

COMPARING MACHINE LEARNING TECHNIQUES TO SEGMENTIZE AND

CLASSIFY TONGUE REGIONS FOR TRADITIONAL AND COMPLEMENTARY

MEDICINE (TCM) DIAGNOSIS

BY

BONG MIN XUAN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONOURS) INFORMATION SYSTEMS

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Bong Min Xuan. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Information Systems (Honours) Information Systems

Engineering at Universiti Tunku Abdul Rahman (UTAR). This Final Year Project

report represents the work of the author, except where due acknowledgment has been

made in the text. No part of this Final Year Project report may be reproduced, stored,

or transmitted in any form or by any means, whether electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of the

author or UTAR, in accordance with UTAR's Intellectual Property Policy.

Example

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr. Lee Wai

Kong, who has given me this invaluable opportunity to undertake this project, which focuses

on applying machine learning techniques to segmentize tongue regions. Throughout the course

of this project, Dr. Lee has provided unwavering guidance, insightful advice, and constant

encouragement, helping me to navigate the challenges and complexities of the research. His

patience, expertise, and commitment to teaching have profoundly deepened my understanding

of machine learning and its real-world applications in medical imaging. This project not only

marks an important milestone in my academic journey but also lays a strong foundation for my

future endeavors in the field of artificial intelligence. I am truly grateful for the knowledge and

professional development that I have gained under his supervision.

To a very special person in my life, Yvonne Wong, I extend my sincere thanks for your

unconditional support, patience, and love. Yvonne’s presence has been a constant source of

strength, especially during the more challenging phases of this project. She has always believed

in me even when I doubted myself, and your encouragement has given me the courage and

determination to persevere. Her understanding, sacrifices, and continuous motivation have

been an integral part of my success, and I could not have come this far without your unwavering

companionship and positivity.

Lastly, I would like to express my deepest gratitude to my parents and family members for

their endless support, love, and belief in my potential. Their sacrifices, encouragement, and

constant reminders to strive for excellence have been the pillars that upheld me throughout my

academic life. Every achievement I accomplish is a testament to the strength and inspiration

that you have given me. Their faith in my abilities has fueled my motivation and has been the

driving force behind my perseverance through every challenge faced along this journey. I am

forever indebted to your boundless love and support.

A million thanks to all of them for being such an important part of my journey.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

This project investigates the application of machine learning and deep learning techniques for

automated tongue diagnosis in the context of Traditional Chinese Medicine (TCM). Tongue

diagnosis, a long-established diagnostic method in TCM, is often limited by subjectivity and

inconsistency. To address this, the study develops a systematic pipeline that integrates

segmentation and classification models, enabling more objective, accurate, and reproducible

analysis of tongue images. Three datasets—binary (stained vs. non-stained moss), four-class

(color variations), and five-class (coating categories)—were utilized to evaluate performance

under varying levels of complexity. Segmentation was performed using both classical methods

(SVM) and a deep learning approach (DuckNet), with DuckNet providing superior accuracy

and robustness. Classification was carried out through an evolutionary series of architectures,

beginning with AdderNet and progressing through ResNet20, HybridNet, and an Improved

HybridNet. Experimental results demonstrated that while AdderNet achieved the highest

accuracy in complex multi-class scenarios, it suffered from excessive computational cost and

scalability limitations. The Improved HybridNet consistently offered the best trade-off between

performance and efficiency, delivering strong accuracy with reduced parameters, training time,

and model size. Overall, the project highlights the potential of artificial intelligence to

modernize tongue diagnosis by providing standardized, efficient, and clinically relevant

computational tools. The findings establish a foundation for future integration of AI-driven

diagnostic support systems into healthcare practice

Area of Study: Image Processing, Artificial Intelligence

Keywords: Image Processing, TCM, Deep Learning, Image Classification, Machine Learning

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES Ix

LIST OF TABLES x

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 1

1.3 Project Scope and Direction 1

1.4 Contributions 2

1.5 Report Organization 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Review of the Technologies 4

2.1.1 Hardware Platforms for Medical Image Analysis 4

2.1.2 Firmware / Operating System Environments 4

2.1.3 Datasets Used in Medical and Tongue Diagnosis 4

2.1.4 Programming Languages and Libraries 5

2.2 Review of Existing Systems and Applications 5

 2.2.1 Tongue Diagnosis Systems in TCM 5

 2.2.2 Traditional and Machine Learning-Based Segmentation 5

 2.2.3 Deep Learning-Based Segmentation Models 6

 2.2.3.1 Convolutional Neural Network (CNN Base 6

 Architecture)

 2.2.3.2 VGG16 7

 2.2.3.3 ResNet20 7

 2.2.3.4 MobileNetV2 7

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

 2.2.3.5 AdderNet 8

 2.2.3.6 Summary of Classification Models 8

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 9

3.1 Overview 9

3.2 Dataset Preparation 10

3.3 Segmentation Methods 14

3.3.1 Traditional Machine Learning Methods 14

3.1.2 DuckNet (Deep Learning Segmentation) 14

3.1.3 Method Selection 15

3.4 Classification Models 16

 3.4.1 AdderNet 16

 3.4.2 ResNet20 16

 3.4.3 HybridNet 16

 3.4.4 Improved HybridNet 16

3.5 Evaluation Metrics 18

 3.5.1 Classification Metrics 18

 3.5.2 Segmentation Metrics 18

 3.5.3 Efficiency Metrics 18

3.6 Implementation Environment 19

CHAPTER 4 SYSTEM DESIGN 20

4.1 Overview 20

4.2 AdderNet Design 20

4.3 ResNet20 Design 21

4.4 HybridNet Design 22

4.5 Improved HybridNet Design 22

4.6 Summary of Model Architectures and Their Roles in

 Progression

23

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

CHAPTER 5 RESULTS AND DISCUSSION 25

5.1 Segmentation Performance 25

5.2 Classification Performance on SVM Segmented Datasets 28

 5.2.1 Multi (4-Class) Dataset Results 28

 5.2.1.1 ResNet20 28

 5.2.1.2 HybridNet 29

5.3 Impact of Segmentation using SVM or DuckNet on Classification 30

5.4 Classification Performance on DuckNet-Segmented Datasets 32

 (Main Experiments)

 5.4.1 Binary (2-Class) Dataset Results 32

 5.4.1.1 AdderNet 32

 5.2.1.2 ResNet 33

 5.2.1.3 HybridNet 34

 5.2.1.4 Improved HybridNet 35

 5.4.1.5 Model Performance on 2-Class Dataset (Stained 36

 moss vs. Non-stained moss)

 5.4.2 Multi (4-Class) Dataset Results 37

 5.4.2.1 AdderNet 37

 5.2.2.2 ResNet 38

 5.2.2.3 HybridNet 39

 5.2.2.4 Improved HybridNet 40

 5.4.2.5 Model Performance on 4-Class Dataset (Pale, 41

 Pale Red, Red, Bluish Purple)

 5.4.3 Multi (5-Class) Dataset Results 42

 5.4.3.1 ResNet 42

 5.2.3.2 HybridNet 43

 5.2.3.3 Improved HybridNet 44

 5.4.3.4 Model Performance on 5-Class Dataset (Mirror- 45

 Approximated, White-Greasy, Thin-White,

 Yellow-Greasy, Grey-Black)

5.5 Overall Accuracy Summary and Trends 46

5.6 Computational Efficiency and Model Architecture Analysis 48

5.6.1 Best Classification Model Selction 50

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

CHAPTER 6 CONCLUSION AND RECOMMENDATION 51

 6.1 Conclusion 51

 6.2 Recommendation 52

REFERENCES 54

APPENDIX 56

 SVM 56

 DuckNet 73

 AdderNet 85

 ResNet 97

 HybridNet 100

 Improved HybridNet 103

POSTER 108

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF FIGURES

Figure Number Title Page

Figure 3.2 Representative samples for categories across 2-, 4-, and 5-

class datasets

12

Figure 3.2.1 Tongue images from the 4 and 5 class datasets imported

into the CVAT tool

13

Figure 3.2.2 Semi auto annotation of the tongue region 13

Figure 3.2.3 Ground truth mask generated for segmentation 13

Figure 5.1 Sample tongue images 27

Figure 5.2 Ground truth masks of tongue regions 27

Figure 5.3 Tongue regions segmented using SVM 27

Figure 5.4 Tongue regions segmented using DuckNet 27

Figure 5.2.1.1 Confusion matrix of ResNet20 on the 4-class dataset

(SVM-segmented)

28

Figure 5.2.1.2 Confusion matrix of HybridNet on the 4-class dataset

(SVM-segmented)

29

Figure 5.4.1.1 Confusion matrix of AdderNet on the 2-class dataset 32

Figure 5.4.1.2 Confusion matrix of ResNet20 on the 2-class dataset 33

Figure 5.4.1.3 Confusion matrix of HybridNet on the 2-class dataset 34

Figure 5.4.1.4 Confusion matrix of Improved HybridNet on the 2-class

dataset

35

Figure 5.4.2.1 Confusion matrix of AdderNet on the 4-class dataset 37

Figure 5.4.2.2 Confusion matrix of ResNet20 on the 4-class dataset 38

Figure 5.4.2.3 Confusion matrix of HybridNet on the 4-class dataset 39

Figure 5.4.2.4 Confusion matrix of Improved HybridNet on the 4-class

dataset

40

Figure 5.4.3.1 Confusion matrix of ResNet20 on the 5-class dataset 42

Figure 5.4.3.2 Confusion matrix of HybridNet on the 5-class dataset 43

Figure 5.4.3.3 Confusion matrix of Improved HybridNet on the 5-class

dataset

44

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF TABLES

Table Number Title Page

Table 4.6 Summary of Model Architectures and Their Roles in

Progression

23

Table 5.1.1 Segmentation performance of SVM on 4- and 5-class

datasets

25

Table 5.1.2 Segmentation performance of DuckNet on 4- and 5-class

datasets

26

Table 5.2.1.1 Classification performance of ResNet20 on the 4-class

dataset (SVM-segmented)

28

Table 5.2.1.2 Classification performance of HybridNet on the 4-class

dataset (SVMsegmented)

29

Table 5.3.1 Comparison of ResNet20 performance on SVM vs.

DuckNet-segmented 4-class data

30

Table 5.3.2 Comparison of HybridNet performance on SVM vs.

DuckNet-segmented 4-class data

30

Table 5.4.1.1 Classification performance of AdderNet on the 2-class

dataset

32

Table 5.4.1.2 Classification performance of ResNet20 on the 2-class

dataset

33

Table 5.4.1.3 Classification performance of HybridNet on the 2-class

dataset

34

Table 5.4.1.4 Classification performance of Improved HybridNet on the

2-class dataset

35

Table 5.4.1.5 Summary comparison of all models on the 2-class dataset 36

Table 5.4.2.1 Classification performance of AdderNet on the 4-class

dataset

37

Table 5.4.2.2 Classification performance of ResNet20 on the 4-class

dataset

38

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Table 5.4.2.3 Classification performance of HybridNet on the 4-class

dataset

39

Table 5.4.2.4 Classification performance of Improved HybridNet on the

4-class dataset

40

Table 5.4.2.5 Summary comparison of all models on the 4-class dataset 41

Table 5.4.3.1 Classification performance of ResNet20 on the 5-class

dataset

42

Table 5.4.3.2 Classification performance of HybridNet on the 5-class

dataset

43

Table 5.4.3.3 Classification performance of Improved HybridNet on the

5-class dataset

44

Table 5.4.3.4 Summary comparison of all models on the 5-class dataset 45

Table 5.5.1 Overall accuracy summary of all models across 2-, 4-, and

5-class datasets

46

Table 5.6.1 Computational efficiency comparison of all models 48

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

1.1 Problem Statement and Motivation

Traditional Chinese Medicine (TCM) relies heavily on tongue diagnosis to assess patients’

internal health conditions. However, manual tongue inspection is inherently subjective, with

diagnostic accuracy depending on the practitioner’s experience and perception. This

subjectivity often results in inconsistent outcomes and limits reproducibility. With the

increasing availability of digital tongue image datasets, computational methods now present a

significant opportunity to provide standardized, objective, and data-driven support for

diagnosis. The main challenge lies in developing automated systems capable of accurately

segmenting tongue regions and classifying subtle variations in color and coating while

maintaining computational efficiency for real-world use. Therefore, this project seeks to design,

evaluate, and optimize computational models that can support tongue diagnosis in a more

reliable and standardized manner, bridging the gap between traditional practice and modern

artificial intelligence.

1.2 Objectives

The objectives of this project are as follows:

1. To investigate and compare segmentation approaches using both traditional machine

learning and deep learning methods for accurate tongue region isolation.

2. To design and implement an evolutionary series of classification models

3. To assess performance using multiple evaluation metrics, including accuracy, precision,

recall, F1-score, Jaccard index, and computational efficiency indicators across different

datasets.

4. To determine the most effective model that trade-off between accuracy and efficiency,

with the aim of proposing a practical solution for diagnostic support applications.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

1.3 Project Scope and Direction

This project focuses primarily on the classification of tongue images, with segmentation

applied as a preprocessing step to ensure clinically relevant features are extracted. Three

datasets are employed: a binary dataset (stained vs. non-stained moss), a four-class dataset

(color variations), and a five-class dataset (coating categories). Classical methods such as

Support Vector Machines (SVM) are included as baselines, while DuckNet represents the deep

learning-based segmentation approach. For classification, the project implements an

evolutionary sequence of convolutional neural network architectures, starting with AdderNet

and culminating in an improved HybridNet. The scope is deliberately restricted to

computational model development rather than hardware prototyping or direct clinical

validation, in order to ensure reproducibility, controlled benchmarking, and feasibility within

the academic timeframe. The overall direction emphasizes building reproducible pipelines,

systematically benchmarking architectures, and analyzing the trade-offs between model

accuracy and computational efficiency.

1.4 Contributions

This study makes several contributions toward advancing the role of artificial intelligence in

modernizing tongue diagnosis and medical image analysis more broadly. First, it bridges

tradition and technology by showing how data-driven approaches can reduce the subjectivity

of traditional diagnostic practices, offering a more consistent and objective analysis of tongue

images. In addition, the project provides an evaluation of methodological strategies,

systematically comparing segmentation and classification approaches to reveal how different

computational techniques address challenges such as unclear boundaries, lighting variation,

and subtle visual differences in medical imagery. Another contribution is the focus on

promoting efficiency for real-world use, where the study emphasizes model designs that

balance diagnostic reliability with computational efficiency, making automated systems more

feasible in practical contexts, including resource-constrained environments. Beyond technical

results, the study offers guidance for future development by highlighting the importance of

dataset quality, diversity, and preprocessing in building reliable diagnostic tools, providing

insights that extend to broader medical AI applications. Finally, the work contributes by laying

a foundation for clinical integration, presenting a structured evaluation framework that can

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

guide future efforts to incorporate automated tongue diagnosis into healthcare practice, thereby

supporting more standardized, accessible, and efficient clinical decision-making.

1.5 Report Organization

This report is organized into six chapters. Chapter 1 (Introduction) outlines the project

background, motivation, problem statement, objectives, scope, contributions, and report

structure. Chapter 2 (Literature Review) surveys relevant technologies, datasets,

segmentation methods, and classification models, highlighting the strengths and weaknesses of

both traditional and deep learning approaches in medical image analysis. Chapter 3 (System

Methodology/Approach) details the overall workflow, including dataset preparation,

segmentation strategies, classification model design, evaluation metrics, and the

implementation environment. Chapter 4 (System Design) presents the architectural details of

each classification model—AdderNet, ResNet20, HybridNet, and the Improved HybridNet—

emphasizing the evolutionary design choices made to balance efficiency and performance.

Chapter 5 (Results and Discussion) reports experimental findings, comparing segmentation

and classification outcomes across different datasets, analyzing computational efficiency, and

identifying the most effective model. Finally, Chapter 6 (Conclusion and Recommendation)

summarizes the project’s contributions, key insights, and limitations, while offering

recommendations for future work and potential improvements.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

Chapter 2

Literature Review

2.1 Review of the Technologies

2.1.1 Hardware Platforms for Medical Image Analysis

The acceleration of tongue image processing, particularly for segmentation and classification

tasks, has been significantly enhanced by the use of modern hardware. High-performance

GPUs are essential for training complex deep learning models like DuckNet, which require

substantial computational power for pixel-level prediction. For instance, studies utilizing

architectures similar to U-Net for tongue segmentation have leveraged GPUs like the NVIDIA

Tesla T4 and RTX series to reduce training times from days to hours. Furthermore, for practical

deployment in clinical or mobile settings, there is a growing research focus on optimizing these

models for lightweight edge devices such as the Jetson Nano and Google Coral. These

platforms enable real-time analysis, showing promise for portable TCM diagnostic systems

that could be deployed in clinics or for remote consultations [1].

2.1.2 Firmware / Operating System Environments

The development of AI-driven tongue diagnosis systems predominantly occurs in Linux-based

environments (e.g., Ubuntu) due to superior compatibility with deep learning frameworks,

GPU drivers, and development tools. However, the barrier to entry for such setups has been

lowered by the advent of cloud-based platforms. Environments like Google Colab, which was

used in this project, provide pre-configured, GPU-accelerated access to Jupyter notebooks,

drastically simplifying experimentation and ensuring reproducibility without the need for local

hardware configuration. While the choice of OS has minimal direct impact on model accuracy,

it is crucial for development efficiency. The reproducibility and ease of collaboration offered

by these cloud platforms have made them a popular choice in recent literature for prototyping

medical image analysis systems, including those for TCM [2].

2.1.3 Datasets Used in Medical and Tongue Diagnosis

Datasets are foundational to building robust models. In the field of TCM, datasets like the TCM

Tongue Image Dataset, SciTongue, and Baidu Tongue Coating Images are commonly used.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

However, most are limited by small size, inconsistent labeling, or poor lighting conditions.

Beyond tongue images, datasets such as ISIC 2020 (for skin lesions), LIDC-IDRI (lung CT

scans), and DRIVE (retinal vessel segmentation) are often used to benchmark segmentation

algorithms, providing insights into generalizable methods for medical imaging [3].

2.1.4 Programming Languages and Libraries

The overwhelming majority of literature utilizes Python as the primary programming language,

largely due to its rich ecosystem of libraries for image processing and machine learning.

Libraries such as TensorFlow, Keras, PyTorch, scikit-learn, and OpenCV enable rapid

prototyping and development. According to a survey [4], over 90% of papers on deep learning

in medical image classification from 2020 to 2022 used Python-based frameworks.

2.2 Review of Existing Systems and Applications

2.2.1 Tongue Diagnosis Systems in TCM

Tongue diagnosis is a cornerstone of Traditional Chinese Medicine (TCM), used to assess

internal health by analyzing the tongue's color, shape, and coating; however, its traditional

practice is highly subjective and prone to inconsistency. This limitation has driven the

development of computer-aided diagnostic (CAD) systems, which have evolved from using

hand-crafted features with classical machine learning models like SVMs to modern deep

learning approaches that offer superior accuracy and robustness. Current research leverages

convolutional neural networks (CNNs) such as U-Net for segmentation and various classifiers

for diagnosis, yet a significant challenge remains in balancing high performance with

computational efficiency for practical clinical deployment. This project addresses that gap by

focusing on the development and evaluation of lightweight, efficient deep learning models

specifically designed for deployable tongue image analysis, aiming to provide a reliable and

accessible tool for modern TCM practice [5].

2.2.2 Traditional and Machine Learning-Based Segmentation

Early research in tongue image segmentation primarily relied on traditional image processing

techniques such as thresholding, edge detection, and region growing, which attempted to isolate

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

the tongue region based on color intensity or texture. However, these methods often suffered

from noise sensitivity, especially in images captured under non-uniform lighting or with

complex backgrounds.

Subsequently, classical machine learning techniques were introduced to improve segmentation

accuracy. For example, K-means clustering was widely adopted to partition tongue images into

foreground and background based on pixel intensity clusters. Support Vector Machines (SVM)

and Random Forest classifiers were later used for pixel-level classification using hand-crafted

features such as color histograms, Gabor filters, or texture descriptors.

Although these methods offered incremental improvements, they were still dependent on

manual feature extraction and lacked adaptability across diverse datasets. A survey [6] showed

that classical ML methods, while more interpretable and computationally efficient to train,

were outperformed by modern neural network-based approaches in terms of accuracy and

robustness. Nevertheless, their efficiency makes them a valuable baseline for comparison,

which is why methods like SVM are included in this study to benchmark the performance gains

of deep learning models [7].

2.2.3 Deep Learning-Based Segmentation Models

The transition to deep learning has revolutionized medical image segmentation, with encoder-

decoder architectures like U-Net becoming the gold standard. These models excel at precise

pixel-level classification, which is critical for isolating the tongue region from complex and

inconsistent backgrounds in clinical images. In tongue diagnosis, U-Net and its variants (e.g.,

DuckNet) are predominantly used due to their skip connections that preserve fine-grained

spatial details necessary for accurate boundary delineation, a foundational step before any

classification can occur.

2.2.3.1 Convolutional Neural Network (CNN – Base Architecture)

Convolutional Neural Networks form the foundational building block for most deep learning

models in image analysis. Their ability to automatically learn hierarchical features—from

edges and textures to complex patterns—makes them superior to hand-crafted feature methods.

In tongue diagnosis, basic CNNs can perform initial classification tasks but are inherently

limited. Their relatively shallow architecture struggles to capture the subtle and nuanced

features critical for TCM, such as fine cracks or slight color variations in the coating, and they

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

are highly susceptible to overfitting on small, specialized medical datasets, serving primarily

as a performance baseline [8].

2.2.3.2 VGG16

VGG16 addresses the depth limitation of basic CNNs through a uniform and deeper 16-layer

architecture. This allows it to learn more complex feature representations, making it a strong

candidate for classifying detailed tongue coating types. However, this gain in representational

power comes at a significant cost: its massive number of parameters leads to high

computational load and memory consumption, rendering it impractical for real-world

deployment where efficiency is a priority, thus establishing a clear trade-off between accuracy

and operational feasibility [9].

2.2.3.3 ResNet20

ResNet20 introduces a pivotal innovation with residual skip connections, which mitigate the

vanishing gradient problem and enable the effective training of deeper networks. This

architecture achieves a more favorable balance than VGG16, offering improved feature

extraction capabilities for discerning tongue color and morphology without an excessive

parameter count. Its stable and well-understood design makes it an ideal standardized

benchmark or backbone model for controlled comparisons in research, allowing subsequent

architectural modifications to be evaluated fairly without the confounding variable of training

instability [10].

2.2.3.4 MobileNetV2

MobileNetV2 represents a strategic shift towards efficiency, employing depthwise separable

convolutions and inverted residual blocks to drastically reduce computational complexity and

model size. This design is explicitly intended for mobile and embedded deployment, making it

highly relevant for developing practical, real-time diagnostic tools. While its lightweight nature

can sometimes come at a minor cost to accuracy on highly complex tasks, it provides a crucial

foundation for designing models where speed and low power consumption are paramount,

directly addressing the deployability goals of modern medical AI [11].

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

2.2.3.5 AdderNet

AdderNet pushes the efficiency frontier further by fundamentally rethinking the convolutional

operation, replacing multiplications with additions to reduce computational energy expenditure.

This presents a promising pathway toward ultra-low-power diagnostic systems. However, as a

novel architecture, it faces challenges in training stability and a lack of hardware optimization,

making it more experimental. Its exploration is valuable for probing the limits of efficiency but

requires careful benchmarking against more established models to validate its effectiveness on

specialized medical imagery like tongue features [12].

2.2.3.6 Summary of Classification Models

This progression of architectures reveals a clear trade-off in medical image

analysis: representational capacity versus computational efficiency. While models like VGG16

and ResNet20 provide strong accuracy, their resource demands hinder practical application.

This review justifies the evolutionary approach of this project, which begins with the

experimental AdderNet and ResNet20 benchmark before strategically integrating the

efficiency principles of MobileNetV2. The goal is not merely to select an existing model, but

to engineer a new architecture that hybridizes the stability of residual learning with the extreme

efficiency of inverted residuals and depthwise convolutions. This synthesis aims to achieve an

optimal balance for accurate, deployable, and real-time tongue diagnosis, directly addressing

the identified gap between robust performance and practical utility.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

Chapter 3

System Methodology/Approach

3.1 Overview

This project implements a structured pipeline for automated tongue image analysis, consisting

of distinct data preparation, segmentation, classification and evaluation stages. The

methodology is designed to evaluate the effectiveness of different techniques at each step

across three datasets.

The workflow begins with three tongue image datasets: a binary (2-class) dataset with pre-

segmented images, and two multi-class datasets (4-class and 5-class) requiring manual

preprocessing. For the multi-class datasets, a crucial segmentation step is applied to isolate the

tongue region. This step utilizes a high-performance deep learning model (DuckNet), selected

after a comparative analysis with traditional machine learning methods (SVM and Random

Forest).

The outputs from this pipeline—the pre-segmented 2-class images and the newly segmented

4-class and 5-class images—are then used for the classification task. Classification is

performed using a progressive sequence of CNN architectures, from an exploratory model

(AdderNet) to a conventional baseline (ResNet20), and finally to efficiency-optimized designs

(HybridNet and Improved HybridNet).

A comprehensive evaluation follows, where all models are rigorously assessed using standard

performance metrics (e.g., accuracy, precision, recall) and efficiency indicators (e.g., model

size, training time). This multi-faceted evaluation provides a complete understanding of each

model's trade-offs, determining the most suitable architecture for accurate and practical tongue

image analysis.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

3.2 Dataset Preparation

This section details the acquisition and preparation of the three tongue image datasets used for

classification. The process for the multi-class datasets involved a standardized pipeline of

resizing, manual annotation, and targeted augmentation to ensure balance and quality before

segmentation.

1. Binary Dataset (2 Classes)

Source: SciDB Tongue Image Database [13].

Classes: Stained Moss, Non-Stained Moss.

Preparation: This dataset was provided with pre-segmented tongue regions. Each class

already contained more than 1,000 images, fulfilling the target dataset size without requiring

augmentation. All images were resized to 224×224 pixels.

Size & Split: The final dataset consists of 2,000 images (1,000 per class), split into 1,600 for

training and 400 for testing (80:20 ratio).

Purpose: Serves as a benchmark for binary classification of tongue moss presence.

2. Multi-Class Dataset (4 Classes)

Source: Self-labeled and combined from multiple public sources, primarily Baidu AI Studio

[14], supplemented with images from Kaggle [15], [16] and other repositories [17], [18].

Classes: Pale, Pale Red, Red, Bluish Purple.

Preparation: The initial collection had an uneven class distribution. The following pipeline

was applied:

- 1. Resizing: All images were first standardized to a resolution of 224×224 pixels.

- 2. Annotation: Each resized image was then annotated using the CVAT tool (semi

automation annotation) to obtain mask for further segmentation.

- 3. Targeted Augmentation: To create a balanced dataset, classes with fewer than 500

samples were augmented using transformations (e.g., rotation, flipping) to reach the

target of 500 images per class.

Size & Split: The final, balanced dataset consists of 2,000 images total (500 per class), split

into 1,600 for training and 400 for testing.

Purpose: Focuses on significant tongue color-based categorization. This dataset requires

segmentation, as detailed in Section 3.3.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

3. Multi-Class Dataset (5 Classes)

Source: Obtained directly from the project supervisor.

Classes: Mirror-Approximated, White-Greasy, Thin-White, Yellow-Greasy, Grey-Black.

Preparation: The initial class distribution was uneven. The preparation involved.

- 1. Resizing: All images were first standardized to a resolution of 224×224 pixels.

- 2. Annotation: Each resized image was annotated using the CVAT tool to obtain mask

for further segmentation.

- 3. Targeted Augmentation: The same augmentation strategy was applied to achieve a

final balance of 500 images per class.

Size & Split: The final, balanced dataset consists of 2,500 images total (500 per class), split

into 2,000 for training and 500 for testing.

Purpose: Focuses on classifying variations in tongue coating. This dataset requires

segmentation (Section 3.3).

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

Sample datasets

Class Category Sample Images

2 Stained Moss

Non-Stained

Moss

4 Pale

Pale Red

Red

Bluish Purple

5 Mirror-

Approximated

White-Greasy

Thin-White

Yellow-

Greasy

Grey-Black

Figure 3.2: Representative samples for categories across 2-, 4-, and 5-class datasets

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

Annotation using CVAT

Figure 3.2.1: Tongue images from the 4 and 5 class datasets imported into the CVAT tool

Figure 3.2.2: Semi auto annotation of the tongue region

Figure 3.2.3: Ground truth mask generated for segmentation

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

3.3 Segmentation Methods

Segmentation is a critical preprocessing step that isolates the tongue region from the

background, ensuring that classification models learn only from relevant features like coating,

color, and texture. This step was applied exclusively to the 4-class and 5-class datasets, as

the binary dataset was provided with pre-segmented images. Two segmentation paradigms

were explored: classical machine learning methods from FYP1 and a deep learning-based

approach.

3.3.1 Traditional Machine Learning Methods

The initial investigation involved two classical techniques: Support Vector Machine (SVM)

and Random Forest (RF). Both methods classify pixels as tongue or background using

manually engineered features, including texture (Local Binary Patterns), color (RGB channels),

and spatial information (distance from center).

• Random Forest (RF): While achieving high recall (99.25%), this ensemble method

was computationally intensive. It required a prohibitively long training time of

approximately 4 hours and resulted in a large model size (227.5 MB) due to its deep

decision trees.

• Support Vector Machine (SVM): Selected as a lightweight and efficient alternative,

SVM delivered high precision with a drastically shorter training time of about 1

hour and a minimal model size (0.29 KB). However, it struggled with complex

boundaries due to its reliance on a linear kernel.

These methods provided a strong baseline for comparative analysis against deep learning

approaches.

3.3.2 DuckNet (Deep Learning Segmentation)

DuckNet is a fully convolutional neural network with an encoder-decoder structure, similar to

U-Net, but enhanced for efficient multi-scale feature extraction using custom convolutional

blocks. This model was implemented based on the architecture

from https://github.com/RazvanDu/DUCK-Net.

https://github.com/RazvanDu/DUCK-Net

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

• Architecture: It utilizes a series of strided convolutional layers for downsampling and

skip connections with element-wise addition to merge features from the encoder and

decoder paths.

• Implementation: A critical hyperparameter is the number of starting filters, which

controls the model's capacity. Based on extensive experimentation in FYP1, the model

was configured with 17 starting filters.

• Justification for 17 Filters: As detailed in Table 4.5.1 of the FYP1 report, variants

with 4, 8, 12, 17, and 34 filters were tested. The 17-filter configuration achieved an

optimal balance, delivering high accuracy (99.60%) and a strong Dice score (0.9878)

without the computational overhead of the larger 34-filter model, which showed only

marginal improvement (0.9967 accuracy) at quadruple the parameter cost. This

represents the point of diminishing returns for this specific task.

• Strengths: Automatically learns optimal pixel-level representations from data, capable

of handling complex variations in tongue appearance. Achieves significantly higher

accuracy than traditional methods.

3.3.3 Method Selection

For consistency and reliability, the 17-filter DuckNet model was adopted as the primary

segmentation method for the 4-class and 5-class datasets. Although SVM served as an

efficient traditional baseline with a fast training time, DuckNet was the default choice due to

its superior robustness, accuracy, and generalization ability. The inclusion of both traditional

methods demonstrates the clear performance-efficiency trade-off between classical and deep

learning methodologies for this task.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

3.4 Classification Models

Following segmentation, tongue images were classified using a sequence of progressively

refined convolutional neural network architectures. The detailed system design, including

specific modules and training hyperparameters for each model, is provided in Chapter 4. The

model progression is as follows:

3.4.1 AdderNet

• Origin: Adopted from Huawei Noah's Ark Lab (https://github.com/huawei-

noah/AdderNet) to explore addition-based convolutions as a hardware-efficient

alternative.

• Role: Served as an exploratory model to test the feasibility of this novel approach.

• Outcome: Computationally heavy training due to unoptimized operators motivated

a pivot to a standardized baseline.

3.4.2 ResNet20

• Rationale: A conventional baseline created by converting AdderNet back to standard

convolutions, retaining the residual (3-3-3) structure.

• Role: Acts as a controlled benchmark to isolate the effect of subsequent architectural

changes.

3.4.3 HybridNet

• Motivation: Integrates MobileNetV2's efficiency principles (inverted residuals,

depthwise separable convolutions) into a residual framework.

• Design Intent: To create a lightweight architecture that maintains performance while

improving computational efficiency.

3.4.4 Improved HybridNet

• Motivation: An enhanced version designed for superior generalization and

deployability.

https://github.com/huawei-noah/AdderNet
https://github.com/huawei-noah/AdderNet

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

• Refinements: Incorporates Squeeze-and-Excite

(SE) modules, DropPath regularization, and activation checkpointing.

• Role: The final candidate architecture, explicitly engineered for an optimal balance

of accuracy, robustness, and efficiency.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

3.5 Evaluation Metrics

To comprehensively assess system performance, both effectiveness and efficiency were

evaluated. The evaluation strategy was designed to capture not only classification accuracy but

also robustness across classes and practical deployability of models.

3.5.1 Classification Metrics

The following standard performance metrics were used for classification tasks:

• Accuracy: The ratio of correctly predicted samples to the total number of samples.

• Precision: The proportion of correctly predicted positive samples relative to all

predicted positives, useful for measuring reliability in clinical contexts.

• Recall (Sensitivity): The proportion of correctly predicted positive samples relative to

all actual positives, ensuring that clinically significant cases are not overlooked.

• F1 Score: The harmonic mean of Precision and Recall, balancing the trade-off between

false positives and false negatives.

All metrics were calculated per class and overall, ensuring that performance differences

between categories (e.g., pale vs. red tongues) were fully captured.

3.5.2 Segmentation Metrics

For segmentation tasks, an additional metric was included:

• Jaccard Index (Intersection over Union): Measures the overlap between predicted

segmentation masks and ground-truth labels. This metric is particularly relevant for

medical image segmentation, where precise region delineation is crucial.

3.5.3 Efficiency Metrics

In addition to predictive performance, the efficiency of each model was also evaluated,

reflecting its practicality for real-world applications:

• Training Time: Total time required to train a model under a fixed configuration.

• Parameter Count: The total number of trainable parameters in the model, serving as

an indicator of model complexity.

• Model Size: The storage footprint of the trained model, measured in megabytes.

These efficiency indicators provide a complementary view of model performance, balancing

accuracy with deplorability considerations such as memory footprint and computational

requirements.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

3.6 Implementation Environment

All model training and evaluation were conducted using Google Colab, a cloud-based

integrated development environment (IDE) that provides free GPU access. The following setup

was used throughout the project:

• Execution Environment: Google Colab (Jupyter Notebook interface).

• GPU: NVIDIA Tesla T4 GPU, 16 GB GPU memory (allocated by Colab).

• Code Management:

o All project code files (.py) were stored on Google Drive.

o A Jupyter Notebook (.ipynb) was created for each model (AdderNet, ResNet20,

HybridNet, Improved HybridNet).

o Each notebook imported the corresponding .py scripts from Google Drive,

enabling modular execution and reproducibility.

• Software:

o Python 3.x with PyTorch and torchvision as the main deep learning frameworks.

o Supporting libraries included NumPy, OpenCV, scikit-learn, Matplotlib, and

seaborn for metrics visualization.

This environment provided sufficient computational resources to train deep learning models

within practical time limits while maintaining a reproducible workflow that could be re-

executed directly from cloud storage.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

Chapter 4

System Design

4.1 Overview

The system design describes the detailed implementation of classification models for

automated tongue image analysis. Each model was implemented in PyTorch, with a shared

training and evaluation pipeline optimized for reproducibility. The architectures followed an

evolutionary progression — AdderNet → ResNet20 → HybridNet → Improved

HybridNet — where each stage introduced new design elements to balance classification

accuracy and computational efficiency.

Shared Training & Evaluation Pipeline:

• Training Script (main.py): A supervised training loop using SGD with momentum,

a cosine learning rate schedule, and CrossEntropyLoss.

• Evaluation Script (test.py): Computes metrics and generates confusion matrices.

• Preprocessing: All inputs were resized to 224×224 and normalized using dataset-

specific mean and standard deviation values.

• Loss Function: All models were optimized using categorical cross-entropy loss.

4.2 AdderNet Design

AdderNet was chosen as the starting point to explore a novel operation: replacing convolution

multiplications with addition operations, potentially reducing energy consumption.

• Custom Operation – adder2d:

Implemented in adder.py, this operation replaces convolution’s dot product with the

absolute difference:

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

where are filter weights and is the local input patch.

• Architecture (resnet20.py with adder layers):

o Residual blocks constructed using adder2d instead of Conv2d.

o Each block: Adder → BatchNorm → ReLU → Adder → BatchNorm →

Residual Add → ReLU.

o Stacked [3,3,3] blocks (20 layers).

o Adaptive Average Pooling → Fully connected classifier.

Role in progression: Served as the base model, testing feasibility of addition-based

convolutions. Limitation: high training time due to lack of GPU optimization.

4.3 ResNet20 Design

ResNet20 provided a conventional CNN baseline to isolate the effect of AdderNet’s addition

operations while retaining residual learning.

• Architecture:

o Residual blocks with Conv2d layers.

o Same [3,3,3] block structure as AdderNet.

o Global Average Pooling → classifier head.

• Rationale:

o Establishes a benchmark CNN.

o Retains residual learning but removes AdderNet’s complexity.

Training Loss Function: All CNNs were optimized using categorical cross-entropy loss:

where is the ground truth and the predicted probability for class ccc.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

Role in progression: ResNet20 acted as the benchmark backbone, providing a stable

reference for further improvements.

4.4 HybridNet Design

HybridNet was introduced to integrate the stability of ResNet with the efficiency of

MobileNetV2, aiming to reduce parameters without sacrificing performance.

• Inverted Residual Block:

o Expansion → depthwise convolution → projection sequence.

o Residual connection applied if stride=1 and channels match.

• Hybrid Block:

o Wraps an InvertedResidual with ResNet-style shortcut projection when needed.

o Adds outputs with ReLU activation.

• HybridNet Architecture (hybrid.py):

o Stem: Conv3×3 → BN → ReLU.

o Three stages of HybridBlocks (channels: 16 → 24 → 48 → 96).

o Adaptive Average Pooling → Fully connected classifier.

Role in progression: To introduce residual stability + depthwise efficiency could produce a

lighter network (~228K parameters) while maintaining strong performance.

4.5 Improved HybridNet Design

Improved HybridNet incorporated modern refinements to further enhance accuracy and

efficiency.

• Key Enhancements:

o DropPath: stochastic depth regularization.

o Squeeze-and-Excite (SE): channel attention.

o Activation Checkpointing: reduced memory cost.

o Dynamic Downsampling: adaptive resolution reduction.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

o Reduced Expand Ratio: lowered from 6.0 → 3.0, reducing FLOPs.

o Dropout & Weight Initialization: improve stability.

• Architecture Flow:

o Stem (Conv3×3).

o Stacked HybridBlocks with SE + DropPath.

o Global Average Pooling → Dropout → Fully connected classifier.

Role in progression: The final optimized model, achieving the best trade-off: smallest size

(~131K params, 0.57 MB), fastest training (~20–25 min), and highest efficiency.

4.6 Summary of Model Architectures and Their Roles in

Progression

Model Core Idea Key Modules Purpose in Progression

AdderNet Replace Conv2d

multiplications

with L1-norm

addition

operations.

adder2d layers, standard

residual blocks

(BasicBlock).

To serve as

a foundational model and

explore the feasibility of

a novel, multiplication-

light approach for feature

extraction on tongue

imagery.

ResNet20 Establish a

conventional,

highly-optimized

residual CNN

baseline.

Standard Conv2d layers,

BatchNorm, ReLU, and

residual blocks

(BasicBlock) with

projection shortcuts.

To provide

a standardized

benchmark for fair

comparison, ensuring

performance differences

are due to architecture, not

training procedure.

HybridNet Fuse the stability

of ResNet with

the efficiency of

MobileNetV2.

HybridBlock (1x1

expansion conv →

Depthwise conv → 1x1

projection conv + residual

To introduce efficiency-

focused design, testing if

lightweight, inverted

residual blocks can

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

connection), linear

bottlenecks.

maintain accuracy with

fewer parameters and

FLOPs.

Improved

HybridNet

Enhance

HybridNet with

modern attention,

regularization,

and memory

optimization

techniques.

Squeeze-and-Excite

(SE) blocks for channel

attention, DropPath for

regularization, reduced

expansion ratios, activation

checkpointing.

To be the final candidate

architecture, explicitly

engineered for

superior robustness,

generalization, and

deployability through

targeted refinements.

Table 4.6: Summary of Model Architectures and Their Roles in Progression

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Chapter 5

Results And Discussion

5.1 Segmentation Performance

Segmentation was applied to the multiclass datasets (4-class and 5-class) using two methods:

a traditional SVM classifier and the deep learning-based DuckNet architecture. SVM was

selected over Random Forest (RF) from prior work due to its significantly shorter training time

(∼1 hour vs. ∼4 hours) for equivalent performance.

SVM

The SVM model achieved moderate segmentation results, as shown in Table 5.1.1. It is

important to note that its performance metrics are lower than those reported in FYP1. This

discrepancy is primarily due to the increased complexity of the FYP2 datasets. Unlike the FYP1

dataset, which was captured under controlled conditions, the images in the 4-class and 5-class

datasets contain more challenging backgrounds, such as varying clothing colors and

environments. These complex backgrounds make the segmentation task more difficult for a

traditional, feature-based method like SVM.

Dataset Accuracy (%) Precision (%) Recall (%) F1 Score (%) Jaccard (%) Training time

4 class 86.21 84.73 79.69 82.13 69.68 55h 49s

5 class 86.02 86.45 79.41 82.78 70.62 01h 11m 34s

Table 5.1.1: Segmentation performance of SVM on 4- and 5-class datasets

Total parameters: 45

Model size: 0.35 KB

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

DuckNet

In contrast, DuckNet demonstrated exceptional performance, consistently exceeding 98%

accuracy and 95% Jaccard index across both datasets (Table 5.1.2). Its deep learning

architecture enabled it to learn robust features capable of handling the complex backgrounds

that challenged the SVM model.

Dataset Accuracy (%) Precision (%) Recall (%) F1 Score (%) Jaccard (%) Training time

4 class 98.69 97.28 98.17 97.73 95.55 03h 54m 06s

5 class 98.53 98.85 97.77 98.31 96.67 03h 58m 10s

Table 5.1.2: Segmentation performance of DuckNet on 4- and 5-class datasets

Total parameters: 38,921,088

Model size: 148.47 MB

Discussion:

SVM is extremely lightweight (45 parameters; 0.35 KB) and CPU-friendly, but it

underperforms on the more complex FYP2 imagery. DuckNet, though much larger (38.9 M

parameters; 148.47 MB), delivers consistently superior segmentation (≥98% accuracy; ≥95%

Jaccard) on both datasets. We therefore adopt DuckNet as the default pre-processing for all

classification experiments. To quantify sensitivity to segmentation quality, we also report

results using SVM-segmented data in subchapter 5.2–5.3.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

Figure 5.1: Sample tongue images

Figure 5.2: Ground truth masks of tongue regions

Figure 5.3: Tongue regions segmented using SVM

Figure 5.4: Tongue regions segmented using DuckNet

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

5.2 Classification Performance on SVM Segmented Datasets

5.2.1 Multi (4-Class) Dataset Results

5.2.1.1 ResNet20

Method Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Pale 87.00 84.47 87.00 80.65

Pale red 75.00 87.21 75.00 80.65

Red 89.00 91.75 89.00 90.36

Bluish purple 99.00 86.84 87.00 85.71

Overall 87.50 87.57 87.50 87.31

Table 5.2.1.1: Classification performance of ResNet20 on the 4-class dataset (SVM-segmented)

Training time: 20m 08s

Total parameters: 274,008

Model size: 1.09 MB

Figure 5.2.1.1: Confusion matrix of ResNet20 on the 4-class dataset (SVM-segmented)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

5.2.1.2 HybridNet

Method Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Pale 93.00 76.86 93.00 84.16

Pale red 65.00 92.86 65.00 76.47

Red 91.00 91.92 91.00 91.46

Bluish purple 100.00 90.91 100.00 95.24

Overall 87.25 90.91 100.00 95.24

Table 5.2.1.2: Classification performance of HybridNet on the 4-class dataset (SVM-

segmented)

Training time: 01h 24m 23s

Total parameters: 228,804

Model size: 0.95 MB

Figure 5.2.1.2: Confusion matrix of HybridNet on the 4-class dataset (SVM-segmented)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

5.3 Impact of Segmentation using SVM or DuckNet on

Classification

Note: To facilitate a direct comparison of segmentation methodologies, the classification results

for the DuckNet-segmented dataset are presented here first alongside those from the SVM-

segmented data.

(A full discussion of DuckNet's segmentation performance is reserved for the next chapter.)

ResNet20

Method Accuracy (%) Precision (%) Recall (%) F1 Score (%) Training time

SVM 87.50 87.57 87.50 87.31 20m 08s

DuckNet 86.25 86.16 86.25 85.92 22m 14s

Table 5.3.1: Comparison of ResNet20 performance on SVM vs. DuckNet-segmented 4-class

data

HybridNet

Method Accuracy (%) Precision (%) Recall (%) F1 Score (%) Training time

SVM 87.25 90.91 100.00 95.24 01h 24m 23s

DuckNet 86.75 86.89 86.75 86.39 01h 23m 46s

Table 5.3.2: Comparison of HybridNet performance on SVM vs. DuckNet-segmented 4-class

data

Key Finding: Segmentation Accuracy ≠ Classification Accuracy

Contrary to the principle that segmentation quality should influence classification performance,

our results show a weak correlation between the two. Specifically, models trained on data from

the weaker SVM segmentator achieved similar—and in some cases marginally higher—

accuracy than those trained on DuckNet-segmented data.

This suggests that the classification networks are robust to the precise boundaries of the

segmentation mask. The primary requirement is the successful isolation of the tongue region

from the background. Once this is achieved, the model's capacity to learn discriminative

features from the interior of the region appears to be the dominant factor in final performance.

The minor performance differences observed (1-2%) fall within the expected variance of deep

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

learning training cycles (e.g., from weight initialization or data shuffling) and cannot be

definitively attributed to the segmentation method.

Scope Note: This finding is based on a comparison of ResNet20 and HybridNet on the 4-class

dataset.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

5.4 Classification Performance on DuckNet-Segmented Datasets

(Main Experiments)

5.4.1 Binary (2-Class) Dataset Results

5.4.1.1 AdderNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Stained moss 98.00 93.78 98.00 95.84

Non stained moss 95.30 97.91 93.50 95.65

Overall 95.75 95.84 95.75 95.75

Table 5.4.1.1: Classification performance of AdderNet on the 2-class dataset

Training time: 03h 51m 14s

Total parameters: 273.876

Model size: 1.09 MB

Figure 5.4.1.1: Confusion matrix of AdderNet on the 2-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

5.4.1.2 ResNet20

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Stained moss 98.00 92.89 98.00 95.38

Non stained moss 92.50 97.88 92.50 95.12

Overall 95.25 95.39 95.25 95.25

Table 5.4.1.2: Classification performance of ResNet20 on the 2-class dataset

Training time: 24m 39s

Total parameters: 273,876

Model size: 1.09 MB

Figure 5.4.1.2: Confusion matrix of ResNet20 on the 2-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

5.4.1.3 HybridNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Stained moss 99.50 93.87 99.50 96.60

Non stained moss 93.50 99.47 93.50 96.39

Overall 96.50 96.67 96.50 96.50

Table 5.4.1.3: Classification performance of HybridNet on the 2-class dataset

Training time: 01h 26m 07s

Total parameters: 228,610

Model size: 0.95 MB

Figure 5.4.1.3: Confusion matrix of HybridNet on the 2-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

5.4.1.4 Improved HybridNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Stained moss 99.50 95.22 99.50 97.31

Non stained moss 95.00 99.48 95.00 97.19

Overall 97.25 97.35 97.25 97.25

Table 5.4.1.4: Classification performance of Improved HybridNet on the 2-class dataset

Training time: 21m 02s

Total parameters: 130,922

Model size: 0.57 MB

Figure 5.4.1.4: Confusion matrix of Improved HybridNet on the 2-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

5.4.1.5 Model Performance on 2-Class Dataset (Stained moss vs. Non-stained moss)

Method Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

Training

time

Total

parameters

Model

size

AdderNet 95.75 95.84 95.75 95.75 03h 51m

14s

273.876 1.09

MB

ResNet20 95.25 95.39 95.25 95.25 24m 39s 273,876 1.09

MB

HybridNet 96.50 96.67 96.50 96.50 01h

26m 07s

228,610 0.95

MB

Improved

HybridNet

97.25 97.35 97.25 97.25 21m 02s 130,922 0.57

MB

Table 5.4.1.5: Summary comparison of all models on the 2-class dataset

• Observation: All models performed strongly (>95% accuracy).

• AdderNet and ResNet20: Good performance, but relatively heavier in parameters.

• HybridNet: Slight improvement (~96.5%).

• Improved HybridNet: Best balance with 97.25% accuracy, reduced parameters

(~131K vs. 230K), and smaller model size.

• Discussion point: Binary classification is inherently simpler, and all models can handle

it well. The improved HybridNet is the most efficient choice, showing the benefit of

architectural refinements.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

5.4.2 Multi (4-Class) Dataset Results

5.4.2.1 AdderNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Pale 88.00 87.13 88.00 87.56

Pale red 86.00 87.76 86.00 86.87

Red 93.00 93.00 93.00 93.00

Bluish purple 97.00 96.04 97.00 96.52

Overall 91.00 90.98 91.00 90.99

Table 5.4.2.1: Classification performance of AdderNet on the 4-class dataset

Training time: 03h 51m 06s

Total parameters: 274,008

Model size: 1.09 MB

Figure 5.4.2.1: Confusion matrix of AdderNet on the 4-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

5.4.2.2 ResNet20

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Pale 87.00 83.65 87.00 85.29

Pale red 68.00 83.95 68.00 75.14

Red 93.00 83.78 93.00 88.15

Bluish purple 97.00 93.27 97.00 95.10

Overall 86.25 86.16 86.25 85.92

Table 5.4.2.2: Classification performance of ResNet20 on the 4-class dataset

Training time: 22m 14s

Total parameters: 274,008

Model size: 1.09 MB

Figure 5.4.2.2: Confusion matrix of ResNet20 on the 4-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

5.4.2.3 HybridNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Pale 89.00 83.18 89.00 85.99

Pale red 69.00 87.34 69.00 77.09

Red 89.00 90.82 89.00 89.90

Bluish purple 100.00 86.21 100.00 92.59

Overall 86.75 86.89 86.75 86.39

Table 5.4.2.3: Classification performance of HybridNet on the 4-class dataset

Training time: 01h 23m 46s

Total parameters: 228,804

Model size: 0.95 MB

Figure 5.4.2.3: Confusion matrix of HybridNet on the 4-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

5.4.2.4 Improved HybridNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Pale 84.00 84.85 84.00 84.42

Pale red 73.00 83.91 73.00 78.07

Red 96.00 89.72 96.00 92.75

Bluish purple 98.00 91.59 98.00 94.69

Overall 87.75 87.52 87.75 87.48

Table 5.4.2.4: Classification performance of Improved HybridNet on the 4-class dataset

Training time: 20m 09s

Total parameters: 131,116

Model size: 0.57 MB

Figure 5.4.2.4: Confusion matrix of Improved HybridNet on the 4-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

5.4.2.5 Model Performance on 4-Class Dataset (Pale, Pale Red, Red, Bluish Purple)

Method Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

Training

time

Total

parameters

Model

size

AdderNet 91.00 90.98 91.00 90.99 03h 51m

06s

274,008 1.09

MB

ResNet20 86.25 86.16 86.25 85.92 22m 14s 274,008 1.09

MB

HybridNet 86.75 86.89 86.75 86.39 01h 23m

46s

228,804 0.95

MB

Improved

HybridNet

87.75 87.52 87.75 87.48 20m 09s 131,116 0.57

MB

Table 5.4.2.5: Summary comparison of all models on the 4-class dataset

• Observation: Accuracy drops (~86–91%) compared to binary classification due to

greater complexity and class similarity.

• AdderNet: Highest accuracy (91%), but too large and inefficient.

• ResNet20 and HybridNet: Moderate performance (~86%), strong for some classes

(Red, Bluish Purple), weak for Pale Red.

• Improved HybridNet: Balanced results, slightly better generalization, and much

smaller model size (0.57 MB).

• Discussion point: The pale red class remains the hardest to classify, showing class

overlap is a bigger limitation than model architecture. Efficiency vs. accuracy trade-off

favors the improved HybridNet.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

5.4.3 Multi (5-Class) Dataset Results

AdderNet was excluded from the 5-class experiments due to its excessive computational

requirements, which caused training crashes. It was only feasible for the 2-class and, at most,

the 4-class datasets.

5.4.3.1 ResNet20

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Mirror-Approximated 98.00 75.97 98.00 85.59

White-Greasy 63.00 86.30 63.00 72.83

Thin-White 69.00 82.14 69.00 75.00

Yellow-Greasy 99.00 86.84 99.00 95.52

Grey-Black 100.00 100.00 100.00 100.00

Overall 85.80 86.25 85.80 85.19

Table 5.4.3.1: Classification performance of ResNet20 on the 5-class dataset

Training time: 26m 45s

Total parameters: 274,074

Model size: 1.09 MB

Figure 5.4.3.1: Confusion matrix of ResNet20 on the 5-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

5.4.3.2 HybridNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Mirror-Approximated 98.00 73.13 98.00 83.76

White-Greasy 59.00 84.29 59.00 69.41

Thin-White 64.00 78.05 64.00 70.33

Yellow-Greasy 100.00 89.29 100.00 94.34

Grey-Black 100.00 98.04 100.00 99.01

Overall 84.20 84.56 84.20 83.37

Table 5.4.3.2: Classification performance of HybridNet on the 5-class dataset

Training time: 01h 53m 06s

Total parameters: 228,901

Model size: 0.95 MB

Figure 5.4.3.2: Confusion matrix of HybridNet on the 5-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

5.4.3.3 Improved HybridNet

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Mirror-Approximated 100.00 72.46 100.00 84.03

White-Greasy 59.00 88.06 59.00 70.66

Thin-White 69.00 84.15 69.00 75.82

Yellow-Greasy 100.00 90.91 100.00 95.24

Grey-Black 100.00 97.09 100.00 98.52

Overall 85.60 86.53 85.60 84.86

Table 5.4.3.3: Classification performance of Improved HybridNet on the 5-class dataset

Training time: 25m 07s

Total parameters: 131.213

Model size: 0.57 MB

Figure 5.4.3.3: Confusion matrix of Improved HybridNet on the 5-class dataset

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

5.4.3.4 Model Performance on 5-Class Dataset (Mirror-Approximated, White-Greasy,

Thin-White, Yellow-Greasy, Grey-Black)

Method Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

Training

time

Total

parameters

Model

size

AdderNet N/A N/A N/A N/A N/A N/A N/A

ResNet20 85.80 86.25 85.80 85.19 26m 45s 274,074 1.09

MB

HybridNet 84.20 84.56 84.20 83.37 01h 53m

06s

228,901 0.95

MB

Improved

HybridNet

85.60 86.53 85.60 84.86 25m 07s 131.213 0.57

MB

Table 5.4.3.4: Summary comparison of all models on the 5-class dataset

• Observation: Accuracy lower (~84–86%), reflecting dataset difficulty.

• AdderNet excluded (crashes).

• ResNet20: Strong on Grey-Black and Yellow-Greasy (perfect accuracy), weaker on

White-Greasy.

• HybridNet: Similar to ResNet20, slightly weaker overall.

• Improved HybridNet: Slightly higher overall (~85.6%), while being most efficient in

size and parameters.

• Discussion point: White-Greasy remains a major challenge (low recall), highlighting

dataset imbalance or visual ambiguity. Improved HybridNet again offers the best trade-

off.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

5.5 Overall Accuracy Summary and Trends

Overall Accuracy Summary Table

Dataset AdderNet ResNet20 HybridNet Improved HybridNet

2-class 95.75% 95.25% 96.50% 97.25%

4-class 91.00% 86.25% 86.75% 87.75%

5-class N/A 85.80% 84.20% 85.60%

Table 5.5.1: Overall accuracy summary of all models across 2-, 4-, and 5-class datasets

This summary table condenses the performance of all classification models across the three

datasets into a single view. A few clear trends emerge:

• For the 2-class dataset, all models performed very strongly, but the improved

HybridNet achieved the highest accuracy (97.25%) while also being the most efficient

in size and parameters. This can be explained by the relative simplicity of the binary

classification task: the decision boundary between stained and non-stained moss is

straightforward, so HybridNet’s lightweight design is sufficient and even advantageous,

avoiding overfitting and ensuring strong generalization.

• In the 4-class dataset, AdderNet achieved the best overall accuracy (91%), but at the

cost of much larger computational requirements. Here, the task is more complex

because the model must discriminate subtle differences between tongue colors such as

Pale, Pale Red, Red, and Bluish Purple. In this case, AdderNet’s higher representational

capacity allowed it to capture finer details, giving it an edge. However, the improved

HybridNet, though slightly less accurate (87.75%), still provided a better trade-off by

balancing efficiency with acceptable accuracy.

• The 5-class dataset was the most challenging, with accuracies stabilizing around 84–

86%. AdderNet could not be used here due to resource limitations, but both ResNet20

and HybridNet produced reasonable results, while the improved HybridNet achieved

the highest accuracy (85.6%).

These results confirm two key insights: first, classification becomes progressively more

difficult as the number of classes increases; and second, while AdderNet occasionally tops

accuracy, the improved HybridNet consistently provides the best trade-off between

performance and efficiency, making it the most suitable candidate for practical deployment.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

Extra Class-Level Detailed Performance Analysis

To better understand why performance drops with more classes, the class-level metrics

(accuracy, precision, recall, and F1) were examined in detail. Here, clear weaknesses appear in

specific categories:

• Pale (4-class): All metrics were weaker compared to other classes, showing that this

category is broadly difficult to distinguish.

• Pale Red (4-class): One of the most problematic classes. Accuracy, precision, recall,

and F1 were all low, with recall and accuracy particularly poor, meaning the model both

missed many true Pale Red cases and misclassified them frequently.

• Thin-White (5-class): Performed poorly across the board, especially in accuracy and

recall, followed by F1, reflecting confusion with visually similar classes.

• White-Greasy (5-class): Another consistently weak class. All four metrics were low,

with recall and accuracy standing out as particularly weak, indicating that the model

struggled both to detect and to correctly classify this tongue condition.

In contrast, visually distinct classes — such as Red and Bluish Purple (4-class) and Mirror-

Approximated, Grey-Black and Yellow-Greasy (5-class) — achieved very high or near-

perfect scores across all metrics. This reinforces that the observed decline in dataset-level

accuracy is driven primarily by the presence of ambiguous, overlapping classes, not by

overall model limitations.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

5.6 Computational Efficiency and Model Architecture Analysis

Model Parameters Model

Size

Training Time

(approx)

Best Dataset

Performance

AdderNet ~274K 1.09 MB ~3h 51m 91% (4-class)

ResNet20 ~274K 1.09 MB ~20–26 min 95.25% (2-class)

HybridNet ~228K 0.95 MB ~1h 23–93 min 96.50% (2-class)

Improved

HybridNet

~131K 0.57 MB ~20–25 min 97.25% (2-class)

Table 5.6.1: Computational efficiency comparison of all models

AdderNet (ResNet20 backbone with adder2d)

AdderNet retains the ResNet20 residual topology (3-3-3 blocks) but replaces convolution

multiplications with L1 distance accumulation via adder2d layers. The stem remains a

standard Conv2d, so the parameter count is almost identical to ResNet20 (~274K). However,

because adder operations are not cuDNN-optimized, the model suffers from much longer

wall-clock training times (~3h 51m) despite having the same size (1.09 MB). This extra

representational capacity helps in harder multi-class problems (91% accuracy on 4-class, the

highest among models), but it does not outperform leaner CNNs on simpler binary tasks. In

short, AdderNet demonstrates that capacity ≠ efficiency: strong accuracy on complex datasets

comes at a steep cost in runtime.

ResNet20 (vanilla convs + residual BasicBlocks)

ResNet20 uses the standard Conv2d → BN → ReLU structure with identity/projection

shortcuts, making it highly optimized by cuDNN. With ~274K parameters and model size of

1.09 MB, it trains in only 20–26 minutes — the fastest of all models. Accuracy is strong in

binary classification (95.25%), showing that a straightforward convolutional backbone

generalizes well for simple tasks. However, its performance dips in fine-grained multi-class

settings compared to AdderNet, confirming that efficiency in training time does not always

translate into the best performance in more complex datasets.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

HybridNet (baseline, with MobileNetV2 inverted residuals)

HybridNet adopts the MobileNetV2 design: expand (1×1) → depthwise (3×3) → pointwise

(1×1) with residuals when dimensions match. This use of depthwise separable convolutions

drastically reduces FLOPs and parameters compared to standard ResNet blocks, cutting the

parameter count to ~228K and model size to 0.95 MB. Although the parameter count is lower,

training speed was slower (~1.5h) compared to ResNet20 because depthwise operations

are not as well optimized in GPU libraries as standard convolutions, resulting in longer

runtimes despite the smaller model size. Even so, HybridNet achieves higher accuracy (96.5%

on 2-class) than ResNet20, showing how efficient feature reuse boosts performance without

increasing size. However, it underperforms on subtle multi-class datasets where greater

capacity is required.

HybridNet (improved: SE, DropPath, checkpointing, gentler ratios)

The improved HybridNet incorporates Squeeze-and-Excite (SE) for channel attention,

DropPath for regularization, and reduces the expand ratio from 6.0 to 3.0, making it smaller

and faster. It further saves compute by applying projection shortcuts only when shapes

differ and using dynamic downsampling at high resolutions. During training, activation

checkpointing lowers memory usage, enabling faster and more efficient fitting. Altogether,

these refinements shrink the model to ~131K parameters and 0.57 MB, with a training time

of ~20–25 minutes, while still delivering the highest accuracy overall (97.25% on 2-class).

Even though it trails AdderNet slightly on the 4-class dataset, it wins decisively on the

efficiency trade-off, offering the best balance of size, speed, and accuracy.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

5.6.1 Best Classification Model Selction

Although different models showed strengths in different areas, not all were equally practical

for real-world use. AdderNet achieved the highest accuracy in the 4-class dataset (91%), but

its excessive training time (~3h 51m), larger computational demand, and inability to scale to

the 5-class dataset limited its practicality. ResNet20 offered the fastest training speed (20–26

minutes) and stability, but its performance dropped notably on multi-class datasets (86% on 4-

class and 85.8% on 5-class). The baseline HybridNet improved efficiency (~228K parameters,

0.95 MB) and achieved higher accuracy in the 2-class dataset (96.5%), yet it still

underperformed in the more challenging multi-class settings compared to AdderNet.

Ultimately, the Improved HybridNet emerged as the most suitable overall model. It achieved

the best binary classification accuracy (97.25%), competitive performance in the 4-class

(87.75%) and 5-class (85.6%) datasets, and delivered this with the smallest parameter count

(131K), lowest storage footprint (0.57 MB), and fastest training time (~20–25 minutes).

These results establish the Improved HybridNet as the most balanced and practical candidate

for real-world TCM tongue diagnosis applications, combining efficiency, scalability, and

strong performance.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

Chapter 6

Conclusion And Recommendation

6.1 Conclusion

This project delivered a reproducible end-to-end pipeline for tongue image analysis—

segmentation followed by classification—evaluated on multi-class datasets with increasing

visual complexity. DuckNet produced consistently reliable masks on challenging backgrounds

and was therefore adopted as the default pre-processing stage. Notably, classification accuracy

was largely insensitive to the exact mask quality: models trained on SVM-segmented data

performed similarly to those trained on DuckNet masks, indicating that once the tongue region

is reasonably isolated, discriminative cues inside the region dominate downstream

performance.

Within classification, ResNet20 served as a strong and compact baseline that trained quickly

and provided a stable reference point for architecture comparisons. The (non-improved)

HybridNet combined ResNet-style skip connections with MobileNetV2 inverted residuals,

reducing parameters while maintaining accuracy close to ResNet20, albeit sometimes with

longer training despite its smaller footprint. The Improved HybridNet—augmenting HybridNet

with squeeze-and-excite, DropPath, reduced expand ratios, and activation checkpointing—

offered the best accuracy-efficiency balance and fastest practical training in our setting.

AdderNet validated the feasibility of addition-based convolutions but incurred high training

cost due to limited GPU optimization and is not preferred for deployment. Overall, the

recommended stack for practical use is DuckNet segmentation followed by Improved

HybridNet classification, with ResNet20 retained as the reference baseline and the original

HybridNet as a lightweight alternative when sticking to conventional inverted-residual designs.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

6.2 Recommendation

To build on the outcomes of this project, future work should focus on improving data quality,

refining the models, and preparing the pipeline for real-world deployment.

First, the dataset needs to be expanded and better balanced. Visually similar classes should

receive particular attention, as they are more prone to misclassification. Increasing the number

of samples across all categories and ensuring even class distribution will help reduce bias and

improve generalization. Reporting class-wise metrics should remain standard practice, as it

helps expose specific failure modes that may be hidden by overall accuracy figures.

In terms of segmentation, DuckNet should remain the default model, especially given its

consistent performance on complex backgrounds. While the SVM-based method offers an

extremely small footprint and is easy to train on CPUs, it struggled with more visually

complicated scenes in this study. However, SVM can still be a valuable baseline if enhanced.

Future iterations could improve it by incorporating deep features from CNN encoders like those

used in HybridNet or DuckNet, or by shifting to a superpixel-level approach using richer color,

texture, and deep features. Simple post-processing steps—such as morphological operations,

conditional random fields (CRFs), or graph-cut techniques—could also help sharpen

segmentation boundaries. Additional improvements may come from systematic tuning of

kernel types and hyperparameters (e.g., RBF or χ² kernels with optimized C and γ values), or

from using DuckNet-generated masks as pseudo-labels in a semi- or self-supervised learning

setup.

On the classification side, the Improved HybridNet remains the recommended model due to its

excellent balance of accuracy, efficiency, and training speed. It delivers reliable performance

across complex multi-class tasks and is well-suited for real-world deployment. However, it's

important to note that while Improved HybridNet performs strongly overall, it still falls short

of the peak accuracy achieved by AdderNet. That said, AdderNet’s high computational cost

and limited GPU optimization make it impractical for most deployment scenarios. To close

this gap without compromising on efficiency, future work could explore enhancements to

Improved HybridNet—such as refined loss functions (e.g., class-balanced or focal loss),

stronger normalization techniques, or targeted augmentation strategies for difficult classes. For

resource-constrained environments, quantization or knowledge distillation could further

compress the model, and exporting to ONNX or TensorRT would improve runtime

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

performance. Coupling it with a lightweight segmentation model can also enable real-time

applications.

Finally, before any clinical or production deployment, the full system should be tested in real-

world scenarios with practitioners. This step is essential to assess calibration, usability, and

actual utility in a clinical workflow. Feedback from end users will be invaluable for making

practical adjustments and closing the gap between technical performance and real-world impact.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

REFERENCES

[1] José María Rodríguez Corral, Javier Civit-Masot, Francisco Luna-Perejón, Ignacio

Díaz-Cano, Arturo Morgado-Estévez, Manuel Domínguez-Morales, "Energy efficiency

in Edge TPU vs. embedded GPU for computer-aided medical imaging segmentation

and classification," Engineering Applications of Artificial Intelligence, vol. 127, 2024.

[2] Angela Renton, Thuy T. Dao, Tom Johnstone, Oren Civier, "Neurodesk: an accessible,

flexible and portable data analysis environment for reproducible neuroimaging," Nature

Methods, vol. 21, no. 5, 2024.

[3] Xuebo Jin, Longfei Gao, Anshuo Tong, Zhengyang Chen, Jianlei Kong, Ning Sun,

Huijun Ma, Qiang Wang, Yuting Bai, Tingli Su, "TCM-Tongue: A Standardized

Tongue Image Dataset with Pathological Annotations for AI-Assisted TCM Diagnosis,"

2025.

[4] Merjem Bećirović, Amina Kurtović, Nordin Smajlović, Medina Kapo, Amila Akagić,

"Performance comparison of medical image classification systems using TensorFlow

Keras, PyTorch, and JAX," 2025.

[5] Qi Liu, Yan Li, Peng Yang, Quanquan Liu, Chunbao Wang, Keji Chen, Zhengzhi Wu,

"A survey of artificial intelligence in tongue image for disease diagnosis and syndrome

differentiation".

[6] Ali Raad Hassoon, Ali Al-Naji, Ghaidaa A. Khalid, Javaan Chahl, "Tongue Disease

Prediction Based on Machine Learning Algorithms," Technologies, vol. 12, no. 7, 2024.

[7] Qianzi Che, Yuanming Leng, Wei Yang, Xihao Cao, Zhongxia Wang, Lizheng Liu,

Feibiao Xie, Ruilin Wang, "Tongue Image–Based Diagnosis of Acute Respiratory Tract

Infection Using Machine Learning: Algorithm Development and Validation," JMIR

Med Inform, vol. 13, 2025.

[8] Ahmad Waleed Salehi, Shakir Khan, Gaurav Gupta, Bayan Ibrahimm Alabduallah,

Abrar Almjally, Hadeel Alsolai, Tamanna Siddiqui, Adel Mellit, "A Study of CNN and

Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope," MDPI,

vol. 15, no. 7, 2023.

[9] P. Gayathri, "Exploring the Potential of VGG-16 Architecture for Accurate Brain

Tumor Detection Using Deep Learning," Journal of Computers, 2023.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

[10] Meng-Yi Li, Ding-Ju Zhu, Wen Xu, Yu-Jie Lin, Kai-Leung Yung, Andrew W. H. Ip,

"Application of U-Net with Global Convolution Network Module in Computer-Aided

Tongue Diagnosis," Journal of Healthcare Engineering, 2021.

[11] Summiya Taskin, Ferdib-Al-Islam, "Transfer Learning-based Fine Tuned MobileNetV2

Model with Explainable Artificial Intelligence for Identifying Dental Diseases," IEEE,

2025.

[12] H. Chen, "AdderNet: Do We Really Need Multiplications in Deep Learning?," 2020.

[13] Zhong li qin, Xin Guojiang, Peng Qinghua, Liu Wanghua, Wu Yingjie, Sheng Dan, Zhu

Lei, Sui Qiang, Liang Hao, "A dataset of stained tongue fur images of TCM," [Online].

Available:

https://www.scidb.cn/en/detail?dataSetId=223214839b224f798a40120dcec4576a.

[14] "Tongue Image Dataset-neo," 24 3 2023. [Online]. Available:

https://aistudio.baidu.com/datasetdetail/196398.

[15] Muhammad151, "tongue images," [Online]. Available:

https://www.kaggle.com/datasets/muhammad151/tongue-images.

[16] Towfiq_Tomal, "Tongue__DIABETES," [Online]. Available:

https://www.kaggle.com/datasets/towfiqtomal/tongue-diabetes.

[17] Muhammad Saddam Zikri Dalimunthe, Rossy Nurhasanah, "Type 2 Diabetes Mellitus

Tongue Dataset," Mendeley, 7 10 2024. [Online]. Available:

https://data.mendeley.com/datasets/hyb44jf936/2.

[18] "Intelligent-tongue-diagnosis-detection-dataset," 2025. [Online]. Available:

https://github.com/btbuIntelliSense/Intelligent-tongue-diagnosis-detection-

dataset?tab=readme-ov-file.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

APPENDIX

SVM

svm.ipynb

from __future__ import annotations

--- Colab / I/O ---

from google.colab import drive

--- Std / third-party ---

import os

import cv2

import joblib

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from tqdm import tqdm

from typing import List, Tuple, Dict

from skimage.feature import local_binary_pattern

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.svm import LinearSVC

from sklearn.metrics import (

 accuracy_score,

 precision_score,

 recall_score,

 f1_score,

 jaccard_score,

 confusion_matrix,

)

==

1) Feature extraction helpers

==

def _fixed_window(img: np.ndarray, x: int, y: int, window_size: int = 7) ->

np.ndarray:

 k = window_size

 pad = k // 2

 img_pad = cv2.copyMakeBorder(img, pad, pad, pad, pad, cv2.BORDER_REFLECT)

 return img_pad[y : y + k, x : x + k]

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

def extract_features(img: np.ndarray, x: int, y: int, window_size: int = 7):

 k = window_size

 window = _fixed_window(img, x, y, window_size=k)

 r, g, b = img[y, x]

 mean_rgb = window.mean(axis=(0, 1))

 std_rgb = window.std(axis=(0, 1))

 # Texture: uniform LBP histograms + local Sobel stats

 gray = cv2.cvtColor(window, cv2.COLOR_RGB2GRAY)

 lbp1 = local_binary_pattern(gray, P=8, R=1, method="uniform")

 lbp2 = local_binary_pattern(gray, P=16, R=3, method="uniform")

 hist1 = np.histogram(lbp1.ravel(), bins=10, range=(0, 10))[0]

 hist2 = np.histogram(lbp2.ravel(), bins=18, range=(0, 18))[0]

 sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)

 sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)

 # Position

 h, w = img.shape[:2]

 cx, cy = w / 2.0, h / 2.0

 dist_to_center = np.sqrt((x - cx) ** 2 + (y - cy) ** 2)

 dist_to_center /= np.sqrt(cx ** 2 + cy ** 2)

 features = [

 r,

 g,

 b,

 mean_rgb[0],

 mean_rgb[1],

 mean_rgb[2],

 std_rgb[0],

 std_rgb[1],

 std_rgb[2],

 *hist1,

 *hist2,

 sobelx.mean(),

 sobely.mean(),

 sobelx.std(),

 sobely.std(),

 x / w,

 y / h,

 dist_to_center,

]

 feature_names = [

 "Red",

 "Green",

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

 "Blue",

 "Mean_R",

 "Mean_G",

 "Mean_B",

 "Std_R",

 "Std_G",

 "Std_B",

 *[f"LBP1_bin_{i}" for i in range(10)],

 *[f"LBP2_bin_{i}" for i in range(18)],

 "SobelX_mean",

 "SobelY_mean",

 "SobelX_std",

 "SobelY_std",

 "X_pos",

 "Y_pos",

 "Dist_to_center",

]

 return np.array(features, dtype=np.float32), feature_names

==

2) Dense, vectorized full-image features

==

def _local_mean_std(img_f32: np.ndarray, k: int):

 mean = cv2.blur(img_f32, (k, k), borderType=cv2.BORDER_REFLECT)

 sqr = cv2.blur(img_f32 * img_f32, (k, k), borderType=cv2.BORDER_REFLECT)

 var = np.maximum(sqr - mean * mean, 0.0)

 std = np.sqrt(var)

 return mean, std

def _lbp_hist_per_pixel(gray_u8: np.ndarray, P: int, R: int, k: int) ->

np.ndarray:

 lbp = local_binary_pattern(gray_u8, P=P, R=R,

method="uniform").astype(np.float32)

 H, W = gray_u8.shape

 B = int(P + 2)

 out = np.empty((H, W, B), dtype=np.float32)

 edges = np.arange(B + 1, dtype=np.float32)

 area = float(k * k)

 for b in range(B):

 low, high = edges[b], edges[b + 1]

 mask = ((lbp >= low) & (lbp < high)).astype(np.float32)

 out[..., b] = cv2.blur(mask, (k, k), borderType=cv2.BORDER_REFLECT) *

area

 return out

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

def _build_full_image_features(img_rgb: np.ndarray, window_size: int = 7) ->

np.ndarray:

 k = window_size

 H, W, _ = img_rgb.shape

 img_f32 = img_rgb.astype(np.float32)

 def to_hwc(x: np.ndarray) -> np.ndarray:

 x = np.asarray(x)

 # Ensure HxWxC no matter what comes in (1D/2D/3D)

 if x.ndim == 1:

 x = x.reshape(H, W, 1) # rare 1D edge cases from cv ops

 elif x.ndim == 2:

 x = x[..., None]

 # if already 3D, keep as-is

 return x.astype(np.float32)

 # RGB at pixel

 R = to_hwc(img_f32[..., 0])

 G = to_hwc(img_f32[..., 1])

 B = to_hwc(img_f32[..., 2])

 # local mean/std RGB (HxWx3 each)

 mean_rgb, std_rgb = _local_mean_std(img_f32, k)

 mean_rgb = mean_rgb.astype(np.float32)

 std_rgb = std_rgb.astype(np.float32)

 # Gray + LBP

 gray_f32 = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY).astype(np.float32)

 gray_u8 = np.clip(gray_f32, 0, 255).astype(np.uint8)

 lbp1_hist = _lbp_hist_per_pixel(gray_u8, P=8, R=1, k=k)

 lbp2_hist = _lbp_hist_per_pixel(gray_u8, P=16, R=3, k=k)

 # Sobel (float); then local mean/std in k×k

 sobelx = cv2.Sobel(gray_f32, cv2.CV_32F, 1, 0, ksize=3)

 sobely = cv2.Sobel(gray_f32, cv2.CV_32F, 0, 1, ksize=3)

 sx_mean, sx_std = _local_mean_std(sobelx[..., None], k)

 sy_mean, sy_std = _local_mean_std(sobely[..., None], k)

 # keep channels; robustly force HxWx1 shape

 sx_mean, sx_std = to_hwc(sx_mean), to_hwc(sx_std)

 sy_mean, sy_std = to_hwc(sy_mean), to_hwc(sy_std)

 # Position features

 xs = (np.arange(W, dtype=np.float32)[None, :] / W).repeat(H, axis=0)

 ys = (np.arange(H, dtype=np.float32)[:, None] / H).repeat(W, axis=1)

 cx, cy = W / 2.0, H / 2.0

 dist = np.sqrt((np.arange(W)[None, :] - cx) ** 2 + (np.arange(H)[:, None]

- cy) ** 2).astype(np.float32)

 dist /= np.sqrt(cx * cx + cy * cy)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

 xs, ys, dist = to_hwc(xs), to_hwc(ys), to_hwc(dist)

 feats = np.concatenate(

 [R, G, B, mean_rgb, std_rgb, lbp1_hist, lbp2_hist, sx_mean, sy_mean,

sx_std, sy_std, xs, ys, dist],

 axis=2,

).astype(np.float32)

 return feats.reshape(-1, feats.shape[2])

==

3) Balanced per-image pixel sampling (training/testing)

==

def _sample_balanced_from_image(

 img: np.ndarray,

 mask_gray: np.ndarray,

 fg_target: int = 4000,

 bg_target: int = 4000,

 rng: np.random.Generator | None = None,

 window_size: int = 7,

) -> Tuple[np.ndarray, np.ndarray]:

 if rng is None:

 rng = np.random.default_rng(42)

 fg_y, fg_x = np.where(mask_gray != 0)

 bg_y, bg_x = np.where(mask_gray == 0)

 if len(fg_x) == 0 or len(bg_x) == 0:

 return np.empty((0, 44), dtype=np.float32), np.empty((0,),

dtype=np.uint8)

 fg_take = min(fg_target, len(fg_x))

 bg_take = min(bg_target, len(bg_x))

 fg_idx = rng.choice(len(fg_x), size=fg_take, replace=False)

 bg_idx = rng.choice(len(bg_x), size=bg_take, replace=False)

 xs = np.concatenate([fg_x[fg_idx], bg_x[bg_idx]])

 ys = np.concatenate([fg_y[fg_idx], bg_y[bg_idx]])

 labels = np.concatenate([np.ones(fg_take, dtype=np.uint8),

np.zeros(bg_take, dtype=np.uint8)])

 feats: List[np.ndarray] = []

 for x, y in zip(xs, ys):

 f, _ = extract_features(img, int(x), int(y), window_size=window_size)

 feats.append(f)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

 return np.asarray(feats, dtype=np.float32), labels

def load_and_split_data(

 image_folder: str,

 mask_folder: str,

 n_images: int = 500,

 test_size: float = 0.2,

 fg_per_img: int = 4000,

 bg_per_img: int = 4000,

) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray,

np.ndarray, List, List]:

 """Load images, split by index, and sample a balanced set of pixels per

image."""

 all_indices = np.arange(1, n_images + 1)

 train_indices, test_indices = train_test_split(all_indices,

test_size=test_size, random_state=42)

 rng = np.random.default_rng(123)

 print("Processing training images (balanced sampling)...")

 X_train, y_train, train_images = [], [], []

 for i in tqdm(train_indices):

 img = cv2.cvtColor(cv2.imread(f"{image_folder}/{i}.png"),

cv2.COLOR_BGR2RGB)

 mask = cv2.imread(f"{mask_folder}/{i}.png", cv2.IMREAD_GRAYSCALE)

 train_images.append((i, img, mask))

 Xi, yi = _sample_balanced_from_image(img, mask, fg_target=fg_per_img,

bg_target=bg_per_img, rng=rng)

 if Xi.size:

 X_train.append(Xi)

 y_train.append(yi)

 X_train = np.vstack(X_train)

 y_train = np.concatenate(y_train)

 print("\nProcessing test images (balanced sampling for the *sampled*

report)...")

 X_test, y_test, test_images = [], [], []

 for i in tqdm(test_indices):

 img = cv2.cvtColor(cv2.imread(f"{image_folder}/{i}.png"),

cv2.COLOR_BGR2RGB)

 mask = cv2.imread(f"{mask_folder}/{i}.png", cv2.IMREAD_GRAYSCALE)

 test_images.append((i, img, mask))

 Xi, yi = _sample_balanced_from_image(img, mask, fg_target=fg_per_img

// 2, bg_target=bg_per_img // 2, rng=rng)

 if Xi.size:

 X_test.append(Xi)

 y_test.append(yi)

 X_test = np.vstack(X_test)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

 y_test = np.concatenate(y_test)

 return (

 X_train,

 y_train,

 X_test,

 y_test,

 train_indices,

 test_indices,

 train_images,

 test_images,

)

==

4) Model + feature importance

==

def build_svm_pipeline() -> Pipeline:

 return Pipeline(

 [

 ("scaler", StandardScaler()),

 (

 "svm",

 LinearSVC(

 C=1.0,

 class_weight=None,

 random_state=42,

 max_iter=10000,

),

),

]

)

def analyze_feature_importance(model: Pipeline, feature_names: List[str],

result_folder: str) -> np.ndarray:

 weights = model.named_steps["svm"].coef_[0]

 abs_weights = np.abs(weights)

 normalized_weights = abs_weights / (abs_weights.sum() + 1e-12)

 df = pd.DataFrame({"Feature": feature_names, "Importance":

normalized_weights})

 print("\nSorted Feature Importance (|w| on standardized features):")

 print(df.sort_values("Importance",

ascending=False).to_markdown(tablefmt="grid", index=False, floatfmt=".6f"))

 plt.figure(figsize=(10, 0.30 * len(feature_names) + 2))

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

 sorted_idx = np.argsort(normalized_weights)

 plt.barh(range(len(sorted_idx)), normalized_weights[sorted_idx])

 plt.yticks(range(len(sorted_idx)), [feature_names[i] for i in sorted_idx])

 plt.xlabel("Feature Importance (|weight| on standardized features)")

 plt.title("Linear SVM Feature Importance")

 plt.tight_layout()

 importance_path = os.path.join(result_folder,

"svm_feature_importance.png")

 plt.savefig(importance_path, bbox_inches="tight", dpi=300)

 plt.close()

 print(f"Saved feature importance plot to: {importance_path}")

 return normalized_weights

==

5) Dense visualization + cutouts

==

def _maybe_postprocess(mask01: np.ndarray, enable: bool = False) ->

np.ndarray:

 if not enable:

 return mask01

 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))

 m = cv2.morphologyEx((mask01 * 255).astype(np.uint8), cv2.MORPH_OPEN,

kernel)

 m = (m > 127).astype(np.uint8)

 num, labels, stats, _ = cv2.connectedComponentsWithStats(m,

connectivity=8)

 if num <= 1:

 return m

 keep = 1 + np.argmax(stats[1:, cv2.CC_STAT_AREA])

 return (labels == keep).astype(np.uint8)

def visualize_sample_results(

 model: LinearSVC,

 scaler: StandardScaler,

 images: List[Tuple[int, np.ndarray, np.ndarray]],

 result_folder: str,

 split_tag: str = "test",

 window_size: int = 7,

 pred_batch: int = 200_000,

 cutout_root: str | None = None,

 postprocess: bool = False,

 decision_threshold: float = 0.0,

 bf_tolerance_px: int = 3,

) -> None:

 os.makedirs(result_folder, exist_ok=True)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

 cutout_dir = None

 if cutout_root is not None:

 cutout_dir = os.path.join(cutout_root, split_tag)

 os.makedirs(cutout_dir, exist_ok=True)

 for img_idx, img, mask in images:

 H, W = img.shape[:2]

 # Dense features

 X_img = _build_full_image_features(img, window_size=window_size)

 # Scale+predict in chunks

 preds = np.empty((H * W,), dtype=np.int32)

 start = 0

 while start < X_img.shape[0]:

 end = min(start + pred_batch, X_img.shape[0])

 scores =

model.decision_function(scaler.transform(X_img[start:end]))

 preds[start:end] = (scores > decision_threshold).astype(np.int32)

 start = end

 pred_mask = preds.reshape(H, W).astype(np.uint8)

 pred_mask = _maybe_postprocess(pred_mask, enable=postprocess)

 # Metrics per-image

 mask_bin = (mask != 0)

 mask_flat = mask_bin.reshape(-1)

 pred_flat = (pred_mask == 1).reshape(-1)

 tp = (pred_mask == 1) & mask_bin

 fp = (pred_mask == 1) & (~mask_bin)

 fn = (pred_mask == 0) & mask_bin

 overlay = np.zeros_like(img)

 overlay[tp] = [0, 255, 0]

 overlay[fp] = [255, 0, 0]

 overlay[fn] = [0, 0, 255]

 cutout = np.zeros_like(img)

 cutout[pred_mask == 1] = img[pred_mask == 1]

 plt.figure(figsize=(20, 5))

 plt.subplot(141);

plt.imshow(img); plt.title("Original"); plt.axis

("off")

 plt.subplot(142); plt.imshow(mask, cmap="gray"); plt.title("Ground

Truth"); plt.axis("off")

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

 plt.subplot(143); plt.imshow(cutout); plt.title("Predicted

(cut-out)"); plt.axis("off")

 plt.subplot(144); plt.imshow(img); plt.imshow(overlay, alpha=0.5)

 plt.title("Overlay: Green=TP, Red=FP, Blue=FN"); plt.axis("off")

 plt.tight_layout()

 out_png = f"{result_folder}/{split_tag}_{img_idx}.png"

 plt.savefig(out_png, bbox_inches="tight", dpi=150)

 plt.close()

 if cutout_dir is not None:

 cutout_path = os.path.join(cutout_dir,

f"{split_tag}_{img_idx}.png")

 cv2.imwrite(cutout_path, cv2.cvtColor(cutout, cv2.COLOR_RGB2BGR))

 # --- Boundary-aware metrics ---

 cm = confusion_matrix(mask_flat, pred_flat, labels=[0,1])

 tn, fp, fn, tp = cm.ravel()

 specificity = tn / (tn + fp + 1e-9)

 balanced_acc = 0.5 * (specificity + recall_score(mask_flat,

pred_flat))

 bf1, assd, hd95 = compute_boundary_metrics(mask_bin.astype(np.uint8),

(pred_mask==1).astype(np.uint8), tolerance=bf_tolerance_px)

 metrics = {

 "Image Index": int(img_idx),

 "True Foreground Pixels": int(mask_bin.sum()),

 "Predicted Foreground Pixels": int((pred_mask == 1).sum()),

 "Dice (F1)": float(f1_score(mask_flat, pred_flat)),

 "Jaccard": float(jaccard_score(mask_flat, pred_flat)),

 "Precision": float(precision_score(mask_flat, pred_flat)),

 "Recall": float(recall_score(mask_flat, pred_flat)),

 "Specificity": float(specificity),

 "Balanced Accuracy": float(balanced_acc),

 "BoundaryF1@%dpx" % bf_tolerance_px: float(bf1) if not

np.isnan(bf1) else float("nan"),

 "ASSD_px": float(assd) if assd is not None else float("nan"),

 "HD95_px": float(hd95) if hd95 is not None else float("nan"),

 "Accuracy": float(accuracy_score(mask_flat, pred_flat)),

 }

 out_txt = f"{result_folder}/{split_tag}_{img_idx}.txt"

 with open(out_txt, "w") as f:

 for k, v in metrics.items():

 f.write(f"{k}: {v}\n")

==

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

6) Robust evaluation utilities

==

--- Boundary metrics helpers ---

def _binary_boundary(mask01: np.ndarray) -> np.ndarray:

 """1px boundary of a 0/1 mask using morphological gradient."""

 m = (mask01.astype(np.uint8) > 0).astype(np.uint8)

 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))

 er = cv2.erode(m, kernel, iterations=1)

 bd = (m - er)

 bd[bd < 0] = 0

 return (bd > 0).astype(np.uint8)

def _distance_to_boundary(boundary01: np.ndarray) -> np.ndarray:

 """Euclidean distance (pixels) to nearest boundary pixel using OpenCV

DT."""

 inv = (boundary01 == 0).astype(np.uint8) * 255

 dt = cv2.distanceTransform(inv, cv2.DIST_L2, 3)

 return dt.astype(np.float32)

def compute_boundary_metrics(gt01: np.ndarray, pr01: np.ndarray, tolerance:

int = 3):

 """Return (BF1@tol, ASSD_px, HD95_px). NaN if boundary empty."""

 gt01 = (gt01 > 0).astype(np.uint8)

 pr01 = (pr01 > 0).astype(np.uint8)

 b_gt = _binary_boundary(gt01)

 b_pr = _binary_boundary(pr01)

 if b_gt.sum() == 0 and b_pr.sum() == 0:

 return float('nan'), 0.0, 0.0

 dt_gt = _distance_to_boundary(b_gt)

 dt_pr = _distance_to_boundary(b_pr)

 pred_d = dt_gt[b_pr == 1]

 true_d = dt_pr[b_gt == 1]

 # BF precision / recall within tolerance

 p = np.nan if pred_d.size == 0 else (pred_d <= tolerance).mean()

 r = np.nan if true_d.size == 0 else (true_d <= tolerance).mean()

 if np.isnan(p) or np.isnan(r) or (p + r) == 0:

 bf1 = np.nan

 else:

 bf1 = 2 * p * r / (p + r + 1e-9)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

 # ASSD (symmetric) and HD95

 vals = []

 if pred_d.size > 0:

 vals.append(pred_d)

 if true_d.size > 0:

 vals.append(true_d)

 if len(vals) == 0:

 assd, hd95 = 0.0, 0.0

 else:

 vals = np.concatenate(vals)

 assd = float(np.mean(vals))

 hd95 = float(np.percentile(vals, 95))

 return float(bf1), assd, hd95

def _metrics_from_cm(cm: np.ndarray) -> Dict[str, float]:

 tn, fp, fn, tp = cm.ravel()

 eps = 1e-9

 precision = tp / (tp + fp + eps)

 recall = tp / (tp + fn + eps)

 dice = 2 * tp / (2 * tp + fp + fn + eps)

 jaccard = tp / (tp + fp + fn + eps)

 accuracy = (tp + tn) / (tp + tn + fp + fn + eps)

 return {

 "Accuracy": accuracy,

 "Dice Score": dice,

 "Precision": precision,

 "Recall": recall,

 "Jaccard": jaccard,

 }

def evaluate_sampled(y_true: np.ndarray, y_pred: np.ndarray) -> Dict[str,

float]:

 cm = confusion_matrix(y_true, y_pred, labels=[0, 1])

 print("Confusion Matrix (sampled):\n", cm)

 metrics = _metrics_from_cm(cm)

 for k, v in metrics.items():

 print(f"{k}: {v:.4f}")

 return metrics

def evaluate_dense_set(

 model: LinearSVC,

 scaler: StandardScaler,

 images: List[Tuple[int, np.ndarray, np.ndarray]],

 window_size: int = 7,

 pred_batch: int = 200_000,

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

 postprocess: bool = False,

 decision_threshold: float = 0.0,

 bf_tolerance_px: int = 3,

) -> Dict[str, float]:

 cm_total = np.zeros((2, 2), dtype=np.int64)

 bf_list, assd_list, hd95_list = [], [], []

 for _, img, mask in tqdm(images, desc="Dense eval"):

 H, W = img.shape[:2]

 X_img = _build_full_image_features(img, window_size=window_size)

 preds = np.empty((H * W,), dtype=np.int32)

 s = 0

 while s < X_img.shape[0]:

 e = min(s + pred_batch, X_img.shape[0])

 scores = model.decision_function(scaler.transform(X_img[s:e]))

 preds[s:e] = (scores > decision_threshold).astype(np.int32)

 s = e

 pred_mask = preds.reshape(H, W).astype(np.uint8)

 pred_mask = _maybe_postprocess(pred_mask, enable=postprocess)

 y_true = (mask != 0).reshape(-1)

 y_pred = (pred_mask == 1).reshape(-1)

 cm_total += confusion_matrix(y_true, y_pred, labels=[0, 1])

 bf1, assd, hd95 =

compute_boundary_metrics(y_true.reshape(img.shape[:2]).astype(np.uint8),

(pred_mask==1).astype(np.uint8), tolerance=bf_tolerance_px)

 bf_list.append(bf1)

 assd_list.append(assd)

 hd95_list.append(hd95)

 print("Global Confusion Matrix (dense over all pixels):", cm_total)

 metrics = _metrics_from_cm(cm_total)

 tn, fp, fn, tp = cm_total.ravel()

 specificity = tn / (tn + fp + 1e-9)

 bal_acc = 0.5 * (specificity + metrics["Recall"])

 metrics["Specificity"] = specificity

 metrics["Balanced Accuracy"] = bal_acc

 metrics["BoundaryF1@%dpx" % bf_tolerance_px] = float(np.nanmean(bf_list))

if len(bf_list) else float("nan")

 metrics["ASSD_px_mean"] = float(np.nanmean(assd_list)) if len(assd_list)

else float("nan")

 metrics["HD95_px_mean"] = float(np.nanmean(hd95_list)) if len(hd95_list)

else float("nan")

 print("Dense (global) metrics:")

 for k, v in metrics.items():

 print(f"{k}: {v:.4f}")

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

 return metrics

==

7) Main

==

def calibrate_threshold(

 model: LinearSVC,

 scaler: StandardScaler,

 images: List[Tuple[int, np.ndarray, np.ndarray]],

 thresholds: np.ndarray | List[float] = None,

 window_size: int = 7,

 pred_batch: int = 200_000,

 postprocess: bool = False,

 bf_tolerance_px: int = 3,

) -> float:

 if thresholds is None:

 thresholds = np.linspace(-0.5, 0.5, 21)

 subset = images[: min(16, len(images))]

 best_tau, best_score = 0.0, -1.0

 for tau in thresholds:

 dices = []

 for _, img, mask in subset:

 H, W = img.shape[:2]

 X_img = _build_full_image_features(img, window_size=window_size)

 preds = np.empty((H * W,), dtype=np.int32)

 s = 0

 while s < X_img.shape[0]:

 e = min(s + pred_batch, X_img.shape[0])

 scores = model.decision_function(scaler.transform(X_img[s:e]))

 preds[s:e] = (scores > tau).astype(np.int32)

 s = e

 pred_mask = preds.reshape(H, W).astype(np.uint8)

 pred_mask = _maybe_postprocess(pred_mask, enable=postprocess)

 y_true = (mask != 0).reshape(-1)

 y_pred = (pred_mask == 1).reshape(-1)

 dices.append(f1_score(y_true, y_pred))

 mean_dice = float(np.mean(dices)) if len(dices) else -1.0

 if mean_dice > best_score:

 best_score, best_tau = mean_dice, float(tau)

 print(f"Calibrated threshold (by mean Dice on subset): tau={best_tau:.3f}

(score={best_score:.4f})")

 return best_tau

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

def main():

 image_folder = "/content/drive/MyDrive/svm/data/images"

 mask_folder = "/content/drive/MyDrive/svm/data/masks"

 result_folder = "/content/drive/MyDrive/svm/svm_linear_results_fixed"

 cutout_root = "/content/drive/MyDrive/svm/predicted_cutouts"

 drive.mount("/content/drive", force_remount=False)

 os.makedirs(result_folder, exist_ok=True)

 os.makedirs(cutout_root, exist_ok=True)

 (

 X_train,

 y_train,

 X_test,

 y_test,

 train_indices,

 test_indices,

 train_images,

 test_images,

) = load_and_split_data(image_folder, mask_folder, n_images=500,

test_size=0.2, fg_per_img=4000, bg_per_img=4000)

 print(f"\nTraining sampled pixels: {len(X_train):,}")

 print(f"Test sampled pixels: {len(X_test):,}")

 print(f"Train images: {len(train_indices)} | Test images:

{len(test_indices)}")

 # Train

 print("\nTraining Linear SVM model...")

 model = build_svm_pipeline()

 model.fit(X_train, y_train)

 # Feature importance (names from extractor)

 _, feature_names = extract_features(train_images[0][1], x=0, y=0)

 feature_importances = analyze_feature_importance(model, feature_names,

result_folder)

 # Complexity

 svm = model.named_steps["svm"]

 complexity = {

 "Total params": int(len(svm.coef_[0]) + 1),

 "Model size (approx)": f"{(svm.coef_.nbytes + svm.intercept_.nbytes) /

1024:.2f} KB",

 "Feature space": f"ℝ^{len(svm.coef_[0])}",

 "Regularization (C)": float(svm.C),

 }

 print("\nModel Complexity Metrics:")

 for k, v in complexity.items():

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

 print(f"{k}: {v}")

 # Quick sampled report (now balanced)

 print("\nTest Set Evaluation (BALANCED sampled pixels):")

 y_pred_sampled = model.predict(X_test)

 sampled_metrics = evaluate_sampled(y_test, y_pred_sampled)

 # Dense visualizations + per-image metrics

 print("Calibrating decision threshold on a small subset (mean Dice)...")

 DECISION_THRESHOLD = calibrate_threshold(

 model.named_steps["svm"],

 model.named_steps["scaler"],

 train_images,

 thresholds=np.linspace(-0.5, 0.5, 21),

 postprocess=False,

 bf_tolerance_px=3,

)

 print("Generating train visualizations (dense)...")

 visualize_sample_results(

 model.named_steps["svm"],

 model.named_steps["scaler"],

 train_images,

 result_folder,

 split_tag="train",

 cutout_root=cutout_root,

 postprocess=False,

 decision_threshold=DECISION_THRESHOLD,

 bf_tolerance_px=3,

)

 print("\nGenerating test visualizations (dense)...")

 visualize_sample_results(

 model.named_steps["svm"],

 model.named_steps["scaler"],

 test_images,

 result_folder,

 split_tag="test",

 cutout_root=cutout_root,

 postprocess=False,

 decision_threshold=DECISION_THRESHOLD,

 bf_tolerance_px=3,

)

 # Dense, aggregated metrics across ALL pixels

 dense_metrics = evaluate_dense_set(

 model.named_steps["svm"],

 model.named_steps["scaler"],

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

 test_images,

 window_size=7,

 postprocess=False,

 decision_threshold=DECISION_THRESHOLD,

 bf_tolerance_px=3,

)

 # Save everything

 bundle = {

 "model": model,

 "feature_importances": feature_importances,

 "sampled_metrics_balanced": sampled_metrics,

 "dense_metrics": dense_metrics,

 "train_indices": train_indices,

 "test_indices": test_indices,

 "model_complexity": complexity,

 }

 joblib.dump(bundle, os.path.join(result_folder,

"linear_svm_results_fixed.joblib"))

 with open(os.path.join(result_folder, "dense_metrics.txt"), "w") as f:

 for k, v in dense_metrics.items():

 f.write(f"{k}: {v}\n")

 print(f"\nResults saved to {result_folder}")

 print(f"Color-preserved predictions saved under: {cutout_root}/train and

{cutout_root}/test")

if __name__ == "__main__":

 main()

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

DuckNet (from https://github.com/RazvanDu/DUCK-Net)

Consist of:

- ModelNotebook.ipynb

- ImageLoader2D.py

- ConvBlock2D.py

- DUCK_Net.py

- DiceLoss.py

ModelNotebook.ipynb

from google.colab import drive

import sys

import tensorflow as tf

import numpy as np

import gc

import matplotlib.pyplot as plt

from keras.callbacks import CSVLogger

from datetime import datetime

from sklearn.model_selection import train_test_split

from sklearn.metrics import jaccard_score, precision_score, recall_score,

accuracy_score, f1_score

from PIL import Image

import os

Mount Google Drive and set up paths

drive.mount('/content/drive')

sys.path.append('/content/drive/My Drive/duck')

sys.path.append('/content/drive/My Drive/duck/ModelArchitecture')

sys.path.append('/content/drive/My Drive/duck/ImageLoader')

sys.path.append('/content/drive/My Drive/duck/CustomLayers')

Import project-specific modules

from ModelArchitecture.DiceLoss import dice_metric_loss

from ModelArchitecture import DUCK_Net

from ImageLoader import ImageLoader2D

print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))

Model settings

img_size = 352

dataset_type = 'my_dataset'

learning_rate = 1e-4

seed_value = 58800

filters = 17

optimizer = tf.keras.optimizers.RMSprop(learning_rate=learning_rate)

ct = datetime.now()

https://github.com/RazvanDu/DUCK-Net

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

model_type = "DuckNet"

progress_path =

f'ProgressFull/{dataset_type}_progress_csv_{model_type}_filters_{filters}_{ct}

.csv'

progressfull_path =

f'ProgressFull/{dataset_type}_progress_{model_type}_filters_{filters}_{ct}.txt

'

plot_path =

f'ProgressFull/{dataset_type}_progress_plot_{model_type}_filters_{filters}_{ct

}.png'

model_path =

f'ModelSaveTensorFlow/{dataset_type}/{model_type}_filters_{filters}_{ct}'

EPOCHS = 100

min_loss_for_saving = 0.2

Load data

X, Y, filenames = ImageLoader2D.load_data(img_size, img_size, -1,

'my_dataset')

x_train, x_test, y_train, y_test, f_train, f_test = train_test_split(X, Y,

filenames, test_size=0.1, random_state=seed_value, shuffle=True)

x_train, x_valid, y_train, y_valid, f_train, f_valid =

train_test_split(x_train, y_train, f_train, test_size=0.111,

random_state=seed_value, shuffle=True)

Create and compile model

model = DUCK_Net.create_model(img_height=img_size, img_width=img_size,

input_chanels=3, out_classes=1, starting_filters=filters)

model.compile(optimizer=optimizer, loss=dice_metric_loss)

Training loop

step = 0

for epoch in range(0, EPOCHS):

 print(f'Training, epoch {epoch}')

 print('Learning Rate: ' + str(learning_rate))

 step += 1

 os.makedirs("ProgressFull", exist_ok=True)

 csv_logger = CSVLogger(progress_path, append=True, separator=';')

 model.fit(x=x_train, y=y_train, epochs=1, batch_size=4,

validation_data=(x_valid, y_valid), verbose=1, callbacks=[csv_logger])

 prediction_valid = model.predict(x_valid, verbose=0)

 loss_valid = dice_metric_loss(y_valid, prediction_valid).numpy()

 print("Loss Validation: " + str(loss_valid))

 prediction_test = model.predict(x_test, verbose=0)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

 loss_test = dice_metric_loss(y_test, prediction_test).numpy()

 print("Loss Test: " + str(loss_test))

 with open(progressfull_path, 'a') as f:

 f.write('epoch: ' + str(epoch) + '\nval_loss: ' + str(loss_valid) +

'\ntest_loss: ' + str(loss_test) + '\n\n\n')

 if min_loss_for_saving > loss_valid:

 min_loss_for_saving = loss_valid

 print("Saved model with val_loss: ", loss_valid)

 model.save(model_path + '.h5')

 gc.collect()

Reload best model

print("Loading the model")

model = tf.keras.models.load_model(model_path + '.h5',

custom_objects={'dice_metric_loss': dice_metric_loss})

Predictions

prediction_train = model.predict(x_train, batch_size=4)

prediction_valid = model.predict(x_valid, batch_size=4)

prediction_test = model.predict(x_test, batch_size=4)

print("Predictions done")

Metrics

flatten = lambda arr: np.ndarray.flatten(np.array(arr, dtype=bool))

bin_pred = lambda pred: np.ndarray.flatten(pred > 0.5)

dice_train = f1_score(flatten(y_train), bin_pred(prediction_train))

dice_test = f1_score(flatten(y_test), bin_pred(prediction_test))

dice_valid = f1_score(flatten(y_valid), bin_pred(prediction_valid))

miou_train = jaccard_score(flatten(y_train), bin_pred(prediction_train))

miou_test = jaccard_score(flatten(y_test), bin_pred(prediction_test))

miou_valid = jaccard_score(flatten(y_valid), bin_pred(prediction_valid))

precision_train = precision_score(flatten(y_train),

bin_pred(prediction_train))

precision_test = precision_score(flatten(y_test), bin_pred(prediction_test))

precision_valid = precision_score(flatten(y_valid),

bin_pred(prediction_valid))

recall_train = recall_score(flatten(y_train), bin_pred(prediction_train))

recall_test = recall_score(flatten(y_test), bin_pred(prediction_test))

recall_valid = recall_score(flatten(y_valid), bin_pred(prediction_valid))

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

accuracy_train = accuracy_score(flatten(y_train), bin_pred(prediction_train))

accuracy_test = accuracy_score(flatten(y_test), bin_pred(prediction_test))

accuracy_valid = accuracy_score(flatten(y_valid), bin_pred(prediction_valid))

final_file = f'results_{model_type}_{filters}_{dataset_type}.txt'

with open(final_file, 'a') as f:

 f.write(dataset_type + '\n\n')

 f.write('dice_train: ' + str(dice_train) + ' dice_valid: ' +

str(dice_valid) + ' dice_test: ' + str(dice_test) + '\n\n')

 f.write('miou_train: ' + str(miou_train) + ' miou_valid: ' +

str(miou_valid) + ' miou_test: ' + str(miou_test) + '\n\n')

 f.write('precision_train: ' + str(precision_train) + ' precision_valid: '

+ str(precision_valid) + ' precision_test: ' + str(precision_test) + '\n\n')

 f.write('recall_train: ' + str(recall_train) + ' recall_valid: ' +

str(recall_valid) + ' recall_test: ' + str(recall_test) + '\n\n')

 f.write('accuracy_train: ' + str(accuracy_train) + ' accuracy_valid: ' +

str(accuracy_valid) + ' accuracy_test: ' + str(accuracy_test) + '\n\n\n\n')

Save segmented images with original filenames for all sets

save_path = "/content/drive/My Drive/duck/segmented_results/"

os.makedirs(save_path, exist_ok=True)

def save_segmented_images(images, filenames, model, save_dir):

 for i in range(len(images)):

 img = (images[i] * 255).astype(np.uint8)

 pred = model.predict(images[i].reshape(1, *images[i].shape))[0, :, :,

0]

 binary_mask = (pred > 0.5).astype(np.uint8)

 mask_3c = np.repeat(binary_mask[:, :, np.newaxis], 3, axis=-1)

 segmented = img * mask_3c

 out_file = os.path.join(save_dir, filenames[i])

 Image.fromarray(segmented).save(out_file)

 print(f"Saved: {out_file}")

save_segmented_images(x_train, f_train, model, save_path)

save_segmented_images(x_valid, f_valid, model, save_path)

save_segmented_images(x_test, f_test, model, save_path)

print(f'Dice Score - Train: {dice_train}, Valid: {dice_valid}, Test:

{dice_test}')

print(f'MIoU - Train: {miou_train}, Valid: {miou_valid}, Test: {miou_test}')

print(f'Precision - Train: {precision_train}, Valid: {precision_valid}, Test:

{precision_test}')

print(f'Recall - Train: {recall_train}, Valid: {recall_valid}, Test:

{recall_test}')

print(f'Accuracy - Train: {accuracy_train}, Valid: {accuracy_valid}, Test:

{accuracy_test}')

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

ImageLoader.py

import os

import glob

import numpy as np

from PIL import Image

from skimage.io import imread

from tqdm import tqdm

folder_path = "/content/drive/My Drive/duck/data/" # Add the path to data

directory

def load_data(img_height, img_width, images_to_be_loaded, dataset):

 IMAGES_PATH = folder_path + 'images/'

 MASKS_PATH = folder_path + 'masks/'

 if dataset == 'my_dataset':

 train_ids = glob.glob(IMAGES_PATH + "*.png")

 if images_to_be_loaded == -1:

 images_to_be_loaded = len(train_ids)

 X_train = np.zeros((images_to_be_loaded, img_height, img_width, 3),

dtype=np.float32)

 Y_train = np.zeros((images_to_be_loaded, img_height, img_width),

dtype=np.uint8)

 filename_list = []

 print('Loading training images and masks (no resizing):',

images_to_be_loaded)

 for n, id_ in tqdm(enumerate(train_ids)):

 if n == images_to_be_loaded:

 break

 image_path = id_

 mask_path = image_path.replace("images", "masks")

 filename = os.path.basename(image_path)

 image = imread(image_path)

 mask_ = imread(mask_path)

 X_train[n] = image / 255.0

 mask = np.zeros((img_height, img_width), dtype=np.bool_)

 for i in range(img_height):

 for j in range(img_width):

 if mask_[i, j] >= 127:

 mask[i, j] = 1

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

 Y_train[n] = mask

 filename_list.append(filename)

 Y_train = np.expand_dims(Y_train, axis=-1)

 return X_train, Y_train, filename_list

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

ConvBlock2D.py

from keras.layers import BatchNormalization, add

from keras.layers import Conv2D

kernel_initializer = 'he_uniform'

def conv_block_2D(x, filters, block_type, repeat=1, dilation_rate=1, size=3,

padding='same'):

 result = x

 for i in range(0, repeat):

 if block_type == 'separated':

 result = separated_conv2D_block(result, filters, size=size,

padding=padding)

 elif block_type == 'duckv2':

 result = duckv2_conv2D_block(result, filters, size=size)

 elif block_type == 'midscope':

 result = midscope_conv2D_block(result, filters)

 elif block_type == 'widescope':

 result = widescope_conv2D_block(result, filters)

 elif block_type == 'resnet':

 result = resnet_conv2D_block(result, filters, dilation_rate)

 elif block_type == 'conv':

 result = Conv2D(filters, (size, size),

 activation='relu',

kernel_initializer=kernel_initializer, padding=padding)(result)

 elif block_type == 'double_convolution':

 result = double_convolution_with_batch_normalization(result,

filters, dilation_rate)

 else:

 return None

 return result

def duckv2_conv2D_block(x, filters, size):

 x = BatchNormalization(axis=-1)(x)

 x1 = widescope_conv2D_block(x, filters)

 x2 = midscope_conv2D_block(x, filters)

 x3 = conv_block_2D(x, filters, 'resnet', repeat=1)

 x4 = conv_block_2D(x, filters, 'resnet', repeat=2)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

 x5 = conv_block_2D(x, filters, 'resnet', repeat=3)

 x6 = separated_conv2D_block(x, filters, size=6, padding='same')

 x = add([x1, x2, x3, x4, x5, x6])

 x = BatchNormalization(axis=-1)(x)

 return x

def separated_conv2D_block(x, filters, size=3, padding='same'):

 x = Conv2D(filters, (1, size), activation='relu',

kernel_initializer=kernel_initializer, padding=padding)(x)

 x = BatchNormalization(axis=-1)(x)

 x = Conv2D(filters, (size, 1), activation='relu',

kernel_initializer=kernel_initializer, padding=padding)(x)

 x = BatchNormalization(axis=-1)(x)

 return x

def midscope_conv2D_block(x, filters):

 x = Conv2D(filters, (3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same',

 dilation_rate=1)(x)

 x = BatchNormalization(axis=-1)(x)

 x = Conv2D(filters, (3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same',

 dilation_rate=2)(x)

 x = BatchNormalization(axis=-1)(x)

 return x

def widescope_conv2D_block(x, filters):

 x = Conv2D(filters, (3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same',

 dilation_rate=1)(x)

 x = BatchNormalization(axis=-1)(x)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

 x = Conv2D(filters, (3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same',

 dilation_rate=2)(x)

 x = BatchNormalization(axis=-1)(x)

 x = Conv2D(filters, (3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same',

 dilation_rate=3)(x)

 x = BatchNormalization(axis=-1)(x)

 return x

def resnet_conv2D_block(x, filters, dilation_rate=1):

 x1 = Conv2D(filters, (1, 1), activation='relu',

kernel_initializer=kernel_initializer, padding='same',

 dilation_rate=dilation_rate)(x)

 x = Conv2D(filters, (3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same',

 dilation_rate=dilation_rate)(x)

 x = BatchNormalization(axis=-1)(x)

 x = Conv2D(filters, (3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same',

 dilation_rate=dilation_rate)(x)

 x = BatchNormalization(axis=-1)(x)

 x_final = add([x, x1])

 x_final = BatchNormalization(axis=-1)(x_final)

 return x_final

def double_convolution_with_batch_normalization(x, filters, dilation_rate=1):

 x = Conv2D(filters, (3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same',

 dilation_rate=dilation_rate)(x)

 x = BatchNormalization(axis=-1)(x)

 x = Conv2D(filters, (3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same',

 dilation_rate=dilation_rate)(x)

 x = BatchNormalization(axis=-1)(x)

 return x

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

DUCK_Net.py

import tensorflow as tf

from keras.layers import Conv2D, UpSampling2D

from keras.layers import add

from keras.models import Model

from CustomLayers.ConvBlock2D import conv_block_2D

kernel_initializer = 'he_uniform'

interpolation = "nearest"

def create_model(img_height, img_width, input_chanels, out_classes,

starting_filters):

 input_layer = tf.keras.layers.Input((img_height, img_width,

input_chanels))

 print('Starting DUCK-Net')

 p1 = Conv2D(starting_filters * 2, 2, strides=2,

padding='same')(input_layer)

 p2 = Conv2D(starting_filters * 4, 2, strides=2, padding='same')(p1)

 p3 = Conv2D(starting_filters * 8, 2, strides=2, padding='same')(p2)

 p4 = Conv2D(starting_filters * 16, 2, strides=2, padding='same')(p3)

 p5 = Conv2D(starting_filters * 32, 2, strides=2, padding='same')(p4)

 t0 = conv_block_2D(input_layer, starting_filters, 'duckv2', repeat=1)

 l1i = Conv2D(starting_filters * 2, 2, strides=2, padding='same')(t0)

 s1 = add([l1i, p1])

 t1 = conv_block_2D(s1, starting_filters * 2, 'duckv2', repeat=1)

 l2i = Conv2D(starting_filters * 4, 2, strides=2, padding='same')(t1)

 s2 = add([l2i, p2])

 t2 = conv_block_2D(s2, starting_filters * 4, 'duckv2', repeat=1)

 l3i = Conv2D(starting_filters * 8, 2, strides=2, padding='same')(t2)

 s3 = add([l3i, p3])

 t3 = conv_block_2D(s3, starting_filters * 8, 'duckv2', repeat=1)

 l4i = Conv2D(starting_filters * 16, 2, strides=2, padding='same')(t3)

 s4 = add([l4i, p4])

 t4 = conv_block_2D(s4, starting_filters * 16, 'duckv2', repeat=1)

 l5i = Conv2D(starting_filters * 32, 2, strides=2, padding='same')(t4)

 s5 = add([l5i, p5])

 t51 = conv_block_2D(s5, starting_filters * 32, 'resnet', repeat=2)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

 t53 = conv_block_2D(t51, starting_filters * 16, 'resnet', repeat=2)

 l5o = UpSampling2D((2, 2), interpolation=interpolation)(t53)

 c4 = add([l5o, t4])

 q4 = conv_block_2D(c4, starting_filters * 8, 'duckv2', repeat=1)

 l4o = UpSampling2D((2, 2), interpolation=interpolation)(q4)

 c3 = add([l4o, t3])

 q3 = conv_block_2D(c3, starting_filters * 4, 'duckv2', repeat=1)

 l3o = UpSampling2D((2, 2), interpolation=interpolation)(q3)

 c2 = add([l3o, t2])

 q6 = conv_block_2D(c2, starting_filters * 2, 'duckv2', repeat=1)

 l2o = UpSampling2D((2, 2), interpolation=interpolation)(q6)

 c1 = add([l2o, t1])

 q1 = conv_block_2D(c1, starting_filters, 'duckv2', repeat=1)

 l1o = UpSampling2D((2, 2), interpolation=interpolation)(q1)

 c0 = add([l1o, t0])

 z1 = conv_block_2D(c0, starting_filters, 'duckv2', repeat=1)

 output = Conv2D(out_classes, (1, 1), activation='sigmoid')(z1)

 model = Model(inputs=input_layer, outputs=output)

 return model

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

DiceLoss.py

import tensorflow.keras.backend as K

import tensorflow as tf

def dice_metric_loss(ground_truth, predictions, smooth=1e-6):

 ground_truth = K.cast(ground_truth, tf.float32)

 predictions = K.cast(predictions, tf.float32)

 ground_truth = K.flatten(ground_truth)

 predictions = K.flatten(predictions)

 intersection = K.sum(predictions * ground_truth)

 union = K.sum(predictions) + K.sum(ground_truth)

 dice = (2. * intersection + smooth) / (union + smooth)

 return 1 - dice

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

AdderNet (from https://github.com/huawei-noah/AdderNet)

Consist of:

- AdderNet.ipynb

- adder.py

- resnet20.py

- main.py

- test.py

AdderNet.ipynb

from google.colab import drive

drive.mount('/content/drive')

import os

os.chdir('/content/drive/MyDrive/AdderNet')

!pip install torch torchvision

!python main.py --data /content/drive/MyDrive/AdderNet/root/cifar10-png --

output_dir /content/drive/MyDrive/AdderNet/output/

!python test.py --dataset cifar10 --data_dir

/content/drive/MyDrive/AdderNet/root/cifar10-png --model_dir

/content/drive/MyDrive/AdderNet/output/addernet.pth

https://github.com/huawei-noah/AdderNet

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

adder.py

import torch

import torch.nn as nn

import numpy as np

from torch.autograd import Function

import math

def adder2d_function(X, W, stride=1, padding=0):

 n_filters, d_filter, h_filter, w_filter = W.size()

 n_x, d_x, h_x, w_x = X.size()

 h_out = (h_x - h_filter + 2 * padding) / stride + 1

 w_out = (w_x - w_filter + 2 * padding) / stride + 1

 h_out, w_out = int(h_out), int(w_out)

 X_col = torch.nn.functional.unfold(X.view(1, -1, h_x, w_x), h_filter,

dilation=1, padding=padding, stride=stride).view(n_x, -1, h_out*w_out)

 X_col = X_col.permute(1,2,0).contiguous().view(X_col.size(1),-1)

 W_col = W.view(n_filters, -1)

 out = adder.apply(W_col,X_col)

 out = out.view(n_filters, h_out, w_out, n_x)

 out = out.permute(3, 0, 1, 2).contiguous()

 return out

class adder(Function):

 @staticmethod

 def forward(ctx, W_col, X_col):

 ctx.save_for_backward(W_col,X_col)

 output = -(W_col.unsqueeze(2)-X_col.unsqueeze(0)).abs().sum(1)

 return output

 @staticmethod

 def backward(ctx,grad_output):

 W_col,X_col = ctx.saved_tensors

 grad_W_col = ((X_col.unsqueeze(0)-

W_col.unsqueeze(2))*grad_output.unsqueeze(1)).sum(2)

 grad_W_col = grad_W_col/grad_W_col.norm(p=2).clamp(min=1e-

12)*math.sqrt(W_col.size(1)*W_col.size(0))/5

 grad_X_col = (-(X_col.unsqueeze(0)-W_col.unsqueeze(2)).clamp(-

1,1)*grad_output.unsqueeze(1)).sum(0)

 return grad_W_col, grad_X_col

class adder2d(nn.Module):

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 87

 def __init__(self,input_channel,output_channel,kernel_size, stride=1,

padding=0, bias = False):

 super(adder2d, self).__init__()

 self.stride = stride

 self.padding = padding

 self.input_channel = input_channel

 self.output_channel = output_channel

 self.kernel_size = kernel_size

 self.adder =

torch.nn.Parameter(nn.init.normal_(torch.randn(output_channel,input_channel,ke

rnel_size,kernel_size)))

 self.bias = bias

 if bias:

 self.b =

torch.nn.Parameter(nn.init.uniform_(torch.zeros(output_channel)))

 def forward(self, x):

 output = adder2d_function(x,self.adder, self.stride, self.padding)

 if self.bias:

 output += self.b.unsqueeze(0).unsqueeze(2).unsqueeze(3)

 return output

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 88

resnet20.py

import adder

import torch.nn as nn

def conv3x3(in_planes, out_planes, stride=1):

 " 3x3 convolution with padding "

 return adder.adder2d(in_planes, out_planes, kernel_size=3, stride=stride,

padding=1, bias=False)

class BasicBlock(nn.Module):

 expansion=1

 def __init__(self, inplanes, planes, stride=1, downsample=None):

 super(BasicBlock, self).__init__()

 self.conv1 = conv3x3(inplanes, planes, stride = stride)

 self.bn1 = nn.BatchNorm2d(planes)

 self.relu = nn.ReLU(inplace=True)

 self.conv2 = conv3x3(planes, planes)

 self.bn2 = nn.BatchNorm2d(planes)

 self.downsample = downsample

 self.stride = stride

 def forward(self, x):

 residual = x

 out = self.conv1(x)

 out = self.bn1(out)

 out = self.relu(out)

 out = self.conv2(out)

 out = self.bn2(out)

 if self.downsample is not None:

 residual = self.downsample(x)

 out += residual

 out = self.relu(out)

 return out

class ResNet(nn.Module):

 def __init__(self, block, layers, num_classes=10):

 super(ResNet, self).__init__()

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 89

 self.inplanes = 16

 self.conv1 = nn.Conv2d(3, 16, kernel_size=7, stride=2, padding=3,

bias=False)

 self.bn1 = nn.BatchNorm2d(16)

 self.relu = nn.ReLU(inplace=True)

 self.layer1 = self._make_layer(block, 16, layers[0])

 self.layer2 = self._make_layer(block, 32, layers[1], stride=2)

 self.layer3 = self._make_layer(block, 64, layers[2], stride=2)

 self.avgpool = nn.AdaptiveAvgPool2d((1, 1))

 self.fc = nn.Conv2d(64 * block.expansion, num_classes, 1, bias=False)

 self.bn2 = nn.BatchNorm2d(num_classes)

 for m in self.modules():

 if isinstance(m, nn.BatchNorm2d):

 m.weight.data.fill_(1)

 m.bias.data.zero_()

 def _make_layer(self, block, planes, blocks, stride=1):

 downsample = None

 if stride != 1 or self.inplanes != planes * block.expansion:

 downsample = nn.Sequential(

 adder.adder2d(self.inplanes, planes * block.expansion,

kernel_size=1, stride=stride, bias=False),

 nn.BatchNorm2d(planes * block.expansion)

)

 layers = []

 layers.append(block(inplanes = self.inplanes, planes = planes, stride

= stride, downsample = downsample))

 self.inplanes = planes * block.expansion

 for _ in range(1, blocks):

 layers.append(block(inplanes = self.inplanes, planes = planes))

 return nn.Sequential(*layers)

 def forward(self, x):

 x = self.conv1(x)

 x = self.bn1(x)

 x = self.relu(x)

 x = self.layer1(x)

 x = self.layer2(x)

 x = self.layer3(x)

 x = self.avgpool(x)

 x = self.fc(x)

 x = self.bn2(x)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 90

 return x.view(x.size(0), -1)

def resnet20(num_classes=4, **kwargs): # num_class = 2 or 4 or 5

return ResNet(BasicBlock, [3, 3, 3], num_classes=num_classes, **kwargs)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 91

main.py

import os

from resnet20 import resnet20

import torch

from torch.autograd import Variable

from torchvision.datasets import ImageFolder

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

import argparse

import math

parser = argparse.ArgumentParser(description='train-addernet')

parser.add_argument('--data', type=str,

default='/content/drive/MyDrive/AdderNet/cifar10-png')

parser.add_argument('--output_dir', type=str, default='/cache/models/')

args = parser.parse_args()

os.makedirs(args.output_dir, exist_ok=True)

acc = 0

acc_best = 0

transform_train = transforms.Compose([

 transforms.Resize((224, 224)),

 transforms.RandomHorizontalFlip(),

 transforms.ToTensor(),

 transforms.Normalize((0.2104, 0.1522, 0.1593), (0.2871, 0.2145, 0.2250)) #

mean & std for 2/4/5 classes training set

])

transform_test = transforms.Compose([

 transforms.Resize((224, 224)),

 transforms.ToTensor(),

 transforms.Normalize((0.2104, 0.1522, 0.1593), (0.2871, 0.2145, 0.2250)) #

mean & std for 2/4/5 classes training set

])

data_train = ImageFolder(root=os.path.join(args.data, 'train'),

transform=transform_train)

data_test = ImageFolder(root=os.path.join(args.data, 'test'),

transform=transform_test)

data_train_loader = DataLoader(data_train, batch_size=16, shuffle=True,

num_workers=2)

data_test_loader = DataLoader(data_test, batch_size=16, num_workers=2)

net = resnet20(num_classes=4).cuda() # num_classes = 2 or 4 or 5

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 92

criterion = torch.nn.CrossEntropyLoss().cuda()

optimizer = torch.optim.SGD(net.parameters(), lr=0.1, momentum=0.9,

weight_decay=5e-4)

def adjust_learning_rate(optimizer, epoch):

 lr = 0.05 * (1+math.cos(float(epoch)/50*math.pi)) # epoch = 50 or 100

 for param_group in optimizer.param_groups:

 param_group['lr'] = lr

def train(epoch):

 adjust_learning_rate(optimizer, epoch)

 global cur_batch_win

 net.train()

 loss_list, batch_list = [], []

 for i, (images, labels) in enumerate(data_train_loader):

 images, labels = Variable(images).cuda(), Variable(labels).cuda()

 optimizer.zero_grad()

 output = net(images)

 loss = criterion(output, labels)

 loss_list.append(loss.data.item())

 batch_list.append(i+1)

 if i == 1:

 print('Train - Epoch %d, Batch: %d, Loss: %f' % (epoch, i,

loss.data.item()))

 loss.backward()

 optimizer.step()

def test():

 global acc, acc_best

 net.eval()

 total_correct = 0

 avg_loss = 0.0

 with torch.no_grad():

 for i, (images, labels) in enumerate(data_test_loader):

 images, labels = Variable(images).cuda(), Variable(labels).cuda()

 output = net(images)

 avg_loss += criterion(output, labels).sum()

 pred = output.data.max(1)[1]

 total_correct += pred.eq(labels.data.view_as(pred)).sum()

 avg_loss /= len(data_test)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 93

 acc = float(total_correct) / len(data_test)

 if acc_best < acc:

 acc_best = acc

 print('Test Avg. Loss: %f, Accuracy: %f' % (avg_loss.data.item(), acc))

def train_and_test(epoch):

 train(epoch)

 test()

def main():

 epoch = 50 # epoch = 50 or 100

 for e in range(1, epoch):

 train_and_test(e)

 torch.save(net.state_dict(), args.output_dir + 'addernet.pth')

if __name__ == '__main__':

 main()

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 94

test.py

import os

import shutil

import torch

import torch.nn as nn

import torch.nn.functional as F

from torchvision import datasets, transforms

from torch.utils.data import DataLoader

import argparse

from resnet20 import resnet20

import numpy as np

from sklearn.metrics import classification_report, confusion_matrix,

accuracy_score

import matplotlib.pyplot as plt

import seaborn as sns

import PIL

class ImageFolderWithPaths(datasets.ImageFolder):

 def __getitem__(self, index):

 original_tuple = super(ImageFolderWithPaths, self).__getitem__(index)

 path = self.imgs[index][0]

 return original_tuple + (path,)

def plot_confusion_matrix(cm, class_names, save_path):

 plt.figure(figsize=(8, 6))

 sns.heatmap(cm, annot=True, fmt='d', cmap="Blues",

xticklabels=class_names, yticklabels=class_names)

 plt.ylabel('True Label')

 plt.xlabel('Predicted Label')

 plt.title('Confusion Matrix')

 plt.tight_layout()

 plt.savefig(save_path)

 plt.close()

def count_parameters(model):

 return sum(p.numel() for p in model.parameters() if p.requires_grad)

def get_model_size(model_path):

 size_bytes = os.path.getsize(model_path)

 return size_bytes / (1024 * 1024)

def main():

 parser = argparse.ArgumentParser()

 parser.add_argument('--dataset', default='cifar10', type=str)

 parser.add_argument('--data_dir', default='./data', type=str)

 parser.add_argument('--model_dir', default='./model.pth', type=str)

 args = parser.parse_args()

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 95

 val_transform = transforms.Compose([

 transforms.Resize((224, 224)),

 transforms.ToTensor(),

 transforms.Normalize(mean=[0.2104, 0.1522, 0.1593], std=[0.2871,

0.2145, 0.2250]) # mean & std for 2/4/5 classes training set

])

 valdir = os.path.join(args.data_dir, 'test')

 val_dataset = ImageFolderWithPaths(valdir, transform=val_transform)

 val_loader = DataLoader(val_dataset, batch_size=16, shuffle=False)

 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

 model = resnet20()

 model.load_state_dict(torch.load(args.model_dir, map_location=device))

 model = model.to(device)

 model.eval()

 class_names = val_dataset.classes

 output_base = '/content/drive/MyDrive/AdderNet/results'

 os.makedirs(output_base, exist_ok=True)

 for class_name in class_names:

 os.makedirs(os.path.join(output_base, class_name), exist_ok=True)

 all_preds = []

 all_labels = []

 all_paths = []

 with torch.no_grad():

 for images, labels, paths in val_loader:

 images = images.to(device)

 outputs = model(images)

 _, preds = torch.max(outputs, 1)

 all_preds.extend(preds.cpu().numpy())

 all_labels.extend(labels.cpu().numpy())

 all_paths.extend(paths)

 for i in range(len(paths)):

 pred_class = class_names[preds[i]]

 dst_path = os.path.join(output_base, pred_class,

os.path.basename(paths[i]))

 shutil.copy(paths[i], dst_path)

 # === METRICS ===

 print("\n=== METRICS ===")

 acc = accuracy_score(all_labels, all_preds)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 96

 report = classification_report(all_labels, all_preds,

target_names=class_names, output_dict=True)

 matrix = confusion_matrix(all_labels, all_preds)

 # Overall metrics

 print(f"Overall Accuracy: {acc:.4f}")

 print(f"Precision (macro avg): {report['macro avg']['precision']:.4f}")

 print(f"Recall (macro avg): {report['macro avg']['recall']:.4f}")

 print(f"F1 Score (macro avg): {report['macro avg']['f1-score']:.4f}")

 # === PER-CLASS METRICS ===

 print("\n=== PER-CLASS METRICS ===")

 total_per_class = np.zeros(len(class_names))

 correct_per_class = np.zeros(len(class_names))

 for i in range(len(all_labels)):

 total_per_class[all_labels[i]] += 1

 if all_labels[i] == all_preds[i]:

 correct_per_class[all_labels[i]] += 1

 for i, class_name in enumerate(class_names):

 precision = report[class_name]['precision']

 recall = report[class_name]['recall']

 f1 = report[class_name]['f1-score']

 acc_cls = correct_per_class[i] / total_per_class[i] if

total_per_class[i] > 0 else 0.0

 print(f"Class: {class_name}")

 print(f" Accuracy: {acc_cls:.4f}")

 print(f" Precision: {precision:.4f}")

 print(f" Recall: {recall:.4f}")

 print(f" F1 Score: {f1:.4f}")

 # Save confusion matrix

 cm_path = os.path.join(output_base, 'confusion_matrix.png')

 plot_confusion_matrix(matrix, class_names, cm_path)

 print(f"\nConfusion matrix saved to: {cm_path}")

 # Model info

 print(f"\nTotal parameters: {count_parameters(model):,}")

 print(f"Model file size: {get_model_size(args.model_dir):.2f} MB")

if __name__ == '__main__':

 main()

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 97

ResNet20

Consist of:

- AdderNet.ipynb (use back the same .ipynb file from AdderNet model)

- resnet20.py

- main.py (use back the same main.py from AdderNet model)

- test.py (use back the same test.py from AdderNet model)

resnet20.py

import torch.nn as nn

def conv3x3(in_planes, out_planes, stride=1):

 return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,

padding=1, bias=False)

class BasicBlock(nn.Module):

 expansion=1

 def __init__(self, inplanes, planes, stride=1, downsample=None):

 super(BasicBlock, self).__init__()

 self.conv1 = conv3x3(inplanes, planes, stride = stride)

 self.bn1 = nn.BatchNorm2d(planes)

 self.relu = nn.ReLU(inplace=True)

 self.conv2 = conv3x3(planes, planes)

 self.bn2 = nn.BatchNorm2d(planes)

 self.downsample = downsample

 self.stride = stride

 def forward(self, x):

 residual = x

 out = self.conv1(x)

 out = self.bn1(out)

 out = self.relu(out)

 out = self.conv2(out)

 out = self.bn2(out)

 if self.downsample is not None:

 residual = self.downsample(x)

 out += residual

 out = self.relu(out)

 return out

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 98

class ResNet(nn.Module):

 def __init__(self, block, layers, num_classes=2):

 super(ResNet, self).__init__()

 self.inplanes = 16

 self.conv1 = nn.Conv2d(3, 16, kernel_size=7, stride=2, padding=3,

bias=False)

 self.bn1 = nn.BatchNorm2d(16)

 self.relu = nn.ReLU(inplace=True)

 self.layer1 = self._make_layer(block, 16, layers[0])

 self.layer2 = self._make_layer(block, 32, layers[1], stride=2)

 self.layer3 = self._make_layer(block, 64, layers[2], stride=2)

 self.avgpool = nn.AdaptiveAvgPool2d((1, 1))

 self.fc = nn.Conv2d(64 * block.expansion, num_classes, 1, bias=False)

 self.bn2 = nn.BatchNorm2d(num_classes)

 for m in self.modules():

 if isinstance(m, nn.BatchNorm2d):

 m.weight.data.fill_(1)

 m.bias.data.zero_()

 def _make_layer(self, block, planes, blocks, stride=1):

 downsample = None

 if stride != 1 or self.inplanes != planes * block.expansion:

 downsample = nn.Sequential(

 nn.Conv2d(self.inplanes, planes * block.expansion,

kernel_size=1, stride=stride, bias=False),

 nn.BatchNorm2d(planes * block.expansion)

)

 layers = []

 layers.append(block(inplanes = self.inplanes, planes = planes, stride

= stride, downsample = downsample))

 self.inplanes = planes * block.expansion

 for _ in range(1, blocks):

 layers.append(block(inplanes = self.inplanes, planes = planes))

 return nn.Sequential(*layers)

 def forward(self, x):

 x = self.conv1(x)

 x = self.bn1(x)

 x = self.relu(x)

 x = self.layer1(x)

 x = self.layer2(x)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 99

 x = self.layer3(x)

 x = self.avgpool(x)

 x = self.fc(x)

 x = self.bn2(x)

 return x.view(x.size(0), -1)

def resnet20(num_classes=4, **kwargs): # num_classes = 2 or 4 or 5

 return ResNet(BasicBlock, [3, 3, 3], num_classes=num_classes, **kwargs)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 100

HybridNet

Consist of:

- AdderNet.ipynb (use back the same .ipynb file from AdderNet model)

- hybrid.py

- main.py (use back the same main.py from AdderNet model)

- test.py (use back the same test.py from AdderNet model)

hybrid.py

import torch

import torch.nn as nn

import torch.nn.functional as F

MobileNetV2 Inverted Residual Block

class InvertedResidual(nn.Module):

 def __init__(self, inp, oup, stride, expand_ratio):

 super(InvertedResidual, self).__init__()

 hidden_dim = int(inp * expand_ratio)

 self.use_res_connect = (stride == 1 and inp == oup)

 layers = []

 if expand_ratio != 1:

 # pointwise

 layers.append(nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False))

 layers.append(nn.BatchNorm2d(hidden_dim))

 layers.append(nn.ReLU6(inplace=True))

 # depthwise

 layers.extend([

 nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim,

bias=False),

 nn.BatchNorm2d(hidden_dim),

 nn.ReLU6(inplace=True),

 # pointwise-linear

 nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),

 nn.BatchNorm2d(oup),

])

 self.conv = nn.Sequential(*layers)

 def forward(self, x):

 if self.use_res_connect:

 return x + self.conv(x)

 else:

 return self.conv(x)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 101

Hybrid Block: ResNet shortcut + MobileNetV2 inverted residual

class HybridBlock(nn.Module):

 def __init__(self, in_planes, out_planes, stride=1, expand_ratio=6):

 super(HybridBlock, self).__init__()

 self.inverted_residual = InvertedResidual(in_planes, out_planes,

stride, expand_ratio)

 self.shortcut = nn.Sequential()

 if stride != 1 or in_planes != out_planes:

 self.shortcut = nn.Sequential(

 nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,

bias=False),

 nn.BatchNorm2d(out_planes)

)

 def forward(self, x):

 out = self.inverted_residual(x)

 out += self.shortcut(x)

 return F.relu(out)

HybridNet (ResNet20 + MobileNetV2 ideas)

class HybridNet(nn.Module):

 def __init__(self, num_classes=4):

 super(HybridNet, self).__init__()

 self.stem = nn.Sequential(

 nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False),

 nn.BatchNorm2d(16),

 nn.ReLU(inplace=True)

)

 # Stages: (like ResNet-20, but each uses HybridBlock)

 self.layer1 = self._make_layer(16, 24, num_blocks=2, stride=1) # like

MobileNet small expansion

 self.layer2 = self._make_layer(24, 48, num_blocks=2, stride=2)

 self.layer3 = self._make_layer(48, 96, num_blocks=2, stride=2)

 self.pool = nn.AdaptiveAvgPool2d(1)

 self.fc = nn.Linear(96, num_classes)

 def _make_layer(self, in_planes, out_planes, num_blocks, stride):

 layers = []

 layers.append(HybridBlock(in_planes, out_planes, stride=stride))

 for _ in range(1, num_blocks):

 layers.append(HybridBlock(out_planes, out_planes, stride=1))

 return nn.Sequential(*layers)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 102

 def forward(self, x):

 out = self.stem(x)

 out = self.layer1(out)

 out = self.layer2(out)

 out = self.layer3(out)

 out = self.pool(out)

 out = out.view(out.size(0), -1)

 return self.fc(out)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 103

Improved HybridNet

Consist of:

- AdderNet.ipynb (use back the same .ipynb file from AdderNet model)

- hybrid.py

- main.py (use back the same main.py from AdderNet model)

- test.py (use back the same test.py from AdderNet model)

hybrid.py

import math

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.utils.checkpoint as cp # why: cut activation memory

Helpers

class DropPath(nn.Module):

 def __init__(self, drop_prob: float = 0.0):

 super().__init__()

 self.drop_prob = float(drop_prob)

 def forward(self, x):

 if not self.training or self.drop_prob == 0.0:

 return x

 keep = 1.0 - self.drop_prob

 shape = (x.shape[0],) + (1,) * (x.ndim - 1)

 return x * x.new_empty(shape).bernoulli_(keep).div_(keep)

class SqueezeExcite(nn.Module):

 def __init__(self, channels: int, se_ratio: float = 0.25):

 super().__init__()

 hidden = max(8, int(channels * se_ratio))

 self.pool = nn.AdaptiveAvgPool2d(1)

 self.fc = nn.Sequential(

 nn.Conv2d(channels, hidden, 1, bias=True),

 nn.ReLU(inplace=True),

 nn.Conv2d(hidden, channels, 1, bias=True),

 nn.Sigmoid(),

)

 def forward(self, x):

 return x * self.fc(self.pool(x))

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 104

def _make_divisible(v: int, divisor: int = 8) -> int:

 return int(math.ceil(v / divisor) * divisor)

MobileNetV2 Inverted Residual Block

class InvertedResidual(nn.Module):

 """

 expand -> depthwise -> pointwise-linear (+ optional SE).

 Has internal residual only if stride==1 and in==out.

 """

 def __init__(self, inp, oup, stride, expand_ratio, se_ratio: float =

0.25):

 super().__init__()

 assert stride in [1, 2]

 hidden_dim = int(inp * expand_ratio)

 self.use_res_connect = (stride == 1 and inp == oup)

 layers = []

 if expand_ratio != 1:

 layers += [

 nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),

 nn.BatchNorm2d(hidden_dim),

 nn.ReLU6(inplace=True),

]

 layers += [

 nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim,

bias=False),

 nn.BatchNorm2d(hidden_dim),

 nn.ReLU6(inplace=True),

 nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),

 nn.BatchNorm2d(oup),

]

 self.conv = nn.Sequential(*layers)

 self.se = SqueezeExcite(oup, se_ratio) if se_ratio and se_ratio > 0

else nn.Identity()

 def forward(self, x):

 y = self.conv(x)

 y = self.se(y)

 if self.use_res_connect:

 y = x + y

 return y

Hybrid Block

class HybridBlock(nn.Module):

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 105

 """

 Projection shortcut only when shapes differ (avoid double identity).

 Activation checkpointing to save memory on forward.

 """

 def __init__(self, in_planes, out_planes, stride=1,

 expand_ratio=3.0, se_ratio=0.25, drop_path=0.05,

use_checkpoint=True):

 super().__init__()

 self.irb = InvertedResidual(in_planes, out_planes, stride,

expand_ratio, se_ratio)

 self.use_proj = (stride != 1) or (in_planes != out_planes)

 self.proj = nn.Sequential(

 nn.Conv2d(in_planes, out_planes, 1, stride=stride, bias=False),

 nn.BatchNorm2d(out_planes),

) if self.use_proj else None

 self.drop_path = DropPath(drop_path) if drop_path > 0.0 else

nn.Identity()

 self.use_checkpoint = use_checkpoint

 def forward(self, x):

 if self.use_checkpoint and self.training:

 y = cp.checkpoint(self.irb, x) # why: recompute backward, lower

peak mem

 else:

 y = self.irb(x)

 y = self.drop_path(y)

 if self.use_proj:

 y = y + self.proj(x)

 return F.relu(y, inplace=True)

HybridNet

class HybridNet(nn.Module):

 """

 Backward-compatible: HybridNet(num_classes=2/4/5)

 Lighter defaults to avoid OOM; still higher quality via SE+DropPath.

 """

 def __init__(self, num_classes: int = 4,

 channels=(24, 48, 96), # keep widths modest

 depths=(2, 2, 2), # safe depth to avoid OOM

 expand_ratio: float = 3.0, # lower than 6 to cut activations

 se_ratio: float = 0.25,

 p_dropout: float = 0.10,

 drop_path_rate: float = 0.05,

 width_mult: float = 1.00,

 dynamic_downsample: bool = True, # auto-downsample very

large inputs

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 106

 ds_threshold: int = 128, # if max(H,W) >= threshold,

downsample by 2

 use_checkpoint: bool = True):

 super().__init__()

 self.dynamic_downsample = dynamic_downsample

 self.ds_threshold = ds_threshold

 self.use_checkpoint = use_checkpoint

 c1, c2, c3 = [_make_divisible(int(c * width_mult), 8) for c in

channels]

 self.stem = nn.Sequential(

 nn.Conv2d(3, 16, 3, 1, 1, bias=False),

 nn.BatchNorm2d(16),

 nn.ReLU(inplace=True),

)

 total_blocks = sum(depths)

 dp_rates = [drop_path_rate * i / max(1, total_blocks - 1) for i in

range(total_blocks)]

 dp_i = 0

 self.layer1, dp_i = self._make_layer(16, c1, depths[0], stride=1,

expand_ratio=expand_ratio,

 se_ratio=se_ratio,

dp_rates=dp_rates, dp_i=dp_i)

 self.layer2, dp_i = self._make_layer(c1, c2, depths[1], stride=2,

expand_ratio=expand_ratio,

 se_ratio=se_ratio,

dp_rates=dp_rates, dp_i=dp_i)

 self.layer3, dp_i = self._make_layer(c2, c3, depths[2], stride=2,

expand_ratio=expand_ratio,

 se_ratio=se_ratio,

dp_rates=dp_rates, dp_i=dp_i)

 self.pool = nn.AdaptiveAvgPool2d(1)

 self.drop = nn.Dropout(p_dropout) if p_dropout and p_dropout > 0 else

nn.Identity()

 self.fc = nn.Linear(c3, num_classes)

 self._init_weights()

 def _make_layer(self, in_planes, out_planes, num_blocks, stride,

expand_ratio, se_ratio, dp_rates, dp_i):

 layers = []

 layers.append(HybridBlock(in_planes, out_planes, stride=stride,

 expand_ratio=expand_ratio,

se_ratio=se_ratio,

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 107

 drop_path=dp_rates[dp_i] if dp_rates else

0.0,

 use_checkpoint=self.use_checkpoint))

 dp_i += 1

 for _ in range(1, num_blocks):

 layers.append(HybridBlock(out_planes, out_planes, stride=1,

 expand_ratio=expand_ratio,

se_ratio=se_ratio,

 drop_path=dp_rates[dp_i] if dp_rates

else 0.0,

 use_checkpoint=self.use_checkpoint))

 dp_i += 1

 return nn.Sequential(*layers), dp_i

 def _init_weights(self):

 for m in self.modules():

 if isinstance(m, nn.Conv2d):

 nn.init.kaiming_normal_(m.weight, mode='fan_out',

nonlinearity='relu')

 elif isinstance(m, nn.Linear):

 nn.init.normal_(m.weight, 0, 0.01); nn.init.zeros_(m.bias)

 elif isinstance(m, nn.BatchNorm2d):

 nn.init.ones_(m.weight); nn.init.zeros_(m.bias)

 def forward(self, x):

 # optional dynamic downsample for big inputs (e.g., 224x224)

 if self.dynamic_downsample and max(x.shape[-2], x.shape[-1]) >=

self.ds_threshold:

 x = F.avg_pool2d(x, 2) # why: halve H,W early → big mem drop

 x = self.stem(x)

 x = self.layer1(x)

 x = self.layer2(x)

 x = self.layer3(x)

 x = self.pool(x).flatten(1)

 x = self.drop(x)

 return self.fc(x)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 108

POSTER

