyButton.setOnClickListener {

 val gatt = ConnectionManager.getGatt()

 if (isUsing1MPhy) {

 // Switch back to 1M PHY (PHY_LE_1M)

 gatt?.setPreferredPhy(

 BluetoothDevice.PHY_LE_1M_MASK, // TX PHY

 BluetoothDevice.PHY_LE_1M_MASK, // RX PHY

 BluetoothDevice.PHY_OPTION_NO_PREFERRED // PHY options

)

 } else {

 // Switch to coded PHY (PHY_LE_CODED)

 gatt?.setPreferredPhy(

 BluetoothDevice.PHY_LE_CODED_MASK, // TX PHY

 BluetoothDevice.PHY_LE_CODED_MASK, // RX PHY

 BluetoothDevice.PHY_OPTION_S8 // PHY options

)

 }

 isUsing1MPhy = !isUsing1MPhy

 }

 }

 override fun onResume() {

 super.onResume()

 // Register sensor listeners

 accelerometer?.also { sensor ->

 sensorManager.registerListener(this, sensor,

SensorManager.SENSOR_DELAY_NORMAL)

 }

258

SensorReadings

 gyroscope?.also { sensor ->

 sensorManager.registerListener(this, sensor,

SensorManager.SENSOR_DELAY_NORMAL)

 }

 }

 override fun onPause() {

 super.onPause()

 // Unregister sensor listeners to save battery

 sensorManager.unregisterListener(this)

 }

 override fun onSensorChanged(event: SensorEvent) {

 when (event.sensor.type) {

 Sensor.TYPE_ACCELEROMETER -> {

 val xAccValue = event.values[0].toString()

 val yAccValue = event.values[1].toString()

 val zAccValue = event.values[2].toString()

 binding.phoneAccXValue.text = xAccValue

 binding.phoneAccYValue.text = yAccValue

 binding.phoneAccZValue.text = zAccValue

 Timber.i("Phone Accelerometer - X: $xAccValue, Y: $yAccValue, Z:

$zAccValue")

 }

 Sensor.TYPE_GYROSCOPE -> {

 val xGyroValue = event.values[0].toString()

 val yGyroValue = event.values[1].toString()

 val zGyroValue = event.values[2].toString()

 binding.phoneGyroXValue.text = xGyroValue

 binding.phoneGyroYValue.text = yGyroValue

 binding.phoneGyroZValue.text = zGyroValue

 Timber.i("Phone Gyroscope - X: $xGyroValue, Y: $yGyroValue, Z:

$zGyroValue")

 }

 }

 }

 override fun onAccuracyChanged(sensor: Sensor?, accuracy: Int) {

 }

259

SensorReadings

 private val connectionEventListener by lazy {

 ConnectionEventListener().apply {

 onTempUpdate = { _, temp ->

 runOnUiThread {

 updateTemp(temp)

 }

 }

 onSensorDataUpdate =

 { _, timestamp, yAxisAcceleration, xAxisAcceleration,

zAxisAcceleration, yAxisGyro, xAxisGyro, zAxisGyro ->

 runOnUiThread {

 updateAcc(yAxisAcceleration, xAxisAcceleration,

zAxisAcceleration)

 Timber.i("Board Acceleration data is updated.")

 updateGyro(yAxisGyro, xAxisGyro, zAxisGyro)

 Timber.i("Board Gyroscope data is updated.")

 }

 }

 onTxUpdate = { _, txValue ->

 runOnUiThread {

 updateTx(txValue)

 }

 }

 }

 }

 private fun updateTemp(temp: Double) {

 val tempValue = temp.toString()

 Timber.i("Temperature value displayed: $tempValue")

 binding.temperatureValue.text = tempValue

 }

 @SuppressLint("SetTextI18n")

 private fun updateTx(tx: Int) {

 val txValue = tx.toString()

 Timber.i("Transmit power (tx) value displayed: $txValue")

 binding.txValue.text = txValue

 }

 private fun updateAcc(yAxisAcceleration: Int, xAxisAcceleration: Int,

zAxisAcceleration: Int) {

260

SensorReadings

 val xAccValue = xAxisAcceleration.toString()

 val yAccValue = yAxisAcceleration.toString()

 val zAccValue = zAxisAcceleration.toString()

 binding.boardAccXValue.text = xAccValue

 binding.boardAccYValue.text = yAccValue

 binding.boardAccZValue.text = zAccValue

 }

 private fun updateGyro(yAxisGyro: Int, xAxisGyro: Int, zAxisGyro: Int) {

 val xGyroValue = xAxisGyro.toString()

 val yGyroValue = yAxisGyro.toString()

 val zGyroValue = zAxisGyro.toString()

 binding.boardGyroXValue.text = xGyroValue

 binding.boardGyroYValue.text = yGyroValue

 binding.boardGyroZValue.text = zGyroValue

 }

 override fun onDestroy() {

 ConnectionManager.unregisterListener(connectionEventListener)

 super.onDestroy()

 }

}

activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity"

 >

 <Button

 android:id="@+id/scan_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:paddingLeft="120dp"

 android:paddingRight="120dp"

 android:layout_marginTop="16dp"

261

 android:textStyle="bold"

 android:text="Start Scan"

 android:background="@drawable/button_background"

 android:backgroundTint="@android:color/holo_green_dark"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 />

 <TextView

 android:id="@+id/scan_results_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="16dp"

 android:paddingLeft="8dp"

 android:text="Scan results (tap to connect)"

 android:textAlignment="center"

 android:textSize="16sp"

 android:textStyle="bold"

 android:visibility="invisible"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/scan_button"

 />

 <View

 android:id="@+id/divider"

 android:layout_width="0dp"

 android:layout_height="2dp"

 android:layout_marginTop="8dp"

 android:layout_marginBottom="8dp"

 android:background="?android:attr/listDivider"

 android:visibility="invisible"

 app:layout_constraintBottom_toTopOf="@id/scan_results_recycler_view"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@id/scan_results_title"

 />

 <androidx.recyclerview.widget.RecyclerView

 android:id="@+id/scan_results_recycler_view"

 android:layout_width="0dp"

 android:layout_height="0dp"

 android:layout_marginTop="8dp"

262

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@id/divider"

 tools:listitem="@layout/row_scan_result"

 />

</androidx.constraintlayout.widget.ConstraintLayout>

activity_ble_operations.xml

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".BleOperationsActivity">

 <LinearLayout

 android:id="@+id/mtu_container"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 android:orientation="horizontal"

 android:layout_marginTop="8dp"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content">

 <EditText

 android:id="@+id/mtu_field"

 android:hint="MTU value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="8dp"

 android:importantForAutofill="no"

 android:inputType="number"

 android:digits="01234567890" />

 <Button

 android:id="@+id/request_mtu_button"

 android:text="Request MTU"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

263

activity_ble_operations.xml

 </LinearLayout>

 <TextView

 android:id="@+id/characteristics_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="16dp"

 android:text="Characteristics (tap to interact)"

 android:textSize="16sp"

 android:textStyle="bold"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@id/mtu_container"

 />

 <LinearLayout

 app:layout_constraintTop_toBottomOf="@id/characteristics_title"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 android:orientation="vertical"

 android:layout_width="match_parent"

 android:layout_height="0dp">

 <androidx.recyclerview.widget.RecyclerView

 android:id="@+id/characteristics_recycler_view"

 android:layout_width="match_parent"

 android:layout_height="150dp"

 android:scrollbarFadeDuration="0"

 android:scrollbars="vertical"

 tools:listitem="@layout/row_characteristic" />

 <TextView

 android:id="@+id/log_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="12dp"

 android:layout_marginTop="16dp"

 android:text="Log"

 android:textSize="16sp"

 android:textStyle="bold"

 />

264

activity_ble_operations.xml

 <ScrollView

 android:id="@+id/log_scroll_view"

 android:layout_width="match_parent"

 android:layout_height="80dp"

 android:padding="4dp">

 <TextView

 android:id="@+id/log_text_view"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:gravity="bottom"

 android:scrollbars="vertical"

 android:layout_marginStart="16dp"

 />

 </ScrollView>

 <LinearLayout

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:orientation="horizontal"

 android:layout_marginStart="10dp"

 android:layout_marginTop="10dp">

 <TextView

 android:text="RSSI: "

 android:textSize="16sp"

 android:textStyle="bold"

 android:layout_height="20dp"

 android:layout_width="45dp"

 />

 <TextView

 android:id="@+id/rssi_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="XX dBm"

 android:textSize="14sp" />

 </LinearLayout>

 <LinearLayout

265

activity_ble_operations.xml

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:orientation="horizontal"

 android:layout_marginStart="10dp"

 android:layout_marginTop="10dp">

 <TextView

 android:text="Distance: "

 android:textSize="16sp"

 android:textStyle="bold"

 android:layout_height="20dp"

 android:layout_width="75dp"

 />

 <TextView

 android:id="@+id/distance_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="XX m"

 android:textSize="14sp" />

 </LinearLayout>

 <LinearLayout

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:orientation="horizontal"

 android:layout_marginStart="10dp"

 android:layout_marginTop="10dp">

 <TextView

 android:text="TX PHY: "

 android:textSize="16sp"

 android:textStyle="bold"

 android:layout_height="20dp"

 android:layout_width="65dp"

 />

 <TextView

 android:id="@+id/tx_phy_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="1M / Coded"

266

activity_ble_operations.xml

 android:textSize="14sp" />

 </LinearLayout>

 <LinearLayout

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:orientation="horizontal"

 android:layout_marginStart="10dp"

 android:layout_marginTop="10dp">

 <TextView

 android:text="RX PHY: "

 android:textSize="16sp"

 android:textStyle="bold"

 android:layout_height="20dp"

 android:layout_width="65dp"

 />

 <TextView

 android:id="@+id/rx_phy_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="1M / Coded"

 android:textSize="14sp" />

 </LinearLayout>

 <Button

 android:id="@+id/sensor_reading_button"

 android:text="Sensor Reading"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="50dp"

 android:textColor="@android:color/white"

 android:textStyle="bold"

 android:background="@drawable/button_background"

 android:backgroundTint="@android:color/holo_orange_dark"

 android:paddingLeft="123dp"

 android:paddingRight="123dp"

 android:layout_gravity="center"

 app:layout_constraintTop_toBottomOf="@id/rx_phy_value"

 app:layout_constraintStart_toStartOf="parent"

267

activity_ble_operations.xml

 app:layout_constraintEnd_toEndOf="parent"/>

 <Button

 android:id="@+id/find_device_button"

 android:text="Find Device"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="30dp"

 android:textColor="@android:color/white"

 android:textStyle="bold"

 android:background="@drawable/button_background"

 android:backgroundTint="@color/colorPrimary"

 android:paddingLeft="140dp"

 android:paddingRight="140dp"

 android:layout_gravity="center"

 app:layout_constraintTop_toBottomOf="@id/sensor_reading_button"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 android:layout_marginBottom="16dp"/>

 </LinearLayout>

</androidx.constraintlayout.widget.ConstraintLayout>

sensor_data.xml

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 tools:context=".SensorReadings">

 <TextView

 android:id="@+id/device_name_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Device Name"

 android:textSize="35sp"

 android:textStyle="bold"

 android:textColor="@android:color/holo_green_light"

268

sensor_data.xml

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 android:layout_marginTop="8dp"/>

 <TextView

 android:id="@+id/temperature_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Temperature:"

 android:textSize="16sp"

 android:textStyle="bold"

 app:layout_constraintTop_toBottomOf="@id/device_name_value"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="16dp"/>

 <TextView

 android:id="@+id/temperature_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Temperature Value"

 android:textSize="16sp"

 app:layout_constraintTop_toBottomOf="@id/device_name_value"

 app:layout_constraintStart_toEndOf="@id/temperature_title"

 android:layout_marginTop="16dp"

 android:layout_marginStart="8dp"/>

 <TextView

 android:id="@+id/tx_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="TX Power:"

 android:textSize="16sp"

 android:textStyle="bold"

 app:layout_constraintTop_toBottomOf="@id/temperature_value"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="16dp"/>

 <TextView

 android:id="@+id/tx_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="TX Power Value"

269

sensor_data.xml

 android:textSize="16sp"

 app:layout_constraintTop_toBottomOf="@id/temperature_value"

 app:layout_constraintStart_toEndOf="@id/tx_title"

 android:layout_marginTop="16dp"

 android:layout_marginStart="8dp"/>

 <TextView

 android:id="@+id/board_accelerometer_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Board Accelerometer"

 android:textSize="16sp"

 android:textStyle="bold"

 app:layout_constraintTop_toBottomOf="@id/tx_value"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="16dp"/>

 <TextView

 android:id="@+id/board_acc_x_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="ACCx:"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/board_accelerometer_title"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="8dp"/>

 <TextView

 android:id="@+id/board_acc_x_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="X Value"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/board_accelerometer_title"

 app:layout_constraintStart_toEndOf="@id/board_acc_x_title"

 android:layout_marginTop="8dp"

 android:layout_marginStart="8dp"/>

 <TextView

 android:id="@+id/board_acc_y_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="ACCy:"

270

sensor_data.xml

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/board_acc_x_title"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="8dp"/>

 <TextView

 android:id="@+id/board_acc_y_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Y Value"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/board_acc_x_title"

 app:layout_constraintStart_toEndOf="@id/board_acc_y_title"

 android:layout_marginTop="8dp"

 android:layout_marginStart="8dp"/>

 <TextView

 android:id="@+id/board_acc_z_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="ACCz:"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/board_acc_y_title"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="8dp"/>

 <TextView

 android:id="@+id/board_acc_z_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Z Value"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/board_acc_y_title"

 app:layout_constraintStart_toEndOf="@id/board_acc_z_title"

 android:layout_marginTop="8dp"

 android:layout_marginStart="8dp"/>

 <TextView

 android:id="@+id/board_gyroscope_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Board Gyroscope"

 android:textSize="16sp"

271

sensor_data.xml

 android:textStyle="bold"

 app:layout_constraintTop_toBottomOf="@id/board_acc_z_value"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="16dp"/>

 <TextView

 android:id="@+id/board_gyro_x_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="GYROx:"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/board_gyroscope_title"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="8dp"/>

 <TextView

 android:id="@+id/board_gyro_x_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="X Value"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/board_gyroscope_title"

 app:layout_constraintStart_toEndOf="@id/board_gyro_x_title"

 android:layout_marginTop="8dp"

 android:layout_marginStart="8dp"/>

 <TextView

 android:id="@+id/board_gyro_y_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="GYROy:"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/board_gyro_x_title"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="8dp"/>

 <TextView

 android:id="@+id/board_gyro_y_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Y Value"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/board_gyro_x_title"

272

sensor_data.xml

 app:layout_constraintStart_toEndOf="@id/board_gyro_y_title"

 android:layout_marginTop="8dp"

 android:layout_marginStart="8dp"/>

 <TextView

 android:id="@+id/board_gyro_z_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="GYROz:"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/board_gyro_y_title"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="8dp"/>

 <TextView

 android:id="@+id/board_gyro_z_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Z Value"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/board_gyro_y_title"

 app:layout_constraintStart_toEndOf="@id/board_gyro_z_title"

 android:layout_marginTop="8dp"

 android:layout_marginStart="8dp"/>

 <TextView

 android:id="@+id/phone_accelerometer_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Phone Accelerometer"

 android:textSize="16sp"

 android:textStyle="bold"

 app:layout_constraintTop_toBottomOf="@id/board_gyro_z_value"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="16dp"/>

 <TextView

 android:id="@+id/phone_acc_x_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="ACCx:"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/phone_accelerometer_title"

273

sensor_data.xml

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="8dp"/>

 <TextView

 android:id="@+id/phone_acc_x_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="X Value"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/phone_accelerometer_title"

 app:layout_constraintStart_toEndOf="@id/phone_acc_x_title"

 android:layout_marginTop="8dp"

 android:layout_marginStart="8dp"/>

 <TextView

 android:id="@+id/phone_acc_y_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="ACCy:"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/phone_acc_x_title"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="8dp"/>

 <TextView

 android:id="@+id/phone_acc_y_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Y Value"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/phone_acc_x_title"

 app:layout_constraintStart_toEndOf="@id/phone_acc_y_title"

 android:layout_marginTop="8dp"

 android:layout_marginStart="8dp"/>

 <TextView

 android:id="@+id/phone_acc_z_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="ACCz:"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/phone_acc_y_title"

 app:layout_constraintStart_toStartOf="parent"

274

sensor_data.xml

 android:layout_marginTop="8dp"/>

 <TextView

 android:id="@+id/phone_acc_z_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Z Value"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/phone_acc_y_title"

 app:layout_constraintStart_toEndOf="@id/phone_acc_z_title"

 android:layout_marginTop="8dp"

 android:layout_marginStart="8dp"/>

 <TextView

 android:id="@+id/phone_gyroscope_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Phone Gyroscope"

 android:textSize="16sp"

 android:textStyle="bold"

 app:layout_constraintTop_toBottomOf="@id/phone_acc_z_value"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="16dp"/>

 <TextView

 android:id="@+id/phone_gyro_x_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="GYROx:"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/phone_gyroscope_title"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="8dp"/>

 <TextView

 android:id="@+id/phone_gyro_x_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="X Value"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/phone_gyroscope_title"

 app:layout_constraintStart_toEndOf="@id/phone_gyro_x_title"

 android:layout_marginTop="8dp"

275

sensor_data.xml

 android:layout_marginStart="8dp"/>

 <TextView

 android:id="@+id/phone_gyro_y_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="GYROy:"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/phone_gyro_x_title"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="8dp"/>

 <TextView

 android:id="@+id/phone_gyro_y_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Y Value"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/phone_gyro_x_title"

 app:layout_constraintStart_toEndOf="@id/phone_gyro_y_title"

 android:layout_marginTop="8dp"

 android:layout_marginStart="8dp"/>

 <TextView

 android:id="@+id/phone_gyro_z_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="GYROz:"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/phone_gyro_y_title"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginTop="8dp"/>

 <TextView

 android:id="@+id/phone_gyro_z_value"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Z Value"

 android:textSize="14sp"

 app:layout_constraintTop_toBottomOf="@id/phone_gyro_y_title"

 app:layout_constraintStart_toEndOf="@id/phone_gyro_z_title"

 android:layout_marginTop="8dp"

 android:layout_marginStart="8dp"/>

276

sensor_data.xml

 <Button

 android:id="@+id/phy_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="1M PHY/ Coded PHY"

 android:textColor="@android:color/white"

 android:textStyle="bold"

 android:background="@drawable/button_background"

 android:backgroundTint="@android:color/holo_purple"

 android:paddingLeft="80dp"

 android:paddingRight="80dp"

 android:textSize="16dp"

 android:layout_gravity="center"

 app:layout_constraintTop_toBottomOf="@id/phone_gyro_z_value"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 android:layout_marginTop="20dp"/>

</androidx.constraintlayout.widget.ConstraintLayout>

distance_tracker.xml

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".BleTracker">

 <TextView

 android:id="@+id/deviceNameText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="32dp"

 android:text="MyBLEDevice"

 android:textStyle="bold"

 android:textColor="@android:color/holo_green_light"

 android:textSize="25sp"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

277

distance_tracker.xml

 <androidx.constraintlayout.widget.ConstraintLayout

 android:id="@+id/playSoundButton"

 android:layout_width="350dp"

 android:layout_height="wrap_content"

 android:layout_marginTop="16dp"

 android:background="@drawable/button_background"

 android:clickable="true"

 android:focusable="true"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@id/deviceNameText">

 <ImageView

 android:id="@+id/playSoundButtonIcon"

 android:layout_width="48dp"

 android:layout_height="48dp"

 android:src="@drawable/play_button"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 <TextView

 android:id="@+id/playSoundButtonText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="PLAY SOUND"

 android:textSize="20sp"

 android:textStyle="bold"

 android:layout_marginTop="8dp"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@id/playSoundButtonIcon" />

 </androidx.constraintlayout.widget.ConstraintLayout>

 <Button

 android:id="@+id/directionButton"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="30dp"

 android:layout_marginBottom="10dp"

 android:background="@drawable/button_background"

278

distance_tracker.xml

 android:backgroundTint="@android:color/holo_purple"

 android:textColor="@android:color/white"

 android:text="Direction"

 android:paddingLeft="130dp"

 android:paddingRight="130dp"

 android:textSize="18sp"

 android:textStyle="bold"

 app:layout_constraintBottom_toTopOf="@+id/proximityIndicator"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="0.503"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/playSoundButton"

 app:layout_constraintVertical_bias="1.0"

 />

 <androidx.constraintlayout.widget.ConstraintLayout

 android:id="@+id/proximityIndicator"

 android:layout_width="240dp"

 android:layout_height="240dp"

 android:layout_marginTop="50dp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent">

 <View

 android:id="@+id/outerCircle"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:background="@drawable/circle_background_outer"

 tools:layout_editor_absoluteX="0dp"

 tools:layout_editor_absoluteY="26dp"

 />

 <View

 android:id="@+id/middleCircle"

 android:layout_width="160dp"

 android:layout_height="160dp"

 android:background="@drawable/circle_background_middle"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

279

distance_tracker.xml

 <View

 android:id="@+id/innerCircle"

 android:layout_width="80dp"

 android:layout_height="80dp"

 android:background="@drawable/circle_background_inner"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 <View

 android:id="@+id/centerDot"

 android:layout_width="30dp"

 android:layout_height="30dp"

 android:background="@drawable/center_dot"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 </androidx.constraintlayout.widget.ConstraintLayout>

 <TextView

 android:id="@+id/distanceText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="30dp"

 android:text="2.5 m"

 android:textSize="35sp"

 android:textStyle="bold"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/proximityIndicator" />

 <LinearLayout

 android:id="@+id/signalStrengthLayout"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:orientation="horizontal"

 android:layout_marginTop="16dp"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

280

distance_tracker.xml

 app:layout_constraintTop_toBottomOf="@id/distanceText">

 <TextView

 android:id="@+id/signalStrengthTitle"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Signal Strength:"

 android:textColor="@android:color/holo_green_light"

 android:textSize="18sp"

 android:textStyle="bold" />

 <TextView

 android:id="@+id/signalStrengthText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="XX %"

 android:textColor="@android:color/holo_green_light"

 android:textSize="18sp"

 android:layout_marginStart="8dp" />

 </LinearLayout>

 <TextView

 android:id="@+id/statusText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginBottom="50dp"

 android:text="Message"

 android:textSize="16sp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@id/signalStrengthLayout" />

 <TextView

 android:id="@+id/directionText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="16dp"

 android:text="Direction Information"

 android:textSize="18sp"

 android:textColor="@android:color/holo_red_light"

 android:textStyle="bold|italic"

281

distance_tracker.xml

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@id/statusText" />

</androidx.constraintlayout.widget.ConstraintLayout>

