

Sensors Substitution using AI for Agriculture Soil Moisture Monitoring

BY

TAY KAI SHENG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 202

COPYRIGHT STATEMENT

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 TAY KAI SHENG. All rights reserved.

This Final Year Project proposal is submitted in partial fulfillment of the requirements for

the degree of Bachelor of Information Technology (Honours) Computer Engineering at

Universiti Tunku Abdul Rahman (UTAR). This Final Year Project proposal represents

the work of the author, except where due acknowledgment has been made in the text. No

part of this Final Year Project proposal may be reproduced, stored, or transmitted in any

form or by any means, whether electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author or UTAR, in accordance

with UTAR's Intellectual Property Policy.

Example

ACKNOWLEDGEMENTS

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Dr Teoh Shen

Khang who has given me this bright opportunity to engage in this development-based project.

It is my first step to establish a career in IT field. Besides that, they have given me a lot of

guidance to complete this project. When I was facing problems in this project, the advice from

them always assists me in overcoming the problems. A million thanks to you.

ABSTRACT

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

This project focuses on the growing trend of the Internet of Things (IoT) and Machine Learning

(ML) in precision agriculture, specifically sensor substitution using AI for agriculture soil

moisture monitoring. Traditional soil moisture sensors face challenges such as environmental

degradation and maintenance costs, leading to the need for a more reliable and scalable

solution. This project aims to develop an AI-powered soil moisture prediction system that

enhances irrigation management by utilizing temperature and humidity data instead of direct

soil moisture readings.

The system consists of IoT hardware (ESP32 microcontroller and DHT22 sensor), a cloud-

based web application, and a trained machine learning model. The collected sensor data is sent

to a real-time monitoring dashboard, where users can view live data trends and change to

developer mode when data collection is needed for new plants. The AI model which is trained

using ensemble method which contains random forest regressor and gradient boosting

regressor to process the collected information to predict soil moisture levels and detect

anomalies, providing smart irrigation recommendations.

The key novelty in this project is eliminating the need for direct soil moisture sensors

through reliable AI estimation, integration of developer mode triggering for ESP32 via backend

control and a modular dashboard design for visualizing data and database integration. The

experimental results show promising accuracy in soil moisture predictions and support the

efficient irrigation decision-making.

The systems improve the scalability, maintainability and also cost-effectiveness in smart

farming, contributing toward AI-driven agriculture and better plant monitoring management.

Area of Study (Maximum 2): Internet of Things, Machine Learning

Keywords (Maximum 5): IoT in data collection, Web monitoring application, Data

management in web application, Machine learning in agriculture, AI-based soil moisture

prediction.

TABLE OF CONTENTS

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES ix

LIST OF TABLES xii

LIST OF SYMBOLS xiii

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 2

1.3 Project Scope and Direction 3

1.4 Contributions 3

1.5 Report Organization 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Review of Technologies 5

 2.1.1 Hardware Platform 5

 2.1.2 Firmware / OS 6

 2.1.3 Database 7

 2.1.4 Programming Language 8

 2.1.5 Algorithm 9

 2.1.6 Summary of the technologies review 10

 2.2 Review of Existing Systems 11

 2.2.1 ARIMA-Based Sensor Fault Tolerance in IoT Monitoring 11

 2.2.2 SmartFarm AI – IoT-Based Smart Irrigation System 12

 2.2.3 AI-Driven Soil Moisture Prediction System 13

TABLE OF CONTENTS

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

 2.2.4 AI-Driven Soil Moisture Prediction System 15

 2.2.5 RF Backscatter Tag for Low-Cost Soil Moisture Sensing 16

 2.2.6 Wi-Fi Chipless Tag Soil Moisture Detection 16

 2.2.7 Summary of the Existing System 17

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH (FOR

DEVELOPMENT-BASED PROJECT)

18

3.1 System Design Diagram/Equation 18

3.1.1 System Architecture Diagram 18

3.1.2 Use Case Diagram and Description 19

3.1.3 Activity Diagram 22

CHAPTER 4 SYSTEM DESIGN 26

 4.1 System Block Diagram 26

 4.2 System Components Specifications 27

 4.2.1 IoT Hardware Layer 27

 4.2.2 Backend Layer 28

 4.2.3 Frontend Layer 30

 4.2.4 AI Model Layer 30

 4.2.5 Communication Protocol 31

 4.2.6 System Requirements 31

 4.3 Circuits and Components Design 32

 4.3.1 Circuit Description 32

 4.4 AI Model Training Logic and Design 33

 4.4.1 Data Pipeline Architecture 33

 4.4.2 Machine Learning Model Architecture 34

TABLE OF CONTENTS

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

CHAPTER 5 SYSTEM IMPLEMENTATION (FOR DEVELOPMENT-

 BASED PROJECT)

39

 5.1 Hardware Setup 39

5.2 Software Setup 40

 5.2.1 Arduino IDE 40

 5.2.2 Visual Studio Code (VS Code) 40

 5.2.3 GitHub CLI 40

 5.2.4 Google Cloud CLI 41

 5.2.5 Docker CLI 41

 5.2.6 Node.js and npm CLI 41

 5.2.7 Firebase CLI 41

 5.2.8 Go CLI 42

 5.2.9 Python CLI 42

 5.2.10 Postman Desktop 42

5.3 Setting and Configuration 43

 5.3.1 ESP32 Microcontroller (Arduino IDE) 43

 5.3.2 Google Cloud Configuration 43

 5.3.3 Firebase Setting and Configuration for Frontend 43

 5.3.4 Backend Server (Go) 44

 5.3.5 AI Server (Python + Flask) 45

 5.3.6 Frontend Web App (React + TypeScript) 45

 5.3.7 Azure PostgreSQL Database Configuration 46

 5.3.8 Google Cloud Platform Deployment Configuration 46

5.4 System Operation (with Screenshot) 48

 5.4.1 System Access and User Authentication 48

 5.4.2 Main Dashboard Overview 49

 5.4.3 Management Page Overview 50

 5.4.4 Notification Page Overview 51

 5.4.5 Guideline Page Overview 51

 5.4.6 Real-time Monitoring & User Mode Operation 52

 5.4.7 Developer Mode & AI Model Training Operation 53

 5.4.8 Data Management Operation 57

 5.4.9 System Administration and Setting 59

TABLE OF CONTENTS

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

 5.4.10 Error Handling and Validation 60

5.5 Implementation Issues and Challenges 62

 5.5.1 Hardware and Firmware Integration 62

 5.5.2 Backend and Database Complexity 62

 5.5.3 AI Model Development and Deployment 63

 5.5.4 Frontend and User Experience 63

5.6 Concluding Remark 64

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 65

6.1 System Testing and Performance Metrics

65

6.2 Testing Setup and Result 65

 6.2.1 Testing Setup 65

 6.2.2 Testing Result 66

6.3 Project Challenges 73

6.4 Objectives Evaluation 74

6.5 Concluding Remark 75

CHAPTER 7 CONCLUSION AND RECOMMENDATION 76

7.1 Conclusion 76

7.2 Recommendation 77

REFERENCES 79

 APPENDIX 81

 POSTER 86

LIST OF FIGURES

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF FIGURES

Figure Number Title Page

Figure 1 ESP32 Attached with Sensors 6

Figure 2 Arduino IDE 6

Figure 3 VS Code IDE 6

Figure 4 PostgreSQL 7

Figure 5 C/C++ 8

Figure 6 Go Programming Language (Golang) 8

Figure 7 React Framework 9

Figure 8 TypeScript 9

Figure 9 Flowchart of the Estimation Process (ARIMA) 11

Figure 10 Smart Irrigation System Diagram 12

Figure 11 Diagram of Sensor Network 13

Figure 12 Neural Network Architecture 13

Figure 13 Linear Regression 14

Figure 14 Random Forest 14

Figure 15 Relationship soil moisture (green) between temperature

(blue) and humidity (red)

15

Figure 16 Experimental Setup for AI-Driven Soil Moisture Prediction

Systems

16

Figure 17 System Architecture Diagram showing interaction between

hardware (ESP32), backend microservice (Go & Flask), and

frontend (Firebase-hosted React app), including CI/CD

integration

18

Figure 18 Use Case Diagram illustrating interactions between human

users (Admin and User) and system components (ESP32

microcontroller)

20

Figure 19 Activity diagram for ESP32 microcontroller 22

Figure 20 Activity diagram for backend part 1 23

Figure 21 Activity diagram for backend part 2 24

Figure 22 Activity diagram for backend part 3 24

Figure 23 Activity diagram for web application 25

Figure 24 System Block Diagram 26

LIST OF FIGURES

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

Figure 25 Schematic Diagram of Microcontroller 32

Figure 26 Temporal Feature Extraction 33

Figure 27 Cyclical Encoding 33

Figure 28 Interaction Features 33

Figure 29 Temporal Feature Aggregation Features 34

Figure 30 Lag Features 34

Figure 31 Feature Correlation Matrix Heatmap 36

Figure 32 Hyperparameter Tuning and Model Comparison Results 37

Figure 33 Feature Importance Analysis for Gradient Boosting Model 37

Figure 34 Model Performance Diagnostic Plots 38

Figure 35 Hardware Setup Overview 39

Figure 36 Go Backend Folder Structure 44

Figure 37 AI Server Folder Structure 45

Figure 38 Frontend Folder Structure 45

Figure 39 cloudbuild.yaml of Go Backend Server 47

Figure 40 Dockerfile for Python Flask 47

Figure 41 GoMonitor SignUp Interface 48

Figure 42 GoMonitor SignIn Interface 48

Figure 43 GoMonitor Main Dashboard Overview 49

Figure 44 GoMonitor Main Dashboard Overview in Mobile 49

Figure 45 Management Page Interface 50

Figure 46 AI Model Details Page 50

Figure 47 Notification Page 51

Figure 48 Guideline Page 51

Figure 49 Microcontroller Status 52

Figure 50 AI Plant Model Selection 52

Figure 51 Main Dashboard Operations 52

Figure 52 Developer Mode Enable Confirmation 53

Figure 53 Dashboard Overview in Developer Mode View 1 53

Figure 54 Dashboard Overview in Developer Mode View 2 54

Figure 55 Dashboard Overview in Developer Mode View 3 54

Figure 56 Train Button Clicked Overview 55

LIST OF FIGURES

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Figure 57 Download CSV Button Clicked Overview 55

Figure 58 Train Model Button Clicked Overview 56

Figure 59 Start Training Button Clicked Overview 56

Figure 60 AI Model Successful Trained Overview 56

Figure 61 Data Management Overview Interface 57

Figure 62 Confirmation of Delete All Records 57

Figure 63 All Records Successful Deleted Overview 57

Figure 64 Selected Records Delete Overview 58

Figure 65 Selected Records Edit Overview 58

Figure 66 Management Page Overview for Admin Part 1 59

Figure 67 Management Page Overview for Admin Part 2 59

Figure 68 Promote User to Admin Overview 60

Figure 69 Main Dashboard Overview in Guest 60

Figure 70 AI Model List Overview in Guest 61

Figure 71 Train Model Rejected Overview 61

Figure 72 Postman Setup 66

Figure 73 Testing Result for POST /login 68

Figure 74 Testing Result for POST /sensor-data (with AI) 68

Figure 75 Testing Result for POST /sensor-data (without AI) 68

Figure 76 Testing Result for GET /history 69

Figure 77 Testing Result for GET /device-config/esp32-001

69

Figure 78 Testing Result for POST /device-config/esp32-001/trigger-

dev

70

Figure 79 Testing Result for POST /device-config/esp32-001/stop-dev 70

Figure 80 Testing Result for GET /abnormal-history 71

Figure 81 Testing Result for DELETE /delete/:id 71

Figure 82 Testing Result for GET /models 72

Figure 83 Testing Result for POST /train-model 72

LIST OF TABLES

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF TABLES

Table Number Title Page

Table 2.1 Specifications of microcontroller 5

Table 2.2 Specifications of laptop 5

Table 3.1 Use Case Descriptions for User, Admin, and ESP32 System

Functions

 21

Table 4.2 Specifications of microcontroller 27

Table 6.1 Testing Result for API Endpoints 67

LIST OF SYMBOLS

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF SYMBOLS

β beta

Ω Ohm (resistance)

LIST OF ABBREVIATIONS

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiv

LIST OF ABBREVIATIONS

AI Artificial Intelligence

API Application Programming Interface

CPU Central Processing Unit

GPIO General Purpose Input Output

HTML Hyper Text Markup Language

IP Internet Protocol

IOT Internet of Things

KNN K Nearest Neighbors

LSTM Long Short-Term Memory

MLP Multi-Layer Perceptron

RAM Random Access Memory

SVM Support Vector Machine

CHAPTER 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

In this chapter, the summary of research, covering its history, inspirations, contributions, and

thesis statement will be presented. Precision agriculture has benefited greatly from the rapid

development of sensor technology, IoT, and data analytics. Accurate soil moisture monitoring

is essential to maximize irrigation, conserve water, and increase crop yields. However,

environmental factors like rust often cause standard soil moisture sensors to fail, resulting in

uneven data collection and high maintenance costs. By leveraging artificial intelligence to

predict soil moisture levels based on temperature and humidity data, this work, titled "Sensor

Replacement for Agricultural Soil Moisture Monitoring Using Artificial Intelligence," aims to

address these issues. By doing so, the need for fragile soil moisture sensors is reduced and

provide a more reliable and affordable option for farmers and other agricultural professionals.

1.1 Problem Statement and Motivation

Nowadays, agriculture is becoming one of the most important sectors in the world, and farmers

are struggling to optimize irrigation due to faulty soil moisture sensors. Traditional soil

moisture sensors can be damaged by the environment which require expensive maintenance,

and have accuracy problems like rust, which can result in inaccurate reading [1]. Due to these

restrictions, precision agriculture suffers, leading to either over or insufficient irrigation, which

has a direct impact on crop productivity and water conservation initiatives [2].

This project seeks to address this problem by developing an AI-based soil moisture

prediction system that uses temperature and humidity data rather than direct soil moisture

readings. The system can reduce the need for physical sensors and improve irrigation

management by accurately predicting soil moisture levels using machine learning algorithms

[3]. The goal of the project is to provide farmers and agricultural experts with a reliable,

scalable, and affordable alternative to improve crop health, resource efficiency, and

sustainability of modern agricultural methods.

CHAPTER 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

1.2 Objectives

In this project, the main goal of this project is to create an Internet of Things (IoT) based soil

moisture monitoring system that uses machine learning to predict soil moisture levels based on

external variables such as humidity and temperature. The system will collect real-time data

using an ESP32 microcontroller, DHT22 sensor. The ESP32 device will support two operation

mode which is developer mode for data collection to train new updated AI model as it will

trigger the esp32 to collect soil moisture data with the soil moisture sensor connected, another

mode which is user mode is used for regular monitoring by collecting only temperature and

humidity and the soil moisture data will be predicted after the data is sent to the system.

The second objective is to build a backend server using the Go programming language,

serving as the core system for managing data flow between the IoT device, database, and web

platform. This server is also integrated with a PostgreSQL database to store sensor readings for

historical analysis, logging, and data management to form a foundation for trend observation

and system scalability. The backend also includes the machine learning pipeline, where

collected developer-mode data is used to retrain and update the AI model. The server will

expose RESTful APIs to support functions such as data collection, developer/user mode

switching, anomaly detection, and machine learning model interaction. The backend will

ensure data integrity, scalability, and efficient communication across system components.

The third objective is to develop a user-friendly, web-based monitoring platform hosted on

Firebase. This platform will allow users to visualize live sensor data, track historical trends,

and receive notifications when anomalies are detected. By integrating the backend APIs, the

dashboard will offer seamless access to all system features and provide real-time insights into

environmental conditions for effective soil monitoring.

This project will not cover the development of an automated watering system, integration

with commercial smart home platforms, or advanced AI-driven plant health diagnostics beyond

soil moisture prediction.

CHAPTER 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

1.3 Project Scope and Direction

This project aims to develop an IoT-based soil moisture monitoring system with machine

learning integration to predict soil moisture levels based on temperature and humidity readings.

The final deliveries will include both hardware and software components:

• Hardware – An ESP32 microcontroller, DHT22 sensor to collect real-time

environmental data for indoor plant monitoring, specifically for Hebe andersonii and

snake plant.

• Software – A web-based dashboard that allows users to monitor real-time sensor

readings, access historical data, and receive alerts when abnormal conditions are

detected. The system will also feature an AI-based soil moisture prediction model,

which will analyse collected data and provide insights to improve plant care efficiency.

The project will focus on data collection, visualization, and AI-driven prediction, ensuring a

user-friendly and effective solution for plant monitoring.

1.4 Contributions

Our project presents a brand-new approach to soil moisture monitoring by substituting

traditional sensors with AI-driven predictions, a concept that holds immense potential for

agriculture and plant care. Soil moisture sensors, while widely used, are prone to degradation,

corrosion, and inaccuracies over time, leading to high maintenance costs and inefficiencies [4].

With the advancements in AI technology, replacing physical sensors with machine learning

models trained on environmental data offers a cost -effective, reliable, and sustainable solution.

This project becomes important in today's agricultural world as farmers and indoor plant

enthusiasts are facing challenges with sensor accuracy and operational costs [5]. By using AI

models to estimate soil moisture levels based on temperature and humidity data, the problem

of relying on hardware components will be reduced, increasing the lifespan of monitoring

systems and reducing the frequency of repairs. The system's capacity to produce accurate

prediction without direct soil contact distinguishes it as a unique and scalable solution for smart

farming, hydroponics, and urban agriculture.

Beyond financial savings, this study supports resource conservation and precision

agriculture, therefore guiding irrigation plans and avoiding overwatering. In the future, this AI-

driven technology can change agricultural monitoring in every part by making it more

accessible, efficient, and environmentally friendly. Once AI improved, sensor substitution may

CHAPTER 1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

become a normal routine for the next generation of smarter, more flexible, and highly

sustainable agricultural systems to show the evolution of AI.

1.5 Report Organization

This report is organized into 7 chapters. Chapter 1 provides introduction of the final year

project. Chapter 2 provides a literature review, the content included discussing existing studies

on IoT-based soil monitoring systems, the limitations of physical sensors, and the role of AI in

predictive analytics for agriculture. After that, Chapter 3 outlines the proposed method which

focuses on the development of an AI-based soil moisture prediction model, the integration of

IoT for real-time data collection, and the implementation of a web-based monitoring

application. Next, Chapter 4 presents the preliminary work which includes initial experiments,

model training, and evaluation of AI performance in predicting soil moisture levels. Chapter 5

concludes the study by summarizing the key findings, discussing challenges encountered, and

suggesting future research directions for improving AI-driven soil monitoring systems. Chapter

6 focuses on the critical phase of system evaluation, detailing the testing procedures, presenting

performance results, reflecting on the challenges overcome, and providing a thorough

evaluation against the initial objectives. Finally, Chapter 7 concludes the report by

summarizing the project's key findings and achievements and offers a set of forward-looking

recommendations for future enhancements that could expand upon the work completed in this

project.

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

Chapter 2

Literature Review

2.1 Review of Technologies

2.1.1 Hardware Platform

The hardware platform chosen for this project is the ESP32 microcontroller, which serves as

the core component of the IoT-based soil moisture monitoring system.

Two sensors are connected to the ESP32 which is a DHT22 sensor and a capacitive soil

moisture sensor. The DHT22 is a low-cost digital sensor capable of measuring temperature and

humidity with a high degree of accuracy and reliability. The soil moisture sensor is selectively

activated based on the ESP32's operating mode. In developer mode, the sensor collects real soil

moisture data to be used for training and updating the AI prediction model. In user mode, to

preserve the sensor and reduce hardware dependency, the ESP32 only collects temperature and

humidity data, while soil moisture is predicted via the machine learning model deployed on the

backend. All the systems are developed using laptop Legion 5. Table 3.2 shows the

specification of the laptop, make sure to meet the requirements for smooth development

procedure. Figure 1 below shows the ESP32 attached with sensors.

Table 2.1 Specifications of microcontroller

Description Specifications

Model ESP32

Processor Dual-core Tensilica Xtensa LX6 microprocessor

Memory 520 KB SRAM

Wireless Connection Wi-Fi 2.4 GHz / Bluetooth v4.2 BR/EDR

Development Support Arduino IDE

Table 2.2 Specifications of laptop

Description Specifications

Model Legion 5 15IAH7H

Processor Intel Core i7-12700H

Operating System Windows 11

Graphic NVIDIA GeForce RTX 3060

Memory 16GB DDR5 RAM

Storage 1TB Seagate HDD

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

Figure 1: ESP32 attached with sensors

2.1.2 Firmware / OS

The firmware for the ESP32 microcontroller is developed using Arduino framework, which is

an open-source platform for programming various types of embedded systems. Ther is a lot

open-source libraries used such as WiFi.h, HTTPClient.h, Adafruit_ssensor.h, DHT.h, and

ArduinoJson.h. These libraries handle important features like sensor interfacing, data

serialization, and HTTP communication to ensure that the transmission of data moves smoothly

to the backend server. The reason of choosing Arduino as the framework as its strong

community support, various open-source libraries, ease of debugging and compatibility with

the ESP32 board.

The development of the entire system including frontend, backend is conducted with VS

Code IDE. VS Code IDE supports various code languages and extension which applicable for

my backend (Go) and frontend (react, typescript, html). It also supports a Git-based workflow

that integrates with GitHub, Google Cloud Platform (GCP), and Firebase through a CI/CD

pipeline. This setup ensures the automated deployments, consistent testing, and a streamlined

version control across the project components. Arduino is used for firmware development and

flashing to the ESP32 board. Figures 2 and 3 below show the icon for both IDE.

 Figure 2: Arduino IDE Figure 3: VS Code IDE

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

2.1.3 Database

The database component of this project acts as an important role in managing, storing, and

retrieving sensor data and system settings for real-time and historical analysis. The chosen

database system is PostgreSQL, which is a powerful open-source relational database known

for its reliability, scalability and robustness. In this project, the PostgreSQL is hosted on Azure

AWS, which offer a better performance, easy integration with backend system and security

secure for data in cloud.

The database schema is designed to support multiple features of the system, for example

user’s sensor data logging, developer mode state for esp32 management, geolocation tracking

and user account management. The temperature, humidity and soil moisture that collected by

the esp32 device will be stored in the SensorData table, along with metadata like timestamps,

user IDs, and anomaly flags. This structure enables trend analysis and supports AI model

training through collected environmental data.

Apart from that, the DeveloperModeSetting table is used to manage the activation period

of developer mode, which control the esp32 to collect full sensor data (humidity, temperature

and soil moisture) for model retraining. This configuration is cached in memory upon

application startup and kept synchronized with the database using go mutex locks to ensure

thread-safe operation across concurrent API requests.

Additionally, the database includes tables such as DeviceLocation, which logs geolocation

data obtained via the Google Geolocation API based on surrounding Wi-Fi access points, and

User, which stores user credentials and roles to manage access control within the system. All

data interactions are handled using GORM (Go ORM), which simplifies object-relational

mapping, query abstraction, and schema migration in the Go-based backend server. Figure 4

below shows the logo of PostgreSQL.

Figure 4: PostgreSQL

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

2.1.4 Programming Language

This project used multiple language software stack to support various types of components

such as embedded systems, backend services, machine learning pipeline and the frontend

interface. Each language is selected based on their strengths and compatibility which enhance

the quality of the final deliverable systems.

At the embedded system level, the ESP32 microcontroller is programmed using C/C++

within the Arduino framework. Arduino libraries such as WiFi.h, HTTPClient.h,

Adafruit_Sensor.h, DHT.h, and ArduinoJson.h are used for handling sensor communication,

Wi-Fi connectivity, and JSON formatting. The choice of C/C++ ensures low-level control,

efficient memory usage, and real-time responsiveness and these is all IoT devices need. Figure

5 below shows the icon of C/C++.

Figure 5: C/C++

For the backend server, it is developed using Go programming language (Golang) and in

form of RESTFULAPI. Go is known for its performance, built-in concurrency support, clean

syntax, making it well-suited for building scalable API servers and background services. The

servers use the Gin framework to provide features like routing, middleware support, and

rendering. The server also uses the GORM library for ORM integration with PostgreSQL and

handles tasks such as data storage, anomaly detection and developer mode logic. Figure 6

below shows the icon of Golang.

Figure 6: Go Programming Language (Golang)

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

Apart from that, the frontend is developed using React.js framework with TypeScript.

Typescript is a superset of JavaScript, adds static typing which improves code maintainability

and reduces runtime errors. React facilitates the development of a responsive web application,

allowing real time data visualization, user interaction, and system control through API

integrations. Figures 7 and 8 below show the icon of react framework and typescript.

Figure 7: React Framework

Figure 8: TypeScript

2.1.5 Algorithm

The core algorithm used in this project for soil moisture prediction is the Random Forest

Regressor and Gradient Boosting Regressor, a robust ensemble learning method widely

recognized for its high accuracy and resistance to overfitting, especially in small-to-medium

datasets. This model is trained using historical environmental data (temperature, humidity,

timestamp features, and calculated soil moisture changes) to predict soil moisture without

direct sensor readings in user mode.

The machine learning pipeline is implemented in Python using the Scikit-learn library. The

raw dataset, collected during developer mode, includes sensor data with timestamped readings.

A series of preprocessing steps are applied to enhance model accuracy:

• Timestamp conversion into numerical format and extracted components such as hour,

minute, and day of week

• Soil moisture change rate, calculated using the .diff() method to capture short-term

variations

Evaluation metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and R²

Score are used to validate the model's effectiveness. On test data, the model demonstrates

strong correlation between predicted and actual soil moisture values.

The trained model and scaler are deployed in a lightweight Flask API server, which

dynamically loads models based on the plant name (e.g. Hebe andersonii), extracts feature

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

from incoming JSON requests, applies scaling, and returns predicted soil moisture. This

modular structure allows plant-specific model updates and seamless integration with the Go

backend, which calls the Flask server for real-time predictions.

Overall, this algorithm replaces the need for real-time soil moisture sensors in user mode,

reduces hardware reliance, and enables intelligent soil condition monitoring with minimal

energy and maintenance requirements.

2.1.6 Summary of the technologies review

The system incorporates different technologies to provide smart agriculture solutions with a

reliable and intelligent soil moisture monitoring system. The hardware level uses the ESP32

microcontroller as the main IoT unit together with a DHT22 temperature and humidity sensor

as well as a capacitive soil moisture sensor. These sensors operate in two different modes: In

developer mode, the ESP32 gathers full environmental data for AI model training. During user

mode, only temperature and humidity readings are taken, with soil moisture estimation

performed by a machine learning model on the server.

ESP32 firmware is programmed in C/C++ using the Arduino framework, which includes

standard libraries like WiFi.h, HTTPClient.h, and ArduinoJson.h. The development

environment is based on Visual Studio Code (VS Code), which has support for backend

development in Go, frontend work in React and TypeScript, as well as for GitHub, Firebase

and Google Cloud Platform (GCP) for version control and CI/CD deployments.

The backend server is written in the Go programming language with the Gin web

framework and GORM supporting ORM-based operations against a PostgreSQL database on

Azure AWS. It handles API endpoints to log sensor data, switch developer mode, identify

anomalies, and talk to the AI model.

The machine learning model, having been executed using Python and Scikit-learn, employs

a Random Forest Regressor that predicts soil moisture from environmental parameters.

Preprocessing includes parsing the timestamp, identification of changes in the soil moisture,

and feature scaling using StandardScaler. The model and scaler are deployed on a Flask server

and are dynamically selected depending on plant type (e.g., Hebe andersonii).

The frontend, developed in React and TypeScript, is the graphical user interface that offers

real-time monitoring, historical visualization, and system control. It is deployed on Firebase,

leveraging the backend APIs to fetch live updates and communicate with.

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

They collectively create a robust, modular, and intelligent system that can reduce reliance

on physical sensors while maintaining high accuracy for soil moisture measurement via AI

prediction.

2.2 Review of Existing Systems

2.2.1 ARIMA-Based Sensor Fault Tolerance in IoT Monitoring

The challenge of sensor reliability in remote monitoring applications has been already studied

in previous research. The advancement of low-power sensor technology and energy harvesting

techniques has been a primary focus to improve sensor node reliability and lifespan. According

to previous work, various fault-tolerant mechanisms and robust hardware designs have been

proposed to enhance the durability of sensor nodes, aiming to reduce failures and operational

disruptions. Moreover, data analytics techniques such as autoregressive integrated moving

average (ARIMA) models have been explored to improve data reliability by predicting and

mitigating sensor failures [6]. Figure 9 below shows the flowchart of the estimation process.

Complementing these techniques, cloud computing architectures have enabled more

advanced fault detection strategies. By correlating data streams from multiple sensor nodes,

cloud-based systems can validate and substitute sensor readings in real time, thus increasing

system resilience and enhancing data integrity. However, these systems often rely on the

availability of multiple redundant nodes, which may not be feasible for small-scale or cost-

constrained deployments. Figure 9 below shows the flowchart of the estimation process.

Figure 9: Flowchart of The Estimation Process (ARIMA)

Additionally, cloud computing has played a significant role in enhancing sensor availability

and data accuracy. Researchers have investigated correlations between data from multiple

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

sensor nodes to detect anomalies and compensate for sensor failures. The integration of cloud-

based data processing with IoT sensor networks has enabled real-time decision-making and

improved the robustness of remote monitoring systems.

2.2.2 SmartFarm AI - IoT-Based Smart Irrigation System

The integration of IoT in agriculture has given rise to smart irrigation platforms such as

SmartFarm AI, which combine sensor technology and rule-based logic for automated irrigation

scheduling. These systems leverage real-time monitoring and data-driven decision-making to

improve water efficiency, reduce labor costs, and enhance crop yields [7]. For instance, some

studies have introduced IoT-driven irrigation scheduling systems that regulate watering based

on real-time soil moisture data, significantly reducing water wastage while improving crop

productivity. SmartFarm AI systems are effective in reducing water usage and increasing crop

yield. They often include mobile or web interfaces to allow farmers to remotely monitor soil

conditions and configure thresholds. However, they heavily depend on the continuous

operation of soil moisture sensors, which may degrade over time due to corrosion, salinity

buildup, or harsh environmental exposure. Figure 10 below shows the diagram of IoT and AI

in agriculture.

Figure 10: Smart Irrigation System Diagram

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

2.2.3 AI-Driven Soil Moisture Prediction Systems

Machine learning techniques have been widely employed to predict soil moisture levels using

environmental parameters such as temperature and humidity. Research has demonstrated that

models like Random Forest, Decision Tree, Support Vector Machine (SVM), k-Nearest

Neighbours (KNN), and Naïve Bayes can effectively predict soil moisture using sensor data

[8]. Furthermore, studies have explored the potential of transfer learning to improve soil

moisture prediction accuracy. By fine-tuning pre-trained models with localized sensor data,

researchers have achieved better predictive performance in regions with limited historical data

[9]. Figure 11, 12, 13, 14 will show different types of AI model diagrams.

Figure 11: Diagram of Sensor Network

Figure 12: Neural Network Architecture

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

Figure 13: Linear Regression

Figure 14: Random Forest

Despite these advancements, challenges such as sensor reliability, model generalization, and

data dependence persist, necessitating further research and innovation. AI integration in

agriculture, particularly through neural networks like Multi-Layer Perceptron (MLP), has

shown promising results in handling complex classification tasks [10]. For instance, hybrid

models combining MLP with optimization techniques, such as the firefly algorithm, have

demonstrated superior accuracy in predicting soil moisture levels compared to traditional

methods [11]. Besides, many AI-driven soil monitoring solutions still rely heavily on

continuous sensor data. The failure or inaccuracy of a single sensor can affect the entire

system's reliability. This project aims to overcome this challenge by developing an AI-based

substitution model, allowing temperature and humidity sensors to estimate soil moisture levels

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

even when soil moisture sensors fail. Figure 15 below shows the relationship between soil

moisture, temperature and humidity. This proved that there is a relationship between them.

Figure 15: Relationship soil moisture (green) between temperature (blue) and humidity (red) [25]

2.2.4 AI-Driven Soil Moisture Prediction Systems
Another significant advancement in soil monitoring systems is the use of wideband radar

technology combined with machine learning models to estimate soil moisture in a non-invasive

manner. In the study [12], researchers developed a system that leverages wideband radar to

capture electromagnetic reflections from the soil, which are then analyzed using predictive

models such as Partial Least Squares (PLS) regression and Random Forest. This approach

eliminates the need for traditional in-soil moisture probes, reducing hardware degradation and

maintenance requirements.

The system achieved high accuracy, with coefficients of determination (R²) approaching

0.89 across various soil conditions, demonstrating strong generalization. While the hardware

involved is more complex and costly compared to low-cost IoT sensors, this solution highlights

the growing trend of sensor substitution using AI and signal processing techniques. It aligns

with the objective of the current project, which aims to estimate soil moisture using

environmental parameters such as temperature and humidity, thus minimizing reliance on

physical moisture sensors. Although this radar-based method relies on specialized equipment,

both systems share the goal of improving soil moisture estimation through non-traditional,

intelligent sensing strategies that increase system reliability and scalability in agricultural

monitoring. Figure 16 below shows the experimental setup.

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

Figure 16: Experimental Setup for Experimental Setup for AI-Driven Soil Moisture Prediction Systems

2.2.5 RF Backscatter Tag for Low-Cost Soil Moisture Sensing
Previous work about RF Soil Moisture Sensing System using battery-powered RF backscatter

tags and ultra-wideband transceivers to non-invasively measure soil moisture [13]. These

passive tags, deployed at depths of up to 75 cm, communicate via backscatter signals and

achieve accuracy within 0.01–0.03 cm³/cm³ of ground truth comparable to commercial sensors

while offering projected battery lifetimes up to 15 years. This system addresses common issues

in soil sensing such as sensor maintenance, power supply, and deployment costs. Its minimalist

hardware design and longevity make it ideal for scalable agricultural monitoring. Although the

sensing modality differs (RF vs. environmental sensors), the goal to accurately estimate soil

moisture while minimizing hardware dependency closely parallels the aim of using AI-based

substitution with minimal physical soil sensors.

2.2.6 Wi-Fi Chipless Tag Soil Moisture Detection
In another low-cost, wireless sensing solution SoilTAG is developed to detect soil moisture

levels using battery-Free Wi-Fi tag [14]. This system uses chipless passive Wi-Fi tags

embedded in soil that alter their reflection signature based on moisture content. The tags

generate signal variations detectable up to 13 m away via standard Wi-Fi readers. SoilTAG

achieves approximately 2 percentage-point resolution at close distance and about 5 percentage-

point accuracy at longer ranges. This non-invasive design eliminates the need for onboard

power or soil probes, prioritizing maintenance-free operation.

CHAPTER 2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

2.2.7 Summary of the Existing System
The review of existing systems highlights diverse approaches to addressing challenges in

agricultural monitoring, particularly soil moisture estimation and sensor reliability. For the first

system, which employs ARIMA-based fault tolerance, focuses on enhancing data integrity by

predicting and correcting sensor failures through statistical modeling and cloud-based

validation. While effective in improving robustness, it often relies on sensor redundancy, which

may not suit small-scale deployments.

Second, the SmartFarm AI, demonstrates the benefits of real-time monitoring and

automation in smart irrigation. It combines soil moisture sensors and rule-based decision

systems to optimize water usage. However, its heavy reliance on continuous sensor

functionality poses a limitation in harsh or long-term environments.

Third system explores AI-driven soil moisture prediction models using environmental

variables like temperature and humidity. Machine learning techniques such as Random Forest,

SVM, and hybrid neural networks have shown promising accuracy, especially when enhanced

through transfer learning. Nonetheless, these models still face challenges with generalization

and sensor dependency for initial data.

The fourth introduces a non-invasive radar-based sensing system combined with machine

learning. This method offers high accuracy in soil moisture prediction without embedding

sensors into the soil, thus extending hardware lifespan. However, its cost and complexity limit

its accessibility compared to simpler IoT solutions.

The fifth and sixth system demonstrate passive, non-invasive technologies that achieve soil

moisture sensing without embedded probes, significantly reducing hardware degradation and

maintenance. They reinforce the concept of sensor substitution whether via RF backscatter or

Wi-Fi reflections—aligning with your project’s strategy of using ML with auxiliary

environmental data for prediction. While their technologies differ, they validate the broader

approach of trading hardware complexity for intelligent signal-based inference, emphasizing

reliability, low power usage, and long-term deployment.

Overall, these systems collectively emphasize the importance of data-driven approaches,

sensor resilience, and the growing role of AI in precision agriculture. The current project aligns

with these trends by proposing an AI-based substitution model that estimates soil moisture

using temperature and humidity data, offering a cost-effective, scalable, and sensor-resilient

solution.

CHAPTER 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

Chapter 3

System Methodology/Approach

This chapter explains the system development methodology and presents the design diagrams

that illustrate the structure and workflow of the project. The system is designed to substitute

traditional soil moisture sensors using AI predictions based on temperature and humidity data

collected by the DHT22 sensor, integrated with ESP32. A web-based dashboard and cloud

backend are used for real-time monitoring and AI integration.

3.1 System Design Diagram/Equation

The overall system design integrates IoT hardware, a cloud-based backend, an AI prediction

model, and a web-based frontend interface. It consists of three main layers:

• Hardware Layer: ESP32 with DHT22 and Soil Moisture Sensor

• Backend Layer: Golang server with PostgreSQL and Flask-based AI model

• Frontend Layer: React.ts dashboard for real-time monitoring

3.1.1 System Architecture Diagram

Figure 17 below shows the interaction between hardware, backend, AI model, and front end:

Figure 17: System Architecture Diagram showing interaction between hardware (ESP32), backend microservice

(Go & Flask), and frontend (Firebase-hosted React app), including CI/CD integration.

CHAPTER 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

This system architecture diagram describes a full three-tier application-based IoT solution

capable of real-time data processing and decision-making. The front-end layer is essentially a

web application hosted on Firebase that provides an interface for the admin user and an

interface for the end user; with data transfer using WebSocket connections, this allows for real-

time execution and communication with the end user. The back end of the solution is based on

Google Cloud Platform and features an API Gateway that manages messages between the

application microservices, communicates predictions from an AI model (using the Random

Forest algorithm), and uses a PostgreSQL database for persistent data storage. The hardware

layer essentially consists of ESP32 microcontrollers operating as edge computing nodes that

communicate both ways with the cloud services using HTTP/Wi-Fi protocols, although it could

just as easily implement using other edge devices and cloud services so long as it adheres to

the same method of data transfer.

Finally, throughout all three layers of this application architecture exists a robust CI/CD

process that is integrated with both Git to control versions and Google Cloud Platform to

automate code deployment and operations, with continuous integration and operate at scalable

level on cloud services. The architecture presented is a current representation of the

methodology to IoT system deployment; it has unrestricted capabilities leveraging data from

edge computing on a cloud-based intelligent AI system, and automated DevOps practices for

an enterprise-level, scalable, smart and maintainable solution.

CHAPTER 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

3.1.2 Use Case Diagram and Description

Figure 18: Use Case Diagram illustrating interactions between human users (Admin and User) and system

components (ESP32 microcontroller).

CHAPTER 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

Table 3.1: Use Case Descriptions for User, Admin, and ESP32 System Functions.

Use Case Actor(s) Description

Login / Register User, admin Authenticates the entity (human or device) to

access the system with a valid token.

View real-time sensor data User, admin Display current sensor readings via

WebSocket.

View historical trends User, admin Shows past data in a chart / graph format for

analysis during developer mode.

Enable AI mode User, admin Turns on machine learning-based prediction

when soil moisture prediction is needed.

Set device mode User, admin Switches esp32 between developer and user

modes remotely.

Get microcontroller location User, admin Fetches the device's estimated location, either

manually set or system estimated.

Receive notification User, admin Receive real-time alerts for abnormal

conditions or AI-mode activation.

Edit own sensor data User Allow editing or removing previously

submitted data.

Manage all user data Admin Grants access all users’ sensor records for

moderation or correction or deletion.

Manage all user account Admin Admin can update, activate, or delete user

accounts.

CHAPTER 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

3.1.3 Activity Diagram

Figure 19: Activity diagram for ESP32 microcontroller

True

CHAPTER 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

Figure 20: Activity diagram for backend part 1

CHAPTER 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

 Figure 21: Activity diagram for backend part 2

Figure 22: Activity diagram for backend part 3

Select
Action

Select
Action

Admin
Action

CHAPTER 3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Figure 23: Activity diagram for web application

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

Chapter 4

System Design

4.1 System Block Diagram

Figure 24: System Block Diagram

The system block diagram consists of an ESP32 microcontroller serving as the central

processing unit that coordinates all system components. The ESP32 interfaces with multiple

sensor modules including a soil moisture sensor and a DHT22 temperature/humidity sensor,

which provide environmental monitoring capabilities.

The main program loop acts as the system's control centre, receiving data from the

DHT22/Soil Moisture Sensor measuring module and managing the overall system operation.

This central loop coordinates with several key modules: an Input and Output module that

handles system interactions, an AI module for intelligent data processing and decision-making,

and a Notification module for user alerts and communication.

Visual feedback is provided through an LED indicator connected directly to the ESP32,

allowing for immediate status indication. The modular design ensures efficient data flow

between components, with the ESP32 microcontroller managing sensor data acquisition,

processing through the AI module, and triggering appropriate responses via the notification

system.

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

This architecture enables real-time environmental monitoring with intelligent analysis

capabilities, making it suitable for applications such as smart agriculture, greenhouse

automation, or environmental monitoring systems where soil moisture and atmospheric

conditions need to be continuously tracked and managed.

4.2 System Components Specifications

4.2.1 IoT Hardware Layer

1. ESP32 microcontroller

• Model: ESP32-WROOM-32

• Function: WiFi-enabled MCU to read sensor data and transmit it to the backend

server.

• Programming: Arduino IDE using C/C++

Table 4.2 Specifications of microcontroller

Description Specifications

Model ESP32

Processor Dual-core Tensilica Xtensa LX6 microprocessor

Memory 520 KB SRAM

Wireless Connection Wi-Fi 2.4 GHz / Bluetooth v4.2 BR/EDR

Development Support Arduino IDE

2. DHT22 sensor

• Model: DHT22 (AM2302)

• Sensor type: Digital temperature and humidity sensor

• Interface: Single-wire digital interface

• Pin assignment: GPIO 4

• Voltage: 3.3V – 6.0V

3. Soil moisture sensor

• Type: Capacitive/Resistive analog sensor

• Interface: Analog input (ADC)

• Pin assignment: GPIO 32 (12-bit ADC)

• Operating voltage: 3.3V - 5V

• Activation: Developer mode only

4. Status indicators

• LED: Built-in LED (GPIO 2)

• Serial monitor: 115200 baud rate debugging

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

• Status modes:

o Fast blink (200ms): Connecting

o Slow blink (1000ms): Developer Mode

o Solid ON: Normal Operation

4.2.2 Backend Layer

1. Hardware infrastructure

• Platform: Google Cloud Run (serverless)

• CPU: Auto-scaling

• Network: Global load balancing

2. Software stack

• Programming language: Go (Golang)

• Framework: Gin web framework

• Version: Go 1.19

• Concurrency: Goroutines for high-performance handling

• HTTP server: HTTP/2 support

• WebSocket support: Real-time bidirectional communication

3. Database specifications

• Database: PostgreSQL

• Version: 14

• Hosting: Microsoft Azure SQL Database

• Backup: Automated daily backups

• Performance: Optimized for time-series data

4. API endpoints

• Public routes (No Authentication Required)

• User registration: POST /signup - Create new user account

• User authentication: POST /login - JWT token generation

• AI toggle: POST /toggle-ai - Enable/disable AI predictions globally

• Protected routes (Requires JWT Authentication)

❖ Real-time connection: GET /ws - WebSocket endpoint for live data

streaming

❖ Promote admin: POST /promote-admin - Elevate user to admin role

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

❖ Promote user: POST /promote-user - Change admin back to user role

❖ Get users: GET /users - Retrieve all registered users

❖ Get profile: GET /profile - Get current user profile information

❖ Delete user account: DELETE /admin/delete-user/:user_id - Admin delete

user

❖ Data ingestion: POST /sensor-data - Receive sensor data from ESP32

❖ Get history: GET /history - Retrieve historical sensor data

❖ Update record: PUT /update/:id - Modify specific sensor record

❖ Delete record: DELETE /delete/:id - Remove specific sensor record

❖ Delete all records: DELETE /delete/all - Remove all sensor data

❖ Delete user records: DELETE /delete/my-records - Remove current user's

records

❖ Delete specific user records: DELETE /delete/user/:user_id - Admin remove

user's data

❖ Download CSV: GET /download-csv - Export sensor data as CSV file

❖ Get device config: GET /device-config/esp32-001 - Retrieve device settings

❖ Stop developer mode: POST /device-config/esp32-001/stop-dev - Disable

soil sensor

❖ Trigger developer mode: POST /device-config/esp32-001/trigger-dev -

Enable soil sensor

❖ Set location: POST /location - Receive GPS coordinates from ESP32

❖ Get location: GET /get-location/:device_id - Retrieve device location

❖ Abnormal count: GET /abnormal-count - Get count of anomalous readings

❖ Abnormal history: GET /abnormal-history - Retrieve anomalous data

records

❖ Train AI model: POST /train-model – Send CSV data and plant_name to

flash server for ai training.

❖ Get available AI model: GET /models – Fetch available AI model from flask

server

• Technical specifications

❖ Protocol: HTTPS with TLS 1.3

❖ Authentication: JWT bearer token (except public routes)

❖ Rate limiting: 100 requests/minute per device

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

❖ Data format: JSON request/response

❖ CORS: Configured for cross-origin requests

❖ Middleware: Authentication middleware for protected routes

4.2.3 Frontend Layer

1. Technology stack

• Framework: React.js 18

• Language: TypeScript

• State management: React hooks (usestate, useeffect)

• HTTP client: Fetch API

• Real-time: WebSocket client

• Authentication: JWT token handling

2. UI components

• Dashboard: Real-time sensor data visualization

• Data management: Configuration interface

• Responsive design: Mobile and desktop compatible

• Notifications: Real-time alerts and status updates

3. Performance specifications

• Load time: <3 seconds initial loads

• Real-time updates: <1 second latency (WebSocket)

• Browser support: Chrome, Firefox, Safari, Edge

• Mobile support: IOS Safari, Chrome Mobile

4.2.4 AI Model Layer

1. Machine learning stack

• Framework: Python flask

• ML library: Random Forest / Gradient boosting

• Python version: 3.10+

• Dependencies: scikit-learn, pandas, numpy

2. Model specifications

• Input features: Temperature, humidity, timestamp, plant_type

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

• Output: Predicted Soil moisture percentage

• Training data: Historical sensor correlations

• Accuracy: 85%+ prediction accuracy

• Response time: <200ms per prediction

• Hosting: Cloud Run (docker Implemented)

3. API specifications

• Predict soil moisture: /predict – Use temperature, humidity to predict soil

moisture

• Train AI: /train-model – Post CSV file and plant_name to train the ai model the

specific plant_name.

• Get models: /models – Get the available model in the python flask server and

checks its results.

4.2.5 Communication Protocols

1. Device-to-Server communication

• Protocol: HTTPS (TLS 1.3)

• Authentication: JWT bearer tokens

• Data format: JSON

• Compression: gzip encoding

• Timeout: 30 seconds per request

• Retry logic: Exponential backoff (3 attempts)

2. Real-time communication

• Protocol: WebSocket

• Heartbeat: 30-second ping/pong

• Message format: JSON

• Broadcast: Server-to-multiple clients

• Fallback: HTTP polling method used if WebSocket fails

4.2.6 System Requirements

1. Power requirement

• ESP32: 3.3V @ 240mA peak

• DHT22: 3.3V @ 2.5mA max

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

• Soil sensor: 3.3V @ 35mA typical (analog)

• Total power: <5W during operation

2. Network requirement

• Bandwidth: 1KB / 10min per device (minimal)

• Latency: <500ms for real-time updates

• Connectivity: 2.4GHz WiFi

• Range: 50 – 100m depending on environment

4.3 Circuit and Components Design

Figure 25: Schematic Diagram of Microcontroller

4.3.1 Circuit Description

• U1 – DHT22 temperature & humidity sensor

o +VS: Connected to 3.3V power supply (U2_3.3V).

o VOUT: Connected to a GPIO pin on the ESP32 to read temperature and

humidity data (U2_D4).

o GND: Connected to the ESP32’s ground (U2_GND).

• U2 – ESP32 microcontroller

o Powered by USB adapter.

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

o DHT22 data from the VOUT pin via GPIO (U2_D4).

o Soil moisture data from the SIG pin of the soil moisture via another GPIO pin

(U2_D32).

• SEN1 – Soil moisture sensor

o VCC: Connected to 3.3V power line

o SIG: Connected to a GPIO pin on the ESP32 for reading analog (U2_D32).

4.4 AI Model Training Logic and Design

4.4.1 Data Pipeline Architecture

The data input required columns included timestamp, temperature, humidity and soil_moisture.

The minimum data points are 50 records and there is a function for automatic validation for

missing columns and insufficient data. Now let’s move to the data preprocessing pipeline.

There are several processes needed to transform raw sensor data into meaning features which

are temporal feature extraction, cyclical encoding, interaction features, temporal aggregation

features and lag features. Figure 26, 27, 28, 29 and 30 shows the code for temporal feature

extraction, cyclical encoding, interaction features, temporal features aggregation features and

lag features.

Figure 26: Temporal Feature Extraction

Figure 27: Cyclical Encoding

Figure 28: Interaction Features

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

Figure 29: Temporal Feature Aggregation Features

Figure 30: Lag Features

The purpose of temporal feature extraction is to divide the timestamp received into several

forms which is hour, day of week, month and day of year to indicate the timestamp more details

and specific to the AI. The cyclical encoding is to convert the time-based feature to cyclical

representation to capture periodic patterns. After that the interaction features are to create

composite features that capture relationship between variables. The temporal aggregation

feature is to roll averages to capture the recent trends by retrieving out 3-hour window and 24-

hour window of data. Lastly, the lag feature is used to capture temporal dependencies by using

previous time step values.

4.4.2 Machine Learning Model Architecture

The algorithm selected for the machine learning model is ensemble methods. This is because

ensemble method combines multiple individual models to create a stronger, more accurate

predictor. It is like asking multiple experts for their opinion and then combining their answer

to get a better result than any single expert could provide. There are 2 main types of ensemble

method used which are random forest regressor and gradient boosting regressor.

The parameters tuned for random forest are:

• n_estimators: [100, 200] - Number of trees in the forest

• max_depth: [10, 20, None] - Maximum depth of each tree

• min_samples_split: [2, 5] - Minimum samples required to split a node

• min_samples_leaf: [1, 2] - Minimum samples required at a leaf node

• max_features: ['sqrt', 'log2'] - Number of features to consider at each split

The parameters tuned for gradient boosting are:

• n_estimators: [100, 200] - Number of boosting stages

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

• max_depth: [3, 5] - Maximum depth of individual trees (kept shallow)

• learning_rate: [0.1, 0.2] - How much each model contributes

• subsample: [0.8, 1.0] - Fraction of samples used for fitting

The reason for choosing these 2 models is because random forest regressor can handle non-

linear relationships, robust to outliers and provide feature importance while gradient boosting

regressor can build models sequentially, each learning from previous mistake and each model

focuses on the hardest-to-predict examples and able to handle complex patterns.

Hyperparameter optimization is required for machine learning model training.

Hyperparameter are the setting or configuration of a machine learning algorithm that you must

set before training begins. After parameter tuning, cross validation will be implemented for

each combination by splitting training data into 3 folds, train models on 2folds, test on 1 fold

and repeat them 3 times (each fold used as test once). After that, calculate the average R2 score

across 3 folds. This average R2 represents the parameter combination’s performance. The

system will filter out the best results of the model.

Overall, the flow of the training process will be like the first process is data validation,

second is preprocessing, third is feature engineering, fourth is train-test split, fifth is

hyperparameter tuning, sixth is model selection, seventh is the evaluation and the last step is

model persistence. The system will automatically select the model with the highest R2 score

on the test set and also display performance metrics like MSE (mean squared error), RMSE

(root mean squared error), MAE (mean absolute error) and R2 score. Figure 31, 32, 33 and 34

below shows one of the results when running through the training process.

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

Figure 31: Feature Correlation Matrix Heatmap

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

Figure 32: Hyperparameter Tuning and Model Comparison Results

Figure 33: Feature Importance Analysis for Gradient Boosting Model

CHAPTER 4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

Figure 34: Model Performance Diagnostic Plots

Figure 31 about feature correlation matrix heatmap is displaying relationships between all

21 engineered features and the target variable (soil_moisture) from 3,626 data samples. Strong

correlations (0.88-0.99) are evident among related feature groups such as humidity variables,

temperature measurements, and their corresponding rolling averages, validating feature

engineering effectiveness. The weak individual correlations with soil_moisture (-0.16 to 0.18)

indicate that predictive power emerges from complex feature interactions rather than simple

linear relationships.

Figure 32 is the comprehensive comparison of model performance showing cross-

validation R² scores for Random Forest (0.958 ± 0.008), Gradient Boosting (0.836 ± 0.015),

and Ridge Regression baseline (0.105 ± 0.056). The results display optimal hyperparameters

found through grid search optimization, with final model evaluation metrics confirming

Gradient Boosting as the best performer (R² = 0.968, RMSE = 1.10, MAE = 0.50).

Figure 33 shows the top 10 most important features ranked by their contribution to soil

moisture prediction accuracy. The day_of_year feature dominates with 55% importance,

indicating strong seasonal patterns in soil moisture behavior. Temporal cyclical features

(day_sin, day_cos) and environmental rolling averages (humidity_rolling_24,

temp_rolling_24) constitute the remaining top contributors, demonstrating the effectiveness of

engineered temporal and environmental features.

While figure 34 is the three-panel diagnostic visualization showing (left) residual plot with

randomly distributed errors around zero indicating good model fit, (center) actual vs predicted

values plot demonstrating strong linear correlation (R² = 0.968) with points closely following

the perfect prediction line, and (right) residual distribution histogram showing near-normal

error distribution centered at zero, confirming model validity and unbiased predictions.

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

Chapter 5

System Implementation

5.1 Hardware Setup

This section details the physical assembly of the hardware components used for the IoT data

collection device. The setup is designed to be straightforward, using a breadboard to manage

power distribution and connections between the ESP32 microcontroller and the sensors.

The core of the setup is the ESP32 DevKitC V4 board. To power the other components, the

ESP32's 3.3V and GND pins are connected to the positive and negative power rails of the

breadboard, respectively. This allows the breadboard to act as a central power hub for the

sensors. Figure 35 below shows the hardware setup overview. After connecting all components,

open Arduino IDE and paste the written source code located at Appendix I. Compile and

transmit to the microcontroller. The following components were connected to the ESP32:

• DHT22 Sensor: This sensor is responsible for measuring temperature and humidity. Its

VCC and GND pins are connected to the breadboard's power rails. The crucial data pin

is connected directly to digital pin D4 on the ESP32.

• Capacitive Soil Moisture Sensor: This sensor provides soil moisture readings during

"developer mode." Like the DHT22, it is powered from the breadboard's 3.3V and GND

rails. Its analog signal pin is connected to pin D32 on the ESP32, which is an Analog-

to-Digital Converter (ADC) pin capable of reading the sensor's output voltage.

• Status LED: The built-in blue LED on the ESP32 board is used to provide visual

feedback on the device's operational status, such as when it is connecting to Wi-Fi or

operating in a specific mode.

Figure 35: Hardware Setup Overview

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

5.2 Software Setup

This section details all the software tools required to develop and deploy the Sensor

Substitution using AI for Agriculture Soil Moisture Monitoring system. It includes

development environments, programming tools, and command-line utilities used throughout

the project, along with download links and basic installation guidance.

5.2.1 Arduino IDE

• Purpose: Programming the ESP32 microcontroller and uploading sensor code.

• Download link: https://www.arduino.cc/en/software

• Installation notes:

o Install the ESP32 board package via the Boards Manager.

5.2.2 Visual Studio Code (VS Code)

• Purpose: Code editor for backend (Go), frontend (React), and AI (Python) codebases.

• Download link: https://code.visualstudio.com/

• Recommended extensions:

o Python

o Go

o PostgreSQL

o Docker

o GitHub Copilot

5.2.3 GitHub CLI

• Purpose: Version control, CI/CD automation, and repository management.

• Download link: https://cli.github.com/

• Installation command (Windows):

o winget install –id GitHub.cli

https://www.arduino.cc/en/software
https://code.visualstudio.com/
https://code.visualstudio.com/
https://cli.github.com/

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

5.2.4 Google Cloud CLI

• Purpose: Deploying services (Flask, Go backend) to Google Cloud Run

• Download link: https://cloud.google.com/sdk/docs/install

• Setup:

o gcloud init

o gcloud auth login

o gcloud config set project [PROJECT_ID]

• Use cases: Access google cloud services securely and efficiently.

5.2.5 Docker CLI

• Purpose: Containerization of AI services for consistent deployment.

• Download link: https://www.docker.com/products/docker-desktop/

• Basic usage:

o docker build -t my-container-name .

o docker run -p 8080:8080 my-container-name

5.2.6 Node.js and npm CLI

• Purpose: Frontend development and dependency management.

• Download link: https://nodejs.org/

• Recommended version: LTS version (Node 18.x or Node 20.x)

• Basic commands:

o npm install

o npm run dev

o npm run build

5.2.7 Firebase CLI

• Purpose: Firebase is used for hosting the frontend web app.

• Download link: https://firebase.google.com/docs/cli

• Install command (via npm): npm install -g firebase-tools

• Initialize firebase command:

o firebase login

o firebase init

https://cloud.google.com/sdk/docs/install
https://www.docker.com/products/docker-desktop/
https://nodejs.org/
https://firebase.google.com/docs/cli

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

5.2.8 Go CLI

• Purpose: Developing and running the backend REST API server.

• Download Link: https://go.dev/dl/

• Environment setup:

o Add go binary path /bin to system’s path.

o Initialize Go module with command below:

▪ go mod init my-backend-name

▪ go mod tidy

▪ go run main.go

5.2.9 Python CLI

• Purpose: Training machine learning models and running the Flask AI server.

• Download link: https://www.python.org/downloads/

• Recommended version: Python 3.10+

5.2.10 Postman Desktop

• Purpose: API testing for the backend restful api server.

• Download link: https://www.postman.com/

https://go.dev/dl/
https://www.python.org/downloads/
https://www.postman.com/

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

5.3 Setting and Configuration

This section outlines the configuration steps required to ensure all components which are the

hardware, software, backend, frontend, and AI are properly connected and operational. These

configurations are critical for replicating the system and ensuring compatibility across

platforms.

5.3.1 ESP32 Microcontroller (Arduino IDE)

• Board manager setup:

o In Arduino IDE, go to Preferences, add this URL

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-

pages/package_esp32_index.json to additional board manager URLs.

o Install ESP32 by Espressif Systems from board manager.

• Board selection:

o Tools – Board: Select ESP32 Dev Module

o Tools – Port: Select the correct COM port (e.g. COM3)

• Libraries installed:

o DHT sensor library

o Adafruit unified sensor

o WiFi.h, HTTPClient.h, ArduinoJson.h, esp_task_wdt.h

5.3.2 Google Cloud Configuration

• Authentication (command):

o gcloud auth login

o gcloud config set project [PROJECT_ID]

5.3.3 Firebase Setting and Configuration for Frontend

• Create a firebase project at https://console.firebase.google.com/.

• Enable hosting.

• In react project, run command:

o firebase init hosting

• Deploy the frontend to firebase by using command:

o npm run build

o firebase deploy

https://console.firebase.google.com/

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

5.3.4 Backend Server (Go)

• Folder structure: Figure 36 below shows the folder structure of backend server.

Figure 36: Go Backend Folder Structure

• Configuration file (.env):

o DATABASE_URL=postgresql://username:password@name.postgres.database

.azure.com:port/postgres

o AI_URL=https://python-model-738775168875.asia-southeast1.run.app/predict

o PYTHON_TRAINING_SERVICE_URL=https://python-model-

738775168875.asia-southeast1.run.app

o GOOGLE_API_KEY=google-map-api-key

• Run command (use port 8080): go run main.go

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

5.3.5 AI Server (Python + Flask)

• Model folder structure: Figure 37 below shows the flask server folder structure.

Figure 37: AI Server Folder Structure

• Environment setup:

o Run command: pip install -r requirements.txt

o Run command (use port 5000): python main.py

5.3.6 Frontend Web App (React + TypeScript)

• Folder structure: Figure 38 below shows the frontend folder structure.

Figure 38: Frontend Folder Structure

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

• Configuration file (.env):

o VITE_API_URL= https://go-backend-server-738775168875.asia-

southeast1.run.app

o VITE_GOOGLE_MAPS_API_KEY=google-map-api-key

o VITE_API_WS_URL= wss://go-backend-server-738775168875.asia-

southeast1.run.app/ws

• Run dev server command:

o npm install

o npm run dev

5.3.7 Azure PostgreSQL Database Configuration

• Cloud provider: Microsoft azure

• Database type: PostgreSQL flexible server

• Steps:

1. Create PostgreSQL server on azure portal.

2. Configure firewall rules to allow GCP IP ranges.

3. Create a database.

4. Create a user and password.

• Connection string format:

o postgresql://<username>:<password>@<host>.postgres.database.azure.com:5

432/<database_name>

• Environment variables in Go Backend:

o DATABASE_URL=postgresql://username:password@host.postgres.database.

azure.com:5432/database_name

5.3.8 Google Cloud Platform Deployment Configuration

• Go backend deploy to cloud run (YAML configuration): Figure 39 below shows the

cloudbuild.yaml example.

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

Figure 39: cloudbuild.yaml of Go Backend Server

• Deployment command for Go backend deploy to cloud run:

o gcloud run services replace cloudbuild.yaml

• Flask AI server deploy to cloud run via Docker.

o Dockerfile for python flask: figure 40 below is the contain inside Dockerfile.

Figure 40: Dockerfile for Python Flask

o Build and deploy command:

gcloud builds submit --tag gcr.io/[PROJECT_ID]/python-model

gcloud run deploy python-model \

 --image gcr.io/[PROJECT_ID]/python-model \

 --platform managed \

--region asia-southeast1

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

5.4 System Operation

5.4.1 System Access and User Authentication

Figure 41: GoMonitor SignUp Interface

The GoMonitor system can be accessed via:

https://fyp-backend-bd5cc.web.app/base/auth/signup

The figure 41 above is the GoMonitor system signup interface. It allows users to register

their own account. The system supports user authentication and provides access to monitoring

and managing the functionalities for plant data collection and AI-powered predictions for soil

moisture. After signing up, the user will be able to sign in using the successful signup account.

Figure 42 below is the GoMonitor sign in interface. For demo purposes, please sign in using

username: staging and password: 12345 for running test.

Figure 42: GoMonitor SignIn Interface

https://fyp-backend-bd5cc.web.app/base/auth/signup

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

5.4.2 Main Dashboard Overview

Figure 43: GoMonitor Main Dashboard Overview

Figure 43 above shows the main dashboard overview of the system. The main dashboard

provides an overview of real time data and the microcontroller’s current location. The real-

time data is fetched using WebSocket which has no latency. The top bar has the selection of

user mode / developer mode, shifting the theme between light mode and dark mode, AI toggle

button for plant model, and recent alerts and notifications. There are 4 options available at the

sidebar, which are dashboard, management, notification and guidelines page. This web

application is also available in mobile friendly. Figure 44 below shows the view on a mobile

website.

Figure 44: GoMonitor Main Dashboard Overview in Mobile

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

5.4.3 Management Page Overview

Figure 45: Management Page Interface

Figure 45 above shows the management page interface which is showing a clickable button

“View AI Model Details” and a sensor reading table which have the feature of delete all data,

delete chose data, and edit the data. There is a sync button allowing users to click to get the

newest data, also known as refresh sensor reading table button. When users click the “View AI

Model Details” button, the webpage will direct user to another page which have been shown at

figure 46 below. It will show the available ai model and their performance, and train duration.

Figure 46: AI Model Details Page

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

5.4.4 Notification Page Overview

Figure 47: Notification Page

This is the notification page of the system, which will jump red alert on the top bar as the

figure 47 above shows when the system received abnormal temperature or humidity value. The

value of temperature will detect as abnormal when it is lower than 10 degrees Celsius or higher

than 50 degrees Celsius, while the humidity is lower than 20 percent or higher than 90 percent.

This feature is to alert users to check whether there are sensor malfunctions, or the climate

change occurs suddenly. It provides the users with taking fast actions on it when receiving

notification and alerts. When users click on the notification icon on the sidebar or top bar, it

will direct to this notification page where users will be able to check which data is abnormal

and what time the data is collected for further diagnosis.

5.4.5 Guideline Page Overview

Figure 48: Guideline Page

Figure 48 above is the guideline page overview; the purpose of this page is to teach user

how to set up their microcontroller to connect with system and use the features. All setup

procedures are given.

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

5.4.6 Real-time Monitoring & User Mode Operation

Figure 49: Microcontroller Status

For the real-time monitoring, the microcontroller will be setup with prepared code using

Arduino IDE for collecting data and sent to backend server, after that the frontend will retrieve

data from the backend server. Figure 49 above shows the microcontroller status by blue LED,

when LED is blinking, it means that the system for the specific account is currently in developer

mode, when it is not blinking, it means the system is currently in user mode. When the system

is in user mode, the microcontroller will only send temperature and humidity data to backend

and the soil moisture will be predicted by the AI model. Figure 50 below shows the users how

to toggle the AI model for specific plant ON. When users click on the photo on the top bar, this

popup modal will come out.

Figure 50: AI Plant Model Selection

Figure 51: Main Dashboard Operations

After the AI model is chosen, users will notice there is an AI icon at the top bar shown,

which means AI is enabled in user mode, and when the microcontroller sends data to the

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

backend, the soil moisture will be predicted, and the front end will render out the real-time

data using WebSocket. Figure 51 above shows the results.

5.4.7 Developer Mode & AI Model Training Operation

Figure 52: Developer Mode Enable Confirmation

For the users to enable developer mode, just click on the “user” button once and this

confirmation note will be shown to ask confirmation of trigger ESP32 into developer mode.

Figure 52 above shows the screenshot of the confirmation. After confirmation, the dashboard

will become different, figure 53, 54, and 55 shows the new view of the dashboard in developer

mode.

Figure 53: Dashboard Overview in Developer Mode View 1

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

Figure 54: Dashboard Overview in Developer Mode View 2

Figure 55: Dashboard Overview in Developer Mode View 3

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

The purpose of having developer mode view for users is to enable advance feature for data

collection and model training. When the system is in developer mode, it will trigger the

microcontroller into developer mode too where it will send temperature, humidity and soil

moisture to the backend for data collection and further model training. The developer mode

will on for 14 days and automatically closed as datapoints for 14 days data collection should

be enough to train a strong ai model. Figure 55 above shows the data visualization features in

the system. Users able to visualize the line chart for each temporal data analysis, real-time

gauge displays, historical trend analysis and customizable time range selection. The button of

“sync” is used to refresh the data and fetch the newest data. Figure 54 above shows the

historical data for the microcontroller collected data and there is a button “train” to train the

data. Figure 56 below shows the overview of the train model page when the “train” button

clicked.

Figure 56: Train Button Clicked Overview

When the “train” button clicked by users, there will be two options which is train model

and download csv. If users click download csv, the system will generate a csv file and download

to the users’ device as shown at figure 57 below. While if the users click “train model” button,

another popup modal will show to users to choose which plant model users want to train using

the account’s csv data as shown at figure 58 below.

Figure 57: Download CSV Button Clicked Overview

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

Figure 58: Train Model Button Clicked Overview

When users clicked “train model” button, the system will show current available plant

option for users to choose to train their own plant ai model using their collected data. As the

current account, the data is collected by using snake plant, so users will need to choose snake

plant and click the “start training” button. Figure 59 and 60 below shows the response of the

frontend. Figure 57 below shows the users that the ai model is in training process and loading.

Figure 58 below shows the result of the successful trained ai model.

Figure 59: Start Training Button Clicked Overview

Figure 60: AI Model Successful Trained Overview

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

5.4.8 Data Management Operation

Figure 61: Data Management Overview Interface

Besides real-time monitoring, this system also supports data management features. When users

click on the side bar management page, the frontend will direct users to this data management

page as shown as figure 61 above. When users click on the “Delete My Records”, the system

will delete all the records for current account. Figures 62 and 63 below show the results.

Figure 62: Confirmation of Delete All Records

Figure 63: All Records Successful Deleted Overview

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

Instead of deleting all records, the system also allows users to delete the selected data or

modify it. Figure 64 below will show how to delete the selected data. Users can click on the

Action (…) to choose to delete or edit for the selected data. When users click on the delete

button, it will prompt a message to users to confirm performing delete for the selected data

with showing record ID.

Figure 64: Selected Records Delete Overview

While for the users to edit the data, figure 65 below shows the overview of the edit data

page when users clicked on edit for selected data. There is a popup modal that came out when

users clicked on edit button. Users are allowed to modify the temperature, humidity and soil

moisture value. When it is modifieds just click on the save changes button and the data will be

saved.

Figure 65: Selected Records Edit Overview

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

5.4.9 System Administration and Settings

This system is also designed with administrative features. For example, there is user permission

management that was divided into user and admin role. Figures 66 and 67 will show the

difference between user and admin role. For admin roles, it able to see all available accounts’

data collection table, have permission to edit, delete them and able to perform functionality like

promote or demote user role to admin role or delete the entire account.

Figure 66: Management Page Overview for Admin Part 1

Figure 67: Management Page Overview for Admin Part 2

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

When the promote user to admin button is clicked, a popup modal will show current

available user role account to admin to choose which account admin want to promote. When

admin clicks on it, the clicked account will become an admin role. Figure 68 below shows the

overview of the results.

Figure 68: Promote User to Admin Overview

5.4.10 Error Handling and Validation

Figure 69 below shows the response from the front end when it is in guest mode, empty data

will be read and showing errors on the main dashboard. Figure 70 below shows the response

from frontend when guest wanted to check available ai model list at the management page.

Figure 69: Main Dashboard Overview in Guest

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

Figure 70: AI Model List Overview in Guest

Besides, when users try to train an ai model using an empty data account, it will show

request failure as there is not enough data in the csv file, and it will be rejected by the system.

Figure 71 below shows the response result.

Figure 71: Train Model Rejected Overview

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

5.5 Implementation of Issues and Challenges

5.5.1 Hardware and Firmware Integration

The physical layer, centred around the ESP32 microcontroller, posed the initial set of hurdles.

First is the sensor reliability and power management problem. While the project aims to replace

soil moisture sensors, the initial data collection phase relied on them heavily. Ensuring the

capacitive soil moisture sensor provided consistent and accurate readings was challenging.

Furthermore, implementing robust power management and a watchdog timer on the ESP32

was necessary to ensure long-term stability and prevent system freezes, requiring multiple code

revisions to achieve reliable, autonomous operation.

Another hurdle is the Wi-Fi connectivity and data transmission. Establishing stable Wi-Fi

communication between the ESP32 and the backend was a significant challenge. The firmware

needed sophisticated error handling, including an automatic reconnection mechanism with an

exponential backoff, to manage intermittent network disruptions. Data was formatted as JSON

and sent via HTTPS POST requests, and ensuring the lightweight ESP32 could handle the

overhead of TLS encryption and JSON serialization without performance degradation required

careful optimization

5.5.2 Backend and Database Complexity

The backend, which is built with Go and PostgreSQL, serves as the system’s core and presents

its own integration and performance challenges. The challenges included concurrent data

handling and real-time communication. The backend needed to manage simultaneous HTTP

requests from the IoT device and WebSocket connections from multiple web clients.

Implementing a thread-safe system in Go to handle state changes, such as switching between

"developer" and "user" modes, required careful use of concurrency patterns (goroutines and

mutex locks) to prevent race conditions.

Besides, there is cross-service integration needed for the backend. The Go backend had to

communicate seamlessly with three external services which is the PostgreSQL database hosted

on Azure, the flask ai server for soil moisture prediction and the google geolocation api.

Managing authentication tokens, API keys, a different data formats across these services was

complex. Ensuring low latency, especially when the Go service had to wait for a prediction

from the Flask API before responding to the client, required efficient code and network

configurations.

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

Automating the deployment of the Go backend and flask ai service to google cloud run

using a CI/CD pipeline was a significant undertaking. Writing the cloudbuild.yaml and

dockerfiles, managing environment variables securely, and configuring firewall rules for the

Azure database to accept connections from google cloud services were intricate and error-prone

steps.

5.5.3 AI Model Development and Deployment

The AI component was the most innovative but also one of the most complex parts of the

project. The success of the ai model depend entirely on the quality of the data collected in

“developer mode”. The key challenge was in feature engineering which will transform the raw

data (temperature, humidity, timestamp) into meaning features that could predict the soil

moisture value accurately. This involved creating cyclical features for time, interaction

features, and rolling averages. The initial models had lower accuracy that required

experimentation with hyperparameter tuning for both the random forest and gradient boosting

models to achieve the desired performance which is (R2 score > 0.9).

Dynamic model loading and scalability is also a challenge for the ai model development.

The Flask API was designed to dynamically load different trained models based on the plant

type (e.g., Hebe andersonii, Snake Plant) specified in the API request. Implementing this

required a structured folder system for the model files (.pkl) and a robust loading mechanism.

Containerizing this flask application with docker and deploying it on a serverless platform like

cloud run was necessary to ensure it could scale independently of the main Go backend.

5.5.4 Frontend and User Experience

The React and TypeScript frontend aimed to provide a user-friendly interface but faced

challenges in handling real-time data and managing complex application states. Implementing

a performant dashboard that could visualize a continuous stream of data via WebSockets

without causing the user interface to lag was a primary challenge. This required efficient state

management using React hooks and careful rendering logic to ensure smooth updates for charts

and gauges. Managing user authentication with JWT tokens and dynamically changing the user

interface based on the user's role (user vs. admin) and the device's mode (developer vs. user)

added significant complexity to the frontend state. Ensuring consistent and secure user

experience across different states and modes requires a well-designed component architecture

and rigorous testing.

CHAPTER 5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

5.6 Concluding Remark

Chapter 5 has detailed the complete journey of transforming the conceptual design of the

"Sensors Substitution using AI" system into a tangible, operational prototype. The

implementation phase successfully integrated a diverse stack of modern technologies, from

low-level firmware on the ESP32 microcontroller to sophisticated cloud-native services. The

detailed walkthrough of the hardware setup, software tools, and precise configurations

demonstrates the successful creation of a cohesive and functional ecosystem.

The system's operation was brought to life, showcasing a seamless user experience through

the GoMonitor web application. Key functionalities are including secure user authentication,

real-time data streaming via WebSocket, and the dynamic switching between User Mode and

Developer Mode were all successfully implemented and demonstrated. A significant

achievement was the operationalization of the AI model training pipeline, allowing users to

initiate the training of a machine learning model directly from the web interface using their

own collected data.

Despite the successes, this chapter also acknowledged the significant implementation

challenges that were overcome. These ranged from ensuring hardware reliability and stable

connectivity to managing the complexities of a microservices-based backend architecture

involving Go, Python, and multiple cloud platforms. The successful resolution of these issues

underscores the robustness of the final implementation.

In summary, this chapter confirms that the project has progressed from architectural

diagrams to a fully functional, end-to-end system. The hardware is collecting data, the backend

is processing it, the AI is making predictions, and the frontend is providing an intuitive interface

for users to interact with it all. The system now stands as a proof-of-concept, ready for the

rigorous evaluation and performance analysis that will be detailed in Chapter 6.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

Chapter 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics

This section describes how the system was tested to make sure it is working correctly and

efficiently. The focus of the testing was on the backend API, which is the core of the entire

system. The testing method was to send HTTP requests to the deployed API endpoints and then

check the responses. This was done to measure two key things: the correctness of the output

and the performance of the server. The API testing was performed using the live backend URL:

https://go-backend-server-738775168875.asia-southeast1.run.app.

For each important API route, a request was sent, and the following metrics were recorded

which is the correctness of output and response time. Correctness of output was the most

important test. For every API request, the response from the server was checked to see if it was

correct. For example, when using the /login route, the test checked if a valid user received a

success message and a token. When using the /sensor-data route, the test checked if the data

was saved in the database. This confirms that the system's logic is working as expected.

Besides, the response time measures how fast the system is. The response time is the

duration from when an API request is sent to when the server sends back a complete response.

This was measured in milliseconds (ms). A fast response time means the system is efficient

and provides good user experience. The average response time will be measured by sending 10

requests at the same time using postman. By using these two metrics, it was possible to get a

clear picture of both the functionality and performance of the system.

6.2 Testing Setup and Result

6.2.1 Testing Setup

This section describes the setup used for testing and present the results that were collected. For

the testing setup, all tests were performed on the deployed system to simulate a real-world

usage environment. The hardware used to send the API request is legion 5 laptop. The computer

processor is Intel Core i7-12700H and memory is 16GB DDR5 RAM. While the software used

for testing is Postman. Postman is used to create and send the HTTP request and to view the

responses. The backend Go application was deployed and running on Google Cloud Run, and

the database was hosted on Azure PostgreSQL. Figure 72 below shows the setup of the postman

https://go-backend-server-738775168875.asia-southeast1.run.app/

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

for testing. The http request must send to the live backend URL: https://go-backend-server-

738775168875.asia-southeast1.run.app and add /end-point at the end of the URL.

Figure 72: Postman Setup

6.2.2 Testing Result

The table 6.1 below shows the result for the api endpoints testing results. Each test was run

10 times to get an average response time.

API Endpoint HTTP

Method

Description Expected

Outcome

Actual Outcome Average

Respons

e Time

/login POST Authenticates a user with

correct credentials.

Returns a JWT

token.

Success.

Received token.

120ms

/sensor-data

(with AI)

POST Receives and saves

sensor data (temperature

& humidity) from the

ESP32 and sends to AI

model for prediction.

Returns a success

message. Data

saved in the

database.

Success. Data

saved correctly.

97ms

/sensor-data

(without AI)

POST Receives and saves

sensor data (temperature,

humidity & soil moisture)

from the ESP32

Returns a success

message. Data

saved in the

database.

Success. Data

saved correctly.

52ms

Table 6.1 Testing Result for API Endpoints

https://go-backend-server-738775168875.asia-southeast1.run.app/
https://go-backend-server-738775168875.asia-southeast1.run.app/

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

/history GET Fetches the historical

sensor data for a user.

Returns a JSON

array of all sensor

data records.

Success.

Received all

records.

62ms

/device-

config/esp32-

001

GET Fetch the current mode of

esp32 (user or developer).

Returns a JSON

with developer

mode start time if

true and details.

Success.

Received the

details.

57ms

/device-

config/esp32-

001/trigger-dev

POST Enables developer mode

for the ESP32.

Returns a success

message. Device

mode is updated.

Success. Mode

updated.

71ms

/device-

config/esp32-

001/stop-dev

POST disables developer mode

for the ESP32.

Returns a success

message. Device

mode is updated.

Success. Mode

updated.

67ms

/abnormal-

history

GET Fetches the abnormal

historical sensor data for

a user.

Returns a JSON

array of all

abnormal sensor

data records.

Success.

Received all

records.

41ms

/delete/:id DELETE Delete the sensor data

according to id.

Returns a success

message. Record

deleted.

Success. Record

deleted

34ms

/models GET Lists all available trained

AI models.

Returns a JSON

array with details

of each AI model.

Success.

Received model

list.

45ms

/train-model POST Starts the AI model

training process with user

data.

Returns a message

that training start

successfully and

receive the

training result

Success.

Training started.

154157

ms

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

Figure 73: Testing Result for POST /login

Figure 74: Testing Result for POST /sensor-data (with AI)

Figure 75: Testing Result for POST /sensor-data (without AI)

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

Figure 76: Testing Result for GET /history

Figure 77: Testing Result for GET /device-config/esp32-001

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

Figure 78: Testing Result for POST /device-config/esp32-001/trigger-dev

Figure 79: Testing Result for POST /device-config/esp32-001/stop-dev

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

Figure 80: Testing Result for GET /abnormal-history

Figure 81: Testing Result for DELETE /delete/:id

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

Figure 82: Testing Result for GET /models

 Figure 83: Testing Result for POST /train-model

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

6.3 Project Challenges

Throughout the development of this project, several significant challenges were faced. These

difficulties spanned the entire system, from the physical hardware and its connection to the

internet, to the complex backend integration, the demanding AI model development, and the

real-time frontend user interface.

The first major challenge was related to the hardware and its connectivity. The core of the

data collection system, the ESP32 microcontroller, had to be programmed to be extremely

reliable. Ensuring it could maintain a stable Wi-Fi connection over long periods to consistently

send data was difficult. The firmware, written in C++/Arduino, needed robust error-handling

logic to automatically reconnect to the network if the connection dropped. Furthermore, the

ESP32 had to efficiently format the sensor readings into JSON, a text-based format, and send

them securely over HTTPS, which required careful memory management on the resource-

constrained device.

A second significant challenge was the integration of the complex backend system. The

project's architecture was not a single application but a collection of different services that

needed to communicate perfectly. The Go backend server running on Google Cloud Run had

to manage requests from the ESP32, interact with the Python Flask API for AI predictions, and

connect to the PostgreSQL database hosted on a completely different cloud platform, Microsoft

Azure. Making these separate systems, built with different languages and hosted on different

clouds, work together required careful configuration of network rules, firewalls, and secure

management of API keys and credentials.

Perhaps the most demanding challenge of the project was the development of the artificial

intelligence model. The main objective was to create a model accurate enough to completely

replace a physical soil moisture sensor. This was not a simple task. It required extensive work

in collecting high-quality data from the ESP32's "developer mode." After collecting the data, a

process of complex feature engineering was needed to create meaningful information from

basic temperature and humidity readings. This involved creating new features based on time,

such as the day of the year or cyclical representations of the hour, to help the model understand

temporal patterns. Many experiments were needed to train, test, and fine-tune the Random

Forest and Gradient Boosting models to finally achieve a high level of prediction accuracy.

Finally, developing a responsive and user-friendly frontend presented its own set of

challenges. The main requirement for the web dashboard was to display sensor data in real-

time. This was achieved using WebSockets to stream data directly from the server to the

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

browser. Implementing this feature required careful and advanced state management within the

React application. The code had to be written efficiently to handle a constant flow of new data,

updating charts and values instantly without causing the user's browser to slow down, lag, or

crash. Ensuring this smooth, real-time experience was a key challenge in delivering a polished

final product.

6.4 Objectives Evaluation

This section evaluates the project's outcome against the three main objectives set out at the

beginning to determine if all initial requirements were successfully met. The first objective was

to create an Internet of Things (IoT) based soil moisture monitoring system that uses machine

learning to predict soil moisture levels, featuring an ESP32 with "developer" and "user" modes.

This objective was fully achieved. An IoT device using an ESP32 microcontroller and a DHT22

sensor was successfully built to collect real-time data. The system successfully supports two

operation modes, which can be controlled via the API to switch between collecting full data

for training in developer mode and predicting soil moisture in user mode. The core goal was

realized as the system can substitute the physical soil moisture sensor with an AI prediction.

The second objective was to build a backend server using the Go programming language,

integrated with a PostgreSQL database, to manage all data flow and expose a RESTful API.

This objective was also fully achieved. A robust backend server was developed using Go and

successfully deployed. It effectively manages all system functions through a comprehensive

set of RESTful API endpoints that handle everything from user authentication to data

management and AI model training. The server's successful integration with a PostgreSQL

database for data storage and the Flask AI service for the machine learning pipeline

demonstrates a complete and scalable data management system.

The third objective was to develop a user-friendly, web-based monitoring platform on

Firebase for visualizing data and tracking trends. This objective was fully achieved as well. A

user-friendly web platform was developed using React and hosted on Firebase. The platform

successfully visualizes live sensor data using a real-time dashboard, allows users to track

historical trends with interactive charts, and includes a notification system for alerts. The

platform successfully integrates with all backend APIs to provide a seamless user experience

for effective soil monitoring.

CHAPTER 6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

In conclusion, all three primary objectives of the project were met successfully. The result

is a complete, end-to-end system that covers all requirements from hardware data collection

and AI-based prediction to real-time monitoring on a web-based platform.

6.5 Concluding Remark

In summary, this chapter has provided a thorough and systematic evaluation of the "Sensors

Substitution using AI for Agriculture Soil Moisture Monitoring" system, confirming its

successful implementation and operational readiness. The tests on the API showed that the

system is not only working correctly but is also quick and responsive, which is great news for

anyone using the web dashboard.

Furthermore, this chapter has reflected on the significant project challenges that were

encountered during the development lifecycle. These obstacles, which included ensuring stable

hardware connectivity, integrating a complex multi-service backend architecture, and

developing a highly accurate AI prediction model, were all successfully navigated. The ability

to overcome these technical hurdles is a testament to the robust design and careful

implementation of the project.

Ultimately, this chapter confirms that the project has hit all the targets we set out to achieve.

We have a complete system that does what it was designed to do which is use AI to predict soil

moisture without needing a physical sensor. Now that we know the system is solid, we can

move on to the final chapter to wrap everything up and think about what could come next.

CHAPTER 7

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

Chapter 7

Conclusion and Recommendations

This final chapter brings the project, "Sensors Substitution using AI for Agriculture Soil

Moisture Monitoring," to its close. It will begin by summarizing the entire project, from the

initial problem statement through to the final evaluated system, to reflect on the achievements

and outcomes. Following the conclusion, this chapter will provide a series of recommendations

for future work, outlining potential enhancements and new directions that could build upon the

foundation established by this research.

7.1 Conclusion

This project was started to solve a significant and practical problem in modern agriculture

which is the unreliability and cost associated with traditional soil moisture sensors. These

sensors are prone to degradation from environmental factors, leading to inaccurate data and

inefficient water use. The core mission of this project was to design, develop, and validate an

innovative system that replaces these physical sensors with an intelligent, AI-driven prediction

model, thereby creating a more robust, cost-effective, and scalable solution for soil moisture

monitoring.

Throughout this project, a complete, end-to-end system was successfully built, integrating

multiple modern technologies. The journey began with the development of the hardware layer,

where an ESP32 microcontroller and a DHT22 sensor were configured to act as a reliable IoT

data collection node. A key innovation at this stage was the implementation of two distinct

operating modes: a "developer mode" for gathering comprehensive training data (including

actual soil moisture readings) and a "user mode" where the device relies solely on temperature

and humidity to predict soil moisture using AI model.

The heart of the system is the sophisticated backend architecture. A high-performance

server was developed using the Go programming language, which seamlessly manages data

flow between the IoT device, a PostgreSQL database hosted on Microsoft Azure, and a

dedicated AI prediction service. The backend was designed to be scalable and secure, exposing

a comprehensive set of RESTful APIs to handle everything from user authentication and data

management to remote device control. The successful integration of these disparate services,

running on different cloud platforms, stands as a major technical achievement of this project.

CHAPTER 7

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

The most innovative component of this project is the AI-powered sensor substitution. A

machine learning pipeline was developed in Python, utilizing an ensemble of Random Forest

and Gradient Boosting models to predict soil moisture levels with a high degree of accuracy

(R² > 0.96). The success of this model, which relies only on temperature and humidity data,

validates the central hypothesis of this project: that a physical sensor can be effectively replaced

by an intelligent algorithm. The system's ability to allow users to trigger the retraining of this

model with their own data ensures that it can be adapted to new plants and different

environmental conditions.

Finally, a user-friendly, web-based monitoring platform was developed using React and

TypeScript and hosted on Firebase. This frontend provides users with a powerful interface to

visualize real-time data via WebSocket, track historical trends, manage their devices, and

receive notifications about abnormal conditions. The dashboard successfully brings all the

system's capabilities together into a single, cohesive user experience.

In conclusion, this project has successfully met all of its initial objectives. It has delivered

a fully functional proof-of-concept that demonstrates the viability of using AI to substitute

physical sensors in agricultural monitoring. The final system is a testament to the power of

integrating IoT, cloud computing, and machine learning to solve real-world problems, offering

a significant contribution to the field of precision agriculture.

7.2 Recommendation

While the current system is a successful proof-of-concept, there are numerous opportunities

for future work that could enhance its capabilities, improve its performance, and broaden its

applicability. The following recommendations are proposed for future development.

First, the AI model's predictive power could be further improved by incorporating

additional environmental variables. While the current model achieves high accuracy with

temperature and humidity, integrating more sensors into the ESP32 device, such as a light

intensity sensor (LDR) and a barometric pressure sensor (BMP280), could capture more

nuanced conditions that influence soil moisture, like evaporation from sunlight. Retraining the

AI model with these new features could increase its accuracy and make it more robust across

a wider range of environments.

A second recommendation is to implement a fully automated watering system. The current

system provides excellent monitoring but still requires manual intervention for irrigation. The

logical next step is to close this loop by integrating a relay module and a small water pump

CHAPTER 7

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

with the ESP32. The backend could then be enhanced with a feature allowing users to set a

target soil moisture threshold. When the AI predicts moisture levels have dropped below this

threshold, the server would automatically command the ESP32 to activate the pump,

transforming the system from a passive monitor into an active, intelligent irrigation controller.

Third, developing a dedicated native mobile application would provide superior user

experience. Although the web dashboard is mobile-friendly, a native app for iOS and Android,

built with a framework like React Native or Flutter, could leverage device-specific features

such as push notifications for more immediate and reliable alerts. It could also use the phone's

GPS to simplify the process of tagging the location of new devices during setup.

Finally, exploring more advanced AI and machine learning models could yield even better

performance. While the current ensemble model is effective, experimenting with time-series

forecasting models like LSTM (Long Short-Term Memory) or GRU (Gated Recurrent Unit)

networks could capture more complex temporal patterns in the sensor data. Additionally,

unsupervised learning models could be used for more advanced anomaly detection, helping to

identify subtle deviations that might indicate sensor malfunction or the early onset of plant

distress. By pursuing these recommendations, the foundation laid by this project could be built

upon to create an even more powerful and impactful solution for the future of smart agriculture.

REFERENCES

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

REFERENCES

[1] Benbrook, Charles M., and Ag BioTech InfoNet. "Rust, resistance, run down soils, and

rising costs–Problems facing soybean producers in Argentina." AgBioTech InfoNet, Technical

Paper 8 (2005): 26. Available: https://www.greenpeace.org/static/planet4-netherlands-

stateless/2018/06/rust-resistance-run-down-soi.pdf

[2] Wang, T., Jin, H. & Sieverding, H.L. Factors affecting farmer perceived challenges

towards precision agriculture. Precision Agric 24, 2456–2478 (2023), doi:10.1007/s11119-

023-10048-2

[3] D. Danikovich, “Machine Learning in Agriculture,” EffectiveSoft.

https://www.effectivesoft.com/blog/machine-learning-in-agriculture.html (accessed Feb. 25 /

2025).

[4] “Moisture sensor corrosion,” Arduino Forum, Aug. 09, 2017.

https://forum.arduino.cc/t/moisture-sensor-corrosion/474537 (accessed Feb. 26, 2025).

[5] J. Blalock, “The Issues Facing Modern Agriculture,” Cropler.io, Oct. 09, 2024.

https://www.cropler.io/blog-posts/the-issues-facing-modern-agriculture

[6] B. Y. Ooi, W. L. Beh, W. K. Lee, and Shervin, “Using the Cloud to Improve Sensor

Availability and Reliability in Remote Monitoring,” IEEE Transactions on Instrumentation

and Measurement, vol. 68, no. 5, pp. 1522–1532, May 2019, doi:

https://doi.org/10.1109/tim.2018.2882218.

[7] R. Ullah et al., “EEWMP: An IoT-Based Energy-Efficient Water Management Platform

for Smart Irrigation,” Scientific Programming, vol. 2021, pp. 1–9, Apr. 2021, doi:

https://doi.org/10.1155/2021/5536884.

[8] Srinivasa Rao Burri, D. K. Agarwal, N. Vyas, and R. Duggar, “Optimizing Irrigation

Efficiency with IoT and Machine Learning: A Transfer Learning Approach for Accurate Soil

Moisture Prediction,” Jul. 2023, doi: https://doi.org/10.1109/wconf58270.2023.10235220.

[9] Q. Li, Z. Wang, W. Shangguan, L. Li, Y. Yao, and F. Yu, “Improved daily SMAP

satellite soil moisture prediction over China using deep learning model with transfer

learning,” Journal of Hydrology, vol. 600, p. 126698, Sep. 2021, doi:

https://doi.org/10.1016/j.jhydrol.2021.126698.

[10] D. R. Vincent, N. Deepa, D. Elavarasan, K. Srinivasan, S. H. Chauhdary, and C. Iwendi,

“Sensors Driven AI-Based Agriculture Recommendation Model for Assessing Land

Suitability,” Sensors, vol. 19, no. 17, p. 3667, Jan. 2019, doi:

https://doi.org/10.3390/s19173667.

https://www.effectivesoft.com/blog/machine-learning-in-agriculture.html

REFERENCES

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

[11] V. Sinitsin, O. Ibryaeva, V. Sakovskaya, and V. Eremeeva, “Intelligent bearing fault

diagnosis method combining mixed input and hybrid CNN-MLP model,” Mechanical

Systems and Signal Processing, vol. 180, p. 109454, Nov. 2022, doi:

https://doi.org/10.1016/j.ymssp.2022.109454.

[12] A. Uthayakumar, M. P. Mohan, E. H. Khoo, J. Jimeno, M. Y. Siyal, and M. F. Karim,

“Machine Learning Models for Enhanced Estimation of Soil Moisture Using Wideband Radar

Sensor,” Sensors, vol. 22, no. 15, p. 5810, Aug. 2022, doi: https://doi.org/10.3390/s22155810.

[13] C. Josephson, B. Barnhart, S. Katti, K. Winstein, and R. Chandra, “RF Soil Moisture

Sensing via Radar Backscatter Tags,” arXiv.org, 2019. https://arxiv.org/abs/1912.12382

(accessed Jul. 16, 2025).

[14] W. Jiao, J. Wang, Y. He, X. Xi, and X. Chen, “Detecting Soil Moisture Levels Using

Battery-Free Wi-Fi Tag,” arXiv.org, 2022. https://arxiv.org/abs/2202.03275 (accessed Jul. 16,

2025).

APPENDIX

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

APPENDIX

Source Code (Repository)

Web Application Repository: https://github.com/Kaisheng328/agriculture-monitoring-ui

Go Backend Repository: https://github.com/Kaisheng328/go-agriculture-monitoring-backend

Python Flask Repository: https://github.com/Kaisheng328/flask-ai-model

Source Code (Microcontroller)
#include <WiFi.h>

#include <HTTPClient.h>

#include <Adafruit_Sensor.h>

#include <DHT.h>

#include <DHT_U.h>

#include <ArduinoJson.h>

#include <esp_task_wdt.h>

#define WIFI_SSID "wifiID"

#define WIFI_PASSWORD "wifiPassword"

#define DATA_URL "https://go-backend-server-738775168875.asia-southeast1.run.app/sensor-data"

#define LOGIN_URL "https://go-backend-server-738775168875.asia-southeast1.run.app/login"

#define CONFIG_URL "https://go-backend-server-738775168875.asia-southeast1.run.app/device-config/esp32-

001"

#define DHTPIN 4 // Pin connected to the DHT22 sensor

#define DHTTYPE DHT22 // Specify the sensor type (DHT22)

#define SOIL_PIN 32 // Pin connected to the soil moisture sensor (analog)

#define LED_PIN 2 // Built-in or external LED

enum LedState {

 STATUS_CONNECTING,

 STATUS_NORMAL,

 STATUS_DEVELOPER

};

LedState currentLedState = STATUS_CONNECTING;

unsigned long lastLedToggle = 0;

bool ledOn = false;

bool developerMode = false;

time_t developerStartTime = 0;

String jwtToken = "";

DHT dht(DHTPIN, DHTTYPE);

const unsigned long checkInterval = 600000; // 10 minutes

const unsigned long restartInterval = 3610000; // Optional hourly restart

const unsigned long developerModeDuration = 14UL * 24 * 60 * 60; // 14 days in seconds

// const unsigned long developerModeDuration = 5UL * 60; // 5 minutes in seconds

unsigned long previousMillis = 0;

unsigned long lastRestartMillis = 0;

void setup() {

 Serial.begin(115200);

 currentLedState = STATUS_CONNECTING;

 dht.begin();

 pinMode(LED_PIN, OUTPUT);

 digitalWrite(LED_PIN, LOW);

 const esp_task_wdt_config_t wdt_config = {

https://github.com/Kaisheng328/agriculture-monitoring-ui
https://github.com/Kaisheng328/go-agriculture-monitoring-backend
https://github.com/Kaisheng328/flask-ai-model

APPENDIX

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

 .timeout_ms = 10000, // 10 seconds timeout

 .idle_core_mask = 1 << 0, // Core 0 (typical for single-core task watchdog)

 .trigger_panic = true // Panic if not fed in time

 };

 esp_task_wdt_add(NULL); // Add current task (loop task) to watchdog

 // Initialize pins

 pinMode(SOIL_PIN, INPUT);

 // Connect to Wi-Fi

 WiFi.begin(WIFI_SSID, WIFI_PASSWORD);

 Serial.print("Connecting to Wi-Fi");

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("\nConnected to Wi-Fi");

 configTime(0, 0, "pool.ntp.org", "time.nist.gov"); // NTP for Unix time

 waitForTimeSync();

 loginAndGetToken(); // Get JWT token at startup

 fetchDeviceConfig();

 sendSensorData(); // Take first reading immediately

 previousMillis = millis();

 lastRestartMillis = millis();

}

void updateLED() {

 unsigned long now = millis();

 switch (currentLedState) {

 case STATUS_CONNECTING:

 if (now - lastLedToggle > 200) { // Fast blink

 ledOn = !ledOn;

 digitalWrite(LED_PIN, ledOn ? HIGH : LOW);

 lastLedToggle = now;

 }

 break;

 case STATUS_DEVELOPER:

 if (now - lastLedToggle > 1000) { // Slow blink

 ledOn = !ledOn;

 digitalWrite(LED_PIN, ledOn ? HIGH : LOW);

 lastLedToggle = now;

 }

 break;

 case STATUS_NORMAL:

 digitalWrite(LED_PIN, HIGH); // Solid ON

 break;

 }

}

void checkWiFiConnection() {

 if (WiFi.status() != WL_CONNECTED) {

 Serial.println(" WiFi lost. Reconnecting...");

 WiFi.disconnect();

 WiFi.begin(WIFI_SSID, WIFI_PASSWORD);

 unsigned long startAttemptTime = millis();

 while (WiFi.status() != WL_CONNECTED && millis() - startAttemptTime < 15000) {

APPENDIX

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

 delay(500);

 Serial.print(".");

 }

 if (WiFi.status() != WL_CONNECTED) {

 Serial.println("\n WiFi reconnection failed, restarting...");

 ESP.restart();

 } else {

 Serial.println("\n Reconnected to WiFi");

 }

 }

}

void waitForTimeSync() {

 Serial.print(" Syncing time via NTP");

 time_t now = time(nullptr);

 unsigned long start = millis();

 while (now < 100000 && millis() - start < 30000) { // wait up to 30 seconds

 delay(500);

 Serial.print(".");

 now = time(nullptr);

 }

 if (now >= 100000) {

 Serial.println("\n Time synced");

 } else {

 Serial.println("\n Time sync failed. Continuing anyway.");

 // Optional: continue without restarting

 }

}

void loginAndGetToken() {

 if (WiFi.status() == WL_CONNECTED) {

 for (int attempt = 0; attempt < 3; attempt++) {

 HTTPClient http;

 http.begin(LOGIN_URL);

 http.addHeader("Content-Type", "application/json");

 String loginPayload = "{\"username\": \"testing\", \"password\": \"12345\"}";

 int httpResponseCode = http.POST(loginPayload);

 if (httpResponseCode == 200) {

 String response = http.getString();

 DynamicJsonDocument doc(512);

 deserializeJson(doc, response);

 jwtToken = doc["token"].as<String>();

 Serial.println(" Login successful");

 http.end();

 currentLedState = STATUS_NORMAL;

 return;

 }

 http.end();

 Serial.println(" Login failed (attempt " + String(attempt + 1) + ")");

 delay(2000 * (attempt + 1)); // Exponential backoff

 }

APPENDIX

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

 Serial.println(" Login failed after multiple attempts, restarting...");

 ESP.restart();

 }

}

void fetchDeviceConfig() {

 if (WiFi.status() == WL_CONNECTED && jwtToken != "") {

 HTTPClient http;

 http.begin(CONFIG_URL);

 http.addHeader("Authorization", "Bearer " + jwtToken);

 int code = http.GET();

 if (code == 200) {

 String response = http.getString();

 DynamicJsonDocument doc(512);

 DeserializationError error = deserializeJson(doc, response);

 if (!error) {

 bool requestedMode = doc["developer_mode"];

 time_t start = doc["start_timestamp"];

 time_t now = time(nullptr);

 if (requestedMode && now - start <= developerModeDuration) {

 developerMode = true;

 developerStartTime = start;

 } else {

 developerMode = false;

 }

 Serial.println(" Mode check → Developer mode: " + String(developerMode));

 }

 } else {

 Serial.println(" Config fetch failed: " + String(code));

 }

 currentLedState = developerMode ? STATUS_DEVELOPER : STATUS_NORMAL;

 http.end();

 }

}

void sendSensorData() {

 float temperature = dht.readTemperature();

 float humidity = dht.readHumidity();

 if (isnan(temperature) || isnan(humidity)) {

 Serial.println(" Failed to read DHT22");

 return;

 }

 float soilMoisturePercent = -1;

 int soilValue = -1;

 if (developerMode) {

 soilValue = analogRead(SOIL_PIN);

 soilMoisturePercent = (100.0 * (4095 - soilValue)) / 4095.0;

 Serial.println("Soil value (analog): " + String(soilValue));

 }

 if (WiFi.status() == WL_CONNECTED && jwtToken != "") {

 HTTPClient http;

 http.begin(DATA_URL);

APPENDIX

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

 http.addHeader("Content-Type", "application/json");

 http.addHeader("Authorization", "Bearer " + jwtToken);

 String payload = "{ \"temperature\": " + String(temperature) +

 ", \"humidity\": " + String(humidity);

 if (developerMode) {

 payload += ", \"soil_moisture\": " + String(soilMoisturePercent);

 }

 payload += "}";

 int httpCode = http.POST(payload);

 if (httpCode > 0) {

 Serial.println(" Data sent: " + payload + "Response: " + http.getString());

 } else {

 Serial.println(" Send error: " + String(httpCode));

 }

 http.end();

 }

}

void restartDevice() {

 Serial.println(" Restarting ESP32...");

 delay(1000);

 ESP.restart();

}

void checkRestartCondition() {

 if ((millis() - lastRestartMillis) >= restartInterval) {

 lastRestartMillis = millis();

 restartDevice();

 }

}

void loop() {

 updateLED();

 unsigned long now = millis();

 if ((now - previousMillis) >= checkInterval) {

 previousMillis = now;

 fetchDeviceConfig();

 sendSensorData();

 }

 esp_task_wdt_reset(); // Feed the watchdog

 checkRestartCondition();

}

POSTER

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

POSTER

