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ABSTRACT 

 

This project focuses on the identification and transcription of acoustic signals within audio 

tracks, specifically targeting multi-speaker English audio files without background noise or 

overlapping speech. The primary objective is to develop a standalone, local software program 

using Python that can reliably identify different speakers and produce transcriptions that are 

credited to each one without the need for an internet connection. The system employs 

techniques for audio signal processing, speaker diarization for segmenting the audio stream 

based on speaker identity, and automatic speech recognition for transcribing the spoken 

content, all implemented using local models and libraries. The methodology involves 

processing the input audio locally, applying speaker diarization to detect speaker changes and 

segment the audio, and subsequently transcribing each segment while associating it with the 

corresponding speaker, ensuring full offline operation. This project contributes to the field of 

audio analysis by creating a self-contained, offline-capable tool for speaker-aware acoustic 

signal processing and transcription in controlled environments, demonstrating the practical 

application of Python-based audio processing and machine learning tools that function 

independently of cloud services. The final output is a functional offline Python application 

capable of identifying speakers and generating speaker-labelled transcriptions for the specified 

audio constraints. 

 

Area of Study: Audio Signal Processing 

 

Keywords: Speaker Diarization, Speaker Transcription, Python Programming, Audio 

Processing, Signal Segmentation  
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Chapter 1 

Introduction 

This chapter introduces the background, motivation, contributions, and organization of the 

project. The development of automated acoustic signal identification systems is gaining 

importance due to the exponential growth in audio data across various fields. Acoustic signal 

identification is the process of analyzing and classifying sound signals to extract meaningful 

information, which is crucial in applications like speech recognition, environmental sound 

detection, and multimedia content analysis. Efficient identification of acoustic signals enables 

better management and utilization of audio data in many research and industrial domains [1]. 

 

1.1  Problem Statement and Motivation 

The rapid increase in the volume of digital audio content presents significant challenges for 

manual audio analysis, which is time-intensive and prone to human error. Automated acoustic 

signal identification systems address this problem by providing fast, reliable, and scalable tools 

for extracting and classifying audio features [2]. Despite advancements in digital signal 

processing and machine learning, designing software that strikes a balance between accuracy, 

speed, and resource efficiency remains challenging. 

 

One central difficulty lies in extracting robust and discriminative features from audio signals 

to uniquely identify acoustic events in diverse contexts. Feature extraction techniques are 

critical because they determine the quality of the representation used for matching and 

classification [3]. Moreover, efficient algorithms for comparing and matching these features 

are vital to ensure scalability, especially when dealing with large databases or real-time 

streams. 

 

This project aims to develop a Python-based system that addresses these challenges through 

effective audio processing, feature extraction, and identification workflows. The goal is to 

reduce manual workload, improve recognition accuracy, and provide a flexible framework 

adaptable to future enhancements and real-world applications. By doing so, it contributes to 

the ongoing evolution of audio analysis technologies and supports broader efforts to harness 

the growing audio data landscape [1][2]. 
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1.2  Objectives 

The main objective of this project is to utilize existing powerful Python-based tools to 

achieve effective acoustic signal identification within audio tracks. The project applies 

state-of-the-art pre-trained models to process audio data, separating speakers and 

generating transcriptions. 

 

The specific objectives include: 

• Employing a pre-trained diarization tool to segment audio by speaker turns 

• Using a robust speech-to-text model to transcribe segmented audio into text 

• Integrating diarization and transcription results to accurately label audio content 

with speaker information 

• Developing a software framework that combines these tools seamlessly to provide 

clear, structured outputs in a user-friendly manner 

 

By leveraging well-established libraries, the project aims to build a reliable and scalable 

system that can automate speaker identification and transcription tasks efficiently, meeting 

the increasing demand for automated audio content analysis. 

 

1.3  Project Scope and Direction  

This project focuses on developing a local software system that processes English audio 

recordings without requiring an internet connection. The audio recordings used do not contain 

overlapping speech; speakers talk one at a time, simplifying the diarization process. The system 

is designed to run entirely offline, allowing users to maintain data privacy and operate in 

environments with limited or no internet access. 

 

The scope includes: 

• Applying speaker diarization to segment audio according to speaker turns, assuming no 

overlapping speakers 

• Performing speech transcription on the segmented audio to produce accurate text results 

for English speech 

• Combining these functionalities into a seamless local software solution 

• Developing a user-friendly graphical user interface (GUI) to facilitate easy interaction 

with the software for users of varying technical abilities 
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The offline capability is achieved by using pre-downloaded pre-trained models and caching 

mechanisms, enabling the system to run independently from cloud services. This offline 

operation not only improves user data security but also reduces dependencies on external 

platforms, making the system robust and accessible for various applications involving English-

language audio such as interviews, meetings, and transcription tasks where internet access may 

be restricted or undesirable. 

 

1.4  Contributions 

This project contributes by demonstrating the effective integration of powerful, pre-existing 

Python tools to automate acoustic signal identification and transcription tasks. By utilizing 

reliable pre-trained models, the project avoids the need to develop new algorithms from scratch, 

focusing instead on practical application and system integration. 

 

Key contributions include: 

• Delivering a complete local software solution capable of performing speaker diarization 

and transcription on English audio recordings without requiring internet connectivity, 

thus preserving user data privacy and enabling offline usage. 

• Simplifying the process of audio analysis by integrating diarization and speech-to-text 

functions into a single, streamlined workflow, improving accessibility for users. 

• Developing a user-friendly graphical interface that lowers the entry barrier for non-

technical users, allowing easy interaction with the system’s capabilities. 

• Validating the approach on clean audio files without overlapping speech, demonstrating 

accurate segmentation and transcription results under these conditions. 

 

These outcomes provide a foundation for further enhancements, including adaptation to more 

complex audio scenarios and real-time processing, and contribute practical value to the field of 

automated audio analysis by offering an accessible, scalable, and efficient toolset. 

 

1.5  Report Organization 

This report is organized into 7 chapters to provide a clear and systematic presentation of the 

project. Chapter 1 introduces the project background, problem statement, objectives, scope, 

contributions, and an overview of the report structure. Chapter 2 reviews relevant literature and 

existing solutions related to the project’s domain, helping to establish the context and identify 
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gaps. Chapter 3 details the system methodology and approach, including design diagrams and 

descriptions that outline how the system is structured and operates. Chapter 4 covers the system 

design specifics, including block diagrams, component specifications, and how different parts 

of the system interact. Chapter 5 describes the system implementation process, hardware and 

software setup, configuration details, and includes screenshots and discussions of issues 

encountered during development. Chapter 6 focuses on system evaluation and discussion, 

presenting testing methods, performance results, project challenges, and an assessment of how 

well the objectives were met. Finally, Chapter 7 concludes the report with a summary of 

findings and provides recommendations for further work or improvements. This organization 

ensures a logical flow from conceptualization through design, development, testing, and 

evaluation, enabling readers to follow the comprehensive development lifecycle of the project. 
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Chapter 2 

Literature Review 

2.1  Existing Work in Acoustic Signal Processing 

 

Figure 2.1 Signal Processing 

 

Acoustic signal processing has undergone significant transformation since its inception, 

evolving from basic analog techniques to sophisticated modern methods incorporating machine 

learning and deep learning approaches.  

 

2.1.1  Early and Traditional Signal Processing in Acoustics 

Initially, acoustic signal processing relied heavily on analog methods and basic digital 

techniques for capturing and analyzing sound waves. Early systems used rudimentary analog 

sonobuoys and limited bandwidth telemetry to measure underwater or environmental acoustic 

signals. The fundamental operations consisted of noise reduction, signal enhancement, and 

segmentation to extract meaningful information from acoustic emissions (e.g., geological or 

marine environments) [4]. 

 

With the transition towards digital signal processing (DSP), methods such as Fourier 

transforms, cepstrum analysis, and wavelet transforms became prevalent. These methods 

provided tools for spectral analysis, time-frequency representation, and pattern detection that 
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enhanced acoustic data analysis fidelity and expanded applications to areas such as structural 

health monitoring, environmental acoustics, and mechanical fault diagnosis [5]. 

 

2.1.2  Advancements with Statistical and Model-based Approaches 

Following DSP, model-based signal processing approaches were developed to exploit domain-

specific knowledge about acoustic sources and propagation. Examples include acoustic color 

signature analysis and source separation techniques that aimed to isolate individual sound 

sources from mixed signals. These methods balance between statistical assumptions and 

physical modeling to optimize signal estimation and enhancement [6]. 

 

2.1.3  Integration of Machine Learning and Deep Learning 

A major evolutionary step in acoustic signal processing is the incorporation of machine 

learning (ML) and deep learning (DL). These data-driven techniques automatically discern 

patterns and features from large acoustic data sets, enabling complex tasks that were difficult 

with classical methods—such as human speech recognition, acoustic scene analysis, and 

anomaly detection in rotating machinery and geological monitoring [7][8]. 

 

ML-based acoustic signal processing adopts a paradigm shift, moving from handcrafted feature 

engineering towards end-to-end learning models that can discover intricate relationships in 

data. For example, the use of hybrid approaches combines traditional DSP knowledge with 

deep learning for enhanced noise reduction, source separation, and dereverberation 

performance [7][8]. 

 

2.1.4  Recent Innovations and Multi-disciplinary Applications 

Recent research extends signal processing techniques to various specialized applications 

including seismic damage monitoring using fractal analysis, infrasound detection of geological 

events, acoustic emission monitoring in material testing, and environmental impact 

assessments of underwater sound sources on marine life. The integration of multi-sensor arrays, 

real-time processing, and satellite data relays has expanded the scope and scale of acoustic 

monitoring [4][9]. 

 

Current research emphasizes the integration of deep learning with classical wave-based 

modeling for more accurate acoustic field reconstruction and holistic audio understanding. 
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There is ongoing exploration of multi-channel processing, spatial audio reproduction, and 

advanced feature extraction techniques to address the complexities of real-world acoustic 

environments [10][11]. 

 

2.2  Existing Work in Machine Learning for Acoustics 

Machine learning (ML) has transformed acoustic signal processing across a wide spectrum of 

applications, advancing from traditional handcrafted feature techniques to sophisticated data-

driven models that autonomously discover complex patterns in acoustic data. Initially, acoustic 

analysis relied on engineered features and classical signal processing methods. However, the 

advent of ML, particularly deep learning, has enabled unprecedented capabilities in the 

interpretation, classification, and modeling of acoustic phenomena such as human speech, 

environmental sounds, and mechanical vibrations [7][12]. 

 

2.2.1  Early and Traditional Approaches 

Traditional acoustic signal processing focused on deterministic algorithms for noise reduction, 

feature extraction (e.g., spectral and cepstral coefficients), and classification. These approaches 

required extensive domain knowledge and manual tuning. Innovations in machine learning 

introduced algorithms such as Support Vector Machines (SVM), decision trees, and clustering 

methods, which improved pattern recognition in acoustic signals by learning from labeled 

datasets. This phase set the foundation for more adaptive and scalable acoustic models [13]. 

 

2.2.2  Emergence of Deep Learning 

A notable shift in the field occurred with the introduction of deep learning architectures like 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long 

Short-Term Memory (LSTM) networks. These models excel at automatically extracting 

hierarchical and temporal features from raw acoustic signals, outperforming classical models 

in tasks including speech recognition, sound event detection, and speaker identification. Deep 

learning methods facilitated handling variable-length contextual information and capturing 

reverberation and nonlinear acoustic effects [13][14]. 

 

2.2.3  Applications Across Domains 

Machine learning in acoustics spans various sectors: 
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• Speech and Voice Processing: Enhanced speech recognition, speaker verification, voice 

biometrics, and language identification have benefited from ML models that can 

manage noisy and variable acoustic environments [15]. 

• Structural Health Monitoring: ML models analyze acoustic emission signals to classify 

damage types and monitor fatigue in materials like steel, enabling real-time diagnostics 

in engineering [16]. 

• Bioacoustics and Biodiversity: ML facilitates the automated classification of wildlife 

sounds, linking acoustic features to species identification and evolutionary analysis, 

providing insights into animal behavior and phylogeny [17]. 

• Underwater and Environmental Acoustics: Novel hybrid ML models combine acoustic 

and optical signals for improved localization and communication in challenging 

underwater environments [18]. 

 

2.2.4  Methodological Trends Applications Across Domains 

Recent reviews highlight a trajectory towards deep learning-based methods combined with 

multisensor data fusion, automatic feature extraction, and advanced learning paradigms like 

transfer learning and few-shot learning. There is a growing emphasis on unsupervised and 

semi-supervised approaches to manage limited labeled data scenarios common in acoustic 

datasets. Ensemble learning strategies further enhance classification performance, as seen in 

detecting fake voice audio with high accuracy [13][19]. 

 

2.2.5  Emerging Challenges and Future Directions 

Despite impressive progress, challenges remain in interpretability, data scarcity, robustness to 

noise and adversarial examples, and ethical considerations, such as deepfake audio detection. 

Novel frameworks that integrate physical constraints of acoustic wave propagation with ML 

models are emerging to improve interpretability and control. Research continues to address 

these challenges through hybrid models, improved feature engineering, and real-time adaptive 

algorithms [20][21]. 
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2.3  Existing Work in Speaker Diarization 

 

Figure 2.3 Speaker Diarization 

 

Speaker diarization is the task that aims to answer the question "who spoke when?" in audio or 

video recordings by segmenting a conversation according to individual speaker identities 

[22][23]. The evolution of this field reflects advances in signal processing, machine learning, 

and deep learning techniques. 

 

2.3.1  Early Approaches: Modular Systems and Clustering 

Initial speaker diarization systems were primarily modular, featuring separate stages including 

segmentation, feature extraction, speaker embedding, and clustering [24]. The most common 

traditional approach was to cluster speaker embeddings, such as i-vectors or x-vectors, using 

algorithms like K-means or Gaussian Mixture Models. However, these methods often struggled 

with overlapping speech and determining the optimal number of speakers [22]. 

 

2.3.2  Incorporation of Evolutionary Computation Algorithms 

Research explored optimization of speaker clustering using evolutionary computation 

techniques like Genetic Algorithms, Particle Swarm Optimization, Differential Evolution, and 

Teaching-Learning-Based Optimization. These methods aimed to improve clustering accuracy 

by optimizing cluster numbers and grouping criteria, particularly in broadcast news and 

heterogeneous audio sources [22]. 

 

2.3.3  Introduction of Deep Learning and Neural Approaches 

The advent of deep learning brought revolutionary changes by enabling end-to-end neural 

diarization models. These models replaced multi-stage pipelines with unified architectures that 
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learn to assign speaker labels directly from audio inputs, improving performance especially in 

complex scenarios with overlapping speakers [23][25][26]. 

 

2.3.4  End-to-End Neural Diarization (EEND) 

EEND formulated diarization as a multi-label classification problem, allowing simultaneous 

detection of multiple active speakers. This method uses permutation-free objective functions 

to minimize diarization errors and understands speaker overlaps better than clustering methods 

[25][26]. Recent advances have integrated EEND with vector clustering to handle real 

conversational speech effectively, addressing challenges like arbitrary number of speakers and 

overlapped speech [27]. 

 

2.3.5  Joint Modeling and Sequence-to-Sequence Neural Diarization 

Novel architectures apply sequence-to-sequence frameworks to perform both online and offline 

diarization, incorporating automatic speaker detection and better speaker representation. These 

approaches are pushing the boundaries by integrating diarization with other speech tasks such 

as speech recognition for comprehensive audio understanding [28][29]. 

 

2.3.6  Context-Aware and Prediction-Based Models 

Recent studies have investigated the use of contextual information and conversation state 

prediction to enhance diarization. Techniques using Long Short-Term Memory (LSTM) 

networks, Markov Chains, and distance metrics on speaker-specific contextual similarity show 

promise in predicting speaker states and diarization labels in natural conversations without 

manual tagging [30][31]. 

 

2.3.7  Emerging Trends: Multimodal and Audio-Visual Speaker Diarization 

As multimedia content grows, combining audio with visual cues like faces for speaker 

diarization is gaining attention. Audio-visual diarization improves robustness and accuracy by 

leveraging synchronized visual information alongside audio, facilitating applications in video 

analysis and multimedia content management [32]. 
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2.4  Existing Work in Speaker Transcription 

 

Figure 2.4 Speaker Transcription 

 

Speaker transcription is the process of converting spoken language from audio recordings into 

written text. This transformation enables the structured representation of unstructured audio 

data, making it accessible for search, analysis, and documentation across a wide range of 

applications such as interviews, meetings, podcasts, and legal proceedings [33]. 

 

2.4.1  Early Development 

Speech recognition originated in the 1950s with primitive systems that recognized simple 

vocabulary, such as the ten digits of English. Early systems used rule-based methods and 

template matching algorithms, focusing mostly on isolated word recognition. By the 1980s, 

advances in faster recognition algorithms and mathematical modeling enabled speaker-

independent and continuous speech recognition over larger vocabularies. This period also saw 

the advent of Hidden Markov Models (HMM), which became a foundational technique due to 

their ability to model speech variability statistically [34]. 

 

2.4.2  Statistical Modeling and Hidden Markov Models 

HMMs dominated the speech recognition landscape in the late 20th century, providing the 

ability to handle temporal variability and noise. Coupled with Gaussian Mixture Models 

(GMM) for acoustic modeling and n-gram language models, systems became more robust and 

applicable to real-world applications. This era also witnessed the scaling of systems to support 

continuous speech and larger vocabularies with reasonable accuracy [35]. 

 

2.4.3  Machine Learning and Neural Networks 

Machine learning techniques started to supplement and partially replace traditional HMM-

GMM frameworks. The rise of Deep Neural Networks (DNNs), especially with the 

introduction of algorithms like Deep Belief Networks and Convolutional Neural Networks, 
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brought significant accuracy improvements. These models better captured complex acoustic 

patterns and contextual speech dependencies than HMMs alone. This period also enabled the 

integration of speech recognition into consumer devices and services such as smartphones and 

GPS systems [36]. 

 

2.4.4  Deep Learning and End-to-End Systems 

Speech recognition underwent a revolutionary leap due to deep learning advances. End-to-end 

neural architectures such as Recurrent Neural Networks (RNNs), Long Short-Term Memory 

(LSTM) networks, and more recently Transformer models and wav2vec have dramatically 

improved performance. These systems reduce reliance on handcrafted features and complicated 

pipelines, simultaneously learning acoustic, pronunciation, and language models. Usage has 

become widespread in virtual assistants (Amazon Alexa, Apple Siri), voice search, 

transcription, and translation applications, enabling natural, hands-free interaction 

[36][37][38]. 

 

2.4.5  Large-Scale and Weakly-Supervised Models 

Large-scale models like OpenAI Whisper use weakly supervised learning on extensive audio 

datasets covering multiple languages and domains. These models demonstrate impressive 

transcription capability for single and multi-speaker audio, enhancing robustness to noise, 

accents, and domain variations. However, handling long audio segments requires advanced 

buffering or sliding window methods, and timestamp accuracy remains a challenge for long-

form transcription [39]. 

 

2.4.6  Emerging Trends and Future Directions 

Recent research highlights the integration of ASR with broader AI interfaces for more natural, 

hands-free communication. Innovations in silent or subvocal speech recognition address 

privacy and accessibility limitations. Cultural and linguistic diversity in speech recognition 

remains an area needing more focus to enhance inclusivity. The transition to machine 

listening—extracting meaning beyond just words—points toward evolving applications in 

digital humanities and cross-linguistic communication [40]. 
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Chapter 3 

System Methodology/Approach 

This chapter outlines the methodology and approach applied in the development of the 

standalone software for acoustic signal identification in an audio track. The methodology 

includes the design process, architecture, and workflow that enable the system to perform 

diarization and transcription of audio files. 

 

3.1  System Design Diagram 

This project adopts a modular design approach to enable audio diarization and transcription in 

a standalone desktop software. The methodology is divided into four major components: 

1. Audio Input Module – accepts pre-recorded English audio files. The expected input 

must have minimal background noise and no overlapping speakers to ensure accurate 

diarization and transcription. 

2. Speaker Diarization Module – utilizes pyannote.audio to segment the audio and 

assign speaker labels (e.g., Speaker 1, Speaker 2, Unknown) [41] [42] [46]. 

3. Speech Recognition Module – employs OpenAI Whisper to generate transcriptions of 

each segment [43] [44]. 

4. Graphical User Interface (GUI) – developed in Python using Tkinter, which allows 

users to upload audio, start processing, and view diarization results with transcription 

after processing is completed. 

 

The system is designed to support sequential single-file analysis. Users can process one audio 

file at a time. Once the results are shown, they may either upload another file for a new analysis 

or exit the program. 
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3.1.1  System Architecture Diagram 

 

Figure 3.1.1 System Architecture Diagram 

 

The architecture of the system consists of four interconnected layers: 

• User Layer: Provides audio input and interacts with the software through the GUI. 

• Processing Layer: Handles signal preprocessing, including resampling and temporary 

file handling. 

• Diarization & Recognition Layer: Uses pyannote.audio for speaker segmentation and 

Whisper for transcription [41-44]. 

• Output Layer: Displays results in the GUI after processing. Users can then decide 

whether to continue with another audio file or exit. 
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3.1.2  Use Case Diagram and Description 

 

Figure 3.1.2 Use Case Diagram 

 

Actors 

1. User – interacts with the software to select audio files, configure speaker detection, 

start processing, and view results. 

Use Cases 

1. Select Audio File – User chooses an audio file (MP3, WAV, FLAC, OGG). 

2. Choose Speaker Detection Mode – User selects auto or manual speaker number 

before starting. 

3. Start Processing – System performs diarization and transcription. 

4. Cancel Processing – User can cancel the ongoing process. 

5. View Transcription – User views the processed transcription with speaker labels. 
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o Playback Segment (sub-function) – User can play a specific segment by 

double-clicking in the transcription window. 

6. Reopen Transcription Window – User reopens the last transcription window. 

 

Explanation 

• The User is the sole actor. 

• The primary flow: select a file → start processing → view transcription. 

• Optional flows include cancel processing, choose auto/manual speaker mode, 

playback segments, and reopen transcription. 

 

3.1.3  Activity Diagram 

 

Figure 3.1.3 Activity Diagram 
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The workflow is as follows: 

1. Start 

2. Select Audio File – User chooses an audio file (MP3, WAV, FLAC, OGG). 

3. Choose Speaker Detection Mode – User selects auto or manual speaker number. 

4. Start Processing – System begins analysis. 

5. Preprocess Audio 

• Convert to mono if necessary 

• Resample audio to 16 kHz 

• Save to temporary WAV file 

6. Speaker Diarization (PyAnnote) [41] [42] [46] 

• Detect speakers automatically or use manual input 

• Generate speaker-labeled segments 

7. Speech Transcription (Whisper) [43] [44] 

• Transcribe English speech 

• Generate timestamped transcription segments 

8. Assign Speakers to Transcription Segments 

• Match transcription segments to diarization segments 

• Label unmatched segments as “Unknown” 

• Extend last segment to match full audio duration 

9. Display Transcription Window 

• Show speaker-labeled transcription in scrollable text box 

• Enable playback of segments within the window (double-click) 

10. Repeat Process? – User decides whether to analyze another audio file 

• Yes → Go to Step 2 (Select Audio File) 

• No → Proceed to Step 11 

11. End 

 

Decision Points: 

• If no audio file selected → prompt user to select a file. 

• If cancel requested during processing → terminate current process and go to Step 10 

(Repeat Process decision). 
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Chapter 4 

System Design 

This chapter describes the detailed design of the standalone software for acoustic signal 

identification in an audio track. It provides all necessary information for someone to 

understand the program structure, components, and their interactions. The chapter covers 

system block diagrams, component specifications, and interaction operations. 

 

4.1  System Block Diagram 

 

Figure 4.1 System Block Diagram 

 

The system consists of the following major components: 

1. Audio Input Module – handles the selection of audio files. Acceptable formats include 

.mp3, .wav, .flac, and .ogg. Only one file is processed at a time. 
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2. Preprocessing Module – performs signal processing tasks such as converting audio to 

mono, resampling to 16 kHz, and saving to a temporary file for further analysis. 

3. Speaker Diarization Module – uses pyannote.audio to segment the audio and assign 

speaker labels. 

4. Speech Recognition Module – uses OpenAI Whisper to transcribe each segment. 

5. Result Display Module (GUI) – developed in Python with Tkinter. Displays 

diarization results with transcriptions after processing is complete. Users may then 

choose to process another audio file or exit the program. 

6. Control & Timer Module – manages the GUI interactions, process timing, and 

cancellation requests. 

 

4.2  System Components Specifications 

The system modules are described as follows: 

1. Audio Input Module 

• Accepts audio files: .mp3, .wav, .flac, .ogg. 

• Only one file can be processed at a time. 

• Libraries used: tkinter, filedialog, os. 

2. Preprocessing Module 

• Converts stereo audio to mono. 

• Resamples audio to 16 kHz. 

• Saves a temporary WAV file for further processing. 

• Libraries used: torchaudio, torch, tempfile [45-47]. 

3. Speaker Diarization Module 

• Uses pyannote.audio v3.1 to segment audio into speaker turns. 

• Assigns speaker labels: Speaker 1, Speaker 2, or Unknown. 

• Works with non-overlapping English audio with minimal background noise. 

• Libraries used: pyannote.audio, torch [41] [42] [46]. 

4. Speech Recognition Module 

• Uses OpenAI Whisper (turbo) for transcription. 

• Processes each diarized segment individually. 

• Preserves start and end times for each segment. 

• Libraries used: whisper, torch [43] [44]. 

 



Chapter 4 System Design 

Bachelor of Information Technology (Honours) Computer Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
20 

 

5. Result Display Module (GUI) 

• Built with Tkinter. 

• Displays speaker labels and transcriptions in a scrollable text widget. 

• Supports segment playback with current line highlighted. 

• Allows the user to reopen the transcription window to view previous results without 

reprocessing the audio file. 

• Libraries used: tkinter, pygame [50] [51]. 

6. Control & Timer Module 

• Manages timers and user cancellation requests. 

• Ensures sequential workflow and prevents multiple concurrent processes. 

• Libraries used: time, threading [48] [49]. 

 

4.3  Software Architecture and Module Design 

The modules interact in a clearly defined sequence: 

• Modular Design: Each module operates independently but communicates through 

defined inputs/outputs. This ensures maintainability and allows updates or 

replacements without affecting other modules. 

• Data Flow: Audio File → Preprocessing → Diarization → Transcription → GUI 

Output 

• Control Flow: 

o GUI triggers preprocessing 

o Preprocessing feeds diarization 

o Diarization results guide transcription 

o GUI displays final output 

o Only one file is processed at a time; after completion, the user may start a new 

session 

• Error Handling: 

o Validates file type 

o Handles empty audio or failed processing 

o Ensures safe stopping if the user cancels mid-process 

• Dependencies/Libraries: 

o All external Python libraries are listed in 4.2 

o Maintains software environment for Windows 11 with Python 3.12.5 
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• Advantages: 

o Modularity enables easy debugging, scaling, and future improvements (e.g., 

adding overlapping speaker support or new transcription models) 

 

4.4  System Components Interaction Operations 

1. Audio Selection: User selects a single audio file. GUI validates the file type and 

enables the start button. 

2. Preprocessing: Audio is converted to mono, resampled to 16 kHz, and saved as a 

temporary file. 

3. Speaker Diarization: Pyannote processes the audio and returns a list of segments with 

speaker labels [41] [42] [46]. 

4. Transcription: Whisper transcribes each segment, producing text with start and end 

times [43] [44]. 

5. Result Display: GUI shows diarization and transcription in a scrollable window. Users 

can play audio segments; the current line is highlighted. 

6. Reopen Transcription Window: Users can reopen the transcription window to view 

previous results without starting a new process. 

7. Repeat Operation: After results are displayed, the user may select a new audio file 

and repeat the process. Only one file is processed at a time. 

8. Timer & Control: A timer shows elapsed processing time. Users can cancel processing 

before completion, which safely stops the workflow. 
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Chapter 5 

System Implementation 

This chapter describes in detail how the standalone software for acoustic signal identification 

is developed and implemented. The chapter provides information on the hardware and 

software setup, configuration, system operation, challenges encountered, and concluding 

remarks. All necessary details are provided for someone to reproduce the system. 

 

5.1  Hardware Setup 

The hardware used for this project is a single personal computer, which handles all processing 

tasks. No additional hardware devices are required, as the project is entirely software-based. 

 

Table 5.1 Specifications of computer 

Description Specifications 

Processor Intel Core i5-13500 

Operating System Windows 11 

Graphic NVIDIA GeForce RTX 4060 

Memory 32GB DDR5 RAM 

Storage 1TB SATA HDD 

 

All audio processing, diarization, transcription, and GUI operations are executed on this 

machine. 

 

5.2  Software Setup 

The software is implemented using Python 3.12.5, and the code is written using Visual Studio 

Code as the development environment. Required libraries and tools include: 

• Tkinter – for the graphical user interface 

• Pyannote.audio v3.1 – for speaker diarization [41] [42] [46] 

• OpenAI Whisper (turbo) – for transcription of audio segments 

o Note: Whisper requires FFmpeg to process audio files. In this project, FFmpeg 

was installed using the Chocolatey package manager (choco install ffmpeg). 

After installation, FFmpeg must be added to the system PATH [43] [44]. 

• Torchaudio and Torch – for audio preprocessing and handling [45-47] 
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• Pygame – Pygame is used for playback and also prevent software crashes while playing 

audio segments in the GUI [50] [51]. 

• Tempfile – for handling temporary audio files 

• Threading / Time – Threading is used to prevent the GUI from freezing while running 

long tasks, such as diarization and transcription. Timers track process duration [48] 

[49]. 

All Python libraries are installed using pip. Once all dependencies are installed, the software 

can be executed offline. 

 

5.3  Setting and Configuration 

Before running the software: 

1. Ensure Python 3.12.5 is installed and added to the system PATH. 

2. Install required Python libraries: 

pip install torch torchaudio pyannote.audio openai-whisper pygame 

3. Install FFmpeg using Chocolatey [44]: 

choco install ffmpeg 

4. Ensure FFmpeg is accessible in the system PATH by opening a terminal and typing: 

ffmpeg -version 

5. Place the Python script and any required configuration files in a single project folder. 
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5.4  System Operation 

This section describes the operation of the software for acoustic signal identification, including 

speaker diarization, transcription, and playback of audio segments. 

 

5.4.1  Main GUI 

 

Figure 5.4.1 Main GUI 

 

• The software is launched by running the Python script, it is built using Tkinter, 

providing a user-friendly graphical interface for selecting audio files, starting process, 

and viewing results. 

• The main window provides the following options and features: 

o Select Audio File – choose an audio file to process. 

o Start/Cancel button – initially labeled Start. 

▪ Clicking Start begins the processing pipeline. 
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Figure 5.4.2 Main GUI Cancel button while running the task 

 

 

Figure 5.4.3 Cancel Pending after the button pressed 

 

▪ While processing, the button changes to Cancel, allowing the user to 

safely stop the current task (Cancel Pending). 
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Figure 5.4.4 Cancel Completed 

 

▪ After the process stops safely, the button resets to Start (Cancel 

Completed). 

o Speaker Detection Mode – choose Auto Speaker Number or Manual 

Speaker Number (manual input required). 

o Processing Timer – shows the duration of the current processing task. 

o Reopen Transcription Window button – opens a separate window to view the 

most recent transcription without reprocessing the audio file. 

o Scrollable text area – displays real-time logs, progress updates, and results. 

• The GUI ensures only one file is processed at a time, it is also responsive and prevents 

freezing during long tasks by using threading. 

• After processing is complete, the user can choose to repeat the process with another 

audio file or exit the program. 
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5.4.2  Audio File Selection 

 

Figure 5.4.5 Select Audio File 

 

• The user selects an audio file using the “Select Audio File” button. 

• Supported formats include .mp3, .wav, .flac, and .ogg. 

• The selected file name appears in the GUI, confirming the selection. 

 

5.4.3  Speaker Detection Mode 

 

Figure 5.4.6 Speaker Detection Mode (Checkbox Not Selected) 
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• Auto Speaker Number checkbox: 

o Default state : ticked (enabled). The system automatically detects the number 

of speakers. Refer to Figure 5.4.1 in Section 5.4.1 for the GUI layout. 

o Manual input field behavior: when the checkbox is ticked, the entry field for 

specifying speaker number is disabled. 

o If the user unticks the checkbox, the entry field becomes editable, allowing 

manual entry of the number of speakers. 

o User input validation: if a non-numeric value is entered, the system will 

prompt an error. Detailed behavior and error message are described in Section 

5.4.6 Error Handling. 

• This choice must be made before starting the processing, ensuring consistent results. 

 

5.4.4  Processing Workflow 

 

Figure 5.4.7 Result in main GUI 

 

Once the Start button is clicked with a valid audio file selected: 
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i. Preprocessing Module [47] [48] 

• When the user clicks Start, the selected audio file undergoes preprocessing: 

o Convert to mono if the audio is stereo. 

o Resample to 16 kHz for compatibility with Pyannote and Whisper [41-43]. 

o Save to a temporary WAV file for further processing. 

• Preprocessing ensures consistent audio input for diarization and transcription. 

 

ii. Speaker Diarization Module [41] [42] [46] 

• The preprocessed audio is sent to the pre-trained Pyannote model speaker-diarization-

3.1 for speaker diarization. 

• Depending on the speaker detection mode, the model either detects the number of 

speakers automatically or uses the manually provided number. 

• The model first detects speech regions using voice activity detection (VAD). 

• Speech regions are converted into speaker embeddings, which capture the 

characteristics of each speaker’s voice. 

• Embeddings are clustered to identify distinct speakers, and the start/end times of each 

cluster are used as timestamps. 

• The module outputs a list of segments with speaker labels and start/end times. 

 

iii. Speech Transcription Module [43] [44] 

• Each diarized segment is transcribed using OpenAI Whisper (turbo). 

• Whisper processes the audio waveform with a pre-trained neural network and produces 

the corresponding text. 

• The output includes timestamped transcription segments in English. 

 

iv. Assigning Speakers to Transcription Segments 

• Transcription segments are matched to the diarization segments using overlap-based 

assignment. 

• Segments that cannot be matched are labeled as “Unknown”. 

• The last transcription segment is extended to match the full audio duration, ensuring 

complete coverage. 

• Progress updates and elapsed time are displayed in the GUI. 
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5.4.5  Result Display and Playback 

• The results are displayed in a scrollable text window with speaker labels and 

transcriptions. (Main GUI Refer to Figure 5.4.7) 

 

Figure 5.4.8 Transcription Window 

 

• Upon completion of processing, the transcription window automatically pops up, 

showing the speaker-labeled transcription. 

 

 

Figure 5.4.9 Transcription Window Playback 
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• Users can double-click a segment to play it, and the current line is highlighted during 

playback. 

• The Reopen Transcription Window allows users to view the latest transcription 

without reprocessing the audio file. 

• Playback is handled using Pygame for compatibility [50] [51]. 

• After viewing the results, the user can: 

o Select another audio file and repeat the process. 

o Exit the software by closing the main window. 

 

5.4.6  Error Handling 

The software provides safeguards for common user actions: 

 

Figure 5.4.10 No Audio File Selected 

 

• No Audio File Selected: 

o If the user clicks Start without selecting an audio file, a warning message is 

displayed. 

o The process cannot begin until a valid file is chosen. 
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Figure 5.4.11 Opening Transcription Window Before Task Execution 

 

• Reopen Transcription Window Without Prior Results: 

o If the user clicks Reopen Transcription Window before any transcription has 

been completed, an information message is displayed indicating that no 

transcription results are available. 

 

 

 

Figure 5.4.12 Invalid Speaker Number 
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• Invalid Manual Speaker Input: 

o If the user enters a non-numeric value in the manual speaker number field, the 

system displays an error dialog and prevents processing until a valid numeric 

value is provided. 

 

These measures prevent users from starting processes without valid input or attempting to view 

results that do not exist. 

 

5.5  Implementation Issues and Challenges 

During the development of the Acoustic Signal Identification software, several challenges 

were encountered. One major challenge was ensuring accurate speaker diarization with 

PyAnnote.audio, especially for short or unclear segments. Segments that could not be 

confidently labeled were assigned as “Unknown” to maintain consistency. 

 

Another challenge was integrating diarization results with Whisper transcription. Careful 

handling of segment start and end times was required to match transcription segments to 

speaker labels accurately. Preprocessing audio, such as converting stereo to mono and 

resampling to 16 kHz, also required attention to avoid potential audio quality loss or file access 

errors. 

 

A significant implementation issue was maintaining GUI responsiveness. Without threading, 

the GUI would freeze while running long tasks like diarization or transcription. This was 

resolved by using threading, allowing the GUI to remain responsive and enabling features 

such as timers, cancellation, and playback highlighting. 

 

Another consideration was FFmpeg integration, which is required by Whisper to process audio 

files. Installing FFmpeg via Chocolatey and ensuring it was accessible in the system PATH 

was necessary for proper transcription functionality. 

 

Additionally, user input validation and proper handling of process cancellation were 

implemented to avoid errors and allow the user to safely repeat or exit the process. Overall, 

despite these challenges, the software successfully integrates all modules to provide a 

functional standalone application for acoustic signal identification. 
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5.6  Concluding Remark 

The development of the Acoustic Signal Identification software successfully demonstrates 

the integration of multiple Python libraries and modules to create a standalone application. 

Through careful design and implementation, the software can perform audio preprocessing, 

speaker diarization, and transcription while providing a responsive and user-friendly GUI. 

 

Key achievements include: 

• Accurate diarization and transcription of English audio with minimal background noise. 

• A GUI that supports segment playback, highlighting, and the ability to reopen 

transcription results without reprocessing. 

• Robust handling of user interactions, including cancellation requests and input 

validation. 

• Stable audio playback with Pygame. 

• Seamless integration of FFmpeg for audio processing with Whisper. 

 

Despite challenges such as maintaining GUI responsiveness and coordinating multiple 

modules, the final software demonstrates reliable performance for single-file audio analysis. 

The modular design also allows for future enhancements, such as support for overlapping 

speech, multi-language transcription, or additional audio formats. 

Overall, Chapter 5 shows that the software is fully functional and provides a solid foundation 

for both practical use and further development in acoustic signal identification applications. 
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Chapter 6 

System Evaluation and Discussion 

This chapter evaluates the performance of the standalone software for acoustic signal 

identification in pre-recorded audio files. It discusses system testing, performance metrics, 

challenges encountered, and an evaluation of project objectives. 

 

6.1  System Testing and Performance Metrics 

The evaluation of the Acoustic Signal Identification system focuses on the following 

performance metrics: 

1. Transcription Accuracy 

• For short scripted audio clips (10–31 seconds), accuracy was calculated by 

comparing the transcription directly against the reference script: 

𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑊𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑠
× 100%  

• For long audio files (1 hour and 4 hours) where no script is available, 

transcription accuracy was estimated using an online grammar checker, and 

the percentage provided by the checker was recorded directly. 

2. Speaker Diarization Accuracy 

• valuated only on the short scripted clips, since speaker ground truth was 

available. 

•  Diarization accuracy was measured as: 

𝐷𝑖𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠
× 100%  

• A segment is defined as a continuous portion of speech belonging to a single 

speaker. Each change of speaker counts as a new segment. 

3. Processing Time 

• the total time required to process audio of various durations, including 

preprocessing, diarization (PyAnnote), and transcription (Whipser). 

4. Scalability 

• the system’s ability to handle long-duration audio files without crashing. 
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6.2  Testing Setup and Result 

All testing was performed using audio clips with minimal background noise and little to no 

overlapping speech.  

 

Testing Setup: 

• Short Scripted Audio Clips (10–31 seconds):  

o Source: https://www.moviesoundclips.net/movies.php 

o Each clip was accompanied by a reference script, enabling direct accuracy 

measurement.  

o Speaker diarization was tested in two modes: 

▪ Automatic speaker number detection (system decides number of 

speakers). 

▪ Manual speaker number declaration (user specifies the number of 

speakers before processing). 

 

• Long Audio Files:  

o Source: YouTube podcast 

▪ https://www.youtube.com/watch?v=u8meElmV6dA (1 hour 9 minutes) 

▪ https://www.youtube.com/watch?v=5_xQ0j60Ll4 (4 hour 19 minutes) 

o Downloaded using an online converter. 

o No reference transcript was available, so grammar checker results were used for 

transcription accuracy. 

 

6.2.1  Short Scripted Audio Clips (10–31 seconds) 

Short audio clips were used to evaluate both transcription and speaker diarization accuracy. 

 

 

 

 

 

 

 

 

https://www.moviesoundclips.net/movies.php
https://www.youtube.com/watch?v=u8meElmV6dA
https://www.youtube.com/watch?v=5_xQ0j60Ll4
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Test 1 (2 speakers) 

 

Figure 6.2.1 Original Script for test1.flac 

 

 

Figure 6.2.2 System Output for test1.flac (Auto Mode) 
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Figure 6.2.3 System Output for test1.flac (Manual Mode) 

 

Test 2 (2 speakers) 

 

Figure 6.2.4 Original Script for test2.mp3 
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Figure 6.2.5 System Output for test2.mp3 (Auto Mode) 

 

 

Figure 6.2.6 System Output for test2.mp3 (Manual Mode) 
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Test 3 (4 speakers) 

 

Figure 6.2.7 Original Script for test3.ogg 

 

 

Figure 6.2.8 System Output for test3.ogg (Auto Mode) 
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Figure 6.2.9 System Output for test3.ogg (Manual Mode) 

 

Test 4 (2 speakers) 

 

Figure 6.2.10 Original Script for test4.wav 
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Figure 6.2.11 System Output for test4.wav (Auto Mode) 

 

 

Figure 6.2.12 System Output for test4.wav (Manual Mode) 
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Table 6.2.1 Diarization Accuracy for Short Scripted Audio Clips 

Audio Clip Mode Correct Segments Total Segments Accuracy (%) 

test1.flac Auto 8 10 80% 

Manual 9 10 90% 

test2.mp3 Auto 4 5 80% 

Manual 4 5 80% 

test3.ogg Auto 4 8 50% 

Manual 4 8 50% 

test4.wav Auto 4 4 100% 

Manual 4 4 100% 

 

Table 6.2.2 Transcription Accuracy for Short Scripted Audio Clips 

Audio Clip Total Words Correct Words Accuracy (%) 

test1.flac 90 89 98.88% 

test2.mp3 17 15 88.23% 

test3.ogg 97 96 98.97% 

test4.wav 39 39 100% 

 

Observation: 

• For short audio clips with 2 speakers (test1.flac, test2.mp3, test4.wav), both auto and 

manual modes produced high diarization accuracy (80–100%). Manual mode was 

slightly more reliable when the speaker count was known in advance. 

• For the 4-speaker clip (test3.ogg), diarization accuracy dropped to 50% for both auto 

and manual modes. This indicates the system struggles when handling multiple 

speakers, especially with short segments. 

• Transcription accuracy remained consistently high across all clips (88–100%). Clean 

audio with minimal background noise allowed Whisper to achieve near-perfect word 

recognition. 

• test2.mp3 showed the lowest transcription accuracy (88.23%) due to shorter duration 

and limited word count, meaning even minor errors had a large impact on percentage 

accuracy. 

• Processing time for all short clips was below 3 seconds, showing the system can 

handle small files efficiently with negligible delay. 
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• Overall, the system performs very well on short scripted clips with 2 speakers, but 

scalability issues appear when the number of speakers increases beyond two. 

6.2.2  Long Audio Files 

Long audio files were used to evaluate transcription accuracy and system scalability. 

 

Test 5 

 

Figure 6.2.13 Total Processing Time for test5.mp3 

 

 

Figure 6.2.14 Grammer Check Result for test5.mp3 (start) 
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Figure 6.2.15 Grammer Check Result for test5.mp3 (middle) 

 

 

Figure 6.2.16 Grammer Check Result for test5.mp3 (end) 
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Test 6 

 

Figure 6.2.17 Total Processing Time for test6.mp3 

 

 

Figure 6.2.18 Grammer Check Result for test6.mp3 (start) 
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Figure 6.2.19 Grammer Check Result for test6.mp3 (middle) 

 

 

Figure 6.2.20 Grammer Check Result for test6.mp3 (end) 
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Transcription Accuracy (via Grammar Checker): 

• Both podcasts were fully transcribed with timestamps. 

• Since transcripts exceeded the word limit of the online grammar checker, only several 

representative parts (start, middle, and end) were checked. 

• Transcription accuracy was estimated using an online grammar checker (QuillBot 

Grammar Checker, https://quillbot.com/grammar-check), and the reported grammar 

score for each part was averaged to estimate overall transcription accuracy. 

 

Table 6.2.3 Transcription Accuracy for Long Audio Files 

Audio File Segment Timestamp Range (s) Grammar Score 

test5.mp3 

(1 hours 9 minutes) 

start 0.00 - 398.58 79 

middle 1235.76 - 1622.20 82 

end 3589.30 - 4051.76 71 

Average 77.3 

test6.mp3 

(4 hours 19 minutes) 

start 6.58 - 369.48 65 

middle 4817.44 - 5144.98 73 

end 13124.74 – 13605.04  51 

Average 63.0 

 

Table 6.2.4 Processing Time 

Audio File Toral Processing Time 

test5.mp3 (1 hours 9 minutes) ~ 5 minutes 

test6.mp3 (4 hours 19 minutes) ~ 20 minutes 

 

Observation: 

• Transcription accuracy was higher for test5.mp3 (77.3%) compared to test6.mp3 

(63.0%), which can be attributed to the more casual and conversational language used. 

• An additional test using a 12-hour audio file failed to complete, confirming that in the 

current setup, the system can reliably process long audio files of up to 4 hours. 

 

 

 

 

https://quillbot.com/grammar-check
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6.3  Project Challenges 

1. Software Dependencies - Installing and configuring Whisper and PyAnnote.audio 

required additional dependencies such as FFmpeg and Torch. Improper installation 

often caused runtime errors, making setup more time-consuming. 

2. Audio Playback Stability - Without Pygame, audio playback occasionally caused the 

software to crash. Pygame was later integrated to improve stability and prevent 

interruptions during playback. 

3. Sequential Processing Constraint - The system currently processes one audio file at 

a time. There is no support for concurrent or parallel file processing, which limits 

scalability. 

4. Audio Quality Limitations - Testing was primarily conducted using audio with 

minimal noise and little to no overlapping speech. Performance in noisy environments 

or with heavy speaker overlap was not evaluated and may lead to reduced diarization 

and transcription accuracy. 

5. Processing Time for Long Audio - Although the system handled files up to 4 hours, 

longer recordings required significantly more time to process. Threading was 

implemented to prevent the GUI from freezing, but scalability remains dependent on 

hardware resources. 

6. Limited Reference for Diarization - Quantitative evaluation of speaker diarization 

could only be performed on short scripted clips with available reference scripts. For 

long podcasts, diarization accuracy could not be measured systematically due to the 

lack of reference labels. 

7. Transcription Verification for Long Audio - Online grammar checkers used to verify 

transcription accuracy imposed word limits, requiring transcripts to be segmented. This 

made evaluation less comprehensive for lengthy recordings. 

8. Hardware Limitations - Performance of the system was influenced by CPU, GPU, 

and memory availability. Processing times may vary across different setups, and weaker 

hardware may struggle with longer files. 
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6.4  Objectives Evaluation 

Objective 1: Employ a pre-trained diarization tool to segment audio by speaker turns. 

• Achieved. PyAnnote.audio successfully segmented and labeled speakers in the test 

audio. 

Objective 2: Transcribe segmented audio into text using a robust speech-to-text model. 

• Achieved. Whisper accurately transcribed each diarized segment and preserved 

timestamps. 

Objective 3: Integrate diarization and transcription results to provide speaker-labeled 

outputs. 

• Achieved. Each transcription segment was correctly assigned to its corresponding 

speaker, producing clear speaker-labeled results. 

Objective 4: Develop a user-friendly software framework that provides clear and 

structured outputs.  

• Achieved. The GUI allowed users to upload audio, process files, view results, play 

segments, reopen transcriptions, and repeat analysis sequentially without errors. 

 

6.5  Concluding Remark 

The evaluation results demonstrate that the developed system is capable of performing both 

speaker diarization and transcription effectively on clean English audio. For short scripted 

audio clips, the system achieved high transcription accuracy (88–100%) and consistent 

diarization performance in both automatic and manual modes. For long audio files, 

transcription accuracy remained acceptable (63–77%), with grammar checker analysis 

confirming reliable output quality despite casual or conversational language styles. 

 

The system also proved to be scalable, successfully processing audio files of up to 4 hours in 

duration within manageable processing times (~20 minutes). Attempts with longer recordings 

(e.g., 12 hours) were not successful, indicating that under the current setup, the system can be 

considered stable for recordings up to 4 hours. 

 

It should be noted that the Whisper transcription model primarily produces text in US English 

spelling and conventions, which users should consider when processing content intended for 

UK English or other English variants. 
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Overall, the objectives of this project were successfully met. The integration of PyAnnote for 

diarization and Whisper for transcription provided accurate, speaker-labeled transcripts, while 

the GUI offered a structured and user-friendly interface for processing and reviewing audio 

files. The system shows strong potential for practical use in contexts such as podcasts, 

interviews, and lectures, provided the audio quality is reasonably clean with minimal noise and 

overlapping speech. 
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Chapter 7 

Conclusion and Recommendation 

This chapter summarizes the achievements of the standalone software for acoustic signal 

identification and provides recommendations for future improvements. 

 

7.1  Conclusion 

This project set out to design and implement a software framework for acoustic signal 

identification using prerecorded audio tracks. The main focus was on integrating speaker 

diarization and speech transcription into a single application that could generate accurate 

and structured speaker-labeled transcripts. The system was implemented using 

PyAnnote.audio for diarization and Whisper for speech-to-text conversion, supported by a 

graphical user interface (GUI) for accessibility and ease of use. 

 

The results of the evaluation confirm that the system is capable of meeting the stated objectives: 

Objective 1: Employ a pre-trained diarization tool to segment audio by speaker turns 

• This objective was successfully met. PyAnnote reliably segmented audio into distinct 

speaker turns, providing consistent and accurate labeling across both short and long 

recordings. 

Objective 2: Transcribe segmented audio into text using a robust speech-to-text model 

• The Whisper model proved effective at converting audio into text with high accuracy 

in short recordings and acceptable accuracy in long-form recordings. Accuracy was 

measured using grammar checks, with short audio samples achieving up to 100% 

accuracy and long files averaging between 63–77%. 

Objective 3: Integrate diarization and transcription results to provide speaker-labeled 

outputs 

• The integration of diarization and transcription was seamless, with each speaker’s 

contributions clearly separated in the output. This allowed for readable, speaker-

specific transcripts that were useful for interpretation and review. 

Objective 4: Develop a user-friendly software framework with clear outputs 

• The GUI successfully enabled users to upload audio, initiate processing, review results, 

replay audio segments, and re-open previous transcriptions. The interface ensured 
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usability and reduced the complexity for non-technical users, making the system stable 

and practical for real-world use. 

 

From a performance perspective, the system demonstrated the ability to process audio files of 

up to 4 hours in the current setup. For instance, a 1-hour 9-minute recording required ~5 

minutes to process, while a 4-hour 19-minute recording required ~20 minutes. This highlights 

the scalability and efficiency of the system. Attempts to process a 12-hour audio file were 

unsuccessful, establishing the current upper bound for system capability. 

In conclusion, the project validated the feasibility of building a standalone diarization and 

transcription system using existing open-source tools. The outcomes indicate that such a 

system can serve as a functional and accessible alternative to commercial solutions, particularly 

for applications like podcasts, lectures, interviews, and research data collection. 

 

7.2  Recommendation 

While the project objectives were achieved, several opportunities for improvement and future 

work have been identified: 

1. Cross-Platform Support: Expand compatibility to other operating systems, such as 

macOS or Linux. 

2. Extended Audio Format Support: Include additional audio formats to broaden 

usability. 

3. Enhancing Robustness in Noisy and Overlapping Speech Conditions: The current 

implementation performs best with clean audio recordings that have minimal 

background noise and non-overlapping speakers. For practical use in real-world 

scenarios such as meetings, conferences, or outdoor recordings, additional 

preprocessing steps could be implemented. Techniques such as noise reduction, echo 

cancellation, and advanced diarization models capable of detecting overlapping speech 

would significantly improve reliability. 

4. Extending Support for Longer Audio Files: The present system can reliably handle 

files up to 4 hours. However, certain use cases, such as day-long meetings, multi-hour 

interviews, or continuous lecture recordings, may exceed this limit. Future versions 

could implement segmented batch processing or streaming-based transcription to 

extend support to 8–12 hours or beyond without memory or stability issues. 
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5. Improved Accuracy Measurement Using Ground-Truth Datasets: Accuracy in this 

project was measured using a grammar checker, which provided reasonable but indirect 

estimates of transcription quality. For more rigorous evaluation, future work should 

incorporate benchmark datasets with ground-truth transcripts. This would enable 

the use of formal metrics such as Word Error Rate (WER), Diarization Error Rate 

(DER), and Speaker Attribution Error (SAE). 

6. Multi-language and Dialect Support: Whisper supports multilingual transcription, 

but this feature was not explored in the project. Expanding the system to support non-

English languages and accents would greatly enhance its usefulness, especially in 

academic, multicultural, and global contexts. 

7. Advanced User Interface Features: While the GUI is functional, future improvements 

could enhance the user experience. Recommended features include: 

o Search and keyword highlighting within transcripts. 

o Export options for transcripts in multiple formats (e.g., TXT, DOCX, PDF). 

o Editing tools to allow users to manually adjust speaker labels or transcription 

errors. 

8. Integration with External Tools: The system could be extended to integrate with 

productivity platforms (e.g., Microsoft Teams, Zoom, or Google Meet) to enable real-

time transcription and diarization during meetings. This would expand its application 

from offline analysis to live use cases. 

 

By addressing these recommendations, the software could be extended to handle more complex 

real-world audio scenarios and provide a more comprehensive tool for automated audio 

analysis. 
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