Smart Water Intake Tracking System for Kids
BY
YONG YUAN HUAN

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER
ENGINEERING
Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

COPYRIGHT STATEMENT

© 2025 Yong Yuan Huan. All rights reserved.

This Final Year Project report is submitted in partial fulfilment of the requirements
for the degree of Bachelor of Information Technology (Honours) Computer
Engineering at Universiti Tunku Abdul Rahman (UTAR). This Final Year Project
report represents the work of the author, except where due acknowledgment has been
made in the text. No part of this Final Year Project report may be reproduced, stored,
or transmitted in any form or by any means, whether electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the

author or UTAR, in accordance with UTAR's Intellectual Property Policy.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

First, I would like to express my sincere thanks and appreciation to my supervisor, Dr. Teoh
Shen Khang, for his valuable guidance and continuous support throughout the development of
this project. His constructive feedback and insightful suggestion have been essential in helping

me improve and stay on track with my progress.

My deepest appreciation also goes to my family and friends, who are giving me encouragement

and unlimited support for completing this project.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

Dehydration in kids can pose a significant health hazard, especially when it occurs amid
situations such as while they are attending kindergarten or schools and their supervisors cannot
supervise them all the time. This project presents the development of Smart Water Tracking
System using an ESP32-based system integrated with a load sensor (HX711) to measure real-
time water intake. The data is collected and store to Firebase cloud storage when internet
connectivity is available, else it will store the data locally for offline use. The purpose of this
storing technique is to ensure the accurate and continuous data collection in IoT applications.
A user-friendly monitoring application that involving JavaScript, HTML and CSS to allows
parents and caregivers to visualize daily, weekly and monthly drinking patterns, with features
such as real-time hydration tracking and refill detection. By combining offline data
synchronization and cloud services, the system provides a reliable tool to encourage better
hydration habits in children and lessens the risk of dehydration that may pose threats within

the education sector, with a solution at low cost which enables custom form factor.

Area of Study (Minimum 1 and Maximum 2): Internet of Things

Keywords (Minimum 5 and Maximum 10): Data Collection in IoT, Monitoring Application,

ESP32-based system, Real-time hydration monitoring, Smart water tracking system

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE i
COPYRIGHT STATEMENT ii
ACKNOWLEDGEMENTS iii
ABSTRACT iv
TABLE OF CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES ix
LIST OF SYMBOLS X
LIST OF ABBREVIATIONS xi
CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives

2
1.3 Project Scope and Direction 3
1.4 Contributions 5

5

1.5 Report Organization

CHAPTER 2 LITERATURE REVIEW 7
2.1 Review of Technologies 7
2.1.1 Hardware Platform 7
2.1.2 Firmware/OS 10

2.1.3 Database 11

2.1.4 Algorithm 12

2.1.5 Summary of Technologies Review 13

2.2 Review of Existing System 14
2.2.1 HidrateSpark Pro 210z 14

2.2.2 EQUA Smart Water Bottle 15

2.2.3 Trago Smart Water Bottle 17

2.3 Limitations of Previous Studies 20
2.4 Summary 21

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH
3.1 System Design Diagram/Equation

3.1.1 Load Sensor Calibration Equation
3.1.2 Water Intake Estimation
3.1.3 Timestamp Estimation using millis()
3.1.4 Power Consumption and Battery Life Estimation
3.1.5 Battery Voltage Estimation

3.2 System Architecture Diagram

3.3 Use Case Diagram and Description

3.4 Activity Diagram

CHAPTER 4 SYSTEM DESIGN

4.1 System Block Diagram

4.2 System Components Specifications

4.3 Circuits and Components Design

4.4 System Components Interaction Operations
4.4.1 Sensing Layer
4.4.2 Power Layer
4.4.3 Processing Layer
4.4.4 Communication Layer

4.4.5 Interface Layer

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

22
22
22
22
22
23
24
24
26
28

30
30
33
34
36
36
36
36
38
38

Vi

CHAPTER 5 SYSTEM IMPLEMENTATION 40

5.1 Hardware Setup 40
5.2 Software Setup 51
5.3 Setting and Configuration 52
5.3.1 ESP32 Wi-Fi Configuration 52

5.3.2 Firebase Database Configuration 52

5.3.3 NTP Configuration 53

5.3.4 Sensor Calibration 53

5.3.5 Frontend Configuration 54

5.3.6 System Thresholds 54

5.4 System Operation (with Screenshot) 54
5.4.1 System Startup 54

5.4.2 Orientation Detection 57

5.4.3 Water Intake Detection, Data Logging and Uploading 58

5.4.4 Battery Monitoring 63

5.4.5 Frontend Display 64

5.5 Implementation Issues and Challenges 69
5.6 Concluding Remark 71
CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 72
6.1 System Testing and Performance Metrics 72
6.1.1 Load Sensor Accuracy Test 72

6.1.2 Data Synchronization Test 73

6.1.3 Orientation Test 73

6.1.4 Frontend Goal Achievement Test 74

6.1.5 Water Intake Event Detection 74

6.1.6 Overall Findings 75

6.2 Testing Setup and Result 75
6.2.1 Testing Environment 75

6.2.2 Load cell Accuracy Test 76

6.2.3 Data Logging and Offline Storage Test 77

6.2.4 Low Battery Condition 79

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Vii

6.2.5 Frontend Visualization and Customization Test 80

6.3 Project Challenges 84
6.4 Objectives Evaluation 85
6.5 Concluding Remark 86
CHAPTER 7 CONCLUSION AND RECOMMENDATION 88
7.1 Conclusion 88
7.2 Recommendation 89
REFERENCES 90
APPENDIX 93
POSTER 94

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
viii

Figure Number Title Page
Figure 2.1.1 ESP32 microcontroller 8
Figure 2.1.2 10KG load sensor 8
Figure 2.1.3 HX711 amplifier 8
Figure 2.1.4 ADXL345 9
Figure 2.1.5 TP4056 module 9
Figure 2.1.6 Voltage Booster 9
Figure 2.1.7 Voltage Sensor 9
Figure 2.1.8 Visual Studio Code 10
Figure 2.1.9 Arduino IDE 10
Figure 2.1.10 Firebase Realtime Database 11
Figure 2.2.1 Exploded view of HidrateSpark Pro SipSense technology 14
sensor module

Figure 2.2.2 HidrateSpark Smart Bottle and App 15
Figure 2.2.3 HidrateSpark Glow Colours 15
Figure 2.2.4 EQUA smart water bottle and app 16
Figure 2.2.5 EQUA glow reminder 17
Figure 2.2.6 Trago smart water bottle with ultrasonic technology 17
Figure 2.2.7 Trago app interface 18
Figure 2.2.8 Trago App in Athletic and Group settings 18
Figure 3.1 System Architecture Diagram 26
Figure 3.2 Use Case Diagram 27
Figure 3.3 Activity Diagram 29
Figure 4.1 System Block Diagram 32
Figure 5.1 Outside View 40
Figure 5.2 Inside View 40
Figure 5.3 Outer Case (2D View) 41
Figure 5.4 Battery Layer 42
Figure 5.5 Power Layer (2D View) 42

LIST OF FIGURES

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22

Figure 5.23

Figure 5.24

Figure 5.25

Figure 5.26

Figure 5.27
Figure 5.28

Figure 5.29

Figure 5.30

Power Layer (Real-World View)

Microcontroller Layer (2D View)

Microcontroller Layer (Real-World View)

2D View of Sensor Layer

Real-World View of Sensor Layer

Platform Layer (2D View)

Assembled System (2D View)

Assembled System without Outer Case (Real-World View)
Assembled System with Outer Case (Real-World View)
ESP32 connected to phone hotspot

ESP32 Serial Monitor during successful Wi-Fi connection
ESP32 Serial Monitor output in offline mode

ADXL345 accelerometer in vertical orientation (real-world)
ESP32 Serial Monitor output for vertical orientation

ADXIL 345 accelerometer in upright orientation (real-world)
ESP32 Serial Monitor output for upright orientation

Serial Monitor output showing water intake detection and
laptop system time

Water intake event successfully uploaded and logged in
Firebase Console

Serial Monitor output showing valid drinking event stored
locally with NTP timestamp

Serial Monitor output showing valid refill event stored
locally with NTP timestamp

Serial Monitor output showing offline data being uploaded
when Wi-Fi reconnects

Firebase console showing uploaded offline events

Serial Monitor output showing offline data stored with
temporary run-up timestamp (event 1)

Serial Monitor output showing offline data stored with
temporary run-up timestamp (event 2)

Serial Monitor output showing offline data being processed

and timestamp corrected

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

60

Figure 5.31

Figure 5.32

Figure 5.33
Figure 5.34
Figure 5.35
Figure 5.36
Figure 5.37
Figure 5.38
Figure 5.39
Figure 5.40
Figure 5.41
Figure 5.42
Figure 5.43
Figure 5.44
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17

Firebase console showing offline data uploaded with
corrected NTP timestamps

Serial Monitor output when battery voltage drops below 3.5
\Y%

Red LED indicator blinking (low battery alert)
Battery voltage data logged in Firebase console

Main page layout and navigation bar

Daily summary view (ml)

Weekly summary view(Oz)

Monthly summary view (ml)

Font size in medium form

Font size in large form

Goal customization setting

New sample data structure with data in Firebase Console
Confirmation Message for data deletion

Firebase Console after clear the data structure

Water Bottle Weight using electronic scale

Water Bottle Weight using load sensor

Amount drink and system time

Data Uploaded to Firebase

ESP32 disconnected from Wi-Fi

Water Intake Event (offline mode)

ESP32 reconnected and sync data

Firebase Console showing uploaded offline data
Low battery voltage detected (Serial Monitor Output)
Red LED indicator activated under low battery condition
Daily summary page

Weekly summary page

Monthly summary page

Font size in medium setting

Font size in large setting

Modified goal setting

New goal being saved

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

63

63
64
64
65
66
66
67
67
68
68
69
69
76
77
77
77
78
78
79
79

80
81
81
82
82
83
83
84

Xi

Figure 6.18 Daily page with new goal 84
Figure 6.19 Error Message of SSL connection 85

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xii

Table Number

Table 2.1
Table 2.2.1

Table 3.1
Table 3.2
Table 4.1
Table 5.1
Table 5.2
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6

LIST OF TABLES

Title

Specification of ESP32 microcontroller

Comparison of Tracking Methods and Features in Smart
Water Bottles
Current Consumption of Components

Use Case Description

Specifications of System Components
3D Printer Specifications
Specification of Laptop

Load Sensor Accuracy Test

Data Synchronization Test
Orientation Test

Frontend Goal Achievement Test
Confusion Matrix

Objectives Evaluation

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

19

23
28
33
40
51
72
73
73
74
75
85

xiii

ml

GHz

mAh

LIST OF SYMBOLS

millilitre
Fluid ounce
gigahertz
Gram

Volt

Milliampere-hour

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xiv

JSON
API
CPU
GPIO
10T
NTP
LED
Wi-Fi
NVS
ESP32
CSS
HTML
SPIFFS

LIST OF ABBREVIATIONS

JavaScript Object Notation
Application Programming Interface
Central Processing Unit

General Purpose Input Output
Internet of Things

Network Time Protocol

Light Emitting Diode

Wireless Fidelity

Non-volatile Storage

Espressif 32-bit Microcontroller
Cascading Style Sheets

Hypertext Markup Language

Serial Peripheral Interface Flash File System

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

XV

Chapter 1

Introduction

In this chapter, the background and motivation of the research are presented, along with the
contribution to the field, and the outline of the thesis. The point to focus on this research is the
design and the development of Smart Water Tracking System for kids, which is an assistant
system that aims at the challenge to ensure the children have proper hydration. Hydration is
crucial for maintaining children’s health, blood circulation and improving cognitive abilities
[1]. However, especially in young children, it is a challenge to monitor and manage their water
intake due to their low awareness of hydration and the environment that they spend much more

time of their day, such as school or playground.

Current research increasingly highlights the negative effects that dehydration can have on
cognitive and physical development, making hydration monitoring more important than ever.
With the rapid development of Internet of Things (IoT) technology, more people are using
smart devices to monitor and track daily habits related to health and lifestyle. By integrating
sensors, data collection methodologies and mobile applications, the loT-based solutions can
provide real-time feedback and encourage healthier behaviour. This potential makes IoT an
effective approach for developing a smart tracking system that will help parents or caregivers

in monitoring children’s daily water intake, which tries to minimize the risk of dehydration.

1.1 Problem Statement and Motivation
Problem Statement

Nowadays, recent tragedies from different parts of the world highlight the severe consequences
of dehydration and heatstroke among children. In April 2023, there are two children in
Kelantan, Malaysia, had lost their lives due to heat-related illness, which an 11-year-old boy
die to heatstroke after severe dehydration, and a 19-month-old girl also lost her life from severe
dehydration with underlying species. Besides that, in July 2024, three children in Arizona,
USA, died following heat-related emergencies. [2,3] These cases already stated that the critical
need for an effective water intake monitoring system to protect children from heat-related
illnesses, especially as global temperature continue to rise due to climate change. Children are

particularly vulnerable due to their body size, cannot express their feeling, thinner skin and

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

also relatively weak immune system, which making them hard to regulate their body
temperature.[4] These cases suggest that many of the children either didn’t meet their daily
hydration need or at the risk of drinking too much water, both will lead to potential health risks.
Without effective monitoring, many children are still at risk of becoming dehydrated, which

can affect their overall health.

Motivation

Maintaining good mental and physical health of children is a top priority for parents and
caregivers. By achieving this, ensured proper hydration is an essential part of this, but
monitoring children’s water intake can be challenging. This is because children are often in an
environment where they are less supervised, such as schools, making it a challenge to
accurately monitor their water intake.[5] Children’s low awareness of staying hydrated and
inability to recognize early signs of dehydration further make monitoring their water intake
more challenging. Recent incidents related to dehydration illnesses and the increasing of
temperature global have highlighted the urgent need for effective solutions to monitor and
ensure enough water intake in children.

Traditional ways such as reminders or manual checks often lack real-time monitoring
features and accuracy. To overcome this limitation, this thesis proposes a system that involves
load sensors and IoT technologies to provide a highly accurate and real-time monitoring of
children’s water intake. Such a system can help parents and caregivers ensure that children had
meet their hydration requirements consistently, reducing the risk of dehydration and promoting

better cognitive and physical development.

1.2 Objectives

The project aims to design and implement a Smart Water Tracking System for the purpose of
promoting appropriate hydration among children, especially in environments where direct
supervision is limited such as kindergarten and playground. From this primary objective,
several sub-objectives can be derived so that the development of the device can be guided.
Using IoT technology, the system will accurately track water intake in real-time and send the
data to a website application so that parents or caregivers can make sure the children have

proper hydration throughout the whole day at school.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

The first sub-objective is to develop a device that can be attached to water bottles used by
children. This attachment will use a load sensor to measure the water consumed and wirelessly
transmit the consumption details via Wi-Fi to a website application. The application will
display the hydration status of the children, allowing educators to monitor water intake
effectively. Furthermore, the device will be designed to be portable, incorporating a power
storage system in order to support full day usage of the device. This flexibility is designed to
solve the compatibility problem of previous smart water bottles, since not all bottle sizes are

the same.

Furthermore, the second sub-objective is to achieve accurate and stable monitoring and
therefore the system will use a high-precision load sensor together with advanced data
processing algorithms. This will ensure reproducibility and accuracy of the measurement, as
well as minimizing errors, ensuring the system will provide reliable data for both real-time

monitoring and long-term analysis.

The third sub-objective of this project is to simplify the process of monitoring children’s
water intake for caregivers and parents. This will be achieved by developing an easy-to-use
website application that displays real-time hydration data. The system will be designed to be
user-friendly, enabling the user with minimal technical expertise to easily track and manage

children’s hydration effectively.

1.3 Project Scope and Direction

This project is to deliver a smart water tracking system which is specially designed for
monitoring and encouraging proper hydration for children. This system consists of both

hardware and software part.

Hardware Scope

For the weighting part, the hardware includes an ESP32-based embedded system, a 10kg load
sensor, HX711 amplifier module and ADXL345 accelerometer. The ADXL345 was used to
determine whether the water bottle is standing or lying down. If it is lying down, the weighting
process will be suspended. Otherwise, the system will start to detect weight changes in the

water bottle to do estimation for water consumption. To ensure accurate reading, the load

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

sensor will undergo a calibration process at the initialization. After measurement, the raw data

will the send to Firebase RealTime Database.

For the power storage system, the hardware involves a single-cell 18650 lithium battery,
battery holder, voltage booster, voltage sensor , a red LED indicator and TP4056 charging
module. The TP4056 sensor manages charging when connected to a micro-USB cable. Then
TP4056 will pass the voltage to the voltage booster to boost the voltage from 3.7V to 6V so
that it can supply enough power for the ESP32. The purpose of voltage sensor is to detect the
battery voltage level and send the information to web applications, allowing users to track the
ESP32 power status in real-time. If the battery voltage is too low, the red LED will be blink 3

times to informed users.

Software Scope

The software components consist of two major parts. The first is the firmware running on the
ESP32. The firmware is responsible for sensor reading, reading stability and reliability, Wi-Fi
handling, NTP timestamping, local storage using the Preferences library and data

synchronization with Firebase.

Another major part is the web application. The web application will be developed with a
combination of HTML, CSS and JavaScript programming languages. It is responsible for
retrieving and processing the raw data from the database then displaying it in both graphical
and numerical formats. A line chart will be used to visualize the daily water intake, meanwhile
the weekly and monthly water intake consumption will be shown in bar chart. In addition, the
application will also provide a summary metrics such as total refill times, total water intake,
average consumption and progress to achieve hydration goals. The interface will be designed
to be user-friendly and easy-to-use, allowing users with minimal technical expertise to use it

effectively.

System Features
The system also supports both offline and online data collection. When the data is collected
offline (not connected to Wi-Fi), the data will be stored into local storage inside ESP32 with

estimated timestamp and automatically sync the data to Firebase once the connection has been

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

restored. This offline ensures that the data can be recorded in continuous and reliable water

intake tracking.

The project demonstrates a practical application of [oT in personal health monitoring and
offered a scalable model for future improvements, such as designing a mobile application or

implementing more health-related sensors.

14 Contributions

The experiment and analysis confirm the feasibility of the proposal for Smart Water Intake
Tracking System for ensured adequate hydration among children. Firstly, the system provides
Automated Hydration Monitoring, where load sensors and wireless communication are used to
ensure the data is accurate and in real time. This will eliminates the need for frequent manual
checking and reminders. Secondly, it supports Health improvement, since children are kept in
a way of well-hydrated, which is very important for children’s mental and physical
development, especially in hot climate or during outdoor activities. Thirdly, the design put a
great emphasis on Scalability and Practically, enabling the system’s easy rollout for individual
and group of children, like in classrooms, thus ensured effectiveness under different scenario
and usage environment. Lastly, the system includes an Offline Data Feature, where data can
still be collected without Wi-Fi connection and store in local storage, then automatically sync
the offline data to the database once the connection had restored, ensured continuous and

reliable hydration tracking.

1.5 Report Organization

This report is organised into 7 chapters: Chapter 1 Introduction, Chapter 2 Literature Review,
Chapter 3 System Methodology, Chapter 4 System Design, Chapter 5 System Implementation
, Chapter 6 System Evaluation and Discussion, Chapter 7 Conclusion. The first chapter is the
introduction of this project which includes problem statement, project background and
motivation, project scope, project objectives, project contribution and report organisation. The
second chapter will presenting some literature review about previous works on other smart
water tracking devices and existing technologies that these smart water bottle uses such as
hydration tracking system, embedded IoT devices, sensor that use to record the weight and
other functionality that is introduced in those products. The third chapter will describe the

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

system methodology, where the overall approach and system model are introduced. This will
be including the system architecture, use case diagrams and activity diagrams to illustrate how
the user interacts with it and how the function will work. In chapter 4 it will focuses on system
design by providing the details of the system block diagram, hardware component
specifications, circuit design and the interaction between different system components. The
goal of this chapter is to ensure that the prototype can be duplicated by following the given
detail. The chapter 5 cover the system implementation, which describes the setup of hardware
and software, configuration steps, system operation with screenshots and the issues or
challenges that had been encountered during the development. The chapter 6 discuss the system
evaluation and results, including test procedures, performance metrics, experiment results,
challenged faced and evaluation of whether the objective have been achieved. The last chapter
provides the conclusion and recommendations by summarizing the project outcomes,
contribution and limitations, followed by suggestion for possible improvement to fix the

problem and future development.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2

Literature Review

2.1 Review of the Technologies

2.1.1 Hardware Platform

Microcontroller Selection

The ESP32 microcontroller was selected as the main processing unit for this project. Below is
the specification of the ESP32 microcontroller:

Table 2.1 Specification of ESP32 microcontroller

Description Specifications
Model Arduino® Nano ESP32
Microcontroller u-blox® NORA-W106 (ESP32-S3)
Processor Xtensa® Dual-Core 32bit LX7 Microprocessor
Connectivity Wi-Fi® 4 [EEE 802.11 standards b/g/n
Bluetooth® LE v5.0
Memory 512kB SRAM

Compared to other microcontrollers such as Arduino UNO, Raspberry Pi and other ESP series,
the ESP32 provides several advantages. First, the ESP32 provided a built-in Wi-Fi and
Bluetooth module, so it eliminates the need of external module in order to do IoT. This feature
can reduce hardware complexity, reduce space requirement and lowers cost compared to
Arduino Mega or Raspberry Pi 2 Model B which required external Wi-Fi module. Furthermore,
the ESP32 microcontroller delivers dual-core processing with higher clock speed, which was
useful for doing multitasking such as handling sensor-reading, Wi-Fi communication and
offline storage simultaneously. ESP32 also supporting various development platforms that
using different SDKs and programming languages including Arduino IDE, MicroPython and
Mongoose OS, which allow developer to have more option while developing and save time.
Its large community support and existing libraries further simplify the integration process to
with sensors or database such as Firebase [6]. These features make the ESP32 an efficient and
practical choice for building IoT based hydration monitoring system. The below figure 2.1.1

shows the ESP32 microcontroller.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.1 ESP32 microcontroller

Sensors

In this project was used a 10kg load cell combined with the HX711 amplifier module. HX711
was selected because it provided high sensitivity and precision for weight measurement. The
HX711 also provided a 24-bit ADC, ensured that even small weight changes were captured
accurately. Compared to other analog-to-digital conversion setups, this combination offered a
cost-effective and stable reading with minimal noise. Figure 2.1.2 shows the 10kg load sensor,

while figure 2.1.3 shows the HX711 amplifier module.

Figure 2.1.2 10K G load sensor Figure 2.1.3 HX711 amplifier

Furthermore, an ADXL.345 accelerometer was included to detect the orientation of the
water bottle. This prevent false weight readings when the bottle is lying down. While other
option accelerometer sensors such as MPU6050, the ADXL345 was selected because the
project only required accelerometer data and does not need gyroscopic measurement. The
ADXL345 was lightweight, low cost and consumed less power, making it an efficient choice

for orientation detection without requiring complex processing. Figure 2.1.4 illustrates the

ADX1.345 module.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.4 ADXL345

For power management, the project used a single-cell 18650 lithium-ion battery due to its
rechargeability and long cycle life. Furthermore, the TP4056 charging module was employed
as it supported safe recharging batteries that does not exceed 4.2V, and it provided built-in
overcharge and discharge protection. A voltage booster was used in this project is to step up
the 3.7V battery output to 6V required by the ESP32 [7]. Finally, a voltage sensor and a red
LED indicator were included in this project to monitor the battery status, ensured that users are
informed when the system required charging. Figure 2.1.5 shows TP4056 charging module,

figure 2.1.6 shows voltage booster and figure 2.1.7 shows voltage sensor.

Figure 2.1.5 TP4056 module Figure 2.1.6 Voltage Booster

Figure 2.1.7 Voltage Sensor

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.2 Firmware/OS

The firmware for this project was developed using the Arduino IDE, which was chosen for its
simplicity, availability of open-source libraries and compatibility with the ESP32 platform. The
Arduino IDE provided a straightforward environment for coding, debugging, compiling and
flashing the firmware to the ESP32. This firmware was responsible for sensor reading, Wi-Fi
communication, timestamp assignment and local data storage. Furthermore, Arduino IDE had
provided an extensive library system that created by the community, this open-source library
system eliminates the need to build low-level drivers from scratch and had saved a lot of time.
The key library included in this project were the HX711 Arduino Library by Bogdan Necula
for load-cell interfacing, the Adafruit ADXL345 library for accelerometer processing and
Firebase Arduino Client Library develop by Mobizt for uploading data to the Firebase Realtime
Database. Inside the Arduino IDE, it also included some preset library such as Wi-Fi and
Preferences library. The preferences library was used to store the data temporarily in the local

storage during offline.

The frontend of the system was developed using Visual Studio Code (VS Code). This
development platform was selected due to its flexibility where support for multiple
programming languages, and strong integration with modern web development tools. In this
project, HTML, CSS and JavaScript were used for the frontend development. HTML was used
for the page structure, CSS for styling and layout and JavaScript handle backend tasks such as
handling for data processing and fetching data from database. VS Code provided an efficient
workspace where it can manage three programming languages simultaneously within a single
project folder, it also provided features such as built-in debugging tools, syntax highlighting
and live server preview features. These features allowed efficient testing of how the web
application would look and behave in real time. In addition, VS Code supported integration
with external online web services such as gstatic and chartjs, which allowed smooth
communication with Firebase and implement chart for a better visualization. Figure 2.1.8

showed the icon of Arduino IDE while figure 2.1.9 showed the icon of Visual Studio Code.
Figure 2.1.8 Visual Studio Code Figure 2.1.9 Arduino IDE

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

10

2.1.3 Database

The database that used for this project was Firebase Realtime Database, which was selected
due to its scalability and real-time synchronization features. Firebase Realtime Database is a
NoSQL cloud hosted database developed by Google. It stored the data in JSON format,
enabling fast data retrieval and update. This structure was suitable for the project because the
data collected, such as water intake amounts, timestamp and voltage reading, it can be

organized by sorted into key-value paired.

One of the main reasons for choosing Firebase was its ability to provide real-time
synchronization across devices. As soon as the ESP32 captured the data and uploaded to
Firebase, the frontend was able to fetch the updated value instantly. This was particularly
important for ensuring the user could monitor their children’s hydration progress without
noticeable delay. Another advantage of this database was its ease of integration with the ESP32
and frontend. On the ESP32 microcontroller side, the Firebase Client Library was used to
establish a stable connection with Firebase, enabling read and write operation. On the frontend
side, Firebase provided direct support through its JavaScript SDK, allowing data fetching and

visualization on the web application.

Firebase was also chosen due to its low maintenance requirement. Unlike MySQL or
MongoDB, Firebase Realtime database was a fully cloud-hosted server. This eliminated the
need to configure server, manage or maintain SQL queries. This reduced the project complexity
while still kept data secure and efficient data management. Furthermore, Firebase offered free
usage tiers, which was sufficient for this academic project without adding more budget for

sever hosting. Figure 2.1.10 shows the Firebase Realtime Database icon [8].

Figure 2.1.10 Firebase Realtime Database

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

11

2.1.4 Algorithms

Several algorithms were applied in this project to ensure accurate measurement, reliability and
useability of the Smart Water Tracking System. The primary algorithm was the water intake
detection algorithms, which determined drinking event by comparing the weight changes
captured by the load sensor. A small weight changes that causes by the noise were filtered out,
while significant changes between the current weight and previous weight were recorded as
water intake or refill event. This method was chosen because it provided a simple and effective

way to figure out the valid drinking action from random disturbances.

The orientation detection algorithm was implemented using ADXL345 accelerometer. By
checking the orientation of the water bottle, the system was able to prevent false reading when
the bottle was tilted or lying down. Furthermore, it will included a stable reading verification
to ensure the weight changes was caused by movement will not recorded as valid drinking
event. This ensured that only stable position will counted as valid measurement, improving the

reliability of the water intake data.

An offline data synchronization algorithm was also included to address connectivity issues.
When Wi-Fi was unavailable, the ESP32 temporarily store the water intake record in local
storage using the Preferences library. Once connectivity was restored, the stored data was
uploaded to Firebase along with correct timestamp. This ensured the data continuity and

minimized the risk of data lost.

Lastly, data visualization and analysis algorithms were used on the frontend. JavaScript
will be responsible to process the raw data retrieved from Firebase, analysed and sorted them
into daily, weekly and monthly summaries and generated charts using Chart.js. This allowed

parents and caregivers to clearly monitor hydration patterns over time.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

12

2.1.5 Summary of Technologies Review

In summary, the technologies selected for this project were carefully chosen to balance cost-
effectiveness, data accuracy and ease of implementation. The ESP32 microcontroller served as
the core processing unit because of its built-in Wi-Fi and Bluetooth module, dual-core

performance and wide support from the Arduino ecosystem.

For sensing, a 10kg load cell with HX711 amplifier was selected due to its high sensitivity
and precision in weight measurement, while the ADXL.345 accelerometer was used to detect
water bottle orientation and prevent false reading. The combination of these three sensors

provided reliable data for estimating water intake.

On the software side, Arduino IDE was chosen for firmware development due to its
simplicity, large community library support and smooth integration with ESP32. Meanwhile,
Visual Studio Code was used for frontend development as it offered flexibility, support

multiple programming languages and productivity features such as live server and debugging.

For data storage and synchronization, Firebase Realtime Database was selected due to its
scalability, low maintenance requirement and real-time synchronization features. This ensured

that the data collected by the ESP32 can transferred to the web application without delays.

Finally, supporting algorithms such as water intake detection, orientation checking, offline
data synchronization and data visualization were integrated to ensure system reliability,
accuracy and usability. With the combination of these algorithms, the smart water tracking
system was able provided a huge support in both real-time and offline hydration monitoring

for children.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

13

2.2 Review of Existing System

2.2.1 HidrateSpark Pro 210z

The HidrateSpark Pro 210z smart water bottle has implemented several advance technologies
to track and manage water intake effectively. The most important feature of this smart water
bottle is using SipSense technology, which is developed by HidrateSpark themselves, it is a
precise method of measuring water consumption cased on weight. A Bluetooth technology is
also used in this smart water bottle to upload the water intake data to HidrateSpark application
every time when the bottle is within range of the phone, allowing user to monitor their water

intake in real time.[11]

The SipSense technology is using weight-based measurement, which commonly referred
to as a load sensor, to track every sip taken, providing a highly accurate reading to the amount
of water consumed. This sensor system can track the water intake in mL/Oz , with a 97%

accuracy compared to manual recordings.[11]

m o

|71~ @=N""
‘ J ;
SipSense Technology:Tracks ruylSip

¢ ul!ﬂ
i/ .

Figure 2.2.1 Exploded view of HidrateSpark Pro SipSense technology sensor module

Other than weight-sensing capabilities, this smart water bottle also cooperate with popular
health and fitness platform, such as Apple Health, Fitbit, Google Fit and Withings Health Mate.
The HidrateSpark app not only can track the water intake, but it also providing a function which
user can adjust their hydration goals based on the factors like user’s height, weight, age. This
function even can change the goal based on environmental conditions like temperature,

elevation and activity level if the location service is enabled or sync with fitness app.[11]

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

14

Figure 2.2.2 HidrateSpark Smart Bottle and App

Furthermore, the water bottle also includes glow reminder system, which used LED light
to remind the user to drink water throughout the day. Using the HidrateSpark application, user
can customize the glow setting, including colour, glow frequency and intensity, making it a

high interactive tool to encouraging consistent hydration.[11]

Figure 2.2.3 HidrateSpark Glow Colours

2.1.2 EQUA Smart Water Bottle

Compared to HidrateSpark Pro 210z, EQUA smart water bottle is using motion sensor
technology to track user’s water consumption throughout the day. The motion sensor will
detect movement of the bottle, to recognize all the user movement and calculate the amount
of water intake. This technology provides an efficient, which is hands-free approach to

hydration tracking, removing the need for manual input of data. [12]

Bluetooth connectivity is another crucial component of the EQUA Smart Water Bottle. It

is allowing the smart water bottle to sync with their application, EQUA hydration app, on

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

15

user’s smartphone. By implementing Bluetooth technology, data that contain user daily water
intake can be transfer from the bottle to the app in real-time. Moreover, the application also
providing features for user to set their personalized hydration goals based on the factors like
user’s weight, age and physical activity level. This application provides users with easy
access to their hydration data and enabling them to monitor their progress and adjust their

habits accordingly.[12]

The most special features of EQUA smart water bottle are EQUA also implemented
machine learning to learn the user’s behavior to improve the accuracy of hydration
recommendations over time. Besides that, by using machine learning, the bottle and its
application can adjust the user daily water intake goals based on various factors, such as
user’s physical attributes, daily activity and environmental conditions. By using machines
learning can provide users a personalized advice tailored to their specific needs to promoting

a better health outcome. [12]

& ,r 8 wo i
"

Figure 2.2.4 EQUA smart water bottle and app

The EQUA smart water bottle come equipped with a visual reminder system that
encourages users to maintain hydration throughout the day. The bottle’s embedded glow
feature illuminates at present intervals, reminding users to drink water when they have not
consumed enough during a certain period. This reminder system is particularly beneficial for

user who may forget to drink water due to busy schedule. [12]

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

16

Figure 2.2.5 EQUA glow reminder
2.1.3 Trago Smart Water Bottle

In this smart water bottle , Trago is using ultrasonic sensor, which offer a unique approach to
measuring liquid consumption. The working principle for ultrasonic sensors is to emit an
ultrasonic pulse at 40kHz, which move through the air inside the bottle. When the pulse is
emitted and hits the surface of the liquid, it will reflect and go back to the sensor, thus the water
intake can be calculated by measuring the pulse return time and the speed of the sound.[13]The
benefit of using ultrasonic sensor is the sensor are able to provide an accurate measurement of
the water intake within 0.50z, regardless of the type of liquid inside the bottle. The developers
that design the Trago smart water bottle explained that their choice of using ultrasonic sensor
for measuring water intake, stating that other sensors, such as weight sensor, pressure sensors
and accelerometers were found to be extremely inaccurate. Being able to measure any liquid

and guarantee an accurate reading is a big plus in the field.[14]

PATENT PENDING
ULTRASONIC
TECHNOLOGY

Figure 2.2.6 Trago smart water bottle with ultrasonic technology

Other than used of ultrasonic sensor, Trago smart water bottle also using motion-sensing
technology for a better accuracy and power efficiency. By using motion sensor, the system can
know the bottle are at rest or the user are taking a drink. In this way instead of continuously
transmitting data, it will save batteries to work for longer. The integration of motion sensor
ensures that only relevant drinking events are captured such as drinking water to avoid false

reading during instances when the bottle would idle.[14]

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

17

Trago also develops their application, Trago app, which providing real-time monitoring
and personalized hydration recommendations. The app calculates a user’s optimal daily water
intake based on the user input, such as age, weight, activity level and environmental condition.
This capability enables users to dynamically adjust their hydration goals, making the product
suitable for a wide range of individuals, including athletes and fitness enthusiasts. The
integration with other health and fitness platforms, such as MyFitnessPal, Apple Health, and
Under Armour Record, enhances the app’s utility by linking water intake data with broader

health metrics.[14]

Figure 2.2.7 Trago app interface

Moreover, Trago app also supports a group setting such as teams and athletic programs.
This feature providing coaches, trainers and parents can monitor their athletes’ hydration
through Trago app, ensuring the team member have proper hydration throughout training and

competitions.[14]

Figure 2.2.8 Trago App in Athletic and Group settings

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

18

One of the standout features of Trago smart water bottle is universal cap, which can be
fitted onto any standard wide-mouth water bottle, including brands like Nalgene, Camelback
and Hydro Flask. This flexibility allowing the user to use the Trago system when continue

using their preferred water bottle.[14]

Table 2.2.1 Comparison of Tracking Methods and Features in Smart Water Bottles

Feature/Method HidrateSpark Pro | EQUA Smart Trago smart water
210z water bottle bottle
Technology Used | SipSense (weight- Motion sensor Ultrasonic sensor
based technology)
Water Load sensor Motion sensor Ultrasonic pulse
Consumption measuring each sip | detects drinking measures liquid
Tracking motion volume
Connectivity Bluetooth Bluetooth Bluetooth
App Integration | HidrateSpark App, | EQUA Hydration | Trago App, syncs
syncs with Apple App, syncs with | with Apple Health,
Health, Fitbit health platforms MyFitnessPal
Additional LED glow Glow reminder Motion-sensing
Features reminders system technology for
accuracy
Compatibility Specific to EQUA Smart Universal cap, fits
HidrateSpark Water Bottle Nalgene,
bottles Camelback, Hydro
Flask

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

19

2.3 Limitation of Previous Studies

Both of the HidrateSpark and EQUA smart bottle have a same limitation, which is their
incompatibility with different bottle design. Unlike Trago smart water bottle, this brand had
offer a universal cap that fits onto standard wide-mouth water bottle, including brand like
Nalgene and Hydro Flask. This feature is absent in HidrateSpark and EQUA smart water bottle,
it need user to purchase their own brand-specific bottles in order to utilize the tracking features.
This lack of flexibility can limit their use, especially where children will use a smaller, themed

bottle that is suitable to their age group and preference, such as in kindergartens or schools.[15]

Additionally, although Trago smart water bottle had offer a universal cap, but it is still a
challenge when used in environments like kindergartens. Trago designs the universal cap is
more faced to adult user, which is using a large capacity water bottle, but it does not along with
the needs of young children, who require smaller bottle for handling.[15] As a result, Trago
smart water bottle is not suitable for younger age group especially for the young group who are

studying in kindergarten, its design is more toward for adult users.

Cost is another limitation that applies to all three smart water bottles. Three of the smart
water bottles are using premium materials, such as stainless steel for insulation and durability,
along with advanced design element such as double-walled thermos cups to keep liquids at the
desired temperature for several hours, which will increase the production cost of the water
bottles.[11,12] This features will give a benefit of maintaining the temperature of beverages,
but drive up the price, making them less affordable compared to traditional plastic or simpler
water bottles. Additionally, the use of machine learning adds more cost in the development.
Implement this technology, it may help to enhancing the accuracy of water consumption
tracking, but it also will increase the overall price of the product, making it more challenging

to justify in environments such as kindergartens.

In environments like schools and kindergartens, children’s water bottles often having the
wear and tear issues because of frequent use and handling method by young children. With
kids frequently lose or damaging their bottles, regular replacement becomes necessary. Kid’s
water bottle is being suggested to be replaced at least a year, and sometimes more often, due to

inappropriate wear and tear. [16]

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

20

24 Summary

In this literature review, three existing smart water bottle bottles were examined, which are
HidrateSpark Pro 210z, EQUA Smart Water Bottle and Trago Smart Water Bottle. Each of
these three products use different technology to track the water intake, where HidrateSpark
uses a weight-based SipSense technology, EQUA relies on motion sensor and deep learning

algorithms. Meanwhile, the Trago is using ultrasonic sensor to detect the water level.

While these smart water bottles provided several advanced features like Bluetooth
connectivity, mobile app integration, customize hydration goals and visual glow reminder, they
also have limitations. HidrateSpark and EQUA require their own-brand specific bottles which
is not flexibility, while Trago offers universal cap design, but it only supports larger bottles
which are not suitable for young children. Besides that, their product is more costly for using
premium materials, advanced sensor and deep learning technology for EQUA smart water
bottle, which is not suitable for environments like schools or kindergarten, where frequent and

affordability is more important.

In summary, existing smart water bottles such as HidrateSpark, EQUA and Trago
demonstrated different methods for hydration tracking through weight-based sensors, motion
sensors with deep learning and ultrasonic level detection. While these systems offered
advanced features, but they still faced limitations in terms of flexibility, suitability for children
and cost-effectiveness in school environments. To address these limitations, this project
proposed a low-cost attachable smart water tracking device that used ESP32 microcontrollers,
load sensors and Firebase Realtime Database. Meanwhile, lightweight algorithms were
designed for water intake detection, orientation checking, offline synchronization and data
visualization. The system was developed to provide a reliable, affordable and practical solution

for monitoring children hydration both in real-time and offline.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

21

Chapter 3
System Methodology/Approach

3.1 System Design Diagram/Equation
In this section, the technical and mathematical foundation that supporting the smart water

tracking system was presented.

3.1.1 Load Sensor Calibration Equation

The weight of the water bottle was measured by used a 10kg load cell interfaced through
HX711 amplifier. Before the load sensor can work, the system must undergo calibration, as the
load sensor initially produces raw, unscaled data upon startup. This step was crucial because
incorrect calibration factor will affect the data accuracy. Furthermore, calibration can prevent
other environmental issues such as electrical drift, environment factor and etc to affect the data
accuracy.

The formula to get the calibration is:

reading

librati tor =
calibration factor known weight(gram)

3.1.2 Water Intake Estimation
The system will take the water intake based on the difference between old reading and new

reading.
The formula is:
dif frent (g) = new_reading — current_reading
Furthermore, a threshold is set to ignore environmental issues such as vibration or user handling.
3.1.3 Timestamp Estimation using millis()

When the system is offline and the timestamp was unknown, the system will used millis() to
estimate the time for each water drinking event. Once the system is connected to Wi-Fi, it will

sync the NTP to get the current timestamp and do calculation to get the estimated timestamp.

The formula is:

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

22

(millissystem — millis;)
Ti = Tnrp — 1000

Where :

» Ti: Estimated timestamp of the i-th offline data

* Tnre: Time from NTP that get from internet

* millissysem: Milliseconds of the total system running time

« millisi: Milliseconds stored when data was recorded

» The division of 1000 is to convert the millisecond difference to seconds.
3.1.4 Power Consumption and Battery Life Estimation

The system is powered by a 3.7V 3800mAh 18650 lithium-ion battery, connected through a
TP4056 charging module and a voltage booster, which provides a regulated 5V supply to the
ESP32 microcontroller, HX711 load cell amplifier, ADXL345 accelerometer, voltage sensor
and red LED indicator. Since the system operates continuously with Wi-Fi enabled, both the

steady-state current and the startup current burst must be considered.

Table 3.1 Current Consumption of Components

Component Typical Current Consumption

ESP32 microcontroller (Wi-Fi active) ~200 mA (average)

ESP32 microcontroller (Wi-Fi burst at | up to 400-500 mA (peak)
startup)

HX711 Load Cell Amplifier ~1.7 mA
Voltage sensor ~3 mA
ADXL345 accelerometer ~0.14 mA
Red LED indicator ~4 mA

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

23

The ESP32 faced a short burst of current during Wi-Fi initialization, where current can
peak at 400-500 mA for a few seconds while ESP32 looking for available Wi-Fi. After

stabilization, the device typically draws ~200 mA on average during continuous Wi-Fi usage.
The power requirement was calculated as:
P=V xX1=6V x0.209A =1.254W

Accounting for a boost converter efficiency of approximately 80%, the equivalent current
from the battery is:
P
Vpar X 1
Iyt = 1.254
3.7 x 0.8

Thus, the battery supplies ~346 mA on average, with brief peaks above this value during

Ipar =

=04234

Wi-Fi setup.

The expected runtime of the system is expressed as:
T = Capacity 3800
Iy 423

~ 898 h

3.1.5 Battery Voltage Estimation

The ESP32 microcontroller monitor the battery level using a voltage sensor. The voltage
sensor operates based on a voltage divider to step down the battery voltage before
measurement. The raw ADC reading that provided from the ESP32 was 12-bit resolution ,
ranging from 0-4095, which corresponding to 0-3.3V. Since the actual battery voltage
exceeds 3.3V, the divider ensured that safe measurement by scaling the input voltage.

The formula is:

ADCy 4
Voatr = (W X 33V> X 6

Where:
e ADCraw: Raw reading from 0-4095
e 3.3V: Reference voltage of ESP32 ADC
e 6: Divider scaling factor

® Vua: Estimated battery voltage

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

24

3.2 System Architecture Diagram

The system architecture of the smart water tracking system for kids is designed to operate as
an embedded system that support for both offline data logging using NVS and online data
synchronization using Firebase. The architecture follows a layered structure where sensor data

is collected, processed, transmitted and visualized at web application.

At the sensing stage, the load cell with HX711 amplifier measured weight changes, while
ADXL345 accelerometer monitored the orientation of the water bottle to avoid false reading
when the bottle was tilted or lying down. Other components such as voltage sensor and red

LED indicator ensured that the ESP32 battery status could also be tracked.

The ESP32 microcontroller served as the CPU, which responsible for managing sensing
operations, executing algorithms and handling local data storage when Wi-Fi is unavailable. It
also managed communication with the Firebase Realtime Database once the ESP32

microcontroller was connected to Wi-Fi.

Finally, the frontend web application which connected to the database, it will processed
and visualize the hydration data in real time. The interface displayed daily, weekly and monthly
consumption patterns, as well as summary such as total intake, refill time and goal

achievement.

This layered design was chosen to balance low cost, reliability and scalability, ensured that
the system could function effectively in environments with limited supervision such as schools

or playground while maintaining accurate tracking even during the system went offline.

Below figure shows the system architecture diagram.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

25

HXTA1 + 10k Load Cell

NTP Server

Measure Weight
Time Sync

ADXL345 Accelerometer

Firebase Realtime Database
Upload Data Fetch Data

Webpage

/ Measure Battery Level
Voltage Sensor

Low Battery Alert

5V Supply
Red LED

Chergin
TPA056{charging module) i 18650 Battery M Voltage Boost Converter

Figure 3.1 System Architecture Diagram

3.3 Use Case Diagram and Description

The figure below shows the use case diagram. The use case diagram illustrates the interactions
between the Smart Water Tracking System and its external actors. In this project, two primary
actors were involved, which was the child, who is interacting with this system by drinking
water and refilling the water bottle. Another actor was parent/teacher, who will monitor the
child’s water intake, set hydration goal and check water intake progress. The diagram
highlights the various function available to each actor, while the use case description will

provide further explanation of the system functionality.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

26

Child

— Drink Water

— Refill Bottle

Smart Water Tracking System Use Case

View Daily
Intake

View Weekly
Intake

View Monthly
Intake

Set Goal Daily

/ N\
Parent/Teacher

Check Goal
Achievement

Monitor battery
Level

Figure 3.2 Use Case Diagram

Use Case Description

The following table describes of each use case show in the diagram. Each use case will

highlight the functionality of the system, the actor involved and the expected outcome. This

provides a clear view of how the Smart Water Tracking System operate from both chid and

parent/teacher perspective.

Table 3.2 Use Case Description

Actor

Use Case

Description

Child

Drink Water

The child drinks water from the bottle. The
system will detects the weight change and

records the intake

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

27

Child

Refill Bottle

The child refills the water bottle. The
system updates the recorded weight to

database to reflect the refill

Parent/Teacher

View Daily Intake

The parent/teacher view the total water
consumption by the child in a single day via
web dashboard

Parent/Teacher

View Weekly Intake

The parent/teacher reviews the child water

consumption over the past week

Parent/Teacher

View Monthly Intake

The parent/teacher reviews the child water
consumption trends over a month to track

long-term hydration patterns.

Parent/Teacher

Set Goal Daily

The parent/teacher sets a daily, weekly and

monthly water intake target for the child

Parent/Teacher

Check Goal Achievement

The parent/teacher check whether the child

has meet the hydration goal

Parent/Teacher

Monitor Battery Level

The parent/teacher can check the system
battery level on the web application to

ensure uninterrupted monitoring

3.4 Activity Diagram

The activity diagram below illustrates one of the workflows of the Smart Water Tracking

System. The process begins when the child drinks water, followed by orientation checking and

weight measurement. The system then checks the Wi-Fi connection. If Wi-Fi is unavailable,

the data will be store in local storage. If Wi-Fi is available, the data will uploaded to Firebase,

where parent or teacher can view it through the frontend application and check goal

achievement.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

28

Start

Child Drinks Water

4

Check orientation
(ADXL345)

4

Measure Weight
Change

l

No . Yes
Wi-Fi
available?

A 4 A 4

Store to Offline

Storage Sync to database

A 4

Parent/Teacher view
data in frontend page

A 4

Check Goal
Achievement

Figure 3.3 Activity Diagram

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4
System Design

4.1 System Block Diagram

The block diagram of the Smart Water Tracking System is shown in Figure 4.1. The system is
divided into five layers, which were Power Layer, Sensing Layer, Processing Layer,
Connection Layer and Interface Layer. Each layer is responsible for different specific functions

of the system.

1. Power Layer

The power layer consists of the TP4056 module, an 18650 lithium-ion battery and a voltage
boost converter. The TP4056 module allows safe charging of the battery and provides
protection against overcharging or discharging [9]. The 18650 battery provide power to the
system, while the voltage boost converter regulates the output to provide a stable 6V for the

ESP32 microcontroller.

2. Sensing Layer

This layer includes the load cell with HX711 amplifier for measuring weight differences, the
ADXL345 accelerometer for orientation checking and a voltage sensor to monitor battery level.
These sensors collected raw data when the child drinks or refills water, providing the necessary

input for further processing.

3. Processing Layer

The ESP32 microcontroller act as the CPU of the system. Several processing modules were
implemented within the ESP32, such as weight measurement module, orientation module,
voltage sensor ADC converter module, data handling module and Firebase setup module.
These modules will process the raw data that received from the sensing layer and store or

transmit the data.

4. Connection Layer
The connection later managed the network communication between internet and ESP32

microcontroller. The ESP32 built a Wi-Fi connection to synchronize data with Firebase

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

30

database. The NTP server is used to obtain accurate timestamp, which are attached to the
recorded data. If Wi-Fi was unavailable, data will temporarily store in offline storage until

synchronization was possible.

5. Interface Layer

This layer will provided feedback and visualization for users. A red LED was used to indicate
the system battery status, while the processed data was transmitted to the frontend application.
The frontend will displays daily, weekly and monthly hydration trends along with battery

status. Parent and teacher can monitor the hydration habits of children through this interface.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
31

Power Layer

TP4056 charging
module

Voltage Boost
Converter

power in £ 18650 battery |

Processing Layer

Sensing Layer

Voltage sensor ADC
converter module
o s Measure Weight
Child d”nt';m refill »|Difference(load cell
e HXT11)

Weight Measurement
Module

h 4

Check Orientation

ESP32

(ADXL345 »>

Accelerometer) microcontrolier

1L

Data Handling
module

Voltage Sensor

Firebase Setup
Module

Crientation Module

Connection Layer

Wi-Fi connection Interface Layer

Y

Red LED

MNTP server Sync data to Firebase
(get timestamp) Database

Data Visualization
Module

visualize on Frontend

ParentTeacher

Figure 4.1 System Block Diagram

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

32

4.2 System Component Specifications
The smart water tracking system was built using several hardware components. Table 4.1

summarizes the specifications and functions of the selected components that used in this system

implementation.
Table 4.1 Specifications of System Components
Component Specifications Function in the System
ESP32-WROOM32 -3.3V operating voltage Main component for data
-Dual-core 32bit MCU processing, local storage
-Built-in Wi-Fi & Bluetooth | management and
communicate with Firebase
HX711 Load Cell Amplifier | -24-bit ADC resolution Auto convert analog signals
-low noise, high precision from load cell into digital
-built-in conversion from values for water weight
ADC to digital value measurement
-Operating voltage: 2.6 to
5.5V
10kg Load Cell -weight capacity :10kg Detect water bottle weight
changes to estimate water
consumption
ADXL345 Accelerometer -+2g +4g, +8g +16g Detect bottle orientation to
selectable range avoid false readings when
-Operating voltage: 3 to 5V | bottle is tilted or lying down
-3 axes(X,Y,Z)
Voltage Sensor -Input voltage range:0-25V | Monitor battery voltage to
-Divider Ratio: ~1:6 ensure reliable system
-12-bit resolution(0-4095) operation
18650 Li-ion Battery -capacity: 3800mAh Supply power to the system
-rechargeable
-Nominal voltage: 3.7V
TP4056 Charger Module -Input voltage range: 4.35- Provides safe charging for
6V 18650 battery
-charging current: 1A

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

33

-protection: overcharge &

discharge

Voltage Boost Converter -input voltage: 3V-6V Steps up battery voltage to
-output voltage range: 5- supply stable 6V to ESP32
28V DC
-max output current: 2A

Red LED -Current: ~4-10 mA Light up when voltage
-Forward voltage: ~2V sensor detects low battery

level

4.3 Circuits and Components Design

The smart water tracking system integrated several electronic components to enable sensing,
processing, communication and power management. Each component is connected to the
ESP32 microcontroller, which acts as the central processing unit of the system. The design

ensured efficient data acquisition, stable operation and reliable power delivery.

Load Cell with HX711 Amplifier

The load cell was connected to the HX711 module, which amplifiers the small voltage changes
generated by the strain gauge when water weight changes. The connection of the load cell with
HX711 amplifier were red wire to E+(VCC), black wire to E- (GND), green wire to A+ and
white wire to A-. The channel A was selected due to it offers higher amplification gains of 64x
or 128x to ensure more accurate weighting result [10]. The HX711 is then interfaced with the
ESP32 using digital pin(DT and SCK), where DT was connected to GPIO16 and SCK was

connected to GP1O4, for continuous weight measurement.

ADXL345 Accelerometer

The accelerometer was connected to the ESP32 cis the I*C communication protocol. In this
project only four pin will be used, which were VCC, GND, SDA and SCL. VCC was connected
to0 3.3V, SDA to GPIO21 and SCL to GP1022. GPIO21 and GPIO22 was selected was because
both of them was the default 12C pins supported by the ESP32 [22]. ADXL345 was used to
monitor the water bottle orientation to prevent false reading from the load cell while the bottle

was tilted or lying down.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

34

Voltage Sensor

A voltage sensor module is connected to the ESP32 analog input pin to measure battery voltage.
The VCC and GND pin of the module ware connected to the 18650 battery while the signal
(S) pin was connected to GPIO32 of the ESP32 to provide the ADC reading. With the assist of
voltage sensor, the system was able to monitor the battery level and alert the user if charging

is needed.

Power Supply Design

The system is powered by a rechargeable 18650 Li-ion battery. A TP4056 charging module
manages battery charging via micro-USB input. The battery output is connected to a DC-DC
boost converter, which provided a regulated 6V to power the ESP32 microcontroller.
Additionally, a red LED indicator was integrated into the system so it will provide a visual alert
when the battery voltage dropped below a predefined threshold, as detected by the voltage

SE€nsor.

ESP32 Microcontroller
The ESP32 integrated all sensor inputs, executes the data processing logic and manages Wi-Fi
communication. When Wi-Fi is unavailable, data was temporarily stored in offline memory.

When available, the ESP32 will transmitted the store records to Firebase Realtime Database.

Frontend Connection
Processed and uploaded data can be accessed by parents or teachers through the frontend web
application. The ESP32 ensured that all data stored locally is consistent with Firebase once

synchronization was completed.

This circuit and component design ensures proper integration between sensing, processing,
power and communication units, providing a reliable and efficient smart water tracking

solution.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

35

4.4 System Components Interaction Operations

From the system block diagram, the Smart Water Tracking System was divided into five main
layer, which were sensing layer, power layer, communication layer, processing layer and
interface layer. In this subchapter, the interaction and operation of these layers were described

in more detail to explain how the system functions as a whole.

4.4.1 Sensing Layer

The sensing layer consists of a load cell connected to HX711 amplifier, the ADXL345
accelerometer and voltage sensor. The load cell with HX711 amplifier was to measure the
weight of the water bottle and detects water intake. Furthermore, the ADXL345 monitor the
water bottle’s orientation to prevent false reading when the bottle was tilted or lying down. The
last component, voltage sensor, will continuously monitor the battery level and provides the

result to the ESP32. These three sensors provided the raw data required for further processing.

4.4.2 Power Layer

The power layer included the 18650 Li-ion battery, TP4056 charging module and DC-DC
voltage boost converter. The 18650 battery supplies the main power to the system, while the
TP4056 charging module allow the battery to be recharged via micro-USB cable. When the
battery had fully charged or being disrupted while charging, the TP4056 will have a built-in

protection circuit to protect the battery.

With only using the 3.7V battery was not enough to handle the ESP32 task and maintain
stable Wi-Fi connection, thus the need of DC-DC voltage boost converter was crucial in this
project. It will increase the 3.7V to stable 6V to meet the requirements for ESP32 to handle it
tasks. When the 6V was entered into ESP32 Vi, pin, it will auto regulated the 6V to 3.3V to
power itself and the connected sensors. This ensures that all components receive stable voltage

for continuous operation.

4.4.3 Processing Layer
In this layer, ESP32 microcontroller was acting as the core of this system, responsible for
executing the main logic, performing calculation and managing the data flow between

components. When the ESP32 initial, in setup() function, it will tared the load sensor,

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

36

initialized the ADXL345 accelerometer and captured a weight reading as current reading. The
ADXL345 accelerometer operate on the principle of detecting changes in capacitance along
the x, y and z axes to measure acceleration. In this system, the accelerometer was using static
forces (gravity) for orientation checking. When the water bottle was placed in upright, the z-
axis will be showing the values in the range of 9 to 10, while x and y axes remain close to 0. If
the z-axis was not in this range, the system recognizes that the water bottle was tilted or lying
down and the weight measurement will temporarily disabled to prevent false reading until the

water bottle was placed back upright.

Once the orientation was confirmed, the load sensor will perform a new weight
measurement and compare to the current weight every 3 seconds. If the difference more than
30 (which was to prevent moving or shaking the water bottle accidentally), then it will take 3
additional weight reading every 0.3 second. Only if the reading remained stable and the
variation does not exceed £2 compared to the initial difference, the system recorded the event

as a valid water intake event.

Next, ESP32 will determine whether the system was operating in online or offline mode.
In offline mode, the data reading will be stored into local storage (NVS). By using Preferences
library to store the data is because the system only needs to store 2 data points, which are weight
changes and timestamp. The fixed data structure makes NVS a suitable and efficient storage
option. Furthermore, NVS has a feature to prevent power-lost which the data will be stored
into local storage although the microcontroller suddenly shut down. Since the amount of data
being stored is minimal, there is no need to implement larger file systems such as SPIFFS,

making NVS the most lightweight and effective solution for this application. [17]

If a valid timestamp was available and the system was disconnected from Wi-Fi, it will
store the weight changes and the valid timestamp to the local storage. Otherwise, the system
will store the weight changes with the system runup time as a temporarily timestamp in another
local storage. Once Wi-Fi connectivity was restored, the system will process the offline data
with unknown timestamp first, by using timestamp that get from NTP server and the recorded

runtime offset to get an estimated timestamp.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

37

When then system was connected to Wi-Fi, ESP32 will initialize the Firebase configuration
and begins multitasking to handle additional system functions. Alongside weight monitoring,
the microcontroller executes a task for battery voltage measurement. In this task, the voltage
sensor takes 20 consecutive readings, averages the result to reduce the noise and upload the
battery level together with a timestamp to Firebase every 5 minutes. This ensured that power
status information remains accurate and up to date, allowing users to be alerted when charging

was required.

4.44 Communication Layer

In this layer, it responsible for internet communication and online database storing. The ESP32
microcontroller connect to the internet via Wi-Fi. After connected to Wi-Fi, it retrieves the
real-time timestamp using NTP. The use of NTP is essential because the ESP32 don’t have
internal RTC. Without internal RTC, the ESP32 would require an additional module, such as
the DS3231 to track the time[18]. By using NTP, this project eliminates the need for extra

hardware while still ensuring accurate time synchronization through the internet[19].

After connected to Wi-Fi and get the timestamp, ESP32 will upload the data log which
contained weight changes and timestamp to Firebase Realtime Database in JSON format.
Furthermore, if there are data entries stored at the local storage due to a previous disconnection,
the system will automatically commit these records to Firebase once the Wi-Fi was connected.

This can ensure that the data reliability and stability during network outages.

4.4.5 Interface Layer
The interface layer consists of 2 part; the hardware-based low-battery indicator and the frontend

web application hosted on Firebase.

On the hardware side, when the voltage level that detected by the voltage sensor was lower
than the threshold of 3.5V, the red LED indicator alerts the user to recharge the battery by

blinking 5 time per second.

On the software side, the frontend web application processes raw data from Firebase before
displaying it to the user. The system grouped data by date and classifies water intake record

into negative and positive values. The negative values water data represent the children actual

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

38

water intake, meanwhile the positive value represent the amount of water refilled into the
bottle. Furthermore, the system also displays the battery status at the top-right corner of the
webpage. This is achieved by comparing the most recent uploaded timestamp from the ESP32
with the current time and battery level. If the timestamp exceeds a threshold of 10 minutes, the

system is shown as offline. Otherwise, it is indicated as online.

In the webpage, parent or teacher can view daily, weekly and monthly water intake
summaries. The interface also highlights the refills times, total intake and goal achievement.
Furthermore, the webpage also offers several personalization features, including the ability to
change the font size, clear all the data in database and set the hydration goal separately for
daily, weekly and monthly intervals. By providing data visualization and user customization,
the system ensures hydration monitoring was convenient, user-friendly and adaptable to

different user needs.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

Chapter 5

System Implementation

5.1 Hardware Setup

In this section, it will described the hardware structure of the system. To house and organize
all the components at one place, a custom case was designed and fabricated using 3D printing
technology. The 3D design was created in SolidWorks and divided into 5 layer, where were
battery layer, power layer, microcontroller layer, sensor layer and platform layer, all enclosed
within an outer case. The 3D printer used in this project was CREALITY Ender-3 V3 KE to
print the case. The specifications of the printer are shown in Table 5.1.

Table 5.1 3D Printer Specifications

Model Ender-3 V3 KE

Printing Technology Fused Deposition Modelling (FDM)
Build Volume 220 x 220 x 240 mm

Maximum Printing Speed 500 mm/s

Input Printing Support for high-quality printing

The outer case was designed with 3 vertical rods with 6.2cm each to lock and stabilize the
inner layers. Two external openings were included: one for the charging port and another for
the LED indicator. The figures 5.1 and 5.2 shows the outer and inner views of the case while

figure 5.3 illustrate the outer case in 2D view.

Figure 5.1 Outside View Figure 5.2 Inside View

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

40

| @ 94.00 |

il | 3.00 |
@900} 0400 |
. 2.00 ®4.00 |
S| (i1 I fl I I
gl i H M H '
I I 1 1 [N \
b e S 1 :
H 1 HIR H t ’
I 1 1 4.00|1 11 I
1 Nl - 11l Lii i -
S
<

@ 100.00

Figure 5.3 Outer Case (2D View)

e Battery Layer:
The battery layer holds the 18650 Li-ion battery and its battery holder. A cut-out hole
was designed to allow battery wires pass to power layer. The battery holder was placed

under the power layer for easy replacement. Figure 5.4 shows the battery layer.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
41

Figure 5.4 Battery Layer

e Power Layer:
In power layer, it included the TP4056 charging module, voltage sensor, DC-DC
voltage boost converter and red LED indicator. The TP4056 sits on a 27 x 17 x 6 mm
platform to secure its position. The figure 5.5 and 5.6 illustrate the power layer in 2D

design and real-world implementation.

S
N

jiL I—IJ*

= /TR

@ I I

3.00]

I

Figure 5.5 Power Layer (2D view)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

42

Figure 5.6 Power Layer (Real-World View)

e Microcontroller Layer:
The microcontroller layer houses the ESP32 microcontroller and 2 quick wire terminal
connector. The 2-terminal connector was separately distributed the 3.3V pin and ground
pin to connected sensor components. A38 x 20 x 10 mm platform was designed for the
ESP32, beside it was having 2 hole for wiring connections. Figures 5.7 and 5.8 show

the design and assembled layer.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

43

3.00

r
|

38.00

Figure 5.7 Microcontroller Layer (2D View)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

44

Figure 5.8 Microcontroller Layer (Real-World View)

e Sensor Layer:
In sensor layer it includes the 10kg load cell, HX711 amplifier and ADXL345
accelerometer. Platforms of 20 x 15 x 11 mm for HX711 amplifier and 20 x 17 x Imm
for ADXL345 were designed to mount the modules. Beside the platform, it will have a
hole to let jumper wire connect to the sensor pins. Additionally, a 3mm height was
designed under the load cell to prevent the strain gauge from touching the surface and

producing false readings. Figures 5.9 and 5.10 show the design and implementation.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

45

8 8
L[]ot, [
_________ .lJ_L___.;J___J_J‘ ‘
! i T
1|
’H‘S'OO 8
8
N
) 92.00
<
o _\ o
o ©
Q|20 12000 &
F
&

[—
|t

Figure 5.10 Real-World View of Sensor Layer

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

46

e Platform Layer:
This was the top layer, designed as a flat platform to place the water bottle. The outer
case will have an approximately 2cm raised edge to prevent water bottle moving and
keep the water bottle centered on the load cell. A second 3mm height block was also
integrated into this layer, positioned above the load cell. This ensures the strain gauge
remains properly elevated when the water bottle was placed on top to improve the

accuracy of the weight measurement. Figure 5.11 show the platform layer in 2D view.

o
i~
|- O’)Y | ——
[L=l 1'7‘7 [Y] B]
©»94.00

Figure 5.11 Platform Layer (2D View)

Finally, Figures 5.12 and 5.13 show the assembled system in both 2D views and real-world,
combining all five layers into a single unit. Figure 5.14 shoes the assembled system together

with the outer case.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

47

48

———————————

292

i

L i1

FEE
e

I

B

it

r————————

=
G = e e Al iy

P N

Vo Stmp— Y
\

Figure 5.12 Assembled System (2D View)

S
Y A T
~

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Bachelor of Information Technology (Honours) Computer Engineering

Figure 5.13 Assembled System without Outer Case (Real-World View)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

Figure 5.14 Assembled System with Outer Case (Real-World View)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

50

5.2 Software Setup

The software setup involves preparing both the microcontroller programming environment and
the web-based frontend hosting environment. The development platform used in this project
was the Arduino IDE, which provides a user-friendly interface for coding and uploading

firmware to the ESP32 microcontroller.

In this project, a laptop was used to develop the code for the ESP32 using Arduino IDE.
The laptop also served to monitor the ESP32 output using the Serial Monitor and flash the
firmware into ESP32 through COM7. The table 5.2 shows the specifications of the laptop used
in this project.

Table 5.2 Specification of Laptop

Description Specifications
Model Lenovo Legion 5i
Processor Processor: AMD Ryzen 5 5600H
Operating System Windows 11
Graphic NVIDIA GeForce RTX3060 6GB
Memory 16GB DDR4 RAM
Storage 1.5TB SSD

For the ESP32 setup, the ESP board package was first installed in the Arduino IDE through
board manager by adding the Espressif repository link:
“https://raw.githubusercontent.com/espressif/arduinoesp32/ghpages/package esp32 index.js
on”. After installation, select the ESP32 Dev Module from boards manager and set the upload
speed to 115200 baud rate [20]. The required libraries were then installed using the Arduino
Library Manager and internal library. The key libraries used in the project include:

1. Adafruit ADXL345 — to handle accelerometer for orientation detection

2. ArduinoJson — to transmit data to Firebase in JSON format

3. Firebase Arduino Client Library for ESP8266 and ESP32 — to send data to Firebase

Realtime Firebase

4. HX711 Arduino Library — to interface with the load cell amplifier

5. WiFi and WiFiMulti — to establish and manage multiple Wi-Fi connections

6. Preferences — to store offline data in ESP32’s non-volatile memory

7. Wire — to configure the I>°C for ADXL345 accelerometer

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

51

In addition, the frontend interface was hosted on Firebase Hosting. To set up this, Node.js
and Firebase CLI were installed on the development computer. Once the Firebase initialized,
it will generate the Firebase configuration that link to the created Firebase project. The HTML,
CSS and JavaScript files for the dashboard were placed in the hosting folder and the

deployment was performed using the “firebase deploy” command.

Once completed, the ESP32 firmware and the frontend hosting were connected through the
Firebase Realtime Firebase, enabling the hardware to upload water intake and voltage data,

while the frontend retrieved and visualized the information in real-time.

5.3 Setting and Configuration

After completing the installation of the development environment and deployment of the
frontend, the system required further customization and tuning to ensure the system
functionality. This section describes the configuration steps carried out for the ESP32

microcontroller, database, synchronization, sensors, frontend and system threshold.

5.3.1 ESP32 Wi-Fi Configuration

The ESP32 was configured to connect to a Wi-Fi network by embedding the SSID and
password inside the program code. To support multiple network sources, the WiFiMulti library
was utilized, enabling the device to automatically switch to other alternative connections in
case of disconnection. This ensured continuous data transmission to the Firebase database

without manual setup. The system can setup multiple Wi-Fi connections with the command:

wifiMulti.addAP(“SSID”,”Password”);

5.3.2 Firebase Database Configuration

The ESP32 was linked to Firebase by insert the project URL and authentication key into the
program code. Two structured data paths were define: one was waterIntake with having two
key parameter: weight and timestamp, another was voltageBattery with having two key
parameter: battery voltage and timestamp. Database rules were also set to regulate read and
write permissions, ensuring secure communication between the microcontroller and Firebase.
To enhance data security, authentication can also be enabled and only verified accounts can

access to the Firebase. The code to set up the Firebase in ESP32 as follow:

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

52

config.api_key = API KEY;
config.database url = DATABASE URL;
auth.user.email = "Email Account";
auth.user.password = "Password";
Firebase.begin(&config, &auth);

Firebase.reconnectWiFi(true);

5.3.3 NTP Configuration

NTP was implemented to get an accurate timestamps for recorded data. The time zone was
configure to GMT +8 (Malaysia Time) and the synchronization interval was set to periodically
update the ESP32 internal clock. This allows the offline data, can store the timestamp as real-
world time in offline storage.

The NTP configuration was as follows:

const char* ntpServer = "pool.ntp.org";

const long gmtOffset sec =8 * 3600; //GMT+8

const int daylightOffset sec = 0;

configTime(gmtOffset sec,daylightOffset sec,"pool.ntp.org","time.google.com","time.cloud
flare.com");
struct tm timeinfo;
int retry = 0;
while (!getLocalTime(&timeinfo) && retry < 5) {
Serial.println("Failed to obtain time");
delay(1000);
retry++;

}

5.3.4 Sensor Calibration

Calibration was performed on all sensing module to improve measurement accuracy. The
HX711 load cell amplifier was tared using calibration factor to establish a zero baseline before
water intake measurements. The ADXL345 accelerometer was tested in multiple orientations,

with the z-axis expected to produce reading of approximately 9-10 while water bottle was in

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

53

upright position. The voltage sensor was calibrated by mapping the ADC readings to actual

battery voltage levels using known reference values.

5.3.5 Frontend Configuration

The dashboard was linked to Firebase using the JavaScript SDK. The system was configured
to retrieve new data and update the water intake chart to ensure real-time visualization. Default
goal values for daily, weekly and monthly water intake goals can also be adjusted by the user
as needed. Additionally, the system also included a personalization feature that allowed users

to convert the data from ml to Oz.

5.3.6 System Thresholds

Several thresholds were implemented to enhance data accuracy and reliability. A minimum
change of 30 ml was required in load cell reading before registered as a valid water intake
event, effectively filtering out noise caused by minor movement. To further enhance the data
reliability, the system will take 3 additional reading and compared to the initial difference
weight, if the variation between these readings did not exceed +2g, it will only registered as a
valid drinking event. The low battery threshold was defined at 3.5V, triggering a warning when
the battery voltage dropped below this level. Additionally, the frontend application was set to
detect offline conditions if no updates were received in voltageBattery structure data within 10

minutes, ensuring timely alerts for connectivity issues.

5.4 System Operations
This section will demonstrates the working process of the Smart Water Tracking System,
covering both the hardware operation and the frontend interface. Screenshots and photos will

included to illustrate each stage of process.

5.4.1 System Startup

When the ESP32 boots up, the system first tares the load sensor and initializes the voltage
sensor and the ADXL345 accelerometer. After initialization, the ESP32 attempt to connect to
available Wi-Fi connection. If there was available Wi-Fi, the ESP32 communicates with NTP
server to synchronize the system time then upload the stored offline data to Firebase database
if exist. If Wi-Fi connection fails, the system will switch to offline mode, skipping the Wi-Fi

connection and Firebase configuration. In this mode, valid water intake event were stored

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

54

locally in NVS. Figure 5.15 shows the ESP32 connected to a mobile phone hotspot.
Furthermore, Figure 5.16 show the Serial Monitor output during successful Wi-Fi connection
, while figure 5.17 shows the ESP32 operating in offline mode.

7:39

= Connected devices

Limit of connected devices

Blocklist

esp32-49B1A4

Figure 5.15 ESP32 connected to phone hotspot

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

55

ets Jul 29 2019 12:21:46

rst:0x1 (POWERON_RESET) ,boot:0x13 (SPI_FAST FLASH BOOT)

configsip: 0, SPIWP:Oxee

clk drv:0x00,q drv:0x00,d drv:0x00,cs0_drv:0x00,hd drv:0x00,wp drv:0x00
mode:DIO, clock div:1

load:0x3fff0030,1en:-4888

load:0x40078000,1len:16516

load:0x40080400,1len:-4

load:0x40080404,1en:-3476

entry 0x400805b4

Initializing the scale

Connecting Wifi...

WiFi connected
O SE25452

Firebase connected

Failed to obtain time

Failed to obtain time

Failed to obtain time

Time initialized successfully
Current time: 2025-09-13 21:32:38
No offline data to process

No local data to upload.

Figure 5.16 ESP32 Serial Monitor during successful Wi-Fi connection

ets Jul 29 2019 12:21:46

rst:0x1 (POWERON_ RESET) ,boot:0x13 (SPI_FAST FLASH BOOT)

configsip: 0, SPIWP:Oxee

clk drv:0x00,q drv:0x00,d drv:0x00,cs0 _drv:0x00,hd drv:0x00,wp drv:0x00
mode:DIO, clock div:1

load:0x3f£ff0030,1en:4888

load:0x40078000,1len:16516

load:0x40080400, 1en:4

load:0x40080404,1en:3476

entry 0x400805b4

Initializing the scale

Connecting Wifi...

WiFi not connected. Trying to reconnect...

WiFi not connected. Skipping firebase and time sync
Wifi not connected

No significant change | Current: -0.75

Figure 5.17 ESP32 Serial Monitor output in offline mode

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

56

5.4.2 Orientation Detection

During normal operation, the ADXL345 accelerometer continuously check the water bottle
orientation. If the z-axis value falls outside the expected range of 9-10, the system interprets
the bottle as tilted or lying down form and weight measurement are temporarily disabled. If the
bottle was in upright form (z-axis within the range), it will proceed to load cell reading. Figures
5.18 and 5.19 show when the ADXL345 accelerometer placed in a vertical orientation and the
output of ESP32 in Serial Monitor. Meanwhile, Figures 5.20 and 5.21 shows when the

ADXL345 accelerometer back to upright form and the corresponding output in Serial Monitor.

Figure 5.18 ADXL345 accelerometer in vertical orientation (real-world)

No significant change | Current: -0.07

Water Bottle was not in upright, weight measurement process suspend.

Water Bottle was not in upright, weight measurement process suspend.

Figure 5.19 ESP32 Serial Monitor output for vertical orientation

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

57

Figure 5.20 ADXL345 accelerometer in upright orientation (real-world)

Water Bottle was not in upright, weight measurement process suspend.

No significant change | Current: -0.07

No significant change | Current: -0.07

Figure 5.21 ESP32 Serial Monitor output for upright orientation

5.4.3 Water Intake Detection, Data Logging and Uploading

HX711 amplifier and load cell were responsible for measuring the bottle’s weight every 3
seconds. If the weight difference that bigger than 30g was detected, the system performs
additional 3 more reading at 0.3 second interval to ensure data accuracy and reliability. If the
variation between these readings within £2g of the original weight difference, the system will
recorded the event as a valid drinking/refilling action. The negative values data represents as
the child drink amount and positive value represent the amount of water refilled into the bottle.
Figure 5.22 shows the Serial Monitor of ESP32 together with the laptop system time during a

weight change event.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

58

Data send successfully

Stable new weight: 820.83

Change detected: 820.90

No significant change | Current: 820.83

NMA mimmiFirant shanea | Mavvan +. Q0N Q2

Ln 105, Col 49 ESP32 Dev Module on COM7 B8
n (? - (9 NG T44PM
o Q Serch DO mavoE AP0 g

Figure 5.22 Serial Monitor output showing water intake detection and laptop system time

The water intake measurement in Figure 5.22 was done in online mode, the valid event was
immediately uploaded to the Firebase database. The logging result at the Firebase console was

illustrated in Figure 5.23.

GD https://esp32-watertrakingsystem-default-rtdb.asia-southeast1.firebasedatabase.app > waterintake > -0_1t7PqUAfdQ.. /

-0_1t7PqUAFdQS92QZ7E
timestamp: "2025-09-13 19:44:56"
weight: 820.89929

Figure 5.23 Water intake event successfully uploaded and logged in Firebase Console

In addition to online logging, the system also supports offline data storage when Wi-Fi is
not available. The system relies on the NTP as the system time. To validate this offline
storage mechanism, 2 water intake events were recorded while operating in offline mode.
Figure 5.24 and 5.25 shows the valid water intake event, message that mention the data was
stored into local storage with valid timestamp in Serial Monitor and the laptop time where the

measurement was taken.

Wifi not connected

timestamp now:

2025-09-13 21:43:00

Saving data locally...

Saved to regqular storage with valid timestamp
Stable new weight: -0.08

Change detected: -563.10

n383,Col 19 ESP32 DevModuleon COM7 (22 B

P g - m NG 941PM
N &H“'ﬁg%ﬁ/ N AR g

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

59

Figure 5.24 Serial Monitor output showing valid drinking event stored locally with NTP
timestamp

Wifi not connected

E (190175) wifi:sta is connecting, return error
timestamp now:

2025-09-13 21:43:36

Saving data locally...

Saved to reqular storage with valid timestamp

Stable new weight: 561.95

Change detected: 562.03

Wifi not connected

No significant change | Current: 561.95
Wifi not connected

No significant change | Current: 561.95

[n 383, Col 19 ESP32 Dev Module on COM7 ®8

NG 9420M
Al RO o

Figure 5.25 Serial Monitor output showing valid refill event stored locally with NTP

timestamp

Afterward, the ESP32 was switch back to online mode. The system will automatically
detected the stored event in offline storage and upload them to Firebase Database. The Serial
Monitor output of this process was shown in Figure 5.26, while Figure 5.27 presents the

successfully logged data in Firebase Console.

Wifi reconnected

Firebase connected

Time initialized successfully
Current time: 2025-09-13 21:44:05
No offline data to process

Uploading 2 local entries in main storage...

Uploaded datal successfully.
Uploaded datal successfully.

Local storage cleared.

Figure 5.26 Serial Monitor output showing offline data being uploaded when Wi-Fi

reconnects

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

60

-0_2J0yfdvJKv_BiJ1A4

timestamp: "2025-09-13 21:43:00"

weight: -563.09857
-0_2JP1AyUkmU3CsXiBz

timestamp: "2025-09-13 21:43:36"

weight: 562.0304

Figure 5.27 Firebase console showing uploaded offline events

Lastly, the system was also tested under a difference offline condition where the ESP32
was initialized without Wi-Fi and Firebase configuration just like Figure 5.17. In this scenario,
NTP synchronization could not be perform since it need Wi-Fi connection and therefore the
system will temporarily store the ESP32 runup time as timestamp of the water event. In the
testing setup, 2 data were collected by ESP32 under this situation. Figures 5.28 and 5.29
illustrated the Serial Monitor Output with laptop system time, showing how the data was
captured with unknown timestamp.

Wifi not connected

timestamp now:

Unknown

Saving data locally...

Saved to offline storage with millis timestamp
Stable new weight: 561.41

Change detected: 562.16

(383, Col 19 ESP32.DevModuleonCOM? (32 B

A NG A0 944 PM

Us 9/13/2025

Figure 5.28 Serial Monitor output showing offline data stored with temporary run-up

timestamp (event 1)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

61

Wifi not connected

timestamp now:

Unknown

Saving data locally...

Saved to offline storage with millis timestamp
Stable new weight: -0.56

Change detected: -561.96

n363,Col 19 ESP32 DevModuleon COM7 (32 B
- 9 = @ NG g 4SPM
B d (? me Q@8 Al PO g

Figure 5.29 Serial Monitor output showing offline data stored with temporary run-up

timestamp (event 2)
Once Wi-Fi connectivity was restored, the ESP32 configured Firebase and synchronized
time from NTP server. After time had been initialized, it will processed the data with system
runup time as temporarily timestamp. Figure 5.30 the Serial Monitor output of ESP32 during

this process. Figure 5.31 shows the corrected time events successfully logged in Firebase.

Wifi reconnected

Firebase connected

Time initialized successfully

Current time: 2025-09-13 21:47:32

Processing 2 offline entries...

Processing offline entry 0: Weight=562.16, Original millis=43506, Calculated time=2025-09-13 21:45:37
Uploaded offline data 0 successfully

Processing offline entry 1: Weight=-561.96, Original millis=126206, Calculated time=2025-09-13 21:46:59
Uploaded offline data 1 successfully

Offline data processed and storage cleared

Figure 5.30 Serial Monitor output showing offline data being processed and timestamp

corrected

-0_2KBHAUX92TPNv-A9Z
timestamp: "2025-09-13 21:45:37"
weight: 562.15717

-0_2KBIm9IiEU45LgSK6

timestamp: "2025-09-13 21:46:59"

weight: -561.9621

Figure 5.31 Firebase console showing offline data uploaded with corrected NTP timestamps

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

62

5.4.4 Battery Monitoring

When the ESP32 work in online mode, it starts multitasking by running task to continuously
monitor the battery voltage. The voltage sensor read the battery level through ESP32 GPI032
pin. If the detected voltage was lower than the threshold of 3.5V, the system triggers a low-
battery alert. The red LED indicator will blinks 5 times per second to notify the user of low
voltage condition. The voltage battery level and timestamp will uploaded to Firebase. Figure
5.32 shows Serial Monitor output when battery level low than 3.5V while Figure 5.33
illustrated the red LED indicator blinking as a visual alert for the user. Figure 5.34 presents the
logged battery voltage data uploaded to Firebase console.

Battery Voltage: 2.74 V

No significant change | Current: -0.76

Voltage data sent to Firebase successfully.

Figure 5.32 Serial Monitor output when battery voltage drops below 3.5 V

Figure 5.33 Red LED indicator blinking (low battery alert)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

63

voltageBattery

timestamp: "2025-09-13 21:39:43"

voltage: 2.7367

Figure 5.34 Battery voltage data logged in Firebase console

5.4.5 Frontend Display

The frontend dashboard was designed to provide real-time visualization of the water intake
data retrieved from the Firebase database, Once the ESP32 uploaded the valid drinking and
refill events, the data was automatically synchronized with the frontend using the Firebase

JavaScript SDK.

The main page of the frontend displayed a welcoming message. In the navigation bar, the
user allows to switch to daily, weekly and monthly page and view the summary. On the right-
hand side, a setting button was provided for user to do customization. Besides, it also included
a battery indicator to show the current battery status and an online/offline status icon to indicate
the connectivity of the ESP32 system. Figure 5.35 show the main page layout and the the

navigation bar.

Kiddo Daly Weekly Monthly Status: Offline.Battery: () 68%

Welcome to Smart Water Tracking System

Tips: You can set your goal on the setting page

Figure 5.35 Main page layout and navigation bar

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

64

The dashboard included multiple features to improve user interaction and monitoring.
Daily, weekly and monthly charts were plotted to provide a clear overview of hydration
patterns across different timeframes. User was allowed to select specific time or time ranges to
view the hydration patterns and data either in ml or Oz form. The goal achievement was also
employed to track the hydration status, while data that exceed the goal target will be show in
green colour, the data that below the goal target but within 500ml of reaching it were shown in

pink colour and the data that did not achieved the goal target was shows in red colour.

In the daily view, the chart shows the water intake event only excluding refills for clarity.
In the summary section, it displayed the number of refills, total water consumed and goal

achievement status. Figure 5.36 illustrates the daily summary view.

Kiddo Daily Weekly Monthly Status: Offline Battery:DSB%

T Select Date: (20250824 V]

Unit: [miv]

Tip: The line chart only shows the afrinking trend (intake moments) and not the total water weight remaining in the bottle.

250ml

Refill Time: 3 Total Drank: 765.15 Goal Reached [
ml

Figure 5.36 Daily summary view (ml)

For weekly and monthly views, the hydration goal target was distributed across 7 and 30
days respectively. The frontend compared the amount of water intake with the goal target for
the selected period and highlighted the hydration status for each day. Furthermore, the

summary box in weekly and monthly shows the total amount of water drinks, average daily

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

65

intake and goal achievement status. Figure 5.37 and 5.38 shows the view of weekly and

monthly page.

Kiddo Daily Weekly ~Monthly Status: Offine Battery::}ﬁa%

T Select Week: (1770872025 - 23/08/2025 v

Unit: [0z v|

Tip: Each bar is compared against your daily target (7 mi). Green = Goal reached, = Almost there, Red = Goal not met.

300z
250z
200z
150z
100z

0oz I

Mon Tue

R

Wed Thu Fri Sat

Total Drink: 72.85 oz Average Drink: 4.86 Weekly Goal [
oz

Sun

Figure 5.37 Weekly summary view(Oz)

Kiddo Daily Weekly Monthly Status: Offline Baﬂsry::)G&%

T Select Month: [Month: 2025-08 v

Unit: [miv|
Tip: Each bar is compared against your daily target (290 ml). Green = Goal reached, - /' = Almost there, Red = Goal not met.
800 ml
700 mi
600 ml
500 ml
400 ml
300 ml
200 ml [
100m! | il l
ou nlliAl
F ST dddddddd
Total Drink: 8632.93 Average Drink: Monthly Goal %
ml 132.81 ml

Figure 5.38 Monthly summary view (ml)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

66

In setting page, the users were also allowed to change the font size of the page for better
readability. Figures 5.39 and 5.40 demonstrate the difference between the medium and large

font size options.

Kiddo Daily Weekly Monthly Status: Offine Banery:[:)e&%

7 Select Date: [2025-08-24 V]

Unit: [miv|

Tip: The line chart only shows the drinking trend (intake moments) and not the total water weight remaining in the bottle.

250 mi
200 ml
150 ml

100 ml

Oml

Refill Time: 3 Total Drank: 765.15 Goal Reached [Z
ml

Figure 5.39 Font size in medium form

Kiddo Daily Weekly Monthly Status: Offline Battery:) 68%

T Select Date:
Unit: [miv]

Tip: The line chart only shows the drinking trend (intake moments) and not the total water weight remaining in the bottle.

Refill Time: 3 Total Drank: Goal Reached
765.15 ml V]

Figure 5.40 Font size in large form

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

67

Additionality, the frontend provided customization options for user to change the hydration
goal target for daily, weekly and monthly. When a value was changed, a save button appeared
to update the goal setting and store in local storage. Figure 5.41 shows the goal customization

interface.

Goal Setting(Inml)

Set your daily goal here:
6700 A

Set your weekly goal here:
150

Setyour monly goal here:
9000

Figure 5.41 Goal customization setting

The frontend also provided a feature for deleting all cloud data. For testing purpose, instead
of using the actual data structure, a new data structure call “sample” was created to verify the
functionality. The Figures 5.42 shows the new data structure in Firebase Console and figure

5.43 displayed the confirmation dialog on the frontend page.

GO https:/esp32-watertrakingsystem-default-rtdb.asia-southeast1.firebasedatabase.app

https://esp32-watertrakingsystem-default-rtdb.asia-southeast1.firebasedatabase.app/
v sample
~ 1
timestamp: 2025-07-30 07:04:49

weight:-233.16

timestamp: "2025-08-27 13:10:49"

weight: 340.123
voltageBattery

waterIntake

Figure 5.42 New sample data structure with data in Firebase Console

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

68

localhost:5000 says

want to clear ALL water intake data? This cannot

—

Figure 5.43 Confirmation Message for data deletion

Once confirmation, the data structure was permanently deleted and could not be be

restored. Figure 5.44 shows Firebase Console after the data structure had been cleared.

Figure 5.44 Firebase Console after clear the data structure

5.5 Implementation Issues and Challenges
During the development of the Smart Water Tracking System, several issues and challenges
were encountered during hardware and software implementation. These challenges required

several time of testing and design adjustment to ensure the system could operate reliably.

Sensor Calibration and Stability
The HX711 load cell measurement was affect the data accuracy by environment factors. The
load cell measurements will having a tolerance of +/- 5% due to several factors such as drift,

high surface temperature and electromagnetic interference from nearby electronic devices.[21]

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

69

The system has implemented a stability check mechanism to ensure the data reliability and

reduce the impact of these environmental factors .

False Reading When Bottle Was Tilted

In certain condition, user did not always place their water bottle in upright position, such as
during sporting activities or putting inside a bag, false reading was captured and uploaded to
frontend, leading to confusion for users. To solve this issue, ADXL.345 accelerometer was

implemented into the system to monitor bottle orientation and prevent captured false reading.

Delay on getting timestamp from NTP server

The whole system was heavily rely on NTP for getting timestamp. However, during
initialization, the NTP server may experience delay or failure due to poor internet connection
or the NTP server was having peak usage time. To address this challenge, a retry mechanism
was implemented, although it can solve the issues but it still having a long-time delay to get

the time.

Power Supply and Battery Monitoring

The ESP32 required a stable 6V input from the 18650 battery to initialize the Wi-Fi connection
and power other components. Therefore, a DC-DC voltage boost converter was used to step up
the 18650 Li-ion battery to 6V and voltage divided was implemented to monitor the battery

status. Calibration was needed for voltage sensor to accurately captured low-battery conditions.

Frontend Visualization and Customization

Initially, both positive and negative value were shown in the chart, resulting in refill and intake
actions was being shown together. This caused confusion in data interpretation. The data
handling logic was refined to filtered out the positive value and only show negative values data
in the chart. Furthermore, goal customization values were not saved after page refresh. This

problem was solved by using local storage in the frontend to prevent data missing.

User Interface Accessibility
The default font size was not suitable for all users. Thus, a customization feature was added to
the setting page allowing user to adjust the font size of the page, improving accessibility for

children and parents.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

70

Overall, these challenges were being solved during the development through testing, debugging

and implement new sensor. This solution contributed to a more stable and user-friendly system.

5.6 Concluding Remark

This chapter show the detailed implementation of the Smart Water Tracking System, covering
both hardware and software aspect. The discussion in this chapter included system setup,
configuration and workflow of the system followed by the frontend webpage development for
data visualization and user interaction. Implementation challenges were also being identified,
along with the solutions adopted to ensure system full functionality, accuracy, reliability and

user-friendly.

Overall, the system was successfully implemented and integrated, achieving the
functionality of monitoring water intake, handling offline and online data synchronization and

providing an interactive webpage for users.

The following chapter will evaluate the system’s performance through testing and
validation. Metrics such as data accuracy, response time, reliability and user interface

functionality will be examined to ensure the system meet the project objectives.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

71

Chapter 6

System Evaluation And Discussion

6.1 System Evaluation and Performance Metrics

To evaluate the effectiveness of the Smart Water Tracking System, a set of tests were carry
out. The testing aimed to verify both the functional correctness and the performance of the
hardware, software and data visualization components. Performance metrics were defined to

evaluate how well the system achieved it objectives.

Performance Metrics Considered

__ Measured Value

e Accuracy (%) = x 100

Actual Value

Missing Entries

e Data Loss Rate (%) = x 100

Total Entries
e Synchronization Delay (s) = Time required to upload offline data once Wi-Fi

reconnected

6.1.1 Load Sensor Accuracy Test

The HX711 load sensor was tested to determine measurement accuracy under different known
weight. The actual weight was measured manually using electronic scale and compared with
sensor readings.

Table 6.1 Load Sensor Accuracy Test

Trial Actual Weight(g) | Sensor Reading (g) | Error (g) Accuracy(%)
1 44 43.82 -0.18 99.6

2 232 233.23 1.23 100.53

3 486 488.56 2.56 100.53

4 57 57.94 0.94 101.65

5 217 211.24 -5.76 97.35

Avg - - -0.242 99.93

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

72

The average accuracy was 99.93%, which was acceptable for hydration tracking purpose.
Errors observed (+ 0-6) were negligible in comparison to daily hydration goals, confirming the

data accuracy and stability of the load sensor with calibration used.

6.1.2 Data Synchronization Test
The system supports both offline logging using NVS storage and online synchronization with
Firebase. Test were conducted to check if the number of data that stored in offline storage can

be successfully upload to Firebase once the Wi-Fi connection was restored.

Table 6.2 Data Synchronization Test

Condition Number of Data | Number of Data | Data Loss(%) Average
Entries taken in | Uploaded after Sync Delay
offline Reconnect

5 mins offline | 15 15 0 3

15 mins offline | 30 30 0 2.5

30 mins offline | 40 39 2.5 4.8

The synchronization process achieved a 97.5% reliability rate, with only one data loss at
the 30 minutes offline condition. The delay in syncing was short, ranging between 2.5 to 4.8
seconds, showing the efficiency of the retry mechanism. The 5-minute offline condition sync
delay was greater than 15 mins offline was due to the delay of NTP server to get timestamp to

update the ESP32 system time.

6.1.3 Orientation Test

The ADXL345 accelerometer was also be tested to verify its ability to detect bottle orientation.
Test were conducted by placed the ADXL345 accelerometer in different position and the rate
of successfully disabled the weight measurement was not in upright position.

Table 6.3 Orientation Test

Test Case X-axis y-axis Z-axis Measure
Result

Upright 0 -0.67 9.38 Weight
recorded

Vertical -9.61 -2.16 -0.67 Measurement
disabled

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

73

Downward 0.27 -0.39 -10.16 Measurement
disabled

Tilted (45 -6.55 -0.67 6.75 Measurement

Degree) disabled

The ADXL345 accelerometer successfully distinguish between upright and non-upright
orientations. Weight reading was only taken when the orientation was detected at upright
position, preventing false water intake events. This confirmed that the orientation checking

mechanism able to enhance the system reliability in real-word usage.

6.1.4 Frontend Goal Achievement Test
The frontend was tested to verify whether goals status and water intake summaries were

displayed correctly. The system should clearly indicate whether the user had met their

hydration goal.
Table 6.4 Frontend Goal Achievement Test
Type Day Goal (ml) Actual Intake | Goal Reached
(ml)
Daily 24/8/2025 600 765.15 Yes
Weekly 17/8/2025—23/8/2025 | 1500 21543 Yes
Monthly | 08-2025 9000 8632.93 No

The frontend was able to display correct goal achievement status. In case where the total
water intake was slightly below the target, the system also can highlighted it appropriately.

This ensures parents or teacher can receive clear feedback on keeping hydration progress.

6.1.5 Water Intake Event Detection
The raw data process in frontend was tested to verify the system can whether separate the
negative and positive value correctly. This mechanism was tested by using an amount of 100

data entry, where 50 for positive values and 50 for negative values.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

74

Table 6.5 Confusion Matrix
Actual Values

Positive Negative
Predicted Positive 50 0
Values Negative 0 50

The confusion matrix had shown the raw data processing mechanism had successfully
identified all the data into positive and negative value. This ensures the system can provide a

reliable visualization data for user to view.

6.1.6 Overall Findings
The above test demonstrates that the Smart Water Tracking System had meets the expected
performance requirements with:

e Data Accuracy exceed 99%

e Data synchronization was highly reliable and minimal risk of data loss

¢ Orientation checking was reliable and prevent false reading

e Frontend feedback was accurate and easy to interpret

These outcomes confirm that the system was suitable for real-world use and follow the

project objective of promoting proper hydration for children.

6.2 Testing Setup and Result

6.2.1 Testing Environment
The smart water tracking system was tested using the following setup:

1. Hardware Components: HX711 amplifier, 10kg load cell, ADXL345 accelerometer,
voltage sensor, TP4056 charging module, DC-DC voltage boost converter, 18650 Li-
ion Battery

2. Software Component: Arduino IDE for ESP32 programming, Firebase Realtime
Database as cloud storage, frontend webpage connected via Firebase SDK

3. Testing environment: indoor lab setting with stable Wi-Fi connection. For offline test,
Wi-Fi was temporarily disabled to evaluate local storage and synchronization

performance.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

75

4. Reference Tools: Electronic Scale for weight comparison, laptop system time for
timestamp verification, Serial Monitor for debugging logs.
Testing was conducted in different conditions to simulate real-life usage, including online

mode, offline mode and low battery condition.

6.2.2 Load Cell Accuracy Test
The purpose of this test was to measure the accuracy of water intake/refill action. The method
was used a known weight object to place on the load sensor and compared with the actual

values. Figure 6.1 shows the water bottle weight using electronic scale.

Figure 6.1 Water bottle weight using electronic scale

Then, we placed the water bottle with known weight on the load sensor and view the data

in Serial Monitor. Figure 6.2 illustrates the water bottle weight by using load sensor.
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
76

No significant change | Current: 0.30
Data send successfully

Stable new weight: 969.14

Change detected: 968.83

No significant change | Current: 969.14

Figure 6.2 Water Bottle Weight using load sensor

From the figure, the load sensor will having a error of 4.83ml compared to the actual
weight of the water bottle. The accuracy of the data was 100.5%, which was acceptable for

hydration monitoring.

6.2.3 Data Logging and Offline Storage Test

The test was conducted to verify the reliability of data recording in both online and offline
modes. The weight was continue using from section 6.2.2. The water intake event was
stimulated at online mode. Figure 6.3 showed that 87.64ml had been consumed along with the

laptop system time.

No significant change | Current: 969.14
Data send successfully

Stable new weight: 881.50

Change detected: -87.64

No significant change | Current: §81.50

No significant change | Current: 881.50

n383,Col 19 ESP32 Dev Moduleon COM7 (32 B

Q Search N & &H 8 ¢ O : - A B6 L gy A

Us 9/15/2025

Figure 6.3 Amount drink and system time
Figure 6.4 illustrate the data had been synchronized to Firebase successfully at Firebase

Console.

-0_8DKeiWn3_dzpgQpu4

timestamp: "2025-09-1501:15:18"

weight: -87.63904

Figure 6.4 Data Uploaded to Firebase

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

77

The timestamp between the firebase uploaded and laptop system time was difference by

approximately of 1 minute, which was acceptable for hydration monitoring.

For the offline test, Wi-Fi was disconnected for validate offline storage functionality with
valid timestamp that get from NTP server. Figure 6.5 shows the ESP32 had disconnected from
Wi-Fi.

No significant change | Current:

Wifi not connected

No significant change | Current:

Wifi not connected

No significant change | Current:

Figure 6.5 ESP32 disconnected from Wi-Fi
A water intake event occurred at offline mode. The system stored the data in NVS
temporarily and sync to Firebase once Wi-Fi was reconnected. Figure 6.6 shows the water

intake event was recorded in offline mode.

Wifi not connected

E (4711149) wifi:sta is connecting, return error
timestamp now:

2025-09-15 01:23:26

Saving data locally...

Saved to regular storage with valid timestamp
Stable new weight: 787.86

Change detected: -93.64

Wifi not connected

No significant change | Current: 787.86

[n383,Col 19 ESP32DevModuleoncoM? (2 B

- - e ENG A 122AM
Q Search | U 0g T & H o v 0 e Nl 29D 9/15/2025

Figure 6.6 Water intake event (offline mode)

From the figure above, the system had detected a weight changed of 93.64ml and the
timestamp at ESP32 was 1:23:26 which was slightly ahead of the laptop system time, which
was expected since NTP provides more accurate network-based time compared to laptop clock.
Figure 6.7 shows the ESP32 successfully reconnected and uploaded the offline data to Firebase,
while Figure 6.8 illustrates the Firebase Console with the uploaded data.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

78

Wifi reconnected

Firebase connected

Time initialized successfully

Current time: 2025-09-15 01:27:28

No offline data to process

Uploading 2 local entries in main storage...
Uploaded datal0 successfully.

Uploaded datal successfully.

Local storage cleared.

Figure 6.7 ESP32 reconnected and sync data
-0_8G7B2a7hXnLp9PhbU

timestamp: "2025-09-15 01:23:26"

weight: -93.63843

Figure 6.8 Firebase Console showing uploaded offline data

From both online and offline test, the system shows the ability to maintain continuous
operation and preserve data integrity to ensured that no water intake event data was lost even

when temporarily disconnected.

6.2.4 Low Battery Condition

The test was conducted to verify the functionality of voltage sensor in monitoring the battery
status of the ESP32. When the detected battery voltage was lower than the defined threshold
of 3.5V, the system triggered a visual alert by blinking the red LED indicator 5 times per second
to inform the user to recharge the battery. Figure 6.9 shows the low battery at Serial Monitor

while figure 6.10 illustrate the red LED indicator light up to inform user.

No significant change | Current: 787.86
Battery Voltage: 2.66 V

Voltage data sent to Firebase successfully.

No significant change | Current: 787.86

Figure 6.9 Low battery voltage detected (Serial Monitor Output)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

79

Figure 6.10 Red LED indicator activated under low battery condition

The results confirm that the system was able to detect low battery conditions in real time
and providing a clear visual alert that tried to inform the user to prevent device shutdown,

which affected the data reliability.

6.2.5 Frontend Visualization and Customization Test
This test was carried out to verify whether the frontend webpage was able to visualize the
hydration data retrieved from Firebase correctly and allow user customization for improved

accessibility and personalization.

The first part of the test was focused on real-time data visualization. Once the ESP32
uploaded the water intake event, the dashboard displayed the data in daily, weekly and monthly
charts. The daily chart only showed water intake events, while the weekly and monthly show
the data in bar chart and the summary section shows total water drinks, average intake and goal
achievement. Figure 6.11 show the daily hydration line chart, while Figures 6.12 and 6.13
illustrates the weekly and monthly page.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

80

Kiddo Daily Weekly Monthly Status: Online Ballery:o%

T Select Date: [2025-09-15 v
Unit: [miv]

Tip: The line chart only shows the drinking trend (intake moments) and not the total water weight remaining in the bottle.

1000 ml
900 ml
800 ml
700 mi
600 ml
500 ml
400 ml
300 ml
200 ml
100 ml

oml
o111 01:12 01:15 01:10 0123

Refill Time: 2 Total Drank: 1338.51 Goal Reached (@
mi

Figure 6.11 Daily summary page
Kiddo Daily Weekly Monthly Status: Online Battery: (%) 0%

T Select Week: (1410972025 - 200972025 v

Unit: [miv|
Tip: Each bar is compared against your daily target (214 ml). Green = Goal reached, /' = Aimost there, Red = Goal not met.
1400 mi
1200ml
1000 mi
800ml
600 mi
400 ml
200ml
Oml
Mon Tue Wed Thu Fri Sat Sun
Total Drink: 1338.51 Average Drink: Weekly Goal X
ml 267.70 ml

Figure 6.12 Weekly summary page

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

81

Kiddo

Daily Weekly ~ Monthly

7 Select Month: [Month: 2025-09 v
Unit: [miv|

Tip: Each bar is compared against your daily target (300 ml). Green = Goal reached,

5000 mi

4000 mi

Oml I I I I
N
P)) &

» & P S & ;'\ %Wﬁ A-? \{\ \ﬂ? v
FFFEFT PP PP S S PSP P
Total Drink: Average Drink: Monthly Goal [@

16821.59 ml 442,67 ml

Figure 6.13 Monthly summary page

=Almost there, Red = Goal not met.

Status: Online Battery: 0%

The second part of the test evaluated customization features. In the setting page, the user

was able to adjust the font size for better accessibility. Figure 6.14 and 6.15 shows the

difference between medium and large font size options.

Kiddo

Daily Weekly ~ Monthly

7 Select Date: (20250824 v

Unit: [mi v|
Tip: The line chart only shows the drinking trend (intake moments) and not the total water weight remaining in the bottle.
250 ml
200 ml
150 ml
100 ml

S0ml

Oml

03:35 10:55 09:59

Refill Time: 3 Total Drank: 765.15

Goal Reached 2
ml

Figure 6.14 Font size in medium setting

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Status: Offline Battery: () 68%

82

Kiddo Daily Weekly Monthly Status: Offine Battery: () 68% ("sotwos)

T Select Date:
Unit: [miv|

Tip: The line chart only shows the afinking trend (intake moments) and not the total water weight remaining in the bottle.

250 ml
200 ml
150 mi

100 ml

Oml
03:35 10:55 09:59 14:00 0927

Refill Time: 3 Total Drank: Goal Reached
765.15 ml V]

Figure 6.15 Font size in large setting

Additionally, the user could modify the goal target separately for daily, weekly and
monthly. Once the goal was modified, a save button will appear, and the updated goal will store
in the browser local storage, ensuring persistence across sections. In default, the daily water
intake goal was 600ml. For example, when user need to change the daily goal to 1000ml, after
entering the value the save button will show. Figure 6.16 shows the modified goal setting with

save button appear.

Goal Setting(In ml)

Set your daily goal here:

[moq

a«
. J

Set your weekly goal here:
1500

Set your montly goal here:
9000

Figure 6.16 Modified goal setting
After the user click save, the goal setting updated in the local storage. Figure 6.17 show the

local storage updated message.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

83

Goal Setting(In ml)

Set your daily goal here:
1000

Set your weekly goal here:
1500

Set your montly goal here:
9000

[Goals saved successfully!

Figure 6.17 New goal being saved

Figure 6.18 shows the daily page after goal was updated, where the hydration progress

indicator reflected the new target.

Kiddo Daily Weekly Monthly Status: Online Battery: (<) 0%
T Select Date: (2025-08-26 v
Unit: [miv|
Tip: The line chart only shows the drinking trend (intake moments) and not the total water weight remaining in the bottle.
Refill Time: 0 Total Drank: 707.09 Goal Not Met X

ml

Figure 6.18 Daily page with new goal

6.3 Project Challenges
Although most implementation issues were resolved through testing or redesign, several

challenges had remained unsolved or only partially being solved during the project.

The first challenge was about SSL connection Error. During data synchronization with
Firebase, the ESP32 sometimes produced SSL connection errors, resulting in data upload
failure. The error logs indicated as unstable secure socket initialization. This problem was

suspected to be cause by unstable Wi-Fi connection, as the ESP32 only supports the 2.4GHz

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

84

Wi-Fi band, which was more easier being disturbed compared to SGHz. In environment of
using 2.4GHz channel, the reliability of the connection may be reduced, leading to SSL
handshake failure. The proposed solution was changing the microcontroller than support SGHz
Wi-Fi band to enhance the stability of the connection between microcontroller and Firebase.

Figure 6.19 shows the error message of SSL connection timeout.

Battery Voltage: 2.68 V
> WARN.mRunUntil: Terminating because the ssl engine closed.

> ERROR.write: Failed while waiting for the engine to enter BR_SSL_ SENDAPP.

[No significant change | Current: 787.86

[No significant change | Current: 787.86

Figure 6.19 Error Message of SSL connection

Another unresolved issue was the ESP32 failing to initialize Wi-Fi when powered by the
18650 Li-ion battery boosted to 6V. In this project, the system could only operate Wi-Fi
reliably when connecting a micro-USB to the TP4056 charging module. This suggested that
the battery alone was unable to provide stable and sufficient current for Wi-Fi initialization,
although the battery capacity was stated as 3800mAh. A possible reason was that the battery
may be a counterfeit product, as many low-cost 18650 battery on market was a rewrapped
battery cell with lower actual capacity than the labelled value. This limitation reduced the

portability of the system, as it required external charging to maintain Wi-Fi connectivity.

In summary, these unsolved challenges highlight potential limitations in hardware quality
and operating system specification, which should be addressed in future development of this

system.

6.4 Objectives Evaluation

The objectives established in Chapter 1 were evaluated against the final implementation and
testing results of the Smart water Tracking System for kid. Table 6.6 summarizes the
achievement status and the evidence.

Table 6.6 Objectives Evaluation

Objective Evaluation | Evidence

Primary Objective: Design and | Achieved A functional system was

implement a Smart Water Tracking successfully develop consisting
of ESP32, HX711 load cell,

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

85

System to promote hydration among

children

ADXIL.345 accelerometer,
Firebase integration and web-

based frontend

monitoring process for caregivers and
parents with an easy-to-use web

application.

Sub-objective 1: Develop a device that | Achieved HX711 load cell measures water

can be attached to children’s water intake events and ESP32

bottles using a load sensor to measure transmits the data to Firebase via

consumption and wirelessly transmit the Wi-Fi.

data to a web application.

Sub-objective 1a: Ensure portability by | Partially Device runs on 18650 battery

incorporating a rechargeable power | Achieved with TP4056 charging module,

supply to support full-day usage. but Wi-Fi initialization fails
without constant charging, likely
due to insufficient current.

Sub-objective 2: Achieve accurate and | Achieved HX711 calibration test achieved

stable monitoring using a high-precision <5% error compared to actual

load sensor and processing algorithms. weight. Orientation detection
(ADXL345) reduces false
reading

Sub-objective 3: Simplify the | Achieved The frontend application provides

real-time visualization by
distributing into daily, weekly
and monthly summary page,
support goal customization and
font-size adjustment, improving

usability of non-technical users.

6.5 Concluding Remark

This chapter presented the testing, performance evaluation and overall assessment of the Smart

Water Tracking System. A series of experiments were conducted to test the system

functionality, such as verify the accuracy of load sensor, data logging in both online and offline

modes, low battery monitoring and frontend visualization. The result demonstrates that the

system was able to capture and synchronize water intake events, visualize of hydration data

and provide customization for user usability.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

86

Although certain limitation was identified, such as SSL connection and insufficient battery
current, but most of the project objectives were successfully achieved. The system fulfilled its
purpose of promoting proper hydration among children by providing real-time monitoring and
interactive dashboard for caregivers. The next chapter will conclude the project by
summarizing key contributions and providing recommendations for future development and

improvement of this project.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

87

Chapter 7

Conclusion and Recommendations

7.1 Conclusion

The project was carried out with the main objective of designing and implanting the Smart
Water Tracking System to promote healthy hydration among children due to most of the
children does not know the important of hydration, especially in environment with limited
direct supervision, such as kindergarten or playground. Through out the development process,
both hardware and software components were successfully integrated to achieve a functional

and reliable system.

On the hardware side, the ESP32 microcontroller was used together with HX711 amplifier,
10kg load cell, ADXL345 accelerometer and voltage sensor. This combination allowed the
system to take accurate weight measurement, do orientation checking to reduce false reading
and monitor the system battery level for safe operation. Furthermore, a DC-DC voltage boost
converter was used to step the 18650 battery to power the ESP32 and the system also
implemented a red LED indicator to provide a visual alert to inform users in low battery

conditions.

For the software implementation, the system was designed to work in both offline and
online modes. Valid drinking and refill event were recorded and synchronized with Firebase
database in real-time when Wi-Fi was available. When offline, the data stored at NVS storage
locally and automatically upload once the connection was restored. This ensured that the data
continuity and the risk of data loss. On the frontend side, a web-based application was
developed using Firebase JavaScript SDK to visualize the hydration patterns. The dashboard
provided daily, weekly and monthly view, customization of hydration goal, font size

adjustments for accessibility and real-time indicators for system connectivity and battery status.

The system objectives outlined in Chapter 1 were largely achieved. The device was able to
capture water measurement with acceptable accuracy, synchronize offline effectively and

provide a user-friendly interface for caregivers. Several tests were conducted and showed the

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

88

system could reliably capture hydration event and prevent meaningful summaries for different
timeframes. Although several technical challenges were found, such as SSL connection
instability and power supply limitations, but the project demonstrated the practical feasibility

of a smart hydration tracking solution.

In conclusion, the smart water tracking system successfully addressed the problem of
monitoring children’s hydration status by providing accurate, reliable and accessible data.
Although improvements can still be made, but the current prototype had proves the system

capability and have a strong foundation for further refinement.

7.2 Recommendations
Although the system was achieved its primary objectives, several area of improvement were

identified during development and testing.

The first area was hardware improvement. During testing, the 18650 battery could not
reliably support Wi-Fi initialization, suggesting wither poor-quality of battery cell or
insufficient current to support. Future versions should be use higher-grade batteries with verify
capacity or alternative energy solutions to power the system. Furthermore, the SSL connection
failures between ESP32 and Firebase was observed, due to the ESP32 only support 2.4 GHz
Wi-Fi, connection drops was more likely. The recommendation of this issue was trying to
improve the retry mechanism or considering alternative microcontroller with better Wi-Fi
stability as CPU of the system. Lastly, the current prototype uses multiple sensors module
stacked in layer, resulting in a relatively bulky 3D-printed case. A more compact design can be
achieved by developing a custom PCB that integrate the microcontroller, HX711, voltage
sensor and ADXL345 accelerometer onto a single board. This would reduce the overall size,
simplify wiring, lower power consumption and allow the case to be redesigned into a smaller

and portable form factor that suitable for children daily use.

Lastly was the recommendation for Frontend enhancement. While hydration goals and font
size can be adjusted, additional personalization such as theme colour, reminder notification and
the option to hide the summaries section can also be added to the system for better usability.
Furthermore, design the dashboard layout for mobile devices would allow users to access the

system conveniently on smartphones or tablets.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

89

REFERENCES

[1] “Choose water for healthy hydration,” HealthyChildren.org.
https://www.healthychildren.org/English/healthy-living/nutrition/Pages/Choose-Water-for-
Healthy-Hydration.aspx

[2] S. Online, “Health DG: 11-year-old boy died from heatstroke, toddler from dehydration,”
The Star, Apr. 28, 2023. [Online]. Available:
https://www.thestar.com.my/news/nation/2023/04/28/health-dg- 1 1-year-old-boy-died-from-
heatstroke-toddler-from-dehydration

[3] K. Davis-Young, “3 children have died after heat emergencies in the last 2 weeks in
Arizona,” KJZZ, Jul. 11, 2024. [Online]. Available: https://www .kjzz.org/news/2024-07-

10/3-children-have-died-after-heat-emergencies-in-the-last-2-weeks-in-arizona

[4] “A Child’s Health is the Public’s Health | CDC,” Centers for Disease Control and
Prevention, Oct. 24, 2022. https://www.cdc.gov/childrenindisasters/features/children-public-
health.html

[5] J. Warren et al., “Challenges in the assessment of total fluid intake in children and
adolescents: a discussion paper,” European Journal of Nutrition, vol. 57, no. S3, pp. 43-51,

Jun. 2018, doi: 10.1007/s00394-018-1745-7.

[6] Nick, “The ESP32 Chip explained: Advantages and Applications,” DeepSea, Jun. 24,
2025. https://www.deepseadev.com/en/blog/esp32-chip-explained-and-advantages/

[7] Tech Explorations, “How to power your ESP32 development kit, options,” Tech
Explorations, Mar. 15, 2024. https://techexplorations.com/guides/esp32/begin/power/

[8] Your Application’s Backend, Simplified, “Firebase Advantages and disadvantages,”
Back4App Blog, Apr. 22, 2024. https://blog.back4app.com/firebase-advantages-and-

disadvantages/#Serverless Platform

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

90

[9] Jason, “Understanding the TP4056: A complete guide to Single-Cell Li-lon battery
charging.” https://www.ic-components.com/blog/understanding-the-tp4056-a-complete-
guide-to-single-cell-li-ion-battery-charging.jsp

[10] Simplediyguy, “HX711 weighting scale AD, using both channels,” Simple DIY
Circuits, Oct. 24, 2022. https://simplediycircuits.wordpress.com/2022/10/24/hx711-

weighting-scale-ad-using-both-channels/

[11] “PRO 21 oz,” HidrateSpark. https://hidratespark.com/products/hidratespark-pro-210oz-

smart-water-bottle

[12] “Everything you need to know about EQUA Smart Water Bottle,” EQUA - Sustainable
Water Bottles, May 07, 2018. https://myequa.com/blogs/blog/everything-you-need-to-know-
about-equa-smart-water-bottle?srsltid=AfmBOopo6FbyiESOMzWDENGZtjsnhFZtUloDf--
A-ge5C5-n6xFDXqcD

[13] C. Carlson, “How ultrasonic sensors work,” MaxBotix, Mar. 01, 2023.

https://maxbotix.com/blogs/blog/how-ultrasonic-sensors-work

[14] “Trago - the world’s first smart water bottle,” Kickstarter, Dec. 26, 2016.

https://www.kickstarter.com/projects/90503171 1/trago-the-worlds-first-smart-water-bottle

[15] “What is the best type of water bottle for kids?,” BOTTLEPRO.
https://www.bottlepro.net/hydration-blog/what-is-the-best-type-of-water-bottle-for-kids

[16] G. D. D. N. CoLtd, “How often do kids water bottles need to be replaced? - Knowledge -
Guangzhou Diller Daily Necessities Co.,Ltd,” Dillerbottle, Oct. 07, 2020. [Online].
Available: https://www.dillerbottle.com/info/how-often-do-kids-water-bottles-need-to-be-
rep-

50289367 . html#:~:text=As%20we%20all%20know%2C%20plastic,affecting%20the%20use
%2C%?20therefore%2C%?20the

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

91

[17] “File System Considerations - ESP32 - — ESP-IDF Programming Guide v5.4.1
documentation.” https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/file-

system-considerations.html

[18] M. Alam and M. Alam, “ESP32 & DS3231 based Real Time Clock (RTC) on OLED,”
How to Electronics, Aug. 22, 2022. https://how2electronics.com/esp32-ds3231-based-real-

time-clock/

[19] M. Cheich, “Using time features with your ESP32 [Guide + Code],” Programming
Electronics Academy, Jun. 12, 2024. https://www.programmingelectronics.com/esp32-time-

servers/

[20] R. Santos and R. Santos, “Installing ESP32 in Arduino IDE (Windows, Mac OS X,
Linux) | Random Nerd Tutorials,” Random Nerd Tutorials, Feb. 28, 2024.
https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-

instructions/

[21] “Load Cell Amplifier HX711 Breakout Hookup Guide - SparkFun Learn.”
https://learn.sparkfun.com/tutorials/load-cell-amplifier-hx711-breakout-hookup-guide

[22] “ADXL345 Accelerometer Interfacing with ESP32 | ESP32,” © 2018 ElectronicWings.

https://www.electronicwings.com/esp32/adx1345-accelerometer-interfacing-with-esp32

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

92

Appendix

ESP32 GPIO Pin Diagram

ESP32 DEVKIT V1 - DOIT

version with 36 GPIOs

.[—U_I_FH.

ESP-WROOM-32
L6PI021 | [TRES0A |
GPID1S | [sPIMISD |
GRIO18 || vsPici |
GPIOS_|[wepicso |

(P03 |
GFi03 |
(GPozs |

[ATc_GRios || ToUCHE || ADC1cHS |

RIC_GRIOB || DAL |4

| [TOUEHT | ADc2: * RandomMNerdTutorials.com
UCHE || ADCI CHE &
[HCGR015 | [Hs?IMIS0 || TalicHs | | ADC2 CHS | G

(TR GAGIA || HsPi MosT | ToUCHE || aDczcha || GRID12
* ([SHO/S02] | GFIoa |
+ [EWES0E) GRIO10
* [lEsgjeml | criol1 |

ADC2 CH2 |[TOUCHE | [A

[GPIO15 | [(Dcz cv3 | [TEUCHS | [HPICso | [TRCGAon. |
[(GMoD | [(abcz cHy | [TOUCHE | [RTC GHGLL

[(GPIO7 | (EOm/EE0] +
GPioG | TSERIEIRT «

*Pins SCK/CLK, SDO/SD0, SDI/SD1, SHD/5D2, SWP/SD3 and 5C5/CMD, namely, GPI06 to GPIO11 are connected to the
integrated SP| flash integrated on ESP-WROOM-32 and are not recommended for other uses,

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

93

POSTER

mart Water Tracking System
for Kids

UT~R

Our Objective and Scope ?!

Attach to any Ensure accurate Create an easy-to-
bottle and monitor and reproducible use hydration
real-time Intake measuremen monitoring platform
< ‘e .:.
..
' “-

Load sensor setup using HX711 + load cell
« Stability Checking before confirming drinking > Successfully developed and testeb

events completed prototype
« Offline/Online data handling using NVS and 3> Sensor Calibration and Stability
Firebase mechanism validated
. Ae.curatg timestarpps with NTP synchronization 3. g¢fline and Online storage system
« Orientation checking using accelerometer tested
’ > Frontend dashboard with data
visualization V]
> Battery monitoring and low-power
alert tested a

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

