

Smart Water Intake Tracking System for Kids

BY

YONG YUAN HUAN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Yong Yuan Huan. All rights reserved.

This Final Year Project report is submitted in partial fulfilment of the requirements

for the degree of Bachelor of Information Technology (Honours) Computer

Engineering at Universiti Tunku Abdul Rahman (UTAR). This Final Year Project

report represents the work of the author, except where due acknowledgment has been

made in the text. No part of this Final Year Project report may be reproduced, stored,

or transmitted in any form or by any means, whether electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of the

author or UTAR, in accordance with UTAR's Intellectual Property Policy.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

First, I would like to express my sincere thanks and appreciation to my supervisor, Dr. Teoh

Shen Khang, for his valuable guidance and continuous support throughout the development of

this project. His constructive feedback and insightful suggestion have been essential in helping

me improve and stay on track with my progress.

My deepest appreciation also goes to my family and friends, who are giving me encouragement

and unlimited support for completing this project.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

Dehydration in kids can pose a significant health hazard, especially when it occurs amid

situations such as while they are attending kindergarten or schools and their supervisors cannot

supervise them all the time. This project presents the development of Smart Water Tracking

System using an ESP32-based system integrated with a load sensor (HX711) to measure real-

time water intake. The data is collected and store to Firebase cloud storage when internet

connectivity is available, else it will store the data locally for offline use. The purpose of this

storing technique is to ensure the accurate and continuous data collection in IoT applications.

A user-friendly monitoring application that involving JavaScript, HTML and CSS to allows

parents and caregivers to visualize daily, weekly and monthly drinking patterns, with features

such as real-time hydration tracking and refill detection. By combining offline data

synchronization and cloud services, the system provides a reliable tool to encourage better

hydration habits in children and lessens the risk of dehydration that may pose threats within

the education sector, with a solution at low cost which enables custom form factor.

Area of Study (Minimum 1 and Maximum 2): Internet of Things

Keywords (Minimum 5 and Maximum 10): Data Collection in IoT, Monitoring Application,

ESP32-based system, Real-time hydration monitoring, Smart water tracking system

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF SYMBOLS x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 2

1.3 Project Scope and Direction 3

1.4 Contributions 5

1.5 Report Organization 5

CHAPTER 2 LITERATURE REVIEW 7

2.1 Review of Technologies 7

 2.1.1 Hardware Platform 7

 2.1.2 Firmware/OS 10

 2.1.3 Database 11

 2.1.4 Algorithm 12

 2.1.5 Summary of Technologies Review 13

2.2 Review of Existing System 14

 2.2.1 HidrateSpark Pro 21Oz 14

 2.2.2 EQUA Smart Water Bottle 15

 2.2.3 Trago Smart Water Bottle 17

2.3 Limitations of Previous Studies 20

2.4 Summary 21

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 22

3.1 System Design Diagram/Equation 22

3.1.1 Load Sensor Calibration Equation 22

3.1.2 Water Intake Estimation 22

3.1.3 Timestamp Estimation using millis() 22

3.1.4 Power Consumption and Battery Life Estimation 23

3.1.5 Battery Voltage Estimation 24

 3.2 System Architecture Diagram 24

 3.3 Use Case Diagram and Description 26

 3.4 Activity Diagram 28

CHAPTER 4 SYSTEM DESIGN 30

 4.1 System Block Diagram 30

 4.2 System Components Specifications 33

 4.3 Circuits and Components Design 34

 4.4 System Components Interaction Operations 36

 4.4.1 Sensing Layer 36

 4.4.2 Power Layer 36

 4.4.3 Processing Layer 36

 4.4.4 Communication Layer 38

 4.4.5 Interface Layer 38

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

CHAPTER 5 SYSTEM IMPLEMENTATION 40

 5.1 Hardware Setup 40

5.2 Software Setup 51

5.3 Setting and Configuration 52

 5.3.1 ESP32 Wi-Fi Configuration 52

 5.3.2 Firebase Database Configuration 52

 5.3.3 NTP Configuration 53

 5.3.4 Sensor Calibration 53

 5.3.5 Frontend Configuration 54

 5.3.6 System Thresholds 54

5.4 System Operation (with Screenshot) 54

 5.4.1 System Startup 54

 5.4.2 Orientation Detection 57

 5.4.3 Water Intake Detection, Data Logging and Uploading 58

 5.4.4 Battery Monitoring 63

 5.4.5 Frontend Display 64

5.5 Implementation Issues and Challenges 69

5.6 Concluding Remark 71

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 72

6.1 System Testing and Performance Metrics

72

 6.1.1 Load Sensor Accuracy Test 72

 6.1.2 Data Synchronization Test 73

 6.1.3 Orientation Test 73

 6.1.4 Frontend Goal Achievement Test 74

 6.1.5 Water Intake Event Detection 74

 6.1.6 Overall Findings 75

6.2 Testing Setup and Result 75

 6.2.1 Testing Environment 75

 6.2.2 Load cell Accuracy Test 76

 6.2.3 Data Logging and Offline Storage Test 77

 6.2.4 Low Battery Condition 79

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

 6.2.5 Frontend Visualization and Customization Test 80

6.3 Project Challenges 84

6.4 Objectives Evaluation 85

6.5 Concluding Remark 86

CHAPTER 7 CONCLUSION AND RECOMMENDATION 88

7.1 Conclusion 88

7.2 Recommendation 89

REFERENCES 90

 APPENDIX 93

 POSTER 94

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1 ESP32 microcontroller 8

Figure 2.1.2 10KG load sensor 8

Figure 2.1.3 HX711 amplifier 8

Figure 2.1.4 ADXL345 9

Figure 2.1.5 TP4056 module 9

Figure 2.1.6 Voltage Booster 9

Figure 2.1.7 Voltage Sensor 9

Figure 2.1.8 Visual Studio Code 10

Figure 2.1.9 Arduino IDE 10

Figure 2.1.10 Firebase Realtime Database 11

Figure 2.2.1 Exploded view of HidrateSpark Pro SipSense technology

sensor module

14

Figure 2.2.2 HidrateSpark Smart Bottle and App 15

Figure 2.2.3 HidrateSpark Glow Colours 15

Figure 2.2.4 EQUA smart water bottle and app 16

Figure 2.2.5 EQUA glow reminder 17

Figure 2.2.6 Trago smart water bottle with ultrasonic technology 17

Figure 2.2.7 Trago app interface 18

Figure 2.2.8 Trago App in Athletic and Group settings 18

Figure 3.1 System Architecture Diagram 26

Figure 3.2 Use Case Diagram 27

Figure 3.3 Activity Diagram 29

Figure 4.1 System Block Diagram 32

Figure 5.1 Outside View 40

Figure 5.2 Inside View 40

Figure 5.3 Outer Case (2D View) 41

Figure 5.4 Battery Layer 42

Figure 5.5 Power Layer (2D View) 42

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

Figure 5.6 Power Layer (Real-World View) 43

Figure 5.7 Microcontroller Layer (2D View) 44

Figure 5.8 Microcontroller Layer (Real-World View) 45

Figure 5.9 2D View of Sensor Layer 46

Figure 5.10 Real-World View of Sensor Layer 46

Figure 5.11 Platform Layer (2D View) 47

Figure 5.12 Assembled System (2D View) 48

Figure 5.13 Assembled System without Outer Case (Real-World View) 49

Figure 5.14 Assembled System with Outer Case (Real-World View) 50

Figure 5.15 ESP32 connected to phone hotspot 55

Figure 5.16 ESP32 Serial Monitor during successful Wi-Fi connection 56

Figure 5.17 ESP32 Serial Monitor output in offline mode 56

Figure 5.18 ADXL345 accelerometer in vertical orientation (real-world) 57

Figure 5.19 ESP32 Serial Monitor output for vertical orientation 57

Figure 5.20 ADXL345 accelerometer in upright orientation (real-world) 58

Figure 5.21 ESP32 Serial Monitor output for upright orientation 58

Figure 5.22 Serial Monitor output showing water intake detection and

laptop system time

59

Figure 5.23 Water intake event successfully uploaded and logged in

Firebase Console

59

Figure 5.24 Serial Monitor output showing valid drinking event stored

locally with NTP timestamp

59

Figure 5.25 Serial Monitor output showing valid refill event stored

locally with NTP timestamp

60

Figure 5.26 Serial Monitor output showing offline data being uploaded

when Wi-Fi reconnects

60

Figure 5.27 Firebase console showing uploaded offline events 61

Figure 5.28 Serial Monitor output showing offline data stored with

temporary run-up timestamp (event 1)

61

Figure 5.29 Serial Monitor output showing offline data stored with

temporary run-up timestamp (event 2)

62

Figure 5.30 Serial Monitor output showing offline data being processed

and timestamp corrected

62

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Figure 5.31 Firebase console showing offline data uploaded with

corrected NTP timestamps

62

Figure 5.32 Serial Monitor output when battery voltage drops below 3.5

V

63

Figure 5.33 Red LED indicator blinking (low battery alert) 63

Figure 5.34 Battery voltage data logged in Firebase console 64

Figure 5.35 Main page layout and navigation bar 64

Figure 5.36 Daily summary view (ml) 65

Figure 5.37 Weekly summary view(Oz) 66

Figure 5.38 Monthly summary view (ml) 66

Figure 5.39 Font size in medium form 67

Figure 5.40 Font size in large form 67

Figure 5.41 Goal customization setting 68

Figure 5.42 New sample data structure with data in Firebase Console 68

Figure 5.43 Confirmation Message for data deletion 69

Figure 5.44 Firebase Console after clear the data structure 69

Figure 6.1 Water Bottle Weight using electronic scale 76

Figure 6.2 Water Bottle Weight using load sensor 77

Figure 6.3 Amount drink and system time 77

Figure 6.4 Data Uploaded to Firebase 77

Figure 6.5 ESP32 disconnected from Wi-Fi 78

Figure 6.6 Water Intake Event (offline mode) 78

Figure 6.7 ESP32 reconnected and sync data 79

Figure 6.8 Firebase Console showing uploaded offline data 79

Figure 6.9 Low battery voltage detected (Serial Monitor Output) 79

Figure 6.10 Red LED indicator activated under low battery condition 80

Figure 6.11 Daily summary page 81

Figure 6.12 Weekly summary page 81

Figure 6.13 Monthly summary page 82

Figure 6.14 Font size in medium setting 82

Figure 6.15 Font size in large setting 83

Figure 6.16 Modified goal setting 83

Figure 6.17 New goal being saved 84

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

Figure 6.18 Daily page with new goal 84

Figure 6.19 Error Message of SSL connection 85

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF TABLES

Table Number Title Page

Table 2.1 Specification of ESP32 microcontroller 7

Table 2.2.1 Comparison of Tracking Methods and Features in Smart
Water Bottles

 19

Table 3.1 Current Consumption of Components 23

Table 3.2 Use Case Description 28

Table 4.1 Specifications of System Components 33

Table 5.1 3D Printer Specifications 40

Table 5.2 Specification of Laptop 51

Table 6.1 Load Sensor Accuracy Test 72

Table 6.2 Data Synchronization Test 73

Table 6.3 Orientation Test 73

Table 6.4 Frontend Goal Achievement Test 74

Table 6.5 Confusion Matrix 75

Table 6.6 Objectives Evaluation 85

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiv

LIST OF SYMBOLS

ml millilitre

Oz Fluid ounce

GHz gigahertz

g Gram

V Volt

mAh Milliampere-hour

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xv

LIST OF ABBREVIATIONS

JSON JavaScript Object Notation

API Application Programming Interface

CPU Central Processing Unit

GPIO General Purpose Input Output

IOT Internet of Things

NTP Network Time Protocol

LED Light Emitting Diode

Wi-Fi Wireless Fidelity

NVS Non-volatile Storage

ESP32 Espressif 32-bit Microcontroller

CSS Cascading Style Sheets

HTML Hypertext Markup Language

SPIFFS Serial Peripheral Interface Flash File System

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction
In this chapter, the background and motivation of the research are presented, along with the

contribution to the field, and the outline of the thesis. The point to focus on this research is the

design and the development of Smart Water Tracking System for kids, which is an assistant

system that aims at the challenge to ensure the children have proper hydration. Hydration is

crucial for maintaining children’s health, blood circulation and improving cognitive abilities

[1]. However, especially in young children, it is a challenge to monitor and manage their water

intake due to their low awareness of hydration and the environment that they spend much more

time of their day, such as school or playground.

Current research increasingly highlights the negative effects that dehydration can have on

cognitive and physical development, making hydration monitoring more important than ever.

With the rapid development of Internet of Things (IoT) technology, more people are using

smart devices to monitor and track daily habits related to health and lifestyle. By integrating

sensors, data collection methodologies and mobile applications, the IoT-based solutions can

provide real-time feedback and encourage healthier behaviour. This potential makes IoT an

effective approach for developing a smart tracking system that will help parents or caregivers

in monitoring children’s daily water intake, which tries to minimize the risk of dehydration.

1.1 Problem Statement and Motivation

Problem Statement

Nowadays, recent tragedies from different parts of the world highlight the severe consequences

of dehydration and heatstroke among children. In April 2023, there are two children in

Kelantan, Malaysia, had lost their lives due to heat-related illness, which an 11-year-old boy

die to heatstroke after severe dehydration, and a 19-month-old girl also lost her life from severe

dehydration with underlying species. Besides that, in July 2024, three children in Arizona,

USA, died following heat-related emergencies. [2,3] These cases already stated that the critical

need for an effective water intake monitoring system to protect children from heat-related

illnesses, especially as global temperature continue to rise due to climate change. Children are

particularly vulnerable due to their body size, cannot express their feeling, thinner skin and

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

also relatively weak immune system, which making them hard to regulate their body

temperature.[4] These cases suggest that many of the children either didn’t meet their daily

hydration need or at the risk of drinking too much water, both will lead to potential health risks.

Without effective monitoring, many children are still at risk of becoming dehydrated, which

can affect their overall health.

Motivation

Maintaining good mental and physical health of children is a top priority for parents and

caregivers. By achieving this, ensured proper hydration is an essential part of this, but

monitoring children’s water intake can be challenging. This is because children are often in an

environment where they are less supervised, such as schools, making it a challenge to

accurately monitor their water intake.[5] Children’s low awareness of staying hydrated and

inability to recognize early signs of dehydration further make monitoring their water intake

more challenging. Recent incidents related to dehydration illnesses and the increasing of

temperature global have highlighted the urgent need for effective solutions to monitor and

ensure enough water intake in children.

Traditional ways such as reminders or manual checks often lack real-time monitoring

features and accuracy. To overcome this limitation, this thesis proposes a system that involves

load sensors and IoT technologies to provide a highly accurate and real-time monitoring of

children’s water intake. Such a system can help parents and caregivers ensure that children had

meet their hydration requirements consistently, reducing the risk of dehydration and promoting

better cognitive and physical development.

1.2 Objectives

The project aims to design and implement a Smart Water Tracking System for the purpose of

promoting appropriate hydration among children, especially in environments where direct

supervision is limited such as kindergarten and playground. From this primary objective,

several sub-objectives can be derived so that the development of the device can be guided.

Using IoT technology, the system will accurately track water intake in real-time and send the

data to a website application so that parents or caregivers can make sure the children have

proper hydration throughout the whole day at school.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

The first sub-objective is to develop a device that can be attached to water bottles used by

children. This attachment will use a load sensor to measure the water consumed and wirelessly

transmit the consumption details via Wi-Fi to a website application. The application will

display the hydration status of the children, allowing educators to monitor water intake

effectively. Furthermore, the device will be designed to be portable, incorporating a power

storage system in order to support full day usage of the device. This flexibility is designed to

solve the compatibility problem of previous smart water bottles, since not all bottle sizes are

the same.

Furthermore, the second sub-objective is to achieve accurate and stable monitoring and

therefore the system will use a high-precision load sensor together with advanced data

processing algorithms. This will ensure reproducibility and accuracy of the measurement, as

well as minimizing errors, ensuring the system will provide reliable data for both real-time

monitoring and long-term analysis.

The third sub-objective of this project is to simplify the process of monitoring children’s

water intake for caregivers and parents. This will be achieved by developing an easy-to-use

website application that displays real-time hydration data. The system will be designed to be

user-friendly, enabling the user with minimal technical expertise to easily track and manage

children’s hydration effectively.

1.3 Project Scope and Direction

This project is to deliver a smart water tracking system which is specially designed for

monitoring and encouraging proper hydration for children. This system consists of both

hardware and software part.

Hardware Scope

For the weighting part, the hardware includes an ESP32-based embedded system, a 10kg load

sensor, HX711 amplifier module and ADXL345 accelerometer. The ADXL345 was used to

determine whether the water bottle is standing or lying down. If it is lying down, the weighting

process will be suspended. Otherwise, the system will start to detect weight changes in the

water bottle to do estimation for water consumption. To ensure accurate reading, the load

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

sensor will undergo a calibration process at the initialization. After measurement, the raw data

will the send to Firebase RealTime Database.

For the power storage system, the hardware involves a single-cell 18650 lithium battery,

battery holder, voltage booster, voltage sensor , a red LED indicator and TP4056 charging

module. The TP4056 sensor manages charging when connected to a micro-USB cable. Then

TP4056 will pass the voltage to the voltage booster to boost the voltage from 3.7V to 6V so

that it can supply enough power for the ESP32. The purpose of voltage sensor is to detect the

battery voltage level and send the information to web applications, allowing users to track the

ESP32 power status in real-time. If the battery voltage is too low, the red LED will be blink 3

times to informed users.

Software Scope

The software components consist of two major parts. The first is the firmware running on the

ESP32. The firmware is responsible for sensor reading, reading stability and reliability, Wi-Fi

handling, NTP timestamping, local storage using the Preferences library and data

synchronization with Firebase.

Another major part is the web application. The web application will be developed with a

combination of HTML, CSS and JavaScript programming languages. It is responsible for

retrieving and processing the raw data from the database then displaying it in both graphical

and numerical formats. A line chart will be used to visualize the daily water intake, meanwhile

the weekly and monthly water intake consumption will be shown in bar chart. In addition, the

application will also provide a summary metrics such as total refill times, total water intake,

average consumption and progress to achieve hydration goals. The interface will be designed

to be user-friendly and easy-to-use, allowing users with minimal technical expertise to use it

effectively.

System Features

The system also supports both offline and online data collection. When the data is collected

offline (not connected to Wi-Fi), the data will be stored into local storage inside ESP32 with

estimated timestamp and automatically sync the data to Firebase once the connection has been

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

restored. This offline ensures that the data can be recorded in continuous and reliable water

intake tracking.

The project demonstrates a practical application of IoT in personal health monitoring and

offered a scalable model for future improvements, such as designing a mobile application or

implementing more health-related sensors.

1.4 Contributions

The experiment and analysis confirm the feasibility of the proposal for Smart Water Intake

Tracking System for ensured adequate hydration among children. Firstly, the system provides

Automated Hydration Monitoring, where load sensors and wireless communication are used to

ensure the data is accurate and in real time. This will eliminates the need for frequent manual

checking and reminders. Secondly, it supports Health improvement, since children are kept in

a way of well-hydrated, which is very important for children’s mental and physical

development, especially in hot climate or during outdoor activities. Thirdly, the design put a

great emphasis on Scalability and Practically, enabling the system’s easy rollout for individual

and group of children, like in classrooms, thus ensured effectiveness under different scenario

and usage environment. Lastly, the system includes an Offline Data Feature, where data can

still be collected without Wi-Fi connection and store in local storage, then automatically sync

the offline data to the database once the connection had restored, ensured continuous and

reliable hydration tracking.

1.5 Report Organization

This report is organised into 7 chapters: Chapter 1 Introduction, Chapter 2 Literature Review,

Chapter 3 System Methodology, Chapter 4 System Design, Chapter 5 System Implementation

, Chapter 6 System Evaluation and Discussion, Chapter 7 Conclusion. The first chapter is the

introduction of this project which includes problem statement, project background and

motivation, project scope, project objectives, project contribution and report organisation. The

second chapter will presenting some literature review about previous works on other smart

water tracking devices and existing technologies that these smart water bottle uses such as

hydration tracking system, embedded IoT devices, sensor that use to record the weight and

other functionality that is introduced in those products. The third chapter will describe the

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

system methodology, where the overall approach and system model are introduced. This will

be including the system architecture, use case diagrams and activity diagrams to illustrate how

the user interacts with it and how the function will work. In chapter 4 it will focuses on system

design by providing the details of the system block diagram, hardware component

specifications, circuit design and the interaction between different system components. The

goal of this chapter is to ensure that the prototype can be duplicated by following the given

detail. The chapter 5 cover the system implementation, which describes the setup of hardware

and software, configuration steps, system operation with screenshots and the issues or

challenges that had been encountered during the development. The chapter 6 discuss the system

evaluation and results, including test procedures, performance metrics, experiment results,

challenged faced and evaluation of whether the objective have been achieved. The last chapter

provides the conclusion and recommendations by summarizing the project outcomes,

contribution and limitations, followed by suggestion for possible improvement to fix the

problem and future development.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

Chapter 2

Literature Review

2.1 Review of the Technologies

2.1.1 Hardware Platform

Microcontroller Selection

The ESP32 microcontroller was selected as the main processing unit for this project. Below is

the specification of the ESP32 microcontroller:

Table 2.1 Specification of ESP32 microcontroller

Description Specifications
Model Arduino® Nano ESP32

Microcontroller u-blox® NORA-W106 (ESP32-S3)

Processor Xtensa® Dual-Core 32bit LX7 Microprocessor

Connectivity Wi-Fi® 4 IEEE 802.11 standards b/g/n

Bluetooth® LE v5.0

Memory 512kB SRAM

Compared to other microcontrollers such as Arduino UNO, Raspberry Pi and other ESP series,

the ESP32 provides several advantages. First, the ESP32 provided a built-in Wi-Fi and

Bluetooth module, so it eliminates the need of external module in order to do IoT. This feature

can reduce hardware complexity, reduce space requirement and lowers cost compared to

Arduino Mega or Raspberry Pi 2 Model B which required external Wi-Fi module. Furthermore,

the ESP32 microcontroller delivers dual-core processing with higher clock speed, which was

useful for doing multitasking such as handling sensor-reading, Wi-Fi communication and

offline storage simultaneously. ESP32 also supporting various development platforms that

using different SDKs and programming languages including Arduino IDE, MicroPython and

Mongoose OS, which allow developer to have more option while developing and save time.

Its large community support and existing libraries further simplify the integration process to

with sensors or database such as Firebase [6]. These features make the ESP32 an efficient and

practical choice for building IoT based hydration monitoring system. The below figure 2.1.1

shows the ESP32 microcontroller.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

Figure 2.1.1 ESP32 microcontroller

Sensors

In this project was used a 10kg load cell combined with the HX711 amplifier module. HX711

was selected because it provided high sensitivity and precision for weight measurement. The

HX711 also provided a 24-bit ADC, ensured that even small weight changes were captured

accurately. Compared to other analog-to-digital conversion setups, this combination offered a

cost-effective and stable reading with minimal noise. Figure 2.1.2 shows the 10kg load sensor,

while figure 2.1.3 shows the HX711 amplifier module.

Figure 2.1.2 10KG load sensor Figure 2.1.3 HX711 amplifier

Furthermore, an ADXL345 accelerometer was included to detect the orientation of the

water bottle. This prevent false weight readings when the bottle is lying down. While other

option accelerometer sensors such as MPU6050, the ADXL345 was selected because the

project only required accelerometer data and does not need gyroscopic measurement. The

ADXL345 was lightweight, low cost and consumed less power, making it an efficient choice

for orientation detection without requiring complex processing. Figure 2.1.4 illustrates the

ADXL345 module.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

Figure 2.1.4 ADXL345

For power management, the project used a single-cell 18650 lithium-ion battery due to its

rechargeability and long cycle life. Furthermore, the TP4056 charging module was employed

as it supported safe recharging batteries that does not exceed 4.2V, and it provided built-in

overcharge and discharge protection. A voltage booster was used in this project is to step up

the 3.7V battery output to 6V required by the ESP32 [7]. Finally, a voltage sensor and a red

LED indicator were included in this project to monitor the battery status, ensured that users are

informed when the system required charging. Figure 2.1.5 shows TP4056 charging module,

figure 2.1.6 shows voltage booster and figure 2.1.7 shows voltage sensor.

Figure 2.1.5 TP4056 module Figure 2.1.6 Voltage Booster

Figure 2.1.7 Voltage Sensor

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

2.1.2 Firmware/OS

The firmware for this project was developed using the Arduino IDE, which was chosen for its

simplicity, availability of open-source libraries and compatibility with the ESP32 platform. The

Arduino IDE provided a straightforward environment for coding, debugging, compiling and

flashing the firmware to the ESP32. This firmware was responsible for sensor reading, Wi-Fi

communication, timestamp assignment and local data storage. Furthermore, Arduino IDE had

provided an extensive library system that created by the community, this open-source library

system eliminates the need to build low-level drivers from scratch and had saved a lot of time.

The key library included in this project were the HX711 Arduino Library by Bogdan Necula

for load-cell interfacing, the Adafruit ADXL345 library for accelerometer processing and

Firebase Arduino Client Library develop by Mobizt for uploading data to the Firebase Realtime

Database. Inside the Arduino IDE, it also included some preset library such as Wi-Fi and

Preferences library. The preferences library was used to store the data temporarily in the local

storage during offline.

The frontend of the system was developed using Visual Studio Code (VS Code). This

development platform was selected due to its flexibility where support for multiple

programming languages, and strong integration with modern web development tools. In this

project, HTML, CSS and JavaScript were used for the frontend development. HTML was used

for the page structure, CSS for styling and layout and JavaScript handle backend tasks such as

handling for data processing and fetching data from database. VS Code provided an efficient

workspace where it can manage three programming languages simultaneously within a single

project folder, it also provided features such as built-in debugging tools, syntax highlighting

and live server preview features. These features allowed efficient testing of how the web

application would look and behave in real time. In addition, VS Code supported integration

with external online web services such as gstatic and chartjs, which allowed smooth

communication with Firebase and implement chart for a better visualization. Figure 2.1.8

showed the icon of Arduino IDE while figure 2.1.9 showed the icon of Visual Studio Code.

Figure 2.1.8 Visual Studio Code Figure 2.1.9 Arduino IDE

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

2.1.3 Database

The database that used for this project was Firebase Realtime Database, which was selected

due to its scalability and real-time synchronization features. Firebase Realtime Database is a

NoSQL cloud hosted database developed by Google. It stored the data in JSON format,

enabling fast data retrieval and update. This structure was suitable for the project because the

data collected, such as water intake amounts, timestamp and voltage reading, it can be

organized by sorted into key-value paired.

One of the main reasons for choosing Firebase was its ability to provide real-time

synchronization across devices. As soon as the ESP32 captured the data and uploaded to

Firebase, the frontend was able to fetch the updated value instantly. This was particularly

important for ensuring the user could monitor their children’s hydration progress without

noticeable delay. Another advantage of this database was its ease of integration with the ESP32

and frontend. On the ESP32 microcontroller side, the Firebase Client Library was used to

establish a stable connection with Firebase, enabling read and write operation. On the frontend

side, Firebase provided direct support through its JavaScript SDK, allowing data fetching and

visualization on the web application.

Firebase was also chosen due to its low maintenance requirement. Unlike MySQL or

MongoDB, Firebase Realtime database was a fully cloud-hosted server. This eliminated the

need to configure server, manage or maintain SQL queries. This reduced the project complexity

while still kept data secure and efficient data management. Furthermore, Firebase offered free

usage tiers, which was sufficient for this academic project without adding more budget for

sever hosting. Figure 2.1.10 shows the Firebase Realtime Database icon [8].

Figure 2.1.10 Firebase Realtime Database

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

2.1.4 Algorithms

Several algorithms were applied in this project to ensure accurate measurement, reliability and

useability of the Smart Water Tracking System. The primary algorithm was the water intake

detection algorithms, which determined drinking event by comparing the weight changes

captured by the load sensor. A small weight changes that causes by the noise were filtered out,

while significant changes between the current weight and previous weight were recorded as

water intake or refill event. This method was chosen because it provided a simple and effective

way to figure out the valid drinking action from random disturbances.

The orientation detection algorithm was implemented using ADXL345 accelerometer. By

checking the orientation of the water bottle, the system was able to prevent false reading when

the bottle was tilted or lying down. Furthermore, it will included a stable reading verification

to ensure the weight changes was caused by movement will not recorded as valid drinking

event. This ensured that only stable position will counted as valid measurement, improving the

reliability of the water intake data.

An offline data synchronization algorithm was also included to address connectivity issues.

When Wi-Fi was unavailable, the ESP32 temporarily store the water intake record in local

storage using the Preferences library. Once connectivity was restored, the stored data was

uploaded to Firebase along with correct timestamp. This ensured the data continuity and

minimized the risk of data lost.

Lastly, data visualization and analysis algorithms were used on the frontend. JavaScript

will be responsible to process the raw data retrieved from Firebase, analysed and sorted them

into daily, weekly and monthly summaries and generated charts using Chart.js. This allowed

parents and caregivers to clearly monitor hydration patterns over time.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

2.1.5 Summary of Technologies Review

In summary, the technologies selected for this project were carefully chosen to balance cost-

effectiveness, data accuracy and ease of implementation. The ESP32 microcontroller served as

the core processing unit because of its built-in Wi-Fi and Bluetooth module, dual-core

performance and wide support from the Arduino ecosystem.

For sensing, a 10kg load cell with HX711 amplifier was selected due to its high sensitivity

and precision in weight measurement, while the ADXL345 accelerometer was used to detect

water bottle orientation and prevent false reading. The combination of these three sensors

provided reliable data for estimating water intake.

On the software side, Arduino IDE was chosen for firmware development due to its

simplicity, large community library support and smooth integration with ESP32. Meanwhile,

Visual Studio Code was used for frontend development as it offered flexibility, support

multiple programming languages and productivity features such as live server and debugging.

For data storage and synchronization, Firebase Realtime Database was selected due to its

scalability, low maintenance requirement and real-time synchronization features. This ensured

that the data collected by the ESP32 can transferred to the web application without delays.

Finally, supporting algorithms such as water intake detection, orientation checking, offline

data synchronization and data visualization were integrated to ensure system reliability,

accuracy and usability. With the combination of these algorithms, the smart water tracking

system was able provided a huge support in both real-time and offline hydration monitoring

for children.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

2.2 Review of Existing System

2.2.1 HidrateSpark Pro 21Oz

The HidrateSpark Pro 21Oz smart water bottle has implemented several advance technologies

to track and manage water intake effectively. The most important feature of this smart water

bottle is using SipSense technology, which is developed by HidrateSpark themselves, it is a

precise method of measuring water consumption cased on weight. A Bluetooth technology is

also used in this smart water bottle to upload the water intake data to HidrateSpark application

every time when the bottle is within range of the phone, allowing user to monitor their water

intake in real time.[11]

The SipSense technology is using weight-based measurement, which commonly referred

to as a load sensor, to track every sip taken, providing a highly accurate reading to the amount

of water consumed. This sensor system can track the water intake in mL/Oz , with a 97%

accuracy compared to manual recordings.[11]

Figure 2.2.1 Exploded view of HidrateSpark Pro SipSense technology sensor module

Other than weight-sensing capabilities, this smart water bottle also cooperate with popular

health and fitness platform, such as Apple Health, Fitbit, Google Fit and Withings Health Mate.

The HidrateSpark app not only can track the water intake, but it also providing a function which

user can adjust their hydration goals based on the factors like user’s height, weight, age. This

function even can change the goal based on environmental conditions like temperature,

elevation and activity level if the location service is enabled or sync with fitness app.[11]

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

Figure 2.2.2 HidrateSpark Smart Bottle and App

Furthermore, the water bottle also includes glow reminder system, which used LED light

to remind the user to drink water throughout the day. Using the HidrateSpark application, user

can customize the glow setting, including colour, glow frequency and intensity, making it a

high interactive tool to encouraging consistent hydration.[11]

Figure 2.2.3 HidrateSpark Glow Colours

2.1.2 EQUA Smart Water Bottle

Compared to HidrateSpark Pro 21Oz, EQUA smart water bottle is using motion sensor

technology to track user’s water consumption throughout the day. The motion sensor will

detect movement of the bottle, to recognize all the user movement and calculate the amount

of water intake. This technology provides an efficient, which is hands-free approach to

hydration tracking, removing the need for manual input of data. [12]

Bluetooth connectivity is another crucial component of the EQUA Smart Water Bottle. It

is allowing the smart water bottle to sync with their application, EQUA hydration app, on

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

user’s smartphone. By implementing Bluetooth technology, data that contain user daily water

intake can be transfer from the bottle to the app in real-time. Moreover, the application also

providing features for user to set their personalized hydration goals based on the factors like

user’s weight, age and physical activity level. This application provides users with easy

access to their hydration data and enabling them to monitor their progress and adjust their

habits accordingly.[12]

The most special features of EQUA smart water bottle are EQUA also implemented

machine learning to learn the user’s behavior to improve the accuracy of hydration

recommendations over time. Besides that, by using machine learning, the bottle and its

application can adjust the user daily water intake goals based on various factors, such as

user’s physical attributes, daily activity and environmental conditions. By using machines

learning can provide users a personalized advice tailored to their specific needs to promoting

a better health outcome. [12]

Figure 2.2.4 EQUA smart water bottle and app

The EQUA smart water bottle come equipped with a visual reminder system that

encourages users to maintain hydration throughout the day. The bottle’s embedded glow

feature illuminates at present intervals, reminding users to drink water when they have not

consumed enough during a certain period. This reminder system is particularly beneficial for

user who may forget to drink water due to busy schedule. [12]

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

Figure 2.2.5 EQUA glow reminder

2.1.3 Trago Smart Water Bottle

In this smart water bottle , Trago is using ultrasonic sensor, which offer a unique approach to

measuring liquid consumption. The working principle for ultrasonic sensors is to emit an

ultrasonic pulse at 40kHz, which move through the air inside the bottle. When the pulse is

emitted and hits the surface of the liquid, it will reflect and go back to the sensor, thus the water

intake can be calculated by measuring the pulse return time and the speed of the sound.[13]The

benefit of using ultrasonic sensor is the sensor are able to provide an accurate measurement of

the water intake within 0.5Oz, regardless of the type of liquid inside the bottle. The developers

that design the Trago smart water bottle explained that their choice of using ultrasonic sensor

for measuring water intake, stating that other sensors, such as weight sensor, pressure sensors

and accelerometers were found to be extremely inaccurate. Being able to measure any liquid

and guarantee an accurate reading is a big plus in the field.[14]

Figure 2.2.6 Trago smart water bottle with ultrasonic technology

Other than used of ultrasonic sensor, Trago smart water bottle also using motion-sensing

technology for a better accuracy and power efficiency. By using motion sensor, the system can

know the bottle are at rest or the user are taking a drink. In this way instead of continuously

transmitting data, it will save batteries to work for longer. The integration of motion sensor

ensures that only relevant drinking events are captured such as drinking water to avoid false

reading during instances when the bottle would idle.[14]

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

Trago also develops their application, Trago app, which providing real-time monitoring

and personalized hydration recommendations. The app calculates a user’s optimal daily water

intake based on the user input, such as age, weight, activity level and environmental condition.

This capability enables users to dynamically adjust their hydration goals, making the product

suitable for a wide range of individuals, including athletes and fitness enthusiasts. The

integration with other health and fitness platforms, such as MyFitnessPal, Apple Health, and

Under Armour Record, enhances the app’s utility by linking water intake data with broader

health metrics.[14]

Figure 2.2.7 Trago app interface

Moreover, Trago app also supports a group setting such as teams and athletic programs.

This feature providing coaches, trainers and parents can monitor their athletes’ hydration

through Trago app, ensuring the team member have proper hydration throughout training and

competitions.[14]

Figure 2.2.8 Trago App in Athletic and Group settings

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

One of the standout features of Trago smart water bottle is universal cap, which can be

fitted onto any standard wide-mouth water bottle, including brands like Nalgene, Camelback

and Hydro Flask. This flexibility allowing the user to use the Trago system when continue

using their preferred water bottle.[14]

Table 2.2.1 Comparison of Tracking Methods and Features in Smart Water Bottles

Feature/Method HidrateSpark Pro

21Oz

EQUA Smart

water bottle

Trago smart water

bottle

Technology Used SipSense (weight-

based technology)

Motion sensor Ultrasonic sensor

Water

Consumption

Tracking

Load sensor

measuring each sip

Motion sensor

detects drinking

motion

Ultrasonic pulse

measures liquid

volume

Connectivity Bluetooth Bluetooth Bluetooth

App Integration HidrateSpark App,

syncs with Apple

Health, Fitbit

EQUA Hydration

App, syncs with

health platforms

Trago App, syncs

with Apple Health,

MyFitnessPal

Additional

Features

LED glow

reminders

Glow reminder

system

Motion-sensing

technology for

accuracy

Compatibility Specific to

HidrateSpark

bottles

EQUA Smart

Water Bottle

Universal cap, fits

Nalgene,

Camelback, Hydro

Flask

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

2.3 Limitation of Previous Studies

Both of the HidrateSpark and EQUA smart bottle have a same limitation, which is their

incompatibility with different bottle design. Unlike Trago smart water bottle, this brand had

offer a universal cap that fits onto standard wide-mouth water bottle, including brand like

Nalgene and Hydro Flask. This feature is absent in HidrateSpark and EQUA smart water bottle,

it need user to purchase their own brand-specific bottles in order to utilize the tracking features.

This lack of flexibility can limit their use, especially where children will use a smaller, themed

bottle that is suitable to their age group and preference, such as in kindergartens or schools.[15]

Additionally, although Trago smart water bottle had offer a universal cap, but it is still a

challenge when used in environments like kindergartens. Trago designs the universal cap is

more faced to adult user, which is using a large capacity water bottle, but it does not along with

the needs of young children, who require smaller bottle for handling.[15] As a result, Trago

smart water bottle is not suitable for younger age group especially for the young group who are

studying in kindergarten, its design is more toward for adult users.

Cost is another limitation that applies to all three smart water bottles. Three of the smart

water bottles are using premium materials, such as stainless steel for insulation and durability,

along with advanced design element such as double-walled thermos cups to keep liquids at the

desired temperature for several hours, which will increase the production cost of the water

bottles.[11,12] This features will give a benefit of maintaining the temperature of beverages,

but drive up the price, making them less affordable compared to traditional plastic or simpler

water bottles. Additionally, the use of machine learning adds more cost in the development.

Implement this technology, it may help to enhancing the accuracy of water consumption

tracking, but it also will increase the overall price of the product, making it more challenging

to justify in environments such as kindergartens.

In environments like schools and kindergartens, children’s water bottles often having the

wear and tear issues because of frequent use and handling method by young children. With

kids frequently lose or damaging their bottles, regular replacement becomes necessary. Kid’s

water bottle is being suggested to be replaced at least a year, and sometimes more often, due to

inappropriate wear and tear. [16]

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

2.4 Summary

In this literature review, three existing smart water bottle bottles were examined, which are

HidrateSpark Pro 21Oz, EQUA Smart Water Bottle and Trago Smart Water Bottle. Each of

these three products use different technology to track the water intake, where HidrateSpark

uses a weight-based SipSense technology, EQUA relies on motion sensor and deep learning

algorithms. Meanwhile, the Trago is using ultrasonic sensor to detect the water level.

While these smart water bottles provided several advanced features like Bluetooth

connectivity, mobile app integration, customize hydration goals and visual glow reminder, they

also have limitations. HidrateSpark and EQUA require their own-brand specific bottles which

is not flexibility, while Trago offers universal cap design, but it only supports larger bottles

which are not suitable for young children. Besides that, their product is more costly for using

premium materials, advanced sensor and deep learning technology for EQUA smart water

bottle, which is not suitable for environments like schools or kindergarten, where frequent and

affordability is more important.

In summary, existing smart water bottles such as HidrateSpark, EQUA and Trago

demonstrated different methods for hydration tracking through weight-based sensors, motion

sensors with deep learning and ultrasonic level detection. While these systems offered

advanced features, but they still faced limitations in terms of flexibility, suitability for children

and cost-effectiveness in school environments. To address these limitations, this project

proposed a low-cost attachable smart water tracking device that used ESP32 microcontrollers,

load sensors and Firebase Realtime Database. Meanwhile, lightweight algorithms were

designed for water intake detection, orientation checking, offline synchronization and data

visualization. The system was developed to provide a reliable, affordable and practical solution

for monitoring children hydration both in real-time and offline.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

Chapter 3

System Methodology/Approach

3.1 System Design Diagram/Equation

In this section, the technical and mathematical foundation that supporting the smart water

tracking system was presented.

3.1.1 Load Sensor Calibration Equation

The weight of the water bottle was measured by used a 10kg load cell interfaced through

HX711 amplifier. Before the load sensor can work, the system must undergo calibration, as the

load sensor initially produces raw, unscaled data upon startup. This step was crucial because

incorrect calibration factor will affect the data accuracy. Furthermore, calibration can prevent

other environmental issues such as electrical drift, environment factor and etc to affect the data

accuracy.

The formula to get the calibration is:

𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑟𝑒𝑎𝑑𝑖𝑛𝑔

𝑘𝑛𝑜𝑤𝑛 𝑤𝑒𝑖𝑔ℎ𝑡(𝑔𝑟𝑎𝑚)

3.1.2 Water Intake Estimation

The system will take the water intake based on the difference between old reading and new

reading.

The formula is:

𝑑𝑖𝑓𝑓𝑟𝑒𝑛𝑡 (𝑔) = 𝑛𝑒𝑤_𝑟𝑒𝑎𝑑𝑖𝑛𝑔 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑒𝑎𝑑𝑖𝑛𝑔

Furthermore, a threshold is set to ignore environmental issues such as vibration or user handling.

3.1.3 Timestamp Estimation using millis()

When the system is offline and the timestamp was unknown, the system will used millis() to

estimate the time for each water drinking event. Once the system is connected to Wi-Fi, it will

sync the NTP to get the current timestamp and do calculation to get the estimated timestamp.

The formula is:

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

𝑇௜ = 𝑇ே்௉ −
(𝑚𝑖𝑙𝑙𝑖𝑠௦௬௦௧௘௠ − 𝑚𝑖𝑙𝑙𝑖𝑠௜)

1000

Where :

• Ti: Estimated timestamp of the i-th offline data

• TNTP: Time from NTP that get from internet

• millissystem: Milliseconds of the total system running time

• millisi: Milliseconds stored when data was recorded

• The division of 1000 is to convert the millisecond difference to seconds.

3.1.4 Power Consumption and Battery Life Estimation

The system is powered by a 3.7V 3800mAh 18650 lithium-ion battery, connected through a

TP4056 charging module and a voltage booster, which provides a regulated 5V supply to the

ESP32 microcontroller, HX711 load cell amplifier, ADXL345 accelerometer, voltage sensor

and red LED indicator. Since the system operates continuously with Wi-Fi enabled, both the

steady-state current and the startup current burst must be considered.

Table 3.1 Current Consumption of Components

Component Typical Current Consumption

ESP32 microcontroller (Wi-Fi active) ~200 mA (average)

ESP32 microcontroller (Wi-Fi burst at

startup)

up to 400-500 mA (peak)

HX711 Load Cell Amplifier ~1.7 mA

Voltage sensor ~3 mA

ADXL345 accelerometer ~0.14 mA

Red LED indicator ~4 mA

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

The ESP32 faced a short burst of current during Wi-Fi initialization, where current can

peak at 400-500 mA for a few seconds while ESP32 looking for available Wi-Fi. After

stabilization, the device typically draws ~200 mA on average during continuous Wi-Fi usage.

The power requirement was calculated as:

𝑃 = 𝑉 × 𝐼 = 6 𝑉 × 0.209 𝐴 = 1.254𝑊

Accounting for a boost converter efficiency of approximately 80%, the equivalent current

from the battery is:

𝐼௕௔௧ =
𝑃

𝑉௕௔௧ × 𝜂

𝐼௕௔௧ =
1.254

3.7 × 0.8
= 0.423 𝐴

Thus, the battery supplies ~346 mA on average, with brief peaks above this value during

Wi-Fi setup.

The expected runtime of the system is expressed as:

𝑇 =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐼௕௔௧
=

3800

423
 ≈ 8.98 ℎ

3.1.5 Battery Voltage Estimation

The ESP32 microcontroller monitor the battery level using a voltage sensor. The voltage

sensor operates based on a voltage divider to step down the battery voltage before

measurement. The raw ADC reading that provided from the ESP32 was 12-bit resolution ,

ranging from 0-4095, which corresponding to 0-3.3V. Since the actual battery voltage

exceeds 3.3V, the divider ensured that safe measurement by scaling the input voltage.

The formula is:

𝑉௕௔௧ = ൬
𝐴𝐷𝐶௥௔௪

4095
 × 3.3𝑉൰ × 6

Where:

 ADCraw: Raw reading from 0-4095

 3.3V: Reference voltage of ESP32 ADC

 6: Divider scaling factor

 Vbat: Estimated battery voltage

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

3.2 System Architecture Diagram

The system architecture of the smart water tracking system for kids is designed to operate as

an embedded system that support for both offline data logging using NVS and online data

synchronization using Firebase. The architecture follows a layered structure where sensor data

is collected, processed, transmitted and visualized at web application.

At the sensing stage, the load cell with HX711 amplifier measured weight changes, while

ADXL345 accelerometer monitored the orientation of the water bottle to avoid false reading

when the bottle was tilted or lying down. Other components such as voltage sensor and red

LED indicator ensured that the ESP32 battery status could also be tracked.

The ESP32 microcontroller served as the CPU, which responsible for managing sensing

operations, executing algorithms and handling local data storage when Wi-Fi is unavailable. It

also managed communication with the Firebase Realtime Database once the ESP32

microcontroller was connected to Wi-Fi.

Finally, the frontend web application which connected to the database, it will processed

and visualize the hydration data in real time. The interface displayed daily, weekly and monthly

consumption patterns, as well as summary such as total intake, refill time and goal

achievement.

This layered design was chosen to balance low cost, reliability and scalability, ensured that

the system could function effectively in environments with limited supervision such as schools

or playground while maintaining accurate tracking even during the system went offline.

Below figure shows the system architecture diagram.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

Figure 3.1 System Architecture Diagram

3.3 Use Case Diagram and Description

The figure below shows the use case diagram. The use case diagram illustrates the interactions

between the Smart Water Tracking System and its external actors. In this project, two primary

actors were involved, which was the child, who is interacting with this system by drinking

water and refilling the water bottle. Another actor was parent/teacher, who will monitor the

child’s water intake, set hydration goal and check water intake progress. The diagram

highlights the various function available to each actor, while the use case description will

provide further explanation of the system functionality.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

Figure 3.2 Use Case Diagram

Use Case Description

The following table describes of each use case show in the diagram. Each use case will

highlight the functionality of the system, the actor involved and the expected outcome. This

provides a clear view of how the Smart Water Tracking System operate from both chid and

parent/teacher perspective.

Table 3.2 Use Case Description

Actor Use Case Description

Child Drink Water The child drinks water from the bottle. The

system will detects the weight change and

records the intake

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

Child Refill Bottle The child refills the water bottle. The

system updates the recorded weight to

database to reflect the refill

Parent/Teacher View Daily Intake The parent/teacher view the total water

consumption by the child in a single day via

web dashboard

Parent/Teacher View Weekly Intake The parent/teacher reviews the child water

consumption over the past week

Parent/Teacher View Monthly Intake The parent/teacher reviews the child water

consumption trends over a month to track

long-term hydration patterns.

Parent/Teacher Set Goal Daily The parent/teacher sets a daily, weekly and

monthly water intake target for the child

Parent/Teacher Check Goal Achievement The parent/teacher check whether the child

has meet the hydration goal

Parent/Teacher Monitor Battery Level The parent/teacher can check the system

battery level on the web application to

ensure uninterrupted monitoring

3.4 Activity Diagram

The activity diagram below illustrates one of the workflows of the Smart Water Tracking

System. The process begins when the child drinks water, followed by orientation checking and

weight measurement. The system then checks the Wi-Fi connection. If Wi-Fi is unavailable,

the data will be store in local storage. If Wi-Fi is available, the data will uploaded to Firebase,

where parent or teacher can view it through the frontend application and check goal

achievement.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

Figure 3.3 Activity Diagram

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

Chapter 4

System Design

4.1 System Block Diagram

The block diagram of the Smart Water Tracking System is shown in Figure 4.1. The system is

divided into five layers, which were Power Layer, Sensing Layer, Processing Layer,

Connection Layer and Interface Layer. Each layer is responsible for different specific functions

of the system.

1. Power Layer

The power layer consists of the TP4056 module, an 18650 lithium-ion battery and a voltage

boost converter. The TP4056 module allows safe charging of the battery and provides

protection against overcharging or discharging [9]. The 18650 battery provide power to the

system, while the voltage boost converter regulates the output to provide a stable 6V for the

ESP32 microcontroller.

2. Sensing Layer

This layer includes the load cell with HX711 amplifier for measuring weight differences, the

ADXL345 accelerometer for orientation checking and a voltage sensor to monitor battery level.

These sensors collected raw data when the child drinks or refills water, providing the necessary

input for further processing.

3. Processing Layer

The ESP32 microcontroller act as the CPU of the system. Several processing modules were

implemented within the ESP32, such as weight measurement module, orientation module,

voltage sensor ADC converter module, data handling module and Firebase setup module.

These modules will process the raw data that received from the sensing layer and store or

transmit the data.

4. Connection Layer

The connection later managed the network communication between internet and ESP32

microcontroller. The ESP32 built a Wi-Fi connection to synchronize data with Firebase

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

database. The NTP server is used to obtain accurate timestamp, which are attached to the

recorded data. If Wi-Fi was unavailable, data will temporarily store in offline storage until

synchronization was possible.

5. Interface Layer

This layer will provided feedback and visualization for users. A red LED was used to indicate

the system battery status, while the processed data was transmitted to the frontend application.

The frontend will displays daily, weekly and monthly hydration trends along with battery

status. Parent and teacher can monitor the hydration habits of children through this interface.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

Figure 4.1 System Block Diagram

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

4.2 System Component Specifications

The smart water tracking system was built using several hardware components. Table 4.1

summarizes the specifications and functions of the selected components that used in this system

implementation.

Table 4.1 Specifications of System Components

Component Specifications Function in the System

ESP32-WROOM32 -3.3V operating voltage

-Dual-core 32bit MCU

-Built-in Wi-Fi & Bluetooth

Main component for data

processing, local storage

management and

communicate with Firebase

HX711 Load Cell Amplifier -24-bit ADC resolution

-low noise, high precision

-built-in conversion from

ADC to digital value

-Operating voltage: 2.6 to

5.5V

Auto convert analog signals

from load cell into digital

values for water weight

measurement

10kg Load Cell -weight capacity :10kg Detect water bottle weight

changes to estimate water

consumption

ADXL345 Accelerometer - ±2g, ±4g, ±8g, ±16g

selectable range

-Operating voltage: 3 to 5V

-3 axes(X,Y,Z)

Detect bottle orientation to

avoid false readings when

bottle is tilted or lying down

Voltage Sensor -Input voltage range:0-25V

-Divider Ratio: ~1:6

-12-bit resolution(0-4095)

Monitor battery voltage to

ensure reliable system

operation

18650 Li-ion Battery -capacity: 3800mAh

-rechargeable

-Nominal voltage: 3.7V

Supply power to the system

TP4056 Charger Module -Input voltage range: 4.35-

6V

-charging current: 1A

Provides safe charging for

18650 battery

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

-protection: overcharge &

discharge

Voltage Boost Converter -input voltage: 3V-6V

-output voltage range: 5-

28V DC

-max output current: 2A

Steps up battery voltage to

supply stable 6V to ESP32

Red LED -Current: ~4-10 mA

-Forward voltage: ~2V

Light up when voltage

sensor detects low battery

level

4.3 Circuits and Components Design

The smart water tracking system integrated several electronic components to enable sensing,

processing, communication and power management. Each component is connected to the

ESP32 microcontroller, which acts as the central processing unit of the system. The design

ensured efficient data acquisition, stable operation and reliable power delivery.

Load Cell with HX711 Amplifier

The load cell was connected to the HX711 module, which amplifiers the small voltage changes

generated by the strain gauge when water weight changes. The connection of the load cell with

HX711 amplifier were red wire to E+(VCC), black wire to E- (GND), green wire to A+ and

white wire to A-. The channel A was selected due to it offers higher amplification gains of 64x

or 128x to ensure more accurate weighting result [10]. The HX711 is then interfaced with the

ESP32 using digital pin(DT and SCK), where DT was connected to GPIO16 and SCK was

connected to GPIO4, for continuous weight measurement.

ADXL345 Accelerometer

The accelerometer was connected to the ESP32 cis the I2C communication protocol. In this

project only four pin will be used, which were VCC, GND, SDA and SCL. VCC was connected

to 3.3V, SDA to GPIO21 and SCL to GPIO22. GPIO21 and GPIO22 was selected was because

both of them was the default 12C pins supported by the ESP32 [22]. ADXL345 was used to

monitor the water bottle orientation to prevent false reading from the load cell while the bottle

was tilted or lying down.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

Voltage Sensor

A voltage sensor module is connected to the ESP32 analog input pin to measure battery voltage.

The VCC and GND pin of the module ware connected to the 18650 battery while the signal

(S) pin was connected to GPIO32 of the ESP32 to provide the ADC reading. With the assist of

voltage sensor, the system was able to monitor the battery level and alert the user if charging

is needed.

Power Supply Design

The system is powered by a rechargeable 18650 Li-ion battery. A TP4056 charging module

manages battery charging via micro-USB input. The battery output is connected to a DC-DC

boost converter, which provided a regulated 6V to power the ESP32 microcontroller.

Additionally, a red LED indicator was integrated into the system so it will provide a visual alert

when the battery voltage dropped below a predefined threshold, as detected by the voltage

sensor.

ESP32 Microcontroller

The ESP32 integrated all sensor inputs, executes the data processing logic and manages Wi-Fi

communication. When Wi-Fi is unavailable, data was temporarily stored in offline memory.

When available, the ESP32 will transmitted the store records to Firebase Realtime Database.

Frontend Connection

Processed and uploaded data can be accessed by parents or teachers through the frontend web

application. The ESP32 ensured that all data stored locally is consistent with Firebase once

synchronization was completed.

This circuit and component design ensures proper integration between sensing, processing,

power and communication units, providing a reliable and efficient smart water tracking

solution.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

4.4 System Components Interaction Operations

From the system block diagram, the Smart Water Tracking System was divided into five main

layer, which were sensing layer, power layer, communication layer, processing layer and

interface layer. In this subchapter, the interaction and operation of these layers were described

in more detail to explain how the system functions as a whole.

4.4.1 Sensing Layer

The sensing layer consists of a load cell connected to HX711 amplifier, the ADXL345

accelerometer and voltage sensor. The load cell with HX711 amplifier was to measure the

weight of the water bottle and detects water intake. Furthermore, the ADXL345 monitor the

water bottle’s orientation to prevent false reading when the bottle was tilted or lying down. The

last component, voltage sensor, will continuously monitor the battery level and provides the

result to the ESP32. These three sensors provided the raw data required for further processing.

4.4.2 Power Layer

The power layer included the 18650 Li-ion battery, TP4056 charging module and DC-DC

voltage boost converter. The 18650 battery supplies the main power to the system, while the

TP4056 charging module allow the battery to be recharged via micro-USB cable. When the

battery had fully charged or being disrupted while charging, the TP4056 will have a built-in

protection circuit to protect the battery.

With only using the 3.7V battery was not enough to handle the ESP32 task and maintain

stable Wi-Fi connection, thus the need of DC-DC voltage boost converter was crucial in this

project. It will increase the 3.7V to stable 6V to meet the requirements for ESP32 to handle it

tasks. When the 6V was entered into ESP32 Vin pin, it will auto regulated the 6V to 3.3V to

power itself and the connected sensors. This ensures that all components receive stable voltage

for continuous operation.

4.4.3 Processing Layer

In this layer, ESP32 microcontroller was acting as the core of this system, responsible for

executing the main logic, performing calculation and managing the data flow between

components. When the ESP32 initial, in setup() function, it will tared the load sensor,

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

initialized the ADXL345 accelerometer and captured a weight reading as current reading. The

ADXL345 accelerometer operate on the principle of detecting changes in capacitance along

the x, y and z axes to measure acceleration. In this system, the accelerometer was using static

forces (gravity) for orientation checking. When the water bottle was placed in upright, the z-

axis will be showing the values in the range of 9 to 10, while x and y axes remain close to 0. If

the z-axis was not in this range, the system recognizes that the water bottle was tilted or lying

down and the weight measurement will temporarily disabled to prevent false reading until the

water bottle was placed back upright.

Once the orientation was confirmed, the load sensor will perform a new weight

measurement and compare to the current weight every 3 seconds. If the difference more than

30 (which was to prevent moving or shaking the water bottle accidentally), then it will take 3

additional weight reading every 0.3 second. Only if the reading remained stable and the

variation does not exceed ±2 compared to the initial difference, the system recorded the event

as a valid water intake event.

Next, ESP32 will determine whether the system was operating in online or offline mode.

In offline mode, the data reading will be stored into local storage (NVS). By using Preferences

library to store the data is because the system only needs to store 2 data points, which are weight

changes and timestamp. The fixed data structure makes NVS a suitable and efficient storage

option. Furthermore, NVS has a feature to prevent power-lost which the data will be stored

into local storage although the microcontroller suddenly shut down. Since the amount of data

being stored is minimal, there is no need to implement larger file systems such as SPIFFS,

making NVS the most lightweight and effective solution for this application. [17]

If a valid timestamp was available and the system was disconnected from Wi-Fi, it will

store the weight changes and the valid timestamp to the local storage. Otherwise, the system

will store the weight changes with the system runup time as a temporarily timestamp in another

local storage. Once Wi-Fi connectivity was restored, the system will process the offline data

with unknown timestamp first, by using timestamp that get from NTP server and the recorded

runtime offset to get an estimated timestamp.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

When then system was connected to Wi-Fi, ESP32 will initialize the Firebase configuration

and begins multitasking to handle additional system functions. Alongside weight monitoring,

the microcontroller executes a task for battery voltage measurement. In this task, the voltage

sensor takes 20 consecutive readings, averages the result to reduce the noise and upload the

battery level together with a timestamp to Firebase every 5 minutes. This ensured that power

status information remains accurate and up to date, allowing users to be alerted when charging

was required.

4.4.4 Communication Layer

In this layer, it responsible for internet communication and online database storing. The ESP32

microcontroller connect to the internet via Wi-Fi. After connected to Wi-Fi, it retrieves the

real-time timestamp using NTP. The use of NTP is essential because the ESP32 don’t have

internal RTC. Without internal RTC, the ESP32 would require an additional module, such as

the DS3231 to track the time[18]. By using NTP, this project eliminates the need for extra

hardware while still ensuring accurate time synchronization through the internet[19].

After connected to Wi-Fi and get the timestamp, ESP32 will upload the data log which

contained weight changes and timestamp to Firebase Realtime Database in JSON format.

Furthermore, if there are data entries stored at the local storage due to a previous disconnection,

the system will automatically commit these records to Firebase once the Wi-Fi was connected.

This can ensure that the data reliability and stability during network outages.

4.4.5 Interface Layer

The interface layer consists of 2 part; the hardware-based low-battery indicator and the frontend

web application hosted on Firebase.

On the hardware side, when the voltage level that detected by the voltage sensor was lower

than the threshold of 3.5V, the red LED indicator alerts the user to recharge the battery by

blinking 5 time per second.

On the software side, the frontend web application processes raw data from Firebase before

displaying it to the user. The system grouped data by date and classifies water intake record

into negative and positive values. The negative values water data represent the children actual

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

water intake, meanwhile the positive value represent the amount of water refilled into the

bottle. Furthermore, the system also displays the battery status at the top-right corner of the

webpage. This is achieved by comparing the most recent uploaded timestamp from the ESP32

with the current time and battery level. If the timestamp exceeds a threshold of 10 minutes, the

system is shown as offline. Otherwise, it is indicated as online.

In the webpage, parent or teacher can view daily, weekly and monthly water intake

summaries. The interface also highlights the refills times, total intake and goal achievement.

Furthermore, the webpage also offers several personalization features, including the ability to

change the font size, clear all the data in database and set the hydration goal separately for

daily, weekly and monthly intervals. By providing data visualization and user customization,

the system ensures hydration monitoring was convenient, user-friendly and adaptable to

different user needs.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

Chapter 5

System Implementation

5.1 Hardware Setup

In this section, it will described the hardware structure of the system. To house and organize

all the components at one place, a custom case was designed and fabricated using 3D printing

technology. The 3D design was created in SolidWorks and divided into 5 layer, where were

battery layer, power layer, microcontroller layer, sensor layer and platform layer, all enclosed

within an outer case. The 3D printer used in this project was CREALITY Ender-3 V3 KE to

print the case. The specifications of the printer are shown in Table 5.1.

Table 5.1 3D Printer Specifications

Model Ender-3 V3 KE

Printing Technology Fused Deposition Modelling (FDM)

Build Volume 220 x 220 x 240 mm

Maximum Printing Speed 500 mm/s

Input Printing Support for high-quality printing

The outer case was designed with 3 vertical rods with 6.2cm each to lock and stabilize the

inner layers. Two external openings were included: one for the charging port and another for

the LED indicator. The figures 5.1 and 5.2 shows the outer and inner views of the case while

figure 5.3 illustrate the outer case in 2D view.

Figure 5.1 Outside View Figure 5.2 Inside View

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

Figure 5.3 Outer Case (2D View)

 Battery Layer:

The battery layer holds the 18650 Li-ion battery and its battery holder. A cut-out hole

was designed to allow battery wires pass to power layer. The battery holder was placed

under the power layer for easy replacement. Figure 5.4 shows the battery layer.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

Figure 5.4 Battery Layer

 Power Layer:

In power layer, it included the TP4056 charging module, voltage sensor, DC-DC

voltage boost converter and red LED indicator. The TP4056 sits on a 27 x 17 x 6 mm

platform to secure its position. The figure 5.5 and 5.6 illustrate the power layer in 2D

design and real-world implementation.

Figure 5.5 Power Layer (2D view)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

Figure 5.6 Power Layer (Real-World View)

 Microcontroller Layer:

The microcontroller layer houses the ESP32 microcontroller and 2 quick wire terminal

connector. The 2-terminal connector was separately distributed the 3.3V pin and ground

pin to connected sensor components. A38 x 20 x 10 mm platform was designed for the

ESP32, beside it was having 2 hole for wiring connections. Figures 5.7 and 5.8 show

the design and assembled layer.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

Figure 5.7 Microcontroller Layer (2D View)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

Figure 5.8 Microcontroller Layer (Real-World View)

 Sensor Layer:

In sensor layer it includes the 10kg load cell, HX711 amplifier and ADXL345

accelerometer. Platforms of 20 x 15 x 11 mm for HX711 amplifier and 20 x 17 x 11mm

for ADXL345 were designed to mount the modules. Beside the platform, it will have a

hole to let jumper wire connect to the sensor pins. Additionally, a 3mm height was

designed under the load cell to prevent the strain gauge from touching the surface and

producing false readings. Figures 5.9 and 5.10 show the design and implementation.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

Figure 5.9 2D View of Sensor Layer

Figure 5.10 Real-World View of Sensor Layer

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

 Platform Layer:

This was the top layer, designed as a flat platform to place the water bottle. The outer

case will have an approximately 2cm raised edge to prevent water bottle moving and

keep the water bottle centered on the load cell. A second 3mm height block was also

integrated into this layer, positioned above the load cell. This ensures the strain gauge

remains properly elevated when the water bottle was placed on top to improve the

accuracy of the weight measurement. Figure 5.11 show the platform layer in 2D view.

Figure 5.11 Platform Layer (2D View)

Finally, Figures 5.12 and 5.13 show the assembled system in both 2D views and real-world,

combining all five layers into a single unit. Figure 5.14 shoes the assembled system together

with the outer case.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

Figure 5.12 Assembled System (2D View)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

Figure 5.13 Assembled System without Outer Case (Real-World View)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

Figure 5.14 Assembled System with Outer Case (Real-World View)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

5.2 Software Setup

The software setup involves preparing both the microcontroller programming environment and

the web-based frontend hosting environment. The development platform used in this project

was the Arduino IDE, which provides a user-friendly interface for coding and uploading

firmware to the ESP32 microcontroller.

In this project, a laptop was used to develop the code for the ESP32 using Arduino IDE.

The laptop also served to monitor the ESP32 output using the Serial Monitor and flash the

firmware into ESP32 through COM7. The table 5.2 shows the specifications of the laptop used

in this project.

Table 5.2 Specification of Laptop

Description Specifications

Model Lenovo Legion 5i

Processor Processor: AMD Ryzen 5 5600H

Operating System Windows 11

Graphic NVIDIA GeForce RTX3060 6GB

Memory 16GB DDR4 RAM

Storage 1.5TB SSD

For the ESP32 setup, the ESP board package was first installed in the Arduino IDE through

board manager by adding the Espressif repository link:

“https://raw.githubusercontent.com/espressif/arduinoesp32/ghpages/package_esp32_index.js

on”. After installation, select the ESP32 Dev Module from boards manager and set the upload

speed to 115200 baud rate [20]. The required libraries were then installed using the Arduino

Library Manager and internal library. The key libraries used in the project include:

1. Adafruit ADXL345 – to handle accelerometer for orientation detection

2. ArduinoJson – to transmit data to Firebase in JSON format

3. Firebase Arduino Client Library for ESP8266 and ESP32 – to send data to Firebase

Realtime Firebase

4. HX711 Arduino Library – to interface with the load cell amplifier

5. WiFi and WiFiMulti – to establish and manage multiple Wi-Fi connections

6. Preferences – to store offline data in ESP32’s non-volatile memory

7. Wire – to configure the I2C for ADXL345 accelerometer

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

In addition, the frontend interface was hosted on Firebase Hosting. To set up this, Node.js

and Firebase CLI were installed on the development computer. Once the Firebase initialized,

it will generate the Firebase configuration that link to the created Firebase project. The HTML,

CSS and JavaScript files for the dashboard were placed in the hosting folder and the

deployment was performed using the “firebase deploy” command.

Once completed, the ESP32 firmware and the frontend hosting were connected through the

Firebase Realtime Firebase, enabling the hardware to upload water intake and voltage data,

while the frontend retrieved and visualized the information in real-time.

5.3 Setting and Configuration

After completing the installation of the development environment and deployment of the

frontend, the system required further customization and tuning to ensure the system

functionality. This section describes the configuration steps carried out for the ESP32

microcontroller, database, synchronization, sensors, frontend and system threshold.

5.3.1 ESP32 Wi-Fi Configuration

The ESP32 was configured to connect to a Wi-Fi network by embedding the SSID and

password inside the program code. To support multiple network sources, the WiFiMulti library

was utilized, enabling the device to automatically switch to other alternative connections in

case of disconnection. This ensured continuous data transmission to the Firebase database

without manual setup. The system can setup multiple Wi-Fi connections with the command:

wifiMulti.addAP(“SSID”,”Password”);

5.3.2 Firebase Database Configuration

The ESP32 was linked to Firebase by insert the project URL and authentication key into the

program code. Two structured data paths were define: one was waterIntake with having two

key parameter: weight and timestamp, another was voltageBattery with having two key

parameter: battery voltage and timestamp. Database rules were also set to regulate read and

write permissions, ensuring secure communication between the microcontroller and Firebase.

To enhance data security, authentication can also be enabled and only verified accounts can

access to the Firebase. The code to set up the Firebase in ESP32 as follow:

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

 config.api_key = API_KEY;

 config.database_url = DATABASE_URL;

 auth.user.email = "Email Account";

 auth.user.password = "Password";

 Firebase.begin(&config, &auth);

 Firebase.reconnectWiFi(true);

5.3.3 NTP Configuration

NTP was implemented to get an accurate timestamps for recorded data. The time zone was

configure to GMT +8 (Malaysia Time) and the synchronization interval was set to periodically

update the ESP32 internal clock. This allows the offline data, can store the timestamp as real-

world time in offline storage.

The NTP configuration was as follows:

const char* ntpServer = "pool.ntp.org";

const long gmtOffset_sec = 8 * 3600; //GMT+8

const int daylightOffset_sec = 0;

configTime(gmtOffset_sec,daylightOffset_sec,"pool.ntp.org","time.google.com","time.cloud

flare.com");

struct tm timeinfo;

int retry = 0;

while (!getLocalTime(&timeinfo) && retry < 5) {

 Serial.println("Failed to obtain time");

 delay(1000);

 retry++;

}

5.3.4 Sensor Calibration

Calibration was performed on all sensing module to improve measurement accuracy. The

HX711 load cell amplifier was tared using calibration factor to establish a zero baseline before

water intake measurements. The ADXL345 accelerometer was tested in multiple orientations,

with the z-axis expected to produce reading of approximately 9-10 while water bottle was in

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

upright position. The voltage sensor was calibrated by mapping the ADC readings to actual

battery voltage levels using known reference values.

5.3.5 Frontend Configuration

The dashboard was linked to Firebase using the JavaScript SDK. The system was configured

to retrieve new data and update the water intake chart to ensure real-time visualization. Default

goal values for daily, weekly and monthly water intake goals can also be adjusted by the user

as needed. Additionally, the system also included a personalization feature that allowed users

to convert the data from ml to Oz.

5.3.6 System Thresholds

Several thresholds were implemented to enhance data accuracy and reliability. A minimum

change of 30 ml was required in load cell reading before registered as a valid water intake

event, effectively filtering out noise caused by minor movement. To further enhance the data

reliability, the system will take 3 additional reading and compared to the initial difference

weight, if the variation between these readings did not exceed ±2g, it will only registered as a

valid drinking event. The low battery threshold was defined at 3.5V, triggering a warning when

the battery voltage dropped below this level. Additionally, the frontend application was set to

detect offline conditions if no updates were received in voltageBattery structure data within 10

minutes, ensuring timely alerts for connectivity issues.

5.4 System Operations

This section will demonstrates the working process of the Smart Water Tracking System,

covering both the hardware operation and the frontend interface. Screenshots and photos will

included to illustrate each stage of process.

5.4.1 System Startup

When the ESP32 boots up, the system first tares the load sensor and initializes the voltage

sensor and the ADXL345 accelerometer. After initialization, the ESP32 attempt to connect to

available Wi-Fi connection. If there was available Wi-Fi, the ESP32 communicates with NTP

server to synchronize the system time then upload the stored offline data to Firebase database

if exist. If Wi-Fi connection fails, the system will switch to offline mode, skipping the Wi-Fi

connection and Firebase configuration. In this mode, valid water intake event were stored

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

locally in NVS. Figure 5.15 shows the ESP32 connected to a mobile phone hotspot.

Furthermore, Figure 5.16 show the Serial Monitor output during successful Wi-Fi connection

, while figure 5.17 shows the ESP32 operating in offline mode.

Figure 5.15 ESP32 connected to phone hotspot

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

Figure 5.16 ESP32 Serial Monitor during successful Wi-Fi connection

Figure 5.17 ESP32 Serial Monitor output in offline mode

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

5.4.2 Orientation Detection

During normal operation, the ADXL345 accelerometer continuously check the water bottle

orientation. If the z-axis value falls outside the expected range of 9-10, the system interprets

the bottle as tilted or lying down form and weight measurement are temporarily disabled. If the

bottle was in upright form (z-axis within the range), it will proceed to load cell reading. Figures

5.18 and 5.19 show when the ADXL345 accelerometer placed in a vertical orientation and the

output of ESP32 in Serial Monitor. Meanwhile, Figures 5.20 and 5.21 shows when the

ADXL345 accelerometer back to upright form and the corresponding output in Serial Monitor.

Figure 5.18 ADXL345 accelerometer in vertical orientation (real-world)

Figure 5.19 ESP32 Serial Monitor output for vertical orientation

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

Figure 5.20 ADXL345 accelerometer in upright orientation (real-world)

Figure 5.21 ESP32 Serial Monitor output for upright orientation

5.4.3 Water Intake Detection, Data Logging and Uploading

HX711 amplifier and load cell were responsible for measuring the bottle’s weight every 3

seconds. If the weight difference that bigger than 30g was detected, the system performs

additional 3 more reading at 0.3 second interval to ensure data accuracy and reliability. If the

variation between these readings within ±2g of the original weight difference, the system will

recorded the event as a valid drinking/refilling action. The negative values data represents as

the child drink amount and positive value represent the amount of water refilled into the bottle.

Figure 5.22 shows the Serial Monitor of ESP32 together with the laptop system time during a

weight change event.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

Figure 5.22 Serial Monitor output showing water intake detection and laptop system time

The water intake measurement in Figure 5.22 was done in online mode, the valid event was

immediately uploaded to the Firebase database. The logging result at the Firebase console was

illustrated in Figure 5.23.

Figure 5.23 Water intake event successfully uploaded and logged in Firebase Console

In addition to online logging, the system also supports offline data storage when Wi-Fi is

not available. The system relies on the NTP as the system time. To validate this offline

storage mechanism, 2 water intake events were recorded while operating in offline mode.

Figure 5.24 and 5.25 shows the valid water intake event, message that mention the data was

stored into local storage with valid timestamp in Serial Monitor and the laptop time where the

measurement was taken.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

Figure 5.24 Serial Monitor output showing valid drinking event stored locally with NTP

timestamp

Figure 5.25 Serial Monitor output showing valid refill event stored locally with NTP

timestamp

Afterward, the ESP32 was switch back to online mode. The system will automatically

detected the stored event in offline storage and upload them to Firebase Database. The Serial

Monitor output of this process was shown in Figure 5.26, while Figure 5.27 presents the

successfully logged data in Firebase Console.

Figure 5.26 Serial Monitor output showing offline data being uploaded when Wi-Fi

reconnects

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

Figure 5.27 Firebase console showing uploaded offline events

Lastly, the system was also tested under a difference offline condition where the ESP32

was initialized without Wi-Fi and Firebase configuration just like Figure 5.17. In this scenario,

NTP synchronization could not be perform since it need Wi-Fi connection and therefore the

system will temporarily store the ESP32 runup time as timestamp of the water event. In the

testing setup, 2 data were collected by ESP32 under this situation. Figures 5.28 and 5.29

illustrated the Serial Monitor Output with laptop system time, showing how the data was

captured with unknown timestamp.

Figure 5.28 Serial Monitor output showing offline data stored with temporary run-up

timestamp (event 1)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

Figure 5.29 Serial Monitor output showing offline data stored with temporary run-up

timestamp (event 2)

Once Wi-Fi connectivity was restored, the ESP32 configured Firebase and synchronized

time from NTP server. After time had been initialized, it will processed the data with system

runup time as temporarily timestamp. Figure 5.30 the Serial Monitor output of ESP32 during

this process. Figure 5.31 shows the corrected time events successfully logged in Firebase.

Figure 5.30 Serial Monitor output showing offline data being processed and timestamp

corrected

Figure 5.31 Firebase console showing offline data uploaded with corrected NTP timestamps

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

5.4.4 Battery Monitoring

When the ESP32 work in online mode, it starts multitasking by running task to continuously

monitor the battery voltage. The voltage sensor read the battery level through ESP32 GPIO32

pin. If the detected voltage was lower than the threshold of 3.5V, the system triggers a low-

battery alert. The red LED indicator will blinks 5 times per second to notify the user of low

voltage condition. The voltage battery level and timestamp will uploaded to Firebase. Figure

5.32 shows Serial Monitor output when battery level low than 3.5V while Figure 5.33

illustrated the red LED indicator blinking as a visual alert for the user. Figure 5.34 presents the

logged battery voltage data uploaded to Firebase console.

Figure 5.32 Serial Monitor output when battery voltage drops below 3.5 V

Figure 5.33 Red LED indicator blinking (low battery alert)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

Figure 5.34 Battery voltage data logged in Firebase console

5.4.5 Frontend Display

The frontend dashboard was designed to provide real-time visualization of the water intake

data retrieved from the Firebase database, Once the ESP32 uploaded the valid drinking and

refill events, the data was automatically synchronized with the frontend using the Firebase

JavaScript SDK.

The main page of the frontend displayed a welcoming message. In the navigation bar, the

user allows to switch to daily, weekly and monthly page and view the summary. On the right-

hand side, a setting button was provided for user to do customization. Besides, it also included

a battery indicator to show the current battery status and an online/offline status icon to indicate

the connectivity of the ESP32 system. Figure 5.35 show the main page layout and the the

navigation bar.

Figure 5.35 Main page layout and navigation bar

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

The dashboard included multiple features to improve user interaction and monitoring.

Daily, weekly and monthly charts were plotted to provide a clear overview of hydration

patterns across different timeframes. User was allowed to select specific time or time ranges to

view the hydration patterns and data either in ml or Oz form. The goal achievement was also

employed to track the hydration status, while data that exceed the goal target will be show in

green colour, the data that below the goal target but within 500ml of reaching it were shown in

pink colour and the data that did not achieved the goal target was shows in red colour.

In the daily view, the chart shows the water intake event only excluding refills for clarity.

In the summary section, it displayed the number of refills, total water consumed and goal

achievement status. Figure 5.36 illustrates the daily summary view.

Figure 5.36 Daily summary view (ml)

For weekly and monthly views, the hydration goal target was distributed across 7 and 30

days respectively. The frontend compared the amount of water intake with the goal target for

the selected period and highlighted the hydration status for each day. Furthermore, the

summary box in weekly and monthly shows the total amount of water drinks, average daily

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

intake and goal achievement status. Figure 5.37 and 5.38 shows the view of weekly and

monthly page.

Figure 5.37 Weekly summary view(Oz)

Figure 5.38 Monthly summary view (ml)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

In setting page, the users were also allowed to change the font size of the page for better

readability. Figures 5.39 and 5.40 demonstrate the difference between the medium and large

font size options.

Figure 5.39 Font size in medium form

Figure 5.40 Font size in large form

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

Additionality, the frontend provided customization options for user to change the hydration

goal target for daily, weekly and monthly. When a value was changed, a save button appeared

to update the goal setting and store in local storage. Figure 5.41 shows the goal customization

interface.

Figure 5.41 Goal customization setting

The frontend also provided a feature for deleting all cloud data. For testing purpose, instead

of using the actual data structure, a new data structure call “sample” was created to verify the

functionality. The Figures 5.42 shows the new data structure in Firebase Console and figure

5.43 displayed the confirmation dialog on the frontend page.

Figure 5.42 New sample data structure with data in Firebase Console

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

Figure 5.43 Confirmation Message for data deletion

Once confirmation, the data structure was permanently deleted and could not be be

restored. Figure 5.44 shows Firebase Console after the data structure had been cleared.

Figure 5.44 Firebase Console after clear the data structure

5.5 Implementation Issues and Challenges

During the development of the Smart Water Tracking System, several issues and challenges

were encountered during hardware and software implementation. These challenges required

several time of testing and design adjustment to ensure the system could operate reliably.

Sensor Calibration and Stability

The HX711 load cell measurement was affect the data accuracy by environment factors. The

load cell measurements will having a tolerance of +/- 5% due to several factors such as drift,

high surface temperature and electromagnetic interference from nearby electronic devices.[21]

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

The system has implemented a stability check mechanism to ensure the data reliability and

reduce the impact of these environmental factors .

False Reading When Bottle Was Tilted

In certain condition, user did not always place their water bottle in upright position, such as

during sporting activities or putting inside a bag, false reading was captured and uploaded to

frontend, leading to confusion for users. To solve this issue, ADXL345 accelerometer was

implemented into the system to monitor bottle orientation and prevent captured false reading.

Delay on getting timestamp from NTP server

The whole system was heavily rely on NTP for getting timestamp. However, during

initialization, the NTP server may experience delay or failure due to poor internet connection

or the NTP server was having peak usage time. To address this challenge, a retry mechanism

was implemented, although it can solve the issues but it still having a long-time delay to get

the time.

Power Supply and Battery Monitoring

The ESP32 required a stable 6V input from the 18650 battery to initialize the Wi-Fi connection

and power other components. Therefore, a DC-DC voltage boost converter was used to step up

the 18650 Li-ion battery to 6V and voltage divided was implemented to monitor the battery

status. Calibration was needed for voltage sensor to accurately captured low-battery conditions.

Frontend Visualization and Customization

Initially, both positive and negative value were shown in the chart, resulting in refill and intake

actions was being shown together. This caused confusion in data interpretation. The data

handling logic was refined to filtered out the positive value and only show negative values data

in the chart. Furthermore, goal customization values were not saved after page refresh. This

problem was solved by using local storage in the frontend to prevent data missing.

User Interface Accessibility

The default font size was not suitable for all users. Thus, a customization feature was added to

the setting page allowing user to adjust the font size of the page, improving accessibility for

children and parents.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

Overall, these challenges were being solved during the development through testing, debugging

and implement new sensor. This solution contributed to a more stable and user-friendly system.

5.6 Concluding Remark

This chapter show the detailed implementation of the Smart Water Tracking System, covering

both hardware and software aspect. The discussion in this chapter included system setup,

configuration and workflow of the system followed by the frontend webpage development for

data visualization and user interaction. Implementation challenges were also being identified,

along with the solutions adopted to ensure system full functionality, accuracy, reliability and

user-friendly.

Overall, the system was successfully implemented and integrated, achieving the

functionality of monitoring water intake, handling offline and online data synchronization and

providing an interactive webpage for users.

The following chapter will evaluate the system’s performance through testing and

validation. Metrics such as data accuracy, response time, reliability and user interface

functionality will be examined to ensure the system meet the project objectives.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

Chapter 6

System Evaluation And Discussion

6.1 System Evaluation and Performance Metrics

To evaluate the effectiveness of the Smart Water Tracking System, a set of tests were carry

out. The testing aimed to verify both the functional correctness and the performance of the

hardware, software and data visualization components. Performance metrics were defined to

evaluate how well the system achieved it objectives.

Performance Metrics Considered

 Accuracy (%) =
ெ௘௔௦௨௥௘ௗ ௏௔௟௨௘

஺௖௧௨௔௟ ௏௔௟௨௘
 × 100

 Data Loss Rate (%) =
ெ௜௦௦௜௡௚ ா௡௧௥௜௘௦

்௢௧௔௟ ா௡௧௥௜௘௦
 × 100

 Synchronization Delay (s) = Time required to upload offline data once Wi-Fi

reconnected

6.1.1 Load Sensor Accuracy Test

The HX711 load sensor was tested to determine measurement accuracy under different known

weight. The actual weight was measured manually using electronic scale and compared with

sensor readings.

Table 6.1 Load Sensor Accuracy Test

Trial Actual Weight(g) Sensor Reading (g) Error (g) Accuracy(%)

1 44 43.82 -0.18 99.6

2 232 233.23 1.23 100.53

3 486 488.56 2.56 100.53

4 57 57.94 0.94 101.65

5 217 211.24 -5.76 97.35

Avg - - -0.242 99.93

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

The average accuracy was 99.93%, which was acceptable for hydration tracking purpose.

Errors observed (± 0-6) were negligible in comparison to daily hydration goals, confirming the

data accuracy and stability of the load sensor with calibration used.

6.1.2 Data Synchronization Test

The system supports both offline logging using NVS storage and online synchronization with

Firebase. Test were conducted to check if the number of data that stored in offline storage can

be successfully upload to Firebase once the Wi-Fi connection was restored.

Table 6.2 Data Synchronization Test

Condition Number of Data

Entries taken in

offline

Number of Data

Uploaded after

Reconnect

Data Loss(%) Average

Sync Delay

5 mins offline 15 15 0 3

15 mins offline 30 30 0 2.5

30 mins offline 40 39 2.5 4.8

The synchronization process achieved a 97.5% reliability rate, with only one data loss at

the 30 minutes offline condition. The delay in syncing was short, ranging between 2.5 to 4.8

seconds, showing the efficiency of the retry mechanism. The 5-minute offline condition sync

delay was greater than 15 mins offline was due to the delay of NTP server to get timestamp to

update the ESP32 system time.

6.1.3 Orientation Test

The ADXL345 accelerometer was also be tested to verify its ability to detect bottle orientation.

Test were conducted by placed the ADXL345 accelerometer in different position and the rate

of successfully disabled the weight measurement was not in upright position.

Table 6.3 Orientation Test

Test Case x-axis y-axis z-axis Measure

Result

Upright 0 -0.67 9.38 Weight

recorded

Vertical -9.61 -2.16 -0.67 Measurement

disabled

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

Downward 0.27 -0.39 -10.16 Measurement

disabled

Tilted (45

Degree)

-6.55 -0.67 6.75 Measurement

disabled

The ADXL345 accelerometer successfully distinguish between upright and non-upright

orientations. Weight reading was only taken when the orientation was detected at upright

position, preventing false water intake events. This confirmed that the orientation checking

mechanism able to enhance the system reliability in real-word usage.

6.1.4 Frontend Goal Achievement Test

The frontend was tested to verify whether goals status and water intake summaries were

displayed correctly. The system should clearly indicate whether the user had met their

hydration goal.

Table 6.4 Frontend Goal Achievement Test

Type Day Goal (ml) Actual Intake

(ml)

Goal Reached

Daily 24/8/2025 600 765.15 Yes

Weekly 17/8/2025– 23/8/2025 1500 2154.3 Yes

Monthly 08-2025 9000 8632.93 No

The frontend was able to display correct goal achievement status. In case where the total

water intake was slightly below the target, the system also can highlighted it appropriately.

This ensures parents or teacher can receive clear feedback on keeping hydration progress.

6.1.5 Water Intake Event Detection

The raw data process in frontend was tested to verify the system can whether separate the

negative and positive value correctly. This mechanism was tested by using an amount of 100

data entry, where 50 for positive values and 50 for negative values.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

Table 6.5 Confusion Matrix

 Actual Values

 Positive Negative

Predicted

Values

Positive 50 0

Negative 0 50

The confusion matrix had shown the raw data processing mechanism had successfully

identified all the data into positive and negative value. This ensures the system can provide a

reliable visualization data for user to view.

6.1.6 Overall Findings

The above test demonstrates that the Smart Water Tracking System had meets the expected

performance requirements with:

 Data Accuracy exceed 99%

 Data synchronization was highly reliable and minimal risk of data loss

 Orientation checking was reliable and prevent false reading

 Frontend feedback was accurate and easy to interpret

These outcomes confirm that the system was suitable for real-world use and follow the

project objective of promoting proper hydration for children.

6.2 Testing Setup and Result

6.2.1 Testing Environment

The smart water tracking system was tested using the following setup:

1. Hardware Components: HX711 amplifier, 10kg load cell, ADXL345 accelerometer,

voltage sensor, TP4056 charging module, DC-DC voltage boost converter, 18650 Li-

ion Battery

2. Software Component: Arduino IDE for ESP32 programming, Firebase Realtime

Database as cloud storage, frontend webpage connected via Firebase SDK

3. Testing environment: indoor lab setting with stable Wi-Fi connection. For offline test,

Wi-Fi was temporarily disabled to evaluate local storage and synchronization

performance.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

4. Reference Tools: Electronic Scale for weight comparison, laptop system time for

timestamp verification, Serial Monitor for debugging logs.

Testing was conducted in different conditions to simulate real-life usage, including online

mode, offline mode and low battery condition.

6.2.2 Load Cell Accuracy Test

The purpose of this test was to measure the accuracy of water intake/refill action. The method

was used a known weight object to place on the load sensor and compared with the actual

values. Figure 6.1 shows the water bottle weight using electronic scale.

Figure 6.1 Water bottle weight using electronic scale

Then, we placed the water bottle with known weight on the load sensor and view the data

in Serial Monitor. Figure 6.2 illustrates the water bottle weight by using load sensor.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

Figure 6.2 Water Bottle Weight using load sensor

From the figure, the load sensor will having a error of 4.83ml compared to the actual

weight of the water bottle. The accuracy of the data was 100.5%, which was acceptable for

hydration monitoring.

6.2.3 Data Logging and Offline Storage Test

The test was conducted to verify the reliability of data recording in both online and offline

modes. The weight was continue using from section 6.2.2. The water intake event was

stimulated at online mode. Figure 6.3 showed that 87.64ml had been consumed along with the

laptop system time.

Figure 6.3 Amount drink and system time

Figure 6.4 illustrate the data had been synchronized to Firebase successfully at Firebase

Console.

Figure 6.4 Data Uploaded to Firebase

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

The timestamp between the firebase uploaded and laptop system time was difference by

approximately of 1 minute, which was acceptable for hydration monitoring.

For the offline test, Wi-Fi was disconnected for validate offline storage functionality with

valid timestamp that get from NTP server. Figure 6.5 shows the ESP32 had disconnected from

Wi-Fi.

Figure 6.5 ESP32 disconnected from Wi-Fi

A water intake event occurred at offline mode. The system stored the data in NVS

temporarily and sync to Firebase once Wi-Fi was reconnected. Figure 6.6 shows the water

intake event was recorded in offline mode.

Figure 6.6 Water intake event (offline mode)

From the figure above, the system had detected a weight changed of 93.64ml and the

timestamp at ESP32 was 1:23:26 which was slightly ahead of the laptop system time, which

was expected since NTP provides more accurate network-based time compared to laptop clock.

Figure 6.7 shows the ESP32 successfully reconnected and uploaded the offline data to Firebase,

while Figure 6.8 illustrates the Firebase Console with the uploaded data.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

Figure 6.7 ESP32 reconnected and sync data

Figure 6.8 Firebase Console showing uploaded offline data

From both online and offline test, the system shows the ability to maintain continuous

operation and preserve data integrity to ensured that no water intake event data was lost even

when temporarily disconnected.

6.2.4 Low Battery Condition

The test was conducted to verify the functionality of voltage sensor in monitoring the battery

status of the ESP32. When the detected battery voltage was lower than the defined threshold

of 3.5V, the system triggered a visual alert by blinking the red LED indicator 5 times per second

to inform the user to recharge the battery. Figure 6.9 shows the low battery at Serial Monitor

while figure 6.10 illustrate the red LED indicator light up to inform user.

Figure 6.9 Low battery voltage detected (Serial Monitor Output)

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

Figure 6.10 Red LED indicator activated under low battery condition

The results confirm that the system was able to detect low battery conditions in real time

and providing a clear visual alert that tried to inform the user to prevent device shutdown,

which affected the data reliability.

6.2.5 Frontend Visualization and Customization Test

This test was carried out to verify whether the frontend webpage was able to visualize the

hydration data retrieved from Firebase correctly and allow user customization for improved

accessibility and personalization.

The first part of the test was focused on real-time data visualization. Once the ESP32

uploaded the water intake event, the dashboard displayed the data in daily, weekly and monthly

charts. The daily chart only showed water intake events, while the weekly and monthly show

the data in bar chart and the summary section shows total water drinks, average intake and goal

achievement. Figure 6.11 show the daily hydration line chart, while Figures 6.12 and 6.13

illustrates the weekly and monthly page.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

Figure 6.11 Daily summary page

Figure 6.12 Weekly summary page

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

Figure 6.13 Monthly summary page

The second part of the test evaluated customization features. In the setting page, the user

was able to adjust the font size for better accessibility. Figure 6.14 and 6.15 shows the

difference between medium and large font size options.

Figure 6.14 Font size in medium setting

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

Figure 6.15 Font size in large setting

Additionally, the user could modify the goal target separately for daily, weekly and

monthly. Once the goal was modified, a save button will appear, and the updated goal will store

in the browser local storage, ensuring persistence across sections. In default, the daily water

intake goal was 600ml. For example, when user need to change the daily goal to 1000ml, after

entering the value the save button will show. Figure 6.16 shows the modified goal setting with

save button appear.

Figure 6.16 Modified goal setting

After the user click save, the goal setting updated in the local storage. Figure 6.17 show the

local storage updated message.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

Figure 6.17 New goal being saved

Figure 6.18 shows the daily page after goal was updated, where the hydration progress

indicator reflected the new target.

Figure 6.18 Daily page with new goal

6.3 Project Challenges

Although most implementation issues were resolved through testing or redesign, several

challenges had remained unsolved or only partially being solved during the project.

The first challenge was about SSL connection Error. During data synchronization with

Firebase, the ESP32 sometimes produced SSL connection errors, resulting in data upload

failure. The error logs indicated as unstable secure socket initialization. This problem was

suspected to be cause by unstable Wi-Fi connection, as the ESP32 only supports the 2.4GHz

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

Wi-Fi band, which was more easier being disturbed compared to 5GHz. In environment of

using 2.4GHz channel, the reliability of the connection may be reduced, leading to SSL

handshake failure. The proposed solution was changing the microcontroller than support 5GHz

Wi-Fi band to enhance the stability of the connection between microcontroller and Firebase.

Figure 6.19 shows the error message of SSL connection timeout.

Figure 6.19 Error Message of SSL connection

Another unresolved issue was the ESP32 failing to initialize Wi-Fi when powered by the

18650 Li-ion battery boosted to 6V. In this project, the system could only operate Wi-Fi

reliably when connecting a micro-USB to the TP4056 charging module. This suggested that

the battery alone was unable to provide stable and sufficient current for Wi-Fi initialization,

although the battery capacity was stated as 3800mAh. A possible reason was that the battery

may be a counterfeit product, as many low-cost 18650 battery on market was a rewrapped

battery cell with lower actual capacity than the labelled value. This limitation reduced the

portability of the system, as it required external charging to maintain Wi-Fi connectivity.

In summary, these unsolved challenges highlight potential limitations in hardware quality

and operating system specification, which should be addressed in future development of this

system.

6.4 Objectives Evaluation

The objectives established in Chapter 1 were evaluated against the final implementation and

testing results of the Smart water Tracking System for kid. Table 6.6 summarizes the

achievement status and the evidence.

Table 6.6 Objectives Evaluation

Objective Evaluation Evidence

Primary Objective: Design and

implement a Smart Water Tracking

Achieved A functional system was

successfully develop consisting

of ESP32, HX711 load cell,

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

System to promote hydration among

children

ADXL345 accelerometer,

Firebase integration and web-

based frontend

Sub-objective 1: Develop a device that

can be attached to children’s water

bottles using a load sensor to measure

consumption and wirelessly transmit the

data to a web application.

Achieved HX711 load cell measures water

intake events and ESP32

transmits the data to Firebase via

Wi-Fi.

Sub-objective 1a: Ensure portability by

incorporating a rechargeable power

supply to support full-day usage.

Partially

Achieved

Device runs on 18650 battery

with TP4056 charging module,

but Wi-Fi initialization fails

without constant charging, likely

due to insufficient current.

Sub-objective 2: Achieve accurate and

stable monitoring using a high-precision

load sensor and processing algorithms.

Achieved HX711 calibration test achieved

<5% error compared to actual

weight. Orientation detection

(ADXL345) reduces false

reading

Sub-objective 3: Simplify the

monitoring process for caregivers and

parents with an easy-to-use web

application.

Achieved The frontend application provides

real-time visualization by

distributing into daily, weekly

and monthly summary page,

support goal customization and

font-size adjustment, improving

usability of non-technical users.

6.5 Concluding Remark

This chapter presented the testing, performance evaluation and overall assessment of the Smart

Water Tracking System. A series of experiments were conducted to test the system

functionality, such as verify the accuracy of load sensor, data logging in both online and offline

modes, low battery monitoring and frontend visualization. The result demonstrates that the

system was able to capture and synchronize water intake events, visualize of hydration data

and provide customization for user usability.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 87

Although certain limitation was identified, such as SSL connection and insufficient battery

current, but most of the project objectives were successfully achieved. The system fulfilled its

purpose of promoting proper hydration among children by providing real-time monitoring and

interactive dashboard for caregivers. The next chapter will conclude the project by

summarizing key contributions and providing recommendations for future development and

improvement of this project.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 88

Chapter 7

Conclusion and Recommendations

7.1 Conclusion

The project was carried out with the main objective of designing and implanting the Smart

Water Tracking System to promote healthy hydration among children due to most of the

children does not know the important of hydration, especially in environment with limited

direct supervision, such as kindergarten or playground. Through out the development process,

both hardware and software components were successfully integrated to achieve a functional

and reliable system.

On the hardware side, the ESP32 microcontroller was used together with HX711 amplifier,

10kg load cell, ADXL345 accelerometer and voltage sensor. This combination allowed the

system to take accurate weight measurement, do orientation checking to reduce false reading

and monitor the system battery level for safe operation. Furthermore, a DC-DC voltage boost

converter was used to step the 18650 battery to power the ESP32 and the system also

implemented a red LED indicator to provide a visual alert to inform users in low battery

conditions.

For the software implementation, the system was designed to work in both offline and

online modes. Valid drinking and refill event were recorded and synchronized with Firebase

database in real-time when Wi-Fi was available. When offline, the data stored at NVS storage

locally and automatically upload once the connection was restored. This ensured that the data

continuity and the risk of data loss. On the frontend side, a web-based application was

developed using Firebase JavaScript SDK to visualize the hydration patterns. The dashboard

provided daily, weekly and monthly view, customization of hydration goal, font size

adjustments for accessibility and real-time indicators for system connectivity and battery status.

The system objectives outlined in Chapter 1 were largely achieved. The device was able to

capture water measurement with acceptable accuracy, synchronize offline effectively and

provide a user-friendly interface for caregivers. Several tests were conducted and showed the

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 89

system could reliably capture hydration event and prevent meaningful summaries for different

timeframes. Although several technical challenges were found, such as SSL connection

instability and power supply limitations, but the project demonstrated the practical feasibility

of a smart hydration tracking solution.

In conclusion, the smart water tracking system successfully addressed the problem of

monitoring children’s hydration status by providing accurate, reliable and accessible data.

Although improvements can still be made, but the current prototype had proves the system

capability and have a strong foundation for further refinement.

7.2 Recommendations

Although the system was achieved its primary objectives, several area of improvement were

identified during development and testing.

The first area was hardware improvement. During testing, the 18650 battery could not

reliably support Wi-Fi initialization, suggesting wither poor-quality of battery cell or

insufficient current to support. Future versions should be use higher-grade batteries with verify

capacity or alternative energy solutions to power the system. Furthermore, the SSL connection

failures between ESP32 and Firebase was observed, due to the ESP32 only support 2.4 GHz

Wi-Fi, connection drops was more likely. The recommendation of this issue was trying to

improve the retry mechanism or considering alternative microcontroller with better Wi-Fi

stability as CPU of the system. Lastly, the current prototype uses multiple sensors module

stacked in layer, resulting in a relatively bulky 3D-printed case. A more compact design can be

achieved by developing a custom PCB that integrate the microcontroller, HX711, voltage

sensor and ADXL345 accelerometer onto a single board. This would reduce the overall size,

simplify wiring, lower power consumption and allow the case to be redesigned into a smaller

and portable form factor that suitable for children daily use.

Lastly was the recommendation for Frontend enhancement. While hydration goals and font

size can be adjusted, additional personalization such as theme colour, reminder notification and

the option to hide the summaries section can also be added to the system for better usability.

Furthermore, design the dashboard layout for mobile devices would allow users to access the

system conveniently on smartphones or tablets.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 90

REFERENCES

[1] “Choose water for healthy hydration,” HealthyChildren.org.

https://www.healthychildren.org/English/healthy-living/nutrition/Pages/Choose-Water-for-

Healthy-Hydration.aspx

[2] S. Online, “Health DG: 11-year-old boy died from heatstroke, toddler from dehydration,”

The Star, Apr. 28, 2023. [Online]. Available:

https://www.thestar.com.my/news/nation/2023/04/28/health-dg-11-year-old-boy-died-from-

heatstroke-toddler-from-dehydration

[3] K. Davis-Young, “3 children have died after heat emergencies in the last 2 weeks in

Arizona,” KJZZ, Jul. 11, 2024. [Online]. Available: https://www.kjzz.org/news/2024-07-

10/3-children-have-died-after-heat-emergencies-in-the-last-2-weeks-in-arizona

[4] “A Child’s Health is the Public’s Health | CDC,” Centers for Disease Control and

Prevention, Oct. 24, 2022. https://www.cdc.gov/childrenindisasters/features/children-public-

health.html

[5] J. Warren et al., “Challenges in the assessment of total fluid intake in children and

adolescents: a discussion paper,” European Journal of Nutrition, vol. 57, no. S3, pp. 43–51,

Jun. 2018, doi: 10.1007/s00394-018-1745-7.

[6] Nick, “The ESP32 Chip explained: Advantages and Applications,” DeepSea, Jun. 24,

2025. https://www.deepseadev.com/en/blog/esp32-chip-explained-and-advantages/

[7] Tech Explorations, “How to power your ESP32 development kit, options,” Tech

Explorations, Mar. 15, 2024. https://techexplorations.com/guides/esp32/begin/power/

[8] Your Application’s Backend, Simplified, “Firebase Advantages and disadvantages,”

Back4App Blog, Apr. 22, 2024. https://blog.back4app.com/firebase-advantages-and-

disadvantages/#Serverless_Platform

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 91

[9] Jason, “Understanding the TP4056: A complete guide to Single-Cell Li-Ion battery

charging.” https://www.ic-components.com/blog/understanding-the-tp4056-a-complete-

guide-to-single-cell-li-ion-battery-charging.jsp

[10] Simplediyguy, “HX711 weighting scale AD, using both channels,” Simple DIY

Circuits, Oct. 24, 2022. https://simplediycircuits.wordpress.com/2022/10/24/hx711-

weighting-scale-ad-using-both-channels/

[11] “PRO 21 oz,” HidrateSpark. https://hidratespark.com/products/hidratespark-pro-21oz-

smart-water-bottle

[12] “Everything you need to know about EQUA Smart Water Bottle,” EQUA - Sustainable

Water Bottles, May 07, 2018. https://myequa.com/blogs/blog/everything-you-need-to-know-

about-equa-smart-water-bottle?srsltid=AfmBOopo6FbyiES0MzWDENGZtjsnhFZtUloDf--

A-ge5C5-n6xFDXqcD

[13] C. Carlson, “How ultrasonic sensors work,” MaxBotix, Mar. 01, 2023.

https://maxbotix.com/blogs/blog/how-ultrasonic-sensors-work

[14] “Trago - the world’s first smart water bottle,” Kickstarter, Dec. 26, 2016.

https://www.kickstarter.com/projects/905031711/trago-the-worlds-first-smart-water-bottle

[15] “What is the best type of water bottle for kids?,” BOTTLEPRO.

https://www.bottlepro.net/hydration-blog/what-is-the-best-type-of-water-bottle-for-kids

[16] G. D. D. N. CoLtd, “How often do kids water bottles need to be replaced? - Knowledge -

Guangzhou Diller Daily Necessities Co.,Ltd,” Dillerbottle, Oct. 07, 2020. [Online].

Available: https://www.dillerbottle.com/info/how-often-do-kids-water-bottles-need-to-be-

rep-

50289367.html#:~:text=As%20we%20all%20know%2C%20plastic,affecting%20the%20use

%2C%20therefore%2C%20the

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 92

[17] “File System Considerations - ESP32 - — ESP-IDF Programming Guide v5.4.1

documentation.” https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/file-

system-considerations.html

[18] M. Alam and M. Alam, “ESP32 & DS3231 based Real Time Clock (RTC) on OLED,”

How to Electronics, Aug. 22, 2022. https://how2electronics.com/esp32-ds3231-based-real-

time-clock/

[19] M. Cheich, “Using time features with your ESP32 [Guide + Code],” Programming

Electronics Academy, Jun. 12, 2024. https://www.programmingelectronics.com/esp32-time-

servers/

[20] R. Santos and R. Santos, “Installing ESP32 in Arduino IDE (Windows, Mac OS X,

Linux) | Random Nerd Tutorials,” Random Nerd Tutorials, Feb. 28, 2024.

https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-

instructions/

[21] “Load Cell Amplifier HX711 Breakout Hookup Guide - SparkFun Learn.”

https://learn.sparkfun.com/tutorials/load-cell-amplifier-hx711-breakout-hookup-guide

[22] “ADXL345 Accelerometer Interfacing with ESP32 | ESP32,” © 2018 ElectronicWings.

https://www.electronicwings.com/esp32/adxl345-accelerometer-interfacing-with-esp32

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 93

Appendix

ESP32 GPIO Pin Diagram

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
 94

POSTER

