

INTEGRATION OF IMAGE PROCESSING ALGORITHM AND DEEP

LEARNING APPROACHES TO MONITOR GINGER PLANT

TAN CHENG YONG

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Engineering (Honours) in Electronic Systems

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

January 2024

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : TAN CHENG YONG

ID No. : 20AGB04834

Date :

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “INTEGRATION OF IMAGE

PROCESSING ALGORITHM AND DEEP LEARNING APPROACHES TO

MONITOR GINGER PLANT” was prepared by TAN CHENG YONG has met the

required standard for submission in partial fulfilment of the requirements for the award

of Bachelor of Engineering (Honours) in Electronic Systems at Universiti Tunku

Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Dr. Lee Han Kee

Date : _________________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2024, Tan Cheng Yong. All right reserved.

v

Specially dedicated to

my beloved grandmother, mother and father

vi

INTEGRATION OF IMAGE PROCESSING ALGORITHM AND DEEP

LEARNING APPROACHES TO MONITOR GINGER PLANT

ABSTRACT

This study aims to integrate image processing and deep learning algorithms to monitor

the growth of ginger plants. The proposed system is designed to detect ginger plants

and track their growth rate effectively. The deep learning algorithm will undergo

training using a dataset containing ginger plant images, which will allow it to

accurately identify and categorize various stages of growth. The image processing

techniques will be used to pre-process and enhance the quality of the images to making

it easier for the deep learning model to identify the ginger plants. One YOLOv8 based

model was developed for detecting and segmenting ginger plants in various growth

states. Following the successful detection and segmentation of the plants, another

YOLOv8 based model was further developed to segment individual leaves from

detected plant. In order to improve the monitoring process, a depth estimation model

was used to calculate the distance from the camera to the plants, enabling

measurements of the height and leaf area of the ginger plants. The integration of these

two methods will provide a more efficient and reliable way to monitor ginger plant

growth, which is important for farmers and researchers in the field of agriculture.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xiii

LIST OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statements 2

1.3 Aims and Objectives 3

2 LITERATURE REVIEW 4

2.1 Deep Learning 4

2.2 Object Detection with Convolution Neural Network (CNN) 5

2.3 YOLO (You Only Look Once) 6

2.3.1 YOLO’s Introduction 6

2.3.2 Evolution of YOLO Versions 6

2.3.3 YOLOv8 Object Detection Mechanism 8

2.3.4 YOLOv8 Architecture and Segmentation Mechanism

 8

2.3.5 Advantages of YOLOv8 Segmentation 9

viii

2.4 Faster R-CNN 10

2.5 Image enhancement 10

2.6 Leaf Segmenting 12

2.7 Leaf extraction and classification 13

3 METHODOLOGY 15

3.1 Introduction 15

3.2 Planning 16

3.2.1 Hardware Required 16

3.2.2 Software Required 16

3.2.3 Project Timeline & Resource allocation 17

3.3 Training 19

3.3.1 Dataset Preparation for YOLOv8 model training 19

3.3.2 Dataset Preparation for Depth Estimation Model

Training 21

3.4 Implementation 22

3.4.1 Inference on New Images 22

3.4.2 Model Implementation 23

3.5 Analysis 24

3.5.1 Performance Analysis 24

3.6 Cost Estimation 26

4 RESULTS AND DISCUSSIONS 27

4.1 System Interface Results 27

4.2 Ginger Plant Detection Using YOLOv8 Model 29

4.2.1 Example of Ginger Plant Detection Results 29

4.2.2 Ginger Plant Detection Using YOLOv8 Model

Performance 31

4.3 Leaf Detection and Health Classification Using YOLOv8 35

4.3.1 Example of Leaf Detection and Health Classification

Results 35

4.3.2 Leaf Detection and Health Classification Using

YOLOv8 Performance 37

ix

4.4 Leaf Health Status Classification 41

4.4.1 Leaf Count Per Plant and Health Status Classification

 42

4.5 Depth Estimation Model 43

4.5.1 Distance Measurement Results 43

4.5.2 Model Performance 45

4.6 Plant Height and Leaf Area Calculations 47

4.6.1 Example Calculation of Plant Height and Leaf Area

 49

4.7 Challenges and Limitation 51

5 CONCLUSION AND RECOMMENDATIONS 52

5.1 Conclusion 52

5.2 Recommendation 53

REFERENCES 54

APPENDICES 57

x

LIST OF TABLES

 TABLE TITLE PAGE

Table 3.1: Gantt Chart for FYP1 18

Table 3.2: Gantt Chart for FYP2 18

Table 3.3: Hyperparameters use in Training Phase 19

Table 3.4: Cost Estimation of Project Materials 26

Table 4.1: Example Testing Results of YOLOv8 Segmentation
Ginger Plant Detection Model 30

Table 4.2: Example Testing Results of YOLOv8 Leaves Detection
Model 36

Table 4.3: Example Images of Detected and Classified Leaves on
a Ginger Plant. 41

Table 4.4: Leaf Health Status Confusion matrix 41

Table 4.5: Leaf Health Status Confusion matrix 41

Table 4.5: Example Depth Map of a Ginger Plant 43

Table 4.6: Depth Estimation Result of Test Images 44

Table 4.7: Comparison Between Calculated and Actual Plant
Height 49

xi

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 2.1: Use of CNN in Object Detection 5

Figure 2.2: Process of Image Enhancement 11

Figure 3.1: Process Flow of Detecting the Ginger Plant 15

Figure 3.2: Dataset of Plant Detection Model 20

Figure 3.3: Dataset of Leaf Detection Model 21

Figure 3.4: Overview of Model Implementation Phase 23

Figure 4.1: Real-Time Plant Monitoring System Interface 27

Figure 4.2: Real-Time Plant Monitoring System Interface 28

Figure 4.3: Real-Time Plant Monitoring System Interface 28

Figure 4.4: Labels in Training Process of Plants Detection 29

Figure 4.5: F1-Confidence Curve 31

Figure 4.6: Precision-Confidence Curve 32

Figure 4.7: Precision-Recall Curve 33

Figure 4.8 Recall-Confidence Curve 34

Figure 4.9: Labels in Training Process of Leaves Detection 35

Figure 4.10: F1-Confidence Curve 37

Figure 4.11: Precision-Confidence Curve 38

Figure 4.12: Precision-Recall Curve 39

Figure 4.13: Recall-Confidence Curve 40

xii

Figure 4.14: Graph of Predicted Distance vs. Actual Distance 44

Figure 4.15: Graph of Percentage Deviation vs. Actual Distance 45

Figure 4.16: Graph of Calculated Height and Actual Height vs.
Actual Distance 50

Figure 4.17: Graph of Percentage Deviation vs. Actual Distance 50

xiii

LIST OF SYMBOLS / ABBREVIATIONS

𝑠𝑠𝑖𝑖 output of sigmod for the network

𝑠𝑠𝑘𝑘 skewness

α weight hyperparameters

β weight hyperparameters

E Expected value

μ mean value

σ standard deviation

ANNs Artificial Neural Networks

BCE Binary Cross Entropy

CMYK Cyan, Magenta, Yellow, and Key (Black)

CNN Convolutional Neural Network

CIOU Complete Intersection over Union

DFL Distribution Focal Loss

IoV Internet of Vehicles

K-NN k-nearest neighbours

LBP Local Binary Patterns

R-CNN Region-based Convolutional Neural Network

RGB Red, Green, Blue

SPPF Spatial Pyramid Pooling Fast

SSD MobileNet Single Shot Detector

SVM Support Vector Machines

TBoF Trainable Bag of Freebies

YOLO You Only Look Once

xiv

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Code for Training Yolo Model in Google Colab 57

B Code for Real-Time Monitoring Interface in Python
Language 59

C Code for Target Detection in Python Language 92

D Test Image used in Evaluated Depth Estimation
Model 100

1

1 INTRODUCTION

1.1 Background

Agriculture is one of the leading industries in Malaysia and plays an important role in

social and economic development. Malaysia has approximately 4.06 million hectares

of agricultural land, 80 % of which is used for industrial corps such as rubber, palm

oil, cocoa, coconut and pepper and some allocated for agriculture production (FONG,

1990). In 2009, the agriculture sector contributed RM20 bullion, or 4% of Malaysia’s

gross national income (GNI). In line with this, for a country like Malaysia, the need

for economic growth in the agricultural sector has been growing at an alarming rate

over the past few decades. As a result, the rate of production in the agriculture sector

has doubled in the last two decades (Matahir & Tuyon, 2013).

For the export market, farmers in Malaysia manufacture a wide range of crop

and grain goods. The ginger crop is one of these products that brings in an important

amount of foreign funds for the country. Since the competence of agricultural

extension workers and visual inspection are the main factors in traditional disease

detection, it is costly and challenging to scale up early disease identification and

classification, especially for mass production (Selvaraj, et al., 2019). In Malaysia with

limited human and logistical infrastructure, smallholder farmers are less successful in

addressing farming issues since they rely on their prior knowledge. Therefore, early

detection of field diseases and growth rates is one of the important steps for early

intervention to reduce the impact of food supply chains.

2

In recent years, the integration of image processing algorithms and deep learning

techniques has shown great effect in addressing these challenges. By using these

algorithms and techniques, visual data can be analysed with high accuracy, allowing

for the automated detection and analysis of various plant characteristics. One of the

deep learning algorithms, such as convolutional neural networks (CNNs) can be used

to reducing the need for manual inspection and increasing the efficiency of the

monitoring system. Among the cutting-edge technologies in this domain, YOLO (You

Only Look Once) stands out as a particularly effective deep learning model for real-

time object detection and segmentation (Wang, et al., 2024). Deep learning models can

be trained on large datasets of ginger plant images, allowing them to learn the features

and patterns associated with different growth stages. This help improve the accuracy

of the monitoring system and provide more reliable information about the growth rate

and health of the ginger plants. Additionally, the integration of image processing and

deep learning approaches can also help address the challenges of variability in ginger

plant appearance due to environmental factors such as soil conditions, sunlight

exposure, and water availability.

1.2 Problem Statements

Monitoring of ginger plant growth and health is important in agriculture for optimizing

yield and ensuring crop quality. However, traditional methods of plant monitoring

depend on manual observation and measurement, which is labour-intensive,

inconsistencies and likely to have human error. As the demand for precise agricultural

practices increase, any delay or inaccuracy in detecting plant diseases or growth

deficiencies can also lead to reduced yields and financial loss for farmers. Therefore,

automated solutions that can provide accurate, real-time data on plant characteristics,

such as height, leaf area, and overall health is required.

 The lack of automated tools for efficient plant monitoring is a challenge,

especially in large farms where manually plant assessment is inefficient. Furthermore,

to determine the plant health and development, a more precise measurement technique

is needed to assess plant height and leaf area. The integration of modern technologies

3

such as image processing and deep learning can provide solutions, but yet there is still

lacking effective system specifically tailored to ginger plants.

This project aims to solve these issues by developing a system that integrates

image processing algorithms with deep learning models to automate the detection,

classification, and monitoring of ginger plants and their leaves. The system will not

only detect and segment plants but also assess plant health and estimate plant height

using depth estimation models, providing an efficient and accurate method for

monitoring ginger crops.

1.3 Aims and Objectives

The objectives of the thesis are shown as following:

1. To design a model capable of detecting the ginger plants.

2. To design a model capable of detecting ginger leaf and classifying ginger leaf by

its health status.

3. To design a model that can estimate the depth of the target to calculate its height

and area.

4

2 LITERATURE REVIEW

2.1 Deep Learning

Deep learning is being used more and more in monitoring plant growth as it has shown

good performance in image classification. Deep learning is a type of machine learning

that includes multi-layer artificial neural networks (ANNs) with multiple layers

(Shrestha & Mahmood, 2019), where the model's outcomes and parameters are

influenced by the examples used during training. Deep learning uses different types of

learning methods include supervised learning, unsupervised learning, semi-supervised

learning, and reinforcement learning. Deep learning models have performed better

than traditional machine learning models such as SVMs, k-NNs, and decision trees

when it comes to monitoring plant growth, especially in the area of image-based plant

phenotyping research, where deep learning models have been shown to be more

effective than traditional machine learning models (Tong, et al., 2022).

Moreover, using deep learning models in plant growth monitoring can enhance

the accuracy and efficiency of plant growth monitoring technologies, especially in the

field of precision agriculture. It helps farmers to accurately predict crop yields, identify

plant disease and determine the health of their plants, which enables them to make

informed decisions regarding crop management and disease control. Development

models created through deep learning can help researchers in gaining a clearer

understanding of the factors influencing plant growth. This could also assist the

researcher in creating a more efficient method for plant breeding and crop management.

5

Among deep learning networks, convolutional neural networks are more

effective at capturing hierarchical patterns in image and video data due to the use of

shared weights in convolution kernels. Convolutional neural networks are already used

in agriculture for a variety of tasks, such as identifying diseases, classifying land cover,

counting fruits, and identifying weeds through image analysis (Tong, et al., 2022). As

of now, there have been 23 studies focused on deep learning applications for

monitoring plant growth, released from 2017 to 2021, with most of them coming out

in 2020 (Tong, et al., 2022). These researches show that the use of deep learning in

monitoring plant growth is a new and developing area.

2.2 Object Detection with Convolution Neural Network (CNN)

CNN is a form of feed-forward neural network that uses weight sharing which is

commonly used in object detection tasks. Convolution is a mathematical operation that

demonstrates the overlapping of two functions by multiplying them together. The CNN

architecture for object detection includes convolving the image with an activation

function to produce feature maps, which are further processed with pooling layers to

simplify spatial complexity and form abstracted feature maps. Furthermore, the feature

maps are operated on by fully connected layers to produce an image recognition output,

indicating the certainty of the predicted class labels (Pathak, et al., 2018). The layered

architecture of CNN for object detection is shown in Figure 2.1. The CNN uses

different types of pooling layers to enhance efficiency and decrease parameters, these

layers are translation-invariant and process each patch within the chosen map.

Figure 2.1: Use of CNN in Object Detection

Input Image

Convolution

Feature Maps Feature Maps

Subsampling

Feature Maps

Fully Connected

Output Cactus
Ginger Plant
Roses

6

2.3 YOLO (You Only Look Once)

2.3.1 YOLO’s Introduction

YOLO is an object detection algorithm introduced by Redmon et al. (2016). YOLO is

currently the most popular real-time object detector due to its lightweight network

architecture, effective feature fusion methods and accurate detection results, The most

widely accepted algorithms are YOLOv5 and YOLOv7 in terms of current usage (Lou,

et al., 2023). The YOLOv5 uses deep learning technology for real-time and effective

object detection, with improvements in model structure, training strategy, and overall

performance. Unlike region proposal networks (R-CNN) or sliding windows to

identify potential objects in an image, YOLO changed the approach to a single

regression task, making predictions for bounding boxes and class probabilities directly

from full images in one evaluation. However, it still has some limitations in detecting

small object and dense object detection, along with complex situations such as

occlusion and pose change.

YOLO uses Convolutional Neural Networks (CNNs) as the core of its

architecture. YOLO is built on a CNN that processes the input image in a single pass

to detect objects and their bounding boxes. The CNN extracts feature from the image,

which are then used to predict the presence of objects, their locations, and class

probabilities. The architecture of YOLO typically includes multiple convolutional

layers followed by fully connected layers. The convolutional layers are responsible for

feature extraction, where filters learn to detect patterns such as edges, textures, and

shapes that are indicative of objects in the image. The fully connected layers then

interpret these features to output the final predictions for object detection.

2.3.2 Evolution of YOLO Versions

Since it was first launched, YOLO has gone through multiple versions, with

each one enhancing its predecessor's accuracy, speed, and ease of use. YOLOv2

proposed method by implementing methods such as batch normalization, anchor boxes,

7

and enhancing the feature extraction network. This help improved performance on

different benchmarks compare to its predecessor. The architecture of YOLOv3 and

YOLOv4 was improved by adding deeper networks, residual connections, and

enhanced loss functions.

YOLOv5 and YOLOv8 which is not developed by the original creators, is

developed to enhance the algorithm for improved detection speeds and accuracy.

Additionally, these versions have increased YOLO's accessibility by providing pre-

trained models and user-friendly frameworks to increasing its usability in different

fields (Hussain, 2023).

YOLOv7 proposed a novel training strategy, Trainable Bag of Freebies (TBoF),

which significantly improves the accuracy and generalization ability of the object

detector. However, it requires more computational resources and training time to

achieve the best performance, and its performance can degrade in some cases due to

the training data, model structure, and hyperparameters (Lou, et al., 2023).

YOLOv8 uses Anchor-Free instead of Anchor-Base for improved performance

which allows for dynamic “TaskAlignedAssigner” for matching strategy. It calculates

the alignment degree of Anchor-level for each instance using Equation (). The

algorithm selects (m) anchors with the maximum value (t) in each instance as positive

samples and selects the other anchors as negative samples, then trains through the loss

function. After these improvements, YOLOv8 is 1% more accurate than YOLOv5,

making it the most accurate detector so far (Lou, et al., 2023).

𝑡𝑡 = 𝑠𝑠𝛼𝛼 × 𝑢𝑢𝛽𝛽 (2. 1)

where

𝑠𝑠 = classification score

𝑢𝑢 = IOU value

𝛼𝛼 and 𝛽𝛽 = weight hyperparameters

8

2.3.3 YOLOv8 Object Detection Mechanism

YOLOv8, published in 2023, combines the best of many real-time object

detectors, adopting the idea of CSP from YOLOv5 (Wang, et al., 2020), feature fusion

method (PANFPN) (Lin, et al., 2017), and SPPF module. Its main improvements

include a brand new SOTA model, a detection head part that uses the current popular

method of separating the classification and detection heads, and the use of BCE loss

for classification and CIOU loss + DFL for regression (Lou, et al., 2023). The network

quickly focused on the location distribution close to the object location, with

probability density as close as possible to that the location, as shown in Equation ().

YOLOv8 is also extensible and can support previous versions of YOLO, making it

easy to compare the performance of different versions.

𝐷𝐷𝐷𝐷𝐿𝐿(𝑆𝑆𝑖𝑖,𝑆𝑆𝑖𝑖+1) = −�(𝑦𝑦𝑖𝑖+1 − 𝑦𝑦) log(𝑠𝑠𝑖𝑖) + (𝑦𝑦 − 𝑦𝑦𝑖𝑖) log(𝑠𝑠𝑖𝑖+1)� (2. 2)

where

𝑠𝑠𝑖𝑖 = output of sigmod for the network

𝑦𝑦𝑖𝑖and 𝑦𝑦𝑖𝑖+1 = interval orders

𝑦𝑦 = label

2.3.4 YOLOv8 Architecture and Segmentation Mechanism

While YOLO is primarily an object detection algorithm, its architecture can be

adapted for segmentation tasks with YOLOv8. The segmentation classifies each pixel

in the image, which is more complex than simply detecting objects and drawing

bounding boxes around them. The architecture of YOLOv8 combine the convolutional

neural networks (CNNs) and feature pyramid networks to capture both global context

and fine-grained details. This multi-scale feature extraction process allows YOLOv8

identifying accurately object boundaries and generating high-quality segmentation

mask (Terven, et al., 2024).

9

YOLOv8 implements segmentation by integrating a dedicated segmentation

header into its architecture. This head is responsible for predicting masks for each

detected object and refining the bounding box predictions to include detailed shape

and area information. This simultaneous prediction of masks and bounding boxes

allows YOLOv8 callable in real-time processing while providing a more

comprehensive analysis of the scene (Wu, et al., 2024).

2.3.5 Advantages of YOLOv8 Segmentation

One of the standout features of YOLOv8 Segmentation is its ability to process images

and videos in real-time. This capability is suitable for applications that require

immediate feedback, such as autonomous vehicles, surveillance systems, and robotics.

The model's architecture is optimized to ensure rapid detection and segmentation

without sacrificing accuracy. As it excels in accurately detecting and identifying

objects make it suitable use in complex scenarios involving small objects or occlusions,

The YOLOv8 segmentation model has been successfully adapted for

applications ranging from agricultural monitoring to medical diagnostics and industrial

inspections. In the field of agriculture, the YOLOv8-seg model, enhanced with Ghost

and BiFPN modules, achieved an 86.4% Dice score in segmenting plant leaves, which

outperforming existing methods (Wang, et al., 2024). Additionally, A modified

YOLOv8-segANDcal model improved detection and segmentation of soybean

radicles by 2% and 1% in mAP, facilitating rapid crop variety selection (Wu, et al.,

2024).

In the field of medical Imaging, YOLOv8 demonstrated high efficacy in

segmenting polyps in colonoscopy images, achieving a Dice score of 0.919, which aids

in colorectal cancer diagnosis (Sandro Luis de, et al., 2024). While the YOLOv8 used

in corrosion detection, YOLOv8's single-pass detection method allows for efficient

corrosion segmentation in industrial imagery, enhancing maintenance strategies (R S,

et al., 2024).

10

2.4 Faster R-CNN

Faster R-CNN is an object detection model introduced by Ren et al. (2017). Faster R-

CNN an extension of the R-CNN (Region-based Convolutional Neural Network)

framework and it is aiming to improve the detection speed without compromising

accuracy. Faster R-CNN has been used in different sectors, such as agriculture for

detecting and harvesting fruits with deep learning (C, et al., 2022), as well as in Internet

of Vehicles (loV) for instant object detection in intelligent transportation systems

(Zineb, et al., 2023). It has also been evaluated in systematic literature reviews while

comparing it with other object detection algorithms like YOLO (Rashid & Fadzil,

2023).

Since Faster R-CNN has achieved near real-time processing speed with the

used of very deep networks. However, the computational bottleneck problem come out

from the time spent on generating region proposals which is an important in state-of-

the-art detection systems. In order to solve this, there are difference method explored

to leverage deep networks for the localization of class-specific of class-agnostic

bounding boxes. One of the methods involves using the Multi-Box methods where a

regions proposals are generated directly from the network’s last fully connected (fc)

layer (Erhan, et al., 2013). This help predict multiple bounding boxes simultaneously

and is used for object detection within the Faster R-CNN framework. Additionally,

another method that achieves high accuracy in real-time object detection with high

processing speed is the YOLO (You Only Look Once) algorithm. As one of the YOLO

algorithm, YOLOv5, stands out for its high speed and accuracy, hitting 69 frames per

second on the COCO dataset and maintaining a mean Average Precision (67%)

equivalent to SE-YOLOv3 (Reswara , et al., 2023).

2.5 Image enhancement

Due to variation to the appearance of the plants due to environmental factors such as

soil type and condition, exposure to sunlight, and water availability. This causes the

images having shadows or illumination effect and affect the performance of leaf region

11

identification. Therefore, improving images is an important initial stage in many tasks,

such as extracting plant leaves. The methodology of enchanting an image is shown in

Figure 2.2.

Figure 2.2: Process of Image Enhancement

In object extraction, image enhancement is required to minimize the impact of

shadows and illumination on the identification of target regions. The V (Value) plane

in the corresponding HSV (Hue, Saturation, Value) image represents the brightness of

an image (Ganesan, et al., 2014). Pre-processing the V plane in the HSV colour space

can help decrease the illumination effect, ultimately enhancing the segmentation

accuracy.

The suggested approach starts by transforming the plant's RGB image into an

HSV image. Next, the V plane is analysed to determine the skewness (𝑆𝑆𝑘𝑘) using the

Equation and the probability distribution of the V plane. If the skewness is positive,

meaning there is shadow, the V plane needs to be enhanced to eliminate the

illumination effect (Praveen & Domnic, 2019). On the flip side, an image with

excessive brightness will result in a negative skewness value, showing that the

distribution is leaning towards the right.

𝑆𝑆𝑘𝑘 =
𝐸𝐸�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜇𝜇�

3

𝜎𝜎3
(2. 3)

where

𝑥𝑥𝑖𝑖𝑖𝑖 = value of (𝑖𝑖, 𝑗𝑗)𝑡𝑡ℎ pixel in V plan of HSV image before image enchancement

𝐸𝐸 = expected value

𝜇𝜇 = mean value

Input RGB image Convert RGB image to
HSV image Enhance image

12

𝜎𝜎 = standard deviation

In statistical modelling of contrast enhancement, the statistical properties of an

image can be analytically calculated using the probability distribution function of an

image (Sahar Jorjandi et al., 2021). The probability distribution is a function that gives

all the possible values and likelihoods of a random variable within a range. In the

proposed work, the distribution of brightness (V plane) is assumed to be in a Weibull

distribution. To remove the over brightness or shadow effect in the image, the

skewness of the brightness distribution should be made symmetric to allows for the

removal of over brightness or shadow effect in the image, further enhancing the image

and improving the segmentation accuracy.

2.6 Leaf Segmenting

Segmenting plants is an important part of examining plant characteristics like height,

leaf area, colour, texture, and shape. It required isolating the plant area from the

surrounding background within an image. There are different image segmentation

techniques such as thresholding, edge detection, and segmentation methods based on

machine learning can accomplish this (Manjula, 2017).

Thresholding is a straightforward technique where a threshold value is used to

differentiate the plant area from the background by identify the intensity values of the

pixels (Al-amri, et al., 2010). This technique works best for photos with distinct

contrast between the plant and the background. Plant segmentation can also use edge

detection as a technique. This process includes identifying the plant region's edges in

the image and distinguishing it from the background. This technique is beneficial for

images with clearly defined boundaries in the plant area (Salman, 2006).

Plant segmentation can also be accomplished using segmentation methods

based on machine learning. These techniques require the machine learning model to

be trained on a dataset of images where plant regions are labelled. The model can be

13

utilized to separate new images by forecasting the area of the plant using the image's

characteristics (Lee, et al., 2018).

After segmenting the plant region, different characteristics can be extracted in

order to analyse the plant. Plant height, leaf area, colour, texture, and shape are some

of the characteristics mentioned. Height of plants can be assessed through image

processing methods like distance transformation or edge detection. Contour analysis

and area calculation methods can be used to determine leaf area. Characterizing the

colour distribution of the plant can involve extracting colour features like mean colour,

colour histograms, or colour moments. Texture features such as Haralick texture

features, Gabor features, and Local Binary Patterns (LBP) can be calculated to

represent the texture patterns found in the plant areas (Porebski, et al., 2008)

2.7 Leaf extraction and classification

Leaf extraction and classification are fundamental tasks in plant species identification

such as agriculture, botany, and environmental science. Leaf extraction and

classification involve the use of different feature extraction methods to classify the

species based on different leaf features such as including shape, texture and venation.

This literature review explores methods and techniques employed in leaf extraction,

particularly focusing on shape features and graph-based algorithms for segmentation.

Shape features are commonly used in plant leaf classification. a study show

that leaf shape features have been chosen and tested in almost 62.5% of plant

identification studies, much exceeding the use of other features. This is because they

are the easiest and most obvious features for distinguishing species, particularly for

non-botanists who have limited knowledge of plant characters (Lee et al., 2017).

However, the performance of these approaches is highly dependent on a chosen set of

hand-engineered features, which are liable to change with different leaf data and

feature extraction techniques, confounding the search for an effective subset of

features to represent leaf samples in species recognition studies.

14

One of the methods involves using the enchanted HSV (Hue, Saturation, Value)

images for leaf segmentation (Praveen & Domnic, 2019). The process involves

segmenting the leaf region based on the V plane while maintaining robustness to

reflections and shadows. A graph-based algorithm is employed for segmentation,

enhancing accuracy while minimizing computational complexity. The algorithm

constructs a graph representing the enhanced HSV image, with nodes representing

pixels and edges defining relationships between neighbouring pixels or between pixels

and source/terminal nodes.

Edge costs are determined based on prediction parameters derived from pixel

values in the HSV image (Lee, et al., 2017). These costs guide the segmentation

process, distinguishing leaf pixels from background or non-leaf pixels. The

segmentation algorithm iteratively explores the graph to identify leaf regions,

facilitated by search trees originating from source and terminal nodes

Furthermore, post-segmentation refinement is conducted to eliminate non-leaf

regions such as light reflections, yellow soil, and mosses. Conversion to RGB, CMYK,

and Lab colour spaces enables effective discrimination between leaf and non-leaf

elements (Lee, et al., 2017). Threshold values are empirically determined for each

dataset, ensuring accurate removal of undesirable elements from the identified leaf

regions.

15

3 METHODOLOGY

3.1 Introduction

The methodology in integrating deep learning algorithm to monitor the ginger plants

involves multiple steps which is necessary for obtaining the precise and effective

detection outcomes. The process is shown as below:

Figure 3.1: Process Flow of Detecting the Ginger Plant

Planning

•Hardware and
Software
Required

•Project
Timeline

Training

•Dataset
Preparation

•Model
Configuration

•Training the
Model

Implementation

• Inference on
New Images

• Model
Deployment

Analysis

• Performance
Analysis

• Post-Training
Refinements

16

3.2 Planning

3.2.1 Hardware Required

3.2.1.1 Image Capture

Lenovo 300 FHD webcam will be used to capture images for the dataset. This webcam

provides full HD resolution to ensure high-quality input data for the training process.

3.2.1.2 Inference Hardware

The local machine should have a GPU compatible with CUDA 11.7 to enable

accelerated inference for running models like YOLOv8 and the depth estimation

model efficiently.

3.2.2 Software Required

3.2.2.1 Training Environment

Google Colab will be used for training model. Google Colab offers the advantage of

using high-performance GPUs in the cloud, which is ideal for deep learning tasks.

3.2.2.2 Inference Environment

The local environment will use Python 3.11.7, which is compatible with the latest deep

learning libraries. The CUDA 11.7 should also be installed to ensures GPU

acceleration for running deep learning models, which is crucial for real-time inference.

17

3.2.2.3 Model Required in The System

• YOLOv8 Segmentation for Ginger Plant Classification: The YOLOv8 model

will be trained and utilized for segmentation tasks to classify whether a plant is a

ginger plant.

• YOLOv8 Segmentation for Healthy and Unhealthy Ginger Plant Leaves

Classification: Another YOLOv8 model will be trained deployed for segmenting

and classifying ginger plant leaves as either healthy or unhealthy.

• Depth Estimation Model: The Intel DPT-Large model will be used for estimating

the depth of the plants.

3.2.3 Project Timeline & Resource allocation

The project will begin with data collection, where images will be captured using the

webcam to create datasets for training the YOLOv8 model. Once the dataset is ready,

the model training phase will start using Google Colab for training because Google

Colab provides GPU resources. The training will involve running multiple epochs with

evaluations to monitor and optimize the model’s performance. Following the

completion of training, the project will transition into setting up the local inference

environment. This setup will involve installing and configuring all necessary software

dependencies to ensure success of inference process.

In terms of resource allocation, significant time will be dedicated to capturing

and annotating the dataset, as this step is critical to the overall success of the project.

The training phase will rely on Google Colab’s GPU resources to accelerate the

process and achieve faster results. For the inference and testing phase, the local

machine will be optimized with the CUDA configuration to enable faster processing

and testing of the model.

18

Table 3.1: Gantt Chart for FYP1

Task
Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Project Title

Decision

Introduction

Review on

Literature

Methodology

Planning

Table 3.2: Gantt Chart for FYP2

Task
Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Develop Ginger

Plant Detection

Develop Plant

Leaf Detection

Develop Depth

Estimation Model

Evaluate Model

Organize Results

Discussion on

Results

Conclusion and

Recommendation

19

3.3 Training

3.3.1 Dataset Preparation for YOLOv8 model training

The training process began with the preparation of the dataset. Images were captured

using the webcam to create datasets. These images were then annotated using tools

“Roboflow”, marking each image for segmentation and object detection to identify the

ginger plants and their leaves accurately. To enhance the model’s ability to increase

the diversity of the dataset and help the model learn more robust features, the data

augmentation techniques were applied such as transformations, rotation, scaling,

flipping, and colour adjustments.

Two YOLOv8 models were trained for different purposes. The first model was

trained to detect and classify whether a plant is a ginger plant or not, while the second

model was trained to detect the leaves of the ginger plant and classify them as either

healthy or unhealthy. During the training phase of these two YOLO models, key

hyperparameters such as learning rate, batch size, and the number of epochs were tuned

to optimize the model's performance. An early stopping mechanism was implemented

to prevent overfitting, ensuring the model did not learn to perform well only on the

training data. The table below show the hyperparameters use in training the plant and

leaf segmentation.

Table 3.3: Hyperparameters use in Training Phase

Task Segment

Mode Train

Pretrained weight yolov8n-seg

Device Google Colab’s GPU

Epochs 40

Learning Rate 0.001

Batch Size 16

Imgsz (Image Size) 640

20

Training was conducted using Google Colab’s GPU resources, which provided

the necessary computational power. The YOLOv8 model underwent multiple epochs

of training, with its performance evaluated at each stage. Throughout this process,

model checkpoints were saved to allow the best-performing model can be retrieved if

needed.

A portion of the dataset was reserved as a validation set and test set, which was

used to evaluate the model’s performance throughout the training process. After

training, the model was tested on a separate test set to assess its effectiveness, with

metrics such as Intersection over Union (IoU) and accuracy calculated to evaluate

segmentation and detection performance.

Figure 3.2: Dataset of Plant Detection Model

0 100 200 300 400 500 600

Ginger

Other

Dataset of Plant Detection Model

Traning Valid Test

21

Figure 3.3: Dataset of Leaf Detection Model

3.3.2 Dataset Preparation for Depth Estimation Model Training

To estimate the depth of the ginger plants in order to calculating their height, the Intel

DPT-Large model was integrated into the workflow. The dataset for training the depth

estimation model was carefully curated to ensure accurate and reliable depth

predictions. The images were captured using the Lenovo 300 FHD webcam, focusing

on different distances to capture the full range of depth variations in the ginger plants.

To create the ground truth for depth estimation, the dataset was annotated with

depth information corresponding to each image. This annotation process involved

using a combination of sensor data and manual labelling to accurately represent the

distance of the plants from the camera. The data was then pre-processed to match the

input requirements of the Intel DPT-Large model, including resizing, normalization,

and augmentation to improve the model’s ability to generalize.

The Intel DPT-Large model was chosen for its ability to deliver high-quality

depth predictions, particularly in complex environments. During training, the model

was optimized using a custom loss function that minimized the difference between the

predicted and actual depth values. Hyperparameters such as learning rate, batch size,

0 500 1000 1500 2000

Healthy Leaves

Nutritional-deficiency

Dataset of Leaf Detection Model

Traning Valid Test

22

and the number of epochs were carefully tuned to achieve the best possible

performance.

The training process was conducted using powerful computational resources to

handle the large and complex dataset. As with the YOLOv8 model training, 20% of

the dataset was reserved as a validation set to monitor the model’s performance

throughout the training process. This validation ensured that the model was learning

effectively and that any issues such as overfitting were addressed promptly.

After the initial training phase, the model’s performance was evaluated using

key metrics such as mean absolute error (MAE) and root mean square error (RMSE),

which provided insights into the accuracy of the depth predictions. Based on these

results, the model was fine-tuned by adjusting hyperparameters and retraining with an

augmented dataset. This fine-tuning aimed to enhance the model’s ability to accurately

estimate the depth of ginger plants under various conditions, ensuring its effectiveness

in real-world applications.

3.4 Implementation

3.4.1 Inference on New Images

Following the evaluation, the models were deployed for inference on new images. The

inference process involved applying the trained YOLOv8 model to detect and segment

ginger plants and their leaves in unseen data. The depth estimation model was also

used to measure the distance of the detected plants from the camera, specifically

focusing on the height and area calculation of the ginger plant’s leaves.

The implementation was tested across various scenarios to ensure the models

performed well under different conditions. The results from these tests were recorded

and analysed to determine the consistency and reliability of the models in practical

applications.

23

3.4.2 Model Implementation

This section describes the real-time monitoring system and detection system of the

deployed system. The Figure 3.4 shows the overview of implementation phase of the

system.

Figure 3.4: Overview of Model Implementation Phase

The trained model was deployed locally using Python 3.11.7 and CUDA 11.7

for real-time inference. The inference process is optimized by adjusting the batch sizes,

image resolution, and any post-processing that the system can handle real-time input

from the webcam.

Two trained YOLOv8 models and depth estimation were deployed, one for

detecting the ginger plant and the other for segmenting its leaves. Additionally, the

depth estimation model was deployed to calculate the height of detected ginger plant

24

and its leaves. To enhance performance, the inference process was optimized by

adjusting batch sizes, image resolution, and post-processing steps.

3.5 Analysis

3.5.1 Performance Analysis

In the Analysis phase, the trained YOLOv8 model's performance will be examined by

comparing the evaluation metrics such as precision, recall and mAP against established

benchmarks. This comparison highlighted the strengths and weaknesses of the

YOLOv8 model in detecting and segmenting ginger plants. The mathematical formula

for these metrics is provided.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐷𝐷𝐹𝐹 + 𝐷𝐷𝑇𝑇 + 𝑇𝑇𝐹𝐹
(3. 1)

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐷𝐷𝑇𝑇
(3. 2)

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐸𝐸𝐹𝐹
(3. 3)

𝐷𝐷1 𝑠𝑠𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 =
2 × 𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅
𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅

(3. 4)

where

𝑇𝑇𝑇𝑇 = True positive

𝑇𝑇𝐹𝐹 = True negative

𝐷𝐷𝑇𝑇 = False positive

𝐷𝐷𝐹𝐹 = False negative

25

𝑚𝑚𝐴𝐴𝑇𝑇 =
1
𝐹𝐹
�𝑇𝑇𝚤𝚤�
𝑁𝑁

𝑖𝑖=1

(3. 5)

where

𝑇𝑇𝚤𝚤� = Average precision for a given sample 𝐹𝐹

𝐹𝐹 = Sample

Furthermore, multiple curves will be plotted to determine the selection on best

threshold confidence. The F1-confidence curve plots the F1 score, the harmonic mean

of precision and recall, against different confidence thresholds. The F1 score is a single

metric that balances precision and recall to measure a model's performance. The

precision-confidence curve shows how the precision changes with confidence.

Precision measures the proportion of true positive detections among all detections

made by the model. This helps obtain the threshold between making correct positive

predictions and avoiding false positives.

The precision-recall curve is used to evaluate the model's effectiveness,

especially in cases of imbalanced datasets. The precision-recall curve plots precision

against recall for different confidence thresholds. Finally, the recall-confidence curve

shows how recall, or the model's ability to detect true positives, varies with confidence,

indicating how sensitive the model is to detecting objects as the threshold changes.

The recall-confidence curve shows how recall varies with the confidence threshold.

Recall measures the proportion of true positive detections among all actual positive

instances.

The accuracy of depth estimation was also compared with ground truth

measurements to assess the precision of the height and area calculations of the leaves.

Mean Absolute Error (MAE) is calculated as:

𝑀𝑀𝐴𝐴𝐸𝐸 =
1
𝑃𝑃
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�|
𝑛𝑛

𝑖𝑖=1

(3. 6)

The Root Mean Squared Error (RMSE) is given by

26

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �
1
𝑃𝑃
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑛𝑛

𝑖𝑖=1

(3. 7)

where

𝑦𝑦𝑖𝑖 = actual depth

𝑦𝑦𝚤𝚤� = predicted depth

𝑃𝑃 = number of samples

3.6 Cost Estimation

This section gives the project's cost estimation to demonstrate the project's budget and

ensure that there is enough funding for the system's development. The table provided

indicates the total cost estimate.

Table 3.4: Cost Estimation of Project Materials

Item Cost (RM)

Hardware

 Lenovo 300 FHD webcam 170.00

Material

 Ginger Plants 25.00

 Gingers 10.00

 Soil 10.00

 Pot 20.00

Total Estimated Cost 235.00

27

4 RESULTS AND DISCUSSIONS

4.1 System Interface Results

In this section, the result of the created system was discussed. The evaluation of

YOLOv8's results and performance were conducted. During this phase, the system that

was developed was evaluated with various ginger plants. The figure below shows the

real-time plant monitoring system interface.

Figure 4.1: Real-Time Plant Monitoring System Interface

28

Figure 4.2: Real-Time Plant Monitoring System Interface

Figure 4.3: Real-Time Plant Monitoring System Interface

29

4.2 Ginger Plant Detection Using YOLOv8 Model

The first model was trained using YOLOv8 for ginger plant detection. This model

segment ginger plants from the background and other types of plants, labelling the

detect ginger plant as "ginger”, while labelling other plant as “other”. The

performance of the model was evaluated using metrics such as Precision, Recall, and

F1 score.

4.2.1 Example of Ginger Plant Detection Results

The result of training the plant detection model was shown in Figure 4.4. In the figure,

blue bounding boxes indicate detected ginger plants, while cyan bounding boxes

correspond to other plants.

Figure 4.4: Labels in Training Process of Plants Detection

30

Table 4.1: Example Testing Results of YOLOv8 Segmentation Ginger Plant

Detection Model

No Original Image Plot Extracted Region

1

2

3

31

4.2.2 Ginger Plant Detection Using YOLOv8 Model Performance

To evaluate the performance of the model, the precision, recall, and F1-score were

calculated based on the detected and actual values and these metrics were plotted

against each other to provide the accuracy of the model.

Figure 4.5: F1-Confidence Curve

Based on the curve in Figure 4.5, the model achieves an F1 score of 0.79 at a

confidence threshold of 0.701 across all classes, indicating that the model maintains a

strong balance between precision and recall when making predictions at this

confidence level. Since the F1-confidence curve for ginger plants and other plants

follows the overall curve, the model's average performance across all classes is

consistent in detecting and classifying different plants. Therefore, the consistent

performance across classes is a positive indicator that proves that it can correctly

identify ginger plants. However, the curve shows that the trend declines sharply after

the peak because beyond this threshold, the F1 score decreases as the model becomes

more conservative, which may miss some true positives (ginger plants) in favor of

increasing precision.

32

 Figure 4.6: Precision-Confidence Curve

Based the curve in Figure 4.6, the model achieves a perfect precision score of

1.00 at a confidence threshold of 0.972 across all classes, indicating the model is highly

confident about its predictions in detecting and classify the plant. It also indicates that

all the predicted instances of plants match to the actual instances of plant, resulting it

in an almost 100% accuracy. However, this high precision may cause the model only

makes predictions when it is very high confidence, because at elevated confidence

levels does not necessarily translate to overall effectiveness. While high precision is

desirable, but it’s also important to balance this with recall, especially in agricultural

applications where missing ginger plants or misclassifying other plants will causing

consequences such as reduction losses.

33

Figure 4.7: Precision-Recall Curve

Based on the curve in Figure 4.7, it provides how the model's performance

compared to the ROC curve. A precision-recall score of 0.777 for detecting ginger

plants (ginger) suggests that the model is effective in identifying ginger plants, with a

good balance between precision and recall. The precision-recall score for detecting

other plants (other) is slightly higher at 0.781, indicating that the model performs

comparably well in detecting other plant types. The mean Average Precision (mAP) at

0.5 for all classes is at 0.79, indicating that the model has strong performance in plant

detection.

34

Figure 4.8 Recall-Confidence Curve

 Based on the curve in the Figure 4.8, the model achieves a recall score of 0.89

across all classes at a confidence level of 0.000. This suggests that the model can

identify a high proportion of actual ginger plants and other plants when it makes

predictions. However, the low confidence threshold indicates that the model may lead

to many false positives.

This curve shows how much recall is sacrificed when the model's confidence

level increases. A steep decline in recall at a certain threshold indicates that beyond

that threshold confidence level would reduce the model's ability to detect true positives.

While a high recall score is beneficial, it is also required to analyse the trade-off

between precision and recall. A model that predicts too many plants at low confidence

may overwhelm users with false positives, leading to inefficiencies in agricultural

monitoring. Given the observed decline in recall around the 0.8 confidence level,

selecting the confidence at this level will be an effective balance that will predict and

classify the plant accurately while minimizing false positives.

35

4.3 Leaf Detection and Health Classification Using YOLOv8

The second model, also based on YOLOv8, was trained to detect leaves on the ginger

plant and classify them as healthy or unhealthy. The detect leaves while labelling

healthy leaves as "Healthy" and classify unhealthy leaves to “Nutritional-deficiency”.

4.3.1 Example of Leaf Detection and Health Classification Results

The result of training the plant detection model was shown in Figure 4.9. In the figure,

blue bounding boxes indicate detected healthy leaves, while cyan bounding boxes

correspond to unhealthy leaves.

Figure 4.9: Labels in Training Process of Leaves Detection

36

Table 4.2: Example Testing Results of YOLOv8 Leaves Detection Model

No Original Image Plot Extracted Region

1

2

3

37

4.3.2 Leaf Detection and Health Classification Using YOLOv8 Performance

Figure 4.10: F1-Confidence Curve

Based on the curve in Figure 4.10, the curve shows that healthy leaves have a

higher peak compared to unhealthy leaves. The model is more effective at detecting

and classifying healthy leaves, as the curve shows a higher F1 score in detecting

healthy leaves. However, the lower peak for unhealthy leaves indicates that the model

is challenging in detecting and classifying the unhealthy leaves and leads to higher

rates of false negatives or false positives. The peak F1 score for all classes is 0.76 at a

confidence level of 0.496. Therefore, selecting this threshold will provide a good

balance across all classes.

38

 Figure 4.11: Precision-Confidence Curve

Based the curve in Figure 4.11, the model achieves a perfect precision score of

1.00 at a confidence threshold of 0.912 across all classes, indicating that when the

model is confident in its predictions, it is highly accurate in classifying leaves correctly.

At low confidence thresholds, the model will predict more objects, but some of these

predictions may be incorrect and reduce precision. While high precision is desirable,

it is essential to balance this with recall, particularly in agricultural applications where

missing unhealthy leaves could have significant consequences. The model's

performance at lower confidence levels should also be examined to ensure it can

identify unhealthy leaves effectively.

39

Figure 4.12: Precision-Recall Curve

Based on the curve in Figure 4.12, the higher precision and recall will have a

curve that is close to the top-right corner of the graph. The shape of the curve is

indicative of the model's performance, a steep drop-off indicates a point where

increasing recall significantly reduces precision, which may suggest that the model is

starting to predict more false positives. In detecting healthy leaves, the precision-recall

score is 0.894 which means that the model is more accurate in identifying healthy

leaves compared to detecting unhealthy leaves as the precision-recall score for

unhealthy leaves is 0.607. Therefore, the model is less reliable in detecting unhealthy

leaves, which could lead to missed opportunities for early intervention in crop

management. The mean Average Precision (mAP) at 0.5 for all classes is reported at

0.751, indicating a good overall performance. However, the significant difference in

scores between healthy and unhealthy leaves underscores the need for targeted

improvements in the model's training and evaluation processes.

40

Figure 4.13: Recall-Confidence Curve

Based on the curve in Figure 4.13, as the confidence threshold increases, recall

decreases because the model becomes more selective, potentially missing some true

positives. The recall confidence analysis shows that the model achieves a recall score

of 0.89 across all classes at a confidence level of 0.000, indicating that the model can

identify a high proportion of actual healthy and unhealthy leaves when it makes

predictions. However, if the confidence level is lower it will have a higher number of

false positives.

To decide on a threshold that ensures a high detection rate of the objects of

interest, selecting the confidence level when recall decreases steeply will be suitable.

Because A model that predicts too many healthy leaves at low confidence may

overwhelm users with false positives, leading to inefficiencies in agricultural

monitoring.

41

4.4 Leaf Health Status Classification

The Table 4.3 shows an example of leaf detection and classification. The green masks

indicate healthy leaves, while the red masks represent unhealthy leaves. The confusion

matrix is shown in Table 4.4.

Table 4.3: Example Images of Detected and Classified Leaves on a Ginger Plant.

No. Detected Image Plotted Image

1

2

Table 4.4: Leaf Health Status Confusion matrix

 Actual Healthy Leaves Actual Unhealthy Leaves

Predicted Healthy

Leaves

203 9

Predicted Unhealthy

Leaves

7 49

Based on the Table 4.4, metrics such as precision, recall, and F1-score for the

leaf classification model were calculated. The results of these metrics are summarized

in the Table 4.5.

Table 4.5: Leaf Health Status Confusion matrix

 Healthy Leaves Unhealthy Leaves

Accuracy 94.03 %

Precision 95.75 % 87.50 %

Recall 96.67 % 84.48 %

F1- Score 96.21 % 85.97 %

42

From the Table 4.5, the model achieved an overall accuracy of 94.03% for

detecting and classifying healthy and unhealthy leaves. However, the performance

metrics for classifying unhealthy leaves, specifically precision, recall, and F1-scoreare

below 90%. This indicates that the model's ability to classify unhealthy leaves is

comparatively weaker.

4.4.1 Leaf Count Per Plant and Health Status Classification

After detecting the leaves of each ginger plant using the trained YOLOv8 model, the

system counts the total number of leaves on each plant. The system uses a threshold

of 50% to classify the plant as healthy or unhealthy. If more than 50% of the leaves on

a plant are classified as unhealthy, the entire plant is marked as unhealthy. The formula

used to classify the plant's health is:

Health Status = �Unhealthy,
Unhealthy Leaves

Total Leaves
> 0.5

Healthy, otherwise
(4. 1)

During testing, it was observed that most ginger plants with clear visual signs of

disease had more than 60% unhealthy leaves, validating the threshold set for

classification. For example, in one test case, a ginger plant with 7 leaves, 5 of which

were classified as unhealthy, was accurately classified as unhealthy by the system.

43

4.5 Depth Estimation Model

The depth estimation model, Intel’s dpt-large, was deployed to calculate the distance

between the camera and the detected ginger plant. This model provides a depth map

for each image, which was used to determine the distance of the target from the camera.

This distance estimated is used for calculation of the plant's height and the area of its

leaves.

4.5.1 Distance Measurement Results

The Table 4.6 shown an example of the depth map generated from the test image. The

colour gradient indicates different depths, with brighter colours representing closer

distances and darker colours representing farther distance

Table 4.6: Example Depth Map of a Ginger Plant

Test Image Depth Map

Total 15 test images with different distance are tested. The distance

measurements for plants image with different distance are summarized in Table 4.3

and Figure 4.14. The distances were calculated from the depth map, providing how far

each plant is from the camera.

44

Table 4.7: Depth Estimation Result of Test Images

Actual distance,

𝒚𝒚𝒊𝒊 (cm)

Predicted distance,

𝒚𝒚𝒊𝒊� (cm)

Deviation (%)

50 48.60 2.81

60 60.83 1.38

70 72.23 3.18

80 82.45 3.06

90 88.20 2.00

100 104.38 4.38

110 110.12 0.11

120 113.05 5.79

130 121.52 6.52

140 130.64 6.69

150 135.23 9.85

160 137.04 14.35

170 131.89 22.42

180 137.43 23.65

190 142.44 25.03

Figure 4.14: Graph of Predicted Distance vs. Actual Distance

0
20
40
60
80

100
120
140
160

50 70 90 110 130 150 170 190

Pr
ed

ic
te

d
Di

st
an

ce
 (c

m
)

Actual Distance (cm)

Predicted Distance vs. Actual Distance

45

Figure 4.15: Graph of Percentage Deviation vs. Actual Distance

4.5.2 Model Performance

From the Figure 4.15, it is observed that for distances up to 110 cm, the deviation

between the calculated and actual distance is relatively low, with the deviation

percentage remaining below 10%. However, beyond 110 cm, the deviation increases

significantly, reaching as high as 25.03% at 190 cm. This indicates that the model

performs better at shorter distances but struggles with accuracy as the distance between

the plant and the camera increases.

The depth estimation model's accuracy was further evaluated by comparing the

predicted depths to ground truth measurements obtained through physical

measurement techniques. The Mean Absolute Error (MAE) and Root Mean Squared

Error (RMSE) were calculated to quantify the difference between the predicted and

actual depths.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

50 70 90 110 130 150 170 190 210

De
vi

at
io

n
(%

)

Actual Distance (cm)

Percentage Deviation vs. Actual Distance

46

The Mean Absolute Error (MAE) is calculated as:

𝑀𝑀𝐴𝐴𝐸𝐸 =
1
𝑃𝑃
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�|
𝑛𝑛

𝑖𝑖=1

(4. 2)

The Root Mean Squared Error (RMSE) is given by

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �
1
𝑃𝑃
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑛𝑛

𝑖𝑖=1

(4. 3)

where

𝑦𝑦𝑖𝑖 = actual depth

𝑦𝑦𝚤𝚤� = predicted depth

𝑃𝑃 = number of samples

For the depth estimation model, based on total 15 images with different

distance tested, an MAE of 13.60 cm and an RMSE of 20.84 cm were recorded,

indicating that there is a slight overestimation in the predicted depths.

The depth predictions were compared to ground truth measurements using

statistical analysis. The correlation coefficient 𝐴𝐴 between the predicted and actual

depths was calculated as:

𝐴𝐴 =
∑�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)�𝑦𝑦𝚤𝚤� − 𝑦𝑦����

�∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2 �∑�𝑦𝑦𝚤𝚤� − 𝑦𝑦���
2

(4. 4)

where

𝑦𝑦𝑖𝑖 = actual depth

𝑦𝑦𝚤𝚤� = predicted depth

𝑦𝑦� = mean actual depth

𝑦𝑦�� = mean predicted depth

47

The correlation coefficient was found to be 0.96 which is around 96%,

indicating a strong positive correlation between the model's predictions and the actual

measurements.

4.6 Plant Height and Leaf Area Calculations

The calculated distance between the camera and target is used to calculate the height

of the ginger plant and the area of each leaf. Before calculation of plant height and leaf

area, the pixel height and width of the image is calculated. The pixel height and width

of an image captured by the camera can be calculated using the field of view (FoV)

and the image's dimensions. The Field of View (FoV) is calculated as:

𝐷𝐷𝑃𝑃𝑉𝑉ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡 = 2 ∙ tan−1 �
𝑆𝑆ℎ
2𝑓𝑓
� (4. 5)

𝐷𝐷𝑃𝑃𝑉𝑉𝑤𝑤𝑖𝑖𝑤𝑤𝑡𝑡ℎ = 2 ∙ tan−1 �
𝑆𝑆𝑤𝑤
2𝑓𝑓
� (4. 6)

where

𝐷𝐷𝑃𝑃𝑉𝑉ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡 = vertical field of view, radians

𝐷𝐷𝑃𝑃𝑉𝑉𝑤𝑤𝑖𝑖𝑤𝑤𝑡𝑡ℎ = horizontal field of view, radians

𝑆𝑆ℎ = sensor height of the camera, mm

𝑓𝑓 = focal length of the camera, mm

The pixel height and pixel width of the image are calculated as:

𝑝𝑝𝑖𝑖,ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡 = tan �
𝐷𝐷𝑃𝑃𝑉𝑉ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡

2
� ∙

𝐷𝐷
𝐼𝐼𝑚𝑚𝐴𝐴𝐼𝐼𝑃𝑃 𝐻𝐻𝑃𝑃𝑖𝑖𝐼𝐼ℎ𝑡𝑡

(4. 7)

𝑝𝑝𝑖𝑖,𝑤𝑤𝑖𝑖𝑤𝑤𝑡𝑡ℎ = tan �
𝐷𝐷𝑃𝑃𝑉𝑉𝑤𝑤𝑖𝑖𝑤𝑤𝑡𝑡ℎ

2
� ∙

𝐷𝐷
𝐼𝐼𝑚𝑚𝐴𝐴𝐼𝐼𝑃𝑃 𝑊𝑊𝑖𝑖𝑊𝑊𝑡𝑡ℎ

(4. 8)

where

𝑝𝑝𝑖𝑖,ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡 = 𝑝𝑝ixel height corresponding to the image, cm

48

𝑝𝑝𝑖𝑖,𝑤𝑤𝑖𝑖𝑤𝑤𝑡𝑡ℎ = pixel width corresponding to the image, cm

𝐼𝐼𝑚𝑚𝐴𝐴𝐼𝐼𝑃𝑃 𝑊𝑊𝑖𝑖𝑊𝑊𝑡𝑡ℎ = width of the image, pixels

𝐼𝐼𝑚𝑚𝐴𝐴𝐼𝐼𝑃𝑃 𝐻𝐻𝑃𝑃𝑖𝑖𝐼𝐼ℎ𝑡𝑡 = height of the image, pixels

𝐷𝐷 = distance from the camera to the object, cm

By using these formulas discussed, the actual height of any object in the image

plane can be determined. Therefore, the formula to calculate the actual height of the

ginger plant is provided below. The observed height of the target in pixels is extracted

from the plant detection model discussed in 4.2, which uses the top and the bottom

coordinates of the bounding box generated from the plant detection model.

𝐻𝐻 = ℎ × 𝑝𝑝𝑖𝑖,ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡 (4. 9)

where

𝐻𝐻 = actual height of target, cm

ℎ = observed height of the target, pixels

As the total area covered by a pixel in the real world can be derived from the

product of the pixel height and pixel width, the model discussed in Section 4.3, can

segment the leaf from the provided image. Therefore, the segmented leaf can be used

to calculate the leaf area, which represents the observed area of the target in pixels 𝐴𝐴.

For leaf area estimation, the area 𝐴𝐴 was calculated using the following formula:

𝐴𝐴 = 𝐴𝐴 × �𝑝𝑝𝑖𝑖,𝑤𝑤𝑖𝑖𝑤𝑤𝑡𝑡ℎ ∙ 𝑝𝑝𝑖𝑖,ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡� (4. 10)

where

𝐴𝐴 = actual area of target, cm2

𝐴𝐴 = observed area of the target, pixels

49

4.6.1 Example Calculation of Plant Height and Leaf Area

By reusing the images used to detect the distance between the target and the camera,

as described in section 4.5.1, the calculated and actual plant heights are compared in

the table below.

Table 4.8: Comparison Between Calculated and Actual Plant Height

Actual

distance (cm)

Predicted

distance (cm)

Actual

Height (cm)

Calculated

height (cm)

Deviation

(%)

50 48.60 22.00 21.34 3.00

60 60.83 22.00 25.42 15.56

70 72.23 22.00 25.03 13.78

80 82.45 22.00 23.33 6.04

90 88.20 22.00 22.45 2.02

100 104.38 22.00 22.78 3.56

110 110.12 22.00 22.04 0.19

120 113.05 22.00 19.59 10.96

130 121.52 22.00 19.17 12.86

140 130.64 22.00 19.87 9.70

150 135.23 22.00 17.49 20.52

160 137.04 22.00 17.37 21.06

170 131.89 22.00 14.19 35.50

180 137.43 22.00 14.36 34.73

190 142.44 22.00 14.22 35.37

50

Figure 4.16: Graph of Calculated Height and Actual Height vs. Actual Distance

Figure 4.17: Graph of Percentage Deviation vs. Actual Distance

From the Figure 4.17, it is observed that when distances greater than 150 cm,

the percentage deviation is greater than 20%. This indicates that the model performs

better at shorter distances but struggles with accuracy as the distance between the plant

and the camera increases.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

50 100 150 200

He
ig

ht
 (c

m
)

Actual Distance (cm)

Caculated Height & Actual Height vs. Actual Distance

Calculated Height

Actual Height

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

50 70 90 110 130 150 170 190

De
vi

at
io

n
(%

)

Actual Distance (cm)

Percentage Deviation vs. Actual Distance

51

The area of the leaves was calculated using the segmentation masks provided

by the YOLOv8 model. However, unlike plant height, leaf area cannot be directly

compared with an actual measurement in the field, as it is not feasible to manually

measure the surface area of leaves in the same manner. Therefore, the calculated leaf

area is served as relative measures to comparing the sizes of different leaves within the

dataset or monitoring changes in leaf size over time. For example, the calculated leave

can be use as part of disease progression or growth tracking.

4.7 Challenges and Limitation

One of the challenges encountered was the model’s difficulty in detecting the plants

and its leaves that were partially blocked by other objects. Additionally, the model

shown a decrease in accuracy for far objects, as the disparity between the camera's

focal length and the depth made it challenging for the model to estimate accurately.

This limitation suggests that the model may require further fine-tuning or the

integration of additional sensors such as LIDAR for more reliable depth estimation.

52

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this project, the objectives were met through the developed of integrated system

combining image processing algorithms and deep learning techniques to monitor

growth stage of ginger plants. A YOLOv8-based model was designed and trained to

detect and classify ginger plants. Additionally, another YOLOv8 model was developed

to detect and classify ginger leaves based on their health status. The addition of a depth

estimation model was used for calculation of plant height and leaf area

The YOLOv8 models trained for this task has shown high accuracy and

efficiency, making it suitable for real-time agricultural monitoring applications.

Although there are minor differences between theoretical calculations and simulation

results due to factors such as environmental noise and sensor limitations, but the

system still proven to be a reliable tool for plant monitoring. The depth estimation

model also showed there is need of some refinements in accuracy to further improve

the overall system.

Overall, the system developed in this project shown its capability in ginger plant

monitoring through advanced deep learning techniques, fulfilling the project’s goal.

53

5.2 Recommendation

Several areas can be enhanced to increase the system's performance and

applicability. Firstly, the accuracy of the depth estimation model could be enhanced

by using a hardware sensor such as a LIDAR sensor to enhance the estimate of plant

height along with the area of the leaf.

Moreover, the difference in theoretical value and simulation value with the trained

YOLOv8 models and depth estimation model was due to insufficient datasets.

Therefore, the research could be extended to increase the complexity and size of the

training dataset, which may enhance the model’s applicability to distinct conditions.

In addition, it could be conjectured that incorporating additional data from other

environmental conditions, plant stages, or other types of sensors, would help increase

performance on the training data.

The system should be applied to real-world farming practices for testing of other

factors within the agricultural setting including but not limited to changes in lighting

and occlusion of plants. Besides, the future developments

54

REFERENCES

Al-amri, S. S., Kalyankar, N. V. & D, K. S., 2010. Image Segmentation by Using
Threshold Techniques’, Journal of Computing. Journal of Computing, 2(5), p.
83–86.

C, S., JaganMohan, K. & Arulaalan, M., 2022. Real Time Riped Fruit Detection using
Faster R-CNN Deep Neural Network Models. 2022 International Conference
on Smart Technologies and Systems for Next Generation Computing (ICSTSN),
25 3.p. 1–4.

Erhan, D., Szegedy, C., Toshev, A. & Anguelov, D., 2013. Scalable Object Detection
using Deep Neural Networks. 8 12.

FONG, C. O., 1990. SMALL AND MEDIUM INDUSTRIES IN MALAYSIA:
ECONOMIC EFFICIENCY AND ENTREPRENEURSHIP. The Developing
Economies, 6, 28(2), pp. 152-179.

Ganesan, P., Rajini, V., Rajini, B. & Basha.Shaik, K., 2014. HSV Color Space Based
Segmentation of Region of Interest in Satellite Images. International
Conference on Control, Instrumentation, Communication and Computational
Technologies (ICCICCT), pp. 101-105.

Hussain, M., 2023. YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary
Nature toward Digital Manufacturing and ndustrial Defect Detection.
Machines, Volume 11, p. 677.

Lee, S. H., Chan, C. S., Mayo, S. J. & Remagnino, P., 2017. How deep learning
extracts and learns leaf features for plant classification. Pattern Recognition,
11, Volume 71, pp. 1-13.

Lee, U. et al., 2018. An automated, high-throughput plant phenotyping system using
machine learning-based plant segmentation and image analysis. 27 4, 13(4), p.
0196615.

Lin, T.-Y.et al., 2017. Feature Pyramid Networks for Object Detection. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936-944.

Lou, H. et al., 2023. DC-YOLOv8: Small-Size Object Detection Algorithm Based on
Camera Sensor. Electronics, 21 5, 12(10), p. 2323.

55

Manjula, D. V., 2017. Image Edge Detection and Segmentation by using Histogram
Thresholding method. International Journal of Engineering Research and
Applications, 8, 07(08), pp. 10-16.

Matahir, H. & Tuyon, J., 2013. The Dynamic Synergies between Agriculture Output
and Economic Growth in Malaysia. International Journal of Economics and
Finance, 18 3.5(4).

Pathak, A. R., Pandey, M. & Rautaray, S., 2018. Application of Deep Learning for
Object Detection. Procedia Computer Science, Volume 132, pp. 1706-1717.

Porebski, A., Vandenbroucke, N. & Macaire, L., 2008. Haralick feature extraction
from LBP images for color texture classification. First Workshops on Image
Processing Theory, Tools and Applications, pp. 1-8.

Praveen, J. K. & Domnic, . S., 2019. Image based leaf segmentation and counting in
rosette plants. Information Processing in Agriculture, 6, 6(2), pp. 233-246.

R S, Y., Shamsher, P. & K., S., 2024. A YOLOv8-based Model for Precise Corrosion
Segmentation in Industrial Imagery.

Rashid, M. N. & Fadzil, L. M., 2023. Comparative Review of Object Detection
Algorithms in Small Single-Board Computers. International Journal on Recent
and Innovation Trends in Computing and Communication, 1 9, 11(7), p. 244–
252.

Redmon, J., Divvala, S., Girshick, R. & Farhadi, A., 2016. You Only Look Once:
Unified, Real-Time Object Detection. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Volume 779-788.

Ren, S., He, K., Girshick, R. & Sun, J., 2017. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1 6, 39(6), pp. 1137-1149.

Reswara , E., Suakanto , S. & Putra , S. A., 2023. Comparison of Object Detection
Algorithm using YOLO vs Faster R-CNN : A Systematic Literature Review.
ICBDT '23: Proceedings of the 2023 6th International Conference on Big Data
Technologies, 9.pp. 419-424.

Salman, N., 2006. Image Segmentation Based on Watershed and Edge Detection
Techniques. The International Arab Journal of Information Technology, 4,
3(2), pp. 104-110.

Sandro Luis de, A. et al., 2024. Segmentação de Pólipos em Imagens de Colonoscopia
utilizando YOLOv8.

Selvaraj, M. G. et al., 2019. AI-powered banana diseases and pest detection. Plant
Methods, 12 8.15(1).

Shrestha, A. & Mahmood, A., 2019. Review of Deep Learning Algorithms and
Architectures. IEEE, 22 4, Volume 7, pp. 53040 - 53065.

56

Terven, J., Córdova-Esparza, D.-M. & Romero-González, J.-A., 2024. A
Comprehensive Review of YOLO Architectures in Computer Vision: From
YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr., 5(4), pp.
1680-1716.

Tong, Y.-S., Lee, T.-H. & Yen, K.-S., 2022. Deep Learning for Image-Based Plant
Growth Monitoring: A Review. International Journal of Engineering and
Technology Innovation, 5, 12(3), pp. 225-246.

Wang, C.-Y.et al., 2020. CSPNet: A New Backbone that can Enhance Learning
Capability of CNN. IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pp. 1571-1580.

Wang, P. et al., 2024. Leaf Segmentation Using Modified YOLOv8-Seg Models.
Reproductive and developmental Biology, 14(6), p. 780.

Wu, Y. et al., 2024. YOLOv8-segANDcal: segmentation, extraction, and calculation
of soybean radicle features. Frontiers in Plant Science, Volume 15.

Zineb, S., Lyamine, G., Kamel, B. & Rezki, A., 2023. IoV Data Processing Algorithms
for Automatic Real-Time Object Detection - Literature Review. 2023
International Conference on Inventive Computation Technologies (ICICT), 26
4.pp. 1335-1342.

57

APPENDICES

APPENDIX A: Code for Training Yolo Model in Google Colab

!pip install ultralytics
from IPython.display import clear_output
clear_output()

import shutil
import os
import torch
import ultralytics
from ultralytics import YOLO
from IPython.display import clear_output

clear_output()
ultralytics.checks()

%cd /content
HOME = os.getcwd()

Dataset_path = "/content/drive/MyDrive/FYP/Datasets/leaf-
detection.v12i.yolov8" #@param {type:"string"}

Ensure the destination folder exists
destination_folder = os.path.join(HOME,
"datasets",os.path.basename(Dataset_path))
os.makedirs(destination_folder, exist_ok=True)

Copy the entire folder
try:
 print(f"Copying folder from {Dataset_path} to
{destination_folder}")
 shutil.copytree(Dataset_path,
 destination_folder,
 dirs_exist_ok=True)
 print("Folder copied successfully!")

58

except Exception as e:
 raise ValueError(f"Error copying folder: {e}")

Data_yaml_path = os.path.join(Dataset_path, "data.yaml")

Create YOLOv8 model
Model_path = "yolov8n-seg.pt" #@param {type:"string"}
try:
 # load a pretrained model (recommended for training)
 model = YOLO(Model_path)

except Exception as e:
 raise ValueError("Model path is invalid >> "+str(Model_path))

Check if GPU is available
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")

Move model to GPU
model.to(device)

Start training
model.train(data=Data_yaml_path, epochs=40, device=device)
print("Training completed!")

Define source and destination paths
source_folder = "/content/runs"
base_destination_folder =
os.path.join("/content/drive/MyDrive/export_runs", "runs")

Function to get a unique destination folder path
def get_unique_destination_folder(base_folder):
 suffix = 1
 destination_folder = f"{base_folder}{suffix}"

 while os.path.exists(destination_folder):
 suffix += 1
 destination_folder = f"{base_folder}{suffix}"

 return destination_folder

Get a unique destination folder path
destination_folder =
get_unique_destination_folder(base_destination_folder)

Copy the folder
try:
 print(f"Copying folder from {source_folder} to
{destination_folder}")

59

 os.makedirs(destination_folder, exist_ok=True)
 shutil.copytree(source_folder, destination_folder,
dirs_exist_ok=True)
 print("Folder copied successfully!")
except Exception as e:
 raise ValueError(f"Error copying folder: {e}")

APPENDIX B: Code for Real-Time Monitoring Interface in Python Language

import sys
import os
import time
import json
import pickle
import re
import natsort
from collections import Counter
from queue import Queue
import cv2
import numpy as np
from collections import defaultdict
from functools import partial
from TargetDetection4 import *
from PyQt5.QtWidgets import (
 QApplication, QMainWindow, QAction, QHBoxLayout, QVBoxLayout,
QLabel, QFrame,
 QScrollArea, QWidget, QComboBox, QPushButton, QFormLayout,
 QSizePolicy, QFileDialog, QLineEdit, QTabWidget)
from PyQt5.QtCore import Qt, QTimer, QMargins, pyqtSlot, QThread,
pyqtSignal, QMutex, QMutexLocker
from PyQt5.QtChart import QChart, QPieSeries, QPieSlice, QChartView
from PyQt5.QtGui import QIcon, QColor, QPainter
import qdarktheme

Default to webcam. Can be changed to a video file path or image
path.
input_source =
r"C:\Users\yougt\Documents\Python\fyp\code\YOLO_venv\Images\ginger
plant video\20240719-015654.mp4"
input_source =
r"C:\Users\yougt\Documents\Python\fyp\code\YOLO_venv\cropped"

60

input_source = 0

light_qss = """
QFrame {
 border-width: 2px;
 border-color: black;
}
QLabel {
 font-size: 10pt;
}
QPushButton {
 font-size: 10pt;
}
QComboBox {
 font-size: 10pt;
}
QTabWidget {
 font-size: 10pt;
}
QChart {
 font-size: 10pt;
}
QPieSlice {
 font-size: 10pt;
}
QPieSeries {
 font-size: 10pt;
}
QFont {
 font-size: 10pt;
}
QLineEdit {
 font-size: 10pt;
}
"""

dark_qss = """
QFrame {
 border-width: 2px;
 border-color: light;
}
QLabel {
 font-size: 10pt;
}
QPushButton {
 font-size: 10pt;
}
QComboBox {
 font-size: 10pt;

61

}
QTabWidget {
 font-size: 10pt;
}
QChart {
 font-size: 10pt;
}
QPieSlice {
 font-size: 10pt;
}
QPieSeries {
 font-size: 10pt;
}
QFont {
 font-size: 10pt;
}
QLineEdit {
 font-size: 10pt;
}
"""

class RealTimeVideoApp(QMainWindow):
 def __init__(self):
 super().__init__()
 self.setWindowTitle("Real-Time Plant Monitoring")

 # Load setting & Initialize target detection model and tools
 settings = self.load_settings()
 self.distance_scale = settings['distance_scale']
 self.sensor_height = settings['sensor_height']
 self.sensor_width = settings['sensor_width']
 self.focal_length = settings['focal_length']
 self.set_theme(settings['theme'])
 self.model_plant_path = settings['model_plant_path']
 self.model_leaf_path = settings['model_leaf_path']
 self.TargetDetection = TargetDetect(self.model_plant_path,
self.model_leaf_path)
 self.set_verbose(settings['verbose'])

 # Initialize window
 self.setGeometry(100, 100, 1700, 900)
 self.create_menu_bar()

 self.central_layout = QHBoxLayout()
 central_widget = QWidget(self)
 central_widget.setLayout(self.central_layout)
 self.setCentralWidget(central_widget)

62

 self.DetectTarget = DetectTarget(self.TargetDetection,
self.verbose)
 self.DetectLeaf = DetectLeaf(self.TargetDetection,
self.verbose, self.distance_scale, self.sensor_height,
self.sensor_width, self.focal_length)

 # self.start_processing(input_source)

 def select_input(self, type_of_source):
 if type_of_source == "dir":
 # Create a file dialog and get the selected file path
 input_source = QFileDialog.getExistingDirectory(self,
"Select a Folder")
 else:
 # Create a file dialog and get the selected file path
 options = QFileDialog.Options()
 input_source, _ = QFileDialog.getOpenFileName(self,
"Select a File", "", ";All Files (*)", options=options)

 if input_source:
 if (self.DetectTarget and self.DetectTarget.isRunning()):
 print('Waiting')
 self.DetectTarget.wait() # Wait until the thread
finishes

 if (self.DetectLeaf and self.DetectLeaf.isRunning()):
 print('Waiting')
 self.DetectLeaf.wait() # Wait until the thread
finishes

 if hasattr(self, "VideoProcessor"):
 del self.VideoProcessor

 if hasattr(self, "DirectoryProcessor"):
 del self.DirectoryProcessor

 self.start_processing(input_source)

 def select_webcam(self):
 if hasattr(self, "VideoProcessor"):
 del self.VideoProcessor
 if hasattr(self, "DirectoryProcessor"):
 del self.DirectoryProcessor

 self.start_processing(0)

 def start_processing(self, input_source):
 # Check if the input source is a valid video file or webcam.
 if input_source == 0 or (os.path.exists(input_source) and

63

 os.path.isfile(input_source) and
 input_source.lower().endswith(('.m
p4', '.avi', '.mov', '.mkv'))):

 self.VideoProcessor = VideoProcessor(self, input_source,
self.DetectTarget, self.DetectLeaf)
 self.DetectLeaf.set_rest(True)
 # Setup video timers
 self.timer_video = QTimer()
 self.timer_video.timeout.connect(self.VideoProcessor.run)

 self.set_layout_to_central_widget("main")

 # Check if the input source is a valid image file.
 elif (os.path.exists(input_source) and
 os.path.isfile(input_source) and
 input_source.lower().endswith(('.png', '.jpg',
'.jpeg'))):
 k=0

 # Check if the input source is a directory.
 elif (os.path.exists(input_source) and
 os.path.isdir(input_source)):

 self.DirectoryProcessor = DirectoryProcessor(self,
input_source, self.DetectTarget, self.DetectLeaf)

 # Setup image timer
 self.timer_image = QTimer()
 self.timer_image.timeout.connect(self.show_next_image)

 self.set_layout_to_central_widget("main")

 self.DirectoryProcessor.run()

 else:
 raise ValueError("Unsupported input source")

 def pause_timer(self, timer, pause_button, interval):
 timer.stop()
 pause_button.setText("Play")
 pause_button.clicked.connect(lambda :self.start_timer(
 timer, pause_button, interval))

 def start_timer(self, timer, pause_button, interval):
 timer.start(interval)
 pause_button.setText("Pause")
 pause_button.clicked.connect(lambda :self.pause_timer(
 timer, pause_button, interval))

64

 def show_previous_image(self):
 self.DirectoryProcessor.show_previous_image()

 def show_next_image(self):
 self.DirectoryProcessor.show_next_image()

 def update_image(self, image = None):
 if image is not None:
 self.current_image = image
 if hasattr(self,"main_layout") and self.main_layout:
 if hasattr(self,"current_image"):
 if isinstance(self.current_image, str):
 self.image_container.setText(image)
 else:
 pixmap = preprocess_input(self.current_image,
self.image_container.width()-2, self.image_container.height()-2)
 self.image_container.setPixmap(pixmap)

 def update_image_detail(self, text):
 if self.main_layout:
 self.image_detail_label.setText(text)

 def update_gallery(self, plant_datas):
 # Check if main_layout exist
 if self.main_layout:
 # Save current scroll position
 scroll_position_1 =
self.scroll_area_recognized.verticalScrollBar().value()
 scroll_position_2 =
self.scroll_area_unrecognized.verticalScrollBar().value()

 # Clear scrollable area
 self.clear_layout_and_widget(self.content_layout_recogniz
ed)
 self.clear_layout_and_widget(self.content_layout_unrecogn
ized)

 for plant_details in plant_datas:
 # Create gallery container
 plant_image_label, gallery_container,
plant_detail_container, details_button =
self.create_gallary_container()

 # Preprocess input image
 pixmap =
preprocess_input(plant_details['plant_image'], 250, 250)

 # insert preproccessed image to plant_image_label

65

 plant_image_label.setPixmap(pixmap)

 # Connect signals to slot
 details_button.clicked.connect(partial(self.show_imag
e_details, plant_details))

 details = {'Name': plant_details['plant_label'],
 'Height':
f"{plant_details['plant_height']:.4f} cm",
 'Distance':
f"{plant_details['plant_distance']:.4f} cm",
 'Leaf count': plant_details['leaf_count'],
 'Disease': plant_details['plant_disease']
 }

 # Loop through the data and create QLabel widgets
 for title, detail in details.items():
 detail_label = QLabel(f"{title}:
{detail}")
 detail_label.setFixedWidth(300) # Set the
maximum width for the label
 detail_label.setWordWrap(True) # Enable word
wrapping
 plant_detail_container.addWidget(detail_label)

 # Add gallery_container to content_Layout
 if plant_details['plant_label'] == "Ginger":
 self.content_layout_recognized.addLayout(gallery_
container)
 else:
 self.content_layout_unrecognized.addLayout(galler
y_container)

 # Restore the scroll position
 self.scroll_area_recognized.verticalScrollBar().setValue(
scroll_position_1)
 self.scroll_area_unrecognized.verticalScrollBar().setValu
e(scroll_position_2)

 def show_image_details(self, details):
 '''Create and show the new top-level window'''
 self.top_window = TopWindow(details)
 self.top_window.show()

 def set_layout_to_central_widget(self, layout):
 # Clear the current layout and show settings view
 self.clear_layout_and_widget(self.central_layout)

 if layout == "main":

66

 (self.main_layout,
 self.image_detail_label, self.image_container,
option_container,
 self.scroll_area_recognized,
self.content_layout_recognized,
 self.scroll_area_unrecognized,
self.content_layout_unrecognized) = self.create_main_layout()

 if hasattr(self, "VideoProcessor") and
self.VideoProcessor:
 pause_button = QPushButton("Start")
 pause_button.clicked.connect(lambda :self.start_timer
(
 self.timer_video, pause_button, 70))

 option_container.addWidget(pause_button)
 pause_button.click()

 elif hasattr(self, "DirectoryProcessor") and
self.DirectoryProcessor:
 prev_button = QPushButton("Previous")
 auto_button = QPushButton("Play")
 next_button = QPushButton("Next")
 option_container.addWidget(prev_button)
 option_container.addWidget(auto_button)
 option_container.addWidget(next_button)
 # Connect signals to slots
 prev_button.clicked.connect(lambda:
self.show_previous_image())
 auto_button.clicked.connect(lambda :self.start_timer(
 self.timer_image, auto_button, 3000))
 next_button.clicked.connect(lambda:
self.show_next_image())

 self.central_layout.addLayout(self.main_layout)

 elif layout == "setting":
 if hasattr(self,"timer_image"):
 self.timer_image.stop()
 if hasattr(self,"timer_video"):
 self.timer_video.stop()

 self.setting_layout = self.create_setting_display()
 self.central_layout.addLayout(self.setting_layout)

 def create_menu_bar(self):
 # Create the menu bar
 menu_bar = self.menuBar()

67

 # File menu
 file_menu = menu_bar.addMenu("File")
 settings_action = QAction("Preference", self)
 nothing_action = QAction("Nothing", self)
 exit_action = QAction("Exit", self)
 exit_action.triggered.connect(self.close) # Connect the exit
action to close the app

 file_menu.addAction(settings_action)
 file_menu.addAction(nothing_action)
 file_menu.addSeparator() # Add a separator line
 file_menu.addAction(exit_action)

 # Add functionality to the actions
 settings_action.triggered.connect(lambda:
self.set_layout_to_central_widget("setting"))

 select_input_menu = menu_bar.addMenu("Select Input")
 select_dir_action = QAction("Select Folder", self)
 select_file_action = QAction("Select File", self)
 select_webcam_action = QAction("Select Webcam", self)

 select_input_menu.addAction(select_dir_action)
 select_input_menu.addAction(select_file_action)
 select_input_menu.addAction(select_webcam_action)

 # Add functionality to the actions
 select_dir_action.triggered.connect(lambda:
self.select_input("dir"))
 select_file_action.triggered.connect(lambda:
self.select_input("file"))
 select_webcam_action.triggered.connect(lambda:
self.select_webcam())

 def create_main_layout(self):
 realtime_display_layout = QHBoxLayout()

 # Set up image display area
 image_layout = QVBoxLayout()

 image_detail_label = QLabel("")
 image_detail_label.setFrameStyle(QFrame.Box | QFrame.Plain)
 image_detail_label.setAlignment(Qt.AlignCenter)
 image_detail_label.setFixedHeight(60)

 image_label = QLabel("Video Display Area")
 image_label.setFrameStyle(QFrame.Box | QFrame.Plain)
 image_label.setAlignment(Qt.AlignCenter)
 image_label.setMinimumSize(800, 200)

68

 option_frame = QFrame()
 option_frame.setFixedHeight(60)
 option_frame.setFrameStyle(QFrame.Box | QFrame.Plain)
 option_layout = QHBoxLayout()
 option_frame.setLayout(option_layout)
 option_layout.setAlignment(Qt.AlignCenter)

 # Add widget to video_layout
 image_layout.addWidget(image_detail_label)
 image_layout.addWidget(image_label)
 image_layout.addWidget(option_frame)

 # Create tabs
 tab_layout, tab_widget = self.create_tabs()
 scroll_area_recognized, content_Layout_recognized =
self.create_scroll_area()
 scroll_area_unrecognized, content_Layout_unrecognized =
self.create_scroll_area()

 # Add tabs to the QTabWidget
 tab_names = ["Recognized Plant", "Unrecognized Plant"]
 widgets = [scroll_area_recognized, scroll_area_unrecognized]
 for widget, tab_name in zip(widgets, tab_names):
 tab_widget.addTab(widget, tab_name)

 # Add widget & layout to main_layout
 realtime_display_layout.addLayout(image_layout)
 realtime_display_layout.addLayout(tab_layout)

 return (realtime_display_layout,
 image_detail_label, image_label, option_layout,
 scroll_area_recognized, content_Layout_recognized,
 scroll_area_unrecognized,
content_Layout_unrecognized)

 def create_setting_display(self):
 # Create layout for the settings window
 setting_display_layout = QFormLayout()
 setting_display_layout.setAlignment(Qt.AlignTop)

 # Create a back button with an icon
 back_button = QPushButton("Back")
 back_button.setFixedWidth(100)
 back_button.setIcon(QIcon.fromTheme("go-previous")) # Using
a system icon

 # Create and add widgets for theme selection
 theme_label = QLabel(f"Select Theme:")

69

 theme_label.setFixedWidth(250)
 theme_combo = QComboBox()
 theme_combo.addItems(["Light", "Dark"])
 if self.theme == "light":
 theme_combo.setCurrentText("Light")
 else:
 theme_combo.setCurrentText("Dark")

 # Create and add widgets for showing detection speed
 detection_speed_label = QLabel(f"Display Speed")
 detection_speed_label.setFixedWidth(250)
 detection_speed_combo = QComboBox()
 detection_speed_combo.addItems(["Show", "Hidden"])
 if self.verbose:
 detection_speed_combo.setCurrentText("Show")
 else:
 detection_speed_combo.setCurrentText("Hidden")

 # Create and add widgets for adjust distance scale
 distance_scale_label = QLabel(f"Distance Scale")
 distance_scale_label.setFixedWidth(250)

 # Create a QLineEdit for file path
 distance_scale_textbox = QLineEdit()
 distance_scale_textbox.setText(f"{self.distance_scale}")

 # Create Horizontal layout for the row
 sensor_size_layout = QHBoxLayout()

 # Create and add widgets for adjust distance scale
 sensor_size_label = QLabel(f"Sensor Size (w x h)")
 sensor_size_label.setFixedWidth(250)

 # Create a QLineEdit for sensor_size
 sensor_width_textbox = QLineEdit()
 sensor_width_textbox.setText(f"{self.sensor_width}")
 multiply_label = QLabel("mm x ")
 sensor_height_textbox = QLineEdit()
 sensor_height_textbox.setText(f"{self.sensor_height}")
 unit_label = QLabel("mm")

 # Add Widget to the horizontal layout
 sensor_size_layout.addWidget(sensor_width_textbox)
 sensor_size_layout.addWidget(multiply_label)
 sensor_size_layout.addWidget(sensor_height_textbox)
 sensor_size_layout.addWidget(unit_label)

 # Create and add widgets for adjust focal_length
 focal_length_label = QLabel(f"Focal Length")

70

 focal_length_label.setFixedWidth(250)

 # Create a QLineEdit for file path
 focal_length_textbox = QLineEdit()
 focal_length_textbox.setText(f"{self.focal_length}")

 # Create and add widgets for model selection
 Model_selection_label = QLabel(f"Model selection")

 # Create and add widget for Select model for plant detection
 plant_model_label = QLabel(f"Plant detection")

 # Create horizontal layout for the row
 plant_model_layout = QHBoxLayout()

 # Create a QLineEdit for file path
 plant_model_file_path_textbox = QLineEdit()
 plant_model_file_path_textbox.setText(self.model_plant_path)

 # Create a QPushButton to open file dialog
 plant_model_open_file_button = QPushButton("Open File")

 # Add QLineEdit and QPushButton to the horizontal layout
 plant_model_layout.addWidget(plant_model_file_path_textbox)
 plant_model_layout.addWidget(plant_model_open_file_button)

 # Create and add widget for Select model for leaf detection
 leaf_model_label = QLabel(f"Leaf detection")

 # Create horizontal layout for the row
 leaf_model_layout = QHBoxLayout()

 # Create a QLineEdit for file path
 leaf_model_file_path_textbox = QLineEdit()
 leaf_model_file_path_textbox.setText(self.model_leaf_path)

 # Create a QPushButton to open file dialog
 leaf_model_open_file_button = QPushButton("Open File")

 # Add QLineEdit and QPushButton to the horizontal layout
 leaf_model_layout.addWidget(leaf_model_file_path_textbox)
 leaf_model_layout.addWidget(leaf_model_open_file_button)

 # Create a save button
 save_button = QPushButton("Save")
 save_button.setFixedWidth(100)

 # Add the everything to the form layout
 setting_display_layout.addRow(back_button)

71

 setting_display_layout.addRow(theme_label, theme_combo)
 setting_display_layout.addRow(self.create_separator())
 setting_display_layout.addRow(detection_speed_label,
detection_speed_combo)
 setting_display_layout.addRow(self.create_separator())
 setting_display_layout.addRow(distance_scale_label,
distance_scale_textbox)
 setting_display_layout.addRow(self.create_separator())
 setting_display_layout.addRow(sensor_size_label,
sensor_size_layout)
 setting_display_layout.addRow(self.create_separator())
 setting_display_layout.addRow(focal_length_label,
focal_length_textbox)
 setting_display_layout.addRow(self.create_separator())
 setting_display_layout.addRow(Model_selection_label)
 setting_display_layout.addRow(plant_model_label,
plant_model_layout)
 setting_display_layout.addRow(leaf_model_label,
leaf_model_layout)
 setting_display_layout.addRow(self.create_separator())
 setting_display_layout.addRow(save_button)

 # Connect signals to slots
 back_button.clicked.connect(
 lambda: self.set_layout_to_central_widget("main"))
 theme_combo.currentIndexChanged.connect(
 lambda: self.set_theme(theme_combo.currentText()))
 plant_model_open_file_button.clicked.connect(
 lambda:
self.open_file_dialog(plant_model_file_path_textbox))
 leaf_model_open_file_button.clicked.connect(
 lambda:
self.open_file_dialog(leaf_model_file_path_textbox,
"model_leaf_path"))
 save_button.clicked.connect(
 lambda: self.save_settings_from_button(
 {
 "theme": theme_combo.currentText(),
 "verbose": detection_speed_combo.currentText(),
 "distance_scale": distance_scale_textbox.text(),
 "sensor_height": sensor_height_textbox.text(),
 "sensor_width": sensor_width_textbox.text(),
 "focal_length": focal_length_textbox.text(),
 "model_plant_path":
plant_model_file_path_textbox.text(),
 "model_leaf_path":
leaf_model_file_path_textbox.text(),
 }
)

72

)

 return setting_display_layout

 def create_tabs(self):
 # Create QVBoxLayout for tab_widget
 tab_layout = QVBoxLayout()

 # Create the QTabWidget
 tab_widget = QTabWidget()
 tab_widget.setFixedWidth(700)
 tab_layout.addWidget(tab_widget)

 return tab_layout, tab_widget

 def create_scroll_area(self):
 scroll_area = QScrollArea()
 scroll_area.setWidgetResizable(True)

 content_widget = QWidget()
 content_Layout = QVBoxLayout(content_widget)
 content_Layout.setAlignment(Qt.AlignTop)
 scroll_area.setWidget(content_widget)

 return scroll_area, content_Layout

 def create_separator(self):
 separator = QFrame()
 separator.setFrameShape(QFrame.HLine)
 separator.setSizePolicy(QSizePolicy.Expanding,
QSizePolicy.Minimum)
 separator.setLineWidth(3)
 return separator

 def create_gallary_container(self):
 # Create a horizontal layout for the row
 gallery_container = QHBoxLayout()

 # Create a label for the image
 plant_image_label = QLabel()
 plant_image_label.setFixedHeight(250)
 plant_image_label.setFixedWidth(250)
 plant_image_label.setFrameStyle(QFrame.Box | QFrame.Plain)
 plant_image_label.setAlignment(Qt.AlignCenter)

 # Create a detail container for the image details
 plant_detail_container = QVBoxLayout()
 plant_detail_container.setAlignment(Qt.AlignLeft |
Qt.AlignTop)

73

 # Create a button for details
 plant_details_button = QPushButton("Details")
 plant_details_button.setFixedWidth(90) # Set a fixed width
for the label

 # Add widgets & layout to the gallery_container layout
 gallery_container.addWidget(plant_image_label)
 gallery_container.addLayout(plant_detail_container)
 gallery_container.addWidget(plant_details_button)

 return plant_image_label, gallery_container,
plant_detail_container, plant_details_button

 def save_settings_from_button(self, setting_dict):
 # Validate conditions before saving
 for key, value in setting_dict.items():
 if key == "model_leaf_path" or key == "model_plant_path":
 if not os.path.isfile(value) or not
value.endswith('.pt'):
 pass

 elif key == "distance_scale" or key == "sensor_height" or
key == "sensor_width" or key == "focal_length":
 try:
 value = float(value)
 if key == "distance_scale":
 self.set_sensor_size(distance_scale=value)
 elif key == "sensor_height":
 self.set_sensor_size(sensor_height=value)
 elif key == "sensor_width":
 self.set_sensor_size(sensor_width=value)
 elif key == "focal_length":
 self.set_sensor_size(focal_length=value)
 except:
 pass

 elif key == "verbose":
 self.set_verbose(value)

 self.save_settings(key, value)

 def load_settings(self):
 try:
 with open("settings.json", "r") as file:
 return json.load(file)
 except FileNotFoundError:
 return {}

74

 def save_settings(self, key, value):
 settings = self.load_settings()
 settings[key] = value
 with open("settings.json", "w") as file:
 json.dump(settings, file, indent=4)

 def set_theme(self, selected_theme):
 if selected_theme == "Dark":
 qdarktheme.setup_theme("dark", additional_qss=dark_qss)
 self.theme = "dark"
 else:
 qdarktheme.setup_theme("light", additional_qss=light_qss)
 self.theme = "light"

 def set_verbose(self, verbose):
 if verbose == "Show":
 self.verbose = True
 if hasattr(self, "DetectTarget"):
 self.DetectTarget.set_verbose(True)
 if hasattr(self, "DetectLeaf"):
 self.DetectLeaf.set_verbose(True)

 else:
 self.verbose = False
 if hasattr(self, "DetectTarget"):
 self.DetectTarget.set_verbose(False)
 if hasattr(self, "DetectLeaf"):
 self.DetectLeaf.set_verbose(False)

 def set_sensor_size(self, distance_scale=None,
sensor_height=None, sensor_width=None, focal_length=None):
 if distance_scale is not None:
 self.distance_scale = distance_scale
 if sensor_height is not None:
 self.sensor_height = sensor_height
 if sensor_width is not None:
 self.sensor_width = sensor_width
 if focal_length is not None:
 self.focal_length = focal_length

 if hasattr(self, "DetectLeaf"):
 self.DetectLeaf.set_sensor_size(self.distance_scale,
self.sensor_height, self.sensor_width, self.focal_length)

 def open_file_dialog(self, text_box):
 # Create a file dialog and get the selected file path
 options = QFileDialog.Options()

75

 file_path, _ = QFileDialog.getOpenFileName(self, "Select a
File", "", "PyTorch Model Files (*.pt);;All Files (*)",
options=options)

 if file_path:
 # Update the passed text box with the selected file path
 text_box.setText(file_path)

 def obtain_filename(self, file_path):
 root, ext = os.path.splitext(file_path)
 return os.path.basename(root)

 def clear_layout_and_widget(self, layout):
 while layout.count():
 item = layout.takeAt(0)
 if item.layout():
 self.clear_layout_and_widget(item.layout())
 elif item.widget():
 item.widget().deleteLater()

 def resizeEvent(self, event):
 """Handles window resizing to maintain the aspect ratio of
the video."""
 self.update_image()

 def closeEvent(self, event):
 try:
 self.top_window.close()
 except:
 pass
 event.accept()

class VideoProcessor():
 def __init__(self, parent, input_source, DetectTarget,
DetectLeaf):
 super().__init__
 self.parent = parent # Store the parent

 self.input_souce = input_source
 self.cap = cv2.VideoCapture(input_source)
 self.is_webcam = (input_source == 0)
 self.DetectTarget = DetectTarget
 self.DetectTarget.result_ready.connect(self.handle_target_res
ult)
 self.DetectLeaf = DetectLeaf
 self.DetectLeaf.result_ready.connect(self.handle_leaf_result)

 self.plant_data = []

76

 def run(self):
 ret, frame = self.cap.read()
 if ret:
 if self.is_webcam:
 frame = cv2.flip(frame, 1)
 self.process_frame(frame)

 else:
 print('Cannot capture frame, resetting capture.')
 self.cap.release()
 self.cap = cv2.VideoCapture(self.input_souce)
 if not self.cap.isOpened():
 self.cap.set(cv2.CAP_PROP_POS_FRAMES, 0)

 def process_frame(self, frame):
 if not self.DetectTarget.isRunning():
 self.DetectTarget.set_data(frame)
 self.DetectTarget.reset()
 self.DetectTarget.start()

 bounding_box_details = [
 {'bounding_box': data['bounding_box'],
 'label': data['label'],
 'confidence': data['confidence']}
 for data in self.plant_data]

 frame = draw_bounding_boxes(frame, bounding_box_details)
 self.parent.update_image(frame)

 def handle_target_result(self, result):
 self.plant_data, image_used_to_detect, _ = result
 if not self.DetectLeaf.isRunning():
 self.DetectLeaf.set_data(self.plant_data,
image_used_to_detect)
 self.DetectLeaf.reset()
 self.DetectLeaf.start()

 def handle_leaf_result(self, result):
 plant_detail_data, image_used_to_detect, _ = result
 self.parent.update_gallery(plant_detail_data)

class DirectoryProcessor():
 def __init__(self, parent, input_source, DetectTarget,
DetectLeaf):
 super().__init__
 self.parent = parent # Store the parent
 self.input_source = input_source

 self.DetectTarget = DetectTarget

77

 self.DetectTarget.result_ready.connect(self.handle_target_res
ult)
 self.DetectLeaf = DetectLeaf
 self.DetectLeaf.result_ready.connect(self.handle_leaf_result)

 self.cache_folder = 'cache'
 self.image_paths = []

 self.current_index = 0

 def run(self):
 image_paths = [os.path.join(self.input_source, f)
 for f in os.listdir(self.input_source)
 if f.lower().endswith(('.png', '.jpg',
'.jpeg', '.bmp'))]
 self.image_paths = natsort.natsorted(image_paths)
 if self.image_paths:
 self.load_image()

 def load_image(self):
 image_paths = self.image_paths
 current_index = self.current_index

 # Preload previos 5 and next 5 photos
 indices_to_preload = self.get_indices_to_preload(image_paths,
current_index)
 print(f"{image_paths[current_index]}: {current_index},
{indices_to_preload}")
 self.parent.update_image_detail(f"{current_index+1} /
{len(image_paths)}")

 images_to_be_process_queue = Queue()
 if indices_to_preload:
 for indice in indices_to_preload:
 image_path = image_paths[indice]
 images_to_be_process_queue.put(image_path)

 self.process_image(image_paths[current_index],
images_to_be_process_queue)

 def process_image(self, image_to_be_show,
images_to_be_process_queue):
 if self.is_cached(image_to_be_show):
 cache_path = self.get_cache_path(image_to_be_show)
 plant_detail, image_use_to_detect, _ =
self.load_cache(cache_path)
 bounding_box_details = [
 {'bounding_box': data['plant_location'],
 'label': data['plant_label'],

78

 'confidence': data['plant_confidence']
 } for data in plant_detail]

 image = draw_bounding_boxes(image_use_to_detect,
bounding_box_details)
 self.parent.update_image(image)
 self.parent.update_gallery(plant_detail)

 else:
 self.parent.update_image('loading')
 self.parent.update_gallery([])

 if not images_to_be_process_queue.empty():
 image_path = images_to_be_process_queue.get()
 image = cv2.imread(image_path)
 self.DetectTarget.set_data(image, image_path)
 if not self.DetectTarget.isRunning():
 self.DetectTarget.reset()
 self.DetectTarget.start()

 def handle_target_result(self, result):
 plant_data, image_used_to_detect, image_path = result
 self.DetectLeaf.set_data(plant_data, image_used_to_detect,
image_path)
 if not self.DetectLeaf.isRunning():
 self.DetectLeaf.reset()
 self.DetectLeaf.start()

 def handle_leaf_result(self, result):
 plant_details, image_used_to_detect, image_path = result

 save_folder = self.cache_folder
 if not os.path.exists(save_folder):
 os.makedirs(save_folder)

 filename = self.obtain_filename(image_path)
 pkl_path = os.path.join(save_folder, f"{filename}.pkl")
 with open(pkl_path, 'wb') as f:
 pickle.dump(result, f)

 self.load_image()

 def get_cache_path(self, file_path):
 """Generate a cache path for the given photo."""
 cache_dir = self.cache_folder
 filename = self.obtain_filename(file_path)
 pkl_name = f"{filename}.pkl"
 return os.path.join(cache_dir, pkl_name)

79

 def is_cached(self, file_path):
 """Check if a photo is already cached."""
 return os.path.exists(self.get_cache_path(file_path))

 def cache_photo(self, photo_path, processed_image):
 """Save the processed image to the cache."""
 processed_image.save(self.get_cache_path(photo_path))

 def get_indices_to_preload(self, image_paths, current_index,
preload_range=2):
 """Generate indices to preload based on the current index and
preload range."""
 indices_to_preload = []

 # Calculate the range of indices to preload
 for i in range(-preload_range, preload_range + 1):
 index = self.get_index(current_index + i, image_paths)
 # Append the index if it's within the valid range of
image_paths
 if 0 <= index < len(image_paths):
 image_path = image_paths[index]
 if not self.is_cached(image_path):
 indices_to_preload.append(index)

 if current_index in indices_to_preload:
 indices_to_preload.remove(current_index) # Remove the
number from its current position
 indices_to_preload.insert(0, current_index) # Insert the
number at the beginning of the list

 return indices_to_preload

 def get_index(self, index, image_paths):
 return (index) % len(image_paths)

 def load_cache(self, cache_path):
 with open(cache_path, 'rb') as f:
 data = pickle.load(f)
 return data

 def show_previous_image(self):
 if self.image_paths:
 self.current_index = self.get_index(self.current_index -
1, self.image_paths)
 self.DetectLeaf.clear_queue()
 self.load_image()

 def show_next_image(self):
 if self.image_paths:

80

 self.current_index = self.get_index(self.current_index +
1, self.image_paths)
 self.DetectLeaf.clear_queue()
 self.load_image()

 def obtain_filename(self, file_path):
 root, ext = os.path.splitext(file_path)
 return os.path.basename(root)

class TopWindow(QWidget):
 def __init__(self, plant_details):
 super().__init__()

 self.setWindowTitle("Plant Details")
 self.setGeometry(100, 100, 1200, 600)
 self.setAttribute(Qt.WA_DeleteOnClose) # Ensure the window
is deleted when closed

 # Set the main layout for the TopWindow
 main_layout = QHBoxLayout(self)
 self.setLayout(main_layout)

 # Create plant_layout
 plant_layout, self.plant_image_label,
self.plant_detail_container = self.create_plant_details_display()

 # Create tab
 tab_layout, tab_widget = self.create_tabs()
 scroll_area, self.content_Layout = self.create_scroll_area()
 self.large_plant_image_label = self.create_image_container()
 self.large_plant_image_label.setMinimumSize(500, 500)
 pie_chart_widget_area, pie_chart_content_Layout =
self.create_layout_with_frame()

 # Add tabs to the QTabWidget
 tab_names = ["Details", "Image", "Chart"]
 widgets = [scroll_area, self.large_plant_image_label,
pie_chart_widget_area]
 for widget, tab_name in zip(widgets, tab_names):
 tab_widget.addTab(widget, tab_name)

 # Connect the currentChanged signal to a custom slot
 tab_widget.currentChanged.connect(self.on_tab_changed)

 # Add layout to main_layout
 main_layout.addLayout(plant_layout)
 main_layout.addLayout(tab_layout)

 # Process_plant_details

81

 self.display_plant_details(plant_details)

 # Show Chart
 chart_view = self.create_chart(plant_details)
 pie_chart_content_Layout.addWidget(chart_view)

 def display_plant_details(self, plant_details):
 # Plant details
 plant_datas = {'Name': plant_details['plant_label'],
 'Height': f"{plant_details['plant_height']:.4f} cm",
 'Distance': f"{plant_details['plant_distance']:.4f}
cm",
 'Leaf count': plant_details['leaf_count'],
 'Unhealthy Leaf count':
plant_details['unhealth_leaf_count'],
 'Health': plant_details['plant_health_status'],
 'Disease': plant_details['plant_disease'],
 }
 for title, data in plant_datas.items():
 details_label = QLabel(f"{title}: {data}")
 details_label.setWordWrap(True) # Enable word wrapping
 details_label.setFixedWidth(500) # Set a fixed width for
the label
 self.plant_detail_container.addWidget(details_label)

 bounding_box_details = []
 for leaf_detail in plant_details['leaf_detail']:
 # Get leaf bounding box details
 bounding_box_details.append(
 {'bounding_box': leaf_detail['bounding_box'],
 'label': leaf_detail['label'],
 'confidence': leaf_detail['confidence']}
)

 # Create gallery container
 leaf_image_label, gallery_container,
leaf_detail_container = self.create_gallary_container()

 # Preprocess input image
 x1, y1, x2, y2 = leaf_detail['bounding_box']
 plant_img = plant_details['plant_image']
 leaf_image = plant_img[y1:y2, x1:x2]
 pixmap = preprocess_input(leaf_image, 250, 250)

 # insert preproccessed image to plant_image_label
 leaf_image_label.setPixmap(pixmap)

 # Add the row layout to the scrollable layout
 self.content_Layout.addLayout(gallery_container)

82

 leaf_datas = {'Area': f"{leaf_detail['area']:.4f} cm²",
 'Health': leaf_detail['health'],
 'Disease': leaf_detail['disease']
 }
 for title, data in leaf_datas.items():
 leaf_details_label = QLabel(f"{title}:
{data}")
 leaf_detail_container.addWidget(leaf_details_label)

 plant_image =
draw_bounding_boxes(plant_details['plant_image'],
bounding_box_details)
 pixmap = preprocess_input(plant_image, 500, 500)
 self.plant_image_label.setPixmap(pixmap)
 self.update_image(plant_image)

 def update_image(self,image=None):
 if image is not None:
 self.current_image = image
 if hasattr(self,"current_image"):
 pixmap = preprocess_input(self.current_image,
self.large_plant_image_label.width()-2,
self.large_plant_image_label.height()-2)
 self.large_plant_image_label.setPixmap(pixmap)

 def create_image_container(self):
 # Display Plant Image
 plant_image_label = QLabel()
 plant_image_label.setFrameStyle(QFrame.Box | QFrame.Plain)
 plant_image_label.setAlignment(Qt.AlignCenter)
 return plant_image_label

 def create_plant_details_display(self):
 # Plant detail layout
 plant_layout = QVBoxLayout()
 plant_layout.setAlignment(Qt.AlignLeft | Qt.AlignTop)

 # Display Plant Image
 plant_image_label = self.create_image_container()
 plant_image_label.setFixedHeight(500)
 plant_image_label.setFixedWidth(500)

 # Create a plant detail container for the Pplant image
details
 plant_detail_container = QVBoxLayout()
 plant_detail_container.setAlignment(Qt.AlignLeft |
Qt.AlignTop)

83

 # Add widget & layout to plant_layout
 plant_layout.addWidget(plant_image_label)
 plant_layout.addLayout(plant_detail_container)

 return plant_layout, plant_image_label,
plant_detail_container

 def create_tabs(self):
 # Create QVBoxLayout for tab_widget
 tab_layout = QVBoxLayout()

 # Create the QTabWidget
 tab_widget = QTabWidget()
 tab_layout.addWidget(tab_widget)

 return tab_layout, tab_widget

 def create_scroll_area(self):
 scroll_area = QScrollArea()
 scroll_area.setWidgetResizable(True)

 content_widget = QWidget()
 content_Layout = QVBoxLayout(content_widget)
 content_Layout.setAlignment(Qt.AlignTop)
 scroll_area.setWidget(content_widget)

 return scroll_area, content_Layout

 def create_layout_with_frame(self):
 layout_area = QHBoxLayout()

 # Create a QWidget to hold the QHBoxLayout
 widget_area = QFrame()
 widget_area.setFrameStyle(QFrame.Box | QFrame.Plain)
 widget_area.setLayout(layout_area)

 return widget_area, layout_area

 def create_gallary_container(self):
 # Create a horizontal layout for the row
 gallery_container = QHBoxLayout()

 # Create a label for the image
 leaf_image_label = self.create_image_container()
 leaf_image_label.setFixedHeight(250)
 leaf_image_label.setFixedWidth(250)

 # Create a detail container for the image details
 leaf_detail_container = QVBoxLayout()

84

 leaf_detail_container.setAlignment(Qt.AlignLeft |
Qt.AlignTop)

 # Add widgets & layout to the gallery_container layout
 gallery_container.addWidget(leaf_image_label)
 gallery_container.addLayout(leaf_detail_container)

 return leaf_image_label, gallery_container,
leaf_detail_container

 def create_chart(self, plant_details):
 chart = SmartChart()
 chart.resize(700, 400)
 chart_view = SimpleChartView(chart)

 value_count = defaultdict(int)
 leaf_details_dict_list = plant_details['leaf_detail']
 for leaf_detail_dict in leaf_details_dict_list:
 if 'disease' in leaf_detail_dict:
 value_count[leaf_detail_dict['disease']] += 1

 dict_count = dict(value_count)

 for (disease_type, count) in dict_count.items():
 if "nutritional" in disease_type.lower():
 color_hexcode = "#fd635c"
 elif "none" in disease_type.lower():
 color_hexcode = "#21ab72"
 else:
 color_hexcode = "#82d3e5"

 chart.add_slice(disease_type, count, color_hexcode)

 return chart_view

 def on_tab_changed(self, index):
 if index == 1:
 self.update_image()

 def resizeEvent(self, event):
 """Handles window resizing to maintain the aspect ratio of
the video."""
 self.update_image()

class SmartChart(QChart):
 def __init__(self, parent=None):
 """
 Initialization with layout and population
 """

85

 super(SmartChart, self).__init__(parent)
 self.offset = 140

 self.setBackgroundBrush(QColor(30, 30, 30)) # Dark grey
background
 self.setMargins(QMargins(0, 0, 0, 0))
 self.legend().hide()
 self.setAnimationOptions(QChart.SeriesAnimations)

 self.__outer = QPieSeries()
 self.__inner = QPieSeries()
 self.__outer.setHoleSize(0.35)
 self.__outer.setPieStartAngle(self.offset)
 self.__outer.setPieEndAngle(self.offset+360)
 self.__inner.setPieSize(0.35)
 self.__inner.setHoleSize(0.3)
 self.__inner.setPieStartAngle(self.offset)
 self.__inner.setPieEndAngle(self.offset+360)

 self.addSeries(self.__outer)
 self.addSeries(self.__inner)

 def clear(self):
 """
 Clear all slices in the pie chart
 """
 for slice_ in self.__outer.slices():
 self.__outer.take(slice_)

 for slice_ in self.__inner.slices():
 self.__inner.take(slice_)

 def add_slice(self, name, value, color):
 """
 Add one slice to the pie chart

 :param name: str. name of the slice
 :param value: value. value of the slice (contribute to how
much the
 slice would span in angle)
 :param color: str. hex code for slice color
 """
 # outer
 outer_slice = QPieSlice(name, value)
 outer_slice.setColor(QColor(color))
 outer_slice.setLabelBrush(QColor(color))

 outer_slice.hovered.connect(lambda is_hovered:
self.__explode(outer_slice, is_hovered))

86

 outer_slice.percentageChanged.connect(lambda:
self.__update_label(outer_slice, name))

 self.__outer.append(outer_slice)

 # inner
 inner_color = self.get_secondary_color(color)
 inner_slice = QPieSlice(name, value)
 self.__inner.append(inner_slice)
 inner_slice.setColor(inner_color)
 inner_slice.setBorderColor(inner_color)

 def remove_slice(self, name):
 """
 Remove a slice from the pie chart by its name

 :param name: str. name of the slice to remove
 """
 for slice_ in self.__outer.slices():
 title = self.extract_title_from_label(slice_.label())
 if title == name:
 self.__outer.take(slice_)
 break

 for slice_ in self.__inner.slices():
 title = self.extract_title_from_label(slice_.label())
 if title == name:
 self.__inner.take(slice_)
 break

 @staticmethod
 def __update_label(slice_, title):
 """
 Update the label of a slice

 :param slice_: QPieSlice. the slice the label is applied
 :param title: str. title of the label
 """
 text_color = 'white'
 font_size = '8pt' # Adjust the font size here
 if slice_.percentage() > 0.1:
 slice_.setLabelPosition(QPieSlice.LabelInsideHorizontal)
 text_color = 'white'

 label = "<p align='center' style='color:{}; font-
size:{}'>{}
{}%</p>".format(
 text_color,
 font_size,
 title,

87

 round(slice_.percentage() * 100, 2)
)

 slice_.setLabel(label)

 if slice_.percentage() > 0.03:
 slice_.setLabelVisible()

 @staticmethod
 def extract_title_from_label(html_label):
 """
 Extracts the title from an HTML-formatted label string.

 :param html_label: str. The HTML-formatted label string
 :return: str. The extracted title
 """
 # Define a regular expression pattern to extract text between
<p> and

 pattern = re.compile(r'<p[^>]*>(.*?)
', re.DOTALL)
 match = pattern.search(html_label)

 if match:
 return match.group(1).strip()
 return ""

 def __explode(self, slice_, is_hovered):
 """
 Explode function slot for hovering effect

 :param slice_: QtChart.QPieSlice. the slice hovered
 :param is_hovered: bool. hover enter (True) or leave (False)
 """
 if is_hovered:
 start = slice_.startAngle()
 end = slice_.startAngle() + slice_.angleSpan()
 self.__inner.setPieStartAngle(end)
 self.__inner.setPieEndAngle(start+360)
 else:
 self.__inner.setPieStartAngle(self.offset)
 self.__inner.setPieEndAngle(self.offset+360)

 slice_.setLabelVisible(is_hovered)
 slice_.setExplodeDistanceFactor(0.1)
 slice_.setExploded(is_hovered)

 if slice_.percentage() > 0.03:
 slice_.setLabelVisible()

 @staticmethod

88

 def hex_to_rgb(hexcode):
 """Convert hex color code to RGB tuple."""
 from PIL import ImageColor
 return ImageColor.getcolor(hexcode, "RGB")

 @staticmethod
 def rgb_to_hex(rgb):
 """Convert RGB tuple to hex color code."""
 return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2])

 def get_secondary_color(self, hexcode_color1,
hexcode_color2="#FFFFFF", alpha=0.5):
 """
 Get secondary color which is blended 50% with white
 to appear lighter

 :param hexcode: str. color hex code starting with '#'
 eg. ('#666666')
 :return: QtGui.QColor
 """
 # Convert hex to RGB
 rgb1 = self.hex_to_rgb(hexcode_color1)
 rgb2 = self.hex_to_rgb(hexcode_color2)

 blended_rgb = tuple(int(a * (1 - alpha) + b * alpha) for a, b
in zip(rgb1, rgb2))

 blended_hex = self.rgb_to_hex(blended_rgb)

 return QColor(blended_hex)

class SimpleChartView(QChartView):
 """
 A simple wrapper chart view, to be expanded
 """
 def __init__(self, chart):
 super(SimpleChartView, self).__init__(chart)

 self.setRenderHint(QPainter.Antialiasing)

class DetectTarget(QThread):
 result_ready = pyqtSignal(object)
 def __init__(self, TargetDetection, verbose=False):
 super().__init__()
 self.TargetDetection = TargetDetection
 self.verbose = verbose
 self.image_data = []
 self.label = ''
 self.mutex = QMutex()

89

 def set_data(self, image_data, label=None):
 with QMutexLocker(self.mutex):
 self.image_data = image_data
 self.label = label

 def set_verbose(self, verbose):
 self.verbose = verbose

 def reset(self):
 # Implement any necessary reset logic here
 pass

 def run(self):
 image_data = self.image_data
 label = self.label
 plant_data = []
 if np.any(image_data):
 plant_data =
self.TargetDetection.detect_plants(image_data, verbose=self.verbose)
 self.result_ready.emit((plant_data, image_data, label)) #
Emit the result

class DetectLeaf(QThread):
 result_ready = pyqtSignal(object)
 def __init__(self, TargetDetection, verbose=False,
distance_scale=10, sensor_height=24, sensor_width=35,
focal_length=30, rest=False):
 super().__init__()
 self.TargetDetection = TargetDetection
 self.verbose = verbose
 self.distance_scale = distance_scale
 self.sensor_width = sensor_width
 self.sensor_height = sensor_height
 self.focal_length = focal_length
 self.rest = rest
 self.plant_data = Queue()
 self.original_image = Queue()
 self.label = Queue()
 self.mutex = QMutex()

 def set_rest(self, rest):
 self.rest = rest

 def set_data(self, plant_data, original_image, label=None):
 with QMutexLocker(self.mutex):
 self.plant_data.put(plant_data)
 self.original_image.put(original_image)
 self.label.put(label)

90

 def set_verbose(self, verbose):
 self.verbose = verbose

 def set_sensor_size(self, distance_scale, sensor_height,
sensor_width, focal_length):
 self.distance_scale = distance_scale
 self.sensor_height = sensor_height
 self.sensor_width = sensor_width
 self.focal_length = focal_length

 def clear_queue(self):
 self.plant_data = Queue()
 self.original_image = Queue()
 self.label = Queue()

 def reset(self):
 # Implement any necessary reset logic here
 pass

 def run(self):
 while not self.plant_data.empty():
 plant_data = self.plant_data.get()
 original_image = self.original_image.get()
 label = self.label.get()
 plant_datail = []
 if np.any(plant_data):
 # Obtain depth map of the original image
 depth_map =
self.TargetDetection.detect_depth(original_image,
verbose=self.verbose)

 # Obtain focal length of camera in pixel
 image_height, image_width, _ = original_image.shape

 for plant_info in plant_data:
 # Distance
 distance_cm =
calculate_distance_of_target(depth_map, plant_info['plant_mask'],
self.distance_scale)
 distance_cm = abs(distance_cm)

 # obtain height and width in pixel/cm based on
distance in cm
 height_pixel_cm, width_pixel_cm =
calculate_size_of_pixel_in_cm(distance_cm, image_height, image_width,
self.sensor_height, self.sensor_width, self.focal_length)

91

 # Calculate the height of plant based on the
provided depth map and plant mask
 height_cm =
calculate_height_cm(plant_info['plant_mask'], height_pixel_cm)

 # Plant image
 x1, y1, x2, y2 = plant_info['bounding_box']
 plant_image = original_image[y1:y2, x1:x2]

 # Detect the leafs of the given plant image
 leaf_details = self.TargetDetection.detect_leafs(
 plant_image,
 height_pixel_cm, width_pixel_cm,
 verbose=self.verbose
)

 disease_list = []
 for leaf_detail in leaf_details:
 if 'disease' in leaf_detail:
 if leaf_detail['disease'] != 'None':
 disease_list.append(leaf_detail['dise
ase'])

 plant_health_status = 'Healthy'
 plant_disease = 'None'
 if disease_list:
 if (len(disease_list) / len(leaf_details)) >=
0.5:
 plant_health_status = 'Unhealthy'

 # Count the occurrences of each item
 disease_counts = Counter(disease_list)

 # Calculate the percentage for each item
 item_percentages = {item: (count /
len(leaf_details)) * 100 for item, count in disease_counts.items()}

 # Find the item with the highest
percentage
 plant_disease = max(item_percentages,
key=item_percentages.get)

 plant_datail.append({
 'plant_id': plant_info['id'],
 'plant_label': plant_info['label'],
 'plant_image': plant_image,
 'plant_location': plant_info['bounding_box'],
 'plant_confidence': plant_info['confidence'],
 'plant_distance': distance_cm,

92

 'plant_height': height_cm,
 'unhealth_leaf_count': len(disease_list),
 'leaf_count': len(leaf_details),
 'plant_health_status': plant_health_status,
 'plant_disease': plant_disease,
 'leaf_detail': leaf_details,
 })
 self.result_ready.emit((plant_datail, original_image,
label)) # Emit the result

 if self.rest:
 time.sleep(2)

if __name__ == "__main__":
 app = QApplication(sys.argv)
 window = RealTimeVideoApp()
 window.show()
 sys.exit(app.exec_())

APPENDIX C: Code for Target Detection in Python Language

import time
import PIL
import cv2
import numpy as np
from PyQt5.QtCore import Qt
from PyQt5.QtGui import QPixmap, QImage

import torch
from ultralytics import YOLO
from transformers import DPTImageProcessor, DPTForDepthEstimation
import keras
from sklearn.preprocessing import normalize

import multiprocessing
multiprocessing.set_start_method('spawn') # Ensure the 'spawn' method
is used
multiprocessing.freeze_support()

class TargetDetect():

93

 def __init__(self, model_path_plant=None, model_path_leaf=None):

 # Check if GPU is available
 self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
 print(f"Using device: {self.device}")

 # Load the model
 if not model_path_plant or not model_path_leaf:
 raise ValueError("Cannot load model from path")
 self.model_plant = YOLO(model_path_plant)
 self.model_plant.to(self.device)
 self.model_leaf = YOLO(model_path_leaf)
 self.model_leaf.to(self.device)

 # Load the DPT model and processor
 self.processor =
DPTImageProcessor.from_pretrained("Intel/dpt-large")
 self.model =
DPTForDepthEstimation.from_pretrained("Intel/dpt-
large").to(self.device)

 def detect_depth(self, image, verbose=True):
 start_time = time.time()
 # Convert BGR image to RGB since DPT model expects an RGB
image
 image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

 # Convert the numpy array (image_rgb) to PIL Image for
processing
 image_pil = PIL.Image.fromarray(image_rgb)

 # Prepare image for the DPT model
 inputs = self.processor(images=image_pil,
return_tensors="pt").to(self.device)

 # Perform inference to get depth estimation
 with torch.no_grad():
 outputs = self.model(**inputs)
 predicted_depth = outputs.predicted_depth

 # Get the original size of the image
 original_size = image.shape[:2] # (height, width)

 # Interpolate to the original image size
 prediction = torch.nn.functional.interpolate(
 predicted_depth.unsqueeze(1),
 size=original_size,
 mode="bicubic",
 align_corners=False,

94

)

 # Convert to numpy array
 depth_map = prediction.squeeze().cpu().numpy()

 # Normalize and convert depth map to 8-bit image for display
 # depth_map_normalized = (depth_map * 255 /
np.max(depth_map)).astype("uint8")
 # depth_image = PIL.Image.fromarray(depth_map_normalized)

 end_time = time.time()
 if verbose:
 print(f"Speed depth detection: {((end_time-start_time) *
1000):.4f} ms")

 return depth_map

 def non_max_suppression_fast(self, boxes, overlapThresh):
 if len(boxes) == 0:
 return []

 if boxes.dtype.kind == "i":
 boxes = boxes.astype("float")

 pick = []

 x1 = boxes[:, 0]
 y1 = boxes[:, 1]
 x2 = boxes[:, 2]
 y2 = boxes[:, 3]

 area = (x2 - x1 + 1) * (y2 - y1 + 1)
 idxs = np.argsort(y2)

 while len(idxs) > 0:
 last = len(idxs) - 1
 i = idxs[last]
 pick.append(i)

 xx1 = np.maximum(x1[i], x1[idxs[:last]])
 yy1 = np.maximum(y1[i], y1[idxs[:last]])
 xx2 = np.minimum(x2[i], x2[idxs[:last]])
 yy2 = np.minimum(y2[i], y2[idxs[:last]])

 w = np.maximum(0, xx2 - xx1 + 1)
 h = np.maximum(0, yy2 - yy1 + 1)

 overlap = (w * h) / area[idxs[:last]]

95

 idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))

 return pick

 def detect_plants(self, frame, confidence=0.7, overlapThresh=0.3,
verbose=True):
 results = self.model_plant.predict(source=frame,
conf=confidence, save=False, stream=False, retina_masks=True,
device=self.device, verbose=verbose, cache=False)

 boxes = []
 class_indices = []
 contours = []
 confidences = []

 for result in results:
 for ci, c in enumerate(result):
 box =
c.boxes.xyxy.cpu().numpy().squeeze().astype(np.int32)
 cls_idx = int(c.boxes.cls.tolist().pop())
 confidence = c.boxes.conf.tolist().pop()
 contour = c.masks.xy[0].astype(np.int32).reshape(-1,
1, 2)
 # contour = result.masks.xy[0]
 boxes.append(box)
 class_indices.append(cls_idx)
 confidences.append(confidence)
 contours.append(contour)

 # Convert boxes to numpy array
 boxes = np.array(boxes)

 # Perform NMS
 plant_data = []

 if len(boxes) > 0:
 indices = self.non_max_suppression_fast(boxes,
overlapThresh)
 if verbose:
 print(f'Boxes shape: {boxes.shape}, NMS indices:
{indices}') # Debugging info

 for idx in indices:
 x1, y1, x2, y2 = boxes[idx]
 label = self.model_plant.names[class_indices[idx]]
 confidence = confidences[idx]
 bounding_box = boxes[idx]
 contour = contours[idx]

96

 # # Create contour mask
 b_mask = np.zeros(frame.shape[:2], np.uint8)

 # Fill the mask in the binary mask
 binary_mask = cv2.fillPoly(b_mask, [contour], 255)

 # Add data to plant_data list
 plant_data.append({
 'id': idx,
 'label': label,
 'confidence': confidence,
 'bounding_box': bounding_box,
 'plant_mask': binary_mask,
 })

 return plant_data

 def detect_leafs(self, plant_image, height_pixel_cm,
width_pixel_cm, confidence=0.5, overlapThresh=0.3, verbose=True):
 results = self.model_leaf.predict(source=plant_image,
conf=confidence, save=False, stream=True, retina_masks=True,
device=self.device, verbose=verbose, cache=False)

 boxes = []
 class_indices = []
 contours = []
 confidences = []

 for result in results:
 for ci, c in enumerate(result):
 box =
c.boxes.xyxy.cpu().numpy().squeeze().astype(np.int32)
 cls_idx = int(c.boxes.cls.tolist().pop())
 confidence = c.boxes.conf.tolist().pop()
 boxes.append(box)
 class_indices.append(cls_idx)
 confidences.append(confidence)
 contours.append(c.masks.xy[0].astype(np.int32).reshap
e(-1, 1, 2))

 # Convert boxes to numpy array
 boxes = np.array(boxes)

 # Perform NMS
 leaf_data = []

 if len(boxes) > 0:

97

 indices = self.non_max_suppression_fast(boxes,
overlapThresh)
 if verbose:
 print(f'Boxes shape: {boxes.shape}, NMS indices:
{indices}') # Debugging info

 for idx in indices:
 x1, y1, x2, y2 = boxes[idx]
 label = self.model_leaf.names[class_indices[idx]]
 confidence = confidences[idx]
 bounding_box = boxes[idx]
 contour = contours[idx]

 # Leaf iamge
 leaf_image = plant_image[y1:y2, x1:x2]

 # Initialize the mask with zeros
 mask = np.zeros(plant_image.shape[:2],
dtype=np.uint8)

 # Draw contour on the mask
 binary_mask = cv2.fillPoly(mask, [contour],
color=255)

 # Calculate leaf area in cm2
 leaf_area = calculate_area_cm2(binary_mask,
height_pixel_cm, width_pixel_cm)

 if label == 'Ginger-Leaf_Healthy':
 # Add data to plant_data list
 leaf_data.append({
 'id': idx,
 'label': label.replace("Ginger-Leaf_", ""),
 'confidence': confidence,
 'bounding_box': bounding_box,
 'area': leaf_area,
 'health': 'Healthy',
 'disease': 'None'
 })

 else:
 # Add data to plant_data list
 leaf_data.append({
 'id': idx,
 'label': label.replace("Ginger-Leaf_", ""),
 'confidence': confidence,
 'bounding_box': bounding_box,
 'leaf_image': leaf_image,
 'area': leaf_area,

98

 'health': 'Unhealthy',
 'disease': label.replace("Ginger-Leaf_", "")
 })

 return leaf_data

def preprocess_input(image_data, target_width=None,
target_height=None):
 # Convert BGR to RGB for compatibility with Qt
 image = cv2.cvtColor(image_data, cv2.COLOR_BGR2RGB)

 # Extract image dimensions
 height, width, channel = image.shape

 # Calculate bytes per line for QImage creation
 bytes_per_line = 3 * width

 # Create QImage from the image data
 q_img = QImage(image.data, width, height, bytes_per_line,
QImage.Format_RGB888)

 # Convert QImage to QPixmap for display on the label
 pixmap = QPixmap.fromImage(q_img)

 if target_width and target_height:
 # Resize the pixmap to fit the label's dimensions while
maintaining aspect ratio
 pixmap = pixmap.scaled(target_width, target_height,
Qt.KeepAspectRatio)

 return pixmap

def draw_bounding_boxes(image_data, bounding_box_details):
 # Create a copy to avoid modifying the original image
 image_data_copy = image_data.copy()

 # Calculate the bounding box thickness based on the image size
 height, width = image_data_copy.shape[:2]
 thickness = max(1, int(min(height, width) / 200)) # Adjust the
divisor for different thicknesses

 # Calculate text size and adjust the font scale based on the
image size
 font_scale = min(height, width) / 600 # Adjust the divisor for
different font sizes

 for bounding_box_detail in bounding_box_details:
 x1, y1, x2, y2 = bounding_box_detail['bounding_box']

99

 cv2.rectangle(image_data_copy, (x1, y1), (x2, y2), (0, 255,
0), thickness)
 cv2.putText(image_data_copy,
f"{bounding_box_detail['label']}:
{bounding_box_detail['confidence']:.2f}", (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, font_scale , (0, 255, 0), thickness)

 return image_data_copy

def calculate_distance_of_target(depth_map, mask, scale_factor=10):
 # Ensure depth_map is float
 depth_map = depth_map.astype(float)

 # Ensure mask is binary (convert to boolean array if needed)
 mask = mask > 0

 # Apply the mask to the depth map
 masked_depth = np.where(mask, depth_map, np.inf) # Set
background pixels (outside the mask) to infinity

 # Find the minimum value inside the masked region (the closest
distance)
 closest_distance = np.min(masked_depth)

 if closest_distance == np.inf:
 return 0

 return closest_distance * scale_factor

def calculate_size_of_pixel_in_cm(distance_cm, image_height_pixels,
image_width_pixels, sensor_height_mm=24, sensor_width_mm=36,
focal_length_mm=15):
 fov_height_rad = 2 *
np.arctan(sensor_height_mm/(2*focal_length_mm))
 height_pixel_cm = np.tan((fov_height_rad) /2) *
(distance_cm/image_height_pixels)

 fov_width_cm = 2 * np.arctan(sensor_width_mm/(2*focal_length_mm))
 width_pixel_cm = np.tan((fov_width_cm) /2) *
(distance_cm/image_width_pixels)

 return height_pixel_cm, width_pixel_cm

def calculate_height_cm(mask, height_pixel_cm):
 # Get the topmost and bottommost points of the mask
 y_indices, x_indices = np.where(mask > 0)
 if len(y_indices) == 0: # Ensure there are mask pixels detected
 return 0
 top_y = np.min(y_indices)

100

 bottom_y = np.max(y_indices)

 # Calculate the pixel height
 height_pixel = bottom_y - top_y

 # Convert pixel height to real-world height
 height_cm = height_pixel * height_pixel_cm

 # print(f"height_pixel = {height_pixel}, height_cm = {height_cm},
")

 return height_cm

def calculate_area_cm2(mask, pixel_height_cm, pixel_width_cm):
 # Compute the area of the segmented object in pixels
 area_pixels = np.sum(mask == 255)

 # Calculate real-world dimensions
 area_cm2 = (pixel_height_cm * pixel_width_cm) * area_pixels

 return area_cm2

APPENDIX D: Test Image used in Evaluated Depth Estimation Model

Test Image Depth Map 𝒚𝒚𝒊𝒊 (cm) 𝒚𝒚𝒊𝒊� (cm) |𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊𝒊� | (𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊𝒊�)𝟐𝟐

50 48.60 1.40 1.97

101

60 50.83 9.17 84.10

70 72.23 2.23 4.96

80 88.45 8.45 71.41

90 78.20 11.80 139.27

100 104.38 4.38 19.17

102

110 90.12 19.88 395.36

120 113.05 6.95 48.29

130 98.52 31.48 991.08

140 114.64 25.36 643.36

150 135.23 14.77 218.25

103

160 137.04 22.96 526.94

170 131.89 38.11 1452.26

180 137.43 42.57 1812.10

190 142.44 47.56 2261.95

	DECLARATION
	APPROVAL FOR SUBMISSION
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 Background
	1.2 Problem Statements
	1.3 Aims and Objectives

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Deep Learning
	2.2 Object Detection with Convolution Neural Network (CNN)
	2.3 YOLO (You Only Look Once)
	2.3.1 YOLO’s Introduction
	2.3.2 Evolution of YOLO Versions
	2.3.3 YOLOv8 Object Detection Mechanism
	2.3.4 YOLOv8 Architecture and Segmentation Mechanism
	2.3.5 Advantages of YOLOv8 Segmentation

	2.4 Faster R-CNN
	2.5 Image enhancement
	2.6 Leaf Segmenting
	2.7 Leaf extraction and classification

	CHAPTER 3
	3 METHODOLOGY
	3.1 Introduction
	3.2 Planning
	3.2.1 Hardware Required
	3.2.1.1 Image Capture
	3.2.1.2 Inference Hardware

	3.2.2 Software Required
	3.2.2.1 Training Environment
	3.2.2.2 Inference Environment
	3.2.2.3 Model Required in The System

	3.2.3 Project Timeline & Resource allocation

	3.3 Training
	3.3.1 Dataset Preparation for YOLOv8 model training
	3.3.2 Dataset Preparation for Depth Estimation Model Training

	3.4 Implementation
	3.4.1 Inference on New Images
	3.4.2 Model Implementation

	3.5 Analysis
	3.5.1 Performance Analysis

	3.6 Cost Estimation

	CHAPTER 4
	4 RESULTS AND DISCUSSIONS
	4.1 System Interface Results
	4.2 Ginger Plant Detection Using YOLOv8 Model
	4.2.1 Example of Ginger Plant Detection Results
	4.2.2 Ginger Plant Detection Using YOLOv8 Model Performance

	4.3 Leaf Detection and Health Classification Using YOLOv8
	4.3.1 Example of Leaf Detection and Health Classification Results
	4.3.2 Leaf Detection and Health Classification Using YOLOv8 Performance

	4.4 Leaf Health Status Classification
	4.4.1 Leaf Count Per Plant and Health Status Classification

	4.5 Depth Estimation Model
	4.5.1 Distance Measurement Results
	4.5.2 Model Performance

	4.6 Plant Height and Leaf Area Calculations
	4.6.1 Example Calculation of Plant Height and Leaf Area

	4.7 Challenges and Limitation

	CHAPTER 5
	5 CONCLUSION AND RECOMMENDATIONS
	5.1 Conclusion
	5.2 Recommendation

	REFERENCES
	APPENDICES

