

LEGAL ANGEL: PERSONALIZED NLP CHATBOT FOR LEGAL

GUIDANCE

BOEY ZHI XUAN

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Technology (Hons) Electronic Systems

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

September 2024

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : Boey Zhi Xuan 1

ID No. : 2005745 1

Date : 03 September 2024 1

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “LEGAL ANGEL: PERSONALIZED

NLP CHATBOT FOR LEGAL GUIDANCE” was prepared by BOEY ZHI

XUAN has met the required standard for submission in partial fulfilment of the

requirements for the award of Bachelor of Engineering (Hons) Electronic Systems at

Universiti Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Ts. Dr. Lee Han Kee

Date : _________________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2024, Boey Zhi Xuan. All right reserved.

v

Specially dedicated to

my beloved mother and father

vi

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Ts. Dr.

Lee Han Kee for his invaluable advice, guidance and his enormous patience

throughout the development of the research.

vii

LEGAL ANGEL: PERSONALIZED NLP CHATBOT FOR LEGAL

GUIDANCE

ABSTRACT

This project presents a cutting-edge artificial intelligence chatbot created to help with

legal inquiries. The chatbot is outfitted with an array of sophisticated functionalities

designed to augment user engagement and ease of usage. Voice input, which enables

users to interact with the system using natural speech, is one of its main features.

This makes the system more intuitive and user-friendly. Furthermore, people with a

variety of linguistic backgrounds may easily converse in their favourite languages

thanks to the chatbot's capability for multilingual translation. This AI chatbot's ability

to learn new things on a constant basis is one of its best qualities. The chatbot may

learn new things from users, which enables it to gradually increase and improve its

knowledge base. The chatbot's capacity to learn guarantees that it stays current with

legal knowledge and can adjust to the changing demands of its users. By adding

these functions, the chatbot promotes a more dynamic and customized contact

experience while also offering precise and prompt legal aid.

Lee Han Kee
Go for problem statement first then objectives and summary of the system and features.

viii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS vi

ABSTRACT vii

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF SYMBOLS / ABBREVIATIONS xv

LIST OF APPENDICES xvi

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Evolution on AI and its impact on the current society 2

1.2.1 Overview on First, Second, and Third Industry

Revolution 2

1.2.2 Overview on Artificial Intelligence in the Fourth

Industrial Revolution 6

1.3 Problem Statements 10

1.4 Project Objectives 11

1.5 Project Scope 11

1.6 Report Outline 12

2 LITERATURE REVIEW 13

ix

2.1 Propositional Logic 13

2.2 AI Learning 14

2.2.1 Nearest-Neighbour Classification 14

2.2.2 Perceptron Learning 16

2.3 Contest-Free Grammer 17

2.4 Reliability 18

3 METHODOLOGY 20

3.1 Project Overview 20

3.2 Programming Language 22

3.2.1 Programming Language Selection 22

3.2.2 Programming Environment 23

3.2.3 Programming Library 24

3.3 Design Phase 26

3.3.1 Phase 1: Development 27

3.3.2 Phase 2: Implementation 32

3.3.3 Phase 3: Analysis 40

3.4 Project Management 40

3.5 Cost Estimation 42

4 RESULTS AND DISCUSSION 44

4.1 Website Overview 44

4.2 Chatbot Overview 46

4.2.1 Main Chatbot 46

4.2.2 Secondary Chatbot 51

4.2.3 Data Integration Between Two Chatbot 56

4.3 Chatbot Features 60

4.3.1 Voice Input 60

4.3.2 Multilanguage Text Translation 63

4.4 Chatbot Testing Result 66

5 CONCLUSION AND RECOMMENDATIONS 67

5.1 Conclusion 67

x

5.2 Recommendations for Future Improvement 68

REFERENCES 70

APPENDICES 76

xi

LIST OF TABLES

 TABLE TITLE PAGE

Table 3.1: Differences Between Visual Studio and Visual Studio
Code 24

Table 3.2: The Gantt chart for FYP 1 41

Table 3.3: The Gantt Chart for FYP 2 42

Table 3.4: Cost Estimation of Project Materials 43

Table 4.1: Chatbot Learning Process 58

Table 4.2: Process of Voice Input 61

xii

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 2.1: Structure of Grammatical Sentence Represented in
The Form of Formal Grammar 18

Figure 3.1: The Project Overview Flowchart Part 1 21

Figure 3.2: The Project Overview Flow Chart Part 2 22

Figure 3.3: Design Process 26

Figure 3.4: Code for Chatbot Protocol Part 1 27

Figure 3.5: Code for Chatbot Protocol Part 2 28

Figure 3.6: Python Code Snippet for Chatbot Learning 30

Figure 3.7: Code Snippet for Chatbot Translation from English to
Other Language 31

Figure 3.8: Code Snippet for Chatbot Translation from Foreign
Language to English 31

Figure 3.9: JSON File Code Snippet for Main Chatbot 33

Figure 3.10: JSON File Code Snippet for Secondary Chatbot 33

Figure 3.11: Python Code Snippet for Adding New Question and
Response 34

Figure 3.12: Python Code Snippet for Adding New Question into
Existing Tag 35

Figure 3.13: Python Code snippet for NLTK 36

Figure 3.14: Python Code for Chatbot Training Model 37

Figure 3.15: Image Used to Enhance User Experience 39

xiii

Figure 3.16: Python Code Snippet for Numbered List 39

Figure 4.1: The Chatbot Website Part 1 44

Figure 4.2: The Chatbot Website Part 2 45

Figure 4.3: The Chatbot Website Part 3 45

Figure 4.4: Chatbot Performing Simple Conversation with User 46

Figure 4.5: Result of Chatbot Response to Offense in First
Section 47

Figure 4.6: Result of Chatbot Responses to Unrelated Place 48

Figure 4.7: Result of Chatbot Responses to Neutral Action 49

Figure 4.8: Result of Chatbot Response to Offense in Second and
Third Section 49

Figure 4.9: Result of Chatbot Response to Offense in Fourth
Section 50

Figure 4.10: Chatbot Responses to Positive Action 50

Figure 4.11: The Login Phase for The Secondary Chatbot 51

Figure 4.12: Secondary Chatbot Performing Simple Conversation
with User 52

Figure 4.13: Chatbot Unable to Provide Answer to User Question 53

Figure 4.14: User Teaching Unknown Question to The Second
Chatbot (i) 53

Figure 4.15: All Tag Listed in The Database 54

Figure 4.16: Result of New Question Added into an Existing Tag 54

Figure 4.17: User Teaching Unknown Question to The Second
Chatbot (ii) 55

Figure 4.18: Result of Teaching Chatbot a New Question, Tag,
and Answer 56

Figure 4.19: Training Model Output 57

Figure 4.20: Result of Training (i) 57

Figure 4.21: Result of Training (ii) 58

xiv

Figure 4.22: Result of Translation in Chatbot (i) 63

Figure 4.23: Result of Translation in Chatbot (ii) 64

Figure 4.24: Chatbot Training Result 66

xv

LIST OF SYMBOLS / ABBREVIATIONS

AI Artificial Intelligent

CFG Context-Free Grammer

CSS Cascading Style Sheets

HTML HyperText Markup Language

IDE Integrated Development Environment

IR3 Industry Revolution Three

JSON JavaScript Object Notation

kNN-TSC K-Nearest-Neighbour-Based Time-Series Classification

NLP Natural Language Processing

NLTK Natural Language Toolkit

UI User Interface

VSC Visual Studio Code

xvi

LIST OF APPENDICES

 APPENDIX TITLE PAGE

APPENDIX A: JavaScript Code for User Interface 76

APPENDIX B: CSS Code for User Interface 82

APPENDIX C: HTML Code for User Interface 94

APPENDIX D: Python Code for Connecting HTML 97

APPENDIX E: Python Code for Main Chatbot 102

APPENDIX F: Python Code for Chatbot Learning 106

APPENDIX G: Python Code for Speech-to-Text 108

APPENDIX H: Python Code for Translator 109

APPENDIX I: Python Code for Chatbot Training 110

APPENDIX J: Python Code for Connecting Both Chatbot JSON
File 114

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

Artificial intelligence (AI) has emerged as one of the most significant technical

advancements in history. It has demonstrated its ability to completely transform a

variety of sectors, from improving healthcare diagnoses to expediting commercial

procedures. However, AI's ability to upend established employment paradigms is one

of its most significant effects.

Discussions concerning the nature of employment in the future have been

triggered by the emergence of AI-driven automation, with many experts projecting a

dramatic change in the labour market (Huang & Rust, 2018). Concerns about AI

algorithms replacing a significant percentage of human occupations are growing as

they become more advanced and capable of handling complicated tasks. Although

the automation revolution promises more production and efficiency, there are

drawbacks as well, mostly in the form of job displacement and the requirement for

reskilling and upskilling.

Legal services have historically been primarily supplied by human attorneys,

who are skilled in deciphering intricate legal precedents, counselling clients, and

advocating for them in court. But the development of artificial intelligence in legal

technology is changing the face of the legal profession.

2

AI systems have shown remarkably adept at activities like document analysis,

legal research, and contract evaluation that were formerly completed by attorneys.

These artificial intelligence technologies have unmatched speed and accuracy when

sorting through massive volumes of data, finding pertinent facts and producing

insights that can guide legal strategy. Furthermore, AI-powered natural language

processing makes it possible for computers to comprehend and produce content that

is similar to that of humans, which increases their proficiency in linguistically

demanding jobs like contract and legal document writing.

The eventual replacement of attorneys by AI in legal advice has far-reaching

repercussions. While AI cannot fully replace human attorneys' solid understanding of

morality and ethics, given that AI lacks a human sense of "right" and "wrong", it may

greatly improve their abilities and cut down on the time and resources needed to do

some legal duties. This increase in efficiency may result in lower costs for both

customers and legal companies, as well as better access to legal services for

marginalized communities (Canastro, et al., 2019).

1.2 Evolution on AI and its impact on the current society

1.2.1 Overview on First, Second, and Third Industry Revolution

A time of great change, the Industrial Revolution (IR) saw economies go from being

predominately agrarian and handicraft-based to being dominated by industry and

machine production. The eighteenth century saw the start of this process in England.

During this time, significant technological advances were made in the areas of

transportation and communication, such as the railroad and the telegraph, the use of

iron and alloy iron, the creation of machines like the steam engine and the spinning

jenny that increased production, and the establishment of the factory system, and the

most important of all, the discovery of new energy sources (Lucas, 2002).

 Before expanding to Belgium and France, the Industrial Revolution was first

mostly limited to Britain between 1760 and 1830 (Mohajan, 2019). Other nations

3

industrialized more slowly, but as they became industrial powers, Germany, the

United States, and Japan overtook Britain's early achievements (Crafts, 1996). The

Industrial Revolution didn't reach nations like China and India until the middle of the

20th century, and Eastern European nations didn't begin to industrialize until the 20th

century (Michael & Martin, 2017).

 Significant alterations to social, political, and economic structures were

brought about by industrialization. The rise of working-class movements, the

creation of managerial hierarchies to control labour division, the emergence of new

authority patterns, and a wider distribution of wealth and increased international

trade were some of these, as were political changes brought about by shifts in

economic power. It also sparked battles against problems like urban overcrowding

and industrial pollution (Vries, 2009).

 The Second Industrial Revolution was a great technological advancement,

because of that, this revolution is also known as Technological Revolution. Rapid

advancements in manufacturing and communication technologies characterized this

period of time. The speed at which new discoveries and technologies were produced

allowed people all around the world to live far better lives.

An entirely new era of transportation was also ushered in with the

development of the vehicle and the airplane. Railroad businesses started to appear all

around during this time and soon took control of the transportation sector (Smil,

2005). Railroads became the main means of long-distance transportation because

they made transportation affordable and allowed for faster and more efficient travel

than any other means available at the time. More quickly and across greater distances

might now be travelled by people than ever before.

Lastly, a variety of societal changes were also brought about by the Second

Industrial Revolution. This was made possible by modern technology that opened up

new avenues for interpersonal interaction. The invention of the telephone, electricity,

and the light bulb, for instance, revolutionized workplace and communication

practices.

4

The majority of communication before this time was restricted to in-person

meetings or sluggish, unreliable channels like telegraph lines. However, the

telephone's introduction in 1876 signalled a significant turning point, and throughout

the ensuing few decades, the industry expanded quickly. Thousands of miles of cable

were laid across the nation by dozens of companies in an early rush to develop long-

distance networks (Mokyr & Strotz, 1998). The radio emerged as a significant new

medium for communication in the 1920s, and the first transatlantic transmissions

took place in 1927. The following decade saw the introduction of television, which

soon rose to prominence as a major source of entertainment.

There was a lot of invention and advancement during the Second Industrial

Revolution. However, it did not alleviate the adverse effects of the initial industrial

revolution; and unfortunately, it made them worse. These include, but are not limited

to, growing environmental harm and pollution, squalor and overpopulation, and an

expansion of the wealth divide (Mokyr & Strotz, 1998). Additionally, the second

industrial revolution had several before unheard-of negative effects, like the

emergence of monopolies and enormous businesses, child labour, and the ability of

governments to track and spy on citizens due to technological advancements.

The rise in unregulated child labour during the Second Industrial Revolution is

arguably the most catastrophic negative effect. Children as young as four years old

were frequently made to labour long hours in dangerous and unhealthy industries for

little compensation in order to support their destitute families.

The late 1900s saw the beginning of the Third Industrial Revolution,

sometimes known as the Digital Revolution. Its traits include the development of

nuclear energy, the creation of the Internet, and the growth of automation and

digitization through the use of electronics and computers (Roberto & Ingrid, 2015).

The use of computers and other modern technology to automate industrial operations

developed rapidly during this period. The advancement of telecommunications

enabled globalization. Consequently, this allowed businesses to shift their production

to economies with lower labour costs.

5

Semiconductors, mainframe computers, microprocessors, MOS transistors, the

internet (including ultra-fast 5G communication, renewable energy, and driverless

mobility), renewable electricity, e-commerce circa 1995, and the subsequently

developed smartphone were among the great inventions of the third industrial

revolution. The most significant forces behind this are thought to be found in the

fields of nano, bio, and IT technologies, 3D printing, artificial intelligence, robots,

etc. The information and communication technologies (ICT), sophisticated

manufacturing, education, healthcare, finance, and administration are just a few of

the current industries that have been greatly impacted by this industrial revolution

(Mohajan, 2021; Roberts, 2015).

Throught the various developments during this period, this report is going to

focus on the development and advancement of the robotic technologies, as robots are

developed using a variety of high-tech and artificial intelligence technologies.

The term "robotics" refers to an interdisciplinary field encompassing all

scientific and technical disciplines. It is regarded as the planning, building, applying,

and using of robots. With the employment of artificial intelligence devices in the

industrial units, this branch has been expanding recently (Madakam, et al., 2019), as

AI must have a central role in robotics if the connection is to be intelligent (Brady,

1985). Isaac Asimov invented the three laws of robotics as; (i) a robot cannot injure a

human; (ii) it must obey human commands even when doing so would violate the

First Law; and (iii) it must defend its own existence, so long as doing so does not

interfere with the First or Second Law's operation (Niku, 2020).

The development of artificial intelligence (AI) and worldwide robotics

strategy has considered concerns about human welfare, health, and safety.

Automation and robotics advances have a significant impact on increasing efficiency

and productivity. Robots can be utilized in tasks that are hazardous, unclean, boring,

or both, such as cleaning municipal rubbish, dismantling bombs, operating in

hazardous environments like space and underwater, and operating nuclear power

plants. These can be used to measure movement that is too small or quick for the

human eye to see, detect minuscule amounts of invisible radiation, and gather

information beyond the range of the five human senses (Murashov, et al., 2016).

6

The third industry revolution has made global impacts, which results in

positive and negative effects. Eventhough, the positive effects are more fruitful than

negative effects, but that doesn’t indicate the negative impact are negletable,

especially those negative impact which result in some crisis which amplifer the

negative impact left by second industry revolutoin.

The worldwide climate has altered throughout the IR3. This led by a number

of global problems, including air and water pollution, habitat destruction,

biodiversity loss, greenhouse gas emissions, global warming, and climate change

(Mohajan, 2011; 2021). Which further results in numerous extinct species have

already disappeared, and more will do so in the near future. Other than that, most

parts of the world are seeing a decline in living conditions (Mohajan, 2012). A

billion or more people on the planet suffer from malnutrition and hunger. Harsh and

dangerous working conditions in factories have increased and many workers have

died at the hands of machines throughout the IR3 (Kaplan & Claire, 1958, cited in

Mohajan, 2021), as has the prevalence of underage labor. The wealth disparity

between the rich and the poor is growing. By the end of IR3, there is a startling

global increase in unemployment.

1.2.2 Overview on Artificial Intelligence in the Fourth Industrial Revolution

In January 2017, World Economic Forum Founder and Executive Chairman, Klaus

Schwab, published a book titled The Fourth Industrial Revolution (Schwab, 2017).

Since then, the phrase "Fourth Industrial Revolution" (4IR) has been used to

characterize and examine how new technologies are affecting almost every aspect of

human development in the early 21st century, ranging from changing national

political attitudes and social norms to economic growth and international relations

(Philbeck & Davis, 2019).

Similar to previous industrial revolutions, the Fourth Industrial Revolution

presents remarkable prospects for people, sectors, and countries. Improved system

optimization is promised by artificial intelligence, the Internet of Things, and the

Lee Han Kee
Double check this

Lee Han Kee
Double check how to do in text citation

7

prospect of quantum computing (Tan & Wu, 2017). Beyond the rise of

cryptocurrencies, distributed ledger technologies—like blockchain—are proving

useful for tasks like regulating fraud and externalities in value chains, facilitating

safe, digital identity, and enhancing public procurement transparency (Santiso, 2018).

A decade ago, it would have seemed unthinkable that neurotechnology would one

day augment human cognitive and physical abilities in ways that are now possible

thanks to their rapid advancements.

Prominent scholars contend that the future will be shaped by the effects of the

fourth industrial revolution on business and government. The disruption brought

about by the fourth industrial revolution and technology are beyond human control.

The prospects presented by the fourth industrial revolution, however, are predictable:

artificial intelligence (AI) playing a more active role, a better quality of life through

robots, and a linked life through the Internet.

Once again, this study will only focus on artificial intelligence in the fourth

industrial revolution. Artificial Intelligence is the study of making things see, think,

and act appropriately and anticipatorily in their surroundings to a level of humans

would do (Mhlanga, 2023). This artificial intelligence revolution began with

computers (Makridakis, 2017).

One area of artificial intelligence called machine learning uses data to find

approximations of solutions through the process of generalization. Checkers was

used in 1959 to show how machine learning allows computers to learn from

experience without the need for extensive programming (Samuel, 1959). Machines

soon showed themselves to be superior to humans in solving intellectually

challenging tasks, like problems described by lists of mathematical formulas.

However, they were challenged for decades to perform intuitive tasks that humans

could complete with ease, like speech recognition or face recognition (Itamar Arel, et

al., 2010).

However, the development of AI continues as a convolution neural network

was shown to simulate neuronal activity and processing in 1989, and it was able to

categorize handwritten digits with robustness (Goodfellow, et al., 2018).

8

Convolutional networks are regarded as the catalyst for the AI revolution (Velarde,

2019). Deep artificial neural networks, notably recurrent ones, have been winning

machine learning and pattern recognition competitions in recent years (Schmidhuber,

2015). The article also states that deep networks emerged victorious in every

ImageNet competition and gained popularity across a wide range of study domains.

One area of machine learning is called deep learning. Deep models have

proven successful because of advancements in learning algorithms, GPU

implementations, and copious amounts of data (Schmidhuber, 2015 cited in Velarde,

2019). Deep models learn a hierarchy of concepts in a layered approach, from simple

to sophisticated ones.

Experts believe that artificial intelligence (AI)-based solutions can help us get

closer to solving even the most difficult issues, such lowering human error, removing

risk, providing round-the-clock availability, and handling big data smoothly (Mughal,

2018; Bhbosale, et al., 2020; Khanzode & Sarode, 2020). There are some optimistic

who believe that the AI will bring a positive social impact in the future, especially in

the aspect of advancing science, automation, and productivity.

For instance, AI-powered models and simulations can aid in the solution of

challenging issues in disciplines like engineering, medicine development, and

climate science (Nenad Tomašev, 2020). Without the need for expensive and time-

consuming actual tests, scientists and researchers can investigate multiple situations

and optimize solutions thanks to these simulations.

Representative case will be the Harmonized Landsat and Sentinel-2 (HLS)

datasets from NASA, IBM Research and NASA developed and published a

geospatial AI foundation model for Earth observation (Masek, et al., 2018). Crop

production predictions, natural catastrophe monitoring, and land use change tracking

are all possible with the new foundation model.

AI optimization algorithms can be used to optimize energy use, lower

emissions, and improve environmental monitoring in order to reduce carbon footprint

(Vinuesa, et al., 2020; Stein & Benoit, 2022; Hasmi, et al., 2023). AI-powered

9

precision farming methods in agriculture have the potential to decrease

environmental impact, increase crop output, and use less pesticides.

According to a significant body of research, AI and the fourth industrial

revolution hold promise in mitigating various adverse effects stemming from

preceding industrial revolutions, including issues like climate change, working and

living conditions, and environmental pollutions.

On the other hand, there are some pessimist or doubter on this AI

advancement. The main arguments for them are as follows: Artificial Intelligence

(AI) in particular has had a significant impact on society as a result of the Fourth

Industrial Revolution, stirring ethical questions and concerns about its consequences.

Robots are now increasingly intelligent and self-sufficient thanks to artificial

intelligence and machine learning, but they still lack a crucial ability: moral and

ethical thinking (Puri, 2020; Duggal, 2024; Xu, et al., 2018). This restricts their

capacity to choose morally or ethically in difficult circumstances. The question of

whose moral standards robots should inherit is also the most important one.

Individuals have very different moral standards than those in other nations, religions,

and ideological contexts. Assigning moral values to artificial systems is challenging

and limited due to uncertainty about the moral paradigm to use (Conitzer & Sinnott-

Armstrong, 2021).

The overall economic substitution of labour by automation may result in a net

loss of workers, which could widen the return on capital difference from labour. The

search for talent will lead to a potentially more polarized labour market. Digitization

and computers will replace low-skilled, low-paying occupations. More skilled,

higher paying positions are less likely to be replaced (Coldwell, 2019; Xu, et al.,

2018). Tensions in society may rise as a result of this growing dichotomization.

Many types of jobs are threatened by artificial systems that can reason their

way through complicated problems, but they also open up new opportunities for

economic expansion. Half of all work activities currently in use would be able to be

automated by already available technologies, allowing businesses to save billions of

dollars and provide new kinds of employment (Manyika, et al., 2017). For instance,

10

autonomous vehicles might only slightly replace taxes and Uber drivers, but

autonomous trucks might completely change the shipping industry and eliminate the

need for truck drivers.

1.3 Problem Statements

For a variety of reasons, the general public frequently faces formidable barriers when

seeking to interact with the judicial system. First of all, a lack of legal understanding

among the general public sometimes leaves people unable to identify legal

difficulties or when they want legal aid. Many people may unintentionally put off

getting help or taking care of their legal issues if they don't have a firm grasp of their

rights, obligations, and the nuances of the law.

 Furthermore, there is widespread uncertainty and mistrust regarding the

effectiveness and impartiality of the legal system. People may have misgivings about

the availability of justice because they believe that going through the legal system

would be difficult, time-consuming, or unfair to them. Even in cases when they have

valid legal concerns, this cynicism may discourage individuals from interacting with

the legal system entirely.

 Lastly, financial limitations often provide a significant obstacle to getting

legal help. Many people find legal services to be expensive due to their high costs,

especially those from disadvantaged or low-income backgrounds. People may be

discouraged from obtaining assistance due to the high expenses of legal counsel and

processes, which leaves them open to abuse or unable to properly claim their rights.

A person in poverty who is charged with a criminal cannot afford justice. States have

the financial means to offer top-notch legal counsel to those facing criminal charges,

but the majority of them are unwilling to offer poor individuals a minimum degree of

legal assistance (Bright, 2010).

Lee Han Kee
Add another section about Chatbot. 1.3 Chatbot

11

1.4 Project Objectives

The objectives of the project are shown as follows:

i) To design an AI system to effectively allow user in Malaysia to obtain more

information about current penal code ACT 574 on chapter XV.

ii) To implement a question-answering system that can respond to legal queries.

iii) To design a platform for professional bodies to train the system.

1.5 Project Scope

The project aims to design and implement a robust question-answering system

capable of accurately responding to legal queries, specifically focusing on the

Malaysian penal code. The objectives encompass three main goals: designing the

system to handle legal scenarios, implementing mechanisms to address ambiguities

in questions, and creating an AI-driven platform to provide the general public in

Malaysia with more accessible information about the current penal code.

 The main deliverables of the project will be a chatbot interface that will allow

users to inquire about and get legal knowledge about a particular provision of the

Malaysian penal code. The chatbot's purpose is to converse with people in natural

language and reply to their inquiries in a clear and succinct manner.

As for the project timeline, this project is aimed to complete in eight months,

during which time the chatbot will be developed, tested, and refined. In the hope of

fully evaluate and optimize the system within the limitations of time and resources,

this timeline has been selected.

 Lastly the project is expected to face some constraints or limitations of time

and resource. In order to fulfil the deadline, effective project management and work

prioritization are required due to the time constraint. In addition, the limited

12

resources of the project necessitate the prudent distribution and application of those

resources to guarantee the accomplishment of the goals within the allotted time

frame.

1.6 Report Outline

This report will be divided into five chapters: introduction, literature review,

methodology, results and discussion, and conclusion and recommendations. The

introduction chapter will describe the project's background, problem statement,

objectives, and scope. Chapter 2, the literature review will discuss the development

of AI and chatbot, Natural Language Processing (NLP), type of AI design and

implementation, and ways to obtain legal information. Chapter 3 Methodology

describes the program’s flow and Gantt charts, the programs’ design and architecture,

and selection of library program. Chapter 4 results and discussion section describes

the constructed program, result of testing, and study of outcome. Finally, Chapter 5

conclusion and recommendations section summarises findings, conclusions,

implications, recommendations for future work, and final thoughts.

13

CHAPTER 2

2 LITERATURE REVIEW

2.1 Propositional Logic

In propositional logic, the statement that is taken into account is called a proposition.

A proposition is a statement that might be true or untrue, but it cannot be both at the

same time. Propositions in AI refer to any facts, circumstances, or other statement

about a specific fact or scenario in the real world. Propositional logic expressions,

often known as propositions, are constructed using propositional symbols, connective

symbols, and parentheses.

It is possible to alter and combine a proposition to reflect the underlying

logical relations and rules by using proposition operators such as conjunction (∧),

disjunction (∨), negation ¬, implication →, and biconditional ←. Propositional logic

is the basis for automated reasoning in AI systems. Modus Ponens and Modus

Tollens are two examples of logical inference rules that let systems infer new

information from known facts.

Many systems and tasks involving logical reasoning use propositional logic.

This, according to Li et al. (2012), is mostly useful as a tool for formalizing

reasoning processes. Propositional logic is used by the author to show how various

propositions can be examined and worked with to arrive at conclusions. Additionally,

the document demonstrates the actual applications of these logical procedures in

areas like automated reasoning systems, artificial intelligence, and computer

algorithms. The paper demonstrates how logical consistency and validity can be

Lee Han Kee
Is this symbol correct?

14

systematically evaluated by dissecting intricate logical frameworks into elementary

assertions.

Propositional logic is also used to guarantee that workflow models are

accurate. Logic formulas representing a variety of workflow components, including

joins, cycles, AND, OR, and XOR splits, can be created using propositional logic (Bi

& Zhao, 2004). In propositional logic, the workflow model is defined as a collection

of premises, and the verification process is framed as a deductive argument. The

objective is to confirm that these premises lead to the logical conclusion, which

signifies the workflow's effective completion.

To depict interactions between activities, logical operators such as AND, OR,

XOR, and implications are utilized. Process inference is made possible by the logic-

based method, which also simplifies the logical model and spots possible problems

like synchronization failures or deadlocks. Furthermore, to address workflow-

specific issues, the notion of limited truth tables is presented, which eliminates

impossible cases and concentrates on legitimate execution pathways.

Last but not least, in order to address issues pertaining to China's economic

mismatches between supply and demand, propositions using intuitionistic fuzzy logic,

a type of propositional logic, have been researched and examined. According to

Wang et al. (2020), the IFLP has the ability to select from a few different investment

projects and base their decision on the intended result.

2.2 AI Learning

2.2.1 Nearest-Neighbour Classification

Neighbours-based classification is a kind of instance-based learning, also known as

non-generalizing learning, in which training data instances are merely stored rather

than an internal model being built. A query point is allocated the data class with the

greatest number of representatives among its nearest neighbours. Classification is

15

determined by a simple majority vote of each point's nearest neighbours.

Two distinct closest neighbours’ classifiers are known world-wide: K-

Neighbours-Classifier uses an integer number that the user specifies to implement

learning based on each query point's nearest neighbours. When a user specifies a

floating-point value for each training point, Radius-Neighbours-Classifier applies

learning based on the number of neighbours within a set radius of each training point.

The most popular method in neighbour’s classification is the K-Neighbours-

Classifier. The ideal amount depends heavily on the data; generally speaking, a

bigger value reduces the impacts of noise but also blurs the boundaries of the

categorization.

According to Mucherino, et al. (2009) k-nearest-neighbour method is one of

the well known data mining techniques, they are able to use this method to perform

climate forecasting in Florida and Georgia. Since the climate data are able to obtain

all year long, therefore k-nearest-neighbour is suggested by the as it might be able to

outperform other method. They found that this method was sble to imporove the

accuraracy of the forecasts.

This nearest-neighbour classification techniques are being frequently used in

real-world picture data mining, but this technique used to be having multiple flaws.

The drawbacks are as follows: it performs poorly on short datasets and on high-

dimensional data; and it depends a lot on the feature and distance measure that are

used. But this issue is then tackled by Wang, et al. (2010), they are able to improve

the technique by using a novel nearest-neighbour method.

Firstly, they suggested to add a brand-new neighbourhood similarity metric in

which the average similarity and original image-to-image similarity of their nearby

unlableled data are merge to determien the similarity between images in the database.

Secondly, they adopt a kernelized locality sensitive hashing to tackle the

effectiveness of nearest-neighbour classification. Lastly, they suggest fusing the

discriminating power of several features by taking into account all of the retrieved

16

closest neighbors via hashing systems employing various features/kernels in order to

improve the robustness of the technique on various picture genres.

The K-nearest-neighbours-based time-series classification (kNN-TSC)

method is favoured due to its instance-based learning approach, where the

classification of a new instance is determined by comparing it to the most similar

instances within the dataset (Lee, et al., 2012). This approach assumes that instances

that share close similarities, based on specific metrics, belong to the same class,

which makes it particularly useful for time-series data. The ability to tune several

parameters, including window size, gap size, and envelope width, to maximize

classification performance is one of the main advantages of the kNN-TSC approach.

Empirical evaluations carried out on real-world datasets demonstrate the great

efficacy of the kNN-TSC, indicating its potential for useful applications in sectors

such as telecommunications.

2.2.2 Perceptron Learning

One of the most basic artificial neural network topologies is the perceptron. It is the

simplest kind of feedforward neural network, which consists of a layer of output

nodes entirely coupled to a single layer of input nodes.

Perceptron is classified into two types: single-layer and multilayer. Learning

linearly separable patterns is the only thing a single-layer perceptron can do, efficient

for tasks that allow a straight line to separate the data into different categories. On

the other hand, multilayer perceptrons include two or more layers, which allows

them to handle more intricate patterns and correlations in the data, giving them

superior processing power.

Perceptron learning is made up of various crucial parts that cooperate to

process data. Initially, it receives a number of input features where it will be

associated with a weight. This is to indicate how much of an impact the input will

have on the perceptron's output. These weights are able to change during the training

17

process in order to determine their ideal levels. Furthermore, by integrating the

inputs with their corresponding weights, perceptron learning is able to determines the

weighted sum of its inputs, this function is known as summation function. The

weighted sum will then be passed through an activation function in which it will

provide the output in the form of binary numbers.

One of the most important aspects in the perceptron model which emphasize

and highlighted by Gallant (1990) is the perceptron model frequently includes a bias

component in addition to the input features and weights. The bias functions as an

extra parameter that is learned during training, enabling the model to make

modifications that are independent of the input features. Lastly, a key component of

training is the learning algorithm, often known as the weight update rule. Based on

this technique, the perceptron modifies its weights and bias in accordance with

variations between the expected and actual outputs.

Begum, et al. (2019) is able to implement perceptron learning by using

TenzorFlow library in Python. They have demonstrated the ability of perceptron in

which is able to to be used as a linear classifier and using perceptron to implement

AND Gate. With using perceptron learning algorithm in their dataset, they found that

this algorithmm is able to guarantees the performance and the result.

2.3 Contest-Free Grammer

Syntax definitions for programming languages and natural languages are defined

using a formal framework called a Context-Free Grammar (CFG). It is made up of

production rules that define how different linguistic symbols might be joined to form

words or sentences that are considered legitimate. Terminals are the fundamental

symbols or tokens that comprise the language's strings in CFG. Non-terminals, on the

other hand, indicate collections of strings and can be substituted by combinations of

other non-terminals and terminals. In natural language processing, theoretical

computer science, and compiler design, CFGs are extensively utilized due to their

potency in characterizing languages having hierarchical structures.

18

Figure 2.1: Structure of Grammatical Sentence Represented in The Form of Formal

Grammar

 Unold at 2005 is able to study the usage of CFG to develop a grammer-based

classifier system. His result were successful and able to show a 100% grammer

fitness. Other than that, CFG is used to studied the relation between itself and trained

recurrent neural networks, which is then used to explain the language learnt by the

recurrent neural network (Yellin & Weiss, 2021).

2.4 Reliability

This section will be used to examine how people develop trust in AI systems,

especially in scenarios where these systems provide legal advice.

 Kahr, et al. (2023) researched on the understanding of dynamics of trust over

time by analysing over different factors influence trust during repeated interactions

with AI. This study is based on 2x2 experimental design where the researchers

manipulating the variables between model accuracy (high vs low) and explanation

type by the AI (human-like vs abstract). The result showed that participants’ trust

increased over time when they engaged with the high accuracy AI, while participants

19

lost faith and confidence in the AI with low-accuracy models as soon as they

discovered errors. Surprisingly, trust was not significantly impacted by the sort of

explanation, but participants appreciate complex explanations when they think the AI

is competent.

 The study emphasizes how AI systems must be carefully designed to promote

confidence, especially by guaranteeing accuracy and offering justifications that

enhance the system’s functionality.

20

CHAPTER 3

3 METHODOLOGY

3.1 Project Overview

Figure 3.1 and 3.2 shows the project overview flowchart for this project. This project

is begun with introduction where the author understands the importance and the

evolution of AI. The Introduction then further include the project’s background,

objectives, problem statement, and project scopes. Continue by the author research

for several articles to understand AI and to perform literature review for this project.

Furthermore, the programming language selection along with system design is being

considered before designing the user interface and writing the programming code for

the chatbot. After completing those, integrating the user interface with the chatbot to

obtain the result wanted for the project become the crucial part. Moreover, additional

features are added to the chatbot once the previous part has been completed. Lastly,

result, discussion, conclusion and recommendations are being added to the report.

Lee Han Kee
This is Chaopter 3. You should write overview of your methodology. This is presented in Chapter 1. You shouldn’t just talk about your method. Intro and LR can ignore

21

Figure 3.1: The Project Overview Flowchart Part 1

22

Figure 3.2: The Project Overview Flow Chart Part 2

3.2 Programming Language

3.2.1 Programming Language Selection

Python is the main software coding languages in this project as it is one of the best

choices to use for web development and software development. Python simplicity,

versatility, clear, and readable syntax also enhance the reason for the author to

choose this programming language. Furthermore, due to the complexity of this

project, python code is needed as it could provide extensive standard library which

supports web development, data analysis, artificial intelligence, and automation.

Lastly this language’s strong community support also reduces the complexity of

understanding the language.

 Furthermore, JavaScript, HTML and CSS are chosen in this project for front-

end web development. HTML (HyperText Markup Language) is needed as it

23

provides the author to define the elements of the website such as headings,

paragraphs, image, and links. This language perfectly demonstrates the ability to

code the content that the author wanted on the website. Secondly, CSS (Cascading

Style Sheets) is chosen to handle the presentation and design aspects of the website.

It allows the author to control the visual style such as layout, colours, and fonts of the

website. Lastly, JavaScript is chosen as well, this is to enable the website to have

animations allow the user to interact with the website without the need to reload the

page, making the website more engaging and user-friendly.

 Other than that, JSON (JavaScript Object Notation) file is used for

transmitting data between a server and a web application. JSON is well known in

web development for data exchange due to its simplicity and ease of integration with

various programming languages.

 Altogether, JavaScript, HTML, and CSS form the core of web development,

while Python is used to create web applications, and JSON file is used to transmit

data from Python to HTML.

3.2.2 Programming Environment

For this project, Visual Studio Code (VSC) is chosen as the code editor as it is able

to provide multiple customisable features, lightweight, powerful, and can be installed

and used in multiple platforms. Other than that, this text editor is chosen as it has a

built-in support for JavaScript, HTML, and CSS with a feature-rich extension

ecosystem with Python, which is perfect for this project.

 There is a tough competitor for VSC which is the Microsoft’s Visual Studio.

It is an Integrated Development Environment (IDE) that allow user to build, edit, and

debug code. Following is a table of comparison between Visual Studio and Visual

Studio Code.

24

Table 3.1: Differences Between Visual Studio and Visual Studio Code

Visual Studio Visual Studio Code

Is an IDE Is a code editor

Slower processing speed Comparatively faster

Free editor but also comes with better

and paid IDE version

Completely free of cost and it is open-

source

Large download size Lightweight compared to Visual Studio

and doesn’t require heavy download

Requires more spaces to work better

and smoother

Does not need a lot of space to run

Only runs on macOS and Windows Can run on macOS, Windows, and

Linux

Limited plugins Large variety of plugins and extensions

 As shown in Table 3.1, the reason for the author to choose VSC over Visual

Studio is the comparative speed of VSC is much faster than Visual Studio, VSC

having much more flexibility, it requires much less space on the computer while

could run smoother than Visual Studio, and lastly VSC comes in large variety of

plugins, extensions, and it has a large community base.

3.2.3 Programming Library

This section of the showing the list of python libraries needed to be in the computer

for this project to run smoothly with ease:

i) Flask.

ii) PyTorch.

iii) torchvision.

iv) NLTK.

v) Googletrans.

vi) SpeechRecognition.

25

vii) PyAudio.

Flask is chosen as it is a web framework that is able to provide tools to build

a web application, including blog, wiki, commercial website, and for this project it

will be used for building a website. It has one of the best advantages which is having

little dependency to update while having a light framework.

PyTorch is selected due to it is an open-source machine learning library to

create a deep neural network. It is able to simplifies the creation of artificial neural

network models and it could be used for AI applications. It is also pythonic in nature

which is having the same coding style as Python. PyTorch is often comparable to

TensorFlow, as TensorFlow has developed longer with a larger community of

developers by Google. But PyTorch is having a little advantage over TensorFlow as

it easier and lighter to work with duo to PyTorch is based on intuitive Python,

therefor making it the best choice for this project.

Other than that, torchvision is selected alongside with PyTorch as it is able to

smoothly integrates together to create a deep learning workflow.

Moreover, NLTK (Natural Language Toolkit) is selected for natural language

processing in this project as it is a popular open-source library in Python. It provides

a wide range of tasks, including tokenization, stemming, lemmatization, parsing, and

sentiment analysis. All of the tasks above are needed to develop a well function

natural language processing application which able to analyse text data.

Furthermore, the author decided to use google trans for this project as

Googletrans is a free and unlimited python library that implement Google Translate.

It contains the features of having fast and reliable translation across multilanguage,

auto language detection, and bulk translations.

Speech Recognition library is chosen to specifically identify spoken words

and converts them into texts.

26

 Lastly, PyAudio library is designated to capture sound and handle audio in

Python. This library enables audio input and output across different platforms

making it the perfect application in voice recognition and audio processing where

capturing sound from a microphone is required. Most importantly, Because of its

cross-platform interoperability, audio will function flawlessly across a range of

operating systems, making it an essential and adaptable tool for any Python audio

project.

3.3 Design Phase

This section of the report demonstrates how each feature and model are being

implemented and design steps by steps into the chatbot.

Figure 3.3: Design Process

27

 From the Figure 3.3, each phase in the design process is based on completing

all the development, implementing it in the chatbot, and then perform a failure

analysis for each of the featured design until the project is successfully completed.

Meanwhile, if there is an error, design flaw, or incompetence of design

implementation found in the analysis phase, the error will be carefully examined and

corrected before proceeding. This iterative process guarantees that any problems are

resolved quickly and permits ongoing improvements to the chatbot’s functionality

and design until the finished product satisfies the necessary requirement.

3.3.1 Phase 1: Development

This subsection will cover the details of all the development in this project.

3.3.1.1 Chatbot Protocol

The first module in the development of this project is to create a chatbot protocol.

During this process, a very simple chatbot has been built with the intention of getting

a desired response from a question.

Figure 3.4: Code for Chatbot Protocol Part 1

28

 Figure 3.4 shows how the chatbot is able to recognise word from the question

asked by the user and count how many words are present in each predefined message.

It will then Calculates the percent of recognised words in a user message and based

on the percentage, it will return the highest probability set response from Figure 3.5.

Figure 3.5: Code for Chatbot Protocol Part 2

 During this phase, the chatbot is only able to understand the user question

based on similarity questions set in the code and response with the highest possibility.

3.3.1.2 User Interface

After creating a simple chatbot using Python, the next step will be to create a website

using HTML, JavaScript, and CSS. The user interface is coded with each

programming language respectively as shown in Appendix A, B, and C.

 In Appendix A, the code defines a class named ‘Chatbox’ which manages a

simple chat interface on a website. This class have a class constructor which

initialized object such as chat box toggle button, chat interface, and the send button.

29

In the code, it has a property which tracks whether the chat box is open or closed,

and it has an array which store the chat conversation.

 Furthermore, when the chat box toggle button is clicked, it calls

‘toggleState()’ method, which switches the visibility of the chat box by toggling the

‘chatbox--active’ CSS class. When the user finished typing and click send button or

trigger Enter key, the “onSendButton()’ method will captures the user’s input and

appends both the user’s message and the server’s response to the ‘message’ array.

 Appendix B shows the code for CSS, it’s used to add style to a website and

how the site is displayed on a browser. The author used this code to design the

website with colour and how the chatbot in the website should be displayed.

 Appendix C illustrates how HTML is coded to sets the language to English

and ensuring correct text display by defining ‘UTF-8’. The body of this code

contains a ‘div’ with the class ‘container’ that hold the chatbot interface. There is a

total of 3 div in the code, the first div ‘chatbox’ encapsulates the main elements of

the chatbot, the second div ‘chatbox__messages’ is where the chat messages will be

dynamically displayed using JavaScript, the third div ‘chatbox__button’ is where it

contains a button to toggle the visibility of the chat box.

 This project also uses HTML code to include a header with a greeting

message, the name of the chatbot, and the purpose of the chatbot. There is also a

footer written in this code which contains an input field for users to type messages

and a send button which allows the user to send the messages to the chatbot.

3.3.1.3 Second Chatbot with Self-learning Features

Chatbot with a learning feature is coded as shown in APPENDIX F. For this part, the

code will first get the response from the user through the website, then it will handle

the user input and respond by finding the best match in the JSON file. If during this

Lee Han Kee
Why upper case?

30

time, the code couldn’t find a best match, then it will save the question asked by the

user and prompt the user to give the corresponding answer to that question.

Figure 3.6: Python Code Snippet for Chatbot Learning

 Figure 3.6 shows how the code will perform when the user asked something

new to the chatbot and how it will response to the new question.

3.3.1.4 Translator

This is fourth development in the chatbot, where the author added a translator into it,

the full code is shown in Appendix H. This program is well performed by the

‘googletrans’ library where it is able to perform translation and language detection.

 There is a total of two part in this program code, firstly is the

‘translate_to_other()’ function as shown in Figure 3.7. This part of the code is used

to perform translation with a given English text into another language. The translated

language is based on the user input and will be detected by ‘googletrans’ library.

31

Figure 3.7: Code Snippet for Chatbot Translation from English to Other Language

 The second part of the program code are ‘translate_to_eng()’ function as

shown in Figure 3.8. This part of the code is used to translates text from any foreign

language into English. Furthermore, it will detect the language that the user have

input using the ‘detect()’ method, and it will stores the language into a variable. Then,

it will translate the foreign text or sentence into English by setting the destination

language to English in the ‘googletrans’ library. Once this is complete, the variable

which stores the type of foreign language will then send ‘transfer_to_others()’

function which it will be able to translate English back to the language in which the

user has inputted.

Figure 3.8: Code Snippet for Chatbot Translation from Foreign Language to English

 These two together will form the basis of translating the text when the chatbot

detect the user have input a language that is not English. It will then translate the text

from foreign language into English to understanding the question, and once it has the

answer, it will translate the answer from English to the foreign language, the

translated answer will then be output to the user.

3.3.1.5 Voice Input

The last major development for the chatbot will the voice input, and the code is

shown in the Appendix G. This program begins by creating an instance of the

32

‘Recognizer’ class, which is responsible for processing the audio input by using

microphone as the source of audio input. After processing, it will the converts speech

to text by using Goole Speech Recognition. If successful, this program will save it in

a variable named ‘text’ and it will return the recognized text to other function.

3.3.2 Phase 2: Implementation

This subsection will cover the details of how each chatbot design are being

implemented and integrated together.

3.3.2.1 Data Connection Between Two Chatbot

After the development of the first chatbot protocol, the author has upgraded the

chatbot with a much more complicated programming code which allows the chatbot

to have response to much more variety of questions and responses.

During this time, this project has entered a major challenge where the code

for the main chatbot and the secondary chatbot which could be teach new

information by the user. It seems like the difference between both code in both

chatbot is unable to be integrated into one. Therefore, a new program code is written

to allow data from JSON file of the secondary chatbot to be able to flow into the

JSON file of the main chatbot.

33

Figure 3.9: JSON File Code Snippet for Main Chatbot

Figure 3.10: JSON File Code Snippet for Secondary Chatbot

Despite both chatbot using the same JSON file, but the format for both files is

different as shown below in Figure 3.9 and Figure 3.10. The code in Figure 3.9 is

having a structure where it consists of an array of intents, in which contains the ‘tag’,

‘patterns’, and ‘response’. Firstly, the ‘tag’ in used to identify and categorise the

intent. Followed by, ‘patterns’ in which is an array of phrases or patterns that user

might say to trigger the corresponding ‘tag’. Lastly, ‘responses’ is an array of

potential responses that the chatbot will provide when the corresponding ‘tag’ is

detected.

On the other hand, the code in Figure 3.10 is only having a particular

question with a given response. The simplicity of this code is where it allows the

34

secondary chatbot to learn new questions and answers from the user without using

much speed, time, and space.

In order to integrate code together for them to coexist, a new program code is

being developed as shown in the Appendix J. The function of this code will be

further explained in Section 3.3.2.2.

3.3.2.2 Chatbot Learning New Question and Response from User

There will be two scenarios when the chatbot encounter a brand-new question. First

is where the chatbot have no clue what the question and response is, second is where

the chatbot don’t know the question but does know the response.

Figure 3.11: Python Code Snippet for Adding New Question and Response

 Figure 3.11 shows a code snippet for the first scenario where the chatbot have

encounter a new question without a clear response. This code allows the user to

create a new tag as stated in Section 3.3.2.1. With this new ‘tag’ created, the program

will save the new question and new responses taught by the user into the new tag.

35

Figure 3.12: Python Code Snippet for Adding New Question into Existing Tag

 Figure 3.12 shows a code snippet where is used for the second scenario when

the chatbot don’t know the question but does have the response in the JSON file.

This code allows the user to link the new question into a bunch of suitable response

by inserting the new question into the corresponding ‘tag’ in the JSON file.

3.3.2.3 Chatbot Training Model

The main chatbot is being trained by the code shown in Appendix I. Before training

the chatbot, a filter of NLTK is needed to allow the chatbot to understand the

patterns from each ‘tag’ in Figure 3.9.

36

Figure 3.13: Python Code snippet for NLTK

 Figure 3.13 shows a part of the NLTK code, which consists of three functions

to preprocess text for tasks in the chatbot. Firstly, the ‘tokenize()’ function will be

used to splits a sentence into an array of words, punctuation, or numbers by using the

build in ‘nltk.word_tokenize()’ function. If there is a input sentence “How are you?”

by the user, this function will then split this sentence into an array of [“How”, “are”,

“you”].

 Continue by the ‘stem()’ function which is used to reduces words to their root

form through stemming. This process is able to simplifies words like “organize”,

“organizes”, and “organizing” to a common root, “organ”. This is very useful

function as it helps to standardize words in different forms into a base representation.

 Lastly, the ‘bag_of_words()’ function will be used to generates a bag of

words representation. It will take a tokenized sentence from ‘tokenize()’ function and

compares it to a predefined list of words. This function will create an array where

each index corresponds to a word in the vocabulary; it assigns a 1 if the word is

present in the sentence and a 0 if it is absent. For example, if there is a tokenized

sentence [“hello”, “how”, “are”, “you”] and a predefined list of words [“hi”, “hello”,

37

“I”, “you”, “bye”, thank”, “cool”], this function will return a bag which consist of

[0 , 1 , 0 , 1 , 0 , 0 , 0] that corresponds to each word in the sentence.

This representation allows the model to quantify the presence or absence of

important words in the input sentence, which is useful for tasks like classification or

intent detection in chatbots.

Furthermore, before training the chatbot, a training model must be coded and

specified. For this project, the training model code are shown in the Figure 3.14,

which defines a simple feedforward neural network using PyTorch.

Figure 3.14: Python Code for Chatbot Training Model

 The ‘__init__()’ function initialized the neural network into three layers, this

three fully connected layers are labelled as ‘l1’, ‘l2’, and ‘l3’. The purpose of the first

layer ‘l1’, is to maps the input features to the hidden layer with a size define in

‘hidden_size’. Subsequently the second layer ‘l2’, are used to keeps the same hidden

size for additional transformations. Finally, the third layer ‘l3’, maps the hidden

representation to the number of output classes.

 The ‘forward()’ function in Figure 3.14 is used to when there is an input

passed through it layer by layer. The ‘ReLU()’ activation function is applied after the

first two layer to introduce non-linearity while is excluded for the output of the third

layer, the output from the third layer will then returned directly which is where the

final activation is handled separately.

38

 After the completion of the NLTK and training model program code, these

two program code file will then integrate with the code shown in Appendix I. The

goal of these three-program code is to utilized PyTorch to train a chatbot model that

would categorize user input into predetermined categories, or known as ‘tags’, by

looking at the JSON file.

 The first step in the data preparation process is to load the intents from the

JSON file, then the code in Figure 3.13 will tokenize and stem each pattern’s words,

and then compile a list of distinct stemmed words and their corresponding tags. To

make processing this data easier, a special ‘ChatDataset’ class is made, which

enables the model to get the data quickly using PyTorch’s ‘DataLoader’.

 The neural network, which is an instance of the ‘NueralNet’ class, is

configured with a given number of hidden neurons, output neurons, and input

neurons. The purpose of the output neurons is to match the number of unique ‘tags’

from the JSON file, and the purpose of the input neurons is to match the length of the

bag-of-words from the ‘bag_of_words()’ function from Figure 3.13. This model is

well-suited for multiclass classification because it was trained using the

CrossEntropyLoss function and the Adam optimizer.

 During the 1000 epoch training loop, the model’s weights are changed to

minimize the loss function, and the loss is displayed on a regular basis to track

improvement.

3.3.2.4 User-Friendly Interface

This section will be used to describe how this project uses images and numbering to

ease user interaction with the chatbot.

39

Figure 3.15: Image Used to Enhance User Experience

 Figure 3.15 shows the image included in the chatbot website as it could

potentially increase user engagement, facilitate communication and improve the user

experience overall. Another consideration for using this icon is to allow user to find

it easier to navigate an interface with visual components like this icon. Additionally,

this icon can make the user experience more intuitive by leading them through

important features without overburdening them with text, which ultimately allows

the icon in website to communicate with the user more effectively than text alone.

 Another common feature which could enhance user experience is to include

numbering in the chatbot. Numbering is crucial because it facilitates the sequential

organization of information, which makes it simpler for users to follow, comprehend

and retain information. From the code shown in Figure 3.16, is to be designed to

extract ‘tags’ from a JSON file and return them as a numbered list with HTML

formatting.

Figure 3.16: Python Code Snippet for Numbered List

 The code starts by defining the path to the JSON file and then proceeds to

open and read the file’s contents. By using Python’s ‘enumerate()’ function, the

program is able to iterates through the tags extracted and allocating a number to each

40

tag. On top of that, HTML ‘’ tags are used to format each tag, bolding the

numbering and making sure the tags and number are visually striking.

3.3.3 Phase 3: Analysis

Firstly, to make sure a chatbot words properly and offers a positive user experience,

the author begins unit testing by examining individual components to make sure they

function as intended, such as the user interface and chatbot integration. Subsequently,

a simulation of full conversation flows which include voice input to do reliability test.

 After completion of the development and implementation phase, the author

also tested with different user inputs to make sure the chatbot responds to orders,

greetings, and unclear questions. Besides that, an incorporate usability testing is

being carried out by observing actual user’s interactions with the chatbot and noting

any issues to help discover areas that need to work.

 Finally, regression testing is being done after updates and modifications to

make sure that current functions are maintained.

3.4 Project Management

The Gantt chart for FYP 1 and FYP2 is shown in Table 3.2 and Table 3.3

respectively.

41

Table 3.2: The Gantt chart for FYP 1

Activity Weeks

FYP 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Initiation
Registration and selection of
supervisor
Determination and
confirmation of title

Meeting with supervisor

Planning & Execution

Discussion about chapter 1

Correction of chapter 1
Discussion about literature
review
Submit chapter 2 and
comment from supervisor

Continuation of chapter 2
Searching for online
resources/knowledges

Draft of chapter 3

submit chapter 3

Continuation of chapter 3

Closure
Submit finalise FYP1 report to
supervisor

Preparation for presentation
Oral presentation of FYP
project

42

Table 3.3: The Gantt Chart for FYP 2

Activity Weeks

FYP 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Initiation

Meeting with Supervisor
Searching for online
resources/knowledges

Planning & Execution

Correction of chapter 3
Programming Language
Selection

Desing Chatbot

Desing User Interface

Chatbot and UI Integration

Chatbot Testing

Chapter 4

Chapter 5

Closure
Submit finalise FYP report to
supervisor

Preparation for presentation
Oral presentation of FYP
project

3.5 Cost Estimation

The project’s estimated cost is given in this section. This section’s goal is to establish

the project’s budget so that there will be enough money to construct the system.

Additionally, the hardware and software requirements for this project are also shown

in this section.

43

Table 3.4: Cost Estimation of Project Materials

Item Cost (RM)

Hardware:

LAPTOP-MCVDORB1

 Processor: i3

 RAM: 8GB

3200.00

Software:

Visual Studio Code 0 (Free of Charge)

Total Estimated Cost: 3200.00

44

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Website Overview

Figure 4.1: The Chatbot Website Part 1

Lee Han Kee
Start with text first only show the figures.

45

Figure 4.2: The Chatbot Website Part 2

Figure 4.3: The Chatbot Website Part 3

Figure 4.1 shows the basic of the website by using HTML as the programming code,

while Figure 4.2 and Figure 4.3 shows the website with animation and colour by

integrating CSS and JavaScript with the HTML code.

 On the right side of the Figure 4.3 is where the main chatbot will be located,

and the secondary chatbot with the learning features is located at the left. The chat

46

box for both chatbot is colour coded differently to distinguish the difference between

them.

4.2 Chatbot Overview

4.2.1 Main Chatbot

Figure 4.4: Chatbot Performing Simple Conversation with User

Figure 4.4 shows that the chatbot created in this project is able to perform simple

communication with the user. This simple communication with the chatbot include

greetings, farewell, and even telling a joke. All of this are possible, due to the

training model shown in Section 3.3.2.3 and the JSON file shown in Figure 3.9.

 But most importantly, the core of this project is to create a chatbot which able

to answer legal queries regarding to user questions. This project is focused on Penal

Code Act 574, Chapter XV, Offences relating to religion. This particular chapter in

the Penal Code is having four sections with the following offences:

47

i) Injuring or defiling a place of worship with intent to insult the religion of any

class

ii) Disturbing a religious assembly

iii) Trespassing on burial places, etc.

iv) Uttering words, etc., with deliberate intent to wound the religious feelings of

any person

Figure 4.5: Result of Chatbot Response to Offense in First Section

 Figure 4.5 shows the result of the chatbot from answering questions related to

the first section (Injuring or defiling a place of worship with intent to insult the

religion of any class). The chatbot is able to recognise that the user question contains

a way of destroying, damaging, or defiling any places of worship, therefore it

responded with the responsibility and consequences of the action.

 Furthermore, the chatbot shown in Figure 4.6 demonstrates that it is able to

understand the action done regardless of the place of worship. However, once the

chatbot detected and understood that the damaged place described by the user is not

any place of worship or places which does not suit the description by this section of

48

the Penal Code, then the chatbot will response with “I do not understand”. This

scenario is shown in Figure 4.6

Figure 4.6: Result of Chatbot Responses to Unrelated Place

 Furthermore, this chatbot also able to identify whether the action done at any

place of worship fit into the description of Penal Code. For example, if the user asked

similar questions as shown in Figure 4.7, where the action is not likely to do any

harm, destroy, or damages to the place of worship, then the chatbot will be giving a

response of “I do not understand” as well.

49

Figure 4.7: Result of Chatbot Responses to Neutral Action

 Figure 4.8 and Figure 4.9 shows the chatbot response towards the questions

from user, which is related to the second, third, and fourth sections from the Penal

Code Act 754.

Figure 4.8: Result of Chatbot Response to Offense in Second and Third Section

50

Figure 4.9: Result of Chatbot Response to Offense in Fourth Section

 Last and most importantly, this chatbot is able to recognise good and positive

action as shown in the Figure 4.10. This function is added to the chatbot because it

helps boost morale and motivation by making people feel valued and appreciated.

When the chatbot praise the user for excellent work, the chatbot increases user

engagement and humanizes interactions. This encourages users to engage with the

chatbot more frequently and fasters the development of trust and goodwill.

Figure 4.10: Chatbot Responses to Positive Action

51

4.2.2 Secondary Chatbot

This subsection will be showing the result of the second chatbot in this project. The

purpose of the second chatbot is to allow the chatbot to learn from the user once it

encounters a new question.

 The need for a self-learning chatbot stems from the fact that it continuously

enhances the user experience by getting better understanding and responding to users.

These chatbots may learn from previous interactions, adjust to new information, and

improve their responses over time to achieve more accurate, efficient, and

personalized interactions by utilizing machine learning and natural language

processing.

 The second chatbot begins the conversation with a verification for the user to

determine whether is a authorise user or an unknown user. For this project, only

certified lawyer or professional bodies who have the knowledge and education in law

will be given the ‘username’ and ‘password’ to authorise the second chatbot. By

confirming that user is who they say they are and have the right qualifications, this

approach helps to ensure a safe learning environment for the chatbot. As a result of

this, the data that the chatbot stores and learns is kept consistent and of high quality.

Figure 4.11: The Login Phase for The Secondary Chatbot

52

 Figure 4.11 shows the login phase for the secondary chatbot. The chatbot will

be giving “Incorrect Username” if the user key in the wrong username, and the

chatbot will be fiving “Incorrect Password” if the user key in the wrong password.

When both of the username and password are correctly typed in the user, then only

could the user interact with the chatbot as shown in Figure 4.12.

Figure 4.12: Secondary Chatbot Performing Simple Conversation with User

 This secondary chatbot is used when a scenario shown in Figure 4.13 happen.

During this case, the authorised professional bodies could repeat the question to the

secondary chatbot, and the chatbot will be giving three options to the professional

body. The first option will be adding the new question into a new ‘tag’ and a new

answer as the code shown in Figure 3.11. The second option will be allowing the

professional body to potentially add the question to existing ‘tag’ as the code shown

in Figure 3.12, through this way, the user could link the new question into an existing

‘tag’ with an existing answer. Lastly, there also will be an option to allow the user to

skip teaching a new question to the chatbot. The three options are shown in Figure

4.14.

53

Figure 4.13: Chatbot Unable to Provide Answer to User Question

Figure 4.14: User Teaching Unknown Question to The Second Chatbot (i)

54

4.2.2.1 Adding New Questions

Figure 4.15: All Tag Listed in The Database

Figure 4.16: Result of New Question Added into an Existing Tag

 Figure 4.15 shows the response given by the chatbot when the user decides to

add a new question into an existing ‘tag’. The chatbot will then show a numbering

list of ‘tag’ in the database. Continue from that, the user could just type in the

number that corresponds to the desired tag and the chatbot will automatically shows

55

a message similar to Figure 4.16, where the chatbot will display the information of

the new question added and the tag in which the question has been added to.

4.2.2.2 Adding New Questions and Response

This subsection is used to demonstrate when professional body teaches a new

question with a new response to the chatbot. In Figure 4.17, the chatbot has

encountered an unknown ethical question by the user, and for this scenario, the user

decides to teach a suitable response by typing “new”.

Figure 4.17: User Teaching Unknown Question to The Second Chatbot (ii)

 In this project, if the user asked an ethical question about the following: “Is a

doctor allowed to end a patient's life if the patient is suffering and requests it, even if

euthanasia is illegal?”. The chatbot is unable to answer this question as it does not

have similar question or data in its database. Hence, the user is going to teach the

corresponding response towards this kind of question, the result is shown in Figure

4.18.

Lee Han Kee
This is not related to the legal act.

56

Figure 4.18: Result of Teaching Chatbot a New Question, Tag, and Answer

4.2.3 Data Integration Between Two Chatbot

When a new question has been completely added to the database, only the author

could possibly train the chatbot in order for the main chatbot to learn the new

question given to it. This is due to chatbot training necessitates technical proficiency

in programming, machine learning, and natural language processing, developers are

usually the ones permitted to train chatbots. Furthermore, the author has to ensure the

chatbot train properly when handling sensitive data like legal inquiries, which

guarantees process control, accuracy, and efficiency operation with few faults or

unexpected consequences.

 The output of the chatbot training in the terminal is shown in Figure 4.19.

The program first prints the details about the dataset in the JSON file, such as ‘tag’,

input patterns that the chatbot can recognize, and unique stemmed words used for

training. During the training process, the model undergoes multiple epochs, with the

code printing the epoch number and the corresponding loss value after every 100

epochs. The loss value is used to reflects how well the model is learning to predict

the correct tags for the input sentence, and it is expected to decrease over time,

indicating improved model performance. At the end of the training, the final loss

57

value is printed, showing how well the model has learned by the last epoch. Once the

training is complete, the learned parameters of the model is saved to a file along with

vocabulary and tags.

Figure 4.19: Training Model Output

 After the completion of training in Figure 4.19, the chatbot will then be able

to learn and identify similar questions. As shown in Figure 4.20 and Figure 4.21, the

main chatbot is able to correctly provide the response according to the user question.

Figure 4.20: Result of Training (i)

58

Figure 4.21: Result of Training (ii)

 Table 4.1 shows the overall result for the learning process of the chatbot. The

table is separated into two scenarios which correspond to Section 4.2.2.1 and Section

4.2.2.2.

Table 4.1: Chatbot Learning Process

 Stages Scenario

 Adding New Question Only Adding New Question and

Response

1.

Before

Training

59

2. Training

Phase

3. After

Training

60

4.3 Chatbot Features

This section will be discussing the features added to the chatbot. These added

features will be used to enhance that chatbot’s functionality, allowing it to handle a

wider range of user queries and tasks. Moreover, incorporating new features ensures

the chatbot remains up-to-date and capable of meeting contemporary demands.

4.3.1 Voice Input

Voice input is chosen to be a feature for this chatbot due to several reason, and the

number one reason being that is necessary in chatbots to improve user experience.

First, speaking is typically quicker and more convenient than typing, particularly for

people who find typing difficult or who may not be very skilled with a keyboard.

Voice input is more practical choice due to its ease of use, especially in mobile

circumstances where typing o n small screen can be problematic.

 The accessibility of voice input is yet another factor for adding it. It makes it

possible for people with disabilities to effectively communicate with chatbots,

especially for those who have vision impairments. Through adding this feature, this

chatbot can reach a wider audience and guarantee that more people can use their

services without using conventional input methods by supporting voice commands.

 Moreover, user is able to gain the ability to multitask via voice input. For

example, user can communicate with chatbot while walking, cooking, or working out.

In circumstances when manual input could be distracting or impossible, this hands-

free contact not only increases convenience but also safety.

61

Table 4.2: Process of Voice Input

Sequences Actions Results

1. User Initiate voice

input function

2. Users begin to talk to

the mic

3. Chatbot able to

recognise the voice

inputted and provide

the response

62

4. Second example

 Table 4.2 shows the process of voice input in few steps. The first steps are

where the user have to initiate the voice input by typing “#” into the chat box. After

typing that, the user could begin to speak into the mic and the voice input will be

then display in the chat bot as shown in the second step of the table. The voice input

is not directly inputted to the chatbot but to show in the chat box is to allow the user

to make changes if he or she doesn’t satisfy the outcome. The chatbot will then

provide the respond when the user clicks enter or “send” to input to the chatbot, this

process is shown in the third sequences of the table.

 Lastly, the fourth sequence is used to demonstrate the functionality of the

voice input with another example where the user voice inputted “I am throwing

stones at a church”. But for this time, the voice input could not accurately recognise

the word spoke by the user and instead of giving identical result, it gave “I am

throwing stones and church”. Accents, dialects, speech difficulties, and noisy

background may be difficult for voice recognition software to comprehend, which

could result in incorrect interpretations or answers as shown here. In such case, users

might prefer traditional text input methods to maintain discretion, clarity and allows

user for greater control in asking question.

 In this project, the chatbot is able to recognise the “typo” due to the

conversion from voice to text and provide the correct response.

63

4.3.2 Multilanguage Text Translation

For a number of reasons, having multilingual text translation tool is essential in a

chatbot. First off, it makes the chatbot more accessible and enables it to cater to a

wider range of users with various linguistic backgrounds. This inclusivity makes sure

that users who have different mother languages can communicate with the chatbot in

a useful way, which increases the potential user base and its reach.

 Other than that, this project added this to facilitate smooth communication for

Malaysia’s diverse population, which speaks Malay, Tamil, Mandarin, and other

languages. By enabling users to communicate in the language of their choice, this

could result in users being more willing to interact with and trust a chatbot that

speaks in their native tongue.

Figure 4.22: Result of Translation in Chatbot (i)

64

Figure 4.23: Result of Translation in Chatbot (ii)

 Figure 4.22 and Figure 4.23 shows the result of using the function of

translation in the chatbot. Figure 4.22 demonstrates the capability of the chatbot to

understand and provide the same response when the question is asked in English and

the exact same question is asked in Malay. This is also the case when the question is

asked in Chinese as shown in Figure 4.23.

 Using Google Translate in this project can be quite effective, but the

confidence level for the translation is depends on various factors. Firstly, the

language pair that is being translated is important, with a commonly spoken

languages like English, Spanish, and French, Google Translate performs incredibly

well and frequently yields correct translations.

 The second factor which is considered by the author, is the continuous

improvement of Google Translate. The correctness of the service gradually increases

as a result of the continuous addition of new data.

 But there are some limitations to Google Translate, especially when it comes

to managing nuances. Firstly, the accuracy of the translation may decline for less

widely spoken languages or those with intricate grammar and colloquial idioms.

65

Google Translate usually performs well enough for simple, uncomplicated sentences,

but its accuracy varies when it comes to technical jargon, complex sentences, or

sentences that need cultural context. In certain situations, there may be

misconceptions since the translated content may not accurately convey the original

meaning.

 Last and most importantly, real-time translation is needed in this project

settings, and Google Translate typically does this very well. But this do come with a

drawback, which is delays.

 Since Google Translate is a cloud-base service that needs an online

connection to send and receive translation request, one of the main causes is internet

access. Processing and returning the translated content may take longer if the internet

connection is slow or having latency, which can be brought either by network

congestion or large user-server separations.

 Furthermore, response times might also be impacted by the volume and

intricacy of the content being translated. Longer or more complicated sentences

could take longer to parse, particularly if they contain difficult-to-translate terms like

idioms, technical jargon, or context- dependent meanings.

 Despite the occasional delays, the trade-offs are considered worthwhile due to

the reliability and consistency of the Google Translates service. Delays are typically

minimal and may not significantly affect the overall user experience in this project

when real-time speed is not critical.

66

4.4 Chatbot Testing Result

This section will be used to discuss the training result for the chatbot in this project.

Figure 4.24: Chatbot Training Result

 The training response shown in Figure 4.24 demonstrates the development of

a machine learning model. An epoch is a single full run of the whole training dataset

through the model, and each line shows the loss value at various epochs. A metric

called the loss value is used to assess how well the model predicts the actual results;

lower loss values denote greater performance.

 In this response, the training began at epoch 100 with a loss of 0.0099 and

reduced gradually over the course of the training. The loss was down to 0.0017 by

epoch 200 and even lower to 0.0004 by epoch 300. As the epochs rose, this tendency

persisted, demonstrating a notable decline in the lass value. The loss value ultimately

dropped to 0.0000 from epoch 400 onward, suggesting that the model, at least based

on the training data, was almost faultless in its predictions.

 However, the model may have overfitted the training data, which means it

has learned to predict the training data incredibly well but my not generalize as well

to new, unseen data, given that the loss value approached zero.

67

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, the three main objectives of this project have been successfully

achieved. This first objective is to design an AI system that can effectively allow

Malaysian to obtain more information about current penal code ACT 574 on chapter

XV. This objective is obtained by allowing user to ask any unknown question which

is related to this penal code to be answered by the chatbot created.

 The second objective of this project is to implement a question-answering

system that can respond to legal queries. This is completed by developing a system

that could recognise the question asked by the user and provide known information

as an output to the user. The chatbot database has included answer that is related to

chapter XV of the penal code which could effectively respond to the user.

 The last objective will be to design a platform for professional bodies to train

the system. This is accomplished by setting up a secondary chatbot which will

constantly request user to provide response to any unknown questions that it

encounters. Furthermore, it also required a login system which is essential for

ensuring that this chatbot is only getting highly accurate response from trusted

professional bodies.

68

5.2 Recommendations for Future Improvement

This section will be giving recommendations for future improvement on this project.

Firstly, is to increase the amount of data in the chatbot database. This is crucial as it

enhances the chatbot’s ability to understand and respond to a wider range of queries.

Furthermore, it also allows more examples and scenarios to be learn by the chatbot,

which could improve its accuracy and relevance in providing response. This is to

achieve a more engaging and satisfying user experience, as the chatbot can handle

more complex and varied conversations. But most importantly, continuously adding

data helps keep the chatbot’s knowledge base up to date. This is essential for

maintaining the chatbot’s usefulness and reliability, especially in fields that are

constantly evolving, such as legal queries.

 Secondly, is to improve the quality of voice recognition for enhancing the

user experience. This allows the user to speak freely and naturally without needing to

repeat themselves or clarify their statements, leading to smoother and faster

conversations. This is particularly beneficial for users who may find typing

inconvenient, such as when they are on the move or have accessibility needs.

Additionally, misinterpretations can lead to misunderstandings, incorrect answers, or

frustration, reducing the chatbot’s effectiveness and user satisfaction in scenarios

where the chatbot is used for important tasks, such as legal advice. Most importantly,

this is very helpful for those elderly users and individuals who have disabilities such

as arthritis, reduced vision, or limited mobility can make typing on keyboards or

using touchscreens difficult.

 On top of that, having a “read out loud” function or chatbot voice output is

significant as well. By providing auditory feedback, a chatbot with a read-aloud

function ensures that visually impaired users can still access information and interact

with digital services. It also assists users who might have difficulty reading due to

dyslexia or other learning disabilities, offering them a more comfortable and

inclusive way to engage with the content. Moreover, this feature could enhance

multitasking and user convenience as they don’t have to focus their visual attention

on a screen in order to listen to responses while engaging in other tasks.

69

 Lastly, future work can optimize the code of the chatbot in this project as is

essential because it directly impacts the chatbot’s performance, scalability,

maintainability, and overall user experience. A seamless and engaging conversation

may be maintained by the chatbot processing user questions more quickly when the

code is well-optimized. This is because delays in response can irritate and dissatisfy

users. Optimized code also consumes less memory and processing power, which is

crucial for enabling the chatbot to function properly on hardware with constrained

resources like embedded systems or smartphones. This could future improves

scalability, enabling the chatbot to process more users and queries without setting a

drop in performance. Finally, optimization facilitates better debugging and code

maintenance, which makes it easier for developers to maintain and enhance the

chatbot over time.

70

REFERENCES

Begum, A., Fatima, F. & Sabahath, A., 2019. Implementation of Deep Learning

Algorithm with Perceptron using TenzorFlow Library. Communication and Signal

Processing, pp. 0172-0175.

Bhbosale, S., Pujari, V. & Multani, Z., 2020. Advantages and disadvantages of

artificial intellegence. Aayushi International Interdisciplinary Research Journal,

Volume 77, pp. 227-230.

Bi, H. H. & Zhao, J., 2004. Applying Propositional Logic to Workflow Verification.

Information Technology and Management, Volume 5, p. 293–318.

Brady, M., 1985. Artificial intelligence and robotics. Artificial Intelligence, 26(1), pp.

79-121.

Bright, S. B., 2010. Legal Representation for the Poor: Can Society Afford This

Much Injustice. Mo. L. Rev., Volume 75, p. 683.

Canastro, D. et al., 2019. The role of AI and automation on the future of jobs and the

opportunity to change society. New Knowledge in Information Systems and

Technologies, Volume 3, pp. 348-357.

Coldwell, D. A. L., 2019. Negative Influences of the 4th Industrial Revolution on the

Workplace: Towards a Theoretical Model of Entropic Citizen Behaviour In Toxic

Organizations. Int J Environ Res Public Health, 16(15), p. 2670.

Conitzer, V. & Sinnott-Armstrong, W., 2021. How much moral status could artificial

intelligence ever achieve. Rethinking moral status, pp. 269-289.

71

Crafts, N. F. R., 1996. The First INdustrial Revolution: A Guided Tour for Growth

Economists. The American Economic Review, 86(2), pp. 197-201.

Duggal, N., 2024. Advanrtages and Disadvantages of Artificial Intelligence [AI]. AI

& Machine Learning, 21 March.

Gallant, S. I., 1990. Perceptron-based learning Algorithms. IEEE TRANSACTIONS

ON NEURAL NETWORKS, 1(2), pp. 179-191.

Goodfellow, I., Bengio, Y. & Courville, A., 2018. Deep Learning. s.l.:s.n.

Hasmi, M. Z. et al., 2023. Artificial Intelligence Applications in Reduction of Carbon

Emissions: Step Towards Sustainable Environment. Frontiers in Environmental

Science, Volume 11, p. 1183620.

Huang, M. H. & Rust, R. T., 2018. Artificial Intelligence in Service. Journal of

service research, 21(2), pp. 155-172.

Itamar Arel, Derek Rose & Thomas Karnowski, 2010. Deep Machine Learning - A

New Frontier in Artificial Intelligence Research. IEEE Comp. Int. Mag., 5(4), pp.

13-18.

Kahr, P. K., Rooks, G., Snijders, C. C. P. & Willemsen, M. C., 2023. It seems smart,

but it acts stupid: Development of trust in ai advice in a repeated legal decision-

making task. Intelligent User Interfaces, pp. 528-539.

Kaplan, D. L. & Claire, C. M., 1958. Occupational Trends in the United States, 1900

to 1950. US Department of Commerce, Volume 5.

Khanzode, K. C. A. & Sarode, R. D., 2020. Advantages and disadvantages of

artificial intelligence and machine learning: A literature review. International

Journal of Library & Information Science (IJLIS), 9(1), p. 3.

Lee, Y.-H., Wei, C.-P., Cheng, T.-H. & Yang, C.-T., 2012. Nearest-neighbor-based

approach to time-series classification. Decision Support Systems, 53(1), pp. 207-

217.

72

Li, D. X., Viriyasaitavat, W., Ruchikachorn, P. & Martin, A., 2012. Using

Propositional Logic for Requirements Verification of Service Workflow. IEEE

Transactions on Industrial Informatics, 8(3), pp. 639-646.

Lucas, R. E., 2002. The industrial revolution: Past and future. Lectures on economic

growth, Volume 109, p. 188.

Madakam, S., Holmukhe, R. M. & Jaiswal, D. K., 2019. The Future Digital Work

Force: Robotic Process Automation. Journal of Information System Technology

Management, Volume 16.

Makridakis, S., 2017. The Forthcoming Artificial Intelligence (AI) Revolution: Its

Impact on Society and Firms. Futures, Volume 90, pp. 46-60.

Manyika, J. et al., 2017. harnessing automation for a future that works. pp. 2-4.

Masek, J. et al., 2018. Harmonized Landsat/Sentinel-2 Products for Land Monitoring.

Valencia, IGARSS 2018-2018 IEEE international geoscience and remote sensing

symposium, pp. 8163-8165.

Mhlanga, D., 2023. Exploring the Evolution of Artificial Intelligence and the Fourth

Industrial Revolution an Overview. In: FinTech and Artificial Intelligence for

Sustainable Development. s.l.:Palgrave Macmillan, Cham, pp. 15-39.

Michael, K. & Martin, I., 2017. Industrialization and De-industrialization in

Southeast Europe, 1870-2010. In: The Spread of Modern Industry to Periphery

since 1871. Oxford: Oxford Academic, pp. 91-114.

Mohajan, H. K., 2011. Greenhouse gas emissions increase global warming.

International Journal of Economic and Political Integration, 1(2), pp. 21-34.

Mohajan, H. K., 2018. Aspects of Mathematical Economics, Social Choice and

Game theory. October, pp. 1-247.

Mohajan, H. K., 2019. The First Industrial Revolution: Creation of a New Global

Human Era. Munich Personal RePEc Archive, 5(4), pp. 377-387.

73

Mohajan, H. K., 2021. Third Industrial Revolution Brings Global Development.

Journal of Social Sceinces and Humanities, 7(4), pp. 239-251.

Mokyr, J. & Strotz, R. H., 1998. The Second Industrial Revolution, 1870-1914. In:

Storia dell’economia Mondiale. s.l.:s.n., pp. 219-245.

Mucherino, A., Papajorgji, P. J. & Pardalos, P. M., 2009. k-Nearest Neighbor

Classification. In: Data Mining in Agriculture. New York: Springer, p. 83–106.

Mughal, A. A., 2018. Artificial Intelligence in Information Security: Exploring the

Advantages, Challenges, and Future Directions. Journal of Artificial Intelligence

and Machine Learning in Management, 2(1), pp. 22-34.

Murashov, V., Hearl, F. & Howard, J., 2016. Working safely with robot workers:

Recommendations for the new workplace. Journal of Occupational and

Environmental Hygiene, 13(3), pp. D61-D71.

Niku, S. B., 2020. Introduction to Robotics: Analysis, Control, Applications. 3rd ed.

s.l.:John Wiley & Sons.

Philbeck, T. & Davis, N., 2019. THE FOURTH INDUSTRIAL REVOLUTION:

SHAPING A NEW ERA. Journal of International Affairs, 72(1), pp. 17-22.

Puri, A., 2020. Moral imitation: Can an algorithm really be ethical?. p. 47.

Roberto, N. & Ingrid, P., 2015. The Third Industrial Revolution. In: Advanced

Customizatoin in Architectural Design and Construction. s.l.:SPRINGER LINK,

pp. 7-27.

Roberts, B., 2015. The Third Industrial Revolution: Implications for Planning Cities

and Regions. Workiing Paper Urban Frontiers, Volume 1.

Samuel, A. L., 1959. Some Studies in Machine Learning Using the Game. IBM

Journal of Research and Development, 3(3), pp. 210-229.

Santiso, C., 2018. Can blockchain help in the fight against corruption. World

Economic Forum, Volume 12.

74

Schmidhuber, J., 2015. Deep learning in neural networks: An overview. Neural

networks, Volume 61, pp. 85-117.

Schwab, K., 2017. The Fourth Industrial Revolution. s.l.:Crown Currency.

Smil, V., 2005. Internal Combustion Engines. In: Creating the Twentieth Century:

Technical Innovations of 1867-1914 anad Their Lasting Impact. New York:

Oxford Academic, pp. 98-151.

Tan, T. B. & Wu, S. S., 2017. The Fourth Industrial Revolution Explained. In:

PUBLIC POLICY IMPLICATIONS OF THE FOURTH INDUSTRIAL

REVOLUTION FOR SINGAPORE. s.l.:S. Rajaratnam School of International

Studies, pp. 5-7.

Tomasev, N. et al., 2020. AI for social good: unlocking the opportunity for positive

impact. Nature Communications, 11(1), p. 2468.

Unold, O., 2005. Context-free grammar induction with grammar-based classifier

system. Archives of Control Science, 15(4), p. 681.

Velarde, G., 2019. Artificial Intelligence and its impact on the Fourth Industrial

Revolution: A Review. International Journal of Artificial Intelligence &

Applications, Volume 10.

Vinuesa, R. et al., 2020. The role of artificial intelligence in achieving the

Sustainable Development Goals. Nature communications, 11(1), pp. 1-10.

Vries, J. d., 2009. The Industrial Revolution and the Industrious Revolution. The

Journal of Economic History, 54(2), pp. 249-270.

Wang, S., Huang, Q., Jiang, S. & Tian, Q., 2010. Nearest-neighbor classification

using unlabeled data for real world image application. New York, Association

for Computing Machinery, pp. 1154 - 1154.

Wang, X., Xu, Z. & Xunjie, G., 2020. A novel plausible reasoning based on

intuitionistic fuzzy propositional logic and its application in decision making.

Fuzzy Optim Decis Making, Volume 19, p. 251–274.

75

Xu, M., David, J. M. & Suk, H. K., 2018. The Fourth Industrial Revolution:

Opportunities and Challenges. International Journal of Financial Research, 9(2).

Yellin, D. M. & Weiss, G., 2021. Synthesizing Context-free Grammars from

Recurrent Neural Networks. s.l., Springer, pp. 351-369.

76

APPENDICES

APPENDIX A: JavaScript Code for User Interface

class Chatbox {

 constructor() {

 this.args = {

 openButton: document.querySelector('.chatbox__button'),

 chatBox: document.querySelector('.chatbox__support'),

 sendButton: document.querySelector('.send__button')

 }

 this.state = false;

 this.messages = [];

 }

 display() {

 const {openButton, chatBox, sendButton} = this.args;

 openButton.addEventListener('click', () => this.toggleState(chatBox))

 sendButton.addEventListener('click', () => this.onSendButton(chatBox))

 const node = chatBox.querySelector('input');

 node.addEventListener("keyup", ({key}) => {

 if (key === "Enter") {

 this.onSendButton(chatBox)

77

 }

 })

 }

 toggleState(chatbox) {

 this.state = !this.state;

 // show or hides the box

 if(this.state) {

 chatbox.classList.add('chatbox--active')

 } else {

 chatbox.classList.remove('chatbox--active')

 }

 }

 onSendButton(chatbox) {

 var textField = chatbox.querySelector('input');

 let text1 = textField.value

 if (text1 === "") {

 return;

 }

 let msg1 = { name: "User", message: text1 }

 this.messages.push(msg1);

 fetch('http://127.0.0.1:5000/predict', {

 method: 'POST',

 body: JSON.stringify({ message: text1 }),

 mode: 'cors',

 headers: {

 'Content-Type': 'application/json'

 },

 })

 .then(r => r.json())

78

 .then(r => {

 if (text1 === '#') {

 textField.value = r.answer;

 } else {

 let msg2 = { name: "Sam", message: r.answer };

 this.messages.push(msg2);

 this.updateChatText(chatbox);

 textField.value = '';

 }

 }).catch((error) => {

 console.error('Error:', error);

 this.updateChatText(chatbox)

 textField.value = ''

 });

 }

 updateChatText(chatbox) {

 var html = '';

 this.messages.slice().reverse().forEach(function(item, index) {

 if (item.name === "Sam")

 {

 html += '<div class="messages__item messages__item--visitor">' +

item.message + '</div>'

 }

 else

 {

 html += '<div class="messages__item messages__item--operator">' +

item.message + '</div>'

 }

 });

 const chatmessage = chatbox.querySelector('.chatbox__messages');

 chatmessage.innerHTML = html;

79

 }

}

class Chatbox2 {

 constructor() {

 this.args = {

 openButton: document.querySelector('.chatbox__button2'),

 chatBox: document.querySelector('.chatbox__support2'),

 sendButton: document.querySelector('.send__button2')

 }

 this.state = false;

 this.messages = [];

 }

 display() {

 const {openButton, chatBox, sendButton} = this.args;

 openButton.addEventListener('click', () => this.toggleState(chatBox))

 sendButton.addEventListener('click', () => this.onSendButton(chatBox))

 const node = chatBox.querySelector('input');

 node.addEventListener("keyup", ({key}) => {

 if (key === "Enter") {

 this.onSendButton(chatBox)

 }

 })

 }

 toggleState(chatbox) {

 this.state = !this.state;

 // show or hides the box

80

 if(this.state) {

 chatbox.classList.add('chatbox--active2')

 } else {

 chatbox.classList.remove('chatbox--active2')

 }

 }

 onSendButton(chatbox) {

 var textField = chatbox.querySelector('input');

 let text1 = textField.value

 if (text1 === "") {

 return;

 }

 let msg1 = { name: "User", message: text1 }

 this.messages.push(msg1);

 fetch('http://127.0.0.1:5000/predict2', {

 method: 'POST',

 body: JSON.stringify({ message: text1 }),

 mode: 'cors',

 headers: {

 'Content-Type': 'application/json'

 },

 })

 .then(r => r.json())

 .then(r => {

 let msg2 = { name: "Sam", message: r.answer };

 this.messages.push(msg2);

 this.updateChatText(chatbox)

 textField.value = ''

 }).catch((error) => {

 console.error('Error:', error);

81

 this.updateChatText(chatbox)

 textField.value = ''

 });

 }

 updateChatText(chatbox) {

 var html = '';

 this.messages.slice().reverse().forEach(function(item, index) {

 if (item.name === "Sam")

 {

 html += '<div class="messages__item2 messages__item2--visitor">' +

item.message + '</div>'

 }

 else

 {

 html += '<div class="messages__item2 messages__item2--operator">' +

item.message + '</div>'

 }

 });

 const chatmessage = chatbox.querySelector('.chatbox__messages2');

 chatmessage.innerHTML = html;

 }

}

const chatbox2 = new Chatbox2();

chatbox2.display();

const chatbox = new Chatbox();

chatbox.display();

82

APPENDIX B: CSS Code for User Interface

* {

 box-sizing: border-box;

 margin: 0;

 padding: 0;

}

body {

 font-family: 'Nunito', sans-serif;

 font-weight: 400;

 font-size: 100%;

 background: #000000;

}

*, html {

 --primaryGradient: linear-gradient(93.12deg, #581B98 0.52%, #9C1DE7 100%);

 --secondaryGradient: linear-gradient(268.91deg, #581B98 -2.14%, #9C1DE7

99.69%);

 --primaryBoxShadow: 0px 10px 15px rgba(0, 0, 0, 0.1);

 --secondaryBoxShadow: 0px -10px 15px rgba(0, 0, 0, 0.1);

 --primary: #581B98;

 --primaryGradient2: linear-gradient(93.12deg, #1b981f 0.52%, #48ff00 100%);

 --secondaryGradient2: linear-gradient(268.91deg, #1b981f -2.14%, #48ff00

99.69%);

 --primaryBoxShadow2: 0px 10px 15px rgba(0, 0, 0, 0.1);

 --secondaryBoxShadow2: 0px -10px 15px rgba(0, 0, 0, 0.1);

 --primary2: #1b981f;

}

/* CHATBOX

=============== */

83

.chatbox {

 position: absolute;

 bottom: 30px;

 right: 30px;

}

/* CONTENT IS CLOSE */

.chatbox__support {

 display: flex;

 flex-direction: column;

 background: #eee;

 width: 300px;

 height: 350px;

 z-index: -123456;

 opacity: 0;

 transition: all .5s ease-in-out;

}

/* CONTENT ISOPEN */

.chatbox--active {

 transform: translateY(-40px);

 z-index: 123456;

 opacity: 1;

}

/* BUTTON */

.chatbox__button {

 text-align: right;

}

.send__button {

 padding: 6px;

 background: transparent;

84

 border: none;

 outline: none;

 cursor: pointer;

}

/* HEADER */

.chatbox__header {

 position: sticky;

 top: 0;

 background: orange;

}

/* MESSAGES */

.chatbox__messages {

 margin-top: auto;

 display: flex;

 overflow-y: scroll;

 flex-direction: column-reverse;

}

.messages__item {

 background: orange;

 max-width: 60.6%;

 width: fit-content;

}

.messages__item--operator {

 margin-left: auto;

}

.messages__item--visitor {

 margin-right: auto;

}

85

/* FOOTER */

.chatbox__footer {

 position: sticky;

 bottom: 0;

}

.chatbox__support {

 background: #f9f9f9;

 height: 550px;

 width: 650px;

 box-shadow: 0px 0px 15px rgba(0, 0, 0, 0.1);

 border-top-left-radius: 20px;

 border-top-right-radius: 20px;

}

/* HEADER */

.chatbox__header {

 background: var(--primaryGradient);

 display: flex;

 flex-direction: row;

 align-items: center;

 justify-content: center;

 padding: 15px 20px;

 border-top-left-radius: 20px;

 border-top-right-radius: 20px;

 box-shadow: var(--primaryBoxShadow);

}

.chatbox__image--header {

 margin-right: 10px;

}

.chatbox__heading--header {

 font-size: 1.2rem;

86

 color: white;

}

.chatbox__description--header {

 font-size: .9rem;

 color: white;

}

/* Messages */

.chatbox__messages {

 padding: 0 20px;

}

.messages__item {

 margin-top: 10px;

 background: #E0E0E0;

 padding: 8px 12px;

 max-width: 70%;

}

.messages__item--visitor,

.messages__item--typing {

 border-top-left-radius: 20px;

 border-top-right-radius: 20px;

 border-bottom-right-radius: 20px;

}

.messages__item--operator {

 border-top-left-radius: 20px;

 border-top-right-radius: 20px;

 border-bottom-left-radius: 20px;

 background: var(--primary);

 color: white;

}

87

/* FOOTER */

.chatbox__footer {

 display: flex;

 flex-direction: row;

 align-items: center;

 justify-content: space-between;

 padding: 20px 20px;

 background: var(--secondaryGradient);

 box-shadow: var(--secondaryBoxShadow);

 border-bottom-right-radius: 10px;

 border-bottom-left-radius: 10px;

 margin-top: 20px;

}

.chatbox__footer input {

 width: 80%;

 border: none;

 padding: 10px 10px;

 border-radius: 30px;

 text-align: left;

}

.chatbox__send--footer {

 color: white;

}

.chatbox__button button,

.chatbox__button button:focus,

.chatbox__button button:visited {

 padding: 10px;

 background: white;

 border: none;

 outline: none;

88

 border-top-left-radius: 50px;

 border-top-right-radius: 50px;

 border-bottom-left-radius: 50px;

 box-shadow: 0px 10px 15px rgba(0, 0, 0, 0.1);

 cursor: pointer;

}

/* CHATBOX2

=============== */

.chatbox2 {

 position: absolute;

 bottom: 30px;

 right: 700px;

}

/* CONTENT IS CLOSE */

.chatbox__support2 {

 display: flex;

 flex-direction: column;

 background: #eee;

 width: 300px;

 height: 350px;

 z-index: -123456;

 opacity: 0;

 transition: all .5s ease-in-out;

}

/* CONTENT ISOPEN */

.chatbox--active2 {

 transform: translateY(-40px);

 z-index: 123456;

 opacity: 1;

}

89

/* BUTTON */

.chatbox__button2 {

 text-align: right;

}

.send__button2 {

 padding: 6px;

 background: transparent;

 border: none;

 outline: none;

 cursor: pointer;

}

/* HEADER */

.chatbox__header2 {

 position: sticky;

 top: 0;

 background: orange;

}

/* MESSAGES */

.chatbox__messages2 {

 margin-top: auto;

 display: flex;

 overflow-y: scroll;

 flex-direction: column-reverse;

}

.messages__item2 {

 background: orange;

 max-width: 60.6%;

 width: fit-content;

}

90

.messages__item2--operator {

 margin-left: auto;

}

.messages__item2--visitor {

 margin-right: auto;

}

/* FOOTER */

.chatbox__footer2 {

 position: sticky;

 bottom: 0;

}

.chatbox__support2 {

 background: #f9f9f9;

 height: 550px;

 width: 650px;

 box-shadow: 0px 0px 15px rgba(0, 0, 0, 0.1);

 border-top-left-radius: 20px;

 border-top-right-radius: 20px;

}

/* HEADER */

.chatbox__header2 {

 background: var(--primaryGradient2);

 display: flex;

 flex-direction: row;

 align-items: center;

 justify-content: center;

 padding: 15px 20px;

 border-top-left-radius: 20px;

 border-top-right-radius: 20px;

91

 box-shadow: var(--primaryBoxShadow2);

}

.chatbox__image2--header {

 margin-right: 10px;

}

.chatbox__heading2--header {

 font-size: 1.2rem;

 color: white;

}

.chatbox__description2--header {

 font-size: .9rem;

 color: white;

}

/* Messages */

.chatbox__messages2 {

 padding: 0 20px;

}

.messages__item2 {

 margin-top: 10px;

 background: #E0E0E0;

 padding: 8px 12px;

 max-width: 70%;

}

.messages__item2--visitor,

.messages__item2--typing {

 border-top-left-radius: 20px;

 border-top-right-radius: 20px;

 border-bottom-right-radius: 20px;

92

}

.messages__item2--operator {

 border-top-left-radius: 20px;

 border-top-right-radius: 20px;

 border-bottom-left-radius: 20px;

 background: var(--primary2);

 color: white;

}

/* FOOTER */

.chatbox__footer2 {

 display: flex;

 flex-direction: row;

 align-items: center;

 justify-content: space-between;

 padding: 20px 20px;

 background: var(--secondaryGradient2);

 box-shadow: var(--secondaryBoxShadow2);

 border-bottom-right-radius: 10px;

 border-bottom-left-radius: 10px;

 margin-top: 20px;

}

.chatbox__footer2 input {

 width: 80%;

 border: none;

 padding: 10px 10px;

 border-radius: 30px;

 text-align: left;

}

.chatbox__send2--footer {

 color: white;

93

}

.chatbox__button2 button,

.chatbox__button2 button:focus,

.chatbox__button2 button:visited {

 padding: 10px;

 background: white;

 border: none;

 outline: none;

 border-top-left-radius: 50px;

 border-top-right-radius: 50px;

 border-bottom-left-radius: 50px;

 box-shadow: 0px 10px 15px rgba(0, 0, 0, 0.1);

 cursor: pointer;

}

94

APPENDIX C: HTML Code for User Interface

<!DOCTYPE html>

<html lang="en">

<link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">

<head>

 <meta charset="UTF-8">

 <title>Chatbot</title>

</head>

<body>

<div class="container">

 <div class="chatbox">

 <div class="chatbox__support">

 <div class="chatbox__header">

 <div class="chatbox__image--header">

 <img src="https://img.icons8.com/color/48/000000/circled-user-female-

skin-type-5--v1.png" alt="image">

 </div>

 <div class="chatbox__content--header">

 <h4 class="chatbox__heading--header">Chat support</h4>

 <p class="chatbox__description--header">Hi. My name is Sam. How

can I help you?</p>

 </div>

 </div>

 <div class="chatbox__messages">

 <div></div>

 </div>

 <div class="chatbox__footer">

 <input type="text" placeholder="Write a message...(or type '#' for voice

input)">

 <button class="chatbox__send--footer send__button">Send</button>

95

 </div>

 </div>

 <div class="chatbox__button">

 <button><img src="{{ url_for('static', filename='images/chatbox-

icon.svg') }}" /></button>

 </div>

 </div>

</div>

<div class="container">

 <div class="chatbox2">

 <div class="chatbox__support2">

 <div class="chatbox__header2">

 <div class="chatbox__image2--header">

 <img src="https://img.icons8.com/color/48/000000/circled-user-female-

skin-type-5--v1.png" alt="image">

 </div>

 <div class="chatbox__content2--header">

 <h4 class="chatbox__heading2--header">Learning bot</h4>

 <p class="chatbox__description2--header">Hi. My name is Ham. Could

you teach me something new?</p>

 </div>

 </div>

 <div class="chatbox__messages2">

 <div></div>

 </div>

 <div class="chatbox__footer2">

 <input type="text" placeholder="Write a message...">

 <button class="chatbox__send2--footer send__button2">Send</button>

 </div>

 </div>

 <div class="chatbox__button2">

 <button><img src="{{ url_for('static', filename='images/chatbox-

icon.svg') }}" /></button>

96

 </div>

 </div>

</div>

 <script>

 $SCRIPT_ROOT = {{ request.script_root|tojson }};

 </script>

 <script type="text/javascript" src="{{ url_for('static',

filename='app.js') }}"></script>

</body>

</html>

97

APPENDIX D: Python Code for Connecting HTML

from flask import Flask, render_template, request, jsonify

from chat import get_response

from main import get_response2, new_answer

from tag import review_tag, existing_tag, new_tag

from st import speech_to_text

app = Flask(__name__)

#b is to allow the code to return if it don't know the answer

b = 0

new_question = ""

logged_in = 0

existing = 0

new = 0

new_answer_added = False

newtag = ""

@app.get("/")

def index_get():

 return render_template("base.html")

@app.post("/predict")

def predict():

 text = request.get_json().get("message")

 if text == "#":

 response = speech_to_text()

 message = {"answer": response}

98

 return jsonify(message)

 response = get_response(text)

 message = {"answer": response}

 return jsonify(message)

@app.post("/predict2")

def predict2():

 global b, new_question, logged_in, existing, new, new_answer_added, newtag

 user = "human"

 password = "I am human"

 text = request.get_json().get("message")

 if logged_in == 0:

 if text == user:

 logged_in = 1

 log_in_message = {"answer": "Please key in password!"}

 return jsonify(log_in_message)

 else:

 log_in_message = {"answer": "Incorrect Username, please key in again!"}

 return jsonify(log_in_message)

 elif logged_in == 1:

 if text == password:

 logged_in = 2

 log_in_message = {"answer": "Hellow, this is Ham, how may I help you?"}

 return jsonify(log_in_message)

 else:

 log_in_message = {"answer": "Incorrect password, please key in again!"}

 return jsonify(log_in_message)

 elif logged_in == 2:

 if b != 0:

99

 text2 = request.get_json().get("message")

 while existing == 1:

 #add questoin to a existing tag

 if text2.lower() == 'skip':

 message4 = {"answer": "Sure do, is there anything else I could provide

assitance?"}

 new_question == ""

 b -= 1

 existing = 0

 return jsonify(message4)

 tag, a = existing_tag(text2, new_question)

 final_response = tag.replace("\n", "
")

 message3 = {"answer": final_response}

 if a == 1:

 pass

 elif a == 0:

 new_question = ""

 b -= 1

 existing = a

 return jsonify(message3)

 while new == 1:

 #add new question to a new tag with a new response

 if text2.lower() == 'skip':

 message4 = {"answer": "Sure do, is there anything else I could provide

assitance?"}

 new_question == ""

 b -= 1

 new = 0

100

 new_answer_added = False

 return jsonify(message4)

 else:

 if new_answer_added == True:

 new_intent = new_tag(newtag, new_question, text2)

 message3 = {"answer": new_intent}

 new = 0

 newtag = ""

 new_question = ""

 b -= 1

 return jsonify(message3)

 else:

 newtag = text2

 message3 = {"answer": "I'm ready to learn! Please go ahead and teach

me something new."}

 new_answer_added = True

 return jsonify(message3)

 if text2.lower() == 'skip':

 message4 = {"answer": "Sure do, is there anything else I could provide

assitance?"}

 new_question == ""

 b -= 1

 return jsonify(message4)

 elif text2.lower() == 'new':

 message4 = {"answer": "Sure do, kindly key in a new 'tag' or 'category' for

this question!"}

 new = 1

 return jsonify(message4)

 elif text2.lower() == 'existing':

101

 tags = review_tag()

 # Join tags with newline characters

 tags_string = "\n".join(tags)

 final_response = tags_string.replace("\n", "
")

 message3 = {"answer": final_response}

 existing = 1

 return jsonify(message3)

 else:

 message4 = {"answer": "I do not understand, could you re-type it?"}

 new_question == ""

 b -= 1

 return jsonify(message4)

 else:

 text2 = request.get_json().get("message")

 response2, a = get_response2(text2)

 if a == 0:

 #bot found a new question and asking for the answer

 final_response = response2.replace("\n", "
")

 message2 = {"answer": final_response}

 b += 1

 new_question = text2

 return jsonify(message2)

 else:

 #bot know the question and answer

 message2 = {"answer": response2}

 return jsonify(message2)

if __name__ == "__main__":

 app.run(debug=True)

102

APPENDIX E: Python Code for Main Chatbot

import random

import json

import torch

from model import NeuralNet

from nltk_utils import bag_of_words, tokenize

from translator import translate_to_other, translate_to_eng

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

with open('intents.json', 'r') as json_data:

 intents = json.load(json_data)

FILE = "data.pth"

data = torch.load(FILE)

input_size = data["input_size"]

hidden_size = data["hidden_size"]

output_size = data["output_size"]

all_words = data['all_words']

tags = data['tags']

model_state = data["model_state"]

model = NeuralNet(input_size, hidden_size, output_size).to(device)

model.load_state_dict(model_state)

model.eval()

bot_name = "Sam"

103

def check_keywords(input_text, keyword_sets):

 stemmed_keywords=[]

 for keyword_group in keyword_sets:

 stemmed_group = [stem(word) for word in keyword_group]

 stemmed_keywords.append(stemmed_group)

 for keyword_set in stemmed_keywords:

 if not any(keyword.lower() in input_text.lower() for keyword in keyword_set):

 return False

 return True

def get_response(msg):

 language, text1 = translate_to_eng(msg)

 if language == 'en':

 sentence = tokenize(text1)

 X = bag_of_words(sentence, all_words)

 X = X.reshape(1, X.shape[0])

 X = torch.from_numpy(X).to(device)

 output = model(X)

 _, predicted = torch.max(output, dim=1)

 tag = tags[predicted.item()]

 probs = torch.softmax(output, dim=1)

 prob = probs[0][predicted.item()]

 if prob.item() > 0.75:

 for intent in intents['intents']:

 if tag == intent["tag"]:

 for item in intent['responses']:

 if isinstance(item, dict):

 if check_keywords(text1, item['keywords']):

104

 return item['response']

 else:

 return random.choice(intent['responses'])

 return "I do not understand..."

 else:

 sentence = tokenize(text1)

 X = bag_of_words(sentence, all_words)

 X = X.reshape(1, X.shape[0])

 X = torch.from_numpy(X).to(device)

 output = model(X)

 _, predicted = torch.max(output, dim=1)

 tag = tags[predicted.item()]

 probs = torch.softmax(output, dim=1)

 prob = probs[0][predicted.item()]

 if prob.item() > 0.75:

 for intent in intents['intents']:

 if tag == intent["tag"]:

 for item in intent['responses']:

 if isinstance(item, dict):

 if check_keywords(text1, item['keywords']):

 sentence = item['response']

 translate = translate_to_other(sentence, language)

 return translate

 else:

 sentence = random.choice(intent['responses'])

105

 translate = translate_to_other(sentence, language)

 return translate

 sentence = "I do not understand..."

 translate = translate_to_other(sentence, language)

 return translate

106

APPENDIX F: Python Code for Chatbot Learning

import json

from difflib import get_close_matches

Load the knowledge base from a JSON file

def load_knowledge_base(file_path: str):

 with open(file_path, 'r') as file:

 data: dict = json.load(file)

 return data

Save the updated knowledge base to the JSON file

def save_knowledge_base(file_path: str, data: dict):

 with open(file_path, 'w') as file:

 json.dump(data, file, indent=2)

Find the closest matching question

def find_best_match(user_question: str, questions: list[str]) -> str | None:

 matches: list = get_close_matches(user_question, questions, n=1, cutoff=0.6)

 return matches[0] if matches else None

def get_answer_for_question(question: str, knowledge_base: dict) -> str | None:

 for q in knowledge_base["questions"]:

 if q["question"] == question:

 return q["answer"]

 return None

Main function to handle user input and respond

def get_response2(msg):

 knowledge_base: dict = load_knowledge_base('knowledge_base.json')

 while True:

107

 user_input: str = msg

 # Finds the best match, otherwise returns None

 best_match: str | None = find_best_match(user_input, [q["question"] for q in

knowledge_base["questions"]])

 if best_match:

 # If there is a best match, return the answer from the knowledge base

 a = 1

 answer: str = get_answer_for_question(best_match, knowledge_base)

 return answer, a

 else:

 a = 0

 return "I don't have enough information on that right now. Could you provide

more details?\n (Type 'new' to add into a new tag)\n (Type 'existing' to add into a

existing tag)\n (Type 'skip' to skip)", a

def new_answer(msg, qsn):

 if msg != 'skip':

 knowledge_base: dict = load_knowledge_base('knowledge_base.json')

 user_question: str = qsn

 user_answer: str = msg

 knowledge_base["questions"].append({"question": user_question, "answer":

user_answer})

 save_knowledge_base('knowledge_base.json', knowledge_base)

 return "Thank you! I've learned something new."

108

APPENDIX G: Python Code for Speech-to-Text

import speech_recognition as sr

def speech_to_text():

 """Converts speech to text using Google Speech Recognition."""

 recognizer = sr.Recognizer()

 with sr.Microphone() as source:

 print("Speak now...")

 audio = recognizer.listen(source)

 try:

 text = recognizer.recognize_google(audio)

 return text

 except sr.UnknownValueError:

 return "Could not understand audio"

 except sr.RequestError as e:

 return "Could not request results from Google Speech Recognition service; {0}"

109

APPENDIX H: Python Code for Translator

import googletrans

from googletrans import Translator

def translate_to_other(eng_text, language):

 translator = Translator()

 # Translate the text to other language

 foreign_text = translator.translate(eng_text, dest=language).text

 return foreign_text

def translate_to_eng(foreign_language):

 translator = Translator()

 # Detect the language of the text and save it in variables

 detection = translator.detect(foreign_language)

 language = detection.lang

 # Translate the text to English

 eng_translate = translator.translate(foreign_language, dest='en').text

 return language, eng_translate

110

APPENDIX I: Python Code for Chatbot Training

import numpy as np

import random

import json

import torch

import torch.nn as nn

from torch.utils.data import Dataset, DataLoader

from nltk_utils import bag_of_words, tokenize, stem

from model import NeuralNet

with open('intents.json', 'r') as f:

 intents = json.load(f)

all_words = []

tags = []

xy = []

loop through each sentence in our intents patterns

for intent in intents['intents']:

 tag = intent['tag']

 # add to tag list

 tags.append(tag)

 for pattern in intent['patterns']:

 # tokenize each word in the sentence

 w = tokenize(pattern)

 # add to our words list

 all_words.extend(w)

 # add to xy pair

 xy.append((w, tag))

111

stem and lower each word

ignore_words = ['?', '.', '!']

all_words = [stem(w) for w in all_words if w not in ignore_words]

remove duplicates and sort

all_words = sorted(set(all_words))

tags = sorted(set(tags))

print(len(xy), "patterns")

print(len(tags), "tags:", tags)

print(len(all_words), "unique stemmed words:", all_words)

#print(all_words, "\n", tags, "\n", xy)

create training data

X_train = []

y_train = []

for (pattern_sentence, tag) in xy:

 # X: bag of words for each pattern_sentence

 bag = bag_of_words(pattern_sentence, all_words)

 X_train.append(bag)

 # y: PyTorch CrossEntropyLoss needs only class labels, not one-hot

 label = tags.index(tag)

 y_train.append(label)

X_train = np.array(X_train)

y_train = np.array(y_train)

Hyper-parameters

num_epochs = 1000

batch_size = 8

learning_rate = 0.001

input_size = len(X_train[0])

hidden_size = 10

output_size = len(tags)

112

print(input_size, output_size)

class ChatDataset(Dataset):

 def __init__(self):

 self.n_samples = len(X_train)

 self.x_data = X_train

 self.y_data = y_train

 # support indexing such that dataset[i] can be used to get i-th sample

 def __getitem__(self, index):

 return self.x_data[index], self.y_data[index]

 # we can call len(dataset) to return the size

 def __len__(self):

 return self.n_samples

dataset = ChatDataset()

train_loader = DataLoader(dataset=dataset,

 batch_size=batch_size,

 shuffle=True,

 num_workers=0)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = NeuralNet(input_size, hidden_size, output_size).to(device)

Loss and optimizer

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

Train the model

for epoch in range(num_epochs):

 for (words, labels) in train_loader:

113

 words = words.to(device)

 labels = labels.to(dtype=torch.long).to(device)

 # Forward pass

 outputs = model(words)

 # if y would be one-hot, we must apply

 # labels = torch.max(labels, 1)[1]

 loss = criterion(outputs, labels)

 # Backward and optimize

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 if (epoch+1) % 100 == 0:

 print (f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

print(f'final loss: {loss.item():.4f}')

data = {

"model_state": model.state_dict(),

"input_size": input_size,

"hidden_size": hidden_size,

"output_size": output_size,

"all_words": all_words,

"tags": tags

}

FILE = "data.pth"

torch.save(data, FILE)

print(f'training complete. file saved to {FILE}')

114

APPENDIX J: Python Code for Connecting Both Chatbot JSON File

import json

from main import new_answer

def review_tag():

 # Define the path to the JSON file

 file_path = 'intents.json'

 # Extract tags

 with open(file_path, 'r') as file:

 data = json.load(file)

 tags = [intent["tag"] for intent in data["intents"]]

 numbered_tags = [f"{i+1}. {tag}" for i, tag in

enumerate(tags)]

 return numbered_tags

Function to read intents from a JSON file

def read_intents_from_json(file_path):

 with open(file_path, 'r') as file:

 data = json.load(file)

 return data

def read_intent_from_json(file_path):

 with open(file_path, 'r') as file:

 data = json.load(file)

 return data["intents"]

Function to check if a user input tag exists and get the first response

def get_first_response(intents, user_tag):

 for intent in intents:

 if intent["tag"] == user_tag:

115

 return intent["responses"][0] # Return the first response

 return None # Return None if tag is not found

Function to save intents to a JSON file

def save_intents_to_json(file_path, data):

 with open(file_path, 'w') as file:

 json.dump(data, file, indent=3)

Function to add a new pattern to a specific tag

def add_pattern_to_tag(intents, user_tag, new_pattern):

 for intent in intents["intents"]:

 if intent["tag"] == user_tag:

 intent["patterns"].append(new_pattern)

 return

def get_tag_by_number(number):

 file_path = 'intents.json'

 with open(file_path, 'r') as file:

 data = json.load(file)

 tags = [intent["tag"] for intent in data["intents"]]

 if 1 <= number <= len(tags):

 return tags[number - 1]

 else:

 return "Invalid number. Please enter a number within the range."

def existing_tag(user_input, new_question):

 file_path = 'intents.json'

 intents = read_intents_from_json(file_path)

 intent = read_intent_from_json(file_path)

 user_input= get_tag_by_number(int(user_input))

 response = get_first_response(intent, user_input)

116

 if response:

 a = 0 #done adding the new question into a existing tag

 new_answer(response, new_question) #add the question and answer into the

second chat

 add_pattern_to_tag(intents, user_input, new_question) #add the question into

the first chat

 save_intents_to_json(file_path, intents)

 return (f"The existing tag '{user_input}' has been added a new question

'{new_question}'!"), a

 else:

 a = 1 #tag is not found

 return (f"The tag '{user_input}' does not exist, kindly type again.\n (retype the

'tag' or 'skip' to skip)"), a

def add_new_intent(intents, new_tag, new_patterns, new_responses):

 new_intent = {

 "tag": new_tag,

 "patterns": new_patterns,

 "responses": new_responses

 }

 intents["intents"].append(new_intent)

def new_tag(newtag, newquestion, newresponse):

 file_path = 'intents.json'

 intents = read_intents_from_json(file_path)

 new_tag = newtag

 # Input new patterns

 new_patterns = []

 pattern = newquestion

 new_patterns.append(pattern)

117

 # Input new responses

 new_responses = []

 response = newresponse

 new_responses.append(response)

 # Add the new intent to the intents list

 add_new_intent(intents, new_tag, new_patterns, new_responses)

 new_answer(newresponse, newquestion)

 # Save the updated intents back to the JSON file

 save_intents_to_json(file_path, intents)

 return (f"The new question with tag '{new_tag}' has been added.")

	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 Background
	1.2 Evolution on AI and its impact on the current society
	1.2.1 Overview on First, Second, and Third Industry Revolution
	1.2.2 Overview on Artificial Intelligence in the Fourth Industrial Revolution

	1.3 Problem Statements
	1.4 Project Objectives
	1.5 Project Scope
	1.6 Report Outline

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Propositional Logic
	2.2 AI Learning
	2.2.1 Nearest-Neighbour Classification
	2.2.2 Perceptron Learning

	2.3 Contest-Free Grammer
	2.4 Reliability

	CHAPTER 3
	3 METHODOLOGY
	3.1 Project Overview
	3.2 Programming Language
	3.2.1 Programming Language Selection
	3.2.2 Programming Environment
	3.2.3 Programming Library

	3.3 Design Phase
	3.3.1 Phase 1: Development
	3.3.1.1 Chatbot Protocol
	3.3.1.2 User Interface
	3.3.1.3 Second Chatbot with Self-lLearning Features
	3.3.1.4 Translator
	3.3.1.5 Voice Input

	3.3.2 Phase 2: Implementation
	3.3.2.1 Data Connection Between Two Chatbot
	3.3.2.2 Chatbot Learning New Question and Response from User
	3.3.2.3 Chatbot Training Model
	3.3.2.4 User-Friendly Interface

	3.3.3 Phase 3: Analysis

	3.4 Project Management
	3.5 Cost Estimation

	CHAPTER 4
	4 RESULTS AND DISCUSSION
	4.1 Website Overview
	4.2 Chatbot Overview
	4.2.1 Main Chatbot
	4.2.2 Secondary Chatbot
	4.2.2.1 Adding New Questions
	4.2.2.2 Adding New Questions and Response

	4.2.3 Data Integration Between Two Chatbot

	4.3 Chatbot Features
	4.3.1 Voice Input
	4.3.2 Multilanguage Text Translation

	4.4 Chatbot Testing Result

	CHAPTER 5
	5 CONCLUSION AND RECOMMENDATIONS
	5.1 Conclusion
	5.2 Recommendations for Future Improvement

	REFERENCES
	APPENDICES

