
Vehicle Pick-up and Drop-off Schedule Optimization in a University Setting

By

Teo Chun Kit

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2024

i

Vehicle Pick-up and Drop-off Schedule Optimization in a University Setting

By

Teo Chun Kit

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2024

ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: _____Vehicle Pick-up and Drop-off Schedule Optimization in a ______

 University Setting___

 __

Academic Session: ____June 2024____

I _____________________TEO CHUN KIT____________________________

(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in

Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

_________________________ _________________________

(Author’s signature) (Supervisor’s signature)

Address:

_2059, Jalan Seksyen 2/3, ____

_Taman Bandar Barat________ _Prof Liew Soung Yue______

_31900 Kampar, Perak_______ Supervisor’s name

Date: ____12/9/2024________ Date: ____________________ 12/9/2024
Type text here

iii

Universiti Tunku Abdul Rahman
Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: ____12/9/2024_______

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that ______Teo Chun Kit___________________________ (ID No:

__22ACB00091) has completed this final year project entitled “____________Vehicle Pick-up

and Drop-off Schedule Optimization in a University Setting____ _” under the supervision of

____Prof Liew Soung Yue_________________ (Supervisor) from the Faculty of ___Information and

Communication Technology_____ .

I understand that University will upload softcopy of my final year project in pdf format into UTAR

Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

(Teo Chun Kit)

*Delete whichever not applicable

iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “TITLE Vehicle Pick-up and Drop-off Schedule

Optimization in a University Setting” is my own work except as cited in the

references. The report has not been accepted for any degree and is not being submitted

concurrently in candidature for any degree or other award.

Signature : _________________________

Name : Teo Chun Kit

Date : 12/9/2024

v

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Prof. Liew

Soung Yue who is willing to supervise me in this project. Your bright ideas and your

experiences in this field helped me a lot to keep improving this project. A million thanks

to you.

Next, I would like to express my thanks to Mr. Ch’ng Chee Henn who was willing to

provide me with ideas for improvements to my project and helped me to solve some of

my unsolvable problems.

Finally, I must say thanks to my parents and my family for their love, support, and

continuous encouragement throughout the course.

vi

ABSTRACT

This project aims to enhance the convenience and safety of university students and staff

by developing an optimized vehicle pick-up and drop-off scheduling system,

integrating aspects of the Dial-a-Ride Problem (DARP) and the Carpooling Problem

(CPP) to better suit the university setting. The formulated problem is a multi-objective,

many-to-many, one-day scheduling problem with both static and dynamic components.

Uniquely, participants can serve as both drivers and passengers, with fairness

constraints applied equally to both roles. The primary objectives include minimizing

earliness waiting times, reducing DARP-like cases, and lowering total expenses, with

penalties imposed for unserved requests. Lateness will be removed using a lateness

waiting time rollback mechanism. A simulated annealing-based multi-directional

iterative local search algorithm is employed for solution optimization. The initial

solution is generated by distributing requests across vehicles, and local searches are

performed through request swapping and movement. Simulated annealing explores the

solution space in multiple directions to avoid convergence to suboptimal solutions, with

iterative loops preventing premature convergence. For dynamic requests, a handler

evaluates acceptance based on time constraints, and schedule re-optimization is

triggered as necessary, using the same methods as in the static case. Extensive

experiments validate the algorithm’s effectiveness, optimize parameters, and

demonstrate the dynamic handler's ability to manage real-time requests accurately. The

results confirm the efficiency and robustness of the proposed approach in both static

and dynamic scenarios.

vii

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES x

LIST OF TABLES xii

LIST OF SYMBOLS xiii

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Background Information 2

1.3 Project Scope 4

1.4 Project Objectives 4

1.5 Report Organization 5

1.6 Report Organization 6

viii

CHAPTER 2 LITERATURE REVIEW 7

2.1 Previous Works on Problem Formulating on Similar

Challenges

2.1.1 DARP

2.1.2 CPP

7

7

9

2.2 Previous Work on Different Optimization Algorithms

2.2.1 Tabu Search

2.2.2 Simulated Annealing

2.2.3 Genetic Algorithm

2.2.4 Construction Heuristics

2.2.5 Mixed Integer Linear Programming

2.2.6 Iterated Local Search With Two Local Search Methods

11

11

12

13

16

18

19

2.3 Previous Works on Dynamic Scenarios 21

2.4 Summary

2.4.1 Comparison Between Problem Formulating Approaches

2.4.2 Comparison Between Solution Searching and

Optimization Algorithms

2.4.3 Comparison Between The Approaches Used in This

Project

23

23

24

26

CHAPTER 3 SYSTEM MODEL 28

3.1 General Workflow 28

3.2 System Design

 3.2.1 Problem Formulation

3.2.2 Initial Solution Generating Algorithm

3.2.3 Local Search Algorithm

3.2.4 Solution Searching and Optimization Algorithm

3.2.5 Lateness Avoiding

3.2.6 Output Format

29

29

34

35

36

38

39

3.3 Dynamic Scenario Handling 40

CHAPTER 4 PRELIMINARY WORK 42

4.1 Setting up 42

ix

 4.1.1 Software

 4.1.2 Hardware

42

42

4.2 Running the System

 4.2.1 Solution

4.2.2 Simulation of the Schedule

43

44

44

4.3 Experiment Configuration

4.3.1 Objective of Experiment

4.3.2 Discussions on Test Results

46

48

48

4.4 Implementation Issues and Challenges 49

CHAPTER 5 SYSTEM CONFIGURATION 50

 5.1 Static Scenario

 5.1.1 Comparison Between The Approaches Used in This

 Project

 5.1.2 Stress Test

 5.1.3 Weight Tuning

50

51

55

 5.2 Dynamic Scenario 58

 5.3 Concluding Remarks 59

CHAPTER 6 CONCLUSION 60

 6.1 Conclusion 60

 6.2 Recommendation 64

REFERENCES 65

APPENDIX 68

FINAL YEAR PROJECT WEEKLY REPORT 69

POSTER 75

PLAGIARISM CHECK RESULT 76

FYP2 CHECKLIST 78

x

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 Concept of door-to-door, Meeting Places, and Express-

Pool and comparison between them

9

Figure 2.2 Pseudocode of Tabu Search Algorithm 11

Figure 2.3 Pseudocode of Simulated Annealing Algorithm 13

Figure 2.4 Pseudocode of Genetic Algorithm 14

Figure 2.5 The Four Genetic Operators to Generate Offsprings in

The Improved Genetic Algorithm

15

Figure 2.6 Offspring Generation and Solution Elimination Process

in The Improved Genetic Algorithm

16

Figure 2.7 Pseudocode of The First Phase of The Construction

Heuristic

17

Figure 2.8 Pseudocode of The Second Phase of The Construction

Heuristic

18

Figure 2.9 Pseudocode of The RVND Algorithm 19

Figure 2.10 Pseudocode of The Learning-Based Local Search

Algorithm

20

Figure 3.1 Pipeline of The Whole Procedure of The Proposed

Method

28

Figure 3.2 Lateness Waiting Time Roll Back Mechanism 38

Figure 4.1 Start of Running Demo of The System 43

Figure 4.2 End of Running Demo of The System 43

Figure 4.3 Output of The Solution 44

Figure 4.4 Simulation of the Best Solution From the Static

Scenario

45

Figure 4.5 Different Probability of Request Generating in

Different Time Frame

47

Figure 5.1 Satisfaction Report 47

Figure 5.2 Average Travel Expenses per Request, 𝑊𝑊𝐸𝐸 = 3 52

xi

Figure 5.3 Average Travel Expenses per Request, 𝑊𝑊𝐸𝐸 = 4 52

Figure 5.4 Average Earliness Waiting Time per Request, 𝑊𝑊𝐸𝐸 = 3 53

Figure 5.5 Average Earliness Waiting Time per Request, 𝑊𝑊𝐸𝐸 = 4 54

Figure 5.6 Average Earliness Waiting Time per Request, 𝑊𝑊𝐸𝐸 = 5 54

Figure 5.7 Average Travel Expenses Per Request in Different

Weight Configurations

56

Figure 5.8 Average Earliness Waiting Time Per Request in

Different Weight Configurations

56

Figure 5.9 Total DARP-like Cases in Different Weight

Configurations

58

xii

LIST OF TABLES

Table Number Title Page

Table 2.1 Comparison Between DARP-based Approaches 23

Table 2.2 Comparison Between CPP-based Approaches 24

Table 2.3 Comparison Between Different Solution Searching and

Optimization Algorithms

24

Table 3.1 Variable Notations and Their Meaning 29

Table 4.1 Specifications of Laptop 42

Table 5.1 Test Result for Weight Configuration 1 50

Table 5.2 Test Result for Ratio Configuration 2 51

Table 5.3 Comparison of the Reduction Percentage of Two

Weight Settings on the Earliness Waiting Time

57

xiii

LIST OF SYMBOLS

∑ Sigma, the total of

km kilometers

RM Ringgit Malaysia

xiv

LIST OF ABBREVIATIONS

CPP Carpooling Problem

DARP Dial-a-ride Problem

IDE Integrated Development Environment

ILS Iterated Local Search

SA Simulated Annealing

VRP Vehicle Routing Problem

EDOD Effective Degree of Dynamism

DDARP Dynamic Dial-a-ride Problem

QOS Quality of Service

1

CHAPTER 1 INTRODUCTION

Introduction
In this chapter, we present the background and motivation of our research, our

contributions to the field, and the outline of the report.

1.1 Problem Statement and Motivation

In recent years, the number of vehicles on the road has increased rapidly due to

urbanization and rapid city growth. The living standards of people have improved

significantly over the years, leading more and more people able to afford a private car.

This will cause a lot of problems, for example, traffic congestion, parking problems,

environmental pollution, and energy crisis. According to Su et al., traffic congestion

has cost the world an economic loss of almost 2.5% of GDP per year [1].

The situation is similar in a university. Imagine that there is a university with

20,000 students and employees. Some of them live in hostels, and some of them live

outside of university. Each hostel is in a different location around the university, and

60% of all students and employees drive cars to the university and park their cars in the

university. The parking space in the university is limited, and the destinations of each

person are mostly different due to having different courses and these courses are

distributed across different blocks in the university.

As most students and lecturers will go home if there is a long empty time slot

before their next class, traffic congestion will not only happen between 8 am and 6 pm

but also the time in between if there are quite some people going back home or coming

to the university. Even though public transport may be provided, its capacity is limited,

and it cannot send passengers to each of their specific destination points, as public

transport will only stop at some specific stops in the university, rather than each

building stop once. Passengers will still need to walk to their specific destination if it is

not a public transport stop.

Other than that, it is difficult for a university to have enough parking space to

accommodate all cars. Some may find a parking place, but they will need to park at a

place far away from their destination, which is inconvenient. This is not a comfortable

experience for them, as they will need to walk under the hot sun to their destination,

2

and sometimes under the rain. Some more unfortunate ones will not find any parking

place that is relevant to their destination. They can only either choose to park very far

away or just keep turning around the parking lot.

Moreover, as not all students or staff have car, some will need to ride a bike to

university. Even though there are speed limit signs every way in the university, the

students will still drive very fast. There may be bumps or pedestrian lines to make the

lives of bikers better, but not all cars will slow down on bumps and let bikers or

pedestrians cross first at the pedestrian line. Sometimes they will not even slow down

when bikers are about to cross junctions, thinking all bikes have the same speed as cars.

These situations are dangerous to bikers, and the risks will be even higher when the

number of cars increases. Accidents may happen because of these issues.

 Although the above-mentioned problems may not cause serious monetary loss

to university employees or students, it will cause a huge deal of inconvenience to them,

and sometimes traffic accidents may also happen from it.

1.2 Background Information

There are some background information readers should know to better

understand this project. To solve the ever-growing congestion problem, researchers

have come out with a solution, which is the vehicle routing problem (VRP). VRP

encompasses the dial-a-ride problem (DARP) and carpooling problem(CPP). DARP is

a type of problem where customers call for a ride (make a request), and then drivers

will be assigned to serve the request of that customer. Nowadays e-hailing services and

taxi services are all types of DARP.

VRP is an NP-hard problem according to [2]. One can understand the basic

concept of VRP by studying the traveling salesman problem in [2]. With VRP, several

people can share one vehicle, thus helping to reduce the number of cars on the road to

a significant degree. The concepts of DARP and CPP are near, just that their main

objective is different, thus some of their constraints are also different. DARP mainly

focuses on minimizing total travel costs and passenger service quality, while CPP

mainly focuses on ensuring fairness among all participants.

The ways to optimize DARP and CPP are the same. A mathematical model will

be proposed to represent the problem to be solved, and then an optimization algorithm,

3

whether heuristic or meta-heuristic will be proposed to find the best solution that can

best meet the main objective for the proposed problem. Both DARP and CPP have two

variants, static and dynamic. For static problems, all information concerning

passengers' requirements is defined and fixed beforehand [2]. For dynamic problems,

passenger requirements can be changed in real-time. New requests will be expected to

come in, and the program need to decide to either accept or reject them. If the requests

are accepted, the program needs to find a way to serve them while making sure the route

or solution is still feasible [3]. DARP has two variants, which are homogenous DARP,

where each vehicle has the same starting and ending depots, and heterogenous DARP,

where each vehicle has different starting and ending depots.

CPP can be categorized into two distinct types: Daily Carpooling and Pick-up

(DCPP) and Long-Term Carpooling and Pick-up (LTCPP). In the context of DCPP,

drivers pick up passengers and return them on the same day. The primary aim here is

to efficiently allocate passengers to drivers while considering time constraints and car

capacity limitations [1]. LTCPP, conversely, involves the sharing of a private vehicle

by multiple individuals. These individuals collectively follow a semi-common route

connecting different starting and ending points during a specific period. It's worth

noting that each participant in LTCPP will be assigned to take on the roles of both driver

and passenger [4]. Participants of carpool in CPP will only have two requests per day:

from origin to destination and vice versa. For each request, there will be other requests

with similar pick up and drop off time, close origins, and destinations to be handled by

the same vehicle. According to the origin and destination points of each participant, the

CPP can be many-to-many, one-to-one, or many-to-one. Most CPPs formulated by

researchers are of the one destination variant.

To start the optimization process, we first need to come out with an initial

solution. The distribution of different solutions in a solution space can be likened to a

graph. The optimization process is a solution-searching process that aims to find the

lowest point in that graph, which is the best solution. There will be some scenarios

where the search process will reach a low point, but not the lowest point in the graph,

and converge at that low point. This will be the local minimum problem. Thus, most

optimization algorithms will also handle the escaping from the local minimum [5].

Moving on to the dynamic scenario, dynamic optimization will also have

objectives to be met [6]. It is like static optimization in terms of constraints, as it has a

fleet size, a car capacity, a time window, etc. Request rejection can be accepted in

4

dynamic scenarios, as the satisfying of the hard time window constraints of the existing

static requests should be prioritized. Other than that, a program may choose to not

entertain urgent requests to ensure the comfort of those whose requests are being

currently served. There are several different ways to measure the dynamism of the

scenario [7], which means how dynamic the scenario is, but in this project, we will only

use the effective degree of dynamism (EDOD) to measure dynamism. Two main ways

to handle dynamic requests are insertion heuristics, as shown in [8], and metaheuristics

such as tabu search and genetic algorithm.

Lastly, the university scenario is special. It has both the static and the dynamic

nature. Students and staff have a fixed timetable, and based on these timetables static

requests will be generated. But, in a university, same-day class cancelations or additions

may happen, students and staff may have unplanned, urgent meetings, or they may only

remember they have something to do later the same day. These scenarios will generate

dynamic requests.

1.3 Project Scope

The aim of this project is to formulate the problems stated in the problem

statement and develop a model to solve the problems. The model will generate a

schedule to handle all passenger requests from a starting point to a destination,

subjective to several constraints that will be explained in Chapter 3. A solution

searching and optimization algorithm will be used to optimize the schedule to better

meet the passengers’ and drivers’ objectives. After the best schedule has been

generated, the schedule will be simulated, and new requests will be coming in based on

probability to simulate the dynamic scenario.

1.4 Project Objectives

This project aims to propose a model for generating schedules (solutions) that

can ensure all students and employees have a pleasant experience coming to the

university and going back by reducing the number of cars thus reducing congestion

during peak hours. By reducing the number of cars in the university, the parking space

provided by the university is enough to accommodate the number of cars that are parked

5

in the university so there is no need to introduce policies such as bidding of car stickers.

Students will no longer need to try out their luck just to get a chance to park at the

university. Other than that, the solution will focus on point-to-point pick up and drop

off so users will not need to walk too long to reach their destination points from their

vehicles or vice versa.

To build a model to solve the problems stated in the problem statement, we first

need to formulate the problems. The general approaches by researchers to formulate

these kinds of challenges are by formulating them as CPP or DARP. However, as both

methods come with their pros and cons, they should be tweaked according to the exact

scenario of the problems to solve. This project will attempt to formulate the problems

as a combination of DARP and CPP to better suit the university setting of the problems

to be solved by this project. Drivers and passengers will not be treated as separated

roles, meaning that drivers can be passengers after finish serving a request, and

passengers can be drivers after reaching their destinations.

Multi-objective optimization will be studied and implemented in this project,

mainly focusing on optimizing the overall traveling expenses, earliness and lateness

waiting time, and the number of dial-a-ride-like cases. Apart from that, this project will

study the possibility of tweaking the traditional simulated annealing (SA) algorithm to

make it more suitable for the formulated problem of this project. Therefore, an SA-

based multi-directional iterative local search algorithm will be built in this project as

the solution searching and optimization algorithm.

After that, university students may have sudden changes in their class schedules,

for example, additional classes or unscheduled meetings. This means dynamic requests

may come in during the running of the vehicle schedule. This project will study a way

to serve these dynamic requests, while not changing the service details of those requests

that are currently being served. This dynamic optimization solution will also ensure the

constraints and service quality assurance of the static scenario can be met.

This project will only focus on the algorithm part and will not develop an

application based on it, meaning that the solution will be a runnable program on IDE,

not a well-decorated mobile or web application. The expected output will be a schedule

in simple form on a text file, together with the values of objective-related indicators

such as total lateness and total cost.

6

1.5 Contributions

This project formulates problems from a university setting. This is rare among

the currently available research work as most of them focus on generic settings, which

may not always match the nature of a university setting. Moreover, both the solution to

the static part and the dynamic part of the university scenario will be studied. This

project will show that the proposed model, algorithms, and dynamic scenario-handling

mechanism can effectively optimize the formulated problem.

Apart from that, the combination of DARP and CPP will be studied.

Incorporating some aspects of DARP into CPP in problem formulating will make the

problem-solving model more robust to serve many-to-many scenarios. Although there

is already research done to formulate many-to-many CPP, the model proposed in this

project attempts to formulate the problems in an easier-to-understand way and to better

meet the real-world scenario. Aside from that, a cost model that takes care of both the

satisfaction of the drivers and the customers will be formulated.

Other than that, the feasibility of the SA algorithm as the solution optimization

algorithm will be studied. The main optimization algorithm used in this project will be

SA-based, and it will be tweaked to further improve its performance. The parameters

will be tested to find the best configuration for the university scenario.

1.6 Report Organization

The details of this research are shown in the following chapters. In Chapter 2,

some similar models with different objectives are reviewed. Moreover, different

optimization algorithms will be studied to compare with the algorithm used in this

project. Various approaches to handle dynamic scenarios will also be studied. Then, in

Chapter 3, the details of the model proposed in this project, the algorithms, and the

dynamic scenario handling mechanism will be explained. Next, in Chapter 4, the

simulation and experiment configuration of both the static and dynamic scenarios will

be presented. Chapter 5 will show the experiment results and explanation. Chapter 6

concludes this project and suggests recommendations for this project.

7

CHAPTER 2 LITERATURE REVIEW

Literature Reviews

2.1 Previous Works on Problem Formulating on Similar Challenges

2.1.1 DARP

The previous works done on formulating DARP mainly differ on their

optimization objectives and constraints, but the challenges they formulate their

problems on are quite similar, mainly to solve congestion-related challenges.

A classic DARP is like the one proposed by J. F. Cordeau and G. Laporte. There

are a certain number of passengers, and a certain number of cars, and passengers each

have requests for pick up and drop off. Drivers and passengers are separated, meaning

that the roles of passenger and driver cannot interchange. Each request will be specified

with a time window, and the arrival time exceeding that time window will be penalized.

This time window will ensure passengers are less likely to be late to reach their

destinations. The requests will be handled by each car by complying with certain

constraints. The optimization objective of their work is also the general one that is used

in many other similar works, which is to reduce total cost. However, their model is

generic, so it needs some tweaking to meet specific scenarios, for example, the

university setting studied in this project [9].

G. R. Mauri et al. proposed a DARP that further prioritizes passenger

satisfaction in terms of total costs, total traveling time and distance, and waiting time.

This is a multi-objective optimization, as it not only has multiple objectives but also

uses multiple objective functions to handle different passenger satisfaction indicators.

The DARP model proposed in this work is heterogeneous, which means vehicles have

different start and end depots [10]. Their model handles customers’ satisfaction very

well, as their objectives are often what customers will prioritize when choosing an e-

hailing or taxi service. However, if they want the pick up and drop off time of each

request to be very precise according to the exact traveling time, the formulated problem

may be too complex to solve, thus sometimes may not have a feasible solution.

8

Other than that, S. Ouasaid and M. Saddoune proposed a DARP that takes

driver’s preferences into account. This is a novel work as most DARP formulations will

only give priority to passengers’ comfort without considering the drivers’ side. Their

model penalizes both excess traveling time and excess waiting time for drivers. Their

model has only a single optimization objective, which is to reduce the total traveling

time. Although only have one objective, their model consists of three objective

functions to handle both the penalty imposed on excess travel and waiting time for

drivers [11]. This approach should be taken into account when formulating DARP, as

drivers are also an important part of DARP.

M. Posada et al. proposed another variant of DARP, the integrated dial-a-ride

problem (IDARP). IDARP in essence means the integration of different types of

transportation together, meaning that for a passenger’s request, the transportation that

serves the passenger may change from car to bus and then to bike throughout the whole

trip [12]. This study even included human walking as a type of transportation and

included wheelchairs as a type of transport to meet the needs of disabled ones. This

approach accepts vehicles with different speeds and capacities. IDARP is a more robust

way of problem formulation and can better represent real-world scenarios in a general

way but it doesn’t take the comfort of passengers into serious consideration, as they

will need to do extra actions such as walking or changing transportation, rather than

just hop in a vehicle on starting point and hop off on destination, which is more

comfortable for a passenger.

A. Ham introduced a DARP with an additional feature known as Express-Pool

and with Friend-Only constraint. Express-Pool enables several passengers to be picked

up by a car at a pickup point near the starting points of those passengers. It is different

from the usual door-to-door pick up used by DARPs and can remove more detours

compared to the Meeting Places concept, where passengers move to the starting point

of one or two passengers to be picked up by a car, as shown in figure 2.1. Express-Pool

is similar to public transport [13]. This feature does reduce the total travel distance and

travel time of a car, but passengers will need to walk or find a way to the alternative

pick up point, which is so much more inconvenient compared to door-to-door pick up.

On the other hand, Friend-Only is a constraint to only enable the passenger permitted

by the driver to be served by that car. This constraint improves the safety of the dial-a-

ride process, but it will make the problem so much more complex that it is hard to find

feasible solutions for a larger number of passengers and requests.

9

Figure 2.1 Concept of door-to-door, Meeting Places, and Express-Pool and comparison

between them [13]

2.1.2 CPP

Most previous works done on formulating CPP differ in their number of

objectives, and whether it is many-to-many, or many-to-one. The challenges they

formulate their problems on are quite similar, and also similar even to DARP, which

are also congestion-related challenges.

S. Yan et al. proposed a long-term many-to-many CPP (LMMCPP). In their

work, passengers can have different origins and destinations, but if for example a car

has 4 seats, with only 3 passengers in it including the driver, and there is a request along

their route to their specific destinations that the car can serve if making a detour, the

car will not serve that request. The output of the model is a long-term carpooling

schedule, meaning that the schedule will at least encompass a few days. Passengers

with close origin and destination will be made into a passenger group, and different cars

will serve them on different days [4]. The person who will be assigned as driver among

that group will also differ across different days. As CPP prioritizes fairness, this

proposed model optimization objective will be to reduce the difference between costs

paid by each passenger, and it has only one objective. This approach is good as it can

solve many-to-many problems, but it may limit the number and quality of solutions as

it does not permit detours.

S. Su et al. proposed a long-term CPP (LTCPP). It is a many-to-one single

objective model. Its objective is to find the shortest route for all participants [1]. This

model ensures some fairness on the driver side by restricting a participant to be assigned

as driver for two consecutive days. However, the number of times each participant is

assigned as driver will not be taken into account. This model’s taking care of drivers’

satisfaction is not complete enough.

10

On top of their previous work, S. Su et al proposed another model to tackle

LTCPP with multiple objectives. It still retains the many-to-one attribute of the previous

model. This model showed that multiple-objective CPP is doable. This model aims to

minimize the total travel distance and total waiting time of passengers only at the

starting point [14]. It considered the satisfaction of passengers, but in real life, people

are more sensitive to being late to reach destinations than to waiting for too long at

origin. Minimizing the waiting time at the destination side, in other words, minimizing

lateness should be implemented in this model as an objective instead.

11

2.2 Previous Works on Different Optimization Algorithms

Below are several algorithms used by researchers to either find a good quality initial

solution or to find the optimum solution.

2.2.1 Tabu Search

Tabu search is a metaheuristic approach to finding the best solution while

escaping the local minimum. This method creates a tabu list to record the action done

by the searching algorithm, called steps. For example, car A swap request 1 with request

2 of car B. Then this action cannot be done again by the searching algorithm for a

specific number of iterations, or tenure period. After the tenure period, the step in the

tabu list will be removed and the searching algorithm can take that step again [5]. Figure

2.2 shows the pseudocode of a tabu search algorithm.

Figure 2.2 Pseudocode of Tabu Search Algorithm [15]

12

In the work of S. Ho et al., they introduced an improved version of tabu search

implementation. They use construction heuristic to find a high-quality initial solution

within a short time, and then use the tabu search algorithm to find the best solution [16].

This can be viewed as a hybrid approach to implementing optimization algorithms.

Based on their test results, their version of the tabu search algorithm outperformed the

ordinary tabu search algorithm in terms of the time needed to obtain the optimal

solution and the quality of the solution. Things to take note of are in more complex test

cases, the improved tabu search outperformed the original tabu search by nearly 84%

for runtime. The usage of construction heuristic in finding the initial solution clearly

helps in this improvement as the algorithm will no longer need so many steps to reach

the best solution.

2.2.2 Simulated Annealing

Simulated annealing (SA) is another metaheuristic approach to search for the

best solution and escape the local minimum. In SA, the better solution is always

accepted. The worse solution will have a probability of being accepted, called

temperature. Temperature does not necessarily need to be implemented as probability,

but it must represent the algorithm’s willingness to accept worse solutions. The

temperature of a SA algorithm will be adjusted across the increasing number of

iterations. SA sometimes accepts worse solutions as the solution may have something

good in it. If we view the search process as a graph, a worse solution may be a means

for the search algorithm to hop to the best solution, thus escaping the local minimum

[5]. Figure 2.3 shows the pseudocode for the SA algorithm.

13

Figure 2.3 Pseudocode of Simulated Annealing Algorithm [17]

2.2.3 Genetic Algorithm

Genetic algorithm is a metaheuristic approach that imitates the biological

evolution process, in other words, survival of the fittest. To apply genetic algorithm,

first, a solution space needs to be generated. The number of solutions in the initial

solution space can be adjusted according to specific problems. Throughout the solution-

finding process, the size of the solution pool must be fixed to the same number. For

each solution, a fitness score is calculated to show how good is the solution. Different

solutions in a solution space will then crossover, which means exchanging some parts

between them. The fitness score will be calculated for the new solution. Solutions with

a higher fitness score have a higher probability of survival, which means to not be

removed. Removal of solutions from the solution list is done in every iteration to

maintain the number of solutions in the solution list. In rare occasions, mutation will

14

occur, and the action done for mutation can be modified according to needs. The

probability of mutation will also be set beforehand, and it can be adjusted. In the end,

the solution with the highest fitness score will be chosen as the optimum solution [5].

Figure 2.4 illustrates the pseudocode for genetic algorithm.

Figure 2.4 Pseudocode of Genetic Algorithm [18]

 J. Li et al. proposed an improved version of the genetic algorithm for optimizing

DARP. Their work solved the slow convergence problem for the original genetic

algorithm. They replace the crossover and mutation action with four genetic operators:

transfer, swap, segment exchange, and reshuffle [19]. Figure 2.5 illustrates the 4

different genetic operators. Only one genetic operator will be chosen in an iteration,

and the operators are chosen based on a roulette wheel-like probability generator. The

other parts of the algorithm are the same as the original genetic algorithm. The whole

process of generating offspring and eliminating solutions is shown in Figure 2.6.

15

Figure 2.5 The Four Genetic Operators to Generate Offsprings in The Improved Genetic

Algorithm

16

Figure 2.6 Offspring Generation and Solution Elimination Process in The Improved

Genetic Algorithm [19]

 According to their experiment results, their improved version of genetic algorithm

had outperformed both the original genetic algorithm, tabu search algorithm, and

simulated annealing algorithm in terms of time needed to obtain the optimum solution

and the quality of the optimum solution [19]. However, this can only prove that the

improved genetic algorithm performs well in their type test case settings. It is not

guaranteed to be better than the algorithms used as a comparison in different test case

settings.

2.2.4 Construction Heuristics

Construction heuristics are methods used to find good quality initial solutions

quickly. S. Ouasaid and M. Saddoune proposed the use of construction heuristics in

finding better initial solution for their DARP. They proposed a “Cluster-First Route-

Second” approach, in which they first group requests with geographically close origins

and destinations into a cluster [20]. They called this the “clustering phase”. Requests

that are along the chosen route of a car will also be grouped together. Then these

requests will be assigned to each car. The requests will kept being reassigned between

each car to find the best possible initial solution, in the expense of some requests will

17

not be served. They called this the “construction phase”. The pseudocode of the two

phases of this algorithm is shown in Figure 2.7 and Figure 2.8.

Figure 2.7 Pseudocode of The First Phase of The Construction Heuristic [20]

18

Figure 2.8 Pseudocode of The Second Phase of The Construction Heuristic [20]

This algorithm indeed obtained a good initial solution, and this will be a great

help in getting a better quality optimum solution with a faster convergence speed, but

in real-world scenarios, people will care more about whether their requests are served

rather than the speed their requests are being arranged into a schedule, or the quality of

that schedule. So a balancing point should be determined to maximize the quality of the

initial solution in the condition of all requests can be served.

2.2.5 Mixed integer linear programming

This approach formulates the whole model into lines of linear equations and

attempt to solve it using software tools. Most of the time this approach will be used to

find the initial solution, but with the help of powerful software tools like CPLEX, it can

also be used to find the optimum solution [21]. For examples of mixed integer linear

programming approach, we can study the work of M. Posada et al. They proposed two

19

linear programming model to find the initial solution for their DARP. The linear

equations for both models are almost the same, just that model 2 will record the route

visited by each car to prevent cars from making cycles, thus reducing the time needed

to obtain the initial solution and improve the solution quality [12]. As to best utilize the

strength of linear programming in optimizing vehicle routing-related problems software

tools are needed, linear programming approach is not too suitable for this project.

2.2.6 Iterated Local Search With Two Local Search Methods

The iterated local search with two local search methods is an improvement made

to the iterated local search (ILS) heuristics. This improved algorithm is proposed by S.

Ouasaid and M. Saddoune. They claim this solution-searching algorithm can come out

with a better solution compared to the traditional ILS algorithm [11].

The first local search method they implemented is the random neighbourhood

visit order (RVND). The RVND does neighbourhood visitation in three ways: moving

a request from one car to another car, swapping lists of requests between two cars, and

swapping the order of two empty cars. The decision of which type of visitation is

chosen is randomized. Then the best solution obtained by the visitation is taken. The

pseudocode of RVND is shown in Figure 2.9 [11].

Figure 2.9 Pseudocode of The RVND Algorithm [11]

20

The second local search method they used was the learning-based local search.

Each neighbourhood or search method is given a score. Methods with higher scores

will have a higher probability of being chosen. In the beginning, each method has the

same score, and the score of each method will either be added or deducted after certain

iterations based on the quality of the solution they obtained. The pseudocode of the

learning-based local search is shown in Figure 2.10. The score deduction or addiction

rate can be adjusted by the variable alpha, and the addition and deduction value can be

adjusted by variable beta and gamma, respectively.

Figure 2.10 Pseudocode of The Learning-Based Local Search Algorithm [11]

 The approach implemented in this ILS to randomly choose the solution searching

method in each iteration is a good approach as they can diversely explore through the

solution space. However, its “swap” solution searching method may lose out on some

good solutions as it is swapping a list of requests. We can imagine the solution space

as a line graph and the searching method as how large the step is to move from one

point on the graph to another point. If they are swapping several requests at once, the

“step” to move to another solution may be too large thus they may skip over the best

solution in a certain step.

21

2.3 Previous Works on Dynamic Scenarios
To handle dynamic requests, we should first know the level of dynamism of our

scenario. The dynamism of the scenario is measured using EDOD, which A. Larsen

proposed. According to him, a scenario can be classified as a weak, moderate, or strong

dynamic scenario if its EDOD is lesser than 0.3, between 0.3 and 0.8, or more than 0.8

respectively [22]. With different strengths of dynamism, different approaches will be

taken to handle the scenario. The DDARP and its similar problems are classified as

moderate dynamic scenarios [7], so the review of past approaches will be focused on

moderate dynamic scenarios.

Below is the formula for the calculation of EDOD:

Let:

T = end time of the planning horizon.

𝑡𝑡𝑖𝑖 = the time the accepted dynamic request comes in.

𝑁𝑁𝑖𝑖 = the number of accepted dynamic requests

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = the total number of requests, including the dynamic requests

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
∑ 𝑡𝑡𝑖𝑖

𝑇𝑇
𝑁𝑁𝑖𝑖
𝑖𝑖=1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 , as seen in [7].

As mentioned in the background information, two main ways to handle DDARP are

through insertion or insertion with metaheuristics methods. The most basic insertion

methods are by inserting a detour in a route to accommodate the dynamic requests [8].

When the dynamic request is too urgent, adding a detour for it may cause the time or

cost of the ongoing requests, which are those that are currently being served, to change,

and this will cause serious dissatisfaction. So some researchers will attempt to reject

urgent requests [7] or lock the ongoing requests.

G. Berbeglia et al. proposed a tabu search and constraint programming (CP) based

algorithm to optimize the DDARP. The way the tabu search works is like that of the

static cases, which are used to find the best or optimal solution. CP was used to ensure

that the solution obtained by the metaheuristics after dynamic requests had been

inserted would still comply with the constraints of the formulated problem [23]. With

metaheuristics being used, dynamic optimization will come with objectives. Like static

optimization, most objectives are either monetary-related or time constraint-related.

As the dynamic requests may be coming in at any time, the solution will need to be

reoptimized to insert the requests and ensure the best possible solution. Two main re-

22

optimization approaches are continuous re-optimization and periodic re-optimization.

Continuous re-optimization means the solution will be re-optimised throughout the

execution of the solution, whereby the rate is based on a preset time interval. This

approach ensures the best possible solution, but participants will see their schedules

being updated frequently [22]. Periodic re-optimization means the solution will only be

updated when some conditions are triggered, for example when new requests come in.

This will ensure the least amount of changes on the schedule, but the quality of the

solution may not be the best [22].

23

2.4 Summary

2.4.1 Comparison Between Problem Formulating Approaches

DARP-based formulating approaches

Table 2.1 Comparison Between DARP-based Approaches

Approaches Strengths Shortcomings

Classic DARP - Handling

passengers'

satisfaction in

terms of lateness

- Generic model, not

always suitable for some

scenarios

DARP that further

prioritize

passenger’s

satisfaction

- Handle passengers’

satisfaction very

well

- Formulated problem

may be too complex to

solve

- Sometimes may not

have feasible solutions

DARP with driver

preferences

- Take care of the

satisfaction of

drivers

Integrated DARP - Better represent the

real-world scenario

- A more robust way

to formulate a

problem

- Does not take

passengers’ comfort into

serious consideration

DARP with

Express-Pool and

Friend-Only

- Express-Pool

reduces the

complexity of the

formulated

problem

- Friend-Only

enhance safety

- Not convenient for

passengers

- Friend-Only make the

problem more complex

- Hard to find feasible

solutions for large

numbers of passengers

and requests

24

CPP-based formulating approaches

Table 2.2 Comparison Between CPP-based Approaches

Approaches Strengths Shortcomings

Long-term many-to-

many CPP

- Handle many-to-

many scenario

- Limit the number of

solutions as it does not

permit detour

Long-term many-to-

one CPP

- Take care of

fairness on the

drivers’ side

- Fairness constraints on

the drivers’ side are

not complete enough

Multi-objective CPP - Handle multi-

objective scenario

- Do not have lateness

constraints at the

destination side

2.4.2 Comparison Between Solution Searching and Optimization Algorithms

Table 2.3 Comparison Between Different Solution Searching and Optimization

Algorithms

Algorithm Strengths Shortcomings

Improved tabu Search - Less time needed to

find the best

solution

- Have memory

overhead

- Not good enough for

too complex

problems

Simulated annealing - Can adjust the

search intensity

- Easier to be

implemented

- Faster convergence

speed

- May affect solution

quality due to the

possibility of

accepting worse

solutions

25

Improved genetic

Algorithm

- Reduces

convergence time

- Improved quality of

the best solution

- May only perform

this well on specific

problems

- Need more

processing power

Construction heuristics - Improved quality of

initial solution

- Less time needed to

obtain a good

initial solution

- Less suitable to find

the optimum

solution

- May sacrifice some

requests to not be

served to get a better

initial solution

Mixed-integer linear

programming

- Can be a very good

approach for

optimization with

the help of software

tools

- Need software tools,

not suitable for the

setting of this project

Iterated local search

with random

neighbourhood visit

order and learning-

based local search

- Good solution

space exploration

approach

- Large solution space

exploration “step”

- May miss out on

better solutions

26

2.4.3 Comparison with The Approaches Used in this Project

 The problem formulation approach used in this project will be a hybrid approach of

both DARP and CPP. For implementing classic DARP in the university setting used in

this project, a group of drivers will need to be brought into the university to serve the

requests of students, which is not realistic. Thus, in this project participants can be

assigned as both drivers and passengers, so that students or staff of a university can

serve all their requests by themselves. The formulated problem is a many-to-many

problem and has two objectives, which are to minimize expenses and earliness waiting

time. As the compensation to specially assigned drivers will also be included in the

expenses, by minimizing the expenses the frequency of special driver assignment will

also be minimized. A multi-objective problem can take care of more aspects of the

satisfaction of both the drivers and passengers’ side.

Moreover, the model used in this project comes with an expense calculation

model that excludes the driver in the petrol fee calculation and imposes extra payments

on the passengers if the driver is specially assigned. These will further take care of the

fairness and satisfaction on the drivers’ side, yet not increase problem complexity as

the calculation of payment is just simple math calculations. If the driver also has

requests and is currently serving the driver’s own request, the same time window

applied to passengers will be assigned to the driver. If lateness waiting time is present,

it will be removed using a lateness waiting time rollback mechanism. The time window

is not a hard constraint, thus not increasing the complexity of the problem. Other than

that, the unserved requests for both drivers and passengers will be penalized heavily.

This ensured the fairness of between the drivers and the passengers.

The algorithm used in this project for solution searching and optimization is an

SA-based multi-directional iterative local search algorithm. The SA-based algorithm is

used as it is easier to implement, and compared to genetic algorithm and tabu search, it

has less memory overhead and requires less processing power, thus taking less toll on

the computational devices. SA also has a faster convergence speed. For the local search

method, the methods used in [11] are referred to, and an improved version of their

swapping method together with their request moving method is implemented as the

local search method for the solution searching and optimization algorithm used in this

project. The swapping process will only swap one request at a time. This will reduce

the possibility of missing out on better solutions due to little exploration steps.

27

Apart from that, to avoid early convergence, the iteration will only stop if the

quality of the best solution has not been updated for a certain number of iterations. This

number will be determined after experiments. To amend the shortcomings of SA, a

vector of five solutions will be created, and the SA-based local search will be done for

all five solutions in the vector in every iteration. This enables the solution-searching

algorithms to have a more diverse exploration direction in the solution space, as it will

now search in five directions, and therefore reduce the possibility of converging with

worse solutions.

For the handling of dynamic scenarios, this project will use a similar approach

to the one proposed in [23]. The SA-based multi-directional iterative local search

algorithm will be used to re-optimize the solution, and the optimization objective will

be the same as the static scenario. Periodic re-optimization will be used, as the need to

check the solution continually over a time interval will bring a great deal of

inconvenience to the staff and students. The requests with a starting time within 1 hour

from the current time will be locked, and dynamic requests with a starting time within

one hour from the current time will also be rejected. This is to ensure participants have

sufficient reaction time if their schedule is updated. Participants will only need to check

the schedule 1 hour before their requests start, and the arrangement for that request will

not be changed after that.

28

Chapter 3

System Model

3.1 General Workflow

Figure 3.1 Pipeline of The Whole Procedure of The Proposed Method

The outputted solution will be a route schedule of the pickup sequence of the cars

on only a day. The route schedule includes all nodes that each car will pass through

together with the time they reach the nodes. The total inconvenience cost, travel

expenses, earliness waiting time, lateness waiting time, and frequency of special

driver assignment will also be outputted to the same text file. In the dynamic scenario,

every time the solution has been re-optimized, the new solution will also be outputted

to a text file with the same format as the static scenario.

29

3.2 System Design
3.2.1 Problem Formulation

This is a many-to-many DARP-based problem, which the means schedule will only be

arranged for one day. However, some aspects of CPP will be incorporated into this

problem formulation.

Inputs:

- A map in the adjacency list

- Car objects

- Participant objects

- Requests

Variable notations:

Notation Meaning

Pen Penalty

S Travel expenses

C Total expenses

r Requests

V Cars

p Participants

L Lateness waiting time

Notation Meaning

E Earliness waiting time

x Decision variable

𝑁𝑁𝑉𝑉 Total number of car

𝑁𝑁𝑟𝑟 Total number of requests

I Inconvenience costs

W Weights in the inconvenience

score function

Pen Penalty

Table 3.1 Variable Notations and Their Meaning

Decision variable:

The decision variable, x for each request is as follows:

𝑥𝑥 = �1, 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Expenses function:

𝐶𝐶 = � �𝑆𝑆𝑝𝑝𝑖𝑖

𝑁𝑁𝑝𝑝

𝑖𝑖=1

�

30

The travel expenses to be paid by each passenger consist of two parts, the petrol

fee to travel from one node to another node, and the compensation payment paid to

drivers who are specially assigned to serve them. The petrol fee from one node to

another node is divided by all participants in the car at that moment except the driver,

which means the driver will not need to pay for the petrol fee. The compensation to the

specially assigned drivers will be handled in the calculation of the travel expenses.

Penalty:

𝑃𝑃𝑃𝑃𝑃𝑃 = ��𝑥𝑥𝑟𝑟𝑖𝑖 × 5000
𝑁𝑁𝑟𝑟

𝑖𝑖=1

�

In the route schedule, if the arrival time of a car at a participant’s destination

point to drop off the participant is later than the participant’s intended arrival time,

lateness waiting time will be recorded. Lateness waiting time will be removed using a

lateness rollback mechanism for both drivers and passengers, so it will not be penalized

here. Apart from that, any unserved requests will be penalized heavily, as shown in the

penalty function above.

Travel expenses calculation:

For normal cases:

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

For special driver assignment cases:

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1.5 × (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

Where the 0.5 × travel expenses will go to the specially assigned driver as

compensation. As stated in the expenses function, these expenses will be divided by all

passengers except drivers. The petrol price is fixed at a rate of RM 3 per km.

31

Objective functions:

min (𝐶𝐶)

min (�𝐸𝐸𝑝𝑝𝑖𝑖

𝑝𝑝

𝑖𝑖=1

)

In the route schedule, if the arrival time of a car at a participant’s origin point to

pick up the participant is earlier than the participant’s intended departure time, earliness

waiting time will be added for the customer. Each customer object will have an attribute

storing their total earliness waiting time. As the compensation for the special driver

assignment had been included in the total expenses, minimizing total expenses will also

minimize the number of special assignment cases.

Inconvenience cost calculation:

𝐼𝐼 = (𝐶𝐶 × 𝑊𝑊𝐶𝐶) + (𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑊𝑊𝐸𝐸) + 𝑃𝑃𝑃𝑃𝑃𝑃

A weight will be multiplied by each variable to be minimized to denote their

importance level. Each variable must have a different importance level for a better

optimization result. As there are only two weights to optimize, no matter how we

change these weights they can be simplified into a ratio of 1: 𝑥𝑥. For example, if 𝑊𝑊𝐶𝐶 =

50,𝑊𝑊𝐸𝐸 = 200, the ratio of the two weights, 𝑊𝑊𝐶𝐶 ∶ 𝑊𝑊𝐸𝐸 = 1: 4. If 𝑊𝑊𝐶𝐶 = 100,𝑊𝑊𝐸𝐸 =

200, 𝑊𝑊𝐶𝐶 ∶ 𝑊𝑊𝐸𝐸 = 1: 2. Thus, we will fix 𝑊𝑊𝐶𝐶 to 1 and make 𝑊𝑊𝐸𝐸 changeable to find the

best weight combination. This also means that more priority will be given to the lower

earliness waiting time. The inconvenience cost function will be as follows:

𝐼𝐼 = 𝐶𝐶 + (𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑊𝑊𝐸𝐸) + 𝑃𝑃𝑃𝑃𝑃𝑃

The inconvenience cost functions can be summarized as follows:

min (𝐼𝐼)

32

Driver assignment:

 If the starting point of a participant’s request is the same as the current location of

a car on the intended starting time of that participant, that participant will be assigned

as the driver. If the car is at a certain location and there is no request now whose starting

point is the same as the car’s location, the model will choose one person who is

currently at the car’s location node to be the driver. This is the case in which participants

are specially assigned as drivers to serve some requests, and this case will be referred

to as a DARP-like case.

Parameters to be tuned of the algorithm:

• Weight for earliness waiting time

• Number of iterations of not updated lowest inconvenience score to converge

33

Constraints:

1. Each car will have a fixed capacity of 5 seats including the driver seat.

2. Each car will have a fixed speed of 30 km/h.

3. The intended arrival time of each participant will be fixed to 30 minutes after

their intended departure time.

4. The maximum earliness waiting time for each request cannot exceed 10 minutes

(QOS constraint).

5. After a car departs from a node, it cannot move back to that node directly.

However, if let’s say a car moves from node A to node B and then back to node

A again, this is acceptable.

6. The origin and destination of a request must not be the same.

7. The number of participants a car can take cannot exceed its capacity.

8. The request of each participant will only be served by one car.

9. The origin and destination of a participant’s request will only be served by one

car.

10. Drivers who are specially assigned to serve requests will drive the car back to

the driver’s location before serving the request after serving the request.

11. The request serving sequence of a car should be arranged according to the

intended start time of each request, from earlier to later.

12. Drivers with a request must serve the request of all passengers in the car first

before going to the driver’s own destination.

13. Only participants’ requests with an intended start time difference within a 12-

minute range will be served together. Or else the request of a participant will

only be served after the request of another participant was served.

14. All participants must be able to drive.

15. Each node will have participants on it.

34

3.2.2 Initial Solution Generating Algorithm

Pseudocode for initialization

Inputs:

• sol - Solution object containing lists of cars (CList) and requests (req)

Outputs:

• A vector of pointers to car objects (CList)

Initialize variables:

• count = 0 (Index for iterating through CList do distribute the requests evenly)

Loop through each request in sol.req:

1. Add request to the current car's service list and sort the service list according

to the starting time of each request in ascending order:

o sol.CList[count] adds the request sol.req[i] to its service list.

2. Update count:

o If count + 1 equals the size of CList

1. reset count to 0.

o Else

1. increment count by 1.

Loop through each car in sol.CList:

1. Generate the route schedule for each car:

o Each car outputs its route to "initial_solution.txt".

Return sol.CList

The algorithm above assigns the requests evenly to each car. An initial solution

will be deemed feasible even if it had unserved requests or lateness waiting time.

35

3.2.3 Local Search Algorithm

Pseudocode for localSearch

Inputs:

• sol - Solution object containing a list of cars (CList) and requests

• dynam - Boolean flag to indicate whether the current scenario is dynamic

Outputs:

• A vector of car objects (CList)

Initialize random generator:

• Create a random floating point number generator that range from 0 to 1

Generate a random choice:

• choice = generate random number

Determine the local search operation based on choice:

1. If choice is lesser than or equal to 0.5:

o Call swapRequest() – swap one request between two car

o Update sol.CList with the result of swapRequest

2. Else:

o Call moveRequest() – move one request from a car to another car

o Update sol.CList with the result of moveRequest

Return sol.CList

The random number generator is used to determine the probability of either

choosing to swap requests or to move requests. Both the swapping requests and moving

requests will have a 50% probability of being chosen.

36

3.2.4 Solution Searching and Optimization Algorithm

Pseudocode for Solution optimization

Inputs:

• s - Initial solution object

• initial - Initial solution object

• loopCount - Maximum number of loops = 5

• Iter - Maximum number of iterations of not updated solution quality to enter

into the next loop or converge = 35

• w - Vector of weights for inconvenience cost calculation

• optim - Boolean flag for displaying the optimization process

Outputs:

• best - Best solution found

Initialize variables:

• ii = 0 (loop counter)

• solList (a vector with a size of 5) = initialized with 5 copies of initial in the first

loop, initialized in the following loops with 5 copies of the best solution obtained

from the previous loop

• best = initialized with the initial solution in the first loop, initialized in the

following loop with the best solution obtained from the previous loop

• temperature (a floating point number) = 7

• ver = empty list of vectors to store metrics

• best_score = the inconvenience cost of the best solution

Loop until ii = loopCount:

1. Break if initial fitness is 0

2. Clean and reinitialize the solution s

3. Output the score of initial solution

4. Initialize variables:

o counter = 0

o iter = 0

5. Start the main loop until counter = Iter:

a. Increment iter with 1

b. For each solution sol in solList:

37

o Clear the solution record of sol (all records apart from the requests will

be cleared)

o Copy sol to a solution object curr

o Run solution searching function on curr to update the CList of curr

o Generate routes for each car from the requests

o Recalculate metrics and inconvenience cost for curr

o If cur is better than sol

- update sol

o Else

- generate a random floating point number from 1 to 10

- If the number is larger than the temperature

 update sol

c. Increase temperature by 1 after every 15 iterations

d. Sort solList by inconvenience score in ascending order

e. If new best solution is found:

o Check if the generated schedule complies with the quality of service

constraints

o If yes

- update best, store metrics in ver, initialize counter to 0

- Sort ver by inconvenience score in ascending order

o If no

- initialize counter to 0

f. Increment counter if no new best solution is found

g. Limit ver to top 3 ranked solutions

h. Output the optimization process if optim flag is true

i. Clean up memory by deleting routes in solList

6. End of main loop

7. Output final results and print metrics

Return the best solution found after all iterations and loops

This optimization algorithm will run 5 loops, and each loop will end if the

quality of the best solution is not updated for 35 iterations. The vector of solutions is

initialized with the initial solution when the optimization begins, which means the first

loop, and will be initialized with the current best solution after each loop ends. This is

38

to let the algorithm start the search from the current best solution, in the hope that the

quality of the solution neighbourhood around the current best solution is better. This is

similar to the idea of neighbourhood updating in the ant colony optimization algorithm

[24] , but the updating mechanisms are very different.

The probability of accepting a worse solution will be increased every 15

iterations, and after the 45th iteration, the worse solution will not be accepted. But at the

beginning of every loop, the temperature will be reset to 7 again. This is to let the

algorithm continue doing global search in the solution space around the current best

solution to have a chance of finding a better solution. Solutions that do not comply with

the quality-of-service (QOS) constraint will not be rejected, as the algorithm might find

better solutions from them. But to ensure that the QOS constraint is met, the best

solution will only be updated if the better solution does not violate the constraint.

3.2.5 Lateness Avoiding

To avoid lateness waiting time in our schedule as it is very intolerable, a lateness

waiting time rollback mechanism has been implemented. The figure below visualizes

the rollback mechanism.

Figure 3.2 Lateness Waiting Time Roll Back Mechanism

39

We define a trip as from a driver on board the car until the driver finishes serving

requests and leaves the car. As we can see from the diagram above, if after rolling back

the pickup time of the first request of the current trip is not earlier than the drop off time

of the last request of the previous trip, the rollback will only happen on the current trip.

Or else, the rollback will also happen to the previous trip.

3.2.6 Output Format

The output format of the route schedule to a text file will be as below:

Car ID: {time; node; D: driver type; number of passengers}  { time; node; D: driver

type; number of passengers }  so and so forth

Car ID: so and so forth

Highest single request earliness waiting time: x minutes

Total earliness waiting time for all participant: y minutes

Total lateness waiting time for all participant: z minutes

Total travel expenses for all participant: RM a

Total number of darp-like cases: b

The route schedule for each car will be printed out in this way. This route schedule

shows when will a car reach a certain node, and at that moment who is the driver and

who is the passenger. The pick-up and drop-off of passengers will all be reflected in

this route schedule by adding and removing passengers from the passenger list. The

total DARP-like case denotes the total number of times drivers are assigned specially

to serve some requests.

40

3.3 Dynamic Scenario Handling

Pseudocode for Dynamic Scenario Handling

Inputs:

• request - The incoming dynamic request

• current_time - The current system time

• curr_solution - The current solution

Check if the request arrives after 5 pm:

• If request.arrival_time > 5:00 PM:

o Reject the request

o Return the current request

Check if the request's start time is within 1 hour from the current time:

• If request.start_time ≤ current_time + 1 hour :

o Reject the request

o Return the current request

If the request is accepted:

• Sort the car list by inconvenience cost

• Sort solution.CList in ascending order based on the inconvenience cost of each

car

• Insert the dynamic request:

o Insert the request into the car with the lowest inconvenience cost (first

car in the sorted list)

o Recalculate the inconvenience cost for the new solution

o Compare the new solution with the current solution

o If new_solution.inconvenience_cost <

curr_solution.inconvenience_cost :

 If the new solution meets the QOS constraints:

- Output the new solution as the best solution

 Else:

- Enter solution re-optimization

o Else:

 Reoptimize the new solution using the solution optimization

algorithm from the static scenario

41

 Output the newly optimized solution

Return the new solution

In the dynamic scenario, the requests will be removed from the solution after it is

being served, and new dynamic requests might be added in. So, we will need to compare

the quality of two solutions with different numbers of requests. It is normal for a

solution with more requests to have a higher cost than the one with fewer requests.

Thus, to ensure fairness during solution quality comparison, the cost of the solution will

be divided by its current number of requests. The inconvenience cost of each car will

be calculated by cumulating the cost of the requests assigned to that car. The dynamic

request will be inserted directly into the car with the lowest cost, and that car will make

a detour to serve that request.

42

Chapter 4

Experiment and Simulation Setup

4.1 Setting Up

4.1.1 Hardware Setup

The hardware involved in this project is a laptop. Table 3.1 shows the specifications of

the laptop used in this project.

Table 4.1 Specifications of Laptop

Description Specifications

Model Acer Nitro 5 2022 AN515-45

Processor AMD Ryzen 7 5800H

Operating System Windows 11

Graphic NVIDIA GeForce GTX 1650

Memory 16GB DDR4 RAM

Storage 500GB SSD

4.1.2 Software Setup

The software system of this project is fully coded using C++. The software tools

required in this project are a C++ integrated development environment (IDE) and

Windows PowerShell for collecting experiment data. Below are the software

specifications used in this project.

• IDE: Visual Studio Enterprise 2022

• C++ version: ISO C++ 20 Standard

• Windows PowerShell version: 5.1

43

4.2 Running the Program

After running the program, it will randomly generate test cases, generate the initial

solution from the test cases, and do solution searching and optimization all in one run.

The program will stop temporarily after the solution searching and optimization

algorithm converges.

Figure 4.1 Start of Running Demo of The System

 As shown in Figure 4.1, during the solution searching and optimization process, the

current lowest inconvenience cost will be printed out every iteration for us to view the

optimization process.

Figure 4.2 End of Running Demo of The System

 After the algorithm converges, the system will stop running. The final lowest

inconvenience cost will be outputted, as shown in Figure 4.2 above. If users type “yes”

on the terminal, the program will enter into schedule simulation, or else the program

will exit.

44

4.2.1 Solution

Both the initial and the best solution will be outputted into a text file. Figure 4.4

shows the format of the output. The format is the same for both the initial and the best

solution.

Figure 4.3 Output of The Solution

The “D: Norm” indicated a normal case, where the driver is also serving the driver’s

own request when driving the car. The “D: DARP” indicated a special driver

assignment case, where the driver is assigned solely to serve some participants’

requests. The “𝑥𝑥P” indicates the number of passengers excluding the driver on the car

when the car reaches a node, where 𝑥𝑥 is the number of passengers.

4.2.2 Simulation of the Schedule

 To simulate the run of the schedule, first, the program will run a simulation clock

starting from 8 am to 6.40 pm. If the end time of any request is reached, which means

its end time is the same as the current time on the simulation clock, the request will be

removed from the car serving it. This indicates that the request was served. The number

of requests left to be served will be outputted every minute so that we can see the

changes in the number of requests, and make sure that the simulation is running fine.

When the simulation clock ends, the program will calculate the total number of requests

again to make sure all requests are served. Figure 4.5 shows the screenshot of the

simulation process.

45

Figure 4.4 Simulation of the Best Solution From the Static Scenario

This simulation will only cover the static case. The simulation that includes

dynamic cases will be done in Chapter 5 to evaluate the ability of the program to handle

dynamic scenarios.

46

4.3 Experiment Configuration

Parameter of the solution searching algorithm in the static scenario:

• Number of loops: 5

• Number of iterations of not updated solution quality to converge, per loop: 35

• Starting temperature: 7

• Temperature increment rate: increment by 1 per 15 iterations

Parameter of the solution searching algorithm in the dynamic scenario:

• Number of loops: 1

• Number of iterations of not updated solution quality to converge, per loop: 35

• Starting temperature: 7

• Temperature increment rate: increment by 1 per 15 iterations

• Optimization objectives are the same as static scenarios

• Same constraint as the static scenario

Planning horizon:

From 8 am to 6.40 pm. The earliest request cannot start before 8 am, and the latest

request cannot end after 6.40 pm.

Test cases:

To better represent the university scenario, the requests will be generated at a

different probability in the different time frames within the planning horizon. The total

number of requests will be set before the generating of requests, so the probability

means the likelihood of the generated requests will fall in that time frame.

The probability of generating requests for different time frames is as follows:

• 8 am to 9 am: 25%

• 10 am to 11 am: 17.5%

• 12 pm to 1 pm: 10%

• 2 pm to 3 pm: 17.5%

• 4 pm to 6 pm: 25%

This means that if now we have 200 requests, the probable outcome will be: 50

requests in 8 – 9 am, 35 requests in 10 – 11 am, 20 requests in 12 – 1 pm, 35 requests

47

in 2 – 3 pm, 50 requests in 4 – 6 pm. The sample outcome of this request-generating

mechanism is shown in Figure 4.5.

Figure 4.5 Different Probability of Request Generating in Different Time Frame

Likewise, the occurrence of the dynamic requests is also in a different probability

in different time frames across the planning horizon. But this probability is purely the

likelihood of the occurrence of the dynamic requests, as the total number of dynamic

requests is not set. The probabilities are as such:

• 8 am – 10 am: 50%

• 11 am – 1 pm: 40%

• 2 pm – 4 pm: 30%

• 5 pm – 6 pm: 20%

The probabilistic requests generation mechanism will be run once every three

minutes of the simulation clock. If the mechanism hits the probability of generating

dynamic requests, 1 dynamic request will be generated.

 The test cases also include cars and maps. The number of cars will be fixed to 10,

and each car will be assumed to be at the starting point of the first requests assigned to

them before the schedule starts to run. The maps used in the experiment are randomly

generated.

The generated maps have the following characteristics:

• Consist of 30 nodes

• Each node has 4 to 8 adjacent nodes

• The distance between each node with each other is between 0.35 km to 3 km

48

4.3.1 Objective of Experiment

1. To prove that the solution searching and optimization algorithm is working fine

2. Stress test the program

3. To tune the parameters of the algorithm

4. To show that the dynamic scenario handling mechanism is working fine

4.3.2 Experiment Method

 To meet experiment objective 1, the algorithm will be run with two different weight

configurations. The metrics of the top three ranked solutions from both configurations

will be recorded and tabulated. Both configurations will be run with test cases

consisting of 200 to 300 requests.

Next, to fulfill experiment objective 2, the program will be tested with test cases

consisting of various ranges of number of requests to determine the highest range of

number of requests the program can take. For example, the test cases will have 0 to 100

requests and 100 to 200 requests, and they will keep on increasing until the program

cannot handle them.

 From the result of the test on objective 2, we will then try out different weight

configurations on the earliness weight (as the travel expenses weight had been fixed to

1) to find the best weight configuration. Each configuration will be tested 500 times

with different ranges of request sizes the program can handle, and the result will be

presented on charts. We will use shell scripts to help run the test in parallel to save time.

The scripts will be run on Microsoft PowerShell.

 For dynamic scenario handling, we will show that the program can reject and accept

dynamic requests properly. The rejected requests should not be inserted into the

schedule, and the accepted requests must be inserted into the schedule and be served.

Other than that, we will show that the request-locking mechanism is working fine. In

our scenario, there is at least one hour of reaction time, so the speed of re-optimization

may not be crucial. But we would still show the average time the new solution can be

re-optimized to ensure enough reaction time.

49

4.4 Implementation Issues and Challenges

There are three main issues and challenges faced when implementing this model.

 First, as there is a QOS constraint in our program, sometimes the algorithm may not

be able to find a better solution that meets the QOS requirement. The algorithm will

then output the initial solution as the only feasible solution. This problem is likely to

happen when the number of requests is high. From our observations, this will happen

when the total number of requests is more than 400, and the frequency of happening

will increase when the number of requests increases.

 Second, the dynamic scenario can only be simulated using test cases with at most

150 requests. This is because there is a memory leaking problem when the algorithm

runs, so a higher number of requests may result in memory allocation error. The

memory leaking problem happens most likely because the objects in the program are

not being defined or constructed properly when we start building the program. The

source of leaking is hard to detect at this stage, and changes may need the whole revamp

of the program, so we will only use test cases with 150 requests or less to conduct the

dynamic scenario simulation.

50

Chapter 5

System Evaluation

5.1 Static Scenario
The results of the three experiments done in the static scenario to test the ability of

the algorithms and tune the weight of the objective function will be displayed and

discussed in the below sub-sections.

5.1.1 The Working of the Solution Searching and Optimization Algorithm

 We conduct the test with earliness weight = 5 and earliness weight = 4. Table 5.1

and Table 5.2 record the metrics of the top three tanked and initial solutions for both

weight configurations.

Table 5.1 Test Result for Weight Configuration 1

Weight of earliness: 5

Solution

rank

Inconvenience

cost

Total

earliness

waiting

time

Total

DARP-

like

cases

Maximum

single

request

waiting time

Total

traveling

expenses

1 1199.99 54 minutes 161 5 minutes RM929.99

2 1209.81 57 minutes 160 5 minutes RM924.81

3 1234.33 65 minutes 162 7 minutes RM909.33

Initial 1464.47 66 minutes 235 8 minutes RM1134.47

Number of requests: 277

51

Table 5.2 Test Result for Weight Configuration 2

Weight of earliness: 4

Solution

rank

Inconvenience

cost

Total

earliness

waiting

time

Total

DARP-

like

cases

Maximum

single

request

waiting time

Total

traveling

expenses

1 1349.11 86 minutes 160 8 minutes RM945.11

2 1379.79 101

minutes

159 8 minutes RM939.79

3 1401.48 110

minutes

174 8 minutes RM969.48

Initial 1560.02 108

minutes

248 8 minutes RM1216.02

Number of requests: 300

 From the experiment result, we can see that across different weight configurations

and different numbers of requests, the solution searching and optimization algorithm

can tell which solution is better in both scenarios, as the best solution is better than the

initial solution, and the algorithm can rank the solutions according to their quality. The

QOS constraints are also met in every solution. These show that the algorithm is

working fine.

5.1.2 Stress Test

 The stress test will use five request size ranges: 0-100, 100-200, 200-300, 300-400,

and 400-500 requests. The maximum number of requests is set at 500 because the

algorithm's ability to find optimal solutions visibly degrades when the request size

exceeds 400. To determine whether weight configurations affect the algorithm's ability

to handle larger request volumes, we will test the cases using three different weight

configurations. We will then analyze the trends in travel expenses and earliness waiting

time across the test cases with varying request sizes to evaluate how the algorithm's

performance changes as the number of requests increases. As comparison across

different request size ranges will be made in this test, all the metrics will be per request

52

rather than per solution to ensure fairness in comparison, as it is normal for the solution

with the higher number of requests to have a higher value in each metric.

Figure 5.1 Average Travel Expenses per Request, 𝑊𝑊𝐸𝐸 = 3

Figure 5.2 Average Travel Expenses per Request, 𝑊𝑊𝐸𝐸 = 4

2

2.5

3

3.5

4

4.5

0 - 1 0 0 1 0 0 - 2 0 0 2 0 0 - 3 0 0 3 0 0 - 4 0 0 4 0 0 - 5 0 0

EX
PE

N
SE

S
PE

R
RE

Q
U

ES
T

REQUEST SIZE RANGE

EXPENSES, WE = 3
Initial expenses Best expenses

2

2.5

3

3.5

4

4.5

0 - 1 0 0 1 0 0 - 2 0 0 2 0 0 - 3 0 0 3 0 0 - 4 0 0 4 0 0 - 5 0 0

EX
PE

N
SE

S
PE

R
RE

Q
U

ES
T

REQUEST SIZE RANGE

EXPENSES, WE = 4
Initial expenses Best expenses

53

Figure 5.3 Average Travel Expenses per Request, 𝑊𝑊𝐸𝐸 = 5

 Figures 5.1 to 5.3 show that the traveling expenses per request for both the initial

and the best solutions will increase when the request size range increases from 0-100

to 100-200 but will slightly decrease as the number of requests increases thereafter. The

gap between the initial and best solutions also increases as the number of requests

increases to 300 but decreases thereafter until there is only a little gap left when the

request size range is 400-500.

Figure 5.4 Average Earliness Waiting Time per Request, 𝑊𝑊𝐸𝐸 = 3

2

2.5

3

3.5

4

4.5

0 - 1 0 0 1 0 0 - 2 0 0 2 0 0 - 3 0 0 3 0 0 - 4 0 0 4 0 0 - 5 0 0

EX
PE

N
SE

S
PE

R
RE

Q
U

ES
T

REQUEST SIZE RANGE

EXPENSES, WE = 5
Initial expenses Best expenses

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 - 1 0 0 1 0 0 - 2 0 0 2 0 0 - 3 0 0 3 0 0 - 4 0 0 4 0 0 - 5 0 0

EA
RL

IN
ES

S
PE

R
RE

Q
U

ES
T

REQUEST SIZE RANGE

EARLINESS, WE = 3
Initial earliness Best earliness

54

Figure 5.5 Average Earliness Waiting Time per Request, 𝑊𝑊𝐸𝐸 = 4

Figure 5.6 Average Earliness Waiting Time per Request, 𝑊𝑊𝐸𝐸 = 5

 Figures 5.4 to 5.6 show that the earliness waiting time per request for both the initial

and the best solutions will increase as the number of requests increases. The earliness

waiting time of the best requests is higher than the initial solutions when the request

size range is less than 200. It will become almost the same for the request size range of

200-300, and the best solutions will have a lower earliness waiting time than the initial

solutions when the request size range is more than 300, and the gap between them will

increase as the number of requests increases.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 - 1 0 0 1 0 0 - 2 0 0 2 0 0 - 3 0 0 3 0 0 - 4 0 0 4 0 0 - 5 0 0

EA
RL

IN
ES

S
PE

R
RE

Q
U

ES
T

REQUEST SIZE RANGE

EARLINESS, WE = 4
Initial earliness Best earliness

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 - 1 0 0 1 0 0 - 2 0 0 2 0 0 - 3 0 0 3 0 0 - 4 0 0 4 0 0 - 5 0 0EA
RL

IN
ES

S
PE

R
RE

Q
U

ES
T

REQUEST SIZE RANGE

EARLINESS, WE = 5
Initial earliness Best earliness

55

Explanation:

 The increase in traveling expenses when the number of requests increases to 200

may be caused by the increasing complexity of the problem as there are more requests.

After that, the traveling expenses decrease as the number of requests increases. This

may be because when there are more requests, the algorithm can cluster requests with

nearby starting or ending points together more efficiently, thus reducing the distances

of detours and the number of detours, so the traveling cost will decrease.

 The earliness waiting time increases as the number of requests increases because

the problem will be more complex when there are more requests. As for the gap between

the initial and the best solutions, when the request size is less than 300, the optimization

space for the traveling expenses may be larger than the earliness waiting time, so it may

be easier for the algorithm to sacrifice the earliness waiting time to find the best solution

with significantly less traveling expenses than the initial solution to achieve a lower

inconvenience cost. Another reason will be the total traveling expenses per solution will

be several hundred or more than a thousand, while the earliness waiting time at most

will only exceed one hundred. So even if the weight on the earliness waiting time is

much higher, the solution may still find it easier to find a solution with a lower cost by

just focusing on reducing the traveling expenses.

When the number of requests is increased further, and the optimization space for

the traveling expenses decreases, to achieve a lower inconvenience cost, the algorithm

will need to shift focus to the earliness waiting time with a higher weight on it. This

may explain the trend of the gap between the initial and the best solutions for both

traveling expenses and earliness waiting time when the number of requests increases.

5.1.3 Weight Tuning

For a university student or staff, wanting them to wait at their starting point earlier

than intended will be more intolerable than a slightly higher cost. In the weight tuning

test, we intend to find the weight configuration that ensures the best optimization

strength on the earliness waiting time while also optimizing the expenses.

56

Figure 5.7 Average Travel Expenses Per Request in Different Weight Configurations

Figure 5.8 Average Earliness Waiting Time Per Request in Different Weight

Configurations

 The optimization strength on the expenses decreases slightly as the weight ratio

increases. This is because as the weight of the earliness waiting time increases, the focus

of optimization will shift toward the earliness waiting time.

 The optimization strength on the earliness waiting time is increasing as the weight

of earliness increases. As we can see from Figure 5.8, the earliness waiting time of the

best solution spikes high when the weight is 0.5, which means when the priority is given

to the expenses. After that when the priority is given to the earliness waiting time, the

3

3.2

3.4

3.6

3.8

4

4.2

0 . 5 1 2 3 4 5 6 7 8

EX
PE

NS
ES

 P
ER

 R
EQ

UE
ST

EARLINESS WEIGHT

EXPENSES
Initial expenses Best expenses

0.2
0.22
0.24
0.26
0.28

0.3
0.32
0.34
0.36
0.38

0 . 5 1 2 3 4 5 6 7 8

EA
RL

IN
ES

S
PE

R
RE

Q
UE

ST

EARLINESS WEIGHT

EARLINESS
Initial earliness Best earliness

57

earliness of the best solutions starts to decrease as more priority is given, typified by

the higher weight.

 The expenses of the best solutions, when prioritizing earliness above traveling

expenses, are still being optimized properly, albeit the optimization strength is not that

strong compared to when expenses and earliness are given equal priority. The reason

we make the weight of earliness changeable is also because more priority will be given

to the lower earliness waiting time. Thus, we can focus on the optimization strength of

the earliness to determine the weight to be chosen.

Table 5.3 Comparison of the Reduction Percentage of Two Weight Settings on the

Earliness Waiting Time

Weight Initial earliness Best earliness Reduction %

4 0.2902 0.2548 12.2

5 0.3071 0.2666 13.19

6 0.2697 0.2263 16.09

7 0.2677 0.2239 16.36

8 0.2851 0.2282 19.96

 As shown in Table 5.3, the reduction percentage of the best earliness compared to

the initial earliness of weight 8 is higher, showing a stronger optimization strength. So,

the weight of the earliness waiting time is set to 8.

The number of iterations will be determined by observation. Throughout the

experiments done in this project, if the solution quality is not updated for more than 30

iterations, the algorithm will not find a better solution even though it is being run 100

iterations after that. The algorithm's temperature will reach 10 after 45 iterations,

regardless of the solution quality. Therefore, setting the parameter too high is not ideal,

as the algorithm will primarily perform local searches after the 45th iteration. At that

point, the search space becomes quite limited, reducing the chances of finding a better

solution. This parameter setting will prevent the algorithm from spending unnecessary

time and computing resources.

58

Figure 5.9 Total DARP-like Cases in Different Weight Configurations

Figure 5.9 shows that the DARP-like cases, which means special driver assignment

cases will be optimized even if not set as an individual objective function. By

optimizing the traveling expenses, the number of DARP-like cases will also be

optimized.

5.2 Dynamic Scenario

 For the dynamic scenario, we are interested in finding out the handling mechanism’s

ability to reject and accept requests based on predefined time constraints, the time

needed to re-optimize the solution, and the EDOD of the dynamic scenario.

 As seen in the pseudocode for the dynamic scenario handling in Chapter 3, the

dynamic requests that do not meet the time constraints will be directly rejected, and the

accepted requests will be inserted into the service list of a car. This mechanism works

fine as throughout our tests to determine the average re-optimization time and the

EDOD, the requests that should be rejected are all being rejected, and the requests that

should be accepted are all being accepted. Using the dynamic requests generating

setting in Chapter 4, the average number of dynamic requests the algorithm accepts for

each run is 50.25 requests.

 For the re-optimization time, we will use test cases with 100-150 requests and will

run the dynamic scenario simulation for 100 times. The average time needed is 27.0125

seconds. The re-optimization can be done quickly in our experiments because the total

130

140

150

160

170

180

190

0 . 5 1 2 3 4 5 6 7 8

TO
TA

L D
AR

P-
LI

KE
 C

AS
ES

EARLINESS WEIGHT

DARP-LIKE
Initial darp-like Best darp-like

59

number of requests is low, as according to our observation of the algorithms, they tend

to use more time to complete their search when the number of requests increases.

 The average EDOD throughout the test is 0.1867. As it is lower than 0.3, the

dynamic scenario will be classified as a weak dynamic scenario. The EDOD is low

because the probability of the dynamic requests generating will be lower as the virtual

time goes nearer to the end of the planning horizon, and requests that come in 1 hour

before the planning horizon ends will be rejected. This gives the algorithm enough time

to handle the requests.

5.3 Concluding Remarks
The working effectiveness of the algorithm:

• Working fine as the algorithm can rank the solutions it found based on their

quality, and the best solution found is better than the initial solution.

The final parameter value of the algorithm:

• Weight of earliness: 8

• Number of iterations of not updated solution quality to converge, per loop: 35

The findings from the stress test:

• The ability of the algorithm to find the optimal solution will visibly degrade

when the number of requests exceeds 400.

Dynamic scenario:

• An average of 50.25 dynamic requests are accepted per test

• The algorithm can accept and reject dynamic requests accurately according to

whether they meet the time constraints

• EDOD: 0.1867, indicating the dynamic scenario studied in this project is a weak

dynamic scenario

60

Chapter 6

Conclusion and Recommendation

6.1 Conclusion
Nowadays in the university, as most students and staff have cars, congestion can

happen in the university. The timetable for students or staff is not fully full throughout

the day, so they might leave the university if there is still some time before their class.

Therefore, the congestion in the university will not only happen in classic peak hours,

but it can happen anytime. Even though public transport will be provided, usually it

will not stop at every block of the university, thus is not the most convenient for students

and staff. Moreover, the increasing number of cars will cause the parking space in the

university cannot accommodate all cars. Some will have no place to park, and some

will need to park far away from their destination. They will need to walk under the hot

sun to their destination, and the situation will be worse when it is raining. Other than

that, due to the bad driving attitude of drivers, it is quite high risk for bikers to ride in

the university, and sometimes accidents may happen to them. The university scenario

consists of the static part and the dynamic part, where the timetable of the students and

staff will generate static requests, and the sudden need to go to the university due to

various reasons such as additional classes and urgent meetings will generate dynamic

requests.

 This project aims to formulate the problems above and develop a model that will

come out with a vehicle pickup and drop-off schedule. A solution searching and

optimization algorithm will be built to optimize the schedule to better meet the

passengers’ and drivers’ objectives. A dynamic scenario handling mechanism will be

built to handle dynamic requests. We attempt to combine some aspects of DARP and

CPP in a hybrid way to formulate the problems that best suit the university setting of

our problems. The outcome of this project will be a runnable program to generate the

best solution from the given test cases.

 Based on literature reviews on past works, the exact way to formulate the problems

and the exact algorithm to use for solution searching and optimization is determined.

The problems will be formulated as DARP-based, meaning the schedule is only for one

day. Unlike the classic DARP setting, the participants can both be passengers or drivers,

61

meaning that university students and staff can serve themselves. No additional full-time

drivers are needed; thus, this formulation approach is more feasible in the university

setting. The objective of the model is to reduce the total costs, to reduce the total

earliness waiting time, and to reduce the number of cases where drivers are specially

assigned to serve some requests. Drivers will be specially assigned when there is

currently no driver on the car and the car is not at the starting point of its next assigned

request. This will be a multi-objective, many-to-many, static and dynamic model.

 In this project, we will take care of the satisfaction of drivers by implementing an

expense function that drivers will not need to pay the travel expenses, and if drivers are

specially assigned, passengers will need to compensate the driver. Unserved requests

will be penalized, and lateness will be removed by the lateness waiting time rollback

mechanism, as these are intolerable for the participants. These penalties will also be

applied to the driver’s own request. This ensured the fairness of between the drivers

and the passengers. There will be 15 constraints the model must comply with when

generating a schedule. If earliness waiting time is present, it should not be longer than

10 minutes per request. This is implemented as the QOS constraint. The quality of the

solution is determined by its inconvenience cost, which inconvenience cost = total

earliness waiting time * weight + total costs + penalty. Only the weight of the

earliness waiting time is adjusted, as the weight for earliness and travel expenses can

be simplified to a ratio of weight : 1, and the lower earliness waiting time will be given

more priority. The number of DARP-like cases is not being optimized individually as

it is already included in the travel expenses.

 Next, to start the solution searching and optimization process, metaheuristics search

algorithms will be built. We choose to use the simulated annealing (SA) algorithm for

its faster convergence speed, lower memory usage, and lower processing power needed.

We tweaked the SA algorithm to improve its performance. The algorithm used in this

project is called SA-based multi-direction iterative local search. The algorithm consists

of three parts, the initial solution-generating algorithm, the local search algorithm, and

the optimization algorithm. For the local search algorithm, the idea of [11] is referred

to, but we improved the search rate of the algorithm by reducing the search step distance

to avoid missing out on high-quality solutions.

 Moving on to the optimization algorithms, we created a vector of 5 solutions and

performed an SA-based local search for all 5 solutions every iteration. The algorithm

will have multiple loops and each loop has multiple iterations. At the beginning of each

62

loop, the probability of accepting worse requests will be lowered to encourage global

search. This enables the algorithm to explore the solution space more diversely,

reducing the possibility of converging with a worse solution. To prevent premature

convergence, the algorithm will only converge when the best solution is not updated

for a certain number of iterations.

 For the handling of the dynamic requests, we will lock the requests that start within

1 hour from the current simulation virtual time. The locked request will not be touched

in re-optimization, so their pickup and drop off time will remain the same throughout

the simulation. This is to ensure enough reaction time for the participants. Requests that

come in 1 hour from the current virtual time will be rejected, and requests that come in

within 1 hour before the planning horizon ends will also be rejected. The dynamic

request will be inserted into the service list of the car with the lowest inconvenient cost.

If the new solution is better than the current solution, no re-optimization will be made.

Or else the new solution will go through re-optimization using the same algorithms

from the static scenario, with the same constraints and some parameters tweaked to

reduce the time needed for re-optimization. The new solution will then become the

current solution. Schedule simulation will be needed for dynamic scenarios, and we

will run a virtual simulation clock to simulate the schedule. The requests that were

served will be removed.

 Experiments were done on the algorithm to fine-tune the parameters of the

algorithm, and to verify that the algorithm works fine. This also shows that the

algorithms can handle the university scenario well. Stress tests have been done to find

out how the algorithms act when the number of requests increases, and the maximum

number of requests the algorithms can handle while optimizing the solution effectively.

For each test objective, the algorithms are tested with different configurations of test

cases, with each configuration consisting of 100 test cases. Experiments on the dynamic

part are mainly to ensure that the dynamic scenario handling mechanism is working

fine. The main objectives will be ensuring the correct rejection and acceptance of

requests, the average time needed for re-optimization, and the dynamism of the

dynamic scenario, measured in EDOD. The time needed for re-optimization is just for

reference as the reaction time in our scenario is long.

 The algorithms are proven to be working fine as they can effectively identify the

quality of the solutions and rank them according to their quality. The quality of the best

solution found is also better than the initial solution. For the stress test, we find out that

63

the algorithms’ ability to find the optimal solution will visibly degrade when the number

of requests exceeds 400. The trend we observed from the test results is caused by the

shift of priority level of the algorithms on either the travel expenses or the earliness

waiting time. The weight of the earliness waiting time is 8 as this is the configuration

that gives the algorithms the strongest optimization strength out of our tested

configurations on the earliness waiting time. Apart from that, based on our observation,

the number of iterations of not updated solution quality to converge per loop is set to

35 iterations to prevent unnecessary use of resources. Other than that, from our tests,

we saw that the DARP-like cases will be optimized even if it is not being defined as an

individual objective function.

 Lastly, the experiment results on the dynamic scenario show that the dynamic

scenario handling mechanism works fine. The requests are being accepted or rejected

correctly. Due to some limitations, we will only use test cases with 100-150 requests

for the dynamic scenario. The average re-optimization time is 27.0125 seconds, due to

the low number of requests. The average EDOD is 0.1867, indicating a weak dynamic

scenario as the reaction time for the handling mechanism is long enough. The average

number of dynamic requests accepted in each test is 50.25 requests.

64

6.2 Recommendation
Recommendations for future improvements can be made mainly on the algorithms

and the dynamic scenario handling mechanism.

To speed up the solution search and optimization process, parallel programming

can be integrated into the algorithms, allowing multiple operations to run

simultaneously. For even greater performance gains, the algorithms can be developed

using Compute Unified Device Architecture (CUDA), which enables efficient use of

the GPU's extensive parallel processing power. By utilizing the GPU's ability to handle

thousands of threads concurrently, this approach significantly boosts computational

efficiency and reduces the overall time required for optimization tasks, especially for

large-scale problems.

 Other than that, to handle more complex and dynamic scenarios, the implementation

of deep reinforcement learning (DRL) algorithms as the solution searching and

optimization algorithm can be studied. The DRL algorithms have a more stochastic

nature, and newer ones even can take the context of all requests when searching for

solutions as they are utilizing the transformer model [25]. These enable them to have

the capability to produce high-quality solutions even in a very complex scenario. In

dynamic scenarios, their ability to handle highly dynamic scenarios with many urgent

requests should be further studied as this may be useful in developing a fully

autonomous vehicle system.

65

REFERENCES

[1] S. Su, F. Zhou, H. Yu, "An artificial bee colony algorithm with variable

neighborhood search and tabu list for long-term carpooling problem with time

window," Applied Soft Computing, vol. 85, pp. 105814–105814, 2019.

[2] J. F. Cordeau, "A Branch-and-Cut Algorithm for the Dial-a-Ride Problem,"

Operations Research, vol. vol. 54, no. 3, p. pp. 573–586, 2006.

[3] Douglas O. Santos, Eduardo C. Xavier, "Taxi and Ride Sharing: A Dynamic

Dial-a-Ride Problem with Money as an Incentive," Expert Systems with

Applications, vol. 42, no. 19, pp. 6728-6737, 2015.

[4] S. Yan, C. Y. Chen and Y. F. Lin, "A Model With a Heuristic Algorithm for

Solving the Long-Term Many-to-Many Car Pooling Problem," IEEE

Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp. pp. 1362-

1373, 2011.

[5] H. A. Taha, Operations Research, 10th ed., Fayetteville: Pearson Education

Limited, 2017.

[6] Brenner Humberto Ojeda Rios, Eduardo C. Xavier, Flávio K. Miyazawa, Pedro

Amorim, Eduardo Curcio, Maria João Santos, "Recent dynamic vehicle routing

problems: A survey," Computers & Industrial Engineering, vol. 160, p. 107604,

October 2021.

[7] A. Larsen, The dynamic vehicle routing problem, Department of

MathematicalModelling, Technical University of Denmark, 2000.

[8] Luca Coslovich, Raffaele Pesenti, Walter Ukovich, "A two-phase insertion

technique of unexpected customers for a dynamic dial-a-ride problem,"

European Journal of Operational Research, vol. 175, no. 3, pp. 1605-1615,

2006.

[9] "A tabu search heuristic for the static multi-vehicle dial-a-ride problem,"

Transportation Research Part B, vol. 37, pp. 579-594, 2003.

[10] G. R. Mauri, L. Antonio and N. Lorena, "Customers' satisfaction in a dial-a-ride

problem," IEEE Intelligent Transportation Systems Magazine, vol. 1, no. 3, pp.

6-14, 2009.

66

[11] S. Ouasaid and M. Saddoune, "A dial-a-ride problem with driver preferences,"

2021 7th International Conference on Optimization and Applications (ICOA),

pp. 1-6, 2021.

[12] M. Posada, H. Andersson, and C. H. Häll, "The integrated dial-a-ride problem

with timetabled fixed route service," Public Transport, vol. 9, no. 1-2, pp. 217-

241, 2016.

[13] A. Ham, "Dial-a-Ride Problem With Meeting Point Feature Known-as Express-

Pool," IEEE Access, vol. 9, pp. 86404-86411, 2021.

[14] S. Su, D. Xiong, H. Yu, and X. Dong, "A multiple leaders particle swarm

optimization algorithm with variable neighborhood search for multiobjective

fixed crowd carpooling problem," Swarm and Evolutionary Computation, vol.

72, p. 101103, 2022.

[15] Jalel Euchi, Habib Chabchoub, "A hybrid tabu search to solve the heterogeneous

fixed fleet vehicle routing problem," Logistic Research, vol. 2, pp. 3-11, 2010.

[16] S. Ho, C. Nagavarapu, R. Pandi, and J. Dauwels, "An Improved Tabu Search

Heuristic for Static Dial-A-Ride Problem," 2018.

[17] Ali Asghar Rahmani Hosseinabadi, Fataneh Alavipour, Shahab S. Band,

Valentina Emilia Balas, "A Novel Meta-Heuristic Combinatory Method for

Solving Capacitated Vehicle Location-Routing Problem with Hard Time

Windows," Information Technology and Intelligent Transportation Systems, vol.

1, pp. 707-728, 2016.

[18] Philippe Marin, Jean-Claude Bignon, Hervé Lequay, "A Genetic Algorithm for

use in Creative Design Processes," Annual Conference of the Association for

Computer Aided Design in Architecture (ACADIA), October 2008.

[19] J. Li, K. Tomita and A. Kamimura, "A Novel Genetic Algorithm for a Multi-

Vehicle Dial-a-Ride Problem," 2022 International Conference on Advanced

Robotics and Mechatronics (ICARM), pp. 682-689, 2022.

[20] S. Ouasaid and M. Saddoune, "Construction heuristic for the dial-a-Ride

problem with driver preferences," 2021 International Conference on Decision

Aid Sciences and Application (DASA), pp. 192-196, 2021.

[21] Seyed Alireza Fayazi, Ardalan Vahidi, "Mixed-Integer Linear Programming for

Optimal Scheduling of Autonomous Vehicle Intersection Crossing," IEEE

67

TRANSACTIONS ON INTELLIGENT VEHICLES, vol. 3, no. 3, pp. 287-299,

2018.

[22] Victor Pillac, Michel Gendreau, Christelle Guéret, Andrés Medaglia, "A review

of dynamic vehicle routing problems," European Journal of Operational

Research, vol. 225, no. 1, pp. 1-11, 2013.

[23] Gerardo Berbeglia, Jean-François Cordeau, Gilbert Laporte, "A Hybrid Tabu

Search and Constraint Programming Algorithm for the Dynamic Dial-a-Ride

Problem," INFORMS Journal on Computing, vol. 24, no. 3, pp. 343-355, 2011.

[24] C. Blum, "Ant colony optimization: Introduction and recent trends," Physics of

Life Reviews, vol. 2, no. 4, pp. 353-373, 2005.

[25] Yang Zou, Hecheng Wu, Yunqiang Yin, Lalitha Dhamotharan, Daqiang Chen,

Aviral Kumar Tiwari, "An improved transformer model with multi-head

attention and attention to attention for low-carbon multi-depot vehicle routing

problem," Annals of Operations Research, vol. 339, pp. 517-536, 2024.

68

APPENDIX

69

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3S2 Study week no.: 2-3
Student Name & ID: Teo Chun Kit, 22ACB00091
Supervisor: Prof Liew Soung Yue
Project Title: Vehicle Pick-up and Drop-off Schedule Optimization in a University
Setting

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Debug

2. WORK TO BE DONE

Further debug

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

On track.

 Supervisor’s signature Student’s signature

70

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3S2 Study week no.: 4-5
Student Name & ID: Teo Chun Kit, 22ACB00091
Supervisor: Prof Liew Soung Yue
Project Title: Vehicle Pick-up and Drop-off Schedule Optimization in a University
Setting

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

debug

2. WORK TO BE DONE

Experiment setup.

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

On track.

 Supervisor’s signature Student’s signature

71

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3S2 Study week no.: 6-7
Student Name & ID: Teo Chun Kit, 22ACB00091
Supervisor: Prof Liew Soung Yue
Project Title: Vehicle Pick-up and Drop-off Schedule Optimization in a University
Setting

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Experiment setup.

2. WORK TO BE DONE

Dynamic scenario building.

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

On track.

 Supervisor’s signature Student’s signature

72

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3S2 Study week no.: 8-9
Student Name & ID: Teo Chun Kit, 22ACB00091
Supervisor: Prof Liew Soung Yue
Project Title: Vehicle Pick-up and Drop-off Schedule Optimization in a University
Setting

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Dynamic scenario building.

2. WORK TO BE DONE

Experiments.

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

On track.

 Supervisor’s signature Student’s signature

73

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3S2 Study week no.: 10-11
Student Name & ID: Teo Chun Kit, 22ACB00091
Supervisor: Prof Liew Soung Yue
Project Title: Vehicle Pick-up and Drop-off Schedule Optimization in a University
Setting

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Experiments.

2. WORK TO BE DONE

Report writing.

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

On track.

 Supervisor’s signature Student’s signature

74

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3S2 Study week no.: 12-13
Student Name & ID: Teo Chun Kit, 22ACB00091
Supervisor: Prof Liew Soung Yue
Project Title: Vehicle Pick-up and Drop-off Schedule Optimization in a University
Setting

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Report writing.

2. WORK TO BE DONE

-

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

On track.

 Supervisor’s signature Student’s signature

75

POSTER

76

PLAGIARISM CHECK RESULT

77

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

Teo Chun Kit

ID Number(s)

22ACB00091

Programme / Course Bachelor of Computer Science (Honours)

Title of Final Year Project Vehicle Pick-up and Drop-off Schedule Optimization in a
University Setting

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: __9 %

Similarity by source
Internet Sources: _______7_______%
Publications: ___5_____ %
Student Papers: _____3___ %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:
 (i) Overall similarity index is 20% and below, and

(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality
report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the
Final Year Project Report submitted by my student(s) as named above.

Signature of Supervisor

 Signature of Co-Supervisor

Name:

 Name: __________________________
Date:

 Date: ___________________________

Universiti Tunku Abdul Rahman
Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)
Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

Within the required range.

Within the required range.

Liew Soung Yue

12/9/2024

78

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION
TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION
Student Id 22ACB00091
Student Name Teo Chun Kit
Supervisor Name Prof Liew Soung Yue

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have
checked your report with respect to the corresponding item.

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)
√ List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
√ Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)
√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)
I, the author, have checked and confirmed all the items listed in the table are included in my
report.

(Signature of Student)
Date: 12/9/2024

	CHAPTER 1 INTRODUCTION
	1.1 Problem Statement and Motivation
	1.2 Background Information
	1.3 Project Scope
	1.4 Project Objectives
	1.5 Contributions
	1.6 Report Organization

	CHAPTER 2 LITERATURE REVIEW
	2.1.1 DARP
	2.1.2 CPP
	2.2 Previous Works on Different Optimization Algorithms
	2.2.1 Tabu Search
	2.2.2 Simulated Annealing
	2.2.3 Genetic Algorithm
	2.2.4 Construction Heuristics
	2.2.5 Mixed integer linear programming
	2.2.6 Iterated Local Search With Two Local Search Methods

	2.4 Summary
	2.4.1 Comparison Between Problem Formulating Approaches
	2.4.2 Comparison Between Solution Searching and Optimization Algorithms
	2.4.3 Comparison with The Approaches Used in this Project

	4.1 Setting Up
	4.2 Running the Program
	4.2.1 Solution

	4.3 Experiment Configuration
	4.4 Implementation Issues and Challenges

	REFERENCES

