

DESIGNING AN INTEGRATED AIOT SYSTEM FOR TRACKING CLASS

ATTENDANCE

KUAK XUAN REN

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Engineering (Honours) in Electronic Systems

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

September 2024

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : KUAK XUAN REN

ID No. : 210AGB06806

Date : _________________________

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DESIGNING AN INTEGRATED AIOT

SYSTEM FOR TRACKING CLASS ATTENDANCE” was prepared by KUAK

XUAN REN has met the required standard for submission in partial fulfilment of the

requirements for the award of Bachelor of Engineering (Honours) in Electronic

Systems at Universiti Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Dr. Lee Han Kee

Date : _____23/9/2024____________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2024, Kuak Xuan Ren. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Prof. Dr.

Lee Han Kee for his invaluable advice, guidance and his enormous patience

throughout the development of the research.

In addition, I would like to extend my deepest appreciation to my friends Boey

Zhi Xuan, Edward Yeoh Hong Enn, Chew You Hui, Cheah You Qing, and Tan Cheng

Yong for the support they have provided me during the entire scope of work of this

project. They are the kind people that volunteered their faces to assist me in capturing

faces for my face recognition system dataset. I would personally like to thank those

individuals who have helped me in beginning and even more in maintaining the project.

They proved to be highly useful in the course of doing my work.

vi

DESIGNING AN INTEGRATED AIOT SYSTEM FOR TRACKING CLASS

ATTENDANCE

ABSTRACT

The project aims to develop an automatic facial recognition system that supports

artificial intelligence (AI) and the Internet of Things (IoT) for attendance system. The

system is able to capture the students' real facial feature data, and uses it as a tool to

achieve high-accuracy student identification. Basics and ensures that the software is

more secure than the previous traditional attendance method using roll-less slides. For

face detection the system uses a YOLO (You Only Look Once) algorithm, which

allows quick and efficient recognition of student faces in the classroom context. For

facial recognition, deep metric learning methods which involve face encoding are used,

and the system can highly match student faces with relevant confidence level of 0.75

or above. In the current work, face recognition is carried out using the ResNet-34 deep

convolutional neural network to produce a 128 -dimensional face vectors for the

identification. Records for attendance control are kept in the Excel, and this cuts down

the time taken to record attendance since Excel has inbuilt facilities for calculating the

percentage attendance of each individual. The system shows optimal performance as

well as scalability with the overall achievement of the goals that include automation,

accuracy and efficiency in attendance tracking. Further enhancements including

integrating of night vision cameras and research on face recognition algorithms that

utilizes GPU can improve the system performance. The objective of this project is

accomplished in the creation of a reliable, scalable and user-friendly system for facial

recognition attendance.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xiv

LIST OF APPENDICES xv

CHAPTER

1 INTRODUCTION 16

1.1 Background 16

1.2 Problem Statements 18

1.3 Aims and Objectives 18

2 LITERATURE REVIEW 19

2.1 Introduction 19

2.2 Artificial Intelligence (AI) 19

2.3 Open-Source Computer Vision (OpenCV) 20

2.4 TensorFlow 21

2.5 Machine Learning 21

2.6 Deep Learning 22

viii

2.7 YOLO 24

2.7.1 Why YOLO? 25

2.7.2 YOLOv7 vs YOLOv8 26

2.8 Convolution Neutral Network (CNN) 28

2.9 ResNet 34 30

2.10 Deep Metric Learning Approach (Dlib) 32

2.11 Compute Unified Device Architecture (CUDA) 34

2.12 Journal Reviews 36

3 METHODOLOGY 42

3.1 Introduction: 42

3.2 Planning Phase: 43

3.2.1 Hardware and Software Equipment 43

3.2.2 Proposed System 44

3.2.3 Proposed System Block Diagram 44

3.3 Design Phase 45

3.3.1 Hardware and Software Setup 46

3.3.2 Face Detection and Recognition 47

3.3.3 Attendance Logging 48

3.3.4 Training YOLO Model 49

3.4 Implement Phase 50

3.5 Analysis Phase 52

3.6 Project Management 52

3.7 Cost Estimation 53

4 RESULTS AND DISCUSSIONS 54

4.1 Introduction 54

4.2 Experimental Results 54

4.2.1 Image Collection for Registration 55

4.2.2 Face Detection 58

4.3 Discussion 74

4.3.1 Hardware Setup 74

4.3.2 Model Training 74

ix

4.3.3 Model Evaluation 77

4.3.4 Encoding and compare 80

4.3.5 Logging to Excel file 84

4.4 Limitations 85

5 CONCLUSION AND RECOMMENDATIONS 87

5.1 Conclusion 87

5.2 Recommendations 88

REFERENCES 90

APPENDICES 93

x

LIST OF TABLES

 TABLE TITLE PAGE

Table 3.1: Hardware and software equipment selected for the
system 43

Table 3.2: Gantt Chart for Final Year Project 1 52

Table 3.3: Gantt Chart for Final Year Project 1 53

Table 3.4: Cost Estimation of Project Materials 53

xi

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 2.1: YOLO algorithm using CNN (Viswanatha, Chandana
R and Ramachandra, 2022) 25

Figure 2.2: Comparison between YOLOv8 and other YOLO
versions (Augmented A.I., 2023) 27

Figure 2.3: The Structure of CNN (Zhao et al., 2024) 28

Figure 2.4: The Resnet34 layer architecture (He et al., 2016a) 31

Figure 2.5: Face recognition flow (E King, 2009) 33

Figure 2.6: Components of CUDA architecture 35

Figure 3.1: The phases of Methodology 42

Figure 3.2: Block diagram of the proposed system 45

Figure 3.3: Overview of the process in this phase 46

Figure 3.4: Overview of training YOLOv8 for face detection 49

Figure 3.5: Overview of Implementation Phase 50

Figure 4.1: Student registration 55

Figure 4.2: Image Collecting Process 55

Figure 4.3: The courses folder 56

Figure 4.4: The dataset of the students 56

Figure 4.5: The json file style 57

Figure 4.6: Two class for UGEB3016 Final Year Project 59

Figure 4.7: Two class for UGEB3016 Testing 60

xii

Figure 4.8: Two class for UGEB1011 Digital 61

Figure 4.9: Two class for UGEB3016 Class A 62

Figure 4.10: One class for UGEB3016 Class B 63

Figure 4.11: Three class for UGEB1011 Class C 64

Figure 4.12: Confidence level for Chew You Hui_20ADB04796 65

Figure 4.13: Confidence level for Boey Zhi Xuan_20AGB05745 66

Figure 4.14: Confidence level for Kuak Xuan Ren_21AGB06806 66

Figure 4.15: Confidence level for Edward Yeoh Hong
Enn_22ADB02687 67

Figure 4.16: Confidence level for Tcy_21AGB00000 67

Figure 4.17: JSON file for UGEB3016 Final Year Project 68

Figure 4.18: The Attendance of students for UGEB3016 Final Year
Project 69

Figure 4.19: JSON format for UGEB3016 Testing 69

Figure 4.20: The Attendance of students for UGEB3016 Testing 69

Figure 4.21: JSON format for UGEB1011 Digital 70

Figure 4.22: The Attendance of students for UGEB1011 Digital 70

Figure 4.23: JSON format for UGEB3016 Class A 71

Figure 4.24: The Attendance of students for UGEB3016 Class A 71

Figure 4.25: JSON format for UGEB3016 Class B 72

Figure 4.26: The Attendance of students for UGEB3016 Class B 72

Figure 4.27: JSON format for UGEB1011 Class C 73

Figure 4.28: The Attendance of students for UGEB1011 Class C 73

Figure 4.29: The data that use to train model 75

Figure 4.30: Training the face detection model 76

Figure 4.31: The result of recall confidence curve 78

xiii

Figure 4.32: The result of precision confidence curve 79

Figure 4.33: The result of F1 score confidence curve 80

Figure 4.34: Load the face detection model 81

Figure 4.35: Face encoding 81

Figure 4.36: Saving the known faces 81

Figure 4.37: Comparing the known face with the new detected face
 82

Figure 4.38: Load the known encoding face 83

Figure 4.39: Create an Excel file 84

Figure 4.40: Saved to the Excel file 84

xiv

LIST OF SYMBOLS / ABBREVIATIONS

AI Artificial Intelligence

YOLO You Only Look Once

VSCode Visual Studio Code

IoT Internet of Things

UI User Interface

CNN Convolutional Neural Network

dlib Deep Metric Learning Approach

CUDA Compute Unified Device Architecture

IDE Integrated Development Environment

OpenCV Open-Source Computer Vision

NLP Natural Language Processing

CPU Central Processing Unit

GPU Graphic Processing Unit

ID Identification

F. O. V Field of View

IoU Intersection over Union

xv

LIST OF APPENDICES

 APPENDIX TITLE PAGE

APPENDIX A: Main Register Code 93

APPENDIX B: Registration 93

APPENDIX C: Face Encoding and Compare 98

APPENDIX D: Real-time Face Recognition 103

APPENDIX E: Create an Excel file to logging the student
attendance 109

APPENDIX F: Real-time UI 112

APPENDIX G: Overall attendance checking 114

16

CHAPTER 1

1 INTRODUCTION

1.1 Background

As part of digitalization and the integration of modern technology, AI has greatly

influenced the aspect of the IoT in several industries including education. One of the

most encompassing areas where the concept of smart automation can be used is in the

area of operation of a classroom attendance system since this is a better system,

efficient, accurate, and secure than other traditional methods of doing it. Some of the

current methods of attending classes include signing a student list or scanning a QR

code, which the following drawbacks – cheating, or missing those arriving late, and

time consumption to do it because of students’ interaction.

Some of the challenges observed with the manual attendance systems have

been solved by integrated with the automated attendance systems using AI & IoT.

Using such systems not only brings about an added bonus of reducing the time that the

clerks take to input the data into the system, but also increases security and reduces the

probability of error in maintaining records of attendance. Automated systems may

improve the overall efficiency of classes, ensure proper keeping of registers and

eradicating default that is associated with manual systems.

17

There has been a huge change in the strategies and ideas used in face

recognition for identification over the years. In the 1960s, semi-automated were

develop this system by which major facial points such as the eyes, ears, and mouths

were manually marked, distances and ratios calculated for comparison. Such systems

by the 1970s included the Goldstein, Harmon and Lesk system, which uses 21

subjective markers but very hard to automate because they involved measurements in

a very general and subjective way (Goldstein, Harmon and Lesk, 1971). Fisher &

Elschlagerb proposed the world standard map of facial feature points yet how did not

have enough distinguishability to allow the identification of the adult facial images

(Fischler and Elschlager, 1973).

Then Connectionist approach used pattern recognition and neural networks to

classify the human faces, however it required large training data sets that hamper its

usage (S.S.R. Abibi, 2002). The first fully automated system used general pattern

matching by comparing faces to the general face model reducing data with histogram

and grayscale values (Cui et al., 2009). The above developments helped shape the

current advanced AI based facial recognition technological solutions that are now

essential especially in automating functions such as students’ attendance.

In recent years, the face recognition technologies have improved due to the

development of deep learning along with the real time object detection algorithms such

as YOLO, thus making it more accurate and efficient to apply this to generate auto-

attended systems in schools. Thus, integrating these technologies does not only

overcome the limitations of manual systems, but also offers a secure, large-scale

distinctive solution that is in line with the digitization concept.

18

1.2 Problem Statements

Traditional attendance tracking methods, such as manual roll call, scan QR code or

paperwork sign-in, are error-prone, time-consuming, and may not accurately reflect an

individual's actual presence. The proposed intelligent face recognition system solves

these problems by introducing a reliable, efficient, and automated attendance

management method.

1.3 Aims and Objectives

The objectives of the thesis are stated below:

- To design an AI-based face recognition system for class attendance.

- To analyze the data collected from the designed class attendance system.

- Project streamlined management in the class attendance system.

19

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In this chapter, the basic concepts about AI, OpenCV, TensorFlow, Deep Learning,

Machine learning, CNN, ResNet34, dlib and CUDA will be described with a detailed

overview of the ideas. Also, the analysis of the selected topic will be enriched with the

help of articles from other journals identified during the literature review.

2.2 Artificial Intelligence (AI)

AI means ability of a digital computer or a computer-controlled robot as an intelligent

creature to solve problems of an intelligent nature. This term is normally used when

attempting to refer to the creation of procedures that may replicate abstract human

thought, including reasoning, finding meaning in something, generation of one concept

from another, or learning from past events. Digital computers have been designed since

the period of 1940s and 1950s to solve very intricate problems, for instance, solve a

logical theorem or play a game of chess.

However, judging by the processing speed and the memory volume of AI

devices, there are no programs that have complete open-endedness of all more or less

specialized AI approaches to certain domains or that are capable of performing routine

20

extensive practical tasks that require daily knowledge. Since, some computer programs

incorporate AI and have acquired an expertise in accomplishing specific tasks, and

hence their effectiveness in other areas of application including medical diagnosis,

search engines, voice, handwriting and face recognition, and also the chatbots.

2.3 Open-Source Computer Vision (OpenCV)

OpenCV or also known as Open-Source Computer Vision Library is a well-known

open-source computer vision and machine learning library. As a framework intended

to undergird various computer vision applications and to facilitate the deployment of

machine perception into manufactured goods, OpenCV is under the Apache 2 license

so that businesses may conveniently employ and adapt the code. It contains 2500

optimized algorithms for the most popular computer vision algorithms in the industry

and some of the newer ones as well falling under machine learning. These algorithms

can be used in tasks as face detection or recognition, object identification, action

classification in videos, tracking camera and objects, 3D model extraction, image

stitching, red-eye elimination, augmented reality etc.

OpenCV has been adopted by more than 47,000 users and downloaded more

than 18 million times and it is used by companies, research groups, and departments

of government. Some of its notable users include google, Microsoft, Intel and Sony

together with new companies like Applied minds and VideoSurf, where OpenCV is

Lee Han Kee
This is for what??

21

used to stitch street view images, monitor and detect accidents in mining equipment

and in swimming pools respectively. The library is compatible with many operating

systems, for example, Windows, Linux, Android, and MacOS. The programming

languages which are supported are C++, Python, Java, and MATLAB. OpenCV is

optimized for real time vision and uses architectures such as MMX and SSE with

active development of full featured CUDA and OpenCL support. OpenCV has C++

interface and heavy use of templates, and it plays well with STL containers, has more

than 500 algorithms, and thousands of utility functions.

2.4 TensorFlow

TensorFlow is machine learning framework coded in Python by Google and

announced in 2015, intended primarily for the deep learning but in addition supports

typical machine learning tasks as well. Developed for big scale number computing,

TensorFlow is not originally designed for deep learning but its success in the field

made Google decide to release it via open-source license. TensorFlow uses multi-

dimensional arrays which are called tensors and are perfect for dealing with big data.

TensorFlow’s workflow works around data flow graphs where each

computation is predetermined by nodes and edges. This graph-based execution model

allows TensorFlow to arrange the computation through a cluster of computers and use

GPUs for performance boost. This was makes TensorFlow highly suitable for

managing complex models and large-scale machine learning application.

2.5 Machine Learning

AI, which includes sub-discipline referred to as machine learning is the science

whereby machines are given the capacity to improve their performance by using

22

certain knowledge in data or prior experiences relating to a specific problem such that

the machine is able to predict outcomes without heavier human intervention (IBM,

2023). AI entails that computers work on their own without even being programmed

to do so. New data is provided to the applications of machine learning, and they can

learn on their owns, evolve, even change, and define themselves. Machine learning is

a technique of obtaining information from big data through the use of algorithms,

which strengthens the learning process in a cyclical manner. Information from the data

is fed into the specific computational methods and the outputs, which are the machine

learning algorithms, are not based on any fixed equation that can be considered as the

model.

Machine learning algorithms perform with increasing effectiveness in the

‘learning’ processes when more samples are present and fed into the models. For

instance, deep learning is a subset of a more general field termed as machine learning

that enables computers to mimic natural aspects of human learning such as learning

from samples. It gives improved performance parameters than the other traditional

machine learning algorithms. Machine learning in its basic terms has been around

since the World War II when the first device to use prescribed learning was called the

Enigma Machine.

2.6 Deep Learning

Currently, deep learning, also known as representation learning, is used in many

applications. Increased interest in deep and distributed learning is due to the increasing

Lee Han Kee
???

23

volume of data and tremendous improvements in hardware technologies. Although

deep learning stems from conventional neural networks, it is more effective than them

in comparison. Converting and graph technologies are utilized by deep learning to

build context dependent multiple layer learning models. The deep learning technology

used provides excellent performance in various application fields such as audio and

speech processing, visual processing, and natural language processing (NLP).

The structure of the deep learning models includes the input layer, a number of

hidden layers, and the output layer. The data is passed through each layer encoded and

fed to the subsequent layer hence hierarchal victimization of the input data. This

structure of layers makes it easier for the model to execute functions such as

classification and pattern identification all without having to write code to extract

features.

Similar to other methods of learning new skills where one has to keep repeating

it, the deep learning also needs large amounts of data in order to train an effective

neural network. Deep learning is flexible insofar as it has enough data feeding into it

since it can then be used in a lot of different ways.

24

2.7 YOLO

YOLO (You Only Look Once) is a real-time objective detection algorithm developed

by Joseph Redmon and Ali Farhadi in 2015. It is a one-stage object detector that

predicts the bounding boxes and class probabilities of objects in input photos using a

convolutional neural network (CNN). Initially, YOLO was implemented with the

Darkent framework. The YOLO algorithm segments an input image into a grid of cells

and predicts bounding box coordinates and the likelihood of an object being present in

each cell. It also predicts the category of the object. YOLO is faster and more efficient

than two-stage object detectors such as R-CNN and its variants because it processes

the entire image at once (Redmon et al., 2016).

YOLO has developed several versions, including YOLOv1, YOLOv2,

YOLOv3, YOLOv4, YOLOv5, YOLOv6, YOLOv7, and YOLOv8. Each new version

builds on the previous one, offering more features including greater accuracy, faster

processing speeds and better handling of small objects. YOLO is widely utilised in

many different applications, including surveillance systems and self-driving vehicles.

Additionally, real-time object identification tasks like real-time video analysis and

real-time video surveillance make extensive use of it (Redmon et al., 2016). In this

project, YOLO will use the CNN as its underlying architecture. The relationship

between YOLO and CNN is foundational, as YOLO relies on a CNN to perform real-

time object detection as shown in Figure 2.1 (Viswanatha, Chandana R and

Ramachandra, 2022).

25

Figure 2.1: YOLO algorithm using CNN (Viswanatha, Chandana R and

Ramachandra, 2022)

2.7.1 Why YOLO?

YOLO because of its accuracy and speed, and because it is used in real-world projects

some of the reasons that mark its main strength. First it gives real-time detection of the

objects something which is cooperate for those applications which needs continuous

detection like video surveillance systems and self-driving cars. Secondly, because

there is only one detection method, it is relatively fast as compared to other methods

that take several steps or passes and which works on the detection network on the

whole image at a time. Nonetheless, speed in YOLO’s object detection is achieved

through the use of a unique approach that combines CNN while also serving as a

speedy approach (Mirkhan, 2023).

 Moreover, YOLO is effective in identifying the small objects within the image

due to grid-based approach. Last but not the least; anchor boxes enhances its versatility

26

of handling items at different scales within one image and makes it adequate to several

datasets and applications. Combined, these characteristics make YOLO a robust and

flexible solution for practical tasks related to object recognition and, due to this, YOLO

is in high demand and applied in many areas (Mirkhan, 2023).

2.7.2 YOLOv7 vs YOLOv8

The efficiency of YOLOv8 and YOLOv7 is evaluated on different key parameters,

such as speed in terms of frames per second (fps), and accuracy of bounding box

prediction, mean average precision (mAP), and the model size. Real-time object

detection benchmarks prove that YOLOv8 is the way to go since it offers convincible

gains over YOLOv7 in several critical categories. Another benefit for using YOLOv8

over YOLOv7 is that it has a higher frame-per-second (FPS) rate than the former.

According to the optimised algorithms and better architectural model, is also the

enhanced object detection.

This means that for the same given amount of time YOLOv8 can analyze more

frames than other models, thanks to this it is perfect for real-time applications. Due to

the fact that YOLOv8 has a superior model structure then by the factor of object

detection it can be more accurate and reliable. In addition, YOLOv8 has better mean

average precision (MAP) scores compared with YOLOv7 for all cases studied. The

prime measure that holds significant importance in object detection systems is

accuracy and precision, and these two factors are responsible to quantify the ability of

the model to locate along with identifying every item contained in a particular image

or a video. Due to increases in these results, YOLOv8 is able to offer a greater and

more accurate range of uses that may be applied in the real world.

To enhance the architecture of YOLOv8 more enhancements have been done

on its ability of detecting the objects. YOLOv8 design cancels the need for anchor

boxes hence making it an anchor-free architecture. Such design enhances the model’s

27

ability to detect objects with variations in size and aspect ratio while at the same time

reducing its training complexity (Abramov, 2023). Further, multi-scale prediction is

embedded in YOLOv8, which means that the model is capable of predicting at

different scales. This multi-scale method improves the accuracy of the item detection

as well as this model’s capability to capture things at different scales. The following

figures are the comparison of YOLOv8 with other versions (Augmented A. I., 2023).

Figure 2.2: Comparison between YOLOv8 and other YOLO versions

(Augmented A.I., 2023)

YOLOv8 is the latest model of all the YOLO models that are based on deep

learning for the identification of objects of substantial size. As a result, it comes with

a relatively simple model with no horizontal anchor, prediction at multiple scales, and

an enhanced backbone network that makes it an ideal choice for real-time object

detection. This makes YOLOv8 as a reliable solution for many who are in search of

an efficient and effective object detection program.

28

2.8 Convolution Neutral Network (CNN)

In general, there is a clear structure of the CNN models despite the many modifications

in the models available for use. This framework comprises of an input layer, layers

with convolution as well as pooling, one or more fully connected layers, activation

functions and an output layer. The first part of the network is the feature extractor

which is made of several convolutional and pooling layers arranged in succession. This

feature extractor then extracts the feature representations from the given raw input data

set and makes it more abstract and at a higher level. The features are then extracted

through fully connected layers after which these layers and the activation functions are

utilised for the classification or regression of data as required. To improve the CNN

performance, some regulatory aspects such as batch normalization and dropout are

included in the layers; different mapping functions (Bouvrie 2006). Figure 2.3 shows

the architecture of a CNN broken down into its sections (Zhao et al., 2024). These are

the components that have to be configured in order to create new architectures and to

increase the performance. Knowledge of these components and their unique

implementation is crucial for comprehending the progress made in CNN architecture

in the study of computer vision (Bhatt et al. 2021).

Figure 2.3: The Structure of CNN (Zhao et al., 2024)

29

In the CNN designed for n-class classification problem, on the first layer, the

raw data is subjected to two convolutional layers such as Convolution 1 and

Convolution 2 and followed by two pooling layers namely Max Pooling 1 and Max

Pooling 2. After this the data is passed to the fully connected layer of the network for

further analysis. Lastly for the output layer, the outputs going into it are passed through

the SoftMax function which scales the outputs between 0 and 1. Thus, the vector

outcome called Data Cost 1 represents the probabilities of the data belonging to the

defined n categories and the higher data cost value indicates a higher possibility of the

data to be introduced into the certain unique category.

CNNs need data preprocessing before one feed the primitive data into them to

be analysed or interpreted. Some of the preprocessing steps include homogenization

(Stepanov et al, 2023), normalization (Huang et al, 2023) as well as PCA (Uddin et al,

2021). The homogenization is a process that consist in the subtraction of the average

value calculated from the entire training set from all dimensions of the input data

aiming to centre the data at zero. Normalization scales the data difference between

maximum and minimum and sets the new values of the data within zero and one. On

the same note, as is the case with all normalization techniques, PCA can normalize the

input data for each feature independently and thus also address the problem of high

dimensionality and high correlation between the parameter dimensions.

30

2.9 ResNet 34

ResNet-34 is a state-of-the-art image classification model which is used in ResNet-34,

a 34-layer convolutional neural network introduced in the paper Deep Residual

Learning for Image Recognition (He et al., 2016a). As opposed to any other

conventional neural networks, this model uses the output of every layer, passed to

succeeding connected layers as residuals. This approach is similar to residual

connections used in text prediction model reducing the problems such as vanishing

gradient and allowing the networks to be trained deeper.

The ResNet-34 has been trained on the ImageNet dataset, which has more than

100,000 images split in 200 classes. The amount of pre-training achieved here is more,

it allows the model to identify as many classes of images as possible. Apart from the

ImageNet, a dataset containing more than 130,000 images of 200 classes is Tiny

ImageNet, which also enhance the model. For the purpose of gaining from the

strengths of this pre-trained model, a process known as “transfer learning” is employed

in this, the pre-trained ResNet-34 checkpoint is fine-tuned to suit the requirements of

our task. This approach enables us to expand upon the tremendous amount of previous

work carried out with the ImageNet dataset and improve upon the existing model for

new, related tasks.

 The architecture of ResNet-34 is illustrated in Figure2.4 on the right side. It

explains the way in which the network is constructed with 34 layers and highlights one

of its key features that is a residual connection in ResNet. These residuals pass from

layer to layer giving room for skipping some layers on the way to subsequent layers

by the networks. This architecture has greatly helped in avoidance of problems like

vanishing gradients as well as enabling more efficient training of deeper neural

networks. In addition, these connections are essential input-output lines for the flow

of data through an all-other network that make it perform better during training and

converge more quickly.

31

Figure 2.4: The Resnet34 layer architecture (He et al., 2016a)

32

2.10 Deep Metric Learning Approach (Dlib)

The face recognition module in this system uses Deep Metric Learning, a learning

approach. This method intends to compare the dissimilarities in the various samples

thereby finding the optimal distance in the application which is a Euclidean distance.

Unlike most models that compute only one of the labels such as the object coordinates

or the bounding boxes, the model returns a real valued feature space of the face in the

image. Face recognition is done using the machine learning library, Dlib. The built-in

face recognition model in Dlib is formulated on the ResNet-34 model, which was

trained by Davis King using a number of images around 3 million (Rosebrock, 2018).

The output of this ResNet model is 128 vector of real values (embedding) which

describes a face. The output vector enables the system to represent every face as 128

numbers which represents distinct features of a face (elifezgisen, 2023).

The process starts from the feeding of a face image into ResNet 34 model. This

is then followed by the model generating a 128-dimensional vector as the final output.

When it comes to comparing the 2 faces, the system derives 2 such vectors from the

face in questions. The system used the controlled vocabulary to compare the two faces

to determine if they are of the same person The Euclidean distance or the Angle

between the two vectors is then computed. Here, the measure of similarity that is

adopted is the Euclidean distance; the similarity cut-off point being 0.6. If face distance

is less than this value it means two face vectors represent faces of the same person. If

this distance is higher than threshold, the faces are considered different ones

(elifezgisen, 2023).

33

Figure 2.5: Face recognition flow (E King, 2009)

The face recognition system follows a structural workflow that involves various

components in order to obtain accurate facial recognition. The process starts with

acquiring media input which has to be processed frame by frame. Every frame of the

image is then subjected to face detection in a bid to identify the position of face within

the image. Once the target faces are found the faces are further defined into Facial

Regions of Interest or Facial ROI, which in simple terms are portions of the face region

which are of particular interest. These ROIs are then passed through a Neural Network

yielding a 128 dimensions facial encoding for each face. This encoding contains the

areas of the face, which are distinctive, and they are sent for comparison as well as to

identify.

34

The system consisting of several components that are considered to be crucial.

The face detection component was implemented with four kinds of different face

detectors for better cropping options. The face recognition submodule is a one-stop

entity responsible for all the functions relatable to faces including facial registration

and processing. Cache services and permanent storage are also offered by the storage

system, while cache is based on Python’s built-in structures and permanent storage

uses JSON. Users get an option of extending these abstract classes so that they are able

to incorporate more elaborate storage systems in case it is necessary. Finally, the

utilities component holds methods for image or video operations and validations as

well as other operations necessary for the operation of the system. Altogether, these

components enable effectiveness of the face recognition system and allow

identification of facial data with maximum accuracy.

2.11 Compute Unified Device Architecture (CUDA)

CUDA for short of Compute Unified Device Architecture is a hardware and software

architecture developed by NVIDIA Company that revealed on 15 February 2007. It

allows concurrent computations on the GPU and supports all NVIDIA GPUs starting

from the G8x series including GeForce, Quadro and Tesla. The entry of the CUDA

platform in GPU changed the way programmers used it by providing a high parallelism

computing platform that was also flexibly designed. CUDA, through its API issue a

C-like interface for software developers to write programs that may implement both

on the CPU and GPU without specialized knowledge on computing graphics.

 Program developers can use CUDA in the form of CUDA libraries that can be

incorporated into programs, OpenACC directives located in source codes, C, C++,

Fortran, and other programming languages as extensions. It offers a more direct access

to GPU’s figured instruction set, memory and parallel processing element. This

provides developers a tremendous amount of computational capability as CUDA is

suitable for general purpose parallel processing which involves the use of GPUs for

carrying out multiple threaded processes. CUDA facilitates fine-grained parallelism

which results into efficient utilization of the inherent parallelism of the GPUs which

35

makes it a useful tool for computation intensive problems in research or software

development (Paramjeet Kaur and Nishi, 2014).

Figure 2.6: Components of CUDA architecture

CUDA also allows GPUs to employ a parallel throughput operation with an aim

of completing many threads at a comparatively slower rate as compared to CPU that

targets a single thread. First, there are parallel compute engines within each NVIDIA

GPU where these immense parallel workloads are solved. Second, the architecture

provides support at operating system kernel level for the operations like system

hardware initialization and configuration. Third, it presents a user-mode driver which

gives developers device-level access which in turn allows them to feed code in a way

that interacts with the GPU. Finally, the CUDA programming model employs the PTX

(Parallel Thread Execution) instruction set architecture, which encompasses parallel

computing kernels and functions to help the developer to manage and perform the

parallel operation in the GPU (Kirk, 2007).

36

2.12 Journal Reviews

According to the research paper written by Mirkhan (2023), YOLO, algorithm is

famous for real-time object detection, high accuracy and speed. YOLO is effective in

applications like video surveillance and self-driving vehicles since it identifies and

locates objects with a single feed through the network for optimum speed. It is

designed in such a way that it works with multiple object scales, efficient for small

objects besides, it has fully convolutional network architecture which is friendly on

GPU. However, YOLO is not without limitations for instance it was mainly designed

to perform object recognition hence if applied to other uses like image or instance

segmentation it may not perform optimally. It is not very accurate as some other two

shot detection methods, performs poorly with very small objects and does not include

a tracking mechanism, which is a disadvantage for tracking the object through time.

 According to the research paper by Redmon et al. (2016), YOLO is the new

approach in the object detection since it handles it as regression not using the classifiers.

YOLO predicts bounding boxes and class probabilities without the need for scanning

the whole image through different transformations and thus can be trained in an end-

to-end manner by considering detection performance. This unified architecture allows

one to have high-speed of processing, the base model YOLO model can achieve real-

time of 45 FPS, and the smaller Fast YOLO model can achieve 155 FPS with the

double of the mAP of other real-time detectors. While making more localization errors

compared to some state-of-the-art systems, YOLO is less sensitive to false positives

from the background and demonstrates consistently high performance in translating

object representations from one context to another including natural images and

artwork.

According to the research Augmented A.I. (2023), YOLOv8 provides several

enhancements over YOLOv7 that has been listed in the features above. The

improvements of YOLOv8 include such parameters as a greatly boosted speed,

improved accuracy, and absence of anchors, prediction of different scales, and an

advanced backbone network. YOLOv8 yields much better results than YOLOv7 with

a boost on real-time object detection with higher FPS, especially with smaller models

such as the YOLOv5 Nano. This model also comes with a relatively higher mean

37

average precision (MAP) of 53.7, therefore indicating an improvement in precision

especially for small objects. Specifically, YOLOv8 eliminates the need for anchors for

setting up the model, makes the training of models easier across the different datasets,

and has improved the prediction for scale objects through a multi-scale prediction

mechanism. Also, there is enhanced architecture called YOLOv8 with a better

backbone network and the extra improvements in the model structure, including pose

estimation models that make this architecture more effective and versatile. As an

improvement from the previous version, YOLOv8 has a better architecture design with

better I/O since it is easy to use and implement hence easy to make modification of the

model when it is going to be deployed to different object detection tasks.

According to the research paper by Bhatt et al. (2021), computer vision is

evolving particularly in the image processing sector since automation of object

recognition is increasingly becoming essential. This has been made possible by CNNs

which has also produced remarkable performance on different domains like video

processing, object recognition, image classification and segmentation, natural

language processing and speech recognition. Advancements in the amount of data

available and cheap and readily available hardware has further boosted the research

into CNN, thus leading to the development and exploration of other ideas such as

different activation functions, different methods of reducing overfitting, optimisation

of parameters, among others as well as architectural enhancements. It provides a

comprehensive survey of recent developments in CNN architectures, categorizing

them into 8 distinct groups: spatial exploitation, multi-path, depth, breadth, dimension,

channel boosting, feature-map exploitation and attention based CNNs. The primary

findings of the paper are as follows, a comparative review of the changes that have

taken place in CNN architecture. The key innovations and their strengths and

weaknesses. It also provides details on various parts of CNNs, pro and cons of different

types of CNNs, literature that has not been covered yet, different uses of CNNs and

potential future work.

From the work of Huang et al. (2023) on the use of DNNs for training,

normalization methods are important in increasing the rate of convergence as well as

the ability of DNNs to generalize. The paper surveys normalization techniques and

presents a common view on the optimization objectives that underlie them. It

38

introduces a taxonomy to clarify the similarities and differences between various

approaches, breaking down the pipeline of prominent normalizing activation methods

into three components, circulation subdivision of the normalization zone, the processes

of normalization, and the restoration of the representation of normalization. This helps

in understanding the design of other normalization techniques which are being put in

place. The paper also provides a survey of recent progress in the study of normalization

approach and the real-world usage of these methods as examples is also provided to

show how these methods solve some of the problems in the given problems.

 According to the research paper of He et al. (2016a). The present research

outlines ResNet-34, which is a convolutional neural network with 34 layers for images

classification. The original document entitled “Deep Residual Learning for Image

Recognition” introduced this concept. Unlike the conventional networks, it takes

advantage of residual connections to facilitate information flow between different

layers thus mitigating challenges such as vanishing gradients ultimately making it

possible to train deeper neural networks effectively. ResNet-34 is based on pre-trained

model using large-scale ImageNet dataset that comprises of more than 100k images

distributed into 200 classes. Through transfer learning, this model can also be fine-

tuned from its original state and consequently perform better on some particular tasks.

According to the research paper of Viswanatha, Chandana R, and

Ramachandra (2022), the survey is on YOLO algorithm and its new developments in

the area of real-time objects detection. From the two models, YOLO and CNNs are

stressed due to their efficiency in achieving general object descriptions with less

quantitative loss as compared to the remaining models. Thus, the paper demonstrates

how effective implementation of CNN architectures can improve object recognition

and solve the various application, including deformity diagnosis and educational

applications. The survey provides remarks on the process of developing YOLO, its

utility in the spheres of finance and other, as well as concern with feature extraction in

specific and focused visual data; methods for identifying targets and features are also

discussed.

39

Table 2.1: Summary of the Journal Review

Author(s)

& Year

Tittle Summary

Redmon, J.,

Divvala, S.,

Girshick, R.

and Farhadi,

A. (2016)

You Only Look Once:

Unified, Real-Time

Object Detection

The paper under discussion calls YOLO a

new approach to object detection that

breaks with the need for multiple scanning

of the image and unites the detection

process with regression. YOLO also

directly predicts bounding boxes and class

probabilities which make it convenient to

be trained end to end and also very fast.

The base YOLO model runs at 45 FPS,

and even further leveraging, the Fast

YOLO model attains 155 FPS, which is

quite efficient than most of the real-time

detectors in terms of mean average

precision. While compared with some

state-of-art systems, YOLO has more

localization error, it has less false positive

from the background and performs well in

different scenarios including the natural

image domain and artwork image domain.

Bhatt, D.,

Patel, C.,

Talsania,

H., Patel, J.,

Vaghela, R.,

Pandya, S.,

Modi, K.

and

Ghayvat, H.

(2021)

CNN Variants for

Computer Vision:

History, Architecture,

Application, Challenges

and Future Scope

This paper focus on the tremendous

development of computer vision

especially in image processing due to new

developments in Deep Convolutional

Neural Networks (CNNs). CNNs are well

implemented in areas that include video

processing, object recognition and image

classification and more due to availability

of data and cheap hardware. The paper

reviews recent CNN architecture

developments, highlighting eight key

40

categories: Spatial exploitation, multi-

path, depth, breadth, dimension, channel

boosting, feature-map exploitation and

attention-based CNN. The paper gives a

comparative analysis of architectural

modifications, innovations, their

advantages and limitations and gaps in the

existing literature, possible future

research, and many applications of CNNs.

Huang, L.,

Qin, J.,

Zhou, Y.,

Fang, Y.,

Liu, L. and

Shao, L.

(2023)

Normalization

Techniques in Training

DNNs: Methodology,

Analysis and

Application

This paper focuses on the need to enhance

the normalization techniques to have

faster convergence rates and high level of

generalization in Deep Neural Networks

(DNNs). For developing the better

understanding of the analysed techniques,

the paper provides the taxonomy of the

normalization methods. It breaks down

normalization methods into three

components: circulation subdivision,

normalization processes and

representation restoration. It also reviews

latest improvement made to normalization

techniques and how such methods

applicable towards solving actual world

issues.

Viswanatha,

V.,

Chandana

R, K. and

Ramachand

ra, A.C.

(2022)

Real Time Object

Detection System with

YOLO and CNN

Models: A Review

This paper presents an overview of the

YOLO algorithm and its developments in

real time object detection. Among others,

YOLO and CNN known for their great

results in object recognition with less

quantitative loss are outlined in the paper.

It includes how the appropriate CNN

architectures can aid the development of

41

object recognition for deformity diagnosis

and education. The described survey

concerns the peculiarities of the YOLO

algorithm, its application in the sphere of

finance and other domains, as well as

feature extraction and target selection

techniques.

He, K.,

Zhang, X.,

Ren, S. and

Sun, J.

(2016)

Deep Residual Learning

for Image Recognition.

This article examines Deep Metric

Learning, Dlib’s ResNet-34 model has a

face recognition system that generates

128-dimensional vectors for faces. The

comparison of these vectors takes place

using Euclidean distance. If two vectors

are separated by less than 0.6 then the

facial images match in terms of identity.

Applied to three million photographs, this

technique guarantees precise

identification through low distances

among individuals and high among

dissimilar ones.

42

CHAPTER 3

3 METHODOLOGY

3.1 Introduction:

This chapter has the purpose to describe in progressing detail how the system is going

to be implemented starting with the planning process and ending with the

implementation process. The methodology for this project is structured around four

key phases, each integral to the successful development and evaluation of the system:

They are: (1) Planning, (2) System Design, (3) Implementation, (4) Evaluation. These

phases however are illustrated in the figure below which shows the systematic

sequence of development of the project.

Figure 3.1: The phases of Methodology

43

3.2 Planning Phase:

One of the key functions within the planning phase is to decide on the specific

hardware and application software that would help in the accomplishment of the

objectives of the system. This encompasses identification and choosing of appropriate

real-time face recognition cameras, identification of the right AI models for

implementing face detection as well as face recognition and identification of correct

software tools for managing data and tracking attendance. Besides, in the planning

phase, a timetable is also developed with stages that include system design,

implementation and testing.

3.2.1 Hardware and Software Equipment

Table 3.1 shows the list of equipment that was used for the system. The equipment can

be separated into two categories, which is hardware and software. For the hardware,

its purpose is to act as a face detection tools to detect the human faces from time to

time. For the software side system, it used to do the face recognition if successful

recognise then it will go to record to the attendance system.

Table 3.1: Hardware and software equipment selected for the system

Hardware Software

 • Windows 11

• Rapoo C280 Webcam 2K HD • Roboflow

 • YOLOv8

 • CUDA 11.8.0

 • Visual Studio Code

 • Windows 11

• Excel

44

3.2.2 Proposed System

When implementing the real-time face recognition system for attending classes, it is

crucial to clearly outline certain characteristics and specifications in the system,

meeting the needs of a specific educational facility. Starting with the identification of

requirements, possible constraints include the number of students that a specific

institution enrols as well as the actual physical environment available at the institution.

It is also important to define the system’s extent, as the system’s simpleness and

capability are proportional to the variety of data it is expected to process for example,

students to be identified at once.

 Also, there is a need to define the required level of accuracy and reliability of

the attendance tracking system. This helps in maintaining order in the operations of

the system in that, it achieves the set goals of the institution without compromising on

detail in taking attendance records. The optimal direction must also find a way of

reaching high accuracy while at the same time being reasonable enough in terms of

error rates to meet operational needs of the institution.

3.2.3 Proposed System Block Diagram

Block diagram of the proposed system as shown in Figure 3.2 below highlight the

various processes that take place in the real-time face recognition for attendance

tracking. If an input is issued, for instance initiating a class session, the system switches

on the camera for visioning and recognition of student faces. The system then maps

the identified faces against a registered database of student details for an identity check

on people in the classroom.

45

When the faces are identified to match with the registered data, then the system

marks the attendance for the particular student. This attendance data is further stored

in an Excel file for the smooth running of the attendance records. The data so saved

can then be used to validate absentees as well as determine attendance rates.

Furthermore, it will monitor students that have attended less than 80% of lessons and

the effectiveness of student attendance and compliance with rules.

Figure 3.2: Block diagram of the proposed system

3.3 Design Phase

In this phase, most of the work is dedicated to establishing the hardware support, as

well as the software requirements for the functioning of the system. The first procedure

involves the implementation of the YOLO model to train the system to detect faces of

students, to enable it to enrol them into the database. After identifying the faces,

features vectors are generated with face encoding methods from each of the given faces.

This individual and highly specific identity marker is used as the main differentiator

for each of the students. If a face is captured during a class, then the system compares

the face encoding to a locally stored database of students’ encoding and is then able to

mark the student’s attendance. Figure 3.3 shows the overview of the process in this

phase:

46

Figure 3.3: Overview of the process in this phase

3.3.1 Hardware and Software Setup

This starts with getting the right camera for an appropriate price that will capture the

video in a manner that the faces of the individuals can be easily recognized. When the

camera is used and will be placed at a classroom or another relevant location in the

course of the experiment and can effectively recognize the people. Also, other basic

programs that will enable in setting up of the system in terms of programming must

also be downloaded. For example, by employing an electronic integrated environment

system (IDE) like Visual Studio Code (VSCode), effective coding for the project can

be made so that the software parts of the system are effective and harmoniously

integrate with the hardware.

47

3.3.2 Face Detection and Recognition

This function can be considered as the core of the real-time attendance. The process

starts with the training of a YOLO model with respect to face detection, which enables

the system to detect and locate faces in the live video stream. Otherwise, pre-trained

YOLO models can be employed to crop out the faces of the students, which would in

turn be used to compile a vast database of facial images of the students. This dataset is

complemented by respective names and IDs to create a database without which

identification cannot be precise.

 The next step crucial after defining the dataset is to extract an identity vector

for all the face using a face encoding. This involves using dlib which drawn out from

the Resnet architecture to obtain a face encoding vector for every student. These face

encodings are used to represent the students’ face in the database based on their facial

landmarks. The last of these is to match given face encoding to the database of face

encodings, allowing the system to recognise or in fact authenticate the person in real

time for making attendance records accurate.

48

3.3.3 Attendance Logging

The attendance logging procedure therefore ensures that the face recognition system

works hand in hand with the attendance software to offer between fully automated

system of documenting the attendance records. In cases where a student face is

detected and their identity is recognized, the system records their attendance even to

the minute. The considered system has to work in rather complicated conditions, for

example, the identification of more student faces during the lecture’s record and

guarantee that facial recognition algorithms will not only point to each of the students

in the lecture, but also link it to their profiles. If, after perusing through every inch of

the face, the face cannot be recognized, then the face is tagged with the “Unknown”

so that no confusion arises in the attendance record. Further, the system also

determines the accumulated total time for the student based on the attendance in order

to generate the efficient way of tracking the student presence in the class in the long

run.

49

3.3.4 Training YOLO Model

Below is a figure that gives a feel of this training process, demarcating the stages of

preparing the model for deployment.

Figure 3.4: Overview of training YOLOv8 for face detection

The training of the YOLOv8 model consists of exposing the model to a dataset

that has been chosen with caution to train the model on what it is expected to identify

in the imported data. This process is important in face detection and recognition in

real-time operations that the system may be exposed to. The training data usually

comprises of images labelled according to the face classes, helping the model learn the

distinctions between various faces. This way as the model begins to take in more data

its detection capability increases making face recognition to be more accurate.

50

3.4 Implement Phase

This section describes the whole detection, recognition and logging attendance

systems. Figure 3.5 shows the overview of the implementation phase of this project.

Figure 3.5: Overview of Implementation Phase

51

After the YOLO model has been successfully trained, the system proceeds to

the next crucial stages; Registering the Faces, Real-time face detection and logging the

attendance into the Excel sheet. In the Registration phase, it allows opening the

webcam to capture human faces using pre-trained YOLOv8 model for the face

detection. In the process of recording, the camera takes photos of the student faces and

even if one student’s photo is distorted, the camera takes a new photo and stores in a

separate dataset, so that a clear picture of faces is taken for subsequent recognition.

This process is crucial in the development of the facial database because allows the

system to recognize each students’ face in subsequent class sessions.

 This is followed by the Real-time Face Recognition where the system opens

the webcam again to cover for the students’ faces during the class. With the help of

YOLO pre-trained model, which has real time face detection, the system detects all

the faces present in the frame. After detection, each face is converted to identity vector

where it is matched against the database of student faces acquired during the

registration process. If the match is found, then it knows who the student is and then

logs his/her presence in real time. This makes the process smooth such that no human

intervention is required for the taking of attendance by the students themselves or

instructors.

 Last of all, the system proceeds to the Attendance Logging phase in which the

recognized students’ attendance is recorded in an Excel sheet. This is to indicate

whether or not the student was present in the session and give him/her a timestamp to

indicate that he/she attended the session. In addition, the system also takes into account

students’ attendance percentage for the particular class session that he/she was present

or absent. This percentage is then used to determine how the student has done in total

over multiple class sessions to offer the most complete and intricate report on the

student’s attendance. Through the implementation of these processes, the system not

only helps in tracking of attendance but also improves on the quality, speed and

reliability of the class processes.

52

3.5 Analysis Phase

This phase signifies the last steps of the methodology and is significant in identifying

the performance of the system. It requires the determination of the best way through

which the developed system runs effectively in addressing the objectives of the project.

Through this type of performance evaluation, there will be confirmation that the

system works correctly and is effective in achieving the intended objectives within the

areas of accuracy, credibility, and efficiency. This step is crucial in evaluating the

success of the system and to look out for areas that may need to be developed in the

future.

3.6 Project Management

The Table 3.2 shows the Gantt Chart of Final Year Project 1, whereas Table 3.3 shows

the Gantt Chart of Final Year Project 2.

Table 3.2: Gantt Chart for Final Year Project 1

Task

Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Project Tittle
Decision

Planning

Introduction

Literature
Review

Methodology

Initialize
Hardware &

Software

Training Model

53

Table 3.3: Gantt Chart for Final Year Project 1

Task

Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Face Detection

Face Registration

Create Dataset
Format

Build Real-Time
Code

Encoding Faces

Create Excel to
Record

Attendance

Debugging &
Testing

Result

Discussion

Conclusion &
Recommendation

3.7 Cost Estimation

This section focuses at estimating costs that are likely to be incurred to realize the

system at the end of the project. The main purpose of this section is to estimate, the

overall costs needed for developing and implementing the system. This way setting a

financial framework helps in controlling and managing resources and preventing

future over expenditure on project. The estimated fund required to build the project is

RM 118.48.

Table 3.4: Cost Estimation of Project Materials

Item Cost (RM)

Hardware:

Rapoo C280 Webcam 2K HD

118.48

Total Estimated Cost 118.48

54

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Introduction

This section of the project describes the results of the experiment and a discussion of

different development stages. They involve image collection, face detected results,

hardware configuration, model training and performance, encoding of faces and lastly

logging attendance into an Excel sheet and check the overall attendance. At each level

the results are used for evaluation of the system and its accuracy.

4.2 Experimental Results

In this section, the results of the developed system are thoroughly discussed, focusing

on the performance of YOLOv8 for face detection and dlib for face encoding,

comparison and matching. The system successfully recognized different student faces

in real-time for the attendance tracking system, with all data being logged to an Excel

sheet.

Additionally, the process of training the face detection model is explained,

highlighting how the system compares real-time detections with the pre-collected

student face dataset. This enables accurate classification and identification of students

during live detection for efficient attendance management.

55

4.2.1 Image Collection for Registration

Figure 4.1: Student registration

Figure 4.1 describes the flow of student registration. Firstly, the student types

the name of the course he or she wants to enrol in, then the student’s full name along

with their student ID. If it is written in wrong format such as having a small letter in

the beginning of each word like for example “kuak xuan ren” the system will study

and convert it to right format “Kuak Xuan Ren” respectively for the student ID format

it should be within this format “01ABC12345”.

Figure 4.2: Image Collecting Process

Figure 4.2 illustrates the ways through which the face data is collected by the

system. The student’s face is then taken and saved in a file under the particular course

name that the student entered during the time of registration. This guarantees the

storage of each student face data and assignment of it to the correct course to be used

later in the attendance tracking system.

56

Next, the figures below illustrate how the students' collected faces are stored

in folders, with their name and student ID labelled. When collecting the face dataset

of a student, it first prompts the name of the course to which their dataset should be

put under-in other words, the course folder and then the dataset folder of their

individual face images.

Figure 4.3: The courses folder

Figure 4.4: The dataset of the students

Inside each course folder that in Figure 4.4, the student's face datasets are

stored, with each course containing its own set of student-specific datasets. This can

make sure that the face dataset is grouped according to the course.

57

[

 {

 "name": "Kuak Xuan Ren",

 "student_id": "21AGB06806"

 },

 {

 "name": "Edward Yeoh Hong Enn",

 "student_id": "22ADB02687"

 },

 {

 "name": "Chew You Hui",

 "student_id": "20ADB04796"

 },

 {

 "name": "Boey Zhi Xuan",

 "student_id": "20AGB05745"

 },

 {

 "name": "Tcy",

 "student_id": "21AGB00000"

 }

]

Figure 4.5: The json file style

The Figure 4.5 shows that when the students register their faces, the program

not only stores the images in correspondent folders but also saves all the students’ data

in JSON format. It contains basic information on the student including their name,

student ID and the courses which they are registered for. With the help of JSON, the

system structurally facilitates the problems of searching and processing of the field

values containing student information for each course during the real-time detection.

This approach leads to improved approaches to data access and integration, which can

effectively combine the face recognition results with the right students’ record for

attendance tracking and reporting.

58

4.2.2 Face Detection

This section provides all the detected faces of the students within the class and for each

detection, the student’s name, student ID, and the confidence level of the detection on

top of the bounding box surrounding the face.

4.2.2.1 Face Detection in Class

The below figures indicate the result having been captured from 6 classes these include

UGEB3016 Final Year Project, UGEB3016 Testing, UGEB1011 Digital, UGEB3016

Class A, UGEB3016 Class B, and UGEB1011 Class C relying on the reflection of

real-time detection result as recorded during the session.

59

UGEB3016 Final Year Project:

Figure 4.6: Two class for UGEB3016 Final Year Project

Lee Han Kee
Figure 3. x – 3.x indicates

60

UGEB3016 Testing:

Figure 4.7: Two class for UGEB3016 Testing

61

UGEB1011 Digital:

Figure 4.8: Two class for UGEB1011 Digital

62

UGEB3016 Class A:

Figure 4.9: Two class for UGEB3016 Class A

63

UGEB3016 Class B:

Figure 4.10: One class for UGEB3016 Class B

UGEB1011 Class C:

64

Figure 4.11: Three class for UGEB1011 Class C

Figures 4.12 to 4.16 show the confidence level captured by the face recognition

system for each student, but in the form of graphs instead of text logs. It can be seen

from the above graphs that for all students an average of each mark weighs above 80%

and therefore the results show a high accuracy of the system.

65

In Figure 4.12, student Chew You Hui (ID: 20ADB04796) had an average

confidence score of 0.89 this was the highest among all participants showing the high

accuracy of this system. Figure 4.13 the student’s name Boey Zhi Xuan (ID:

20AGB05745), whose average confidence level is 0.80, potentially influenced by

lighting conditions during face capture. In Figure 4.14, Kuak Xuan Ren (ID：

21AGB06806), figure registered an average of 0.88 and once again proving that the

developed system is quite accurate.

Meanwhile, Figure 4.15 shows Edward Yeoh Hong Enn (ID: 22ADB02687)

with an average confidence level of 0.85, which maintains a high standard of detection

accuracy. Lastly, for the Figure 4.16 student Tcy (ID: 21AGB00000), who averaged

0.80. Although the dataset for this student is smaller, as he attended only three classes,

his confidence level for the first class reached 0.85. However, in the other two classes,

the confidence levels were slightly lower at 0.79 and 0.76.

Figure 4.12: Confidence level for Chew You Hui_20ADB04796

0.89 0.9 0.91
0.87

0.98

0.8

0.87

0.95

0.81

0.4

0.5

0.6

0.7

0.8

0.9

1

UGEB3016
Final Year

Project

UGEB3016
Final Year

Project

UGEB3016
Testing

UGEB1011
Digital

UGEB1011
Digital

UGEB3016
Class A

UGEB3016
Class A

UGEB1011
Class C

UGEB1011
Class C

Co
nf

id
en

ce
 L

ev
el

Class

Chew You Hui_20ADB04796

66

Figure 4.13: Confidence level for Boey Zhi Xuan_20AGB05745

Figure 4.14: Confidence level for Kuak Xuan Ren_21AGB06806

0.8
0.82

0.77
0.8 0.81 0.8

0.4

0.5

0.6

0.7

0.8

0.9

1

UGEB3016 Final
Year Project

UGEB3016 Final
Year Project

UGEB3016
Testing

UGEB3016
Testing

UGEB3016
Class B

UGEB3016
Class C

Co
nf

id
en

ce
 L

ev
el

Class

Boey Zhi Xuan_20AGB05745

0.95

0.89

0.83
0.87

0.89
0.87

0.85

0.4

0.5

0.6

0.7

0.8

0.9

1

UGEB3016
Final Year

Project

UGEB1011
Digital

UGEB1011
Digital

UGEB3016
Class A

UGEB1011
Class C

UGEB1011
Class C

UGEB1011
Class C

Co
nf

id
en

ce
 L

ev
el

Class

Kuak Xuan Ren_21AGB06806

67

Figure 4.15: Confidence level for Edward Yeoh Hong Enn_22ADB02687

Figure 4.16: Confidence level for Tcy_21AGB00000

0.88
0.8

0.88
0.82 0.84

0.8
0.87 0.9 0.88 0.85

0.4

0.5

0.6

0.7

0.8

0.9

1

Co
nf

id
en

ce
 L

ev
el

Class

Edward Yeoh Hong Enn_22ADB02687

0.85
0.79

0.76

0.4

0.5

0.6

0.7

0.8

0.9

1

UGEB3016 Testing UGEB1011 Digital UGEB3016 Class B

Co
nf

id
en

ce
 L

ev
el

Class

Tcy_21AGB00000

68

4.2.2.2 The JSON and Excel result for each class

The following figures shows the JSON file storing information related to student for

each class, along with the attendance details. When a name and ID of a student are

specified in the JSON file, but the face of the concerned student is not captured in the

session, it will be marked as “Absent”, and the concerned cell in the sheet will be in

red colour. Also, the “Status” column will indicate if a student has attendance below

the 80% which will easily identify students with attendance problems.

UGEB3016 Final Year Project:

[

 {

 "name": "Kuak Xuan Ren",

 "student_id": "21AGB06806"

 },

 {

 "name": "Edward Yeoh Hong Enn",

 "student_id": "22ADB02687"

 },

 {

 "name": "Chew You Hui",

 "student_id": "20ADB04796"

 },

 {

 "name": "Boey Zhi Xuan",

 "student_id": "20AGB05745"

 },

 {

 "name": "Tcy",

 "student_id": "21AGB00000"

 }

]

Figure 4.17: JSON file for UGEB3016 Final Year Project

69

Figure 4.18: The Attendance of students for UGEB3016 Final Year Project

UGEB3016 Testing:

[
 {
 "name": "Edward Yeoh Hong Enn",
 "student_id": "22ADB02687"
 },
 {
 "name": "Chew You Hui",
 "student_id": "20ADB04796"
 },
 {
 "name": "Tcy",
 "student_id": "21AGB00000"
 },
 {
 "name": "Boey Zhi Xuan",
 "student_id": "20AGB05745"
 }
]

Figure 4.19: JSON format for UGEB3016 Testing

Figure 4.20: The Attendance of students for UGEB3016 Testing

70

UGEB1011 Digital:

[
 {
 "name": "Kuak Xuan Ren",
 "student_id": "21AGB06806"
 },
 {
 "name": "Edward Yeoh Hong Enn",
 "student_id": "22ADB02687"
 },
 {
 "name": "Chew You Hui",
 "student_id": "20ADB04796"
 },
 {
 "name": "Tcy",
 "student_id": "21AGB00000"
 }
]

Figure 4.21: JSON format for UGEB1011 Digital

Figure 4.22: The Attendance of students for UGEB1011 Digital

71

UGEB3016 Class A:

[
 {
 "name": "Kuak Xuan Ren",
 "student_id": "21AGB06806"
 },
 {
 "name": "Edward Yeoh Hong Enn",
 "student_id": "22ADB02687"
 },
 {
 "name": "Chew You Hui",
 "student_id": "20ADB04796"
 },
 {
 "name": "Tcy",
 "student_id": "21AGB00000"
 }
]

Figure 4.23: JSON format for UGEB3016 Class A

Figure 4.24: The Attendance of students for UGEB3016 Class A

72

UGEB3016 Class B:

[
 {
 "name": "Kuak Xuan Ren",
 "student_id": "21AGB06806"
 },
 {
 "name": "Edward Yeoh Hong Enn",
 "student_id": "22ADB02687"
 },
 {
 "name": "Tcy",
 "student_id": "21AGB00000"
 },
 {
 "name": "Boey Zhi Xuan",
 "student_id": "20AGB05745"
 }
]

Figure 4.25: JSON format for UGEB3016 Class B

Figure 4.26: The Attendance of students for UGEB3016 Class B

73

UGEB1011 Class C:

[
 {
 "name": "Kuak Xuan Ren",
 "student_id": "21AGB06806"
 },
 {
 "name": "Edward Yeoh Hong Enn",
 "student_id": "22ADB02687"
 },
 {
 "name": "Chew You Hui",
 "student_id": "20ADB04796"
 },
 {
 "name": "Boey Zhi Xuan",
 "student_id": "20AGB05745"
 },
 {
 "name": "Tcy",
 "student_id": "21AGB00000"
 }
]

Figure 4.27: JSON format for UGEB1011 Class C

Figure 4.28: The Attendance of students for UGEB1011 Class C

74

4.3 Discussion

4.3.1 Hardware Setup

The Rapoo C280 Webcam 2K HD will be setup and use to detect and recognize the

human faces.

4.3.2 Model Training

In this section will provide a comprehensive overview of the entire model training

process, starting from collecting the dataset through training the model until deploys

it for the next phase of face detection.

4.3.2.1 Dataset Collection

Before the beginning of model training, the data needs to be pre-processed and fed to

a pre-trained model to enable it to learn and complete detection and classification tasks

effectively. In this case, the model used for face detection and classification is trained

to detect as well as classify the target object that is faces under a single class. For this,

the roboflow tool has been used in order to annotate each face present in the images.

In terms of annotation, roboflow provides an ease of use where the users can manually

adjust the bounding boxes around the detected faces depending on their interpretation.

Lee Han Kee
In text citation for Figure 4.17 – 4.28 is missing

75

The process of resizing the image and all the other preprocessing steps is all

done in the tool and then once the annotation is done, the Roboflow tool provides a

very neatly formatted dataset. The described dataset is then used to train the face

detection YOLOv8 model and the desired distance estimates. It must also be noted that

annotation especially labelling is critical in this process because if the labels are wrong,

the model will not be able to locate the faces within the images. Another useful feature

of Roboflow is auto-labelling, which automatically generates bounding box labels, and

which can be easily adjusted by the user. Thereafter, Roboflow splits up the images

with all the labels into the training, validation, and testing datasets whilst ensuring the

preservation of the labelled data. This automated partitioning helps keep things ordered

while making it easy to move to the training phase.

Figure 4.29: The data that use to train model

76

4.3.2.2 Train YOLOv8 for face detection

After the dataset has been correctly labelled and created the training session of the

YOLOv8 model commences. In this phase, the model fine tunes the trained parameters

in the process and classification of the faces’ annotated images which aid the model in

the real-time face recognition systems. This kind of preparation and training is crucial

in making sure that at the end the model is fully capable of recognizing faces even in

different settings and thus makes a good model for use in tracking attendance or any

other tasks that may involve recognition of faces.

if __name__ == "__main__":
 import multiprocessing
 multiprocessing.set_start_method('spawn')
 from multiprocessing import freeze_support

 from ultralytics import YOLO
 import torch

 freeze_support()

data_yaml_path =
r"C:\Users\KXUANREN\OneDrive\UTAR_AllPrograms\Uni Courses
Y3S2\FYP_1\FYP
code\dataset_source\face_detection.yolov8\data.yaml"

 device = 'cuda' if torch.cuda.is_available() else 'cpu'
 print(f"Using device: {device}")

 model = YOLO("yolov8n.pt")

model.to(device)

model.train(data=data_yaml_path, epochs=20, device=device,
batch=2, workers=0)

 model.save("face_detector.pt")

print("Training completed!")

Figure 4.30: Training the face detection model

77

Figure 4.30 show the code used in training face detection model. However,

before the start of the learning process, the system checks whether CUDA is present,

having been detected in the process of training with the help of GPU. The model fine-

tuning is performed to the model called ‘yolov8n. pt’, which in turn is based on

YOLOv8 model.

It is carried out through 20 epochs, which seem to be quite reasonable because

of the relatively small amount of data. Less epochs are helpful in preventing overfitting

which could be a major issue in case of many epochs are used. Since memory is limited,

batch size of 2 is chosen to eliminate out-of-memory (OOM) during the runtime of the

process. But once the training is done the model is saved as “face_detector. pt” without

needing any more instructions. From the above train and test processes, the newly

trained model of face detection is effective in real-time application’s recognition since

it utilises the learned patterns from the dataset.

4.3.3 Model Evaluation

After the model was trained successfully, model performance was assessed based on

the measurements that are precision, recall and F1 score. Precision checks the number

of correct face detection by the model, recall reviews the ability of the model to pick

up all faces, the F1 score checks the model’s performance all over and then averages

then both the precision and the recall scores. These metrics provide a versatile picture

of the model’s performance as a tool for real-time face detection and recognition.

78

Figure 4.31: The result of recall confidence curve

Figure 4.31 show the recall of the face detection model. It can be seen that the

confidence score is inversely proportional with the recall rate of the system. As

indicated in figure above, for the overall recall, it gets the value of 0.99 meaning that

model is capable of detecting actual 99% face out of the entire set. This indicates that

the model seems to have a very high recall value, which suggests that it provides a

relatively perfect performance in terms of detecting faces without too many missed

detections.

79

Figure 4.32: The result of precision confidence curve

Figure 4.32 shows the value of the parameter, which defines precision of the

face detection model. This is evident from a precision score of a 1.00 for all classes

meaning that the model correctly predicts 100% of the identities it labels as faces

without any false positive identification. The threshold of 0. 622 stands for the IoU

criterion hence it means that an intersection of the predicted bounding box and the

ground truth bounding box should be no less than 62. 2%. This shows that despite the

use of this much overlap in testing for accuracy of the model’s prediction, the model

has not lost its accuracy.

80

Figure 4.33: The result of F1 score confidence curve

Figure 4.33 shows the F1 score metric for face detection model. It means F1

score is 0.97 at the said threshold of 0.138 is an indication that recall and precision are

high for all classes of the model and is therefore an indication of the high ability by

the model in achieving high results. The F1 score, which is an average of precision and

recollections, is an accurate measurement of the model’s efficiency. The threshold of

0. 138 which is the IoU or a similar criterion helps to define the measurable minimum

overlap between the predictive bounding boxes and the actual instances’ bounding

boxes.

4.3.4 Encoding and compare

In this section will show the dlib's face encoding process. It uses a deep learning-based

approach to extract a 128-dimensional feature vector (face embedding) for each face.

This encoding represents the unique features of a face, which is used for comparing

and matching faces.

81

model_path1 = r'saved_model\face_detector.pt'
model1 = YOLO(model_path1)
model1.to(device)

Figure 4.34: Load the face detection model

Figure 4.34 shows how to detect and recognize faces in real-time using

YOLOv8 and do encoding using dlib. Before starting encoding, the system first

imports the pre-trained YOLOv8 face detector model name “face_detector. pt” which

is going to be used during face detecting during the real-time session. The use of model

for face detection plays a crucial role since it pinpoints the area within the video stream

feed or real-time that contains the faces hence only that region is captured for encoding.

def face_encodings(face_image, known_face_locations=None,
num_jitters=1, verbose=True):
 face_encoding = []
 for raw_landmark_set in raw_landmarks:
 face_detail =
face_encoder.compute_face_descriptor(face_image, raw_landmark_set,
num_jitters)
 face_detail_encoding = np.array(face_detail)
 face_encoding.append(face_detail_encoding)

Figure 4.35: Face encoding

def save_known_faces(known_face_encodings, known_face_names,
file_path='saved_model/dlib_C_faces.pkl'):

Figure 4.36: Saving the known faces

Lee Han Kee
Compare with what?

82

After the pre-processing, Figure 4.35 shows the face encoding for each dataset

is done. It is a process of converting the detected face into a 128-dimensional vector

representation of the face. The system computes face encodings by first converting the

face locations into “dlib.rectangle” objects which represent the detected face

boundaries. Afterward, it computes the facial landmarks i.e. location of eyes, nose, and

mouth in order to accurately encode the facial features. Figure 4.36 indicate these

encodings are stored in a .pkl file, making sure all the known faces from the dataset

are prepared to be compared when detecting face in real-time.

def compare_faces(known_face_encodings, face_encoding_to_check,
tolerance=0.6):
 if len(known_face_encodings) == 0:
 return np.empty((0))
 distance = np.linalg.norm(known_face_encodings -
face_encoding_to_check, axis=1)
 best_match_index = np.argmin(distance)
 best_distance = distance[best_match_index]
 match_list = list(distance <= tolerance)
 match = match_list[best_match_index]
 return match, best_match_index, best_distance

Figure 4.37: Comparing the known face with the new detected face

In the case of real-time image for face recognition, it uses face_detector.pt

model again to find faces in an input live feed. The encoding process is then repeated

for each detected face, producing a 128-dimensional vector of the on-the-fly face. This

encoding is then compared to the known face encodings loaded from saving it

previously in a .pkl file. This comparison is done by measuring the Euclidean distance

between the real-time encoding and each known face encoding. In this case, a face is

matched if its distance to the reference image falls beneath some standard threshold

(usually is 0.6).

def load_known_faces(dataset_path):
 known_face_names = []
 known_face_encodings = []
 total = len(datasets)
 count = 0
 for person_name in datasets:

83

 count += 1
 person_folder = os.path.join(dataset_path , person_name)
 if os.path.isdir(person_folder):
 persons = os.listdir(person_folder)
 total_image = len(persons)
 count_image = 0
 for image_name in persons:
 image_path = os.path.join(person_folder, image_name)
 image = PIL.Image.open(image_path)
 mode = 'RGB'
 if mode:
 image = image.convert(mode)
 image = np.array(image)
 face_locations = detect_face_location_YOLO(image,
verbose=False)
 if face_locations:
 face_encoding = face_encodings(image,
face_locations, verbose=False)[0]
 known_face_encodings.append(face_encoding)
 known_face_names.append(person_name)
 count_image+=1
 print_progress_bar(count, total,count_image,
total_image)

Figure 4.38: Load the known encoding face

When a match is found, the system fetches all of the data such as Name and ID

related to that known face in the dataset. This enables the system to show, in real-time,

who the detected person is perfect for keeping a record of student attendance or other

uses where face recognition would be crucial. From face detection to coding

comparison, YOLO and dlib ensure real-time and trouble-free face recognition.

84

4.3.5 Logging to Excel file

Once the system successfully detects a known person, it then logs the student's

attendance in an Excel file. This guarantees that a student log will be maintained

orderly on a daily basis for each pupil in the class.

 def create_or_load_excel(self, course_name):
 file_name = "attendance_record.xlsx"

 headers = ["No.", "Class Duration", "Student Name", "Student
ID", "Sign-in Time", "Sign-out Time", "Duration", "Total Time",
"Attendance", "Status"]
 workbook.save(file_name)
 return file_name

Figure 4.39: Create an Excel file

Figure 4.39 reflects the original structure of an Excel file. It lays out the

columns for things like student name, student ID, sign-in time, sign-out time, etc. It

could also incorporate course-specific information and multi-session attendance

tracking with session dates included in the file.

 def save_attendance_to_excel(self):
 workbook = load_workbook(self.excel_file_path)
 sheet = workbook[self.course_name]

 if sign_in_time and sign_out_time:
 duration = sign_out_time - sign_in_time
 percentage = calculate_percentage(duration,
self.course_duration)
 attendance = "Present" if percentage >= 10 else
"Absent"

Figure 4.40: Saved to the Excel file

85

Figure 4.40 shows when a student is detected, their attendance (sign-in time and

sign-out time) is automatically saved to the relevant row in the Excel file. This helps

calculate whether the student has spent a sufficient amount of time in class to be

marked as "Present," or if they haven't met the required minimum, they are marked as

"Absent." Based on this, the system retrieves recognized student information and fills

out their relevant fields, leading to comprehensive attendance records that can be easily

accessed.

4.4 Limitations

This face encoding (which relies on dlib) cannot be accelerated with the GPU, due to

system limitations. This makes the encoding process very slow, especially when

multiple faces are detected at the same time. As the number of faces the system must

detect increases, the time required to calculate the encoding increases, which slows

down the entire face recognition process. This becomes a big problem in very time-

critical applications where high throughput processing is required to run smoothly.

 Another difficulty is related to lighting conditions. Illumination changes can

greatly affect the accuracy of face recognition. For example, if the faces in the dataset

were acquired under optimal lighting conditions, but the live image is poorly

illuminated or has uneven illumination, the detection rate may be affected. So, with

that in mind, images of each person in the dataset may need to be captured under a

wider variety of lighting conditions. Alternatively, the system could implement a

method to adjust the colour and brightness of each detected face in real time before

matching it to the dataset, thus improving overall accuracy.

86

In addition, the face detection camera (Rapoo C280 Webcam 2K HD) lacks a

night mode function, which results in poorer results in low-light or dark environments.

If there is insufficient lighting, the system may not be able to correctly identify or

identify faces, which will reduce its effectiveness at night or in dimly lit scenes. This

limitation suggests that the system would be greatly improved by using camera

hardware with better low-light specifications or by employing external lighting to

improve detection accuracy in poor visibility conditions.

87

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, the project has reached all the objectives and built an effective automatic

system which ensures attendance is recorded easily through facial recognition

technology. To begin with, YOLO uses CNN to calculate the class probabilities of

objects in input photos to implement an automatic facial recognition system that can

accurately detect and recognize human faces. This system not only detects but also

identifies an It’s reliable even when people are in various places to ensure that this

objective is met. Hence, I have created an AI-based face recognition system for class

attendance.

 The second objective, which focused on analyse the data collected from the

designed class attendance system, was also realized through use of YOLO the facial

detection and facial encoding techniques. This encoding process is achieved through

representing each face as a unique 128-dimensional vector and making accurate

comparisons between them such that individuals are unmistakably matched according

to their facial features by the system. Such approach employs Euclidean distance

metric which guarantees the high level of precision in recognizing and differentiating

faces even under complicated circumstances. Therefore, face detection, encoding and

comparison procedure has been crucial in providing reliability and strength to the class

attendance system.

88

 Lastly, the project has streamlined management processes by integrating

Excel-based attendance recording and management. Besides, it has the capability to

calculate total attendance percentage per student hence providing a complete

automated for tracking attendance over a period of time. Administrative efficiency is

enhanced through this feature as a result accurate and consistent attendance records

are kept reducing human mistakes thus giving teachers and administrators more time

for other important tasks.

5.2 Recommendations

In this place, several recommendations that could improve the future improvements to

the project in order to improve perform of the system were developed. Some of the

recommendations are as follows, first, there is the issue of having a camera that can

work well under both day and night. This would enhance the facial recognition since

it’s possible to have instances where the face is illuminated resulting in a clear

identification of the face. By eliminating distortions introduced by changing lighting

conditions, the strategy will lead to increased accuracy of the still method in real-world

settings.

The other recommendation is to consider another approach to face encoding

and can also try to use other approaches or replace facial recognition algorithms or

libraries for training this model. At the moment, it uses Dlib encoding, and this is a

disadvantage because it does not support the use of GPU. This results to slower

processing time than the traditional face encoding and comparison. Thus, if the GPU

methods are tested and used in the encoding and recognition procedures, the system’s

speed will be increased, and efficiency improved. However, other possible

workaround to avoid several days of encoding time is also to use the available access

to high performance CPUs and GPUs offered in tools such as Google Colab. The use

of such platforms would also help to perform computational tasks much faster and

without the need for special hardware which in turn would improve the flow of the

system.

89

Moreover, the optimization of student’s registration process and giving an

opportunity to students to register their faces online also would save a lot of time.

Rather than registering each student by going through the process one by one the use

of online registration system could be adopted this could help reduce the

inconveniences caused by the process.

Enhancing the quality of the camera used in classroom is also highly

encouraged for example using a good quality camera. Larger F. O. V cameras of better

quality would help the system to scan more people at once – up to 10-30 students. This

would help in increasing the effectiveness of the system’s capability to detect the face

in a complex environment such as a classroom. In addition, with so much enhancement

in algorithms, adding some algorithms would help in easily detecting fake faces like

photo on a phone hence reducing chances of cheating in addition to making the

attendance system more reliable.

90

REFERENCES

Abramov, M. (2023). Comparing YOLOv8 and YOLOv7: What’s New? [online]
Keylabs: latest news and updates. Available at: https://keylabs.ai/blog/comparing-
yolov8-and-yolov7-whats-
new/#:~:text=YOLOv8%20and%20YOLOv7%20are%20versions.

Augmented A.I. (2023). Unlock the Full Potential of Object Detection with YOLOv8.
[online] www.augmentedstartups.com. Available at:
https://www.augmentedstartups.com/blog/unlock-the-full-potential-of-object-
detection-with-yolov8-faster-and-more-accurate-than-yolov7-2.

Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., Modi, K. and
Ghayvat, H. (2021). CNN Variants for Computer Vision: History, Architecture,
Application, Challenges and Future Scope. Electronics, 10(20), p.2470.

Bouvrie, J. (2006). Notes on Convolutional Neural Networks.

Cui, Y., Jin, J.S., Luo, S., Park, M. and Sherlock S.L. Au (2009). Automated Pattern
Recognition and Defect Inspection System. proc. 5th International Conference on
Computer Vision and Graphical Image, 59, pp.768–773.
doi:https://doi.org/10.1109/icig.2009.144.

E King, D. (2009). Dlib-ml: A machine learning toolkit. The Journal of Machine
Learning Research, 10, pp.1755–1758.

elifezgisen (2023). GitHub - elifezgisen/face-recognition: It is a Face Recognition
project prepared using libraries such as OpenCV and Dlib. [online] GitHub.
Available at: https://github.com/elifezgisen/face-recognition [Accessed 8 Sep.
2024].

Fischler, M.A. and Elschlager, R.A. (1973). The Representation and Matching of
Pictorial Structures. IEEE Transactions on Computers, C-22(1), pp.67–92.
doi:https://doi.org/10.1109/t-c.1973.223602.

Goldstein, A.J., Harmon, L.D. and Lesk, A.B. (1971). Identification of human faces.
Proceedings of the IEEE, 59(5), pp.748–760.
doi:https://doi.org/10.1109/proc.1971.8254.

91

He, K., Zhang, X., Ren, S. and Sun, J. (2016a). Deep Residual Learning for Image
Recognition. Thecvf.com, [online] pp.770–778. Available at:
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learni
ng_CVPR_2016_paper.html.

He, K., Zhang, X., Ren, S. and Sun, J. (2016b). Identity Mappings in Deep Residual
Networks. Computer Vision – ECCV 2016, pp.630–645.
doi:https://doi.org/10.1007/978-3-319-46493-0_38.

Huang, L., Qin, J., Zhou, Y., Fang, Y., Liu, L. and Shao, L. (2023). Normalization
Techniques in Training DNNs: Methodology, Analysis and Application. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp.1–20.

IBM (2023). What Is Machine Learning? [online] IBM. Available at:
https://www.ibm.com/topics/machine-learning.

Kirk, D. (2007). NVIDIA cuda software and gpu parallel computing architecture.
Proceedings of the 6th international symposium on Memory management -
ISMM ’07. doi:https://doi.org/10.1145/1296907.1296909.

Mirkhan, A. (2023). YOLO Algorithm: Real-Time Object Detection from A to Z.
[online] kili-website. Available at: https://kili-technology.com/data-
labeling/machine-learning/yolo-algorithm-real-time-object-detection-from-a-to-z
[Accessed 20 Apr. 2024].

Paramjeet Kaur, E. and Nishi, E. (2014). A Survey on CUDA. [online] Available at:
https://www.ijcsit.com/docs/Volume%205/vol5issue02/ijcsit20140502282.pdf
[Accessed 8 Sep. 2024].

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016). You Only Look Once:
Unified, Real-Time Object Detection. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), [online] pp.779–788. Available
at: https://www.cv-
foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_C
VPR_2016_paper.html.

Rosebrock, A. (2018). Face recognition with OpenCV, Python, and deep learning.
[online] PyImageSearch. Available at:
https://pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-
deep-learning/.

S.S.R. Abibi (2002). Proceedings TENCON 2000. Simulating evolution: connectionist
metaphors for studying human cognitive behaviour, 1, pp.167–173.
doi:https://doi.org/10.1109/tencon.2000.893563.

92

Stepanov, S., Spiridonov, D. and Mai, T. (2023). Prediction of numerical
homogenization using deep learning for the Richards equation. Journal of
Computational and Applied Mathematics, 424, p.114980.

Uddin, Md.P., Mamun, Md.A. and Hossain, Md.A. (2021). PCA-based Feature
Reduction for Hyperspectral Remote Sensing Image Classification. IETE Technical
Review, 38(4): 377–396.

Viswanatha, V., Chandana R, K. and Ramachandra, A.C. (2022). Real Time Object
Detection System with YOLO and CNN Models: A Review. [online] Available at:
https://arxiv.org/ftp/arxiv/papers/2208/2208.00773.pdf.

Zhao, X., Wang, L., Zhang, Y., Han, X., Muhammet Deveci and Parmar, M. (2024).
A review of convolutional neural networks in computer vision. Artificial
Intelligence Review, 57(4). doi:https://doi.org/10.1007/s10462-024-10721-6.

93

APPENDICES

APPENDIX A: Main Register Code

from registration import register_course

from registration import register_user

if __name__ == "__main__":

 course_name = register_course()

 register_user(course_name)

APPENDIX B: Registration

import re

import cv2

import os

import json

from ultralytics import YOLO

import torch

device = 'cuda' if torch.cuda.is_available() else 'cpu'

print(f"Using device: {device}")

94

def validate_student_id(student_id):

 pattern = r'^2\d[A-Z]{3}\d{5}$'

 return re.match(pattern, student_id)

def validate_course_name(course_name):

 pattern = r'^[A-Z]{3,4}\d{4,5} .+$'

 return re.match(pattern, course_name)

def format_name(name):

 return ' '.join(part.capitalize() for part in name.split())

def save_registration_data(name, student_id, course_name):

 registration_data = {

 "name": name,

 "student_id": student_id

 }

 json_file_path = f"dataset_json/{course_name}.json"

 if os.path.exists(json_file_path):

 with open(json_file_path, 'r') as f:

 data = json.load(f)

 else:

 data = []

 for entry in data:

 if entry['name'] == name and entry['student_id'] ==

student_id:

 print("You already registered.")

 return False

 data.append(registration_data)

 with open(json_file_path, 'w') as f:

 json.dump(data, f, indent=4)

 return True

95

def register_course():

 while True:

 course_name = input("Please Enter Your Course Name (e.g.,

UGEB3016 Final Year Project 1): ")

 if validate_course_name(course_name):

 json_file_path = f"dataset_json/{course_name}.json"

 dataset_path = os.path.join("dataset", course_name)

 if os.path.exists(json_file_path) and

os.path.exists(dataset_path):

 print(f"Course {course_name} already exists. Adding

new student to this course.")

 else:

 print(f"Creating new course entry for

{course_name}.")

 if not os.path.exists("dataset_json"):

 os.makedirs("dataset_json")

 if not os.path.exists(dataset_path):

 os.makedirs(dataset_path)

 return course_name

 else:

 print("Invalid course name format, e.g., UGEB0316 Final

Year Project")

def register_user(course_name):

 name = input("Please Enter Your Name: ")

 formatted_name = format_name(name)

 if formatted_name != name:

 print(f"Name corrected to: {formatted_name}")

 while True:

 student_id = input("Please Enter Your Student ID: ")

 if validate_student_id(student_id):

 print("Wait to start capturing your face...")

 if video_loop(formatted_name, student_id, course_name):

 save_registration_data(formatted_name, student_id,

course_name)

 break

96

 else:

 print(f"Invalid student ID format, e.g., 21AGB06806:

{student_id}")

def video_loop(name, student_id, course_name, max_images=50):

 dataset_path = os.path.join("dataset", course_name)

 student_folder = os.path.join(dataset_path,

f"{name}_{student_id}")

 if not os.path.exists(student_folder):

 os.makedirs(student_folder)

 cam = cv2.VideoCapture(0)

 cv2.namedWindow("Capture Face")

 face_model_path =

r'C:\Users\KXUANREN\OneDrive\UTAR_AllPrograms\Uni Courses

Y3S2\FYP_1\FYP code\face_detector.pt'

 face_model = YOLO(face_model_path)

 img_counter = 0

 success = False

 while img_counter < max_images:

 ret, frame = cam.read()

 if not ret:

 print("Failed to grab frame")

 break

 results = face_model(frame)

 faces = results[0].boxes

 face_detected = False

 for box in faces:

 cls = int(box.cls[0])

 if cls == 0:

 x1, y1, x2, y2 = map(int, box.xyxy[0])

97

 face_roi = frame[y1:y2, x1:x2]

 face_detected = True

 cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0),

2)

 if not face_detected:

 cv2.putText(frame, "Please put your face in the right

position",

 (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0,

255), 2, cv2.LINE_AA)

 cv2.imshow("Capture Face", frame)

 k = cv2.waitKey(1)

 if k % 256 == 27:

 print("Escape hit, closing...")

 break

 elif k % 256 == 32 and face_detected:

 face_img_name = os.path.join(student_folder,

f"{name}_{student_id}_{img_counter}.png")

 cv2.imwrite(face_img_name, face_roi)

 print(f"{face_img_name} written!")

 img_counter += 1

 if img_counter == max_images:

 success = True

 cam.release()

 cv2.destroyAllWindows()

 if not success:

 if os.path.exists(student_folder):

 for file in os.listdir(student_folder):

 os.remove(os.path.join(student_folder, file))

 os.rmdir(student_folder)

 print(f"Failed to capture images for {name} (ID:

{student_id})")

98

 else:

 print(f"Captured {img_counter} images for {name} (ID:

{student_id})")

 return success

if __name__ == "__main__":

 course_name = register_course()

 register_user(course_name)

APPENDIX C: Face Encoding and Compare

import os

import sys

import pickle

import PIL

import numpy as np

import dlib

from PIL import ImageFile

import time

import torch

import multiprocessing

multiprocessing.set_start_method('spawn')

from multiprocessing import freeze_support

from ultralytics import YOLO

freeze_support()

device = 'cuda' if torch.cuda.is_available() else 'cpu'

print(f"Using device: {device}")

99

model_path1 = r'saved_model\face_detector.pt'

model1 = YOLO(model_path1)

model1.to(device)

ImageFile.LOAD_TRUNCATED_IMAGES = True

model_path = 'saved_model'

predictor_point_model =

os.path.join(model_path,"shape_predictor_5_face_landmarks.dat") #

facenet_keras.h5

face_recognition_model =

os.path.join(model_path,"dlib_face_recognition_resnet_model_v1.dat")

def print_progress_bar(main_iteration, main_total, iteration, total,

length=20):

 percent = ("{0:.1f}").format(100 * (iteration / float(total)))

 filled_length = int(length * iteration // total)

 bar = '█' * filled_length + '-' * (length - filled_length)

 sys.stdout.write(f'\rTraining --> {main_iteration}/{main_total}

[{bar}] {percent}% Complete')

 sys.stdout.flush()

def save_known_faces(known_face_encodings, known_face_names,

file_path='saved_model/dlib_C_faces.pkl'):

 if not os.path.exists(os.path.dirname(file_path)):

 os.makedirs(os.path.dirname(file_path))

 with open(file_path, 'wb') as f:

 pickle.dump({

 'encodings': known_face_encodings,

 'names': known_face_names

 }, f)

 print(f"Saved known faces to {file_path}")

def load_known_faces(dataset_path):

 known_face_names = []

100

 known_face_encodings = []

 datasets = os.listdir(dataset_path)

 total = len(datasets)

 count = 0

 for person_name in datasets:

 count += 1

 person_folder = os.path.join(dataset_path , person_name)

 if os.path.isdir(person_folder):

 persons = os.listdir(person_folder)

 total_image = len(persons)

 count_image = 0

 for image_name in persons:

 image_path = os.path.join(person_folder, image_name)

 image = PIL.Image.open(image_path)

 mode = 'RGB'

 if mode:

 image = image.convert(mode)

 image = np.array(image)

 face_locations = detect_face_location_YOLO(image,

verbose=False)

 if face_locations:

 face_encoding = face_encodings(image,

face_locations, verbose=False)[0]

 known_face_encodings.append(face_encoding)

 known_face_names.append(person_name)

 count_image+=1

 print_progress_bar(count, total,count_image,

total_image)

 print()

 print("Training complete!")

 save_known_faces(known_face_encodings, known_face_names)

 return known_face_encodings, known_face_names

def detect_face_location_YOLO(image, verbose=True):

 results = model1.predict(source=image, conf=0.5, save=False,

stream=True, device=device, verbose=verbose)

101

 boxes = []

 for result in results:

 orig_img = np.copy(result.orig_img)

 for detection_index, detection in enumerate(result):

 detection_boxes = detection.boxes

 if int(detection_boxes.cls) == 0: # Assuming class 0 is

face

 x1, y1, x2, y2 = map(int, detection_boxes.xyxy[0])

 # boxes.append((x1, y1, x2, y2))

 boxes.append((y1, x2, y2, x1))

 return boxes

def detect_face_location_dlib(img, verbose=True):

 start_time = time.time()

 face_detector = dlib.get_frontal_face_detector()

 faces = face_detector(img, 1)

 end_time = time.time()

 if verbose == True:

 print(f"DLIB_Detection taken 1: {((end_time - start_time) *

1000):.4f} ms")

 return [(rect.top(), rect.right(), rect.bottom(), rect.left())

for rect in faces]

def compare_faces(known_face_encodings, face_encoding_to_check,

tolerance=0.6):

 if len(known_face_encodings) == 0:

 return np.empty((0))

 distance = np.linalg.norm(known_face_encodings -

face_encoding_to_check, axis=1)

 best_match_index = np.argmin(distance)

 best_distance = distance[best_match_index]

 match_list = list(distance <= tolerance)

 match = match_list[best_match_index]

 return match, best_match_index, best_distance

102

def face_encodings(face_image, known_face_locations=None,

num_jitters=1, verbose=True):

 start_time = time.time()

 if known_face_locations is None:

 known_face_locations = detect_face_location_dlib(face_image)

 known_face_locations = [dlib.rectangle(face_location[3],

face_location[0], face_location[1], face_location[2]) for

face_location in known_face_locations]

 pose_predictor = dlib.shape_predictor(predictor_point_model)

 face_encoder =

dlib.face_recognition_model_v1(face_recognition_model)

 raw_landmarks = []

 for known_face_location in known_face_locations:

 pose_predict = pose_predictor(face_image,

known_face_location)

 raw_landmarks.append(pose_predict)

 face_encoding = []

 for raw_landmark_set in raw_landmarks:

 face_detail =

face_encoder.compute_face_descriptor(face_image, raw_landmark_set,

num_jitters)

 face_detail_encoding = np.array(face_detail)

 face_encoding.append(face_detail_encoding)

 end_time = time.time()

 if verbose == True:

 print(f"Time taken 1: {((end_time - start_time) * 1000):.4f}

ms")

 return face_encoding

103

APPENDIX D: Real-time Face Recognition

import os

import cv2

import pickle

import face_reco_2 as face_reco

import json

import sys

from realtime_ui import start_realtime_ui

from PIL import ImageTk, Image

import time

from openpyxl import Workbook, load_workbook

from openpyxl.styles import PatternFill

from datetime import datetime

tolerance = 0.5

json_directory = r'C:\Users\KXUANREN\Desktop\UTAR_AllPrograms\Uni

Courses Y3S2\FYP_1\FYP code\dataset_json'

def load_student_data(json_file):

 with open(json_file, 'r') as f:

 return json.load(f)

def get_course_file():

 course_name = input("Course name (eg: UGEB3016 Final Year Project

1): ")

 json_file = os.path.join(json_directory, f'{course_name}.json')

 if os.path.exists(json_file):

 return json_file, course_name

 else:

 print(f"No JSON file found for course '{course_name}' in the

specified directory.")

 sys.exit(1)

104

def get_course_and_student_data():

 json_file, course_name = get_course_file()

 student_data = load_student_data(json_file)

 return json_file, course_name, student_data

def get_course_duration():

 while True:

 try:

 duration_input = input("Enter the class duration (hh:mm):

")

 duration = datetime.strptime(duration_input, '%H:%M') -

datetime(1900, 1, 1)

 return duration

 except ValueError:

 print("Invalid duration format. Please use 'hh:mm'.")

class FaceRecognize():

 def __init__(self, input_source=None):

 super().__init__()

 self.input_source = input_source

 json_file, course_name, student_data =

get_course_and_student_data()

 self.dataset_path = os.path.join('dataset', course_name)

 self.course_duration = get_course_duration()

 self.known_face_encodings, self.known_face_names =

self.load_or_train_faces()

 self.excel_file_path = self.create_or_load_excel(course_name)

 self.course_name = course_name

 self.student_data = student_data

 self.sign_in_times = {}

 self.sign_out_times = {}

 self.start_gui(course_name, student_data)

105

 def load_or_train_faces(self):

 pkl_file = 'saved_model/dlib_C_faces.pkl'

 if os.path.exists(pkl_file):

 with open(pkl_file, 'rb') as f:

 data = pickle.load(f)

 print('Loaded known faces from file.')

 print('Opening the camera...\nPlease wait...')

 return data['encodings'], data['names']

 else:

 print(f'{pkl_file} not found. Training model using

dataset at {self.dataset_path}.')

 return face_reco.load_known_faces(self.dataset_path)

 def process_frame(self, frame, known_face_encodings,

known_face_names):

 face_locations_yolo =

face_reco.detect_face_location_YOLO(frame, True)

 face_encodings = face_reco.face_encodings(frame,

face_locations_yolo, verbose=True)

 detected_faces = {}

 for (y1, x2, y2, x1), face_encoding in

zip(face_locations_yolo, face_encodings):

 match, best_match_index, best_distance =

face_reco.compare_faces(known_face_encodings, face_encoding,

tolerance)

 confidence_level = 1.25 - best_distance

 if match and confidence_level >= 0.6:

 name = known_face_names[best_match_index]

 if name not in detected_faces or confidence_level >

detected_faces[name]['confidence']:

 detected_faces[name] = {

106

 'location': (y1, x2, y2, x1),

 'confidence': confidence_level

 }

 else:

 detected_faces[f"Unknown_{len(detected_faces)}"] = {

 'location': (y1, x2, y2, x1),

 'confidence': confidence_level,

 'name': "Unknown"

 }

 for name, face_data in detected_faces.items():

 y1, x2, y2, x1 = face_data['location']

 colour = (0, 0, 255)

 if name != "Unknown" and face_data['confidence'] >= 0.75:

 colour = (0, 255, 0)

 if name not in self.sign_in_times:

 self.sign_in_times[name] = datetime.now()

 print(f"Sign-in time recorded for {name}:

{self.sign_in_times[name].strftime('%I:%M %p')}")

 self.sign_out_times[name] = datetime.now()

 print(f"Updated sign-out time for {name}:

{self.sign_out_times[name].strftime('%I:%M %p')}")

 name_fontsize = 0.35

 display_name = name if name != "Unknown" else "Unknown"

 (name_width, name_height), _ =

cv2.getTextSize(display_name, cv2.FONT_HERSHEY_SIMPLEX,

name_fontsize, 1)

 cv2.rectangle(frame, (x1, y2 - name_height - 10), (x2,

y2), colour, cv2.FILLED)

 cv2.putText(frame, display_name, (x1 + 6, y2 - 5),

cv2.FONT_HERSHEY_SIMPLEX, name_fontsize, (0, 0, 0), 1, cv2.LINE_AA)

 confidence_fontsize = 0.35

 confidence_text = f"{face_data['confidence']:.2f}"

107

 (conf_width, conf_height), _ =

cv2.getTextSize(confidence_text, cv2.FONT_HERSHEY_SIMPLEX,

confidence_fontsize, 1)

 cv2.rectangle(frame, (x1, y1 - conf_height - 10), (x1 +

conf_width, y1), colour, cv2.FILLED)

 cv2.putText(frame, confidence_text, (x1 + 6, y1 - 5),

cv2.FONT_HERSHEY_SIMPLEX, confidence_fontsize, (0, 0, 0), 1,

cv2.LINE_AA)

 cv2.rectangle(frame, (x1, y1), (x2, y2), colour, 2)

 return frame

 def start_processing(self, video_label):

 self.video_capture = cv2.VideoCapture(self.input_source)

 video_label.update_idletasks()

 video_label_width = video_label.winfo_width()

 video_label_height = video_label.winfo_height()

 start_time = time.time()

 end_time = start_time +

(self.course_duration.total_seconds())

 def update_video():

 while True:

 current_time = time.time()

 if current_time > end_time:

 print("Class duration ended. Closing video

capture...")

 self.save_attendance_to_excel()

 break

 ret, frame = self.video_capture.read()

 if ret:

 frame = cv2.flip(frame, 1)

108

 frame = cv2.resize(frame, (video_label_width,

video_label_height))

 frame = self.process_frame(frame,

self.known_face_encodings, self.known_face_names)

 img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

 img = Image.fromarray(img)

 img = ImageTk.PhotoImage(img)

 video_label.config(image=img)

 video_label.image = img

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 else:

 print('Cannot capture frame, resetting capture.')

 self.video_capture.release()

 self.video_capture =

cv2.VideoCapture(self.input_source)

 self.video_capture.release()

 cv2.destroyAllWindows()

 update_video()

if __name__ == "__main__":

 input_source = 0

 app = FaceRecognize(input_source)

109

APPENDIX E: Create an Excel file to logging the student attendance

 def create_or_load_excel(self, course_name):

 file_name = "attendance_record.xlsx"

 today_date = datetime.now().strftime('%Y-%m-%d')

 if os.path.exists(file_name):

 workbook = load_workbook(file_name)

 if course_name in workbook.sheetnames:

 sheet = workbook[course_name]

 else:

 sheet = workbook.create_sheet(title=course_name)

 else:

 workbook = Workbook()

 sheet = workbook.active

 sheet.title = course_name

 last_row = sheet.max_row

 start_row = last_row + 4 if last_row > 0 else 5

 sheet.cell(row=start_row - 2, column=1, value="Date:")

 sheet.cell(row=start_row - 2, column=2, value=today_date)

 headers = ["No.", "Class Duration", "Student Name", "Student

ID", "Sign-in Time", "Sign-out Time", "Duration", "Total Time",

"Attendance", "Status"]

 for col_num, header in enumerate(headers, start=1):

 sheet.cell(row=start_row - 1, column=col_num,

value=header)

 workbook.save(file_name)

 return file_name

 def save_attendance_to_excel(self):

 workbook = load_workbook(self.excel_file_path)

110

 sheet = workbook[self.course_name]

 last_row = sheet.max_row

 start_row = last_row + 1

 for idx, student in enumerate(self.student_data,

start=start_row):

 student_name = student['name']

 student_id = student['student_id']

 full_name = f"{student_name}_{student_id}"

 sign_in_time = self.sign_in_times.get(full_name, None)

 sign_out_time = self.sign_out_times.get(full_name, None)

 if sign_in_time and sign_out_time:

 duration = sign_out_time - sign_in_time

 percentage = calculate_percentage(duration,

self.course_duration)

 attendance = "Present" if percentage >= 10 else

"Absent"

 if percentage >= 80:

 status = "N/A"

 elif percentage > 10:

 status = "Attendance below 80%"

 else:

 status = "Attendance below 10%"

 duration_str = str(duration)

 percentage_str = f'{percentage:.2f}%'

 else:

 duration_str = "N/A"

 percentage_str = "N/A"

 attendance = "Absent"

 status = "N/A"

 sheet.append([

111

 idx - start_row + 1,

 str(self.course_duration),

 student_name,

 student_id,

 sign_in_time.strftime('%I:%M %p') if sign_in_time

else "N/A",

 sign_out_time.strftime('%I:%M %p') if sign_out_time

else "N/A",

 duration_str,

 percentage_str,

 attendance,

 status

])

 absent_fill = PatternFill(start_color='FF0000',

end_color='FF0000', fill_type='solid')

 below_80_fill = PatternFill(start_color='FFFF00',

end_color='FFFF00', fill_type='solid')

 end_row = start_row + len(self.student_data) - 1

 for row in sheet.iter_rows(min_row=start_row,

max_row=end_row, min_col=9, max_col=9):

 for cell in row:

 if cell.value == "Absent":

 cell.fill = absent_fill

 elif cell.value == "Attendance below 80%":

 cell.fill = below_80_fill

 workbook.save(self.excel_file_path)

 print(f"Attendance recorded in {self.excel_file_path}")

 def start_gui(self, course_name, student_data):

 start_realtime_ui(course_name, student_data,

self.start_processing)

def calculate_duration(sign_in_time, sign_out_time):

112

 return sign_out_time - sign_in_time

def calculate_percentage(duration, class_duration):

 if duration:

 duration_minutes = duration.total_seconds() / 60

 class_duration_minutes = class_duration.total_seconds() / 60

 percentage = (duration_minutes / class_duration_minutes) *

100

 return percentage

 return 0

if __name__ == "__main__":

 input_source = 0

 app = FaceRecognize(input_source)

APPENDIX F: Real-time UI

import tkinter as tk

from tkinter import Label, Text, Scrollbar, RIGHT, Y, END, BOTH

from threading import Thread

def display_student_data(data, student_info_text):

 student_info_text.delete(1.0, END)

 for idx, student in enumerate(data, start=1):

 name = student.get('name', 'Unknown')

 student_info_text.insert(END, f"{idx}. {name}\n")

def start_realtime_ui(course_name, student_data, update_frame):

 root = tk.Tk()

 root.title(course_name)

113

 root.grid_rowconfigure(0, weight=1)

 root.grid_columnconfigure(0, weight=4)

 root.grid_columnconfigure(1, weight=1)

 video_frame = tk.Frame(root, bg='black')

 video_frame.grid(row=0, column=0, sticky="nsew", padx=10,

pady=10)

 data_frame = tk.Frame(root)

 data_frame.grid(row=0, column=1, sticky="nsew", padx=10, pady=10)

 video_label = Label(video_frame)

 video_label.pack(fill=BOTH, expand=True)

 student_info_text = Text(data_frame, wrap="word", height=30,

width=40)

 student_info_text.pack(side="left", fill=BOTH, expand=True)

 scrollbar = Scrollbar(data_frame)

 scrollbar.pack(side=RIGHT, fill=Y)

 scrollbar.config(command=student_info_text.yview)

 student_info_text.config(yscrollcommand=scrollbar.set)

 display_student_data(student_data, student_info_text)

 def resize_video(event):

 video_label.update_idletasks()

 video_width = video_label.winfo_width()

 video_height = video_label.winfo_height()

 video_label.config(width=video_width, height=video_height)

 root.bind("<Configure>", resize_video)

 update_thread = Thread(target=lambda: update_frame(video_label))

 update_thread.daemon = True

 update_thread.start()

114

 root.mainloop()

APPENDIX G: Overall attendance checking

import os

from openpyxl import load_workbook, Workbook

from openpyxl.styles import PatternFill

def calculate_overall_attendance(course_name):

 file_name = "Overall Attendance.xlsx"

 if not os.path.exists(file_name):

 overall_workbook = Workbook()

 overall_workbook.save(file_name)

 else:

 overall_workbook = load_workbook(file_name)

 if course_name in overall_workbook.sheetnames:

 course_sheet = overall_workbook[course_name]

 overall_workbook.remove(course_sheet) # Clear the existing

sheet by removing it

 course_sheet = overall_workbook.create_sheet(course_name) #

Create a new empty sheet

 else:

 course_sheet = overall_workbook.create_sheet(course_name) #

Create a new sheet for the course

 attendance_file = "attendance_record.xlsx"

 if not os.path.exists(attendance_file):

 print("Attendance record file does not exist.")

 return

115

 attendance_workbook = load_workbook(attendance_file)

 if course_name not in attendance_workbook.sheetnames:

 print(f"Course sheet '{course_name}' does not exist in

{attendance_file}.")

 return

 attendance_sheet = attendance_workbook[course_name]

 student_data = {}

 total_classes = 0

 current_class_index = 0

 for row in attendance_sheet.iter_rows(min_row=1,

values_only=True):

 if row[0] and isinstance(row[0], str) and

row[0].startswith("Date:"):

 total_classes += 1

 current_class_index += 1

 continue

 if row[0] == "No." or row[0] is None:

 continue

 student_name = row[2]

 student_id = row[3]

 total_time = row[7]

 if student_name is None or student_id is None:

 continue

 key = (student_name, student_id)

 if key not in student_data:

 student_data[key] = {

 'total_time': 0,

 'classes_attended': 0,

116

 'class_count': 0

 }

 if total_time is not None and total_time != "N/A":

 try:

 total_time_value = float(str(total_time).rstrip('%'))

 student_data[key]['total_time'] += total_time_value

 student_data[key]['classes_attended'] += 1

 except ValueError:

 pass

 student_data[key]['class_count'] = current_class_index

 headers = ["No.", "Student Name", "Student ID", "Group", "Average

Total Time"]

 for col_num, header in enumerate(headers, start=1):

 course_sheet.cell(row=1, column=col_num, value=header)

 absent_fill = PatternFill(start_color='FFFF00',

end_color='FFFF00', fill_type='solid') # Yellow for below 80%

 students_below_80 = []

 for idx, ((student_name, student_id), data) in

enumerate(student_data.items(), start=1):

 total_time = data['total_time']

 classes_attended = data['classes_attended']

 class_count = total_classes

 average_total_time = total_time / classes_attended if

classes_attended > 0 else 0

 group = f"{classes_attended}/{class_count}"

 average_total_time_cell = course_sheet.cell(row=idx+1,

column=5, value=f"{average_total_time:.2f}%")

 if average_total_time < 80:

 average_total_time_cell.fill = absent_fill

 students_below_80.append(f"{student_name}_{student_id}")

117

 course_sheet.cell(row=idx+1, column=1, value=idx)

 course_sheet.cell(row=idx+1, column=2, value=student_name)

 course_sheet.cell(row=idx+1, column=3, value=student_id)

 course_sheet.cell(row=idx+1, column=4, value=group)

 overall_workbook.save(file_name)

 print(f"Overall attendance saved to {file_name}")

 if students_below_80:

 print("\nAttendance below 80% for overall semester:")

 for i, student in enumerate(students_below_80, start=1):

 print(f"{i}. {student}")

 else:

 print("\nAll students have 80% or more attendance.")

course_name = input("Enter the course name (e.g., UGEB3016 Final Year

Project 1): ")

calculate_overall_attendance(course_name)

	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 Background
	1.2 Problem Statements
	1.3 Aims and Objectives

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Artificial Intelligence (AI)
	2.3 Open-Source Computer Vision (OpenCV)
	2.4 TensorFlow
	2.5 Machine Learning
	2.6 Deep Learning
	2.7 YOLO
	2.7.1 Why YOLO?
	2.7.2 YOLOv7 vs YOLOv8

	2.8 Convolution Neutral Network (CNN)
	2.9 ResNet 34
	2.10 Deep Metric Learning Approach (Dlib)
	2.11 Compute Unified Device Architecture (CUDA)
	2.12 Journal Reviews

	CHAPTER 3
	3 METHODOLOGY
	3.1 Introduction:
	3.2 Planning Phase:
	3.2.1 Hardware and Software Equipment
	3.2.2 Proposed System
	3.2.3 Proposed System Block Diagram

	3.3 Design Phase
	3.3.1 Hardware and Software Setup
	3.3.2 Face Detection and Recognition
	3.3.3 Attendance Logging
	3.3.4 Training YOLO Model

	3.4 Implement Phase
	3.5 Analysis Phase
	3.6 Project Management
	3.7 Cost Estimation

	CHAPTER 4
	4 RESULTS AND DISCUSSIONS
	4.1 Introduction
	4.2 Experimental Results
	4.2.1 Image Collection for Registration
	4.2.2 Face Detection
	4.2.2.1 Face Detection in Class
	4.2.2.2 The JSON and Excel result for each class

	4.3 Discussion
	4.3.1 Hardware Setup
	4.3.2 Model Training
	4.3.2.1 Dataset Collection
	4.3.2.2 Train YOLOv8 for face detection

	4.3.3 Model Evaluation
	4.3.4 Encoding and compare
	4.3.5 Logging to Excel file

	4.4 Limitations

	CHAPTER 5
	5 CONCLUSION AND RECOMMENDATIONS
	5.1 Conclusion
	5.2 Recommendations

	REFERENCES
	APPENDICES

