Sensors Substitution using Al for Agriculture Soil Moisture Monitoring
BY
TAY KAI SHENG

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER
ENGINEERING
Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 202

COPYRIGHT STATEMENT

COPYRIGHT STATEMENT

© 2025 TAY KAI SHENG. All rights reserved.

This Final Year Project proposal is submitted in partial fulfillment of the requirements for
the degree of Bachelor of Information Technology (Honours) Computer Engineering at
Universiti Tunku Abdul Rahman (UTAR). This Final Year Project proposal represents
the work of the author, except where due acknowledgment has been made in the text. No
part of this Final Year Project proposal may be reproduced, stored, or transmitted in any
form or by any means, whether electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the author or UTAR, in accordance

with UTAR's Intellectual Property Policy.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Dr Teoh Shen
Khang who has given me this bright opportunity to engage in this development-based project.
It is my first step to establish a career in IT field. Besides that, they have given me a lot of
guidance to complete this project. When I was facing problems in this project, the advice from

them always assists me in overcoming the problems. A million thanks to you.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

ABSTRACT

This project focuses on the growing trend of the Internet of Things (IoT) and Machine Learning
(ML) in precision agriculture, specifically sensor substitution using Al for agriculture soil
moisture monitoring. Traditional soil moisture sensors face challenges such as environmental
degradation and maintenance costs, leading to the need for a more reliable and scalable
solution. This project aims to develop an Al-powered soil moisture prediction system that
enhances irrigation management by utilizing temperature and humidity data instead of direct
soil moisture readings.

The system consists of [oT hardware (ESP32 microcontroller and DHT22 sensor), a cloud-
based web application, and a trained machine learning model. The collected sensor data is sent
to a real-time monitoring dashboard, where users can view live data trends and change to
developer mode when data collection is needed for new plants. The AI model which is trained
using ensemble method which contains random forest regressor and gradient boosting
regressor to process the collected information to predict soil moisture levels and detect
anomalies, providing smart irrigation recommendations.

The key novelty in this project is eliminating the need for direct soil moisture sensors
through reliable Al estimation, integration of developer mode triggering for ESP32 via backend
control and a modular dashboard design for visualizing data and database integration. The
experimental results show promising accuracy in soil moisture predictions and support the
efficient irrigation decision-making.

The systems improve the scalability, maintainability and also cost-effectiveness in smart

farming, contributing toward Al-driven agriculture and better plant monitoring management.

Area of Study (Maximum 2): Internet of Things, Machine Learning

Keywords (Maximum 5): IoT in data collection, Web monitoring application, Data

management in web application, Machine learning in agriculture, Al-based soil moisture

prediction.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TABLE OF CONTENTS

TITLE PAGE i
COPYRIGHT STATEMENT ii
ACKNOWLEDGEMENTS iii
ABSTRACT iv
TABLE OF CONTENTS \4
LIST OF FIGURES ix
LIST OF TABLES xii
LIST OF SYMBOLS xiii
LIST OF ABBREVIATIONS xiv
CHAPTER 1 INTRODUCTION 1
1.1 Problem Statement and Motivation 1

1.2 Objectives 2

1.3 Project Scope and Direction 3

1.4 Contributions 3

1.5 Report Organization 4
CHAPTER 2 LITERATURE REVIEW 5
2.1 Review of Technologies 5

2.1.1 Hardware Platform 5

2.1.2 Firmware / OS 6

2.1.3 Database 7

2.1.4 Programming Language 8

2.1.5 Algorithm 9

2.1.6 Summary of the technologies review 10

2.2 Review of Existing Systems 11

2.2.1 ARIMA-Based Sensor Fault Tolerance in IoT Monitoring 11

2.2.2 SmartFarm Al — loT-Based Smart Irrigation System 12

2.2.3 Al-Driven Soil Moisture Prediction System 13

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH (FOR

3.1

2.2.4 Al-Driven Soil Moisture Prediction System
2.2.5 RF Backscatter Tag for Low-Cost Soil Moisture Sensing

2.2.6 Wi-Fi Chipless Tag Soil Moisture Detection

2.2.7 Summary of the Existing System

DEVELOPMENT-BASED PROJECT)
System Design Diagram/Equation
3.1.1 System Architecture Diagram
3.1.2 Use Case Diagram and Description
3.1.3 Activity Diagram

CHAPTER 4 SYSTEM DESIGN

4.1
4.2

4.3

4.4

System Block Diagram

System Components Specifications
4.2.1 IoT Hardware Layer

4.2.2 Backend Layer

4.2.3 Frontend Layer

4.2.4 Al Model Layer

4.2.5 Communication Protocol
4.2.6 System Requirements
Circuits and Components Design
4.3.1 Circuit Description

Al Model Training Logic and Design
4.4.1 Data Pipeline Architecture
4.4.2 Machine Learning Model Architecture

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

15

16
17
18

18
18
19
22

26
26
27
27
28
30
30
31
31
32
32
33
33
34

Vi

TABLE OF CONTENTS

CHAPTER 5 SYSTEM IMPLEMENTATION (FOR DEVELOPMENT-
BASED PROJECT)

5.1

Hardware Setup

5.2 Software Setup

53

5.4

5.2.1
522
523
524
525
5.2.6
5.2.7
528
529

Arduino IDE

Visual Studio Code (VS Code)
GitHub CLI

Google Cloud CLI

Docker CLI

Node.js and npm CLI

Firebase CLI

Go CLI

Python CLI

5.2.10 Postman Desktop

Setting and Configuration

5.3.1
532
533
534
535
53.6
5.3.7
53.8

ESP32 Microcontroller (Arduino IDE)

Google Cloud Configuration

Firebase Setting and Configuration for Frontend
Backend Server (Go)

Al Server (Python + Flask)

Frontend Web App (React + TypeScript)

Azure PostgreSQL Database Configuration
Google Cloud Platform Deployment Configuration

System Operation (with Screenshot)

54.1
54.2
543
544
545
54.6
547
5.4.8
549

System Access and User Authentication

Main Dashboard Overview

Management Page Overview

Notification Page Overview

Guideline Page Overview

Real-time Monitoring & User Mode Operation
Developer Mode & Al Model Training Operation
Data Management Operation

System Administration and Setting

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

39
40
40
40
40
41
41
41
41
42
42
42
43
43
43
43
44
45
45
46
46
48
48
49
50
51
51
52
53
57
59

Vi

TABLE OF CONTENTS

5.4.10 Error Handling and Validation 60

5.5 Implementation Issues and Challenges 62

5.5.1 Hardware and Firmware Integration 62

5.5.2 Backend and Database Complexity 62

5.5.3 Al Model Development and Deployment 63

5.5.4 Frontend and User Experience 63

5.6 Concluding Remark 64
CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 65
6.1 System Testing and Performance Metrics 65

6.2 Testing Setup and Result 65

6.2.1 Testing Setup 65

6.2.2 Testing Result 66

6.3 Project Challenges 73

6.4 Objectives Evaluation 74

6.5 Concluding Remark 75
CHAPTER 7 CONCLUSION AND RECOMMENDATION 76
7.1 Conclusion 76

7.2 Recommendation 77
REFERENCES 79
APPENDIX 81
POSTER 86

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

viii

LIST OF FIGURES

LIST OF FIGURES
Figure Number Title Page
Figure 1 ESP32 Attached with Sensors 6
Figure 2 Arduino IDE 6
Figure 3 VS Code IDE 6
Figure 4 PostgreSQL 7
Figure 5 C/C+t 8
Figure 6 Go Programming Language (Golang) 8
Figure 7 React Framework 9
Figure 8 TypeScript 9
Figure 9 Flowchart of the Estimation Process (ARIMA) 11
Figure 10 Smart Irrigation System Diagram 12
Figure 11 Diagram of Sensor Network 13
Figure 12 Neural Network Architecture 13
Figure 13 Linear Regression 14
Figure 14 Random Forest 14
Figure 15 Relationship soil moisture (green) between temperature 15
(blue) and humidity (red)
Figure 16 Experimental Setup for Al-Driven Soil Moisture Prediction 16
Systems
Figure 17 System Architecture Diagram showing interaction between 18
hardware (ESP32), backend microservice (Go & Flask), and
frontend (Firebase-hosted React app), including CI/CD
integration
Figure 18 Use Case Diagram illustrating interactions between human 20
users (Admin and User) and system components (ESP32
microcontroller)
Figure 19 Activity diagram for ESP32 microcontroller 22
Figure 20 Activity diagram for backend part 1 23
Figure 21 Activity diagram for backend part 2 24
Figure 22 Activity diagram for backend part 3 24
Figure 23 Activity diagram for web application 25
Figure 24 System Block Diagram 26

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54
Figure 55
Figure 56

Schematic Diagram of Microcontroller
Temporal Feature Extraction

Cyclical Encoding

Interaction Features

Temporal Feature Aggregation Features
Lag Features

Feature Correlation Matrix Heatmap

Hyperparameter Tuning and Model Comparison Results

Feature Importance Analysis for Gradient Boosting Model

Model Performance Diagnostic Plots

Hardware Setup Overview

Go Backend Folder Structure

Al Server Folder Structure

Frontend Folder Structure

cloudbuild.yaml of Go Backend Server
Dockerfile for Python Flask

GoMonitor SignUp Interface

GoMonitor Signln Interface

GoMonitor Main Dashboard Overview
GoMonitor Main Dashboard Overview in Mobile
Management Page Interface

Al Model Details Page

Notification Page

Guideline Page

Microcontroller Status

Al Plant Model Selection

Main Dashboard Operations

Developer Mode Enable Confirmation
Dashboard Overview in Developer Mode View 1
Dashboard Overview in Developer Mode View 2
Dashboard Overview in Developer Mode View 3

Train Button Clicked Overview

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

32
33
33
33
34
34
36
37

38
39
44
45
45
47
47
48
48
49
49
50
50
51
51
52
52
52
53
53
54
54
55

LIST OF FIGURES

Figure 57
Figure 58
Figure 59
Figure 60
Figure 61
Figure 62
Figure 63
Figure 64
Figure 65
Figure 66
Figure 67
Figure 68
Figure 69
Figure 70
Figure 71
Figure 72
Figure 73
Figure 74
Figure 75
Figure 76
Figure 77

Figure 78

Figure 79
Figure 80
Figure 81
Figure 82
Figure 83

Download CSV Button Clicked Overview
Train Model Button Clicked Overview

Start Training Button Clicked Overview

Al Model Successful Trained Overview

Data Management Overview Interface
Confirmation of Delete All Records

All Records Successful Deleted Overview
Selected Records Delete Overview

Selected Records Edit Overview

Management Page Overview for Admin Part 1
Management Page Overview for Admin Part 2
Promote User to Admin Overview

Main Dashboard Overview in Guest

Al Model List Overview in Guest

Train Model Rejected Overview

Postman Setup

Testing Result for POST /login

Testing Result for POST /sensor-data (with AI)

Testing Result for POST /sensor-data (without AI)

Testing Result for GET /history

Testing Result for GET /device-config/esp32-001

Testing Result for POST /device-config/esp32-001/trigger-

dev

Testing Result for POST /device-config/esp32-001/stop-dev

Testing Result for GET /abnormal-history
Testing Result for DELETE /delete/:id
Testing Result for GET /models

Testing Result for POST /train-model

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xi

LIST OF TABLES

Table Number

Table 2.1
Table 2.2
Table 3.1

Table 4.2
Table 6.1

LIST OF TABLES
Title Page
Specifications of microcontroller 5
Specifications of laptop 5

Use Case Descriptions for User, Admin, and ESP32 System 21

Functions
Specifications of microcontroller 27
Testing Result for API Endpoints 67

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

xii

LIST OF SYMBOLS

LIST OF SYMBOLS

beta

=

Q Ohm (resistance)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

xiii

LIST OF ABBREVIATIONS

Al
API
CPU
GPIO
HTML
IP
10T
KNN
LSTM
MLP

SVM

LIST OF ABBREVIATIONS

Artificial Intelligence
Application Programming Interface
Central Processing Unit
General Purpose Input Output
Hyper Text Markup Language
Internet Protocol

Internet of Things

K Nearest Neighbors

Long Short-Term Memory
Multi-Layer Perceptron
Random Access Memory

Support Vector Machine

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xiv

CHAPTER 1

Chapter 1

Introduction

In this chapter, the summary of research, covering its history, inspirations, contributions, and
thesis statement will be presented. Precision agriculture has benefited greatly from the rapid
development of sensor technology, IoT, and data analytics. Accurate soil moisture monitoring
is essential to maximize irrigation, conserve water, and increase crop yields. However,
environmental factors like rust often cause standard soil moisture sensors to fail, resulting in
uneven data collection and high maintenance costs. By leveraging artificial intelligence to
predict soil moisture levels based on temperature and humidity data, this work, titled "Sensor
Replacement for Agricultural Soil Moisture Monitoring Using Artificial Intelligence," aims to
address these issues. By doing so, the need for fragile soil moisture sensors is reduced and

provide a more reliable and affordable option for farmers and other agricultural professionals.

1.1 Problem Statement and Motivation

Nowadays, agriculture is becoming one of the most important sectors in the world, and farmers
are struggling to optimize irrigation due to faulty soil moisture sensors. Traditional soil
moisture sensors can be damaged by the environment which require expensive maintenance,
and have accuracy problems like rust, which can result in inaccurate reading [1]. Due to these
restrictions, precision agriculture suffers, leading to either over or insufficient irrigation, which
has a direct impact on crop productivity and water conservation initiatives [2].

This project seeks to address this problem by developing an Al-based soil moisture
prediction system that uses temperature and humidity data rather than direct soil moisture
readings. The system can reduce the need for physical sensors and improve irrigation
management by accurately predicting soil moisture levels using machine learning algorithms
[3]. The goal of the project is to provide farmers and agricultural experts with a reliable,
scalable, and affordable alternative to improve crop health, resource efficiency, and

sustainability of modern agricultural methods.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

1.2 Objectives

In this project, the main goal of this project is to create an Internet of Things (IoT) based soil
moisture monitoring system that uses machine learning to predict soil moisture levels based on
external variables such as humidity and temperature. The system will collect real-time data
using an ESP32 microcontroller, DHT22 sensor. The ESP32 device will support two operation
mode which is developer mode for data collection to train new updated Al model as it will
trigger the esp32 to collect soil moisture data with the soil moisture sensor connected, another
mode which is user mode is used for regular monitoring by collecting only temperature and
humidity and the soil moisture data will be predicted after the data is sent to the system.

The second objective is to build a backend server using the Go programming language,
serving as the core system for managing data flow between the IoT device, database, and web
platform. This server is also integrated with a PostgreSQL database to store sensor readings for
historical analysis, logging, and data management to form a foundation for trend observation
and system scalability. The backend also includes the machine learning pipeline, where
collected developer-mode data is used to retrain and update the AI model. The server will
expose RESTful APIs to support functions such as data collection, developer/user mode
switching, anomaly detection, and machine learning model interaction. The backend will
ensure data integrity, scalability, and efficient communication across system components.

The third objective is to develop a user-friendly, web-based monitoring platform hosted on
Firebase. This platform will allow users to visualize live sensor data, track historical trends,
and receive notifications when anomalies are detected. By integrating the backend APIs, the
dashboard will offer seamless access to all system features and provide real-time insights into
environmental conditions for effective soil monitoring.

This project will not cover the development of an automated watering system, integration
with commercial smart home platforms, or advanced Al-driven plant health diagnostics beyond

soil moisture prediction.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

1.3 Project Scope and Direction

This project aims to develop an IoT-based soil moisture monitoring system with machine
learning integration to predict soil moisture levels based on temperature and humidity readings.
The final deliveries will include both hardware and software components:

e Hardware — An ESP32 microcontroller, DHT22 sensor to collect real-time
environmental data for indoor plant monitoring, specifically for Hebe andersonii and
snake plant.

e Software — A web-based dashboard that allows users to monitor real-time sensor
readings, access historical data, and receive alerts when abnormal conditions are
detected. The system will also feature an Al-based soil moisture prediction model,
which will analyse collected data and provide insights to improve plant care efficiency.

The project will focus on data collection, visualization, and Al-driven prediction, ensuring a

user-friendly and effective solution for plant monitoring.

1.4 Contributions

Our project presents a brand-new approach to soil moisture monitoring by substituting
traditional sensors with Al-driven predictions, a concept that holds immense potential for
agriculture and plant care. Soil moisture sensors, while widely used, are prone to degradation,
corrosion, and inaccuracies over time, leading to high maintenance costs and inefficiencies [4].
With the advancements in Al technology, replacing physical sensors with machine learning
models trained on environmental data offers a cost -effective, reliable, and sustainable solution.

This project becomes important in today's agricultural world as farmers and indoor plant
enthusiasts are facing challenges with sensor accuracy and operational costs [5]. By using Al
models to estimate soil moisture levels based on temperature and humidity data, the problem
of relying on hardware components will be reduced, increasing the lifespan of monitoring
systems and reducing the frequency of repairs. The system's capacity to produce accurate
prediction without direct soil contact distinguishes it as a unique and scalable solution for smart
farming, hydroponics, and urban agriculture.

Beyond financial savings, this study supports resource conservation and precision
agriculture, therefore guiding irrigation plans and avoiding overwatering. In the future, this Al-
driven technology can change agricultural monitoring in every part by making it more
accessible, efficient, and environmentally friendly. Once Al improved, sensor substitution may

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

become a normal routine for the next generation of smarter, more flexible, and highly

sustainable agricultural systems to show the evolution of Al

1.5 Report Organization

This report is organized into 7 chapters. Chapter 1 provides introduction of the final year
project. Chapter 2 provides a literature review, the content included discussing existing studies
on IoT-based soil monitoring systems, the limitations of physical sensors, and the role of Al in
predictive analytics for agriculture. After that, Chapter 3 outlines the proposed method which
focuses on the development of an Al-based soil moisture prediction model, the integration of
IoT for real-time data collection, and the implementation of a web-based monitoring
application. Next, Chapter 4 presents the preliminary work which includes initial experiments,
model training, and evaluation of Al performance in predicting soil moisture levels. Chapter 5
concludes the study by summarizing the key findings, discussing challenges encountered, and
suggesting future research directions for improving Al-driven soil monitoring systems. Chapter
6 focuses on the critical phase of system evaluation, detailing the testing procedures, presenting
performance results, reflecting on the challenges overcome, and providing a thorough
evaluation against the initial objectives. Finally, Chapter 7 concludes the report by
summarizing the project's key findings and achievements and offers a set of forward-looking
recommendations for future enhancements that could expand upon the work completed in this

project.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Chapter 2

Literature Review

2.1 Review of Technologies

2.1.1 Hardware Platform
The hardware platform chosen for this project is the ESP32 microcontroller, which serves as
the core component of the loT-based soil moisture monitoring system.

Two sensors are connected to the ESP32 which is a DHT22 sensor and a capacitive soil
moisture sensor. The DHT22 is a low-cost digital sensor capable of measuring temperature and
humidity with a high degree of accuracy and reliability. The soil moisture sensor is selectively
activated based on the ESP32's operating mode. In developer mode, the sensor collects real soil
moisture data to be used for training and updating the Al prediction model. In user mode, to
preserve the sensor and reduce hardware dependency, the ESP32 only collects temperature and
humidity data, while soil moisture is predicted via the machine learning model deployed on the
backend. All the systems are developed using laptop Legion 5. Table 3.2 shows the
specification of the laptop, make sure to meet the requirements for smooth development

procedure. Figure 1 below shows the ESP32 attached with sensors.

Table 2.1 Specifications of microcontroller

Description Specifications
Model ESP32
Processor Dual-core Tensilica Xtensa LX6 microprocessor
Memory 520 KB SRAM
Wireless Connection Wi-Fi 2.4 GHz / Bluetooth v4.2 BR/EDR
Development Support Arduino IDE

Table 2.2 Specifications of laptop

Description Specifications
Model Legion 5 15IAH7H
Processor Intel Core 17-12700H
Operating System Windows 11
Graphic NVIDIA GeForce RTX 3060
Memory 16GB DDR5 RAM
Storage 1TB Seagate HDD

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Figure 1: ESP32 attached with sensors

2.1.2 Firmware / OS

The firmware for the ESP32 microcontroller is developed using Arduino framework, which is
an open-source platform for programming various types of embedded systems. Ther is a lot
open-source libraries used such as WiFi.h, HTTPClient.h, Adafruit ssensor.h, DHT.h, and
ArduinoJson.h. These libraries handle important features like sensor interfacing, data
serialization, and HTTP communication to ensure that the transmission of data moves smoothly
to the backend server. The reason of choosing Arduino as the framework as its strong
community support, various open-source libraries, ease of debugging and compatibility with
the ESP32 board.

The development of the entire system including frontend, backend is conducted with VS
Code IDE. VS Code IDE supports various code languages and extension which applicable for
my backend (Go) and frontend (react, typescript, html). It also supports a Git-based workflow
that integrates with GitHub, Google Cloud Platform (GCP), and Firebase through a CI/CD
pipeline. This setup ensures the automated deployments, consistent testing, and a streamlined
version control across the project components. Arduino is used for firmware development and

flashing to the ESP32 board. Figures 2 and 3 below show the icon for both IDE.

OO

Figure 2: Arduino IDE Figure 3: VS Code IDE

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.1.3 Database

The database component of this project acts as an important role in managing, storing, and
retrieving sensor data and system settings for real-time and historical analysis. The chosen
database system is PostgreSQL, which is a powerful open-source relational database known
for its reliability, scalability and robustness. In this project, the PostgreSQL is hosted on Azure
AWS, which offer a better performance, easy integration with backend system and security
secure for data in cloud.

The database schema is designed to support multiple features of the system, for example
user’s sensor data logging, developer mode state for esp32 management, geolocation tracking
and user account management. The temperature, humidity and soil moisture that collected by
the esp32 device will be stored in the SensorData table, along with metadata like timestamps,
user IDs, and anomaly flags. This structure enables trend analysis and supports AI model
training through collected environmental data.

Apart from that, the DeveloperModeSetting table is used to manage the activation period
of developer mode, which control the esp32 to collect full sensor data (humidity, temperature
and soil moisture) for model retraining. This configuration is cached in memory upon
application startup and kept synchronized with the database using go mutex locks to ensure
thread-safe operation across concurrent API requests.

Additionally, the database includes tables such as DeviceLocation, which logs geolocation
data obtained via the Google Geolocation API based on surrounding Wi-Fi access points, and
User, which stores user credentials and roles to manage access control within the system. All
data interactions are handled using GORM (Go ORM), which simplifies object-relational
mapping, query abstraction, and schema migration in the Go-based backend server. Figure 4

below shows the logo of PostgreSQL.

Figure 4: PostgreSQL

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.1.4 Programming Language

This project used multiple language software stack to support various types of components
such as embedded systems, backend services, machine learning pipeline and the frontend
interface. Each language is selected based on their strengths and compatibility which enhance
the quality of the final deliverable systems.

At the embedded system level, the ESP32 microcontroller is programmed using C/C++
within the Arduino framework. Arduino libraries such as WiFi.h, HTTPClient.h,
Adafruit_Sensor.h, DHT.h, and ArduinoJson.h are used for handling sensor communication,
Wi-Fi connectivity, and JSON formatting. The choice of C/C++ ensures low-level control,
efficient memory usage, and real-time responsiveness and these is all [oT devices need. Figure

5 below shows the icon of C/C++.

Figure 5: C/C++

For the backend server, it is developed using Go programming language (Golang) and in
form of RESTFULAPI. Go is known for its performance, built-in concurrency support, clean
syntax, making it well-suited for building scalable API servers and background services. The
servers use the Gin framework to provide features like routing, middleware support, and
rendering. The server also uses the GORM library for ORM integration with PostgreSQL and
handles tasks such as data storage, anomaly detection and developer mode logic. Figure 6

below shows the icon of Golang.

Figure 6: Go Programming Language (Golang)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Apart from that, the frontend is developed using React.js framework with TypeScript.
Typescript is a superset of JavaScript, adds static typing which improves code maintainability
and reduces runtime errors. React facilitates the development of a responsive web application,
allowing real time data visualization, user interaction, and system control through API

integrations. Figures 7 and 8 below show the icon of react framework and typescript.

Figure 7: React Framework

Figure 8: TypeScript

2.1.5 Algorithm

The core algorithm used in this project for soil moisture prediction is the Random Forest
Regressor and Gradient Boosting Regressor, a robust ensemble learning method widely
recognized for its high accuracy and resistance to overfitting, especially in small-to-medium
datasets. This model is trained using historical environmental data (temperature, humidity,
timestamp features, and calculated soil moisture changes) to predict soil moisture without
direct sensor readings in user mode.

The machine learning pipeline is implemented in Python using the Scikit-learn library. The
raw dataset, collected during developer mode, includes sensor data with timestamped readings.
A series of preprocessing steps are applied to enhance model accuracy:

o Timestamp conversion into numerical format and extracted components such as hour,

minute, and day of week

e Soil moisture change rate, calculated using the .diff() method to capture short-term

variations
Evaluation metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and R?
Score are used to validate the model's effectiveness. On test data, the model demonstrates
strong correlation between predicted and actual soil moisture values.

The trained model and scaler are deployed in a lightweight Flask API server, which
dynamically loads models based on the plant name (e.g. Hebe andersonii), extracts feature

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

from incoming JSON requests, applies scaling, and returns predicted soil moisture. This
modular structure allows plant-specific model updates and seamless integration with the Go
backend, which calls the Flask server for real-time predictions.

Overall, this algorithm replaces the need for real-time soil moisture sensors in user mode,
reduces hardware reliance, and enables intelligent soil condition monitoring with minimal

energy and maintenance requirements.

2.1.6 Summary of the technologies review

The system incorporates different technologies to provide smart agriculture solutions with a
reliable and intelligent soil moisture monitoring system. The hardware level uses the ESP32
microcontroller as the main IoT unit together with a DHT22 temperature and humidity sensor
as well as a capacitive soil moisture sensor. These sensors operate in two different modes: In
developer mode, the ESP32 gathers full environmental data for Al model training. During user
mode, only temperature and humidity readings are taken, with soil moisture estimation
performed by a machine learning model on the server.

ESP32 firmware is programmed in C/C++ using the Arduino framework, which includes
standard libraries like WiFi.h, HTTPClient.h, and ArduinoJson.h. The development
environment is based on Visual Studio Code (VS Code), which has support for backend
development in Go, frontend work in React and TypeScript, as well as for GitHub, Firebase
and Google Cloud Platform (GCP) for version control and CI/CD deployments.

The backend server is written in the Go programming language with the Gin web
framework and GORM supporting ORM-based operations against a PostgreSQL database on
Azure AWS. It handles API endpoints to log sensor data, switch developer mode, identify
anomalies, and talk to the AI model.

The machine learning model, having been executed using Python and Scikit-learn, employs
a Random Forest Regressor that predicts soil moisture from environmental parameters.
Preprocessing includes parsing the timestamp, identification of changes in the soil moisture,
and feature scaling using StandardScaler. The model and scaler are deployed on a Flask server
and are dynamically selected depending on plant type (e.g., Hebe andersonii).

The frontend, developed in React and TypeScript, is the graphical user interface that offers
real-time monitoring, historical visualization, and system control. It is deployed on Firebase,

leveraging the backend APIs to fetch live updates and communicate with.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

10

CHAPTER 2

They collectively create a robust, modular, and intelligent system that can reduce reliance
on physical sensors while maintaining high accuracy for soil moisture measurement via Al

prediction.

2.2 Review of Existing Systems
2.2.1 ARIMA-Based Sensor Fault Tolerance in IoT Monitoring

The challenge of sensor reliability in remote monitoring applications has been already studied
in previous research. The advancement of low-power sensor technology and energy harvesting
techniques has been a primary focus to improve sensor node reliability and lifespan. According
to previous work, various fault-tolerant mechanisms and robust hardware designs have been
proposed to enhance the durability of sensor nodes, aiming to reduce failures and operational
disruptions. Moreover, data analytics techniques such as autoregressive integrated moving
average (ARIMA) models have been explored to improve data reliability by predicting and
mitigating sensor failures [6]. Figure 9 below shows the flowchart of the estimation process.
Complementing these techniques, cloud computing architectures have enabled more
advanced fault detection strategies. By correlating data streams from multiple sensor nodes,
cloud-based systems can validate and substitute sensor readings in real time, thus increasing
system resilience and enhancing data integrity. However, these systems often rely on the
availability of multiple redundant nodes, which may not be feasible for small-scale or cost-

constrained deployments. Figure 9 below shows the flowchart of the estimation process.

Normal
condition

-

Vcap-Upper @

Yes

Vcap= Threshold

Vcap-Lower =>

Veap-Upper == [0 Sense the SM failure
e Calculate the number

Vcap-Lower => of SM (N)

e | I~

e Change the staircase
Activate bypass reference
switch on the e Change the scale of
failure SMs modulation and number of
sorting and selection of SMs

Figure 9: Flowchart of The Estimation Process (ARIMA)

Additionally, cloud computing has played a significant role in enhancing sensor availability

and data accuracy. Researchers have investigated correlations between data from multiple

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

11

CHAPTER 2

sensor nodes to detect anomalies and compensate for sensor failures. The integration of cloud-
based data processing with IoT sensor networks has enabled real-time decision-making and

improved the robustness of remote monitoring systems.

2.2.2 SmartFarm Al - IoT-Based Smart Irrigation System

The integration of IoT in agriculture has given rise to smart irrigation platforms such as
SmartFarm Al, which combine sensor technology and rule-based logic for automated irrigation
scheduling. These systems leverage real-time monitoring and data-driven decision-making to
improve water efficiency, reduce labor costs, and enhance crop yields [7]. For instance, some
studies have introduced IoT-driven irrigation scheduling systems that regulate watering based
on real-time soil moisture data, significantly reducing water wastage while improving crop
productivity. SmartFarm Al systems are effective in reducing water usage and increasing crop
yield. They often include mobile or web interfaces to allow farmers to remotely monitor soil
conditions and configure thresholds. However, they heavily depend on the continuous
operation of soil moisture sensors, which may degrade over time due to corrosion, salinity
buildup, or harsh environmental exposure. Figure 10 below shows the diagram of IoT and Al

in agriculture.

46/36/N8

ump. Management Center

2
4 ~
'WL-RT600 4G/3G RTU ﬂ

Remote Management
WL-D80 Serlal Port
Modem

Figure 10: Smart Irrigation System Diagram

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

12

CHAPTER 2

2.2.3 Al-Driven Soil Moisture Prediction Systems

Machine learning techniques have been widely employed to predict soil moisture levels using
environmental parameters such as temperature and humidity. Research has demonstrated that
models like Random Forest, Decision Tree, Support Vector Machine (SVM), k-Nearest
Neighbours (KNN), and Naive Bayes can effectively predict soil moisture using sensor data
[8]. Furthermore, studies have explored the potential of transfer learning to improve soil
moisture prediction accuracy. By fine-tuning pre-trained models with localized sensor data,
researchers have achieved better predictive performance in regions with limited historical data
[9]. Figure 11, 12, 13, 14 will show different types of Al model diagrams.

Q.---.- Base Station /
oAl - Sink Node
e —

1~ 4 .,..-""' é

Sensor Node -« - « = Wireless Communication Hardware
Link

Figure 11: Diagram of Sensor Network

Ik Inger Hiclafern laoviers LoCmtpt layer

i &, fi, [i "

b pug 1
-

Ingrut m

Figure 12: Neural Network Architecture

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

13

CHAPTER 2

Y4
Observed value
Yi
Random error €
Y
P

Predicted value

Intercept 91 {

Figure 13: Linear Regression
Random Forest Simplified
Instance
Random Forest j_,/—""' /’ '"*\x,,,\\;
.‘r'"“-_»/ "' \\>\;x“&
- '\ \\ ’\
" o -
o &b & o &5 5.l <5 & o oﬁb\‘?\o
Tree-1 Tree-2 Tree-n

Class-A C'lalSS-B Class-B
I Majority-Voting } I

|Final-Class

Figure 14: Random Forest

Despite these advancements, challenges such as sensor reliability, model generalization, and
data dependence persist, necessitating further research and innovation. Al integration in
agriculture, particularly through neural networks like Multi-Layer Perceptron (MLP), has
shown promising results in handling complex classification tasks [10]. For instance, hybrid
models combining MLP with optimization techniques, such as the firefly algorithm, have
demonstrated superior accuracy in predicting soil moisture levels compared to traditional
methods [11]. Besides, many Al-driven soil monitoring solutions still rely heavily on
continuous sensor data. The failure or inaccuracy of a single sensor can affect the entire
system's reliability. This project aims to overcome this challenge by developing an Al-based

substitution model, allowing temperature and humidity sensors to estimate soil moisture levels

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

14

CHAPTER 2

even when soil moisture sensors fail. Figure 15 below shows the relationship between soil

moisture, temperature and humidity. This proved that there is a relationship between them.
33 TARM Tair o I i

- = - = ARM Tskin

------------ ARM Soil Moisture-

~

isture (cm3 ¢cm-3)

Temperature (C)

Soil Mo

20—

15 o Myt 1 i L " " L " c L L L L " f L 1
0 5 10 18 20
Local Time

Figure 15: Relationship soil moisture (green) between temperature (blue) and humidity (red) [25]

2.2.4 AlI-Driven Soil Moisture Prediction Systems

Another significant advancement in soil monitoring systems is the use of wideband radar
technology combined with machine learning models to estimate soil moisture in a non-invasive
manner. In the study [12], researchers developed a system that leverages wideband radar to
capture electromagnetic reflections from the soil, which are then analyzed using predictive
models such as Partial Least Squares (PLS) regression and Random Forest. This approach
eliminates the need for traditional in-soil moisture probes, reducing hardware degradation and
maintenance requirements.

The system achieved high accuracy, with coefficients of determination (R?) approaching
0.89 across various soil conditions, demonstrating strong generalization. While the hardware
involved is more complex and costly compared to low-cost [oT sensors, this solution highlights
the growing trend of sensor substitution using Al and signal processing techniques. It aligns
with the objective of the current project, which aims to estimate soil moisture using
environmental parameters such as temperature and humidity, thus minimizing reliance on
physical moisture sensors. Although this radar-based method relies on specialized equipment,
both systems share the goal of improving soil moisture estimation through non-traditional,
intelligent sensing strategies that increase system reliability and scalability in agricultural

monitoring. Figure 16 below shows the experimental setup.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
15

CHAPTER 2

Figure 16: Experimental Setup for Experimental Setup for Al-Driven Soil Moisture Prediction Systems

2.2.5 RF Backscatter Tag for Low-Cost Soil Moisture Sensing

Previous work about RF Soil Moisture Sensing System using battery-powered RF backscatter
tags and ultra-wideband transceivers to non-invasively measure soil moisture [13]. These
passive tags, deployed at depths of up to 75 cm, communicate via backscatter signals and
achieve accuracy within 0.01-0.03 cm?/cm? of ground truth comparable to commercial sensors
while offering projected battery lifetimes up to 15 years. This system addresses common issues
in soil sensing such as sensor maintenance, power supply, and deployment costs. Its minimalist
hardware design and longevity make it ideal for scalable agricultural monitoring. Although the
sensing modality differs (RF vs. environmental sensors), the goal to accurately estimate soil
moisture while minimizing hardware dependency closely parallels the aim of using Al-based

substitution with minimal physical soil sensors.

2.2.6 Wi-Fi Chipless Tag Soil Moisture Detection

In another low-cost, wireless sensing solution SoilTAG is developed to detect soil moisture
levels using battery-Free Wi-Fi tag [14]. This system uses chipless passive Wi-Fi tags
embedded in soil that alter their reflection signature based on moisture content. The tags
generate signal variations detectable up to 13 m away via standard Wi-Fi readers. SoilTAG
achieves approximately 2 percentage-point resolution at close distance and about 5 percentage-
point accuracy at longer ranges. This non-invasive design eliminates the need for onboard

power or soil probes, prioritizing maintenance-free operation.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

16

CHAPTER 2

2.2.7 Summary of the Existing System

The review of existing systems highlights diverse approaches to addressing challenges in
agricultural monitoring, particularly soil moisture estimation and sensor reliability. For the first
system, which employs ARIMA-based fault tolerance, focuses on enhancing data integrity by
predicting and correcting sensor failures through statistical modeling and cloud-based
validation. While effective in improving robustness, it often relies on sensor redundancy, which
may not suit small-scale deployments.

Second, the SmartFarm AI, demonstrates the benefits of real-time monitoring and
automation in smart irrigation. It combines soil moisture sensors and rule-based decision
systems to optimize water usage. However, its heavy reliance on continuous sensor
functionality poses a limitation in harsh or long-term environments.

Third system explores Al-driven soil moisture prediction models using environmental
variables like temperature and humidity. Machine learning techniques such as Random Forest,
SVM, and hybrid neural networks have shown promising accuracy, especially when enhanced
through transfer learning. Nonetheless, these models still face challenges with generalization
and sensor dependency for initial data.

The fourth introduces a non-invasive radar-based sensing system combined with machine
learning. This method offers high accuracy in soil moisture prediction without embedding
sensors into the soil, thus extending hardware lifespan. However, its cost and complexity limit
its accessibility compared to simpler [oT solutions.

The fifth and sixth system demonstrate passive, non-invasive technologies that achieve soil
moisture sensing without embedded probes, significantly reducing hardware degradation and
maintenance. They reinforce the concept of sensor substitution whether via RF backscatter or
Wi-Fi reflections—aligning with your project’s strategy of using ML with auxiliary
environmental data for prediction. While their technologies differ, they validate the broader
approach of trading hardware complexity for intelligent signal-based inference, emphasizing
reliability, low power usage, and long-term deployment.

Overall, these systems collectively emphasize the importance of data-driven approaches,
sensor resilience, and the growing role of Al in precision agriculture. The current project aligns
with these trends by proposing an Al-based substitution model that estimates soil moisture
using temperature and humidity data, offering a cost-effective, scalable, and sensor-resilient

solution.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

17

CHAPTER 3

Chapter 3

System Methodology/Approach

This chapter explains the system development methodology and presents the design diagrams

that illustrate the structure and workflow of the project. The system is designed to substitute

traditional soil moisture sensors using Al predictions based on temperature and humidity data

collected by the DHT22 sensor, integrated with ESP32. A web-based dashboard and cloud

backend are used for real-time monitoring and Al integration.

3.1 System Design Diagram/Equation

The overall system design integrates IoT hardware, a cloud-based backend, an Al prediction

model, and a web-based frontend interface. It consists of three main layers:

o Hardware Layer: ESP32 with DHT22 and Soil Moisture Sensor

o Backend Layer: Golang server with PostgreSQL and Flask-based AI model

e Frontend Layer: React.ts dashboard for real-time monitoring

3.1.1 System Architecture Diagram

Figure 17 below shows the interaction between hardware, backend, Al model, and front end:

User Admin

Admin's Visual Interface

.

User

User's Visual / Interface

B

W

ClI/ CI Fipeline. controlled by. Git & Gaoegle. cloud platiorm

S Code

.

n

-

Websocket connectio

F
APl Gi

Webslocket connectior]

........

Frontend Layer (Firebase hosted)

ateway

HTTP (WiFi)

«—rmmm el B

! Code Commit Code Pipeline Code Build !

...

¢r Deploy
Get/Update

Ty

App Mi)
pp Microsemvice {Random Forest)

% Connect '_,C.\ (@
: Al
. y Al model

PostgreSQL

ESP32 microcontroller

Hardware Layer

Figure 17: System Architecture Diagram showing interaction between hardware (ESP32), backend microservice

(Go & Flask), and frontend (Firebase-hosted React app), including CI/CD integration.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

18

CHAPTER 3

This system architecture diagram describes a full three-tier application-based IoT solution
capable of real-time data processing and decision-making. The front-end layer is essentially a
web application hosted on Firebase that provides an interface for the admin user and an
interface for the end user; with data transfer using WebSocket connections, this allows for real-
time execution and communication with the end user. The back end of the solution is based on
Google Cloud Platform and features an API Gateway that manages messages between the
application microservices, communicates predictions from an Al model (using the Random
Forest algorithm), and uses a PostgreSQL database for persistent data storage. The hardware
layer essentially consists of ESP32 microcontrollers operating as edge computing nodes that
communicate both ways with the cloud services using HTTP/Wi-Fi protocols, although it could
just as easily implement using other edge devices and cloud services so long as it adheres to
the same method of data transfer.

Finally, throughout all three layers of this application architecture exists a robust CI/CD
process that is integrated with both Git to control versions and Google Cloud Platform to
automate code deployment and operations, with continuous integration and operate at scalable
level on cloud services. The architecture presented is a current representation of the
methodology to IoT system deployment; it has unrestricted capabilities leveraging data from
edge computing on a cloud-based intelligent Al system, and automated DevOps practices for

an enterprise-level, scalable, smart and maintainable solution.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

19

CHAPTER 3

3.1.2 Use Case Diagram and Description

Login f Reqister

anage all use

data

View historical ™, _
trends b
Afanage all usar

account

View real-time
sensor data

- Receive

Enable Al mode

Set device mode

Get microcontroller
location

User

System User Function

Figure 18: Use Case Diagram illustrating interactions between human users (Admin and User) and system

components (ESP32 microcontroller).

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

20

CHAPTER 3

Table 3.1: Use Case Descriptions for User, Admin, and ESP32 System Functions.

Use Case

Actor(s)

Description

Login / Register

User, admin

Authenticates the entity (human or device) to

access the system with a valid token.

View real-time sensor data

User, admin

Display current sensor readings via

WebSocket.

View historical trends

User, admin

Shows past data in a chart / graph format for

analysis during developer mode.

Enable Al mode User, admin Turns on machine learning-based prediction
when soil moisture prediction is needed.
Set device mode User, admin Switches esp32 between developer and user

modes remotely.

Get microcontroller location

User, admin

Fetches the device's estimated location, either

manually set or system estimated.

Receive notification

User, admin

Receive real-time alerts for abnormal

conditions or AI-mode activation.

Edit own sensor data User Allow editing or removing previously
submitted data.

Manage all user data Admin Grants access all users’ sensor records for
moderation or correction or deletion.

Manage all user account Admin Admin can update, activate, or delete user

accounts.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

21

CHAPTER 3

3.1.3 Activity Diagram

h

Initialize Serial &
DHT22

'

Setup LED &
Watchdog

'

Connect to WiFi

Wait 500ms

]

Refry Login

Configure NTP Time
& Wait for Time Sync

v

Login & Get JWT
Token

Fetch Device Config

v

Set LED to Normal
Status

¥

> Main Loop

J—

Update LED Status

|

heck timer 10

True

Fetch Device Config

Set LED to Set LED to
Slow Blink Solid ON
Read DHTZ22
Sensor
True False

y

v

Read Soil Skip Soil
Moisture Moisture
Send all data
fo server

False JTrue

Log Error Log Success
o Feed "
"| Watchdog |

Falses

Figure 19: Activity diagram for ESP32 microcontroller

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Device

22

CHAPTER 3

h 4

i

h 4

Main System Access

|

Select Action

[rigger Developer Mode

Stop Deve&:per Mode

Validate Access

Validate Access

v

v

Reset Developer
Mode State

Disable Al System

v

Send Abnormal
Motification

v

End Sensor Data
Flow

v

False True
v
Login / Signup
Validate Credentials Send Sensor Data
Invalid Valid
Receive Sensor Daia
Return Error Generate JWT Token
Log Error Store User Session ——
Set Timestamp
Return validation |
error N
False
enabled?
True
b
Check Abnormality [#— Get Al Prediction

v

Save to Database

Call Al API with
Temperature / Humidity

v

Eroadcast to
WebSocket Clients

'

Update Soil Moisture
with Prediction

]

v

Re-enable Al System

Set 14-day Timer

v

¥

Update Databasze

'

Return Success

Update Database

v

Return Sucess
Reponse

Response

Figure 20: Activity diagram for backend part 1

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

23

CHAPTER 3

@

Export Data ielfct Get Device Config
.l, WebSocket Connection eron v
Location Data
Generate CSV 'l' i Check Developer
Upgrade to Receive WiFi Access Mode Stalus
v WebSocket Points
Apply User f Admin J, J'
Filters i
Store Client Call Google
v Connection Geolocation API
Format Data ‘1' "l'
'lv Listen for Messages Get Coordinates Check Timer —
Send File Download "1' y i
Expired Active
. . ¥ Falzsg
Store Device Location Auto Disable
Jv Developer Mode
Return Location Data
Re-enable Al

v

AMuTaI Dat {)ata Update’> ensor Data
Send Targeted Broadcast to All
Mofifications Clients

Return Updated

Config

| |
v

Update Client UI

v

Return Current Config

Figure 21: Activity diagram

for backend part 2

@

Select

Admin Functions

Action

!

Check User Role ——admin—

User
v

v

Query Own Data Only Query All User Data

Access Denied

<Audmin Role

<>

Yes

i

Return Data with
Pagination

v

Return User Lists

View All User-

Admin
Action

Delete .ﬂ.x:w::cul.lnt_I

h

Delete User Account

Promote User

I
Delete Rec:ordsl

Edit / Delete Sensor
Data

Return Success

T

Update User Role

Figure 22: Activity diagram for backend part 3

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

24

CHAPTER 3

— Display Login Form

User Open .

Application

User Enters
Credentials

Display Error
Message

Set Authentication
State

Load Dashboard

h

Display Error
Message

v

L

Retry Connection

]

h

Fetch System
Metrics

r

b

r

Display Dashboard
with Metrics

ﬁ\iiew Details— |
DeveluperModeSet—‘ | |

Mavigate to
Detailed View

v

v

Open Developer
Mode Setting Panel

Display Detailed
Maetrics

v

v

Update
Configuration

Back to Dashboard

v

User Action?

Expaort Data
¥

Generate CSV File

v

Download Report

| ogout ¢

— Set Aleﬂﬁ

Configure Alert
Threshold
Clear Authentication 4'
4’ Set Alert Rules

Redirect to Login

@

Figure 23: Activity diagram for web application

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

25

CHAPTER 4

Chapter 4
System Design

4.1 System Block Diagram

DHT22 / Soil Moisture
LED Sensor measuring
module

— Al module

ESP32
Microcontroller

Soil Moisture Sensor

Y

Main Program Loop js—

A

— Maotification module

Input and CQutput

DHT22
module

Figure 24: System Block Diagram

The system block diagram consists of an ESP32 microcontroller serving as the central
processing unit that coordinates all system components. The ESP32 interfaces with multiple
sensor modules including a soil moisture sensor and a DHT22 temperature/humidity sensor,
which provide environmental monitoring capabilities.

The main program loop acts as the system's control centre, receiving data from the
DHT22/Soil Moisture Sensor measuring module and managing the overall system operation.
This central loop coordinates with several key modules: an Input and Output module that
handles system interactions, an Al module for intelligent data processing and decision-making,
and a Notification module for user alerts and communication.

Visual feedback is provided through an LED indicator connected directly to the ESP32,
allowing for immediate status indication. The modular design ensures efficient data flow
between components, with the ESP32 microcontroller managing sensor data acquisition,
processing through the Al module, and triggering appropriate responses via the notification

system.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

26

CHAPTER 4

This architecture enables real-time environmental monitoring with intelligent analysis
capabilities, making it suitable for applications such as smart agriculture, greenhouse
automation, or environmental monitoring systems where soil moisture and atmospheric

conditions need to be continuously tracked and managed.

4.2 System Components Specifications
4.2.1 IoT Hardware Layer
1. ESP32 microcontroller
e Model: ESP32-WROOM-32
e Function: WiFi-enabled MCU to read sensor data and transmit it to the backend
server.

e Programming: Arduino IDE using C/C++

Table 4.2 Specifications of microcontroller

Description Specifications
Model ESP32
Processor Dual-core Tensilica Xtensa LX6 microprocessor
Memory 520 KB SRAM
Wireless Connection Wi-Fi 2.4 GHz / Bluetooth v4.2 BR/EDR
Development Support Arduino IDE

2. DHT22 sensor
e Model: DHT22 (AM2302)
e Sensor type: Digital temperature and humidity sensor
e Interface: Single-wire digital interface
e Pin assignment: GPIO 4
e Voltage: 3.3V - 6.0V
3. Soil moisture sensor

Type: Capacitive/Resistive analog sensor
Interface: Analog input (ADC)

Pin assignment: GPIO 32 (12-bit ADC)
Operating voltage: 3.3V - 5V

e Activation: Developer mode only
4. Status indicators

e LED: Built-in LED (GPIO 2)
e Serial monitor: 115200 baud rate debugging

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

27

CHAPTER 4

e Status modes:

o Fast blink (200ms): Connecting
o Slow blink (1000ms): Developer Mode
o Solid ON: Normal Operation

4.2.2 Backend Layer

1. Hardware infrastructure

Platform: Google Cloud Run (serverless)
CPU: Auto-scaling
Network: Global load balancing

2. Software stack

Programming language: Go (Golang)

Framework: Gin web framework

Version: Go 1.19

Concurrency: Goroutines for high-performance handling
HTTP server: HTTP/2 support

WebSocket support: Real-time bidirectional communication

3. Database specifications

Database: PostgreSQL

Version: 14

Hosting: Microsoft Azure SQL Database
Backup: Automated daily backups

Performance: Optimized for time-series data

4. API endpoints

Public routes (No Authentication Required)

e User registration: POST /signup - Create new user account

e User authentication: POST /login - JWT token generation

o Altoggle: POST /toggle-ai - Enable/disable Al predictions globally

Protected routes (Requires JWT Authentication)

< Real-time connection: GET /ws - WebSocket endpoint for live data
streaming

% Promote admin: POST /promote-admin - Elevate user to admin role

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

< Promote user: POST /promote-user - Change admin back to user role

< Get users: GET /users - Retrieve all registered users

< Get profile: GET /profile - Get current user profile information

% Delete user account: DELETE /admin/delete-user/:user id - Admin delete
user

< Data ingestion: POST /sensor-data - Receive sensor data from ESP32

< Get history: GET /history - Retrieve historical sensor data

% Update record: PUT /update/:id - Modify specific sensor record

< Delete record: DELETE /delete/:id - Remove specific sensor record

< Delete all records: DELETE /delete/all - Remove all sensor data

< Delete user records: DELETE /delete/my-records - Remove current user's
records

< Delete specific user records: DELETE /delete/user/:user_id - Admin remove
user's data

< Download CSV: GET /download-csv - Export sensor data as CSV file

< Get device config: GET /device-config/esp32-001 - Retrieve device settings

< Stop developer mode: POST /device-config/esp32-001/stop-dev - Disable
soil sensor

% Trigger developer mode: POST /device-config/esp32-001/trigger-dev -
Enable soil sensor

< Set location: POST /location - Receive GPS coordinates from ESP32

< Get location: GET /get-location/:device id - Retrieve device location

< Abnormal count: GET /abnormal-count - Get count of anomalous readings

< Abnormal history: GET /abnormal-history - Retrieve anomalous data
records

% Train Al model: POST /train-model — Send CSV data and plant name to
flash server for ai training.

< Getavailable Al model: GET /models — Fetch available Al model from flask
server

e Technical specifications
< Protocol: HTTPS with TLS 1.3
< Authentication: JWT bearer token (except public routes)

< Rate limiting: 100 requests/minute per device

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

29

CHAPTER 4

< Data format: JSON request/response
< CORS: Configured for cross-origin requests

< Middleware: Authentication middleware for protected routes

4.2.3 Frontend Layer
1. Technology stack

e Framework: React.js 18
e Language: TypeScript
e State management: React hooks (usestate, useeffect)
e HTTP client: Fetch API
e Real-time: WebSocket client
e Authentication: JWT token handling

2. UI components
e Dashboard: Real-time sensor data visualization
e Data management: Configuration interface
e Responsive design: Mobile and desktop compatible

e Notifications: Real-time alerts and status updates

3. Performance specifications
e Load time: <3 seconds initial loads
e Real-time updates: <I second latency (WebSocket)
e Browser support: Chrome, Firefox, Safari, Edge

e Mobile support: IOS Safari, Chrome Mobile

4.2.4 Al Model Layer
1. Machine learning stack
e Framework: Python flask
e ML library: Random Forest / Gradient boosting
e Python version: 3.10+
e Dependencies: scikit-learn, pandas, numpy
2. Model specifications

e Input features: Temperature, humidity, timestamp, plant_type

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

30

CHAPTER 4

Output: Predicted Soil moisture percentage
Training data: Historical sensor correlations
Accuracy: 85%+ prediction accuracy
Response time: <200ms per prediction

Hosting: Cloud Run (docker Implemented)

3. API specifications

Predict soil moisture: /predict — Use temperature, humidity to predict soil
moisture

Train Al: /train-model — Post CSV file and plant_name to train the ai model the
specific plant _name.

Get models: /models — Get the available model in the python flask server and

checks its results.

4.2.5 Communication Protocols

1. Device-to-Server communication

Protocol: HTTPS (TLS 1.3)
Authentication: JWT bearer tokens
Data format: JSON

Compression: gzip encoding
Timeout: 30 seconds per request

Retry logic: Exponential backoff (3 attempts)

2. Real-time communication

Protocol: WebSocket

Heartbeat: 30-second ping/pong
Message format: JSON

Broadcast: Server-to-multiple clients

Fallback: HTTP polling method used if WebSocket fails

4.2.6 System Requirements

1. Power requirement

ESP32: 3.3V @ 240mA peak
DHT22: 3.3V @ 2.5mA max

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

31

CHAPTER 4

e Soil sensor: 3.3V @ 35mA typical (analog)

e Total power: <5W during operation

2. Network requirement

e Bandwidth: 1KB / 10min per device (minimal)
e Latency: <500ms for real-time updates
e Connectivity: 2.4GHz WiFi

e Range: 50 — 100m depending on environment

4.3 Circuit and Components Design

U2 3.3V

u2

U1

ESP32,

+V8

SEN1

SCILMOISTURE
SENSOR

vCC

VOouT

SIG

GND

Bl =R

|

\

U2_GND

Figure 25: Schematic Diagram of Microcontroller

4.3.1 Circuit Description

e Ul — DHT22 temperature & humidity sensor

o +VS: Connected to 3.3V power supply (U2 _3.3V).

o VOUT: Connected to a GPIO pin on the ESP32 to read temperature and

humidity data (U2_D4).
o GND: Connected to the ESP32’s ground (U2_GND).

e U2 — ESP32 microcontroller

o Powered by USB adapter.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

32

CHAPTER 4

o DHT22 data from the VOUT pin via GPIO (U2 _D4).
o Soil moisture data from the SIG pin of the soil moisture via another GPIO pin
(U2_D32).
e SENI — Soil moisture sensor
o VCC: Connected to 3.3V power line
o SIG: Connected to a GPIO pin on the ESP32 for reading analog (U2 D32).

4.4 A1 Model Training Logic and Design

4.4.1 Data Pipeline Architecture

The data input required columns included timestamp, temperature, humidity and soil _moisture.
The minimum data points are 50 records and there is a function for automatic validation for
missing columns and insufficient data. Now let’s move to the data preprocessing pipeline.
There are several processes needed to transform raw sensor data into meaning features which
are temporal feature extraction, cyclical encoding, interaction features, temporal aggregation
features and lag features. Figure 26, 27, 28, 29 and 30 shows the code for temporal feature
extraction, cyclical encoding, interaction features, temporal features aggregation features and

lag features.

df['hour'] = df['timestamp'].dt.hour
df['day_of_week'] = df['timestamp’].dt.dayofweek
df['month'] = df['timestamp’].dt.month
df['day_of_year'] = df['timestamp’'].dt.dayofyear

Figure 26: Temporal Feature Extraction

df['hour_sin'] = np.sin(2 * m * df[] 24)
df["hour_cos'] = np.cos(2 * m * df["hour'] 24)
df['day_sin'] = np.sin(2 # nm % df['day_of_week"] 7
df['day_cos'] = np.cos(2 # nm # df['day_of_week"] 7]

Figure 27: Cyclical Encoding
df['temp_humidity_interaction'] = df['temperature’] * df["humidity']
df['temp_squared'] = df['temperature'] #= 2
df['humidity_squared'] = df['humidity'] #* 2

Figure 28: Interaction Features
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

33

CHAPTER 4

df['temp_rolling_3'] = df['temperature’].rolling(window=3).mean()
df["humidity_rolling_3"] = df['humidity’'].rolling(window=3).mean()
df['temp_rolling_24'] = df['temperature’].rolling(window=24) .mean()
df[" humidity_rolling_24'] = df['humidity’].rolling(window=24).mean()

Figure 29: Temporal Feature Aggregation Features

df['temp_lag_1'1 = df['temperature'].shift(1)
df["humidity_lag_1'] = df['humidity'].shift(1)

Figure 30: Lag Features

The purpose of temporal feature extraction is to divide the timestamp received into several
forms which is hour, day of week, month and day of year to indicate the timestamp more details
and specific to the Al. The cyclical encoding is to convert the time-based feature to cyclical
representation to capture periodic patterns. After that the interaction features are to create
composite features that capture relationship between variables. The temporal aggregation
feature is to roll averages to capture the recent trends by retrieving out 3-hour window and 24-
hour window of data. Lastly, the lag feature is used to capture temporal dependencies by using

previous time step values.

4.4.2 Machine Learning Model Architecture
The algorithm selected for the machine learning model is ensemble methods. This is because
ensemble method combines multiple individual models to create a stronger, more accurate
predictor. It is like asking multiple experts for their opinion and then combining their answer
to get a better result than any single expert could provide. There are 2 main types of ensemble
method used which are random forest regressor and gradient boosting regressor.
The parameters tuned for random forest are:

e n_estimators: [100, 200] - Number of trees in the forest

e max_depth: [10, 20, None] - Maximum depth of each tree

e min_samples_split: [2, 5] - Minimum samples required to split a node

e min_samples_leaf: [1, 2] - Minimum samples required at a leaf node

e max_features: ['sqrt', 'log2'] - Number of features to consider at each split
The parameters tuned for gradient boosting are:

e n_estimators: [100, 200] - Number of boosting stages

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

34

CHAPTER 4

e max depth: [3, 5] - Maximum depth of individual trees (kept shallow)

e learning rate: [0.1, 0.2] - How much each model contributes

e subsample: [0.8, 1.0] - Fraction of samples used for fitting

The reason for choosing these 2 models is because random forest regressor can handle non-
linear relationships, robust to outliers and provide feature importance while gradient boosting
regressor can build models sequentially, each learning from previous mistake and each model
focuses on the hardest-to-predict examples and able to handle complex patterns.

Hyperparameter optimization is required for machine learning model training.
Hyperparameter are the setting or configuration of a machine learning algorithm that you must
set before training begins. After parameter tuning, cross validation will be implemented for
each combination by splitting training data into 3 folds, train models on 2folds, test on 1 fold
and repeat them 3 times (each fold used as test once). After that, calculate the average R2 score
across 3 folds. This average R2 represents the parameter combination’s performance. The
system will filter out the best results of the model.

Overall, the flow of the training process will be like the first process is data validation,
second is preprocessing, third is feature engineering, fourth is train-test split, fifth is
hyperparameter tuning, sixth is model selection, seventh is the evaluation and the last step is
model persistence. The system will automatically select the model with the highest R2 score
on the test set and also display performance metrics like MSE (mean squared error), RMSE
(root mean squared error), MAE (mean absolute error) and R2 score. Figure 31, 32, 33 and 34

below shows one of the results when running through the training process.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

35

CHAPTER 4

Enhanced Data Summary:
Shape after feature engineering: (3626, 21)

Feature Correlation Matrix

1.00
humidity IEEVR-ER DR 0.4 -0.0110.0045 BB} 088 088 1 -0.88 0.99 0.76 0.88 -0.87 0.1
temperature -EeX:-I-UEEBEEEE OV -0.39 0.021-0.043 0.88 0.99 -0.88 0.87 -0.81 0.99 -0.88 Xehlk:]
hour_sin USSR N -0.002 0.013-0.013 [DLEI VA -0.76 0.64 -0.78 0.66 -0.88 0.77 -0.78 0.66 olv[:}] 0.75

hour_cos -+ 0.4 -0.39-0.002] -0.029 0.34 0.4 039 -0.36 0.38 -0.0310.092 -0.36 0.38 -0.019

day_sin —0.0110.021 0.013-0.011 -0.150.00210.022-0.021 0.02 -0.0110.00560.00290.019-0.011 0.1

day_cos -0.00450.043-0.0130.00580.028 0.12 -0.067-0.0370.00650.0430.00470.0450.00660.0430.0047 0.1

month -
day_of_year --0.16 0.13 0.046-0.029-0.15 0.12 $8l -0.14 0.13 -0.16 0.13 -0.16 0.12 -0.15 0.13 -0.16 0.036 022
temp_humidity_interaction 0.37 0.34 0.0021-0.067 -0.14 0.87 HOIS6 0. .74 F0:56 0.87 Bt}
temp_squared 0.4 0.022-0.037 0.13 Rei 0.88 0.99 -0. 0.87 0.81 0.99 -0.88 JeEE) -0.00
humidity_squared UGER LR 0.39 -0.0210.0065 RBCY 087 0.88 1 -0.88 £0.77 0.88 -0.87 0.1
temp_rolling_3 -EeR:-EMNGCEREVRES -0.36 0.02 -0.043 DREROSE 099 088 1 -0 -0.82 SUE:iD 00023 Ep—
humidity_rolling_3 -JUEERER:ERGETE 0.38 -0.0110.0047 ERL) 0.87 -0.88 0.99 -0.88 5 0.9 -0.88 0.11 ‘
temp_rolling_24 -§s% ReR:1:3-0.0310.0056-0.045 0.12 X -0.77 0.89 -0.79 1 0.9 089 5 0.014
humidity_rolling_24 -0. LY F N 0.0920.0029.0066 E'B&R 0.74 -0.81 0.88 -0.82 09 -0. -0.82 0.12 =030
temp_lag_1 -EO:VARGEERE R Y -0.36 0.019-0.043 [REROSH 0.99 -0.87 1 -0.88 0.89 -0.82 1 .00017
humidity_lag_1 -JUEEREVEERUELE 0.38 -0.0110.0047 BLY 087 -0.88 099 088 1 078 089 -0.88 1 JASE - ~0.75

soil_moisture - 0.1 0.00018.00690.019 0.1 0.036 0.18 0.0034 0.1-0.000230.11 -0.014 0.120.000170.11 1

humidity -
hour_sin -
hour_cos -
day_sin -
day_cos - £
month -

temperature -
day_of_year -
temp_humidity_interaction -
temp_squared -
humidity_squared -
temp_rolling_3 -
humidity_rolling_3 -
temp_rolling_24 -
humidity_rolling_24 -
temp_lag_1 -
humidity_lag_1 -
s0il_moisture

Figure 31: Feature Correlation Matrix Heatmap

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Model Comparison (Cross-Validation R? Scores):
Random Forest: @.958 (+/- ©.008)

Gradient Boosting: 8.836 (+/- ©.815)

Ridge Regression: 8.185 (+/- 8.856)

Tuning Random Forest hyperparameters...
Fitting 5 folds for each of 243 candidates, totalling 1215 fits

Best RF CV score: @.958

Tuning Gradient Boosting hyperparameters...

Fitting 5 folds for each of 54 candidates, totalling 278 fits

Best GB parameters: {'learning_rate': 8.1, 'max_depth': 7, 'n_estimators': 288, 'subsample': 1.8}
Best GB CV score: @.962

Final Model Evaluation:

Tuned Random Forest:
MSE: 1.24
RMSE: 1.11
MAE: ©.42
R2: B.967

Tuned Gradient Boosting:
M5E: 1.21
RMSE: 1.18
MAE: .58
R*: B.968

Best RF parameters: {'max_depth': None, 'max_features': None, 'min_samples_leaf': 1, ‘min_samples_split': 2, *n_estimators':

200}

Figure 32: Hyperparameter Tuning and Model Comparison Results

Top 1@ Feature Importances (Tuned Gradient Boosting):
feature importance

7 day_of _year @.558183
4 day_sin 2.885635
5 day_cos @.877392
14 humidity rolling 24 2.942448
13 temp_rolling 24 2.848655
8 temp_humidity interaction 2.939133
11 temp_rolling 3 @.835558
15 temp_lag_ 1 2.838517
3 hour_cos 9.0822287
1@ humidity_squared 2.916825
Top 10 Feature Importances - Tuned Gradient Boosting
day_of_year
day_sin
day_cos
humidity_rolling_24
temp_rolling_24
g
=1
2
m
&
temp_humidity_interaction
temp_rolling_3
temp_lag_1
hour_cos
humidity_squared
F T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

importance

Figure 33: Feature Importance Analysis for Gradient Boosting Model

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

37

CHAPTER 4

Residual Plot Actual vs Predicted Residual Distribution

400

70 4

w
&
<1

Residuals
|
o
o
&
Frequency

200

Predicted Values

60 4

100

o
50 55 60 65 70 75 50 55 60 65 70 75 80 -125 -100 -75 =50 -25 00 25 5.0 15
Predicted Values Actual Values PResiduals

st model (Tuned Gradient Boosting) and preprocessing components saved successfully.
st model R? score: 8.968

mm @mm
Soaa

semble Prediction (Average of both models):
nsemble R2: ©.370

Ensemble MSE: 1.15

Ensemble RMSE: 1.@7

Ensemble model performs better!

Figure 34: Model Performance Diagnostic Plots

Figure 31 about feature correlation matrix heatmap is displaying relationships between all
21 engineered features and the target variable (soil_moisture) from 3,626 data samples. Strong
correlations (0.88-0.99) are evident among related feature groups such as humidity variables,
temperature measurements, and their corresponding rolling averages, validating feature
engineering effectiveness. The weak individual correlations with soil moisture (-0.16 to 0.18)
indicate that predictive power emerges from complex feature interactions rather than simple
linear relationships.

Figure 32 is the comprehensive comparison of model performance showing cross-
validation R? scores for Random Forest (0.958 + 0.008), Gradient Boosting (0.836 £ 0.015),
and Ridge Regression baseline (0.105 £+ 0.056). The results display optimal hyperparameters
found through grid search optimization, with final model evaluation metrics confirming
Gradient Boosting as the best performer (R? = 0.968, RMSE = 1.10, MAE = 0.50).

Figure 33 shows the top 10 most important features ranked by their contribution to soil
moisture prediction accuracy. The day of year feature dominates with 55% importance,
indicating strong seasonal patterns in soil moisture behavior. Temporal cyclical features
(day sin, day cos) and environmental rolling averages (humidity rolling 24,
temp_rolling_24) constitute the remaining top contributors, demonstrating the effectiveness of
engineered temporal and environmental features.

While figure 34 is the three-panel diagnostic visualization showing (left) residual plot with
randomly distributed errors around zero indicating good model fit, (center) actual vs predicted
values plot demonstrating strong linear correlation (R* = 0.968) with points closely following
the perfect prediction line, and (right) residual distribution histogram showing near-normal

error distribution centered at zero, confirming model validity and unbiased predictions.
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

38

CHAPTER 5

Chapter 5

System Implementation

5.1 Hardware Setup

This section details the physical assembly of the hardware components used for the IoT data
collection device. The setup is designed to be straightforward, using a breadboard to manage
power distribution and connections between the ESP32 microcontroller and the sensors.

The core of the setup is the ESP32 DevKitC V4 board. To power the other components, the
ESP32's 3.3V and GND pins are connected to the positive and negative power rails of the
breadboard, respectively. This allows the breadboard to act as a central power hub for the
sensors. Figure 35 below shows the hardware setup overview. After connecting all components,
open Arduino IDE and paste the written source code located at Appendix I. Compile and
transmit to the microcontroller. The following components were connected to the ESP32:

o DHT22 Sensor: This sensor is responsible for measuring temperature and humidity. Its
VCC and GND pins are connected to the breadboard's power rails. The crucial data pin
is connected directly to digital pin D4 on the ESP32.

e Capacitive Soil Moisture Sensor: This sensor provides soil moisture readings during
"developer mode." Like the DHT22, it is powered from the breadboard's 3.3V and GND
rails. Its analog signal pin is connected to pin D32 on the ESP32, which is an Analog-
to-Digital Converter (ADC) pin capable of reading the sensor's output voltage.

o Status LED: The built-in blue LED on the ESP32 board is used to provide visual
feedback on the device's operational status, such as when it is connecting to Wi-Fi or

operating in a specific mode.

Figure 35: Hardware Setup Overview

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

CHAPTER 5

5.2 Software Setup

This section details all the software tools required to develop and deploy the Sensor
Substitution using Al for Agriculture Soil Moisture Monitoring system. It includes
development environments, programming tools, and command-line utilities used throughout

the project, along with download links and basic installation guidance.

5.2.1 Arduino IDE
e Purpose: Programming the ESP32 microcontroller and uploading sensor code.

e Download link: https://www.arduino.cc/en/software

e Installation notes:

o Install the ESP32 board package via the Boards Manager.

5.2.2 Visual Studio Code (VS Code)
e Purpose: Code editor for backend (Go), frontend (React), and Al (Python) codebases.

e Download link: https://code.visualstudio.com/

e Recommended extensions:
o Python
o Go
o PostgreSQL
o Docker

o GitHub Copilot

5.2.3 GitHub CLI
e Purpose: Version control, CI/CD automation, and repository management.

e Download link: https://cli.github.com/

e Installation command (Windows):

o winget install —id GitHub.cli

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

40

https://www.arduino.cc/en/software
https://code.visualstudio.com/
https://code.visualstudio.com/
https://cli.github.com/

CHAPTER 5

5.2.4 Google Cloud CLI

e Purpose: Deploying services (Flask, Go backend) to Google Cloud Run

e Download link: https://cloud.google.com/sdk/docs/install

e Setup:
o gcloud init
o gcloud auth login
o gcloud config set project [PROJECT_ID]

e Use cases: Access google cloud services securely and efficiently.

5.2.5 Docker CLI

e Purpose: Containerization of Al services for consistent deployment.

e Download link: https://www.docker.com/products/docker-desktop/

e Basic usage:
o docker build -t my-container-name .

o docker run -p 8080:8080 my-container-name

5.2.6 Node.js and npm CLI
e Purpose: Frontend development and dependency management.

e Download link: https://nodejs.org/

e Recommended version: LTS version (Node 18.x or Node 20.x)
e Basic commands:

o npm install

o npm run dev

o npm run build

5.2.7 Firebase CLI
e Purpose: Firebase is used for hosting the frontend web app.

e Download link: https://firebase.google.com/docs/cli

e Install command (via npm): npm install -g firebase-tools
¢ Initialize firebase command:
o firebase login

o firebase init

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

41

https://cloud.google.com/sdk/docs/install
https://www.docker.com/products/docker-desktop/
https://nodejs.org/
https://firebase.google.com/docs/cli

CHAPTER 5

5.2.8 Go CLI
e Purpose: Developing and running the backend REST API server.
e Download Link: https://go.dev/dl/

e Environment setup:
o Add go binary path /bin to system’s path.
o Initialize Go module with command below:
= g0 mod init my-backend-name
= gomod tidy

" g0 run main.go

5.2.9 Python CLI

e Purpose: Training machine learning models and running the Flask Al server.

e Download link: https://www.python.org/downloads/

e Recommended version: Python 3.10+

5.2.10 Postman Desktop
e Purpose: API testing for the backend restful api server.

e Download link: https://www.postman.com/

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

42

https://go.dev/dl/
https://www.python.org/downloads/
https://www.postman.com/

CHAPTER 5

5.3 Setting and Configuration
This section outlines the configuration steps required to ensure all components which are the
hardware, software, backend, frontend, and Al are properly connected and operational. These
configurations are critical for replicating the system and ensuring compatibility across
platforms.
5.3.1 ESP32 Microcontroller (Arduino IDE)
e Board manager setup:
o In Arduino IDE, go to Preferences, add this URL
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-
pages/package esp32 index.json to additional board manager URLs.
o Install ESP32 by Espressif Systems from board manager.
e Board selection:

o Tools — Board: Select ESP32 Dev Module

o Tools — Port: Select the correct COM port (e.g. COM3)
e Libraries installed:

o DHT sensor library

o Adafruit unified sensor

o WiFi.h, HTTPClient.h, ArduinoJson.h, esp task wdt.h

5.3.2 Google Cloud Configuration
e Authentication (command):

o gcloud auth login

o gcloud config set project [PROJECT ID]

5.3.3 Firebase Setting and Configuration for Frontend

e C(reate a firebase project at https://console.firebase.google.com/.

e Enable hosting.

e In react project, run command:
o firebase init hosting

e Deploy the frontend to firebase by using command:
o npm run build

o firebase deploy

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

43

https://console.firebase.google.com/

CHAPTER 5

5.3.4 Backend Server (Go)

e Folder structure: Figure 36 below shows the folder structure of backend server.

~ GO-AGRICULTURE-MONITORING-... [3 B3 T &
~ config
db.go

~ controllers

auth.go

auth.go

- models

Figure 36: Go Backend Folder Structure
e Configuration file (.env):
o DATABASE URL=postgresql://username:password@name.postgres.database
.azure.com:port/postgres
o Al URL=https://python-model-738775168875.asia-southeast1.run.app/predict
o PYTHON TRAINING SERVICE URL=https:/ python-model-
738775168875.as1a-southeast1.run.app
o GOOGLE_API KEY=google-map-api-key

¢ Run command (use port 8080): go run main.go

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

44

CHAPTER 5

5.3.5 Al Server (Python + Flask)

e Model folder structure: Figure 37 below shows the flask server folder structure.

~w PYTHOM-MODEL [B & &=

< Do

oill_substriute_model.pkl

=3
M m
v

I_substitute_scaler.pkl

e mou
T 1101
m a3 T
T 3
H [#]

I
T
\
Al

itute_model.pkl

I_substiute_scaler.pkl

=)
m M
|

3
]

eature_info.pkl

I_substitute_scaler.pkl
model_feature_info.pkl
cloudbuild.yamil
Drockerfile
main.py
README.md

requirements.txt

Figure 37: Al Server Folder Structure
e Environment setup:
o Run command: pip install -r requirements.txt

o Run command (use port 5000): python main.py

5.3.6 Frontend Web App (React + TypeScript)

e Folder structure: Figure 38 below shows the frontend folder structure.

-~ templates

functions

VoW VY

{ v
.'I'U
@
E
“ g
A

assets
componemnts
contexts
data

helpers
layouts
pages

routes

VVVVVVVVVI

wite-emnwv.d.ts

eslintrc.cjs

-grbignore

Jprettuenignore

index.hitml

Figure 38: Frontend Folder Structure

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

45

CHAPTER 5

e Configuration file (.env):
o VITE API URL-= https://go-backend-server-738775168875.asia-
southeast1.run.app
o VITE GOOGLE MAPS API KEY=google-map-api-key
o VITE API WS URL= wss://go-backend-server-738775168875.asia-
southeast1.run.app/ws
¢ Run dev server command:
o npm install

o npm run dev

5.3.7 Azure PostgreSQL Database Configuration
e Cloud provider: Microsoft azure
e Database type: PostgreSQL flexible server
e Steps:
1. Create PostgreSQL server on azure portal.
2. Configure firewall rules to allow GCP IP ranges.
3. Create a database.
4. Create a user and password.
e (Connection string format:
o postgresql://<username>:<password>@<host>.postgres.database.azure.com:5
432/<database name>
e Environment variables in Go Backend:
o DATABASE URL=postgresql://username:password@host.postgres.database.

azure.com:5432/database_name

5.3.8 Google Cloud Platform Deployment Configuration
e Go backend deploy to cloud run (YAML configuration): Figure 39 below shows the

cloudbuild.yaml example.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

46

CHAPTER 5

with unauthenticated ac

Figure 39: cloudbuild.yam! of Go Backend Server

e Deployment command for Go backend deploy to cloud run:
o gcloud run services replace cloudbuild.yaml

e Flask Al server deploy to cloud run via Docker.

o Dockerfile for python flask: figure 40 below is the contain inside Dockerfile.

WORKDIR /app

RUN apt-get update && apt-get install -y
build-essential
gcc
&& rm -rf fvar/libfapt/lists/*®

OPY reguirements.txt .

RUN pip install --no-cache-dir -r requirements.txt

Figure 40: Dockerfile for Python Flask
o Build and deploy command:
gcloud builds submit --tag ger.io/[PROJECT _ID]/python-model
gcloud run deploy python-model \
--image gcr.10/[PROJECT _ID]/python-model \
--platform managed \

--region asia-southeastl
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

47

CHAPTER 5

5.4 System Operation
5.4.1 System Access and User Authentication

G

Sign Up

& Gooagle f Facebook

Or
Full Name *

Ex- Jhon Doe

Email Address *

&

m

EU

o

* 3
3
3

By creating unt you agree to the

terms of use and our privacy policy.

Create account.

Already have an account? Sign in

Figure 41: GoMonitor SignUp Interface
The GoMonitor system can be accessed via:

https://fyp-backend-bd5cc.web.app/base/auth/signup

The figure 41 above is the GoMonitor system signup interface. It allows users to register
their own account. The system supports user authentication and provides access to monitoring
and managing the functionalities for plant data collection and Al-powered predictions for soil
moisture. After signing up, the user will be able to sign in using the successful signup account.
Figure 42 below is the GoMonitor sign in interface. For demo purposes, please sign in using

username: staging and password: 12345 for running test.

G

Sign In
{5 Google f Facebook
Or

Username *

XXXHHX
Password *

Min. 8 characters

Remember me Reset password?

Don't have account yet? New Account

Figure 42: GoMonitor Signln Interface

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

48

https://fyp-backend-bd5cc.web.app/base/auth/signup

CHAPTER 5

5.4.2 Main Dashboard Overview

(=)o 0 @

Real-Time Data

Temperature Humidity Soil Moisture

= 65.5 % 68.57 %

Google Map
4°19'37.6'N 101°07'47.6'E
84GH+RXJ Kampar, Perak

rger map

Jalan Batu Sing,

Jalan Pergy 4

aan Sutera @)

Y%
s, 3|
Keyboard shortcuts | Map data £2025 Google _Terms _ Report a map error

Figure 43: GoMonitor Main Dashboard Overview

Figure 43 above shows the main dashboard overview of the system. The main dashboard
provides an overview of real time data and the microcontroller’s current location. The real-
time data is fetched using WebSocket which has no latency. The top bar has the selection of
user mode / developer mode, shifting the theme between light mode and dark mode, Al toggle
button for plant model, and recent alerts and notifications. There are 4 options available at the
sidebar, which are dashboard, management, notification and guidelines page. This web
application is also available in mobile friendly. Figure 44 below shows the view on a mobile

website.

Real-Time Data

Temperature

345°C

Humidity
65.5 %

Soil Moisture
68.57 %

Figure 44: GoMonitor Main Dashboard Overview in Mobile

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

CHAPTER 5

5.4.3 Management Page Overview

=

GoMon Management

Sensor Reading Table

Primary Key Timestamp
29/07/2025, 185418
29/07/2025, 18:44:14
2907/2025, 183412
29/07/2025, 182405
29/07/2025, 18:1405
29/07/2025, 180405
29/07/2025, 175403
29/07/2025, 17:43:44
29/07/2025, 17:33:41
29/07/2025, 17:3337
290712025, 17:23:26
29/07/2025, 17:13:12
29/07/2025, 170313

29/07/2025, 165313

Figure 45: Management Page Interface

Figure 45 above shows the management page interface which is showing a clickable button
“View Al Model Details” and a sensor reading table which have the feature of delete all data,
delete chose data, and edit the data. There is a sync button allowing users to click to get the
newest data, also known as refresh sensor reading table button. When users click the “View Al
Model Details” button, the webpage will direct user to another page which have been shown at

figure 46 below. It will show the available ai model and their performance, and train duration.

Al Model Details

Demo

Model Type
Tuned Gradient Boosting

Data Points Used
2041

Performance
MAE: 0.4751
MSE: 0.6328
RMSE: 0.7955
R% 0.9737

Hebe andersonii

Model Type
Tuned Gradient Boosting

Data Points Used
2041

Performance
MAE: 0.4751
MSE: 0.6328
RMSE: 0.7955
R2:0.9737

Snake Plant

Model Type
Tuned Gradient Boosting

Training Date
2025-08-04 17:11:46

Training Duration
0:00:13.703921

Training Date
2025-08-04 17:11:46

Training Duration
0:00:13.703921

Training Date
2025-08-04 16:05:10

Figure 46: AI Model Details Page

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.4.4 Notification Page Overview

GoMon

Notifications

Figure 47: Notification Page
This is the notification page of the system, which will jump red alert on the top bar as the

figure 47 above shows when the system received abnormal temperature or humidity value. The
value of temperature will detect as abnormal when it is lower than 10 degrees Celsius or higher
than 50 degrees Celsius, while the humidity is lower than 20 percent or higher than 90 percent.
This feature is to alert users to check whether there are sensor malfunctions, or the climate
change occurs suddenly. It provides the users with taking fast actions on it when receiving
notification and alerts. When users click on the notification icon on the sidebar or top bar, it
will direct to this notification page where users will be able to check which data is abnormal

and what time the data is collected for further diagnosis.

5.4.5 Guideline Page Overview

GoMon User Guideline

Foll et up youl Ller for data collection and Al mi

o Account Setup
Cre

Before you can start collecting data, you need to create an account for your microcontroller.

Step-by-step:

Navigate to the registration page by clicking on "sign up"

Log in with your newly created credentials

(D Keep your credentials secure. You'll need them to configure your microcontroller.

Microcontroller Configuration

Figure 48: Guideline Page
Figure 48 above is the guideline page overview; the purpose of this page is to teach user
how to set up their microcontroller to connect with system and use the features. All setup

procedures are given.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

51

CHAPTER 5

5.4.6 Real-time Monitoring & User Mode Operation

Figure 49: Microcontroller Status
For the real-time monitoring, the microcontroller will be setup with prepared code using
Arduino IDE for collecting data and sent to backend server, after that the frontend will retrieve
data from the backend server. Figure 49 above shows the microcontroller status by blue LED,
when LED is blinking, it means that the system for the specific account is currently in developer
mode, when it is not blinking, it means the system is currently in user mode. When the system
is in user mode, the microcontroller will only send temperature and humidity data to backend
and the soil moisture will be predicted by the Al model. Figure 50 below shows the users how
to toggle the Al model for specific plant ON. When users click on the photo on the top bar, this

popup modal will come out.

Select Your Plant

Al Enable Al for Snake Plant

et -

Figure 50: Al Plant Model Selection
1 c: | User \. 0n

Real-Time Data

Temperature Humidity Soil Moisture

70.2% 54.74 %

Figure 51: Main Dashboard Operations
After the Al model is chosen, users will notice there is an Al icon at the top bar shown,

which means Al is enabled in user mode, and when the microcontroller sends data to the

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

52

CHAPTER 5

backend, the soil moisture will be predicted, and the front end will render out the real-time

data using WebSocket. Figure 51 above shows the results.

5.4.7 Developer Mode & Al Model Training Operation

Enable Developer Mode?

Tt

Figure 52: Developer Mode Enable Confirmation

For the users to enable developer mode, just click on the “user” button once and this
confirmation note will be shown to ask confirmation of trigger ESP32 into developer mode.
Figure 52 above shows the screenshot of the confirmation. After confirmation, the dashboard
will become different, figure 53, 54, and 55 shows the new view of the dashboard in developer

mode.

Figure 53: Dashboard Overview in Developer Mode View 1

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

53

CHAPTER 5

Sensor Reading Table Search here

Timestamp Temperature (°C) Humidity (36) Soil Maisture (3)

29/07/2025, 18:54:14

29/07/2025, 18:44:14

29/07/2025, 18:34:12

29/07/2025, 18:24:05

29/07/2025, 18:14:05

29/07/2025, 18:04:05

29/07/2025, 17:54:03

29/07/2025, 17:43:44

29/07/2025, 17:33:41

29/07/2025, 17:33:37

1-10 of 3627

Figure 54: Dashboard Overview in Developer Mode View 2

Line Graph

Temperature Humidity Soil Moisture

Combined Metrics

L] .

Figure 55: Dashboard Overview in Developer Mode View 3

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

54

CHAPTER 5

The purpose of having developer mode view for users is to enable advance feature for data
collection and model training. When the system is in developer mode, it will trigger the
microcontroller into developer mode too where it will send temperature, humidity and soil
moisture to the backend for data collection and further model training. The developer mode
will on for 14 days and automatically closed as datapoints for 14 days data collection should
be enough to train a strong ai model. Figure 55 above shows the data visualization features in
the system. Users able to visualize the line chart for each temporal data analysis, real-time
gauge displays, historical trend analysis and customizable time range selection. The button of
“sync” is used to refresh the data and fetch the newest data. Figure 54 above shows the
historical data for the microcontroller collected data and there is a button “train” to train the
data. Figure 56 below shows the overview of the train model page when the “train” button

clicked.

Choose an action

Figure 56: Train Button Clicked Overview

When the “train” button clicked by users, there will be two options which is train model
and download csv. If users click download csv, the system will generate a csv file and download
to the users’ device as shown at figure 57 below. While if the users click “train model” button,
another popup modal will show to users to choose which plant model users want to train using

the account’s csv data as shown at figure 58 below.

Q & O & 0

aokmarks
O] sensor_data.csv
135 KB » Done

Figure 57: Download CSV Button Clicked Overview

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

55

CHAPTER 5

Choose an action

Select a plant to train

() Demo

(O) Hebe andersonii

() Snake Plant

Figure 58: Train Model Button Clicked Overview

When users clicked “train model” button, the system will show current available plant
option for users to choose to train their own plant ai model using their collected data. As the
current account, the data is collected by using snake plant, so users will need to choose snake
plant and click the “start training” button. Figure 59 and 60 below shows the response of the
frontend. Figure 57 below shows the users that the ai model is in training process and loading.

Figure 58 below shows the result of the successful trained ai model.

Choose an action

Training model, please wait...

Figure 59: Start Training Button Clicked Overview

Choose an action
Training Results for Snake Plant

Model trained successfully for Snake Plant

Best Model: Tuned Gradient Boosting
MAE: 0.6991
R% 0.9577
RMSE: 1.2686

Training Duration: 0:03:26.969130
Data Points Used: 3626

Figure 60: AI Model Successful Trained Overview

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

56

CHAPTER 5

5.4.8 Data Management Operation

=

GoMon Management

Sensor Reading Table

Primary Key Timestamp @ i Soil Moisture %)
29/07/2025, 18:54:14 . 686
29/07/2025, 18:44:14 . a7
29/07/2025, 18:34:12 ! L a7
29/07/2025, 182405 . a7
29/07/2025, 18:14:05 L . 688
29/07/2025, 18:04:05 . 6as
29/07/2025, 17:54:03 . 1 689
29/07/2025, 17:43:44 . a7
29/07/2025, 17:33:41 .4 687
29/07/2025, 17:33:37 . a7

29/07/2025, 17:23:26 ! 687

29/07/2025, 17:13:12 . 688

Figure 61: Data Management Overview Interface

Besides real-time monitoring, this system also supports data management features. When users
click on the side bar management page, the frontend will direct users to this data management
page as shown as figure 61 above. When users click on the “Delete My Records”, the system

will delete all the records for current account. Figures 62 and 63 below show the results.

@ O Creatz and deploy ... o documenso/docum...
fyp-backend-bd5cc.web.app says

Are you sure you want to delete all your records? This action cannot

concel

be undone.

Figure 62: Confirmation of Delete All Records

-
Sensor Reading Table Search here

Timestamp Temperature *C) Humidity (%) Soil Moisture (%)

Figure 63: All Records Successful Deleted Overview

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

57

CHAPTER 5

Instead of deleting all records, the system also allows users to delete the selected data or
modify it. Figure 64 below will show how to delete the selected data. Users can click on the
Action (...) to choose to delete or edit for the selected data. When users click on the delete
button, it will prompt a message to users to confirm performing delete for the selected data

with showing record ID.

c 25 https://fyp-backend-bd5cc.web.app/base/pages/management G @ W [m) o

UTAR WBLE KAMPA.. EB @ O Create and deploy a...) documenso/docum » 3 All Boold
fyp-backend-bd5cc.web.app says

Are you sure you want to delete record ID: 83097

cancel

Figure 64: Selected Records Delete Overview

While for the users to edit the data, figure 65 below shows the overview of the edit data
page when users clicked on edit for selected data. There is a popup modal that came out when
users clicked on edit button. Users are allowed to modify the temperature, humidity and soil
moisture value. When it is modifieds just click on the save changes button and the data will be

saved.

Edit Management Data

Record ID: 4673
Timestamp: 07/07/2025, 16:12:50
Temperature (°C) Humidity (%) Soil Moisture (%)

Canﬂ&l -

Figure 65: Selected Records Edit Overview

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

58

CHAPTER 5

5.4.9 System Administration and Settings

This system is also designed with administrative features. For example, there is user permission

management that was divided into user and admin role. Figures 66 and 67 will show the

difference between user and admin role. For admin roles, it able to see all available accounts’

data collection table, have permission to edit, delete them and able to perform functionality like

promote or demote user role to admin role or delete the entire account.

=

Management

Control Button

Sensor Reading Table

User 1 - Kai

Primary Key

1-200f 0

User 3 - microcontroller2

Primary Key

3328

3309

1-20 of 2042

User 6 - testing

Primary Key

Soil Maisture (%)

Ti P emperature (C) Hurmidity (%)

17/03/2025, 08:01:43

17/03/2025, 0751:49

17/03/2025, 07:41:48

Figure 66: Management Page Overview for Admin Part 1

17/03/2025, 06:01:26
17/03(2025, 0551:26
17/03/2025, 05:41:25
17/03/2025, 05:41:15
17/03/2025, 0531:15

17/03/2025, 0521:15

Timestamp i Soil Maisture (%)
29/07/2025, 18:54:14 i ! 688
29/07/2025, 184414 L E 687
29/07/2025, 18:34:12 Y 4 687

29/07/2025, 182405 L 687

Figure 67: Management Page Overview for Admin Part 2

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

59

CHAPTER 5

When the promote user to admin button is clicked, a popup modal will show current
available user role account to admin to choose which account admin want to promote. When
admin clicks on it, the clicked account will become an admin role. Figure 68 below shows the

overview of the results.

Select User to Promote to Admin

nail.com

Figure 68: Promote User to Admin Overview

5.4.10 Error Handling and Validation
Figure 69 below shows the response from the front end when it is in guest mode, empty data
will be read and showing errors on the main dashboard. Figure 70 below shows the response

from frontend when guest wanted to check available ai model list at the management page.

Real-Time Data

Google Map

Sensor Reading Table
Timestamp Temperature (*C) Humidity (%) Sail Maisture: (%)

1-100f 0

Temperature Humidity Soil Moisture

Figure 69: Main Dashboard Overview in Guest

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
60

CHAPTER 5

Figure 70: Al Model List Overview in Guest
Besides, when users try to train an ai model using an empty data account, it will show
request failure as there is not enough data in the csv file, and it will be rejected by the system.

Figure 71 below shows the response result.

Choose an action

Request failed. Please try again

Select a plant to train -

(®) Demo

{O) Hebe andersonii

(O Snake Plant

Figure 71: Train Model Rejected Overview

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

61

CHAPTER 5

5.5 Implementation of Issues and Challenges

5.5.1 Hardware and Firmware Integration

The physical layer, centred around the ESP32 microcontroller, posed the initial set of hurdles.
First is the sensor reliability and power management problem. While the project aims to replace
soil moisture sensors, the initial data collection phase relied on them heavily. Ensuring the
capacitive soil moisture sensor provided consistent and accurate readings was challenging.
Furthermore, implementing robust power management and a watchdog timer on the ESP32
was necessary to ensure long-term stability and prevent system freezes, requiring multiple code
revisions to achieve reliable, autonomous operation.

Another hurdle is the Wi-Fi connectivity and data transmission. Establishing stable Wi-Fi
communication between the ESP32 and the backend was a significant challenge. The firmware
needed sophisticated error handling, including an automatic reconnection mechanism with an
exponential backoff, to manage intermittent network disruptions. Data was formatted as JSON
and sent via HTTPS POST requests, and ensuring the lightweight ESP32 could handle the
overhead of TLS encryption and JSON serialization without performance degradation required

careful optimization

5.5.2 Backend and Database Complexity

The backend, which is built with Go and PostgreSQL, serves as the system’s core and presents
its own integration and performance challenges. The challenges included concurrent data
handling and real-time communication. The backend needed to manage simultaneous HTTP
requests from the IoT device and WebSocket connections from multiple web clients.
Implementing a thread-safe system in Go to handle state changes, such as switching between
"developer" and "user" modes, required careful use of concurrency patterns (goroutines and
mutex locks) to prevent race conditions.

Besides, there is cross-service integration needed for the backend. The Go backend had to
communicate seamlessly with three external services which is the PostgreSQL database hosted
on Azure, the flask ai server for soil moisture prediction and the google geolocation api.
Managing authentication tokens, API keys, a different data formats across these services was
complex. Ensuring low latency, especially when the Go service had to wait for a prediction
from the Flask API before responding to the client, required efficient code and network

configurations.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

62

CHAPTER 5

Automating the deployment of the Go backend and flask ai service to google cloud run
using a CI/CD pipeline was a significant undertaking. Writing the cloudbuild.yaml and
dockerfiles, managing environment variables securely, and configuring firewall rules for the
Azure database to accept connections from google cloud services were intricate and error-prone

steps.

5.5.3 Al Model Development and Deployment

The AI component was the most innovative but also one of the most complex parts of the
project. The success of the ai model depend entirely on the quality of the data collected in
“developer mode”. The key challenge was in feature engineering which will transform the raw
data (temperature, humidity, timestamp) into meaning features that could predict the soil
moisture value accurately. This involved creating cyclical features for time, interaction
features, and rolling averages. The initial models had lower accuracy that required
experimentation with hyperparameter tuning for both the random forest and gradient boosting
models to achieve the desired performance which is (R2 score > 0.9).

Dynamic model loading and scalability is also a challenge for the ai model development.
The Flask API was designed to dynamically load different trained models based on the plant
type (e.g., Hebe andersonii, Snake Plant) specified in the API request. Implementing this
required a structured folder system for the model files (.pkl) and a robust loading mechanism.
Containerizing this flask application with docker and deploying it on a serverless platform like

cloud run was necessary to ensure it could scale independently of the main Go backend.

5.5.4 Frontend and User Experience

The React and TypeScript frontend aimed to provide a user-friendly interface but faced
challenges in handling real-time data and managing complex application states. Implementing
a performant dashboard that could visualize a continuous stream of data via WebSockets
without causing the user interface to lag was a primary challenge. This required efficient state
management using React hooks and careful rendering logic to ensure smooth updates for charts
and gauges. Managing user authentication with JWT tokens and dynamically changing the user
interface based on the user's role (user vs. admin) and the device's mode (developer vs. user)
added significant complexity to the frontend state. Ensuring consistent and secure user
experience across different states and modes requires a well-designed component architecture
and rigorous testing.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

63

CHAPTER 5

5.6 Concluding Remark

Chapter 5 has detailed the complete journey of transforming the conceptual design of the
"Sensors Substitution using AI" system into a tangible, operational prototype. The
implementation phase successfully integrated a diverse stack of modern technologies, from
low-level firmware on the ESP32 microcontroller to sophisticated cloud-native services. The
detailed walkthrough of the hardware setup, software tools, and precise configurations
demonstrates the successful creation of a cohesive and functional ecosystem.

The system's operation was brought to life, showcasing a seamless user experience through
the GoMonitor web application. Key functionalities are including secure user authentication,
real-time data streaming via WebSocket, and the dynamic switching between User Mode and
Developer Mode were all successfully implemented and demonstrated. A significant
achievement was the operationalization of the Al model training pipeline, allowing users to
initiate the training of a machine learning model directly from the web interface using their
own collected data.

Despite the successes, this chapter also acknowledged the significant implementation
challenges that were overcome. These ranged from ensuring hardware reliability and stable
connectivity to managing the complexities of a microservices-based backend architecture
involving Go, Python, and multiple cloud platforms. The successful resolution of these issues
underscores the robustness of the final implementation.

In summary, this chapter confirms that the project has progressed from architectural
diagrams to a fully functional, end-to-end system. The hardware is collecting data, the backend
is processing it, the Al is making predictions, and the frontend is providing an intuitive interface
for users to interact with it all. The system now stands as a proof-of-concept, ready for the

rigorous evaluation and performance analysis that will be detailed in Chapter 6.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

64

CHAPTER 6

Chapter 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics

This section describes how the system was tested to make sure it is working correctly and
efficiently. The focus of the testing was on the backend API, which is the core of the entire
system. The testing method was to send HTTP requests to the deployed API endpoints and then
check the responses. This was done to measure two key things: the correctness of the output
and the performance of the server. The API testing was performed using the live backend URL.:

https://go-backend-server-738775168875.asia-southeast].run.app.

For each important API route, a request was sent, and the following metrics were recorded
which is the correctness of output and response time. Correctness of output was the most
important test. For every API request, the response from the server was checked to see if it was
correct. For example, when using the /login route, the test checked if a valid user received a
success message and a token. When using the /sensor-data route, the test checked if the data
was saved in the database. This confirms that the system's logic is working as expected.

Besides, the response time measures how fast the system is. The response time is the
duration from when an API request is sent to when the server sends back a complete response.
This was measured in milliseconds (ms). A fast response time means the system is efficient
and provides good user experience. The average response time will be measured by sending 10
requests at the same time using postman. By using these two metrics, it was possible to get a

clear picture of both the functionality and performance of the system.

6.2 Testing Setup and Result

6.2.1 Testing Setup

This section describes the setup used for testing and present the results that were collected. For
the testing setup, all tests were performed on the deployed system to simulate a real-world
usage environment. The hardware used to send the API request is legion 5 laptop. The computer
processor is Intel Core 17-12700H and memory is 16GB DDRS5 RAM. While the software used
for testing is Postman. Postman is used to create and send the HTTP request and to view the
responses. The backend Go application was deployed and running on Google Cloud Run, and

the database was hosted on Azure PostgreSQL. Figure 72 below shows the setup of the postman

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

65

https://go-backend-server-738775168875.asia-southeast1.run.app/

CHAPTER 6

for testing. The http request must send to the live backend URL: https://go-backend-server-
738775168875 .asia-southeast].run.app and add /end-point at the end of the URL.

PosT https://go-backend-se T ~ S Mo environment ~ 'ﬁ_il
P https://go-backend-server-738775168875.asla-southeastl.run.app Bl Save ~ Share 12 N
POST e https://go-backend-server-738775168875 asia-southeastlrun.app m 7
Params Auth ® Headers (9) Body Scripts Settings Cookies
raw JSOM Beautify
. —
9
Response £T) Histary ~
2 ey,
PN r
NN, |
Figure 72: Postman Setup
.
6.2.2 Testing Result

The table 6.1 below shows the result for the api endpoints testing results. Each test was run

10 times to get an average response time.

Table 6.1 Testing Result for API Endpoints

API Endpoint HTTP Description Expected Actual Outcome | Average
Method Outcome Respons
e Time
/login POST Authenticates a user with | Returns a JWT | Success. 120ms
correct credentials. token. Received token.
/sensor-data POST Receives and saves | Returns a success | Success. Data | 97ms
(with AI) sensor data (temperature | message. Data | saved correctly.
& humidity) from the | saved in the
ESP32 and sends to Al | database.
model for prediction.
/sensor-data POST Receives and saves | Returns a success | Success. Data | 52ms
(without AI) sensor data (temperature, | message. Data | saved correctly.
humidity & soil moisture) | saved in the
from the ESP32 database.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

66

https://go-backend-server-738775168875.asia-southeast1.run.app/
https://go-backend-server-738775168875.asia-southeast1.run.app/

CHAPTER 6

data.

and

the

successfully
receive

training result

/history GET Fetches the historical | Returns a JSON | Success. 62ms
sensor data for a user. array of all sensor | Received all
data records. records.
/device- GET Fetch the current mode of | Returns a JSON | Success. 57ms
config/esp32- esp32 (user or developer). | with developer | Received the
001 mode start time if | details.
true and details.
/device- POST Enables developer mode | Returns a success | Success. Mode | 71ms
config/esp32- for the ESP32. message. Device | updated.
001/trigger-dev mode is updated.
/device- POST disables developer mode | Returns a success | Success. Mode | 67ms
config/esp32- for the ESP32. message. Device | updated.
001/stop-dev mode is updated.
/abnormal- GET Fetches the abnormal | Returns a JSON | Success. 41ms
history historical sensor data for | array of all | Received all
a user. abnormal sensor | records.
data records.
/delete/:id DELETE | Delete the sensor data | Returns a success | Success. Record | 34ms
according to id. message. Record | deleted
deleted.
/models GET Lists all available trained | Returns a JSON | Success. 45ms
Al models. array with details | Received model
of each Al model. | list.
/train-model POST Starts the AI model | Returns a message | Success. 154157
training process with user | that training start | Training started. | ms

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

67

CHAPTER 6

MNew Collection - Run results E Run Again + Mew Run ﬂ Automate Run ~ Share oon
A Ran today at 10:58:55 PM
Source Environment Iterations Duration All tests Avg. Resp. Time
Runner none 10 2s 210ms 0 120 ms
All Tests Passed (0} Failed (0) Skipped (0) Wiew Summary
Iteration 1 1 New Request .
2
POST MNew Request Response Headers Request 200 23Bms - 400B
3
https backend-server-73 200
a — -~
Pretty =2 r@ Ly
No tests found 5
. 8 1 1
lteration 2) 2 "token": "eyJhbGei0ilIUzIINiISINRECCISIKPHVEISD.
eyJleHALIOJE30DYzNzMEMzgsInVzZXIfalgio{19.
POST New Request 8 -EpS-ZUDYEWQPLARPETC- SNrE4SdallLuS143P30zDU"
https ckend-server-73 200 3 <
B 1
No tests found 10

Figure 73: Testing Result for POST /login

Mew Collection - Run results [*] Run Agai } New Rul] Automate Run ~ Share oea
A Ran today at 09:49:50 AM - View all runs
Source Enviranment Iterations Duration All tests Avg. Resp. Time
Runner none 10 2s 44ms 0 97 ms
All Tests Passed (0) Failed (0) Skipped (D) View Summary,
Iteration 1 1 New Request =
2
POST Mew Request Response Headers Request 200 88 ms 306 B
3
hittp: ackend-server-738775168875.asia-50... 200
4 = ~
Pretty = I
Mo tests found 5 = S
) & E
Iteration 2 - 2 "message”: "Data received successfully”
7 3 1
POST MNew Request 8
http: ackend-server-738775168875.asia-50... 200
a
Mo tests found 10
Iteration 3
POST MNew Request
Figure 74: Testing Result for POST /sensor-data (with AI)
New Collection - Run results [®] Run Again + New Run "] Automate Run v Share oo
A Ran today at 0 View all runs
Source Environment Iterations Duration All tests Avg. Resp. Time
Runner none 10 1s 66Tms 0 52 ms
All Tests Passed (0) Failed (0) Skipped (0) View Summary
' 1 New Request x
hittp: ackend-server-73 200
2
) eaders 47ms - 302
Mo teste found , Response Headers Request 200 47 m B
. 4 = -~
Iteration 7 Pretty = l_lj i
5
POST New Request & 1w I
http: ackend-server-73877516 200 - 2 | "message”: "Data received successfully”
' = T
Mo tests found a
a
Iteration 8 a
POST New Reguest
hittp: ackend-server-738775168875.asi: 200
No tests found

Figure 75: Testing Result for POST /sensor-data (without AT)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

Mo tests found

Iteration 4

New Collection - Run results [*] Run Again New Run "] Automate Run v Share 00
A Ran today at 09:52:44 AM - View all runs
Source Environment Iterations Duration All tests Avg. Resp. Time
Runner none 10 1s 676ms o] 62 ms
All Tests Passed (0) Failed (0) Skipped (0) Wiew Summary
Iteration 1 1 GET New Request X
2
GET New Request Response Headers Reguest 200 263 ms - 4.408 KB
https: ackend-server-7387 8875.asia-s0... 200
4 p— '
Pretty ~ = I L.
No tests found 5 = . -
) & 1 1
Iteration 2 2 N
7 3 "id": 8391,
GET New Request o . P " user_id": 9,
https: ackend-server-7387 8B75.asia-s0... 200 5 5 “timestamp’: "2025-08-11T09:50:59.6932812",
No tests found 6 ‘temperature": 32.2,
y tests foun 0
o tests four - 7 "humidity™: 82,
. 8 "s0il_moisture”: 5@,
lteration 3] ‘is_abnormal": false
10 i
GET New Request 1 N
https: ackend-server-738775168875.asia-50... 200 12 - ‘1d": 8398,
No tests found 13 LIS:EI_ld P9
14 ‘timestamp”: "2025-@3-11TO9:5@:59.568403Z",
. 15 "temperature": 32.2,
Iteration 4 . L
16 humidity™: 82,
GET New Request 1;! I?Dl'-mmt;f f ;@'
https: kend-server-73 168875.asia-s0... 200 - FS_manoImaL s tatse
13 1
Figure 76: Testing Result for GET /history
New Collection - Run results [*] Run Again NewRun] Automate Run v Share ooe
A Ran today at 09:54:26 AM - View all runs
Source Environment Iterations Duration All tests Avg. Resp. Time
Runner none 10 1s 694ms 0 57 ms
All Tests Passed (0) Failed (0) Skipped (0} View Summary
Iteration 1 1 GET New Request =
GET Mew Request Response Headers Request 200 31ms - 333B
https: ackend-server-738775168875.asia-s0... 200
4 f— '
Pretty ~ e rﬁ L
No tests found 5
; & 1 i
lteration 2 B 2 “ai_enabled": false,
3 "developer_moce": true,
GET New Request 8 a "start_timestamp’: 1754877043
https: ackend-server-7387751686875.asia-50... 200 =1
) b E
No tests found 10
Iteration 3
GET New Request
https: ackend-server-738775168875.asia-s0... 200

Figure 77: Testing Result for GET /device-config/esp32-001

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

69

CHAPTER 6

MNew Collection - Run results

A Ran today at O 29 AM - View all runs

m Run Again

New Run "] Automate Run ~

Share @00

No tests found

Iteration 8

Source Environment Iterations Duratio All tests Avg. Resp. Time
Runner none 10 1s 768ms 0 71ms
All Tests Passed (0) Failed (0) Skipped (0) View Summary
Iteration 1 1 New Request b
2
POST MNew Request Response Headers Request 200 48ms - 375B
http: ackend-server-73 8875 asia-s0... 200
4 — -~
Pretty =2 rﬁ Ly
No tests found 5
: P 1 i
Iteration 2 B 2 "ai_enabled": false,
! 3 "message”: "Developer mode activated for 14 days. AL
POST MNew Request 8 disabled.”,
3 d-server-7. 7 6 7 sia-s n " e — -
ckend-server-738775168875.asia-50... 200 . 4 "start_timestamp”: 1754877332
5 1
No tests found 10 N
Iteration 3
POST Mew Request
https:/, backend-server-738775168875.asia-s0. 200
No tests found
Iteration 4
Figure 78: Testing Result for POST /device-config/esp32-001/trigger-dev
New Collection - Run results [*] Run Again New Rur] Automate Run ~ Share sos
A Ran today at 09:56:11 AM - View all rung
Source Environment Iterations Duration All tests Avg. Resp. Time
Runner none 10 1s 796ms 0 67 ms
All Tests Passed (0) Failed (0) Skipped (0) View Summary.
1 New Request X
https: ver-738775168875.asia-5 200
No tests found B Response Headers Request 200 42ms - 351B
Iteration 6 N Pretty ~ = b Q
5
POST New Request 6 1 i
https ckend-server-738775168875.asia-southeast1.run.app/device-config/esp32-001/. 200 N 2 "ai_enzbled": true,
3 "message”: "M Developer mode has been stopped
No tests found 8 manually. AI enabled."
N a
Iteration 7 N
POST New Request
https: ckend-server-738775168875.asia-southeast1.run.app/device-config/esp32-001 200

Figure 79: Testing Result for POST /device-config/esp32-001/stop-dev

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

70

CHAPTER 6

New Collection - Run results [*] Run Aga New Rur] Automate Run ~ Share @0
A Ran today at 01:32:13 PM - View all runs
Source Environment Iterations Duratio All tests Avg. Resp. Time
Runner none 10 1s 517ms 0 41ms
All Tests Passed (0) Failed (0) Skipped (0 View Summary,
" 1 GET New Request e
https://go-backend-server-738’ 887 5.asia-southeastl.run.app/abnormal-history 200
No tests found Response Headers Reguest 200 39 ms 26 B
Iteration 7 ¢ Pretty v = o Q
GET New Request 5 1 [
htty erver-738 mal-history 200 - 2 1
: 3 ‘timestamp”: 131:38°,
No tests found] 4 “type”: "Hu
g 5 I
Iteration 8 _ 6 1
- 7 “timestamp”: §8-11 13:31:28",
GET New Request g “type”: "Hum
https://go-backend-server-7. 1run.app/abnormal-history 200 a 1,
1@ i
No tests found 11 “timestamp”: 31:83",
12 "type"! "Hum
Iteration 9 13 3
14]
GET New Request
https://go-backend-server-738’ 1.run.app/abnormal-history 200
No tes und
Iteration 10
Figure 80: Testing Result for GET /abnormal-history
New Collection - Run results [Ru N B v Share
A Ran today at 01 View all runs
Source Environment Iterations Duratior All tests Avg. Resp. Time
Runner none 10 1s 484ms 0 34 ms
All Tests Passed (0) Failed (0) Skipped (0) View Summary,
Iteration 1 1 DELETE New Request X
DELETE New Request - Response Request 200 307B
200
Pretty v = O Q
5
14
Iteration 2 2 "message”: "Record deleted successfully”
3

DELETE New Request

Figure 81: Testing Result for DELETE /delete/:id

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

71

CHAPTER 6

New Collection - Run results [*] Run Again New Run "] Automate Run ~ Share 0
A Ran today at 01:29:09 PM - View all runs
Source Environment Iterations Duration All tests Avg. Resp. Time
Runner none 10 1s 536ms 0 45 ms
All Tests Passed (0) Failed (0) Skipped (0) View Summary,
Iteration 1 1 GET New Request s
2
GET MNew Request Response Headers Request 200 48ms - 1403 KB
3
https://go-backend-server-738775168875.asia-southeastl.run.app/models 200
4 A
Protty ~ 0§ Q
No tests found 5
6 Lo
Iteration 2 . 2 "count": 3,
3 "models”:
GET New Request 8 " s
hitps://go-backend-server-738775168875.asia-southeast1.run.app/models 200 . s ‘created_at": "2025-08-04T17:11:46.035395%,
No tests found R (] ‘created_readable": "2025-08-04 17:11:46",
setstour - 7 ‘data_points_ussd": 2041,
8 "model_type”: "Tuned Gradient Boosting",
Iteration 3 ‘e -
9 performance": {
GET NewR N 10 "MAE": 8.4758519853753709,
. evlv iqujs I S " 11 "MSE": 0.532825185641899,
5://go-backend-server- 6 sia-s astl.run.app/
ttps://go-backend-server asia-southeastl.run.app/models 200 13 RMSE": §.795503102345867,
No tests found 13 R:": ©.9737267024355784
4 B
15 “plant_name”: “Demo”,
Iteration 4 . - B -
18 training_cate”: "2025-05-04T17:11:46.0393957,
GET New Request 1; training_curation": "0:00:13.703921
https://go-backend-server-738773168875.asia-southeastl.run.app/models 200 15 i:,
i
No tests found 20 created_at”! "2025-88-04T17:11:46.039395",
21 eated_readable"! "2025-@8-04 17:11:46",
lteration 5 22 data_points_used": 2841,
23 ‘model_type”: “Tuned Gradient Boosting”,
GET New Request 4 ‘performa i
hitps:/(go-backend-server- 68875 gsia-southeastlrun aopimadel no 2° MAE': 8.4750519053753709,

Figure 82: Testing Result for GET /models

New Collection - Run results

A Ran today at 01:23:57 PM - View all runs

Source Environment Iterations

Runner none 10

All Tests Passed (0) Failed (0) Skipped (0)
Iteration 1

POST New Request
https://go-backend-server-738775168875.asia-southeast1.run.appjtrain-model

No tests found
Iteration 2

POST New Request
https:figo

backend-server-738775168875.asia-southeast1.run.app/train-model

No tests found

Iteration 3

POST New Request
https://go-backend-server-738775168875.asia-southeast1.run.appftrain-model

No tests found

Iteration 4

POST New Request
https:

'go-backend-server-738775168875.asia-southeastl.run.appitrain-model

No tests found

Iteration 5

POST New Request

hitnefon hackend corver S8

S acia_contheact pn annitrainmadal

Duration

25m 42s

All tests
0
200
200
200
200

[*] Run Again

Avg. Resp. Time

154157 ms

Response

Pretty

New Run] Automate Run ~ Share sse
Wiew Summary
New Request e
Headers Request 200 131441 ms 1.064 KB
o Q
"message”: "Model training completed”,
"plant_name": "Demo”,
"training_data": {
‘success"! true,
‘message”: "Model trained successfully for Demo”,
‘model_path": “model/Demo”,
‘r2_scoxe”: ©.9737267024355784,

rmse”: 0.795583182345267,
‘mae”: B.4758519853753789,
‘best_madel"

Tuned Gradient Boosting”,
":92:11.335874",

: 131.335874,
"2025-03-11T05:24:01.135759",
"2025-88-11T05:26:12. 4716337,
@1,

“training_time”:
“training_duration_seconds”
“created_at":

"compl
‘created_readable”: "2025-88-11 85:
"data_points": 2841,
"original_data_points": 2842,

“all_results":

“Tuned Gradient Boosting™: {
“MAE": ©.47508519853753789,
"MSE": ©.632825185841899,
"RMSE": ©.795503182345867,
"R*"! ©.9737267024355784

2

Figure 83: Testing Result for POST /train-model

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

72

CHAPTER 6

6.3 Project Challenges

Throughout the development of this project, several significant challenges were faced. These
difficulties spanned the entire system, from the physical hardware and its connection to the
internet, to the complex backend integration, the demanding Al model development, and the
real-time frontend user interface.

The first major challenge was related to the hardware and its connectivity. The core of the
data collection system, the ESP32 microcontroller, had to be programmed to be extremely
reliable. Ensuring it could maintain a stable Wi-Fi connection over long periods to consistently
send data was difficult. The firmware, written in C++/Arduino, needed robust error-handling
logic to automatically reconnect to the network if the connection dropped. Furthermore, the
ESP32 had to efficiently format the sensor readings into JSON, a text-based format, and send
them securely over HTTPS, which required careful memory management on the resource-
constrained device.

A second significant challenge was the integration of the complex backend system. The
project's architecture was not a single application but a collection of different services that
needed to communicate perfectly. The Go backend server running on Google Cloud Run had
to manage requests from the ESP32, interact with the Python Flask API for Al predictions, and
connect to the PostgreSQL database hosted on a completely different cloud platform, Microsoft
Azure. Making these separate systems, built with different languages and hosted on different
clouds, work together required careful configuration of network rules, firewalls, and secure
management of API keys and credentials.

Perhaps the most demanding challenge of the project was the development of the artificial
intelligence model. The main objective was to create a model accurate enough to completely
replace a physical soil moisture sensor. This was not a simple task. It required extensive work
in collecting high-quality data from the ESP32's "developer mode." After collecting the data, a
process of complex feature engineering was needed to create meaningful information from
basic temperature and humidity readings. This involved creating new features based on time,
such as the day of the year or cyclical representations of the hour, to help the model understand
temporal patterns. Many experiments were needed to train, test, and fine-tune the Random
Forest and Gradient Boosting models to finally achieve a high level of prediction accuracy.

Finally, developing a responsive and user-friendly frontend presented its own set of
challenges. The main requirement for the web dashboard was to display sensor data in real-

time. This was achieved using WebSockets to stream data directly from the server to the

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

73

CHAPTER 6

browser. Implementing this feature required careful and advanced state management within the
React application. The code had to be written efficiently to handle a constant flow of new data,
updating charts and values instantly without causing the user's browser to slow down, lag, or
crash. Ensuring this smooth, real-time experience was a key challenge in delivering a polished

final product.

6.4 Objectives Evaluation

This section evaluates the project's outcome against the three main objectives set out at the
beginning to determine if all initial requirements were successfully met. The first objective was
to create an Internet of Things (IoT) based soil moisture monitoring system that uses machine
learning to predict soil moisture levels, featuring an ESP32 with "developer" and "user" modes.
This objective was fully achieved. An IoT device using an ESP32 microcontroller and a DHT22
sensor was successfully built to collect real-time data. The system successfully supports two
operation modes, which can be controlled via the API to switch between collecting full data
for training in developer mode and predicting soil moisture in user mode. The core goal was
realized as the system can substitute the physical soil moisture sensor with an Al prediction.

The second objective was to build a backend server using the Go programming language,
integrated with a PostgreSQL database, to manage all data flow and expose a RESTful APIL
This objective was also fully achieved. A robust backend server was developed using Go and
successfully deployed. It effectively manages all system functions through a comprehensive
set of RESTful API endpoints that handle everything from user authentication to data
management and Al model training. The server's successful integration with a PostgreSQL
database for data storage and the Flask Al service for the machine learning pipeline
demonstrates a complete and scalable data management system.

The third objective was to develop a user-friendly, web-based monitoring platform on
Firebase for visualizing data and tracking trends. This objective was fully achieved as well. A
user-friendly web platform was developed using React and hosted on Firebase. The platform
successfully visualizes live sensor data using a real-time dashboard, allows users to track
historical trends with interactive charts, and includes a notification system for alerts. The
platform successfully integrates with all backend APIs to provide a seamless user experience

for effective soil monitoring.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

74

CHAPTER 6

In conclusion, all three primary objectives of the project were met successfully. The result
is a complete, end-to-end system that covers all requirements from hardware data collection

and Al-based prediction to real-time monitoring on a web-based platform.

6.5 Concluding Remark

In summary, this chapter has provided a thorough and systematic evaluation of the "Sensors
Substitution using Al for Agriculture Soil Moisture Monitoring" system, confirming its
successful implementation and operational readiness. The tests on the API showed that the
system is not only working correctly but is also quick and responsive, which is great news for
anyone using the web dashboard.

Furthermore, this chapter has reflected on the significant project challenges that were
encountered during the development lifecycle. These obstacles, which included ensuring stable
hardware connectivity, integrating a complex multi-service backend architecture, and
developing a highly accurate Al prediction model, were all successfully navigated. The ability
to overcome these technical hurdles is a testament to the robust design and careful
implementation of the project.

Ultimately, this chapter confirms that the project has hit all the targets we set out to achieve.
We have a complete system that does what it was designed to do which is use Al to predict soil
moisture without needing a physical sensor. Now that we know the system is solid, we can

move on to the final chapter to wrap everything up and think about what could come next.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

75

CHAPTER 7

Chapter 7

Conclusion and Recommendations

This final chapter brings the project, "Sensors Substitution using Al for Agriculture Soil
Moisture Monitoring," to its close. It will begin by summarizing the entire project, from the
initial problem statement through to the final evaluated system, to reflect on the achievements
and outcomes. Following the conclusion, this chapter will provide a series of recommendations
for future work, outlining potential enhancements and new directions that could build upon the

foundation established by this research.

7.1 Conclusion

This project was started to solve a significant and practical problem in modern agriculture
which is the unreliability and cost associated with traditional soil moisture sensors. These
sensors are prone to degradation from environmental factors, leading to inaccurate data and
inefficient water use. The core mission of this project was to design, develop, and validate an
innovative system that replaces these physical sensors with an intelligent, Al-driven prediction
model, thereby creating a more robust, cost-effective, and scalable solution for soil moisture
monitoring.

Throughout this project, a complete, end-to-end system was successfully built, integrating
multiple modern technologies. The journey began with the development of the hardware layer,
where an ESP32 microcontroller and a DHT22 sensor were configured to act as a reliable [oT
data collection node. A key innovation at this stage was the implementation of two distinct
operating modes: a "developer mode" for gathering comprehensive training data (including
actual soil moisture readings) and a "user mode" where the device relies solely on temperature
and humidity to predict soil moisture using Al model.

The heart of the system is the sophisticated backend architecture. A high-performance
server was developed using the Go programming language, which seamlessly manages data
flow between the IoT device, a PostgreSQL database hosted on Microsoft Azure, and a
dedicated Al prediction service. The backend was designed to be scalable and secure, exposing
a comprehensive set of RESTful APIs to handle everything from user authentication and data
management to remote device control. The successful integration of these disparate services,

running on different cloud platforms, stands as a major technical achievement of this project.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

76

CHAPTER 7

The most innovative component of this project is the Al-powered sensor substitution. A
machine learning pipeline was developed in Python, utilizing an ensemble of Random Forest
and Gradient Boosting models to predict soil moisture levels with a high degree of accuracy
(R?>0.96). The success of this model, which relies only on temperature and humidity data,
validates the central hypothesis of this project: that a physical sensor can be effectively replaced
by an intelligent algorithm. The system's ability to allow users to trigger the retraining of this
model with their own data ensures that it can be adapted to new plants and different
environmental conditions.

Finally, a user-friendly, web-based monitoring platform was developed using React and
TypeScript and hosted on Firebase. This frontend provides users with a powerful interface to
visualize real-time data via WebSocket, track historical trends, manage their devices, and
receive notifications about abnormal conditions. The dashboard successfully brings all the
system's capabilities together into a single, cohesive user experience.

In conclusion, this project has successfully met all of its initial objectives. It has delivered
a fully functional proof-of-concept that demonstrates the viability of using Al to substitute
physical sensors in agricultural monitoring. The final system is a testament to the power of
integrating loT, cloud computing, and machine learning to solve real-world problems, offering

a significant contribution to the field of precision agriculture.

7.2 Recommendation

While the current system is a successful proof-of-concept, there are numerous opportunities
for future work that could enhance its capabilities, improve its performance, and broaden its
applicability. The following recommendations are proposed for future development.

First, the AI model's predictive power could be further improved by incorporating
additional environmental variables. While the current model achieves high accuracy with
temperature and humidity, integrating more sensors into the ESP32 device, such as a light
intensity sensor (LDR) and a barometric pressure sensor (BMP280), could capture more
nuanced conditions that influence soil moisture, like evaporation from sunlight. Retraining the
Al model with these new features could increase its accuracy and make it more robust across
a wider range of environments.

A second recommendation is to implement a fully automated watering system. The current
system provides excellent monitoring but still requires manual intervention for irrigation. The

logical next step is to close this loop by integrating a relay module and a small water pump

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

77

CHAPTER 7

with the ESP32. The backend could then be enhanced with a feature allowing users to set a
target soil moisture threshold. When the Al predicts moisture levels have dropped below this
threshold, the server would automatically command the ESP32 to activate the pump,
transforming the system from a passive monitor into an active, intelligent irrigation controller.
Third, developing a dedicated native mobile application would provide superior user
experience. Although the web dashboard is mobile-friendly, a native app for 10S and Android,
built with a framework like React Native or Flutter, could leverage device-specific features
such as push notifications for more immediate and reliable alerts. It could also use the phone's
GPS to simplify the process of tagging the location of new devices during setup.

Finally, exploring more advanced Al and machine learning models could yield even better
performance. While the current ensemble model is effective, experimenting with time-series
forecasting models like LSTM (Long Short-Term Memory) or GRU (Gated Recurrent Unit)
networks could capture more complex temporal patterns in the sensor data. Additionally,
unsupervised learning models could be used for more advanced anomaly detection, helping to
identify subtle deviations that might indicate sensor malfunction or the early onset of plant
distress. By pursuing these recommendations, the foundation laid by this project could be built

upon to create an even more powerful and impactful solution for the future of smart agriculture.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

78

REFERENCES

REFERENCES
[1] Benbrook, Charles M., and Ag BioTech InfoNet. "Rust, resistance, run down soils, and

rising costs—Problems facing soybean producers in Argentina." AgBioTech InfoNet, Technical
Paper 8 (2005): 26. Available: https://www.greenpeace.org/static/planet4-netherlands-
stateless/2018/06/rust-resistance-run-down-soi.pdf

[2] Wang, T., Jin, H. & Sieverding, H.L. Factors affecting farmer perceived challenges
towards precision agriculture. Precision Agric 24, 24562478 (2023), doi:10.1007/s11119-
023-10048-2

[3] D. Danikovich, “Machine Learning in Agriculture,” EffectiveSoft.
https://www.effectivesoft.com/blog/machine-learning-in-agriculture.html (accessed Feb. 25 /

2025).

[4] “Moisture sensor corrosion,” Arduino Forum, Aug. 09, 2017.
https://forum.arduino.cc/t/moisture-sensor-corrosion/474537 (accessed Feb. 26, 2025).

[5] J. Blalock, “The Issues Facing Modern Agriculture,” Cropler.io, Oct. 09, 2024.
https://www.cropler.io/blog-posts/the-issues-facing-modern-agriculture

[6] B. Y. Ooi, W. L. Beh, W. K. Lee, and Shervin, “Using the Cloud to Improve Sensor
Availability and Reliability in Remote Monitoring,” IEEE Transactions on Instrumentation
and Measurement, vol. 68, no. 5, pp. 1522-1532, May 2019, doi:
https://doi.org/10.1109/tim.2018.2882218.

[7]1R. Ullah et al., “EEWMP: An IoT-Based Energy-Efficient Water Management Platform
for Smart Irrigation,” Scientific Programming, vol. 2021, pp. 1-9, Apr. 2021, doi:
https://doi.org/10.1155/2021/5536884.

[8] Srinivasa Rao Burri, D. K. Agarwal, N. Vyas, and R. Duggar, “Optimizing Irrigation
Efficiency with IoT and Machine Learning: A Transfer Learning Approach for Accurate Soil
Moisture Prediction,” Jul. 2023, doi: https://doi.org/10.1109/wconf58270.2023.10235220.
[9] Q. Li, Z. Wang, W. Shangguan, L. L1, Y. Yao, and F. Yu, “Improved daily SMAP
satellite soil moisture prediction over China using deep learning model with transfer
learning,” Journal of Hydrology, vol. 600, p. 126698, Sep. 2021, doi:
https://doi.org/10.1016/j.jhydrol.2021.126698.

[10] D. R. Vincent, N. Deepa, D. Elavarasan, K. Srinivasan, S. H. Chauhdary, and C. Iwendi,
“Sensors Driven Al-Based Agriculture Recommendation Model for Assessing Land
Suitability,” Sensors, vol. 19, no. 17, p. 3667, Jan. 2019, doi:
https://doi.org/10.3390/5s19173667.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

79

https://www.effectivesoft.com/blog/machine-learning-in-agriculture.html

REFERENCES

[11] V. Sinitsin, O. Ibryaeva, V. Sakovskaya, and V. Eremeeva, “Intelligent bearing fault
diagnosis method combining mixed input and hybrid CNN-MLP model,” Mechanical
Systems and Signal Processing, vol. 180, p. 109454, Nov. 2022, doi:
https://doi.org/10.1016/j.ymssp.2022.109454.

[12] A. Uthayakumar, M. P. Mohan, E. H. Khoo, J. Jimeno, M. Y. Siyal, and M. F. Karim,
“Machine Learning Models for Enhanced Estimation of Soil Moisture Using Wideband Radar
Sensor,” Sensors, vol. 22, no. 15, p. 5810, Aug. 2022, doi: https://doi.org/10.3390/s22155810.
[13] C. Josephson, B. Barnhart, S. Katti, K. Winstein, and R. Chandra, “RF Soil Moisture
Sensing via Radar Backscatter Tags,” arXiv.org, 2019. https://arxiv.org/abs/1912.12382
(accessed Jul. 16, 2025).

[14] W. Jiao, J. Wang, Y. He, X. Xi, and X. Chen, “Detecting Soil Moisture Levels Using
Battery-Free Wi-Fi Tag,” arXiv.org, 2022. https://arxiv.org/abs/2202.03275 (accessed Jul. 16,
2025).

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

80

APPENDIX

APPENDIX
Source Code (Repository)
Web Application Repository: https://github.com/Kaisheng328/agriculture-monitoring-ui

Go Backend Repository: https://github.com/Kaisheng328/go-agriculture-monitoring-backend

Python Flask Repository: https://github.com/Kaisheng328/flask-ai-model

Source Code (Microcontroller)
#include <WiFi.h>

#include <HTTPClient.h>

#include <Adafruit Sensor.h>
#include <DHT.h>

#include <DHT U.h>

#include <ArduinoJson.h>

#include <esp_task wdt.h>

#define WIFI SSID "wifilD"

#define WIFI PASSWORD "wifiPassword"

#define DATA URL "https://go-backend-server-738775168875.asia-southeast1.run.app/sensor-data”

#define LOGIN URL "https://go-backend-server-738775168875.asia-southeast1.run.app/login"

#define CONFIG_URL "https://go-backend-server-738775168875.asia-southeast1.run.app/device-config/esp32-
001"

#define DHTPIN 4 // Pin connected to the DHT22 sensor

#define DHTTYPE DHT22 // Specify the sensor type (DHT22)

#define SOIL_PIN 32 // Pin connected to the soil moisture sensor (analog)
#define LED PIN 2 // Built-in or external LED

enum LedState {
STATUS CONNECTING,
STATUS NORMAL,
STATUS DEVELOPER

})

LedState currentLedState = STATUS _CONNECTING;
unsigned long lastLedToggle = 0;
bool ledOn = false;

bool developerMode = false;
time_t developerStartTime = 0;
String jwtToken ="";

DHT dht(DHTPIN, DHTTYPE);

const unsigned long checklInterval = 600000; // 10 minutes

const unsigned long restartInterval = 3610000; // Optional hourly restart

const unsigned long developerModeDuration = 14UL * 24 * 60 * 60; // 14 days in seconds
// const unsigned long developerModeDuration = SUL * 60; // 5 minutes in seconds

unsigned long previousMillis = 0;
unsigned long lastRestartMillis = 0;

void setup() {
Serial.begin(115200);
currentLedState = STATUS _CONNECTING;
dht.begin();
pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, LOW);
const esp_task wdt config t wdt config = {

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

81

https://github.com/Kaisheng328/agriculture-monitoring-ui
https://github.com/Kaisheng328/go-agriculture-monitoring-backend
https://github.com/Kaisheng328/flask-ai-model

APPENDIX

timeout_ms = 10000, // 10 seconds timeout
.Adle_core_mask =1 << 0, / Core 0 (typical for single-core task watchdog)
.trigger panic =true // Panic if not fed in time

}!

esp_task wdt add(NULL); // Add current task (loop task) to watchdog

// Initialize pins
pinMode(SOIL_PIN, INPUT);
// Connect to Wi-Fi
WiFi.begin(WIFI_SSID, WIFI PASSWORD);
Serial.print("Connecting to Wi-Fi");
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("\nConnected to Wi-Fi");
configTime(0, 0, "pool.ntp.org", "time.nist.gov"); // NTP for Unix time
waitForTimeSync();
loginAndGetToken(); / Get JWT token at startup
fetchDeviceConfig();
sendSensorData(); // Take first reading immediately
previousMillis = millis();
lastRestartMillis = millis();

H
void updateLED() {
unsigned long now = millis();

switch (currentLedState) {
case STATUS_CONNECTING:
if (now - lastLedToggle >200) { // Fast blink
ledOn = !1edOn;
digital Write(LED_PIN, ledOn ? HIGH : LOW);
lastLedToggle = now;

¥
break;

case STATUS DEVELOPER:
if (now - lastLedToggle > 1000) { // Slow blink
ledOn = !1edOn;
digitalWrite(LED_PIN, ledOn ? HIGH : LOW);
lastLedToggle = now;

¥
break;

case STATUS NORMAL:
digital Write(LED PIN, HIGH); // Solid ON
break;
H
H

void checkWiFiConnection() {
if (WiFi.status() = WL _CONNECTED) {
Serial.println(" 4. WiFi lost. Reconnecting...");
WiFi.disconnect();
WiFi.begin(WIFI_SSID, WIFI PASSWORD);
unsigned long startAttemptTime = millis();

while (WiFi.status() != WL _CONNECTED && millis() - startAttemptTime < 15000) {

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

82

APPENDIX

delay(500);
Serial.print(".");

}

if (WiFi.status() != WL_CONNECTED) {
Serial.println("\n){ WiFi reconnection failed, restarting...");
ESP.restart();

} else {
Serial.println("\n £4 Reconnected to WiFi");

H

H
H

void waitForTimeSync() {
Serial.print(" - Syncing time via NTP");
time t now = time(nullptr);
unsigned long start = millis();

while (now < 100000 && millis() - start < 30000) { // wait up to 30 seconds
delay(500);
Serial.print(".");
now = time(nullptr);

}

if (now >= 100000) {
Serial.println("\n £4 Time synced");
} else {
Serial.println("\n 4. Time sync failed. Continuing anyway.");
// Optional: continue without restarting
H
H

void loginAndGetToken() {
if (WiFi.status() == WL_CONNECTED) {
for (int attempt = 0; attempt < 3; attempt++) {
HTTPClient http;
http.begin(LOGIN_URL);
http.addHeader("Content-Type", "application/json");

String loginPayload = " {\"username\": \"testing\", \"password\": \"12345\"}";
int httpResponseCode = http.POST(loginPayload);

if (httpResponseCode == 200) {
String response = http.getString();
DynamicJsonDocument doc(512);
deserializeJson(doc, response);
jwtToken = doc["token"].as<String>();
Serial.printin(" £4 Login successful");
http.end();
currentLedState = STATUS NORMAL,;
return;

}

http.end();
Serial.println(" X Login failed (attempt " + String(attempt + 1) +")");
delay(2000 * (attempt + 1)); // Exponential backoff

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

83

APPENDIX

Serial.printn(" X Login failed after multiple attempts, restarting...");
ESP.restart();
H
H

void fetchDeviceConfig() {
if (WiFi.status() == WL_CONNECTED && jwtToken !="") {
HTTPClient http;
http.begin(CONFIG_URL);
http.addHeader(" Authorization", "Bearer " + jwtToken);
int code = http.GET();

if (code == 200) {
String response = http.getString();
DynamicJsonDocument doc(512);
DeserializationError error = deserializeJson(doc, response);
if (lerror) {
bool requestedMode = doc["developer_mode"];
time_t start = doc["start_timestamp"];
time t now = time(nullptr);

if (requestedMode && now - start <= developerModeDuration) {
developerMode = true;
developerStartTime = start;

} else {
developerMode = false;
H
Serial.println(" (2] Mode check — Developer mode: " + String(developerMode));
H
} else {
Serial.println(") Config fetch failed: " + String(code));
H
currentLedState = developerMode ? STATUS _DEVELOPER : STATUS NORMAL;
http.end();
H

}

void sendSensorData() {
float temperature = dht.readTemperature();
float humidity = dht.readHumidity();

if (isnan(temperature) || isnan(humidity)) {
Serial.println(" 4. Failed to read DHT22");
return;

}

float soilMoisturePercent = -1;
int soilValue = -1;

if (developerMode) {
soilValue = analogRead(SOIL_PIN);
soilMoisturePercent = (100.0 * (4095 - soilValue)) / 4095.0;
Serial.println("Soil value (analog): " + String(soilValue));

}

if (WiFi.status() == WL_CONNECTED && jwtToken !="") {
HTTPClient http;
http.begin(DATA_URL);
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

84

APPENDIX

http.addHeader("Content-Type", "application/json");
http.addHeader(" Authorization", "Bearer " + jwtToken);

String payload =" { \"temperature\": " + String(temperature) +
" \"humidity\": " + String(humidity);
if (developerMode) {
payload +=",\"soil_moisture\": " + String(soilMoisturePercent);

}
payload +="}";

int httpCode = http.POST(payload);
if (httpCode > 0) {
Serial.println(" £4 Data sent: " + payload + "Response: " + http.getString());
} else {
Serial.println(" X Send error: " + String(httpCode));
H
http.end();
H
H

void restartDevice() {
Serial.printIn(") Restarting ESP32...");
delay(1000);
ESP.restart();

}

void checkRestartCondition() {
if (millis() - lastRestartMillis) >= restartInterval) {
lastRestartMillis = millis();
restartDevice();
H
H

void loop() {

updateLED();

unsigned long now = millis();

if ((now - previousMillis) >= checklInterval) {
previousMillis = now;
fetchDeviceConfig();
sendSensorData();

H

esp_task wdt reset(); // Feed the watchdog

checkRestartCondition();

}

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

POSTER

UT

UNIVERSITI TUNKU ABDUL RAHMAN

R EEEEEEEEEEEEEEEEEEEEEEEER

FACULTY OF INFORMATION
COMMLUNICATION AND TECHNOLOGY

Sensors Substitution using Al for Agriculture
Soil Moisture Monitoring

VEEEEEEEEEEEEEEEEEEEEEEEEEEEERN

INTRODUCTION

Traditional soil moisture sensors
suffer from issues like environmental
degradation, high maintenance, and
potential inaccuracies, hindering
efficient water management in
agriculture. This project explores an
innovative solution using Artificial

OBJECTIVE

To provide a reliable, cost-effective,
and scalable system for monitoring
soil moisture in agriculture by
substituting physical sensors with
Al-driven predictions based on easily
obtainable environmental data
(temperature and humidity).

Intelligence.

PROPOSED METHOD
METHOD @

BACKEND & Al PIPELINE

METHOD 1
DATA ACQUISITION & MODES

Eal-time data collection using ESP_.'a l_ __I
microcontroller and DHT22 sensor
(temperature/humidity). System supports
two modes:

» Developer Mode: Collects data with soil

moisture sensor for Al model training.

» Deploy Mode: Predicts soil moisture

using Al based on temperature an
humidity. I_

Backend server (Go, PostgreSQL) manages
data and hosts the Al model (Random Forest
& Gradient Boosting). RESTful APIs for
communication. On-demand Al model
retraining capability.

WHY THE PROPOSED SYSTEM IS BETTER ?

1.Reduced cost and maintenance associated with physical soil
moisture sensors.

2.More robust and less susceptible to environmental degradation.

3.Scalable solution for monitoring large agricultural areas.

4.Potential for integration with other smart agriculture technologies. -

5.User-friendly web platform for data visualization and system control.

CONCULSION : This project successfully demonstrates the feasibility and effectiveness
of using Al to substitute physical soil moisture sensors. The developed
system provides a reliable, cost-effective, and user-friendly solution for
agricultural monitoring, contributing to the advancement of precision
agriculture.

PROJECT DEVELOPER: TAY KAI SHENG PROJECT SUPERVISOR: DR TEOH SHEN KHANG

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

86

