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ABSTRACT 

 

This project investigates the application of machine learning and deep learning techniques for 

automated tongue diagnosis in the context of Traditional Chinese Medicine (TCM). Tongue 

diagnosis, a long-established diagnostic method in TCM, is often limited by subjectivity and 

inconsistency. To address this, the study develops a systematic pipeline that integrates 

segmentation and classification models, enabling more objective, accurate, and reproducible 

analysis of tongue images. Three datasets—binary (stained vs. non-stained moss), four-class 

(color variations), and five-class (coating categories)—were utilized to evaluate performance 

under varying levels of complexity. Segmentation was performed using both classical methods 

(SVM) and a deep learning approach (DuckNet), with DuckNet providing superior accuracy 

and robustness. Classification was carried out through an evolutionary series of architectures, 

beginning with AdderNet and progressing through ResNet20, HybridNet, and an Improved 

HybridNet. Experimental results demonstrated that while AdderNet achieved the highest 

accuracy in complex multi-class scenarios, it suffered from excessive computational cost and 

scalability limitations. The Improved HybridNet consistently offered the best trade-off between 

performance and efficiency, delivering strong accuracy with reduced parameters, training time, 

and model size. Overall, the project highlights the potential of artificial intelligence to 

modernize tongue diagnosis by providing standardized, efficient, and clinically relevant 

computational tools. The findings establish a foundation for future integration of AI-driven 

diagnostic support systems into healthcare practice 

 

 

Area of Study: Image Processing, Artificial Intelligence 

Keywords: Image Processing, TCM, Deep Learning, Image Classification, Machine Learning   
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Chapter 1 

Introduction 

1.1 Problem Statement and Motivation 

Traditional Chinese Medicine (TCM) relies heavily on tongue diagnosis to assess patients’ 

internal health conditions. However, manual tongue inspection is inherently subjective, with 

diagnostic accuracy depending on the practitioner’s experience and perception. This 

subjectivity often results in inconsistent outcomes and limits reproducibility. With the 

increasing availability of digital tongue image datasets, computational methods now present a 

significant opportunity to provide standardized, objective, and data-driven support for 

diagnosis. The main challenge lies in developing automated systems capable of accurately 

segmenting tongue regions and classifying subtle variations in color and coating while 

maintaining computational efficiency for real-world use. Therefore, this project seeks to design, 

evaluate, and optimize computational models that can support tongue diagnosis in a more 

reliable and standardized manner, bridging the gap between traditional practice and modern 

artificial intelligence. 

1.2 Objectives 

The objectives of this project are as follows: 

1. To investigate and compare segmentation approaches using both traditional machine 

learning and deep learning methods for accurate tongue region isolation. 

2. To design and implement an evolutionary series of classification models 

3. To assess performance using multiple evaluation metrics, including accuracy, precision, 

recall, F1-score, Jaccard index, and computational efficiency indicators across different 

datasets. 

4. To determine the most effective model that trade-off between accuracy and efficiency, 

with the aim of proposing a practical solution for diagnostic support applications. 
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1.3 Project Scope and Direction 

This project focuses primarily on the classification of tongue images, with segmentation 

applied as a preprocessing step to ensure clinically relevant features are extracted. Three 

datasets are employed: a binary dataset (stained vs. non-stained moss), a four-class dataset 

(color variations), and a five-class dataset (coating categories). Classical methods such as 

Support Vector Machines (SVM) are included as baselines, while DuckNet represents the deep 

learning-based segmentation approach. For classification, the project implements an 

evolutionary sequence of convolutional neural network architectures, starting with AdderNet 

and culminating in an improved HybridNet. The scope is deliberately restricted to 

computational model development rather than hardware prototyping or direct clinical 

validation, in order to ensure reproducibility, controlled benchmarking, and feasibility within 

the academic timeframe. The overall direction emphasizes building reproducible pipelines, 

systematically benchmarking architectures, and analyzing the trade-offs between model 

accuracy and computational efficiency. 

1.4 Contributions 

 
This study makes several contributions toward advancing the role of artificial intelligence in 

modernizing tongue diagnosis and medical image analysis more broadly. First, it bridges 

tradition and technology by showing how data-driven approaches can reduce the subjectivity 

of traditional diagnostic practices, offering a more consistent and objective analysis of tongue 

images. In addition, the project provides an evaluation of methodological strategies, 

systematically comparing segmentation and classification approaches to reveal how different 

computational techniques address challenges such as unclear boundaries, lighting variation, 

and subtle visual differences in medical imagery. Another contribution is the focus on 

promoting efficiency for real-world use, where the study emphasizes model designs that 

balance diagnostic reliability with computational efficiency, making automated systems more 

feasible in practical contexts, including resource-constrained environments. Beyond technical 

results, the study offers guidance for future development by highlighting the importance of 

dataset quality, diversity, and preprocessing in building reliable diagnostic tools, providing 

insights that extend to broader medical AI applications. Finally, the work contributes by laying 

a foundation for clinical integration, presenting a structured evaluation framework that can 
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guide future efforts to incorporate automated tongue diagnosis into healthcare practice, thereby 

supporting more standardized, accessible, and efficient clinical decision-making. 

1.5 Report Organization 

This report is organized into six chapters. Chapter 1 (Introduction) outlines the project 

background, motivation, problem statement, objectives, scope, contributions, and report 

structure. Chapter 2 (Literature Review) surveys relevant technologies, datasets, 

segmentation methods, and classification models, highlighting the strengths and weaknesses of 

both traditional and deep learning approaches in medical image analysis. Chapter 3 (System 

Methodology/Approach) details the overall workflow, including dataset preparation, 

segmentation strategies, classification model design, evaluation metrics, and the 

implementation environment. Chapter 4 (System Design) presents the architectural details of 

each classification model—AdderNet, ResNet20, HybridNet, and the Improved HybridNet—

emphasizing the evolutionary design choices made to balance efficiency and performance. 

Chapter 5 (Results and Discussion) reports experimental findings, comparing segmentation 

and classification outcomes across different datasets, analyzing computational efficiency, and 

identifying the most effective model. Finally, Chapter 6 (Conclusion and Recommendation) 

summarizes the project’s contributions, key insights, and limitations, while offering 

recommendations for future work and potential improvements.  
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Chapter 2 

Literature Review 

2.1 Review of the Technologies 

2.1.1 Hardware Platforms for Medical Image Analysis 

The acceleration of tongue image processing, particularly for segmentation and classification 

tasks, has been significantly enhanced by the use of modern hardware. High-performance 

GPUs are essential for training complex deep learning models like DuckNet, which require 

substantial computational power for pixel-level prediction. For instance, studies utilizing 

architectures similar to U-Net for tongue segmentation have leveraged GPUs like the NVIDIA 

Tesla T4 and RTX series to reduce training times from days to hours. Furthermore, for practical 

deployment in clinical or mobile settings, there is a growing research focus on optimizing these 

models for lightweight edge devices such as the Jetson Nano and Google Coral. These 

platforms enable real-time analysis, showing promise for portable TCM diagnostic systems 

that could be deployed in clinics or for remote consultations [1]. 

2.1.2 Firmware / Operating System Environments 

The development of AI-driven tongue diagnosis systems predominantly occurs in Linux-based 

environments (e.g., Ubuntu) due to superior compatibility with deep learning frameworks, 

GPU drivers, and development tools. However, the barrier to entry for such setups has been 

lowered by the advent of cloud-based platforms. Environments like Google Colab, which was 

used in this project, provide pre-configured, GPU-accelerated access to Jupyter notebooks, 

drastically simplifying experimentation and ensuring reproducibility without the need for local 

hardware configuration. While the choice of OS has minimal direct impact on model accuracy, 

it is crucial for development efficiency. The reproducibility and ease of collaboration offered 

by these cloud platforms have made them a popular choice in recent literature for prototyping 

medical image analysis systems, including those for TCM [2]. 

2.1.3 Datasets Used in Medical and Tongue Diagnosis 

Datasets are foundational to building robust models. In the field of TCM, datasets like the TCM 

Tongue Image Dataset, SciTongue, and Baidu Tongue Coating Images are commonly used. 
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However, most are limited by small size, inconsistent labeling, or poor lighting conditions. 

Beyond tongue images, datasets such as ISIC 2020 (for skin lesions), LIDC-IDRI (lung CT 

scans), and DRIVE (retinal vessel segmentation) are often used to benchmark segmentation 

algorithms, providing insights into generalizable methods for medical imaging [3]. 

2.1.4 Programming Languages and Libraries 

The overwhelming majority of literature utilizes Python as the primary programming language, 

largely due to its rich ecosystem of libraries for image processing and machine learning. 

Libraries such as TensorFlow, Keras, PyTorch, scikit-learn, and OpenCV enable rapid 

prototyping and development. According to a survey [4], over 90% of papers on deep learning 

in medical image classification from 2020 to 2022 used Python-based frameworks. 

 

2.2 Review of Existing Systems and Applications 

 

2.2.1 Tongue Diagnosis Systems in TCM 

 

Tongue diagnosis is a cornerstone of Traditional Chinese Medicine (TCM), used to assess 

internal health by analyzing the tongue's color, shape, and coating; however, its traditional 

practice is highly subjective and prone to inconsistency. This limitation has driven the 

development of computer-aided diagnostic (CAD) systems, which have evolved from using 

hand-crafted features with classical machine learning models like SVMs to modern deep 

learning approaches that offer superior accuracy and robustness. Current research leverages 

convolutional neural networks (CNNs) such as U-Net for segmentation and various classifiers 

for diagnosis, yet a significant challenge remains in balancing high performance with 

computational efficiency for practical clinical deployment. This project addresses that gap by 

focusing on the development and evaluation of lightweight, efficient deep learning models 

specifically designed for deployable tongue image analysis, aiming to provide a reliable and 

accessible tool for modern TCM practice [5].  

2.2.2 Traditional and Machine Learning-Based Segmentation 

Early research in tongue image segmentation primarily relied on traditional image processing 

techniques such as thresholding, edge detection, and region growing, which attempted to isolate 
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the tongue region based on color intensity or texture. However, these methods often suffered 

from noise sensitivity, especially in images captured under non-uniform lighting or with 

complex backgrounds. 

Subsequently, classical machine learning techniques were introduced to improve segmentation 

accuracy. For example, K-means clustering was widely adopted to partition tongue images into 

foreground and background based on pixel intensity clusters. Support Vector Machines (SVM) 

and Random Forest classifiers were later used for pixel-level classification using hand-crafted 

features such as color histograms, Gabor filters, or texture descriptors. 

Although these methods offered incremental improvements, they were still dependent on 

manual feature extraction and lacked adaptability across diverse datasets. A survey [6] showed 

that classical ML methods, while more interpretable and computationally efficient to train, 

were outperformed by modern neural network-based approaches in terms of accuracy and 

robustness. Nevertheless, their efficiency makes them a valuable baseline for comparison, 

which is why methods like SVM are included in this study to benchmark the performance gains 

of deep learning models [7]. 

2.2.3 Deep Learning-Based Segmentation Models 

The transition to deep learning has revolutionized medical image segmentation, with encoder-

decoder architectures like U-Net becoming the gold standard. These models excel at precise 

pixel-level classification, which is critical for isolating the tongue region from complex and 

inconsistent backgrounds in clinical images. In tongue diagnosis, U-Net and its variants (e.g., 

DuckNet) are predominantly used due to their skip connections that preserve fine-grained 

spatial details necessary for accurate boundary delineation, a foundational step before any 

classification can occur. 

2.2.3.1 Convolutional Neural Network (CNN – Base Architecture) 

Convolutional Neural Networks form the foundational building block for most deep learning 

models in image analysis. Their ability to automatically learn hierarchical features—from 

edges and textures to complex patterns—makes them superior to hand-crafted feature methods. 

In tongue diagnosis, basic CNNs can perform initial classification tasks but are inherently 

limited. Their relatively shallow architecture struggles to capture the subtle and nuanced 

features critical for TCM, such as fine cracks or slight color variations in the coating, and they 
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are highly susceptible to overfitting on small, specialized medical datasets, serving primarily 

as a performance baseline [8]. 

2.2.3.2 VGG16 

VGG16 addresses the depth limitation of basic CNNs through a uniform and deeper 16-layer 

architecture. This allows it to learn more complex feature representations, making it a strong 

candidate for classifying detailed tongue coating types. However, this gain in representational 

power comes at a significant cost: its massive number of parameters leads to high 

computational load and memory consumption, rendering it impractical for real-world 

deployment where efficiency is a priority, thus establishing a clear trade-off between accuracy 

and operational feasibility [9]. 

2.2.3.3 ResNet20 

ResNet20 introduces a pivotal innovation with residual skip connections, which mitigate the 

vanishing gradient problem and enable the effective training of deeper networks. This 

architecture achieves a more favorable balance than VGG16, offering improved feature 

extraction capabilities for discerning tongue color and morphology without an excessive 

parameter count. Its stable and well-understood design makes it an ideal standardized 

benchmark or backbone model for controlled comparisons in research, allowing subsequent 

architectural modifications to be evaluated fairly without the confounding variable of training 

instability [10]. 

2.2.3.4 MobileNetV2 

MobileNetV2 represents a strategic shift towards efficiency, employing depthwise separable 

convolutions and inverted residual blocks to drastically reduce computational complexity and 

model size. This design is explicitly intended for mobile and embedded deployment, making it 

highly relevant for developing practical, real-time diagnostic tools. While its lightweight nature 

can sometimes come at a minor cost to accuracy on highly complex tasks, it provides a crucial 

foundation for designing models where speed and low power consumption are paramount, 

directly addressing the deployability goals of modern medical AI [11]. 
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2.2.3.5 AdderNet 

AdderNet pushes the efficiency frontier further by fundamentally rethinking the convolutional 

operation, replacing multiplications with additions to reduce computational energy expenditure. 

This presents a promising pathway toward ultra-low-power diagnostic systems. However, as a 

novel architecture, it faces challenges in training stability and a lack of hardware optimization, 

making it more experimental. Its exploration is valuable for probing the limits of efficiency but 

requires careful benchmarking against more established models to validate its effectiveness on 

specialized medical imagery like tongue features [12]. 

2.2.3.6 Summary of Classification Models 

This progression of architectures reveals a clear trade-off in medical image 

analysis: representational capacity versus computational efficiency. While models like VGG16 

and ResNet20 provide strong accuracy, their resource demands hinder practical application. 

This review justifies the evolutionary approach of this project, which begins with the 

experimental AdderNet and ResNet20 benchmark before strategically integrating the 

efficiency principles of MobileNetV2. The goal is not merely to select an existing model, but 

to engineer a new architecture that hybridizes the stability of residual learning with the extreme 

efficiency of inverted residuals and depthwise convolutions. This synthesis aims to achieve an 

optimal balance for accurate, deployable, and real-time tongue diagnosis, directly addressing 

the identified gap between robust performance and practical utility. 

 

 

 

 

 

 

  



Bachelor of Information Systems (Honours) Information Systems Engineering  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    9 
 

Chapter 3 

System Methodology/Approach 

3.1 Overview 

This project implements a structured pipeline for automated tongue image analysis, consisting 

of distinct data preparation, segmentation, classification and evaluation stages. The 

methodology is designed to evaluate the effectiveness of different techniques at each step 

across three datasets. 

The workflow begins with three tongue image datasets: a binary (2-class) dataset with pre-

segmented images, and two multi-class datasets (4-class and 5-class) requiring manual 

preprocessing. For the multi-class datasets, a crucial segmentation step is applied to isolate the 

tongue region. This step utilizes a high-performance deep learning model (DuckNet), selected 

after a comparative analysis with traditional machine learning methods (SVM and Random 

Forest). 

The outputs from this pipeline—the pre-segmented 2-class images and the newly segmented 

4-class and 5-class images—are then used for the classification task. Classification is 

performed using a progressive sequence of CNN architectures, from an exploratory model 

(AdderNet) to a conventional baseline (ResNet20), and finally to efficiency-optimized designs 

(HybridNet and Improved HybridNet). 

A comprehensive evaluation follows, where all models are rigorously assessed using standard 

performance metrics (e.g., accuracy, precision, recall) and efficiency indicators (e.g., model 

size, training time). This multi-faceted evaluation provides a complete understanding of each 

model's trade-offs, determining the most suitable architecture for accurate and practical tongue 

image analysis. 
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3.2 Dataset Preparation 

This section details the acquisition and preparation of the three tongue image datasets used for 

classification. The process for the multi-class datasets involved a standardized pipeline of 

resizing, manual annotation, and targeted augmentation to ensure balance and quality before 

segmentation. 

1. Binary Dataset (2 Classes) 

Source: SciDB Tongue Image Database [13]. 

Classes: Stained Moss, Non-Stained Moss. 

Preparation: This dataset was provided with pre-segmented tongue regions. Each class 

already contained more than 1,000 images, fulfilling the target dataset size without requiring 

augmentation. All images were resized to 224×224 pixels. 

Size & Split: The final dataset consists of 2,000 images (1,000 per class), split into 1,600 for 

training and 400 for testing (80:20 ratio). 

Purpose: Serves as a benchmark for binary classification of tongue moss presence. 

2.  Multi-Class Dataset (4 Classes) 

Source: Self-labeled and combined from multiple public sources, primarily Baidu AI Studio 

[14], supplemented with images from Kaggle [15], [16] and other repositories [17], [18]. 

Classes: Pale, Pale Red, Red, Bluish Purple. 

Preparation: The initial collection had an uneven class distribution. The following pipeline 

was applied: 

- 1. Resizing: All images were first standardized to a resolution of 224×224 pixels. 

- 2. Annotation: Each resized image was then annotated using the CVAT tool (semi 

automation annotation) to obtain mask for further segmentation. 

- 3. Targeted Augmentation: To create a balanced dataset, classes with fewer than 500 

samples were augmented using transformations (e.g., rotation, flipping) to reach the 

target of 500 images per class. 

Size & Split: The final, balanced dataset consists of 2,000 images total (500 per class), split 

into 1,600 for training and 400 for testing. 

Purpose: Focuses on significant tongue color-based categorization. This dataset requires 

segmentation, as detailed in Section 3.3. 
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3. Multi-Class Dataset (5 Classes) 

Source: Obtained directly from the project supervisor. 

Classes: Mirror-Approximated, White-Greasy, Thin-White, Yellow-Greasy, Grey-Black. 

Preparation: The initial class distribution was uneven. The preparation involved. 

- 1. Resizing: All images were first standardized to a resolution of 224×224 pixels. 

- 2. Annotation: Each resized image was annotated using the CVAT tool to obtain mask 

for further segmentation. 

- 3. Targeted Augmentation: The same augmentation strategy was applied to achieve a 

final balance of 500 images per class. 

Size & Split: The final, balanced dataset consists of 2,500 images total (500 per class), split 

into 2,000 for training and 500 for testing. 

Purpose: Focuses on classifying variations in tongue coating. This dataset requires 

segmentation (Section 3.3). 
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Sample datasets 

Class Category Sample Images 

2 Stained Moss 

 

 
Non-Stained 

Moss 

 
4 Pale 

 
Pale Red 

 
Red 

 
Bluish Purple 

 
5 Mirror-

Approximated 

 
White-Greasy 

 
Thin-White 

 
Yellow-

Greasy 

 
Grey-Black 

 

Figure 3.2: Representative samples for categories across 2-, 4-, and 5-class datasets 
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Annotation using CVAT 

 

Figure 3.2.1: Tongue images from the 4 and 5 class datasets imported into the CVAT tool 

 

Figure 3.2.2: Semi auto annotation of the tongue region 

 

Figure 3.2.3: Ground truth mask generated for segmentation  
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3.3 Segmentation Methods 

Segmentation is a critical preprocessing step that isolates the tongue region from the 

background, ensuring that classification models learn only from relevant features like coating, 

color, and texture. This step was applied exclusively to the 4-class and 5-class datasets, as 

the binary dataset was provided with pre-segmented images. Two segmentation paradigms 

were explored: classical machine learning methods from FYP1 and a deep learning-based 

approach. 

 

3.3.1 Traditional Machine Learning Methods 

The initial investigation involved two classical techniques: Support Vector Machine (SVM) 

and Random Forest (RF). Both methods classify pixels as tongue or background using 

manually engineered features, including texture (Local Binary Patterns), color (RGB channels), 

and spatial information (distance from center). 

• Random Forest (RF): While achieving high recall (99.25%), this ensemble method 

was computationally intensive. It required a prohibitively long training time of 

approximately 4 hours and resulted in a large model size (227.5 MB) due to its deep 

decision trees. 

• Support Vector Machine (SVM): Selected as a lightweight and efficient alternative, 

SVM delivered high precision with a drastically shorter training time of about 1 

hour and a minimal model size (0.29 KB). However, it struggled with complex 

boundaries due to its reliance on a linear kernel. 

These methods provided a strong baseline for comparative analysis against deep learning 

approaches. 

 

3.3.2 DuckNet (Deep Learning Segmentation) 

DuckNet is a fully convolutional neural network with an encoder-decoder structure, similar to 

U-Net, but enhanced for efficient multi-scale feature extraction using custom convolutional 

blocks. This model was implemented based on the architecture 

from https://github.com/RazvanDu/DUCK-Net.  

https://github.com/RazvanDu/DUCK-Net
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• Architecture: It utilizes a series of strided convolutional layers for downsampling and 

skip connections with element-wise addition to merge features from the encoder and 

decoder paths. 

• Implementation: A critical hyperparameter is the number of starting filters, which 

controls the model's capacity. Based on extensive experimentation in FYP1, the model 

was configured with 17 starting filters. 

• Justification for 17 Filters: As detailed in Table 4.5.1 of the FYP1 report, variants 

with 4, 8, 12, 17, and 34 filters were tested. The 17-filter configuration achieved an 

optimal balance, delivering high accuracy (99.60%) and a strong Dice score (0.9878) 

without the computational overhead of the larger 34-filter model, which showed only 

marginal improvement (0.9967 accuracy) at quadruple the parameter cost. This 

represents the point of diminishing returns for this specific task. 

• Strengths: Automatically learns optimal pixel-level representations from data, capable 

of handling complex variations in tongue appearance. Achieves significantly higher 

accuracy than traditional methods. 

 

3.3.3 Method Selection 

 
For consistency and reliability, the 17-filter DuckNet model was adopted as the primary 

segmentation method for the 4-class and 5-class datasets. Although SVM served as an 

efficient traditional baseline with a fast training time, DuckNet was the default choice due to 

its superior robustness, accuracy, and generalization ability. The inclusion of both traditional 

methods demonstrates the clear performance-efficiency trade-off between classical and deep 

learning methodologies for this task. 
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3.4 Classification Models 

Following segmentation, tongue images were classified using a sequence of progressively 

refined convolutional neural network architectures. The detailed system design, including 

specific modules and training hyperparameters for each model, is provided in Chapter 4. The 

model progression is as follows: 

3.4.1 AdderNet 

• Origin: Adopted from Huawei Noah's Ark Lab (https://github.com/huawei-

noah/AdderNet) to explore addition-based convolutions as a hardware-efficient 

alternative. 

• Role: Served as an exploratory model to test the feasibility of this novel approach. 

• Outcome: Computationally heavy training due to unoptimized operators motivated 

a pivot to a standardized baseline. 

3.4.2 ResNet20 

• Rationale: A conventional baseline created by converting AdderNet back to standard 

convolutions, retaining the residual (3-3-3) structure. 

• Role: Acts as a controlled benchmark to isolate the effect of subsequent architectural 

changes. 

3.4.3 HybridNet 

• Motivation: Integrates MobileNetV2's efficiency principles (inverted residuals, 

depthwise separable convolutions) into a residual framework. 

• Design Intent: To create a lightweight architecture that maintains performance while 

improving computational efficiency. 

3.4.4 Improved HybridNet 

• Motivation: An enhanced version designed for superior generalization and 

deployability. 

https://github.com/huawei-noah/AdderNet
https://github.com/huawei-noah/AdderNet
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• Refinements: Incorporates Squeeze-and-Excite 

(SE) modules, DropPath regularization, and activation checkpointing. 

• Role: The final candidate architecture, explicitly engineered for an optimal balance 

of accuracy, robustness, and efficiency. 
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3.5 Evaluation Metrics 

To comprehensively assess system performance, both effectiveness and efficiency were 

evaluated. The evaluation strategy was designed to capture not only classification accuracy but 

also robustness across classes and practical deployability of models. 

3.5.1 Classification Metrics 

The following standard performance metrics were used for classification tasks: 

• Accuracy: The ratio of correctly predicted samples to the total number of samples. 

• Precision: The proportion of correctly predicted positive samples relative to all 

predicted positives, useful for measuring reliability in clinical contexts. 

• Recall (Sensitivity): The proportion of correctly predicted positive samples relative to 

all actual positives, ensuring that clinically significant cases are not overlooked. 

• F1 Score: The harmonic mean of Precision and Recall, balancing the trade-off between 

false positives and false negatives. 

All metrics were calculated per class and overall, ensuring that performance differences 

between categories (e.g., pale vs. red tongues) were fully captured. 

3.5.2 Segmentation Metrics 

For segmentation tasks, an additional metric was included: 

• Jaccard Index (Intersection over Union): Measures the overlap between predicted 

segmentation masks and ground-truth labels. This metric is particularly relevant for 

medical image segmentation, where precise region delineation is crucial. 

3.5.3 Efficiency Metrics 

In addition to predictive performance, the efficiency of each model was also evaluated, 

reflecting its practicality for real-world applications: 

• Training Time: Total time required to train a model under a fixed configuration. 

• Parameter Count: The total number of trainable parameters in the model, serving as 

an indicator of model complexity. 

• Model Size: The storage footprint of the trained model, measured in megabytes. 

These efficiency indicators provide a complementary view of model performance, balancing 

accuracy with deplorability considerations such as memory footprint and computational 

requirements. 
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3.6 Implementation Environment 

All model training and evaluation were conducted using Google Colab, a cloud-based 

integrated development environment (IDE) that provides free GPU access. The following setup 

was used throughout the project: 

• Execution Environment: Google Colab (Jupyter Notebook interface). 

• GPU: NVIDIA Tesla T4 GPU, 16 GB GPU memory (allocated by Colab). 

• Code Management: 

o All project code files (.py) were stored on Google Drive. 

o A Jupyter Notebook (.ipynb) was created for each model (AdderNet, ResNet20, 

HybridNet, Improved HybridNet). 

o Each notebook imported the corresponding .py scripts from Google Drive, 

enabling modular execution and reproducibility. 

• Software: 

o Python 3.x with PyTorch and torchvision as the main deep learning frameworks. 

o Supporting libraries included NumPy, OpenCV, scikit-learn, Matplotlib, and 

seaborn for metrics visualization. 

This environment provided sufficient computational resources to train deep learning models 

within practical time limits while maintaining a reproducible workflow that could be re-

executed directly from cloud storage. 
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Chapter 4 

System Design 
 

4.1 Overview 

The system design describes the detailed implementation of classification models for 

automated tongue image analysis. Each model was implemented in PyTorch, with a shared 

training and evaluation pipeline optimized for reproducibility. The architectures followed an 

evolutionary progression — AdderNet → ResNet20 → HybridNet → Improved 

HybridNet — where each stage introduced new design elements to balance classification 

accuracy and computational efficiency. 

Shared Training & Evaluation Pipeline: 

• Training Script (main.py): A supervised training loop using SGD with momentum, 

a cosine learning rate schedule, and CrossEntropyLoss. 

• Evaluation Script (test.py): Computes metrics and generates confusion matrices. 

• Preprocessing: All inputs were resized to 224×224 and normalized using dataset-

specific mean and standard deviation values. 

• Loss Function: All models were optimized using categorical cross-entropy loss. 

 

4.2 AdderNet Design 

AdderNet was chosen as the starting point to explore a novel operation: replacing convolution 

multiplications with addition operations, potentially reducing energy consumption. 

• Custom Operation – adder2d: 

Implemented in adder.py, this operation replaces convolution’s dot product with the 

absolute difference: 
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where  are filter weights and  is the local input patch. 

• Architecture (resnet20.py with adder layers): 

o Residual blocks constructed using adder2d instead of Conv2d. 

o Each block: Adder → BatchNorm → ReLU → Adder → BatchNorm → 

Residual Add → ReLU. 

o Stacked [3,3,3] blocks (20 layers). 

o Adaptive Average Pooling → Fully connected classifier. 

Role in progression: Served as the base model, testing feasibility of addition-based 

convolutions. Limitation: high training time due to lack of GPU optimization. 

 

4.3 ResNet20 Design 

ResNet20 provided a conventional CNN baseline to isolate the effect of AdderNet’s addition 

operations while retaining residual learning. 

• Architecture: 

o Residual blocks with Conv2d layers. 

o Same [3,3,3] block structure as AdderNet. 

o Global Average Pooling → classifier head. 

• Rationale: 

o Establishes a benchmark CNN. 

o Retains residual learning but removes AdderNet’s complexity. 

Training Loss Function: All CNNs were optimized using categorical cross-entropy loss: 

 

where  is the ground truth and  the predicted probability for class ccc. 
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Role in progression: ResNet20 acted as the benchmark backbone, providing a stable 

reference for further improvements. 

 

4.4 HybridNet Design 

HybridNet was introduced to integrate the stability of ResNet with the efficiency of 

MobileNetV2, aiming to reduce parameters without sacrificing performance. 

• Inverted Residual Block: 

o Expansion → depthwise convolution → projection sequence. 

o Residual connection applied if stride=1 and channels match. 

• Hybrid Block: 

o Wraps an InvertedResidual with ResNet-style shortcut projection when needed. 

o Adds outputs with ReLU activation. 

• HybridNet Architecture (hybrid.py): 

o Stem: Conv3×3 → BN → ReLU. 

o Three stages of HybridBlocks (channels: 16 → 24 → 48 → 96). 

o Adaptive Average Pooling → Fully connected classifier. 

Role in progression: To introduce residual stability + depthwise efficiency could produce a 

lighter network (~228K parameters) while maintaining strong performance. 

 

4.5 Improved HybridNet Design 

Improved HybridNet incorporated modern refinements to further enhance accuracy and 

efficiency. 

• Key Enhancements: 

o DropPath: stochastic depth regularization. 

o Squeeze-and-Excite (SE): channel attention. 

o Activation Checkpointing: reduced memory cost. 

o Dynamic Downsampling: adaptive resolution reduction. 
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o Reduced Expand Ratio: lowered from 6.0 → 3.0, reducing FLOPs. 

o Dropout & Weight Initialization: improve stability. 

• Architecture Flow: 

o Stem (Conv3×3). 

o Stacked HybridBlocks with SE + DropPath. 

o Global Average Pooling → Dropout → Fully connected classifier. 

Role in progression: The final optimized model, achieving the best trade-off: smallest size 

(~131K params, 0.57 MB), fastest training (~20–25 min), and highest efficiency. 

 

4.6 Summary of Model Architectures and Their Roles in 

Progression 
 

Model Core Idea Key Modules Purpose in Progression 

AdderNet Replace Conv2d 

multiplications 

with L1-norm 

addition 

operations. 

adder2d layers, standard 

residual blocks 

(BasicBlock). 

To serve as 

a foundational model and 

explore the feasibility of 

a novel, multiplication-

light approach for feature 

extraction on tongue 

imagery. 

ResNet20 Establish a 

conventional, 

highly-optimized 

residual CNN 

baseline. 

Standard Conv2d layers, 

BatchNorm, ReLU, and 

residual blocks 

(BasicBlock) with 

projection shortcuts. 

To provide 

a standardized 

benchmark for fair 

comparison, ensuring 

performance differences 

are due to architecture, not 

training procedure. 

HybridNet Fuse the stability 

of ResNet with 

the efficiency of 

MobileNetV2. 

HybridBlock (1x1 

expansion conv → 

Depthwise conv → 1x1 

projection conv + residual 

To introduce efficiency-

focused design, testing if 

lightweight, inverted 

residual blocks can 
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connection), linear 

bottlenecks. 

maintain accuracy with 

fewer parameters and 

FLOPs. 

Improved 

HybridNet 

Enhance 

HybridNet with 

modern attention, 

regularization, 

and memory 

optimization 

techniques. 

Squeeze-and-Excite 

(SE) blocks for channel 

attention, DropPath for 

regularization, reduced 

expansion ratios, activation 

checkpointing. 

To be the final candidate 

architecture, explicitly 

engineered for 

superior robustness, 

generalization, and 

deployability through 

targeted refinements. 

Table 4.6: Summary of Model Architectures and Their Roles in Progression 
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Chapter 5 

Results And Discussion 

 

5.1 Segmentation Performance 
 

Segmentation was applied to the multiclass datasets (4-class and 5-class) using two methods: 

a traditional SVM classifier and the deep learning-based DuckNet architecture. SVM was 

selected over Random Forest (RF) from prior work due to its significantly shorter training time 

(∼1 hour vs. ∼4 hours) for equivalent performance. 

 

 

SVM 

The SVM model achieved moderate segmentation results, as shown in Table 5.1.1. It is 

important to note that its performance metrics are lower than those reported in FYP1. This 

discrepancy is primarily due to the increased complexity of the FYP2 datasets. Unlike the FYP1 

dataset, which was captured under controlled conditions, the images in the 4-class and 5-class 

datasets contain more challenging backgrounds, such as varying clothing colors and 

environments. These complex backgrounds make the segmentation task more difficult for a 

traditional, feature-based method like SVM. 

 

Dataset Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  Jaccard (%) Training time 

4 class  86.21 84.73 79.69 82.13 69.68 55h 49s 

5 class  86.02 86.45 79.41 82.78 70.62 01h 11m 34s 

Table 5.1.1: Segmentation performance of SVM on 4- and 5-class datasets 

 

Total parameters: 45 

Model size: 0.35 KB 
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DuckNet 

In contrast, DuckNet demonstrated exceptional performance, consistently exceeding 98% 

accuracy and 95% Jaccard index across both datasets (Table 5.1.2). Its deep learning 

architecture enabled it to learn robust features capable of handling the complex backgrounds 

that challenged the SVM model. 

Dataset Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  Jaccard (%) Training time 

4 class  98.69 97.28 98.17 97.73 95.55 03h 54m 06s 

5 class  98.53 98.85 97.77 98.31 96.67 03h 58m 10s 

Table 5.1.2: Segmentation performance of DuckNet on 4- and 5-class datasets 

 

Total parameters: 38,921,088 

Model size: 148.47 MB 

 

Discussion: 

SVM is extremely lightweight (45 parameters; 0.35 KB) and CPU-friendly, but it 

underperforms on the more complex FYP2 imagery. DuckNet, though much larger (38.9 M 

parameters; 148.47 MB), delivers consistently superior segmentation (≥98% accuracy; ≥95% 

Jaccard) on both datasets. We therefore adopt DuckNet as the default pre-processing for all 

classification experiments. To quantify sensitivity to segmentation quality, we also report 

results using SVM-segmented data in subchapter 5.2–5.3.  
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Figure 5.1: Sample tongue images 

 

Figure 5.2: Ground truth masks of tongue regions 

 

Figure 5.3: Tongue regions segmented using SVM 

 

Figure 5.4: Tongue regions segmented using DuckNet 
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5.2 Classification Performance on SVM Segmented Datasets 

5.2.1 Multi (4-Class) Dataset Results 

5.2.1.1 ResNet20 

 

Method  Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  

Pale  87.00 84.47 87.00 80.65 

Pale red 75.00 87.21 75.00 80.65 

Red 89.00 91.75 89.00 90.36 

Bluish purple  99.00 86.84 87.00 85.71 

Overall  87.50 87.57 87.50 87.31 

Table 5.2.1.1: Classification performance of ResNet20 on the 4-class dataset (SVM-segmented) 

 

Training time: 20m 08s 

Total parameters: 274,008 

Model size: 1.09 MB 

 

Figure 5.2.1.1: Confusion matrix of ResNet20 on the 4-class dataset (SVM-segmented)  
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5.2.1.2 HybridNet 

 

Method  Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  

Pale  93.00 76.86 93.00 84.16 

Pale red 65.00 92.86 65.00 76.47 

Red 91.00 91.92 91.00 91.46 

Bluish purple  100.00 90.91 100.00 95.24 

Overall  87.25 90.91 100.00 95.24 

Table 5.2.1.2: Classification performance of HybridNet on the 4-class dataset (SVM-

segmented) 

 

Training time: 01h 24m 23s 

Total parameters: 228,804 

Model size: 0.95 MB 

 

Figure 5.2.1.2: Confusion matrix of HybridNet on the 4-class dataset (SVM-segmented) 
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5.3 Impact of Segmentation using SVM or DuckNet on 

Classification 
 

Note: To facilitate a direct comparison of segmentation methodologies, the classification results 

for the DuckNet-segmented dataset are presented here first alongside those from the SVM-

segmented data. 

(A full discussion of DuckNet's segmentation performance is reserved for the next chapter.) 

 

ResNet20 

Method  Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  Training time 

SVM 87.50 87.57 87.50 87.31 20m 08s 

DuckNet 86.25 86.16 86.25 85.92 22m 14s 

Table 5.3.1: Comparison of ResNet20 performance on SVM vs. DuckNet-segmented 4-class 

data 

 

HybridNet 

Method  Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  Training time 

SVM 87.25 90.91 100.00 95.24 01h 24m 23s 

DuckNet 86.75 86.89 86.75 86.39 01h 23m 46s 

Table 5.3.2: Comparison of HybridNet performance on SVM vs. DuckNet-segmented 4-class 

data 

 

Key Finding: Segmentation Accuracy ≠ Classification Accuracy 

Contrary to the principle that segmentation quality should influence classification performance, 

our results show a weak correlation between the two. Specifically, models trained on data from 

the weaker SVM segmentator achieved similar—and in some cases marginally higher—

accuracy than those trained on DuckNet-segmented data. 

This suggests that the classification networks are robust to the precise boundaries of the 

segmentation mask. The primary requirement is the successful isolation of the tongue region 

from the background. Once this is achieved, the model's capacity to learn discriminative 

features from the interior of the region appears to be the dominant factor in final performance. 

The minor performance differences observed (1-2%) fall within the expected variance of deep 
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learning training cycles (e.g., from weight initialization or data shuffling) and cannot be 

definitively attributed to the segmentation method. 

Scope Note: This finding is based on a comparison of ResNet20 and HybridNet on the 4-class 

dataset. 
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5.4 Classification Performance on DuckNet-Segmented Datasets 

(Main Experiments) 

5.4.1 Binary (2-Class) Dataset Results 

5.4.1.1 AdderNet 

 
Class Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  

Stained moss  98.00 93.78 98.00 95.84 

Non stained moss  95.30 97.91 93.50 95.65 

Overall  95.75 95.84 95.75 95.75 

Table 5.4.1.1: Classification performance of AdderNet on the 2-class dataset 

 

Training time: 03h 51m 14s 

Total parameters: 273.876 

Model size: 1.09 MB 

 

Figure 5.4.1.1: Confusion matrix of AdderNet on the 2-class dataset 
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5.4.1.2 ResNet20 

 

Class Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  

Stained moss  98.00  92.89  98.00  95.38  

Non stained moss  92.50  97.88  92.50  95.12  

Overall  95.25  95.39  95.25  95.25  

Table 5.4.1.2: Classification performance of ResNet20 on the 2-class dataset 

 

Training time: 24m 39s  

Total parameters: 273,876  

Model size: 1.09 MB  

 

Figure 5.4.1.2: Confusion matrix of ResNet20 on the 2-class dataset 
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5.4.1.3 HybridNet 

 

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

Stained moss 99.50 93.87 99.50 96.60 

Non stained moss 93.50 99.47 93.50 96.39 

Overall 96.50 96.67 96.50 96.50 

Table 5.4.1.3: Classification performance of HybridNet on the 2-class dataset 

 

Training time: 01h 26m 07s 

Total parameters: 228,610 

Model size: 0.95 MB 

 

Figure 5.4.1.3: Confusion matrix of HybridNet on the 2-class dataset 
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5.4.1.4 Improved HybridNet 

 

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

Stained moss 99.50 95.22 99.50 97.31 

Non stained moss 95.00 99.48 95.00 97.19 

Overall 97.25 97.35 97.25 97.25 

Table 5.4.1.4: Classification performance of Improved HybridNet on the 2-class dataset 

 

Training time: 21m 02s 

Total parameters: 130,922 

Model size: 0.57 MB 

 

Figure 5.4.1.4: Confusion matrix of Improved HybridNet on the 2-class dataset 
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5.4.1.5 Model Performance on 2-Class Dataset (Stained moss vs. Non-stained moss) 

 

Method Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Training 

time 

Total 

parameters 

Model 

size 

AdderNet 95.75 95.84 95.75 95.75 03h 51m 

14s 

273.876 1.09 

MB 

ResNet20 95.25 95.39 95.25 95.25 24m 39s  273,876 1.09 

MB 

HybridNet 96.50 96.67 96.50 96.50 01h 

26m 07s 

228,610 0.95 

MB 

Improved 

HybridNet 

97.25 97.35 97.25 97.25 21m 02s 130,922 0.57 

MB 

Table 5.4.1.5: Summary comparison of all models on the 2-class dataset 

 

• Observation: All models performed strongly (>95% accuracy). 

• AdderNet and ResNet20: Good performance, but relatively heavier in parameters. 

• HybridNet: Slight improvement (~96.5%). 

• Improved HybridNet: Best balance with 97.25% accuracy, reduced parameters 

(~131K vs. 230K), and smaller model size. 

• Discussion point: Binary classification is inherently simpler, and all models can handle 

it well. The improved HybridNet is the most efficient choice, showing the benefit of 

architectural refinements. 
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5.4.2 Multi (4-Class) Dataset Results 

5.4.2.1 AdderNet 

 

Class Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  

Pale 88.00 87.13 88.00 87.56 

Pale red 86.00 87.76 86.00 86.87 

Red 93.00 93.00 93.00 93.00 

Bluish purple 97.00 96.04 97.00 96.52 

Overall  91.00 90.98 91.00 90.99 

Table 5.4.2.1: Classification performance of AdderNet on the 4-class dataset 

 

Training time: 03h 51m 06s 

Total parameters: 274,008 

Model size: 1.09 MB 

 

Figure 5.4.2.1: Confusion matrix of AdderNet on the 4-class dataset 
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5.4.2.2 ResNet20 

 

Class Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  

Pale 87.00 83.65 87.00 85.29 

Pale red 68.00 83.95 68.00 75.14 

Red 93.00 83.78 93.00 88.15 

Bluish purple 97.00 93.27 97.00 95.10 

Overall  86.25 86.16 86.25 85.92 

Table 5.4.2.2: Classification performance of ResNet20 on the 4-class dataset 

 

Training time: 22m 14s 

Total parameters: 274,008 

Model size: 1.09 MB  

 

Figure 5.4.2.2: Confusion matrix of ResNet20 on the 4-class dataset 
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5.4.2.3 HybridNet 

 

Class Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  

Pale 89.00 83.18 89.00 85.99 

Pale red 69.00 87.34 69.00 77.09 

Red 89.00 90.82 89.00 89.90 

Bluish purple 100.00 86.21 100.00 92.59 

Overall  86.75 86.89 86.75 86.39 

Table 5.4.2.3: Classification performance of HybridNet on the 4-class dataset 

 

Training time: 01h 23m 46s 

Total parameters: 228,804 

Model size: 0.95 MB 

 

Figure 5.4.2.3: Confusion matrix of HybridNet on the 4-class dataset 
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5.4.2.4 Improved HybridNet 

 

Class Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  

Pale 84.00 84.85 84.00 84.42 

Pale red 73.00 83.91 73.00 78.07 

Red 96.00 89.72 96.00 92.75 

Bluish purple 98.00 91.59 98.00 94.69 

Overall  87.75 87.52 87.75 87.48 

Table 5.4.2.4: Classification performance of Improved HybridNet on the 4-class dataset 

 

Training time: 20m 09s 

Total parameters: 131,116 

Model size: 0.57 MB 

 

 

Figure 5.4.2.4: Confusion matrix of Improved HybridNet on the 4-class dataset 
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5.4.2.5 Model Performance on 4-Class Dataset (Pale, Pale Red, Red, Bluish Purple) 

 

Method Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Training 

time 

Total 

parameters 

Model 

size 

AdderNet 91.00 90.98 91.00 90.99 03h 51m 

06s 

274,008 1.09 

MB 

ResNet20 86.25 86.16 86.25 85.92 22m 14s 274,008 1.09 

MB 

HybridNet 86.75 86.89 86.75 86.39 01h 23m 

46s 

228,804 0.95 

MB 

Improved 

HybridNet 

87.75 87.52 87.75 87.48 20m 09s 131,116 0.57 

MB 

Table 5.4.2.5: Summary comparison of all models on the 4-class dataset 

 

• Observation: Accuracy drops (~86–91%) compared to binary classification due to 

greater complexity and class similarity. 

• AdderNet: Highest accuracy (91%), but too large and inefficient. 

• ResNet20 and HybridNet: Moderate performance (~86%), strong for some classes 

(Red, Bluish Purple), weak for Pale Red. 

• Improved HybridNet: Balanced results, slightly better generalization, and much 

smaller model size (0.57 MB). 

• Discussion point: The pale red class remains the hardest to classify, showing class 

overlap is a bigger limitation than model architecture. Efficiency vs. accuracy trade-off 

favors the improved HybridNet.  
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5.4.3 Multi (5-Class) Dataset Results 

 

AdderNet was excluded from the 5-class experiments due to its excessive computational 

requirements, which caused training crashes. It was only feasible for the 2-class and, at most, 

the 4-class datasets. 

5.4.3.1 ResNet20 

 

Class Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  

Mirror-Approximated 98.00 75.97 98.00 85.59 

White-Greasy 63.00 86.30 63.00 72.83 

Thin-White 69.00 82.14 69.00 75.00 

Yellow-Greasy 99.00 86.84 99.00 95.52 

Grey-Black 100.00 100.00 100.00 100.00 

Overall  85.80 86.25 85.80 85.19 

Table 5.4.3.1: Classification performance of ResNet20 on the 5-class dataset 

 

Training time: 26m 45s 

Total parameters: 274,074 

Model size: 1.09 MB  

 

Figure 5.4.3.1: Confusion matrix of ResNet20 on the 5-class dataset 
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5.4.3.2 HybridNet 

 

Class Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  

Mirror-Approximated 98.00 73.13 98.00 83.76 

White-Greasy 59.00 84.29 59.00 69.41 

Thin-White 64.00 78.05 64.00 70.33 

Yellow-Greasy 100.00 89.29 100.00 94.34 

Grey-Black 100.00 98.04 100.00 99.01 

Overall  84.20 84.56 84.20 83.37 

Table 5.4.3.2: Classification performance of HybridNet on the 5-class dataset 

 

Training time: 01h 53m 06s 

Total parameters: 228,901 

Model size: 0.95 MB 

 

Figure 5.4.3.2: Confusion matrix of HybridNet on the 5-class dataset 
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5.4.3.3 Improved HybridNet 

 

Class Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%)  

Mirror-Approximated 100.00 72.46 100.00 84.03 

White-Greasy 59.00 88.06 59.00 70.66 

Thin-White 69.00 84.15 69.00 75.82 

Yellow-Greasy 100.00 90.91 100.00 95.24 

Grey-Black 100.00 97.09 100.00 98.52 

Overall  85.60 86.53 85.60 84.86 

Table 5.4.3.3: Classification performance of Improved HybridNet on the 5-class dataset 

 

Training time: 25m 07s 

Total parameters: 131.213 

Model size: 0.57 MB 

 

 

Figure 5.4.3.3: Confusion matrix of Improved HybridNet on the 5-class dataset 
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5.4.3.4 Model Performance on 5-Class Dataset (Mirror-Approximated, White-Greasy, 

Thin-White, Yellow-Greasy, Grey-Black) 

 

Method Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Training 

time 

Total 

parameters 

Model 

size 

AdderNet N/A N/A N/A N/A N/A N/A N/A 

ResNet20 85.80 86.25 85.80 85.19 26m 45s 274,074 1.09 

MB 

HybridNet 84.20 84.56 84.20 83.37 01h 53m 

06s 

228,901 0.95 

MB 

Improved 

HybridNet 

85.60 86.53 85.60 84.86 25m 07s 131.213 0.57 

MB 

Table 5.4.3.4: Summary comparison of all models on the 5-class dataset 

 

• Observation: Accuracy lower (~84–86%), reflecting dataset difficulty. 

• AdderNet excluded (crashes). 

• ResNet20: Strong on Grey-Black and Yellow-Greasy (perfect accuracy), weaker on 

White-Greasy. 

• HybridNet: Similar to ResNet20, slightly weaker overall. 

• Improved HybridNet: Slightly higher overall (~85.6%), while being most efficient in 

size and parameters. 

• Discussion point: White-Greasy remains a major challenge (low recall), highlighting 

dataset imbalance or visual ambiguity. Improved HybridNet again offers the best trade-

off. 
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5.5 Overall Accuracy Summary and Trends 
 

Overall Accuracy Summary Table 

Dataset AdderNet ResNet20 HybridNet Improved HybridNet 

2-class 95.75% 95.25% 96.50% 97.25% 

4-class 91.00% 86.25% 86.75% 87.75% 

5-class N/A 85.80% 84.20% 85.60% 

Table 5.5.1: Overall accuracy summary of all models across 2-, 4-, and 5-class datasets 

 

This summary table condenses the performance of all classification models across the three 

datasets into a single view. A few clear trends emerge: 

• For the 2-class dataset, all models performed very strongly, but the improved 

HybridNet achieved the highest accuracy (97.25%) while also being the most efficient 

in size and parameters. This can be explained by the relative simplicity of the binary 

classification task: the decision boundary between stained and non-stained moss is 

straightforward, so HybridNet’s lightweight design is sufficient and even advantageous, 

avoiding overfitting and ensuring strong generalization. 

• In the 4-class dataset, AdderNet achieved the best overall accuracy (91%), but at the 

cost of much larger computational requirements. Here, the task is more complex 

because the model must discriminate subtle differences between tongue colors such as 

Pale, Pale Red, Red, and Bluish Purple. In this case, AdderNet’s higher representational 

capacity allowed it to capture finer details, giving it an edge. However, the improved 

HybridNet, though slightly less accurate (87.75%), still provided a better trade-off by 

balancing efficiency with acceptable accuracy. 

• The 5-class dataset was the most challenging, with accuracies stabilizing around 84–

86%. AdderNet could not be used here due to resource limitations, but both ResNet20 

and HybridNet produced reasonable results, while the improved HybridNet achieved 

the highest accuracy (85.6%). 

These results confirm two key insights: first, classification becomes progressively more 

difficult as the number of classes increases; and second, while AdderNet occasionally tops 

accuracy, the improved HybridNet consistently provides the best trade-off between 

performance and efficiency, making it the most suitable candidate for practical deployment. 
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Extra Class-Level Detailed Performance Analysis 

To better understand why performance drops with more classes, the class-level metrics 

(accuracy, precision, recall, and F1) were examined in detail. Here, clear weaknesses appear in 

specific categories: 

• Pale (4-class): All metrics were weaker compared to other classes, showing that this 

category is broadly difficult to distinguish. 

• Pale Red (4-class): One of the most problematic classes. Accuracy, precision, recall, 

and F1 were all low, with recall and accuracy particularly poor, meaning the model both 

missed many true Pale Red cases and misclassified them frequently. 

• Thin-White (5-class): Performed poorly across the board, especially in accuracy and 

recall, followed by F1, reflecting confusion with visually similar classes. 

• White-Greasy (5-class): Another consistently weak class. All four metrics were low, 

with recall and accuracy standing out as particularly weak, indicating that the model 

struggled both to detect and to correctly classify this tongue condition. 

In contrast, visually distinct classes — such as Red and Bluish Purple (4-class) and  Mirror-

Approximated, Grey-Black and Yellow-Greasy (5-class) — achieved very high or near-

perfect scores across all metrics. This reinforces that the observed decline in dataset-level 

accuracy is driven primarily by the presence of ambiguous, overlapping classes, not by 

overall model limitations. 
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5.6 Computational Efficiency and Model Architecture Analysis 

 
Model Parameters Model 

Size 

Training Time 

(approx) 

Best Dataset 

Performance 

AdderNet ~274K 1.09 MB ~3h 51m 91% (4-class) 

ResNet20 ~274K 1.09 MB ~20–26 min 95.25% (2-class) 

HybridNet ~228K 0.95 MB ~1h 23–93 min 96.50% (2-class) 

Improved 

HybridNet 

~131K 0.57 MB ~20–25 min 97.25% (2-class) 

Table 5.6.1: Computational efficiency comparison of all models 

 

AdderNet (ResNet20 backbone with adder2d) 

AdderNet retains the ResNet20 residual topology (3-3-3 blocks) but replaces convolution 

multiplications with L1 distance accumulation via adder2d layers. The stem remains a 

standard Conv2d, so the parameter count is almost identical to ResNet20 (~274K). However, 

because adder operations are not cuDNN-optimized, the model suffers from much longer 

wall-clock training times (~3h 51m) despite having the same size (1.09 MB). This extra 

representational capacity helps in harder multi-class problems (91% accuracy on 4-class, the 

highest among models), but it does not outperform leaner CNNs on simpler binary tasks. In 

short, AdderNet demonstrates that capacity ≠ efficiency: strong accuracy on complex datasets 

comes at a steep cost in runtime. 

ResNet20 (vanilla convs + residual BasicBlocks) 

ResNet20 uses the standard Conv2d → BN → ReLU structure with identity/projection 

shortcuts, making it highly optimized by cuDNN. With ~274K parameters and model size of 

1.09 MB, it trains in only 20–26 minutes — the fastest of all models. Accuracy is strong in 

binary classification (95.25%), showing that a straightforward convolutional backbone 

generalizes well for simple tasks. However, its performance dips in fine-grained multi-class 

settings compared to AdderNet, confirming that efficiency in training time does not always 

translate into the best performance in more complex datasets. 
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HybridNet (baseline, with MobileNetV2 inverted residuals) 

HybridNet adopts the MobileNetV2 design: expand (1×1) → depthwise (3×3) → pointwise 

(1×1) with residuals when dimensions match. This use of depthwise separable convolutions 

drastically reduces FLOPs and parameters compared to standard ResNet blocks, cutting the 

parameter count to ~228K and model size to 0.95 MB. Although the parameter count is lower, 

training speed was slower (~1.5h) compared to ResNet20 because depthwise operations 

are not as well optimized in GPU libraries as standard convolutions, resulting in longer 

runtimes despite the smaller model size. Even so, HybridNet achieves higher accuracy (96.5% 

on 2-class) than ResNet20, showing how efficient feature reuse boosts performance without 

increasing size. However, it underperforms on subtle multi-class datasets where greater 

capacity is required. 

 

HybridNet (improved: SE, DropPath, checkpointing, gentler ratios) 

The improved HybridNet incorporates Squeeze-and-Excite (SE) for channel attention, 

DropPath for regularization, and reduces the expand ratio from 6.0 to 3.0, making it smaller 

and faster. It further saves compute by applying projection shortcuts only when shapes 

differ and using dynamic downsampling at high resolutions. During training, activation 

checkpointing lowers memory usage, enabling faster and more efficient fitting. Altogether, 

these refinements shrink the model to ~131K parameters and 0.57 MB, with a training time 

of ~20–25 minutes, while still delivering the highest accuracy overall (97.25% on 2-class). 

Even though it trails AdderNet slightly on the 4-class dataset, it wins decisively on the 

efficiency trade-off, offering the best balance of size, speed, and accuracy. 
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5.6.1 Best Classification Model Selction 

 
Although different models showed strengths in different areas, not all were equally practical 

for real-world use. AdderNet achieved the highest accuracy in the 4-class dataset (91%), but 

its excessive training time (~3h 51m), larger computational demand, and inability to scale to 

the 5-class dataset limited its practicality. ResNet20 offered the fastest training speed (20–26 

minutes) and stability, but its performance dropped notably on multi-class datasets (86% on 4-

class and 85.8% on 5-class). The baseline HybridNet improved efficiency (~228K parameters, 

0.95 MB) and achieved higher accuracy in the 2-class dataset (96.5%), yet it still 

underperformed in the more challenging multi-class settings compared to AdderNet. 

Ultimately, the Improved HybridNet emerged as the most suitable overall model. It achieved 

the best binary classification accuracy (97.25%), competitive performance in the 4-class 

(87.75%) and 5-class (85.6%) datasets, and delivered this with the smallest parameter count 

(131K), lowest storage footprint (0.57 MB), and fastest training time (~20–25 minutes). 

These results establish the Improved HybridNet as the most balanced and practical candidate 

for real-world TCM tongue diagnosis applications, combining efficiency, scalability, and 

strong performance. 
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Chapter 6 

Conclusion And Recommendation 

6.1 Conclusion 
 

This project delivered a reproducible end-to-end pipeline for tongue image analysis—

segmentation followed by classification—evaluated on multi-class datasets with increasing 

visual complexity. DuckNet produced consistently reliable masks on challenging backgrounds 

and was therefore adopted as the default pre-processing stage. Notably, classification accuracy 

was largely insensitive to the exact mask quality: models trained on SVM-segmented data 

performed similarly to those trained on DuckNet masks, indicating that once the tongue region 

is reasonably isolated, discriminative cues inside the region dominate downstream 

performance. 

 

Within classification, ResNet20 served as a strong and compact baseline that trained quickly 

and provided a stable reference point for architecture comparisons. The (non-improved) 

HybridNet combined ResNet-style skip connections with MobileNetV2 inverted residuals, 

reducing parameters while maintaining accuracy close to ResNet20, albeit sometimes with 

longer training despite its smaller footprint. The Improved HybridNet—augmenting HybridNet 

with squeeze-and-excite, DropPath, reduced expand ratios, and activation checkpointing—

offered the best accuracy-efficiency balance and fastest practical training in our setting. 

AdderNet validated the feasibility of addition-based convolutions but incurred high training 

cost due to limited GPU optimization and is not preferred for deployment. Overall, the 

recommended stack for practical use is DuckNet segmentation followed by Improved 

HybridNet classification, with ResNet20 retained as the reference baseline and the original 

HybridNet as a lightweight alternative when sticking to conventional inverted-residual designs.  
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6.2 Recommendation 

To build on the outcomes of this project, future work should focus on improving data quality, 

refining the models, and preparing the pipeline for real-world deployment. 

First, the dataset needs to be expanded and better balanced. Visually similar classes should 

receive particular attention, as they are more prone to misclassification. Increasing the number 

of samples across all categories and ensuring even class distribution will help reduce bias and 

improve generalization. Reporting class-wise metrics should remain standard practice, as it 

helps expose specific failure modes that may be hidden by overall accuracy figures. 

In terms of segmentation, DuckNet should remain the default model, especially given its 

consistent performance on complex backgrounds. While the SVM-based method offers an 

extremely small footprint and is easy to train on CPUs, it struggled with more visually 

complicated scenes in this study. However, SVM can still be a valuable baseline if enhanced. 

Future iterations could improve it by incorporating deep features from CNN encoders like those 

used in HybridNet or DuckNet, or by shifting to a superpixel-level approach using richer color, 

texture, and deep features. Simple post-processing steps—such as morphological operations, 

conditional random fields (CRFs), or graph-cut techniques—could also help sharpen 

segmentation boundaries. Additional improvements may come from systematic tuning of 

kernel types and hyperparameters (e.g., RBF or χ² kernels with optimized C and γ values), or 

from using DuckNet-generated masks as pseudo-labels in a semi- or self-supervised learning 

setup. 

On the classification side, the Improved HybridNet remains the recommended model due to its 

excellent balance of accuracy, efficiency, and training speed. It delivers reliable performance 

across complex multi-class tasks and is well-suited for real-world deployment. However, it's 

important to note that while Improved HybridNet performs strongly overall, it still falls short 

of the peak accuracy achieved by AdderNet. That said, AdderNet’s high computational cost 

and limited GPU optimization make it impractical for most deployment scenarios. To close 

this gap without compromising on efficiency, future work could explore enhancements to 

Improved HybridNet—such as refined loss functions (e.g., class-balanced or focal loss), 

stronger normalization techniques, or targeted augmentation strategies for difficult classes. For 

resource-constrained environments, quantization or knowledge distillation could further 

compress the model, and exporting to ONNX or TensorRT would improve runtime 
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performance. Coupling it with a lightweight segmentation model can also enable real-time 

applications. 

Finally, before any clinical or production deployment, the full system should be tested in real-

world scenarios with practitioners. This step is essential to assess calibration, usability, and 

actual utility in a clinical workflow. Feedback from end users will be invaluable for making 

practical adjustments and closing the gap between technical performance and real-world impact. 
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APPENDIX 

 

SVM 

 

svm.ipynb 

 

from __future__ import annotations 

 

# --- Colab / I/O --- 

from google.colab import drive 

 

# --- Std / third-party --- 

import os 

import cv2 

import joblib 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from tqdm import tqdm 

from typing import List, Tuple, Dict 

 

from skimage.feature import local_binary_pattern 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.svm import LinearSVC 

from sklearn.metrics import ( 

    accuracy_score, 

    precision_score, 

    recall_score, 

    f1_score, 

    jaccard_score, 

    confusion_matrix, 

) 

 

# ========================================================== 

# 1) Feature extraction helpers 

# ========================================================== 

 

def _fixed_window(img: np.ndarray, x: int, y: int, window_size: int = 7) -> 

np.ndarray: 

    k = window_size 

    pad = k // 2 

    img_pad = cv2.copyMakeBorder(img, pad, pad, pad, pad, cv2.BORDER_REFLECT) 

    return img_pad[y : y + k, x : x + k] 
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def extract_features(img: np.ndarray, x: int, y: int, window_size: int = 7): 

    k = window_size 

    window = _fixed_window(img, x, y, window_size=k) 

 

    r, g, b = img[y, x] 

    mean_rgb = window.mean(axis=(0, 1)) 

    std_rgb = window.std(axis=(0, 1)) 

 

    # Texture: uniform LBP histograms + local Sobel stats 

    gray = cv2.cvtColor(window, cv2.COLOR_RGB2GRAY) 

    lbp1 = local_binary_pattern(gray, P=8, R=1, method="uniform") 

    lbp2 = local_binary_pattern(gray, P=16, R=3, method="uniform") 

    hist1 = np.histogram(lbp1.ravel(), bins=10, range=(0, 10))[0] 

    hist2 = np.histogram(lbp2.ravel(), bins=18, range=(0, 18))[0] 

 

    sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3) 

    sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3) 

 

    # Position 

    h, w = img.shape[:2] 

    cx, cy = w / 2.0, h / 2.0 

    dist_to_center = np.sqrt((x - cx) ** 2 + (y - cy) ** 2) 

    dist_to_center /= np.sqrt(cx ** 2 + cy ** 2) 

 

    features = [ 

        r, 

        g, 

        b, 

        mean_rgb[0], 

        mean_rgb[1], 

        mean_rgb[2], 

        std_rgb[0], 

        std_rgb[1], 

        std_rgb[2], 

        *hist1, 

        *hist2, 

        sobelx.mean(), 

        sobely.mean(), 

        sobelx.std(), 

        sobely.std(), 

        x / w, 

        y / h, 

        dist_to_center, 

    ] 

 

    feature_names = [ 

        "Red", 

        "Green", 
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        "Blue", 

        "Mean_R", 

        "Mean_G", 

        "Mean_B", 

        "Std_R", 

        "Std_G", 

        "Std_B", 

        *[f"LBP1_bin_{i}" for i in range(10)], 

        *[f"LBP2_bin_{i}" for i in range(18)], 

        "SobelX_mean", 

        "SobelY_mean", 

        "SobelX_std", 

        "SobelY_std", 

        "X_pos", 

        "Y_pos", 

        "Dist_to_center", 

    ] 

    return np.array(features, dtype=np.float32), feature_names 

 

# ========================================================== 

# 2) Dense, vectorized full-image features 

# ========================================================== 

 

def _local_mean_std(img_f32: np.ndarray, k: int): 

    mean = cv2.blur(img_f32, (k, k), borderType=cv2.BORDER_REFLECT) 

    sqr = cv2.blur(img_f32 * img_f32, (k, k), borderType=cv2.BORDER_REFLECT) 

    var = np.maximum(sqr - mean * mean, 0.0) 

    std = np.sqrt(var) 

    return mean, std 

 

def _lbp_hist_per_pixel(gray_u8: np.ndarray, P: int, R: int, k: int) -> 

np.ndarray: 

    lbp = local_binary_pattern(gray_u8, P=P, R=R, 

method="uniform").astype(np.float32) 

    H, W = gray_u8.shape 

    B = int(P + 2) 

    out = np.empty((H, W, B), dtype=np.float32) 

    edges = np.arange(B + 1, dtype=np.float32) 

    area = float(k * k) 

    for b in range(B): 

        low, high = edges[b], edges[b + 1] 

        mask = ((lbp >= low) & (lbp < high)).astype(np.float32) 

        out[..., b] = cv2.blur(mask, (k, k), borderType=cv2.BORDER_REFLECT) * 

area 

    return out 
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def _build_full_image_features(img_rgb: np.ndarray, window_size: int = 7) -> 

np.ndarray: 

    k = window_size 

    H, W, _ = img_rgb.shape 

    img_f32 = img_rgb.astype(np.float32) 

 

    def to_hwc(x: np.ndarray) -> np.ndarray: 

        x = np.asarray(x) 

        # Ensure HxWxC no matter what comes in (1D/2D/3D) 

        if x.ndim == 1: 

            x = x.reshape(H, W, 1)  # rare 1D edge cases from cv ops 

        elif x.ndim == 2: 

            x = x[..., None] 

        # if already 3D, keep as-is 

        return x.astype(np.float32) 

 

    # RGB at pixel 

    R = to_hwc(img_f32[..., 0]) 

    G = to_hwc(img_f32[..., 1]) 

    B = to_hwc(img_f32[..., 2]) 

 

    # local mean/std RGB (HxWx3 each) 

    mean_rgb, std_rgb = _local_mean_std(img_f32, k) 

    mean_rgb = mean_rgb.astype(np.float32) 

    std_rgb = std_rgb.astype(np.float32) 

 

    # Gray + LBP 

    gray_f32 = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY).astype(np.float32) 

    gray_u8 = np.clip(gray_f32, 0, 255).astype(np.uint8) 

    lbp1_hist = _lbp_hist_per_pixel(gray_u8, P=8, R=1, k=k) 

    lbp2_hist = _lbp_hist_per_pixel(gray_u8, P=16, R=3, k=k) 

 

    # Sobel (float); then local mean/std in k×k 

    sobelx = cv2.Sobel(gray_f32, cv2.CV_32F, 1, 0, ksize=3) 

    sobely = cv2.Sobel(gray_f32, cv2.CV_32F, 0, 1, ksize=3) 

    sx_mean, sx_std = _local_mean_std(sobelx[..., None], k) 

    sy_mean, sy_std = _local_mean_std(sobely[..., None], k) 

    # keep channels; robustly force HxWx1 shape 

    sx_mean, sx_std = to_hwc(sx_mean), to_hwc(sx_std) 

    sy_mean, sy_std = to_hwc(sy_mean), to_hwc(sy_std) 

 

    # Position features 

    xs = (np.arange(W, dtype=np.float32)[None, :] / W).repeat(H, axis=0) 

    ys = (np.arange(H, dtype=np.float32)[:, None] / H).repeat(W, axis=1) 

    cx, cy = W / 2.0, H / 2.0 

    dist = np.sqrt((np.arange(W)[None, :] - cx) ** 2 + (np.arange(H)[:, None] 

- cy) ** 2).astype(np.float32) 

    dist /= np.sqrt(cx * cx + cy * cy) 
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    xs, ys, dist = to_hwc(xs), to_hwc(ys), to_hwc(dist) 

 

    feats = np.concatenate( 

        [R, G, B, mean_rgb, std_rgb, lbp1_hist, lbp2_hist, sx_mean, sy_mean, 

sx_std, sy_std, xs, ys, dist], 

        axis=2, 

    ).astype(np.float32) 

    return feats.reshape(-1, feats.shape[2]) 

 

# ========================================================== 

# 3) Balanced per-image pixel sampling (training/testing) 

# ========================================================== 

 

def _sample_balanced_from_image( 

    img: np.ndarray, 

    mask_gray: np.ndarray, 

    fg_target: int = 4000, 

    bg_target: int = 4000, 

    rng: np.random.Generator | None = None, 

    window_size: int = 7, 

) -> Tuple[np.ndarray, np.ndarray]: 

 

    if rng is None: 

        rng = np.random.default_rng(42) 

 

    fg_y, fg_x = np.where(mask_gray != 0) 

    bg_y, bg_x = np.where(mask_gray == 0) 

 

    if len(fg_x) == 0 or len(bg_x) == 0: 

        return np.empty((0, 44), dtype=np.float32), np.empty((0,), 

dtype=np.uint8) 

 

    fg_take = min(fg_target, len(fg_x)) 

    bg_take = min(bg_target, len(bg_x)) 

    fg_idx = rng.choice(len(fg_x), size=fg_take, replace=False) 

    bg_idx = rng.choice(len(bg_x), size=bg_take, replace=False) 

 

    xs = np.concatenate([fg_x[fg_idx], bg_x[bg_idx]]) 

    ys = np.concatenate([fg_y[fg_idx], bg_y[bg_idx]]) 

    labels = np.concatenate([np.ones(fg_take, dtype=np.uint8), 

np.zeros(bg_take, dtype=np.uint8)]) 

 

    feats: List[np.ndarray] = [] 

    for x, y in zip(xs, ys): 

        f, _ = extract_features(img, int(x), int(y), window_size=window_size) 

        feats.append(f) 
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    return np.asarray(feats, dtype=np.float32), labels 

 

def load_and_split_data( 

    image_folder: str, 

    mask_folder: str, 

    n_images: int = 500, 

    test_size: float = 0.2, 

    fg_per_img: int = 4000, 

    bg_per_img: int = 4000, 

) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, 

np.ndarray, List, List]: 

    """Load images, split by index, and sample a balanced set of pixels per 

image.""" 

    all_indices = np.arange(1, n_images + 1) 

    train_indices, test_indices = train_test_split(all_indices, 

test_size=test_size, random_state=42) 

    rng = np.random.default_rng(123) 

 

    print("Processing training images (balanced sampling)...") 

    X_train, y_train, train_images = [], [], [] 

    for i in tqdm(train_indices): 

        img = cv2.cvtColor(cv2.imread(f"{image_folder}/{i}.png"), 

cv2.COLOR_BGR2RGB) 

        mask = cv2.imread(f"{mask_folder}/{i}.png", cv2.IMREAD_GRAYSCALE) 

        train_images.append((i, img, mask)) 

        Xi, yi = _sample_balanced_from_image(img, mask, fg_target=fg_per_img, 

bg_target=bg_per_img, rng=rng) 

        if Xi.size: 

            X_train.append(Xi) 

            y_train.append(yi) 

    X_train = np.vstack(X_train) 

    y_train = np.concatenate(y_train) 

 

    print("\nProcessing test images (balanced sampling for the *sampled* 

report)...") 

    X_test, y_test, test_images = [], [], [] 

    for i in tqdm(test_indices): 

        img = cv2.cvtColor(cv2.imread(f"{image_folder}/{i}.png"), 

cv2.COLOR_BGR2RGB) 

        mask = cv2.imread(f"{mask_folder}/{i}.png", cv2.IMREAD_GRAYSCALE) 

        test_images.append((i, img, mask)) 

        Xi, yi = _sample_balanced_from_image(img, mask, fg_target=fg_per_img 

// 2, bg_target=bg_per_img // 2, rng=rng) 

        if Xi.size: 

            X_test.append(Xi) 

            y_test.append(yi) 

    X_test = np.vstack(X_test) 
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    y_test = np.concatenate(y_test) 

 

    return ( 

        X_train, 

        y_train, 

        X_test, 

        y_test, 

        train_indices, 

        test_indices, 

        train_images, 

        test_images, 

    ) 

 

# ========================================================== 

# 4) Model + feature importance  

# ========================================================== 

 

def build_svm_pipeline() -> Pipeline: 

    return Pipeline( 

        [ 

            ("scaler", StandardScaler()), 

            ( 

                "svm", 

                LinearSVC( 

                    C=1.0, 

                    class_weight=None, 

                    random_state=42, 

                    max_iter=10000, 

                ), 

            ), 

        ] 

    ) 

 

def analyze_feature_importance(model: Pipeline, feature_names: List[str], 

result_folder: str) -> np.ndarray: 

    weights = model.named_steps["svm"].coef_[0] 

    abs_weights = np.abs(weights) 

    normalized_weights = abs_weights / (abs_weights.sum() + 1e-12) 

 

    df = pd.DataFrame({"Feature": feature_names, "Importance": 

normalized_weights}) 

    print("\nSorted Feature Importance (|w| on standardized features):") 

    print(df.sort_values("Importance", 

ascending=False).to_markdown(tablefmt="grid", index=False, floatfmt=".6f")) 

 

    plt.figure(figsize=(10, 0.30 * len(feature_names) + 2)) 



Bachelor of Information Systems (Honours) Information Systems Engineering  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    63 
 

    sorted_idx = np.argsort(normalized_weights) 

    plt.barh(range(len(sorted_idx)), normalized_weights[sorted_idx]) 

    plt.yticks(range(len(sorted_idx)), [feature_names[i] for i in sorted_idx]) 

    plt.xlabel("Feature Importance (|weight| on standardized features)") 

    plt.title("Linear SVM Feature Importance") 

    plt.tight_layout() 

    importance_path = os.path.join(result_folder, 

"svm_feature_importance.png") 

    plt.savefig(importance_path, bbox_inches="tight", dpi=300) 

    plt.close() 

    print(f"Saved feature importance plot to: {importance_path}") 

    return normalized_weights 

 

# ========================================================== 

# 5) Dense visualization + cutouts  

# ========================================================== 

 

def _maybe_postprocess(mask01: np.ndarray, enable: bool = False) -> 

np.ndarray: 

    if not enable: 

        return mask01 

    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) 

    m = cv2.morphologyEx((mask01 * 255).astype(np.uint8), cv2.MORPH_OPEN, 

kernel) 

    m = (m > 127).astype(np.uint8) 

    num, labels, stats, _ = cv2.connectedComponentsWithStats(m, 

connectivity=8) 

    if num <= 1: 

        return m 

    keep = 1 + np.argmax(stats[1:, cv2.CC_STAT_AREA]) 

    return (labels == keep).astype(np.uint8) 

 

def visualize_sample_results( 

    model: LinearSVC, 

    scaler: StandardScaler, 

    images: List[Tuple[int, np.ndarray, np.ndarray]], 

    result_folder: str, 

    split_tag: str = "test", 

    window_size: int = 7, 

    pred_batch: int = 200_000, 

    cutout_root: str | None = None, 

    postprocess: bool = False, 

    decision_threshold: float = 0.0, 

    bf_tolerance_px: int = 3, 

) -> None: 

    os.makedirs(result_folder, exist_ok=True) 
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    cutout_dir = None 

    if cutout_root is not None: 

        cutout_dir = os.path.join(cutout_root, split_tag) 

        os.makedirs(cutout_dir, exist_ok=True) 

 

    for img_idx, img, mask in images: 

        H, W = img.shape[:2] 

 

        # Dense features 

        X_img = _build_full_image_features(img, window_size=window_size) 

 

        # Scale+predict in chunks 

        preds = np.empty((H * W,), dtype=np.int32) 

        start = 0 

        while start < X_img.shape[0]: 

            end = min(start + pred_batch, X_img.shape[0]) 

            scores = 

model.decision_function(scaler.transform(X_img[start:end])) 

            preds[start:end] = (scores > decision_threshold).astype(np.int32) 

            start = end 

 

        pred_mask = preds.reshape(H, W).astype(np.uint8) 

        pred_mask = _maybe_postprocess(pred_mask, enable=postprocess) 

 

        # Metrics per-image 

        mask_bin = (mask != 0) 

        mask_flat = mask_bin.reshape(-1) 

        pred_flat = (pred_mask == 1).reshape(-1) 

 

        tp = (pred_mask == 1) & mask_bin 

        fp = (pred_mask == 1) & (~mask_bin) 

        fn = (pred_mask == 0) & mask_bin 

 

        overlay = np.zeros_like(img) 

        overlay[tp] = [0, 255, 0] 

        overlay[fp] = [255, 0, 0] 

        overlay[fn] = [0, 0, 255] 

 

        cutout = np.zeros_like(img) 

        cutout[pred_mask == 1] = img[pred_mask == 1] 

 

        plt.figure(figsize=(20, 5)) 

        plt.subplot(141); 

plt.imshow(img);               plt.title("Original");                 plt.axis

("off") 

        plt.subplot(142); plt.imshow(mask, cmap="gray"); plt.title("Ground 

Truth");            plt.axis("off") 
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        plt.subplot(143); plt.imshow(cutout);            plt.title("Predicted 

(cut-out)");       plt.axis("off") 

        plt.subplot(144); plt.imshow(img); plt.imshow(overlay, alpha=0.5) 

        plt.title("Overlay: Green=TP, Red=FP, Blue=FN"); plt.axis("off") 

        plt.tight_layout() 

 

        out_png = f"{result_folder}/{split_tag}_{img_idx}.png" 

        plt.savefig(out_png, bbox_inches="tight", dpi=150) 

        plt.close() 

 

        if cutout_dir is not None: 

            cutout_path = os.path.join(cutout_dir, 

f"{split_tag}_{img_idx}.png") 

            cv2.imwrite(cutout_path, cv2.cvtColor(cutout, cv2.COLOR_RGB2BGR)) 

 

        # --- Boundary-aware metrics --- 

        cm = confusion_matrix(mask_flat, pred_flat, labels=[0,1]) 

        tn, fp, fn, tp = cm.ravel() 

        specificity = tn / (tn + fp + 1e-9) 

        balanced_acc = 0.5 * (specificity + recall_score(mask_flat, 

pred_flat)) 

 

        bf1, assd, hd95 = compute_boundary_metrics(mask_bin.astype(np.uint8), 

(pred_mask==1).astype(np.uint8), tolerance=bf_tolerance_px) 

 

        metrics = { 

            "Image Index": int(img_idx), 

            "True Foreground Pixels": int(mask_bin.sum()), 

            "Predicted Foreground Pixels": int((pred_mask == 1).sum()), 

            "Dice (F1)": float(f1_score(mask_flat, pred_flat)), 

            "Jaccard": float(jaccard_score(mask_flat, pred_flat)), 

            "Precision": float(precision_score(mask_flat, pred_flat)), 

            "Recall": float(recall_score(mask_flat, pred_flat)), 

            "Specificity": float(specificity), 

            "Balanced Accuracy": float(balanced_acc), 

            "BoundaryF1@%dpx" % bf_tolerance_px: float(bf1) if not 

np.isnan(bf1) else float("nan"), 

            "ASSD_px": float(assd) if assd is not None else float("nan"), 

            "HD95_px": float(hd95) if hd95 is not None else float("nan"), 

            "Accuracy": float(accuracy_score(mask_flat, pred_flat)), 

        } 

        out_txt = f"{result_folder}/{split_tag}_{img_idx}.txt" 

        with open(out_txt, "w") as f: 

            for k, v in metrics.items(): 

                f.write(f"{k}: {v}\n") 

 

# ========================================================== 
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# 6) Robust evaluation utilities 

# ========================================================== 

 

# --- Boundary metrics helpers --- 

 

def _binary_boundary(mask01: np.ndarray) -> np.ndarray: 

    """1px boundary of a 0/1 mask using morphological gradient.""" 

    m = (mask01.astype(np.uint8) > 0).astype(np.uint8) 

    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) 

    er = cv2.erode(m, kernel, iterations=1) 

    bd = (m - er) 

    bd[bd < 0] = 0 

    return (bd > 0).astype(np.uint8) 

 

def _distance_to_boundary(boundary01: np.ndarray) -> np.ndarray: 

    """Euclidean distance (pixels) to nearest boundary pixel using OpenCV 

DT.""" 

    inv = (boundary01 == 0).astype(np.uint8) * 255 

    dt = cv2.distanceTransform(inv, cv2.DIST_L2, 3) 

    return dt.astype(np.float32) 

 

def compute_boundary_metrics(gt01: np.ndarray, pr01: np.ndarray, tolerance: 

int = 3): 

    """Return (BF1@tol, ASSD_px, HD95_px). NaN if boundary empty.""" 

    gt01 = (gt01 > 0).astype(np.uint8) 

    pr01 = (pr01 > 0).astype(np.uint8) 

    b_gt = _binary_boundary(gt01) 

    b_pr = _binary_boundary(pr01) 

 

    if b_gt.sum() == 0 and b_pr.sum() == 0: 

        return float('nan'), 0.0, 0.0 

 

    dt_gt = _distance_to_boundary(b_gt) 

    dt_pr = _distance_to_boundary(b_pr) 

 

    pred_d = dt_gt[b_pr == 1] 

    true_d = dt_pr[b_gt == 1] 

 

    # BF precision / recall within tolerance 

    p = np.nan if pred_d.size == 0 else (pred_d <= tolerance).mean() 

    r = np.nan if true_d.size == 0 else (true_d <= tolerance).mean() 

    if np.isnan(p) or np.isnan(r) or (p + r) == 0: 

        bf1 = np.nan 

    else: 

        bf1 = 2 * p * r / (p + r + 1e-9) 
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    # ASSD (symmetric) and HD95 

    vals = [] 

    if pred_d.size > 0: 

        vals.append(pred_d) 

    if true_d.size > 0: 

        vals.append(true_d) 

    if len(vals) == 0: 

        assd, hd95 = 0.0, 0.0 

    else: 

        vals = np.concatenate(vals) 

        assd = float(np.mean(vals)) 

        hd95 = float(np.percentile(vals, 95)) 

 

    return float(bf1), assd, hd95 

 

def _metrics_from_cm(cm: np.ndarray) -> Dict[str, float]: 

    tn, fp, fn, tp = cm.ravel() 

    eps = 1e-9 

    precision = tp / (tp + fp + eps) 

    recall = tp / (tp + fn + eps) 

    dice = 2 * tp / (2 * tp + fp + fn + eps) 

    jaccard = tp / (tp + fp + fn + eps) 

    accuracy = (tp + tn) / (tp + tn + fp + fn + eps) 

    return { 

        "Accuracy": accuracy, 

        "Dice Score": dice, 

        "Precision": precision, 

        "Recall": recall, 

        "Jaccard": jaccard, 

    } 

 

def evaluate_sampled(y_true: np.ndarray, y_pred: np.ndarray) -> Dict[str, 

float]: 

    cm = confusion_matrix(y_true, y_pred, labels=[0, 1]) 

    print("Confusion Matrix (sampled):\n", cm) 

    metrics = _metrics_from_cm(cm) 

    for k, v in metrics.items(): 

        print(f"{k}: {v:.4f}") 

    return metrics 

 

def evaluate_dense_set( 

    model: LinearSVC, 

    scaler: StandardScaler, 

    images: List[Tuple[int, np.ndarray, np.ndarray]], 

    window_size: int = 7, 

    pred_batch: int = 200_000, 
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    postprocess: bool = False, 

    decision_threshold: float = 0.0, 

    bf_tolerance_px: int = 3, 

) -> Dict[str, float]: 

 

    cm_total = np.zeros((2, 2), dtype=np.int64) 

    bf_list, assd_list, hd95_list = [], [], [] 

    for _, img, mask in tqdm(images, desc="Dense eval"): 

        H, W = img.shape[:2] 

        X_img = _build_full_image_features(img, window_size=window_size) 

        preds = np.empty((H * W,), dtype=np.int32) 

        s = 0 

        while s < X_img.shape[0]: 

            e = min(s + pred_batch, X_img.shape[0]) 

            scores = model.decision_function(scaler.transform(X_img[s:e])) 

            preds[s:e] = (scores > decision_threshold).astype(np.int32) 

            s = e 

        pred_mask = preds.reshape(H, W).astype(np.uint8) 

        pred_mask = _maybe_postprocess(pred_mask, enable=postprocess) 

 

        y_true = (mask != 0).reshape(-1) 

        y_pred = (pred_mask == 1).reshape(-1) 

        cm_total += confusion_matrix(y_true, y_pred, labels=[0, 1]) 

 

        bf1, assd, hd95 = 

compute_boundary_metrics(y_true.reshape(img.shape[:2]).astype(np.uint8), 

(pred_mask==1).astype(np.uint8), tolerance=bf_tolerance_px) 

        bf_list.append(bf1) 

        assd_list.append(assd) 

        hd95_list.append(hd95) 

 

    print("Global Confusion Matrix (dense over all pixels):", cm_total) 

    metrics = _metrics_from_cm(cm_total) 

    tn, fp, fn, tp = cm_total.ravel() 

    specificity = tn / (tn + fp + 1e-9) 

    bal_acc = 0.5 * (specificity + metrics["Recall"]) 

    metrics["Specificity"] = specificity 

    metrics["Balanced Accuracy"] = bal_acc 

    metrics["BoundaryF1@%dpx" % bf_tolerance_px] = float(np.nanmean(bf_list)) 

if len(bf_list) else float("nan") 

    metrics["ASSD_px_mean"] = float(np.nanmean(assd_list)) if len(assd_list) 

else float("nan") 

    metrics["HD95_px_mean"] = float(np.nanmean(hd95_list)) if len(hd95_list) 

else float("nan") 

 

    print("Dense (global) metrics:") 

    for k, v in metrics.items(): 

        print(f"{k}: {v:.4f}") 
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    return metrics 

 

# ========================================================== 

# 7) Main 

# ========================================================== 

 

def calibrate_threshold( 

    model: LinearSVC, 

    scaler: StandardScaler, 

    images: List[Tuple[int, np.ndarray, np.ndarray]], 

    thresholds: np.ndarray | List[float] = None, 

    window_size: int = 7, 

    pred_batch: int = 200_000, 

    postprocess: bool = False, 

    bf_tolerance_px: int = 3, 

) -> float: 

 

    if thresholds is None: 

        thresholds = np.linspace(-0.5, 0.5, 21) 

    subset = images[: min(16, len(images))] 

    best_tau, best_score = 0.0, -1.0 

    for tau in thresholds: 

        dices = [] 

        for _, img, mask in subset: 

            H, W = img.shape[:2] 

            X_img = _build_full_image_features(img, window_size=window_size) 

            preds = np.empty((H * W,), dtype=np.int32) 

            s = 0 

            while s < X_img.shape[0]: 

                e = min(s + pred_batch, X_img.shape[0]) 

                scores = model.decision_function(scaler.transform(X_img[s:e])) 

                preds[s:e] = (scores > tau).astype(np.int32) 

                s = e 

            pred_mask = preds.reshape(H, W).astype(np.uint8) 

            pred_mask = _maybe_postprocess(pred_mask, enable=postprocess) 

 

            y_true = (mask != 0).reshape(-1) 

            y_pred = (pred_mask == 1).reshape(-1) 

            dices.append(f1_score(y_true, y_pred)) 

        mean_dice = float(np.mean(dices)) if len(dices) else -1.0 

        if mean_dice > best_score: 

            best_score, best_tau = mean_dice, float(tau) 

    print(f"Calibrated threshold (by mean Dice on subset): tau={best_tau:.3f} 

(score={best_score:.4f})") 

    return best_tau 

 



Bachelor of Information Systems (Honours) Information Systems Engineering  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    70 
 

def main(): 

    image_folder = "/content/drive/MyDrive/svm/data/images" 

    mask_folder = "/content/drive/MyDrive/svm/data/masks" 

    result_folder = "/content/drive/MyDrive/svm/svm_linear_results_fixed" 

    cutout_root = "/content/drive/MyDrive/svm/predicted_cutouts" 

 

    drive.mount("/content/drive", force_remount=False) 

    os.makedirs(result_folder, exist_ok=True) 

    os.makedirs(cutout_root, exist_ok=True) 

 

    ( 

        X_train, 

        y_train, 

        X_test, 

        y_test, 

        train_indices, 

        test_indices, 

        train_images, 

        test_images, 

    ) = load_and_split_data(image_folder, mask_folder, n_images=500, 

test_size=0.2, fg_per_img=4000, bg_per_img=4000) 

 

    print(f"\nTraining sampled pixels: {len(X_train):,}") 

    print(f"Test sampled pixels:     {len(X_test):,}") 

    print(f"Train images: {len(train_indices)} | Test images: 

{len(test_indices)}") 

 

    # Train 

    print("\nTraining Linear SVM model...") 

    model = build_svm_pipeline() 

    model.fit(X_train, y_train) 

 

    # Feature importance (names from extractor) 

    _, feature_names = extract_features(train_images[0][1], x=0, y=0) 

    feature_importances = analyze_feature_importance(model, feature_names, 

result_folder) 

 

    # Complexity 

    svm = model.named_steps["svm"] 

    complexity = { 

        "Total params": int(len(svm.coef_[0]) + 1), 

        "Model size (approx)": f"{(svm.coef_.nbytes + svm.intercept_.nbytes) / 

1024:.2f} KB", 

        "Feature space": f"ℝ^{len(svm.coef_[0])}", 

        "Regularization (C)": float(svm.C), 

    } 

    print("\nModel Complexity Metrics:") 

    for k, v in complexity.items(): 
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        print(f"{k}: {v}") 

 

    # Quick sampled report (now balanced) 

    print("\nTest Set Evaluation (BALANCED sampled pixels):") 

    y_pred_sampled = model.predict(X_test) 

    sampled_metrics = evaluate_sampled(y_test, y_pred_sampled) 

 

    # Dense visualizations + per-image metrics 

    print("Calibrating decision threshold on a small subset (mean Dice)...") 

    DECISION_THRESHOLD = calibrate_threshold( 

        model.named_steps["svm"], 

        model.named_steps["scaler"], 

        train_images, 

        thresholds=np.linspace(-0.5, 0.5, 21), 

        postprocess=False, 

        bf_tolerance_px=3, 

    ) 

 

    print("Generating train visualizations (dense)...") 

    visualize_sample_results( 

        model.named_steps["svm"], 

        model.named_steps["scaler"], 

        train_images, 

        result_folder, 

        split_tag="train", 

        cutout_root=cutout_root, 

        postprocess=False, 

        decision_threshold=DECISION_THRESHOLD, 

        bf_tolerance_px=3, 

    ) 

 

    print("\nGenerating test visualizations (dense)...") 

    visualize_sample_results( 

        model.named_steps["svm"], 

        model.named_steps["scaler"], 

        test_images, 

        result_folder, 

        split_tag="test", 

        cutout_root=cutout_root, 

        postprocess=False, 

        decision_threshold=DECISION_THRESHOLD, 

        bf_tolerance_px=3, 

    ) 

 

    # Dense, aggregated metrics across ALL pixels 

    dense_metrics = evaluate_dense_set( 

        model.named_steps["svm"], 

        model.named_steps["scaler"], 
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        test_images, 

        window_size=7, 

        postprocess=False, 

        decision_threshold=DECISION_THRESHOLD, 

        bf_tolerance_px=3, 

    ) 

 

    # Save everything 

    bundle = { 

        "model": model, 

        "feature_importances": feature_importances, 

        "sampled_metrics_balanced": sampled_metrics, 

        "dense_metrics": dense_metrics, 

        "train_indices": train_indices, 

        "test_indices": test_indices, 

        "model_complexity": complexity, 

    } 

    joblib.dump(bundle, os.path.join(result_folder, 

"linear_svm_results_fixed.joblib")) 

 

    with open(os.path.join(result_folder, "dense_metrics.txt"), "w") as f: 

        for k, v in dense_metrics.items(): 

            f.write(f"{k}: {v}\n") 

 

    print(f"\nResults saved to {result_folder}") 

    print(f"Color-preserved predictions saved under: {cutout_root}/train and 

{cutout_root}/test") 

 

if __name__ == "__main__": 

    main() 

  



Bachelor of Information Systems (Honours) Information Systems Engineering  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    73 
 

DuckNet (from https://github.com/RazvanDu/DUCK-Net)  

 

Consist of: 

- ModelNotebook.ipynb 

- ImageLoader2D.py 

- ConvBlock2D.py 

- DUCK_Net.py 

- DiceLoss.py 

 

 

ModelNotebook.ipynb 

 

from google.colab import drive 

import sys 

import tensorflow as tf 

import numpy as np 

import gc 

import matplotlib.pyplot as plt 

from keras.callbacks import CSVLogger 

from datetime import datetime 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import jaccard_score, precision_score, recall_score, 

accuracy_score, f1_score 

from PIL import Image 

import os 

 

# Mount Google Drive and set up paths 

drive.mount('/content/drive') 

sys.path.append('/content/drive/My Drive/duck') 

sys.path.append('/content/drive/My Drive/duck/ModelArchitecture') 

sys.path.append('/content/drive/My Drive/duck/ImageLoader') 

sys.path.append('/content/drive/My Drive/duck/CustomLayers') 

 

# Import project-specific modules 

from ModelArchitecture.DiceLoss import dice_metric_loss 

from ModelArchitecture import DUCK_Net 

from ImageLoader import ImageLoader2D 

 

print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) 

 

# Model settings 

img_size = 352 

dataset_type = 'my_dataset' 

learning_rate = 1e-4 

seed_value = 58800 

filters = 17 

optimizer = tf.keras.optimizers.RMSprop(learning_rate=learning_rate) 

ct = datetime.now() 

https://github.com/RazvanDu/DUCK-Net
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model_type = "DuckNet" 

progress_path = 

f'ProgressFull/{dataset_type}_progress_csv_{model_type}_filters_{filters}_{ct}

.csv' 

progressfull_path = 

f'ProgressFull/{dataset_type}_progress_{model_type}_filters_{filters}_{ct}.txt

' 

plot_path = 

f'ProgressFull/{dataset_type}_progress_plot_{model_type}_filters_{filters}_{ct

}.png' 

model_path = 

f'ModelSaveTensorFlow/{dataset_type}/{model_type}_filters_{filters}_{ct}' 

 

EPOCHS = 100 

min_loss_for_saving = 0.2 

 

# Load data 

X, Y, filenames = ImageLoader2D.load_data(img_size, img_size, -1, 

'my_dataset') 

x_train, x_test, y_train, y_test, f_train, f_test = train_test_split(X, Y, 

filenames, test_size=0.1, random_state=seed_value, shuffle=True) 

x_train, x_valid, y_train, y_valid, f_train, f_valid = 

train_test_split(x_train, y_train, f_train, test_size=0.111, 

random_state=seed_value, shuffle=True) 

 

# Create and compile model 

model = DUCK_Net.create_model(img_height=img_size, img_width=img_size, 

input_chanels=3, out_classes=1, starting_filters=filters) 

model.compile(optimizer=optimizer, loss=dice_metric_loss) 

 

# Training loop 

step = 0 

for epoch in range(0, EPOCHS): 

    print(f'Training, epoch {epoch}') 

    print('Learning Rate: ' + str(learning_rate)) 

    step += 1 

 

    os.makedirs("ProgressFull", exist_ok=True) 

    csv_logger = CSVLogger(progress_path, append=True, separator=';') 

    model.fit(x=x_train, y=y_train, epochs=1, batch_size=4, 

validation_data=(x_valid, y_valid), verbose=1, callbacks=[csv_logger]) 

 

    prediction_valid = model.predict(x_valid, verbose=0) 

    loss_valid = dice_metric_loss(y_valid, prediction_valid).numpy() 

    print("Loss Validation: " + str(loss_valid)) 

 

    prediction_test = model.predict(x_test, verbose=0) 
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    loss_test = dice_metric_loss(y_test, prediction_test).numpy() 

    print("Loss Test: " + str(loss_test)) 

 

    with open(progressfull_path, 'a') as f: 

        f.write('epoch: ' + str(epoch) + '\nval_loss: ' + str(loss_valid) + 

'\ntest_loss: ' + str(loss_test) + '\n\n\n') 

 

    if min_loss_for_saving > loss_valid: 

        min_loss_for_saving = loss_valid 

        print("Saved model with val_loss: ", loss_valid) 

        model.save(model_path + '.h5') 

 

    gc.collect() 

 

# Reload best model 

print("Loading the model") 

model = tf.keras.models.load_model(model_path + '.h5', 

custom_objects={'dice_metric_loss': dice_metric_loss}) 

 

# Predictions 

prediction_train = model.predict(x_train, batch_size=4) 

prediction_valid = model.predict(x_valid, batch_size=4) 

prediction_test = model.predict(x_test, batch_size=4) 

 

print("Predictions done") 

 

# Metrics 

flatten = lambda arr: np.ndarray.flatten(np.array(arr, dtype=bool)) 

bin_pred = lambda pred: np.ndarray.flatten(pred > 0.5) 

 

dice_train = f1_score(flatten(y_train), bin_pred(prediction_train)) 

dice_test = f1_score(flatten(y_test), bin_pred(prediction_test)) 

dice_valid = f1_score(flatten(y_valid), bin_pred(prediction_valid)) 

 

miou_train = jaccard_score(flatten(y_train), bin_pred(prediction_train)) 

miou_test = jaccard_score(flatten(y_test), bin_pred(prediction_test)) 

miou_valid = jaccard_score(flatten(y_valid), bin_pred(prediction_valid)) 

 

precision_train = precision_score(flatten(y_train), 

bin_pred(prediction_train)) 

precision_test = precision_score(flatten(y_test), bin_pred(prediction_test)) 

precision_valid = precision_score(flatten(y_valid), 

bin_pred(prediction_valid)) 

 

recall_train = recall_score(flatten(y_train), bin_pred(prediction_train)) 

recall_test = recall_score(flatten(y_test), bin_pred(prediction_test)) 

recall_valid = recall_score(flatten(y_valid), bin_pred(prediction_valid)) 
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accuracy_train = accuracy_score(flatten(y_train), bin_pred(prediction_train)) 

accuracy_test = accuracy_score(flatten(y_test), bin_pred(prediction_test)) 

accuracy_valid = accuracy_score(flatten(y_valid), bin_pred(prediction_valid)) 

 

final_file = f'results_{model_type}_{filters}_{dataset_type}.txt' 

with open(final_file, 'a') as f: 

    f.write(dataset_type + '\n\n') 

    f.write('dice_train: ' + str(dice_train) + ' dice_valid: ' + 

str(dice_valid) + ' dice_test: ' + str(dice_test) + '\n\n') 

    f.write('miou_train: ' + str(miou_train) + ' miou_valid: ' + 

str(miou_valid) + ' miou_test: ' + str(miou_test) + '\n\n') 

    f.write('precision_train: ' + str(precision_train) + ' precision_valid: ' 

+ str(precision_valid) + ' precision_test: ' + str(precision_test) + '\n\n') 

    f.write('recall_train: ' + str(recall_train) + ' recall_valid: ' + 

str(recall_valid) + ' recall_test: ' + str(recall_test) + '\n\n') 

    f.write('accuracy_train: ' + str(accuracy_train) + ' accuracy_valid: ' + 

str(accuracy_valid) + ' accuracy_test: ' + str(accuracy_test) + '\n\n\n\n') 

 

# Save segmented images with original filenames for all sets 

save_path = "/content/drive/My Drive/duck/segmented_results/" 

os.makedirs(save_path, exist_ok=True) 

 

def save_segmented_images(images, filenames, model, save_dir): 

    for i in range(len(images)): 

        img = (images[i] * 255).astype(np.uint8) 

        pred = model.predict(images[i].reshape(1, *images[i].shape))[0, :, :, 

0] 

        binary_mask = (pred > 0.5).astype(np.uint8) 

        mask_3c = np.repeat(binary_mask[:, :, np.newaxis], 3, axis=-1) 

        segmented = img * mask_3c 

 

        out_file = os.path.join(save_dir, filenames[i]) 

        Image.fromarray(segmented).save(out_file) 

        print(f"Saved: {out_file}") 

 

save_segmented_images(x_train, f_train, model, save_path) 

save_segmented_images(x_valid, f_valid, model, save_path) 

save_segmented_images(x_test, f_test, model, save_path) 

 

print(f'Dice Score - Train: {dice_train}, Valid: {dice_valid}, Test: 

{dice_test}') 

print(f'MIoU - Train: {miou_train}, Valid: {miou_valid}, Test: {miou_test}') 

print(f'Precision - Train: {precision_train}, Valid: {precision_valid}, Test: 

{precision_test}') 

print(f'Recall - Train: {recall_train}, Valid: {recall_valid}, Test: 

{recall_test}') 

print(f'Accuracy - Train: {accuracy_train}, Valid: {accuracy_valid}, Test: 

{accuracy_test}') 
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ImageLoader.py 

 

import os 

import glob 

import numpy as np 

from PIL import Image 

from skimage.io import imread 

from tqdm import tqdm 

 

folder_path = "/content/drive/My Drive/duck/data/"  # Add the path to data 

directory 

 

def load_data(img_height, img_width, images_to_be_loaded, dataset): 

    IMAGES_PATH = folder_path + 'images/' 

    MASKS_PATH = folder_path + 'masks/' 

 

    if dataset == 'my_dataset': 

        train_ids = glob.glob(IMAGES_PATH + "*.png") 

 

    if images_to_be_loaded == -1: 

        images_to_be_loaded = len(train_ids) 

 

    X_train = np.zeros((images_to_be_loaded, img_height, img_width, 3), 

dtype=np.float32) 

    Y_train = np.zeros((images_to_be_loaded, img_height, img_width), 

dtype=np.uint8) 

    filename_list = [] 

 

    print('Loading training images and masks (no resizing):', 

images_to_be_loaded) 

    for n, id_ in tqdm(enumerate(train_ids)): 

        if n == images_to_be_loaded: 

            break 

 

        image_path = id_ 

        mask_path = image_path.replace("images", "masks") 

        filename = os.path.basename(image_path) 

 

        image = imread(image_path) 

        mask_ = imread(mask_path) 

 

        X_train[n] = image / 255.0 

 

        mask = np.zeros((img_height, img_width), dtype=np.bool_) 

        for i in range(img_height): 

            for j in range(img_width): 

                if mask_[i, j] >= 127: 

                    mask[i, j] = 1 
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        Y_train[n] = mask 

        filename_list.append(filename) 

 

    Y_train = np.expand_dims(Y_train, axis=-1) 

 

    return X_train, Y_train, filename_list 
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ConvBlock2D.py 

 

from keras.layers import BatchNormalization, add 

from keras.layers import Conv2D 

 

kernel_initializer = 'he_uniform' 

 

def conv_block_2D(x, filters, block_type, repeat=1, dilation_rate=1, size=3, 

padding='same'): 

    result = x 

 

    for i in range(0, repeat): 

 

        if block_type == 'separated': 

            result = separated_conv2D_block(result, filters, size=size, 

padding=padding) 

        elif block_type == 'duckv2': 

            result = duckv2_conv2D_block(result, filters, size=size) 

        elif block_type == 'midscope': 

            result = midscope_conv2D_block(result, filters) 

        elif block_type == 'widescope': 

            result = widescope_conv2D_block(result, filters) 

        elif block_type == 'resnet': 

            result = resnet_conv2D_block(result, filters, dilation_rate) 

        elif block_type == 'conv': 

            result = Conv2D(filters, (size, size), 

                            activation='relu', 

kernel_initializer=kernel_initializer, padding=padding)(result) 

        elif block_type == 'double_convolution': 

            result = double_convolution_with_batch_normalization(result, 

filters, dilation_rate) 

 

        else: 

            return None 

 

    return result 

 

def duckv2_conv2D_block(x, filters, size): 

    x = BatchNormalization(axis=-1)(x) 

    x1 = widescope_conv2D_block(x, filters) 

 

    x2 = midscope_conv2D_block(x, filters) 

 

    x3 = conv_block_2D(x, filters, 'resnet', repeat=1) 

 

    x4 = conv_block_2D(x, filters, 'resnet', repeat=2) 
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    x5 = conv_block_2D(x, filters, 'resnet', repeat=3) 

 

    x6 = separated_conv2D_block(x, filters, size=6, padding='same') 

 

    x = add([x1, x2, x3, x4, x5, x6]) 

 

    x = BatchNormalization(axis=-1)(x) 

 

    return x 

 

def separated_conv2D_block(x, filters, size=3, padding='same'): 

    x = Conv2D(filters, (1, size), activation='relu', 

kernel_initializer=kernel_initializer, padding=padding)(x) 

 

    x = BatchNormalization(axis=-1)(x) 

 

    x = Conv2D(filters, (size, 1), activation='relu', 

kernel_initializer=kernel_initializer, padding=padding)(x) 

 

    x = BatchNormalization(axis=-1)(x) 

 

    return x 

 

def midscope_conv2D_block(x, filters): 

    x = Conv2D(filters, (3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same', 

               dilation_rate=1)(x) 

 

    x = BatchNormalization(axis=-1)(x) 

 

    x = Conv2D(filters, (3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same', 

               dilation_rate=2)(x) 

 

    x = BatchNormalization(axis=-1)(x) 

 

    return x 

 

def widescope_conv2D_block(x, filters): 

    x = Conv2D(filters, (3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same', 

               dilation_rate=1)(x) 

 

    x = BatchNormalization(axis=-1)(x) 
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    x = Conv2D(filters, (3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same', 

               dilation_rate=2)(x) 

 

    x = BatchNormalization(axis=-1)(x) 

 

    x = Conv2D(filters, (3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same', 

               dilation_rate=3)(x) 

 

    x = BatchNormalization(axis=-1)(x) 

 

    return x 

 

def resnet_conv2D_block(x, filters, dilation_rate=1): 

    x1 = Conv2D(filters, (1, 1), activation='relu', 

kernel_initializer=kernel_initializer, padding='same', 

                dilation_rate=dilation_rate)(x) 

 

    x = Conv2D(filters, (3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same', 

               dilation_rate=dilation_rate)(x) 

    x = BatchNormalization(axis=-1)(x) 

    x = Conv2D(filters, (3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same', 

               dilation_rate=dilation_rate)(x) 

    x = BatchNormalization(axis=-1)(x) 

    x_final = add([x, x1]) 

 

    x_final = BatchNormalization(axis=-1)(x_final) 

 

    return x_final 

 

def double_convolution_with_batch_normalization(x, filters, dilation_rate=1): 

    x = Conv2D(filters, (3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same', 

               dilation_rate=dilation_rate)(x) 

    x = BatchNormalization(axis=-1)(x) 

    x = Conv2D(filters, (3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same', 

               dilation_rate=dilation_rate)(x) 

    x = BatchNormalization(axis=-1)(x) 

 

    return x 
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DUCK_Net.py 

 

import tensorflow as tf 

from keras.layers import Conv2D, UpSampling2D 

from keras.layers import add 

from keras.models import Model 

 

from CustomLayers.ConvBlock2D import conv_block_2D 

 

kernel_initializer = 'he_uniform' 

interpolation = "nearest" 

 

def create_model(img_height, img_width, input_chanels, out_classes, 

starting_filters): 

    input_layer = tf.keras.layers.Input((img_height, img_width, 

input_chanels)) 

 

    print('Starting DUCK-Net') 

 

    p1 = Conv2D(starting_filters * 2, 2, strides=2, 

padding='same')(input_layer) 

    p2 = Conv2D(starting_filters * 4, 2, strides=2, padding='same')(p1) 

    p3 = Conv2D(starting_filters * 8, 2, strides=2, padding='same')(p2) 

    p4 = Conv2D(starting_filters * 16, 2, strides=2, padding='same')(p3) 

    p5 = Conv2D(starting_filters * 32, 2, strides=2, padding='same')(p4) 

 

    t0 = conv_block_2D(input_layer, starting_filters, 'duckv2', repeat=1) 

 

    l1i = Conv2D(starting_filters * 2, 2, strides=2, padding='same')(t0) 

    s1 = add([l1i, p1]) 

    t1 = conv_block_2D(s1, starting_filters * 2, 'duckv2', repeat=1) 

 

    l2i = Conv2D(starting_filters * 4, 2, strides=2, padding='same')(t1) 

    s2 = add([l2i, p2]) 

    t2 = conv_block_2D(s2, starting_filters * 4, 'duckv2', repeat=1) 

 

    l3i = Conv2D(starting_filters * 8, 2, strides=2, padding='same')(t2) 

    s3 = add([l3i, p3]) 

    t3 = conv_block_2D(s3, starting_filters * 8, 'duckv2', repeat=1) 

 

    l4i = Conv2D(starting_filters * 16, 2, strides=2, padding='same')(t3) 

    s4 = add([l4i, p4]) 

    t4 = conv_block_2D(s4, starting_filters * 16, 'duckv2', repeat=1) 

 

    l5i = Conv2D(starting_filters * 32, 2, strides=2, padding='same')(t4) 

    s5 = add([l5i, p5]) 

    t51 = conv_block_2D(s5, starting_filters * 32, 'resnet', repeat=2) 
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    t53 = conv_block_2D(t51, starting_filters * 16, 'resnet', repeat=2) 

 

    l5o = UpSampling2D((2, 2), interpolation=interpolation)(t53) 

    c4 = add([l5o, t4]) 

    q4 = conv_block_2D(c4, starting_filters * 8, 'duckv2', repeat=1) 

 

    l4o = UpSampling2D((2, 2), interpolation=interpolation)(q4) 

    c3 = add([l4o, t3]) 

    q3 = conv_block_2D(c3, starting_filters * 4, 'duckv2', repeat=1) 

 

    l3o = UpSampling2D((2, 2), interpolation=interpolation)(q3) 

    c2 = add([l3o, t2]) 

    q6 = conv_block_2D(c2, starting_filters * 2, 'duckv2', repeat=1) 

 

    l2o = UpSampling2D((2, 2), interpolation=interpolation)(q6) 

    c1 = add([l2o, t1]) 

    q1 = conv_block_2D(c1, starting_filters, 'duckv2', repeat=1) 

 

    l1o = UpSampling2D((2, 2), interpolation=interpolation)(q1) 

    c0 = add([l1o, t0]) 

    z1 = conv_block_2D(c0, starting_filters, 'duckv2', repeat=1) 

 

    output = Conv2D(out_classes, (1, 1), activation='sigmoid')(z1) 

 

    model = Model(inputs=input_layer, outputs=output) 

 

    return model 
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DiceLoss.py 

 

import tensorflow.keras.backend as K 

import tensorflow as tf 

 

def dice_metric_loss(ground_truth, predictions, smooth=1e-6): 

    ground_truth = K.cast(ground_truth, tf.float32) 

    predictions = K.cast(predictions, tf.float32) 

    ground_truth = K.flatten(ground_truth) 

    predictions = K.flatten(predictions) 

    intersection = K.sum(predictions * ground_truth) 

    union = K.sum(predictions) + K.sum(ground_truth) 

 

    dice = (2. * intersection + smooth) / (union + smooth) 

 

    return 1 - dice 
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AdderNet (from https://github.com/huawei-noah/AdderNet)  

 

Consist of: 

- AdderNet.ipynb 

- adder.py 

- resnet20.py 

- main.py 

- test.py 

 

 

AdderNet.ipynb 

 

from google.colab import drive 

drive.mount('/content/drive') 

 

import os 

os.chdir('/content/drive/MyDrive/AdderNet') 

 

!pip install torch torchvision 

 

!python main.py --data /content/drive/MyDrive/AdderNet/root/cifar10-png --

output_dir /content/drive/MyDrive/AdderNet/output/ 

 

!python test.py --dataset cifar10 --data_dir 

/content/drive/MyDrive/AdderNet/root/cifar10-png --model_dir 

/content/drive/MyDrive/AdderNet/output/addernet.pth 

 

  

https://github.com/huawei-noah/AdderNet
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adder.py 

 

import torch 

import torch.nn as nn 

import numpy as np 

from torch.autograd import Function 

import math 

 

def adder2d_function(X, W, stride=1, padding=0): 

    n_filters, d_filter, h_filter, w_filter = W.size() 

    n_x, d_x, h_x, w_x = X.size() 

 

    h_out = (h_x - h_filter + 2 * padding) / stride + 1 

    w_out = (w_x - w_filter + 2 * padding) / stride + 1 

 

    h_out, w_out = int(h_out), int(w_out) 

    X_col = torch.nn.functional.unfold(X.view(1, -1, h_x, w_x), h_filter, 

dilation=1, padding=padding, stride=stride).view(n_x, -1, h_out*w_out) 

    X_col = X_col.permute(1,2,0).contiguous().view(X_col.size(1),-1) 

    W_col = W.view(n_filters, -1) 

     

    out = adder.apply(W_col,X_col) 

     

    out = out.view(n_filters, h_out, w_out, n_x) 

    out = out.permute(3, 0, 1, 2).contiguous() 

     

    return out 

 

class adder(Function): 

    @staticmethod 

    def forward(ctx, W_col, X_col): 

        ctx.save_for_backward(W_col,X_col) 

        output = -(W_col.unsqueeze(2)-X_col.unsqueeze(0)).abs().sum(1) 

        return output 

 

    @staticmethod 

    def backward(ctx,grad_output): 

        W_col,X_col = ctx.saved_tensors 

        grad_W_col = ((X_col.unsqueeze(0)-

W_col.unsqueeze(2))*grad_output.unsqueeze(1)).sum(2) 

        grad_W_col = grad_W_col/grad_W_col.norm(p=2).clamp(min=1e-

12)*math.sqrt(W_col.size(1)*W_col.size(0))/5 

        grad_X_col = (-(X_col.unsqueeze(0)-W_col.unsqueeze(2)).clamp(-

1,1)*grad_output.unsqueeze(1)).sum(0) 

         

        return grad_W_col, grad_X_col 

     

class adder2d(nn.Module): 
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    def __init__(self,input_channel,output_channel,kernel_size, stride=1, 

padding=0, bias = False): 

        super(adder2d, self).__init__() 

        self.stride = stride 

        self.padding = padding 

        self.input_channel = input_channel 

        self.output_channel = output_channel 

        self.kernel_size = kernel_size 

        self.adder = 

torch.nn.Parameter(nn.init.normal_(torch.randn(output_channel,input_channel,ke

rnel_size,kernel_size))) 

        self.bias = bias 

        if bias: 

            self.b = 

torch.nn.Parameter(nn.init.uniform_(torch.zeros(output_channel))) 

 

    def forward(self, x): 

        output = adder2d_function(x,self.adder, self.stride, self.padding) 

        if self.bias: 

            output += self.b.unsqueeze(0).unsqueeze(2).unsqueeze(3) 

         

        return output 
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resnet20.py 

 

import adder 

import torch.nn as nn 

 

def conv3x3(in_planes, out_planes, stride=1): 

    " 3x3 convolution with padding " 

    return adder.adder2d(in_planes, out_planes, kernel_size=3, stride=stride, 

padding=1, bias=False) 

 

class BasicBlock(nn.Module): 

    expansion=1 

 

    def __init__(self, inplanes, planes, stride=1, downsample=None): 

        super(BasicBlock, self).__init__() 

        self.conv1 = conv3x3(inplanes, planes, stride = stride) 

        self.bn1 = nn.BatchNorm2d(planes) 

        self.relu = nn.ReLU(inplace=True) 

        self.conv2 = conv3x3(planes, planes) 

        self.bn2 = nn.BatchNorm2d(planes) 

        self.downsample = downsample 

        self.stride = stride 

 

    def forward(self, x): 

        residual = x 

 

        out = self.conv1(x) 

        out = self.bn1(out) 

        out = self.relu(out) 

 

        out = self.conv2(out) 

        out = self.bn2(out) 

 

        if self.downsample is not None: 

            residual = self.downsample(x) 

 

        out += residual 

        out = self.relu(out) 

 

        return out 

 

class ResNet(nn.Module): 

 

    def __init__(self, block, layers, num_classes=10): 

        super(ResNet, self).__init__() 
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        self.inplanes = 16 

        self.conv1 = nn.Conv2d(3, 16, kernel_size=7, stride=2, padding=3, 

bias=False) 

        self.bn1 = nn.BatchNorm2d(16) 

        self.relu = nn.ReLU(inplace=True) 

        self.layer1 = self._make_layer(block, 16, layers[0]) 

        self.layer2 = self._make_layer(block, 32, layers[1], stride=2) 

        self.layer3 = self._make_layer(block, 64, layers[2], stride=2) 

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) 

        self.fc = nn.Conv2d(64 * block.expansion, num_classes, 1, bias=False) 

        self.bn2 = nn.BatchNorm2d(num_classes) 

         

        for m in self.modules(): 

            if isinstance(m, nn.BatchNorm2d): 

                m.weight.data.fill_(1) 

                m.bias.data.zero_() 

          

    def _make_layer(self, block, planes, blocks, stride=1): 

        downsample = None 

        if stride != 1 or self.inplanes != planes * block.expansion: 

            downsample = nn.Sequential( 

                adder.adder2d(self.inplanes, planes * block.expansion, 

kernel_size=1, stride=stride, bias=False), 

                nn.BatchNorm2d(planes * block.expansion) 

            ) 

 

        layers = [] 

        layers.append(block(inplanes = self.inplanes, planes = planes, stride 

= stride, downsample = downsample)) 

        self.inplanes = planes * block.expansion 

        for _ in range(1, blocks): 

            layers.append(block(inplanes = self.inplanes, planes = planes)) 

 

        return nn.Sequential(*layers) 

 

    def forward(self, x): 

        x = self.conv1(x) 

        x = self.bn1(x) 

        x = self.relu(x) 

 

        x = self.layer1(x) 

        x = self.layer2(x) 

        x = self.layer3(x) 

 

        x = self.avgpool(x) 

        x = self.fc(x) 

        x = self.bn2(x) 
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        return x.view(x.size(0), -1) 

 

def resnet20(num_classes=4, **kwargs): # num_class = 2 or 4 or 5 

return ResNet(BasicBlock, [3, 3, 3], num_classes=num_classes, **kwargs) 
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main.py 

 

import os 

from resnet20 import resnet20 

import torch 

from torch.autograd import Variable 

from torchvision.datasets import ImageFolder 

import torchvision.transforms as transforms 

from torch.utils.data import DataLoader  

import argparse 

import math 

 

parser = argparse.ArgumentParser(description='train-addernet') 

parser.add_argument('--data', type=str, 

default='/content/drive/MyDrive/AdderNet/cifar10-png') 

parser.add_argument('--output_dir', type=str, default='/cache/models/') 

args = parser.parse_args() 

 

os.makedirs(args.output_dir, exist_ok=True)   

 

acc = 0 

acc_best = 0 

 

transform_train = transforms.Compose([ 

    transforms.Resize((224, 224)), 

    transforms.RandomHorizontalFlip(), 

    transforms.ToTensor(), 

    transforms.Normalize((0.2104, 0.1522, 0.1593), (0.2871, 0.2145, 0.2250)) # 

mean & std for 2/4/5 classes training set 

]) 

 

transform_test = transforms.Compose([ 

    transforms.Resize((224, 224)), 

    transforms.ToTensor(), 

    transforms.Normalize((0.2104, 0.1522, 0.1593), (0.2871, 0.2145, 0.2250)) # 

mean & std for 2/4/5 classes training set 

]) 

                   

data_train = ImageFolder(root=os.path.join(args.data, 'train'), 

transform=transform_train) 

data_test = ImageFolder(root=os.path.join(args.data, 'test'), 

transform=transform_test) 

 

data_train_loader = DataLoader(data_train, batch_size=16, shuffle=True, 

num_workers=2) 

data_test_loader = DataLoader(data_test, batch_size=16, num_workers=2) 

 

net = resnet20(num_classes=4).cuda() # num_classes = 2 or 4 or 5 
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criterion = torch.nn.CrossEntropyLoss().cuda() 

optimizer = torch.optim.SGD(net.parameters(), lr=0.1, momentum=0.9, 

weight_decay=5e-4) 

 

def adjust_learning_rate(optimizer, epoch): 

    lr = 0.05 * (1+math.cos(float(epoch)/50*math.pi)) # epoch = 50 or 100 

    for param_group in optimizer.param_groups: 

        param_group['lr'] = lr 

         

def train(epoch): 

    adjust_learning_rate(optimizer, epoch) 

    global cur_batch_win 

    net.train() 

    loss_list, batch_list = [], [] 

    for i, (images, labels) in enumerate(data_train_loader): 

        images, labels = Variable(images).cuda(), Variable(labels).cuda() 

  

        optimizer.zero_grad() 

  

        output = net(images) 

  

        loss = criterion(output, labels) 

  

        loss_list.append(loss.data.item()) 

        batch_list.append(i+1) 

  

        if i == 1: 

            print('Train - Epoch %d, Batch: %d, Loss: %f' % (epoch, i, 

loss.data.item())) 

  

        loss.backward() 

        optimizer.step() 

  

  

def test(): 

    global acc, acc_best 

    net.eval() 

    total_correct = 0 

    avg_loss = 0.0 

    with torch.no_grad(): 

        for i, (images, labels) in enumerate(data_test_loader): 

            images, labels = Variable(images).cuda(), Variable(labels).cuda() 

            output = net(images) 

            avg_loss += criterion(output, labels).sum() 

            pred = output.data.max(1)[1] 

            total_correct += pred.eq(labels.data.view_as(pred)).sum() 

  

    avg_loss /= len(data_test) 
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    acc = float(total_correct) / len(data_test) 

    if acc_best < acc: 

        acc_best = acc 

    print('Test Avg. Loss: %f, Accuracy: %f' % (avg_loss.data.item(), acc)) 

  

  

def train_and_test(epoch): 

    train(epoch) 

    test() 

  

  

def main(): 

    epoch = 50 # epoch = 50 or 100 

    for e in range(1, epoch): 

        train_and_test(e) 

    torch.save(net.state_dict(), args.output_dir + 'addernet.pth') 

  

  

if __name__ == '__main__': 

    main()  
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test.py 

 

import os 

import shutil 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

from torchvision import datasets, transforms 

from torch.utils.data import DataLoader 

import argparse 

from resnet20 import resnet20 

import numpy as np 

from sklearn.metrics import classification_report, confusion_matrix, 

accuracy_score 

import matplotlib.pyplot as plt 

import seaborn as sns 

import PIL 

 

class ImageFolderWithPaths(datasets.ImageFolder): 

    def __getitem__(self, index): 

        original_tuple = super(ImageFolderWithPaths, self).__getitem__(index) 

        path = self.imgs[index][0] 

        return original_tuple + (path,) 

 

def plot_confusion_matrix(cm, class_names, save_path): 

    plt.figure(figsize=(8, 6)) 

    sns.heatmap(cm, annot=True, fmt='d', cmap="Blues", 

xticklabels=class_names, yticklabels=class_names) 

    plt.ylabel('True Label') 

    plt.xlabel('Predicted Label') 

    plt.title('Confusion Matrix') 

    plt.tight_layout() 

    plt.savefig(save_path) 

    plt.close() 

 

def count_parameters(model): 

    return sum(p.numel() for p in model.parameters() if p.requires_grad) 

 

def get_model_size(model_path): 

    size_bytes = os.path.getsize(model_path) 

    return size_bytes / (1024 * 1024) 

 

def main(): 

    parser = argparse.ArgumentParser() 

    parser.add_argument('--dataset', default='cifar10', type=str) 

    parser.add_argument('--data_dir', default='./data', type=str) 

    parser.add_argument('--model_dir', default='./model.pth', type=str) 

    args = parser.parse_args() 
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    val_transform = transforms.Compose([ 

        transforms.Resize((224, 224)), 

        transforms.ToTensor(), 

        transforms.Normalize(mean=[0.2104, 0.1522, 0.1593], std=[0.2871, 

0.2145, 0.2250]) # mean & std for 2/4/5 classes training set 

    ]) 

 

    valdir = os.path.join(args.data_dir, 'test') 

    val_dataset = ImageFolderWithPaths(valdir, transform=val_transform) 

    val_loader = DataLoader(val_dataset, batch_size=16, shuffle=False) 

 

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

    model = resnet20() 

    model.load_state_dict(torch.load(args.model_dir, map_location=device)) 

    model = model.to(device) 

    model.eval() 

 

    class_names = val_dataset.classes 

    output_base = '/content/drive/MyDrive/AdderNet/results' 

    os.makedirs(output_base, exist_ok=True) 

    for class_name in class_names: 

        os.makedirs(os.path.join(output_base, class_name), exist_ok=True) 

 

    all_preds = [] 

    all_labels = [] 

    all_paths = [] 

 

    with torch.no_grad(): 

        for images, labels, paths in val_loader: 

            images = images.to(device) 

            outputs = model(images) 

            _, preds = torch.max(outputs, 1) 

 

            all_preds.extend(preds.cpu().numpy()) 

            all_labels.extend(labels.cpu().numpy()) 

            all_paths.extend(paths) 

 

            for i in range(len(paths)): 

                pred_class = class_names[preds[i]] 

                dst_path = os.path.join(output_base, pred_class, 

os.path.basename(paths[i])) 

                shutil.copy(paths[i], dst_path) 

 

    # === METRICS === 

    print("\n=== METRICS ===") 

    acc = accuracy_score(all_labels, all_preds) 



Bachelor of Information Systems (Honours) Information Systems Engineering  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    96 
 

    report = classification_report(all_labels, all_preds, 

target_names=class_names, output_dict=True) 

    matrix = confusion_matrix(all_labels, all_preds) 

 

    # Overall metrics 

    print(f"Overall Accuracy: {acc:.4f}") 

    print(f"Precision (macro avg): {report['macro avg']['precision']:.4f}") 

    print(f"Recall (macro avg): {report['macro avg']['recall']:.4f}") 

    print(f"F1 Score (macro avg): {report['macro avg']['f1-score']:.4f}") 

 

    # === PER-CLASS METRICS === 

    print("\n=== PER-CLASS METRICS ===") 

    total_per_class = np.zeros(len(class_names)) 

    correct_per_class = np.zeros(len(class_names)) 

 

    for i in range(len(all_labels)): 

        total_per_class[all_labels[i]] += 1 

        if all_labels[i] == all_preds[i]: 

            correct_per_class[all_labels[i]] += 1 

 

    for i, class_name in enumerate(class_names): 

        precision = report[class_name]['precision'] 

        recall = report[class_name]['recall'] 

        f1 = report[class_name]['f1-score'] 

        acc_cls = correct_per_class[i] / total_per_class[i] if 

total_per_class[i] > 0 else 0.0 

        print(f"Class: {class_name}") 

        print(f"  Accuracy:  {acc_cls:.4f}") 

        print(f"  Precision: {precision:.4f}") 

        print(f"  Recall:    {recall:.4f}") 

        print(f"  F1 Score:  {f1:.4f}") 

 

    # Save confusion matrix 

    cm_path = os.path.join(output_base, 'confusion_matrix.png') 

    plot_confusion_matrix(matrix, class_names, cm_path) 

    print(f"\nConfusion matrix saved to: {cm_path}") 

 

    # Model info 

    print(f"\nTotal parameters: {count_parameters(model):,}") 

    print(f"Model file size: {get_model_size(args.model_dir):.2f} MB") 

 

if __name__ == '__main__': 

    main()  
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ResNet20 

 

Consist of: 

- AdderNet.ipynb (use back the same .ipynb file from AdderNet model) 

- resnet20.py 

- main.py (use back the same main.py from AdderNet model) 

- test.py (use back the same test.py from AdderNet model) 

 

 

resnet20.py 

 

import torch.nn as nn 

 

def conv3x3(in_planes, out_planes, stride=1): 

    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, 

padding=1, bias=False) 

 

class BasicBlock(nn.Module): 

    expansion=1 

 

    def __init__(self, inplanes, planes, stride=1, downsample=None): 

        super(BasicBlock, self).__init__() 

        self.conv1 = conv3x3(inplanes, planes, stride = stride) 

        self.bn1 = nn.BatchNorm2d(planes) 

        self.relu = nn.ReLU(inplace=True) 

        self.conv2 = conv3x3(planes, planes) 

        self.bn2 = nn.BatchNorm2d(planes) 

        self.downsample = downsample 

        self.stride = stride 

 

    def forward(self, x): 

        residual = x 

 

        out = self.conv1(x) 

        out = self.bn1(out) 

        out = self.relu(out) 

 

        out = self.conv2(out) 

        out = self.bn2(out) 

 

        if self.downsample is not None: 

            residual = self.downsample(x) 

 

        out += residual 

        out = self.relu(out) 

 

        return out 
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class ResNet(nn.Module): 

 

    def __init__(self, block, layers, num_classes=2): 

        super(ResNet, self).__init__() 

        self.inplanes = 16 

        self.conv1 = nn.Conv2d(3, 16, kernel_size=7, stride=2, padding=3, 

bias=False) 

        self.bn1 = nn.BatchNorm2d(16) 

        self.relu = nn.ReLU(inplace=True) 

        self.layer1 = self._make_layer(block, 16, layers[0]) 

        self.layer2 = self._make_layer(block, 32, layers[1], stride=2) 

        self.layer3 = self._make_layer(block, 64, layers[2], stride=2) 

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) 

        self.fc = nn.Conv2d(64 * block.expansion, num_classes, 1, bias=False) 

        self.bn2 = nn.BatchNorm2d(num_classes) 

         

        for m in self.modules(): 

            if isinstance(m, nn.BatchNorm2d): 

                m.weight.data.fill_(1) 

                m.bias.data.zero_() 

          

    def _make_layer(self, block, planes, blocks, stride=1): 

        downsample = None 

        if stride != 1 or self.inplanes != planes * block.expansion: 

            downsample = nn.Sequential( 

                nn.Conv2d(self.inplanes, planes * block.expansion, 

kernel_size=1, stride=stride, bias=False), 

                nn.BatchNorm2d(planes * block.expansion) 

            ) 

 

        layers = [] 

        layers.append(block(inplanes = self.inplanes, planes = planes, stride 

= stride, downsample = downsample)) 

        self.inplanes = planes * block.expansion 

        for _ in range(1, blocks): 

            layers.append(block(inplanes = self.inplanes, planes = planes)) 

 

        return nn.Sequential(*layers) 

 

    def forward(self, x): 

        x = self.conv1(x) 

        x = self.bn1(x) 

        x = self.relu(x) 

 

        x = self.layer1(x) 

        x = self.layer2(x) 
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        x = self.layer3(x) 

 

        x = self.avgpool(x) 

        x = self.fc(x) 

        x = self.bn2(x) 

 

        return x.view(x.size(0), -1) 

 

def resnet20(num_classes=4, **kwargs): # num_classes = 2 or 4 or 5 

    return ResNet(BasicBlock, [3, 3, 3], num_classes=num_classes, **kwargs) 
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HybridNet 

 

Consist of: 

- AdderNet.ipynb (use back the same .ipynb file from AdderNet model) 

- hybrid.py 

- main.py (use back the same main.py from AdderNet model) 

- test.py (use back the same test.py from AdderNet model) 

 

 

hybrid.py 

 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

 

# ------------------------- 

# MobileNetV2 Inverted Residual Block 

# ------------------------- 

class InvertedResidual(nn.Module): 

    def __init__(self, inp, oup, stride, expand_ratio): 

        super(InvertedResidual, self).__init__() 

        hidden_dim = int(inp * expand_ratio) 

        self.use_res_connect = (stride == 1 and inp == oup) 

 

        layers = [] 

        if expand_ratio != 1: 

            # pointwise 

            layers.append(nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False)) 

            layers.append(nn.BatchNorm2d(hidden_dim)) 

            layers.append(nn.ReLU6(inplace=True)) 

        # depthwise 

        layers.extend([ 

            nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, 

bias=False), 

            nn.BatchNorm2d(hidden_dim), 

            nn.ReLU6(inplace=True), 

            # pointwise-linear 

            nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), 

            nn.BatchNorm2d(oup), 

        ]) 

        self.conv = nn.Sequential(*layers) 

 

    def forward(self, x): 

        if self.use_res_connect: 

            return x + self.conv(x) 

        else: 

            return self.conv(x) 
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# ------------------------- 

# Hybrid Block: ResNet shortcut + MobileNetV2 inverted residual 

# ------------------------- 

class HybridBlock(nn.Module): 

    def __init__(self, in_planes, out_planes, stride=1, expand_ratio=6): 

        super(HybridBlock, self).__init__() 

        self.inverted_residual = InvertedResidual(in_planes, out_planes, 

stride, expand_ratio) 

        self.shortcut = nn.Sequential() 

        if stride != 1 or in_planes != out_planes: 

            self.shortcut = nn.Sequential( 

                nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, 

bias=False), 

                nn.BatchNorm2d(out_planes) 

            ) 

 

    def forward(self, x): 

        out = self.inverted_residual(x) 

        out += self.shortcut(x) 

        return F.relu(out) 

 

# ------------------------- 

# HybridNet (ResNet20 + MobileNetV2 ideas) 

# ------------------------- 

class HybridNet(nn.Module): 

    def __init__(self, num_classes=4): 

        super(HybridNet, self).__init__() 

        self.stem = nn.Sequential( 

            nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False), 

            nn.BatchNorm2d(16), 

            nn.ReLU(inplace=True) 

        ) 

 

        # Stages: (like ResNet-20, but each uses HybridBlock) 

        self.layer1 = self._make_layer(16, 24, num_blocks=2, stride=1)  # like 

MobileNet small expansion 

        self.layer2 = self._make_layer(24, 48, num_blocks=2, stride=2) 

        self.layer3 = self._make_layer(48, 96, num_blocks=2, stride=2) 

 

        self.pool = nn.AdaptiveAvgPool2d(1) 

        self.fc = nn.Linear(96, num_classes) 

 

    def _make_layer(self, in_planes, out_planes, num_blocks, stride): 

        layers = [] 

        layers.append(HybridBlock(in_planes, out_planes, stride=stride)) 

        for _ in range(1, num_blocks): 

            layers.append(HybridBlock(out_planes, out_planes, stride=1)) 

        return nn.Sequential(*layers) 
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    def forward(self, x): 

        out = self.stem(x) 

        out = self.layer1(out) 

        out = self.layer2(out) 

        out = self.layer3(out) 

        out = self.pool(out) 

        out = out.view(out.size(0), -1) 

        return self.fc(out)  
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Improved HybridNet 

 

Consist of: 

- AdderNet.ipynb (use back the same .ipynb file from AdderNet model) 

- hybrid.py 

- main.py (use back the same main.py from AdderNet model) 

- test.py (use back the same test.py from AdderNet model) 

 

 

hybrid.py 

 

import math 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

import torch.utils.checkpoint as cp  # why: cut activation memory 

 

# ------------------------- 

# Helpers  

# ------------------------- 

class DropPath(nn.Module): 

    def __init__(self, drop_prob: float = 0.0): 

        super().__init__() 

        self.drop_prob = float(drop_prob) 

 

    def forward(self, x): 

        if not self.training or self.drop_prob == 0.0: 

            return x 

        keep = 1.0 - self.drop_prob 

        shape = (x.shape[0],) + (1,) * (x.ndim - 1) 

        return x * x.new_empty(shape).bernoulli_(keep).div_(keep) 

 

class SqueezeExcite(nn.Module): 

    def __init__(self, channels: int, se_ratio: float = 0.25): 

        super().__init__() 

        hidden = max(8, int(channels * se_ratio)) 

        self.pool = nn.AdaptiveAvgPool2d(1) 

        self.fc = nn.Sequential( 

            nn.Conv2d(channels, hidden, 1, bias=True), 

            nn.ReLU(inplace=True), 

            nn.Conv2d(hidden, channels, 1, bias=True), 

            nn.Sigmoid(), 

        ) 

 

    def forward(self, x): 

        return x * self.fc(self.pool(x)) 
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def _make_divisible(v: int, divisor: int = 8) -> int: 

    return int(math.ceil(v / divisor) * divisor) 

 

# ------------------------- 

# MobileNetV2 Inverted Residual Block 

# ------------------------- 

class InvertedResidual(nn.Module): 

    """ 

    expand -> depthwise -> pointwise-linear (+ optional SE). 

    Has internal residual only if stride==1 and in==out. 

    """ 

    def __init__(self, inp, oup, stride, expand_ratio, se_ratio: float = 

0.25): 

        super().__init__() 

        assert stride in [1, 2] 

        hidden_dim = int(inp * expand_ratio) 

        self.use_res_connect = (stride == 1 and inp == oup) 

 

        layers = [] 

        if expand_ratio != 1: 

            layers += [ 

                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), 

                nn.BatchNorm2d(hidden_dim), 

                nn.ReLU6(inplace=True), 

            ] 

        layers += [ 

            nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, 

bias=False), 

            nn.BatchNorm2d(hidden_dim), 

            nn.ReLU6(inplace=True), 

            nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), 

            nn.BatchNorm2d(oup), 

        ] 

        self.conv = nn.Sequential(*layers) 

        self.se = SqueezeExcite(oup, se_ratio) if se_ratio and se_ratio > 0 

else nn.Identity() 

 

    def forward(self, x): 

        y = self.conv(x) 

        y = self.se(y) 

        if self.use_res_connect: 

            y = x + y 

        return y 

 

# ------------------------- 

# Hybrid Block 

# ------------------------- 

class HybridBlock(nn.Module): 
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    """ 

    Projection shortcut only when shapes differ (avoid double identity). 

    Activation checkpointing to save memory on forward. 

    """ 

    def __init__(self, in_planes, out_planes, stride=1, 

                 expand_ratio=3.0, se_ratio=0.25, drop_path=0.05, 

use_checkpoint=True): 

        super().__init__() 

        self.irb = InvertedResidual(in_planes, out_planes, stride, 

expand_ratio, se_ratio) 

        self.use_proj = (stride != 1) or (in_planes != out_planes) 

        self.proj = nn.Sequential( 

            nn.Conv2d(in_planes, out_planes, 1, stride=stride, bias=False), 

            nn.BatchNorm2d(out_planes), 

        ) if self.use_proj else None 

        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else 

nn.Identity() 

        self.use_checkpoint = use_checkpoint 

 

    def forward(self, x): 

        if self.use_checkpoint and self.training: 

            y = cp.checkpoint(self.irb, x)  # why: recompute backward, lower 

peak mem 

        else: 

            y = self.irb(x) 

        y = self.drop_path(y) 

        if self.use_proj: 

            y = y + self.proj(x) 

        return F.relu(y, inplace=True) 

 

# ------------------------- 

# HybridNet 

# ------------------------- 

class HybridNet(nn.Module): 

    """ 

    Backward-compatible: HybridNet(num_classes=2/4/5) 

    Lighter defaults to avoid OOM; still higher quality via SE+DropPath. 

    """ 

    def __init__(self, num_classes: int = 4, 

                 channels=(24, 48, 96),      # keep widths modest 

                 depths=(2, 2, 2),           # safe depth to avoid OOM 

                 expand_ratio: float = 3.0,  # lower than 6 to cut activations 

                 se_ratio: float = 0.25, 

                 p_dropout: float = 0.10, 

                 drop_path_rate: float = 0.05, 

                 width_mult: float = 1.00, 

                 dynamic_downsample: bool = True,  # auto-downsample very 

large inputs 
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                 ds_threshold: int = 128,          # if max(H,W) >= threshold, 

downsample by 2 

                 use_checkpoint: bool = True): 

        super().__init__() 

        self.dynamic_downsample = dynamic_downsample 

        self.ds_threshold = ds_threshold 

        self.use_checkpoint = use_checkpoint 

 

        c1, c2, c3 = [_make_divisible(int(c * width_mult), 8) for c in 

channels] 

 

        self.stem = nn.Sequential( 

            nn.Conv2d(3, 16, 3, 1, 1, bias=False), 

            nn.BatchNorm2d(16), 

            nn.ReLU(inplace=True), 

        ) 

 

        total_blocks = sum(depths) 

        dp_rates = [drop_path_rate * i / max(1, total_blocks - 1) for i in 

range(total_blocks)] 

        dp_i = 0 

 

        self.layer1, dp_i = self._make_layer(16, c1, depths[0], stride=1, 

expand_ratio=expand_ratio, 

                                             se_ratio=se_ratio, 

dp_rates=dp_rates, dp_i=dp_i) 

        self.layer2, dp_i = self._make_layer(c1, c2, depths[1], stride=2, 

expand_ratio=expand_ratio, 

                                             se_ratio=se_ratio, 

dp_rates=dp_rates, dp_i=dp_i) 

        self.layer3, dp_i = self._make_layer(c2, c3, depths[2], stride=2, 

expand_ratio=expand_ratio, 

                                             se_ratio=se_ratio, 

dp_rates=dp_rates, dp_i=dp_i) 

 

        self.pool = nn.AdaptiveAvgPool2d(1) 

        self.drop = nn.Dropout(p_dropout) if p_dropout and p_dropout > 0 else 

nn.Identity() 

        self.fc = nn.Linear(c3, num_classes) 

 

        self._init_weights() 

 

    def _make_layer(self, in_planes, out_planes, num_blocks, stride, 

expand_ratio, se_ratio, dp_rates, dp_i): 

        layers = [] 

        layers.append(HybridBlock(in_planes, out_planes, stride=stride, 

                                  expand_ratio=expand_ratio, 

se_ratio=se_ratio, 
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                                  drop_path=dp_rates[dp_i] if dp_rates else 

0.0, 

                                  use_checkpoint=self.use_checkpoint)) 

        dp_i += 1 

        for _ in range(1, num_blocks): 

            layers.append(HybridBlock(out_planes, out_planes, stride=1, 

                                      expand_ratio=expand_ratio, 

se_ratio=se_ratio, 

                                      drop_path=dp_rates[dp_i] if dp_rates 

else 0.0, 

                                      use_checkpoint=self.use_checkpoint)) 

            dp_i += 1 

        return nn.Sequential(*layers), dp_i 

 

    def _init_weights(self): 

        for m in self.modules(): 

            if isinstance(m, nn.Conv2d): 

                nn.init.kaiming_normal_(m.weight, mode='fan_out', 

nonlinearity='relu') 

            elif isinstance(m, nn.Linear): 

                nn.init.normal_(m.weight, 0, 0.01); nn.init.zeros_(m.bias) 

            elif isinstance(m, nn.BatchNorm2d): 

                nn.init.ones_(m.weight); nn.init.zeros_(m.bias) 

 

    def forward(self, x): 

        # optional dynamic downsample for big inputs (e.g., 224x224) 

        if self.dynamic_downsample and max(x.shape[-2], x.shape[-1]) >= 

self.ds_threshold: 

            x = F.avg_pool2d(x, 2)  # why: halve H,W early → big mem drop 

        x = self.stem(x) 

        x = self.layer1(x) 

        x = self.layer2(x) 

        x = self.layer3(x) 

        x = self.pool(x).flatten(1) 

        x = self.drop(x) 

        return self.fc(x)  
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