FATIGUE DETECTION SYSTEM IN CARS
BY
VANICHA KULMA

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER
ENGINEERING
Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

COPYRIGHT STATEMENT

© 2025 Vanicha Kulma. All rights reserved.

This Final Year Project proposal is submitted in partial fulfillment of the
requirements for the degree of Bachelor of Information Technology (Honours)
Computer Engineering at Universiti Tunku Abdul Rahman (UTAR). This Final Year
Project proposal represents the work of the author, except where due
acknowledgment has been made in the text. No part of this Final Year Project
proposal may be reproduced, stored, or transmitted in any form or by any means,
whether electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the author or UTAR, in accordance with UTAR's

Intellectual Property Policy.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to sincerely thank my supervisor, Ts Dr Vikneswary a/p Jayapal, for guiding me
through this Final Year Project titled "Fatigue Detection System in Cars." Her valuable advice,

clear explanations, and patience made a huge difference in completing this work successfully.

I'm also grateful to the lecturers and lab assistants from the Faculty of Information and
Communication Technology. Their assistance and availability whenever | faced difficulties

really helped smooth the project's progress.

Additionally, | wish to thank my family and friends who were always there to support and

encourage me, especially when things became stressful or challenging.

Finally, working on this project was an excellent learning opportunity. It improved my practical
skills, expanded my technical understanding, and gave me confidence to take on future

challenges in my career.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
iii

ABSTRACT

Fatigue among drivers continues to be one of the leading causes of road accidents particularly
when people are driving for long hours, during the night, or in conditions that demand high
focus. Even though technology has come a long way, a lot of cars still don’t come with proper
systems that can detect when the driver is starting to lose focus or show early signs of
drowsiness. That is what motivated this project — to come up with a solution that can identify
fatigue symptoms through facial cues in real time and alert the driver before things get
dangerous.

The project uses a lightweight CNN called Mobilenet to perform real-time image-based
detection efficiently on a compact device like the Raspberry Pi. It integrates EAR and MAR to
detect eye closure and yawning, while also tracking blink frequency, which can help identify
early signs of drowsiness, Facial landmarks are used to extract these features from the driver’s
face using a webcam. To further enhance reliability, the system includes head tilt detection by
calculating pitch and roll angles to recognize unnatural head positions commonly associated
with fatigue.

Special attention is given to real-world challenges such as low lighting conditions, reflection
from spectacles, and obstructions that may affect facial visibility. These factors can impact
detection accuracy, so the system is designed to be robust and adaptable in various driving
environments.

Overall, this project is more than deep learning experiment. It integrates computer vision, facial
analysis, real-time processing, and system integration to deliver a lightweight and practical
solution. The system is cost-effective, easy to deploy, and reliable enough to help reduce the

risk of accidents caused by driver fatigue.

Area of Study (Maximum 2): Fatigue Indicators

Keywords (Maximum 10): Driver Fatigue Detection, Computer Vision, Deep Learning, Facial

Landamark, Real time Monitoring, Embedded Platform

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE

COPYRIGHT STATEMENT
ACKNOWLEDGEMENTS
ABSTRACT

TABLE OF CONTENTS
LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION
1.1 Problem Statement and Motivation
1.2 Objectives
1.3 Project Scope and Direction
1.4 Contributions
1.5 Report Organization

CHAPTER 2 LITERATURE REVIEW

2.1 Previous Works on Driver Fatigue Detection Techniques
2.1.1 MobileNet: Deep Learning-Based Driver Fatigue
Detection
2.1.2 Eye Aspect Ratio (EAR) and Mouth Aspect Ratio (MAR)
2.1.3 Eye Blinking Frequency in Fatigue Detection
2.1.4 Head Pose Estimation Techniques

2.2 Summary for each Article

2.3 Limitation of Previous Studies

2.4 Proposed Solutions

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xi

w w NN R

10
13
14

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH

3.1

System Design Diagram/Equation
3.1.1 System Architecture Diagram
3.1.2 Use Case Diagram and Description

3.1.3 Activity Diagram

CHAPTER 4 SYSTEM DESIGN

4.1
4.2

4.3
4.4

System Block Diagram

System Components Specifications
4.2.1 Hardware Components
4.2.2 Software Components
Circuits and Components Design

System Components Interaction Operations

CHAPTER 5 SYSTEM IMPLEMENTATION

5.1
5.2
5.3
5.4

5.5
5.6

Hardware Setup

Software Setup

Setting and Configuration

System Operation

5.4.1 Screenshot Demonstration
Implementation Issues and Challenges

Concluding Remark

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION

6.1
6.2
6.3
6.4
6.5

System Testing and Performance Metrics
Testing Setup and Result

Project Challenges

Obijectives Evaluation

Concluding Remark

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

15
15
16
18
20

22
22
24
24
27
28
29

31
31
32
34
35
36
38
40

41

41
43
46
47
48

Vi

CHAPTER 7 CONCLUSION AND RECOMMENDATION
7.1 Conclusion
7.2 Recommendation

REFERENCES
POSTER

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

49
49
50

o1
53

Vii

Figure Number

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4

Figure 4.5
Figure 4.6

Figure 5.1

Figure 5.2(a)

Figure 5.2(b)

Figure 5.2(c)

Figure 5.2(d)

Figure 6.1(a)

LIST OF FIGURES

Title

MobileNetV2 Architecture

EAR and MAR calculation using facial landmarks
Dlib’s 68 points model

[llustration of Head Pose Angles

System Architecture Flowchart

Use Case Diagram of the Fatigue Detection System
Activity Diagram for Fatigue Detection System

System Block Diagram for Fatigue Detection System
Raspberry Pi 4 Model B

Logitech BRIO 100 Camera

18650 Battery Shield with Dual 18650 Lithium-ion
Batteries

MOXOM SK-39 Bluetooth Speaker

Circuit and Component Design of the Fatigue Detection
System

Hardware setup of the fatigue detection system inside the
vehicle

Normal condition — eyes open, no yawning, stable head
pose

Mild fatigue detected — system triggers a voice advisory
message

Moderate fatigue detected — system triggers voice +
warning alarm

Severe fatigue detected — system triggers extended alarm
sound

shows the system setup during daytime driving, where the
camera captured the driver’s face under natural lighting

conditions

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

co o o1 Ol

16
18
20
22
25
25
26

27
28

31

36

37

37

38

41

viii

Figure 6.1(b) shows the system setup during night-time driving, where
the system relied on cabin lighting to detect facial features
in low-light conditions

Figure 6.2 Accuracy by Fatigue Indicator (Daytime vs Night-time)

Figure 6.3 Accuracy by Fatigue Level (Daytime vs Night-time)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

41

45
45

Table Number

Table 2.1

Table 3.1
Table 3.2
Table 4.1
Table 4.2
Table 4.3

Table 4.4
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5

LIST OF TABLES

Title

Summary of Methods, Performance, and Evaluation
Metrics for Drowsiness Detection Systems

Use Cases and Descriptions

Fatigue Stage Classification

Specifications of Raspberry Pi

Specifications of Camera

Specifications of 18650 Battery Shield with Dual 18650
Lithium-ion Batteries

Specifications of MOXOM SK-39 Bluetooth Speaker
Detailed Comparison of Fatigue Detection Methods
Accuracy of Fatigue Detection (Daytime)

Fatigue Level Accuracy (Daytime)

Accuracy of Fatigue Detection (Night-time)

Fatigue Level Accuracy (Night-time)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

10

19
21
24
25
26

26
42
43
44
44
44

CNN
EAR
MAR
FPS
ROI

LIST OF ABBREVIATIONS

Convolutional Neural Network
Eye Aspect Ratio

Mouth Aspect Ratio

Frames Per Second

Region of Interest

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xi

Chapter 1

Introduction

In this chapter, | will briefly introduce the idea behind this project, along with the reasons why
it was chosen. Fatigue is something many driver face, especially during long or late-night drive,
and it often leads to accident when it goes unnoticed. Although some modern cars have safety
features, not all of them include proper fatigue detection systems. This project focuses on
creating a system that can recognize signs like eye closure, yawning, blinking patterns, and
head tilt using simple hardware and deep learning methods. The chapter also explains the
problem being addressed, the main goals, the direction of the project, the contributions made,

and how this report is structured.

1.1 Problem Statement and Motivation

Fatigue-related driving accidents remain a major safety concern worldwide. Although many
fatigue detection systems have been proposed, a significant number either depend on expensive
specialized hardware [1] or fail to maintain high accuracy under real-world conditions [2].
Environmental factors such as low lighting, reflections caused by spectacles, and the presence
of face masks often disrupt accurate facial feature detection [3]. Furthermore, critical fatigue
indicators like frequent blinking, yawning, and subtle head tilting are sometimes missed,
resulting in delayed warnings and reduced system effectiveness.

These limitations reveal a gap in current driver monitoring solutions, particularly for affordable
systems intended for standard vehicles with limited computational resources.

Motivated by these challenges, this project aims to develop a real-time fatigue detection system
that is accurate, lightweight, and robust across various conditions. The proposed method
integrates MobileNetVV2-based deep learning with traditional facial landmark techniques
(EAR, MAR, and head pose estimation) to monitor key indicators such as eye closure, blinking
frequency, yawning, and head posture. The goal is to create a practical and cost-effective
solution that enhances road safety by reliably detecting fatigue early and issuing timely alerts

to drivers.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.2 Objectives

e To develop a real-time fatigue detection system using Python and deep learning on an
embedded platform like Raspberry Pi.

e Tointegrate deep learning with facial landmark detection (EAR and MAR) for accurate
fatigue monitoring in various conditions.

e Toimplement a responsive alert system that activates sound warnings when drowsiness

is detected.

1.3 Project Scope and Direction

This project focuses on developing a real-time fatigue detection system that operates on an
embedded platform, specifically the Raspberry Pi. The system is built using Python and deep
learning to enable efficient processing within hardware constraints. A webcam is used to

continuously capture the driver’s facial features, which are analyzed to detect signs of fatigue.

The core detection method integrates a lightweight deep learning model with facial landmark
analysis, using Eye Aspect Ratio (EAR) and Mouth Aspect Ratio (MAR) to monitor eye
closure, yawning, and blink frequency. For head posture detection, the system applies the
solvePnP method to estimate the orientation of the driver’s head and detect abnormal
downward tilting, which may indicate drowsiness. The system is designed to perform reliably
in varying conditions, including low-light environments and when the driver is wearing

spectacles.

In addition, the system includes a sound-based alert feature that activates when signs of fatigue
are detected, helping to regain the driver’s attention. The overall goal is to create a practical,
low-cost, and standalone solution that improves road safety through accurate and timely fatigue

monitoring.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.4 Contributions

This project contributes to the advancement of road safety by developing a fatigue detection
system that is both practical and efficient for in-vehicle use. A major contribution is the
integration of MobileNet with facial landmark analysis and classical methods such as the EAR
and MAR. This combination enables robust, real-time detection of fatigue indicators including
eye closure, yawning, blink frequency, and head posture. The use of solvePnP for head
orientation provides an additional layer of reliability, allowing the system to identify downward

or tilted head movements that are strongly associated with drowsiness.

Another key contribution lies in the system’s capability to operate effectively under
challenging conditions, such as poor lighting and when the driver is wearing spectacles.
Furthermore, the project demonstrates that deep learning and computer vision techniques can
be deployed efficiently on a compact embedded platform like the Raspberry Pi, eliminating the
need for high-end computing hardware. Finally, the inclusion of an in-car sound alert system
ensures immediate feedback when signs of fatigue are detected, providing timely warnings that

may help prevent accidents.
1.5 Report Organization

This report is structured into seven chapters. Chapter 1 introduces the project by presenting the
problem statement, objectives, scope, and contributions. Chapter 2 provides the literature
review, covering related technologies, existing systems, and previous approaches to fatigue
detection. Chapter 3 describes the methodology, including the system model, design diagrams,
and overall approach. Chapter 4 details the system design, explaining the block diagram,
component specifications, and interactions between modules. Chapter 5 discusses the
implementation process, including hardware setup, software configuration, and system
operation. Chapter 6 presents the system evaluation and discussion, focusing on testing, results,
and performance analysis. Finally, Chapter 7 concludes the report by summarising the project

outcomes and offering recommendations for future improvements.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2

Literature Review

2.1 Previous Works on Driver Fatigue Detection Techniques

2.1.1 MobileNet: Deep Learning-Based Driver Fatigue Detection

MobileNet, especially its MobileNetV2 variant, has become a popular deep learning model for
driver fatigue detection due to its lightweight architecture and suitability for real-time
deployment on embedded platforms. By utilizing depthwise separable convolutions,
MobileNetV2 significantly reduces model size and computational demands while maintaining
high accuracy, making it ideal for systems running on devices like the Raspberry Pi.

In the study by Wagh et al., MobileNetV2 was trained using the MRL Eye dataset to detect eye
closure and trigger alerts when drowsiness was detected. A Haar cascade classifier was used to
identify facial regions, and MobileNetV2 classified eye states based on video input from a
webcam. The system was designed to issue warnings via buzzer and simulate emergency
actions like slowing down the vehicle if the driver remained unresponsive. The approach
achieved an impressive accuracy of 99.33%, showing high reliability in various lighting
conditions [2].

Another study conducted by Wunan et al. evaluated MobileNetV2 alongside NASNet Mobile
and EfficientNetBO using a subset of the MRL Eye dataset. MobileNetV2 recorded a training
accuracy of 100%, validation accuracy of 95%, and testing accuracy of 94%. Despite
EfficientNetBO0 scoring slightly higher, MobileNetVV2 was favored for its smaller model size of

14 MB and lower training time, making it highly efficient for embedded applications [3].

In a separate paper focusing specifically on performance benchmarking, MobileNetV2 was
trained on a larger dataset with over 41,000 labeled images categorized as “Drowsy” or “Non-
Drowsy.” The model achieved training accuracy of 99.97% and test accuracy of 99.86%. The
study emphasized MobileNetV2’s strong generalization across different lighting conditions
and face appearances, demonstrating its potential for integration into real-time, in-vehicle

systems [1].

In the thesis by Dongjiang Wu, MobileNet was applied to a driver monitoring system to detect

both fatigue and distraction. The method involved processing facial images to classify states

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

such as eye closure, mouth movement, and distracted behaviors like phone usage. The system
was trained using both public and self-collected datasets and was designed to operate in real

time with optimized accuracy for practical driving scenarios [7].

In summary, MobileNetV2 achieves accuracy rates between 94% and 99.86%, making it a
reliable model for fatigue detection. Its small size, fast training, and suitability for embedded

systems make it ideal for real-time driver monitoring in various conditions.

n=1280

O
: "'"""’ n=1280 h e
e ..
i \\\)i
. (e
L B -
128x128x3 128x128 64 x 64 32x32
Softmax
Ful!y Connected

MobileNetVv2 Classifier

-> =
Preprocessing 3x3 Conv, RelLU Max pool 2x2

Figure 2.1: MobileNetV2 architecture

2.1.2 Eye Aspect Ratio (EAR) and Mouth Aspect Ratio (MAR)

The EAR and MAR are commonly used in fatigue detection to monitor eye closure and
yawning. These values are calculated from facial landmarks and compared against fixed
thresholds to detect signs of drowsiness in real time. EAR values below 0.25-0.3 indicate eye
closure, while MAR values above 0.9 suggest yawning.

_lp2 = psll + llps — psl|

y
pief 1
8
. EAR=MAR =
» 2|lp1 — pall
pl f .
; e

Figure 2.2: EAR and MAR calculation using facial landmarks

Nizar et al. developed a system using OpenCV and Dlib’s 68 facial landmarks to monitor EAR

and MAR in real time. The system triggered an alarm when signs of fatigue were detected and

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

performed well under different lighting conditions. It achieved an accuracy of 95% during the

day and 85% at night, confirming its effectiveness even when the driver wore spectacles [4].

% 24 *25
vig *20 +21 w23 *2 2%

+18 %:2r

+38+39 ¥28 44 1 45
%374 425 41740 t434 48447746

17
+1 ha9
*30

*2 31
#32 33.94-38 % §45

%51 52 *53
;50‘52 ¥62 764'54 *14
¢ 49 81 + 65 55
+68 *66

- 60 el «56
x5 *59 ,gg *57

Figure 2.3: DIib’s 68 points model

Similarly, Awasekar et al. implemented an EAR and MAR-based system using a Raspberry Pi
and a NolIR camera for enhanced low-light performance. Their threshold values were 0.3 for
EAR and 0.9 for MAR, determined through testing to minimize false positives. Their system
reached 100% accuracy in eye closure detection and an average of 79% accuracy for yawning,
supported by visual and audio alerts along with emergency SMS natifications [5].

Another implementation presented on a Raspberry Pi platform showed effective use of EAR
and MAR for triggering buzzer alerts when threshold values were crossed. While specific
accuracy values were not reported, the system demonstrated practical performance in real-time
fatigue detection [6].

Overall, EAR and MAR offer a lightweight and effective solution for non-intrusive driver
fatigue detection. Their simplicity, real-time capability, and proven accuracy make them well-

suited for embedded systems and practical in-vehicle use.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.3 Eye Blinking Frequency in Fatigue Detection

Eye blinking frequency is a reliable indicator for detecting early signs of driver drowsiness. A
decrease in blink rate or an increase in eye closure duration often reflects reduced alertness.
This method is non-intrusive and can be implemented using either image-processing

techniques or infrared sensors.

Danisman et al. introduced a system that detects eye blinks using horizontal symmetry analysis
from webcam footage. The system identifies changes in eye symmetry to classify open and
closed eye states, allowing the measurement of blink durations. Their method achieved 94.8%
accuracy, 90.7% precision, and a 1% false positive rate when tested on the JZU eye-blink

database, which included varied lighting conditions and subjects wearing glasses [8].

Leopoldo et al. developed a device using an IR-based eye blink sensor integrated with an
Arduino. The system monitored blink rate and eye closure time, triggering a buzzer and a
vibrating pillow when abnormal patterns were detected. It classified drowsiness when eye
closure exceeded 2—3 seconds or when blinking rate fell outside the 12—19 blinks per minute
range. The device reached an accuracy of 80% and precision of 85% across 20 trials [9].

Another approach combined blink frequency monitoring with head posture tracking. The
system defined blink duration thresholds (e.g. above 400 ms) to classify drowsy behavior and
issued alerts accordingly. It performed reliably under normal webcam input and maintained

functionality during moderate face movement [10].

In conclusion, blink frequency and closure duration are effective fatigue indicators. With
reported accuracies up to 94.8%, they serve as dependable inputs for real-time drowsiness

detection systems.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.4 Head Pose Estimation Techniques

Head pose estimation is a critical component in visual-based driver fatigue detection systems.
It helps track orientation changes such as nodding or turning away, which often signal
drowsiness or distraction. Techniques like solvePnP and facial landmark-based models are

commonly used to estimate pitch, yaw, and roll angles for real-time posture monitoring.

Roll
Pitch

-

- - -

Figure 2.4: Illustration of Head Pose Angles

Meng Zhang et al. proposed a fatigue detection system that integrates head pose estimation to
correct errors in EAR calculation caused by face rotation. Using solvePnP, the system
determines pitch and yaw angles and compensates EAR accordingly to reduce false positives.
Their experiment showed that applying head pose correction improved EAR accuracy from
89.85% to 94.94%, enhancing system performance under varying head orientations [11].

Wang et al. proposed a head movement-based fatigue detection method that estimates driver
head posture using Euler angles derived from the solvePnP algorithm. The system focuses on
monitoring head-down behavior as a key indicator of fatigue. Two thresholds are defined to
classify fatigue severity: a head-down time greater than 3 seconds and a head-down frequency
of 4 times or more are both indicators of deep fatigue. These posture-based parameters are
fused with other features using a fuzzy logic approach to improve classification accuracy under
real driving conditions [12].

Chadha et al. applied solvePnP with 2D-3D point mapping for head pose estimation. Their
system combined this pose data with facial features like eye and mouth states to trigger alerts.
While no numerical accuracy was specified, the method demonstrated real-time responsiveness

and stable head tracking for embedded in-car systems [13].

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Lu Yu et al. incorporated head movement analysis into a multi-modal driver monitoring system
by using solvePnP to estimate head pose from 2D facial landmarks. The method tracks pitch
and roll angles to monitor head orientation changes in real time, identifying signs of drowsiness
through nodding or tilting behaviors. The system was evaluated using highway driving data
collected from 30 drivers and achieved a fatigue classification accuracy of 97.78%, with 98.1%
for alert, 98.8% for mild fatigue, and 96.5% for severe fatigue [14].

Ye et al. developed a fatigue detection system combining eye and mouth state classification
with head pose estimation using the EPnP algorithm. Euler angles (pitch, yaw, roll) were
calculated from facial landmarks to monitor head movement. Fatigue was detected when the
angles exceeded 21° for pitch, 20° for yaw, or 20.5° for roll. The method showed strong real-

time performance and effectively identified abnormal head postures linked to fatigue [15].

Lastly, a study utilizing the Pose-Extended Active Shape Model (PE-ASM) defined angle
thresholds to recognize extreme head orientations. The model switches between pose templates
based on preset thresholds of £15° to +39° for pitch, £15° to £75° for yaw, and £15° to +52°
for roll, improving accuracy in cases of non-frontal head positioning and enhancing the

detection of distracted or drowsy states [16].

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Summary for each Article

Table 2.1: Summary of Methods, Performance, and Evaluation Metrics for Drowsiness

Detection Systems

Paper Method Evaluation Strengths Weaknesses
. Accuracy: Extremely high
99.97% y ired
. require
[1] Transfer (train) Real-time ready
learning . Training can be
99.86% Robust in varied resource-intensive
Dense layers lighti
(test) Ighting
MobileNet\/2 Live video analysis | Relies on eye
_ detection only
Haar Cascade | Accuracy: Includes emergency
[2] 09.330¢ response actions Less robust in
. 0
MRL Eye Works well with occluded
Dataset simulation conditions
Vs Suitable for Slight overfitting
9 i ui
3 EfficientNetB0 100% (train) embedded system observed
Vs 95% (val o Lower accuracy
. Fast training than EfficientNet
NasNet 94% (test) | convergence
Works in varied
Accuracy: lighting _Reduced_ accuracy
EAR & MAR . in poor lighting
[4] . . 95% (day) » .
using Dlib Real-time detection | pependent on
o (i
OpenCV 85% (night) Handles spectacles | camera placement
Accuracy: _ Occasional false
EAR & MAR 100% Multi-level alerts positives
) 00% (eye) (buzzer, LED,
with Raspberry | 7904 (yawn) | SMS)
[5] | Pi+ NolIR cam .
Precision: | High accuracy Yawning less
SMS alert under various accurate under
integration 82% (eye) | .onditions wide mouth
100%(yawn) movement
(6] Real-time No quantitative
EAR & MAR | functional i ie and low-cost | accuracy data
prototype;

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

10

with Raspberry | qualitative Effective under Limited testing
Pi + IR webcam | success controlled settings | documentation
OpenCV
Detects fatigue & _
i - distraction No numeric
MobileNet Descriptive evaluation
Facial analysis only
7] Alignment (no specific | Webcam compatible g/lethpgi(:jlogy
accuracy) . escribe
Network (FAN) Real-time qualitatively
application ready
Eye blink
detection using AcCUracy:) _ Sensitive to
horizontal 94.8% y Real-time detection | jjjumination and
" symmetry via ©70 at 110 fps glasses
8 ebcam 19 T
w Z;'E 1% Non-intrusive Symmetry-based
Single-frame dataset) L ow-cost hardware de_tectlon may
symmetry miss subtle blinks
metric
Accuracy: Dual alert system Accuracy depends
IR-based eye | gooy (sound + vibration) | o, fixed sensor
blink sensor o
(0] | Sensitivity: | Real-time and position
+ Arduino with | 77,5796 hardware- Performance drops
vibration alerts | Specificity: in high-light
83.33% Effective at night | environments
Eve blink + Accuracy: Hybrid detection
ye b 85.71% (blink + yawn) MATLAB-based;
yawning not optimized for
[10] detection using | Sensitivity: | Robust feature embedded systems
Adaboost, 75 extraction _
RHOG, SVM in o _ Requires stable
88.24% based alert
Reduces error
caused by head Focuses mainly on
11 EAR correction | improved: | g _
[11] for pose 89.85% — mproved No full fatigue
compensation 94.94% robustness in eye detection
R closure detection | ayaluation

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

11

Fatigue

detection i
EAR, yawning, | accurac _Inte_grates multiple No angle-based
y indicators
head-dow based on thresholds
[12] . Uses clearly defined
solvePnP + thresholds; fime/frequenc More logic-based
fuzzy logic qualitative quency than deep learning
classification | thresholds
only
Dlib landmarks o Simple m(;e(sjﬁglr:jid angle
+ solvePn Qualitative | jmplementation
[13] real-time i
Alertsonhead | gyccess Works in live video No detailed
. accuracy
tilt streams h
evaluation
Fatigue
classification
Head pose via accuracy: Based on actual Not tested with
P 97.78% human head specific detection
solvePnP movement ranges thresholds
[14] _ Alert: 98.1% 9
Multi-modal Can be integrated No evaluation on
detection Mild: 98.8% | . g .
into other systems alert precision
Severe:
96.5%
High
Face feature detection]
eXtI“aCtion performance Clearly deflned Relies on Visual
_ using pose | threshold values features onl
Head pose via | o y
[151 | cpip angle Combines image :
thresholds; | enhancementand | RCuUIres system
Triggers on exact pose tracking calibration
angle thresholds | accuracy not
stated
PE-ASM + .| Handles extreme | pequires 3
Accuracy: head poses .
POSIT 98% (train) model matching
o] HMM for 0 Models time-based Training and setu
92% (test) | behavior with g P

fatigue behavior

HMM

more complex

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

12

2.3 Limitation of Previous Studies

A significant limitation across various studies is their sensitivity to lighting
conditions. Detection accuracy frequently decreased in low-light, night-time, or excessively
bright environments, particularly when standard webcams or infrared sensors were employed
without sufficient lighting support. This issue was reported in multiple studies [1], [2], [4],
[10], indicating that variations in illumination significantly impact the practical reliability of
fatigue detection systems.

Another shared issue involves the requirement for frontal facial alignment and
consistent camera positioning. Studies [6], [8], [13], and [15] highlighted that angled or non-
frontal views resulted in inaccurate facial landmark tracking and pose estimation, adversely
affecting detection accuracy. This dependency limits the robustness of systems when faced
with natural driver movements and varying seating postures.

Additionally, systems often struggled with occlusions or facial obstructions, such as
masks, spectacles, or hair interfering with accurate landmark detection. This limitation was
explicitly noted in studies [11] and [14], where occluded facial landmarks led to inconsistent
or failed detections, reducing reliability in real driving environments.

Several reviewed studies also suffered from limited real-world validation. Studies [3],
[7], [12], and [16] primarily relied on controlled laboratory or simulation tests. Consequently,
their performance under realistic driving scenarios involving prolonged use, vibrations, and
varying environmental factors remains uncertain, raising concerns about generalizability and
practical deployment.

Lastly, certain hardware-based approaches encountered performance limitations and
restricted scalability. For example, study [10] reported reduced accuracy due to sensitivity
issues with IR-based eye blink sensors. Similarly, study [5] noted limitations related to limited
test subjects and a lack of long-term evaluations, suggesting the need for broader and extended

field testing.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

13

2.3 Proposed Solutions

This project aims to overcome the limitations identified in previous studies by introducing

several targeted improvements and innovations. Specifically, the project proposes the

following solutions:

1.

Enhanced Lighting Adaptability:

Implement adaptive preprocessing techniques, including brightness normalization and
image enhancement methods, to improve fatigue detection accuracy in varying lighting
conditions such as low light or high glare scenarios.

Robustness to Occlusions and Facial Obstructions:

Integrate advanced facial landmark detection methods and robust convolutional neural
network architectures like MobileNetV2 to ensure accurate tracking despite the
presence of spectacles or other facial obstructions.

Reliable Head Pose Detection:

Incorporate solvePnP based head pose estimation with clearly defined angle thresholds
(pitch £21°, yaw +£20°, roll £20.5°) to accurately detect abnormal head movements, thus
improving fatigue monitoring under realistic driver movements and varied camera
placements.

Multi Feature Fatigue Detection:

Combine multiple fatigue indicators including EAR, MAR, blink frequency, and head
pose into an integrated detection model to enhance reliability and reduce false alarms
compared to systems that rely on single feature detection.

Real world Testing and Validation:

Conduct comprehensive evaluations under realistic driving conditions, incorporating
prolonged testing periods, varied environmental settings, and diverse driver behaviors

to ensure the developed system is robust, practical, and reliable for everyday use.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

14

Chapter 3
System Methodology/Approach OR System Model

3.1 System Design Diagram/Equation

This section presents the overall design of the proposed fatigue detection system. The design
illustrates the sequential flow from input acquisition to output generation, showing how the
camera, pre-processing, feature extraction, classification, decision logic, and alert modules
interact. The diagram provides a overview to guide the detailed explanation of the architecture
in the following subsection.

In addition to the system flow, the design also incorporates mathematical equations used for

fatigue detection:

e The EAR s calculated to determine the openness of the eyes:

2 X |Ip1 — p4ll

Where p1 to pe are the 6 facial landmark points around the eye.

Usage: When EAR drops below a threshold (typically 0.25), the system detects that the

eyes are closing or blinking.

e The MAR is calculated to detect yawning:

2 X |lp1l=p7ll

Where p1 to p1: represent the key landmarks around the mouth region.

Usage: A MAR value higher than 0.6-0.9 typically indicates yawning.

e Head Pose Angles (Pitch, Roll, Yaw):
Head orientation is estimated using the solvePnP algorithm with 3D-2D landmark
correspondences. Distraction and head tilt are determined when the following

thresholds are exceeded:
o Pitch>21° — indicates downward or upward head tilt.
o Roll>20.5° — indicates sideways head tilt.

o Yaw >20° — indicates lateral distraction (looking away from the road).

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

15

3.1.1 System Architecture Diagram

The proposed system architecture was designed to run efficiently on the Raspberry Pi 4
Model B. It consists of five main layers: input, pre-processing, feature extraction and
classification, decision logic, and output, as illustrated in Figure 3.1.

Input Layer
(Camera: Logitech Brio 100)

'

Pre-processing Layer
(Face detection + landmarks)

!

Feature Extraction a & Classification
(EAR, MAR, Head Pose, MobileNet)

'

Decision Logic Layer
(Threshold + MobileNet Decision)

'

Output Layer
(Audio alerts: warning & alarm)

Figure 3.1: System Architecture Flowchart

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

16

Overview of System Architecture:

a. Input Layer
A Logitech Brio 100 webcam continuously captured the driver’s face at 640 x 480
resolution, providing real-time visual data for processing.

b. Pre-processing Layer
Face detection was carried out using Dlib frontal face detector. Dlib 68 landmark
predictor then identified key points around the eyes, mouth, and nose. Cropped face
regions were resized and normalised for MobileNet classification.

c. Feature Extraction and Classification Layer
Three main features were derived: EAR for eye closure, MAR for yawning, and head
pose angles (pitch, yaw, roll) using the solvePnP algorithm. Alongside this, a
TensorFlow Lite MobileNet model classified face states into categories such as
open/closed eyes and yawn/no yawn, complementing the traditional feature-based
approach.

d. Decision Logic Layer
The decision logic combined EAR, MAR, head pose, and MobileNet outputs to
evaluate fatigue. EAR and MAR thresholds detected eye closure and yawning, while
head pose angles identified tilting or distraction. MobileNet provided categorical
predictions (eye open, eye closed, yawn, no yawn), which were cross-checked with the
traditional features to confirm events. Based on these integrated results, the system
determined the fatigue stage (mild, moderate, or severe) and triggered the
corresponding alerts.

e. Output Layer
According to the fatigue stage, the system generated alerts through warning sounds,
alarm tones, and text-to-speech voice messages. Alerts were managed sequentially to

ensure clarity and prevent overlap.

This modular design allowed the system to operate robustly in real driving conditions, handling

challenges such as low light, spectacles, and face obstruction.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

17

3.1.2 Use Case Diagram and Description

Figure 3.2 presents the use case diagram of the proposed fatigue detection system. The main
actor is the Driver, while the system boundary is the Fatigue Detection System running on
Raspberry Pi. The diagram shows the functions available to the actor without implying
execution order. The use cases cover image capture, landmark extraction, state analysis (eyes

and mouth), head-pose estimation, integrated evaluation, and alerts.

Fatigue Detection System

Capture Driver Face

Detect Facial Landmarks

/ Analyze Eye State

Analyze Mouth State

Driver

Estimate Head Pose

N s

Evaluate Fatigue Level

Trigger Alerts

Figure 3.2: Use Case Diagram of the Fatigue Detection System

Actor
« Driver: the person whose face is monitored while driving.
System Boundary
o Fatigue Detection System: real-time embedded application on Raspberry Pi 4 Model

B with camera input and audio output.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

18

Use Cases and Descriptions

Table 3.1: Use Cases and Descriptions

Use Case

Brief Description

Primary Outcome

Capture Driver Face

Acquire live frames from the
Logitech Brio 100 camera at

640x480 for real-time processing.

Captured frames are sent to

the next processing steps.

Detect Facial

Landmarks

Detect face region and extract 68
landmarks (eyes, mouth, nose)

using Dlib.

Landmark coordinates for

feature computation.

Analyse Eye State

Compute EAR and use MobileNet
inference to confirm open/closed

eyes.

Eye closure is detected and

recorded

Analyse Mouth State

Compute MAR and use
MobileNet inference to confirm

yawn/no-yawn.

Yawning is detected and

recorded

Estimate Head Pose

Apply solvePnP on selected
landmarks to derive pitch, yaw,

and roll.

Head-tilt/distraction

indicators available.

Evaluate Fatigue

Combine EAR, MAR, head pose,

and MobileNet results with set

Current fatigue stage

system.

Level limits to decide the fatigue level determined.
(mild, moderate, or severe).
Issue stage-appropriate warnings)) _
) _)) Driver receives timely
Trigger Alerts (voice + sounds) via the audio

notifications.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

19

3.1.3 Activity Diagram
The activity diagram in Figure 3.3 illustrates the workflow of the fatigue detection system,

from camera initialisation to alert generation. The process can be explained in the following

Camera

Capture Frame

steps:

A 4
A A

Detect

rYES

{ Preprocess Face J

!

Extract Features:
MobileNet label (eye/yawn)
EAR & MAR ratios
Head-pose angles

Fatigue?
(Mild,Moderate,
Severe)

YES

v

[Alarm Generation]
]

Figure 3.3: Activity Diagram for Fatigue Detection System

1. System Initialisation — The Raspberry Pi activates the camera, loads the MobileNet
TFLite model, and sets up the thresholds for EAR, MAR, and head pose estimation.

2. Frame Capture and Face Detection — Frames are continuously captured from the
camera. If a face is not detected, the system loops back to capture the next frame. If
detected, facial landmarks are extracted.

3. Feature Extraction and Classification — EAR and MAR are calculated from the facial
landmarks, while head pose is estimated using solvePnP. At the same time, MobileNet

classifies the face state (eye open/closed, yawn/no yawn).

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

20

4. Decision Logic and Fatigue Evaluation — The system evaluates fatigue based on blink
frequency, yawning events, and head tilt occurrences over specific time windows.
These results are fused with MobileNet predictions and compared against thresholds to
determine the fatigue stage.

5. Alert Generation — Based on the fatigue level, the system triggers an appropriate
response:

o Mild fatigue: voice message only
o Moderate fatigue: voice message + alarm
o Severe fatigue: extended alarm sound
All alerts are executed on separate threads to maintain real-time processing
without interrupting video analysis.
To ensure consistent classification, fatigue was divided into three stages according to the

detection criteria summarised in Table 3.2.

Table 3.2: Fatigue Stage Classification

Stage Detection Criteria

Blink > 15 in 1 minute
Mild Yawn > 3 in 1 minute

Head tilt > 3 times in 1 minute

Blink > 15 in 40 seconds
Moderate | Yawn > 3 in 40 seconds

Head tilt > 3 times in 40 seconds

Eyes closed > 3 seconds
Blink > 15 in 25 seconds
Severe)
Yawn >3 in 25 seconds

Head tilt > 3 in 25 seconds or tilt duration > 2 seconds

This structured classification enables the system to respond appropriately to escalating signs of

drowsiness, ensuring timely and progressive alerts to the driver.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
21

Chapter 4
System Design

4.1 System Block Diagram

The system block diagram of the fatigue detection system is illustrated in Figure 4.1. The
design follows a modular structure that begins with the input stage, proceeds through several
processing blocks, and ends with the output stage that generates alerts. All modules are
executed on the Raspberry Pi 4 Model B, which serves as the main processing unit. This top-

down design ensures that the system can be rebuilt and understood step by step.

Input Stage
(Camera)

v

Preprocessing Module
(Dlib face + landmarks)

|
v v

Feature Extraction Module MobileNet Module
(EAR, MAR, Head Pose) (TFLite Classication)

| |
v

Decision Logic Module
(Combine EAR, MAR,
Head pose, MobileNet)

v

Alert Module
(Voice + Alarm)

v

Output Stage
(Bluetooth Speaker)

Figure 4.1: System Block Diagram for Fatigue Detection System

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
22

The input stage consists of the Logitech Brio 100 camera, which continuously captures real-

time video of the driver’s face at a resolution of 640 x 480 pixels. The camera is directly

connected to the Raspberry Pi 4 Model B, which functions as the main processing unit.

The processing stage of the Raspberry Pi is divided into several modules:

Pre-processing Module

This block receives the captured frames and applies Dlib’s frontal face detector to locate
the face region. Dlib’s 68-point landmark predictor is then used to identify key points
around the eyes, mouth, and nose. These landmarks serve as the basis for further
analysis.

Feature Extraction Module

From the detected landmarks, the EAR is calculated to determine eye closure, while the
MAR is computed to detect yawning. In addition, head pose estimation is performed
using the solvePnP algorithm, which calculates pitch, yaw, and roll angles to monitor
head tilting and distraction events.

Deep Learning Module (MobileNet TFL.ite)

A lightweight MobileNet model, converted into TensorFlow Lite format, is integrated
to classify the facial state into categories such as open eyes, closed eyes, yawn, and no
yawn. The output of this module complements the EAR and MAR values, providing
more robust detection in real-time.

Decision Logic Module

This module fuses the outputs of EAR, MAR, head pose, and MobileNet predictions.
Thresholds and smoothing functions are applied to reduce false positives. Based on the
evaluation, the driver’s condition is categorised into three stages: mild, moderate, or
severe fatigue.

Alert Module

The final block generates alerts according to the fatigue stage. For mild fatigue, a voice
message is played. For moderate fatigue, both a voice message and an alarm sound are
triggered. For severe fatigue, a continuous alarm is activated. To maintain real-time
performance, alerts are executed on separate threads, ensuring the detection pipeline

continues without interruption.

The output stage consists of the Raspberry Pi’s audio interface connected to a Bluetooth

speaker. This delivers clear voice and sound alerts to the driver.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

23

This modular design ensures that every component, from camera capture to alert generation, is
well-defined. With the block diagram and detailed explanation of each module, the system can

be reconstructed and implemented by following the design.

4.2 System Component Specification

This section describes the hardware and software components used in the development of the
fatigue detection system. Each component was selected based on performance, compatibility,
and suitability for real-time processing on an embedded platform.

4.2.1 Hardware Components

The hardware configuration of the fatigue detection system centres on the Raspberry Pi 4
Model B as the main processing unit. A Logitech Brio 100 webcam serves as the input device,
continuously capturing the driver’s face in real time for fatigue analysis. The system output is
delivered through a Bluetooth speaker, which provides voice and alarm alerts to the driver. For
portable and stable power supply, an 18650-battery shield with dual 18650 lithium-ion batteries
are used, allowing the Raspberry Pi to operate independently of a direct power adapter. This

setup ensures the system is compact, reliable, and suitable for in-vehicle deployment.

Table 4.1: Specifications of Raspberry Pi

Description Specifications
Model Raspberry Pi 4 Model B
Processor Broadcom BCM2711, Quad-core Cortex-A72 (ARM v8)
64-bit Soc @ 1.8GHz
Memory 4GB LPDDR4 RAM

Wireless Connectivity | 2.4 and 5.0 GHz IEEE 802.11ac wireless,
Bluetooth 5.0 BLE

Graphic OpenGL ES 3.1, Vulkan 1.0

Storage Needed Minimum 16GB ROM of SD card is required

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

24

More powerful

processor

Power supply

Choice of RAM

lice||268|(4cB| |868]

\ Gigabit

Ethernet

uses

Micro HDMI Ports
Supporting 2 x 4K displays

use2

Figure 4.2: Raspberry Pi 4 Model B

Table 4.2: Specifications of Camera

Description Specifications
Model Logitech BRIO 100
Resolutions 1080p/30fps (1920x1080 pixels),
Camera Megapixel 2MP
Focus Type Fixed Focus
Lens Type Custom 4-element plastic lens with anti-reflective coating

RAM Requirement

2GB RAM or more for 1080p video streaming

USB Connectivity

USB-A plug-and-play

Auto-light Balance

RightLight 2 for challenging lighting conditions

Figure 4.3: Logitech BRIO 100 Camera

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 4.3: Specifications of 18650 Battery Shield with Dual 18650 Lithium-ion Batteries

Description Specifications
Output Voltage 5V (rated), up to 3A (max)
Rated Output Current | 2.2 A
Charging Current 600-800 mA (Micro-USB)
Supported Baterries 2 x 18650 Li-ion cells (3.7 Li-ion, 12000mAh)
Battery Protection Overcharge / Over-discharge
Input Voltage 5-8VvDC

Figure 4.4: 18650 Battery Shield with Dual 18650 Lithium-ion Batteries

Table 4.4: Specifications of MOXOM SK-39 Bluetooth Speaker

Description Specifications
Bluetooth Version 5.0/5/1
Range Upto 12m
Output Power 5W
Battery Capacity 1200mAh
Playtime 5—7 hours
Charging Input 5V/1A (USB Type-C)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

26

Figure 4.5: MOXOM SK-39 Bluetooth Speaker

4.2.2 Software Components

The software development for the fatigue detection system is implemented in Python, with

several supporting libraries to enable real-time image processing, fatigue detection, and audio

alert functionality on the Raspberry Pi.

Python 3.8+: Main programming language used for system development and
deployment.

OpenCV: Provides real-time image acquisition, frame handling, grayscale conversion,
and display functionality.

TensorFlow L.ite (tflite-runtime): Executes the MobileNet model on the Raspberry Pi
with optimised inference for classifying eye and mouth states.

Dlib: Performs frontal face detection and extracts 68 facial landmarks for EAR, MAR,
and head pose estimation.

NumPy: Handles matrix operations and numerical calculations, including
preprocessing of face images.

SciPy (spatial.distance): Used to compute Euclidean distances required for EAR and
MAR calculations.

pyttsx3: Implements the text-to-speech engine for generating clear and non-
overlapping voice alerts.

Subprocess (paplay/aplay): Plays warning and alarm sound files, ensuring
compatibility with Bluetooth or wired speakers.

Threading & Queue: Enable concurrent processing of audio alerts (voice + sound)
without blocking the real-time video pipeline.

Collections (deque): Provides efficient rolling buffers for smoothing EAR, MAR, and
head pose values.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

27

4.3 Circuit and Components Design

The circuit and component design of the fatigue detection system integrates the Raspberry Pi
4 Model B with input, power, and output devices to form a complete monitoring unit. Figure
4.6 illustrates the connection of all hardware components.

Camera Raspberry Pi 4 Bluetooth Speaker
(Logitech Brio 100) (Main Processing Unit) 71 (MOXOM SK-39)

A

18650 Battery Shield
+ 18650 Li-ion Batteries

Figure 4.6: Circuit and Component Design of the Fatigue Detection System.

The Logitech Brio 100 camera acts as the input stage, capturing the driver’s face in real time
and transferring the video stream to the Raspberry Pi 4 via a USB connection. The Raspberry
Pi serves as the main processing unit, running the fatigue detection algorithms that include pre-

processing, feature extraction, MobileNet classification, decision logic, and alert generation.

Power is supplied through an 18650-battery shield with dual 18650 lithium-ion batteries,
connected to the Raspberry Pi using a Micro-USB/Type-C interface. This configuration
ensures a stable 5V power supply, with built-in protection against overcharging and

discharging, making the system portable and suitable for in-vehicle deployment.

The output stage is implemented using a MOXOM SK-39 Bluetooth speaker, which pairs
wirelessly with the Raspberry Pi. The speaker delivers voice messages and alarm sounds to

alert the driver according to the detected fatigue stage.

The overall circuit flow can be summarised as:
e Input: Camera — Raspberry Pi
e Processing: Fatigue detection modules on Raspberry Pi
o Power: Battery shield — Raspberry Pi
o Output: Raspberry Pi — Bluetooth speaker

This simple yet efficient design ensures reliable real-time operation while keeping the system

compact and portable for in-vehicle use.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

28

4.4 System Components Interaction Operations
The fatigue detection system operates through continuous interaction between hardware and
software components, ensuring real-time monitoring and timely alerts. The overall interaction

process can be described in the following sequence:

1. Image Capture
o The Logitech Brio 100 camera continuously records the driver’s face in real
time.
o Captured frames are transmitted via USB to the Raspberry Pi for processing.
2. Pre-processing and Landmark Detection
o The Raspberry Pi uses the Dlib library to detect the face region and extract 68
facial landmarks.
o Key regions of interest, such as the eyes and mouth, are identified for further
analysis.
3. Feature Extraction and Classification
o EARand MAR are computed from the extracted landmarks to track eye closure
and yawning events.
o Head pose estimation using solvePnP calculates pitch, yaw, and roll to detect
head tilts or distraction.
o In parallel, the MobileNet TFLite model classifies facial states (open/closed
eyes, yawn/no yawn) for robust detection.
4. Decision Logic
o The results from EAR, MAR, head pose, and MobileNet classification are
fused.
o Thresholds and smoothing filters are applied to reduce false positives.
o The system determines the fatigue stage: mild, moderate, or severe.
5. Alert Generation
o Based on the fatigue level, the system triggers alerts through the MOXOM SK-
39 Bluetooth speaker:
= Mild fatigue — voice message only
= Moderate fatigue — voice message + alarm
= Severe fatigue — extended alarm sound
o Alerts are executed on separate threads to maintain uninterrupted video

analysis.
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

29

6. Power Management
o The 18650-battery shield supplies stable 5V power to the Raspberry Pi, enabling
portable operation within the vehicle.
o Built-in overcharge/discharge protection ensures safe and reliable operation.

Through this interaction, the system achieves real-time detection and response, with each
component working in coordination to provide a practical and reliable fatigue detection

solution for drivers.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

30

Chapter 5

System Implementation

5.1 Hardware Setup

The hardware setup of the fatigue detection system is shown in Figure 5.1. The system is
installed inside a vehicle to evaluate its real-time performance under driving conditions. The
setup consists of four main components: camera, Raspberry Pi 4, battery shield with 18650

lithium-ion batteries, and Bluetooth speaker.

Figure 5.1 Hardware setup of the fatigue detection system inside the vehicle.

The Logitech Brio 100 camera is mounted on the windshield facing the driver. Its position
ensures that the driver’s face is clearly captured during both day and night driving conditions.
The camera is connected to the Raspberry Pi 4 Model B via a USB port, which serves as the

main processing unit for running the fatigue detection algorithms.

Power is supplied by an 18650-battery shield equipped with two rechargeable 18650 lithium-
ion batteries. This shield connects to the Raspberry Pi through a Micro-USB/Type-C interface,
providing a stable 5V power output with built-in protection. This configuration makes the

system portable and independent of the car’s main electrical system.

The MOXOM SK-39 Bluetooth speaker is placed beside the driver and paired wirelessly
with the Raspberry Pi. It delivers voice messages and alarm sounds, ensuring the driver

receives clear and immediate notifications in case of fatigue detection.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

31

The arrangement of these components allows the system to operate effectively inside the car.

The camera placement guarantees accurate facial monitoring, while the Raspberry Pi and

battery shield remain securely placed on the dashboard for stable operation, and the speaker

provides alerts directly near the driver.

5.2 Software Setup

The software setup of the fatigue detection system was developed in Python 3.8+ and deployed

on the Raspberry Pi 4 Model B running Raspberry Pi OS. Several libraries and frameworks

were installed to support real-time image processing, fatigue detection, and audio alerts.

The setup process is summarised below:

1. Programming Environment

o

@)

Python 3.8+ was used as the primary programming language.
A virtual environment was created to manage dependencies and ensure

compatibility of libraries.

2. Library Installation

The following Python libraries were installed using pip:

@)

@)

o

OpenCV - real-time image capture and frame processing.

Dlib — facial detection and 68-point landmark extraction.

NumPy — matrix and numerical operations.

SciPy — Euclidean distance calculations for EAR and MAR.

TensorFlow Lite (tflite-runtime) — lightweight inference of the MobileNet
model on Raspberry Pi.

pyttsx3 — text-to-speech engine for generating voice alerts.

subprocess — plays sound files via paplay or aplay for alarm alerts.

threading & queue — enable alerts to run in parallel without interrupting video
analysis.

collections (deque) — stores recent EAR, MAR, and head pose values for

smoothing.

3. Model Deployment

o

o

A MobileNet model was trained and converted to TensorFlow Lite format.
The .tflite file was stored in the saved_model/ directory and loaded at runtime

for classification of eye and mouth states.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

32

4. Script Execution
o The system runs through the main program fatigue_detection_pi.py.
o A systemd service was configured to auto-start this program whenever the
Raspberry Pi is powered on.
o To make the system flexible for different hardware setups, environment
variables were used:
= HEADLESS — set to 1 when running without a monitor (no GUI
display), or 0 when testing with a monitor (OpenCV window visible).
= CAM _DEVICE — specifies the camera device (e.g., /dev/videoO for
the default USB camera).
= AUDIO_DEVICE — defines the audio sink for playback, ensuring
alerts are routed to the correct output (e.g., Bluetooth speaker).
5. Audio Setup
o The Raspberry Pi was paired with the MOXOM SK-39 Bluetooth speaker.
o The default audio sink was configured so that both pre-recorded alarm sounds
and text-to-speech voice alerts were output directly through the speaker.
This setup ensures the fatigue detection system operates in real time with efficient integration
of image capture, facial analysis, deep learning inference, and multi-threaded alert handling on

the Raspberry Pi.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
33

5.3 Setting and Configuration
The fatigue detection system required several settings and configurations to ensure reliable
performance on the Raspberry Pi platform. These included camera adjustments, software
configuration, and audio setup for real-time alerts.

1. Camera Configuration

o The Logitech Brio 100 was configured to capture frames at 640 x 480
resolution to balance processing speed and accuracy.

o The camera was positioned on the windshield, directly facing the driver, to
maintain a clear and consistent view of the face.

o Frame capture was stabilised at 30 FPS, ensuring smooth real-time detection.

2. Software Configuration

o The main program (fatigue_detection_pi.py) was set to run automatically using
a systemd service, enabling the system to start immediately when the Raspberry
Pi is powered on.

o Environment variables were applied to provide flexible system behaviour:

= HEADLESS=1 — enables headless mode (no GUI display) for in-car
operation.

= CAM_DEVICE=/dev/video0 — ensures the correct camera is used.

= AUDIO DEVICE — directs alerts to the MOXOM SK-39 Bluetooth
speaker.

o The MobileNet TFLite model was placed in the saved_model/ directory, while
supporting files such as facial landmark predictors and alarm sound files were
stored in the project directory.

3. Audio Configuration

o The Raspberry Pi was paired with the MOXOM SK-39 Bluetooth speaker, and
the default audio sink was updated to route all alerts through Bluetooth.

o Both pre-recorded alarm sounds and text-to-speech voice messages were
configured to play without overlapping, using threading and a shared audio
lock.

4. Power Configuration

o An 18650-battery shield with dual lithium-ion cells was connected to supply

a stable 5V output to the Raspberry Pi.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

34

o The battery shield provided overcharge and discharge protection, ensuring safe

and continuous operation during testing.
Through these configurations, the system was able to operate seamlessly in a vehicle
environment, delivering real-time fatigue detection and timely alerts without requiring manual

intervention after startup.

5.4 System Operation
The fatigue detection system runs continuously to capture, analyse, and evaluate the driver’s
condition in real time. When powered on, the Raspberry Pi launches the
fatigue_detection_pi.py program automatically through a systemd service. The system operates
as follows:
1. Face Detection and Landmark Extraction
o The camera captures video frames of the driver’s face.
o Dlib detects the face and extracts 68 landmarks to localise the eyes and mouth.
2. Feature Extraction and Classification
o EAR s calculated to monitor eye closure.
o MAR is computed to detect yawning.
o Head pose is estimated with solvePnP to identify pitch, roll, and yaw
movements.
o The MobileNet TFLite model classifies the face state (open/closed eyes,
yawn/no yawn).
3. Decision Logic
o Extracted features and MobileNet results are combined.
o If thresholds are exceeded (e.g., pitch > 21°, roll > 20.5°,yaw > 20°, EAR <
0.25, MAR > 0.6), the system categorises fatigue into three levels: mild,
moderate, or severe.
4. Alert Generation
o The MOXOM SK-39 Bluetooth speaker issues alerts depending on the fatigue
stage:
= Mild — voice message only
= Moderate — voice message + warning sound

» Severe — extended alarm sound

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

35

5. Graphical User Interface (GUI) for Testing
o During development and testing on a laptop, the system was run with
HEADLESS=0, enabling a GUI window to display the driver’s face, EAR,
MAR, blink frequency, yawns, head pose angles, and fatigue stage.
o On the Raspberry Pi deployment, the system runs in HEADLESS=1 mode
(headless), without GUI display, while maintaining the same detection and alert

functions.

5.4.1 Screenshot Demonstration

For demonstration, Figure 5.2 shows the fatigue detection system in operation with GUI

enabled on a laptop:

A | Fatigue Detection = a X

Figure 5.2(a): Normal condition — eyes open, no yawning, stable head pose.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
36

B ! Fatigue Detection = a X

2.8, R =07 el

r

) .

Figure 5.2(b): Mild fatigue detected — system triggers a voice advisory message.

|m * Fatigue Detection = o X

Fl f': |

Figure 5.2(c): Moderate fatigue detected — system triggers voice + warning alarm.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

37

Figure 5.2(d): Severe fatigue detected — system triggers extended alarm sound.

5.5 Implementation Issues and Challenges

During the development of the fatigue detection system, several issues and challenges were
encountered when transitioning from the laptop environment to the Raspberry Pi platform.
These challenges mainly arose from hardware limitations, library compatibility, and the need

for performance optimisation. The main issues are summarised below:

1. Code Portability from Laptop to Raspberry Pi
The system could not be directly copied from the laptop to the Raspberry Pi. Several
changes had to be made to ensure compatibility:
= Audio format support — .mp3 files that worked on the laptop could not be
played reliably on the Raspberry Pi. This was resolved by converting audio
alerts to .wav format and using paplay or aplay for playback.
= Deep learning model execution — TensorFlow (TF) was too heavy for the
Raspberry Pi. The MobileNet model was converted into TensorFlow Lite
(TFLite) to run efficiently on the embedded hardware.
= Display differences — On the laptop, the GUI (OpenCV windows) could be
used for debugging. On the Raspberry Pi, the system was configured to run in
headless mode (HEADLESS=1) without GUI, as in-vehicle setups typically

do not use a monitor.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

38

2. Performance and Resource Limitations
The Raspberry Pi 4, despite being powerful for its size, has limited CPU and memory
resources compared to a laptop. Running real-time image processing and deep learning
inference required optimisation, such as:
= Reducing image resolution to 640 x 480.
= Limiting the number of threads for TFLite inference.
= Applying smoothing and thresholds to reduce unnecessary computations.
3. Library and Software Compatibility
Some Python libraries worked differently or needed special installation on the
Raspberry Pi.
= pyttsx3 worked differently depending on available voices; additional
adjustments were needed to select a clear English voice on Raspberry Pi OS.
= playsound, which worked on the laptop, was unreliable on the Raspberry Pi.
This was replaced with subprocess calls to paplay or aplay for stable sound
output.
= Dlib installation was more complex on Raspberry Pi due to compilation
requirements.
4. Hardware Integration Challenges
o Pairing and maintaining a stable connection with the MOXOM SK-39
Bluetooth speaker sometimes required reconfiguration of the default audio
sink.
o The 18650-battery shield provided stable power, but current limitations
required careful testing to ensure the Raspberry Pi would not crash under load.
5. Environmental Constraints
o The system needed to function under different lighting conditions (day, night,
low light). This required adjusting camera placement and relying on both
EAR/MAR and MobileNet classification to maintain accuracy.
o Vibrations and movement inside the vehicle affected camera stability, making

secure mounting essential for consistent landmark detection.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

5.6 Concluding Remarks

The implementation of the fatigue detection system on the Raspberry Pi 4 successfully
integrated both hardware and software components into a compact and portable in-vehicle
solution. The system was designed to operate in real time, capturing the driver’s facial features
through the Logitech Brio 100 camera, analysing fatigue indicators using Dlib, EAR/MAR
equations, head pose estimation, and MobileNet classification, and generating timely alerts

through a Bluetooth speaker.

Several challenges were encountered during implementation, such as library compatibility,
TensorFlow to TensorFlow Lite conversion, and audio format adjustments from .mp3 to .wav.
These issues were resolved through careful configuration, optimisation, and testing, ensuring
that the system could run efficiently on the Raspberry Pi. The use of a systemd service further
enhanced practicality by enabling the program to launch automatically on startup, making the

system suitable for real driving conditions without manual intervention.

Overall, the system implementation demonstrates that low-cost embedded platforms can
effectively support advanced fatigue detection techniques. The completed setup achieves the
project objectives of real-time monitoring and timely alerts, laying the foundation for further

testing, performance evaluation, and improvements in subsequent chapters.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

40

Chapter 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics
The system was tested under real driving conditions during both daytime and night-time to
evaluate its performance in different lighting environments. The camera was mounted on the
windshield facing the driver, while the Raspberry Pi processed the video in real time and
triggered alerts through the Bluetooth speaker.

« Daytime Testing:

Figure 6.1(a) shows the system setup during daytime driving, where the camera
captured the driver’s face under natural lighting conditions.

e Night-Time Testing

Figure 6.1(b) shows the system setup during night-time driving, where the system relied on

cabin lighting to detect facial features in low-light conditions.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
41

Final Method Result
The final approach, which combines MobileNet, EAR & MAR, and head pose estimation,

achieved high accuracy across all conditions. By integrating both deep learning and

geometric-based methods, the system was able to detect fatigue reliably in normal and low-

light scenarios, as well as when small variations in head pose occurred.

Comparison with Other Methods

To justify the choice of the combined approach, a comparison was conducted against
MobileNet-only and EAR & MAR-only methods. The results are shown in Table 6.1.

Table 6.1: Detailed Comparison of Fatigue Detection Methods

Method Accuracy Strengths Weaknesses
. -Good at detecting closed i
MobileNet Normal light: 9/10 eyes and yawns -Slow for blink and
Low light: 7/10 ‘Works well in low light | Y2 frequency
Only . . -Weak against motion
Accuracy = 80% -nghtwelghj[and runs on blur or occlusion
Raspberry Pi
I -Fast and low-
EAR&MAR Normal light: 10/10 computation Sometimes fails with
only Low light: 6/10 -Tracks blink and yawn | spectacles and low light
Accuracy = 80% duration in real-time conditions
-Easy to implement
. -Adds head tilt detection
MobileNet + Normal light: /10 -Detects microsleeps : .
Low light: 8/10 better Still can’t track blink
Head Pose . frequency
Accuracy = 85% -More robust than single
model
EARZMAR Normal light: 10/10 :rFaztS th:zk/yawn tracking Sometimes fails with
+ Head Pose Low fight: /10 -LFi)ghtweight spect_a ?Ies and low ight
Accuracy = 80% -Good for real-time alerts conditions
-Combines deep learning
. _— with real-time blink/yawn | Combining outputs
MobileNet + | Normal light: 10/10 tracking and head tilt from different methods
EAR&MAR | Low light: 9/10 detection increases
+ Head Pose | Accuracy = 95% -Strong against lighting implementation
changes, spectacles, and complexity
face angles

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

42

Explanation of Accuracy Levels
The accuracy values (e.g., 9/10) represent the results of 10 real-time video trials, where the
system’s detection was compared against actual observed outcomes.

e Methods achieving 60—70% accuracy are considered moderately reliable.

e Methods in the 80-90% range are considered highly reliable.

o Methods achieving above 90% accuracy are considered very reliable and suitable for

real-world deployment.

It is important to note that this evaluation was conducted on a laptop under indoor testing
conditions to compare the effectiveness of different methods. The combined approach
(MobileNet + EAR & MAR + Head Pose) achieved the highest and most consistent accuracy
across both normal and low-light scenarios, demonstrating its robustness and suitability for

practical use.

6.2 Testing Setup and Results

To evaluate the accuracy of the fatigue detection system, videos were recorded under both
daytime (normal light) and night-time (low light) conditions during real-world driving. For
each fatigue indicator including blinking frequency, yawning frequency, eyes closed duration,
and head tilt, five test videos were taken. The accuracy is presented in a ratio format (e.g., 4/5

means the system correctly detected fatigue in 4 out of 5 test videos).

Additionally, the system was tested across three fatigue levels (mild, moderate, and severe),

also based on five recorded trials per stage.

o Daytime Testing Results
Table 6.2: Accuracy of Fatigue Detection (Daytime)

Fatigue Indicator Accuracy (5 Trials)
Blinking Frequency 4/5
Yawning Frequency 5/5
Eyes Closed 5/5
Head Tilt 5/5

Accuracy of Fatigue Indicator = 95%

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

43

Table 6.3: Fatigue Level Accuracy (Daytime)

Fatigue Level Accuracy (5 Trials)
Mild 5/5
Moderate 5/5
Severe 4/5

Accuracy of Fatigue Level = 93%

o Night-time Testing Results
Table 6.4: Accuracy of Fatigue Detection (Night-time)

Fatigue Indicator Accuracy (5 Trials)
Blinking Frequency 4/5
Yawning Frequency 4/5
Eyes Closed 5/5
Head Tilt 4/5

Accuracy of Fatigue Indicator = 85%

Table 6.5: Fatigue Level Accuracy (Night-time)

Fatigue Level Accuracy (5 Trials)
Mild 4/5
Moderate 4/5
Severe 4/5

Accuracy of Fatigue Level = 80%

Explanation
o Theratio format (e.g., 4/5) means that the system was tested using five videos for each
condition, and the value shows how many times the system correctly detected the
intended fatigue sign.
e Results indicate that the system performs more accurately in daytime conditions
compared to night-time, though the combined MobileNet + EAR/MAR + Head Pose

approach still provides consistent detection across both scenarios.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

44

Comparison of Daytime and Night-Time Accuracy

Figure 6.2: Accuracy by Fatigue Indicators (Daytime vs Night-time)

B Daytime
57 == Night-time

Correct Detections (out of 5)

e o .Aeaﬂ{‘\‘

. ot es
e.\'\“v"“g 43‘““\“‘; ©

Fatigue Indicator

This figure illustrates the detection accuracy for different fatigue indicators, including blinking
frequency, yawning frequency, eyes closed duration, and head tilt. The results show that

daytime performance is consistently higher than night-time, with clearer visibility of facial

features improving accuracy.

Figure 6.3: Accuracy by Fatigue Levels (Daytime vs Night-time)

B Daytime
51 @ Night-time

Accuracy (out of 5)

Moderate Severe
Fatigue Level

This figure compares the accuracy of fatigue stage classification (mild, moderate, severe) under
daytime and night-time conditions. Similar to the indicator results, daytime testing achieved
higher accuracy, while night-time accuracy was slightly reduced due to low lighting, camera
quality limitations, and environmental factors.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

45

6.3 Project Challenges
During the development and implementation of the fatigue detection system, several challenges
were encountered:
1. Code Portability to Raspberry Pi
The Python code developed on a laptop could not be directly transferred to the
Raspberry Pi. Adjustments were required to ensure compatibility, such as converting
TensorFlow models to TensorFlow Lite for lightweight execution and replacing .mp3
audio files with .wav format, which is supported by the Raspberry Pi audio drivers.
2. Camera Limitation
The Logitech Brio 100 webcam performed well during indoor testing in controlled
environments such as a lab or room, where lighting conditions were stable. However,
during real driving at night, the camera struggled under very low-light cabin conditions.
This limitation reduced the accuracy of detecting key fatigue indicators such as eye
closure and yawning, showing that while the camera is suitable for testing in bright
environments, it is less reliable in actual night-time driving scenarios.
3. Bluetooth Speaker Integration
Setting up the MOXOM SK-39 Bluetooth speaker was challenging, especially in
making sure the Raspberry Pi always sent alert sounds to the correct audio output.
Modifications to PulseAudio settings and environment variables were required to
achieve a stable connection.
4. Testing in Real Driving Conditions
Conducting real-world tests inside a moving vehicle introduced challenges such as
vibration, sunlight glare, and very low lighting at night. These conditions sometimes
affected detection accuracy and highlighted the importance of testing across different

environments to verify system robustness.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

46

6.4 Objective Evaluation
The project objectives outlined in Chapter 1 were evaluated against the implementation and
testing outcomes. The results demonstrate that all objectives were successfully met:
1. To develop a real-time fatigue detection system using Python and deep learning
on an embedded platform like Raspberry Pi.
This objective was achieved by implementing the complete system on the Raspberry Pi
4 Model B. The system processed video input in real time using Python, integrating
deep learning models with traditional algorithms. Testing confirmed that the system
operated effectively on the embedded platform without external dependency on a
laptop.
2. To integrate deep learning with facial landmark detection (EAR and MAR) for
accurate fatigue monitoring in various conditions.
This objective was achieved by combining MobileNet with EAR, MAR, and head pose
estimation. The hybrid approach improved accuracy across both daytime and night-
time conditions, as demonstrated in the testing results (Tables 6.2, 6.3, 6.4 and 6.5).
Compared to single-method approaches, the combined method provided stronger
robustness against lighting variations, facial angles, and distractions.
3. To implement a responsive alert system that activates sound warnings when
drowsiness is detected.
This objective was achieved by integrating a MOXOM SK-39 Bluetooth speaker for
audio output. The system triggered alerts according to fatigue severity: voice message
for mild fatigue, voice plus alarm for moderate fatigue, and extended alarm for severe
fatigue. Alerts were executed on separate threads to ensure that sound playback did not
interrupt real-time video processing.
Conclusion:
All project objectives were successfully achieved. The integration of deep learning with
traditional methods provided high detection accuracy, the Raspberry Pi ensured portability and
in-vehicle operation, and the alert system offered timely warnings to the driver.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

47

6.5 Concluding Remarks

The evaluation confirmed that the fatigue detection system works effectively in real driving
conditions. By combining MobileNet with EAR, MAR, and head pose estimation, the system
achieved reliable detection accuracy during both daytime and night-time testing. This hybrid

approach proved more consistent than using MobileNet or EAR and MAR alone.

During development, several challenges were encountered, including code portability from
laptop to Raspberry Pi, library and dependency compatibility, Bluetooth audio integration with
the MOXOM SK-39 speaker, and testing in real driving conditions with vibration, glare, and
low-light environments. Each of these issues required adjustments such as converting
TensorFlow models to TensorFlow Lite, replacing unsupported libraries, configuring

PulseAudio settings, and tuning detection thresholds to maintain performance.

In conclusion, the project successfully met its objectives by delivering a practical, real-time
fatigue detection system with timely audio alerts to improve driver safety. The results also
highlight opportunities for future refinement, such as expanding datasets and improving model

efficiency for even greater reliability.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

48

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

This project successfully developed a real-time fatigue detection system on an embedded
platform using the Raspberry Pi 4. The system integrates deep learning through MobileNet
with geometric-based methods such as EAR, MAR, and head pose estimation to monitor driver
drowsiness. By combining these approaches, the system achieved high accuracy in detecting
fatigue indicators including blinking frequency, yawning, prolonged eye closure, head tilt, and

distraction.

Testing in both daytime and night-time driving conditions demonstrated that the hybrid method
outperformed single-method approaches, maintaining reliable accuracy across different
environments. The system was able to classify fatigue into mild, moderate, and severe levels
and trigger appropriate alerts through a Bluetooth speaker, ensuring timely warnings for the

driver.

Despite facing challenges such as adapting the code to the Raspberry Pi environment, resolving
library compatibility issues, integrating Bluetooth audio, and ensuring robust detection under
real driving conditions, the system met all project objectives. The outcomes confirm that the
developed solution is both practical and feasible for in-vehicle deployment, contributing

towards improving road safety by reducing fatigue-related risks.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

7.2 Recommendation
Based on the system development and testing, the following recommendations are proposed
for future improvements:
1. Improve Low-Light Performance — Use infrared (IR) cameras or night-vision
modules to enhance detection in very dark conditions.
2. Expand Dataset — Collect more diverse driver data across age groups, lighting
conditions, and driving scenarios to strengthen model robustness.
3. Conduct Large-Scale Testing — Test the system with more drivers and in longer
driving sessions to validate accuracy and reliability in real-world conditions.
4. Enhance Alert Mechanisms — Improve the clarity of voice messages and consider
adding alternative alert modes such as vibration or LED indicators for better driver

awareness.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
50

REFERENCES

[1]Arnav Poswal, Aayushi Golchha, and Hema M, “FocusFleet: Driver Drowsiness Detection
using CNN mobilenetv2,” Jan. 2025, doi: https://doi.org/10.2139/ssrn.5172891.

[2]D. Wagh, J. Hire, Mayuri Phad, Ajay Bhosale, Chudaman Sukte, and Manohar Kodmelwar,
“Driver Drowsiness Detection Using MobileNetV2 and Deep Learning,” pp. 911-917, Dec.
2024, doi: https://doi.org/10.1109/icscna63714.2024.10864200.

[3]T. D. Wunan, Pretty Calista Jappy, S. Aurelia, I. S. Edbert, and Derwin Suhartono, “Driver
Drowsiness Detection Using NasNet Mobile, MobileNetV2, and EfficientNetB0,” pp. 1-4, Feb.
2024, doi: https://doi.org/10.1109/aims61812.2024.10512773.

[4] K. R. M. Khariol and H. Jabbar, "Driver Drowsiness Detection with an Alarm System using
a Webcam," Evolution in Electrical and Electronic Engineering, vol. 4, no. 1, pp. 87-96, 2023,
doi: 10.30880/eeee.2023.04.01.011.

[5]P. Awasekar, M. Ravi, S. Doke, and Z. Shaikh, “Driver Fatigue Detection and Alert System
using Non-Intrusive Eye and Yawn Detection,” International Journal of Computer
Applications, vol. 180, no. 44, pp. 1-5, May 2018, doi: https://doi.org/10.5120/ijca2018917140.

[6] "Realtime Drowsiness and Yawn Detector using Raspberry Pi," Instructables, accessed Sep.
2023. [Online]. Available: https://www.instructables.com/Realtime-Drowsiness-and-Yawn-
Detector-Using-Raspbe/

[7] D. Wu, Improving Automatic Detection of Driver Fatigue and Distraction Using Machine
Learning, M.Sc. thesis, School of Computer Science, University of Birmingham, Dubai,
United Arab Emirates, Sept. 2023.

[8] T. Danisman, I. M. Bilasco, C. Djeraba, and N. Thaddadene, “Drowsy driver detection
system using eye blink patterns,” |[EEE Xplore, Oct. 01, 2010.
https://ieeexplore.ieee.org/abstract/document/5648121 (accessed Feb. 19, 2022).

[9]1 O.J.A, O. L.T, and A. LA, “Fatigue Detection in Drivers using Eye-Blink and Yawning
Analysis,” International Journal of Computer Trends and Technology, vol. 50, no. 2, pp. 87—
90, Aug. 2017, doi: https://doi.org/10.14445/22312803/ijctt-v50p115.

[10] “Drowsiness Detection for Vehicle Drivers with Alert System,” International Journal of
Advanced Trends in Computer Science and Engineering, vol. 9, no. 5, pp. 9125-9130, Oct.
2020, doi: https://doi.org/10.30534/ijatcse/2020/319952020.

[11] M. Zhang and F. Zhang, “A Driver Fatigue Detection Method Based on Eye Aspect Ratio
Compensated by Head Pose Estimation,” 2022 7th International Conference on Signal and
Image Processing (ICSIP), wvol. 59, pp. 161-165, Jul. 2023, doi:
https://doi.org/10.1109/icsip57908.2023.10270911.

[12] Y. Wang, B. Liu, and H. Wang, “Fatigue detection based on facial feature correction and
fusion,” Journal of Physics: Conference Series, vol. 2183, no. 1, p. 012022, Jan. 2022, doi:
https://doi.org/10.1088/1742-6596/2183/1/012022.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

51

[13] K. Ju, B.-S. Shin, and R. Klette, “Novel Backprojection Method for Monocular Head Pose
Estimation,” International Journal of Fuzzy Logic and Intelligent Systems, vol. 13, no. 1, pp.
50-58, Mar. 2013, doi: https://doi.org/10.5391/ijfis.2013.13.1.50.

[14] L. Yu, X. Yang, H. Wei, J. Liu, and B. Li, “Driver fatigue detection using PPG signal,
facial features, head postures with an LSTM model,” Heliyon, vol. 10, no. 21, pp. e39479—
e39479, Oct. 2024, doi: https://doi.org/10.1016/j.heliyon.2024.e39479.

[15] M. Ye, W. Zhang, P. Cao, and K. Liu, “Driver Fatigue Detection Based on Residual
Channel Attention Network and Head Pose Estimation,” Applied Sciences, vol. 11, no. 19, p.
9195, Oct. 2021, doi: https://doi.org/10.3390/app11199195.

[16] I.-H. Choi, C.-H. Jeong, and Y.-G. Kim, “Tracking a Driver’s Face against Extreme Head
Poses and Inference of Drowsiness Using a Hidden Markov Model,” Applied Sciences, vol. 6,
no. 5, p. 137, May 2016, doi: https://doi.org/10.3390/app6050137.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

52

POSTER

FATIGUE DETECTION SYSTEM
INCARS o

A)y

INTRODUCTION

This project aims to develop a
real-time ststem that detects
driver fatigue by analyzing eye
closure, yawning, and head
posture, providing early alerts
to enhance read safety

OBJECTIVES

» Develop areal-time fatigue
detection system on
Raspberry Pi.

» Integrate deep learning with
fatigue landmark detection
for monitoring.

* Implement a sound-based
alert system.

METHODOLOGY

Capture real-time
video(webcam)

i

Detect face and facial
landmark (Dlib)

RESULTS

The system was tested in both
daytime and night-time driving
conditions.

Classify states (MobileNet)
or calculate EAR/MAR

Fatigue Indicators (blinking,
yawning, eyes closed, head tilt):
« Daytime Accuracy: 95%
» Night-time Accuracy: 85%

N

Estimate head pose
(solvePnP)

Fatigue Levels
(mild, moderate, severe):
« Daytime Accuracy: 93%

Analyze blinking, yawning,

(L
VAVR Ay

and head tilt « Night-time Accuracy: 80%
CONCLUSION
Trigger voice messages « Areal-time fatigue detection system was successfully
or alarms developed on Raspberry Pi.

* By combining MobileNet, EAR & MAR, and head pose,
the system achieved higher accuracy and robustness
compared to using a single method.

Developer: » Testing confirmed the system can deliver timely alerts
Vanicha Kulma (CT) to reduce risks of driver drowsiness.

U T ‘) R Supervisor: Ts Dr Vikneswary a/p Jayapal

PSPt Moderator: Ms Oh Zi Xin

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

53

