COMPARING MACHINE LEARNING TECHNIQUES TO SEGMENTIZE AND
CLASSIFY TONGUE REGIONS FOR TRADITIONAL AND COMPLEMENTARY
MEDICINE (TCM) DIAGNOSIS
BY
BONG MIN XUAN

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF INFORMATION SYSTEMS (HONOURS) INFORMATION SYSTEMS
ENGINEERING
Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

COPYRIGHT STATEMENT

© 2025 Bong Min Xuan. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements
for the degree of Bachelor of Information Systems (Honours) Information Systems
Engineering at Universiti Tunku Abdul Rahman (UTAR). This Final Year Project
report represents the work of the author, except where due acknowledgment has been
made in the text. No part of this Final Year Project report may be reproduced, stored,
or transmitted in any form or by any means, whether electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the

author or UTAR, in accordance with UTAR's Intellectual Property Policy.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr. Lee Wai
Kong, who has given me this invaluable opportunity to undertake this project, which focuses
on applying machine learning techniques to segmentize tongue regions. Throughout the course
of this project, Dr. Lee has provided unwavering guidance, insightful advice, and constant
encouragement, helping me to navigate the challenges and complexities of the research. His
patience, expertise, and commitment to teaching have profoundly deepened my understanding
of machine learning and its real-world applications in medical imaging. This project not only
marks an important milestone in my academic journey but also lays a strong foundation for my
future endeavors in the field of artificial intelligence. I am truly grateful for the knowledge and

professional development that I have gained under his supervision.

To a very special person in my life, Yvonne Wong, I extend my sincere thanks for your
unconditional support, patience, and love. Yvonne’s presence has been a constant source of
strength, especially during the more challenging phases of this project. She has always believed
in me even when I doubted myself, and your encouragement has given me the courage and
determination to persevere. Her understanding, sacrifices, and continuous motivation have
been an integral part of my success, and I could not have come this far without your unwavering

companionship and positivity.

Lastly, I would like to express my deepest gratitude to my parents and family members for
their endless support, love, and belief in my potential. Their sacrifices, encouragement, and
constant reminders to strive for excellence have been the pillars that upheld me throughout my
academic life. Every achievement I accomplish is a testament to the strength and inspiration
that you have given me. Their faith in my abilities has fueled my motivation and has been the
driving force behind my perseverance through every challenge faced along this journey. I am

forever indebted to your boundless love and support.

A million thanks to all of them for being such an important part of my journey.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

This project investigates the application of machine learning and deep learning techniques for
automated tongue diagnosis in the context of Traditional Chinese Medicine (TCM). Tongue
diagnosis, a long-established diagnostic method in TCM, is often limited by subjectivity and
inconsistency. To address this, the study develops a systematic pipeline that integrates
segmentation and classification models, enabling more objective, accurate, and reproducible
analysis of tongue images. Three datasets—binary (stained vs. non-stained moss), four-class
(color variations), and five-class (coating categories)—were utilized to evaluate performance
under varying levels of complexity. Segmentation was performed using both classical methods
(SVM) and a deep learning approach (DuckNet), with DuckNet providing superior accuracy
and robustness. Classification was carried out through an evolutionary series of architectures,
beginning with AdderNet and progressing through ResNet20, HybridNet, and an Improved
HybridNet. Experimental results demonstrated that while AdderNet achieved the highest
accuracy in complex multi-class scenarios, it suffered from excessive computational cost and
scalability limitations. The Improved HybridNet consistently offered the best trade-off between
performance and efficiency, delivering strong accuracy with reduced parameters, training time,
and model size. Overall, the project highlights the potential of artificial intelligence to
modernize tongue diagnosis by providing standardized, efficient, and clinically relevant
computational tools. The findings establish a foundation for future integration of Al-driven

diagnostic support systems into healthcare practice

Area of Study: Image Processing, Artificial Intelligence

Keywords: Image Processing, TCM, Deep Learning, Image Classification, Machine Learning

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE

COPYRIGHT STATEMENT
ACKNOWLEDGEMENTS
ABSTRACT

TABLE OF CONTENTS
LIST OF FIGURES

LIST OF TABLES

CHAPTER 1 INTRODUCTION
1.1 Problem Statement and Motivation
1.2 Objectives
1.3 Project Scope and Direction
1.4 Contributions

1.5 Report Organization

CHAPTER 2 LITERATURE REVIEW

2.1 Review of the Technologies

2.1.1 Hardware Platforms for Medical Image Analysis

2.1.2 Firmware / Operating System Environments

2.1.3 Datasets Used in Medical and Tongue Diagnosis

2.1.4 Programming Languages and Libraries
2.2 Review of Existing Systems and Applications
2.2.1 Tongue Diagnosis Systems in TCM

2.2.2 Traditional and Machine Learning-Based Segmentation

2.2.3 Deep Learning-Based Segmentation Models

2.2.3.1 Convolutional Neural Network (CNN Base

Architecture)

2232 VGGI6
2.2.3.3 ResNet20
2.2.3.4 MobileNetV2

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ii
iii

iv

Ix

o N NV, TR, DY, N, T N U N NG

2.2.3.5 AdderNet
2.2.3.6 Summary of Classification Models

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH
3.1 Overview
3.2 Dataset Preparation
3.3 Segmentation Methods
3.3.1 Traditional Machine Learning Methods
3.1.2 DuckNet (Deep Learning Segmentation)
3.1.3 Method Selection
3.4 Classification Models
3.4.1 AdderNet
3.4.2 ResNet20
3.4.3 HybridNet
3.4.4 Improved HybridNet
3.5 Evaluation Metrics
3.5.1 Classification Metrics
3.5.2 Segmentation Metrics
3.5.3 Efficiency Metrics

3.6 Implementation Environment

CHAPTER 4 SYSTEM DESIGN
4.1 Overview
4.2 AdderNet Design
4.3 ResNet20 Design
4.4 HybridNet Design
4.5 TImproved HybridNet Design
4.6 Summary of Model Architectures and Their Roles in

Progression

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

10
14
14
14
15
16
16
16
16
16
18
18
18
18
19

20
20
20
21
22
22
23

Vi

CHAPTER 5 RESULTS AND DISCUSSION
5.1 Segmentation Performance
5.2 Classification Performance on SVM Segmented Datasets
5.2.1 Multi (4-Class) Dataset Results
5.2.1.1 ResNet20
5.2.1.2 HybridNet
5.3 Impact of Segmentation using SVM or DuckNet on Classification
5.4 Classification Performance on DuckNet-Segmented Datasets
(Main Experiments)
5.4.1 Binary (2-Class) Dataset Results
54.1.1 AdderNet
5.2.1.2 ResNet
5.2.1.3 HybridNet
5.2.1.4 Improved HybridNet
5.4.1.5 Model Performance on 2-Class Dataset (Stained
moss vs. Non-stained moss)
5.4.2 Multi (4-Class) Dataset Results
54.2.1 AdderNet
5.2.2.2 ResNet
5.2.2.3 HybridNet
5.2.2.4 Improved HybridNet
5.4.2.5 Model Performance on 4-Class Dataset (Pale,
Pale Red, Red, Bluish Purple)
5.4.3 Multi (5-Class) Dataset Results
5.4.3.1 ResNet
5.2.3.2 HybridNet
5.2.3.3 Improved HybridNet
5.4.3.4 Model Performance on 5-Class Dataset (Mirror-
Approximated, White-Greasy, Thin-White,
Yellow-Greasy, Grey-Black)
5.5 Overall Accuracy Summary and Trends
5.6 Computational Efficiency and Model Architecture Analysis
5.6.1 Best Classification Model Selction

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

25
25
28
28
28
29
30
32

32
32
33
34
35
36

37
37
38
39
40
41

42
42
43
44
45

46
48
50

Vi

CHAPTER 6 CONCLUSION AND RECOMMENDATION 51

6.1 Conclusion 51

6.2 Recommendation 52
REFERENCES 54
APPENDIX 56
SVM 56
DuckNet 73
AdderNet 85
ResNet 97
HybridNet 100
Improved HybridNet 103
POSTER 108

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

viii

LIST OF FIGURES

Figure Number

Figure 3.2

Figure 3.2.1

Figure 3.2.2
Figure 3.2.3
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.2.1.1

Figure 5.2.1.2

Figure 5.4.1.1
Figure 5.4.1.2
Figure 5.4.1.3
Figure 5.4.1.4

Figure 5.4.2.1
Figure 5.4.2.2
Figure 5.4.2.3
Figure 5.4.2.4

Figure 5.4.3.1
Figure 5.4.3.2
Figure 5.4.3.3

Title

Representative samples for categories across 2-, 4-, and 5-
class datasets
Tongue images from the 4 and 5 class datasets imported

into the CVAT tool

Semi auto annotation of the tongue region

Ground truth mask generated for segmentation

Sample tongue images

Ground truth masks of tongue regions

Tongue regions segmented using SVM

Tongue regions segmented using DuckNet

Confusion matrix of ResNet20 on the 4-class dataset
(SVM-segmented)

Confusion matrix of HybridNet on the 4-class dataset
(SVM-segmented)

Confusion matrix of AdderNet on the 2-class dataset
Confusion matrix of ResNet20 on the 2-class dataset
Confusion matrix of HybridNet on the 2-class dataset
Confusion matrix of Improved HybridNet on the 2-class
dataset

Confusion matrix of AdderNet on the 4-class dataset
Confusion matrix of ResNet20 on the 4-class dataset
Confusion matrix of HybridNet on the 4-class dataset
Confusion matrix of Improved HybridNet on the 4-class
dataset

Confusion matrix of ResNet20 on the 5-class dataset
Confusion matrix of HybridNet on the 5-class dataset
Confusion matrix of Improved HybridNet on the 5-class

dataset

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

12

13

13
13
27
27
27
27
28

29

32
33
34
35

37
38
39
40

42
43
44

Table Number

Table 4.6

Table 5.1.1

Table 5.1.2

Table 5.2.1.1

Table 5.2.1.2

Table 5.3.1

Table 5.3.2

Table 5.4.1.1

Table 5.4.1.2

Table 5.4.1.3

Table 5.4.1.4

Table 5.4.1.5
Table 5.4.2.1

Table 5.4.2.2

LIST OF TABLES

Title

Summary of Model Architectures and Their Roles in
Progression

Segmentation performance of SVM on 4- and 5-class
datasets

Segmentation performance of DuckNet on 4- and 5-class
datasets

Classification performance of ResNet20 on the 4-class
dataset (SVM-segmented)

Classification performance of HybridNet on the 4-class
dataset (SVMsegmented)

Comparison of ResNet20 performance on SVM vs.
DuckNet-segmented 4-class data

Comparison of HybridNet performance on SVM vs.
DuckNet-segmented 4-class data

Classification performance of AdderNet on the 2-class
dataset

Classification performance of ResNet20 on the 2-class
dataset

Classification performance of HybridNet on the 2-class

dataset

Classification performance of Improved HybridNet on the

2-class dataset

Summary comparison of all models on the 2-class dataset
Classification performance of AdderNet on the 4-class
dataset

Classification performance of ResNet20 on the 4-class

dataset

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

23

25

26

28

29

30

30

32

33

34

35

36
37

38

Table 5.4.2.3

Table 5.4.2.4

Table 5.4.2.5
Table 5.4.3.1

Table 5.4.3.2

Table 5.4.3.3

Table 5.4.3.4
Table 5.5.1

Table 5.6.1

Classification performance of HybridNet on the 4-class
dataset

Classification performance of Improved HybridNet on the
4-class dataset

Summary comparison of all models on the 4-class dataset
Classification performance of ResNet20 on the 5-class
dataset

Classification performance of HybridNet on the 5-class
dataset

Classification performance of Improved HybridNet on the
5-class dataset

Summary comparison of all models on the 5-class dataset
Overall accuracy summary of all models across 2-, 4-, and
5-class datasets

Computational efficiency comparison of all models

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

40

41
42

43

44

45
46

Xi

Chapter 1

Introduction

1.1 Problem Statement and Motivation

Traditional Chinese Medicine (TCM) relies heavily on tongue diagnosis to assess patients’
internal health conditions. However, manual tongue inspection is inherently subjective, with
diagnostic accuracy depending on the practitioner’s experience and perception. This
subjectivity often results in inconsistent outcomes and limits reproducibility. With the
increasing availability of digital tongue image datasets, computational methods now present a
significant opportunity to provide standardized, objective, and data-driven support for
diagnosis. The main challenge lies in developing automated systems capable of accurately
segmenting tongue regions and classifying subtle variations in color and coating while
maintaining computational efficiency for real-world use. Therefore, this project seeks to design,
evaluate, and optimize computational models that can support tongue diagnosis in a more
reliable and standardized manner, bridging the gap between traditional practice and modern

artificial intelligence.

1.2 Objectives

The objectives of this project are as follows:

1. To investigate and compare segmentation approaches using both traditional machine
learning and deep learning methods for accurate tongue region isolation.

2. To design and implement an evolutionary series of classification models

3. To assess performance using multiple evaluation metrics, including accuracy, precision,
recall, F1-score, Jaccard index, and computational efficiency indicators across different
datasets.

4. To determine the most effective model that trade-off between accuracy and efficiency,

with the aim of proposing a practical solution for diagnostic support applications.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.3 Project Scope and Direction

This project focuses primarily on the classification of tongue images, with segmentation
applied as a preprocessing step to ensure clinically relevant features are extracted. Three
datasets are employed: a binary dataset (stained vs. non-stained moss), a four-class dataset
(color variations), and a five-class dataset (coating categories). Classical methods such as
Support Vector Machines (SVM) are included as baselines, while DuckNet represents the deep
learning-based segmentation approach. For classification, the project implements an
evolutionary sequence of convolutional neural network architectures, starting with AdderNet
and culminating in an improved HybridNet. The scope is deliberately restricted to
computational model development rather than hardware prototyping or direct clinical
validation, in order to ensure reproducibility, controlled benchmarking, and feasibility within
the academic timeframe. The overall direction emphasizes building reproducible pipelines,
systematically benchmarking architectures, and analyzing the trade-offs between model

accuracy and computational efficiency.

1.4 Contributions

This study makes several contributions toward advancing the role of artificial intelligence in
modernizing tongue diagnosis and medical image analysis more broadly. First, it bridges
tradition and technology by showing how data-driven approaches can reduce the subjectivity
of traditional diagnostic practices, offering a more consistent and objective analysis of tongue
images. In addition, the project provides an evaluation of methodological strategies,
systematically comparing segmentation and classification approaches to reveal how different
computational techniques address challenges such as unclear boundaries, lighting variation,
and subtle visual differences in medical imagery. Another contribution is the focus on
promoting efficiency for real-world use, where the study emphasizes model designs that
balance diagnostic reliability with computational efficiency, making automated systems more
feasible in practical contexts, including resource-constrained environments. Beyond technical
results, the study offers guidance for future development by highlighting the importance of
dataset quality, diversity, and preprocessing in building reliable diagnostic tools, providing
insights that extend to broader medical Al applications. Finally, the work contributes by laying

a foundation for clinical integration, presenting a structured evaluation framework that can

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

guide future efforts to incorporate automated tongue diagnosis into healthcare practice, thereby

supporting more standardized, accessible, and efficient clinical decision-making.

1.5 Report Organization

This report is organized into six chapters. Chapter 1 (Introduction) outlines the project
background, motivation, problem statement, objectives, scope, contributions, and report
structure. Chapter 2 (Literature Review) surveys relevant technologies, datasets,
segmentation methods, and classification models, highlighting the strengths and weaknesses of
both traditional and deep learning approaches in medical image analysis. Chapter 3 (System
Methodology/Approach) details the overall workflow, including dataset preparation,
segmentation strategies, classification model design, evaluation metrics, and the
implementation environment. Chapter 4 (System Design) presents the architectural details of
each classification model—AdderNet, ResNet20, HybridNet, and the Improved HybridNet—
emphasizing the evolutionary design choices made to balance efficiency and performance.
Chapter 5 (Results and Discussion) reports experimental findings, comparing segmentation
and classification outcomes across different datasets, analyzing computational efficiency, and
identifying the most effective model. Finally, Chapter 6 (Conclusion and Recommendation)
summarizes the project’s contributions, key insights, and limitations, while offering

recommendations for future work and potential improvements.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2

Literature Review

2.1 Review of the Technologies

2.1.1 Hardware Platforms for Medical Image Analysis

The acceleration of tongue image processing, particularly for segmentation and classification
tasks, has been significantly enhanced by the use of modern hardware. High-performance
GPUs are essential for training complex deep learning models like DuckNet, which require
substantial computational power for pixel-level prediction. For instance, studies utilizing
architectures similar to U-Net for tongue segmentation have leveraged GPUs like the NVIDIA
Tesla T4 and RTX series to reduce training times from days to hours. Furthermore, for practical
deployment in clinical or mobile settings, there is a growing research focus on optimizing these
models for lightweight edge devices such as the Jetson Nano and Google Coral. These
platforms enable real-time analysis, showing promise for portable TCM diagnostic systems

that could be deployed in clinics or for remote consultations [1].

2.1.2 Firmware / Operating System Environments

The development of Al-driven tongue diagnosis systems predominantly occurs in Linux-based
environments (e.g., Ubuntu) due to superior compatibility with deep learning frameworks,
GPU drivers, and development tools. However, the barrier to entry for such setups has been
lowered by the advent of cloud-based platforms. Environments like Google Colab, which was
used in this project, provide pre-configured, GPU-accelerated access to Jupyter notebooks,
drastically simplifying experimentation and ensuring reproducibility without the need for local
hardware configuration. While the choice of OS has minimal direct impact on model accuracy,
it is crucial for development efficiency. The reproducibility and ease of collaboration offered
by these cloud platforms have made them a popular choice in recent literature for prototyping

medical image analysis systems, including those for TCM [2].

2.1.3 Datasets Used in Medical and Tongue Diagnosis

Datasets are foundational to building robust models. In the field of TCM, datasets like the TCM

Tongue Image Dataset, SciTongue, and Baidu Tongue Coating Images are commonly used.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

However, most are limited by small size, inconsistent labeling, or poor lighting conditions.
Beyond tongue images, datasets such as ISIC 2020 (for skin lesions), LIDC-IDRI (lung CT
scans), and DRIVE (retinal vessel segmentation) are often used to benchmark segmentation

algorithms, providing insights into generalizable methods for medical imaging [3].

2.1.4 Programming Languages and Libraries

The overwhelming majority of literature utilizes Python as the primary programming language,
largely due to its rich ecosystem of libraries for image processing and machine learning.
Libraries such as TensorFlow, Keras, PyTorch, scikit-learn, and OpenCV enable rapid
prototyping and development. According to a survey [4], over 90% of papers on deep learning

in medical image classification from 2020 to 2022 used Python-based frameworks.

2.2 Review of Existing Systems and Applications

2.2.1 Tongue Diagnosis Systems in TCM

Tongue diagnosis is a cornerstone of Traditional Chinese Medicine (TCM), used to assess
internal health by analyzing the tongue's color, shape, and coating; however, its traditional
practice i1s highly subjective and prone to inconsistency. This limitation has driven the
development of computer-aided diagnostic (CAD) systems, which have evolved from using
hand-crafted features with classical machine learning models like SVMs to modern deep
learning approaches that offer superior accuracy and robustness. Current research leverages
convolutional neural networks (CNNs) such as U-Net for segmentation and various classifiers
for diagnosis, yet a significant challenge remains in balancing high performance with
computational efficiency for practical clinical deployment. This project addresses that gap by
focusing on the development and evaluation of lightweight, efficient deep learning models
specifically designed for deployable tongue image analysis, aiming to provide a reliable and

accessible tool for modern TCM practice [5].

2.2.2 Traditional and Machine Learning-Based Segmentation

Early research in tongue image segmentation primarily relied on traditional image processing

techniques such as thresholding, edge detection, and region growing, which attempted to isolate

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

the tongue region based on color intensity or texture. However, these methods often suffered
from noise sensitivity, especially in images captured under non-uniform lighting or with
complex backgrounds.

Subsequently, classical machine learning techniques were introduced to improve segmentation
accuracy. For example, K-means clustering was widely adopted to partition tongue images into
foreground and background based on pixel intensity clusters. Support Vector Machines (SVM)
and Random Forest classifiers were later used for pixel-level classification using hand-crafted
features such as color histograms, Gabor filters, or texture descriptors.

Although these methods offered incremental improvements, they were still dependent on
manual feature extraction and lacked adaptability across diverse datasets. A survey [6] showed
that classical ML methods, while more interpretable and computationally efficient to train,
were outperformed by modern neural network-based approaches in terms of accuracy and
robustness. Nevertheless, their efficiency makes them a valuable baseline for comparison,
which is why methods like SVM are included in this study to benchmark the performance gains

of deep learning models [7].

2.2.3 Deep Learning-Based Segmentation Models

The transition to deep learning has revolutionized medical image segmentation, with encoder-
decoder architectures like U-Net becoming the gold standard. These models excel at precise
pixel-level classification, which is critical for isolating the tongue region from complex and
inconsistent backgrounds in clinical images. In tongue diagnosis, U-Net and its variants (e.g.,
DuckNet) are predominantly used due to their skip connections that preserve fine-grained
spatial details necessary for accurate boundary delineation, a foundational step before any

classification can occur.

2.2.3.1 Convolutional Neural Network (CNN — Base Architecture)

Convolutional Neural Networks form the foundational building block for most deep learning
models in image analysis. Their ability to automatically learn hierarchical features—from
edges and textures to complex patterns—makes them superior to hand-crafted feature methods.
In tongue diagnosis, basic CNNs can perform initial classification tasks but are inherently
limited. Their relatively shallow architecture struggles to capture the subtle and nuanced

features critical for TCM, such as fine cracks or slight color variations in the coating, and they

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

are highly susceptible to overfitting on small, specialized medical datasets, serving primarily

as a performance baseline [8].

2.2.3.2 VGG16

VGG16 addresses the depth limitation of basic CNNs through a uniform and deeper 16-layer
architecture. This allows it to learn more complex feature representations, making it a strong
candidate for classifying detailed tongue coating types. However, this gain in representational
power comes at a significant cost: its massive number of parameters leads to high
computational load and memory consumption, rendering it impractical for real-world
deployment where efficiency is a priority, thus establishing a clear trade-off between accuracy

and operational feasibility [9].
2.2.3.3 ResNet20

ResNet20 introduces a pivotal innovation with residual skip connections, which mitigate the
vanishing gradient problem and enable the effective training of deeper networks. This
architecture achieves a more favorable balance than VGG16, offering improved feature
extraction capabilities for discerning tongue color and morphology without an excessive
parameter count. Its stable and well-understood design makes it an ideal standardized
benchmark or backbone model for controlled comparisons in research, allowing subsequent
architectural modifications to be evaluated fairly without the confounding variable of training

instability [10].

2.2.3.4 MobileNetV2

MobileNetV2 represents a strategic shift towards efficiency, employing depthwise separable
convolutions and inverted residual blocks to drastically reduce computational complexity and
model size. This design is explicitly intended for mobile and embedded deployment, making it
highly relevant for developing practical, real-time diagnostic tools. While its lightweight nature
can sometimes come at a minor cost to accuracy on highly complex tasks, it provides a crucial
foundation for designing models where speed and low power consumption are paramount,

directly addressing the deployability goals of modern medical AI [11].

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2.3.5 AdderNet

AdderNet pushes the efficiency frontier further by fundamentally rethinking the convolutional
operation, replacing multiplications with additions to reduce computational energy expenditure.
This presents a promising pathway toward ultra-low-power diagnostic systems. However, as a
novel architecture, it faces challenges in training stability and a lack of hardware optimization,
making it more experimental. Its exploration is valuable for probing the limits of efficiency but
requires careful benchmarking against more established models to validate its effectiveness on

specialized medical imagery like tongue features [12].

2.2.3.6 Summary of Classification Models

This progression of architectures reveals a clear trade-off in medical image
analysis: representational capacity versus computational efficiency. While models like VGG16
and ResNet20 provide strong accuracy, their resource demands hinder practical application.
This review justifies the evolutionary approach of this project, which begins with the
experimental AdderNet and ResNet20 benchmark before strategically integrating the
efficiency principles of MobileNetV2. The goal is not merely to select an existing model, but
to engineer a new architecture that hybridizes the stability of residual learning with the extreme
efficiency of inverted residuals and depthwise convolutions. This synthesis aims to achieve an
optimal balance for accurate, deployable, and real-time tongue diagnosis, directly addressing

the identified gap between robust performance and practical utility.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3
System Methodology/Approach

3.1 Overview

This project implements a structured pipeline for automated tongue image analysis, consisting
of distinct data preparation, segmentation, classification and evaluation stages. The
methodology is designed to evaluate the effectiveness of different techniques at each step
across three datasets.

The workflow begins with three tongue image datasets: a binary (2-class) dataset with pre-
segmented images, and two multi-class datasets (4-class and 5-class) requiring manual
preprocessing. For the multi-class datasets, a crucial segmentation step is applied to isolate the
tongue region. This step utilizes a high-performance deep learning model (DuckNet), selected
after a comparative analysis with traditional machine learning methods (SVM and Random
Forest).

The outputs from this pipeline—the pre-segmented 2-class images and the newly segmented
4-class and 5-class images—are then used for the classification task. Classification is
performed using a progressive sequence of CNN architectures, from an exploratory model
(AdderNet) to a conventional baseline (ResNet20), and finally to efficiency-optimized designs
(HybridNet and Improved HybridNet).

A comprehensive evaluation follows, where all models are rigorously assessed using standard
performance metrics (e.g., accuracy, precision, recall) and efficiency indicators (e.g., model
size, training time). This multi-faceted evaluation provides a complete understanding of each
model's trade-offs, determining the most suitable architecture for accurate and practical tongue

image analysis.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 Dataset Preparation

This section details the acquisition and preparation of the three tongue image datasets used for
classification. The process for the multi-class datasets involved a standardized pipeline of
resizing, manual annotation, and targeted augmentation to ensure balance and quality before

segmentation.

1. Binary Dataset (2 Classes)

Source: SciDB Tongue Image Database [13].

Classes: Stained Moss, Non-Stained Moss.

Preparation: This dataset was provided with pre-segmented tongue regions. Each class
already contained more than 1,000 images, fulfilling the target dataset size without requiring
augmentation. All images were resized to 224x224 pixels.

Size & Split: The final dataset consists of 2,000 images (1,000 per class), split into 1,600 for
training and 400 for testing (80:20 ratio).

Purpose: Serves as a benchmark for binary classification of tongue moss presence.

2. Multi-Class Dataset (4 Classes)

Source: Self-labeled and combined from multiple public sources, primarily Baidu Al Studio
[14], supplemented with images from Kaggle [15], [16] and other repositories [17], [18].
Classes: Pale, Pale Red, Red, Bluish Purple.

Preparation: The initial collection had an uneven class distribution. The following pipeline

was applied:

- 1. Resizing: All images were first standardized to a resolution of 224x224 pixels.

- 2. Annotation: Each resized image was then annotated using the CVAT tool (semi
automation annotation) to obtain mask for further segmentation.

- 3. Targeted Augmentation: To create a balanced dataset, classes with fewer than 500
samples were augmented using transformations (e.g., rotation, flipping) to reach the

target of 500 images per class.

Size & Split: The final, balanced dataset consists of 2,000 images total (500 per class), split
into 1,600 for training and 400 for testing.

Purpose: Focuses on significant tongue color-based categorization. This dataset requires
segmentation, as detailed in Section 3.3.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

10

3. Multi-Class Dataset (5 Classes)

Source: Obtained directly from the project supervisor.
Classes: Mirror-Approximated, White-Greasy, Thin-White, Yellow-Greasy, Grey-Black.

Preparation: The initial class distribution was uneven. The preparation involved.

- 1. Resizing: All images were first standardized to a resolution of 224x224 pixels.
- 2. Annotation: Each resized image was annotated using the CVAT tool to obtain mask

for further segmentation.

- 3. Targeted Augmentation: The same augmentation strategy was applied to achieve a

final balance of 500 images per class.

Size & Split: The final, balanced dataset consists of 2,500 images total (500 per class), split
into 2,000 for training and 500 for testing.
Purpose: Focuses on classifying variations in tongue coating. This dataset requires

segmentation (Section 3.3).

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
11

Sample datasets

Class Category Sample Images

2 Stained Moss

Non-Stained
Moss

4 Pale

Pale Red

Red

Bluish Purple

5 Mirror-
Approximated

White-Greasy

Thin-White

Yellow-
Greasy

Grey-Black

Figure 3.2: Representative samples for categories across 2-, 4-, and 5-class datasets

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

12

Annotation using CVAT

v @ Computer Vision Amnatation - X | - o
€ C @ localhostB080/task N

CVAT o > oud Storag 2q M) @ A admin~
B8 KKEP > DN 2 0 @

L 4 Objects Labels &
¥ Items: 0 Sortby 1D - ascent

o) a ° -

(=}

N

&

O

Sy —
S Instae

® o + =
N s % DR
CVAT P O ® Rumn~
= B O O s
* Objects Labels lssues ==
: Rems 1 Sotby 1D ascent
k2] & ©® -
tongue
= 2 (SEMIAUIO)) & R ® »
®
o
29
v Appearance
Ou
~ @ o - &
« c o« % 0
CVAT 1 ack s ud Storage: Reque Made) @ A admin-~
= a ® .
E = L KO 20 | el 1 3, =) @ ® Standard
* Objects Labels =
& tems 1 Sotby D oscent
2 & ® -
2
tongue
=] 5 A’ @ =
_
o
&
O
a v Appearance
-
(<)

Outlined borders &*

Show bitmap Show projections

Figure 3.2.3: Ground truth mask generated for segmentation

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

13

3.3 Segmentation Methods

Segmentation is a critical preprocessing step that isolates the tongue region from the
background, ensuring that classification models learn only from relevant features like coating,
color, and texture. This step was applied exclusively to the 4-class and 5-class datasets, as
the binary dataset was provided with pre-segmented images. Two segmentation paradigms
were explored: classical machine learning methods from FYP1 and a deep learning-based

approach.

3.3.1 Traditional Machine Learning Methods

The initial investigation involved two classical techniques: Support Vector Machine (SVM)
and Random Forest (RF). Both methods classify pixels as tongue or background using
manually engineered features, including texture (Local Binary Patterns), color (RGB channels),

and spatial information (distance from center).

e Random Forest (RF): While achieving high recall (99.25%), this ensemble method
was computationally intensive. It required a prohibitively long training time of
approximately 4 hours and resulted in a large model size (227.5 MB) due to its deep
decision trees.

e Support Vector Machine (SVM): Selected as a lightweight and efficient alternative,
SVM delivered high precision with a drastically shorter training time of about 1
hour and a minimal model size (0.29 KB). However, it struggled with complex
boundaries due to its reliance on a linear kernel.

These methods provided a strong baseline for comparative analysis against deep learning

approaches.

3.3.2 DuckNet (Deep Learning Segmentation)

DuckNet is a fully convolutional neural network with an encoder-decoder structure, similar to
U-Net, but enhanced for efficient multi-scale feature extraction using custom convolutional
blocks. This model was implemented based on the architecture

from https://github.com/RazvanDu/DUCK-Net.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

14

https://github.com/RazvanDu/DUCK-Net

o Architecture: It utilizes a series of strided convolutional layers for downsampling and
skip connections with element-wise addition to merge features from the encoder and
decoder paths.

o Implementation: A critical hyperparameter is the number of starting filters, which
controls the model's capacity. Based on extensive experimentation in FYP1, the model
was configured with 17 starting filters.

o Justification for 17 Filters: As detailed in Table 4.5.1 of the FYP1 report, variants
with 4, 8, 12, 17, and 34 filters were tested. The 17-filter configuration achieved an
optimal balance, delivering high accuracy (99.60%) and a strong Dice score (0.9878)
without the computational overhead of the larger 34-filter model, which showed only
marginal improvement (0.9967 accuracy) at quadruple the parameter cost. This
represents the point of diminishing returns for this specific task.

e Strengths: Automatically learns optimal pixel-level representations from data, capable
of handling complex variations in tongue appearance. Achieves significantly higher

accuracy than traditional methods.

3.3.3 Method Selection

For consistency and reliability, the 17-filter DuckNet model was adopted as the primary
segmentation method for the 4-class and 5-class datasets. Although SVM served as an
efficient traditional baseline with a fast training time, DuckNet was the default choice due to
its superior robustness, accuracy, and generalization ability. The inclusion of both traditional
methods demonstrates the clear performance-efficiency trade-off between classical and deep

learning methodologies for this task.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

15

3.4

Classification Models

Following segmentation, tongue images were classified using a sequence of progressively

refined convolutional neural network architectures. The detailed system design, including

specific modules and training hyperparameters for each model, is provided in Chapter 4. The

model progression is as follows:

3.4.1 AdderNet

Origin: Adopted from Huawei Noah's Ark Lab (https:/github.com/huawei-

noah/AdderNet) to explore addition-based convolutions as a hardware-efficient

alternative.
Role: Served as an exploratory model to test the feasibility of this novel approach.

Outcome: Computationally heavy training due to unoptimized operators motivated

a pivot to a standardized baseline.

3.4.2 ResNet20

Rationale: A conventional baseline created by converting AdderNet back to standard

convolutions, retaining the residual (3-3-3) structure.

Role: Acts as a controlled benchmark to isolate the effect of subsequent architectural

changes.

3.4.3 HybridNet

Motivation: Integrates MobileNetV2's efficiency principles (inverted residuals,

depthwise separable convolutions) into a residual framework.

Design Intent: To create a lightweight architecture that maintains performance while

improving computational efficiency.

3.4.4 Improved HybridNet

Motivation: An enhanced version designed for superior generalization and

deployability.

Bachelor ot Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

16

https://github.com/huawei-noah/AdderNet
https://github.com/huawei-noah/AdderNet

e Refinements: Incorporates Squeeze-and-Excite

(SE) modules, DropPath regularization, and activation checkpointing.

e Role: The final candidate architecture, explicitly engineered for an optimal balance

of accuracy, robustness, and efficiency.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

17

3.5 Evaluation Metrics

To comprehensively assess system performance, both effectiveness and efficiency were
evaluated. The evaluation strategy was designed to capture not only classification accuracy but

also robustness across classes and practical deployability of models.

3.5.1 Classification Metrics

The following standard performance metrics were used for classification tasks:
e Accuracy: The ratio of correctly predicted samples to the total number of samples.
e Precision: The proportion of correctly predicted positive samples relative to all
predicted positives, useful for measuring reliability in clinical contexts.
o Recall (Sensitivity): The proportion of correctly predicted positive samples relative to
all actual positives, ensuring that clinically significant cases are not overlooked.
e F1 Score: The harmonic mean of Precision and Recall, balancing the trade-off between
false positives and false negatives.
All metrics were calculated per class and overall, ensuring that performance differences

between categories (e.g., pale vs. red tongues) were fully captured.

3.5.2 Segmentation Metrics

For segmentation tasks, an additional metric was included:
e Jaccard Index (Intersection over Union): Measures the overlap between predicted
segmentation masks and ground-truth labels. This metric is particularly relevant for

medical image segmentation, where precise region delineation is crucial.

3.5.3 Efficiency Metrics

In addition to predictive performance, the efficiency of each model was also evaluated,
reflecting its practicality for real-world applications:

e Training Time: Total time required to train a model under a fixed configuration.

e Parameter Count: The total number of trainable parameters in the model, serving as

an indicator of model complexity.

e Model Size: The storage footprint of the trained model, measured in megabytes.
These efficiency indicators provide a complementary view of model performance, balancing
accuracy with deplorability considerations such as memory footprint and computational
requirements.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

18

3.6 Implementation Environment

All model training and evaluation were conducted using Google Colab, a cloud-based
integrated development environment (IDE) that provides free GPU access. The following setup
was used throughout the project:
o Execution Environment: Google Colab (Jupyter Notebook interface).
e GPU: NVIDIA Tesla T4 GPU, 16 GB GPU memory (allocated by Colab).
o Code Management:
o All project code files (.py) were stored on Google Drive.
o A Jupyter Notebook (.ipynb) was created for each model (AdderNet, ResNet20,
HybridNet, Improved HybridNet).
o Each notebook imported the corresponding .py scripts from Google Drive,
enabling modular execution and reproducibility.
e Software:
o Python 3.x with PyTorch and torchvision as the main deep learning frameworks.
o Supporting libraries included NumPy, OpenCV, scikit-learn, Matplotlib, and
seaborn for metrics visualization.
This environment provided sufficient computational resources to train deep learning models
within practical time limits while maintaining a reproducible workflow that could be re-

executed directly from cloud storage.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

19

Chapter 4
System Design

4.1 Overview

The system design describes the detailed implementation of classification models for
automated tongue image analysis. Each model was implemented in PyTorch, with a shared
training and evaluation pipeline optimized for reproducibility. The architectures followed an
evolutionary progression — AdderNet — ResNet20 — HybridNet — Improved
HybridNet — where each stage introduced new design elements to balance classification

accuracy and computational efficiency.
Shared Training & Evaluation Pipeline:

e Training Script (main.py): A supervised training loop using SGD with momentum,
a cosine learning rate schedule, and CrossEntropyLoss.

o Evaluation Script (test.py): Computes metrics and generates confusion matrices.

e Preprocessing: All inputs were resized to 224x224 and normalized using dataset-
specific mean and standard deviation values.

e Loss Function: All models were optimized using categorical cross-entropy loss.

4.2 AdderNet Design

AdderNet was chosen as the starting point to explore a novel operation: replacing convolution

multiplications with addition operations, potentially reducing energy consumption.

e Custom Operation — adder2d:
Implemented in adder.py, this operation replaces convolution’s dot product with the

absolute difference:

M N

Y(i?j'-' k) — Z Z |Wm._n,k X-i—m.j+n

m=1 n=1

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

20

where W are filter weights and X is the local input patch.

e Architecture (resnet20.py with adder layers):
o Residual blocks constructed using adder2d instead of Conv2d.
o Each block: Adder — BatchNorm — ReLU — Adder — BatchNorm —
Residual Add — ReLU.
o Stacked [3,3,3] blocks (20 layers).

o Adaptive Average Pooling — Fully connected classifier.

Role in progression: Served as the base model, testing feasibility of addition-based

convolutions. Limitation: high training time due to lack of GPU optimization.

4.3 ResNet20 Design

ResNet20 provided a conventional CNN baseline to isolate the effect of AdderNet’s addition

operations while retaining residual learning.

e Architecture:
o Residual blocks with Conv2d layers.
o Same [3,3,3] block structure as AdderNet.
o Global Average Pooling — classifier head.

e Rationale:
o Establishes a benchmark CNN.

o Retains residual learning but removes AdderNet’s complexity.

Training Loss Function: All CNNs were optimized using categorical cross-entropy loss:

N C
1

Lo = E Z Yie lﬂg(ﬁi,c)

i=1 e=1
where Yie is the ground truth and Yie the predicted probability for class ccc.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

21

Role in progression: ResNet20 acted as the benchmark backbone, providing a stable

reference for further improvements.

4.4 HybridNet Design

HybridNet was introduced to integrate the stability of ResNet with the efficiency of

MobileNetV2, aiming to reduce parameters without sacrificing performance.

o Inverted Residual Block:

o

o

Expansion — depthwise convolution — projection sequence.

Residual connection applied if stride=1 and channels match.

o Hybrid Block:

@)

o

Wraps an InvertedResidual with ResNet-style shortcut projection when needed.
Adds outputs with ReL.U activation.

o HybridNet Architecture (hybrid.py):

@)

@)

o

Stem: Conv3x3 — BN — ReLU.
Three stages of HybridBlocks (channels: 16 — 24 — 48 — 96).

Adaptive Average Pooling — Fully connected classifier.

Role in progression: To introduce residual stability + depthwise efficiency could produce a

lighter network (~228K parameters) while maintaining strong performance.

4.5 Improved HybridNet Design

Improved HybridNet incorporated modern refinements to further enhance accuracy and

efficiency.

¢ Key Enhancements:

o

o

o

o

DropPath: stochastic depth regularization.
Squeeze-and-Excite (SE): channel attention.
Activation Checkpointing: reduced memory cost.

Dynamic Downsampling: adaptive resolution reduction.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

22

o Reduced Expand Ratio: lowered from 6.0 — 3.0, reducing FLOPs.

o Dropout & Weight Initialization: improve stability.

o Architecture Flow:

o Stem (Conv3x3).

o Stacked HybridBlocks with SE + DropPath.

o Global Average Pooling — Dropout — Fully connected classifier.

Role in progression: The final optimized model, achieving the best trade-off: smallest size

(~131K params, 0.57 MB), fastest training (~20-25 min), and highest efficiency.

4.6 Summary of Model Architectures and Their Roles in

Progression
Model Core Idea Key Modules Purpose in Progression
AdderNet | Replace Conv2d | adder2d layers, standard To serve as
multiplications residual blocks a foundational model and

with L1-norm
addition

operations.

ResNet20 | Establish a
conventional,
highly-optimized
residual CNN

baseline.

HybridNet | Fuse the stability
of ResNet with
the efficiency of

MobileNetV2.

Bachelor of Information Systems (Honours) Information Systems Engineering

(BasicBlock).

Standard Conv2d layers,
BatchNorm, ReLU, and
residual blocks
(BasicBlock) with

projection shortcuts.

HybridBlock (1x1
expansion conv —
Depthwise conv — 1x1

projection conv + residual

explore the feasibility of

a novel, multiplication-
light approach for feature
extraction on tongue
imagery.

To provide

a standardized
benchmark for fair
comparison, ensuring
performance differences
are due to architecture, not
training procedure.

To introduce efficiency-
focused design, testing if
lightweight, inverted

residual blocks can

Faculty of Information and Communication Technology (Kampar Campus), UTAR

23

connection), linear maintain accuracy with

bottlenecks. fewer parameters and
FLOPs.
Improved | Enhance Squeeze-and-Excite To be the final candidate
HybridNet HybridNet with | (SE) blocks for channel architecture, explicitly
modern attention, | attention, DropPath for engineered for
regularization, regularization, reduced superior robustness,
and memory expansion ratios, activation | generalization, and
optimization checkpointing. deployability through
techniques. targeted refinements.

Table 4.6: Summary of Model Architectures and Their Roles in Progression

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

24

Chapter 5

Results And Discussion

5.1 Segmentation Performance

Segmentation was applied to the multiclass datasets (4-class and 5-class) using two methods:
a traditional SVM classifier and the deep learning-based DuckNet architecture. SVM was
selected over Random Forest (RF) from prior work due to its significantly shorter training time

(~1 hour vs. ~4 hours) for equivalent performance.

SVM

The SVM model achieved moderate segmentation results, as shown in Table 5.1.1. It is
important to note that its performance metrics are lower than those reported in FYP1. This
discrepancy is primarily due to the increased complexity of the FYP2 datasets. Unlike the FYP1
dataset, which was captured under controlled conditions, the images in the 4-class and 5-class
datasets contain more challenging backgrounds, such as varying clothing colors and
environments. These complex backgrounds make the segmentation task more difficult for a

traditional, feature-based method like SVM.

Dataset |[Accuracy (%) [Precision (%) [Recall (%) [F1 Score (%) [Jaccard (%) (Training time
4 class [86.21 84.73 79.69 82.13 69.68 55h 49s
5 class [86.02 86.45 79.41 82.78 70.62 01h 11m 34s

Table 5.1.1: Segmentation performance of SVM on 4- and 5-class datasets

Total parameters: 45

Model size: 0.35 KB

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

25

DuckNet

In contrast, DuckNet demonstrated exceptional performance, consistently exceeding 98%
accuracy and 95% Jaccard index across both datasets (Table 5.1.2). Its deep learning
architecture enabled it to learn robust features capable of handling the complex backgrounds

that challenged the SVM model.

Dataset |Accuracy (%) [Precision (%) [Recall (%) [F1 Score (%) [Jaccard (%) [Training time
4 class [98.69 07.28 08.17 07.73 05.55 03h 54m 06s
5 class [98.53 08.85 07.77 08.31 96.67 03h 58m 10s

Table 5.1.2: Segmentation performance of DuckNet on 4- and 5-class datasets

Total parameters: 38,921,088
Model size: 148.47 MB

Discussion:

SVM is extremely lightweight (45 parameters; 0.35 KB) and CPU-friendly, but it
underperforms on the more complex FYP2 imagery. DuckNet, though much larger (38.9 M
parameters; 148.47 MB), delivers consistently superior segmentation (=98% accuracy; >95%
Jaccard) on both datasets. We therefore adopt DuckNet as the default pre-processing for all
classification experiments. To quantify sensitivity to segmentation quality, we also report

results using SVM-segmented data in subchapter 5.2-5.3.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

26

Figure 5.1: Sample tongue images

Oluje|®

Figure 5.2: Ground truth masks of tongue regions

Figure 5.4: Tongue regions segmented using DuckNet

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

27

5.2 Classification Performance on SVM Segmented Datasets

5.2.1 Multi (4-Class) Dataset Results

5.2.1.1 ResNet20

Method Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Pale 87.00 84.47 87.00 80.65

Pale red 75.00 87.21 75.00 80.65

Red 89.00 01.75 89.00 90.36

Bluish purple 99.00 86.84 87.00 85.71
Overall 87.50 87.57 87.50 87.31

Table 5.2.1.1: Classification performance of ResNet20 on the 4-class dataset (SVM-segmented)

Training time: 20m 08s
Total parameters: 274,008
Model size: 1.09 MB

Confusion Matrix

bluish purple

80

pale

60

True Label

pale red
|

- 40

- 20

red

| I 1l
bluish purple pale pale red red
Predicted Label

Figure 5.2.1.1: Confusion matrix of ResNet20 on the 4-class dataset (SVM-segmented)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

28

5.2.1.2 HybridNet

Method IAccuracy (%) Precision (%) Recall (%) [F1 Score (%)
Pale 93.00 76.86 93.00 84.16
Pale red 65.00 92.86 65.00 76.47
Red 91.00 91.92 91.00 01.46
Bluish purple 100.00 90.91 100.00 05.24
Overall 87.25 90.91 100.00 95.24

Table 5.2.1.2: Classification performance of HybridNet on the 4-class dataset (SVM-

segmented)

Training time: 01h 24m 23s
Total parameters: 228,804
Model size: 0.95 MB

Confusion Matrix

100
@
B
>
[« N
=
("]
5
s 80
@
g 60
@
Q2
o
-
[+
=~
2 el
s - 40
@
®
Q
-20
©
5

pale red red
Predicted Label

bluish Ipurple pa'le

Figure 5.2.1.2: Confusion matrix of HybridNet on the 4-class dataset (SVM-segmented)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

29

5.3 Impact of Segmentation using SVM or DuckNet on
Classification

Note: To facilitate a direct comparison of segmentation methodologies, the classification results
for the DuckNet-segmented dataset are presented here first alongside those from the SVM-
segmented data.

(A full discussion of DuckNet's segmentation performance is reserved for the next chapter.)

ResNet20

Method |Accuracy (%) [Precision (%) [Recall (%) [F1 Score (%) [Training time
SVM 87.50 87.57 87.50 87.31 20m 08s
DuckNet [86.25 86.16 86.25 85.92 22m 14s

Table 5.3.1: Comparison of ResNet20 performance on SVM vs. DuckNet-segmented 4-class

data
HybridNet
Method |Accuracy (%) |Precision (%) [Recall (%) [F1 Score (%) [Training time
SVM 87.25 00.91 100.00 05.24 01h 24m 23s
DuckNet [86.75 86.89 86.75 86.39 01h 23m 46s

Table 5.3.2: Comparison of HybridNet performance on SVM vs. DuckNet-segmented 4-class
data

Key Finding: Segmentation Accuracy # Classification Accuracy

Contrary to the principle that segmentation quality should influence classification performance,
our results show a weak correlation between the two. Specifically, models trained on data from
the weaker SVM segmentator achieved similar—and in some cases marginally higher—
accuracy than those trained on DuckNet-segmented data.

This suggests that the classification networks are robust to the precise boundaries of the
segmentation mask. The primary requirement is the successful isolation of the tongue region
from the background. Once this is achieved, the model's capacity to learn discriminative
features from the interior of the region appears to be the dominant factor in final performance.

The minor performance differences observed (1-2%) fall within the expected variance of deep

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

30

learning training cycles (e.g., from weight initialization or data shuffling) and cannot be
definitively attributed to the segmentation method.
Scope Note: This finding is based on a comparison of ResNet20 and HybridNet on the 4-class

dataset.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

31

5.4 Classification Performance on DuckNet-Segmented Datasets
(Main Experiments)

5.4.1 Binary (2-Class) Dataset Results

5.4.1.1 AdderNet

Class IAccuracy (%) Precision (%) Recall (%) F1 Score (%)
Stained moss 98.00 03.78 98.00 05.84

INon stained moss 05.30 07.91 93.50 05.65
Overall 95.75 95.84 95.75 95.75

Table 5.4.1.1: Classification performance of AdderNet on the 2-class dataset

Training time: 03h 51m 14s
Total parameters: 273.876
Model size: 1.09 MB

Confusion Matrix

i
wl
o
E
=
@
i=
e
u
c
=}
_ €
]
0
[1+]
- - 100
]
=
}_
W -75
L
o
E
° - 50
£
m
i
-25

i
stained moss non stained moss

Predicted Label

Figure 5.4.1.1: Confusion matrix of AdderNet on the 2-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

32

5.4.1.2 ResNet20

Class Accuracy (%) Precision (%) Recall (%) [F1 Score (%)
Stained moss 08.00 02.89 08.00 05.38
Non stained moss 02.50 07.88 02.50 05.12
Overall 95.25 95.39 95.25 95.25

Table 5.4.1.2: Classification performance of ResNet20 on the 2-class dataset

Training time: 24m 39s

Total parameters: 273,876

Model size: 1.09 MB

True Label
non stained moss

stained moss

Confusion Matrix

stained moss

i
non stained moss

Predicted Label

- 100

-75

- 50

- 25

Figure 5.4.1.2: Confusion matrix of ResNet20 on the 2-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

33

5.4.1.3 HybridNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Stained moss 99.50 03.87 99.50 96.60
Non stained moss 93.50 99.47 03.50 96.39
Overall 96.50 96.67 96.50 96.50

Table 5.4.1.3: Classification performance of HybridNet on the 2-class dataset

Training time: 01h 26m 07s

Total parameters: 228,610

Model size: 0.95 MB

True Label
non stained moss

stained moss

stained moss

Confusion Matrix

Predicted Label

I
non stained moss

Figure 5.4.1.3: Confusion matrix of HybridNet on the 2-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

34

5.4.1.4 Improved HybridNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Stained moss 99.50 05.22 99.50 07.31
Non stained moss 95.00 09.48 95.00 97.19
Overall 97.25 97.35 97.25 97.25

Table 5.4.1.4: Classification performance of Improved HybridNet on the 2-class dataset

Training time: 21m 02s
Total parameters: 130,922
Model size: 0.57 MB

Confusion Matrix

175

150

non stained moss

125

- 100

True Label

-75

-50

stained moss

-25

I
stained moss non stained moss
Predicted Label

Figure 5.4.1.4: Confusion matrix of Improved HybridNet on the 2-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

35

5.4.1.5 Model Performance on 2-Class Dataset (Stained moss vs. Non-stained moss)

Method Accuracy [Precision [Recall [F1 ScoreTraining (Total Model
(%) (%) (%) (%) time parameters [size
AdderNet 05.75 05.84 95.75 [95.75 |03h 51m[273.876 1.09
14s MB
ResNet20 05.25 95.39 05.25 [95.25 [24m39s [273,876 1.09
MB
HybridNet 96.50 96.67 96.50 [96.50 [01h 228,610 0.95
26m 07s MB
Improved 97.25 97.35 97.25 97.25 _21m 02s (130,922 0.57
HybridNet MB

Table 5.4.1.5: Summary comparison of all models on the 2-class dataset

e Observation: All models performed strongly (>95% accuracy).

e AdderNet and ResNet20: Good performance, but relatively heavier in parameters.

e HybridNet: Slight improvement (~96.5%).

e Improved HybridNet: Best balance with 97.25% accuracy, reduced parameters

(~131K vs. 230K), and smaller model size.

e Discussion point: Binary classification is inherently simpler, and all models can handle

it well. The improved HybridNet is the most efficient choice, showing the benefit of

architectural refinements.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

36

5.4.2 Multi (4-Class) Dataset Results

5.4.2.1 AdderNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Pale 88.00 87.13 88.00 87.56

Pale red 86.00 87.76 86.00 86.87

Red 93.00 93.00 93.00 93.00

Bluish purple 97.00 96.04 97.00 96.52
Overall 91.00 90.98 91.00 90.99

Training time: 03h 51m 06s

Total parameters: 274,008
Model size: 1.09 MB

True Label

Confusion Matrix

pale red pale bluish purple

red

I I
bluish purple pale

I
pale red

Predicted Label

red

Table 5.4.2.1: Classification performance of AdderNet on the 4-class dataset

80

60

- 40

-20

Figure 5.4.2.1: Confusion matrix of AdderNet on the 4-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

37

5.4.2.2 ResNet20

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Pale 87.00 83.65 87.00 85.29
Pale red 68.00 83.95 68.00 75.14
Red 93.00 83.78 93.00 88.15
Bluish purple 97.00 93.27 97.00 95.10
Overall 86.25 86.16 86.25 85.92

Table 5.4.2.2: Classification performance of ResNet20 on the 4-class dataset

Training time: 22m 14s

Total parameters: 274,008

Model size: 1.09 MB

True Label
pale bluish purple

pale red

red

|
bluish purple

Confusion Matrix

|
pale

|
pale red
Predicted Label

red

80

60

- 40

-20

Figure 5.4.2.2: Confusion matrix of ResNet20 on the 4-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

38

5.4.2.3 HybridNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Pale 89.00 83.18 89.00 85.99
Pale red 69.00 87.34 69.00 77.09
Red 89.00 00.82 89.00 89.90
Bluish purple 100.00 86.21 100.00 02.59
Overall 86.75 86.89 86.75 86.39

Table 5.4.2.3: Classification performance of HybridNet on the 4-class dataset

Training time: 01h 23m 46s

Total parameters: 228,804

Model size: 0.95 MB

True Label
pale bluish purple

pale red

red

]
bluish purple

Confusion Matrix

|
pale

|
pale red

Predicted Label

red

100

80

60

- 40

-20

Figure 5.4.2.3: Confusion matrix of HybridNet on the 4-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

5.4.2.4 Improved HybridNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Pale 84.00 84.85 84.00 84.42
Pale red 73.00 83.91 73.00 78.07
Red 96.00 89.72 96.00 92.75
Bluish purple 98.00 01.59 08.00 04.69
Overall 87.75 87.52 87.75 87.48

Table 5.4.2.4: Classification performance of Improved HybridNet on the 4-class dataset

Training time: 20m 09s

Total parameters: 131,116
Model size: 0.57 MB

True Label

pale red pale bluish purple

red

|
bluish purple

Figure 5.4.2.4: Confusion matrix of Improved HybridNet on the 4-class dataset

Confusion Matrix

|
pale red
Predicted Label

|
pale

red

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

80

60

- 40

-20

40

5.4.2.5 Model Performance on 4-Class Dataset (Pale, Pale Red, Red, Bluish Purple)

Method Accuracy [Precision [Recall [F1 ScoreTraining (Total Model
(%) (%) (%) (%) time parameters [size
AdderNet 91.00 90.98 91.00 [90.99 [03h 51m274,008 1.09
06s MB
ResNet20 86.25 86.16 86.25 [85.92 [22m 14s 274,008 1.09
MB
HybridNet 86.75 86.89 86.75 [86.39 [01h 23m[228,804 0.95
46s MB
Improved 87.75 87.52 87.75 [87.48 20m 09s |131,116 0.57
HybridNet MB

Table 5.4.2.5: Summary comparison of all models on the 4-class dataset

e Observation: Accuracy drops (~86-91%) compared to binary classification due to
greater complexity and class similarity.

e AdderNet: Highest accuracy (91%), but too large and inefficient.

e ResNet20 and HybridNet: Moderate performance (~86%), strong for some classes
(Red, Bluish Purple), weak for Pale Red.

e Improved HybridNet: Balanced results, slightly better generalization, and much
smaller model size (0.57 MB).

o Discussion point: The pale red class remains the hardest to classify, showing class
overlap is a bigger limitation than model architecture. Efficiency vs. accuracy trade-off

favors the improved HybridNet.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

41

5.4.3 Multi (5-Class) Dataset Results

AdderNet was excluded from the 5-class experiments due to its excessive computational
requirements, which caused training crashes. It was only feasible for the 2-class and, at most,

the 4-class datasets.

5.4.3.1 ResNet20

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Mirror-Approximated [98.00 75.97 08.00 85.59
White-Greasy 63.00 86.30 63.00 72.83
Thin-White 69.00 82.14 69.00 75.00
Yellow-Greasy 99.00 86.84 99.00 05.52
Grey-Black 100.00 100.00 100.00 100.00
Overall 85.80 86.25 85.80 85.19

Table 5.4.3.1: Classification performance of ResNet20 on the 5-class dataset

Training time: 26m 45s
Total parameters: 274,074
Model size: 1.09 MB

Confusion Matrix

100
0 Mirror-Approximated
80
1 White-Greasy -
60

2 Thin-White -

True Label

- 40
3 Yellow-Greasy -

- 20

4 Grey-Black -

Q
Q
o

2 Thin-White -

=
=
st
%2
>
I
Q
<+

1 White-Greasy -
3 Yellow-Greasy -

0 Mirror-Approximated -

Predicted Label

Figure 5.4.3.1: Confusion matrix of ResNet20 on the 5-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

42

5.4.3.2 HybridNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Mirror-Approximated [98.00 73.13 08.00 83.76
White-Greasy 59.00 84.29 59.00 69.41
Thin-White 64.00 78.05 64.00 70.33
'Yellow-Greasy 100.00 89.29 100.00 04.34
Grey-Black 100.00 08.04 100.00 09.01
Overall 84.20 84.56 84.20 83.37

Table 5.4.3.2: Classification performance of HybridNet on the 5-class dataset

Training time: 01h 53m 06s
Total parameters: 228,901
Model size: 0.95 MB

Confusion Matrix

100
0 Mirror-Approximated 2 0 0
80
1 White-Greasy -
o 60
?
- 2 Thin-White - 23
= - 40
3 Yellow-Greasy - 0
-20
4 Grey-Black - 0 0 0 0
i i i i -0
™ = ¥ == =4
8 2 £ 2 3
g g = v m
£ G} : G} N
> v = T >
E B £= = =4
o = = =] G]
q?_ = ™~ g_;_ =+
S - m
E
=
(=]

Predicted Label

Figure 5.4.3.2: Confusion matrix of HybridNet on the 5-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

43

5.4.3.3 Improved HybridNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Mirror-Approximated (100.00 72.46 100.00 84.03
White-Greasy 59.00 88.06 59.00 70.66
Thin-White 69.00 84.15 69.00 75.82
'Yellow-Greasy 100.00 00.91 100.00 05.24
Grey-Black 100.00 07.09 100.00 08.52
Overall 85.60 86.53 85.60 84.86

Table 5.4.3.3: Classification performance of Improved HybridNet on the 5-class dataset

Training time: 25m 07s

Total parameters: 131.213

Model size: 0.57 MB

0 Mirror-Approximated

1 White-Greasy

2 Thin-White

True Label

3 Yellow-Greasy

4 Grey-Black

1 23

4 0

(=]

0 Mirror-Approximated -

Confusion Matrix

[=]

o

2 Thin-White -

1 White-Greasy -

Predicted Label

o

3 Yellow-Greasy -

2
=
©
7
>
z
a
s

100

80

60

- 40

-20

Figure 5.4.3.3: Confusion matrix of Improved HybridNet on the 5-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

44

5.4.3.4 Model Performance on 5-Class Dataset (Mirror-Approximated, White-Greasy,
Thin-White, Yellow-Greasy, Grey-Black)

Method Accuracy [Precision [Recall [F1 ScoreTraining (Total Model
(%) (%) (%) (%) time parameters [size
AdderNet IN/A IN/A N/A [N/A IN/A IN/A IN/A
ResNet20 85.80 86.25 85.80 [85.19 [26m45s [274,074 1.09
MB
HybridNet 84.20 84.56 84.20 [83.37 [01h 53m[228,901 0.95
06s MB
Improved 85.60 86.53 85.60 [84.86 [25m 07s |131.213 0.57
HybridNet MB

Table 5.4.3.4: Summary comparison of all models on the 5-class dataset

e Observation: Accuracy lower (~84-86%), reflecting dataset difficulty.

¢ AdderNet excluded (crashes).

e ResNet20: Strong on Grey-Black and Yellow-Greasy (perfect accuracy), weaker on
White-Greasy.

e HybridNet: Similar to ResNet20, slightly weaker overall.

e Improved HybridNet: Slightly higher overall (~85.6%), while being most efficient in
size and parameters.

e Discussion point: White-Greasy remains a major challenge (low recall), highlighting

dataset imbalance or visual ambiguity. Improved HybridNet again offers the best trade-

off.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

45

3.5

Overall Accuracy Summary and Trends

Overall Accuracy Summary Table

Dataset AdderNet ResNet20 HybridNet Improved HybridNet

2-class 95.75% 95.25% 96.50% 97.25%
4-class 91.00% 86.25% 86.75% 87.75%
S-class N/A 85.80% 84.20% 85.60%

Table 5.5.1: Overall accuracy summary of all models across 2-, 4-, and 5-class datasets

This summary table condenses the performance of all classification models across the three

datasets into a single view. A few clear trends emerge:

For the 2-class dataset, all models performed very strongly, but the improved
HybridNet achieved the highest accuracy (97.25%) while also being the most efficient
in size and parameters. This can be explained by the relative simplicity of the binary
classification task: the decision boundary between stained and non-stained moss is
straightforward, so HybridNet’s lightweight design is sufficient and even advantageous,
avoiding overfitting and ensuring strong generalization.

In the 4-class dataset, AdderNet achieved the best overall accuracy (91%), but at the
cost of much larger computational requirements. Here, the task is more complex
because the model must discriminate subtle differences between tongue colors such as
Pale, Pale Red, Red, and Bluish Purple. In this case, AdderNet’s higher representational
capacity allowed it to capture finer details, giving it an edge. However, the improved
HybridNet, though slightly less accurate (87.75%), still provided a better trade-off by
balancing efficiency with acceptable accuracy.

The S-class dataset was the most challenging, with accuracies stabilizing around 84—
86%. AdderNet could not be used here due to resource limitations, but both ResNet20
and HybridNet produced reasonable results, while the improved HybridNet achieved
the highest accuracy (85.6%).

These results confirm two key insights: first, classification becomes progressively more

difficult as the number of classes increases; and second, while AdderNet occasionally tops

accuracy, the improved HybridNet consistently provides the best trade-off between

performance and efficiency, making it the most suitable candidate for practical deployment.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

46

Extra Class-Level Detailed Performance Analysis

To better understand why performance drops with more classes, the class-level metrics
(accuracy, precision, recall, and F1) were examined in detail. Here, clear weaknesses appear in
specific categories:

o Pale (4-class): All metrics were weaker compared to other classes, showing that this
category is broadly difficult to distinguish.

o Pale Red (4-class): One of the most problematic classes. Accuracy, precision, recall,
and F1 were all low, with recall and accuracy particularly poor, meaning the model both
missed many true Pale Red cases and misclassified them frequently.

o Thin-White (5-class): Performed poorly across the board, especially in accuracy and
recall, followed by F1, reflecting confusion with visually similar classes.

o White-Greasy (5-class): Another consistently weak class. All four metrics were low,
with recall and accuracy standing out as particularly weak, indicating that the model
struggled both to detect and to correctly classify this tongue condition.

In contrast, visually distinct classes — such as Red and Bluish Purple (4-class) and Mirror-
Approximated, Grey-Black and Yellow-Greasy (5-class) — achieved very high or near-
perfect scores across all metrics. This reinforces that the observed decline in dataset-level
accuracy is driven primarily by the presence of ambiguous, overlapping classes, not by

overall model limitations.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

47

5.6 Computational Efficiency and Model Architecture Analysis

Model Parameters | Model Training Time Best Dataset

Size (approx) Performance
AdderNet ~274K 1.09MB | ~3h51m 91% (4-class)
ResNet20 ~274K 1.09 MB | ~20-26 min 95.25% (2-class)
HybridNet ~228K 0.95MB | ~1h 23-93 min 96.50% (2-class)
Improved ~131K 0.57 MB | ~20-25 min 97.25% (2-class)
HybridNet

Table 5.6.1: Computational efficiency comparison of all models

AdderNet (ResNet20 backbone with adder2d)

AdderNet retains the ResNet20 residual topology (3-3-3 blocks) but replaces convolution
multiplications with L1 distance accumulation via adder2d layers. The stem remains a
standard Conv2d, so the parameter count is almost identical to ResNet20 (~274K). However,
because adder operations are not cuDNN-optimized, the model suffers from much longer
wall-clock training times (~3h 51m) despite having the same size (1.09 MB). This extra
representational capacity helps in harder multi-class problems (91% accuracy on 4-class, the
highest among models), but it does not outperform leaner CNNs on simpler binary tasks. In
short, AdderNet demonstrates that capacity # efficiency: strong accuracy on complex datasets

comes at a steep cost in runtime.

ResNet20 (vanilla convs + residual BasicBlocks)

ResNet20 uses the standard Conv2d — BN — ReLU structure with identity/projection
shortcuts, making it highly optimized by cuDNN. With ~274K parameters and model size of
1.09 MB, it trains in only 20-26 minutes — the fastest of all models. Accuracy is strong in
binary classification (95.25%), showing that a straightforward convolutional backbone
generalizes well for simple tasks. However, its performance dips in fine-grained multi-class
settings compared to AdderNet, confirming that efficiency in training time does not always
translate into the best performance in more complex datasets.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

48

HybridNet (baseline, with MobileNetV?2 inverted residuals)

HybridNet adopts the MobileNetV2 design: expand (1x1) — depthwise (3%x3) — pointwise
(1x1) with residuals when dimensions match. This use of depthwise separable convolutions
drastically reduces FLOPs and parameters compared to standard ResNet blocks, cutting the
parameter count to ~228K and model size to 0.95 MB. Although the parameter count is lower,
training speed was slower (~1.5h) compared to ResNet20 because depthwise operations
are not as well optimized in GPU libraries as standard convolutions, resulting in longer
runtimes despite the smaller model size. Even so, HybridNet achieves higher accuracy (96.5%
on 2-class) than ResNet20, showing how efficient feature reuse boosts performance without
increasing size. However, it underperforms on subtle multi-class datasets where greater

capacity is required.

HybridNet (improved: SE, DropPath, checkpointing, gentler ratios)

The improved HybridNet incorporates Squeeze-and-Excite (SE) for channel attention,
DropPath for regularization, and reduces the expand ratio from 6.0 to 3.0, making it smaller
and faster. It further saves compute by applying projection shortcuts only when shapes
differ and using dynamic downsampling at high resolutions. During training, activation
checkpointing lowers memory usage, enabling faster and more efficient fitting. Altogether,
these refinements shrink the model to ~131K parameters and 0.57 MB, with a training time
of ~20-25 minutes, while still delivering the highest accuracy overall (97.25% on 2-class).
Even though it trails AdderNet slightly on the 4-class dataset, it wins decisively on the

efficiency trade-off, offering the best balance of size, speed, and accuracy.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

5.6.1 Best Classification Model Selction

Although different models showed strengths in different areas, not all were equally practical
for real-world use. AdderNet achieved the highest accuracy in the 4-class dataset (91%), but
its excessive training time (~3h 51m), larger computational demand, and inability to scale to
the 5-class dataset limited its practicality. ResNet20 offered the fastest training speed (20-26
minutes) and stability, but its performance dropped notably on multi-class datasets (86% on 4-
class and 85.8% on 5-class). The baseline HybridNet improved efficiency (~228K parameters,
0.95 MB) and achieved higher accuracy in the 2-class dataset (96.5%), yet it still

underperformed in the more challenging multi-class settings compared to AdderNet.

Ultimately, the Improved HybridNet emerged as the most suitable overall model. It achieved
the best binary classification accuracy (97.25%), competitive performance in the 4-class
(87.75%) and 5-class (85.6%) datasets, and delivered this with the smallest parameter count
(131K), lowest storage footprint (0.57 MB), and fastest training time (~20—25 minutes).
These results establish the Improved HybridNet as the most balanced and practical candidate
for real-world TCM tongue diagnosis applications, combining efficiency, scalability, and

strong performance.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

50

Chapter 6

Conclusion And Recommendation

6.1 Conclusion

This project delivered a reproducible end-to-end pipeline for tongue image analysis—
segmentation followed by classification—evaluated on multi-class datasets with increasing
visual complexity. DuckNet produced consistently reliable masks on challenging backgrounds
and was therefore adopted as the default pre-processing stage. Notably, classification accuracy
was largely insensitive to the exact mask quality: models trained on SVM-segmented data
performed similarly to those trained on DuckNet masks, indicating that once the tongue region
is reasonably isolated, discriminative cues inside the region dominate downstream

performance.

Within classification, ResNet20 served as a strong and compact baseline that trained quickly
and provided a stable reference point for architecture comparisons. The (non-improved)
HybridNet combined ResNet-style skip connections with MobileNetV2 inverted residuals,
reducing parameters while maintaining accuracy close to ResNet20, albeit sometimes with
longer training despite its smaller footprint. The Improved HybridNet—augmenting HybridNet
with squeeze-and-excite, DropPath, reduced expand ratios, and activation checkpointing—
offered the best accuracy-efficiency balance and fastest practical training in our setting.
AdderNet validated the feasibility of addition-based convolutions but incurred high training
cost due to limited GPU optimization and is not preferred for deployment. Overall, the
recommended stack for practical use is DuckNet segmentation followed by Improved
HybridNet classification, with ResNet20 retained as the reference baseline and the original

HybridNet as a lightweight alternative when sticking to conventional inverted-residual designs.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

51

6.2 Recommendation

To build on the outcomes of this project, future work should focus on improving data quality,

refining the models, and preparing the pipeline for real-world deployment.

First, the dataset needs to be expanded and better balanced. Visually similar classes should
receive particular attention, as they are more prone to misclassification. Increasing the number
of samples across all categories and ensuring even class distribution will help reduce bias and
improve generalization. Reporting class-wise metrics should remain standard practice, as it

helps expose specific failure modes that may be hidden by overall accuracy figures.

In terms of segmentation, DuckNet should remain the default model, especially given its
consistent performance on complex backgrounds. While the SVM-based method offers an
extremely small footprint and is easy to train on CPUs, it struggled with more visually
complicated scenes in this study. However, SVM can still be a valuable baseline if enhanced.
Future iterations could improve it by incorporating deep features from CNN encoders like those
used in HybridNet or DuckNet, or by shifting to a superpixel-level approach using richer color,
texture, and deep features. Simple post-processing steps—such as morphological operations,
conditional random fields (CRFs), or graph-cut techniques—could also help sharpen
segmentation boundaries. Additional improvements may come from systematic tuning of
kernel types and hyperparameters (e.g., RBF or % kernels with optimized C and y values), or
from using DuckNet-generated masks as pseudo-labels in a semi- or self-supervised learning

setup.

On the classification side, the Improved HybridNet remains the recommended model due to its
excellent balance of accuracy, efficiency, and training speed. It delivers reliable performance
across complex multi-class tasks and is well-suited for real-world deployment. However, it's
important to note that while Improved HybridNet performs strongly overall, it still falls short
of the peak accuracy achieved by AdderNet. That said, AdderNet’s high computational cost
and limited GPU optimization make it impractical for most deployment scenarios. To close
this gap without compromising on efficiency, future work could explore enhancements to
Improved HybridNet—such as refined loss functions (e.g., class-balanced or focal loss),
stronger normalization techniques, or targeted augmentation strategies for difficult classes. For
resource-constrained environments, quantization or knowledge distillation could further

compress the model, and exporting to ONNX or TensorRT would improve runtime
Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

52

performance. Coupling it with a lightweight segmentation model can also enable real-time

applications.

Finally, before any clinical or production deployment, the full system should be tested in real-
world scenarios with practitioners. This step is essential to assess calibration, usability, and
actual utility in a clinical workflow. Feedback from end users will be invaluable for making

practical adjustments and closing the gap between technical performance and real-world impact.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

53

[7]

[9]

REFERENCES

José Maria Rodriguez Corral, Javier Civit-Masot, Francisco Luna-Perejon, Ignacio
Diaz-Cano, Arturo Morgado-Estévez, Manuel Dominguez-Morales, "Energy efficiency
in Edge TPU vs. embedded GPU for computer-aided medical imaging segmentation
and classification," Engineering Applications of Artificial Intelligence, vol. 127, 2024.

Angela Renton, Thuy T. Dao, Tom Johnstone, Oren Civier, "Neurodesk: an accessible,
flexible and portable data analysis environment for reproducible neuroimaging," Nature

Methods, vol. 21, no. 5, 2024.

Xuebo Jin, Longfei Gao, Anshuo Tong, Zhengyang Chen, Jianlei Kong, Ning Sun,
Huijun Ma, Qiang Wang, Yuting Bai, Tingli Su, "TCM-Tongue: A Standardized
Tongue Image Dataset with Pathological Annotations for Al-Assisted TCM Diagnosis,"
2025.

Merjem Be¢irovi¢, Amina Kurtovi¢, Nordin Smajlovié¢, Medina Kapo, Amila Akagic,
"Performance comparison of medical image classification systems using TensorFlow

Keras, PyTorch, and JAX," 2025.

Qi Liu, Yan Li, Peng Yang, Quanquan Liu, Chunbao Wang, Keji Chen, Zhengzhi Wu,
"A survey of artificial intelligence in tongue image for disease diagnosis and syndrome

differentiation".

Ali Raad Hassoon, Ali Al-Naji, Ghaidaa A. Khalid, Javaan Chahl, "Tongue Disease
Prediction Based on Machine Learning Algorithms," Technologies, vol. 12, no. 7, 2024.

Qianzi Che, Yuanming Leng, Wei Yang, Xihao Cao, Zhongxia Wang, Lizheng Liu,
Feibiao Xie, Ruilin Wang, "Tongue Image—Based Diagnosis of Acute Respiratory Tract
Infection Using Machine Learning: Algorithm Development and Validation," JMIR
Med Inform, vol. 13, 2025.

Ahmad Waleed Salehi, Shakir Khan, Gaurav Gupta, Bayan Ibrahimm Alabduallah,
Abrar Almjally, Hadeel Alsolai, Tamanna Siddiqui, Adel Mellit, "A Study of CNN and
Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope," MDPI,
vol. 15, no. 7, 2023.

P. Gayathri, "Exploring the Potential of VGG-16 Architecture for Accurate Brain
Tumor Detection Using Deep Learning," Journal of Computers, 2023.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

54

[10] Meng-Yi Li, Ding-Ju Zhu, Wen Xu, Yu-Jie Lin, Kai-Leung Yung, Andrew W. H. Ip,
"Application of U-Net with Global Convolution Network Module in Computer-Aided
Tongue Diagnosis," Journal of Healthcare Engineering, 2021.

[11] Summiya Taskin, Ferdib-Al-Islam, "Transfer Learning-based Fine Tuned MobileNetV2
Model with Explainable Artificial Intelligence for Identifying Dental Diseases," IEEE,
2025.

[12] H. Chen, "AdderNet: Do We Really Need Multiplications in Deep Learning?," 2020.

[13] Zhong li qin, Xin Guojiang, Peng Qinghua, Liu Wanghua, Wu Yingjie, Sheng Dan, Zhu
Lei, Sui Qiang, Liang Hao, "A dataset of stained tongue fur images of TCM," [Online].
Available:
https://www.scidb.cn/en/detail?dataSetld=223214839b2241798a40120dcec4576a.

[14] "Tongue Image Dataset-neo," 24 3 2023. [Online]. Available:
https://aistudio.baidu.com/datasetdetail/196398.

[15] Muhammad151, "tongue images," [Online]. Available:

https://www .kaggle.com/datasets/muhammad151/tongue-images.

[16] Towfiq Tomal, "Tongue DIABETES," [Online]. Available:
https://www .kaggle.com/datasets/towfigtomal/tongue-diabetes.

[17] Muhammad Saddam Zikri Dalimunthe, Rossy Nurhasanah, "Type 2 Diabetes Mellitus
Tongue Dataset," Mendeley, 7 10 2024. [Online]. Available:
https://data.mendeley.com/datasets/hyb44;f936/2.

[18] "Intelligent-tongue-diagnosis-detection-dataset," 2025. [Online]. Available:
https://github.com/btbulntelliSense/Intelligent-tongue-diagnosis-detection-

dataset?tab=readme-ov-file.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

55

APPENDIX
SVM
svm.ipynb
from _ future import annotations

--- Colab / I/0 ---
from google.colab import drive

--- Std / third-party ---

import os

import cv2

import joblib

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from tgdm import tqdm

from typing import List, Tuple, Dict

from skimage.feature import local_binary_pattern
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.metrics import (

accuracy_score,

precision_score,

recall score,

f1_score,

jaccard_score,

confusion_matrix,

def fixed window(img: np.ndarray, x: int, y: int, window_size: int = 7) ->
np.ndarray:
k = window_size
pad = k // 2
img_pad = cv2.copyMakeBorder(img, pad, pad, pad, pad, cv2.BORDER_REFLECT)
return img_pad[y : y + k, x : x + k]

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

56

def extract_features(img: np.ndarray, x: int, y: int, window_size: int = 7):
k = window_size
window = _fixed window(img, x, y, window_size=k)

r, g, b = 1mg[y: X]
mean_rgb = window.mean(axis=(0, 1))
std_rgb = window.std(axis=(0, 1))

Texture: uniform LBP histograms + local Sobel stats

gray = cv2.cvtColor(window, cv2.COLOR_RGB2GRAY)

lbpl = local binary pattern(gray, P=8, R=1, method="uniform")
lbp2 = local_binary_pattern(gray, P=16, R=3, method="uniform")
histl = np.histogram(lbpl.ravel(), bins=10, range=(0, 10))[0]
hist2 = np.histogram(lbp2.ravel(), bins=18, range=(0, 18))[0]

sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
Position

h, w = img.shape[:2]

cxX, cy =w/ 2.0, h/ 2.0

dist_to_center = np.sgrt((x - cx) ** 2 + (y - cy) ** 2)
dist_to_center /= np.sqrt(cx ** 2 + cy ** 2)

features = [
r‘)
g
b)
mean_rgb[0],
mean_rgb[1],
mean_rgb[2],
std _rgb[9],
std_rgb[1],
std_rgb[2],
*hist1l,
*hist2,
sobelx.mean(),
sobely.mean(),
sobelx.std(),
sobely.std(),
X/ W,
y / h,
dist_to center,

feature_names = [
"Red",
"Green",
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
57

def

def
np.n

meth

area

"Blue",

"Mean_R",

"Mean_G",

"Mean_B",

"Std_R",

"Std_Gg",

"Std_B",

*[f"LBP1_bin_{i}" for i in range(10)],
*[f"LBP2_bin_{i}" for i in range(18)],
"SobelX_mean",

"SobelY_mean",

"SobelX std",

"SobelY_std",

"X_pos",

"Y_pos",

"Dist_to_center",

]

return np.array(features, dtype=np.float32), feature_names

_local _mean_std(img_f32: np.ndarray, k: int):

mean = cv2.blur(img_f32, (k, k), borderType=cv2.BORDER_REFLECT)

sqr = cv2.blur(img_f32 * img_f32, (k, k), borderType=cv2.BORDER_REFLECT)
var = np.maximum(sqr - mean * mean, 0.0)

std = np.sqrt(var)

return mean, std

_lbp_hist_per_pixel(gray_u8: np.ndarray, P: int, R: int, k: int) ->

darray:
lbp = local binary_pattern(gray_u8, P=P, R=R,
od="uniform").astype(np.float32)
H, W = gray_u8.shape
B = int(P + 2)
out = np.empty((H, W, B), dtype=np.float32)
edges = np.arange(B + 1, dtype=np.float32)
area = float(k * k)
for b in range(B):
low, high = edges[b], edges[b + 1]
mask = ((1lbp >= low) & (lbp < high)).astype(np.float32)
out[..., b] = cv2.blur(mask, (k, k), borderType=cv2.BORDER_REFLECT) *

return out

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

58

def _build full image_ features(img_rgb: np.ndarray, window_size: int = 7) ->
np.ndarray:

k = window_size

H, W, _ = img_rgb.shape

img _f32 = img_rgb.astype(np.float32)

def to_hwc(x: np.ndarray) -> np.ndarray:
X = np.asarray(x)
Ensure HxWxC no matter what comes in (1D/2D/3D)

if x.ndim ==
x = x.reshape(H, W, 1) # rare 1D edge cases from cv ops
elif x.ndim == 2:

X = X[..., None]
if already 3D, keep as-is
return x.astype(np.float32)

RGB at pixel

to_hwc(img_f32[..., 0])
to_hwc(img_f32[..., 1])
to_hwc(img_f32[..., 2])

W O ™ H
]

local mean/std RGB (HxWx3 each)

mean_rgb, std_rgb = local mean_std(img_f32, k)
mean_rgb = mean_rgb.astype(np.float32)

std_rgb = std_rgb.astype(np.float32)

Gray + LBP

gray_f32 = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY).astype(np.float32)
gray u8 = np.clip(gray_f32, 0, 255).astype(np.uint8)

lbpl_hist = _1bp hist per_pixel(gray_u8, P=8, R=1, k=k)

lbp2_hist = 1bp hist per_pixel(gray_u8, P=16, R=3, k=k)

Sobel (float); then local mean/std in kxk

sobelx = cv2.Sobel(gray f32, cv2.CV_32F, 1, 0, ksize=3)
sobely = cv2.Sobel(gray f32, cv2.CV_32F, 0, 1, ksize=3)
sx_mean, sx_std = local mean_std(sobelx[..., None], k)
sy _mean, sy std = local mean std(sobely[..., None], k)
keep channels; robustly force HxWx1l shape

sx_mean, sx_std = to_hwc(sx_mean), to_hwc(sx_std)

sy mean, sy std = to hwc(sy mean), to hwc(sy std)

Position features

XS (np.arange(W, dtype=np.float32)[None, :] / W).repeat(H, axis=0)

ys = (np.arange(H, dtype=np.float32)[:, None] / H).repeat(W, axis=1)

X, cy =W/ 2.0, H/ 2.0

dist = np.sqrt((np.arange(W)[None, :] - cx) ** 2 + (np.arange(H)[:, None]
- cy) ** 2).astype(np.float32)

dist /= np.sgrt(cx * cx + cy * cy)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

59

Xs, ys, dist = to_hwc(xs), to_hwc(ys), to_hwc(dist)

feats = np.concatenate(
[R, G, B, mean_rgb, std_rgb, lbpl_hist, lbp2_hist, sx_mean, sy mean,
sx_std, sy std, xs, ys, dist],
axis=2,
).astype(np.float32)
return feats.reshape(-1, feats.shape[2])

def _sample_balanced_from_image(
img: np.ndarray,
mask_gray: np.ndarray,
fg_target: int = 4000,
bg target: int = 4000,
rng: np.random.Generator | None = None,
window_size: int = 7,
) -> Tuple[np.ndarray, np.ndarray]:

if rng is None:
rng = np.random.default_rng(42)

np.where(mask_gray != 0)
np.where(mask_gray == 0)

fg_y, fg_x
bg_y, bg_x

if len(fg_x) == 0 or len(bg_x) =
return np.empty((0, 44), dtype np.float32), np.empty((0,),
dtype=np.uint8)

fg_take = min(fg_target, len(fg_x))
bg take = min(bg_target, len(bg x))
fg idx = rng.choice(len(fg x), size=fg take, replace=False)
bg idx = rng.choice(len(bg_x), size=bg take, replace=False)

Xs = np.concatenate([fg_x[fg_idx], bg x[bg idx]])

ys = np.concatenate([fg_y[fg_idx], bg y[bg idx]])

labels = np.concatenate([np.ones(fg take, dtype=np.uint8),
np.zeros(bg take, dtype=np.uint8)])

feats: List[np.ndarray] = []

for X, y in zip(xs, ys):
f, = extract features(img, int(x), int(y), window size=window size)
feats.append(f)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

60

return np.asarray(feats, dtype=np.float32), labels

def load_and_split data(

image_folder: str,

mask_folder: str,

n_images: int = 500,

test size: float = 0.2,

fg_per_img: int = 4000,

bg per_img: int = 4000,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray,
np.ndarray, List, List]:

"""Load images, split by index, and sample a balanced set of pixels per
image."""

all indices = np.arange(1l, n_images + 1)

train_indices, test_indices = train_test split(all_indices,
test_size=test_size, random_state=42)

rng = np.random.default_rng(123)

print("Processing training images (balanced sampling)...")
X_train, y_train, train_images = [], [], []
for i in tqgdm(train_indices):
img = cv2.cvtColor(cv2.imread(f"{image_folder}/{i}.png"),
cv2.COLOR_BGR2RGB)
mask = cv2.imread(f"{mask_folder}/{i}.png", cv2.IMREAD_GRAYSCALE)
train_images.append((i, img, mask))
Xi, yi = _sample_balanced_from_image(img, mask, fg_target=fg_per_img,
bg target=bg per _img, rng=rng)
if Xi.size:
X_train.append(Xi)
y_train.append(yi)
X_train = np.vstack(X_train)
y_train = np.concatenate(y_train)

print("\nProcessing test images (balanced sampling for the *sampled*
report)...")
X_test, y_test, test_images = [], [], []
for i in tqdm(test_indices):
img = cv2.cvtColor(cv2.imread(f"{image_folder}/{i}.png"),
cv2.COLOR_BGR2RGB)
mask = cv2.imread(f"{mask_folder}/{i}.png", cv2.IMREAD_GRAYSCALE)
test_images.append((i, img, mask))
Xi, yi = sample balanced from_ image(img, mask, fg target=fg per img
// 2, bg target=bg per _img // 2, rng=rng)
if Xi.size:
X_test.append(Xi)
y_test.append(yi)
X_test = np.vstack(X_ test)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

61

y_test = np.concatenate(y_test)

return (

X_train,
y_train,
X_test,
y_test,
train_indices,
test indices,
train_images,
test_images,

def build_svm_pipeline() -> Pipeline:
return Pipeline(

[
("scaler", StandardScaler()),
(
"svm",
LinearsSvC(
C=1.0,
class_weight=None,
random_state=42,
max_iter=10000,
)
)J
]

def analyze feature_ importance(model: Pipeline, feature_names: List[str],
result folder: str) -> np.ndarray:

weights = model.named_steps["svm"].coef [0]

abs weights = np.abs(weights)

normalized weights = abs_weights / (abs_weights.sum() + 1le-12)

df = pd.DataFrame({"Feature": feature_names, "Importance":
normalized weights})
print("\nSorted Feature Importance (|w| on standardized features):")
print(df.sort_values("Importance",
ascending=False).to_markdown(tablefmt="grid", index=False, floatfmt=".6f"))

plt.figure(figsize=(10, 0.30 * len(feature_names) + 2))

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

62

sorted_idx = np.argsort(normalized_weights)

plt.barh(range(len(sorted_idx)), normalized weights[sorted_idx])

plt.yticks(range(len(sorted_idx)), [feature_names[i] for i in sorted_idx])

plt.xlabel("Feature Importance (|weight| on standardized features)")

plt.title("Linear SVM Feature Importance")

plt.tight_layout()

importance_path = os.path.join(result_folder,
"svm_feature_importance.png")

plt.savefig(importance_path, bbox_inches="tight", dpi=300)

plt.close()

print(f"Saved feature importance plot to: {importance_path}")

return normalized_weights

def maybe postprocess(mask@l: np.ndarray, enable: bool = False) ->
np.ndarray:
if not enable:
return maskol
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
m = cv2.morphologyEx((mask@l * 255).astype(np.uint8), cv2.MORPH_OPEN,
kernel)
m= (m > 127).astype(np.uint8)
num, labels, stats, _ = cv2.connectedComponentsWithStats(m,
connectivity=8)
if num <= 1:
return m
keep = 1 + np.argmax(stats[1l:, cv2.CC_STAT_AREA])
return (labels == keep).astype(np.uint8)

def visualize_sample_results(
model: LinearSVC,
scaler: StandardScaler,
images: List[Tuple[int, np.ndarray, np.ndarray]],
result folder: str,
split_tag: str = "test",
window_size: int = 7,
pred_batch: int = 200 000,
cutout_root: str | None = None,
postprocess: bool = False,
decision_threshold: float = 0.0,
bf_tolerance px: int = 3,

) -> None:
os.makedirs(result_folder, exist_ok=True)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

63

cutout_dir = None

if cutout_root is not None:
cutout_dir = os.path.join(cutout_root, split_tag)
os.makedirs(cutout_dir, exist ok=True)

for img_idx, img, mask in images:
H, W = img.shape[:2]

Dense features
X_img = _build full image_features(img, window_size=window_size)

Scale+predict in chunks
preds = np.empty((H * W,), dtype=np.int32)
start = 0
while start < X_img.shape[0]:
end = min(start + pred_batch, X_img.shape[@])
scores =
model.decision_function(scaler.transform(X_img[start:end]))
preds[start:end] = (scores > decision_threshold).astype(np.int32)
start = end

pred_mask = preds.reshape(H, W).astype(np.uint8)
pred_mask = _maybe_postprocess(pred_mask, enable=postprocess)

Metrics per-image

mask_bin = (mask != @)

mask_flat = mask_bin.reshape(-1)
pred_flat = (pred_mask == 1).reshape(-1)

tp = (pred_mask == 1) & mask_bin
fp = (pred_mask == 1) & (~mask_bin)
fn = (pred_mask == 0) & mask_bin

overlay = np.zeros_like(img)
overlay[tp] = [0, 255, 0]
overlay[fp] [255, 0, 0]
overlay[fn] [0, ©, 255]

cutout = np.zeros_like(img)
cutout[pred_mask == 1] = img[pred_mask == 1]

plt.figure(figsize=(20, 5))

plt.subplot(141);
plt.imshow(img); plt.title("Original™); plt.axis
("off")

plt.subplot(142); plt.imshow(mask, cmap="gray"); plt.title("Ground
Truth"); plt.axis("off")

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

64

plt.subplot(143); plt.imshow(cutout); plt.title("Predicted
(cut-out)"); plt.axis("off")

plt.subplot(144); plt.imshow(img); plt.imshow(overlay, alpha=0.5)

plt.title("Overlay: Green=TP, Red=FP, Blue=FN"); plt.axis("off")

plt.tight_layout()

out_png = f"{result_folder}/{split_tag} {img_idx}.png"
plt.savefig(out_png, bbox_inches="tight", dpi=150)
plt.close()

if cutout_dir is not None:
cutout_path = os.path.join(cutout_dir,
f"{split_tag} {img_idx}.png")
cv2.imwrite(cutout_path, cv2.cvtColor(cutout, cv2.COLOR_RGB2BGR))

--- Boundary-aware metrics ---

cm = confusion_matrix(mask_flat, pred_flat, labels=[0,1])

tn, fp, fn, tp = cm.ravel()

specificity = tn / (tn + fp + 1e-9)

balanced_acc = 0.5 * (specificity + recall score(mask_flat,
pred flat))

bfl, assd, hd95 = compute_boundary metrics(mask_bin.astype(np.uint8),
(pred_mask==1).astype(np.uint8), tolerance=bf tolerance_px)

metrics = {
"Image Index": int(img_idx),
"True Foreground Pixels": int(mask_bin.sum()),
"Predicted Foreground Pixels": int((pred_mask == 1).sum()),
"Dice (F1)": float(fl_score(mask_flat, pred_flat)),
"Jaccard": float(jaccard_score(mask_flat, pred_flat)),
"Precision”: float(precision_score(mask_flat, pred flat)),
"Recall”: float(recall score(mask_flat, pred_flat)),
"Specificity": float(specificity),
"Balanced Accuracy": float(balanced acc),
"BoundaryF1@%dpx" % bf_tolerance_px: float(bfl) if not

np.isnan(bfl) else float("nan"),

"ASSD_px": float(assd) if assd is not None else float("nan"),
"HD95 px": float(hd95) if hd95 is not None else float("nan"),
"Accuracy": float(accuracy score(mask flat, pred flat)),

}

out_txt = f"{result_folder}/{split_tag} {img_idx}.txt"

with open(out_txt, "w") as f:
for k, v in metrics.items():

f.write(f"{k}: {v}\n")

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

65

6) Robust evaluation utilities

--- Boundary metrics helpers ---

def _binary_boundary(mask@l: np.ndarray) -> np.ndarray:
"""1px boundary of a ©/1 mask using morphological gradient.
m = (mask@l.astype(np.uint8) > 0).astype(np.uint8)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
er = cv2.erode(m, kernel, iterations=1)
bd = (m - er)
bd[bd < 0] = ©
return (bd > 0).astype(np.uint8)

def _distance_to_boundary(boundary@l: np.ndarray) -> np.ndarray:

DT. mmon
inv = (boundary@l == 0).astype(np.uint8) * 255
dt = cv2.distanceTransform(inv, cv2.DIST_L2, 3)
return dt.astype(np.float32)

Euclidean distance (pixels) to nearest boundary pixel using OpenCV

def compute_boundary_metrics(gt@l: np.ndarray, prel: np.ndarray, tolerance:

int = 3):

"""Return (BFl@tol, ASSD_px, HD95 px). NaN if boundary empty."""

gtol = (gtol > 0).astype(np.uint8)
prol = (pr@l > 0).astype(np.uint8)
b gt = binary boundary(gtel)
b_pr = binary_boundary(prel)

if b_gt.sum() == © and b_pr.sum() == 0:
return float('nan'), 0.0, 0.0

dt_gt = distance_to_boundary(b_gt)
dt_pr = _distance_to_boundary(b_pr)
pred_d = dt_gt[b_pr == 1]
true_d = dt_pr[b_gt == 1]

BF precision / recall within tolerance

p = np.nan if pred d.size == 0 else (pred_d <= tolerance).mean()
r = np.nan if true_d.size == 0 else (true_d <= tolerance).mean()
if np.isnan(p) or np.isnan(r) or (p + r) == 0:

bfl = np.nan
else:

bfl =2 *p *r / (p+r + 1le-9)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

66

ASSD (symmetric) and HD95

vals = []

if pred_d.size > 0:
vals.append(pred_d)

if true_d.size > 0:
vals.append(true_d)

if len(vals) == 0:
assd, hd95 = 0.0, 0.0

else:
vals = np.concatenate(vals)
assd = float(np.mean(vals))
hd95 = float(np.percentile(vals, 95))

return float(bfl), assd, hd95

def _metrics_from_cm(cm: np.ndarray) -> Dict[str, float]:
tn, fp, fn, tp = cm.ravel()
eps = le-9
precision = tp / (tp + fp + eps)
recall = tp / (tp + fn + eps)
dice =2 *tp / (2 * tp + fp + fn + eps)
jaccard = tp / (tp + fp + fn + eps)
accuracy = (tp + tn) / (tp + tn + fp + fn + eps)
return {
"Accuracy": accuracy,
"Dice Score": dice,
"Precision": precision,
"Recall"”: recall,
"Jaccard": jaccard,

def evaluate sampled(y_true: np.ndarray, y pred: np.ndarray) -> Dict[str,
float]:

cm = confusion matrix(y_true, y pred, labels=[0, 1])

print("Confusion Matrix (sampled):\n", cm)

metrics = metrics_from_cm(cm)

for k, v in metrics.items():

print(f"{k}: {v:.4f}")
return metrics

def evaluate_dense_set(
model: LinearSVC,
scaler: StandardScaler,
images: List[Tuple[int, np.ndarray, np.ndarray]],
window_size: int = 7,
pred_batch: int = 200 000,

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

67

postprocess: bool = False,
decision_threshold: float = 0.0,
bf_tolerance_px: int = 3,

) -> Dict[str, float]:

cm_total = np.zeros((2, 2), dtype=np.int64)
bf list, assd list, hd95 1list =[], []1, []
for _, img, mask in tgdm(images, desc="Dense eval"):
H, W = img.shape[:2]
X_img = _build full image_features(img, window_size=window_size)
preds = np.empty((H * W,), dtype=np.int32)
s =0
while s < X_img.shape[0]:
e = min(s + pred_batch, X_img.shape[0])
scores = model.decision_function(scaler.transform(X_img[s:e]))
preds[s:e] = (scores > decision_threshold).astype(np.int32)

s =e
pred_mask = preds.reshape(H, W).astype(np.uint8)
pred mask = maybe postprocess(pred_mask, enable=postprocess)

y_true = (mask != 0).reshape(-1)
y_pred = (pred_mask == 1).reshape(-1)
cm_total += confusion_matrix(y_true, y_pred, labels=[0, 1])

bfl, assd, hd95 =
compute_boundary metrics(y_true.reshape(img.shape[:2]).astype(np.uint8),
(pred_mask==1).astype(np.uint8), tolerance=bf_tolerance_px)
bf_list.append(bfl)
assd _list.append(assd)
hd95_1list.append(hd95)

print("Global Confusion Matrix (dense over all pixels):", cm_total)

metrics = metrics_from_cm(cm_total)

tn, fp, fn, tp = cm_total.ravel()

specificity = tn / (tn + fp + 1e-9)

bal acc = 0.5 * (specificity + metrics["Recall"])

metrics["Specificity"] = specificity

metrics["Balanced Accuracy"] = bal_acc

metrics["BoundaryF1@%dpx" % bf_tolerance_px] = float(np.nanmean(bf_list))
if len(bf_list) else float("nan"

metrics["ASSD_px_mean"] = float(np.nanmean(assd_list)) if len(assd_list)
else float("nan"

metrics["HD95_px_mean"]
else float("nan"

float(np.nanmean(hd95 list)) if len(hd95 list)

print("Dense (global) metrics:")
for k, v in metrics.items():
print(f"{k}: {v:.4f}")
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
68

return metrics

def calibrate_threshold(
model: LinearSVC,
scaler: StandardScaler,
images: List[Tuple[int, np.ndarray, np.ndarray]],
thresholds: np.ndarray | List[float] = None,
window_size: int = 7,
pred_batch: int = 200 000,
postprocess: bool = False,
bf_tolerance_px: int = 3,
) -> float:

if thresholds is None:

thresholds = np.linspace(-0.5, 0.5, 21)
subset = images[: min(16, len(images))]
best_tau, best _score = 0.0, -1.0
for tau in thresholds:

dices = []

for _, img, mask in subset:

H, W = img.shape[:2]

X_img = _build full_image_features(img, window_size=window_size)

preds
s =0
while s < X_img.shape[0]:

e = min(s + pred_batch, X_img.shape[@])

np.empty((H * W,), dtype=np.int32)

scores = model.decision_function(scaler.transform(X_img[s:e]))

preds[s:e] = (scores > tau).astype(np.int32)

s =e
pred mask = preds.reshape(H, W).astype(np.uint8)
pred mask = maybe postprocess(pred_mask, enable=postprocess)

y_true = (mask != 0).reshape(-1)
y_pred = (pred_mask == 1).reshape(-1)
dices.append(f1l_score(y_true, y pred))

mean_dice = float(np.mean(dices)) if len(dices) else -1.0

if mean_dice > best_score:
best score, best tau = mean_dice, float(tau)

print(f"Calibrated threshold (by mean Dice on subset): tau={best_tau:.3f}

(score={best_score:.4f})")
return best_tau

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

69

def main():

image_folder = "/content/drive/MyDrive/svm/data/images”

mask_folder = "/content/drive/MyDrive/svm/data/masks"

result_folder = "/content/drive/MyDrive/svm/svm_linear_results_fixed"
cutout_root = "/content/drive/MyDrive/svm/predicted_cutouts”

drive.mount("/content/drive", force_remount=False)
os.makedirs(result_folder, exist_ok=True)
os.makedirs(cutout_root, exist ok=True)

X_train,

y_train,

X_test,

y_test,

train_indices,

test_indices,

train_images,

test_images,

) = load_and_split_data(image_folder, mask_folder, n_images=500,
test _size=0.2, fg per_img=4000, bg per_ img=4000)

print(f"\nTraining sampled pixels: {len(X_train):,}")

print(f"Test sampled pixels: {len(X_test):,}")

print(f"Train images: {len(train_indices)} | Test images:
{len(test_indices)}")

Train

print("\nTraining Linear SVM model...")
model = build svm_pipeline()
model.fit(X_train, y_train)

Feature importance (names from extractor)

_, feature_names = extract features(train_images[0][1], x=0, y=0)

feature_importances = analyze feature_importance(model, feature names,
result_folder)

Complexity

svm = model.named_steps["svm"

complexity = {
"Total params": int(len(svm.coef_[0]) + 1),
"Model size (approx)": f"{(svm.coef_ .nbytes + svm.intercept .nbytes) /

1024:.2f} KB",

"Feature space": f"R~{len(svm.coef_[0])}",
"Regularization (C)": float(svm.C),

}

print("\nModel Complexity Metrics:")

for k, v in complexity.items():

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

70

print(f"{k}: {v}")

Quick sampled report (now balanced)
print("\nTest Set Evaluation (BALANCED sampled pixels):")
y_pred_sampled = model.predict(X_test)
sampled_metrics = evaluate_sampled(y_test, y_pred_sampled)

Dense visualizations + per-image metrics

print("Calibrating decision threshold on a small subset (mean Dice)...

DECISION_THRESHOLD = calibrate_threshold(
model.named_steps["svm"],
model.named_steps["scaler"],
train_images,
thresholds=np.linspace(-0.5, 0.5, 21),
postprocess=False,
bf tolerance_px=3,

print("Generating train visualizations (dense)...")
visualize sample results(
model.named_steps["svm"],
model.named_steps["scaler"],
train_images,
result_folder,
split_tag="train",
cutout_root=cutout_root,
postprocess=False,
decision_threshold=DECISION_THRESHOLD,
bf tolerance_ px=3,

print("\nGenerating test visualizations (dense)...")
visualize sample_results(
model.named_steps["svm"],
model.named_steps["scaler"],
test_images,
result folder,
split_tag="test",
cutout_root=cutout_root,
postprocess=False,
decision_threshold=DECISION_THRESHOLD,
bf tolerance px=3,

Dense, aggregated metrics across ALL pixels

dense_metrics = evaluate_dense_set(
model.named_steps["svm"],
model.named_steps["scaler"],

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

71

test_images,

window_size=7,

postprocess=False,
decision_threshold=DECISION_ THRESHOLD,
bf_tolerance_px=3,

Save everything

bundle = {
"model": model,
"feature_importances": feature_importances,
"sampled metrics balanced": sampled metrics,
"dense_metrics": dense_metrics,
"train_indices": train_indices,
"test_indices": test_indices,
"model_complexity": complexity,

}

joblib.dump(bundle, os.path.join(result_folder,

"linear_svm_results_fixed.joblib"))

with open(os.path.join(result_folder, "dense_metrics.txt"), "w") as f:
for k, v in dense_metrics.items():
f.write(f"{k}: {v}\n")

print(f"\nResults saved to {result_folder}")

print(f"Color-preserved predictions saved under: {cutout_root}/train and
{cutout_root}/test")

if __name__ == "__main__":
main()

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

72

DuckNet (from https://github.com/RazvanDu/DUCK-Net)

Consist of:
- ModelNotebook.ipynb
- ImageLoader2D.py
- ConvBlock2D.py
- DUCK Net.py
- DiceLoss.py

ModelNotebook.ipynb

from google.colab import drive

import sys

import tensorflow as tf

import numpy as np

import gc

import matplotlib.pyplot as plt

from keras.callbacks import CSVLogger

from datetime import datetime

from sklearn.model selection import train_test split
from sklearn.metrics import jaccard_score, precision_score, recall_score,
accuracy_score, fl_score

from PIL import Image

import os

Mount Google Drive and set up paths
drive.mount('/content/drive")

sys.path.append('/content/drive/My Drive/duck")
sys.path.append('/content/drive/My Drive/duck/ModelArchitecture')
sys.path.append('/content/drive/My Drive/duck/ImagelLoader')
sys.path.append('/content/drive/My Drive/duck/CustomLayers')

Import project-specific modules

from ModelArchitecture.DicelLoss import dice_metric_loss
from ModelArchitecture import DUCK_Net

from ImagelLoader import ImagelLoader2D

print("Num GPUs Available: ", len(tf.config.list physical devices('GPU"')))

Model settings

img_size = 352

dataset_type = 'my_dataset’

learning_rate = le-4

seed_value = 58800

filters = 17

optimizer = tf.keras.optimizers.RMSprop(learning_rate=learning_rate)
ct = datetime.now()

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

73

https://github.com/RazvanDu/DUCK-Net

model type = "DuckNet"

progress_path =

f'ProgressFull/{dataset_type} progress_csv_{model_type} filters_ {filters} {ct}
.csv'

progressfull path =

f'ProgressFull/{dataset_type} progress_{model_type} filters_{filters} {ct}.txt
plot_path =

f'ProgressFull/{dataset_type} progress_plot_{model_type} filters_ {filters} {ct
}.png'

model path =
f'ModelSaveTensorFlow/{dataset_type}/{model_type} filters_{filters} {ct}’

EPOCHS = 100
min_loss_for_saving = 0.2

Load data

X, Y, filenames = ImagelLoader2D.load_data(img_size, img_size, -1,
'my_dataset")

x_train, x_test, y train, y test, f_train, f_test = train_test_split(X, YV,
filenames, test_size=0.1, random_state=seed_value, shuffle=True)

x_train, x_valid, y_train, y_valid, f_train, f_valid =

train_test _split(x_train, y_train, f_train, test_size=0.111,
random_state=seed_value, shuffle=True)

Create and compile model

model = DUCK_Net.create_model(img_height=img size, img width=img_size,
input_chanels=3, out_classes=1, starting filters=filters)
model.compile(optimizer=optimizer, loss=dice metric_loss)

Training loop

step = 0

for epoch in range(©, EPOCHS):
print(f'Training, epoch {epoch}")
print('Learning Rate: ' + str(learning_rate))
step += 1

os.makedirs("ProgressFull", exist_ok=True)
csv_logger = CSVLogger(progress_path, append=True, separator=';")
model.fit(x=x_train, y=y_train, epochs=1, batch_size=4,

validation data=(x_valid, y valid), verbose=1, callbacks=[csv_logger])

prediction_valid = model.predict(x_valid, verbose=0)
loss_valid = dice_metric_loss(y_valid, prediction_valid).numpy()
print("Loss Validation: " + str(loss_valid))

prediction_test = model.predict(x_test, verbose=0)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

74

loss_test = dice_metric_loss(y_test, prediction_test).numpy()
print("Loss Test: " + str(loss_test))

with open(progressfull_path, 'a') as f:
f.write('epoch: ' + str(epoch) + '\nval_loss:
"\ntest _loss: ' + str(loss_test) + '\n\n\n")

+ str(loss_valid) +

if min_loss_for_saving > loss_valid:
min_loss_for_saving = loss_valid
print("Saved model with val loss:
model.save(model_path + '.h5")

, loss valid)

gc.collect()

Reload best model

print("Loading the model")

model = tf.keras.models.load_model(model_path + '.h5",
custom_objects={'dice metric_loss': dice metric_loss})

Predictions

prediction_train = model.predict(x_train, batch_size=4)
prediction_valid = model.predict(x_valid, batch_size=4)
prediction_test = model.predict(x_test, batch_size=4)

print("Predictions done")

Metrics
flatten = lambda arr: np.ndarray.flatten(np.array(arr, dtype=bool))
bin pred = lambda pred: np.ndarray.flatten(pred > 0.5)

dice_train = f1_score(flatten(y_train), bin_pred(prediction_train))
dice test = f1 score(flatten(y_test), bin_pred(prediction_test))
dice_valid = f1_score(flatten(y_valid), bin_pred(prediction_valid))

miou_train = jaccard_score(flatten(y_train), bin_pred(prediction_train))
miou_test = jaccard_score(flatten(y_test), bin_pred(prediction_test))
miou_valid = jaccard_score(flatten(y_valid), bin_pred(prediction_valid))

precision_train = precision_score(flatten(y_train),
bin_pred(prediction_train))

precision_test = precision_score(flatten(y_test), bin_pred(prediction_test))
precision_valid = precision score(flatten(y_valid),
bin_pred(prediction_valid))

recall_train = recall_score(flatten(y_train), bin_pred(prediction_train))
recall test = recall score(flatten(y_test), bin_pred(prediction_test))
recall valid = recall score(flatten(y_valid), bin_pred(prediction_valid))

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

75

accuracy_train = accuracy_score(flatten(y_train), bin_pred(prediction_train))
accuracy_test = accuracy_score(flatten(y_test), bin_pred(prediction_test))
accuracy_valid = accuracy_score(flatten(y_valid), bin_pred(prediction_valid))

final_file = f'results_{model_type} {filters} {dataset_type}.txt’
with open(final file, 'a') as f:
f.write(dataset_type + '\n\n'")

f.write('dice_train: ' + str(dice_train) + ' dice_valid: ' +
str(dice_valid) + ' dice test: ' + str(dice_test) + '\n\n')

f.write('miou_train: ' + str(miou_train) + ' miou_valid: ' +
str(miou_valid) + ' miou_test: ' + str(miou_test) + '\n\n")

f.write('precision_train:
+ str(precision_valid) + ' precision_test:

f.write('recall_train: ' + str(recall_train) + ' recall_valid: ' +
str(recall_valid) + ' recall_test: ' + str(recall_test) + '\n\n')

f.write('accuracy train: ' + str(accuracy_train) + ' accuracy valid: ' +
str(accuracy_valid) + ' accuracy_test: ' + str(accuracy_test) + '\n\n\n\n')

+ str(precision_train) +

precision _valid:
+ str(precision_test) + "\n\n")

Save segmented images with original filenames for all sets
save_path = "/content/drive/My Drive/duck/segmented_results/"
os.makedirs(save_path, exist_ok=True)

def save_segmented_images(images, filenames, model, save_dir):
for i in range(len(images)):
img = (images[i] * 255).astype(np.uint8)
pred = model.predict(images[i].reshape(1l, *images[i].shape))[0, :, :,
0]
binary_mask = (pred > ©0.5).astype(np.uint8)
mask_3c = np.repeat(binary_mask[:, :, np.newaxis], 3, axis=-1)
segmented = img * mask_3c

out_file = os.path.join(save_dir, filenames[i])
Image.fromarray(segmented).save(out_file)
print(f"Saved: {out file}")

save_segmented_images(x_train, f_train, model, save_path)
save_segmented images(x_valid, f valid, model, save_ path)
save_segmented_images(x_test, f_test, model, save_path)

print(f'Dice Score - Train: {dice_train}, Valid: {dice valid}, Test:
{dice_test}")

print(f'MIoU - Train: {miou_train}, Valid: {miou_valid}, Test: {miou_test}')
print(f'Precision - Train: {precision_train}, Valid: {precision_valid}, Test:
{precision_test}")

print(f'Recall - Train: {recall_train}, Valid: {recall_valid}, Test:
{recall_test}'")

print(f'Accuracy - Train: {accuracy_train}, Valid: {accuracy_valid}, Test:
{accuracy_test}'")

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

76

ImageLoader.py

import os

import glob

import numpy as np

from PIL import Image

from skimage.io import imread
from tqdm import tqdm

folder_path = "/content/drive/My Drive/duck/data/" # Add the path to data

directory

def load_data(img_height, img width, images_to_be_loaded, dataset):
IMAGES_PATH = folder_path + 'images/'
MASKS PATH = folder_path + 'masks/'

if dataset == 'my_dataset':
train_ids = glob.glob(IMAGES_PATH + "*.png")

if images_to_be_loaded == -1:
images to _be loaded = len(train_ids)

X_train = np.zeros((images_to be loaded, img _height, img width, 3),
dtype=np.float32)

Y_train = np.zeros((images_to_be_loaded, img_height, img_width),
dtype=np.uint8)

filename_list = []

print('Loading training images and masks (no resizing):',
images_to_be_loaded)
for n, id_ in tgdm(enumerate(train_ids)):
if n == images_to be loaded:
break

image_path = id_
mask_path = image_path.replace("images", "masks")
filename = os.path.basename(image_path)

imread(image_path)
imread(mask_path)

image
mask_

X_train[n] = image / 255.0

mask = np.zeros((img_height, img_width), dtype=np.bool)
for i in range(img_height):
for j in range(img_width):
if mask_[i, j] »>= 127:
mask[i, j] =1
Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

77

Y_train[n] = mask
filename_list.append(filename)

Y_train = np.expand_dims(Y_train, axis=-1)

return X_train, Y_train, filename_list

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

78

ConvBlock2D.py

from keras.layers import BatchNormalization, add
from keras.layers import Conv2D

kernel initializer = "he uniform’
def conv_block 2D(x, filters, block_type, repeat=1, dilation_rate=1, size=3,
padding="same'):
result = x
for i in range(@, repeat):
if block_type == 'separated':

result = separated conv2D block(result, filters, size=size,
padding=padding)

elif block_type == 'duckv2':

result = duckv2_conv2D_block(result, filters, size=size)
elif block_type == 'midscope':

result = midscope conv2D block(result, filters)
elif block type == 'widescope':

result = widescope conv2D block(result, filters)
elif block type == 'resnet':

result = resnet_conv2D_block(result, filters, dilation_rate)
elif block_type == 'conv':

result = Conv2D(filters, (size, size),
activation='relu',
kernel_initializer=kernel_initializer, padding=padding)(result)
elif block type == 'double convolution':
result = double convolution_with_batch_normalization(result,
filters, dilation_rate)

else:
return None

return result

def duckv2 conv2D block(x, filters, size):
x = BatchNormalization(axis=-1)(x)

x1 = widescope conv2D block(x, filters)

x2 = midscope conv2D block(x, filters)

x3 = conv_block 2D(x, filters, 'resnet', repeat=1)
x4 = conv_block 2D(x, filters, 'resnet', repeat=2)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

79

x5 = conv_block 2D(x, filters, 'resnet', repeat=3)

x6 = separated_conv2D_block(x, filters, size=6, padding='same')
x = add([x1, x2, x3, x4, x5, x6])

x = BatchNormalization(axis=-1)(x)

return x

def separated_conv2D_block(x, filters, size=3, padding='same'):
x = Conv2D(filters, (1, size), activation='relu',
kernel_initializer=kernel_initializer, padding=padding)(x)

X
]

BatchNormalization(axis=-1)(x)

X

Conv2D(filters, (size, 1), activation='relu',
kernel_initializer=kernel_initializer, padding=padding) (x)

x = BatchNormalization(axis=-1)(x)

return Xx

def midscope_conv2D block(x, filters):
x = Conv2D(filters, (3, 3), activation='relu’,
kernel_initializer=kernel_initializer, padding='same’,
dilation_rate=1)(x)

X
]

BatchNormalization(axis=-1)(x)

x = Conv2D(filters, (3, 3), activation='relu’,
kernel_initializer=kernel _initializer, padding='same’,

dilation_rate=2)(x)
x = BatchNormalization(axis=-1)(x)

return x

def widescope conv2D block(x, filters):
x = Conv2D(filters, (3, 3), activation='relu',
kernel_initializer=kernel_initializer, padding='same’,
dilation_rate=1)(x)

x = BatchNormalization(axis=-1)(x)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

80

x = Conv2D(filters, (3, 3), activation='relu',
kernel_initializer=kernel_initializer, padding='same’,
dilation_rate=2)(x)

x
1]

BatchNormalization(axis=-1)(x)
x = Conv2D(filters, (3, 3), activation='relu',
kernel_initializer=kernel_initializer, padding='same’,
dilation_rate=3)(x)

x = BatchNormalization(axis=-1)(x)

return Xx

def resnet_conv2D block(x, filters, dilation_rate=1):
x1 = Conv2D(filters, (1, 1), activation='relu',
kernel initializer=kernel initializer, padding='same’,
dilation_rate=dilation_rate)(x)

x = Conv2D(filters, (3, 3), activation='relu',
kernel_initializer=kernel_initializer, padding='same’,
dilation_rate=dilation_rate)(x)
x = BatchNormalization(axis=-1)(x)
x = Conv2D(filters, (3, 3), activation='relu',
kernel_initializer=kernel_initializer, padding='same’,
dilation_rate=dilation_rate)(x)
x = BatchNormalization(axis=-1)(x)
x_final = add([x, x1])

x_final = BatchNormalization(axis=-1)(x_final)

return x_final

def double_convolution_with_batch_normalization(x, filters, dilation_rate=1):
x = Conv2D(filters, (3, 3), activation="relu',
kernel_initializer=kernel_initializer, padding='same’,
dilation_rate=dilation_rate)(x)
BatchNormalization(axis=-1)(x)
Conv2D(filters, (3, 3), activation='relu',
kernel_initializer=kernel _initializer, padding='same’,
dilation_rate=dilation_rate)(x)
x = BatchNormalization(axis=-1)(x)

X
X

return x

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

81

DUCK Net.py

import tensorflow as tf

from keras.layers import Conv2D, UpSampling2D
from keras.layers import add

from keras.models import Model

from CustomlLayers.ConvBlock2D import conv_block 2D
kernel_initializer = 'he_uniform’

interpolation = "nearest"”

def create_model(img_height, img_width, input_chanels, out_classes,
starting_filters):

input_layer = tf.keras.layers.Input((img_height, img_width,
input_chanels))

print('Starting DUCK-Net')

pl = Conv2D(starting_filters * 2, 2, strides=2,

padding="'same') (input_layer)
p2 = Conv2D(starting_filters * 4, 2, strides=2, padding='same')(pl)
p3 = Conv2D(starting filters * 8, 2, strides=2, padding='same"')(p2)
p4 = Conv2D(starting filters * 16, 2, strides=2, padding='same"')(p3)
p5 = Conv2D(starting_filters * 32, 2, strides=2, padding='same')(p4)
t0@ = conv_block 2D(input_layer, starting_filters, 'duckv2', repeat=1)

11i = Conv2D(starting filters * 2, 2, strides=2, padding='same')(t®0)
sl = add([11i, p1])
tl = conv_block_2D(s1, starting_filters * 2, 'duckv2', repeat=1)

12i = Conv2D(starting filters * 4, 2, strides=2, padding='same"')(tl1)
s2 = add([12i, p2])
t2 = conv_block _2D(s2, starting_filters * 4, 'duckv2', repeat=1)

13i = Conv2D(starting filters * 8, 2, strides=2, padding='same')(t2)
s3 = add([13i, p3])
t3 = conv_block 2D(s3, starting filters * 8, 'duckv2', repeat=1)

14i = Conv2D(starting filters * 16, 2, strides=2, padding='same')(t3)
s4 = add([14i, p4])
t4 = conv_block 2D(s4, starting filters * 16, 'duckv2', repeat=1)

15i = Conv2D(starting filters * 32, 2, strides=2, padding='same')(t4)
s5 = add([15i, p5])
t51 = conv_block 2D(s5, starting filters * 32, 'resnet', repeat=2)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

82

t53 = conv_block_2D(t51, starting_filters * 16, 'resnet', repeat=2)
150 = UpSampling2D((2, 2), interpolation=interpolation)(t53)

c4 = add([1l50, t4])

g4 = conv_block_2D(c4, starting filters * 8, 'duckv2', repeat=1)

l4o0 = UpSampling2D((2, 2), interpolation=interpolation)(q4)
c3 = add([l4o, t3])
g3 = conv_block_2D(c3, starting_filters * 4, 'duckv2', repeat=1)

130 = UpSampling2D((2, 2), interpolation=interpolation)(qg3)

c2 = add([130, t2])

g6 = conv_block _2D(c2, starting filters * 2, 'duckv2', repeat=1)
120 = UpSampling2D((2, 2), interpolation=interpolation)(qg6)

cl = add([120, t1])

ql = conv_block_2D(cl, starting_filters, 'duckv2', repeat=1)

1llo = UpSampling2D((2, 2), interpolation=interpolation)(ql)

cO = add([l1lo, t@])

z1 = conv_block_2D(c@, starting filters, 'duckv2', repeat=1)
output = Conv2D(out_classes, (1, 1), activation='sigmoid')(z1)

model = Model(inputs=input_layer, outputs=output)

return model

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

83

DiceLoss.py

import tensorflow.keras.backend as K
import tensorflow as tf

def dice_metric_loss(ground_truth, predictions, smooth=1e-6):

ground_truth = K.cast(ground_truth, tf.float32)
predictions = K.cast(predictions, tf.float32)
ground_truth = K.flatten(ground_truth)
predictions = K.flatten(predictions)
intersection = K.sum(predictions * ground_truth)
union = K.sum(predictions) + K.sum(ground_truth)

dice = (2. * intersection + smooth) / (union + smooth)

return 1 - dice

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

84

AdderNet (from https://github.com/huawei-noah/AdderNet)

Consist of:
- AdderNet.ipynb
- adder.py
- resnet20.py
- main.py
- test.py

AdderNet.ipynb

from google.colab import drive
drive.mount('/content/drive")

import os
os.chdir('/content/drive/MyDrive/AdderNet")

Ipip install torch torchvision

Ipython main.py --data /content/drive/MyDrive/AdderNet/root/cifarl@-png --

output_dir /content/drive/MyDrive/AdderNet/output/

Ipython test.py --dataset cifarl@ --data_dir
/content/drive/MyDrive/AdderNet/root/cifarl@-png --model dir
/content/drive/MyDrive/AdderNet/output/addernet.pth

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

85

https://github.com/huawei-noah/AdderNet

adder.py

import torch

import torch.nn as nn

import numpy as np

from torch.autograd import Function
import math

def adder2d_function(X, W, stride=1, padding=9):
n_filters, d_filter, h_filter, w_filter = W.size()
n x, dx, h x, wx = X.size()

h_out
w_out

(h_x
(w_x

h_filter + 2 * padding) / stride + 1
w_filter + 2 * padding) / stride + 1

h out, w out = int(h_out), int(w_out)

X_col = torch.nn.functional.unfold(X.view(1, -1, h_x, w_x), h_filter,
dilation=1, padding=padding, stride=stride).view(n_x, -1, h_out*w out)

X_col = X_col.permute(1,2,0).contiguous().view(X_col.size(1),-1)

W_col = W.view(n_filters, -1)

out = adder.apply(W_col,X _col)

out = out.view(n_filters, h_out, w out, n_x)
out = out.permute(3, 0, 1, 2).contiguous()

return out

class adder(Function):
@staticmethod
def forward(ctx, W_col, X _col):
ctx.save_for_backward(W_col,X_col)
output = -(W_col.unsqueeze(2)-X_col.unsqueeze(9)).abs().sum(1)
return output

@staticmethod
def backward(ctx,grad_output):
W_col,X_col = ctx.saved_tensors
grad W col = ((X_col.unsqueeze(9)-
W _col.unsqueeze(2))*grad_output.unsqueeze(l)).sum(2)
grad W_col = grad_W_col/grad W _col.norm(p=2).clamp(min=1e-
12)*math.sqrt(W_col.size(1)*W col.size(@))/5
grad_X_col = (-(X_col.unsqueeze(®)-W_col.unsqueeze(2)).clamp(-
1,1)*grad_output.unsqueeze(l)).sum(9)

return grad_W_col, grad X _col

class adder2d(nn.Module):

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

86

def _init_ (self,input_channel,output_channel, kernel_size, stride=1,

padding=0, bias = False):

super(adder2d, self). init ()

self.stride = stride

self.padding = padding

self.input_channel = input_channel

self.output_channel = output_channel

self.kernel size = kernel size

self.adder =
torch.nn.Parameter(nn.init.normal_(torch.randn(output_channel,input_channel, ke
rnel size,kernel size)))

self.bias = bias

if bias:

self.b =

torch.nn.Parameter(nn.init.uniform_(torch.zeros(output_channel)))

def forward(self, x):
output = adder2d_function(x,self.adder, self.stride, self.padding)
if self.bias:
output += self.b.unsqueeze(0).unsqueeze(2).unsqueeze(3)

return output

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

87

resnet20.py

import adder
import torch.nn as nn

def conv3x3(in_planes, out_planes, stride=1):
3x3 convolution with padding "

return adder.adder2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)

class BasicBlock(nn.Module):
expansion=1

def _init_(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self). init_ ()
self.convl = conv3x3(inplanes, planes, stride = stride)
self.bnl = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride

def forward(self, x):
residual = x

out = self.convl(x)
out = self.bnl(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)

if self.downsample is not None:
residual = self.downsample(x)

out += residual
out = self.relu(out)

return out

class ResNet(nn.Module):

def init_ (self, block, layers, num_classes=10):
super(ResNet, self). init ()

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

88

self.inp

self.

bias=False)
self.bnl
self.rel
self.lay
self.lay
self.lay

self.
self.
self.

lanes = 16

convl = nn.Conv2d(3, 16,

= nn.BatchNorm2d(16)

kernel _size=7, stride=2, padding=3,

u = nn.ReLU(inplace=True)
erl = self. make_layer(block, 16, layers[©@])

er2

self. make_layer(block, 32, layers[1l], stride=2)

er3 = self. make_layer(block, 64, layers[2], stride=2)

for m in self.modules():

if isinstance(m, nn.BatchNorm2d):
m.weight.data.fill (1)
m.bias.data.zero_ ()

def

downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:

layers =

layers.append(block(inplanes
= stride, downsample = downsample))

self.inplanes = planes * block.expansion

for _

in

avgpool = nn.AdaptiveAvgPool2d((1, 1))
fc = nn.Conv2d(64 * block.expansion, num_classes, 1, bias=False)
bn2 = nn.BatchNorm2d(num_classes)

make layer(self, block, planes, blocks, stride=1):

downsample = nn.Sequential(

adder.adder2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion)

[]

range(1l, blocks):

= self.inplanes, planes = planes, stride

layers.append(block(inplanes = self.inplanes, planes = planes))

return nn.Sequential(*layers)

def forward(self, x):

X = self.
X = self.
X = self.
X = self.
X = self.
X = self.
X = self.
X = self.
X = self.

convl(x)
bnl(x)
relu(x)

layerl(x)
layer2(x)
layer3(x)

avgpool(x)
fc(x)
bn2(x)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

89

return x.view(x.size(9), -1)

def resnet20(num_classes=4, **kwargs): # num_class = 2 or 4 or 5
return ResNet(BasicBlock, [3, 3, 3], num_classes=num_classes, **kwargs)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

90

main.py

import os

from resnet20 import resnet20

import torch

from torch.autograd import Variable

from torchvision.datasets import ImageFolder
import torchvision.transforms as transforms
from torch.utils.data import Dataloader
import argparse

import math

parser = argparse.ArgumentParser(description="train-addernet")
parser.add_argument('--data', type=str,
default="'/content/drive/MyDrive/AdderNet/cifarl@-png')

parser.add _argument('--output_dir', type=str, default='/cache/models/")
args = parser.parse_args()

os.makedirs(args.output_dir, exist_ok=True)

acc = 0
acc_best = 0

transform_train = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),

transforms.Normalize((0.2104, ©.1522, 0.1593), (0.2871, 0.2145, 0.2250)) #

mean & std for 2/4/5 classes training set

D

transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),

transforms.Normalize((©.2104, ©.1522, ©.1593), (0.2871, 0.2145, 0.2250)) #

mean & std for 2/4/5 classes training set

D

data_train = ImageFolder(root=os.path.join(args.data, 'train'),
transform=transform_train)

data_test = ImageFolder(root=os.path.join(args.data, 'test'),
transform=transform_test)

data_train_loader = DatalLoader(data_train, batch_size=16, shuffle=True,
num_workers=2)
data_test loader = DatalLoader(data_test, batch_size=16, num_workers=2)

net = resnet20(num_classes=4).cuda() # num classes = 2 or 4 or 5

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

91

criterion = torch.nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(net.parameters(), lr=0.1, momentum=0.9,
weight_decay=5e-4)

def adjust_learning rate(optimizer, epoch):
lr = 0.05 * (1+math.cos(float(epoch)/50*math.pi)) # epoch = 50 or 100
for param_group in optimizer.param_groups:
param_group['1lr'] = 1r

def train(epoch):
adjust_learning rate(optimizer, epoch)
global cur_batch_win
net.train()
loss_list, batch_list = [], []
for i, (images, labels) in enumerate(data_train_loader):
images, labels = Variable(images).cuda(), Variable(labels).cuda()

optimizer.zero_grad()
output = net(images)
loss = criterion(output, labels)

loss_list.append(loss.data.item())
batch_list.append(i+1)

if i ==1:
print('Train - Epoch %d, Batch: %d, Loss: %f' % (epoch, i,
loss.data.item()))

loss.backward()
optimizer.step()

def test():

global acc, acc_best

net.eval()

total_correct = 0

avg_loss = 0.0

with torch.no_grad():

for i, (images, labels) in enumerate(data_test_loader):

images, labels = Variable(images).cuda(), Variable(labels).cuda()
output = net(images)
avg_loss += criterion(output, labels).sum()
pred = output.data.max(1)[1]
total_correct += pred.eq(labels.data.view_as(pred)).sum()

avg loss /= len(data_test)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

92

acc = float(total correct) / len(data_test)
if acc_best < acc:
acc_best = acc
print('Test Avg. Loss: %f, Accuracy: %f' % (avg_loss.data.item(), acc))

def train_and test(epoch):
train(epoch)
test()

def main():
epoch = 50 # epoch = 50 or 100
for e in range(1l, epoch):
train_and_test(e)
torch.save(net.state dict(), args.output_dir + 'addernet.pth')

if __name__ == '__main__":
main()

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

93

test.py

import os

import shutil

import torch

import torch.nn as nn

import torch.nn.functional as F

from torchvision import datasets, transforms
from torch.utils.data import Dataloader
import argparse

from resnet20 import resnet20

import numpy as np

from sklearn.metrics import classification_report, confusion_matrix,
accuracy_score

import matplotlib.pyplot as plt

import seaborn as sns

import PIL

class ImageFolderWithPaths(datasets.ImageFolder):
def getitem_ (self, index):
original_tuple = super(ImageFolderWithPaths, self)._ getitem__ (index)
path = self.imgs[index][9]
return original_tuple + (path,)

def plot_confusion_matrix(cm, class_names, save_path):
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap="Blues",
xticklabels=class_names, yticklabels=class_names)
plt.ylabel('True Label")
plt.xlabel('Predicted Label')
plt.title('Confusion Matrix")
plt.tight layout()
plt.savefig(save_path)
plt.close()

def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)

def get model size(model path):
size_bytes = os.path.getsize(model_path)
return size_bytes / (1024 * 1024)

def main():
parser = argparse.ArgumentParser()
parser.add argument('--dataset', default='cifarle', type=str)
parser.add_argument('--data_dir', default='./data', type=str)
parser.add _argument('--model dir', default='./model.pth', type=str)
args = parser.parse_args()

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

94

val_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),

transforms.Normalize(mean=[0.2104, ©.1522, 0.1593], std=[0.2871,

0.2145, 0.2250]) # mean & std for 2/4/5 classes training set
D

valdir = os.path.join(args.data_dir, 'test')

val_dataset = ImageFolderWithPaths(valdir, transform=val_transform)
val_loader = Dataloader(val_dataset, batch_size=16, shuffle=False)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = resnet20()

model.load_state_dict(torch.load(args.model_dir, map_location=device))

model = model.to(device)
model.eval()

class_names = val dataset.classes

output_base = '/content/drive/MyDrive/AdderNet/results"’
os.makedirs(output_base, exist ok=True)

for class_name in class_names:

os.makedirs(os.path.join(output_base, class_name), exist_ok=True)

all preds = []
all labels = []
all paths = []

with torch.no_grad():
for images, labels, paths in val_loader:
images = images.to(device)
outputs = model(images)
_, preds = torch.max(outputs, 1)

all preds.extend(preds.cpu().numpy())
all labels.extend(labels.cpu().numpy())
all paths.extend(paths)

for i in range(len(paths)):
pred_class = class_names[preds[i]]
dst_path = os.path.join(output_base, pred_class,
os.path.basename(paths[i]))
shutil.copy(paths[i], dst_path)

=== METRICS ===
print("\n=== METRICS ===")
acc = accuracy_score(all_labels, all preds)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

95

report = classification report(all_labels, all preds,
target_names=class_names, output_dict=True)
matrix = confusion_matrix(all_labels, all preds)

Overall metrics

print(f"Overall Accuracy: {acc:.4f}")

print(f"Precision (macro avg): {report['macro avg']['precision']:.4f}")
print(f"Recall (macro avg): {report['macro avg']['recall']:.4f}")
print(f"F1 Score (macro avg): {report['macro avg']['fl-score']:.4f}")

=== PER-CLASS METRICS ===

print("\n=== PER-CLASS METRICS ===")
total_per_class = np.zeros(len(class_names))
correct_per_class = np.zeros(len(class_names))

for i in range(len(all_labels)):
total_per_class[all_labels[i]] += 1
if all_labels[i] == all_preds[i]:
correct_per_class[all labels[i]] += 1

for i, class_name in enumerate(class_names):

precision = report[class_name]['precision’']
recall = report[class_name]['recall’]
f1 = report[class_name]['fl-score']
acc_cls = correct_per_class[i] / total_per_class[i] if

total per_class[i] > © else 0.0
print(f"Class: {class _name}")
print(f" Accuracy: {acc_cls:.4f}")
print(f" Precision: {precision:.4f}")
print(f" Recall: {recall:.4f}")
print(f" F1 Score: {f1:.4f}")

Save confusion matrix

cm_path = os.path.join(output_base, 'confusion_matrix.png')
plot confusion matrix(matrix, class_names, cm_path)
print(f"\nConfusion matrix saved to: {cm_path}")

Model info

print(f"\nTotal parameters: {count_parameters(model):,}")

print(f"Model file size: {get model size(args.model dir):.2f} MB")
if __name__ == '__main__"':

main()

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

96

ResNet20

Consist of:

- AdderNet.ipynb (use back the same .ipynb file from AdderNet model)
- resnet20.py
- main.py (use back the same main.py from AdderNet model)

- test.py (use back the same test.py from AdderNet model)

resnet20.py

import torch.nn as nn

def conv3x3(in_planes, out_planes, stride=1):

return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)

class BasicBlock(nn.Module):
expansion=1

def _init_(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self). init ()
self.
self.
self.
self.
self.
self.
self.

convl = conv3x3(inplanes, planes, stride

bnl = nn.BatchNorm2d(planes)
relu = nn.ReLU(inplace=True)
conv2 = conv3x3(planes, planes)
bn2 = nn.BatchNorm2d(planes)
downsample = downsample

stride = stride

def forward(self, x):
residual = x

out
out
out

out
out

self.convl(x)
self.bnl(out)
self.relu(out)

self.conv2(out)
self.bn2(out)

if self.downsample is not None:

r

esidual = self.downsample(x)

out += residual

out

self.relu(out)

return out
Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

= stride)

97

class ResNet(nn.Module):

def _init_ (self, block, layers, num_classes=2):
super(ResNet, self). init_ ()
self.inplanes = 16
self.convl = nn.Conv2d(3, 16, kernel_size=7, stride=2, padding=3,
bias=False)
self.bnl = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.layerl = self. make layer(block, 16, layers[@])
self.layer2 = self. make_layer(block, 32, layers[1l], stride=2)
self.layer3 = self. make layer(block, 64, layers[2], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Conv2d(64 * block.expansion, num_classes, 1, bias=False)
self.bn2 = nn.BatchNorm2d(num_classes)

for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_ (1)
m.bias.data.zero_ ()

def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel _size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion)

layers = []
layers.append(block(inplanes = self.inplanes, planes = planes, stride
= stride, downsample = downsample))
self.inplanes = planes * block.expansion
for _ in range(l, blocks):
layers.append(block(inplanes = self.inplanes, planes = planes))

return nn.Sequential(*layers)

def forward(self, x):
x = self.convl(x)
x = self.bnl(x)
x = self.relu(x)

x = self.layerl(x)
x = self.layer2(x)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

98

x = self.layer3(x)
x = self.avgpool(x)
x = self.fc(x)
x = self.bn2(x)

return x.view(x.size(9), -1)

def resnet20(num_classes=4, **kwargs): # num_classes = 2 or 4 or 5

return ResNet(BasicBlock, [3, 3, 3], num_classes=num_classes, **kwargs)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

99

HybridNet

Consist of:
- AdderNet.ipynb (use back the same .ipynb file from AdderNet model)
- hybrid.py
- main.py (use back the same main.py from AdderNet model)
- test.py (use back the same test.py from AdderNet model)

hybrid.py

import torch
import torch.nn as nn
import torch.nn.functional as F

class InvertedResidual(nn.Module):
def _ init_ (self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self). init_ ()
hidden_dim = int(inp * expand_ratio)

self.use_res_connect = (stride == 1 and inp == oup)
layers = []
if expand_ratio != 1:

pointwise
layers.append(nn.Conv2d(inp, hidden_dim, 1, 1, ©, bias=False))
layers.append(nn.BatchNorm2d(hidden_dim))
layers.append(nn.ReLU6(inplace=True))
depthwise
layers.extend([
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim,
bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
pointwise-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
1

self.conv = nn.Sequential(*layers)

def forward(self, x):
if self.use res_connect:
return x + self.conv(x)
else:
return self.conv(x)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

100

class HybridBlock(nn.Module):
def _init_ (self, in_planes, out_planes, stride=1, expand_ratio=6):
super(HybridBlock, self). init ()
self.inverted residual = InvertedResidual(in_planes, out_planes,
stride, expand_ratio)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != out_planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, out planes, kernel size=1, stride=stride,
bias=False),
nn.BatchNorm2d(out_planes)

def forward(self, x):
out = self.inverted_residual(x)
out += self.shortcut(x)
return F.relu(out)

class HybridNet(nn.Module):
def init (self, num _classes=4):
super(HybridNet, self). init_ ()
self.stem = nn.Sequential(
nn.Conv2d(3, 16, kernel size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True)

Stages: (like ResNet-20, but each uses HybridBlock)

self.layerl = self. make layer(16, 24, num blocks=2, stride=1) # like
MobileNet small expansion

self.layer2 = self. make layer(24, 48, num_blocks=2, stride=2)

self.layer3 = self. make layer(48, 96, num_blocks=2, stride=2)

self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(96, num_classes)

def _make_layer(self, in_planes, out_planes, num_blocks, stride):
layers = []
layers.append(HybridBlock(in_planes, out_planes, stride=stride))
for _ in range(l, num_blocks):
layers.append(HybridBlock(out_planes, out_planes, stride=1))
return nn.Sequential(*layers)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

101

def forward(self, x):
out = self.stem(x)
out = self.layerl(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.pool(out)
out = out.view(out.size(®), -1)
return self.fc(out)

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

102

Improved HybridNet

Consist of:
- AdderNet.ipynb (use back the same .ipynb file from AdderNet model)
- hybrid.py
- main.py (use back the same main.py from AdderNet model)
- test.py (use back the same test.py from AdderNet model)

hybrid.py

import math

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.utils.checkpoint as cp # why: cut activation memory

class DropPath(nn.Module):
def _init_ (self, drop_prob: float = 0.0):
super().__init_ ()
self.drop_prob = float(drop_prob)

def forward(self, x):
if not self.training or self.drop_prob == 0.0:
return x
keep = 1.0 - self.drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
return x * x.new_empty(shape).bernoulli_ (keep).div_(keep)

class SqueezeExcite(nn.Module):
def _init_ (self, channels: int, se_ratio: float = 0.25):

super().__init_ ()

hidden = max(8, int(channels * se ratio))

self.pool = nn.AdaptiveAvgPool2d(1)

self.fc = nn.Sequential(
nn.Conv2d(channels, hidden, 1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(hidden, channels, 1, bias=True),
nn.Sigmoid(),

def forward(self, x):
return x * self.fc(self.pool(x))

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

103

def make divisible(v: int, divisor: int = 8) -> int:
return int(math.ceil(v / divisor) * divisor)

class InvertedResidual(nn.Module):

expand -> depthwise -> pointwise-linear (+ optional SE).
Has internal residual only if stride==1 and in==out.

def init (self, inp, oup, stride, expand ratio, se ratio: float =

9.25):

bias=False),

else nn.

def

super().__init_ ()
assert stride in [1, 2]
hidden_dim = int(inp * expand_ratio)

self.use_res_connect = (stride == 1 and inp == oup)
layers = []
if expand_ratio != 1:

layers += |
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),

]

layers += [

]

nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim,

nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),

nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),

self.conv = nn.Sequential(*layers)
self.se = SqueezeExcite(oup, se ratio) if se_ratio and se_ratio > ©
Identity()

forward(self, x):

y = self.conv(x)

y = self.se(y)

if self.use_res_connect:

y=x+y
return y
B e e
Hybrid Block
B om e oo

class HybridBlock(nn.Module):

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

104

Projection shortcut only when shapes differ (avoid double identity).
Activation checkpointing to save memory on forward.
def _ init_ (self, in_planes, out_planes, stride=1,
expand ratio=3.0, se ratio=0.25, drop path=0.05,
use_checkpoint=True):
super()._ init_ ()
self.irb = InvertedResidual(in_planes, out planes, stride,
expand_ratio, se_ratio)
self.use_proj = (stride != 1) or (in_planes != out_planes)
self.proj = nn.Sequential(
nn.Conv2d(in_planes, out_planes, 1, stride=stride, bias=False),
nn.BatchNorm2d(out_planes),
) if self.use_proj else None
self.drop_path = DropPath(drop_path) if drop _path > 0.9 else
nn.Identity()
self.use_checkpoint = use_checkpoint

def forward(self, x):
if self.use_checkpoint and self.training:
y = cp.checkpoint(self.irb, x) # why: recompute backward, lower
peak mem
else:
y = self.irb(x)
y = self.drop_path(y)
if self.use proj:
y =y + self.proj(x)
return F.relu(y, inplace=True)

class HybridNet(nn.Module):
Backward-compatible: HybridNet(num_classes=2/4/5)
Lighter defaults to avoid OOM; still higher quality via SE+DropPath.
def init (self, num_classes: int = 4,
channels=(24, 48, 96), # keep widths modest
depths=(2, 2, 2), # safe depth to avoid OOM
expand_ratio: float = 3.0, # lower than 6 to cut activations
se _ratio: float = 0.25,
p_dropout: float = 0.109,
drop_path_rate: float = 0.05,
width_mult: float = 1.00,
dynamic_downsample: bool = True, # auto-downsample very
large inputs
Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

105

ds_threshold: int = 128, # if max(H,W) >= threshold,
downsample by 2
use_checkpoint: bool = True):
super(). init_ ()
self.dynamic_downsample = dynamic_downsample
self.ds _threshold = ds_threshold
self.use_checkpoint = use checkpoint

cl, c2, c3 = [_make divisible(int(c * width_mult), 8) for c in
channels]

self.stem = nn.Sequential(
nn.Conv2d(3, 16, 3, 1, 1, bias=False),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),

total_blocks = sum(depths)

dp_rates = [drop_path_rate * i / max(1, total blocks - 1) for i in
range(total_blocks)]

dp_ i =90

self.layerl, dp_i = self. make_layer(16, cl, depths[0@], stride=1,
expand_ratio=expand_ratio,
se_ratio=se_ratio,
dp_rates=dp_rates, dp_i=dp i)
self.layer2, dp_i = self. make_layer(cl, c2, depths[1l], stride=2,
expand_ratio=expand_ratio,
se _ratio=se_ratio,
dp_rates=dp_rates, dp_i=dp_i)
self.layer3, dp_i = self. make_layer(c2, c3, depths[2], stride=2,
expand_ratio=expand_ratio,
se_ratio=se_ratio,
dp_rates=dp_rates, dp_i=dp i)

self.pool = nn.AdaptiveAvgPool2d(1)
self.drop = nn.Dropout(p_dropout) if p_dropout and p_dropout > @ else
nn.Identity()

self.fc = nn.Linear(c3, num_classes)
self. init_weights()

def make layer(self, in_planes, out_planes, num_blocks, stride,
expand_ratio, se ratio, dp_rates, dp_i):
layers = []
layers.append(HybridBlock(in_planes, out_planes, stride=stride,
expand_ratio=expand_ratio,
se_ratio=se ratio,

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

106

drop_path=dp_rates[dp_i] if dp_rates else

use_checkpoint=self.use_checkpoint))
dp i +=1
for _ in range(1, num_blocks):
layers.append(HybridBlock(out_planes, out_planes, stride=1,
expand_ratio=expand_ratio,
se_ratio=se_ratio,
drop_path=dp_rates[dp_i] if dp_rates
else 0.0,
use_checkpoint=self.use_checkpoint))
dp i +=1
return nn.Sequential(*layers), dp_i

def _init weights(self):
for m in self.modules():

if isinstance(m, nn.Conv2d):

nn.init.kaiming_normal_(m.weight, mode='fan_out',
nonlinearity="relu')

elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, @, ©.01); nn.init.zeros_(m.bias)

elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight); nn.init.zeros_(m.bias)

def forward(self, x):
optional dynamic downsample for big inputs (e.g., 224x224)
if self.dynamic_downsample and max(x.shape[-2], x.shape[-1]) >=
self.ds_threshold:
x = F.avg_pool2d(x, 2) # why: halve H,W early » big mem drop
= self.stem(x)
= self.layerl(x)
self.layer2(x)
= self.layer3(x)
= self.pool(x).flatten(1)
x = self.drop(x)
return self.fc(x)

X X X X X
1]

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

107

POSTER

Ré&gions for Traditional and Complementary Medicine (TCM) Diagnosis..

By Bong Min Xuan « Supervisor: Dr. Lee Wai Kong
Bachelor of Information Systems (Honours) Informaton Systems Engineering«
-~ .
.

. .
\ Comparing Machiné® earning Techgligues to Segmentize and Classify Tongue

ntroduction Objectives

e Traditional Chinese Medicine (TCM) relies on tongue e Compare SVM vs. DuckNet for
diagnosis, but manual inspection is subjective and segmentation.
inconsistent. Design and evaluate classification models:

Aim: Automate segmentation and classification of f\dderNet g a0 o shibHidHet -+
mproved HybridNet.

tongue images using machine learning and deep learning Benchmark across binary (2-class), 4-class,
to achieve objective, reproducible diagnostics. and 5-class datasets.

Challenges: complex backgrounds, subtle color/coating Identify the most effective model balancing
variations, and computational efficiency. accuracy, efficiency, and scalability.

Methodology
Datasets:
e 2-class (Stained vs. Non-stained moss, 2000 images).
e 4-class (Pale, Pale Red, Red, Bluish Purple; 2000 images).
e 5-class (Mirror-Approximated, White-Greasy, Thin-White, Yellow-Greasy, Grey-Black; 2500 images).
Segmentation:
e SVM (traditional baseline, lightweight).
e DuckNet-17 (deep learning, high robustness; adopted as default).
Classification Models:
e AdderNet (experimental, addition-based ops).
e ResNet20 (baseline residual CNN).
* HybridNet (ResNet + MobileNetV2 efficiency).
* Improved HybridNet (adds SE, DropPath, checkpointing).
Metrics: Accuracy, Precision, Recall, F1-score, Jaccard (segmentation), Training time, Model size.

/' Results
Segmentation:
e sVM: ~86% accuracy, struggles with complex backgrounds.
* DuckNet: 298% accuracy, 295% Jaccard; chosen for all main experiments.
Classification:
e 2-class: Improved HybridNet best (97.25%, 0.57 MB).
® 4-class: AdderNet highest (91%) but inefficient; Improved HybridNet balanced (87.75%,
0.57 MB).
e 5-class: ResNet20 (85.8%), HybridNet (86.8%), Improved HybridNet (85.6%) — all
competitive, but Improved HybridNet is most efficient.

Discussion
Segmentation quality # direct impact on classification - once tongue is isolated, classifiers
dominate performance.
AdderNet: promising but computationally heavy and unstable for >4 classes.
ResNet20: stable benchmark, fast training, but limited scalability.
HybridNet: fewer parameters, good efficiency, slightly weaker for complex tasks.
Improved HybridNet: best trade-off (accuracy + efficiency), small model size, practical for
deployment.

Conclusion
e Demonstrated a reproducible pipeline for segmentation + classification of tongue images.
e DuckNet is superior for segmentation, ensuring reliable preprocessing.
* Improved HybridNet consistently provided the best balance of accuracy, speed, and model size.
¢ Project shows the potential of Al to standardize TCM tongue diagnosis for future clinical applications.

Bachelor of Information Systems (Honours) Information Systems Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
108

