

ACOUSTIC SIGNAL IDENTIFICATION IN AN AUDIO TRACK

BY

SENG WEI XIANG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
ii

COPYRIGHT STATEMENT

© 2025 Seng Wei Xiang. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Information Technology (Honours) Computer

Engineering at Universiti Tunku Abdul Rahman (UTAR). This Final Year Project

report represents the work of the author, except where due acknowledgment has been

made in the text. No part of this Final Year Project report may be reproduced, stored,

or transmitted in any form or by any means, whether electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of the

author or UTAR, in accordance with UTAR's Intellectual Property Policy.

Example

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
iii

ACKNOWLEDGEMENTS

I would like to sincerely thank my supervisor, Mr. Lee Heng Yew, and my moderator, Dr

Teoh Shen Khang, for providing me with the chance to learn more about speaker diarization

and acoustic signal processing. Their invaluable guidance, insightful feedback, and continuous

support were crucial throughout the development of this project. Whenever I encountered

challenges or uncertainties, their advice and expertise were instrumental in helping me find

solutions and move forward. A million thanks go to my supervisor and moderator for their

patience and dedication.

In addition, I want to express my gratitude to my family and friends for their constant

encouragement and support over my studies and during the completion of this final year

project. Their understanding and motivation were a constant source of strength.

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
iv

ABSTRACT

This project focuses on the identification and transcription of acoustic signals within audio

tracks, specifically targeting multi-speaker English audio files without background noise or

overlapping speech. The primary objective is to develop a standalone, local software program

using Python that can reliably identify different speakers and produce transcriptions that are

credited to each one without the need for an internet connection. The system employs

techniques for audio signal processing, speaker diarization for segmenting the audio stream

based on speaker identity, and automatic speech recognition for transcribing the spoken

content, all implemented using local models and libraries. The methodology involves

processing the input audio locally, applying speaker diarization to detect speaker changes and

segment the audio, and subsequently transcribing each segment while associating it with the

corresponding speaker, ensuring full offline operation. This project contributes to the field of

audio analysis by creating a self-contained, offline-capable tool for speaker-aware acoustic

signal processing and transcription in controlled environments, demonstrating the practical

application of Python-based audio processing and machine learning tools that function

independently of cloud services. The final output is a functional offline Python application

capable of identifying speakers and generating speaker-labelled transcriptions for the specified

audio constraints.

Area of Study: Audio Signal Processing

Keywords: Speaker Diarization, Speaker Transcription, Python Programming, Audio

Processing, Signal Segmentation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES x

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 2

1.3 Project Scope and Direction 2

1.4 Contributions 3

1.5 Report Organization 3

CHAPTER 2 LITERATURE REVIEW 5

2.1 Existing Work in Acoustic Signal Processing 5

2.1.1 Early and Traditional Signal Processing in Acoustics 6

2.1.2 Advancements with Statistical and Model-based

Approaches

6

2.1.3 Integration of Machine Learning and Deep Learning 6

2.1.4 Recent Innovations and Multi-disciplinary Applications 6

2.2 Existing Work in Machine Learning for Acoustics 7

2.2.1 Early and Traditional Approaches 7

2.2.2 Emergence of Deep Learning 7

2.2.3 Applications Across Domains 8

2.2.4 Methodological Trends Applications Across Domains 8

2.2.5 Emerging Challenges and Future Directions 8

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
vi

2.3 Existing Work in Speaker Diarization 9

2.3.1 Early Approaches: Modular Systems and Clustering 9

2.3.2 Incorporation of Evolutionary Computation Algorithms 9

2.3.3 Introduction of Deep Learning and Neural Approaches 9

2.3.4 End-to-End Neural Diarization (EEND) 10

2.3.5 Joint Modeling and Sequence-to-Sequence Neural

Diarization

10

2.3.6 Context-Aware and Prediction-Based Models 10

2.3.7 Emerging Trends: Multimodal and Audio-Visual Speaker

Diarization

10

2.4 Existing Work in Speaker Transcription 11

2.4.1 Early Development 11

2.4.2 Statistical Modeling and Hidden Markov Models 11

2.4.3 Machine Learning and Neural Networks 11

2.4.4 Deep Learning and End-to-End Systems 12

2.4.5 Large-Scale and Weakly-Supervised Models 12

2.4.6 Emerging Trends and Future Directions 12

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 13

3.1 System Design Diagram/Equation 13

3.1.1 System Architecture Diagram 14

3.1.2 Use Case Diagram and Description 15

3.1.3 Activity Diagram 16

CHAPTER 4 SYSTEM DESIGN 18

 4.1 System Block Diagram 18

 4.2 System Components Specifications 19

 4.3 Software Architecture and Module Design 20

 4.4 System Components Interaction Operations 21

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
vii

CHAPTER 5 SYSTEM IMPLEMENTATION 22

 5.1 Hardware Setup 22

5.2 Software Setup 22

5.3 Setting and Configuration 23

5.4 System Operation (with Screenshot) 24

5.4.1 Main GUI 24

5.4.2 Audio File Selection 27

5.4.3 Speaker Detection Mode 27

5.4.4 Processing Workflow 28

5.4.5 Result Display and Playback 29

5.4.6 Error Handling 31

5.5 Implementation Issues and Challenges 33

5.6 Concluding Remark 34

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 35

6.1 System Testing and Performance Metrics 35

6.2 Testing Setup and Result 36

 6.2.1 Short Scripted Audio Clips (10–31 seconds) 36

 6.2.2 Long Audio Files 44

6.3 Project Challenges 49

6.4 Objectives Evaluation 50

6.5 Concluding Remark 50

CHAPTER 7 CONCLUSION AND RECOMMENDATION 52

7.1 Conclusion 52

7.2 Recommendation 53

REFERENCES 55

POSTER 63

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
viii

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 Signal Processing 5

Figure 2.3 Speaker Diarization 9

Figure 2.4 Speaker Transcription 11

Figure 3.1.1 System Architecture Diagram 14

Figure 3.1.2 Use Case Diagram 15

Figure 3.1.3 Activity Diagram 16

Figure 4.1 System Block Diagram 18

Figure 5.4.1 Main GUI 24

Figure 5.4.2 Main GUI Cancel button while running the task 25

Figure 5.4.3 Cancel Pending after the button pressed 25

Figure 5.4.4 Cancel Completed 26

Figure 5.4.5 Select Audio File 27

Figure 5.4.6 Speaker Detection Mode (Checkbox Not Selected) 27

Figure 5.4.7 Result in main GUI 28

Figure 5.4.8 Transcription Window 30

Figure 5.4.9 Transcription Window Playback 30

Figure 5.4.10 No Audio File Selected 31

Figure 5.4.11 Opening Transcription Window Before Task Execution 32

Figure 5.4.12 Invalid Speaker Number 32

Figure 6.2.1 Original Script for test1.flac 37

Figure 6.2.2 System Output for test1.flac (Auto Mode) 37

Figure 6.2.3 System Output for test1.flac (Manual Mode) 38

Figure 6.2.4 Original Script for test2.mp3 38

Figure 6.2.5 System Output for test2.mp3 (Auto Mode) 39

Figure 6.2.6 System Output for test2.mp3 (Manual Mode) 39

Figure 6.2.7 Original Script for test3.ogg 40

Figure 6.2.8 System Output for test3.ogg (Auto Mode) 40

Figure 6.2.9 System Output for test3.ogg (Manual Mode) 41

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
ix

Figure 6.2.10 Original Script for test4.wav 41

Figure 6.2.11 System Output for test4.wav (Auto Mode) 42

Figure 6.2.12 System Output for test4.wav (Manual Mode) 42

Figure 6.2.13 Total Processing Time for test5.mp3 44

Figure 6.2.14 Grammer Check Result for test5.mp3 (start) 44

Figure 6.2.15 Grammer Check Result for test5.mp3 (middle) 45

Figure 6.2.16 Grammer Check Result for test5.mp3 (end) 45

Figure 6.2.17 Total Processing Time for test6.mp3 46

Figure 6.2.18 Grammer Check Result for test6.mp3 (start) 46

Figure 6.2.19 Grammer Check Result for test6.mp3 (middle) 47

Figure 6.2.20 Grammer Check Result for test6.mp3 (end) 47

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
x

LIST OF TABLES

Table Number Title Page

Table 5.1 Specifications of computer 22

Table 6.2.1 Diarization Accuracy for Short Scripted Audio Clips 43

Table 6.2.2 Transcription Accuracy for Short Scripted Audio Clips 43

Table 6.2.3 Diarization Accuracy for Long Audio Files 48

Table 6.2.4 Processing Time 48

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
xi

LIST OF SYMBOLS

Hz Hertz

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
xii

LIST OF ABBREVIATIONS

ML Machine Learning

DL Deep Learning

SVM Support Vector Machines

CNN Convolutional Neural Networks

RNN Recurrent Neural Networks

LTSM Long Short-Term Memory

EEND End-to-End Neural Diarization

GUI Graphical User Interface

WER Word Error Rate

DER Diarization Error Rate

SAE Speaker Attribution Error

Chapter 1 Introduction

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
1

Chapter 1

Introduction

This chapter introduces the background, motivation, contributions, and organization of the

project. The development of automated acoustic signal identification systems is gaining

importance due to the exponential growth in audio data across various fields. Acoustic signal

identification is the process of analyzing and classifying sound signals to extract meaningful

information, which is crucial in applications like speech recognition, environmental sound

detection, and multimedia content analysis. Efficient identification of acoustic signals enables

better management and utilization of audio data in many research and industrial domains [1].

1.1 Problem Statement and Motivation

The rapid increase in the volume of digital audio content presents significant challenges for

manual audio analysis, which is time-intensive and prone to human error. Automated acoustic

signal identification systems address this problem by providing fast, reliable, and scalable tools

for extracting and classifying audio features [2]. Despite advancements in digital signal

processing and machine learning, designing software that strikes a balance between accuracy,

speed, and resource efficiency remains challenging.

One central difficulty lies in extracting robust and discriminative features from audio signals

to uniquely identify acoustic events in diverse contexts. Feature extraction techniques are

critical because they determine the quality of the representation used for matching and

classification [3]. Moreover, efficient algorithms for comparing and matching these features

are vital to ensure scalability, especially when dealing with large databases or real-time

streams.

This project aims to develop a Python-based system that addresses these challenges through

effective audio processing, feature extraction, and identification workflows. The goal is to

reduce manual workload, improve recognition accuracy, and provide a flexible framework

adaptable to future enhancements and real-world applications. By doing so, it contributes to

the ongoing evolution of audio analysis technologies and supports broader efforts to harness

the growing audio data landscape [1][2].

Chapter 1 Introduction

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
2

1.2 Objectives

The main objective of this project is to utilize existing powerful Python-based tools to

achieve effective acoustic signal identification within audio tracks. The project applies

state-of-the-art pre-trained models to process audio data, separating speakers and

generating transcriptions.

The specific objectives include:

• Employing a pre-trained diarization tool to segment audio by speaker turns

• Using a robust speech-to-text model to transcribe segmented audio into text

• Integrating diarization and transcription results to accurately label audio content

with speaker information

• Developing a software framework that combines these tools seamlessly to provide

clear, structured outputs in a user-friendly manner

By leveraging well-established libraries, the project aims to build a reliable and scalable

system that can automate speaker identification and transcription tasks efficiently, meeting

the increasing demand for automated audio content analysis.

1.3 Project Scope and Direction

This project focuses on developing a local software system that processes English audio

recordings without requiring an internet connection. The audio recordings used do not contain

overlapping speech; speakers talk one at a time, simplifying the diarization process. The system

is designed to run entirely offline, allowing users to maintain data privacy and operate in

environments with limited or no internet access.

The scope includes:

• Applying speaker diarization to segment audio according to speaker turns, assuming no

overlapping speakers

• Performing speech transcription on the segmented audio to produce accurate text results

for English speech

• Combining these functionalities into a seamless local software solution

• Developing a user-friendly graphical user interface (GUI) to facilitate easy interaction

with the software for users of varying technical abilities

Chapter 1 Introduction

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
3

The offline capability is achieved by using pre-downloaded pre-trained models and caching

mechanisms, enabling the system to run independently from cloud services. This offline

operation not only improves user data security but also reduces dependencies on external

platforms, making the system robust and accessible for various applications involving English-

language audio such as interviews, meetings, and transcription tasks where internet access may

be restricted or undesirable.

1.4 Contributions

This project contributes by demonstrating the effective integration of powerful, pre-existing

Python tools to automate acoustic signal identification and transcription tasks. By utilizing

reliable pre-trained models, the project avoids the need to develop new algorithms from scratch,

focusing instead on practical application and system integration.

Key contributions include:

• Delivering a complete local software solution capable of performing speaker diarization

and transcription on English audio recordings without requiring internet connectivity,

thus preserving user data privacy and enabling offline usage.

• Simplifying the process of audio analysis by integrating diarization and speech-to-text

functions into a single, streamlined workflow, improving accessibility for users.

• Developing a user-friendly graphical interface that lowers the entry barrier for non-

technical users, allowing easy interaction with the system’s capabilities.

• Validating the approach on clean audio files without overlapping speech, demonstrating

accurate segmentation and transcription results under these conditions.

These outcomes provide a foundation for further enhancements, including adaptation to more

complex audio scenarios and real-time processing, and contribute practical value to the field of

automated audio analysis by offering an accessible, scalable, and efficient toolset.

1.5 Report Organization

This report is organized into 7 chapters to provide a clear and systematic presentation of the

project. Chapter 1 introduces the project background, problem statement, objectives, scope,

contributions, and an overview of the report structure. Chapter 2 reviews relevant literature and

existing solutions related to the project’s domain, helping to establish the context and identify

Chapter 1 Introduction

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
4

gaps. Chapter 3 details the system methodology and approach, including design diagrams and

descriptions that outline how the system is structured and operates. Chapter 4 covers the system

design specifics, including block diagrams, component specifications, and how different parts

of the system interact. Chapter 5 describes the system implementation process, hardware and

software setup, configuration details, and includes screenshots and discussions of issues

encountered during development. Chapter 6 focuses on system evaluation and discussion,

presenting testing methods, performance results, project challenges, and an assessment of how

well the objectives were met. Finally, Chapter 7 concludes the report with a summary of

findings and provides recommendations for further work or improvements. This organization

ensures a logical flow from conceptualization through design, development, testing, and

evaluation, enabling readers to follow the comprehensive development lifecycle of the project.

Chapter 2 Literature Review

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
5

Chapter 2

Literature Review

2.1 Existing Work in Acoustic Signal Processing

Figure 2.1 Signal Processing

Acoustic signal processing has undergone significant transformation since its inception,

evolving from basic analog techniques to sophisticated modern methods incorporating machine

learning and deep learning approaches.

2.1.1 Early and Traditional Signal Processing in Acoustics

Initially, acoustic signal processing relied heavily on analog methods and basic digital

techniques for capturing and analyzing sound waves. Early systems used rudimentary analog

sonobuoys and limited bandwidth telemetry to measure underwater or environmental acoustic

signals. The fundamental operations consisted of noise reduction, signal enhancement, and

segmentation to extract meaningful information from acoustic emissions (e.g., geological or

marine environments) [4].

With the transition towards digital signal processing (DSP), methods such as Fourier

transforms, cepstrum analysis, and wavelet transforms became prevalent. These methods

provided tools for spectral analysis, time-frequency representation, and pattern detection that

Chapter 2 Literature Review

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
6

enhanced acoustic data analysis fidelity and expanded applications to areas such as structural

health monitoring, environmental acoustics, and mechanical fault diagnosis [5].

2.1.2 Advancements with Statistical and Model-based Approaches

Following DSP, model-based signal processing approaches were developed to exploit domain-

specific knowledge about acoustic sources and propagation. Examples include acoustic color

signature analysis and source separation techniques that aimed to isolate individual sound

sources from mixed signals. These methods balance between statistical assumptions and

physical modeling to optimize signal estimation and enhancement [6].

2.1.3 Integration of Machine Learning and Deep Learning

A major evolutionary step in acoustic signal processing is the incorporation of machine

learning (ML) and deep learning (DL). These data-driven techniques automatically discern

patterns and features from large acoustic data sets, enabling complex tasks that were difficult

with classical methods—such as human speech recognition, acoustic scene analysis, and

anomaly detection in rotating machinery and geological monitoring [7][8].

ML-based acoustic signal processing adopts a paradigm shift, moving from handcrafted feature

engineering towards end-to-end learning models that can discover intricate relationships in

data. For example, the use of hybrid approaches combines traditional DSP knowledge with

deep learning for enhanced noise reduction, source separation, and dereverberation

performance [7][8].

2.1.4 Recent Innovations and Multi-disciplinary Applications

Recent research extends signal processing techniques to various specialized applications

including seismic damage monitoring using fractal analysis, infrasound detection of geological

events, acoustic emission monitoring in material testing, and environmental impact

assessments of underwater sound sources on marine life. The integration of multi-sensor arrays,

real-time processing, and satellite data relays has expanded the scope and scale of acoustic

monitoring [4][9].

Current research emphasizes the integration of deep learning with classical wave-based

modeling for more accurate acoustic field reconstruction and holistic audio understanding.

Chapter 2 Literature Review

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
7

There is ongoing exploration of multi-channel processing, spatial audio reproduction, and

advanced feature extraction techniques to address the complexities of real-world acoustic

environments [10][11].

2.2 Existing Work in Machine Learning for Acoustics

Machine learning (ML) has transformed acoustic signal processing across a wide spectrum of

applications, advancing from traditional handcrafted feature techniques to sophisticated data-

driven models that autonomously discover complex patterns in acoustic data. Initially, acoustic

analysis relied on engineered features and classical signal processing methods. However, the

advent of ML, particularly deep learning, has enabled unprecedented capabilities in the

interpretation, classification, and modeling of acoustic phenomena such as human speech,

environmental sounds, and mechanical vibrations [7][12].

2.2.1 Early and Traditional Approaches

Traditional acoustic signal processing focused on deterministic algorithms for noise reduction,

feature extraction (e.g., spectral and cepstral coefficients), and classification. These approaches

required extensive domain knowledge and manual tuning. Innovations in machine learning

introduced algorithms such as Support Vector Machines (SVM), decision trees, and clustering

methods, which improved pattern recognition in acoustic signals by learning from labeled

datasets. This phase set the foundation for more adaptive and scalable acoustic models [13].

2.2.2 Emergence of Deep Learning

A notable shift in the field occurred with the introduction of deep learning architectures like

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long

Short-Term Memory (LSTM) networks. These models excel at automatically extracting

hierarchical and temporal features from raw acoustic signals, outperforming classical models

in tasks including speech recognition, sound event detection, and speaker identification. Deep

learning methods facilitated handling variable-length contextual information and capturing

reverberation and nonlinear acoustic effects [13][14].

2.2.3 Applications Across Domains

Machine learning in acoustics spans various sectors:

Chapter 2 Literature Review

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
8

• Speech and Voice Processing: Enhanced speech recognition, speaker verification, voice

biometrics, and language identification have benefited from ML models that can

manage noisy and variable acoustic environments [15].

• Structural Health Monitoring: ML models analyze acoustic emission signals to classify

damage types and monitor fatigue in materials like steel, enabling real-time diagnostics

in engineering [16].

• Bioacoustics and Biodiversity: ML facilitates the automated classification of wildlife

sounds, linking acoustic features to species identification and evolutionary analysis,

providing insights into animal behavior and phylogeny [17].

• Underwater and Environmental Acoustics: Novel hybrid ML models combine acoustic

and optical signals for improved localization and communication in challenging

underwater environments [18].

2.2.4 Methodological Trends Applications Across Domains

Recent reviews highlight a trajectory towards deep learning-based methods combined with

multisensor data fusion, automatic feature extraction, and advanced learning paradigms like

transfer learning and few-shot learning. There is a growing emphasis on unsupervised and

semi-supervised approaches to manage limited labeled data scenarios common in acoustic

datasets. Ensemble learning strategies further enhance classification performance, as seen in

detecting fake voice audio with high accuracy [13][19].

2.2.5 Emerging Challenges and Future Directions

Despite impressive progress, challenges remain in interpretability, data scarcity, robustness to

noise and adversarial examples, and ethical considerations, such as deepfake audio detection.

Novel frameworks that integrate physical constraints of acoustic wave propagation with ML

models are emerging to improve interpretability and control. Research continues to address

these challenges through hybrid models, improved feature engineering, and real-time adaptive

algorithms [20][21].

Chapter 2 Literature Review

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
9

2.3 Existing Work in Speaker Diarization

Figure 2.3 Speaker Diarization

Speaker diarization is the task that aims to answer the question "who spoke when?" in audio or

video recordings by segmenting a conversation according to individual speaker identities

[22][23]. The evolution of this field reflects advances in signal processing, machine learning,

and deep learning techniques.

2.3.1 Early Approaches: Modular Systems and Clustering

Initial speaker diarization systems were primarily modular, featuring separate stages including

segmentation, feature extraction, speaker embedding, and clustering [24]. The most common

traditional approach was to cluster speaker embeddings, such as i-vectors or x-vectors, using

algorithms like K-means or Gaussian Mixture Models. However, these methods often struggled

with overlapping speech and determining the optimal number of speakers [22].

2.3.2 Incorporation of Evolutionary Computation Algorithms

Research explored optimization of speaker clustering using evolutionary computation

techniques like Genetic Algorithms, Particle Swarm Optimization, Differential Evolution, and

Teaching-Learning-Based Optimization. These methods aimed to improve clustering accuracy

by optimizing cluster numbers and grouping criteria, particularly in broadcast news and

heterogeneous audio sources [22].

2.3.3 Introduction of Deep Learning and Neural Approaches

The advent of deep learning brought revolutionary changes by enabling end-to-end neural

diarization models. These models replaced multi-stage pipelines with unified architectures that

Chapter 2 Literature Review

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
10

learn to assign speaker labels directly from audio inputs, improving performance especially in

complex scenarios with overlapping speakers [23][25][26].

2.3.4 End-to-End Neural Diarization (EEND)

EEND formulated diarization as a multi-label classification problem, allowing simultaneous

detection of multiple active speakers. This method uses permutation-free objective functions

to minimize diarization errors and understands speaker overlaps better than clustering methods

[25][26]. Recent advances have integrated EEND with vector clustering to handle real

conversational speech effectively, addressing challenges like arbitrary number of speakers and

overlapped speech [27].

2.3.5 Joint Modeling and Sequence-to-Sequence Neural Diarization

Novel architectures apply sequence-to-sequence frameworks to perform both online and offline

diarization, incorporating automatic speaker detection and better speaker representation. These

approaches are pushing the boundaries by integrating diarization with other speech tasks such

as speech recognition for comprehensive audio understanding [28][29].

2.3.6 Context-Aware and Prediction-Based Models

Recent studies have investigated the use of contextual information and conversation state

prediction to enhance diarization. Techniques using Long Short-Term Memory (LSTM)

networks, Markov Chains, and distance metrics on speaker-specific contextual similarity show

promise in predicting speaker states and diarization labels in natural conversations without

manual tagging [30][31].

2.3.7 Emerging Trends: Multimodal and Audio-Visual Speaker Diarization

As multimedia content grows, combining audio with visual cues like faces for speaker

diarization is gaining attention. Audio-visual diarization improves robustness and accuracy by

leveraging synchronized visual information alongside audio, facilitating applications in video

analysis and multimedia content management [32].

Chapter 2 Literature Review

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
11

2.4 Existing Work in Speaker Transcription

Figure 2.4 Speaker Transcription

Speaker transcription is the process of converting spoken language from audio recordings into

written text. This transformation enables the structured representation of unstructured audio

data, making it accessible for search, analysis, and documentation across a wide range of

applications such as interviews, meetings, podcasts, and legal proceedings [33].

2.4.1 Early Development

Speech recognition originated in the 1950s with primitive systems that recognized simple

vocabulary, such as the ten digits of English. Early systems used rule-based methods and

template matching algorithms, focusing mostly on isolated word recognition. By the 1980s,

advances in faster recognition algorithms and mathematical modeling enabled speaker-

independent and continuous speech recognition over larger vocabularies. This period also saw

the advent of Hidden Markov Models (HMM), which became a foundational technique due to

their ability to model speech variability statistically [34].

2.4.2 Statistical Modeling and Hidden Markov Models

HMMs dominated the speech recognition landscape in the late 20th century, providing the

ability to handle temporal variability and noise. Coupled with Gaussian Mixture Models

(GMM) for acoustic modeling and n-gram language models, systems became more robust and

applicable to real-world applications. This era also witnessed the scaling of systems to support

continuous speech and larger vocabularies with reasonable accuracy [35].

2.4.3 Machine Learning and Neural Networks

Machine learning techniques started to supplement and partially replace traditional HMM-

GMM frameworks. The rise of Deep Neural Networks (DNNs), especially with the

introduction of algorithms like Deep Belief Networks and Convolutional Neural Networks,

Chapter 2 Literature Review

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
12

brought significant accuracy improvements. These models better captured complex acoustic

patterns and contextual speech dependencies than HMMs alone. This period also enabled the

integration of speech recognition into consumer devices and services such as smartphones and

GPS systems [36].

2.4.4 Deep Learning and End-to-End Systems

Speech recognition underwent a revolutionary leap due to deep learning advances. End-to-end

neural architectures such as Recurrent Neural Networks (RNNs), Long Short-Term Memory

(LSTM) networks, and more recently Transformer models and wav2vec have dramatically

improved performance. These systems reduce reliance on handcrafted features and complicated

pipelines, simultaneously learning acoustic, pronunciation, and language models. Usage has

become widespread in virtual assistants (Amazon Alexa, Apple Siri), voice search,

transcription, and translation applications, enabling natural, hands-free interaction

[36][37][38].

2.4.5 Large-Scale and Weakly-Supervised Models

Large-scale models like OpenAI Whisper use weakly supervised learning on extensive audio

datasets covering multiple languages and domains. These models demonstrate impressive

transcription capability for single and multi-speaker audio, enhancing robustness to noise,

accents, and domain variations. However, handling long audio segments requires advanced

buffering or sliding window methods, and timestamp accuracy remains a challenge for long-

form transcription [39].

2.4.6 Emerging Trends and Future Directions

Recent research highlights the integration of ASR with broader AI interfaces for more natural,

hands-free communication. Innovations in silent or subvocal speech recognition address

privacy and accessibility limitations. Cultural and linguistic diversity in speech recognition

remains an area needing more focus to enhance inclusivity. The transition to machine

listening—extracting meaning beyond just words—points toward evolving applications in

digital humanities and cross-linguistic communication [40].

Chapter 3 System Methodology/Approach

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
13

Chapter 3

System Methodology/Approach

This chapter outlines the methodology and approach applied in the development of the

standalone software for acoustic signal identification in an audio track. The methodology

includes the design process, architecture, and workflow that enable the system to perform

diarization and transcription of audio files.

3.1 System Design Diagram

This project adopts a modular design approach to enable audio diarization and transcription in

a standalone desktop software. The methodology is divided into four major components:

1. Audio Input Module – accepts pre-recorded English audio files. The expected input

must have minimal background noise and no overlapping speakers to ensure accurate

diarization and transcription.

2. Speaker Diarization Module – utilizes pyannote.audio to segment the audio and

assign speaker labels (e.g., Speaker 1, Speaker 2, Unknown) [41] [42] [46].

3. Speech Recognition Module – employs OpenAI Whisper to generate transcriptions of

each segment [43] [44].

4. Graphical User Interface (GUI) – developed in Python using Tkinter, which allows

users to upload audio, start processing, and view diarization results with transcription

after processing is completed.

The system is designed to support sequential single-file analysis. Users can process one audio

file at a time. Once the results are shown, they may either upload another file for a new analysis

or exit the program.

Chapter 3 System Methodology/Approach

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
14

3.1.1 System Architecture Diagram

Figure 3.1.1 System Architecture Diagram

The architecture of the system consists of four interconnected layers:

• User Layer: Provides audio input and interacts with the software through the GUI.

• Processing Layer: Handles signal preprocessing, including resampling and temporary

file handling.

• Diarization & Recognition Layer: Uses pyannote.audio for speaker segmentation and

Whisper for transcription [41-44].

• Output Layer: Displays results in the GUI after processing. Users can then decide

whether to continue with another audio file or exit.

Chapter 3 System Methodology/Approach

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
15

3.1.2 Use Case Diagram and Description

Figure 3.1.2 Use Case Diagram

Actors

1. User – interacts with the software to select audio files, configure speaker detection,

start processing, and view results.

Use Cases

1. Select Audio File – User chooses an audio file (MP3, WAV, FLAC, OGG).

2. Choose Speaker Detection Mode – User selects auto or manual speaker number

before starting.

3. Start Processing – System performs diarization and transcription.

4. Cancel Processing – User can cancel the ongoing process.

5. View Transcription – User views the processed transcription with speaker labels.

Chapter 3 System Methodology/Approach

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
16

o Playback Segment (sub-function) – User can play a specific segment by

double-clicking in the transcription window.

6. Reopen Transcription Window – User reopens the last transcription window.

Explanation

• The User is the sole actor.

• The primary flow: select a file → start processing → view transcription.

• Optional flows include cancel processing, choose auto/manual speaker mode,

playback segments, and reopen transcription.

3.1.3 Activity Diagram

Figure 3.1.3 Activity Diagram

Chapter 3 System Methodology/Approach

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
17

The workflow is as follows:

1. Start

2. Select Audio File – User chooses an audio file (MP3, WAV, FLAC, OGG).

3. Choose Speaker Detection Mode – User selects auto or manual speaker number.

4. Start Processing – System begins analysis.

5. Preprocess Audio

• Convert to mono if necessary

• Resample audio to 16 kHz

• Save to temporary WAV file

6. Speaker Diarization (PyAnnote) [41] [42] [46]

• Detect speakers automatically or use manual input

• Generate speaker-labeled segments

7. Speech Transcription (Whisper) [43] [44]

• Transcribe English speech

• Generate timestamped transcription segments

8. Assign Speakers to Transcription Segments

• Match transcription segments to diarization segments

• Label unmatched segments as “Unknown”

• Extend last segment to match full audio duration

9. Display Transcription Window

• Show speaker-labeled transcription in scrollable text box

• Enable playback of segments within the window (double-click)

10. Repeat Process? – User decides whether to analyze another audio file

• Yes → Go to Step 2 (Select Audio File)

• No → Proceed to Step 11

11. End

Decision Points:

• If no audio file selected → prompt user to select a file.

• If cancel requested during processing → terminate current process and go to Step 10

(Repeat Process decision).

Chapter 4 System Design

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
18

Chapter 4

System Design

This chapter describes the detailed design of the standalone software for acoustic signal

identification in an audio track. It provides all necessary information for someone to

understand the program structure, components, and their interactions. The chapter covers

system block diagrams, component specifications, and interaction operations.

4.1 System Block Diagram

Figure 4.1 System Block Diagram

The system consists of the following major components:

1. Audio Input Module – handles the selection of audio files. Acceptable formats include

.mp3, .wav, .flac, and .ogg. Only one file is processed at a time.

Chapter 4 System Design

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
19

2. Preprocessing Module – performs signal processing tasks such as converting audio to

mono, resampling to 16 kHz, and saving to a temporary file for further analysis.

3. Speaker Diarization Module – uses pyannote.audio to segment the audio and assign

speaker labels.

4. Speech Recognition Module – uses OpenAI Whisper to transcribe each segment.

5. Result Display Module (GUI) – developed in Python with Tkinter. Displays

diarization results with transcriptions after processing is complete. Users may then

choose to process another audio file or exit the program.

6. Control & Timer Module – manages the GUI interactions, process timing, and

cancellation requests.

4.2 System Components Specifications

The system modules are described as follows:

1. Audio Input Module

• Accepts audio files: .mp3, .wav, .flac, .ogg.

• Only one file can be processed at a time.

• Libraries used: tkinter, filedialog, os.

2. Preprocessing Module

• Converts stereo audio to mono.

• Resamples audio to 16 kHz.

• Saves a temporary WAV file for further processing.

• Libraries used: torchaudio, torch, tempfile [45-47].

3. Speaker Diarization Module

• Uses pyannote.audio v3.1 to segment audio into speaker turns.

• Assigns speaker labels: Speaker 1, Speaker 2, or Unknown.

• Works with non-overlapping English audio with minimal background noise.

• Libraries used: pyannote.audio, torch [41] [42] [46].

4. Speech Recognition Module

• Uses OpenAI Whisper (turbo) for transcription.

• Processes each diarized segment individually.

• Preserves start and end times for each segment.

• Libraries used: whisper, torch [43] [44].

Chapter 4 System Design

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
20

5. Result Display Module (GUI)

• Built with Tkinter.

• Displays speaker labels and transcriptions in a scrollable text widget.

• Supports segment playback with current line highlighted.

• Allows the user to reopen the transcription window to view previous results without

reprocessing the audio file.

• Libraries used: tkinter, pygame [50] [51].

6. Control & Timer Module

• Manages timers and user cancellation requests.

• Ensures sequential workflow and prevents multiple concurrent processes.

• Libraries used: time, threading [48] [49].

4.3 Software Architecture and Module Design

The modules interact in a clearly defined sequence:

• Modular Design: Each module operates independently but communicates through

defined inputs/outputs. This ensures maintainability and allows updates or

replacements without affecting other modules.

• Data Flow: Audio File → Preprocessing → Diarization → Transcription → GUI

Output

• Control Flow:

o GUI triggers preprocessing

o Preprocessing feeds diarization

o Diarization results guide transcription

o GUI displays final output

o Only one file is processed at a time; after completion, the user may start a new

session

• Error Handling:

o Validates file type

o Handles empty audio or failed processing

o Ensures safe stopping if the user cancels mid-process

• Dependencies/Libraries:

o All external Python libraries are listed in 4.2

o Maintains software environment for Windows 11 with Python 3.12.5

Chapter 4 System Design

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
21

• Advantages:

o Modularity enables easy debugging, scaling, and future improvements (e.g.,

adding overlapping speaker support or new transcription models)

4.4 System Components Interaction Operations

1. Audio Selection: User selects a single audio file. GUI validates the file type and

enables the start button.

2. Preprocessing: Audio is converted to mono, resampled to 16 kHz, and saved as a

temporary file.

3. Speaker Diarization: Pyannote processes the audio and returns a list of segments with

speaker labels [41] [42] [46].

4. Transcription: Whisper transcribes each segment, producing text with start and end

times [43] [44].

5. Result Display: GUI shows diarization and transcription in a scrollable window. Users

can play audio segments; the current line is highlighted.

6. Reopen Transcription Window: Users can reopen the transcription window to view

previous results without starting a new process.

7. Repeat Operation: After results are displayed, the user may select a new audio file

and repeat the process. Only one file is processed at a time.

8. Timer & Control: A timer shows elapsed processing time. Users can cancel processing

before completion, which safely stops the workflow.

Chapter 5 System Implementation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
22

Chapter 5

System Implementation

This chapter describes in detail how the standalone software for acoustic signal identification

is developed and implemented. The chapter provides information on the hardware and

software setup, configuration, system operation, challenges encountered, and concluding

remarks. All necessary details are provided for someone to reproduce the system.

5.1 Hardware Setup

The hardware used for this project is a single personal computer, which handles all processing

tasks. No additional hardware devices are required, as the project is entirely software-based.

Table 5.1 Specifications of computer

Description Specifications

Processor Intel Core i5-13500

Operating System Windows 11

Graphic NVIDIA GeForce RTX 4060

Memory 32GB DDR5 RAM

Storage 1TB SATA HDD

All audio processing, diarization, transcription, and GUI operations are executed on this

machine.

5.2 Software Setup

The software is implemented using Python 3.12.5, and the code is written using Visual Studio

Code as the development environment. Required libraries and tools include:

• Tkinter – for the graphical user interface

• Pyannote.audio v3.1 – for speaker diarization [41] [42] [46]

• OpenAI Whisper (turbo) – for transcription of audio segments

o Note: Whisper requires FFmpeg to process audio files. In this project, FFmpeg

was installed using the Chocolatey package manager (choco install ffmpeg).

After installation, FFmpeg must be added to the system PATH [43] [44].

• Torchaudio and Torch – for audio preprocessing and handling [45-47]

Chapter 5 System Implementation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
23

• Pygame – Pygame is used for playback and also prevent software crashes while playing

audio segments in the GUI [50] [51].

• Tempfile – for handling temporary audio files

• Threading / Time – Threading is used to prevent the GUI from freezing while running

long tasks, such as diarization and transcription. Timers track process duration [48]

[49].

All Python libraries are installed using pip. Once all dependencies are installed, the software

can be executed offline.

5.3 Setting and Configuration

Before running the software:

1. Ensure Python 3.12.5 is installed and added to the system PATH.

2. Install required Python libraries:

pip install torch torchaudio pyannote.audio openai-whisper pygame

3. Install FFmpeg using Chocolatey [44]:

choco install ffmpeg

4. Ensure FFmpeg is accessible in the system PATH by opening a terminal and typing:

ffmpeg -version

5. Place the Python script and any required configuration files in a single project folder.

Chapter 5 System Implementation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
24

5.4 System Operation

This section describes the operation of the software for acoustic signal identification, including

speaker diarization, transcription, and playback of audio segments.

5.4.1 Main GUI

Figure 5.4.1 Main GUI

• The software is launched by running the Python script, it is built using Tkinter,

providing a user-friendly graphical interface for selecting audio files, starting process,

and viewing results.

• The main window provides the following options and features:

o Select Audio File – choose an audio file to process.

o Start/Cancel button – initially labeled Start.

▪ Clicking Start begins the processing pipeline.

Chapter 5 System Implementation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
25

Figure 5.4.2 Main GUI Cancel button while running the task

Figure 5.4.3 Cancel Pending after the button pressed

▪ While processing, the button changes to Cancel, allowing the user to

safely stop the current task (Cancel Pending).

Chapter 5 System Implementation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
26

Figure 5.4.4 Cancel Completed

▪ After the process stops safely, the button resets to Start (Cancel

Completed).

o Speaker Detection Mode – choose Auto Speaker Number or Manual

Speaker Number (manual input required).

o Processing Timer – shows the duration of the current processing task.

o Reopen Transcription Window button – opens a separate window to view the

most recent transcription without reprocessing the audio file.

o Scrollable text area – displays real-time logs, progress updates, and results.

• The GUI ensures only one file is processed at a time, it is also responsive and prevents

freezing during long tasks by using threading.

• After processing is complete, the user can choose to repeat the process with another

audio file or exit the program.

Chapter 5 System Implementation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
27

5.4.2 Audio File Selection

Figure 5.4.5 Select Audio File

• The user selects an audio file using the “Select Audio File” button.

• Supported formats include .mp3, .wav, .flac, and .ogg.

• The selected file name appears in the GUI, confirming the selection.

5.4.3 Speaker Detection Mode

Figure 5.4.6 Speaker Detection Mode (Checkbox Not Selected)

Chapter 5 System Implementation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
28

• Auto Speaker Number checkbox:

o Default state : ticked (enabled). The system automatically detects the number

of speakers. Refer to Figure 5.4.1 in Section 5.4.1 for the GUI layout.

o Manual input field behavior: when the checkbox is ticked, the entry field for

specifying speaker number is disabled.

o If the user unticks the checkbox, the entry field becomes editable, allowing

manual entry of the number of speakers.

o User input validation: if a non-numeric value is entered, the system will

prompt an error. Detailed behavior and error message are described in Section

5.4.6 Error Handling.

• This choice must be made before starting the processing, ensuring consistent results.

5.4.4 Processing Workflow

Figure 5.4.7 Result in main GUI

Once the Start button is clicked with a valid audio file selected:

Chapter 5 System Implementation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
29

i. Preprocessing Module [47] [48]

• When the user clicks Start, the selected audio file undergoes preprocessing:

o Convert to mono if the audio is stereo.

o Resample to 16 kHz for compatibility with Pyannote and Whisper [41-43].

o Save to a temporary WAV file for further processing.

• Preprocessing ensures consistent audio input for diarization and transcription.

ii. Speaker Diarization Module [41] [42] [46]

• The preprocessed audio is sent to the pre-trained Pyannote model speaker-diarization-

3.1 for speaker diarization.

• Depending on the speaker detection mode, the model either detects the number of

speakers automatically or uses the manually provided number.

• The model first detects speech regions using voice activity detection (VAD).

• Speech regions are converted into speaker embeddings, which capture the

characteristics of each speaker’s voice.

• Embeddings are clustered to identify distinct speakers, and the start/end times of each

cluster are used as timestamps.

• The module outputs a list of segments with speaker labels and start/end times.

iii. Speech Transcription Module [43] [44]

• Each diarized segment is transcribed using OpenAI Whisper (turbo).

• Whisper processes the audio waveform with a pre-trained neural network and produces

the corresponding text.

• The output includes timestamped transcription segments in English.

iv. Assigning Speakers to Transcription Segments

• Transcription segments are matched to the diarization segments using overlap-based

assignment.

• Segments that cannot be matched are labeled as “Unknown”.

• The last transcription segment is extended to match the full audio duration, ensuring

complete coverage.

• Progress updates and elapsed time are displayed in the GUI.

Chapter 5 System Implementation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
30

5.4.5 Result Display and Playback

• The results are displayed in a scrollable text window with speaker labels and

transcriptions. (Main GUI Refer to Figure 5.4.7)

Figure 5.4.8 Transcription Window

• Upon completion of processing, the transcription window automatically pops up,

showing the speaker-labeled transcription.

Figure 5.4.9 Transcription Window Playback

Chapter 5 System Implementation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
31

• Users can double-click a segment to play it, and the current line is highlighted during

playback.

• The Reopen Transcription Window allows users to view the latest transcription

without reprocessing the audio file.

• Playback is handled using Pygame for compatibility [50] [51].

• After viewing the results, the user can:

o Select another audio file and repeat the process.

o Exit the software by closing the main window.

5.4.6 Error Handling

The software provides safeguards for common user actions:

Figure 5.4.10 No Audio File Selected

• No Audio File Selected:

o If the user clicks Start without selecting an audio file, a warning message is

displayed.

o The process cannot begin until a valid file is chosen.

Chapter 5 System Implementation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
32

Figure 5.4.11 Opening Transcription Window Before Task Execution

• Reopen Transcription Window Without Prior Results:

o If the user clicks Reopen Transcription Window before any transcription has

been completed, an information message is displayed indicating that no

transcription results are available.

Figure 5.4.12 Invalid Speaker Number

Chapter 5 System Implementation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
33

• Invalid Manual Speaker Input:

o If the user enters a non-numeric value in the manual speaker number field, the

system displays an error dialog and prevents processing until a valid numeric

value is provided.

These measures prevent users from starting processes without valid input or attempting to view

results that do not exist.

5.5 Implementation Issues and Challenges

During the development of the Acoustic Signal Identification software, several challenges

were encountered. One major challenge was ensuring accurate speaker diarization with

PyAnnote.audio, especially for short or unclear segments. Segments that could not be

confidently labeled were assigned as “Unknown” to maintain consistency.

Another challenge was integrating diarization results with Whisper transcription. Careful

handling of segment start and end times was required to match transcription segments to

speaker labels accurately. Preprocessing audio, such as converting stereo to mono and

resampling to 16 kHz, also required attention to avoid potential audio quality loss or file access

errors.

A significant implementation issue was maintaining GUI responsiveness. Without threading,

the GUI would freeze while running long tasks like diarization or transcription. This was

resolved by using threading, allowing the GUI to remain responsive and enabling features

such as timers, cancellation, and playback highlighting.

Another consideration was FFmpeg integration, which is required by Whisper to process audio

files. Installing FFmpeg via Chocolatey and ensuring it was accessible in the system PATH

was necessary for proper transcription functionality.

Additionally, user input validation and proper handling of process cancellation were

implemented to avoid errors and allow the user to safely repeat or exit the process. Overall,

despite these challenges, the software successfully integrates all modules to provide a

functional standalone application for acoustic signal identification.

Chapter 5 System Implementation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
34

5.6 Concluding Remark

The development of the Acoustic Signal Identification software successfully demonstrates

the integration of multiple Python libraries and modules to create a standalone application.

Through careful design and implementation, the software can perform audio preprocessing,

speaker diarization, and transcription while providing a responsive and user-friendly GUI.

Key achievements include:

• Accurate diarization and transcription of English audio with minimal background noise.

• A GUI that supports segment playback, highlighting, and the ability to reopen

transcription results without reprocessing.

• Robust handling of user interactions, including cancellation requests and input

validation.

• Stable audio playback with Pygame.

• Seamless integration of FFmpeg for audio processing with Whisper.

Despite challenges such as maintaining GUI responsiveness and coordinating multiple

modules, the final software demonstrates reliable performance for single-file audio analysis.

The modular design also allows for future enhancements, such as support for overlapping

speech, multi-language transcription, or additional audio formats.

Overall, Chapter 5 shows that the software is fully functional and provides a solid foundation

for both practical use and further development in acoustic signal identification applications.

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
35

Chapter 6

System Evaluation and Discussion

This chapter evaluates the performance of the standalone software for acoustic signal

identification in pre-recorded audio files. It discusses system testing, performance metrics,

challenges encountered, and an evaluation of project objectives.

6.1 System Testing and Performance Metrics

The evaluation of the Acoustic Signal Identification system focuses on the following

performance metrics:

1. Transcription Accuracy

• For short scripted audio clips (10–31 seconds), accuracy was calculated by

comparing the transcription directly against the reference script:

𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑊𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑠
× 100%

• For long audio files (1 hour and 4 hours) where no script is available,

transcription accuracy was estimated using an online grammar checker, and

the percentage provided by the checker was recorded directly.

2. Speaker Diarization Accuracy

• valuated only on the short scripted clips, since speaker ground truth was

available.

• Diarization accuracy was measured as:

𝐷𝑖𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠
× 100%

• A segment is defined as a continuous portion of speech belonging to a single

speaker. Each change of speaker counts as a new segment.

3. Processing Time

• the total time required to process audio of various durations, including

preprocessing, diarization (PyAnnote), and transcription (Whipser).

4. Scalability

• the system’s ability to handle long-duration audio files without crashing.

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
36

6.2 Testing Setup and Result

All testing was performed using audio clips with minimal background noise and little to no

overlapping speech.

Testing Setup:

• Short Scripted Audio Clips (10–31 seconds):

o Source: https://www.moviesoundclips.net/movies.php

o Each clip was accompanied by a reference script, enabling direct accuracy

measurement.

o Speaker diarization was tested in two modes:

▪ Automatic speaker number detection (system decides number of

speakers).

▪ Manual speaker number declaration (user specifies the number of

speakers before processing).

• Long Audio Files:

o Source: YouTube podcast

▪ https://www.youtube.com/watch?v=u8meElmV6dA (1 hour 9 minutes)

▪ https://www.youtube.com/watch?v=5_xQ0j60Ll4 (4 hour 19 minutes)

o Downloaded using an online converter.

o No reference transcript was available, so grammar checker results were used for

transcription accuracy.

6.2.1 Short Scripted Audio Clips (10–31 seconds)

Short audio clips were used to evaluate both transcription and speaker diarization accuracy.

https://www.moviesoundclips.net/movies.php
https://www.youtube.com/watch?v=u8meElmV6dA
https://www.youtube.com/watch?v=5_xQ0j60Ll4

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
37

Test 1 (2 speakers)

Figure 6.2.1 Original Script for test1.flac

Figure 6.2.2 System Output for test1.flac (Auto Mode)

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
38

Figure 6.2.3 System Output for test1.flac (Manual Mode)

Test 2 (2 speakers)

Figure 6.2.4 Original Script for test2.mp3

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
39

Figure 6.2.5 System Output for test2.mp3 (Auto Mode)

Figure 6.2.6 System Output for test2.mp3 (Manual Mode)

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
40

Test 3 (4 speakers)

Figure 6.2.7 Original Script for test3.ogg

Figure 6.2.8 System Output for test3.ogg (Auto Mode)

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
41

Figure 6.2.9 System Output for test3.ogg (Manual Mode)

Test 4 (2 speakers)

Figure 6.2.10 Original Script for test4.wav

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
42

Figure 6.2.11 System Output for test4.wav (Auto Mode)

Figure 6.2.12 System Output for test4.wav (Manual Mode)

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
43

Table 6.2.1 Diarization Accuracy for Short Scripted Audio Clips

Audio Clip Mode Correct Segments Total Segments Accuracy (%)

test1.flac Auto 8 10 80%

Manual 9 10 90%

test2.mp3 Auto 4 5 80%

Manual 4 5 80%

test3.ogg Auto 4 8 50%

Manual 4 8 50%

test4.wav Auto 4 4 100%

Manual 4 4 100%

Table 6.2.2 Transcription Accuracy for Short Scripted Audio Clips

Audio Clip Total Words Correct Words Accuracy (%)

test1.flac 90 89 98.88%

test2.mp3 17 15 88.23%

test3.ogg 97 96 98.97%

test4.wav 39 39 100%

Observation:

• For short audio clips with 2 speakers (test1.flac, test2.mp3, test4.wav), both auto and

manual modes produced high diarization accuracy (80–100%). Manual mode was

slightly more reliable when the speaker count was known in advance.

• For the 4-speaker clip (test3.ogg), diarization accuracy dropped to 50% for both auto

and manual modes. This indicates the system struggles when handling multiple

speakers, especially with short segments.

• Transcription accuracy remained consistently high across all clips (88–100%). Clean

audio with minimal background noise allowed Whisper to achieve near-perfect word

recognition.

• test2.mp3 showed the lowest transcription accuracy (88.23%) due to shorter duration

and limited word count, meaning even minor errors had a large impact on percentage

accuracy.

• Processing time for all short clips was below 3 seconds, showing the system can

handle small files efficiently with negligible delay.

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
44

• Overall, the system performs very well on short scripted clips with 2 speakers, but

scalability issues appear when the number of speakers increases beyond two.

6.2.2 Long Audio Files

Long audio files were used to evaluate transcription accuracy and system scalability.

Test 5

Figure 6.2.13 Total Processing Time for test5.mp3

Figure 6.2.14 Grammer Check Result for test5.mp3 (start)

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
45

Figure 6.2.15 Grammer Check Result for test5.mp3 (middle)

Figure 6.2.16 Grammer Check Result for test5.mp3 (end)

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
46

Test 6

Figure 6.2.17 Total Processing Time for test6.mp3

Figure 6.2.18 Grammer Check Result for test6.mp3 (start)

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
47

Figure 6.2.19 Grammer Check Result for test6.mp3 (middle)

Figure 6.2.20 Grammer Check Result for test6.mp3 (end)

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
48

Transcription Accuracy (via Grammar Checker):

• Both podcasts were fully transcribed with timestamps.

• Since transcripts exceeded the word limit of the online grammar checker, only several

representative parts (start, middle, and end) were checked.

• Transcription accuracy was estimated using an online grammar checker (QuillBot

Grammar Checker, https://quillbot.com/grammar-check), and the reported grammar

score for each part was averaged to estimate overall transcription accuracy.

Table 6.2.3 Transcription Accuracy for Long Audio Files

Audio File Segment Timestamp Range (s) Grammar Score

test5.mp3

(1 hours 9 minutes)

start 0.00 - 398.58 79

middle 1235.76 - 1622.20 82

end 3589.30 - 4051.76 71

Average 77.3

test6.mp3

(4 hours 19 minutes)

start 6.58 - 369.48 65

middle 4817.44 - 5144.98 73

end 13124.74 – 13605.04 51

Average 63.0

Table 6.2.4 Processing Time

Audio File Toral Processing Time

test5.mp3 (1 hours 9 minutes) ~ 5 minutes

test6.mp3 (4 hours 19 minutes) ~ 20 minutes

Observation:

• Transcription accuracy was higher for test5.mp3 (77.3%) compared to test6.mp3

(63.0%), which can be attributed to the more casual and conversational language used.

• An additional test using a 12-hour audio file failed to complete, confirming that in the

current setup, the system can reliably process long audio files of up to 4 hours.

https://quillbot.com/grammar-check

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
49

6.3 Project Challenges

1. Software Dependencies - Installing and configuring Whisper and PyAnnote.audio

required additional dependencies such as FFmpeg and Torch. Improper installation

often caused runtime errors, making setup more time-consuming.

2. Audio Playback Stability - Without Pygame, audio playback occasionally caused the

software to crash. Pygame was later integrated to improve stability and prevent

interruptions during playback.

3. Sequential Processing Constraint - The system currently processes one audio file at

a time. There is no support for concurrent or parallel file processing, which limits

scalability.

4. Audio Quality Limitations - Testing was primarily conducted using audio with

minimal noise and little to no overlapping speech. Performance in noisy environments

or with heavy speaker overlap was not evaluated and may lead to reduced diarization

and transcription accuracy.

5. Processing Time for Long Audio - Although the system handled files up to 4 hours,

longer recordings required significantly more time to process. Threading was

implemented to prevent the GUI from freezing, but scalability remains dependent on

hardware resources.

6. Limited Reference for Diarization - Quantitative evaluation of speaker diarization

could only be performed on short scripted clips with available reference scripts. For

long podcasts, diarization accuracy could not be measured systematically due to the

lack of reference labels.

7. Transcription Verification for Long Audio - Online grammar checkers used to verify

transcription accuracy imposed word limits, requiring transcripts to be segmented. This

made evaluation less comprehensive for lengthy recordings.

8. Hardware Limitations - Performance of the system was influenced by CPU, GPU,

and memory availability. Processing times may vary across different setups, and weaker

hardware may struggle with longer files.

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
50

6.4 Objectives Evaluation

Objective 1: Employ a pre-trained diarization tool to segment audio by speaker turns.

• Achieved. PyAnnote.audio successfully segmented and labeled speakers in the test

audio.

Objective 2: Transcribe segmented audio into text using a robust speech-to-text model.

• Achieved. Whisper accurately transcribed each diarized segment and preserved

timestamps.

Objective 3: Integrate diarization and transcription results to provide speaker-labeled

outputs.

• Achieved. Each transcription segment was correctly assigned to its corresponding

speaker, producing clear speaker-labeled results.

Objective 4: Develop a user-friendly software framework that provides clear and

structured outputs.

• Achieved. The GUI allowed users to upload audio, process files, view results, play

segments, reopen transcriptions, and repeat analysis sequentially without errors.

6.5 Concluding Remark

The evaluation results demonstrate that the developed system is capable of performing both

speaker diarization and transcription effectively on clean English audio. For short scripted

audio clips, the system achieved high transcription accuracy (88–100%) and consistent

diarization performance in both automatic and manual modes. For long audio files,

transcription accuracy remained acceptable (63–77%), with grammar checker analysis

confirming reliable output quality despite casual or conversational language styles.

The system also proved to be scalable, successfully processing audio files of up to 4 hours in

duration within manageable processing times (~20 minutes). Attempts with longer recordings

(e.g., 12 hours) were not successful, indicating that under the current setup, the system can be

considered stable for recordings up to 4 hours.

It should be noted that the Whisper transcription model primarily produces text in US English

spelling and conventions, which users should consider when processing content intended for

UK English or other English variants.

Chapter 6 System Evaluation and Discussion

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
51

Overall, the objectives of this project were successfully met. The integration of PyAnnote for

diarization and Whisper for transcription provided accurate, speaker-labeled transcripts, while

the GUI offered a structured and user-friendly interface for processing and reviewing audio

files. The system shows strong potential for practical use in contexts such as podcasts,

interviews, and lectures, provided the audio quality is reasonably clean with minimal noise and

overlapping speech.

Chapter 7 Conclusion and Recommendation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
52

Chapter 7

Conclusion and Recommendation

This chapter summarizes the achievements of the standalone software for acoustic signal

identification and provides recommendations for future improvements.

7.1 Conclusion

This project set out to design and implement a software framework for acoustic signal

identification using prerecorded audio tracks. The main focus was on integrating speaker

diarization and speech transcription into a single application that could generate accurate

and structured speaker-labeled transcripts. The system was implemented using

PyAnnote.audio for diarization and Whisper for speech-to-text conversion, supported by a

graphical user interface (GUI) for accessibility and ease of use.

The results of the evaluation confirm that the system is capable of meeting the stated objectives:

Objective 1: Employ a pre-trained diarization tool to segment audio by speaker turns

• This objective was successfully met. PyAnnote reliably segmented audio into distinct

speaker turns, providing consistent and accurate labeling across both short and long

recordings.

Objective 2: Transcribe segmented audio into text using a robust speech-to-text model

• The Whisper model proved effective at converting audio into text with high accuracy

in short recordings and acceptable accuracy in long-form recordings. Accuracy was

measured using grammar checks, with short audio samples achieving up to 100%

accuracy and long files averaging between 63–77%.

Objective 3: Integrate diarization and transcription results to provide speaker-labeled

outputs

• The integration of diarization and transcription was seamless, with each speaker’s

contributions clearly separated in the output. This allowed for readable, speaker-

specific transcripts that were useful for interpretation and review.

Objective 4: Develop a user-friendly software framework with clear outputs

• The GUI successfully enabled users to upload audio, initiate processing, review results,

replay audio segments, and re-open previous transcriptions. The interface ensured

Chapter 7 Conclusion and Recommendation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
53

usability and reduced the complexity for non-technical users, making the system stable

and practical for real-world use.

From a performance perspective, the system demonstrated the ability to process audio files of

up to 4 hours in the current setup. For instance, a 1-hour 9-minute recording required ~5

minutes to process, while a 4-hour 19-minute recording required ~20 minutes. This highlights

the scalability and efficiency of the system. Attempts to process a 12-hour audio file were

unsuccessful, establishing the current upper bound for system capability.

In conclusion, the project validated the feasibility of building a standalone diarization and

transcription system using existing open-source tools. The outcomes indicate that such a

system can serve as a functional and accessible alternative to commercial solutions, particularly

for applications like podcasts, lectures, interviews, and research data collection.

7.2 Recommendation

While the project objectives were achieved, several opportunities for improvement and future

work have been identified:

1. Cross-Platform Support: Expand compatibility to other operating systems, such as

macOS or Linux.

2. Extended Audio Format Support: Include additional audio formats to broaden

usability.

3. Enhancing Robustness in Noisy and Overlapping Speech Conditions: The current

implementation performs best with clean audio recordings that have minimal

background noise and non-overlapping speakers. For practical use in real-world

scenarios such as meetings, conferences, or outdoor recordings, additional

preprocessing steps could be implemented. Techniques such as noise reduction, echo

cancellation, and advanced diarization models capable of detecting overlapping speech

would significantly improve reliability.

4. Extending Support for Longer Audio Files: The present system can reliably handle

files up to 4 hours. However, certain use cases, such as day-long meetings, multi-hour

interviews, or continuous lecture recordings, may exceed this limit. Future versions

could implement segmented batch processing or streaming-based transcription to

extend support to 8–12 hours or beyond without memory or stability issues.

Chapter 7 Conclusion and Recommendation

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
54

5. Improved Accuracy Measurement Using Ground-Truth Datasets: Accuracy in this

project was measured using a grammar checker, which provided reasonable but indirect

estimates of transcription quality. For more rigorous evaluation, future work should

incorporate benchmark datasets with ground-truth transcripts. This would enable

the use of formal metrics such as Word Error Rate (WER), Diarization Error Rate

(DER), and Speaker Attribution Error (SAE).

6. Multi-language and Dialect Support: Whisper supports multilingual transcription,

but this feature was not explored in the project. Expanding the system to support non-

English languages and accents would greatly enhance its usefulness, especially in

academic, multicultural, and global contexts.

7. Advanced User Interface Features: While the GUI is functional, future improvements

could enhance the user experience. Recommended features include:

o Search and keyword highlighting within transcripts.

o Export options for transcripts in multiple formats (e.g., TXT, DOCX, PDF).

o Editing tools to allow users to manually adjust speaker labels or transcription

errors.

8. Integration with External Tools: The system could be extended to integrate with

productivity platforms (e.g., Microsoft Teams, Zoom, or Google Meet) to enable real-

time transcription and diarization during meetings. This would expand its application

from offline analysis to live use cases.

By addressing these recommendations, the software could be extended to handle more complex

real-world audio scenarios and provide a more comprehensive tool for automated audio

analysis.

REFERENCES

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
55

REFERENCES

[1] J. Zhang, and K. Zhou. (2023, Aug.) “Identification of Solid and Liquid Materials Using

Acoustic Signals and Frequency-Graph Features,” Entropy. Accessed: Jun. 25, 2025. [Online].

25(8), 1170. Available: https://www.mdpi.com/1099-4300/25/8/1170

[2] Y. Lyu, X. Cheng, and Y. Wang. (2024, Jul.) “Automatic modulation identification for

underwater acoustic signals based on the space–time neural network,” Frontiers in Marine

Science. Accessed: Jun. 25, 2025. [Online]. 11. Available:

https://www.frontiersin.org/journals/marine-

science/articles/10.3389/fmars.2024.1334134/full

[3] L. Xiuquan, W. Zhen, J. Yeyin, C. Jing, and L. Zhenfei. (2024, Aug.) “Acoustic modulation

signal recognition based on endpoint detection,” Scientific Reports. Accessed: Jun. 25, 2025.

[Online]. 14(1). Available: https://www.nature.com/articles/s41598-024-69934-y

[4] Y. Huang, C. Shao, and X. Yan. (2019, May.) “Fractal signal processing method of acoustic

emission monitoring for seismic damage of concrete columns,” International Journal of

Lifecycle Performance Engineering. Accessed: Jun. 28, 2025. [Online]. 3(1), 59–76. Available:

https://www.inderscienceonline.com/doi/10.1504/IJLCPE.2019.099894

[5] C. Hu, F. Mei, and W. Hussain. (2022, Aug.) “Wavelet Energy Evolution Characteristics

of Acoustic Emission Signal under True-Triaxial Loading during the Rockburst Test,” Applied

Sciences. Accessed: Jun. 28, 2025. [Online]. 12(15), 7786. Available:

https://www.mdpi.com/2076-3417/12/15/7786

[6] S. Araki, N. Ito, R. Haeb-Umbach, G. Wichern, Z. Wang, and Y. Mitsufuji. (2025, Jan.)

“30+ Years of Source Separation Research: Achievements and Future Challenges,” arXiv.org.

Accessed: Jun. 28, 2025. [Online]. Available: https://arxiv.org/abs/2501.11837

[7] R. Ali, A. Islam, M. S. Rana, S. Nasrin, S. A. Shajol, and S. Sadi. (2023, Dec.) “ML-ASPA:

A Contemplation of Machine Learning-based Acoustic Signal Processing Analysis for Sounds,

https://www.mdpi.com/1099-4300/25/8/1170
https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2024.1334134/full
https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2024.1334134/full
https://www.nature.com/articles/s41598-024-69934-y
https://www.inderscienceonline.com/doi/10.1504/IJLCPE.2019.099894
https://www.mdpi.com/2076-3417/12/15/7786
https://arxiv.org/abs/2501.11837

REFERENCES

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
56

& Strains Emerging Technology,” SSRN Electronic Journal. Accessed: Jun. 29, 2025.

[Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4676291

[8] R. Haeb-Umbach, T. Nakatani, M. Delcroix, C. Boeddeker, and T. Ochiai. (2025, Jan.)

“Microphone Array Signal Processing and Deep Learning for Speech Enhancement,”

Arxiv.org. Accessed: Jun. 29, 2025. [Online]. Available: https://arxiv.org/html/2501.07215v1

[9] B. Liu, Q. Li, S. Han, and X. Wu. (2023, Jul.) “Development of Acquisition Device for

Low Frequency Acoustic Signal Generated by Geotechnical Movement,” 2023 5th

International Conference on Intelligent Control, Measurement and Signal Processing

(ICMSP). Accessed: Jun. 30, 2025. [Online]. 809–813. Available:

https://ieeexplore.ieee.org/document/10170968

[10] B. Rafaely et al. (2022, Oct.) “Spatial audio signal processing for binaural reproduction

of recorded acoustic scenes – review and challenges,” Acta Acustica 2022. Accessed: Jun. 30,

2025. [Online]. 6. Available: https://acta-

acustica.edpsciences.org/articles/aacus/abs/2022/01/aacus220021/aacus220021.html

[11] M. Olivieri, X. Karakonstantis, M. Pezzoli, F. Antonacci, A. Sarti, and E. Fernandez-

Grande. (2024, Apr.) “Physics-Informed Neural Network for Volumetric Sound field

Reconstruction of Speech Signals,” arXiv.org. Accessed: Jun. 30, 2025. [Online]. Available:

https://arxiv.org/abs/2403.09524

[12] M. J. Bianco et al. (2019, Dec.) “Machine learning in acoustics: Theory and applications,”

The Journal of the Acoustical Society of America. Accessed: Jul. 3, 2025. [Online]. 146(5),

3590–3628. Available: https://arxiv.org/abs/1905.04418

[13] J. L. Wilk-Jakubowski, L. Pawlik, D. Frej, and G. Wilk-Jakubowski. (2025, Jun.) “The

Evolution of Machine Learning in Vibration and Acoustics: A Decade of Innovation (2015–

2024),” Applied Sciences. Accessed: Jul. 3, 2025. [Online]. 15(12), 6549. Available:

https://www.mdpi.com/2076-3417/15/12/6549

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4676291
https://arxiv.org/html/2501.07215v1
https://ieeexplore.ieee.org/document/10170968
https://acta-acustica.edpsciences.org/articles/aacus/abs/2022/01/aacus220021/aacus220021.html
https://acta-acustica.edpsciences.org/articles/aacus/abs/2022/01/aacus220021/aacus220021.html
https://arxiv.org/abs/2403.09524
https://arxiv.org/abs/1905.04418
https://www.mdpi.com/2076-3417/15/12/6549

REFERENCES

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
57

[14] D. Yu and J. Li. (2018, Apr.) “Recent Progresses in Deep Learning based Acoustic Models

(Updated),” arXiv.org. Accessed: Jul. 3, 2025. [Online]. Available:

https://arxiv.org/abs/1804.09298

[15] G. K. Patra, C. Kuraku, S. Konkimalla, V. N. Boddapati, and M. Sarisa. (2023, Dec.)

“Voice Classification in AI: Harnessing Machine Learning for Enhanced Speech Recognition,”

Global Research and Development Journals. Accessed: Jul. 5, 2025. [Online]. 8(12), 19-26.

Available:

https://www.researchgate.net/publication/384440272_Voice_Classification_in_AI_Harnessin

g_Machine_Learning_for_Enhanced_Speech_Recognition#fullTextFileContent

[16] S. Shi, D. Yao, G. Wu, H. Chen, and S. Zhang. (2024, Jan.) “Characterization of Fatigue

Damage in Hadfield Steel Using Acoustic Emission and Machine Learning-Based Methods,”

Sensors 2024. Accessed: Jul. 6, 2025. [Online]. 24(1), 275. Available:

https://www.mdpi.com/1424-8220/24/1/275

[17] M. Rivera, J. A. Edwards, M. E. Hauber, and S. M. N. Woolley. (2023, May.) “Machine

learning and statistical classification of birdsong link vocal acoustic features with phylogeny,”

Scientific Reports. Accessed: Jul. 7, 2025. [Online]. 13(1), 7076. Available:

https://www.nature.com/articles/s41598-023-33825-5

[18] F. Ziauddin. (2024, Feb.) “Localization Through Optical Wireless Communication in

Underwater by Using Machine Learning Algorithms,” Journal of Global Research in

Computer Science. Accessed: Jul. 8, 2025. [Online]. 15(1). Available:

https://www.rroij.com/open-access/localization-through-optical-wireless-communication-in-

underwater-by-using-machine-learning-algorithms.php?aid=93927

[19] S. A. Y. Basha and K.Ulaga Priya. (2024, Oct.) “Recognition of Deep Fake Voice

Acoustic using Ensemble Bagging Model,” 2024 5th International Conference on Electronics

and Sustainable Communication Systems (ICESC). Accessed: Jul. 8, 2025. [Online]. 1211-

1217. Available: https://ieeexplore.ieee.org/document/10690074

https://arxiv.org/abs/1804.09298
https://www.researchgate.net/publication/384440272_Voice_Classification_in_AI_Harnessing_Machine_Learning_for_Enhanced_Speech_Recognition#fullTextFileContent
https://www.researchgate.net/publication/384440272_Voice_Classification_in_AI_Harnessing_Machine_Learning_for_Enhanced_Speech_Recognition#fullTextFileContent
https://www.mdpi.com/1424-8220/24/1/275
https://www.nature.com/articles/s41598-023-33825-5
https://www.rroij.com/open-access/localization-through-optical-wireless-communication-in-underwater-by-using-machine-learning-algorithms.php?aid=93927
https://www.rroij.com/open-access/localization-through-optical-wireless-communication-in-underwater-by-using-machine-learning-algorithms.php?aid=93927
https://ieeexplore.ieee.org/document/10690074

REFERENCES

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
58

[20] A. E. Djiré, A. Sabané, A.-K. Kabore, R. Kafando, and T. F. Bissyandé. (2024, Feb.)

“Evaluating Acoustic Parameters for DeepFake Audio Identification,” 2023 IEEE Afro-

Mediterranean Conference on Artificial Intelligence (AMCAI). Accessed: Jul. 9, 2025.

[Online]. Available: https://ieeexplore.ieee.org/document/10431521

[21] T. Shah, F. Amirkulova, and S. Tiomkin. (2023, Nov.) “Taming Waves: A Physically-

Interpretable Machine Learning Framework for Realizable Control of Wave Dynamics,”

arXiv.org. Accessed: Jul. 9, 2025. [Online]. Available: https://arxiv.org/abs/2312.09460

[22] K. Dabbabi, S. Hajji, and A. Cherif. (2017, Sep.) “Integration of evolutionary computation

algorithms and new AUTO-TLBO technique in the speaker clustering stage for speaker

diarization of broadcast news,” EURASIP Journal on Audio, Speech, and Music Processing.

Accessed: Jul. 11, 2025. [Online]. Available: https://asmp-

eurasipjournals.springeropen.com/articles/10.1186/s13636-017-0117-1

[23] T. J. Park, N. Kanda, D. Dimitriadis, K. J. Han, S. Watanabe, and S. Narayanan. (2021,

Nov.) “A review of speaker diarization: Recent advances with deep learning,” Computer

Speech & Language. Accessed: Jul. 11, 2025. [Online]. 72. Available:

https://www.sciencedirect.com/science/article/pii/S0885230821001121#b143

[24] F. Landini. (2024, Jun.) “From Modular to End-to-End Speaker Diarization,” arXiv.org.

Accessed: Jul. 11, 2025. [Online]. Available: https://arxiv.org/abs/2407.08752

[25] J. Wang, Z. Du, and S. Zhang. (2023, Dec.) “TOLD: A Novel Two-Stage Overlap-Aware

Framework for Speaker Diarization,” arXiv.org. Accessed: Jul. 13, 2025. [Online]. Available:

https://arxiv.org/abs/2303.05397

[26] Y. Fujita, S. Watanabe, S. Horiguchi, Y. Xue, and K. Nagamatsu. (2020, Feb.) “End-to-

End Neural Diarization: Reformulating Speaker Diarization as Simple Multi-label

Classification,” arXiv.org. Accessed: Jul. 13, 2025. [Online]. Available:

https://arxiv.org/abs/2003.02966

https://ieeexplore.ieee.org/document/10431521
https://arxiv.org/abs/2312.09460
https://asmp-eurasipjournals.springeropen.com/articles/10.1186/s13636-017-0117-1
https://asmp-eurasipjournals.springeropen.com/articles/10.1186/s13636-017-0117-1
https://www.sciencedirect.com/science/article/pii/S0885230821001121#b143
https://arxiv.org/abs/2407.08752
https://arxiv.org/abs/2303.05397
https://arxiv.org/abs/2003.02966

REFERENCES

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
59

[27] K. Kinoshita, M. Delcroix, and N. Tawara. (2021, Aug.) “Advances in integration of end-

to-end neural and clustering-based diarization for real conversational speech,” arXiv.org.

Accessed: Jul. 13, 2025. [Online]. Available: https://arxiv.org/abs/2105.09040

[28] M. Cheng, Y. Lin, and M. Li. (2025, Jun.) “Sequence-to-Sequence Neural Diarization

with Automatic Speaker Detection and Representation,” arXiv.org. Accessed: Jul. 14, 2025.

[Online]. Available: https://arxiv.org/abs/2411.13849

[29] S. Cornell, J. Jung, S. Watanabe, and S. Squartini. (2023, Oct.) “One model to rule them

all ? Towards End-to-End Joint Speaker Diarization and Speech Recognition,” arXiv.org.

Accessed: Jul. 14, 2025. [Online]. Available: https://arxiv.org/abs/2310.01688

[30] S. U. Rittikar, S. Rangate, U. A. Nuli, M. Sathe, V. Rathor, and D. Patil. (2023, Mar.)

“Development of a Context based Conversation State Prediction System,” 2022 4th

International Conference on Artificial Intelligence and Speech Technology (AIST). Accessed:

Jul. 15, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/10064944

[31] S. U. Rittikar. (2021, Jul.) “Development of a Conversation State Prediction System,”

Semantic Scholar. Accessed: Jul. 15, 2025. [Online]. Available:

https://www.semanticscholar.org/paper/Development-of-a-Conversation-State-Prediction-

Rittikar/81f1a52ed8241a6961709f34f8558c28a6ba0425

[32] V. Mingote, A. Ortega, A. Miguel, and E. Lleida. (2024, Sep.) “Audio-Visual Speaker

Diarization: Current Databases, Approaches and Challenges,” Arxiv.org. Accessed: Jul. 15,

2025. [Online]. Available: https://arxiv.org/html/2409.05659v1

[33] V. Editorial. (2023, Aug.) “How to Transcribe Audio to Text: The Basics - Verbit,” Verbit.

Accessed: Jul. 16, 2025. [Online]. Available: https://verbit.ai/general/how-to-transcribe-audio-

to-text-the-basics

[34] Q. Liang. (2024, May.) “Automatic speech recognition technology: History, applications

and improvements,” Applied and Computational Engineering. Accessed: Jul. 16, 2025.

[Online]. 65. Available: https://www.ewadirect.com/proceedings/ace/article/view/12454

https://arxiv.org/abs/2105.09040
https://arxiv.org/abs/2411.13849
https://arxiv.org/abs/2310.01688
https://ieeexplore.ieee.org/document/10064944
https://www.semanticscholar.org/paper/Development-of-a-Conversation-State-Prediction-Rittikar/81f1a52ed8241a6961709f34f8558c28a6ba0425
https://www.semanticscholar.org/paper/Development-of-a-Conversation-State-Prediction-Rittikar/81f1a52ed8241a6961709f34f8558c28a6ba0425
https://arxiv.org/html/2409.05659v1
https://verbit.ai/general/how-to-transcribe-audio-to-text-the-basics
https://verbit.ai/general/how-to-transcribe-audio-to-text-the-basics
https://www.ewadirect.com/proceedings/ace/article/view/12454

REFERENCES

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
60

[35] M. A. Anusuya and S. K. Katti. (2010, Jan.) “Speech Recognition by Machine, A Review,”

(IJCSIS) International Journal of Computer Science and Information Security. Accessed: Jul.

16, 2025. [Online]. 6(3), 181-205. Available: https://arxiv.org/abs/1001.2267

[36] J. Xu. (2025, Jan.) “Evolution and Challenges in Speech Recognition Technology: From

Early Systems to Deep Learning Innovations,” Applied and Computational Engineering.

Accessed: Jul. 17, 2025. [Online]. 121, 35-41. Available:

https://www.ewadirect.com/proceedings/ace/article/view/19493

[37] M. Fleck and W. Göderle. (2023, Mar.) “wav2vec and its current potential to Automatic

Speech Recognition in German for the usage in Digital History: A comparative assessment of

available ASR-technologies for the use in cultural heritage contexts,” arXiv.org. Accessed: Jul.

17, 2025. [Online]. Available: https://arxiv.org/abs/2303.06026

[38] A. Hannun. (2021, Jul.) “The History of Speech Recognition to the Year 2030,” arXiv.org.

Accessed: Jul. 17, 2025. [Online]. Available: https://arxiv.org/abs/2108.00084

[39] M. Bain, J. Huh, T. Han, and A. Zisserman. (2023, Jul.) “WhisperX: Time-Accurate

Speech Transcription of Long-Form Audio,” arXiv.org. Accessed: Jul. 18, 2025. [Online].

Available: https://arxiv.org/abs/2303.00747

[40] J. E. K. Parker and S. Dockray. (2023, Apr.) “‘All possible sounds’: speech, music, and

the emergence of machine listening,” Sound Studies. Accessed: Jul. 18, 2025. [Online]. 9(2),

253-281. Available:

https://doi.org/www.tandfonline.com/doi/full/10.1080/20551940.2023.2195057#d1e498

[41] A. Plaquet and H. Bredin. (2023.) “Powerset multi-class cross entropy loss for neural

speaker diarization.” Accessed: Jul. 19, 2025. [Online]. Available:

https://github.com/pyannote/pyannote-audio

https://arxiv.org/abs/1001.2267
https://www.ewadirect.com/proceedings/ace/article/view/19493
https://arxiv.org/abs/2303.06026
https://arxiv.org/abs/2108.00084
https://arxiv.org/abs/2303.00747
https://doi.org/www.tandfonline.com/doi/full/10.1080/20551940.2023.2195057#d1e498
https://github.com/pyannote/pyannote-audio

REFERENCES

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
61

[42] Hervé Bredin. (2023.) “pyannote.audio 2.1 speaker diarization pipeline: principle,

benchmark, and recipe.” Accessed: Jul. 19, 2025. [Online]. Available:

https://huggingface.co/pyannote/speaker-diarization-3.1

[43] OpenAI. (2025, Jun.) “Whisper.” GitHub. Accessed: Jul. 19, 2025. [Online]. Available:

https://github.com/openai/whisper

[44] K. Stratvert, U.S. How to Install & Use Whisper AI Voice to Text. (Apr. 5, 2023).

Accessed: Jul 19, 2025. [Online Video]. Available:

https://www.youtube.com/watch?v=ABFqbY_rmEk

[45] pytorch, (2025, Jan.) “GitHub - Pytorch/Audio: Data Manipulation and Transformation

for Audio Signal Processing, Powered by PyTorch.” GitHub. Accessed: Jul. 20, 2025. [Online].

Available: https://github.com/pytorch/audio?tab=readme-ov-file

[46] GeeksforGeeks. (2025, Jul.) “How to use GPU acceleration in PyTorch?,” GeeksforGeeks.

Accessed: Jul. 20, 2025. [Online]. Available: https://www.geeksforgeeks.org/deep-

learning/how-to-use-gpu-acceleration-in-pytorch

[47] C. Chen, and M. Hira. (2024.) “Audio Resampling — Torchaudio 2.6.0 Documentation.”

Pytorch.org. Accessed: Jul. 20, 2025. [Online]. Available:

https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html

[48] Python Software Foundation. “threading — Thread-based parallelism — Python 3.9.0

documentation,” docs.python.org. Accessed: Jul. 20, 2025. [Online]. Available:

https://docs.python.org/3/library/threading.html

[49] GeeksforGeeks. (2024, Jul.) “Python Daemon Threads,” GeeksforGeeks. Accessed: Jul.

20, 2025. [Online]. Available: https://www.geeksforgeeks.org/python/python-daemon-threads

[50] GeeksforGeeks. (2025, Jul.) “Python | Playing audio file in Pygame,” GeeksforGeeks.

Accessed: Jul. 21, 2025. [Online]. Available: https://www.geeksforgeeks.org/python/python-

playing-audio-file-in-pygame

https://huggingface.co/pyannote/speaker-diarization-3.1
https://github.com/openai/whisper
https://www.youtube.com/watch?v=ABFqbY_rmEk
https://github.com/pytorch/audio?tab=readme-ov-file
https://www.geeksforgeeks.org/deep-learning/how-to-use-gpu-acceleration-in-pytorch
https://www.geeksforgeeks.org/deep-learning/how-to-use-gpu-acceleration-in-pytorch
https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html
https://docs.python.org/3/library/threading.html
https://www.geeksforgeeks.org/python/python-daemon-threads
https://www.geeksforgeeks.org/python/python-playing-audio-file-in-pygame
https://www.geeksforgeeks.org/python/python-playing-audio-file-in-pygame

REFERENCES

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
62

[51]Zenva. (2023, Nov.) “Pygame Mixer Tutorial - Complete Guide - GameDev Academy,”

GameDev Academy. Accessed: Jul. 21, 2025. [Online]. Available:

https://gamedevacademy.org/pygame-mixer-tutorial-complete-guide/#Conclusion

https://gamedevacademy.org/pygame-mixer-tutorial-complete-guide/#Conclusion

POSTER

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
63

POSTER

