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ABSTRACT

Myocardial Infarction (MI) is known as heart attack, it is one of the most life-threatening
cardiovascular diseases. During infarction, the coronary artery which is responsible for the
delivery of blood, oxygen and nutrients, is fully or partially blocked, and the heart muscle
will die of ischemia. Percutaneous Coronary Intervention (PCI) is a nonsurgical technique to
treat M1, the faster the patient receives PCI treatment, the higher the survival rate. The heart
activity (pumping blood) is controlled by the electrical current generated by itself, therefore
12-lead electrocardiogram is an excellent tool to capture the activity of the heart, the pattern
of a complete heart cycle is referred to as the PQRST cycle. MI will cause a morphological
change to this pattern, therefore this can be used to diagnose the MI. In order to avoid the
intra-/inter-observer effect caused by manual human interpretation, many researchers
proposed machine-learning-based methods and then nowadays many deep-learning-based
methods have emerged to perform automatic and end-to-end classification. Nevertheless,
many studies that emphasized deep learning models did not care about the data split method
during their experiment, this led to a misleadingly supreme performance due to information
leakage problem. The models might be trained to memorize which subjects have MI
heartbeats instead of learning the features related to the disease itself from the amplitude and
time (in a sequential model). Thus, this research proposed three models: Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU) and 1-dimensional Convolutional Neural
Network (1D-CNN) with the implementation of intra-patient and inter-patient data split
techniques. In FYP 2, the architecture for each model had been improved compared to FYP 1
to augment the performance, then regularization and dropout techniques were applied to
increase the generalization ability and finally, one transformer model had been developed to
test its potential in processing ECG signal. From the perspective of the inter-patient method,
the LSTM model obtained 90.53% accuracy, while the 1D-CNN and GRU models obtained
85.82% and 86.65% accuracy respectively. On the other hand, for all the intra-patient models,
LSTM and GRU obtained a similar 95.4% accuracy while 1D-CNN obtained a 97.68%
accuracy. The transformer model achieved 82.28% and 91.15% in intra-patient and inter-
patient analysis. Obviously, this has proven that the intra-patient models can produce a
misleadingly high result. Another dataset is obtained from the open database on the Internet,

but unfortunately, the testing result has shown that all of the models failed to generalize.
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Chapter 1

Introduction

In this chapter, the background and motivation of this research are presented, along with the
contributions to the field, and the outline of the thesis.

Nowadays, risk factors such as the excessive use of tobacco and alcohol, high salt content in
food, less fruit and vegetable consumption as well as being physically not active have
resulted in hypertension, raised blood glucose (diabetes) as well as obesity or high cholesterol
[1]. Figure 1.1 [2] shows that 1.7 million Malaysians lived with major risk factors and Figure
1.2 [3] points out prevalence of diabetes and obesity among Malaysians had shown a steady
increment from 2011 to 2019. They act as the contributing factor to cardiovascular disease
(CVD) and by the estimation of [3], it is taking 17.9 million lives away from us every year.
As a matter of fact, the main cause of death in Malaysia in 2022 is actually ischaemic heart
disease and surprisingly it is four times the deaths caused by COVID-19 as shown in Figure
1.3 [4], which is classified as one of the CVDs and its prevalence took the most significant
position among the life-threatening incidents. CVDs is a general medical term comprising
various symptomatic and asymptomatic [5] disorders of the heart and blood vessels.
According to WHO [6], it includes but is not limited to coronary heart disease, arrhythmia,
peripheral arterial disease, theumatic heart disease and congenital heart disease as well as
deep vein thrombosis and so on. Obviously, we can tell from the name that CVDs are life-
threatening enough to cause damage to every part of our body from the brain to the heart and

the leg.

1.7 million people in
Malaysia currently live
with three

major risk factors

4.1%

3.4 million people in
Malaysia currently live
with two

major risk factors
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Figure 1.1 Statistics on diabetes, hypertension and high cholesterol in Malaysia [1]

Prevalence of CVD risk factors in Malaysia (2011 vs. 2019)

PREVALENCE (%
RISK FACTORS () CHANGE (%)
2011

@ Hypercholesterolemia 35.1 38.1 +8.5
&R | Hypertension 327 30.0 8.3
@ Physical inactivity 35.7 25.1 -29.3
@ | smoxing 25.0 213 4.8
© | ovesity 151 19.7 4305
[ Diabetes 11.2 18.3 +63.4
O| Saes

Figure 1.2 Prevalence of CVD risk factor in Malaysia [2]
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Figure 1.3 Statistics on causes of death in Malaysia [4]
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This study is mainly focused on one of the subfields of CVDs, myocardial infarction (MI)
which results from coronary heart disease. Coronary heart disease can be explained as
obstruction or hindrances of blood flow through the coronary arteries and therefore possibly
trigger a myocardial infarction [7]. In layman’s terms, myocardial infarction is often
described as a heart attack [8]. A person who is having MI probably experiencing chest pain
or discomfort (angina) in the chest, arm or shoulder. The coronary artery is responsible for
supplying oxygenated blood to our heart muscles (myocardium). Therefore, the blockage of
the coronary artery will interfere with the normal blood flow to the myocardium,
consequently, they will start to die of ischemia (deficiency of nutrients and oxygen [8]). The
death of myocardium brings rapid and irreversible damage to the structure and function of the
left ventricle (LV) [10] to lose its original contractility so the cardiac output to the entire body
[11] cannot be maintained. This is the reason for the high mortality rate due to MI. Currently,
MI can be classified into two classes according to its infarct extent [10], transmural and non-
transmural. Transmural infarcts affect the whole myocardium wall (epicardium to
endocardium) whereas non-transmural ones only affect 1/3 of the myocardium wall.
Transmural MI is also named ST-elevation myocardial infarction (STEMI) [10], it is a
subclass of myocardial infarction and also one of the most severe manifestations of acute
coronary disease. Its name originated from the distinct morphological change of ECG signal
where a heartbeat cycle is composed of PQRST phases, ST segment would show subtle or
significant elevation when compared with the healthy patient’s normal ECG as the blockage
of blood flow will change of electrical activity of heart [12] as shown in Figure 1.4.
According to Clinical Practice Guideline Malaysia in 2019 [13], the in-hospital, 30-day and
1-year mortality following STEMI was 10.6% (8.0% in non-STEMI patients), 12.3% and

17.6% while the patients were generally more ill.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



Coronary artery
blockage

Damaged
heart muscle

©2021 Cleveland Clinic ST Elevation

@ STsegment

Figure 1.4 Visualization of coronary artery blockage which induces the morphological
change of ECG signal [12]
Medical experts apply many tools in diagnosing MI and classifying infarct extents such as
serial ECGs, troponin/CK-MB/LDH test (cardiac biomarkers), and immediate or delayed
coronary angiography (imaging) [10,14]. In [15], the authors defined onset-to-balloon as the
time from occurrence of symptoms to operation of percutaneous coronary intervention (PCI).
The second one is door-to-balloon time as the time from arrival at the hospital to the
operation of PCI, and presentation time represents the time from symptom onset to arrival at

the hospital. A clearer visualization is shown in Figure 1.5.

Symptom Arrival at First balloon
onset hospital (door) inflation
(during PCI)

Presentation time

Door to balloon time

Onset to balloon time

Total ischaemic time

Figure 1.5 The names of different phases during the total ischaemic time [15]
As mentioned before, the detection and diagnosis of MI can be done by using diverse
methodologies. Among all the methods that can help in the diagnosis of MI, ECG is the non-
invasive and fastest one yet it is cost-effective [16] compared to CAG. An electrocardiogram

(ECG) is the most common device used in the medical field to capture and record the
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electrical activity of the heart [12, 17, 18] for the evaluation and speculation of the
occurrence of CVD by interpreting the morphologic change of the signals. It helps show the
cardiac cycle and rhythm of humans and enables the doctor to speculate the occurrence of
abnormalities in the heart’s atrium and ventricles as many arrhythmias and ECG
morphological changes associated with angina and atherosclerosis. A conventional ECG is
usually named a 12-lead ECG as it consists of six limb leads called I, II, III, aVL, aVR, and
aVF as well as six chest leads called V1 to V6 [18, 26]. Besides, ECG plays an extremely
important role in telemedicine in ST-Elevation Myocardial Infarction (STEMI) intervention
as shown in Figure 1.6. Nevertheless, in the traditional telemedicine network such as LATIN
and RAHAT, two population-based telemedicine programs for STEMI in South America, the
interpretation of ECG still depends on human resources [19] as it could be observed that
besides tertiary hospitals that have expert cardiologists, other medical institutions do not
perform as well as the former. In addition to that, it is also crucial to be aware that not all

cardiologists in worldwide countries can always perform with 90% accuracy.
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Figure 1.6 The performance of humans in different medical resource levels [19]

1.1  Problem Statement and Motivation
According to several systematic and comprehensive reviews [20, 21, 22], nowadays many
researchers have been utilizing Al techniques mainly deep-learning-based models for

automatic and accurate MI detection. The most popular type of deep learning network
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architecture seems to be CNN (1D-CNN and 2D-CNN) while models like Transformer or
sequential models such as LSTM and GRU were less likely to be developed and deployed.
Following using these models a high performance from the perspective of accuracy,
specificity, sensitivity, F1, etc. was achieved by conducting their research without specifying
the type of data-split method or only applying intra-patient analysis, this can be observed
through the tables in [20] collecting the performance figures. An intra-patient analysis is
about splitting and randomly allocating the heartbeat data produced from one patient into
training sets, validation sets and testing sets [23] which do not truly represent real-world
situations where we might encounter an unseen patient. Consequently, the patient-level
information is leaked to the model makes the model memorize the ownership of the heartbeat
and build a relationship between the ownership and the category of the patient (0/1). As we
cannot guarantee that the patient has been seen before, thus instead, the model should learn
the temporal relationship between the data points (voltage reading of ECG) in an effort to
recognize and differentiate the pattern of MI ECG from the normal ones.

Other than that, some of the researchers would use 12-lead ECG data as the input of their
models, it was considered time-consuming and extremely increased the complexity as well as
the computational cost of the model. In real-world applications, utilizing 12-lead data will
affect the speed of prediction due to the longer processing time needed by loading and pre-
processing the data in order to transform it into the format that the model can recognize.

The aforementioned has motivated this research to explore and further validate the
performance and feasibility of LSTM, GRU and Transformer for the inter-patient analysis for
MI detection in ECG. LSTM, GRU and Transformer are chosen as they are also suitable for
processing sequential data just like the readings (amplitude) of ECG while the Transformer
has advantages such as a multi-head self-attention mechanism to allow the parallelism and
captures an even longer range of dependencies than LSTM and GRU as we can see it is the
foundation of LLM nowadays.

On top of that, 2D-CNN requires the ECG images as its input, which is troublesome for
portable devices to keep capturing and sending images to their cloud or on-site server at a
high frequency as this will lead to flooding of internet bandwidth and a more severe device
heating. Instead, sequential models such as 1D-CNN, LSTM, GRU and Transformer only
require the string/text data containing ECG readings recorded by the pre-installed sensor in

the device, the total size of transferred data is significantly reduced compared to graphics.
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1.2

1.3

1.4

Research Objectives
To propose an automatic detection of myocardial infarction (MI) from ECG signals
for inter-patient analysis, utilizing data from a single ECG lead, deploying models

including LSTM, GRU, 1D-CNN and Transformer.

To evaluate the accuracy, precision, sensitivity and F1-score of MI detection within

LSTM, GRU, 1D-CNN and Transformer networks for inter-patient analysis.

To investigate the effect of deploying different data-split methods on the performance

of the models for inter-patient and intra-patient analysis.

Project Scope and Direction

The deliverable of this project is four deep learning models (LSTM, GRU, 1D-CNN
and Transformer with each trained from two different data-split methods) that can
automatically diagnose MI by feeding the pre-processed single-lead data to the
models.

ECG signal data will be obtained from the open-source database, PTB Diagnostic
ECG database [24] as it is one of the few that can be obtained for free. ECG signal
data is collected from 200 patients consisting of 148 MI patients and 52 normal
subjects.

Lead II data will be chosen for this research as this is the most commonly used in

other research and the performance is satisfactory.

Contributions

The inter-patient splitting method contributed to the improved reliability of the model to be

deployed in the real world for unseen patients. On the other hand, the models trained by the

intra-patient method are suitable for detecting the presence of a heart attack in a seen patient.

Secondly, using single-lead ECG data contributed to the lower computational cost and

complexity of the models. By comparing the intra-/inter-patient models’ performance, the

effect of different data-split methods on performance can be observed. Ultimately improving

patient outcomes, which in return increases the chance of successful treatment and better

overall recovery of the patient.
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1.5  Report Organization

This thesis was written to show the details of the research in the following chapters. In
Chapter 2, a systematic and comprehensive review of some of the current literature was
conducted and represented by a summary table. Chapter 3, is a clear manifestation of the
system model and design. In Chapter 4, the implementation of the system model was shown
to build deep learning models using the Pytorch framework. In Chapter 5, a comparison
between the performance of inter-patient models and intra-patient models was conducted
with a discussion of the findings. Eventually, a conclusion was drawn from the experimental
result for the whole development and progress of the project in Chapter 6. Besides, the

limitations and future works were also discussed in this chapter.
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Chapter 2

Literature Review

2.1 Previous works on developing Deep-Learning-Based MI classifier
2.1.1 Near real-time single-beat myocardial infarction detection from single-lead
electrocardiogram using Long Short-Term Memory Neural Network [23]

In this research, an LSTM model was proposed and the problem of data leakage, overfitting
and bias resulting from the intra-patient splitting method was highlighted. The authors
conducted experiments to examine the effects of different data-split techniques on the
performance of the model in the testing phase as they claimed that the intra-patient splitting
technique could produce a misleadingly outstanding performance. In the end, the model could
achieve an accuracy of 89.56%, a recall/sensitivity of 91.88%, and a specificity of 80.81%.
The authors noticed that abundant papers regarding to this field used different sources of data,
different classification methods and different data-split methods. The data-split methods were
classified by the authors into three groups: beat-split, record-split and patient-split. The beat-
split technique is the least restrictive method which allows an individual patient could have a
set of heartbeats in the training and another set of heartbeats, albeit different, in the testing set.
The record-split technique represents the individual heartbeats associated with each of the
individual records that can only be present in one of the sets. In simpler words, any given
record cannot have a simultaneous appearance in the testing and training sets. The last and
also the most restrictive method, the patient-split method allows each patient with all of its
available records to be present in one of the sets. Although some papers achieved good results,
they did not mention clearly their types of classification whether it was trained using an intra-
patient or an inter-patient analysis. At the same time, the authors also observed that the CNN
classifier from another paper which claimed a title of real-time classification requires whole

ECG images to be the input of the classifier.
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Single-lead (lead 1) ECG data was used in this research even though the authors knew that it
was challenging to use only single-lead data to detect MI occurring in different regions of the
heart. The reason for using lead II data was because of the common deployment of this lead
in sports equipment such as trackers. It is crucial to highlight that in this research, while
deploying the patient split method, no heartbeats or subjects (MIs and HCs) seen in the
training phase appeared in the testing phase again, therefore the classifier was an inter-patient
classifier.

The pre-processing steps that have been utilized in this research included A 60 Hz stop-band
and a 500-ms moving average filter for purposes of denoise and baseline wandering removal,
Independent Component Analysis (ICA) based algorithm to identify the R-peak locations and
thereafter segmented each heartbeat with a consistent sequence length of 1000ms.

A three-layer LSTM was built with layers 1 and 2 having 100 neuron units (hidden size = 100)
by using the tanh activation function while layer 3 only consists of 1 neuron by using the
sigmoid activation function. A clearer visualization (Figure 2.1) helps in understanding the
structure. An RMSprop with settings of learning rate = 0.1, weight decay = 0.95, and epsilon
= 10e— 6, and gradient clipping (5.0) optimizer was chosen in the training phase. The weights
of this model did not start from zero, instead, Xavier initialization was chosen. Moreover,
early stopping was set to 10 for the training set so that the process would stop after 10 epochs

with no performance improvement.

1x1000

1x1000

Classification output
RED: mean MI
GREEN: mean HC

S P 1% layer activations
Input: 1slong RED: mean M|
heartbeat GREEN: mean HC
Fs=1kHz

2nd layer activations
RED: mean MI
GREEN: mean HC

Figure 2.1 Architecture of LSTM model [23]
The performance metrics of this research included Accuracy, Fl-score, Precision, Recall,
Specificity and J-measure (=Recall + Specificity — 1). The experiment also conducted
optimization according to two different metrics: Accuracy and J-measure. Figure 2.2 shows
the respective results according to the categories. The mean training time for the model took
34.4 epochs and 27.4 epochs for respective metrics. The mean testing time of 1-s sample
ECG only took around 40ms therefore the authors claimed this was enough for real-time

application as the time between fast-pace heartbeats was around 300ms. The authors
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explained that the specificity could easily obtain bad results as the dataset is heavily

imbalanced: the number of MI heartbeats is triple that of the normal subject.

Optimization Ace F1 Prec Recall Spec J # Epochs

Ace 91.36 (+2.88%) 94.71 (£1.97%) 93.54 (+2.46%) 96.00 (+2.45%) 69.28 (+8.41%) 65.28 (+8.41%) 34.40 (£19.40)
J 89.56 (+2.79%) 93.45 (+1.94%) 95.30 (+2.86%) 91.88 (+3.13%) 80.81 (+9.62%) 72.69 (+8.98%) 27.40 (£12.64)

Figure 2.2 Performance of LSTM model optimized using different metrics: Accuracy and J-
measure [23]
After developing and training the model well using an inter-patient method, the authors
decided to retrain the model using different data split methods to examine how they affect the
performance metrics. Firstly, comparing the evolution of performance metrics of the inter-
patient analysis having the trend in Figure 2.3. Nevertheless, a different trend was observed
in the intra-patient analysis as shown in Figure 2.4, the testing performance almost
followed/tracked the training performance, and this was very abnormal. This is due to when
meeting a new unseen patient, the model should be learning the new variability or any other
useful information related to the disease itself that improves the performance, instead, the
intra-patient classifier tended to learn the features across the heartbeats that belong to certain
patients. Ultimately, the classifier appeared to memorize how to differentiate the patient
according to the heartbeat and decide the classification based on its prior knowledge. This
conclusion can be further validated by an experiment: the authors randomized the correct
labels (0/1) and distributed them uniformly before training the intra-patient classifier.
Therefore, if the aforementioned was wrong, the classifier should not achieve an accuracy not
greater than 50%. As a matter of fact, Figure 2.5 already proved that inappropriate data-split

technique could lead to mask overfitting and extremely good performance metrics.

Figure 2.3 Evolution of performance of inter-patient classifier based on optimization of

accuracy and J-measure metrics [23]

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR
11



0.95
0.9
0.85

ot
)

0.75

Accuracy

=
N

0.65
0.6
055
0.5

Training vs Testing Accuracy for Distinct Beat Splitting

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Epoch
P (a)

09
08
0.7
0.6
0.5
04
0.3
0.2
01

J-Measure

Training vs Testing J-Measure for Distinct Beat Splitting

ey Train
=== Test

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Epoch

(b)

Figure 2.4 Evolution of performance of intra-patient (beat-split) classifier [23]
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Figure 2.5 Experimental result to test if the intra-patient classifier will memorize the patients
[23]

The authors also emphasized that using only lead II data has its weakness in detecting MI

Epoch

when it occurs in some regions of the heart such as lateral MI and posterior MI as shown in
Figure 2.6. In conclusion, the authors claimed that their research was unique at that time as
they were using the combination of single-lead data, single heartbeat plus inter-patient
splitting method, so there were no other studies that could fairly compare to their work.
Figure 2.7 shows that different flaws such as a low number of data or only focus on Inferior

MI existed in other papers albeit they used the patient-split method too.
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Figure 2.6 Relationship of MI detection rate and MI location [23]
Study Leads #Patients # Beats Sample Method Ace Recall Specificity J-Measure
used length
181 IL 1L, aVF  30MI, 52HC 3240 ML, 3037 35 SWT &SVM  81.71 79.01 79.26 58.27
HC
191 12 128ML, 52HC 48690MI, 1s MFB-CNN 98.79 98.73 99.35 98.08
10646HC
[131 avL,v2, Records: 167M1,  Not Specified Whole ML-CNN 96.00 95.40 97.37 92.77
v3,V5 80HC Record
[14] V5 52MI, 52HC Not Specified 0.655 Random 83.26 87.95 78.82 66.77
Forest
[16] 12 Images: 483M1,  Not Specified 7s MBEFN-CNN  94.73 96.41 95.94 92.35
474HC
Proposed (Accuracy I 148ML, 52HC 50732MI, 1s LSTM 91.36 96.00 69.28 65.28
Optimization) 10123HC (+2.88%) (£2.45%) (£8.41%) (£8.41%)
Proposed (J-Measure I 148MI, 52HC 50732ML, 1s LSTM 89.56 91.88 80.81 72.69
Optimization) 10123HC (£2.79%) (£3.13%) (+9.62%) (+8.98%)

Figure 2.7 Comparison of performance between the proposed model and other studies [23]

2.1.2 Deep Learning Networks Accurately Detect ST-Segment Elevation Myocardial
Infarction and Culprit Vessel [16]

A research paper produced by Wu, Lin et al. was published which focuses on using deep
learning networks including CNN-LSTM, LSTM and CNN to detect STEMI and find culprit
vessels. In this paper, the authors highlighted that coronary angiography (CAG) is an invasive
and radioactive examination method to accurately prove the presence of STEMI instead of
other CVDs. This instead indicated the importance of using twelve-lead ECG as it is a non-
invasive and cost-effective method.

Nevertheless, the introduction of ECG to the medical field cannot permanently solve the
dilemma of differentiating STEMI from some diseases such as pneumothorax, aortic
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dissection and pulmonary embolism. From the morphological aspect of ECG, its dynamic and
spontaneous ST elevation, lead positioning, improper high-pass filter setting and QRS
sections’ width as well as axis might affect the ST elevation magnitude too. This eventually
resulted in low specificity and sensitivity in detecting STEMI through ECG because the ECG
is not user-friendly to medical personnel. That is the reason why machine learning-based
(ML-based) or deep learning-based (DL-based) methods are introduced for interpretation.
The authors realized that previous studies were limited by only utilizing the data from MIT-
BIH and PTB databases. On top of this, some other research only employed typical STEMI
ECG patterns and excluded other ECG-related ST segment changes such as ventricular
premature beat, left ventricular hypertrophy, complete left bundle branch block, and complete
right bundle branch block. In conclusion, as an effort to avoid the weaknesses of previous
models, authors established their own real-world ECG dataset based on verification of CAG
result.

The authors collected their STEMI and control (healthy) data from the Hospital Information
system and Cardio-Catheter Room database from January 2015 to December 2018 in the
Third-Affiliated Hospital of Sun-Yat-sen University (Cohort 1) as their internal dataset.
Moreover, the external dataset was collected from Guangzhou First People’s Hospital
(Cohort 2). The authors set strict inclusion and exclusion criteria for the data collection. The
ECG sample will be collected if the final diagnosis of STEMI is present and without a history
of myocardial infarction or PCI. The ECG sample will be rejected if he/she is a patient who
needs CAG for any reason and does not reach the diagnosis of STEMI, data with excessive
noise, unstable or incomplete baseline, more than one vessel disease other than STEMI, no
CAG performed during the first 24 hours of the onset of symptoms of STEMI. The collected
ECG was performed at a sampling rate of 1000Hz and data with excessive noises were
removed using wavelet transform. The authors also applied a 5-s segment ECG input model.
The final specification of ECG data was (5000,12). Figure 2.8 shows the process of
collection of the ECG dataset.
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Figure 2.8 Process of collection of ECG data from two different institutions [16]

The authors then started to build three different models to find the one that performed the best.
They split the training process into two stages, In the first stage the models were trained for
classification between MI and control while in the second stage, the models were trained to
find the culprit's vessels. Thus, this literature review will only focus on the development of

model 1 in stage 1. The process was visualized by the authors in Figure 2.9.
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Figure 2.9 Methodology of this research, the development of model 1 in stage 1 will be the
useful part to refer to for this research [16]
For CNN, the authors designed three layers with the kernel size 2 and random kernel number
from a list of parameters 16, 24, 32, 48, and 64. Each layer was followed by a pooling layer,
and yet a dropout layer was inserted to improve the generalizability. The details of the

architecture of CNN are shown in Figure 2.10.
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Layer (type) Qutput Shape Param #
convid 1 (ConviD)  (None, 5000, 32) 8
max poolingld 1 (MaxPoolingl (None, 2500, 32) 0

convld 2 (Conv1D) (None, 2500, 32) 2080

max poolingld 2 (MaxPoolingl (None, 1250, 32) 0

convld 3 (ConvlD) (None, 1250, 48) 3120

max poolingld 3 (MaxPoolingl (None, 625, 48) 0
dropout 1 (Dropout) (None, 625, 48) 0
flatten 1 (Flatten) (None, 30000) 0

dense 1 (Dense) (None, 2) 60002

Total params: 66, 002
Trainable params: 66,002
Non-trainable params: 0

Figure 2.10 CNN architecture [16]

The authors designed two layers for LSTM which has 100 neurons and 50 neurons (best
performance) in the first and second layers respectively which the neurons' numbers were
randomly picked from a list of parameters of 500, 200, 100 and 50. A dropout layer with a
rate of 0.2 was applied after each LSTM layer to increase generalizability. The details of the

architecture of LSTM are shown in Figure 2.11.

Layer (type) Output Shape Param #
Istm 18 (LSTH)  (None, 5000, 100) 45200
dropout 33 (Dropout) (None, 5000, 100) 0

Lstm 19 (LSTM) (None, 50) 30200
dropout 34 (Dropout) {None, 50) 0

dense 31 (Dense) (None, 3) 153

Total params: 75,553
Trainable params: 75,553
Non-trainable params: ©

Figure 2.11 LSTM architecture [16]
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For the CNN-LSTM model that combined CNN and LSTM, the final output was (50, 12, and
48), reshaped into (50, 576), and then fed into subsequent LSTM networks with 50 neurons to
calculate 50 samples of 576 dimensions, which became 50 dimensions after calculation
(Figure 2.12). After the development, the authors conducted a blind and independent
comparative test between the different DL-based methods with 16 doctors which contained
four medical interns, four internal medicine residents, four experienced cardiologists, and

four emergency physicians.
@ output

LSTM Network:

LSTM input:
flatten: 0% 0 MM - (n,n_feature)
1D CNN Network: SR EFNE @~ &7
features
CNN  CNN CNN
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ECG segment:

Figure 2.12 CNN-LSTM architecture [16]
Among the models built, the CNN-LSTM performed best with AUCs of 1.00 and 0.99 in test
1 and test 2 in stage 1, this has shown that the CNN-LSTM model has a good generalization
ability because there is no significant difference between internal and external dataset while
for the stage 2 results would not be discussed here as the objective of stage 2 was to find
culprit's vessel. In a comparative test between CNN-LSTM and doctors, it outperformed

doctors with an AUC of 1.0 as shown in Figure 2.13.

n Auc Acc SEN SPEC PPV NPV F1

Model 1

CNN-LSTM Test 1 1,484 1.00 0.98 0.97 087 0.99 0.99 0.98
Test 2 1,857 0.99 0.91 0.94 083 0.98 098 0.96

NN Test 1 1,393 0.95 0.87 0.90 0.91 0.83 0.84 0.87
Test 2 1,857 0.96 0.84 0.90 0.69 0.99 0.99 0.94

LST™ Test 1 1,801 0.90 0.83 0.78 0.80 0.85 0.81 0.84
Test 2 1,857 0.95 0.86 093 0.79 0.94 092 0.93

Figure 2.13 Performance of each classifier in model 1 in classification stage 1 [16]
To further emphasize the advantage of their experiment, the authors highlighted that they
used a current real-world database which included arrhythmias that also affected ST segment
changes, unlike databases (MIT-BIH and PTB) used by previous studies to achieve better
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sensitivity and specificity. On top of that, the authors used raw ECG data from 12-lead ECG
as their input instead of doing feature extraction in this end-to-end model to lessen feature
loss, maintain data integrity, and improve accuracy. Compared to another paper that proposed
a similar network to coronary artery disease ECG classification, this research used fewer
LSTM layers and could accept larger input. Nevertheless, the authors also pointed out their

limitations including they should use 18-lead ECG to increase the robustness.

2.1.3 Evolution of single-lead ECG for STEMI detection using a deep learning
approach [25]

According to the advantages that can be brought by single-lead analysis, Gibson et al.
proposed their deep-learning model (CNN) for STEMI detection to speed diagnosis During
this research, there were a total of 2 models developed for STEMI detection and localization
respectively. In the beginning, the authors mentioned the concept of ‘door-to-needle’ (D2N),
‘door-to-balloon’ (D2B) times and ‘symptom-to-door’, the improvement strategies such as
management and human resources that have been implemented in hospitals managed to get
D2N and D2B times significantly reduced to below 90 minutes and 30 minutes respectively.
The problem was, that the ‘symptom-to-door’ time remained at 2.5 hours because of the lack
of improvement, this motivated the authors to develop an algorithm for STEMI detection
using artificial intelligence, and yet they assumed the accuracy for the analysis using single-
lead can be the same as using twelve-lead.

The authors managed to obtain good data from a reliable source, which is the Latin America
Telemedicine Infarct Network (LATIN), a population-based Acute Myocardial Infarction
(AMI) program. Yet, this brought limitations to their work which the patients were only made
up of local people, therefore the generalizability of the classifier might not be satisfactory in
other geolocations. The datasets contained 4255 STEMI ECGs and 4256 non-STEMI ECGs,
the non-STEMI data was further broken down into 2128 Normal ECGs and 2128 Abnormal
ECGs (interpreted by an expert cardiologist from a group of 30 specialists.) which can
increase the robustness of the model that it could detect STEMI not only from STEMI data
versus normal data, but also versus non-STEMI but unhealthy data. The ECGs were then pre-
processed to produce heartbeats with a consistent length of 1.3 s (0.4 to the left and 0.9 to the
right according to QRS location) as the input of the CNN model through wavelet technique to
detect QRS complex and reduce noise. Next, the authors implemented the following

methodology:
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1. CNN was developed to identify a STEMI among 12-lead ECGs;

2. CNN was developed to correctly detect a STEMI by analyzing single- lead ECGs;

3. Third, the data was analysed to identify the best single lead for STEMI detection and
compared against the 12-1ead ECG model results.

! Data Collection and Machine Learning System

Data Collection \
ECG from health centers ‘

[ LATIN Database |
[ 800,000 ECG |

\

| Subset Sample

= 8511ECG

= 4,255STEMI

= 2,128 Normal ECG

= 2,128 Abnormal ECG

LA

[N N |

90% Algorithm Training | | 10% Algorithm Testing

l |

Al Algorithm
Segmented Heartbeats

= 46,056 STEMI Heartbeats |

= 44,536 Not-STEMI Heartbeats

\

| STAGE 5 —Results

STEMI vs Not-STEMI
STEMI Localization

Figure 2.14 Data Collection and Machine Learning System of this research [25]
As a result, the experiment using 12-lead ECG for analysis outperformed the single-lead ECG.
Their results are: 96.3%, the specificity was 96.8%, and the accuracy was 96.5% (12-lead)
versus accuracy of 90.5%, sensitivity of 86% and specificity of 94.5% (single-lead
V2(performed the best)). The authors also listed several advantages and disadvantages of

using single-lead data to support their work in Figure 2.15.
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Decreases human error

Faster diagnosis possibility
Reduces costs

Single-Lead Advantages [T

Applicable to wearable sensors
Suitable for ambulances

More comfortable to patient

Requires validation and regulation
Requires additional research

Figure 2.15 Advantages and disadvantages of training classifier with only single-lead data

[25]

2.1.4 Early detection of ST-segment elevated myocardial infarction by artificial

intelligence with 12-lead electrocardiogram [26]

A 1D-CNN (Res-Net) model was proposed to solve the problem of incidence and mortality of
STEMI which was still unsatisfactory in China. As the most severe CVD, it caused 31.5% of
global all-cause mortality, and ischemic heart disease was responsible for the contribution of
90.9% of CVD-related deaths in China. The door-to-balloon was below 90 minutes in China
due to the establishment of Chest Pain Centers, whereas the total ischemic time was as high
as 4 hours and this is the main reason for the high mortality of STEMI in China, thus a real-
time monitoring and detection system was required. All of these supported the authors to
propose an automatic detection system of STEMI to incorporate with ECG equipment to
achieve the goal. The authors realized that the detection of STEMI is much more complicated
than other symptoms such as arrhythmia because the data requirement is higher such as 12-
lead instead of single-lead, and the second one is the requirement for the sensitivity of
STEMI detection is higher as STEMI is more fatal than arrhythmia. The last of the
difficulties was the filtering as one of the preprocessing steps in major studies could
compromise the ST magnitude. This motivated using raw 12-lead data without any filtering
process, but the authors still applied a bandpass filter in their research.

During the data collection and labelling, the authors collected raw STEMI and control ECG
from Shanghai Tenth People's Hospital and Changhai Hospital, in total of 667 STEMI
samples and 7571 control samples (Figure 2.16 and Figure 2.17).
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Figure 2.16 Data Collection [26]
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Figure 2.17 Data Collection [26]
The shape of each sample is (5000,12) which meant each of the 12 leads gave 5000 data
points. Before feeding into 1-D Res-Net, the data went through the pre-processing steps to
remove noise and baseline wandering (Figure 2.18) by using the finite impulse response (FIR)
and bandpass filter. To increase the amount of data, the data expansion was conducted by
firstly downsampling the data from 500Hz to 128Hz by using one-dimensional interpolation

together with uniform sampling, in the end, to transform the data to the shape of (1280,12).
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Next, they moved the starting point of the original ECG with 1280 data points by continuous
640 points to produce another 640 points in total for each original ECG. The results of
expansion were 276,480 STEMI and 3,369,600 control.
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Figure 2.18 C and D are the result of pre-processing steps [26].
The 1D-CNN Res-Net architecture is shown b Figure 2.19. There were 16 Res-Net blocks in
total and ReLu would be the activation function. The authors set the number of filters to 64
from block 1 and then doubled in blocks 3, 4, 6 and 13. The kernel size was set to 7 in only
block 1 while it was 3 in all other blocks. An Adam optimizer with learning rate beta-1, beta-

2 and clip norm of 0.001, 0.9, 0.999 and 1 was chosen in the training process.

Raw ECG Data Res-Net Architecture Training Classes(757) Inference Classes

@ Heart valve disease

b Infective endocarditis >-l-f 92% STEMI
Atrial fibrillation

@ STEMI

@ Congenital heart disease
@ Coronary heart disease })iw 8% Not STEMI
: Hypertensive heart disease

== Convolution
Hm Batchnormalization mm Activation-Relu =3 Flatten
[ Maxpooling 3 Average-Pooling == Dense

Figure 2.19 CNN architecture [26]
The training process of the 1D-ResNet took 96 hours to complete. After that, a comparative
test was conducted between the classifier and 15 doctors including 5 interns, 5 internal
medical residents and 5 experienced cardiologists. The research team noticed that in previous

studies the ECG is often labelled by ECG experts or cardiologists which is based on human
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interpretation, this has proven that the result might be false in a higher probability as the
patient does not have any angiography result that was applied in this study. The team built
102 different deep learning models in total with different hyperparameters, the model 1 was
selected as the final algorithm. The sensitivity, specificity, accuracy and F1 score are 97.22%,
99.11%, 98.96%, 89.94% and 0.9344 respectively. The developed model has outperformed

the doctor group and current commercial algorithm (Figure 2.20).
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Figure 2.20 Result of comparative test [26]

2.1.5 Application of CNN for Detection and Localization of STEMI Using 12-Lead
ECG Images [27]

A 2D-CNN model was proposed in this paper to perform the binary classification task of
STEMI detection using ECG images. Due to the high mortality rate of STEMI, the diagnosis
must be done within 10 minutes. The authors found in previous studies that 99 physicians
only presented 76.9% of sensitivity and 65% of specificity and another 124 physicians
presented 65% of sensitivity and 79% of specificity. The disappointing performance of
humans gave the motivation to the authors to develop an Al model to automatically detect
STEMI by only utilizing ECG images. On top of that, the previous studies that the authors
reviewed were mostly focused on the detection or localization of MI instead of STEMI, and
there is only one research team conducted a study related to STEMI at that moment.
Compared to ML-based methods, DL-based methods do not require manual feature extraction.
The 2D-CNN model will take ECG images as input while 1D-CNN and RNN will take ECG
waveforms as input. The authors also mentioned that the previous studies mostly used raw
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ECG data which is not easy to obtain, sometimes the business-to-business agreement with the
hospital and ECG device company was required.

The ECG dataset containing 1137 images of this study was collected from Hualien Tzu Chi
Hospital and the data was labelled by the physicians and from the patients who were correctly
diagnosed as a STEMI patient. The images were then randomly distributed to the training set,
validation set and testing set (Figure 2.21). Discussion of public datasets was also available
in this paper, the authors pointed out that although many public datasets can be found from
PhysioNet such as the Long-Term ST Database (LTST) and PTB Diagnostic ECG Database
(PTB-ECQG), the former only includes ECG data recorded on two or three leads and both of
them are not labelled as STEMI, so they are not suitable for the study. The pre-processing
steps of the ECG images in this study are shown in Figure. The OpenCV library together with
Python was used to perform steps such as grayscale transformation, padding and thresholding.

A summary of the pre-processing steps is shown in Figure 2.22.

Dataset STEMI  Number of ECG Images
Yes 270
Training No 270
Yes 30
Validation No 30
Yes 131
Testing No 406
Yes 431
Total No 706
Total 1137

Figure 2.21 Result of comparative test [27]
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Figure 2.22 Pre-processing steps taken in [27]
For the architecture, the network consists of 10 layers and less than 13000 parameters to
show that the computational complexity of the model was low and suitable to apply in low-
end computers or devices, but there is no any prove in terms of time for this claim. The
details of the network are shown in Figure 2.23 while the performance is shown in Figure
2.24. Then a comparative test between the proposed network and the transfer learning models
was experimented and the results were produced as Figure 2.25 shows that the proposed
model outperformed the ResNet, VGG, Xception and so on even though the parameters were

a smaller number.

Layer Type Layer Parameters Output Shape Smberiof
Parameters
1 Conv 2D Filters=8, Kernel size=(3,3), Stride=(1,1), Activation=RELU (250,500,8) 224
2 MaxPooling 2D Pool size=(2.2), Stride=(2,2) (125,250,8) 0
3 Conv 2D Filters=16, Kernel size=(3,3), Stride=(1,1), Activation=RELU  (125,250,16) 1168
4 MaxPooling 2D Pool size=(2.,2), Stride=(2,2) (62,125,16) 0
5 Conv 2D Filters=24, Kernel size=(3,3), Stride=(1,1), Activation=RELU (62,125.24) 3480
6 MaxPooling 2D Pool size=(2,2), Stride=(2,2) (31,62,24) 0
7 Conv 2D Filters=32, Kernel size=(3,3), Stride=(1,1), Activation=RELU (31,62,32) 6944
8 Global Average Pooling 2D - (32) 0
9 Dense Units=32, Activation=RELU (32) 1056
10 Softmax Units=2, Activation=SoftMax 2) 66

Total params: 12 938

Figure 2.23 Network architecture of 2D-CNN classifier [27]
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Metric Name Result

Accuracy 96.3%

Sensitivity (Recall) | 96.2%

Precision 890.4%
Fl-score 0.926
ROC-AUC 0.962

Figure 2.24 Performance of 2D-CNN classifier [27]

Model Total Traimable Tminiag Teeting Sensitivity | Precision | F1-Score | ROC AUC
Name Parameters | Parameters | Accuracy | Accuracy

Proposed Model 12938 12938 98.70% 96.30% 96.20% 89.40% 0.926 0.962
VGG16-TL 14731170 16482 95.40% 93.90% 80.20% 93.80% 0.864 0.892
VGG19-TL 20040866 16482 95.20% 92.60% 84.70% 84.70% 0.847 0.899
Xception-TL 20927114 65634 93.00% 81.40% 77.10% 59.10% 0.669 0.799
ResNet50V2-TL 23630434 65634 92.00% 78.60% 83.20% 54% 0.655 0.801
ResNet101V2-TL 42692194 65634 91.10% 70.80% 87.80% 50% 0.594 0.765
ResNet152V2-TL 58397282 65634 90.40% 74.90% 73.30% 49% 0.587 0.743
InceptionV3-TL 21868418 65634 93% 80.80% 90.00% 56.70% 0.696 0.84
InceptionResNetV2-TL 54385986 49250 86.50% 79.30% 86.30% 54.90% 0.671 0.817
MobileNetV2-TL 2299042 41058 91.90% 67.80% 85.50% 42.10% 0.564 0.738
DenseNetl121-TL 7070370 32866 87.40% 84.70% 73.30% 67.10% 0.701 0.809

Figure 2.25 Result of comparative test between other transfer learning models and the

proposed model [27]

2.1.6 Multiclass classification of myocardial infarction with convolutional and

recurrent neural networks for portable ECG devices [28]

In this paper, the authors built six models to have a comparison between them: Hand-crafted
features MLP, CNN, CNN-LSTM, and CNN stacking decoding. CNN-LSTM stacking
decoding and CNN-LSTM decoding with hand-crafted features. The authors targeted
developing an MI classifier that is suitable for wearables, so using single-lead data would be
appropriate.

The authors indicated the development trend of ECG devices from bulky machines to
portable devices, plus the increment of data volume of ECG due to the growing population, it
was not realistic and feasible to rely solely on physicians to detect MI manually. The
classifier should be trained to detect MI using ECG from less number of leads. Multiclass
rather than binary classification between MI and other healthy and unhealthy (not MI)
subjects as well as the noise data was conducted in their research. This is because previous

studies that used ECGs from the PTB diagnostic database only included MI patients and
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healthy subjects, but in real-world situations, some subjects might have historical or existing
CVDs other than MI, thus a good classifier had to be trained to differentiate MI from not only
healthy subjects but also patients with other CVDs.

The pre-processing steps of this research comprised two Savitzky-Golay filters which were
responsible for denoising and baseline wandering removal, an algorithm with a new nonlinear
transform and first-order Gaussian for heartbeat segmentation as well as zero-padding to
ensure a consistent length of 512 data point. Moreover, normalization was also applied to the
input data to shift the amplitude range from -2500 (min) and 2500 (max) to 0 (min) and 1
(max).

The architecture of the CNN classifier and its convolutional block is shown in Figure 2.26
and Figure 2.27. ReLu activation function was used in the convolutional block and the
softmax function was used in the output layer. The CNN-LSTM classifier was obtained by
modifying layer 29 of CNN architecture from fully connected to LSTM (Figure 2.28).
Instead of only using the result produced from four units of output layer to perform multiclass
classification, the authors deployed the stacking decoding technique. Multiple binary
classifiers will be trained for each pair of available classes, then a meta-classifier can be
produced and trained (Figure 2.29) using the two inputs of each binary classifier (total input

=12).

Layers Type Output shape
0 Inputs 512

1-6 Convolutional block 256 x 32
7-12 Convolutional block 128 x 32
13-18 Convolutional block 64 x 32
19-24 Convolutional block 32 %32
25 Flattened 1024

26 Fully connected 32

27 Batch normalisation 32

28 Dropout 50% 32

29 Fully connected 32

30 Batch normalisation 32

31 Dropout 50% 32

32 Fully connected 16

33 Batch normalisation 16

34 Dropout 50% 16

35 Outputs 4

Figure 2.26 CNN architecture [28]

Type Filter size Kernel/pool size
Convolutional 1D 32 3
Batch normalisation - -
Convolutional 1D 32 3
Batch normalisation - -
Max-pooling 1D 2

Dropout 50% -
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Figure 2.27 Convolutional block architecture [28]

Layers Type Output shape
0 Inputs 8 x 512

1-6 Time-distributed convolutional block 8 x 256 x 32
7-12 Time-distributed convolutional block 8 x 128 x 32
13-18 Time-distributed convolutional block 8 x 64 x 32
19-24 Time-distributed convolutional block 8 x 32 x 32
25 Time-distributed flattened 8 x 1024

26 Time-distributed fully connected 8 x 32

27 Time-distributed batch normalisation 8 x 32

28 Time-distributed dropout 50% 8 x 32

29 LSTM 32

30 Batch normalisation 32

31 Dropout 50% 32

32 Fully connected 16

33 Batch normalisation 16

34 Dropout 50% 16

35 Outputs 4

Figure 2.28 CNN-LSTM architecture [28]

Layers Type Output shape
0 Inputs 12

1 Fully connected 32

2 Batch normalisation 32

3 Dropout 20% 32

4 Fully connected 32

5 Batch normalisation 32

6 Dropout 20% 32

Z Qutputs 4

Figure 2.29 Meta-classifier architecture [28]
For the purpose of comparison, the authors also developed a traditional model of using an
MLP classifier with hand-crafted features and its architecture was the same as a meta-

classifier. In the end, the performance metrics of each classifier are shown in Figure 2.30.

Classifier Sensitivity  Specificity PPV F1

Hand-crafted features MLP 54.4% 93.3% 87.2%  66.3%
CNN 49.8% 92.0% 86.5% 59.7%
CNN-LSTM 68.1% 86.8% 81.2% 73.0%
CNN stacking decoding 64.4% 96.3% 93.9% 75.9%
CNN-LSTM stacking decoding 92.4% 97.7% 97.2%  94.6%
CNN-LSTM stacking decoding with 79.9% 98.8% 98.3% 87.2%

hand-crafted features

Chi-square statistic 32.7 29.4 35.9 34.6
P-value 4.0e-6 1.9e-5 1.0e-6 2.0e-6

Figure 2.30 Performance of each classifier [28]
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The authors mentioned that the computational time for MI detection of the best-performed
model, CNN-LSTM with stacking decoding required 350ms.

In the comparison with models proposed by other studies (Figure 2.31), the authors stated
that many of the models might not have the ability to differentiate MI from other CVDs. For
the models developed using multiclass ECG, although their sensitivity outperformed the
proposed CNN-LSTM with stacking decoding, their specificity was lower. Specificity
becomes important when the classification task is changed from binary class to multiclass as
this performance metric shows the ability of the model to differentiate MI from other CVDs.
Another advantage of this research was they collected noisy data to train their proposed

model to ensure the model is applicable in real-world scenes.

Author Method No. of Classes Sensitivity ~ Specificity
leads
Banerjee et al. ined threshold of ical features extracted by V1-V4 MI, healthy 92.0% 100%
[22] DWT

Chang et al. [12] SVM on i i ion coefficients of ST segment 12 leads MI, non-MI 98.7% 96.6%
following PCA

Arif et al. [20] KNN on morphological features 12 leads ML, healthy 99.6% 99.1%

Sun et al. [21] KNN on morphological features with multiple instance learning 12 leads MI, healthy 92.3% 88.1%

Sharma et al. [24]  SVM on principal component multivariate multi-scale sample 12leads  MI, healthy, cardiomyopathy, hypertrophy, 94.0% 89.5%
entropy features dysrhythmia

Huang et al. [26]  SDA on morphological features following PCA 1 healthy, non-healthy 89.7% 84.6%

Kora et al. [23] Levenberg-Marquardt neural network on morphological features I, III, MI, healthy 93.3% 92.2%
selected by improved bat algorithm aVF

Zewdie et al. [14]  SVM on icients of second-order ordinary di i 1 ML, healthy, hypertrophy, valvular heart disease, ~ 99.8% 72.7%
equation fitting myocarditis and miscellaneous

Kumar et al. [17]  LS-SVM on features extracted by sample entropy in flexible it ML, healthy 98.2% 99.2%
analytic wavelet transform

Uddin etal. [11]  LDA on HRV features 1 MI, healthy 100% 75.0%

Acharyaetal. [16] 11-layer CNN on single beat waveform it MI, healthy 95.5% 94.2%

Proposed method CNN-LSTM stacking decoding 1 ML, healthy, other CVD, noisy 92.4% 97.7%

Figure 2.31 Comparison of performance between the proposed model and other models [28]

2.1.7 A New Automatic Approach to Distinguish Myocardial Infarction Based on
LSTM [29]
In order to lower the misdiagnosis rate of MI which resulted from human interpretation, an
LSTM model was proposed in this research. The authors mentioned that in previous studies
that focused on traditional machine-learning-based classification, the design of the algorithm
was largely dependent on the knowledge of the designer while the deep-learning-based
classifier can be trained by learning features from the data automatically itself. The authors
agreed that using single-lead ECG data could speed up the classification speed but it
sacrificed the accuracy as the model suffered from useful information loss.
This research only utilized data from 8 leads and MI was classified as Anterior MI and
Inferior MI. The pre-processing steps used in this paper included median filtering for baseline
wandering removal, a notch filter and Chebyshev digital low-pass filter for denoise (power-
frequency interference), and the Pan-Tompkins algorithm for QRS complex detection. The
signals were then segmented from 250ms left and 400ms right of the R-peak location.
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
30



In this paper, the network architecture for LSTM was not shown. The performance of the

classifier and the result of the comparative test are shown in Figure 2.32 and Figure 2.33.

True Predicted Class Classification Performance

Class | AMI | IMI | HC | Sen Spe Ppr Ace

AMI | 2426 2 0 0.9992 | 0.9997 | 0.9996 | 0.9995
IMI I 1975 1 0.9990 | 0.9991 | 0.9985 | 0.9991
HC 0 1 1069 | 0.9991 | 0.9998 | 0.9991 | 0.9996

Figure 2.32 Performance of the LSTM model [29]

Author(Year) clﬁs:)st;s Classifier ?323
Padhy et al.(2017) [3] 6 SVM 98.15
Acharya et al.(2017) [8] 2 CNN 95.22
Liu et al.(2018) [9] 6 CNN 9981
Proposed 3 LSTM 99.91

Figure 2.33 Comparison of performance between proposed LSTM and other proposed

models [29]

2.1.8 Deep Learning with Long Short-Term Memory for Enhancement Myocardial

Infarction Classification [30]

The authors found that the main weakness of traditional machine learning was the application
of hand-engineered features, so they decided to propose a deep-learning-based algorithm as it
will automatically enable the feature learning process without human intervention. In this
paper, the authors utilized balanced accuracy (BAcc) and Matthew’s Correlation Coefficient

(MCQC) to tackle with the data imbalance problem.
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MCC =

BAcc =

TP TN

(F+7)

(TP x TN)—(FP x FN)

J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Figure 2.34 Formula of balanced accuracy and Matthew’s Correlation Coefficient [30]

The data source of this research was also the PTB diagnostic ECG database, the pre-
processing steps were not mentioned in the paper but the segmentation was conducted to get
data with a consistent length of 4000 data points. The authors then explained the principle
behind the RNN model to highlight the vanishing gradient problem of RNN. Other than that,
the authors also showed the details of the forward pass and backward pass of the LSTM

network.

The total data that could be used for training and testing were 12,359 with 10,144 of them
being MI and the rest being healthy subjects. There were four models had been developed:
Standard RNN and 1-/2-/3-layered LSTM. It can be observed that all of the models were

weak in detecting healthy subjects (Figure 2.35).

Performance
Model Class
Precision Sensitivity FI Score

Standard | Healthy Control 0.00 0.00 0.00
RNN MI 0.83 1.00 0.91

avg/total 0.68 0.83 0.75
1 hidden | Healthy Control 0.91 0.59 0.71
LSTM MI 091 099 094
layer avg/total 0.91 0.91 0.90
2 hidden | Healthy Control 0.85 0.65 0.73
LSTM MI 0.92 0.97 0.94
layers avg/total 0.90 0.91 0.90
3 hidden | Healthy Control 0.94 0.68 0.74
LSTM MI 0.90 0.99 0.94
layers avg/total 0.91 0.91 0.90

Figure 2.35 Performance of each model in classification [30]
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2.1.9 Classification of myocardial infarction with multi-lead ECG signals and deep
CNN [31]

Similarly, the motivation of this research was to propose an end-to-end deep-learning-based
model that could be implemented on portable healthcare devices to eliminate the step of
manual feature extraction. In this research, the authors also care about the MI locations.

The data source of this research was still the PTB Diagnostic ECG database. The authors
applied a wavelet transform algorithm to denoise and remove baseline wandering. The data
was then segmented into heartbeats, the length of the sequence was 651 for each sample (250
data points to the left and 400 to the right according to R-peak). The total number of
heartbeats was 611,404 while 20.55% of them were healthy group. The distribution of classes
is shown in Figure 2.33: anterior (A), anterior lateral (AL), anterior septal (AS), inferior (I),
inferior lateral (IL), inferior posterior (IP), inferior posterior lateral (IPL), lateral (L),

posterior (P) and posterior lateral (PL).

Classes  Number of beats Total (Percentage)
Leads
1 il 1 aVvR avL avF v, A Vi Vs Vs A
A 4902 4861 4993 4720 4882 4941 4742 4741 4743 4745 4743 4741 57,754 (9.44%)
AL 6424 6467 6360 6579 6676 6520 6501 6538 6540 6397 6589 6514 78,105 (12.77%)
AS 8146 8024 8260 8153 8146 8567 8152 8148 8238 8429 8151 8152 98,566 (16.12%)
H 10,598 10,546 10,574 10,494 10,537 10,472 10,482 10,483 10,450 10,371 10,322 10,323 125,652 (20.55%)
1 10,592 10,691 11,522 10,588 11,161 11,008 10,502 10,671 10,711 10,591 10,589 10,589 129,215 (21.13%)
IL 5911 5888 5919 5911 5909 6047 5900 5932 5914 5912 5861 5882 70,986 (11.61%)
P 48 48 48 48 48 48 48 48 48 48 48 48 576 (0.09%)
IPL 2516 2512 2517 2516 2518 2520 2515 2503 2516 2516 2516 2516 30,181 (4.93%)
L 459 459 460 459 470 459 459 459 459 459 459 459 5520 (0.9%)
P 460 460 459 460 460 460 460 461 463 460 460 460 5523 (0.9%)
PL 777 772 777 778 779 778 779 778 777 777 777 777 9326 (1.52%)
Total 50,833 50,728 51,889 50,706 51,586 51,820 50,540 50,762 50,859 50,705 50,515 50,461 611,404 (100%)

Figure 2.36 Distribution of classes in each lead [31]
A 10-layered CNN was built according to the architecture in Figure 2.37 and Figure 2.38 to
perform the multiclass classification task and thus categorical cross-entropy loss function was
used. Adam optimizer with a learning rate of 10 and 10 was used during the training phase.

To prevent the overfitting issue, the model was not trained using a large number of epochs.

No Layer name Layer parameters Qutput shape Number of Params
1 Conv 1D 64 x 3, Strides=1, Input shape = (651, 1), Activation= ReLU 647 x 64 384

2 Conv 1D 128 x 3, Strides=1, Activation = ReLU 645 x 128 24,704

3 MaxPooling1D Pool size=2, Strides=2 322 x 128 0

4 Dropout Rate=0.2 322 x 128 0

5 Conv 1D 128 = 13, Strides=1, Activation = RelLU 310 x 128 213,120

6 Conv 1D 256 x 7, Strides=1, Activation = ReLU 304 x 128 229,632

7 MaxPooling1D Pool size=2, Strides=2 152 x 256 0

8 Flatten - 38,912 0

9 Dense 64, Activation = ReLU, Dropout rate=0.2 64 2,490,432
10 SoftMax 11, Activation = SoftMax 11 715

Figure 2.37 CNN architecture [31]
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Figure 2.38 CNN architecture [31]
Overall, the CNN model achieved a very good result in every lead. (Figure 2.39). The model
was able to differentiate MI in different locations and also the healthy subjects. Lead V4
performed the best in this research (Figure 2.40).

ECG signals Training accuracy  Validation accuracy  Testing accuracy
Lead 1 (I) 99.71% 99.68% 99.61%
Lead 2 (1) 99.70% 99.56% 99.53%
Lead 3 (III) 99.55% 99.35% 99.36%
Lead 4 (aVR) 99.47% 99.31% 99.57%
Lead 5 (aVL) 99.64% 99.54% 99.50%
Lead 6 (aVF) 99.66% 99.21% 99.37%
Lead 7 (V,) 99.72% 99.70% 99.63%
Lead 8 (V) 99.64% 99.69% 99.78%
Lead 9 (V) 99.68% 99.73% 99.67%
Lead 10 (V4) 99.67% 99.76% 99.78%
Lead 11 (V5)  99.73% 99.63% 99.75%
Lead 12 (Vg) 99.72% 99.77% 99.72%
Average: 99.65% 99.57% 99.60%

Figure 2.39 Accuracy achieved by CNN in each lead [31]
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Classes ACC (%) PRE (%) SEN (%) SPE (%) F1(%) Number of Data

Anterior (A) 99.94 99.59 99.86 99.95 99.72 736
Anterior Lateral (AL) 99.85 99.37 99.47 99.90 99.42 957
Anterior Septal (AS) 99.88 99.76 99.52 99.95 99.64 1268
Healthy (H) 99.97 99.93 99.93 99.98 99.93 1562
Inferior (I) 99.97 99.93 99.93 99.98 99.93 1609
Inferior Lateral (IL) 99.93 99.64 99.76 99.95 99.70 856
Inferior Posterior (IP) 100 100 100 100 100 6
Inferior Posterior Lateral (IPL) 100 100 100 100 100 383
Lateral (L) 100 100 100 100 100 64
Posterior (P) 100 100 100 100 100 54
Posterior Lateral (PL) 99.98 100 99.09 100 99.54 111

Overall Accuracy (%)=99.78

Figure 2.40 Performance metrics achieved by lead V4 [31]

2.1.10 Application of deep convolutional neural network for automated detection of
myocardial infarction using ECG signals [32]

In this research, the authors claimed that compared to previous studies, no denoising
operation was required as their algorithm can detect MI in the presence of noise. A
comparative test was conducted using different sets of ECG (denoised / not denoised).

The authors collected the data from the PTB Diagnostic ECG database. The data is then split
into two sets. One of them would undergo denoise and baseline wandering removal by using
Daubechies wavelet 6 mother wavelet function while the noises were kept in the other set.
Pan-Tompkins algorithm was applied to both datasets to segment the heartbeats with a
consistent length of 651 data points.

The CNN architecture is shown in Figure 2.41. LeakyRelu was used in the convolutional
layer and Softmax was used in the last FC layer. The type of the optimizer was unclear in this
research but not its parameters: regularization (avoid overfitting), momentum (speed of

learning), and learning rate (speed of convergence) parameters were set to 0.2, 3x10% and 0.7

respectively.
Layers  Type Number of neurons (Output Layer)  Kernel size for each output feature map  Stride
0-1 Convolution 550 x 3 102 1
1-2 Max-pooling 275x3 2 2
2-3 Convolution 252 %10 24 1
3-4 Max-pooling 126 x 10 2 2
4-5 Convolution 116 % 10 1 1
5-6 Max-pooling 58 x 10 2 2
6-7 Convolution 50 x 10 9 1
7-8 Max-pooling 25x10 2 2
8-9 Fully-connected 30 - -
9-10 Fully-connected 10 - -

_

0-11 Fully-connected 2 - -

Figure 2.41 CNN architecture [32]
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From Figure 2.39, it can be observed that the performance of the model using a dataset with

noise dropped by a small degree. This proved that the model was robust to noise.

Beats Type TP N FP FN ACC (%) PPV (%) SEN (%) SPEC (%)
Noise 37,655 9790 756 2527  93.53 98.03 93.71 92.83
Without Noise 38,368 9933 613 1814 9522 98.43 95.49 9419
TP = True Positive, TN = True Negative, FP = False Positive, FP = False Negative
ACC = Accuracy, PPV = Positive Predictive Value, SEN = Sensitivity, SPEC = Specificity
Figure 2.42 Performance metrics of each dataset [32]
2.2 Summary of previous 10 works
Table 2.1 Summary of previous works
Model Lead Data Size Inter/Intr | Performance
a
[23] | LSTM II Heartbeats: Inter ACC=0.89
50732 M1 SEN=0.91
10123 HC SPEC =0.80
[16] | -1D-CNN 12-lead Subjects Not CNN-LSTM
-LSTM Set 1 mentioned | ACC =0.98
-CNN-LSTM 315 STEMI SEN =0.97
478 Control SPEC =0.97
Set 2 F1=0.98
62 STEMI LSTM
28 Control ACC=0.83
SEN =0.78
SPEC = 0.80
F1=0.84
CNN
ACC=0.87
SEN = 0.90
SPEC =0.91
F1=0.87
[25] | ID-CNN 12-lead Heartbeats: Intra 12-lead
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46,056 STEMI ACC=0.96
V2 23,301 SEN = 0.96
Abnormal SPEC =0.96
21,235 Normal Lead V2
ACC=0.90
SEN = 0.86
SPEC = 0.94
[26] | 1D-CNN 12-lead 276,480 STEMI | Not ACC=10.99
(Res-Net) 3,369,600 mentioned | SEN = 0.96
Normal SPEC =0.99
F1=0.9372
[27] | 2D-CNN 12-lead Images: Not ACC=0.96
540 Training mentioned | SEN =0.96
537 Testing PRE =0.89
F1=0.926
[28] | -MLP I PTB: Not Due to space
-CNN 549 records mentioned | constraints,
-CNN can refer to
stacking Cardiology Figure 2.27
decoding Challenge 2017
-CNN-LSTM database  (AF-
-CNN-LSTM Challenge):
stacking 8528 records
decoding
-CNN-LSTM
stacking
decoding
with  hand-
crafted
features
[29] | LSTM 8-lead Heartbeats: Not ACC=0.99
54,753 mentioned
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[30] | RNN Not Signals: Not BAcc=0.83
LSTM mentioned | 12,359 mentioned | MCC = 0.75
PRE =0.91
SEN=0.91
F1=0.90
[31] | ID-CNN 12-leads Heartbeats: Not V4
611,404 mentioned | ACC =0.99
[32] | ID-CNN I Heartbeats: Intra Noise
10,546 normal ACC=0.93
40,182 MI SEN =0.93
SPEC =0.92
Wihout Noise
ACC=0.95
SEN =0.95
SPEC =0.94
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Chapter 3
System Design & Model

3.1  System Design Diagram

Read ECGs daia and

Inira / Infer Splitting labels (0/1)

»
el

Data Transformation *

A

As shown in Figure 3.1, first and foremost, the dataset is downloaded from the open-source

Figure 3.1 System design of this project

database, PTB Diagnostic ECG Database which is available on the PhysioNet website [24].

The labelling of each record will be automatically executed by reading the header file which
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contains a section indicating the diagnosis of the record. Besides, the header file also included
age, gender, data on medical history, etc. The dataset consists of 148 MI patients and 52
normal subjects and one subject might contribute more than one record to form a total
number of 448 ECG records. The sampling rate of all the records of this dataset was 1000 Hz
frequency which means there would be 1000 data points recorded at 1-second intervals. A
higher sampling rate represents more information about the heart’s activities that can be
described and recorded, thus more information is available for models to learn a complex

decision function.

After that, to ensure the inter-patient splitting, the splitting operation to produce the 10-fold
cross-validation of training set, validation set and testing set must be performed at the patient
level instead of at the heartbeat level. Instead, the intra-patient splitting can be done if the
operation is performed at the heartbeat level. To simulate the real-world settings and
according to the documentation of the PhysioNet website [24], it was assumed that most of
the ECGs suffered from noises and baseline wandering in this project possibly due to the
movement of the patient during the skin resistance, measurement, patient respiration or poor
electrode (lead) contact [24, 32]. Thus, some crucial pre-processing steps were necessary.
Then, two Savitzky-Golay (SG) filters [36] were applied to raw signals in each fold to
perform denoise and baseline wandering removal operations. Next, the Pan-Tompkins
algorithm [37] was utilized to locate the QRS region in the filtered ECG signal in an effort to
eventually find the exact R-peak location for the segmentation purpose. Due to the difference
in length of the signal in each record, segmentation is a necessary action as the model cannot
be trained using signals with inconsistent lengths. Therefore, an accurate R-peak location can
be used as a standard to segment the continuous signal into heartbeats with a consistent
sequence length of 800 data points. From the R-peak, 300 data points before and 500 data
points after would compose a heartbeat containing a PQRST complex and its visualization
would be presented in Chapter 4. The 800 points of a signal The SG filter and Pan-Tompkins
algorithm were chosen to perform the respective pre-processing tasks because of their
popularity in other studies [22, 28, 29, 32] and it works well in this research (Figure 4.7 &
Figure 4.8). During the implementation, it was expected to take a long time to perform all
actions mentioned above to become a proper training set, validation set and testing set, thus it

was necessary to save the processed heartbeats somewhere such as Google Drive.
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Every time the project starts, the processed heartbeats of each fold can be loaded without
undergoing any pre-processing steps. A simple transformation was required to encapsulate
the processed heartbeats into batches. The heartbeats will then be fed into the LSTM, GRU,
ID-CNN and Transformer batches by batches for training, validation and testing to observe
the performance. After this, a random search method was used in the fine-tuning process to
search for the best hyperparameters of each model that helped solve the underfitting and
overfitting problem with the final goal of getting the best performance in the testing phase.
The hyperparameters list included learning rate, weight decay (regularization), dropout rate,

number of neural units in fully connected layers, etc.

3.2  System Architecture Diagram

The following diagrams solely show the architecture and parameters of each model/classifier.
An FC network consisting of three FC layers was included in each type of model. The default
activation function for the Fully Connected (FC) network in this project was set to ReLU. A
sigmoid function was applied in the output layer to produce a binary classification result, 0 or
1. The number of units of the first FC layer was set to 512 and became half for each

following layer, 256 and 128.

3.2.1 LSTM classifier

The input of the first LSTM [39] layer should be in the shape of a 3D tensor (Batch Size,
Sequence Length, Dimensionality) so it would be for example, (128, 800, 1) where the
dimensionality depends on how many leads were used in the research. The LSTM block
contains 256 units (hidden_size = 256) and 2 layers. There were two LSTM networks built by

enabling the bi-direction option. Figure 3.2, Figure 3.3 and Figure 3.4 show the architecture

of the LSTM classifier, together with the number of parameters within each layer.
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Figure 3.2 Network architecture of LSTM classifier
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Figure 3.3 Parameters of uni-directional LSTM classifier
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Figure 3.4 Parameters of bi-directional LSTM classifier

3.2.2 GRU Classifier

The input of the GRU [40] classifer should have the same shape as the LSTM’s input. The
network architecture is similar to the LSTM, which has 2 layers and 256 units in the GRU
block and then the output is passed to four FC layers as shown in Figure 3.5. Identically, the
bi-direction option is also available for GRU, so in total, two GRU models were trained for
both data-split methods. Figure 3.6 and Figure 3.7 indicate the respective number of

parameters for uni-directional and bi-directional GRU classifiers.
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Figure 3.7 Parameters of bi-directional GRU classifier
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3.2.3 1D-CNN Classifier

The input of the 1D-CNN [41] classifier was different from GRU and LSTM classifiers, it
had a shape of (Batch Size, Dimensionality, Sequence Length). From Figure 3.8, it was easy
to notice that the convolutional block consisting of 4 convolutional layers was built with a

max pooling layer after each convolutional layer. Relatively, the number of parameters of

I1D-CNN was significantly lower than LSTM and GRU as shown in Figure 3.9.

-gll-
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data
points 1
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!
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ropout: 1-7
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Linear: 1-9 131,328
Linear: 1-18 32,896
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Total params: 421,135
Trainable params: 421,135
Non-trainable params: @

Figure 3.9 Parameters of 1D-CNN classifier
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3.2.4 Transformer Classifier

Due to the nature of transformer architecture, the transformer is able to carry the multi-head
attention [42] without considering the ordering of the data points. Ordering of data points is
important to the ECG signal, therefore the input heartbeat sequence had to undergo a
positional embedding to maintain its ordering. Next, the heartbeats with positions entered an
encoder network comprising 6 encoder layers and for each of the layers, multi-head attention,
batch normalization and feedforward network will produce learned information from the

entire sequence. After that, the output of the encoder block would fit into the FC network.

data points

data points
800

Transformer
Flinear: 1-1

ositionalEncoding:
TransformerEncoder:
L modulelist: 2-1

L TransformerEncoderLayer:
L TransformerEncoderlayer: 3

L TransformerEncoderlayer:
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Total params: 357,889
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Figure 3.11 Parameters of Transformer classifier
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3.3 Performance Metrics

Performance metrics or standards must be set up to quantify the performance of the
model/classifier. Four metrics were chosen for this research as they are commonly used in
other studies [22] therefore the comparison could be made in a more intuitive way. A
confusion matrix is a good way to measure the performance of the classifier as shown in
Figure 3.12. In this research, the performance metrics included 4 types of measurements:

accuracy [20], sensitivity [20], precision [20] and F1 score [20].

Figure 3.12 Example of confusion matrix where TP is a true positive, TN is a true negative,

FP is a false positive, and FN is a false negative

3.3.1 Accuracy
The equation of accuracy is as shown in equation 1.
(ACC) = (TP+TN) / (TP+TN+FP+ FN)

(1)
Undoubtedly, a good model/classifier should achieve high accuracy as this is the most
general measurement and the easiest concept for people to be confident in its performance
and definitely reliability. Nonetheless, solely depending on accuracy might end up in some
misleading conclusions when the dataset is imbalanced [20], especially in a binary
classification task. If one of the categories (For example, too many MI patients) got too high
a ratio to the other, it is still easy to produce a good accuracy result even though the classifier

classifies all the ECGs to be MI.

3.3.2 Sensitivity
The equation of sensitivity is shown in Equation 2.

(SEN) = (TP) / (TP+FN)
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2)
Where Sensitivity (SEN) = true positive rate (TPR) = recall (RC)
On top of accuracy, sensitivity is also an important tool especially the application in the
medical field. This is, according to the formula, a low sensitivity means that the model will
easily classify an MI ECG as a normal ECG, therefore it is dangerous to delay the

presentation time of the patients.

3.3.3 Precision
The equation of precision is shown in Equation 3.
(PRE) = (TP) / (TP+FP)
3)
Where Formula of Precision (PRE) = positive predictive value (PPV)
It is also a waste of medical attention and resources if the model always classifies a normal
ECG as an MI ECG. Hence, a good model should also achieve high precision to avoid this

error in real-world applications.

3.3.4 F1 score
The equation of accuracy is shown in Equation 4.
(ACC) = (2TP) / (2TP+FP+ FN)
4
F1 score is a good way to eliminate the bad effect caused by accuracy in an imbalanced

dataset [22]. It takes sensitivity and precision into consideration at the same time.
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Chapter 4

Implementation & Experimental Results

4.1

Hardware & Software Setup

4.1.1 Hardware

The hardware involved in this project is only a laptop. A computer was issued to carry out

implementation/coding for data collection, data cleaning, and data transformation as well as

designing network architecture and helper functions. Specification of the laptop is shown in

Table 4.1, it was more than enough to complete all tasks mentioned above.

Table 4.1 Specifications of laptop

Description Specifications
Model Asus TUF Gaming A15
Processor AMD Ryzen 5 4600H
Operating System Windows 11
Graphic NVIDIA GeForce GTX 1650 Ti
Memory 16GB DDR4 RAM
Storage 512GB SATA HDD
4.1.2 Software

Due to the limitation of the hardware’s computing power, the training, validation and testing

processes were completed on online software.

1.

4.2

Deep Learning Framework: Pytorch

2. IDE: Google Colab Pro
3.
4. Available TPU/GPUs: TPUv2, A100, T4, L4 with GPU RAM from 15.0 GB to above

Available CPU: Unspecified model with 51.0 GB RAM

50.0 GB
Python waveform-database (WFDB) package

Data Collection
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The data source of this project is the PTB Diagnostic ECG Database [24]. It is an open-
source database published in 2004 to obtain free ECG signals and at the same time, it makes
the signal anonymous in order to protect the privacy of patients. A collection of 549 high-
quality ECG signals, most of them are encapsulated with their respective clinical summary
together in the organized form. There are ECGs from 268 subjects available for the research
and this project would only need the ECGs collected from MI patients and also the normal
subjects. Figure 4.1 indicates that there are a total of 148 MI patients and 52 normal subjects
for this project to utilize their signals. Figure 4.2 shows all the technical descriptions of the
recorder used to obtain the signals. The sampling rate was 1000Hz frequency and the noise
was included during the recording.

The ECGs are well-organized in the database as shown in Figure 4.3 and Figure 4.4 by using
a patient-split. There are 3 types of files inside each patient folder: header, data, and xyz. To
extract the raw signal data, the header and data files play an important role in acting as the

parameters in WFDB’s ‘rdrecord’ function.

URL: https://physionet.org/content/ptbdb/1.0.0/

Diagnostic class Number of subjects
Myocardial infarction 148
Cardiomyopathy/Heart failure 18

Bundle branch block 15
Dysrhythmia 14
Myocardial hypertrophy 7
Valvular heart disease 6
Myocarditis <
Miscellaneous <
Healthy controls 52

Figure 4.1 Number of subjects in each diagnostic class
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Data Description

The ECGs in this collection were obtained using a nen-commercial, PTB prototype recorder with the
following specifications:

e 16 input channels, (14 for ECGs, 1 for respiration, 1 for line voltage)

¢ Input voltage: £16 mV, compensated offset voltage up to + 300 mV

s Input resistance: 100 Q (DC)

e Resolution: 16 bit with 0.5 uV/LSB (2000 A/D units per mV)

e Bandwidth: 0 - 1 kHz (synchronous sampling of all channels)

¢ Noise voltage: max. 10 uV (pp), respectively 3 pV (RMS) with input short circuit
e Online recording of skin resistance

¢ Noise level recording during signal collection

Figure 4.2 Technical description of the signal recorder
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Figure 4.3 Organization of patient data in the PTB database
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Figure 4.4 Contents of patient folder
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4.3  Data Pre-Processing

After we extracted the raw ECG signals from the data file by using the WFDB function, we
had to perform pre-processing on the signals as they were inconsistent in sequence length and
unavoidably suffered from noise and baseline wandering. A common solution [20] was
performing a filtering to smoothen the signal and a segmentation to ensure a consistent length
of signals. Moreover, to train the models, we split the original signal collection into the
training, validation, and testing sets. To ensure that our testing result is not naive and not a
coincidence, stratified 10-fold cross-validation [43] such as Figure 4.5 was applied to
produce 10 training sets and 10 validation sets, but only one testing set to monitor the
validation results. From Figure 4.1, it is obvious that the number of healthy subjects is almost
three times less than the number of MI patients, thus we also performed data augmentation in

a conservative way which is time-shifting [26] as shown in Figure 4.6 to reduce the data

imbalance.
All Data
Training data Test data
| Fold1 || Fold2 || Fold3 | Fold4 || Folds "
split1 | Fold1l || Fold2 | Fold3 | Fold4 | Fold5
Spiit2 | Fold1 || Fold2 | Fold3 | Fold4 | Folds

Finding Parameters

Split4 | Foldl || Fold2 | Fold3 || Fold4 || Fold5

Split5

|
|
split3 \Fmdl“Fmdz\Lfgiij{Fmd4‘:Fmd5\
|
|

Fold1 | Fold2 || Fold3 | Fold4 || Fold5

Final evaluation { Test data

Figure 4.5 Example of 10-fold cross-validation [44]
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—— Original Signal
- Rolled Signal (left by 1)

/

Figure 4.6 Time-shift Data Augmentation

4.3.1 Intra-Patient Splitting

Intra-patient splitting is the so-called beat-split, the splitting operation would not be executed
on the patient level but only on the heartbeat level. In Figure 4.7, the WFDB function was
executed first to extract the signals from the data file in each patient folder. Then the Scikit-
learn’s function, train_test split was performed to randomly assign the signals either to the
training set or the testing set. All the signals in both sets would undergo the following pre-

processing steps before they are arranged into 10 folds.

if split

labels
records = []

Tile ~ patientola]ie o
i 1 in in open(file).read():

ords.
labels.append(0)

in j:
ile = patients[i] + "/ + j[:-4]
current_dat = file
record = wfdb.rdrecord(file

records.append(record.adc()[:,1])

X _train_record, X test record,y train record,y test record = train_test split(records,labels, test size=0.2, stratify=labels,random state=42)
Figure 4.7 Intra-Patient Splitting
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4.3.2 Inter-Patient Splitting

Instead, to ensure inter-patient splitting or patient split, the patient folders must be split into
the training and testing set first. Then the folders in the training set must be split again into a
new training set and validation set in each loop of a 10-fold cross-validation. This was
because it can ensure that the heartbeats from patients produced from later pre-processing

steps would only present in either the training set, validation set or testing set.

y=labels, random_state=42)

X_test_patient)):
X test_patient[i])

record record(file)
d.append(record. adc(

in enumerate(skf.split(X train patient, y_train_patient)):
_splits}”

Figure 4.8 Inter-Patient Splitting Part 1
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)(:'.talir-;cor'd = ([
y_train_record = []
y_val record = []

i range(len
item = os.listdir({X_train_fo
item.sort()

in open(file).read():

(1)

y in open{file}.read():
n_record.append(@

record = wfdb.rdrecord(curren
in r (num_augmentation

augmented_signal = augment ne -
X train record.append(augmented signal)

y_train_record.append(@)

7 atale

= X_train_fold[i] + "/" + j[:-4]
current_dat = file
record = wfdb.rdrecord(file)
X_train_record.append(record.ad

S
in open(file).read():
)

n open(file).read():
_record.append(®)

¢*: X_val_record, 'y': y_val *X': X_test record, 'y': y_test_record}})

Figure 4.10 Inter-Patient Splitting Part 3

4.3.3 Denoise & Baseline Wandering Removal

There were in total of two Savitzky-Golay filters [36] applied in this project for the purpose
of denoise and baseline wandering removal operations. Through a series of manual
experiments, a good enough parameter setting was captured for both filters. The
implementation of the filtering is shown in Figure 4.11 and an example of a successful

filtering is shown in Figure 4.12.
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for i in range(len(raw X)):

if (len(raw X[i])<560000):
noise win = 180
noise order = 3
baseline win = 1008
baseline order = 4

else:

noise win = 58

noise order = 3
baseline win = 1281
baseline order = 4

denoise = savgol filter(raw X[i], window_length=ncise win, polyorder=noise order)
baseline = savgol filter(denoise, window length=baseline win, polyorder=baseline order)

filtered.append(denoise-baseline)

return filtered

Figure 4.11 Implementation of SG filter

Original vs SG Smoothed ECG Data

Original ECG Data
Denoised ECG Data
— Baseline
1000 4 — Baseline Wandering Removed

1500

0 ol ABERRL L AL sl

500

Amplitude

-1000

-1500 AL —

-2000

0 5000 10000 15000 20000 25000 30000 35000 40000
sample

Figure 4.12 Result of successful filtering, the red line represents the filtered signal, while the

green line represents the baseline

4.3.4 R-Peak Detection & Segmentation

Pan-Tompkins algorithm [37] is able to locate the R peak as illustrated in Figure 4.14
accurately by searching for the QRS region for each heartbeat cycle. After R peak locations
are captured, then index slicing (segmentation) of the NumPy array is performed to get
separate distinct heartbeats with a consistent length of the sequence of 800 as shown in
Figure 4.15. In FYPI, the total number of heartbeats is 52096 (8953 normal and 42,867 MI)
in the training set as well as 13251 (1910 normal and 11341 MI) in the testing set. Through
the deployment of a data augmentation technique, the data imbalance issue was resolved as
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shown in Figure 4.16. Nevertheless, noted that in Figure 4.17, clearly shows that each set
has a different number of MI ECGs and normal ECGs from fold to fold due to the earlier

train_test_split operation and the data augmentation only acted on the signals in the training

set.

ief segmentation(filtered_signa
QRS_detector - Pan_Tompkins QRS

heartbeats = []
labels = []

for i in range(len(filtered
ecg = pd.DataFrame(n

output signal = QRS de ecg)

num_heartbeat = 8
for j in range(len(result
if ((result[j

heartbeats.app _
num_heartbeat +=1

if((j != len(result)-1) and (result
heartbeats.append(signal[result[j

ge(len(filtered signal[i]

)),filtered signal[i]]).T,columns=[

ult[§-11))
sult[j

ult[j+1]1)):
result[j]+5ee])

num_heartbeat +=1
195
nge(num_heartbeat):

labels.append(1)

i in range(num_heartbeat):
labels.append(@)

return heartbeats, labels

Figure 4.13 Implementation of R-peak detection and segmentation

R Peak Locations

Figure 4.14 R-peaks were detected
heartbeat
E 100
— 430 800 730

Figure 4.15 Segmentation from 300 points before R-peak and 500 points after R-peak
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number of MI ECGs in trainset: 39871

3
number of normal ECGs in trainset: 300882

number of MI ECGs in valset: 4341
number of normal ECGs in valset: 4343

number of MI ECGs in testset: 11872
number of normal ECGs in testset: 18884

Figure 4.16 Number of MI ECGs and normal ECGs in each set of each fold (Intra-Patient)

Total number of MI ECGs in trainset: 39459
Total number of normal ECGs in trainset: 41288

Total number of MI ECGs in wvalset: 3684
Total number of normal ECGs in valset: 718

Total number of MI ECGs in testset: 11341
Total number of normal ECGs in testset: 1918

Figure 4.17 Number of MI ECGs and normal ECGs in each set (Inter-Patient)

4.3.5 Transformation

The final step of the pre-processing stage was to transform the processed heartbeats in each
set of each fold into data loader format for the ease of training, validation and testing. The
‘batchfirst’ parameter was prepared for the 1D-CNN model to change the heartbeats into a
desirable format. As PyTorch was the deep learning framework deployed in the project, the
heartbeats that were initially in NumPy type must be transformed to PyTorch’s tensor type.
Then stack operation was executed to transform the 2D tensors into 3D tensors. The
Dataloader function is capable of creating mini-batches of heartbeat data to allow faster
training and frequent updates on the parameters as well as more efficient memory
management compared to training the model using the whole dataset at once. The
implementation is shown in Figure 4.18 and Figure 4.19 shows the example of a batch of

heartbeats in the dataloader.
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transform(heartbeats_train, heartbeats test,labels train,labels test,batchfirst=True,batch_size=64}:

if batchfirst =
X train = a.reshz ik data in heartbeats_train]
X _test ata. ape ) ~ data in heartbeats test]

_train = [data.reshape(-1,1) for data in heartbeats_train]
X test = [data.reshape(-1,1) ~ data in heartbeats test]

X train = [torch.ten (data, dtype=torch.flo for data in X_train]
X test = [torch.tensor(data, dtype=torch.float32) r data in X test]

X train = torch.stack(X train)
X_test = torch.stack(X_test)

y_train = torch.tensor(labels train)
y_test = torch.tensor(labels test)

trainset = TensorDataset(X train, y train)
testset = TensorDataset(X test, y test)

atch_size, shuffle=T
|_size,shuffle=

for i,(data, targets) in
{targets.shape}”))

targets.shape}™)

e([e4])
(Testset) Data shape: torch.S5i [64, 868, 1]}, targets shape: torch.5ize([64])

Figure 4.19 The training and testing set is encapsulated in the data loader

4.4  Network Architecture
The implementation of each network architecture is shown from Figure 4.20 until Figure
4.23. According to the designs as shown in Chapter 3, the class of each type of classifier was

built.
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input_size, num_layers, bidirectional ropout_rat

f.num_layers = num_layers
f.1stm = nn.LSTM(dnput num_layers,dropout = dropout_rate, batch_fir bidirectional=bidirectional)
f.dropout = nn.Dropou

.fel = nn.Linear(hidden siz

nn. Linear(

., hidden_: hidden_:

- units)
/2)

self.bidirectional )
-Linear (hidden_:
.Linear(fc_units*2
.Linear(fc_units, fc u
-Linear(fc_unit:

self.relu = nn.ReLU()
moid = nn.Sigmoid()

forward(self, x):
if(self.bidirectional

dir 2

torch
torch.ze:

ut_fcl = self.fcl(out]:
e1f.relu(out_fcl)
c1f.fc2(self.dropout:
elf.relu( )
(out_fc2))

<1f.dropout(out_fc3))

output .sigmoid(out fcd)
utput = outpu
n output

num_laye i)
nn.GRU(input si i ize = hidden size, num layers=num loyers, dropout = dropout rate,batch fir ional=bidirectional)
dropout = nn.Dropout(dropout_r
fcl = nn.Linear(hidden :
_fc2 - nn.Linear(fc
nn. Linear (f

)
units//2)
fc_units//a)

f.fca = nn.Linear(f

_units*2)
i fc_units)
nn.Linear(fc_units, fc units//2

nn. Linear(fc_units//2, 1)

1f.relu = nn.ReLu()
15 d = nn.Sigmoid()

forward(self, x):
(self .bidirectional

direc

self.relu(out fc2)
elf _f 1f _dropout (out_fc2))
elf.relu(out fe3)
1f.fca(self.dropout (out_fc3))
1f . sigmoid(output)

Figure 4.21 Implementation of GRU networks
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torch.nn as

Comld £
nin. Cenwdd | in

self.pool = nn.MaxdPool 1d] kernel
1u = nm. 1]}
pout = .

oo otput s
= nn

Linear(fc_hidden sim
self.sigmodd = nn.Sigmoid

T _pet comd outpul sizefself, inpul :

Lnput

s T hidden s

hidden sizef

uence length)

relu{salfoeonvlix) )}

orelufself.convd X
relu{salf . eonvd | x
self.convd) x

1f.relu

.51

(self.convl|x

1
}
]

(Self.convdi K

{self.

S8l . convd X

self.signod

Figure 4.22 Implementation of 1D-CNN network
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)z
__(self, input dim, d model, nhead, num_encoder layers, dim feedforward,fc units=512, dropout_rate:
er{Transformer, self). dinit ()
f.embedding = nn.Linear(input_dim, d_model)
er = PositionalEncoding( 1, max_len)
yer({d model, nhead, dim feedforward, dropout_rate,batch_fir:
zelf.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_encoder layers)

f.gelu = nn.GELU
sipmoid = nn.Sigm

-gelufx
-dropout (x)

elf.Fc2(x)

h.log{torch.tensor(1608@.08)) / d_model))
div_term)
sition * div_term)
pe = pe.unsqueeze(@
zelf.register buffer(

Figure 4.23 Implementation of Transformer classifier

4.5 Helpers

Multiple helper functions were built into this project to assist in the training, validation and
testing of the classifiers. Besides, visualizations such as graph plotting and confusion matrix
were also established to present the performance metrics in a user-friendly way to increase

readability.

4.5.1 Training Loop

The training loop helper function in Figure 4.24 will first create multiple new variables for
each epoch to record and track the performance metrics as well as the true label and the
predictions made. The true label and predictions will be utilized in creating a confusion
matrix in the visualization part. Performance metrics of the trained models of each fold must

be tracked in order to record the related performance metrics of the best-performing model.
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d_nora_(model .parameters( ), max norm=max_norm)

mean{bateh_pre np.mean(bat

4.24 Training function

4.5.2 Early Stop Mechanism

In this project, in order to reduce the waste of computational resources and time, two early
stopping mechanisms as shown in Figure 4.25 and Figure 4.26 were introduced into the
training process. A suitable parameter setting including patience (how many epochs to wait
after the last improvement of validation loss/accuracy) and min_delta (minimum changes of
figures of validation loss/accuracy can be considered improvement) can help track back to the
best-performing model’s parameters and its performance metrics. An example of how early
stopping works is shown in Figure 4.27. In the inter-patient training and validation process,
the early stopping used validation accuracy as the standard to decide whether to perform early

stopping while validation loss was used in the intra-patient process.
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EarlyStopping:

__init_ (self, patience=5, min delta=8, restore best weights

-patience = patience
.min_delta = min_delta
e _best weights = restore_best weights
t( )
.best model weights =
.counter = @
-early stop = Fal

call (self, val loss, model):
t val loss < self.best lo - self.min_delta:
self.best_loss = val 1
1f_best_model weights = model.state dict() if self.restore_best weights
self.counter = : > inter if v D

1f.counter += 1
self._counter »= self.patience:
self.early stop =

- weights(self, model):
self.restore_best weights and self.best model weights is not
model .load state dict(self.best model weights)

EarlyStopping ValAcc:
__init_ (self, patience=5, min_delta restore_best weights

self.patience = patience

restore_best weights

1f.early stop = F

_ call_ (self, val acc, mode
if val _acc > self.best_acc + se n_delta
self.best_acc = val acc
self.best model weights = model.state dict() if self.restore best weiphts
1f.counter = 8 # ; 1

1f.counter
if self.count 1f . patience:
self.early stop

f load best weights(self, model):
if self.restore_best weights and self.best model weights is not
model.load state dict(self.best model weights)

Figure 4.26 Early Stop Mechanism (Validation Accuracy)
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Epoch 6/60 Fold 6:
Train Loss ©.0236, Train Acc 8.9951, Train Prec ©.9952, Train Rec ©.9958, F1
Val Loss 9.8026, Val Acc ©.9991 Val Prec ©.9998, Val Rec ©.9986, F1 0.9992

Epoch 7/60 Fol
Train Loss ©.062 ain Acc ©.9958, Train Prec ©.9959, Train Rec ©.9956, F1
Val Loss @ ; : c ©.9983 Val Prec ©.9986, Val Rec ©.9981, F1 ©.9983

Epoch 8/68
Train Lo 277, Train B.99 Train Prec ©.9957, Train Rec 8.9956, F1
Val Loss 0.0 Val Acc ©. al Prec ©.9990, Val Rec ©.9973, F1 ©.9981

Epoch 9/66 Fold 6:
Train Los 0306, Train Prec ©.9962, Train Rec ©.9961, F1
Val Loss 0.0088, Val Acc @ .9988, Val Rec ©.9984, F1 ©.9985

d 6:
, Train Acc ©.9961, Train Prec ©.9968, Train Rec ©8.9962, F1
Val Loss 9.0063, Val Acc 8.9990 Val Prec ©.9992, Val Rec 8.9987, F1 ©.9989

Epoch 11/68 Fold 6:
Train Loss B8.0153, Train Acc ©.9965, Train Prec ©.9964, Train Rec 6.9967, F1 8.9965
Val Loss 0.0169, Val Acc 8.9984 Val Prec 0.9983, Val Rec ©.9988, F1 B8.9985

Early stopping at epoch 11

4.27 An example of early stopping

4.5.3 Testing
The testing helper function in Figure 4.28 was doing the same job as the training helper
function but without the backpropagation process. Identically, the performance metrics will

be recorded for visualization through a graph and a confusion matrix.
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luste(dataloader, model, criterion, device,unsquecze = F

predicted c (prediction >
y_true d(labels.cpu () -numpy(})
y_pred_test.append(predicted_class ) -numpy ()}

y true test = np.concatenate(y true test)
y_pred_test = np._concatenate(y_pred_test)

~n np.mean(batch_losses), np.mean(batch accs), np.mean(batch precisions), np.mean(batch recalls), np.mean(batch f1 . y_true test, y pred test

4.28 Testing function

4.6 Main function

Multiple variables were created to track the best-performing classifier, the number of epochs
to get the greatest performance and the pair of labels and predictions made. In every fold, the
classifier, early stopping and performance metrics will be reinitialized to re-train a new
classifier to compare with the performance metrics of the current best-performing classifier.

All the implementations are shown in Figure 4.29 until Figure 4.32.
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n=1

ultdict(l
best wal loss f i # I lize be
best model = I
best_epochs =
testset record
testset labe
stopepoch =
train_prediction = []
train labels = []
val prediction =
val labels = []

[1

for fold in fold data:
metrics model = collections.defaultdict(list)
early stopping = EarlyStopping(patience=5, min delta

if modelty
input_s
learning_rate =
sequence_length

e, sequence length, fc hidden size)

.Adam(CHNM. parameter 1r=learning rate,weight decay=
model = CNN
model. to(device)
optimizer = optimizerCHN

elif modeltype =—
input size = 1
hidden size
num_layers = 2
learning_rate =@
if direction
LSTM uni = L

optimizer | i 2 lr=learning rate,weight decay=0.¢

model = LSTM uni

model . to(device)
optimizer = optimizer LSTHuni

, hidden size, num layers, }
optim,Adam(LS5THM bi.parameters(). lr=learning rate.weight decav

Figure 4.29 Main code part 1
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optimizer LSTMbi = optim.Adam(LSTM bi.parameters(), lr=learning_rate,weight decay=8.8
model = LSTM bi

model. to(device)

optimizer = optimizer LSTMbi

elif modeltype ==
input_size =
hidden size
num_layers = 2
learning_ rate =
if direction == "Uni':

GRU_uni = GRU(input size, hidden_size, num_layers)

optimizer GRUuni = optim.Adam(GRU uni.parameters lr=learning_rate,weight decay
model = GRU uni

model.to(device)

optimizer = optimizer GRUuni

GRU_bi = GRU(input_size, hidden_size, num_layers,T

optimizer GRUbi = optim.Adam(GRU_bi.paramete h =learning rate,weight decay
model = GRU bi

model.to(device)

optimizer = optimizer GRUbI

elif modeltype =
input size = 1
d model = 64
nhead
num_encoder_layers
dim_feedforward
learning rate =

nhead, num encoder layers, dim feedforward)
lr=learning rate, weight decay

model.to(devi
optimizer = optimizer transformer

Figure 4.30 Main code part 2
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= transform(X_train_record, X val record, y_train_record, y val_record, batchfirs

transform(X_train record, X val record, y train record, y val record, batchfirs

epoch in range(num_epochs):

modelty

, train_acc,train prec, train rec,train F1,train pred, train label = train one epoch(train loader, model,

, train_acc,train prec, train_rec,train F1,train pred, train label = train one epoch(train loader, model , device, unsquee:

valuate(val loader, model, criterion, device, uns
luate(val loader, model, criterion, device, u

train_rec:.4f}, F1 {train_F1:.4f}")

model[”
model["
model[”

{epoch+1}")

Figure 4.31 Main code part 3

if wal loss < best wal loss:

best wval los val los

best epochs = stopepoch

best_model = copy.deepcopy(model)

best model metr [ 1

best model metrics[

best model metrics[’

best model metrics["

best model metrics[’

best model metrics[’ 5 ics model[”
best model metrics[™ cs_model[”
best model metrics[’ _model["
best model metrics[’ metrics model["
best model metrics[’ 1 _model [ "y

best train preds prediction[-1]
best train labels = train labels[-1]

s = val prediction[-1]
best wal label al labels[-1]

best_wval pred

Figure 4.32 Main code part 4
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4.7  Visualization

Two methods were available in this project to visualize the performance metrics. Plotting a
graph could show the changes in the performance metrics throughout the epochs while the
confusion matrix could give an intuitive observation of the correct and wrong decisions made
by the classifier. The implementation of graph plotting is available in Figure 4.33 while

Figure 4.34 and Figure 4.35 are responsible for the implementation of a confusion matrix.
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Figure 4.33 Graph plot for loss, accuracy, precision, recall and F1-score of best-performing

model
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klearn.metrics confusion_matrix, accuracy score, precision_score, recall_score, f1_score

plt.figure(figsize=(8, 6))

sns.heatmap(cm_train, annot

: {recall train:.4f}, F1 {f1_train:.4f}"

recall val
fl.val = f1 s

print (") : {accuracy_val:.af] : {precision_val:.af : {recall_val:.4f}, F1 Score: {f1_val:.4f}")

Figure 4.34 Confusion matrix of best-performing model’s training and validation

performance metrics

test label = np.concatenate(test label)
test pred = np.concatenate( ol

cm = confusion matrix(test label, test pred)

plt.figure(figsize=(8, 6)

SNns tmap(cm, annot
le(® f

plt.xlabel(

plt.ylabel("T

plt.show()

accuracy = accuracy score({test label, test pred )
precision = precision score(test label, test pred )
recall = recall score{test label, test pred )

f1 = f1 score(test label, test pred )

", accuracy)

", pre
print( 11:", recall)
print{"“F1 , 1)

Figure 4.35 Confusion matrix of best-performing model’s testing performance metrics
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4.8  Training & Validation Performance Metrics

Table 4.2 is a summary recording all the performance metrics of the best-performing model
in their 10-fold cross-validation. Alternatively, the visualization of the performance metrics
of each classifier will be shown in the following sections. Overall, the ID-CNN classifier had
the best performance in both the intra-/inter-patient training and validation process. Other
than that, GRU also had good and stable results in both types of analysis, followed by LSTM
and Transformer. Throughout the training and validation process, there were no large
differences were observed between the intra-patient classifier and the inter-patient classifier.
Noticeably, the bi-directional version of LSTM and GRU does help the performance matrix

in the intra-patient analysis but not the inter-patient analysis.

Almost all the classifiers are able to learn a good decision function from the training set to
detect the presence of MI. Nevertheless, the transformer model was observed to suffer from
underfitting which is an incapability to capture and learn features from the signals. This
might be because of the reason of lack of complexity (the model is too simple) due to the
application of a typical hyperparameter setting while other classifiers with designed

architecture are able to converge to 90% above.

Table 4.2 Training and Validation performance metrics of trained classifier in both types of

analysis

erformance
metrics

Models

Accuracy

Precision

Sensitivity /
Recall

F1 Score

Intra Uni - LSTM

Train: 96.87%
Val: 96.74%

Train: 96.86%
Val: 98.17%

Train: 96.89%
Val: 95.25%

Train: 0.9687
Val: 0.9669

Inter Uni - LSTM

Train: 96.02%
Val: 96.06%

Train: 96.27%
Val: 96.68%

Train: 95.51%
Val: 98.77%

Train: 0.9589
Val: 0.9771

Intra Bi - LSTM

Train: 97.21%
Val: 97.43%

Train: 97.23%
Val: 96.63%

Train: 97.20%
Val: 98.30%

Train: 0.9721
Val: 0.9745
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Inter Bi - LSTM

Train: 95.21%
Val: 90.36%

Train: 96.14%
Val: 99.80 %

Train: 93.94%
Val: 88.86%

Train: 0.9502
Val: 0.9401

Intra Uni — GRU

Train: 98.11%
Val: 98.70%

Train: 98.21%
Val: 99.21%

Train: 98.00%
Val: 98.18%

Train: 0.9811
Val: 0.9869

Inter Uni — GRU

Train: 97.74%
Val: 96.22 %

Train: 97.68%
Val: 98.23%

Train: 97.66%
Val: 97.31%

Train: 0.9767
Val: 0.9777

Intra Bi — GRU

Train: 97.64%
Val: 98.23%

Train: 97.64%
Val: 97.40%

Train: 97.65%
Val: 99.10%

Train: 0.9764
Val: 0.9824

Inter Bi — GRU

Train: 97.32%
Val: 95.37%

Train: 97.42%
Val: 94.99%

Train: 97.07%
Val: 99.82%

Train: 0.9724
Val: 0.9734

Intra 1D — CNN

Train: 99.66%
Val: 99.97%

Train: 99.64%
Val: 99.98%

Train: 99.68%
Val: 99.95%

Train: 0.9966
Val: 0.9997

Inter 1D - CNN

Train: 99.76%
Val: 96.82%

Train: 99.76%
Val: 97.02%

Train: 99.75%
Val: 99.32%

Train: 0.9975
Val: 0.9815

Intra Transformer

Train: 86.79%
Val: 82.01%

Train: 89.29%
Val: 78.92%

Train: 83.61%
Val: 87.36%

Train: 0.8636
Val: 0.8293

Inter Transformer

Train: 87.80%
Val: 86.50%

Train: 88.72%
Val: 85.83%

Train: 86.48%
Val: 99.14%

Train: 0.8759
Val: 0.9200

4.8.1 Visualization

The performance metrics of each classifier were visualized through the graphs and confusion

matrix produced after the completion of the training and validation process as shown in

Figure 4.36 to Figure 4.67 type by type.
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4.8.1.1 Intra-Patient Uni-Directional LSTM
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Figure 4.36 Graphs of performance metrics of intra-patient uni-directional LSTM classifier

Confusion Matrix - Training Set

True

Predicted

Training Accuracy: 8.9687, Precision: 9.9686, Recall: ©.9689, F1 Score: 0.9687

Figure 4.37 Training confusion matrix of intra-patient uni-directional LSTM classifier
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Confusion Matrix - Validation Set

Predicted
Validation Accuracy: @.9674, Precision: 8.9817, Recall: 8.9525, F1 Score: 9.9669

Figure 4.38 Validation confusion matrix of intra-patient uni-directional LSTM classifier

4.8.1.2 Inter-Patient Uni-Directional LSTM
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Figure 4.39 Graphs of performance metrics of inter-patient uni-directional LSTM classifier
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Confusion Matrix - Training Set

True

Predicted
Training Accuracy: @.9602, Precision: ©.9627, Recall: 8.9551, F1 Score: 8.958%

Figure 4.40 Training confusion matrix of inter-patient uni-directional LSTM classifier

Confusion Matrix - Validation Set

True

Predicted

Validatien Accuracy: @.9606, Precision: ©.9668, Recall: 0.9877, Fl1 Score: 0.9771

Figure 4.41 Validation confusion matrix of inter-patient uni-directional LSTM classifier
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4.8.1.3 Intra-Patient Bi-Directional LSTM
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Figure 4.42 Graphs of performance metrics of intra-patient bi-directional LSTM classifier

Confusion Matrix - Training Set

True

Predicted

Training Accuracy: 8.9721, Precision: 8.9723, Recall: ©.9728, F1 Score: 6.9721

Figure 4.43 Training confusion matrix of intra-patient bi-directional LSTM classifier
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Confusion Matrix - Validation Set

True

Predicted

Validation Accuracy: ©.9743, Precision: ©.9663, Recall: 0.983@, F1 Score: 8.9745

Figure 4.44 Validation confusion matrix of intra-patient bi-directional LSTM classifier

4.8.1.4 Inter-Patient Bi-Directional LSTM
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Figure 4.45 Graphs of performance metrics of inter-patient bi-directional LSTM classifier
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Predicted
[Training Accuracy: ©.9521, Precision: ©.9614, Recall: 0.9394, Fl Score: 0.9582

Figure 4.46 Training confusion matrix of inter-patient bi-directional LSTM classifier

Confusion Matrix - Validation Set

True

Predicted

Validation Accuracy: 0.9036, Precision: ©.9980, Recall: ©.8886, F1 Score: ©.9401

Figure 4.47 Validation confusion matrix of inter-patient bi-directional LSTM classifier
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4.8.1.5 Intra-Patient Uni-Directional GRU
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Figure 4.48 Graphs of performance metrics of intra-patient uni-directional GRU classifier

Confusion Matrix - Training Set

True

Predicted

Training Accuracy: 0.9811, Precision: @.9821, Recall: @.9880, F1 Score: 8.9811

Figure 4.49 Training confusion matrix of intra-patient uni-directional GRU classifier
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Confusion Matrix - Validation Set

True

Predicted

Validation Accuracy: ©.987e, Precision: ©.9921, Recall: ©.9818, F1 Score: ©.9869

Figure 4.50 Validation confusion matrix of intra-patient uni-directional GRU classifier

4.8.1.6 Inter-Patient Uni-Directional GRU
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Figure 4.51 Graphs of performance metrics of inter-patient uni-directional GRU classifier
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True

Confusion Matrix - Training Set

Predicted

Training Accuracy: 8.9774

, Precision: 8.9768, Recall: 8.9766, F1 Score: 0.9767

Figure 4.52 Training confusion matrix of inter-patient uni-directional GRU classifier

True

Confusion Matrix - Validation Set

692 77

118

Predicted

alidation Accuracy: 8.9622, Precision: 0.9823, Recall: @.9731, F1 Score: 0.9777

Figure 4.53 Validation confusi
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4.8.1.7 Intra-Patient Bi-Directional GRU
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Figure 4.54 Graphs of performance metrics of intra-patient bi-directional GRU classifier

True

Confusion Matrix - Training Set

Predicted

Training Accuracy: 8.9764, Precision: 8.9764, Recall: @.9765, F1 Score: 8.9764

Figure 4.55 Validation confusion matrix of intra-patient bi-directional GRU classifier
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True

Confusion Matrix - Validation Set

Predicted

validation Accuracy: ©.9823, Precision: ©.9748, Recall: 0.9918, F1 Score: 0.9824

4.8.1.8 Inter-Patient Bi-Directional GRU
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Figure 4.56 Validation confusion matrix of intra-patient bi-directional GRU classifier
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Figure 4.57 Graphs of performance metrics of inter-patient bi-directional GRU classifier
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True

Predicted
cy: 0.9732, Precision: ©.9742, Recall: ©.9707, F1 Score: ©.9724

Figure 4.58 Validation confusion matrix of inter-patient bi-directional GRU classifier

Confusion Matrix - Validation Set

True

Predicted

Validation Accuracy: ©.9537, Precision: ©.9499, Recall: ©.9982, F1 Score: 8.9734

Figure 4.59 Validation confusion matrix of inter-patient bi-directional GRU classifier
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4.7.9 Intra-Patient 1D-CNN
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Figure 4.60 Graphs of performance metrics of intra-patient 1D-CNN classifier

Confusion Matrix - Training Set

True

Predicted

Training Accuracy: 8.9966, Precision: ©.9964, Recall: ©.9968, Fl Score: 8.9966

Figure 4.61 Training confusion matrix of intra-patient 1D-CNN classifier
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Confusion Matrix - Validation Set

True

Predicted

validation Accuracy: ©8.9997, Precision: ©.2998, Recall: ©.9995, F1 Score: 8.9997

Figure 4.62 Validation confusion matrix of intra-patient ID-CNN classifier

4.7.10 Inter-Patient CNN Classifier

— train_loss

val_loss.

Figure 4.63 Graphs of performance metrics of inter-patient 1 D-CNN classifier
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Confusion Matrix - Training Set

True

Predicted
Precision: 0.9976, Recall: 8.9975, F1 Score: 0.9975

Figure 4.64 Training confusion matrix of inter-patient 1D-CNN classifier

Confusion Matrix - Validation Set

True

Predicted

Validation Accuracy: ©.9682, Precision: 8.9702, Recall: ©.9932, Fl1 Score: 8.9815

Figure 4.65 Validation confusion matrix of inter-patient 1D-CNN classifier
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4.7.11 Intra-Patient Transformer Classifier
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Figure 4.66 Graphs of performance metrics of intra-patient Transformer classifier

True

Training Accuracy: ©.8679, Precision: ©.8929, Recall: ©.8361, F1 Score: ©.8636

Confusion Matrix - Training Set

Predicted

Figure 4.67 Training confusion matrix of intra-patient Transformer classifier
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Confusion Matrix - Validation Set

Predicted

Validation Accuracy: ©.8201, Precision: ©.7892, Recall: 8.8736, F1 Score: ©8.8293

Figure 4.68 Validation confusion matrix of intra-patient Transformer classifier

4.7.12 Inter-Patient Transformer Classifier
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Figure 4.69 Graphs of performance metrics of inter-patient Transformer classifier
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Confusion Matrix - Training Set

True

Predicted
Training Accuracy: 0.8780, Precision: 0.8872, Recall: 8.8648, F1 Score: ©8.8759

Figure 4.70 Training confusion matrix of inter-patient Transformer classifier

Confusion Matrix - Validation Set

True

Predicted

alidation Accuracy: ©.8650, Precision: ©.8583, Recall: 0.9914, Fl Score: ©.92@0

Figure 4.71 Validation confusion matrix of inter-patient Transformer classifier
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Chapter 5
SYSTEM EVALUATION AND DISCUSSION

5.1 Overview

Although all the classifiers trained by different data-split methods were able to obtain high
performance in the training and validation phase, Table 5.1, the significant difference
between the performance metrics of each pair of intra-patient classifier and inter-patient
classifiers was observed. This is because of the data imbalance issue that exists in the dataset
caused by the inter-patient splitting method. In inter-patient analysis, the patient folders were
randomly assigned to only either the training set, validation set or testing set. The overfitting
problem might appear if the data in the training set lack diversity or variability, therefore the
classifier could not learn a more complex decision function to detect the presence of MI from

an unusual or poor-quality MI ECG.

Table 5.1 Testing performance metrics of trained classifier in both types of analysis

erformance Accuracy Precision Sensitivity / F1 Score
metrics Recall
Models
Intra Uni - LSTM Test: 92.90% Test: 97.81% Test: 87.26% Test: 0.9213
Inter Uni - LSTM Test: 90.53% Test: 94.11% Test: 94.88% Test: 0.9449
Intra Bi - LSTM Test: 95.46% Test: 96.48% Test: 94.44% Test: 0.9545
Inter Bi - LSTM Test: 73.40% | Test: 93.59% Test: 73.99% Test: 0.8264
Intra Uni — GRU Test: 94.60% Test: 98.71% Test: 90.48% Test: 0.9442
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Inter Uni — GRU Test: 86.65 % | Test: 94.88% Test: 89.21% Test: 0.9196
Intra Bi — GRU Test: 95.43% Test: 98.15% Test: 92.68 % | Test: 0.9534
Inter Bi — GRU Test: 85.85% Test: 92.33% Test: 91.02% Test: 0.9167
Intra 1D — CNN Test: 97.68% Test: 99.92% Test: 95.47% Test: 0.9764
Inter 1D - CNN Test: 85.82% Test: 90.46% Test: 93.27% Test: 0.9184
Intra Transformer | Test: 82.28% Test: 77.63% Test: 91.12% Test: 0.8384
Inter Transformer | Test: 91.15% Test: 91.75% Test: 98.52% Test: 0.9501
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5.2 LSTM
5.2.1 Intra-Patient Uni-Directional LSTM

Confusion Matrix - Testing Set

Predicted

Accuracy: ©.9287666241574957
Precision: 8.981174089 59

Recall: ©.875541307514
F1 Score: ©.9253531882397862

Figure 5.1 Testing confusion matrix of intra-patient uni-directional LSTM classifier

5.2.2 Inter-Patient Uni-Directional LSTM

Confusion Matrix - Testing Set

o 1237 673

True

Predicted

Figure 5.2 Testing confusion matrix of inter-patient uni-directional LSTM classifier
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5.2.3 Intra-Patient Bi-Directional LSTM

Confusion Matrix - Testing Set

True

Predicted

Figure 5.3 Testing confusion matrix of intra-patient bi-directional LSTM classifier

5.2.4 Inter-Patient Bi-Directional LSTM

Confusion Matrix - Testing Set

o 1335 575

True

- - 2950

Predicted

Accuracy: ©.7339823409553996
Precision: @.9358688378318091

Recall: @.7398818446345119
F1 Score: 0.8264145368592111

Figure 5.4 Testing confusion matrix of inter-patient bi-directional LSTM classifier
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5.3 GRU
5.3.1 Intra-Patient Uni-Directional GRU

Confusion Matrix - Testing Set

True

Predicted

Figure 5.5 Testing confusion matrix of intra-patient uni-directional GRU classifier

5.3.2 Inter-Patient Uni-Directional GRU

Confusion Matrix - Testing Set

- 1364 546

True

- - 1223

Predicted

Accuracy: ©.8665006414610218
Precision: ©.9487996999249813

Recall: ©.8921611850806808
F1 Score: ©.9196091797318792

Figure 5.6 Testing confusion matrix of inter-patient uni-directional GRU classifier

5.3.3 Intra-Patient Bi-Directional GRU
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Confusion Matrix - Testing Set

True

Predicted

F1 Score:

Figure 5.7 Testing confusion matrix of intra-patient bi-directional GRU classifier

5.3.4 Inter-Patient Bi-Directional GRU

Confusion Matrix - Testing Set

o - 1053 857

True

- - 1018

Predicted

Accuracy: 0.8585012451896424
Precision: ©.923345259391771

Recall: 8.910237192487435
F1 Score: 8.9167443719195418

Figure 5.8 Testing confusion matrix of inter-patient bi-directional GRU classifier

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

97



54 1D-CNN
5.4.1 Intra-Patient 1D-CNN

Confusion Matrix - Testing Set

True

Predicted

Accuracy: 6.9768172709854472
Precision: ©.9992437848567918

Recall: 8.9547587225433526
F1 Score: @.8764986032705187

Figure 5.9 Testing confusion matrix of intra-patient ID-CNN classifier

5.4.2 Inter-Patient 1D-CNN

Confusion Matrix - Testing Set

o - 794 1116

True

Predicted
[Accuracy: ©.8581893811787789
Precision: 9045664443304259

Recall: ©.9327219821885195
F1 Score: ©.918428478402431

Figure 5.10 Testing confusion matrix of inter-patient 1D-CNN classifier
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5.5 Transformer

5.5.1 Intra-Patient Transformer Classifier

Confusion Matrix - Testing Set

Predicted

Accuracy: ©.8228274731280744
Precision: ¢ 3157894736842
Recall: 0.911217485549133

F1 Score: ©.8383746052850257

5.5.2 Inter-Patient Transformer Classifier

Confusion Matrix - Testing Set

o 905 1005

True

Predicted

Accuracy: ©0.9114783789902648
Precision: ©.9174741336836919

Recall: ©.9851864914910502
F1 Score: 8.9501254305029975

Figure 5.12 Testing confusion matrix of inter-patient Transformer classifier

5.3  Challenges
Although all the classifiers trained by different data-split methods were able to obtain high
performance in the training and validation phase, Table 5.1, the significant difference

between the performance metrics of each pair of intra-patient classifier and inter-patient
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classifiers was observed. This is because of the data imbalance issue that exists in the dataset
caused by the inter-patient splitting method. In inter-patient analysis, the patient folders were
randomly assigned to only either the training set, validation set or testing set. The overfitting
problem might appear if the data in the training set lack diversity or variability, therefore the
classifier could not learn a more complex decision function to detect the presence of MI from
an unseen, unusual or poor-quality MI ECG. Plus, the number of patients in the dataset was
only 200 and only 48 of them are healthy subjects. Therefore, one of the challenges in this
project is to get a balanced and large dataset with high signal quality.

Secondly, the options for data augmentation that can be applied to the signal are limited as
the voltage value on each time step carries information.

Thirdly, to prove the complexity of the classifier network is enough to capture necessary
features from the ECGs, a lot of fine-tuning/experiments are required to observe the

performance metrics.

5.4  Objectives Evaluation

The first objective was achieved by training the proposed designed networks, LSTM, GRU,
ID-CNN and transformer with single-lead ECG data through an inter-patient analysis. The
second objective was achieved by visualizing the performance metrics including accuracy,
precision, sensitivity and Fl-score of each type of classifier through the graphs and the
confusion matrix. The difference in performance metrics was also explored by developing an
intra-patient classifier for each type of classifier with the same hyperparameter setting to
make a comparison. The effect of different data-split methods is serious, especially in the
dataset used in this project. Without learning leaked heartbeats from the same patients, the

classifier should not have such high performance.
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Chapter 6
CONCLUSION AND LIMITATIONS

6.1  Conclusion

By implementing the patient-split technique, the decrement in performance metrics obtained
by the models could be expected when compared to the previous studies that implemented
intra-patient analysis or did not mention how they split the data. To increase the reliability of
the performance shown by the models, it must be trained in a way that can represent or
simulate the real-world environment otherwise its performance can be questioned. On top of
this, it is dangerous to society when a classifier with misleadingly high testing performance
especially in terms of sensitivity is applied by the public as misclassification can happen. In
conclusion, four types of classifiers are proposed in this project to observe their ability to
detect the presence of MI in an inter-patient analysis, by taking the ECGs as the input. Uni-
directional LSTM and Transformer classifiers are able to get an accuracy above 90% and yet
also keep other performance metrics above 90%. GRU classifiers were the weakest classifiers
explored throughout this project. While in both intra-patient and inter-patient analysis, 1D-
CNN has the highest performance metrics in training and validation phases and it can
converge in through a small number of epochs. Thus, it has the highest potential to be
developed as the most robust and accurate classifier to detect MI.

To counter the growing population size and unhealthy diet habits spread across the global
society, the growing demand for manual human interpretation of ECG caused too much
workload to the medical field, especially the cardiologists, therefore a deep-learning-based

classifier takes place to monitor the occurrence of MI among the public simultaneously.

6.2  Future Works

A few future works can be expected to explore the potential of each classifier, which are
more fine-tuning and re-train the networks using a large balanced dataset to allow them to
learn more features from both MI patients and normal subjects.

Secondly, another dataset with the same sampling rate is required to test the ability of
generalization of the classifier to increase its reliability. Unfortunately, another open-source

database, PTB-XL [45] is applying a different sampling rate (500Hz frequency) while the
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trained classifiers in this project were trained by ECGs with a 1000Hz sampling rate. That

means half of the information the classifier requires to make the decision is lost.
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APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT
(Project 1)

Trimester, Year: First Semester Third Year | Study week no.: 2

Student Name & ID: Koh Zi Kang 22ACB00550

Supervisor: Dr Mogana a/p Vadiveloo

Project Title: Automatic Detection of Myocardial Infarction (MI) using ECG
Signals with Artificial Intelligence

1. WORK DONE

1. Realized the intra-patient splitting
2. Trained intra-patient LSTM and GRU classifier

2. WORK TO BE DONE

1. Design architecture of ID-CNN
2. Train intra-patient and inter-patient] D-CNN classifier

3. PROBLEMS ENCOUNTERED

1. Architecture design is a subjective

4. SELF EVALUATION OF THE PROGRESS

1. Ishould review and take reference from other research paper to look for an
appropriate network design.
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FINAL YEAR PROJECT WEEKLY REPORT
(Project I1)

Trimester, Year: First Semester Third Year | Study week no.: 4

Student Name & ID: Koh Zi Kang 22ACB00550

Supervisor: Dr Mogana a/p Vadiveloo

Project Title: Automatic Detection of Myocardial Infarction (MI) using ECG
Signals with Artificial Intelligence

1. WORK DONE

1. Designed an architecture for 1D-CNN classifier

2. Successfully upload the dataset to Google Drive

3. Utilize the function from the wfdb library to read the data file to obtain the
reading.

4. Assign the label (0/1) to each subject to differentiate them

5. Continued the literature review

2. WORK TO BE DONE

1. Split the data into a training set and a testing set at the patient level to ensure
inter-patient analysis

2. Check the type, data type and shape of data

Calculate the number of MI patients and normal subjects

4. Visualize the ECGs

[98)

3. PROBLEMS ENCOUNTERED

1. 1D-CNN requires a input with different shape

4. SELF EVALUATION OF THE PROGRESS

1. The progress is smooth.

V_%; KOH
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FINAL YEAR PROJECT WEEKLY REPORT
(Project 1I)

Trimester, Year: First Semester Third | Study week no.: 6
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Student Name & ID: Koh Zi Kang 22ACB00550

Supervisor: Dr Mogana a/p Vadiveloo

Project Title: Automatic Detection of Myocardial Infarction (MI) using ECG
Signals with Artificial Intelligence

1. WORK DONE

1. Used train_test split function from Sklearn to do the inter-patient data splitting.
The types, data types and shape of data were revealed through Numpy and Python
built-in function

3. The total number of MI patients and normal subjects were revealed: 148 MI
patients and 52 normal subjects

4. The ECGs were visualized using matplotlib

2. WORK TO BE DONE

1. Preprocessing steps such as denoise and baseline wandering
Search for implementation of Pan Tompkins algorithm to carry out the QRS and
R peak detection

3. Segmentation of ECGs to produce distinct heartbeats

3. PROBLEMS ENCOUNTERED

1. It is memory-consuming to visualize all the ECGs

4. SELF EVALUATION OF THE PROGRESS

1. Ishould be more careful in memory management or subscribe to Google Colab
Pro to have more memory

V. rgh— KOH
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FINAL YEAR PROJECT WEEKLY REPORT
(Project 1)

Trimester, Year: First Semester Third | Study week no.: 8
Year

Student Name & ID: Koh Zi Kang 22ACB00550

Supervisor: Dr Mogana a/p Vadiveloo

Project Title: Automatic Detection of Myocardial Infarction (MI) using ECG
Signals with Artificial Intelligence

1. WORK DONE

1. A Savitzky-Golay Filter was used to denoise the ECGs and remove their baseline
wandering

2. The Pan-Tompkins algorithm was found on GitHub

3. Segmentation was carried out using the R-peak for each heartbeat cycle

2. WORK TO BE DONE

Build LSTM network architecture

Build GRU network architecture

Build 1D-CNN network architecture

Training and evaluation of different network

Make the data into batches using the data loader function

SNk who =

3. PROBLEMS ENCOUNTERED

1. None

4. SELF EVALUATION OF THE PROGRESS

1. The progress is good
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FINAL YEAR PROJECT WEEKLY REPORT
(Project 1)

Trimester, Year: First Semester Third | Study week no.: 10
Year

Student Name & ID: Koh Zi Kang 22ACB00550

Supervisor: Dr Mogana a/p Vadiveloo

Project Title: Automatic Detection of Myocardial Infarction (MI) using ECG
Signals with Artificial Intelligence

1. WORK DONE

Network architecture is built for LSTM, GRU and 1D-CNN
Each model is trained using batches of training data

Each model is evaluated using batches of testing data
Visualization of the performance of each network

b=

2. WORK TO BE DONE

1. The fine-tuning to search for better parameters for each network
2. Produce the FYP1 report
3. Poster design

3. PROBLEMS ENCOUNTERED

1. Time-consuming to train the network if the epoch number is too large.

4. SELF EVALUATION OF THE PROGRESS

1. Ishould properly manage my time
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(Project 1)

Trimester, Year: First Semester Third | Study week no.: 12

Year

Student Name & ID: Koh Zi Kang 22ACB00550

Supervisor: Dr Mogana a/p Vadiveloo

Project Title: Automatic Detection of Myocardial Infarction (MI) using ECG

Signals with Artificial Intelligence

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

1. The fine-tuning process for each network
2. Poster was designed

2. WORK TO BE DONE

1. FYP 1 report
2. Presentation slide for moderation

3. PROBLEMS ENCOUNTERED

1. None

4. SELF EVALUATION OF THE PROGRESS

1. The progress is lagging behind

V- wyh—
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FACULTY OF INFORMATION

UT. R ¢OMMUNICATION AND TECHNOLOGY

AUTOMATIC DETECTION

OF MYOCARDIAL INFARCTION
USING ECG SIGNALS

WITH ARTIFICIAL INTELLIGENCE

INTRODUCTION w

» Myocardial Infarction = Heart Attack = Heart Muscle fail to pump blood
* ECG: Capture electrical activities of human heart
* Heart Attack induces changes in ECG signals.

OBJECTIVE @ Q

» To propose an automatic detection of myocardial infarction (MI) from ECG signals for
inter-patient analysis, utilizing data from a single ECG lead, deploying Long-Short Term
Memory (LSTM), Gated Recurrent Unit (GRU), I-dimensional Convolutional Neural Network
(CNN) and Transformer.

e To evaluate the result of Ml detection within LSTM, GRU, ID-CNN and Transformer networks
for inter-patient analysis.

* To investigate the effect of deploying different data-split methods on the performance of
the models for inter-patient and intra-patient analysis.

PROPOSED METHOD

¢ Develop models : LSTM, GRU, ID-CNN and Transformer
¢ Data splitting : Inter-patient and Intra-patient
* Reduce complexity : Use only single-lead data (lead II)

B -
RESULTS U D il

¢ Overall, the intra-patient classsifers perform better than inter-patient classifiers in
training, validating and testing.

« ID-CNN is the best-performing model in both intra-/inter-patient analysis

e Data Imbalance issue is the main problem of lower performance of inter-patient
classifier

DEVELOPER: KOH ZI KANG
SUPERVISOR: TS DR MOGANA A/P VADIVELOO

Q
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