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INTEGRATION OF IMAGE PROCESSING ALGORITHM AND DEEP 

LEARNING APPROACHES TO MONITOR GINGER PLANT  

 

 

ABSTRACT 

 

 

This study aims to integrate image processing and deep learning algorithms to monitor 

the growth of ginger plants. The proposed system is designed to detect ginger plants 

and track their growth rate effectively. The deep learning algorithm will undergo 

training using a dataset containing ginger plant images, which will allow it to 

accurately identify and categorize various stages of growth. The image processing 

techniques will be used to pre-process and enhance the quality of the images to making 

it easier for the deep learning model to identify the ginger plants. One YOLOv8 based 

model was developed for detecting and segmenting ginger plants in various growth 

states. Following the successful detection and segmentation of the plants, another 

YOLOv8 based model was further developed to segment individual leaves from 

detected plant. In order to improve the monitoring process, a depth estimation model 

was used to calculate the distance from the camera to the plants, enabling 

measurements of the height and leaf area of the ginger plants. The integration of these 

two methods will provide a more efficient and reliable way to monitor ginger plant 

growth, which is important for farmers and researchers in the field of agriculture. 
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1 INTRODUCTION 

 

 

 

1.1 Background 

 

Agriculture is one of the leading industries in Malaysia and plays an important role in 

social and economic development. Malaysia has approximately 4.06 million hectares 

of agricultural land, 80 % of which is used for industrial corps such as rubber, palm 

oil, cocoa, coconut and pepper and some allocated for agriculture production (FONG, 

1990). In 2009, the agriculture sector contributed RM20 bullion, or 4% of Malaysia’s 

gross national income (GNI). In line with this, for a country like Malaysia, the need 

for economic growth in the agricultural sector has been growing at an alarming rate 

over the past few decades. As a result, the rate of production in the agriculture sector 

has doubled in the last two decades (Matahir & Tuyon, 2013). 

 

For the export market, farmers in Malaysia manufacture a wide range of crop 

and grain goods. The ginger crop is one of these products that brings in an important 

amount of foreign funds for the country. Since the competence of agricultural 

extension workers and visual inspection are the main factors in traditional disease 

detection, it is costly and challenging to scale up early disease identification and 

classification, especially for mass production (Selvaraj, et al., 2019). In Malaysia with 

limited human and logistical infrastructure, smallholder farmers are less successful in 

addressing farming issues since they rely on their prior knowledge. Therefore, early 

detection of field diseases and growth rates is one of the important steps for early 

intervention to reduce the impact of food supply chains. 

 



2 

In recent years, the integration of image processing algorithms and deep learning 

techniques has shown great effect in addressing these challenges. By using these 

algorithms and techniques, visual data can be analysed with high accuracy, allowing 

for the automated detection and analysis of various plant characteristics. One of the 

deep learning algorithms, such as convolutional neural networks (CNNs) can be used 

to reducing the need for manual inspection and increasing the efficiency of the 

monitoring system. Among the cutting-edge technologies in this domain, YOLO (You 

Only Look Once) stands out as a particularly effective deep learning model for real-

time object detection and segmentation (Wang, et al., 2024). Deep learning models can 

be trained on large datasets of ginger plant images, allowing them to learn the features 

and patterns associated with different growth stages. This help improve the accuracy 

of the monitoring system and provide more reliable information about the growth rate 

and health of the ginger plants. Additionally, the integration of image processing and 

deep learning approaches can also help address the challenges of variability in ginger 

plant appearance due to environmental factors such as soil conditions, sunlight 

exposure, and water availability. 

 

 

 

1.2 Problem Statements 

 

Monitoring of ginger plant growth and health is important in agriculture for optimizing 

yield and ensuring crop quality. However, traditional methods of plant monitoring 

depend on manual observation and measurement, which is labour-intensive, 

inconsistencies and likely to have human error. As the demand for precise agricultural 

practices increase, any delay or inaccuracy in detecting plant diseases or growth 

deficiencies can also lead to reduced yields and financial loss for farmers. Therefore,  

automated solutions that can provide accurate, real-time data on plant characteristics, 

such as height, leaf area, and overall health is required.  

 

 The lack of automated tools for efficient plant monitoring is a challenge, 

especially in large farms where manually plant assessment is inefficient. Furthermore, 

to determine the plant health and development, a more precise measurement technique 

is needed to assess plant height and leaf area. The integration of modern technologies 
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such as image processing and deep learning can provide solutions, but  yet there is still 

lacking effective system specifically tailored to ginger plants. 

 

This project aims to solve these issues by developing a system that integrates 

image processing algorithms with deep learning models to automate the detection, 

classification, and monitoring of ginger plants and their leaves. The system will not 

only detect and segment plants but also assess plant health and estimate plant height 

using depth estimation models, providing an efficient and accurate method for 

monitoring ginger crops. 

 

 

 

1.3 Aims and Objectives 

 

The objectives of the thesis are shown as following: 

1. To design a model capable of detecting the ginger plants. 

2. To design a model capable of detecting ginger leaf and classifying ginger leaf by 

its health status. 

3. To design a model that can estimate the depth of the target to calculate its height 

and area. 
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2 LITERATURE REVIEW 

 

 

 

2.1 Deep Learning 

 

Deep learning is being used more and more in monitoring plant growth as it has shown 

good performance in image classification. Deep learning is a type of machine learning 

that includes multi-layer artificial neural networks (ANNs) with multiple layers 

(Shrestha & Mahmood, 2019), where the model's outcomes and parameters are 

influenced by the examples used during training. Deep learning uses different types of 

learning methods include supervised learning, unsupervised learning, semi-supervised 

learning, and reinforcement learning. Deep learning models have performed better 

than traditional machine learning models such as SVMs, k-NNs, and decision trees 

when it comes to monitoring plant growth, especially in the area of image-based plant 

phenotyping research, where deep learning models have been shown to be more 

effective than traditional machine learning models (Tong, et al., 2022). 

 

Moreover, using deep learning models in plant growth monitoring can enhance 

the accuracy and efficiency of plant growth monitoring technologies, especially in the 

field of precision agriculture. It helps farmers to accurately predict crop yields, identify 

plant disease and determine the health of their plants, which enables them to make 

informed decisions regarding crop management and disease control. Development 

models created through deep learning can help researchers in gaining a clearer 

understanding of the factors influencing plant growth. This could also assist the 

researcher in creating a more efficient method for plant breeding and crop management. 
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Among deep learning networks, convolutional neural networks are more 

effective at capturing hierarchical patterns in image and video data due to the use of 

shared weights in convolution kernels. Convolutional neural networks are already used 

in agriculture for a variety of tasks, such as identifying diseases, classifying land cover, 

counting fruits, and identifying weeds through image analysis (Tong, et al., 2022). As 

of now, there have been 23 studies focused on deep learning applications for 

monitoring plant growth, released from 2017 to 2021, with most of them coming out 

in 2020 (Tong, et al., 2022). These researches show that the use of deep learning in 

monitoring plant growth is a new and developing area. 

 

 

 

2.2 Object Detection with Convolution Neural Network (CNN) 

 

CNN is a form of feed-forward neural network that uses weight sharing which is 

commonly used in object detection tasks. Convolution is a mathematical operation that 

demonstrates the overlapping of two functions by multiplying them together. The CNN 

architecture for object detection includes convolving the image with an activation 

function to produce feature maps, which are further processed with pooling layers to 

simplify spatial complexity and form abstracted feature maps. Furthermore, the feature 

maps are operated on by fully connected layers to produce an image recognition output, 

indicating the certainty of the predicted class labels (Pathak, et al., 2018). The layered 

architecture of CNN for object detection is shown in Figure 2.1. The CNN uses 

different types of pooling layers to enhance efficiency and decrease parameters, these 

layers are translation-invariant and process each patch within the chosen map. 

 

 
Figure 2.1: Use of CNN in Object Detection 

Input Image 

Convolution 

Feature Maps Feature Maps 

Subsampling 

Feature Maps 

Fully Connected 

Output Cactus 
Ginger Plant 
Roses 
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2.3 YOLO (You Only Look Once)  

 

2.3.1 YOLO’s Introduction 

 

YOLO is an object detection algorithm introduced by Redmon et al. (2016). YOLO is 

currently the most popular real-time object detector due to its lightweight network 

architecture, effective feature fusion methods and accurate detection results, The most 

widely accepted algorithms are YOLOv5 and YOLOv7 in terms of current usage (Lou, 

et al., 2023). The YOLOv5 uses deep learning technology for real-time and effective 

object detection, with improvements in model structure, training strategy, and overall 

performance. Unlike region proposal networks (R-CNN) or sliding windows to 

identify potential objects in an image, YOLO changed the approach to a single 

regression task, making predictions for bounding boxes and class probabilities directly 

from full images in one evaluation. However, it still has some limitations in detecting 

small object and dense object detection, along with complex situations such as 

occlusion and pose change. 

 

YOLO uses Convolutional Neural Networks (CNNs) as the core of its 

architecture. YOLO is built on a CNN that processes the input image in a single pass 

to detect objects and their bounding boxes. The CNN extracts feature from the image, 

which are then used to predict the presence of objects, their locations, and class 

probabilities. The architecture of YOLO typically includes multiple convolutional 

layers followed by fully connected layers. The convolutional layers are responsible for 

feature extraction, where filters learn to detect patterns such as edges, textures, and 

shapes that are indicative of objects in the image. The fully connected layers then 

interpret these features to output the final predictions for object detection. 

 

 

 

2.3.2 Evolution of YOLO Versions 

 

Since it was first launched, YOLO has gone through multiple versions, with 

each one enhancing its predecessor's accuracy, speed, and ease of use.  YOLOv2 

proposed method by implementing methods such as batch normalization, anchor boxes, 
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and enhancing the feature extraction network. This help improved performance on 

different benchmarks compare to its predecessor. The architecture of YOLOv3 and 

YOLOv4 was improved by adding deeper networks, residual connections, and 

enhanced loss functions. 

 

YOLOv5 and YOLOv8 which is not developed by the original creators, is 

developed to enhance the algorithm for improved detection speeds and accuracy. 

Additionally, these versions have increased YOLO's accessibility by providing pre-

trained models and user-friendly frameworks to increasing its usability in different 

fields (Hussain, 2023). 

 

YOLOv7 proposed a novel training strategy, Trainable Bag of Freebies (TBoF), 

which significantly improves the accuracy and generalization ability of the object 

detector. However, it requires more computational resources and training time to 

achieve the best performance, and its performance can degrade in some cases due to 

the training data, model structure, and hyperparameters (Lou, et al., 2023). 

 

YOLOv8 uses Anchor-Free instead of Anchor-Base for improved performance 

which allows for dynamic “TaskAlignedAssigner” for matching strategy. It calculates 

the alignment degree of Anchor-level for each instance using Equation (). The 

algorithm selects (m) anchors with the maximum value (t) in each instance as positive 

samples and selects the other anchors as negative samples, then trains through the loss 

function. After these improvements, YOLOv8 is 1% more accurate than YOLOv5, 

making it the most accurate detector so far (Lou, et al., 2023). 

 

𝑡𝑡 = 𝑠𝑠𝛼𝛼 × 𝑢𝑢𝛽𝛽 (2. 1) 

 

where 

𝑠𝑠 = classification score 

𝑢𝑢 = IOU value 

𝛼𝛼 and 𝛽𝛽 = weight hyperparameters 
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2.3.3 YOLOv8 Object Detection Mechanism 

 

YOLOv8, published in 2023, combines the best of many real-time object 

detectors, adopting the idea of CSP from YOLOv5 (Wang, et al., 2020), feature fusion 

method (PANFPN) (Lin, et al., 2017), and SPPF module. Its main improvements 

include a brand new SOTA model, a detection head part that uses the current popular 

method of separating the classification and detection heads, and the use of BCE loss 

for classification and CIOU loss + DFL for regression (Lou, et al., 2023). The network 

quickly focused on the location distribution close to the object location, with 

probability density as close as possible to that the location, as shown in Equation (). 

YOLOv8 is also extensible and can support previous versions of YOLO, making it 

easy to compare the performance of different versions. 

 

𝐷𝐷𝐷𝐷𝐿𝐿(𝑆𝑆𝑖𝑖,𝑆𝑆𝑖𝑖+1) = −�(𝑦𝑦𝑖𝑖+1 − 𝑦𝑦) log(𝑠𝑠𝑖𝑖) + (𝑦𝑦 − 𝑦𝑦𝑖𝑖) log(𝑠𝑠𝑖𝑖+1)� (2. 2) 

 

where 

𝑠𝑠𝑖𝑖 = output of sigmod for the network  

𝑦𝑦𝑖𝑖and 𝑦𝑦𝑖𝑖+1 = interval orders 

𝑦𝑦 = label 

 

 

 

2.3.4 YOLOv8 Architecture and Segmentation Mechanism 

 

While YOLO is primarily an object detection algorithm, its architecture can be 

adapted for segmentation tasks with YOLOv8. The segmentation classifies each pixel 

in the image, which is more complex than simply detecting objects and drawing 

bounding boxes around them. The architecture of YOLOv8 combine the convolutional 

neural networks (CNNs) and feature pyramid networks to capture both global context 

and fine-grained details. This multi-scale feature extraction process allows YOLOv8 

identifying accurately object boundaries and generating high-quality segmentation 

mask (Terven, et al., 2024). 
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YOLOv8 implements segmentation by integrating a dedicated segmentation 

header into its architecture. This head is responsible for predicting masks for each 

detected object and refining the bounding box predictions to include detailed shape 

and area information. This simultaneous prediction of masks and bounding boxes 

allows YOLOv8 callable in real-time processing while providing a more 

comprehensive analysis of the scene (Wu, et al., 2024). 

 

 

 

2.3.5 Advantages of YOLOv8 Segmentation 

 

One of the standout features of YOLOv8 Segmentation is its ability to process images 

and videos in real-time. This capability is suitable for applications that require 

immediate feedback, such as autonomous vehicles, surveillance systems, and robotics. 

The model's architecture is optimized to ensure rapid detection and segmentation 

without sacrificing accuracy. As it excels in accurately detecting and identifying 

objects make it suitable use in complex scenarios involving small objects or occlusions, 

 

The YOLOv8 segmentation model has been successfully adapted for 

applications ranging from agricultural monitoring to medical diagnostics and industrial 

inspections. In the field of agriculture, the YOLOv8-seg model, enhanced with Ghost 

and BiFPN modules, achieved an 86.4% Dice score in segmenting plant leaves, which 

outperforming existing methods (Wang, et al., 2024). Additionally, A modified 

YOLOv8-segANDcal model improved detection and segmentation of soybean 

radicles by 2% and 1% in mAP, facilitating rapid crop variety selection (Wu, et al., 

2024).  

 

In the field of medical Imaging, YOLOv8 demonstrated high efficacy in 

segmenting polyps in colonoscopy images, achieving a Dice score of 0.919, which aids 

in colorectal cancer diagnosis (Sandro Luis de, et al., 2024). While the YOLOv8 used 

in corrosion detection, YOLOv8's single-pass detection method allows for efficient 

corrosion segmentation in industrial imagery, enhancing maintenance strategies (R S, 

et al., 2024). 
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2.4 Faster R-CNN 

 

Faster R-CNN is an object detection model introduced by Ren et al. (2017). Faster R-

CNN an extension of the R-CNN (Region-based Convolutional Neural Network) 

framework and it is aiming to improve the detection speed without compromising 

accuracy. Faster R-CNN has been used in different sectors, such as agriculture for 

detecting and harvesting fruits with deep learning (C, et al., 2022), as well as in Internet 

of Vehicles (loV) for instant object detection in intelligent transportation systems 

(Zineb, et al., 2023). It has also been evaluated in systematic literature reviews while 

comparing it with other object detection algorithms like YOLO (Rashid & Fadzil, 

2023). 

 

Since Faster R-CNN has achieved near real-time processing speed with the 

used of very deep networks. However, the computational bottleneck problem come out 

from the time spent on generating region proposals which is an important in state-of-

the-art detection systems. In order to solve this, there are difference method explored 

to leverage deep networks for the localization of class-specific of class-agnostic 

bounding boxes. One of the methods involves using the Multi-Box methods where a 

regions proposals are generated directly from the network’s last fully connected (fc) 

layer (Erhan, et al., 2013).  This help predict multiple bounding boxes simultaneously 

and is used for object detection within the Faster R-CNN framework. Additionally, 

another method that achieves high accuracy in real-time object detection with high 

processing speed is the YOLO (You Only Look Once) algorithm. As one of the YOLO 

algorithm, YOLOv5, stands out for its high speed and accuracy, hitting 69 frames per 

second on the COCO dataset and maintaining a mean Average Precision (67%) 

equivalent to SE-YOLOv3 (Reswara , et al., 2023). 

 

 

 

2.5 Image enhancement 

 

Due to variation to the appearance of the plants due to environmental factors such as 

soil type and condition, exposure to sunlight, and water availability. This causes the 

images having shadows or illumination effect and affect the performance of leaf region 
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identification. Therefore, improving images is an important initial stage in many tasks, 

such as extracting plant leaves. The methodology of enchanting an image is shown in 

Figure 2.2. 

 

 
Figure 2.2: Process of Image Enhancement 

 

 

In object extraction, image enhancement is required to minimize the impact of 

shadows and illumination on the identification of target regions. The V (Value) plane 

in the corresponding HSV (Hue, Saturation, Value) image represents the brightness of 

an image (Ganesan, et al., 2014). Pre-processing the V plane in the HSV colour space 

can help decrease the illumination effect, ultimately enhancing the segmentation 

accuracy. 

 

The suggested approach starts by transforming the plant's RGB image into an 

HSV image. Next, the V plane is analysed to determine the skewness (𝑆𝑆𝑘𝑘) using the 

Equation  and the probability distribution of the V plane. If the skewness is positive, 

meaning there is shadow, the V plane needs to be enhanced to eliminate the 

illumination effect (Praveen & Domnic, 2019). On the flip side, an image with 

excessive brightness will result in a negative skewness value, showing that the 

distribution is leaning towards the right. 

 

𝑆𝑆𝑘𝑘 =
𝐸𝐸�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜇𝜇�

3

𝜎𝜎3
(2. 3) 

 

where 

𝑥𝑥𝑖𝑖𝑖𝑖 = value of (𝑖𝑖, 𝑗𝑗)𝑡𝑡ℎ pixel in V plan of HSV image before image enchancement 

𝐸𝐸 = expected value 

𝜇𝜇 = mean value 

Input RGB image Convert RGB image to 
HSV image Enhance image
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𝜎𝜎 = standard deviation 

 

In statistical modelling of contrast enhancement, the statistical properties of an 

image can be analytically calculated using the probability distribution function of an 

image (Sahar Jorjandi et al., 2021). The probability distribution is a function that gives 

all the possible values and likelihoods of a random variable within a range. In the 

proposed work, the distribution of brightness (V plane) is assumed to be in a Weibull 

distribution. To remove the over brightness or shadow effect in the image, the 

skewness of the brightness distribution should be made symmetric to allows for the 

removal of over brightness or shadow effect in the image, further enhancing the image 

and improving the segmentation accuracy.  

 

 
 

2.6 Leaf Segmenting 

 

Segmenting plants is an important part of examining plant characteristics like height, 

leaf area, colour, texture, and shape. It required isolating the plant area from the 

surrounding background within an image. There are different image segmentation 

techniques such as thresholding, edge detection, and segmentation methods based on 

machine learning can accomplish this (Manjula, 2017). 

 

Thresholding is a straightforward technique where a threshold value is used to 

differentiate the plant area from the background by identify the intensity values of the 

pixels (Al-amri, et al., 2010). This technique works best for photos with distinct 

contrast between the plant and the background. Plant segmentation can also use edge 

detection as a technique. This process includes identifying the plant region's edges in 

the image and distinguishing it from the background. This technique is beneficial for 

images with clearly defined boundaries in the plant area (Salman, 2006). 

 

Plant segmentation can also be accomplished using segmentation methods 

based on machine learning. These techniques require the machine learning model to 

be trained on a dataset of images where plant regions are labelled. The model can be 
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utilized to separate new images by forecasting the area of the plant using the image's 

characteristics (Lee, et al., 2018). 

 

After segmenting the plant region, different characteristics can be extracted in 

order to analyse the plant. Plant height, leaf area, colour, texture, and shape are some 

of the characteristics mentioned. Height of plants can be assessed through image 

processing methods like distance transformation or edge detection. Contour analysis 

and area calculation methods can be used to determine leaf area. Characterizing the 

colour distribution of the plant can involve extracting colour features like mean colour, 

colour histograms, or colour moments. Texture features such as Haralick texture 

features, Gabor features, and Local Binary Patterns (LBP) can be calculated to 

represent the texture patterns found in the plant areas (Porebski, et al., 2008) 

 

 

 

2.7 Leaf extraction and classification 

 

Leaf extraction and classification are fundamental tasks in plant species identification 

such as agriculture, botany, and environmental science. Leaf extraction and 

classification involve the use of different feature extraction methods to classify the 

species based on different leaf features such as including shape, texture and venation. 

This literature review explores methods and techniques employed in leaf extraction, 

particularly focusing on shape features and graph-based algorithms for segmentation. 

 

Shape features are commonly used in plant leaf classification. a study show 

that leaf shape features have been chosen and tested in almost 62.5% of plant 

identification studies, much exceeding the use of other features. This is because they 

are the easiest and most obvious features for distinguishing species, particularly for 

non-botanists who have limited knowledge of plant characters (Lee et al., 2017). 

However, the performance of these approaches is highly dependent on a chosen set of 

hand-engineered features, which are liable to change with different leaf data and 

feature extraction techniques, confounding the search for an effective subset of 

features to represent leaf samples in species recognition studies. 
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One of the methods involves using the enchanted HSV (Hue, Saturation, Value) 

images for leaf segmentation (Praveen & Domnic, 2019). The process involves 

segmenting the leaf region based on the V plane while maintaining robustness to 

reflections and shadows. A graph-based algorithm is employed for segmentation, 

enhancing accuracy while minimizing computational complexity. The algorithm 

constructs a graph representing the enhanced HSV image, with nodes representing 

pixels and edges defining relationships between neighbouring pixels or between pixels 

and source/terminal nodes. 

 

Edge costs are determined based on prediction parameters derived from pixel 

values in the HSV image (Lee, et al., 2017). These costs guide the segmentation 

process, distinguishing leaf pixels from background or non-leaf pixels. The 

segmentation algorithm iteratively explores the graph to identify leaf regions, 

facilitated by search trees originating from source and terminal nodes 

 

Furthermore, post-segmentation refinement is conducted to eliminate non-leaf 

regions such as light reflections, yellow soil, and mosses. Conversion to RGB, CMYK, 

and Lab colour spaces enables effective discrimination between leaf and non-leaf 

elements (Lee, et al., 2017). Threshold values are empirically determined for each 

dataset, ensuring accurate removal of undesirable elements from the identified leaf 

regions. 
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3 METHODOLOGY 

 

 

 

3.1 Introduction 

 

The methodology in integrating deep learning algorithm to monitor the ginger plants 

involves multiple steps which is necessary for obtaining the precise and effective 

detection outcomes. The process is shown as below: 

 

 
Figure 3.1: Process Flow of Detecting the Ginger Plant 
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3.2 Planning 

 

3.2.1 Hardware Required 

 

3.2.1.1 Image Capture 

 

Lenovo 300 FHD webcam will be used to capture images for the dataset. This webcam 

provides full HD resolution to ensure high-quality input data for the training process. 

 

 

 

3.2.1.2 Inference Hardware 

 

The local machine should have a GPU compatible with CUDA 11.7 to enable 

accelerated inference for running models like YOLOv8 and the depth estimation 

model efficiently. 

 

 

 

3.2.2 Software Required 

 

3.2.2.1 Training Environment 

 

Google Colab will be used for training model. Google Colab offers the advantage of 

using high-performance GPUs in the cloud, which is ideal for deep learning tasks. 

 

 

 

3.2.2.2 Inference Environment 

 

The local environment will use Python 3.11.7, which is compatible with the latest deep 

learning libraries. The CUDA 11.7 should also be installed to ensures GPU 

acceleration for running deep learning models, which is crucial for real-time inference. 
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3.2.2.3 Model Required in The System 

 

• YOLOv8 Segmentation for Ginger Plant Classification: The YOLOv8 model 

will be trained and utilized for segmentation tasks to classify whether a plant is a 

ginger plant. 

• YOLOv8 Segmentation for Healthy and Unhealthy Ginger Plant Leaves 

Classification: Another YOLOv8 model will be trained deployed for segmenting 

and classifying ginger plant leaves as either healthy or unhealthy. 

• Depth Estimation Model: The Intel DPT-Large model will be used for estimating 

the depth of the plants. 

 

 

 

3.2.3 Project Timeline & Resource allocation 

 

The project will begin with data collection, where images will be captured using the 

webcam to create datasets for training the YOLOv8 model. Once the dataset is ready, 

the model training phase will start using Google Colab for training because Google 

Colab provides GPU resources. The training will involve running multiple epochs with 

evaluations to monitor and optimize the model’s performance. Following the 

completion of training, the project will transition into setting up the local inference 

environment. This setup will involve installing and configuring all necessary software 

dependencies to ensure success of inference process. 

 

In terms of resource allocation, significant time will be dedicated to capturing 

and annotating the dataset, as this step is critical to the overall success of the project. 

The training phase will rely on Google Colab’s GPU resources to accelerate the 

process and achieve faster results. For the inference and testing phase, the local 

machine will be optimized with the CUDA configuration to enable faster processing 

and testing of the model. 
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Table 3.1: Gantt Chart for FYP1 

Task 
Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Project Title 

Decision 
              

Introduction               

Review on 

Literature 
              

Methodology               

Planning               

 

 

Table 3.2: Gantt Chart for FYP2 

Task 
Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Develop Ginger 

Plant Detection 

              

Develop Plant 

Leaf Detection 

              

Develop Depth 

Estimation Model 

              

Evaluate Model 
              

Organize Results 
              

Discussion on 

Results 

              

Conclusion and 

Recommendation 
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3.3 Training 

 

3.3.1 Dataset Preparation for YOLOv8 model training 

 

The training process began with the preparation of the dataset. Images were captured 

using the webcam to create datasets. These images were then annotated using tools 

“Roboflow”, marking each image for segmentation and object detection to identify the 

ginger plants and their leaves accurately. To enhance the model’s ability to increase 

the diversity of the dataset and help the model learn more robust features, the data 

augmentation techniques were applied such as transformations, rotation, scaling, 

flipping, and colour adjustments. 

 

Two YOLOv8 models were trained for different purposes. The first model was 

trained to detect and classify whether a plant is a ginger plant or not, while the second 

model was trained to detect the leaves of the ginger plant and classify them as either 

healthy or unhealthy. During the training phase of these two YOLO models, key 

hyperparameters such as learning rate, batch size, and the number of epochs were tuned 

to optimize the model's performance. An early stopping mechanism was implemented 

to prevent overfitting, ensuring the model did not learn to perform well only on the 

training data. The table below show the hyperparameters use in training the plant and 

leaf segmentation. 

 

Table 3.3: Hyperparameters use in Training Phase 

Task Segment 

Mode Train 

Pretrained weight  yolov8n-seg 

Device Google Colab’s GPU 

Epochs 40 

Learning Rate 0.001 

Batch Size 16 

Imgsz (Image Size) 640 
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Training was conducted using Google Colab’s GPU resources, which provided 

the necessary computational power. The YOLOv8 model underwent multiple epochs 

of training, with its performance evaluated at each stage. Throughout this process, 

model checkpoints were saved to allow the best-performing model can be retrieved if 

needed. 

 

A portion of the dataset was reserved as a validation set and test set, which was 

used to evaluate the model’s performance throughout the training process. After 

training, the model was tested on a separate test set to assess its effectiveness, with 

metrics such as Intersection over Union (IoU) and accuracy calculated to evaluate 

segmentation and detection performance.  

 

 
Figure 3.2: Dataset of Plant Detection Model 
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Figure 3.3: Dataset of Leaf Detection Model 

 

 

 

3.3.2 Dataset Preparation for Depth Estimation Model Training 

 

To estimate the depth of the ginger plants in order to calculating their height, the Intel 

DPT-Large model was integrated into the workflow. The dataset for training the depth 

estimation model was carefully curated to ensure accurate and reliable depth 

predictions. The images were captured using the Lenovo 300 FHD webcam, focusing 

on different distances to capture the full range of depth variations in the ginger plants. 

 

To create the ground truth for depth estimation, the dataset was annotated with 

depth information corresponding to each image. This annotation process involved 

using a combination of sensor data and manual labelling to accurately represent the 

distance of the plants from the camera. The data was then pre-processed to match the 

input requirements of the Intel DPT-Large model, including resizing, normalization, 

and augmentation to improve the model’s ability to generalize. 

 

The Intel DPT-Large model was chosen for its ability to deliver high-quality 

depth predictions, particularly in complex environments. During training, the model 

was optimized using a custom loss function that minimized the difference between the 

predicted and actual depth values. Hyperparameters such as learning rate, batch size, 
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and the number of epochs were carefully tuned to achieve the best possible 

performance. 

 

The training process was conducted using powerful computational resources to 

handle the large and complex dataset. As with the YOLOv8 model training, 20% of 

the dataset was reserved as a validation set to monitor the model’s performance 

throughout the training process. This validation ensured that the model was learning 

effectively and that any issues such as overfitting were addressed promptly. 

 

After the initial training phase, the model’s performance was evaluated using 

key metrics such as mean absolute error (MAE) and root mean square error (RMSE), 

which provided insights into the accuracy of the depth predictions. Based on these 

results, the model was fine-tuned by adjusting hyperparameters and retraining with an 

augmented dataset. This fine-tuning aimed to enhance the model’s ability to accurately 

estimate the depth of ginger plants under various conditions, ensuring its effectiveness 

in real-world applications. 

 

 

 

3.4 Implementation 

 

3.4.1 Inference on New Images 

 

Following the evaluation, the models were deployed for inference on new images. The 

inference process involved applying the trained YOLOv8 model to detect and segment 

ginger plants and their leaves in unseen data. The depth estimation model was also 

used to measure the distance of the detected plants from the camera, specifically 

focusing on the height and area calculation of the ginger plant’s leaves.  

 

The implementation was tested across various scenarios to ensure the models 

performed well under different conditions. The results from these tests were recorded 

and analysed to determine the consistency and reliability of the models in practical 

applications. 
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3.4.2 Model Implementation 

 

This section describes the real-time monitoring system and detection system of the 

deployed system. The Figure 3.4 shows the overview of implementation phase of the 

system. 

 

 
Figure 3.4: Overview of Model Implementation Phase 

 

 

The trained model was deployed locally using Python 3.11.7 and CUDA 11.7 

for real-time inference. The inference process is optimized by adjusting the batch sizes, 

image resolution, and any post-processing that the system can handle real-time input 

from the webcam.  

 

Two trained YOLOv8 models and depth estimation were deployed, one for 

detecting the ginger plant and the other for segmenting its leaves. Additionally, the 

depth estimation model was deployed to calculate the height of detected ginger plant 
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and its leaves. To enhance performance, the inference process was optimized by 

adjusting batch sizes, image resolution, and post-processing steps.  

 

 

 

3.5 Analysis 

 

3.5.1 Performance Analysis 

 

In the Analysis phase, the trained YOLOv8 model's performance will be examined by 

comparing the evaluation metrics such as precision, recall and mAP against established 

benchmarks. This comparison highlighted the strengths and weaknesses of the 

YOLOv8 model in detecting and segmenting ginger plants. The mathematical formula 

for these metrics is provided. 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑢𝑢𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐷𝐷𝐹𝐹 + 𝐷𝐷𝑇𝑇 + 𝑇𝑇𝐹𝐹
(3. 1) 

 

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐷𝐷𝑇𝑇
(3. 2) 

 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐸𝐸𝐹𝐹
(3. 3) 

 

𝐷𝐷1 𝑠𝑠𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 =
2 × 𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅
𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅

(3. 4) 

 

where  

𝑇𝑇𝑇𝑇 =  True positive 

𝑇𝑇𝐹𝐹 =  True negative 

𝐷𝐷𝑇𝑇 =  False positive 

𝐷𝐷𝐹𝐹 =  False negative 
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𝑚𝑚𝐴𝐴𝑇𝑇 =
1
𝐹𝐹
�𝑇𝑇𝚤𝚤�
𝑁𝑁

𝑖𝑖=1

(3. 5) 

 

where 

𝑇𝑇𝚤𝚤� = Average precision  for a given sample 𝐹𝐹 

𝐹𝐹 = Sample 

 

Furthermore, multiple curves will be plotted to determine the selection on best 

threshold confidence. The F1-confidence curve plots the F1 score, the harmonic mean 

of precision and recall, against different confidence thresholds. The F1 score is a single 

metric that balances precision and recall to measure a model's performance. The 

precision-confidence curve shows how the precision changes with confidence. 

Precision measures the proportion of true positive detections among all detections 

made by the model. This helps obtain the threshold between making correct positive 

predictions and avoiding false positives. 

 

The precision-recall curve is used to evaluate the model's effectiveness, 

especially in cases of imbalanced datasets. The precision-recall curve plots precision 

against recall for different confidence thresholds. Finally, the recall-confidence curve 

shows how recall, or the model's ability to detect true positives, varies with confidence, 

indicating how sensitive the model is to detecting objects as the threshold changes. 

The recall-confidence curve shows how recall varies with the confidence threshold. 

Recall measures the proportion of true positive detections among all actual positive 

instances. 

 

The accuracy of depth estimation was also compared with ground truth 

measurements to assess the precision of the height and area calculations of the leaves.  

 

Mean Absolute Error (MAE) is calculated as: 

 

𝑀𝑀𝐴𝐴𝐸𝐸 =
1
𝑃𝑃
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�|
𝑛𝑛

𝑖𝑖=1

(3. 6) 

The Root Mean Squared Error (RMSE) is given by 
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𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �
1
𝑃𝑃
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑛𝑛

𝑖𝑖=1

(3. 7) 

 

where 

𝑦𝑦𝑖𝑖 = actual depth 

𝑦𝑦𝚤𝚤� = predicted depth 

𝑃𝑃 = number of samples 

 

 

 

3.6 Cost Estimation 

 

This section gives the project's cost estimation to demonstrate the project's budget and 

ensure that there is enough funding for the system's development. The table provided 

indicates the total cost estimate. 

 

Table 3.4: Cost Estimation of Project Materials 

Item Cost (RM) 

Hardware  

 Lenovo 300 FHD webcam 170.00 

   

Material  

 Ginger Plants 25.00 

 Gingers 10.00 

 Soil 10.00 

 Pot 20.00 

Total Estimated Cost 235.00 
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4 RESULTS AND DISCUSSIONS 

 

 

 

4.1 System Interface Results 

 

In this section, the result of the created system was discussed. The evaluation of 

YOLOv8's results and performance were conducted. During this phase, the system that 

was developed was evaluated with various ginger plants. The figure below shows the 

real-time plant monitoring system interface. 

 

 
Figure 4.1: Real-Time Plant Monitoring System Interface 
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Figure 4.2: Real-Time Plant Monitoring System Interface 

 

 

 
Figure 4.3: Real-Time Plant Monitoring System Interface 
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4.2 Ginger Plant Detection Using YOLOv8 Model 

 

The first model was trained using YOLOv8 for ginger plant detection. This model 

segment ginger plants from the background and other types of plants, labelling the 

detect ginger plant as "ginger”, while labelling other plant as “other”.  The 

performance of the model was evaluated using metrics such as Precision, Recall, and 

F1 score. 

 

 

 

4.2.1 Example of Ginger Plant Detection Results 

 

The result of training the plant detection model was shown in Figure 4.4. In the figure, 

blue bounding boxes indicate detected ginger plants, while cyan bounding boxes 

correspond to other plants.  

 

 
Figure 4.4: Labels in Training Process of Plants Detection 
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Table 4.1: Example Testing Results of YOLOv8 Segmentation Ginger Plant 

Detection Model 

No Original Image Plot Extracted Region 

1 

   
2 

   
3 

   
 

 

  



31 

4.2.2 Ginger Plant Detection Using YOLOv8 Model Performance 

 

To evaluate the performance of the model, the precision, recall, and F1-score were 

calculated based on the detected and actual values and these metrics were plotted 

against each other to provide the accuracy of the model. 

 

 
Figure 4.5: F1-Confidence Curve 

 

 

Based on the curve in Figure 4.5, the model achieves an F1 score of 0.79 at a 

confidence threshold of 0.701 across all classes, indicating that the model maintains a 

strong balance between precision and recall when making predictions at this 

confidence level. Since the F1-confidence curve for ginger plants and other plants 

follows the overall curve, the model's average performance across all classes is 

consistent in detecting and classifying different plants. Therefore, the consistent 

performance across classes is a positive indicator that proves that it can correctly 

identify ginger plants. However, the curve shows that the trend declines sharply after 

the peak because beyond this threshold, the F1 score decreases as the model becomes 

more conservative, which may miss some true positives (ginger plants) in favor of 

increasing precision. 
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 Figure 4.6: Precision-Confidence Curve 

 

 

Based the curve in Figure 4.6, the model achieves a perfect precision score of 

1.00 at a confidence threshold of 0.972 across all classes, indicating the model is highly 

confident about its predictions in detecting and classify the plant. It also indicates that 

all the predicted instances of plants match to the actual instances of plant, resulting it 

in an almost 100% accuracy. However, this high precision may cause the model only 

makes predictions when it is very high confidence, because at elevated confidence 

levels does not necessarily translate to overall effectiveness. While high precision is 

desirable, but it’s also important to balance this with recall, especially in agricultural 

applications where missing ginger plants or misclassifying other plants will causing 

consequences such as reduction losses. 
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Figure 4.7: Precision-Recall Curve 

 

 

Based on the curve in Figure 4.7, it provides how the model's performance 

compared to the ROC curve. A precision-recall score of 0.777 for detecting ginger 

plants (ginger) suggests that the model is effective in identifying ginger plants, with a 

good balance between precision and recall. The precision-recall score for detecting 

other plants (other) is slightly higher at 0.781, indicating that the model performs 

comparably well in detecting other plant types. The mean Average Precision (mAP) at 

0.5 for all classes is at 0.79, indicating that the model has strong performance in plant 

detection.  
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Figure 4.8 Recall-Confidence Curve 

 

 

 Based on the curve in the Figure 4.8, the model achieves a recall score of 0.89 

across all classes at a confidence level of 0.000. This suggests that the model can 

identify a high proportion of actual ginger plants and other plants when it makes 

predictions. However, the low confidence threshold indicates that the model may lead 

to many false positives. 

 

This curve shows how much recall is sacrificed when the model's confidence 

level increases. A steep decline in recall at a certain threshold indicates that beyond 

that threshold confidence level would reduce the model's ability to detect true positives. 

While a high recall score is beneficial, it is also required to analyse the trade-off 

between precision and recall. A model that predicts too many plants at low confidence 

may overwhelm users with false positives, leading to inefficiencies in agricultural 

monitoring. Given the observed decline in recall around the 0.8 confidence level, 

selecting the confidence at this level will be an effective balance that will predict and 

classify the plant accurately while minimizing false positives. 
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4.3 Leaf Detection and Health Classification Using YOLOv8 

 

The second model, also based on YOLOv8, was trained to detect leaves on the ginger 

plant and classify them as healthy or unhealthy. The detect leaves while labelling 

healthy leaves as "Healthy" and classify unhealthy leaves to “Nutritional-deficiency”. 

 

 

 

4.3.1 Example of Leaf Detection and Health Classification Results 

 

The result of training the plant detection model was shown in Figure 4.9. In the figure, 

blue bounding boxes indicate detected healthy leaves, while cyan bounding boxes 

correspond to unhealthy leaves. 

 

 
Figure 4.9: Labels in Training Process of Leaves Detection 
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Table 4.2: Example Testing Results of YOLOv8 Leaves Detection Model 

No Original Image Plot Extracted Region 

1 

   
2 

   
3 
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4.3.2 Leaf Detection and Health Classification Using YOLOv8 Performance 

 

 
Figure 4.10: F1-Confidence Curve 

 

 

Based on the curve in Figure 4.10,  the curve shows that healthy leaves have a 

higher peak compared to unhealthy leaves. The model is more effective at detecting 

and classifying healthy leaves, as the curve shows a higher F1 score in detecting 

healthy leaves. However, the lower peak for unhealthy leaves indicates that the model 

is challenging in detecting and classifying the unhealthy leaves and leads to higher 

rates of false negatives or false positives. The peak F1 score for all classes is 0.76 at a 

confidence level of 0.496. Therefore, selecting this threshold will provide a good 

balance across all classes.  
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 Figure 4.11: Precision-Confidence Curve 

 

 

Based the curve in Figure 4.11, the model achieves a perfect precision score of 

1.00 at a confidence threshold of 0.912 across all classes, indicating that when the 

model is confident in its predictions, it is highly accurate in classifying leaves correctly. 

At low confidence thresholds, the model will predict more objects, but some of these 

predictions may be incorrect and reduce precision. While high precision is desirable, 

it is essential to balance this with recall, particularly in agricultural applications where 

missing unhealthy leaves could have significant consequences. The model's 

performance at lower confidence levels should also be examined to ensure it can 

identify unhealthy leaves effectively. 
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Figure 4.12: Precision-Recall Curve 

 

 

Based on the curve in Figure 4.12, the higher precision and recall will have a 

curve that is close to the top-right corner of the graph. The shape of the curve is 

indicative of the model's performance, a steep drop-off indicates a point where 

increasing recall significantly reduces precision, which may suggest that the model is 

starting to predict more false positives. In detecting healthy leaves, the precision-recall 

score is 0.894 which means that the model is more accurate in identifying healthy 

leaves compared to detecting unhealthy leaves as the precision-recall score for 

unhealthy leaves is 0.607. Therefore, the model is less reliable in detecting unhealthy 

leaves, which could lead to missed opportunities for early intervention in crop 

management. The mean Average Precision (mAP) at 0.5 for all classes is reported at 

0.751, indicating a good overall performance. However, the significant difference in 

scores between healthy and unhealthy leaves underscores the need for targeted 

improvements in the model's training and evaluation processes. 
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Figure 4.13: Recall-Confidence Curve 

 

 

Based on the curve in Figure 4.13, as the confidence threshold increases, recall 

decreases because the model becomes more selective, potentially missing some true 

positives. The recall confidence analysis shows that the model achieves a recall score 

of 0.89 across all classes at a confidence level of 0.000, indicating that the model can 

identify a high proportion of actual healthy and unhealthy leaves when it makes 

predictions. However, if the confidence level is lower it will have a higher number of 

false positives.  

 

To decide on a threshold that ensures a high detection rate of the objects of 

interest, selecting the confidence level when recall decreases steeply will be suitable. 

Because A model that predicts too many healthy leaves at low confidence may 

overwhelm users with false positives, leading to inefficiencies in agricultural 

monitoring.  
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4.4 Leaf Health Status Classification 

 

The Table 4.3 shows an example of leaf detection and classification. The green masks 

indicate healthy leaves, while the red masks represent unhealthy leaves. The confusion 

matrix is shown in Table 4.4.  

 

Table 4.3: Example Images of Detected and Classified Leaves on a Ginger Plant. 

No. Detected Image Plotted Image 

1 

  
2 

  
 

 

Table 4.4: Leaf Health Status Confusion matrix 

 Actual Healthy Leaves Actual Unhealthy Leaves 

Predicted Healthy 

Leaves 

203 9 

Predicted Unhealthy 

Leaves 

7 49 

 

 

Based on the Table 4.4, metrics such as precision, recall, and F1-score for the 

leaf classification model were calculated. The results of these metrics are summarized 

in the Table 4.5.  

 

Table 4.5: Leaf Health Status Confusion matrix 

 Healthy Leaves Unhealthy Leaves 

Accuracy 94.03 % 

Precision 95.75 % 87.50 % 

Recall 96.67 % 84.48 % 

F1- Score 96.21 % 85.97 % 
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From the Table 4.5, the model achieved an overall accuracy of 94.03% for 

detecting and classifying healthy and unhealthy leaves. However, the performance 

metrics for classifying unhealthy leaves, specifically precision, recall, and F1-scoreare 

below 90%. This indicates that the model's ability to classify unhealthy leaves is 

comparatively weaker. 

 

 

 

4.4.1 Leaf Count Per Plant and Health Status Classification 

 

After detecting the leaves of each ginger plant using the trained YOLOv8 model, the 

system counts the total number of leaves on each plant. The system uses a threshold 

of 50% to classify the plant as healthy or unhealthy. If more than 50% of the leaves on 

a plant are classified as unhealthy, the entire plant is marked as unhealthy. The formula 

used to classify the plant's health is: 

 

Health Status = �Unhealthy,
Unhealthy Leaves

Total Leaves
> 0.5

Healthy, otherwise
(4. 1) 

 

During testing, it was observed that most ginger plants with clear visual signs of 

disease had more than 60% unhealthy leaves, validating the threshold set for 

classification. For example, in one test case, a ginger plant with 7 leaves, 5 of which 

were classified as unhealthy, was accurately classified as unhealthy by the system. 
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4.5 Depth Estimation Model 

 

The depth estimation model, Intel’s dpt-large, was deployed to calculate the distance 

between the camera and the detected ginger plant. This model provides a depth map 

for each image, which was used to determine the distance of the target from the camera. 

This distance estimated is used for calculation of the plant's height and the area of its 

leaves. 

 

 

 

4.5.1 Distance Measurement Results 

 

The Table 4.6 shown an example of the depth map generated from the test image. The 

colour gradient indicates different depths, with brighter colours representing closer 

distances and darker colours representing farther distance 

 

Table 4.6: Example Depth Map of a Ginger Plant 

Test Image Depth Map 

  
 

 

Total 15 test images with different distance are tested. The distance 

measurements for plants image with different distance are summarized in Table 4.3 

and Figure 4.14. The distances were calculated from the depth map, providing how far 

each plant is from the camera. 
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Table 4.7: Depth Estimation Result of Test Images 

Actual distance,  

𝒚𝒚𝒊𝒊 (cm) 

Predicted distance, 

𝒚𝒚𝒊𝒊�  (cm) 

Deviation (%) 

50 48.60 2.81 

60 60.83 1.38 

70 72.23 3.18 

80 82.45 3.06 

90 88.20 2.00 

100 104.38 4.38 

110 110.12 0.11 

120 113.05 5.79 

130 121.52 6.52 

140 130.64 6.69 

150 135.23 9.85 

160 137.04 14.35 

170 131.89 22.42 

180 137.43 23.65 

190 142.44 25.03 

 

 

 
Figure 4.14: Graph of Predicted Distance vs. Actual Distance 
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Figure 4.15: Graph of Percentage Deviation vs. Actual Distance 

 

 

 

4.5.2 Model Performance 

 

From the Figure 4.15, it is observed that for distances up to 110 cm, the deviation 

between the calculated and actual distance is relatively low, with the deviation 

percentage remaining below 10%. However, beyond 110 cm, the deviation increases 

significantly, reaching as high as 25.03% at 190 cm. This indicates that the model 

performs better at shorter distances but struggles with accuracy as the distance between 

the plant and the camera increases. 

 

The depth estimation model's accuracy was further evaluated by comparing the 

predicted depths to ground truth measurements obtained through physical 

measurement techniques. The Mean Absolute Error (MAE) and Root Mean Squared 

Error (RMSE) were calculated to quantify the difference between the predicted and 

actual depths. 
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The Mean Absolute Error (MAE) is calculated as: 

 

𝑀𝑀𝐴𝐴𝐸𝐸 =
1
𝑃𝑃
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�|
𝑛𝑛

𝑖𝑖=1

(4. 2) 

 

The Root Mean Squared Error (RMSE) is given by 

 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �
1
𝑃𝑃
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑛𝑛

𝑖𝑖=1

(4. 3) 

 

where 

𝑦𝑦𝑖𝑖 = actual depth 

𝑦𝑦𝚤𝚤� = predicted depth 

𝑃𝑃 = number of samples 

 

For the depth estimation model, based on total 15 images with different 

distance tested, an MAE of 13.60 cm and an RMSE of 20.84 cm were recorded, 

indicating that there is a slight overestimation in the predicted depths.  

 

The depth predictions were compared to ground truth measurements using 

statistical analysis. The correlation coefficient 𝐴𝐴  between the predicted and actual 

depths was calculated as: 

 

𝐴𝐴 =
∑�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)�𝑦𝑦𝚤𝚤� − 𝑦𝑦����

�∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2 �∑�𝑦𝑦𝚤𝚤� − 𝑦𝑦���
2

(4. 4) 

 

where 

𝑦𝑦𝑖𝑖 = actual depth 

𝑦𝑦𝚤𝚤� = predicted depth 

𝑦𝑦� = mean actual depth 

𝑦𝑦�� = mean predicted depth 
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The correlation coefficient was found to be 0.96 which is around 96%, 

indicating a strong positive correlation between the model's predictions and the actual 

measurements. 

 

 

 

4.6 Plant Height and Leaf Area Calculations 

 

The calculated distance between the camera and target is used to calculate the height 

of the ginger plant and the area of each leaf. Before calculation of plant height and leaf 

area, the pixel height and width of the image is calculated. The pixel height and width 

of an image captured by the camera can be calculated using the field of view (FoV) 

and the image's dimensions. The Field of View (FoV) is calculated as: 

 

𝐷𝐷𝑃𝑃𝑉𝑉ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡 = 2 ∙ tan−1 �
𝑆𝑆ℎ
2𝑓𝑓
� (4. 5) 

𝐷𝐷𝑃𝑃𝑉𝑉𝑤𝑤𝑖𝑖𝑤𝑤𝑡𝑡ℎ = 2 ∙ tan−1 �
𝑆𝑆𝑤𝑤
2𝑓𝑓
� (4. 6) 

 

where 

𝐷𝐷𝑃𝑃𝑉𝑉ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡 = vertical field of view, radians 

𝐷𝐷𝑃𝑃𝑉𝑉𝑤𝑤𝑖𝑖𝑤𝑤𝑡𝑡ℎ = horizontal field of view, radians 

𝑆𝑆ℎ = sensor height of the camera, mm 

𝑓𝑓 = focal length of the camera, mm 

 

The pixel height and pixel width of the image are calculated as: 

 

𝑝𝑝𝑖𝑖,ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡 = tan �
𝐷𝐷𝑃𝑃𝑉𝑉ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡

2
� ∙

𝐷𝐷
𝐼𝐼𝑚𝑚𝐴𝐴𝐼𝐼𝑃𝑃 𝐻𝐻𝑃𝑃𝑖𝑖𝐼𝐼ℎ𝑡𝑡

(4. 7) 

𝑝𝑝𝑖𝑖,𝑤𝑤𝑖𝑖𝑤𝑤𝑡𝑡ℎ = tan �
𝐷𝐷𝑃𝑃𝑉𝑉𝑤𝑤𝑖𝑖𝑤𝑤𝑡𝑡ℎ

2
� ∙

𝐷𝐷
𝐼𝐼𝑚𝑚𝐴𝐴𝐼𝐼𝑃𝑃 𝑊𝑊𝑖𝑖𝑊𝑊𝑡𝑡ℎ

(4. 8) 

 

where  

𝑝𝑝𝑖𝑖,ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡 = 𝑝𝑝ixel height corresponding to the image, cm 
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𝑝𝑝𝑖𝑖,𝑤𝑤𝑖𝑖𝑤𝑤𝑡𝑡ℎ = pixel width corresponding to the image, cm 

𝐼𝐼𝑚𝑚𝐴𝐴𝐼𝐼𝑃𝑃 𝑊𝑊𝑖𝑖𝑊𝑊𝑡𝑡ℎ = width of the image, pixels 

𝐼𝐼𝑚𝑚𝐴𝐴𝐼𝐼𝑃𝑃 𝐻𝐻𝑃𝑃𝑖𝑖𝐼𝐼ℎ𝑡𝑡 = height of the image, pixels 

𝐷𝐷 = distance from the camera to the object, cm 

 

By using these formulas discussed, the actual height of any object in the image 

plane can be determined. Therefore, the formula to calculate the actual height of the 

ginger plant is provided below. The observed height of the target in pixels is extracted 

from the plant detection model discussed in 4.2, which uses the top and the bottom 

coordinates of the bounding box generated from the plant detection model. 

 

𝐻𝐻 = ℎ × 𝑝𝑝𝑖𝑖,ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡 (4. 9) 

 

where 

𝐻𝐻 = actual height of target, cm 

ℎ = observed height of the target, pixels 

 

As the total area covered by a pixel in the real world can be derived from the 

product of the pixel height and pixel width, the model discussed in Section 4.3, can 

segment the leaf from the provided image. Therefore, the segmented leaf can be used 

to calculate the leaf area, which represents the observed area of the target in pixels 𝐴𝐴. 

For leaf area estimation, the area 𝐴𝐴 was calculated using the following formula: 

 

𝐴𝐴 = 𝐴𝐴 × �𝑝𝑝𝑖𝑖,𝑤𝑤𝑖𝑖𝑤𝑤𝑡𝑡ℎ ∙ 𝑝𝑝𝑖𝑖,ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡� (4. 10) 

 

where 

𝐴𝐴 = actual area of target, cm2 

𝐴𝐴 = observed area of the target, pixels 
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4.6.1 Example Calculation of Plant Height and Leaf Area 

 

By reusing the images used to detect the distance between the target and the camera, 

as described in section 4.5.1, the calculated and actual plant heights are compared in 

the table below. 

 

Table 4.8: Comparison Between Calculated and Actual Plant Height 

Actual 

distance (cm) 

Predicted 

distance (cm) 

Actual  

Height (cm) 

Calculated 

height (cm) 

Deviation 

(%) 

50 48.60 22.00 21.34 3.00 

60 60.83 22.00 25.42 15.56 

70 72.23 22.00 25.03 13.78 

80 82.45 22.00 23.33 6.04 

90 88.20 22.00 22.45 2.02 

100 104.38 22.00 22.78 3.56 

110 110.12 22.00 22.04 0.19 

120 113.05 22.00 19.59 10.96 

130 121.52 22.00 19.17 12.86 

140 130.64 22.00 19.87 9.70 

150 135.23 22.00 17.49 20.52 

160 137.04 22.00 17.37 21.06 

170 131.89 22.00 14.19 35.50 

180 137.43 22.00 14.36 34.73 

190 142.44 22.00 14.22 35.37 
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Figure 4.16: Graph of Calculated Height and Actual Height vs. Actual Distance 

 

 

 
Figure 4.17: Graph of Percentage Deviation vs. Actual Distance 

 

 

From the Figure 4.17, it is observed that when distances greater than 150 cm, 

the percentage deviation is greater than 20%. This indicates that the model performs 

better at shorter distances but struggles with accuracy as the distance between the plant 

and the camera increases. 
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The area of the leaves was calculated using the segmentation masks provided 

by the YOLOv8 model. However, unlike plant height, leaf area cannot be directly 

compared with an actual measurement in the field, as it is not feasible to manually 

measure the surface area of leaves in the same manner. Therefore, the calculated leaf 

area is served as relative measures to comparing the sizes of different leaves within the 

dataset or monitoring changes in leaf size over time. For example, the calculated leave 

can be use as part of disease progression or growth tracking. 

 

 

 

4.7 Challenges and Limitation 

 

One of the challenges encountered was the model’s difficulty in detecting the plants 

and its leaves that were partially blocked by other objects. Additionally, the model 

shown a decrease in accuracy for far objects, as the disparity between the camera's 

focal length and the depth made it challenging for the model to estimate accurately. 

This limitation suggests that the model may require further fine-tuning or the 

integration of additional sensors such as LIDAR for more reliable depth estimation. 
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5 CONCLUSION AND RECOMMENDATIONS 

 

 

 

5.1 Conclusion 

 

In this project, the objectives were met through the developed of integrated system 

combining image processing algorithms and deep learning techniques to monitor 

growth stage of ginger plants. A YOLOv8-based model was designed and trained to 

detect and classify ginger plants. Additionally, another YOLOv8 model was developed 

to detect and classify ginger leaves based on their health status. The addition of a depth 

estimation model was used for calculation of plant height and leaf area 

 

The YOLOv8 models trained for this task has shown high accuracy and 

efficiency, making it suitable for real-time agricultural monitoring applications. 

Although there are minor differences between theoretical calculations and simulation 

results due to factors such as environmental noise and sensor limitations, but the 

system still proven to be a reliable tool for plant monitoring. The depth estimation 

model also showed there is need of some refinements in accuracy to further improve 

the overall system. 

 

Overall, the system developed in this project shown its capability in ginger plant 

monitoring through advanced deep learning techniques, fulfilling the project’s goal.  
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5.2 Recommendation 

 

Several areas can be enhanced to increase the system's performance and 

applicability. Firstly, the accuracy of the depth estimation model could be enhanced 

by using a hardware sensor such as a LIDAR sensor to enhance the estimate of plant 

height along with the area of the leaf. 

 

Moreover, the difference in theoretical value and simulation value with the trained 

YOLOv8 models and depth estimation model was due to insufficient datasets. 

Therefore, the research could be extended to increase the complexity and size of the 

training dataset, which may enhance the model’s applicability to distinct conditions. 

In addition, it could be conjectured that incorporating additional data from other 

environmental conditions, plant stages, or other types of sensors, would help increase 

performance on the training data. 

 

The system should be applied to real-world farming practices for testing of other 

factors within the agricultural setting including but not limited to changes in lighting 

and occlusion of plants. Besides, the future developments 
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APPENDICES 

 

 

 

APPENDIX A: Code for Training Yolo Model in Google Colab 

 

 

 

!pip install ultralytics 
from IPython.display import clear_output 
clear_output() 
 
import shutil 
import os 
import torch 
import ultralytics 
from ultralytics import YOLO 
from IPython.display import clear_output 
 
clear_output() 
ultralytics.checks() 
 
%cd /content 
HOME = os.getcwd() 
 
Dataset_path = "/content/drive/MyDrive/FYP/Datasets/leaf-
detection.v12i.yolov8" #@param {type:"string"} 
 
# Ensure the destination folder exists 
destination_folder = os.path.join(HOME, 
"datasets",os.path.basename(Dataset_path)) 
os.makedirs(destination_folder, exist_ok=True) 
 
# Copy the entire folder 
try: 
  print(f"Copying folder from {Dataset_path} to 
{destination_folder}") 
  shutil.copytree(Dataset_path, 
                  destination_folder, 
                  dirs_exist_ok=True) 
  print("Folder copied successfully!") 
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except Exception as e: 
  raise ValueError(f"Error copying folder: {e}") 
 
Data_yaml_path = os.path.join(Dataset_path, "data.yaml") 
 
# Create YOLOv8 model 
Model_path = "yolov8n-seg.pt" #@param {type:"string"} 
try: 
  # load a pretrained model (recommended for training) 
  model = YOLO(Model_path) 
 
except Exception as e: 
  raise ValueError("Model path is invalid >> "+str(Model_path)) 
 
# Check if GPU is available 
device = 'cuda' if torch.cuda.is_available() else 'cpu' 
print(f"Using device: {device}") 
 
# Move model to GPU 
model.to(device) 
 
# Start training 
model.train(data=Data_yaml_path, epochs=40, device=device) 
print("Training completed!") 
 
# Define source and destination paths 
source_folder = "/content/runs" 
base_destination_folder = 
os.path.join("/content/drive/MyDrive/export_runs", "runs") 
 
# Function to get a unique destination folder path 
def get_unique_destination_folder(base_folder): 
    suffix = 1 
    destination_folder = f"{base_folder}{suffix}" 
 
    while os.path.exists(destination_folder): 
        suffix += 1 
        destination_folder = f"{base_folder}{suffix}" 
 
    return destination_folder 
 
# Get a unique destination folder path 
destination_folder = 
get_unique_destination_folder(base_destination_folder) 
 
# Copy the folder 
try: 
    print(f"Copying folder from {source_folder} to 
{destination_folder}") 
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    os.makedirs(destination_folder, exist_ok=True) 
    shutil.copytree(source_folder, destination_folder, 
dirs_exist_ok=True) 
    print("Folder copied successfully!") 
except Exception as e: 
    raise ValueError(f"Error copying folder: {e}") 

 

 

 

APPENDIX B: Code for Real-Time Monitoring Interface in Python Language 

 

 

 

import sys 
import os 
import time 
import json 
import pickle 
import re 
import natsort 
from collections import Counter 
from queue import Queue 
import cv2 
import numpy as np 
from collections import defaultdict 
from functools import partial 
from TargetDetection4 import * 
from PyQt5.QtWidgets import ( 
    QApplication, QMainWindow, QAction, QHBoxLayout, QVBoxLayout, 
QLabel, QFrame,  
    QScrollArea, QWidget, QComboBox, QPushButton, QFormLayout,  
    QSizePolicy, QFileDialog, QLineEdit, QTabWidget) 
from PyQt5.QtCore import Qt, QTimer, QMargins, pyqtSlot, QThread, 
pyqtSignal, QMutex, QMutexLocker 
from PyQt5.QtChart import QChart, QPieSeries, QPieSlice, QChartView 
from PyQt5.QtGui import QIcon, QColor, QPainter 
import qdarktheme 
 
# Default to webcam. Can be changed to a video file path or image 
path. 
# input_source = 
r"C:\Users\yougt\Documents\Python\fyp\code\YOLO_venv\Images\ginger 
plant video\20240719-015654.mp4" 
# input_source = 
r"C:\Users\yougt\Documents\Python\fyp\code\YOLO_venv\cropped" 
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# input_source = 0 
 
light_qss = """ 
QFrame { 
    border-width: 2px; 
    border-color: black; 
} 
QLabel { 
    font-size: 10pt; 
} 
QPushButton { 
    font-size: 10pt; 
} 
QComboBox { 
    font-size: 10pt; 
} 
QTabWidget { 
    font-size: 10pt; 
} 
QChart { 
    font-size: 10pt; 
} 
QPieSlice { 
    font-size: 10pt; 
} 
QPieSeries { 
    font-size: 10pt; 
} 
QFont { 
    font-size: 10pt; 
} 
QLineEdit { 
    font-size: 10pt; 
} 
""" 
 
dark_qss = """ 
QFrame { 
    border-width: 2px; 
    border-color: light; 
} 
QLabel { 
    font-size: 10pt; 
} 
QPushButton { 
    font-size: 10pt; 
} 
QComboBox { 
    font-size: 10pt; 
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} 
QTabWidget { 
    font-size: 10pt; 
} 
QChart { 
    font-size: 10pt; 
} 
QPieSlice { 
    font-size: 10pt; 
} 
QPieSeries { 
    font-size: 10pt; 
} 
QFont { 
    font-size: 10pt; 
} 
QLineEdit { 
    font-size: 10pt; 
} 
""" 
 
class RealTimeVideoApp(QMainWindow): 
    def __init__(self): 
        super().__init__() 
        self.setWindowTitle("Real-Time Plant Monitoring") 
 
        # Load setting & Initialize target detection model and tools 
        settings = self.load_settings() 
        self.distance_scale = settings['distance_scale'] 
        self.sensor_height = settings['sensor_height'] 
        self.sensor_width = settings['sensor_width'] 
        self.focal_length = settings['focal_length'] 
        self.set_theme(settings['theme']) 
        self.model_plant_path = settings['model_plant_path'] 
        self.model_leaf_path = settings['model_leaf_path'] 
        self.TargetDetection = TargetDetect(self.model_plant_path, 
self.model_leaf_path) 
        self.set_verbose(settings['verbose']) 
 
        # Initialize window 
        self.setGeometry(100, 100, 1700, 900) 
        self.create_menu_bar() 
     
        self.central_layout = QHBoxLayout() 
        central_widget = QWidget(self) 
        central_widget.setLayout(self.central_layout) 
        self.setCentralWidget(central_widget) 
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        self.DetectTarget = DetectTarget(self.TargetDetection, 
self.verbose) 
        self.DetectLeaf = DetectLeaf(self.TargetDetection, 
self.verbose, self.distance_scale, self.sensor_height, 
self.sensor_width, self.focal_length) 
 
        # self.start_processing(input_source) 
 
    def select_input(self, type_of_source): 
        if type_of_source == "dir": 
            # Create a file dialog and get the selected file path 
            input_source = QFileDialog.getExistingDirectory(self, 
"Select a Folder") 
        else: 
            # Create a file dialog and get the selected file path 
            options = QFileDialog.Options() 
            input_source, _ = QFileDialog.getOpenFileName(self, 
"Select a File", "", ";All Files (*)", options=options) 
         
        if input_source: 
            if (self.DetectTarget and self.DetectTarget.isRunning()): 
                print('Waiting') 
                self.DetectTarget.wait()  # Wait until the thread 
finishes 
 
            if (self.DetectLeaf and self.DetectLeaf.isRunning()): 
                print('Waiting') 
                self.DetectLeaf.wait()  # Wait until the thread 
finishes 
 
            if hasattr(self, "VideoProcessor"): 
                del self.VideoProcessor 
 
            if hasattr(self, "DirectoryProcessor"): 
                del self.DirectoryProcessor 
 
            self.start_processing(input_source) 
 
    def select_webcam(self): 
        if hasattr(self, "VideoProcessor"): 
                del self.VideoProcessor 
        if hasattr(self, "DirectoryProcessor"): 
            del self.DirectoryProcessor 
         
        self.start_processing(0) 
 
    def start_processing(self, input_source): 
        # Check if the input source is a valid video file or webcam. 
        if input_source == 0 or (os.path.exists(input_source) and  
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                                   os.path.isfile(input_source) and  
                                   input_source.lower().endswith(('.m
p4', '.avi', '.mov', '.mkv'))): 
             
            self.VideoProcessor = VideoProcessor(self, input_source, 
self.DetectTarget, self.DetectLeaf) 
            self.DetectLeaf.set_rest(True) 
            # Setup video  timers 
            self.timer_video = QTimer() 
            self.timer_video.timeout.connect(self.VideoProcessor.run) 
             
            self.set_layout_to_central_widget("main") 
 
        # Check if the input source is a valid image file. 
        elif (os.path.exists(input_source) and  
              os.path.isfile(input_source) and  
              input_source.lower().endswith(('.png', '.jpg', 
'.jpeg'))): 
            k=0 
             
        # Check if the input source is a directory. 
        elif (os.path.exists(input_source) and  
              os.path.isdir(input_source)): 
             
            self.DirectoryProcessor = DirectoryProcessor(self, 
input_source, self.DetectTarget, self.DetectLeaf) 
 
            # Setup image timer 
            self.timer_image = QTimer() 
            self.timer_image.timeout.connect(self.show_next_image) 
 
            self.set_layout_to_central_widget("main") 
 
            self.DirectoryProcessor.run() 
 
        else: 
            raise ValueError("Unsupported input source") 
 
    def pause_timer(self, timer, pause_button, interval): 
        timer.stop() 
        pause_button.setText("Play") 
        pause_button.clicked.connect(lambda :self.start_timer( 
            timer, pause_button, interval)) 
 
    def start_timer(self, timer, pause_button, interval): 
        timer.start(interval) 
        pause_button.setText("Pause") 
        pause_button.clicked.connect(lambda :self.pause_timer( 
            timer, pause_button, interval)) 
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    def show_previous_image(self): 
        self.DirectoryProcessor.show_previous_image() 
 
    def show_next_image(self): 
        self.DirectoryProcessor.show_next_image() 
 
    def update_image(self, image = None): 
        if image is not None: 
            self.current_image = image 
        if hasattr(self,"main_layout") and self.main_layout: 
            if hasattr(self,"current_image"): 
                if isinstance(self.current_image, str): 
                    self.image_container.setText(image) 
                else: 
                    pixmap = preprocess_input(self.current_image, 
self.image_container.width()-2, self.image_container.height()-2) 
                    self.image_container.setPixmap(pixmap) 
 
    def update_image_detail(self, text): 
        if self.main_layout: 
            self.image_detail_label.setText(text) 
 
    def update_gallery(self, plant_datas): 
        # Check if main_layout exist 
        if self.main_layout: 
            # Save current scroll position 
            scroll_position_1 = 
self.scroll_area_recognized.verticalScrollBar().value() 
            scroll_position_2 = 
self.scroll_area_unrecognized.verticalScrollBar().value() 
 
            # Clear scrollable area 
            self.clear_layout_and_widget(self.content_layout_recogniz
ed) 
            self.clear_layout_and_widget(self.content_layout_unrecogn
ized) 
 
            for plant_details in plant_datas: 
                # Create gallery container 
                plant_image_label, gallery_container, 
plant_detail_container, details_button  = 
self.create_gallary_container() 
                 
                # Preprocess input image 
                pixmap = 
preprocess_input(plant_details['plant_image'], 250, 250) 
 
                # insert preproccessed image to plant_image_label 
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                plant_image_label.setPixmap(pixmap) 
 
                # Connect signals to slot 
                details_button.clicked.connect(partial(self.show_imag
e_details, plant_details)) 
 
                details = {'Name': plant_details['plant_label'],  
                        'Height': 
f"{plant_details['plant_height']:.4f} cm",  
                        'Distance': 
f"{plant_details['plant_distance']:.4f} cm", 
                        'Leaf count': plant_details['leaf_count'],  
                        'Disease': plant_details['plant_disease'] 
                        } 
                 
                # Loop through the data and create QLabel widgets 
                for title, detail in details.items(): 
                    detail_label = QLabel(f"<b>{title}:</b> 
{detail}") 
                    detail_label.setFixedWidth(300)  # Set the 
maximum width for the label 
                    detail_label.setWordWrap(True)  # Enable word 
wrapping 
                    plant_detail_container.addWidget(detail_label) 
 
                # Add gallery_container to content_Layout 
                if plant_details['plant_label'] == "Ginger": 
                    self.content_layout_recognized.addLayout(gallery_
container) 
                else: 
                    self.content_layout_unrecognized.addLayout(galler
y_container) 
 
            # Restore the scroll position 
            self.scroll_area_recognized.verticalScrollBar().setValue(
scroll_position_1) 
            self.scroll_area_unrecognized.verticalScrollBar().setValu
e(scroll_position_2) 
 
    def show_image_details(self, details): 
        '''Create and show the new top-level window''' 
        self.top_window = TopWindow(details) 
        self.top_window.show() 
 
    def set_layout_to_central_widget(self, layout): 
        # Clear the current layout and show settings view 
        self.clear_layout_and_widget(self.central_layout) 
 
        if layout == "main": 
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            (self.main_layout,  
             self.image_detail_label, self.image_container, 
option_container, 
             self.scroll_area_recognized, 
self.content_layout_recognized, 
             self.scroll_area_unrecognized, 
self.content_layout_unrecognized) = self.create_main_layout() 
             
            if hasattr(self, "VideoProcessor") and 
self.VideoProcessor: 
                pause_button = QPushButton("Start") 
                pause_button.clicked.connect(lambda :self.start_timer
( 
                    self.timer_video, pause_button, 70)) 
                     
                option_container.addWidget(pause_button) 
                pause_button.click() 
 
            elif hasattr(self, "DirectoryProcessor") and 
self.DirectoryProcessor: 
                prev_button = QPushButton("Previous") 
                auto_button = QPushButton("Play") 
                next_button = QPushButton("Next") 
                option_container.addWidget(prev_button) 
                option_container.addWidget(auto_button) 
                option_container.addWidget(next_button) 
                # Connect signals to slots 
                prev_button.clicked.connect(lambda: 
self.show_previous_image()) 
                auto_button.clicked.connect(lambda :self.start_timer( 
                    self.timer_image, auto_button, 3000)) 
                next_button.clicked.connect(lambda: 
self.show_next_image()) 
 
            self.central_layout.addLayout(self.main_layout) 
 
        elif layout == "setting": 
            if hasattr(self,"timer_image"): 
                self.timer_image.stop() 
            if hasattr(self,"timer_video"): 
                self.timer_video.stop() 
 
            self.setting_layout = self.create_setting_display() 
            self.central_layout.addLayout(self.setting_layout) 
 
    def create_menu_bar(self): 
        # Create the menu bar 
        menu_bar = self.menuBar() 
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        # File menu 
        file_menu = menu_bar.addMenu("File") 
        settings_action = QAction("Preference", self) 
        nothing_action = QAction("Nothing", self) 
        exit_action = QAction("Exit", self) 
        exit_action.triggered.connect(self.close)  # Connect the exit 
action to close the app 
         
        file_menu.addAction(settings_action) 
        file_menu.addAction(nothing_action) 
        file_menu.addSeparator()  # Add a separator line 
        file_menu.addAction(exit_action) 
 
        # Add functionality to the actions 
        settings_action.triggered.connect(lambda: 
self.set_layout_to_central_widget("setting")) 
 
        select_input_menu = menu_bar.addMenu("Select Input") 
        select_dir_action = QAction("Select Folder", self) 
        select_file_action = QAction("Select File", self) 
        select_webcam_action = QAction("Select Webcam", self) 
 
        select_input_menu.addAction(select_dir_action) 
        select_input_menu.addAction(select_file_action) 
        select_input_menu.addAction(select_webcam_action) 
 
        # Add functionality to the actions 
        select_dir_action.triggered.connect(lambda: 
self.select_input("dir")) 
        select_file_action.triggered.connect(lambda: 
self.select_input("file")) 
        select_webcam_action.triggered.connect(lambda: 
self.select_webcam()) 
        
    def create_main_layout(self): 
        realtime_display_layout = QHBoxLayout() 
 
        # Set up image display area 
        image_layout = QVBoxLayout() 
 
        image_detail_label = QLabel("") 
        image_detail_label.setFrameStyle(QFrame.Box | QFrame.Plain) 
        image_detail_label.setAlignment(Qt.AlignCenter) 
        image_detail_label.setFixedHeight(60) 
 
        image_label = QLabel("Video Display Area") 
        image_label.setFrameStyle(QFrame.Box | QFrame.Plain) 
        image_label.setAlignment(Qt.AlignCenter) 
        image_label.setMinimumSize(800, 200) 
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        option_frame = QFrame() 
        option_frame.setFixedHeight(60) 
        option_frame.setFrameStyle(QFrame.Box | QFrame.Plain) 
        option_layout = QHBoxLayout() 
        option_frame.setLayout(option_layout) 
        option_layout.setAlignment(Qt.AlignCenter) 
 
        # Add widget to video_layout 
        image_layout.addWidget(image_detail_label) 
        image_layout.addWidget(image_label) 
        image_layout.addWidget(option_frame) 
 
        # Create tabs 
        tab_layout, tab_widget = self.create_tabs() 
        scroll_area_recognized, content_Layout_recognized = 
self.create_scroll_area() 
        scroll_area_unrecognized, content_Layout_unrecognized = 
self.create_scroll_area() 
 
         # Add tabs to the QTabWidget 
        tab_names = ["Recognized Plant", "Unrecognized Plant"] 
        widgets = [scroll_area_recognized, scroll_area_unrecognized] 
        for widget, tab_name in zip(widgets, tab_names): 
            tab_widget.addTab(widget, tab_name) 
 
        # Add widget & layout to main_layout 
        realtime_display_layout.addLayout(image_layout) 
        realtime_display_layout.addLayout(tab_layout) 
 
        return (realtime_display_layout,  
                image_detail_label, image_label, option_layout, 
                scroll_area_recognized, content_Layout_recognized,  
                scroll_area_unrecognized, 
content_Layout_unrecognized) 
         
    def create_setting_display(self): 
        # Create layout for the settings window 
        setting_display_layout = QFormLayout() 
        setting_display_layout.setAlignment(Qt.AlignTop) 
 
        # Create a back button with an icon 
        back_button = QPushButton("Back") 
        back_button.setFixedWidth(100) 
        back_button.setIcon(QIcon.fromTheme("go-previous"))  # Using 
a system icon 
         
        # Create and add widgets for theme selection 
        theme_label = QLabel(f"<b>Select Theme:</b>") 
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        theme_label.setFixedWidth(250) 
        theme_combo = QComboBox() 
        theme_combo.addItems(["Light", "Dark"]) 
        if self.theme == "light": 
            theme_combo.setCurrentText("Light") 
        else: 
            theme_combo.setCurrentText("Dark") 
 
        # Create and add widgets for showing detection speed 
        detection_speed_label = QLabel(f"<b>Display Speed</b>") 
        detection_speed_label.setFixedWidth(250) 
        detection_speed_combo = QComboBox() 
        detection_speed_combo.addItems(["Show", "Hidden"]) 
        if self.verbose: 
            detection_speed_combo.setCurrentText("Show") 
        else: 
            detection_speed_combo.setCurrentText("Hidden") 
 
        # Create and add widgets for adjust distance scale 
        distance_scale_label = QLabel(f"<b>Distance Scale</b>") 
        distance_scale_label.setFixedWidth(250) 
 
        # Create a QLineEdit for file path 
        distance_scale_textbox = QLineEdit() 
        distance_scale_textbox.setText(f"{self.distance_scale}") 
 
        # Create Horizontal layout for the row 
        sensor_size_layout = QHBoxLayout() 
 
        # Create and add widgets for adjust distance scale 
        sensor_size_label = QLabel(f"<b>Sensor Size (w x h)</b>") 
        sensor_size_label.setFixedWidth(250) 
 
        # Create a QLineEdit for sensor_size 
        sensor_width_textbox = QLineEdit() 
        sensor_width_textbox.setText(f"{self.sensor_width}") 
        multiply_label = QLabel("mm x ") 
        sensor_height_textbox = QLineEdit() 
        sensor_height_textbox.setText(f"{self.sensor_height}") 
        unit_label = QLabel("mm") 
 
        # Add Widget to the horizontal layout 
        sensor_size_layout.addWidget(sensor_width_textbox) 
        sensor_size_layout.addWidget(multiply_label) 
        sensor_size_layout.addWidget(sensor_height_textbox) 
        sensor_size_layout.addWidget(unit_label) 
 
        # Create and add widgets for adjust focal_length 
        focal_length_label = QLabel(f"<b>Focal Length</b>") 
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        focal_length_label.setFixedWidth(250) 
 
        # Create a QLineEdit for file path 
        focal_length_textbox = QLineEdit() 
        focal_length_textbox.setText(f"{self.focal_length}") 
 
        # Create and add widgets for model selection 
        Model_selection_label = QLabel(f"<b>Model selection</b>") 
         
        # Create and add widget for Select model for plant detection 
        plant_model_label = QLabel(f"Plant detection") 
 
        # Create horizontal layout for the row 
        plant_model_layout = QHBoxLayout() 
         
        # Create a QLineEdit for file path 
        plant_model_file_path_textbox = QLineEdit() 
        plant_model_file_path_textbox.setText(self.model_plant_path) 
 
        # Create a QPushButton to open file dialog 
        plant_model_open_file_button = QPushButton("Open File") 
 
        # Add QLineEdit and QPushButton to the horizontal layout 
        plant_model_layout.addWidget(plant_model_file_path_textbox) 
        plant_model_layout.addWidget(plant_model_open_file_button) 
 
        # Create and add widget for Select model for leaf detection 
        leaf_model_label = QLabel(f"Leaf detection") 
 
        # Create horizontal layout for the row 
        leaf_model_layout = QHBoxLayout() 
         
        # Create a QLineEdit for file path 
        leaf_model_file_path_textbox = QLineEdit() 
        leaf_model_file_path_textbox.setText(self.model_leaf_path) 
 
        # Create a QPushButton to open file dialog 
        leaf_model_open_file_button = QPushButton("Open File") 
         
        # Add QLineEdit and QPushButton to the horizontal layout 
        leaf_model_layout.addWidget(leaf_model_file_path_textbox) 
        leaf_model_layout.addWidget(leaf_model_open_file_button) 
 
        # Create a save button  
        save_button = QPushButton("Save") 
        save_button.setFixedWidth(100) 
         
        # Add the everything to the form layout 
        setting_display_layout.addRow(back_button) 
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        setting_display_layout.addRow(theme_label, theme_combo) 
        setting_display_layout.addRow(self.create_separator()) 
        setting_display_layout.addRow(detection_speed_label, 
detection_speed_combo) 
        setting_display_layout.addRow(self.create_separator()) 
        setting_display_layout.addRow(distance_scale_label, 
distance_scale_textbox) 
        setting_display_layout.addRow(self.create_separator()) 
        setting_display_layout.addRow(sensor_size_label, 
sensor_size_layout) 
        setting_display_layout.addRow(self.create_separator()) 
        setting_display_layout.addRow(focal_length_label, 
focal_length_textbox) 
        setting_display_layout.addRow(self.create_separator()) 
        setting_display_layout.addRow(Model_selection_label) 
        setting_display_layout.addRow(plant_model_label, 
plant_model_layout) 
        setting_display_layout.addRow(leaf_model_label, 
leaf_model_layout) 
        setting_display_layout.addRow(self.create_separator())   
        setting_display_layout.addRow(save_button) 
 
        # Connect signals to slots 
        back_button.clicked.connect( 
            lambda: self.set_layout_to_central_widget("main")) 
        theme_combo.currentIndexChanged.connect( 
            lambda: self.set_theme(theme_combo.currentText())) 
        plant_model_open_file_button.clicked.connect( 
            lambda: 
self.open_file_dialog(plant_model_file_path_textbox)) 
        leaf_model_open_file_button.clicked.connect( 
            lambda: 
self.open_file_dialog(leaf_model_file_path_textbox, 
"model_leaf_path")) 
        save_button.clicked.connect( 
            lambda: self.save_settings_from_button( 
                { 
                    "theme": theme_combo.currentText(), 
                    "verbose": detection_speed_combo.currentText(), 
                    "distance_scale": distance_scale_textbox.text(), 
                    "sensor_height": sensor_height_textbox.text(), 
                    "sensor_width": sensor_width_textbox.text(), 
                    "focal_length": focal_length_textbox.text(), 
                    "model_plant_path": 
plant_model_file_path_textbox.text(), 
                    "model_leaf_path": 
leaf_model_file_path_textbox.text(), 
                    } 
                ) 
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            ) 
 
        return setting_display_layout 
 
    def create_tabs(self): 
        # Create QVBoxLayout for tab_widget 
        tab_layout = QVBoxLayout() 
         
        # Create the QTabWidget 
        tab_widget = QTabWidget() 
        tab_widget.setFixedWidth(700) 
        tab_layout.addWidget(tab_widget) 
 
        return tab_layout, tab_widget 
 
    def create_scroll_area(self): 
        scroll_area = QScrollArea() 
        scroll_area.setWidgetResizable(True) 
 
        content_widget = QWidget() 
        content_Layout = QVBoxLayout(content_widget) 
        content_Layout.setAlignment(Qt.AlignTop) 
        scroll_area.setWidget(content_widget) 
 
        return scroll_area, content_Layout 
 
    def create_separator(self): 
        separator = QFrame() 
        separator.setFrameShape(QFrame.HLine) 
        separator.setSizePolicy(QSizePolicy.Expanding, 
QSizePolicy.Minimum) 
        separator.setLineWidth(3) 
        return separator 
 
    def create_gallary_container(self): 
        # Create a horizontal layout for the row 
        gallery_container = QHBoxLayout() 
 
        # Create a label for the image 
        plant_image_label = QLabel() 
        plant_image_label.setFixedHeight(250) 
        plant_image_label.setFixedWidth(250) 
        plant_image_label.setFrameStyle(QFrame.Box | QFrame.Plain) 
        plant_image_label.setAlignment(Qt.AlignCenter)  
         
        # Create a detail container for the image details 
        plant_detail_container = QVBoxLayout() 
        plant_detail_container.setAlignment(Qt.AlignLeft | 
Qt.AlignTop)  
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        # Create a button for details 
        plant_details_button = QPushButton("Details") 
        plant_details_button.setFixedWidth(90)  # Set a fixed width 
for the label 
 
        # Add widgets & layout to the gallery_container layout 
        gallery_container.addWidget(plant_image_label) 
        gallery_container.addLayout(plant_detail_container) 
        gallery_container.addWidget(plant_details_button) 
 
        return plant_image_label, gallery_container, 
plant_detail_container, plant_details_button 
 
    def save_settings_from_button(self, setting_dict): 
        # Validate conditions before saving 
        for key, value in setting_dict.items(): 
            if key == "model_leaf_path" or key == "model_plant_path": 
                if not os.path.isfile(value) or not 
value.endswith('.pt'): 
                    pass 
 
            elif key == "distance_scale" or key == "sensor_height" or 
key == "sensor_width" or key == "focal_length": 
                try: 
                    value = float(value) 
                    if key == "distance_scale": 
                        self.set_sensor_size(distance_scale=value) 
                    elif key == "sensor_height": 
                        self.set_sensor_size(sensor_height=value) 
                    elif key == "sensor_width": 
                        self.set_sensor_size(sensor_width=value) 
                    elif key == "focal_length": 
                        self.set_sensor_size(focal_length=value) 
                except: 
                    pass 
                 
            elif key == "verbose": 
                self.set_verbose(value) 
 
            self.save_settings(key, value) 
 
    def load_settings(self): 
        try: 
            with open("settings.json", "r") as file: 
                return json.load(file) 
        except FileNotFoundError: 
            return {} 
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    def save_settings(self, key, value): 
        settings = self.load_settings() 
        settings[key] = value 
        with open("settings.json", "w") as file: 
            json.dump(settings, file, indent=4) 
 
    def set_theme(self, selected_theme): 
        if selected_theme == "Dark": 
            qdarktheme.setup_theme("dark", additional_qss=dark_qss) 
            self.theme  = "dark" 
        else: 
            qdarktheme.setup_theme("light", additional_qss=light_qss) 
            self.theme = "light" 
         
    def set_verbose(self, verbose): 
        if verbose == "Show": 
            self.verbose = True 
            if hasattr(self, "DetectTarget"): 
                self.DetectTarget.set_verbose(True) 
            if hasattr(self, "DetectLeaf"): 
                self.DetectLeaf.set_verbose(True) 
 
        else: 
            self.verbose = False 
            if hasattr(self, "DetectTarget"): 
                self.DetectTarget.set_verbose(False) 
            if hasattr(self, "DetectLeaf"): 
                self.DetectLeaf.set_verbose(False) 
 
    def set_sensor_size(self, distance_scale=None, 
sensor_height=None, sensor_width=None, focal_length=None): 
        if distance_scale is not None: 
            self.distance_scale = distance_scale 
        if sensor_height is not None: 
            self.sensor_height = sensor_height 
        if sensor_width is not None: 
            self.sensor_width = sensor_width 
        if focal_length is not None: 
            self.focal_length = focal_length 
 
        if hasattr(self, "DetectLeaf"): 
            self.DetectLeaf.set_sensor_size(self.distance_scale, 
self.sensor_height, self.sensor_width, self.focal_length) 
     
    def open_file_dialog(self, text_box): 
        # Create a file dialog and get the selected file path 
        options = QFileDialog.Options() 
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        file_path, _ = QFileDialog.getOpenFileName(self, "Select a 
File", "", "PyTorch Model Files (*.pt);;All Files (*)", 
options=options) 
         
        if file_path: 
            # Update the passed text box with the selected file path 
            text_box.setText(file_path) 
                 
    def obtain_filename(self, file_path): 
        root, ext = os.path.splitext(file_path) 
        return os.path.basename(root) 
         
    def clear_layout_and_widget(self, layout): 
        while layout.count(): 
            item = layout.takeAt(0) 
            if item.layout(): 
                self.clear_layout_and_widget(item.layout()) 
            elif item.widget(): 
                item.widget().deleteLater() 
 
    def resizeEvent(self, event): 
        """Handles window resizing to maintain the aspect ratio of 
the video.""" 
        self.update_image() 
 
    def closeEvent(self, event): 
        try: 
            self.top_window.close() 
        except: 
            pass 
        event.accept() 
 
class VideoProcessor(): 
    def __init__(self, parent, input_source, DetectTarget, 
DetectLeaf): 
        super().__init__ 
        self.parent = parent  # Store the parent 
 
        self.input_souce = input_source 
        self.cap = cv2.VideoCapture(input_source) 
        self.is_webcam = (input_source == 0) 
        self.DetectTarget = DetectTarget 
        self.DetectTarget.result_ready.connect(self.handle_target_res
ult) 
        self.DetectLeaf = DetectLeaf 
        self.DetectLeaf.result_ready.connect(self.handle_leaf_result) 
 
        self.plant_data = [] 
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    def run(self): 
        ret, frame = self.cap.read() 
        if ret: 
            if self.is_webcam: 
                frame = cv2.flip(frame, 1) 
            self.process_frame(frame) 
 
        else: 
            print('Cannot capture frame, resetting capture.') 
            self.cap.release() 
            self.cap = cv2.VideoCapture(self.input_souce) 
            if not self.cap.isOpened(): 
                self.cap.set(cv2.CAP_PROP_POS_FRAMES, 0) 
 
    def process_frame(self, frame): 
        if not self.DetectTarget.isRunning(): 
            self.DetectTarget.set_data(frame) 
            self.DetectTarget.reset() 
            self.DetectTarget.start() 
 
        bounding_box_details = [ 
        {'bounding_box': data['bounding_box'],  
        'label': data['label'],  
        'confidence': data['confidence']} 
        for data in self.plant_data] 
 
        frame = draw_bounding_boxes(frame, bounding_box_details) 
        self.parent.update_image(frame) 
         
    def handle_target_result(self, result): 
        self.plant_data, image_used_to_detect, _ = result 
        if not self.DetectLeaf.isRunning(): 
            self.DetectLeaf.set_data(self.plant_data, 
image_used_to_detect) 
            self.DetectLeaf.reset() 
            self.DetectLeaf.start() 
 
    def handle_leaf_result(self, result): 
        plant_detail_data, image_used_to_detect, _ = result 
        self.parent.update_gallery(plant_detail_data) 
 
class DirectoryProcessor(): 
    def __init__(self, parent, input_source, DetectTarget, 
DetectLeaf): 
        super().__init__ 
        self.parent = parent  # Store the parent 
        self.input_source = input_source 
 
        self.DetectTarget = DetectTarget 
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        self.DetectTarget.result_ready.connect(self.handle_target_res
ult) 
        self.DetectLeaf = DetectLeaf 
        self.DetectLeaf.result_ready.connect(self.handle_leaf_result) 
 
        self.cache_folder = 'cache' 
        self.image_paths = [] 
 
        self.current_index = 0 
         
    def run(self): 
        image_paths = [os.path.join(self.input_source, f)  
                            for f in os.listdir(self.input_source)  
                            if f.lower().endswith(('.png', '.jpg', 
'.jpeg', '.bmp'))] 
        self.image_paths = natsort.natsorted(image_paths) 
        if self.image_paths: 
            self.load_image() 
 
    def load_image(self): 
        image_paths = self.image_paths 
        current_index = self.current_index 
 
        # Preload previos 5 and next 5 photos 
        indices_to_preload = self.get_indices_to_preload(image_paths, 
current_index) 
        print(f"{image_paths[current_index]}: {current_index}, 
{indices_to_preload}") 
        self.parent.update_image_detail(f"{current_index+1} / 
{len(image_paths)}") 
 
        images_to_be_process_queue = Queue() 
        if indices_to_preload: 
            for indice in indices_to_preload: 
                image_path = image_paths[indice] 
                images_to_be_process_queue.put(image_path) 
         
        self.process_image(image_paths[current_index], 
images_to_be_process_queue) 
                 
    def process_image(self, image_to_be_show, 
images_to_be_process_queue): 
        if self.is_cached(image_to_be_show): 
            cache_path = self.get_cache_path(image_to_be_show) 
            plant_detail, image_use_to_detect, _ = 
self.load_cache(cache_path) 
            bounding_box_details = [ 
                {'bounding_box': data['plant_location'],  
                'label': data['plant_label'],  
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                'confidence': data['plant_confidence'] 
                } for data in plant_detail] 
 
            image = draw_bounding_boxes(image_use_to_detect, 
bounding_box_details) 
            self.parent.update_image(image) 
            self.parent.update_gallery(plant_detail) 
             
        else: 
            self.parent.update_image('loading') 
            self.parent.update_gallery([]) 
 
        if not images_to_be_process_queue.empty(): 
            image_path = images_to_be_process_queue.get() 
            image = cv2.imread(image_path) 
            self.DetectTarget.set_data(image, image_path) 
            if not self.DetectTarget.isRunning(): 
                self.DetectTarget.reset() 
                self.DetectTarget.start() 
 
    def handle_target_result(self, result): 
        plant_data, image_used_to_detect, image_path = result 
        self.DetectLeaf.set_data(plant_data, image_used_to_detect, 
image_path) 
        if not self.DetectLeaf.isRunning(): 
            self.DetectLeaf.reset() 
            self.DetectLeaf.start() 
         
    def handle_leaf_result(self, result): 
        plant_details, image_used_to_detect, image_path = result 
 
        save_folder = self.cache_folder 
        if not os.path.exists(save_folder): 
            os.makedirs(save_folder) 
         
        filename = self.obtain_filename(image_path) 
        pkl_path = os.path.join(save_folder, f"{filename}.pkl") 
        with open(pkl_path, 'wb') as f: 
            pickle.dump(result, f) 
 
        self.load_image() 
     
    def get_cache_path(self, file_path): 
        """Generate a cache path for the given photo.""" 
        cache_dir = self.cache_folder 
        filename = self.obtain_filename(file_path) 
        pkl_name = f"{filename}.pkl" 
        return os.path.join(cache_dir, pkl_name) 
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    def is_cached(self, file_path): 
        """Check if a photo is already cached.""" 
        return os.path.exists(self.get_cache_path(file_path)) 
     
    def cache_photo(self, photo_path, processed_image): 
        """Save the processed image to the cache.""" 
        processed_image.save(self.get_cache_path(photo_path)) 
 
    def get_indices_to_preload(self, image_paths, current_index, 
preload_range=2): 
        """Generate indices to preload based on the current index and 
preload range.""" 
        indices_to_preload = [] 
 
        # Calculate the range of indices to preload 
        for i in range(-preload_range, preload_range + 1): 
            index = self.get_index(current_index + i, image_paths) 
            # Append the index if it's within the valid range of 
image_paths 
            if 0 <= index < len(image_paths): 
                image_path = image_paths[index] 
                if not self.is_cached(image_path): 
                    indices_to_preload.append(index) 
 
        if current_index in indices_to_preload: 
            indices_to_preload.remove(current_index)  # Remove the 
number from its current position 
            indices_to_preload.insert(0, current_index)  # Insert the 
number at the beginning of the list 
         
        return indices_to_preload 
 
    def get_index(self, index, image_paths): 
        return (index) % len(image_paths) 
     
    def load_cache(self, cache_path): 
        with open(cache_path, 'rb') as f: 
            data = pickle.load(f) 
        return data 
 
    def show_previous_image(self): 
        if self.image_paths: 
            self.current_index = self.get_index(self.current_index - 
1, self.image_paths) 
            self.DetectLeaf.clear_queue() 
            self.load_image() 
 
    def show_next_image(self): 
        if self.image_paths: 
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            self.current_index = self.get_index(self.current_index + 
1, self.image_paths) 
            self.DetectLeaf.clear_queue() 
            self.load_image() 
 
    def obtain_filename(self, file_path): 
        root, ext = os.path.splitext(file_path) 
        return os.path.basename(root) 
         
class TopWindow(QWidget): 
    def __init__(self, plant_details): 
        super().__init__() 
         
        self.setWindowTitle("Plant Details") 
        self.setGeometry(100, 100, 1200, 600) 
        self.setAttribute(Qt.WA_DeleteOnClose)  # Ensure the window 
is deleted when closed 
         
        # Set the main layout for the TopWindow 
        main_layout = QHBoxLayout(self) 
        self.setLayout(main_layout) 
 
        # Create plant_layout 
        plant_layout, self.plant_image_label, 
self.plant_detail_container = self.create_plant_details_display() 
     
        # Create tab 
        tab_layout, tab_widget = self.create_tabs() 
        scroll_area, self.content_Layout = self.create_scroll_area() 
        self.large_plant_image_label = self.create_image_container() 
        self.large_plant_image_label.setMinimumSize(500, 500) 
        pie_chart_widget_area, pie_chart_content_Layout = 
self.create_layout_with_frame() 
 
        # Add tabs to the QTabWidget 
        tab_names = ["Details", "Image", "Chart"] 
        widgets = [scroll_area, self.large_plant_image_label, 
pie_chart_widget_area] 
        for widget, tab_name in zip(widgets, tab_names): 
            tab_widget.addTab(widget, tab_name) 
 
        # Connect the currentChanged signal to a custom slot 
        tab_widget.currentChanged.connect(self.on_tab_changed) 
 
        # Add layout to main_layout 
        main_layout.addLayout(plant_layout) 
        main_layout.addLayout(tab_layout) 
 
        # Process_plant_details 
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        self.display_plant_details(plant_details) 
 
        # Show Chart 
        chart_view = self.create_chart(plant_details) 
        pie_chart_content_Layout.addWidget(chart_view) 
 
    def display_plant_details(self, plant_details): 
        # Plant details 
        plant_datas = {'Name': plant_details['plant_label'], 
                 'Height': f"{plant_details['plant_height']:.4f} cm", 
                 'Distance': f"{plant_details['plant_distance']:.4f} 
cm", 
                 'Leaf count': plant_details['leaf_count'], 
                 'Unhealthy Leaf count': 
plant_details['unhealth_leaf_count'], 
                 'Health': plant_details['plant_health_status'], 
                 'Disease': plant_details['plant_disease'], 
                 } 
        for title, data in plant_datas.items(): 
            details_label = QLabel(f"<b>{title}:</b> {data}") 
            details_label.setWordWrap(True)  # Enable word wrapping 
            details_label.setFixedWidth(500)  # Set a fixed width for 
the label 
            self.plant_detail_container.addWidget(details_label) 
 
        bounding_box_details = [] 
        for leaf_detail in plant_details['leaf_detail']: 
            # Get leaf bounding box details 
            bounding_box_details.append( 
                {'bounding_box': leaf_detail['bounding_box'],  
                'label': leaf_detail['label'],  
                'confidence': leaf_detail['confidence']} 
                ) 
             
            # Create gallery container 
            leaf_image_label, gallery_container, 
leaf_detail_container = self.create_gallary_container() 
                 
            # Preprocess input image 
            x1, y1, x2, y2 = leaf_detail['bounding_box'] 
            plant_img = plant_details['plant_image'] 
            leaf_image = plant_img[y1:y2, x1:x2] 
            pixmap = preprocess_input(leaf_image, 250, 250) 
 
            # insert preproccessed image to plant_image_label 
            leaf_image_label.setPixmap(pixmap) 
 
            # Add the row layout to the scrollable layout 
            self.content_Layout.addLayout(gallery_container) 
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            leaf_datas = {'Area': f"{leaf_detail['area']:.4f} cm²",  
                        'Health': leaf_detail['health'],  
                        'Disease': leaf_detail['disease'] 
                        } 
            for title, data in leaf_datas.items(): 
                leaf_details_label = QLabel(f"<b>{title}:</b> 
{data}") 
                leaf_detail_container.addWidget(leaf_details_label) 
        
        plant_image = 
draw_bounding_boxes(plant_details['plant_image'], 
bounding_box_details) 
        pixmap = preprocess_input(plant_image, 500, 500) 
        self.plant_image_label.setPixmap(pixmap) 
        self.update_image(plant_image) 
     
    def update_image(self,image=None): 
        if image is not None: 
            self.current_image = image 
        if hasattr(self,"current_image"): 
            pixmap = preprocess_input(self.current_image, 
self.large_plant_image_label.width()-2, 
self.large_plant_image_label.height()-2) 
            self.large_plant_image_label.setPixmap(pixmap) 
 
    def create_image_container(self): 
        # Display Plant Image 
        plant_image_label = QLabel() 
        plant_image_label.setFrameStyle(QFrame.Box | QFrame.Plain) 
        plant_image_label.setAlignment(Qt.AlignCenter)  
        return plant_image_label 
 
    def create_plant_details_display(self): 
        # Plant detail layout 
        plant_layout = QVBoxLayout() 
        plant_layout.setAlignment(Qt.AlignLeft | Qt.AlignTop)  
 
        # Display Plant Image 
        plant_image_label = self.create_image_container() 
        plant_image_label.setFixedHeight(500) 
        plant_image_label.setFixedWidth(500) 
 
        # Create a plant detail container for the Pplant image 
details 
        plant_detail_container = QVBoxLayout() 
        plant_detail_container.setAlignment(Qt.AlignLeft | 
Qt.AlignTop)  
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        # Add widget & layout to plant_layout 
        plant_layout.addWidget(plant_image_label) 
        plant_layout.addLayout(plant_detail_container) 
 
        return plant_layout, plant_image_label, 
plant_detail_container 
 
    def create_tabs(self): 
        # Create QVBoxLayout for tab_widget 
        tab_layout = QVBoxLayout() 
         
        # Create the QTabWidget 
        tab_widget = QTabWidget() 
        tab_layout.addWidget(tab_widget) 
 
        return tab_layout, tab_widget 
 
    def create_scroll_area(self): 
        scroll_area = QScrollArea() 
        scroll_area.setWidgetResizable(True) 
 
        content_widget = QWidget() 
        content_Layout = QVBoxLayout(content_widget) 
        content_Layout.setAlignment(Qt.AlignTop) 
        scroll_area.setWidget(content_widget) 
 
        return scroll_area, content_Layout 
     
    def create_layout_with_frame(self): 
        layout_area = QHBoxLayout() 
 
        # Create a QWidget to hold the QHBoxLayout 
        widget_area = QFrame() 
        widget_area.setFrameStyle(QFrame.Box | QFrame.Plain) 
        widget_area.setLayout(layout_area) 
 
        return widget_area, layout_area 
 
    def create_gallary_container(self): 
        # Create a horizontal layout for the row 
        gallery_container = QHBoxLayout() 
 
        # Create a label for the image 
        leaf_image_label = self.create_image_container() 
        leaf_image_label.setFixedHeight(250) 
        leaf_image_label.setFixedWidth(250) 
         
        # Create a detail container for the image details 
        leaf_detail_container = QVBoxLayout() 



84 

        leaf_detail_container.setAlignment(Qt.AlignLeft | 
Qt.AlignTop)  
 
        # Add widgets & layout to the gallery_container layout 
        gallery_container.addWidget(leaf_image_label) 
        gallery_container.addLayout(leaf_detail_container) 
 
        return leaf_image_label, gallery_container, 
leaf_detail_container 
 
    def create_chart(self, plant_details): 
        chart = SmartChart() 
        chart.resize(700, 400) 
        chart_view = SimpleChartView(chart) 
 
        value_count = defaultdict(int) 
        leaf_details_dict_list =  plant_details['leaf_detail'] 
        for leaf_detail_dict in leaf_details_dict_list: 
            if 'disease' in leaf_detail_dict: 
                value_count[leaf_detail_dict['disease']] += 1 
 
        dict_count = dict(value_count) 
 
        for (disease_type, count) in dict_count.items(): 
            if "nutritional" in disease_type.lower(): 
                color_hexcode = "#fd635c" 
            elif "none" in disease_type.lower(): 
                color_hexcode = "#21ab72" 
            else: 
                color_hexcode = "#82d3e5" 
 
            chart.add_slice(disease_type, count, color_hexcode) 
 
        return chart_view 
 
    def on_tab_changed(self, index): 
        if index == 1: 
            self.update_image() 
 
    def resizeEvent(self, event): 
        """Handles window resizing to maintain the aspect ratio of 
the video.""" 
        self.update_image() 
 
class SmartChart(QChart): 
    def __init__(self, parent=None): 
        """ 
        Initialization with layout and population 
        """ 
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        super(SmartChart, self).__init__(parent) 
        self.offset = 140 
 
        self.setBackgroundBrush(QColor(30, 30, 30))  # Dark grey 
background 
        self.setMargins(QMargins(0, 0, 0, 0)) 
        self.legend().hide() 
        self.setAnimationOptions(QChart.SeriesAnimations) 
 
        self.__outer = QPieSeries() 
        self.__inner = QPieSeries() 
        self.__outer.setHoleSize(0.35) 
        self.__outer.setPieStartAngle(self.offset) 
        self.__outer.setPieEndAngle(self.offset+360) 
        self.__inner.setPieSize(0.35) 
        self.__inner.setHoleSize(0.3) 
        self.__inner.setPieStartAngle(self.offset) 
        self.__inner.setPieEndAngle(self.offset+360) 
 
        self.addSeries(self.__outer) 
        self.addSeries(self.__inner) 
 
    def clear(self): 
        """ 
        Clear all slices in the pie chart 
        """ 
        for slice_ in self.__outer.slices(): 
            self.__outer.take(slice_) 
 
        for slice_ in self.__inner.slices(): 
            self.__inner.take(slice_) 
 
    def add_slice(self, name, value, color): 
        """ 
        Add one slice to the pie chart 
 
        :param name: str. name of the slice 
        :param value: value. value of the slice (contribute to how 
much the 
                      slice would span in angle) 
        :param color: str. hex code for slice color 
        """ 
        # outer 
        outer_slice = QPieSlice(name, value) 
        outer_slice.setColor(QColor(color)) 
        outer_slice.setLabelBrush(QColor(color)) 
 
        outer_slice.hovered.connect(lambda is_hovered: 
self.__explode(outer_slice, is_hovered)) 
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        outer_slice.percentageChanged.connect(lambda: 
self.__update_label(outer_slice, name)) 
 
        self.__outer.append(outer_slice) 
 
        # inner 
        inner_color = self.get_secondary_color(color) 
        inner_slice = QPieSlice(name, value) 
        self.__inner.append(inner_slice) 
        inner_slice.setColor(inner_color) 
        inner_slice.setBorderColor(inner_color) 
 
    def remove_slice(self, name): 
        """ 
        Remove a slice from the pie chart by its name 
 
        :param name: str. name of the slice to remove 
        """ 
        for slice_ in self.__outer.slices(): 
            title = self.extract_title_from_label(slice_.label()) 
            if title == name: 
                self.__outer.take(slice_) 
                break 
 
        for slice_ in self.__inner.slices(): 
            title = self.extract_title_from_label(slice_.label()) 
            if title == name: 
                self.__inner.take(slice_) 
                break 
 
    @staticmethod 
    def __update_label(slice_, title): 
        """ 
        Update the label of a slice 
 
        :param slice_: QPieSlice. the slice the label is applied 
        :param title: str. title of the label 
        """ 
        text_color = 'white' 
        font_size = '8pt'  # Adjust the font size here 
        if slice_.percentage() > 0.1: 
            slice_.setLabelPosition(QPieSlice.LabelInsideHorizontal) 
            text_color = 'white' 
 
        label = "<p align='center' style='color:{}; font-
size:{}'>{}<br>{}%</p>".format( 
            text_color, 
            font_size, 
            title, 
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            round(slice_.percentage() * 100, 2) 
        ) 
 
        slice_.setLabel(label) 
 
        if slice_.percentage() > 0.03: 
            slice_.setLabelVisible() 
 
    @staticmethod 
    def extract_title_from_label(html_label): 
        """ 
        Extracts the title from an HTML-formatted label string. 
 
        :param html_label: str. The HTML-formatted label string 
        :return: str. The extracted title 
        """ 
        # Define a regular expression pattern to extract text between 
<p> and <br> 
        pattern = re.compile(r'<p[^>]*>(.*?)<br>', re.DOTALL) 
        match = pattern.search(html_label) 
         
        if match: 
            return match.group(1).strip() 
        return "" 
 
    def __explode(self, slice_, is_hovered): 
        """ 
        Explode function slot for hovering effect 
 
        :param slice_: QtChart.QPieSlice. the slice hovered 
        :param is_hovered: bool. hover enter (True) or leave (False) 
        """ 
        if is_hovered: 
            start = slice_.startAngle() 
            end = slice_.startAngle() + slice_.angleSpan() 
            self.__inner.setPieStartAngle(end) 
            self.__inner.setPieEndAngle(start+360) 
        else: 
            self.__inner.setPieStartAngle(self.offset) 
            self.__inner.setPieEndAngle(self.offset+360) 
 
        slice_.setLabelVisible(is_hovered) 
        slice_.setExplodeDistanceFactor(0.1) 
        slice_.setExploded(is_hovered) 
 
        if slice_.percentage() > 0.03: 
            slice_.setLabelVisible() 
 
    @staticmethod 
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    def hex_to_rgb(hexcode): 
        """Convert hex color code to RGB tuple.""" 
        from PIL import ImageColor 
        return ImageColor.getcolor(hexcode, "RGB") 
     
    @staticmethod 
    def rgb_to_hex(rgb): 
        """Convert RGB tuple to hex color code.""" 
        return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) 
 
    def get_secondary_color(self, hexcode_color1, 
hexcode_color2="#FFFFFF", alpha=0.5): 
        """ 
        Get secondary color which is blended 50% with white 
        to appear lighter 
 
        :param hexcode: str. color hex code starting with '#' 
                        eg. ('#666666') 
        :return: QtGui.QColor 
        """ 
        # Convert hex to RGB 
        rgb1 = self.hex_to_rgb(hexcode_color1) 
        rgb2 = self.hex_to_rgb(hexcode_color2) 
 
        blended_rgb = tuple(int(a * (1 - alpha) + b * alpha) for a, b 
in zip(rgb1, rgb2)) 
 
        blended_hex = self.rgb_to_hex(blended_rgb) 
     
        return QColor(blended_hex) 
 
class SimpleChartView(QChartView): 
    """ 
    A simple wrapper chart view, to be expanded 
    """ 
    def __init__(self, chart): 
        super(SimpleChartView, self).__init__(chart) 
 
        self.setRenderHint(QPainter.Antialiasing) 
 
class DetectTarget(QThread): 
    result_ready = pyqtSignal(object) 
    def __init__(self, TargetDetection, verbose=False): 
        super().__init__() 
        self.TargetDetection = TargetDetection 
        self.verbose = verbose 
        self.image_data = [] 
        self.label = '' 
        self.mutex = QMutex() 
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    def set_data(self, image_data, label=None): 
        with QMutexLocker(self.mutex): 
            self.image_data = image_data 
            self.label = label 
 
    def set_verbose(self, verbose): 
        self.verbose = verbose 
 
    def reset(self): 
        # Implement any necessary reset logic here 
        pass 
 
    def run(self): 
        image_data = self.image_data 
        label = self.label 
        plant_data = [] 
        if np.any(image_data): 
            plant_data = 
self.TargetDetection.detect_plants(image_data, verbose=self.verbose) 
        self.result_ready.emit((plant_data, image_data, label))  # 
Emit the result 
   
class DetectLeaf(QThread): 
    result_ready = pyqtSignal(object) 
    def __init__(self, TargetDetection, verbose=False, 
distance_scale=10, sensor_height=24, sensor_width=35, 
focal_length=30, rest=False): 
        super().__init__() 
        self.TargetDetection = TargetDetection 
        self.verbose = verbose 
        self.distance_scale = distance_scale 
        self.sensor_width = sensor_width 
        self.sensor_height = sensor_height 
        self.focal_length = focal_length 
        self.rest = rest 
        self.plant_data = Queue() 
        self.original_image = Queue() 
        self.label = Queue() 
        self.mutex = QMutex() 
 
    def set_rest(self, rest): 
        self.rest = rest 
 
    def set_data(self, plant_data, original_image, label=None): 
        with QMutexLocker(self.mutex): 
            self.plant_data.put(plant_data) 
            self.original_image.put(original_image) 
            self.label.put(label) 
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    def set_verbose(self, verbose): 
        self.verbose = verbose 
 
    def set_sensor_size(self, distance_scale, sensor_height, 
sensor_width, focal_length): 
        self.distance_scale = distance_scale 
        self.sensor_height = sensor_height 
        self.sensor_width = sensor_width 
        self.focal_length = focal_length 
 
    def clear_queue(self): 
        self.plant_data = Queue() 
        self.original_image = Queue() 
        self.label = Queue() 
 
    def reset(self): 
        # Implement any necessary reset logic here 
        pass 
 
    def run(self): 
        while not self.plant_data.empty(): 
            plant_data = self.plant_data.get() 
            original_image = self.original_image.get() 
            label = self.label.get() 
            plant_datail = [] 
            if np.any(plant_data): 
                # Obtain depth map of the original image 
                depth_map = 
self.TargetDetection.detect_depth(original_image, 
verbose=self.verbose) 
 
                # Obtain focal length of camera in pixel 
                image_height, image_width, _ = original_image.shape 
 
                for plant_info in plant_data: 
                    # Distance 
                    distance_cm = 
calculate_distance_of_target(depth_map, plant_info['plant_mask'], 
self.distance_scale) 
                    distance_cm = abs(distance_cm) 
 
                    # obtain height and width in pixel/cm based on 
distance in cm 
                    height_pixel_cm, width_pixel_cm = 
calculate_size_of_pixel_in_cm(distance_cm, image_height, image_width, 
self.sensor_height, self.sensor_width, self.focal_length) 
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                    # Calculate the height of plant based on the 
provided depth map and plant mask 
                    height_cm = 
calculate_height_cm(plant_info['plant_mask'], height_pixel_cm) 
 
                    # Plant image 
                    x1, y1, x2, y2 = plant_info['bounding_box'] 
                    plant_image = original_image[y1:y2, x1:x2] 
 
                    # Detect the leafs of the given plant image 
                    leaf_details = self.TargetDetection.detect_leafs( 
                        plant_image,  
                        height_pixel_cm, width_pixel_cm, 
                        verbose=self.verbose 
                        ) 
                     
                    disease_list = [] 
                    for leaf_detail in leaf_details: 
                        if 'disease' in leaf_detail: 
                            if leaf_detail['disease'] != 'None': 
                                disease_list.append(leaf_detail['dise
ase']) 
                     
                    plant_health_status = 'Healthy' 
                    plant_disease = 'None' 
                    if disease_list: 
                        if (len(disease_list) / len(leaf_details)) >= 
0.5: 
                            plant_health_status = 'Unhealthy' 
 
                            # Count the occurrences of each item 
                            disease_counts = Counter(disease_list) 
 
                            # Calculate the percentage for each item 
                            item_percentages = {item: (count / 
len(leaf_details)) * 100 for item, count in disease_counts.items()} 
 
                            # Find the item with the highest 
percentage 
                            plant_disease = max(item_percentages, 
key=item_percentages.get) 
 
                    plant_datail.append({ 
                        'plant_id': plant_info['id'], 
                        'plant_label': plant_info['label'], 
                        'plant_image': plant_image, 
                        'plant_location': plant_info['bounding_box'], 
                        'plant_confidence': plant_info['confidence'], 
                        'plant_distance': distance_cm, 
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                        'plant_height': height_cm, 
                        'unhealth_leaf_count': len(disease_list), 
                        'leaf_count': len(leaf_details), 
                        'plant_health_status': plant_health_status, 
                        'plant_disease': plant_disease, 
                        'leaf_detail': leaf_details, 
                    }) 
            self.result_ready.emit((plant_datail, original_image, 
label))  # Emit the result 
             
            if self.rest: 
                time.sleep(2) 
 
if __name__ == "__main__": 
    app = QApplication(sys.argv) 
    window = RealTimeVideoApp() 
    window.show() 
    sys.exit(app.exec_()) 
 

 

 

 

APPENDIX C: Code for Target Detection in Python Language 

 

 

 

import time 
import PIL 
import cv2 
import numpy as np 
from PyQt5.QtCore import Qt 
from PyQt5.QtGui import QPixmap, QImage 
 
import torch 
from ultralytics import YOLO 
from transformers import DPTImageProcessor, DPTForDepthEstimation 
# import keras 
# from sklearn.preprocessing import normalize 
 
import multiprocessing 
multiprocessing.set_start_method('spawn') # Ensure the 'spawn' method 
is used 
multiprocessing.freeze_support() 
 
class TargetDetect(): 
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    def __init__(self, model_path_plant=None, model_path_leaf=None): 
 
        # Check if GPU is available 
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu' 
        print(f"Using device: {self.device}") 
 
        # Load the model 
        if not model_path_plant or not model_path_leaf: 
            raise ValueError("Cannot load model from path") 
        self.model_plant = YOLO(model_path_plant) 
        self.model_plant.to(self.device) 
        self.model_leaf = YOLO(model_path_leaf) 
        self.model_leaf.to(self.device) 
 
        # Load the DPT model and processor 
        self.processor = 
DPTImageProcessor.from_pretrained("Intel/dpt-large") 
        self.model = 
DPTForDepthEstimation.from_pretrained("Intel/dpt-
large").to(self.device) 
 
    def detect_depth(self, image, verbose=True): 
        start_time = time.time() 
        # Convert BGR image to RGB since DPT model expects an RGB 
image 
        image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 
 
        # Convert the numpy array (image_rgb) to PIL Image for 
processing 
        image_pil = PIL.Image.fromarray(image_rgb) 
 
        # Prepare image for the DPT model 
        inputs = self.processor(images=image_pil, 
return_tensors="pt").to(self.device) 
 
        # Perform inference to get depth estimation 
        with torch.no_grad(): 
            outputs = self.model(**inputs) 
            predicted_depth = outputs.predicted_depth 
 
        # Get the original size of the image 
        original_size = image.shape[:2]  # (height, width) 
 
        # Interpolate to the original image size 
        prediction = torch.nn.functional.interpolate( 
            predicted_depth.unsqueeze(1), 
            size=original_size, 
            mode="bicubic", 
            align_corners=False, 
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        ) 
 
        # Convert to numpy array 
        depth_map = prediction.squeeze().cpu().numpy() 
 
        # Normalize and convert depth map to 8-bit image for display 
        # depth_map_normalized = (depth_map * 255 / 
np.max(depth_map)).astype("uint8") 
        # depth_image = PIL.Image.fromarray(depth_map_normalized) 
 
        end_time = time.time() 
        if verbose: 
            print(f"Speed depth detection: {((end_time-start_time) * 
1000):.4f} ms") 
 
        return depth_map 
 
    def non_max_suppression_fast(self, boxes, overlapThresh): 
        if len(boxes) == 0: 
            return [] 
 
        if boxes.dtype.kind == "i": 
            boxes = boxes.astype("float") 
 
        pick = [] 
 
        x1 = boxes[:, 0] 
        y1 = boxes[:, 1] 
        x2 = boxes[:, 2] 
        y2 = boxes[:, 3] 
 
        area = (x2 - x1 + 1) * (y2 - y1 + 1) 
        idxs = np.argsort(y2) 
 
        while len(idxs) > 0: 
            last = len(idxs) - 1 
            i = idxs[last] 
            pick.append(i) 
 
            xx1 = np.maximum(x1[i], x1[idxs[:last]]) 
            yy1 = np.maximum(y1[i], y1[idxs[:last]]) 
            xx2 = np.minimum(x2[i], x2[idxs[:last]]) 
            yy2 = np.minimum(y2[i], y2[idxs[:last]]) 
 
            w = np.maximum(0, xx2 - xx1 + 1) 
            h = np.maximum(0, yy2 - yy1 + 1) 
 
            overlap = (w * h) / area[idxs[:last]] 
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            idxs = np.delete(idxs, np.concatenate(([last], 
np.where(overlap > overlapThresh)[0]))) 
 
        return pick 
 
    def detect_plants(self, frame, confidence=0.7, overlapThresh=0.3, 
verbose=True): 
        results = self.model_plant.predict(source=frame, 
conf=confidence, save=False, stream=False, retina_masks=True, 
device=self.device, verbose=verbose, cache=False) 
         
        boxes = [] 
        class_indices = [] 
        contours = [] 
        confidences = [] 
 
        for result in results: 
            for ci, c in enumerate(result): 
                box = 
c.boxes.xyxy.cpu().numpy().squeeze().astype(np.int32) 
                cls_idx = int(c.boxes.cls.tolist().pop()) 
                confidence = c.boxes.conf.tolist().pop() 
                contour = c.masks.xy[0].astype(np.int32).reshape(-1, 
1, 2) 
                # contour = result.masks.xy[0] 
                boxes.append(box) 
                class_indices.append(cls_idx) 
                confidences.append(confidence) 
                contours.append(contour) 
 
        # Convert boxes to numpy array 
        boxes = np.array(boxes) 
 
        # Perform NMS 
        plant_data = [] 
         
        if len(boxes) > 0: 
            indices = self.non_max_suppression_fast(boxes, 
overlapThresh) 
            if verbose: 
                print(f'Boxes shape: {boxes.shape}, NMS indices: 
{indices}')  # Debugging info 
 
            for idx in indices: 
                x1, y1, x2, y2 = boxes[idx] 
                label = self.model_plant.names[class_indices[idx]] 
                confidence = confidences[idx] 
                bounding_box = boxes[idx] 
                contour = contours[idx] 
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                # # Create contour mask  
                b_mask = np.zeros(frame.shape[:2], np.uint8) 
 
                # Fill the mask in the binary mask 
                binary_mask = cv2.fillPoly(b_mask, [contour], 255) 
 
                # Add data to plant_data list 
                plant_data.append({ 
                    'id': idx,  
                    'label': label,  
                    'confidence': confidence,  
                    'bounding_box': bounding_box, 
                    'plant_mask': binary_mask, 
                    }) 
                 
        return plant_data 
 
    def detect_leafs(self, plant_image, height_pixel_cm, 
width_pixel_cm, confidence=0.5, overlapThresh=0.3, verbose=True): 
        results = self.model_leaf.predict(source=plant_image, 
conf=confidence, save=False, stream=True, retina_masks=True, 
device=self.device, verbose=verbose, cache=False) 
         
        boxes = [] 
        class_indices = [] 
        contours = [] 
        confidences = [] 
 
        for result in results: 
            for ci, c in enumerate(result): 
                box = 
c.boxes.xyxy.cpu().numpy().squeeze().astype(np.int32) 
                cls_idx = int(c.boxes.cls.tolist().pop()) 
                confidence = c.boxes.conf.tolist().pop() 
                boxes.append(box) 
                class_indices.append(cls_idx) 
                confidences.append(confidence) 
                contours.append(c.masks.xy[0].astype(np.int32).reshap
e(-1, 1, 2)) 
 
        # Convert boxes to numpy array 
        boxes = np.array(boxes) 
 
        # Perform NMS 
        leaf_data = [] 
         
        if len(boxes) > 0: 
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            indices = self.non_max_suppression_fast(boxes, 
overlapThresh) 
            if verbose: 
                print(f'Boxes shape: {boxes.shape}, NMS indices: 
{indices}')  # Debugging info 
 
            for idx in indices: 
                x1, y1, x2, y2 = boxes[idx] 
                label = self.model_leaf.names[class_indices[idx]] 
                confidence = confidences[idx] 
                bounding_box = boxes[idx] 
                contour = contours[idx] 
 
                # Leaf iamge 
                leaf_image = plant_image[y1:y2, x1:x2] 
 
                # Initialize the mask with zeros 
                mask = np.zeros(plant_image.shape[:2], 
dtype=np.uint8) 
 
                # Draw contour on the mask 
                binary_mask = cv2.fillPoly(mask, [contour], 
color=255) 
 
                # Calculate leaf area in cm2 
                leaf_area = calculate_area_cm2(binary_mask, 
height_pixel_cm, width_pixel_cm) 
 
                if label == 'Ginger-Leaf_Healthy': 
                    # Add data to plant_data list 
                    leaf_data.append({ 
                        'id': idx,  
                        'label': label.replace("Ginger-Leaf_", ""),  
                        'confidence': confidence,  
                        'bounding_box': bounding_box, 
                        'area': leaf_area, 
                        'health': 'Healthy', 
                        'disease': 'None' 
                        }) 
                     
                else: 
                    # Add data to plant_data list 
                    leaf_data.append({ 
                        'id': idx,  
                        'label': label.replace("Ginger-Leaf_", ""),  
                        'confidence': confidence,  
                        'bounding_box': bounding_box, 
                        'leaf_image': leaf_image, 
                        'area': leaf_area, 
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                        'health': 'Unhealthy', 
                        'disease': label.replace("Ginger-Leaf_", "") 
                        }) 
  
        return leaf_data 
     
def preprocess_input(image_data, target_width=None, 
target_height=None): 
    # Convert BGR to RGB for compatibility with Qt 
    image = cv2.cvtColor(image_data, cv2.COLOR_BGR2RGB) 
 
    # Extract image dimensions 
    height, width, channel = image.shape 
 
    # Calculate bytes per line for QImage creation 
    bytes_per_line = 3 * width 
 
    # Create QImage from the image data 
    q_img = QImage(image.data, width, height, bytes_per_line, 
QImage.Format_RGB888) 
 
    # Convert QImage to QPixmap for display on the label 
    pixmap = QPixmap.fromImage(q_img) 
 
    if target_width and target_height: 
        # Resize the pixmap to fit the label's dimensions while 
maintaining aspect ratio 
        pixmap = pixmap.scaled(target_width, target_height, 
Qt.KeepAspectRatio) 
 
    return pixmap 
 
def draw_bounding_boxes(image_data, bounding_box_details): 
    # Create a copy to avoid modifying the original image 
    image_data_copy = image_data.copy()   
 
    # Calculate the bounding box thickness based on the image size 
    height, width = image_data_copy.shape[:2] 
    thickness = max(1, int(min(height, width) / 200))  # Adjust the 
divisor for different thicknesses 
 
    # Calculate text size and adjust the font scale based on the 
image size 
    font_scale = min(height, width) / 600  # Adjust the divisor for 
different font sizes 
 
    for bounding_box_detail in bounding_box_details: 
        x1, y1, x2, y2 = bounding_box_detail['bounding_box'] 
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        cv2.rectangle(image_data_copy, (x1, y1), (x2, y2), (0, 255, 
0), thickness) 
        cv2.putText(image_data_copy, 
f"{bounding_box_detail['label']}: 
{bounding_box_detail['confidence']:.2f}", (x1, y1 - 10), 
cv2.FONT_HERSHEY_SIMPLEX, font_scale , (0, 255, 0), thickness) 
 
    return image_data_copy 
 
def calculate_distance_of_target(depth_map, mask, scale_factor=10): 
    # Ensure depth_map is float 
    depth_map = depth_map.astype(float) 
 
    # Ensure mask is binary (convert to boolean array if needed) 
    mask = mask > 0 
 
    # Apply the mask to the depth map 
    masked_depth = np.where(mask, depth_map, np.inf)  # Set 
background pixels (outside the mask) to infinity 
 
    # Find the minimum value inside the masked region (the closest 
distance) 
    closest_distance = np.min(masked_depth) 
 
    if closest_distance == np.inf: 
        return 0 
     
    return closest_distance * scale_factor 
 
def calculate_size_of_pixel_in_cm(distance_cm, image_height_pixels, 
image_width_pixels, sensor_height_mm=24, sensor_width_mm=36, 
focal_length_mm=15): 
    fov_height_rad = 2 * 
np.arctan(sensor_height_mm/(2*focal_length_mm)) 
    height_pixel_cm = np.tan( (fov_height_rad) /2) * 
(distance_cm/image_height_pixels) 
 
    fov_width_cm = 2 * np.arctan(sensor_width_mm/(2*focal_length_mm)) 
    width_pixel_cm = np.tan( (fov_width_cm) /2) * 
(distance_cm/image_width_pixels) 
 
    return height_pixel_cm, width_pixel_cm 
 
def calculate_height_cm(mask, height_pixel_cm): 
    # Get the topmost and bottommost points of the mask 
    y_indices, x_indices = np.where(mask > 0) 
    if len(y_indices) == 0:  # Ensure there are mask pixels detected 
        return 0 
    top_y = np.min(y_indices) 
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    bottom_y = np.max(y_indices) 
     
    # Calculate the pixel height 
    height_pixel = bottom_y - top_y 
 
    # Convert pixel height to real-world height 
    height_cm = height_pixel * height_pixel_cm 
 
    # print(f"height_pixel = {height_pixel}, height_cm = {height_cm}, 
") 
     
    return height_cm 
 
def calculate_area_cm2(mask, pixel_height_cm, pixel_width_cm): 
    # Compute the area of the segmented object in pixels 
    area_pixels = np.sum(mask == 255) 
 
    # Calculate real-world dimensions 
    area_cm2 = (pixel_height_cm * pixel_width_cm) * area_pixels 
 
    return area_cm2 

 

 

 

APPENDIX D: Test Image used in Evaluated Depth Estimation Model 

 

 

 

Test Image Depth Map 𝒚𝒚𝒊𝒊 (cm) 𝒚𝒚𝒊𝒊�  (cm) |𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊𝒊� | (𝒚𝒚𝒊𝒊 − 𝒚𝒚𝒊𝒊� )𝟐𝟐  

  

50 48.60 1.40 1.97 
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60 50.83 9.17 84.10 

  

70 72.23 2.23 4.96 

  

80 88.45 8.45 71.41 

  

90 78.20 11.80 139.27 

  

100 104.38 4.38 19.17 
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110 90.12 19.88 395.36 

  

120 113.05 6.95 48.29 

  

130 98.52 31.48 991.08 

  

140 114.64 25.36 643.36 

  

150 135.23 14.77 218.25 
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160 137.04 22.96 526.94 

  

170 131.89 38.11 1452.26 

  

180 137.43 42.57 1812.10 

  

190 142.44 47.56 2261.95 
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