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ABSTRACT 
 

This project aims to enhance the convenience and safety of university students and staff 

by developing an optimized vehicle pick-up and drop-off scheduling system, 

integrating aspects of the Dial-a-Ride Problem (DARP) and the Carpooling Problem 

(CPP) to better suit the university setting. The formulated problem is a multi-objective, 

many-to-many, one-day scheduling problem with both static and dynamic components. 

Uniquely, participants can serve as both drivers and passengers, with fairness 

constraints applied equally to both roles. The primary objectives include minimizing 

earliness waiting times, reducing DARP-like cases, and lowering total expenses, with 

penalties imposed for unserved requests. Lateness will be removed using a lateness 

waiting time rollback mechanism. A simulated annealing-based multi-directional 

iterative local search algorithm is employed for solution optimization. The initial 

solution is generated by distributing requests across vehicles, and local searches are 

performed through request swapping and movement. Simulated annealing explores the 

solution space in multiple directions to avoid convergence to suboptimal solutions, with 

iterative loops preventing premature convergence. For dynamic requests, a handler 

evaluates acceptance based on time constraints, and schedule re-optimization is 

triggered as necessary, using the same methods as in the static case. Extensive 

experiments validate the algorithm’s effectiveness, optimize parameters, and 

demonstrate the dynamic handler's ability to manage real-time requests accurately. The 

results confirm the efficiency and robustness of the proposed approach in both static 

and dynamic scenarios. 

  



vii 
 

TABLE OF CONTENTS 

 
TITLE PAGE i 

REPORT STATUS DECLARATION FORM ii 

FYP THESIS SUBMISSION FORM iii 

DECLARATION OF ORIGINALITY iv 

ACKNOWLEDGEMENTS v 

ABSTRACT vi 

TABLE OF CONTENTS vii 

LIST OF FIGURES x 

LIST OF TABLES xii 

LIST OF SYMBOLS xiii 

LIST OF ABBREVIATIONS xiv 

  

CHAPTER 1  INTRODUCTION 1 

1.1 Problem Statement and Motivation 1 

1.2 Background Information 2 

1.3 Project Scope  4 

1.4 Project Objectives 4 

1.5 Report Organization 5 

1.6    Report Organization 6 

  



viii 
 

CHAPTER 2  LITERATURE REVIEW 7 

2.1 Previous Works on Problem Formulating on Similar 

Challenges 

2.1.1 DARP 

2.1.2 CPP 

7 

 

7 

9 

2.2 Previous Work on Different Optimization Algorithms 

2.2.1 Tabu Search 

2.2.2 Simulated Annealing 

2.2.3 Genetic Algorithm 

2.2.4 Construction Heuristics 

2.2.5 Mixed Integer Linear Programming 

2.2.6 Iterated Local Search With Two Local Search Methods 
 

11 

11 

12 

13 

16 

18 

19 

2.3    Previous Works on Dynamic Scenarios 21 

2.4 Summary 

2.4.1 Comparison Between Problem Formulating Approaches 

2.4.2 Comparison Between Solution Searching and  

Optimization Algorithms 

2.4.3 Comparison Between The Approaches Used in This 

Project 

23 

23 

24 

 

26 

  

CHAPTER 3  SYSTEM MODEL 28 

3.1 General Workflow 28 

3.2 System Design 

         3.2.1   Problem Formulation 

3.2.2   Initial Solution Generating Algorithm 

3.2.3   Local Search Algorithm 

3.2.4   Solution Searching and Optimization Algorithm 

3.2.5   Lateness Avoiding 

3.2.6   Output Format 

29 

29 

34 

35 

36 

38 

39 

3.3    Dynamic Scenario Handling 40 

  

CHAPTER 4  PRELIMINARY WORK 42 

4.1 Setting up 42 



ix 
 

         4.1.1 Software 

         4.1.2 Hardware 

42 

42 

4.2 Running the System 

         4.2.1 Solution 

4.2.2 Simulation of the Schedule 

43 

44 

44 

4.3 Experiment Configuration 

4.3.1 Objective of Experiment 

4.3.2 Discussions on Test Results 

46 

48 

48 

4.4 Implementation Issues and Challenges 49 

  

CHAPTER 5  SYSTEM CONFIGURATION 50 

  5.1    Static Scenario 

        5.1.1 Comparison Between The Approaches Used in This  

                 Project 

        5.1.2 Stress Test 

        5.1.3 Weight Tuning 

 

50 

 

51 

55 

  5.2    Dynamic Scenario 58 

  5.3    Concluding Remarks 59 

  

CHAPTER 6  CONCLUSION 60 

         6.1    Conclusion 60 

         6.2    Recommendation 64 

  

REFERENCES 65 

  

APPENDIX  68 
  

FINAL YEAR PROJECT WEEKLY REPORT 69 

POSTER 75 

PLAGIARISM CHECK RESULT 76 
  
FYP2 CHECKLIST 78 

 



x 
 

LIST OF FIGURES 
 

Figure Number Title Page 

   

Figure 2.1 Concept of door-to-door, Meeting Places, and Express-

Pool and comparison between them 

9 

Figure 2.2 Pseudocode of Tabu Search Algorithm 11 

Figure 2.3 Pseudocode of Simulated Annealing Algorithm 13 

Figure 2.4 Pseudocode of Genetic Algorithm 14 

Figure 2.5 The Four Genetic Operators to Generate Offsprings in 

The Improved Genetic Algorithm 

15 

Figure 2.6  Offspring Generation and Solution Elimination Process 

in The Improved Genetic Algorithm 

16 

Figure 2.7 Pseudocode of The First Phase of The Construction 

Heuristic 

17 

Figure 2.8 Pseudocode of The Second Phase of The Construction 

Heuristic 

18 

Figure 2.9 Pseudocode of The RVND Algorithm 19 

Figure 2.10 Pseudocode of The Learning-Based Local Search 

Algorithm 

20 

Figure 3.1 Pipeline of The Whole Procedure of The Proposed 

Method 

28 

Figure 3.2 Lateness Waiting Time Roll Back Mechanism 38 

Figure 4.1 Start of Running Demo of The System 43 

Figure 4.2 End of Running Demo of The System 43 

Figure 4.3 Output of The Solution 44 

Figure 4.4 Simulation of the Best Solution From the Static 

Scenario 

45 

Figure 4.5 Different Probability of Request Generating in 

Different Time Frame 

47 

Figure 5.1 Satisfaction Report 47 

Figure 5.2 Average Travel Expenses per Request, 𝑊𝑊𝐸𝐸 = 3 52 



xi 
 

Figure 5.3 Average Travel Expenses per Request, 𝑊𝑊𝐸𝐸 = 4 52 

Figure 5.4 Average Earliness Waiting Time per Request, 𝑊𝑊𝐸𝐸 = 3 53 

Figure 5.5 Average Earliness Waiting Time per Request, 𝑊𝑊𝐸𝐸 = 4 54 

Figure 5.6 Average Earliness Waiting Time per Request, 𝑊𝑊𝐸𝐸 = 5 54 

Figure 5.7 Average Travel Expenses Per Request in Different 

Weight Configurations 

56 

Figure 5.8 Average Earliness Waiting Time Per Request in 

Different Weight Configurations 

56 

Figure 5.9 Total DARP-like Cases in Different Weight 

Configurations 

58 

 

 

 

 

 

 

 



xii 
 

LIST OF TABLES 
 

Table Number Title Page 

   

Table 2.1 Comparison Between DARP-based Approaches 23 

Table 2.2 Comparison Between CPP-based Approaches 24 

Table 2.3 Comparison Between Different Solution Searching and 

Optimization Algorithms 

24 

Table 3.1 Variable Notations and Their Meaning 29 

Table 4.1 Specifications of Laptop 42 

Table 5.1 Test Result for Weight Configuration 1 50 

Table 5.2 Test Result for Ratio Configuration 2 51 

Table 5.3 Comparison of the Reduction Percentage of Two 

Weight Settings on the Earliness Waiting Time  

57 

 

 

 

 

 

  



xiii 
 

LIST OF SYMBOLS 

 
∑ Sigma, the total of 

km kilometers 

RM Ringgit Malaysia 

 



xiv 
 

LIST OF ABBREVIATIONS 
 

CPP Carpooling Problem 

DARP Dial-a-ride Problem 

IDE Integrated Development Environment 

ILS Iterated Local Search 

SA Simulated Annealing 

VRP Vehicle Routing Problem 

EDOD Effective Degree of Dynamism 

DDARP Dynamic Dial-a-ride Problem 

QOS Quality of Service 

  

  

 

 

  



1 
 

CHAPTER 1 INTRODUCTION 
 

Introduction 
In this chapter, we present the background and motivation of our research, our 

contributions to the field, and the outline of the report. 

1.1  Problem Statement and Motivation 
 

In recent years, the number of vehicles on the road has increased rapidly due to 

urbanization and rapid city growth. The living standards of people have improved 

significantly over the years, leading more and more people able to afford a private car. 

This will cause a lot of problems, for example, traffic congestion, parking problems, 

environmental pollution, and energy crisis. According to Su et al., traffic congestion 

has cost the world an economic loss of almost 2.5% of GDP per year [1]. 

The situation is similar in a university. Imagine that there is a university with 

20,000 students and employees. Some of them live in hostels, and some of them live 

outside of university. Each hostel is in a different location around the university, and 

60% of all students and employees drive cars to the university and park their cars in the 

university. The parking space in the university is limited, and the destinations of each 

person are mostly different due to having different courses and these courses are 

distributed across different blocks in the university.  

As most students and lecturers will go home if there is a long empty time slot 

before their next class, traffic congestion will not only happen between 8 am and 6 pm 

but also the time in between if there are quite some people going back home or coming 

to the university. Even though public transport may be provided, its capacity is limited, 

and it cannot send passengers to each of their specific destination points, as public 

transport will only stop at some specific stops in the university, rather than each 

building stop once. Passengers will still need to walk to their specific destination if it is 

not a public transport stop. 

Other than that, it is difficult for a university to have enough parking space to 

accommodate all cars. Some may find a parking place, but they will need to park at a 

place far away from their destination, which is inconvenient. This is not a comfortable 

experience for them, as they will need to walk under the hot sun to their destination, 
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and sometimes under the rain. Some more unfortunate ones will not find any parking 

place that is relevant to their destination. They can only either choose to park very far 

away or just keep turning around the parking lot. 

Moreover, as not all students or staff have car, some will need to ride a bike to 

university. Even though there are speed limit signs every way in the university, the 

students will still drive very fast. There may be bumps or pedestrian lines to make the 

lives of bikers better, but not all cars will slow down on bumps and let bikers or 

pedestrians cross first at the pedestrian line. Sometimes they will not even slow down 

when bikers are about to cross junctions, thinking all bikes have the same speed as cars. 

These situations are dangerous to bikers, and the risks will be even higher when the 

number of cars increases. Accidents may happen because of these issues. 

 Although the above-mentioned problems may not cause serious monetary loss 

to university employees or students, it will cause a huge deal of inconvenience to them, 

and sometimes traffic accidents may also happen from it.  

 

1.2  Background Information 
 

There are some background information readers should know to better 

understand this project. To solve the ever-growing congestion problem, researchers 

have come out with a solution, which is the vehicle routing problem (VRP). VRP 

encompasses the dial-a-ride problem (DARP) and carpooling problem(CPP). DARP is 

a type of problem where customers call for a ride (make a request), and then drivers 

will be assigned to serve the request of that customer. Nowadays e-hailing services and 

taxi services are all types of DARP. 

VRP is an NP-hard problem according to [2]. One can understand the basic 

concept of VRP by studying the traveling salesman problem in [2]. With VRP, several 

people can share one vehicle, thus helping to reduce the number of cars on the road to 

a significant degree. The concepts of DARP and CPP are near, just that their main 

objective is different, thus some of their constraints are also different. DARP mainly 

focuses on minimizing total travel costs and passenger service quality, while CPP 

mainly focuses on ensuring fairness among all participants. 

The ways to optimize DARP and CPP are the same. A mathematical model will 

be proposed to represent the problem to be solved, and then an optimization algorithm, 
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whether heuristic or meta-heuristic will be proposed to find the best solution that can 

best meet the main objective for the proposed problem. Both DARP and CPP have two 

variants, static and dynamic. For static problems, all information concerning 

passengers' requirements is defined and fixed beforehand [2]. For dynamic problems, 

passenger requirements can be changed in real-time. New requests will be expected to 

come in, and the program need to decide to either accept or reject them. If the requests 

are accepted, the program needs to find a way to serve them while making sure the route 

or solution is still feasible [3]. DARP has two variants, which are homogenous DARP, 

where each vehicle has the same starting and ending depots, and heterogenous DARP, 

where each vehicle has different starting and ending depots. 

CPP can be categorized into two distinct types: Daily Carpooling and Pick-up 

(DCPP) and Long-Term Carpooling and Pick-up (LTCPP). In the context of DCPP, 

drivers pick up passengers and return them on the same day. The primary aim here is 

to efficiently allocate passengers to drivers while considering time constraints and car 

capacity limitations [1]. LTCPP, conversely, involves the sharing of a private vehicle 

by multiple individuals. These individuals collectively follow a semi-common route 

connecting different starting and ending points during a specific period. It's worth 

noting that each participant in LTCPP will be assigned to take on the roles of both driver 

and passenger [4]. Participants of carpool in CPP will only have two requests per day: 

from origin to destination and vice versa. For each request, there will be other requests 

with similar pick up and drop off time, close origins, and destinations to be handled by 

the same vehicle. According to the origin and destination points of each participant, the 

CPP can be many-to-many, one-to-one, or many-to-one. Most CPPs formulated by 

researchers are of the one destination variant. 

To start the optimization process, we first need to come out with an initial 

solution. The distribution of different solutions in a solution space can be likened to a 

graph. The optimization process is a solution-searching process that aims to find the 

lowest point in that graph, which is the best solution. There will be some scenarios 

where the search process will reach a low point, but not the lowest point in the graph, 

and converge at that low point. This will be the local minimum problem. Thus, most 

optimization algorithms will also handle the escaping from the local minimum [5]. 

Moving on to the dynamic scenario, dynamic optimization will also have 

objectives to be met [6]. It is like static optimization in terms of constraints, as it has a 

fleet size, a car capacity, a time window, etc. Request rejection can be accepted in 
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dynamic scenarios, as the satisfying of the hard time window constraints of the existing 

static requests should be prioritized. Other than that, a program may choose to not 

entertain urgent requests to ensure the comfort of those whose requests are being 

currently served. There are several different ways to measure the dynamism of the 

scenario [7], which means how dynamic the scenario is, but in this project, we will only 

use the effective degree of dynamism (EDOD) to measure dynamism. Two main ways 

to handle dynamic requests are insertion heuristics, as shown in [8], and metaheuristics 

such as tabu search and genetic algorithm. 

Lastly, the university scenario is special. It has both the static and the dynamic 

nature. Students and staff have a fixed timetable, and based on these timetables static 

requests will be generated. But, in a university, same-day class cancelations or additions 

may happen, students and staff may have unplanned, urgent meetings, or they may only 

remember they have something to do later the same day. These scenarios will generate 

dynamic requests.  

 

1.3  Project Scope 
 

The aim of this project is to formulate the problems stated in the problem 

statement and develop a model to solve the problems. The model will generate a 

schedule to handle all passenger requests from a starting point to a destination, 

subjective to several constraints that will be explained in Chapter 3. A solution 

searching and optimization algorithm will be used to optimize the schedule to better 

meet the passengers’ and drivers’ objectives. After the best schedule has been 

generated, the schedule will be simulated, and new requests will be coming in based on 

probability to simulate the dynamic scenario. 

 

1.4  Project Objectives  
 

This project aims to propose a model for generating schedules (solutions) that 

can ensure all students and employees have a pleasant experience coming to the 

university and going back by reducing the number of cars thus reducing congestion 

during peak hours. By reducing the number of cars in the university, the parking space 

provided by the university is enough to accommodate the number of cars that are parked 



5 
 

in the university so there is no need to introduce policies such as bidding of car stickers. 

Students will no longer need to try out their luck just to get a chance to park at the 

university. Other than that, the solution will focus on point-to-point pick up and drop 

off so users will not need to walk too long to reach their destination points from their 

vehicles or vice versa.  

To build a model to solve the problems stated in the problem statement, we first 

need to formulate the problems. The general approaches by researchers to formulate 

these kinds of challenges are by formulating them as CPP or DARP. However, as both 

methods come with their pros and cons, they should be tweaked according to the exact 

scenario of the problems to solve. This project will attempt to formulate the problems 

as a combination of DARP and CPP to better suit the university setting of the problems 

to be solved by this project. Drivers and passengers will not be treated as separated 

roles, meaning that drivers can be passengers after finish serving a request, and 

passengers can be drivers after reaching their destinations. 

Multi-objective optimization will be studied and implemented in this project, 

mainly focusing on optimizing the overall traveling expenses, earliness and lateness 

waiting time, and the number of dial-a-ride-like cases. Apart from that, this project will 

study the possibility of tweaking the traditional simulated annealing (SA) algorithm to 

make it more suitable for the formulated problem of this project. Therefore, an SA-

based multi-directional iterative local search algorithm will be built in this project as 

the solution searching and optimization algorithm.  

After that, university students may have sudden changes in their class schedules, 

for example, additional classes or unscheduled meetings. This means dynamic requests 

may come in during the running of the vehicle schedule. This project will study a way 

to serve these dynamic requests, while not changing the service details of those requests 

that are currently being served. This dynamic optimization solution will also ensure the 

constraints and service quality assurance of the static scenario can be met. 

This project will only focus on the algorithm part and will not develop an 

application based on it, meaning that the solution will be a runnable program on IDE, 

not a well-decorated mobile or web application. The expected output will be a schedule 

in simple form on a text file, together with the values of objective-related indicators 

such as total lateness and total cost.  
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1.5  Contributions 
 

This project formulates problems from a university setting. This is rare among 

the currently available research work as most of them focus on generic settings, which 

may not always match the nature of a university setting. Moreover, both the solution to 

the static part and the dynamic part of the university scenario will be studied. This 

project will show that the proposed model, algorithms, and dynamic scenario-handling 

mechanism can effectively optimize the formulated problem. 

Apart from that, the combination of DARP and CPP will be studied. 

Incorporating some aspects of DARP into CPP in problem formulating will make the 

problem-solving model more robust to serve many-to-many scenarios. Although there 

is already research done to formulate many-to-many CPP, the model proposed in this 

project attempts to formulate the problems in an easier-to-understand way and to better 

meet the real-world scenario. Aside from that, a cost model that takes care of both the 

satisfaction of the drivers and the customers will be formulated.  

Other than that, the feasibility of the SA algorithm as the solution optimization 

algorithm will be studied. The main optimization algorithm used in this project will be 

SA-based, and it will be tweaked to further improve its performance. The parameters 

will be tested to find the best configuration for the university scenario. 

 

1.6  Report Organization 
 

The details of this research are shown in the following chapters. In Chapter 2, 

some similar models with different objectives are reviewed. Moreover, different 

optimization algorithms will be studied to compare with the algorithm used in this 

project. Various approaches to handle dynamic scenarios will also be studied. Then, in 

Chapter 3, the details of the model proposed in this project, the algorithms, and the 

dynamic scenario handling mechanism will be explained. Next, in Chapter 4, the 

simulation and experiment configuration of both the static and dynamic scenarios will 

be presented. Chapter 5 will show the experiment results and explanation. Chapter 6 

concludes this project and suggests recommendations for this project. 
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CHAPTER 2 LITERATURE REVIEW 
 

Literature Reviews 

 

2.1  Previous Works on Problem Formulating on Similar Challenges 

2.1.1  DARP  
 

The previous works done on formulating DARP mainly differ on their 

optimization objectives and constraints, but the challenges they formulate their 

problems on are quite similar, mainly to solve congestion-related challenges. 

A classic DARP is like the one proposed by J. F. Cordeau and G. Laporte. There 

are a certain number of passengers, and a certain number of cars, and passengers each 

have requests for pick up and drop off.  Drivers and passengers are separated, meaning 

that the roles of passenger and driver cannot interchange. Each request will be specified 

with a time window, and the arrival time exceeding that time window will be penalized. 

This time window will ensure passengers are less likely to be late to reach their 

destinations. The requests will be handled by each car by complying with certain 

constraints. The optimization objective of their work is also the general one that is used 

in many other similar works, which is to reduce total cost. However, their model is 

generic, so it needs some tweaking to meet specific scenarios, for example, the 

university setting studied in this project [9]. 

G. R. Mauri et al. proposed a DARP that further prioritizes passenger 

satisfaction in terms of total costs, total traveling time and distance, and waiting time. 

This is a multi-objective optimization, as it not only has multiple objectives but also 

uses multiple objective functions to handle different passenger satisfaction indicators. 

The DARP model proposed in this work is heterogeneous, which means vehicles have 

different start and end depots [10]. Their model handles customers’ satisfaction very 

well, as their objectives are often what customers will prioritize when choosing an e-

hailing or taxi service. However, if they want the pick up and drop off time of each 

request to be very precise according to the exact traveling time, the formulated problem 

may be too complex to solve, thus sometimes may not have a feasible solution. 
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Other than that, S. Ouasaid and M. Saddoune proposed a DARP that takes 

driver’s preferences into account. This is a novel work as most DARP formulations will 

only give priority to passengers’ comfort without considering the drivers’ side. Their 

model penalizes both excess traveling time and excess waiting time for drivers. Their 

model has only a single optimization objective, which is to reduce the total traveling 

time. Although only have one objective, their model consists of three objective 

functions to handle both the penalty imposed on excess travel and waiting time for 

drivers [11]. This approach should be taken into account when formulating DARP, as 

drivers are also an important part of DARP. 

M. Posada et al. proposed another variant of DARP, the integrated dial-a-ride 

problem (IDARP). IDARP in essence means the integration of different types of 

transportation together, meaning that for a passenger’s request, the transportation that 

serves the passenger may change from car to bus and then to bike throughout the whole 

trip [12]. This study even included human walking as a type of transportation and 

included wheelchairs as a type of transport to meet the needs of disabled ones. This 

approach accepts vehicles with different speeds and capacities. IDARP is a more robust 

way of problem formulation and can better represent real-world scenarios in a general 

way but it doesn’t take the comfort of passengers into serious consideration, as they 

will need to do extra actions such as walking or changing transportation, rather than 

just hop in a vehicle on starting point and hop off on destination, which is more 

comfortable for a passenger. 

A. Ham introduced a DARP with an additional feature known as Express-Pool 

and with Friend-Only constraint. Express-Pool enables several passengers to be picked 

up by a car at a pickup point near the starting points of those passengers. It is different 

from the usual door-to-door pick up used by DARPs and can remove more detours 

compared to the Meeting Places concept, where passengers move to the starting point 

of one or two passengers to be picked up by a car, as shown in figure 2.1. Express-Pool 

is similar to public transport [13]. This feature does reduce the total travel distance and 

travel time of a car, but passengers will need to walk or find a way to the alternative 

pick up point, which is so much more inconvenient compared to door-to-door pick up. 

On the other hand, Friend-Only is a constraint to only enable the passenger permitted 

by the driver to be served by that car. This constraint improves the safety of the dial-a-

ride process, but it will make the problem so much more complex that it is hard to find 

feasible solutions for a larger number of passengers and requests. 
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Figure 2.1 Concept of door-to-door, Meeting Places, and Express-Pool and comparison 

between them [13] 

 

2.1.2 CPP 
 

Most previous works done on formulating CPP differ in their number of 

objectives, and whether it is many-to-many, or many-to-one.  The challenges they 

formulate their problems on are quite similar, and also similar even to DARP, which 

are also congestion-related challenges.  

S. Yan et al. proposed a long-term many-to-many CPP (LMMCPP). In their 

work, passengers can have different origins and destinations, but if for example a car 

has 4 seats, with only 3 passengers in it including the driver, and there is a request along 

their route to their specific destinations that the car can serve if making a detour, the 

car will not serve that request. The output of the model is a long-term carpooling 

schedule, meaning that the schedule will at least encompass a few days. Passengers 

with close origin and destination will be made into a passenger group, and different cars 

will serve them on different days [4]. The person who will be assigned as driver among 

that group will also differ across different days. As CPP prioritizes fairness, this 

proposed model optimization objective will be to reduce the difference between costs 

paid by each passenger, and it has only one objective. This approach is good as it can 

solve many-to-many problems, but it may limit the number and quality of solutions as 

it does not permit detours.  

S. Su et al. proposed a long-term CPP (LTCPP). It is a many-to-one single 

objective model. Its objective is to find the shortest route for all participants [1]. This 

model ensures some fairness on the driver side by restricting a participant to be assigned 

as driver for two consecutive days. However, the number of times each participant is 

assigned as driver will not be taken into account. This model’s taking care of drivers’ 

satisfaction is not complete enough. 
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On top of their previous work, S. Su et al proposed another model to tackle 

LTCPP with multiple objectives. It still retains the many-to-one attribute of the previous 

model. This model showed that multiple-objective CPP is doable. This model aims to 

minimize the total travel distance and total waiting time of passengers only at the 

starting point [14]. It considered the satisfaction of passengers, but in real life, people 

are more sensitive to being late to reach destinations than to waiting for too long at 

origin. Minimizing the waiting time at the destination side, in other words, minimizing 

lateness should be implemented in this model as an objective instead. 
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2.2  Previous Works on Different Optimization Algorithms 
 
Below are several algorithms used by researchers to either find a good quality initial 

solution or to find the optimum solution.  

 

2.2.1 Tabu Search 
 

Tabu search is a metaheuristic approach to finding the best solution while 

escaping the local minimum. This method creates a tabu list to record the action done 

by the searching algorithm, called steps. For example, car A swap request 1 with request 

2 of car B. Then this action cannot be done again by the searching algorithm for a 

specific number of iterations, or tenure period. After the tenure period, the step in the 

tabu list will be removed and the searching algorithm can take that step again [5]. Figure 

2.2 shows the pseudocode of a tabu search algorithm.  

 
Figure 2.2 Pseudocode of Tabu Search Algorithm [15] 
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In the work of S. Ho et al., they introduced an improved version of tabu search 

implementation. They use construction heuristic to find a high-quality initial solution 

within a short time, and then use the tabu search algorithm to find the best solution [16]. 

This can be viewed as a hybrid approach to implementing optimization algorithms. 

Based on their test results, their version of the tabu search algorithm outperformed the 

ordinary tabu search algorithm in terms of the time needed to obtain the optimal 

solution and the quality of the solution. Things to take note of are in more complex test 

cases, the improved tabu search outperformed the original tabu search by nearly 84% 

for runtime. The usage of construction heuristic in finding the initial solution clearly 

helps in this improvement as the algorithm will no longer need so many steps to reach 

the best solution.  

 

2.2.2 Simulated Annealing 
 

Simulated annealing (SA) is another metaheuristic approach to search for the 

best solution and escape the local minimum. In SA, the better solution is always 

accepted. The worse solution will have a probability of being accepted, called 

temperature. Temperature does not necessarily need to be implemented as probability, 

but it must represent the algorithm’s willingness to accept worse solutions. The 

temperature of a SA algorithm will be adjusted across the increasing number of 

iterations. SA sometimes accepts worse solutions as the solution may have something 

good in it. If we view the search process as a graph, a worse solution may be a means 

for the search algorithm to hop to the best solution, thus escaping the local minimum 

[5]. Figure 2.3 shows the pseudocode for the SA algorithm. 
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Figure 2.3 Pseudocode of Simulated Annealing Algorithm [17] 

 

2.2.3 Genetic Algorithm 
 

Genetic algorithm is a metaheuristic approach that imitates the biological 

evolution process, in other words, survival of the fittest. To apply genetic algorithm, 

first, a solution space needs to be generated. The number of solutions in the initial 

solution space can be adjusted according to specific problems. Throughout the solution-

finding process, the size of the solution pool must be fixed to the same number. For 

each solution, a fitness score is calculated to show how good is the solution. Different 

solutions in a solution space will then crossover, which means exchanging some parts 

between them. The fitness score will be calculated for the new solution. Solutions with 

a higher fitness score have a higher probability of survival, which means to not be 

removed. Removal of solutions from the solution list is done in every iteration to 

maintain the number of solutions in the solution list. In rare occasions, mutation will 
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occur, and the action done for mutation can be modified according to needs. The 

probability of mutation will also be set beforehand, and it can be adjusted. In the end, 

the solution with the highest fitness score will be chosen as the optimum solution [5]. 

Figure 2.4 illustrates the pseudocode for genetic algorithm. 

 
Figure 2.4 Pseudocode of Genetic Algorithm [18] 

 J. Li et al. proposed an improved version of the genetic algorithm for optimizing 

DARP. Their work solved the slow convergence problem for the original genetic 

algorithm. They replace the crossover and mutation action with four genetic operators: 

transfer, swap, segment exchange, and reshuffle [19]. Figure 2.5 illustrates the 4 

different genetic operators. Only one genetic operator will be chosen in an iteration, 

and the operators are chosen based on a roulette wheel-like probability generator. The 

other parts of the algorithm are the same as the original genetic algorithm. The whole 

process of generating offspring and eliminating solutions is shown in Figure 2.6.  
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Figure 2.5 The Four Genetic Operators to Generate Offsprings in The Improved Genetic 

Algorithm 
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Figure 2.6 Offspring Generation and Solution Elimination Process in The Improved 

Genetic Algorithm [19] 

 According to their experiment results, their improved version of genetic algorithm 

had outperformed both the original genetic algorithm, tabu search algorithm, and 

simulated annealing algorithm in terms of time needed to obtain the optimum solution 

and the quality of the optimum solution [19]. However, this can only prove that the 

improved genetic algorithm performs well in their type test case settings. It is not 

guaranteed to be better than the algorithms used as a comparison in different test case 

settings.  

 

2.2.4 Construction Heuristics 
 

Construction heuristics are methods used to find good quality initial solutions 

quickly. S. Ouasaid and M. Saddoune proposed the use of construction heuristics in 

finding better initial solution for their DARP. They proposed a “Cluster-First Route-

Second” approach, in which they first group requests with geographically close origins 

and destinations into a cluster [20]. They called this the “clustering phase”. Requests 

that are along the chosen route of a car will also be grouped together. Then these 

requests will be assigned to each car. The requests will kept being reassigned between 

each car to find the best possible initial solution, in the expense of some requests will 
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not be served. They called this the “construction phase”. The pseudocode of the two 

phases of this algorithm is shown in Figure 2.7 and Figure 2.8.  

 
Figure 2.7 Pseudocode of The First Phase of The Construction Heuristic [20] 
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Figure 2.8 Pseudocode of The Second Phase of The Construction Heuristic [20] 

This algorithm indeed obtained a good initial solution, and this will be a great 

help in getting a better quality optimum solution with a faster convergence speed, but 

in real-world scenarios, people will care more about whether their requests are served 

rather than the speed their requests are being arranged into a schedule, or the quality of 

that schedule. So a balancing point should be determined to maximize the quality of the 

initial solution in the condition of all requests can be served. 

 

2.2.5 Mixed integer linear programming 
 

This approach formulates the whole model into lines of linear equations and 

attempt to solve it using software tools. Most of the time this approach will be used to 

find the initial solution, but with the help of powerful software tools like CPLEX, it can 

also be used to find the optimum solution [21]. For examples of mixed integer linear 

programming approach, we can study the work of M. Posada et al. They proposed two 
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linear programming model to find the initial solution for their DARP. The linear 

equations for both models are almost the same, just that model 2 will record the route 

visited by each car to prevent cars from making cycles, thus reducing the time needed 

to obtain the initial solution and improve the solution quality [12]. As to best utilize the 

strength of linear programming in optimizing vehicle routing-related problems software 

tools are needed, linear programming approach is not too suitable for this project. 

 

2.2.6 Iterated Local Search With Two Local Search Methods 
 

The iterated local search with two local search methods is an improvement made 

to the iterated local search (ILS) heuristics. This improved algorithm is proposed by S. 

Ouasaid and M. Saddoune. They claim this solution-searching algorithm can come out 

with a better solution compared to the traditional ILS algorithm [11].  

The first local search method they implemented is the random neighbourhood 

visit order (RVND). The RVND does neighbourhood visitation in three ways: moving 

a request from one car to another car, swapping lists of requests between two cars, and 

swapping the order of two empty cars.  The decision of which type of visitation is 

chosen is randomized. Then the best solution obtained by the visitation is taken. The 

pseudocode of RVND is shown in Figure 2.9 [11].  

 
Figure 2.9 Pseudocode of The RVND Algorithm [11] 
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The second local search method they used was the learning-based local search. 

Each neighbourhood or search method is given a score. Methods with higher scores 

will have a higher probability of being chosen. In the beginning, each method has the 

same score, and the score of each method will either be added or deducted after certain 

iterations based on the quality of the solution they obtained. The pseudocode of the 

learning-based local search is shown in Figure 2.10. The score deduction or addiction 

rate can be adjusted by the variable alpha, and the addition and deduction value can be 

adjusted by variable beta and gamma, respectively.  

 

 
Figure 2.10 Pseudocode of The Learning-Based Local Search Algorithm [11] 

 

 The approach implemented in this ILS to randomly choose the solution searching 

method in each iteration is a good approach as they can diversely explore through the 

solution space. However, its “swap” solution searching method may lose out on some 

good solutions as it is swapping a list of requests. We can imagine the solution space 

as a line graph and the searching method as how large the step is to move from one 

point on the graph to another point. If they are swapping several requests at once, the 

“step” to move to another solution may be too large thus they may skip over the best 

solution in a certain step. 
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2.3  Previous Works on Dynamic Scenarios 
To handle dynamic requests, we should first know the level of dynamism of our 

scenario. The dynamism of the scenario is measured using EDOD, which A. Larsen 

proposed. According to him, a scenario can be classified as a weak, moderate, or strong 

dynamic scenario if its EDOD is lesser than 0.3, between 0.3 and 0.8, or more than 0.8 

respectively [22]. With different strengths of dynamism, different approaches will be 

taken to handle the scenario. The DDARP and its similar problems are classified as 

moderate dynamic scenarios [7], so the review of past approaches will be focused on 

moderate dynamic scenarios.  

Below is the formula for the calculation of EDOD: 

Let:  

T = end time of the planning horizon. 

𝑡𝑡𝑖𝑖 = the time the accepted dynamic request comes in. 

𝑁𝑁𝑖𝑖  = the number of accepted dynamic requests 

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = the total number of requests, including the dynamic requests 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
∑ 𝑡𝑡𝑖𝑖

𝑇𝑇
𝑁𝑁𝑖𝑖
𝑖𝑖=1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 , as seen in [7]. 

As mentioned in the background information, two main ways to handle DDARP are 

through insertion or insertion with metaheuristics methods. The most basic insertion 

methods are by inserting a detour in a route to accommodate the dynamic requests [8]. 

When the dynamic request is too urgent, adding a detour for it may cause the time or 

cost of the ongoing requests, which are those that are currently being served, to change, 

and this will cause serious dissatisfaction. So some researchers will attempt to reject 

urgent requests [7] or lock the ongoing requests. 

G. Berbeglia et al. proposed a tabu search and constraint programming (CP) based 

algorithm to optimize the DDARP. The way the tabu search works is like that of the 

static cases, which are used to find the best or optimal solution. CP was used to ensure 

that the solution obtained by the metaheuristics after dynamic requests had been 

inserted would still comply with the constraints of the formulated problem [23]. With 

metaheuristics being used, dynamic optimization will come with objectives. Like static 

optimization, most objectives are either monetary-related or time constraint-related. 

As the dynamic requests may be coming in at any time, the solution will need to be 

reoptimized to insert the requests and ensure the best possible solution. Two main re-



22 
 

optimization approaches are continuous re-optimization and periodic re-optimization. 

Continuous re-optimization means the solution will be re-optimised throughout the 

execution of the solution, whereby the rate is based on a preset time interval. This 

approach ensures the best possible solution, but participants will see their schedules 

being updated frequently [22]. Periodic re-optimization means the solution will only be 

updated when some conditions are triggered, for example when new requests come in. 

This will ensure the least amount of changes on the schedule, but the quality of the 

solution may not be the best [22]. 
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2.4  Summary 

2.4.1 Comparison Between Problem Formulating Approaches 
 
DARP-based formulating approaches 

 

Table 2.1 Comparison Between DARP-based Approaches 

Approaches Strengths Shortcomings 

Classic DARP - Handling 

passengers' 

satisfaction in 

terms of lateness 

- Generic model, not 

always suitable for some 

scenarios 

DARP that further 

prioritize 

passenger’s 

satisfaction 

- Handle passengers’ 

satisfaction very 

well 

- Formulated problem 

may be too complex to 

solve 

- Sometimes may not 

have feasible solutions 

DARP with driver 

preferences 

- Take care of the 

satisfaction of 

drivers 

 

Integrated DARP - Better represent the 

real-world scenario 

- A more robust way 

to formulate a 

problem 

- Does not take 

passengers’ comfort into 

serious consideration 

DARP with 

Express-Pool and 

Friend-Only 

- Express-Pool 

reduces the 

complexity of the 

formulated 

problem 

- Friend-Only 

enhance safety 

- Not convenient for 

passengers 

- Friend-Only make the 

problem more complex 

- Hard to find feasible 

solutions for large 

numbers of passengers 

and requests 
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CPP-based formulating approaches 

 

Table 2.2 Comparison Between CPP-based Approaches 

Approaches Strengths Shortcomings 

Long-term many-to-

many CPP 

- Handle many-to-

many scenario 

- Limit the number of 

solutions as it does not 

permit detour 

Long-term many-to-

one CPP 

- Take care of 

fairness on the 

drivers’ side 

- Fairness constraints on 

the drivers’ side are 

not complete enough 

Multi-objective CPP - Handle multi-

objective scenario 

- Do not have lateness 

constraints at the 

destination side 

 

 

2.4.2 Comparison Between Solution Searching and Optimization Algorithms 
 
Table 2.3 Comparison Between Different Solution Searching and Optimization 

Algorithms 

Algorithm Strengths Shortcomings 

Improved tabu Search - Less time needed to 

find the best 

solution 

- Have memory 

overhead 

- Not good enough for 

too complex 

problems 

Simulated annealing - Can adjust the 

search intensity 

- Easier to be 

implemented 

- Faster convergence 

speed 

- May affect solution 

quality due to the 

possibility of 

accepting worse 

solutions 
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Improved genetic 

Algorithm 

- Reduces 

convergence time 

- Improved quality of  

the best solution 

- May only perform 

this well on specific 

problems 

- Need more 

processing power 

Construction heuristics - Improved quality of 

initial solution 

- Less time needed to 

obtain a good 

initial solution 

- Less suitable to find 

the optimum 

solution 

- May sacrifice some 

requests to not be 

served to get a better 

initial solution 

Mixed-integer linear 

programming 

- Can be a very good 

approach for 

optimization with 

the help of software 

tools 

- Need software tools, 

not suitable for the 

setting of this project 

Iterated local search 

with random 

neighbourhood visit 

order and learning-

based local search 

- Good solution 

space exploration 

approach 

- Large solution space 

exploration “step” 

- May miss out on 

better solutions 
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2.4.3 Comparison with The Approaches Used in this Project 
 
 The problem formulation approach used in this project will be a hybrid approach of 

both DARP and CPP. For implementing classic DARP in the university setting used in 

this project, a group of drivers will need to be brought into the university to serve the 

requests of students, which is not realistic. Thus, in this project participants can be 

assigned as both drivers and passengers, so that students or staff of a university can 

serve all their requests by themselves. The formulated problem is a many-to-many 

problem and has two objectives, which are to minimize expenses and earliness waiting 

time. As the compensation to specially assigned drivers will also be included in the 

expenses, by minimizing the expenses the frequency of special driver assignment will 

also be minimized. A multi-objective problem can take care of more aspects of the 

satisfaction of both the drivers and passengers’ side. 

Moreover, the model used in this project comes with an expense calculation 

model that excludes the driver in the petrol fee calculation and imposes extra payments 

on the passengers if the driver is specially assigned. These will further take care of the 

fairness and satisfaction on the drivers’ side, yet not increase problem complexity as 

the calculation of payment is just simple math calculations. If the driver also has 

requests and is currently serving the driver’s own request, the same time window 

applied to passengers will be assigned to the driver. If lateness waiting time is present, 

it will be removed using a lateness waiting time rollback mechanism. The time window 

is not a hard constraint, thus not increasing the complexity of the problem. Other than 

that, the unserved requests for both drivers and passengers will be penalized heavily. 

This ensured the fairness of between the drivers and the passengers.  

The algorithm used in this project for solution searching and optimization is an 

SA-based multi-directional iterative local search algorithm. The SA-based algorithm is 

used as it is easier to implement, and compared to genetic algorithm and tabu search, it 

has less memory overhead and requires less processing power, thus taking less toll on 

the computational devices. SA also has a faster convergence speed. For the local search 

method, the methods used in [11] are referred to, and an improved version of their 

swapping method together with their request moving method is implemented as the 

local search method for the solution searching and optimization algorithm used in this 

project. The swapping process will only swap one request at a time. This will reduce 

the possibility of missing out on better solutions due to little exploration steps. 
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Apart from that, to avoid early convergence, the iteration will only stop if the 

quality of the best solution has not been updated for a certain number of iterations. This 

number will be determined after experiments. To amend the shortcomings of SA, a 

vector of five solutions will be created, and the SA-based local search will be done for 

all five solutions in the vector in every iteration. This enables the solution-searching 

algorithms to have a more diverse exploration direction in the solution space, as it will 

now search in five directions, and therefore reduce the possibility of converging with 

worse solutions.  

For the handling of dynamic scenarios, this project will use a similar approach 

to the one proposed in [23]. The SA-based multi-directional iterative local search 

algorithm will be used to re-optimize the solution, and the optimization objective will 

be the same as the static scenario. Periodic re-optimization will be used, as the need to 

check the solution continually over a time interval will bring a great deal of 

inconvenience to the staff and students. The requests with a starting time within 1 hour 

from the current time will be locked, and dynamic requests with a starting time within 

one hour from the current time will also be rejected. This is to ensure participants have 

sufficient reaction time if their schedule is updated. Participants will only need to check 

the schedule 1 hour before their requests start, and the arrangement for that request will 

not be changed after that. 
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Chapter 3 

System Model 

3.1  General Workflow 

 
Figure 3.1 Pipeline of The Whole Procedure of The Proposed Method 

 

The outputted solution will be a route schedule of the pickup sequence of the cars 

on only a day. The route schedule includes all nodes that each car will pass through 

together with the time they reach the nodes. The total inconvenience cost, travel 

expenses, earliness waiting time, lateness waiting time, and frequency of special 

driver assignment will also be outputted to the same text file. In the dynamic scenario, 

every time the solution has been re-optimized, the new solution will also be outputted 

to a text file with the same format as the static scenario. 
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3.2  System Design 
3.2.1 Problem Formulation 

This is a many-to-many DARP-based problem, which the means schedule will only be 

arranged for one day. However, some aspects of CPP will be incorporated into this 

problem formulation. 

Inputs: 

- A map in the adjacency list 

- Car objects 

- Participant objects 

- Requests 

Variable notations: 

Notation Meaning 

Pen Penalty 

S Travel expenses 

C Total expenses 

r Requests 

V Cars 

p Participants 

L Lateness waiting time 
 

 

Notation Meaning 

E Earliness waiting time 

x Decision variable 

𝑁𝑁𝑉𝑉 Total number of car 

𝑁𝑁𝑟𝑟 Total number of requests 

I Inconvenience costs 

W Weights in the inconvenience 

score function 

Pen Penalty 

Table 3.1 Variable Notations and Their Meaning  

 

Decision variable: 

The decision variable, x for each request is as follows: 

 

𝑥𝑥 = �1, 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 

 

Expenses function: 

𝐶𝐶 = � �𝑆𝑆𝑝𝑝𝑖𝑖

𝑁𝑁𝑝𝑝

𝑖𝑖=1

� 
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The travel expenses to be paid by each passenger consist of two parts, the petrol 

fee to travel from one node to another node, and the compensation payment paid to 

drivers who are specially assigned to serve them. The petrol fee from one node to 

another node is divided by all participants in the car at that moment except the driver, 

which means the driver will not need to pay for the petrol fee. The compensation to the 

specially assigned drivers will be handled in the calculation of the travel expenses. 

 

Penalty: 

𝑃𝑃𝑃𝑃𝑃𝑃 = ��𝑥𝑥𝑟𝑟𝑖𝑖 × 5000
𝑁𝑁𝑟𝑟

𝑖𝑖=1

� 

 

In the route schedule, if the arrival time of a car at a participant’s destination 

point to drop off the participant is later than the participant’s intended arrival time, 

lateness waiting time will be recorded. Lateness waiting time will be removed using a 

lateness rollback mechanism for both drivers and passengers, so it will not be penalized 

here. Apart from that, any unserved requests will be penalized heavily, as shown in the 

penalty function above. 

 

Travel expenses calculation: 

For normal cases: 

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

 

For special driver assignment cases: 

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1.5 × (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

 

Where the 0.5 ×  travel expenses will go to the specially assigned driver as 

compensation. As stated in the expenses function, these expenses will be divided by all 

passengers except drivers. The petrol price is fixed at a rate of RM 3 per km. 
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Objective functions: 

min (𝐶𝐶) 

 

min (�𝐸𝐸𝑝𝑝𝑖𝑖

𝑝𝑝

𝑖𝑖=1

) 

 

In the route schedule, if the arrival time of a car at a participant’s origin point to 

pick up the participant is earlier than the participant’s intended departure time, earliness 

waiting time will be added for the customer. Each customer object will have an attribute 

storing their total earliness waiting time. As the compensation for the special driver 

assignment had been included in the total expenses, minimizing total expenses will also 

minimize the number of special assignment cases. 

 

Inconvenience cost calculation: 

 

𝐼𝐼 = (𝐶𝐶 × 𝑊𝑊𝐶𝐶) + (𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑊𝑊𝐸𝐸) + 𝑃𝑃𝑃𝑃𝑃𝑃 

 

A weight will be multiplied by each variable to be minimized to denote their 

importance level. Each variable must have a different importance level for a better 

optimization result. As there are only two weights to optimize, no matter how we 

change these weights they can be simplified into a ratio of 1: 𝑥𝑥. For example, if 𝑊𝑊𝐶𝐶 =

50,𝑊𝑊𝐸𝐸 = 200, the ratio of the two weights,  𝑊𝑊𝐶𝐶 ∶  𝑊𝑊𝐸𝐸 = 1: 4. If 𝑊𝑊𝐶𝐶 = 100,𝑊𝑊𝐸𝐸 =

200, 𝑊𝑊𝐶𝐶 ∶  𝑊𝑊𝐸𝐸 = 1: 2. Thus, we will fix 𝑊𝑊𝐶𝐶 to 1 and make 𝑊𝑊𝐸𝐸 changeable to find the 

best weight combination. This also means that more priority will be given to the lower 

earliness waiting time. The inconvenience cost function will be as follows: 

 

𝐼𝐼 = 𝐶𝐶 + (𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑊𝑊𝐸𝐸) + 𝑃𝑃𝑃𝑃𝑃𝑃 

  

The inconvenience cost functions can be summarized as follows: 

 

min (𝐼𝐼) 
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Driver assignment: 

 If the starting point of a participant’s request is the same as the current location of 

a car on the intended starting time of that participant, that participant will be assigned 

as the driver. If the car is at a certain location and there is no request now whose starting 

point is the same as the car’s location, the model will choose one person who is 

currently at the car’s location node to be the driver. This is the case in which participants 

are specially assigned as drivers to serve some requests, and this case will be referred 

to as a DARP-like case. 

 

Parameters to be tuned of the algorithm: 

• Weight for earliness waiting time 

• Number of iterations of not updated lowest inconvenience score to converge 
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Constraints: 

1. Each car will have a fixed capacity of 5 seats including the driver seat. 

2. Each car will have a fixed speed of 30 km/h. 

3. The intended arrival time of each participant will be fixed to 30 minutes after 

their intended departure time. 

4. The maximum earliness waiting time for each request cannot exceed 10 minutes 

(QOS constraint). 

5. After a car departs from a node, it cannot move back to that node directly. 

However, if let’s say a car moves from node A to node B and then back to node 

A again, this is acceptable. 

6. The origin and destination of a request must not be the same. 

7. The number of participants a car can take cannot exceed its capacity. 

8. The request of each participant will only be served by one car. 

9. The origin and destination of a participant’s request will only be served by one 

car. 

10. Drivers who are specially assigned to serve requests will drive the car back to 

the driver’s location before serving the request after serving the request. 

11. The request serving sequence of a car should be arranged according to the 

intended start time of each request, from earlier to later. 

12. Drivers with a request must serve the request of all passengers in the car first 

before going to the driver’s own destination. 

13. Only participants’ requests with an intended start time difference within a 12-

minute range will be served together. Or else the request of a participant will 

only be served after the request of another participant was served. 

14. All participants must be able to drive. 

15. Each node will have participants on it. 
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3.2.2 Initial Solution Generating Algorithm 

Pseudocode for initialization 

Inputs: 

• sol - Solution object containing lists of cars (CList) and requests (req) 

Outputs: 

• A vector of pointers to car objects (CList) 

Initialize variables: 

• count = 0 (Index for iterating through CList do distribute the requests evenly) 

Loop through each request in sol.req: 

1. Add request to the current car's service list and sort the service list according 

to the starting time of each request in ascending order: 

o sol.CList[count] adds the request sol.req[i] to its service list. 

2. Update count: 

o If count + 1 equals the size of CList 

1.  reset count to 0. 

o Else 

1.  increment count by 1. 

Loop through each car in sol.CList: 

1. Generate the route schedule for each car: 

o Each car outputs its route to "initial_solution.txt". 

Return sol.CList 

 

The algorithm above assigns the requests evenly to each car. An initial solution 

will be deemed feasible even if it had unserved requests or lateness waiting time. 
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3.2.3 Local Search Algorithm 

Pseudocode for localSearch 

Inputs: 

• sol - Solution object containing a list of cars (CList) and requests 

• dynam - Boolean flag to indicate whether the current scenario is dynamic 

Outputs: 

• A vector of car objects (CList) 

Initialize random generator: 

• Create a random floating point number generator that range from 0 to 1 

Generate a random choice: 

• choice = generate random number 

Determine the local search operation based on choice: 

1. If choice is lesser than or equal to 0.5: 

o Call swapRequest() – swap one request between two car 

o Update sol.CList with the result of swapRequest 

2. Else: 

o Call moveRequest() – move one request from a car to another car  

o Update sol.CList with the result of moveRequest 

Return sol.CList 

 

The random number generator is used to determine the probability of either 

choosing to swap requests or to move requests. Both the swapping requests and moving 

requests will have a 50% probability of being chosen. 
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3.2.4 Solution Searching and Optimization Algorithm 

Pseudocode for Solution optimization 

Inputs: 

• s - Initial solution object 

• initial - Initial solution object  

• loopCount - Maximum number of loops = 5 

• Iter - Maximum number of iterations of not updated solution quality to enter 

into the next loop or converge = 35 

• w - Vector of weights for inconvenience cost calculation 

• optim - Boolean flag for displaying the optimization process 

Outputs: 

• best - Best solution found 

Initialize variables: 

• ii = 0 (loop counter) 

• solList (a vector with a size of 5) = initialized with 5 copies of initial in the first 

loop, initialized in the following loops with 5 copies of the best solution obtained 

from the previous loop  

• best = initialized with the initial solution in the first loop, initialized in the 

following loop with the best solution obtained from the previous loop  

• temperature (a floating point number) = 7 

• ver = empty list of vectors to store metrics 

• best_score = the inconvenience cost of the best solution 

Loop until ii = loopCount: 

1. Break if initial fitness is 0 

2. Clean and reinitialize the solution s 

3. Output the score of initial solution 

4. Initialize variables: 

o counter = 0 

o iter = 0 

5. Start the main loop until counter = Iter: 

a. Increment iter with 1 

b. For each solution sol in solList: 
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o Clear the solution record of sol (all records apart from the requests will 

be cleared) 

o Copy sol to a solution object curr 

o Run solution searching function on curr to update the CList of curr 

o Generate routes for each car from the requests 

o Recalculate metrics and inconvenience cost for curr 

o If cur is better than sol 

- update sol 

o Else 

- generate a random floating point number from 1 to 10 

- If the number is larger than the temperature 

 update sol 

c. Increase temperature by 1 after every 15 iterations 

d. Sort solList by inconvenience score in ascending order 

e. If new best solution is found: 

o Check if the generated schedule complies with the quality of service 

constraints 

o If yes 

- update best, store metrics in ver, initialize counter to 0 

- Sort ver by inconvenience score in ascending order 

o If no 

- initialize counter to 0 

f. Increment counter if no new best solution is found 

g. Limit ver to top 3 ranked solutions 

h. Output the optimization process if optim flag is true 

i. Clean up memory by deleting routes in solList 

6. End of main loop 

7. Output final results and print metrics 

Return the best solution found after all iterations and loops 

 

This optimization algorithm will run 5 loops, and each loop will end if the 

quality of the best solution is not updated for 35 iterations. The vector of solutions is 

initialized with the initial solution when the optimization begins, which means the first 

loop, and will be initialized with the current best solution after each loop ends. This is 
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to let the algorithm start the search from the current best solution, in the hope that the 

quality of the solution neighbourhood around the current best solution is better. This is 

similar to the idea of neighbourhood updating in the ant colony optimization algorithm 

[24] , but the updating mechanisms are very different. 

The probability of accepting a worse solution will be increased every 15 

iterations, and after the 45th iteration, the worse solution will not be accepted. But at the 

beginning of every loop, the temperature will be reset to 7 again. This is to let the 

algorithm continue doing global search in the solution space around the current best 

solution to have a chance of finding a better solution. Solutions that do not comply with 

the quality-of-service (QOS) constraint will not be rejected, as the algorithm might find 

better solutions from them. But to ensure that the QOS constraint is met, the best 

solution will only be updated if the better solution does not violate the constraint. 

 

3.2.5 Lateness Avoiding 

To avoid lateness waiting time in our schedule as it is very intolerable, a lateness 

waiting time rollback mechanism has been implemented. The figure below visualizes 

the rollback mechanism. 

 
Figure 3.2 Lateness Waiting Time Roll Back Mechanism 
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We define a trip as from a driver on board the car until the driver finishes serving 

requests and leaves the car. As we can see from the diagram above, if after rolling back 

the pickup time of the first request of the current trip is not earlier than the drop off time 

of the last request of the previous trip, the rollback will only happen on the current trip. 

Or else, the rollback will also happen to the previous trip. 

 

3.2.6 Output Format 

The output format of the route schedule to a text file will be as below: 

Car ID: {time;  node; D: driver type; number of passengers}  { time;  node; D: driver 

type; number of passengers }  so and so forth 

Car ID: so and so forth 

 

Highest single request earliness waiting time: x minutes 

Total earliness waiting time for all participant: y minutes 

Total lateness waiting time for all participant: z minutes 

Total travel expenses for all participant: RM a 

Total number of darp-like cases: b  

 

The route schedule for each car will be printed out in this way. This route schedule 

shows when will a car reach a certain node, and at that moment who is the driver and 

who is the passenger. The pick-up and drop-off of passengers will all be reflected in 

this route schedule by adding and removing passengers from the passenger list. The 

total DARP-like case denotes the total number of times drivers are assigned specially 

to serve some requests. 
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3.3 Dynamic Scenario Handling 

 

Pseudocode for Dynamic Scenario Handling 

Inputs: 

• request - The incoming dynamic request 

• current_time - The current system time 

• curr_solution - The current solution 

Check if the request arrives after 5 pm: 

• If request.arrival_time > 5:00 PM: 

o Reject the request 

o Return the current request 

Check if the request's start time is within 1 hour from the current time: 

• If request.start_time ≤ current_time + 1 hour : 

o Reject the request 

o Return the current request 

If the request is accepted: 

• Sort the car list by inconvenience cost 

• Sort solution.CList in ascending order based on the inconvenience cost of each 

car 

• Insert the dynamic request: 

o Insert the request into the car with the lowest inconvenience cost (first 

car in the sorted list) 

o Recalculate the inconvenience cost for the new solution 

o Compare the new solution with the current solution 

o If new_solution.inconvenience_cost < 

curr_solution.inconvenience_cost : 

 If the new solution meets the QOS constraints: 

- Output the new solution as the best solution 

 Else: 

- Enter solution re-optimization 

o Else: 

 Reoptimize the new solution using the solution optimization 

algorithm from the static scenario 
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 Output the newly optimized solution 

Return the new solution 

 

In the dynamic scenario, the requests will be removed from the solution after it is 

being served, and new dynamic requests might be added in. So, we will need to compare 

the quality of two solutions with different numbers of requests. It is normal for a 

solution with more requests to have a higher cost than the one with fewer requests. 

Thus, to ensure fairness during solution quality comparison, the cost of the solution will 

be divided by its current number of requests. The inconvenience cost of each car will 

be calculated by cumulating the cost of the requests assigned to that car. The dynamic 

request will be inserted directly into the car with the lowest cost, and that car will make 

a detour to serve that request.  
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Chapter 4 

Experiment and Simulation Setup 

4.1  Setting Up  

4.1.1  Hardware Setup 

The hardware involved in this project is a laptop. Table 3.1 shows the specifications of 

the laptop used in this project. 

 

Table 4.1 Specifications of Laptop 

Description Specifications 

Model Acer Nitro 5 2022 AN515-45 

Processor AMD Ryzen 7 5800H 

Operating System Windows 11 

Graphic NVIDIA GeForce GTX 1650 

Memory 16GB DDR4 RAM 

Storage 500GB SSD 

 

 

4.1.2 Software Setup 

The software system of this project is fully coded using C++. The software tools 

required in this project are a C++ integrated development environment (IDE) and 

Windows PowerShell for collecting experiment data. Below are the software 

specifications used in this project. 

• IDE: Visual Studio Enterprise 2022 

• C++ version: ISO C++ 20 Standard 

• Windows PowerShell version: 5.1 
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4.2  Running the Program 
 

After running the program, it will randomly generate test cases, generate the initial 

solution from the test cases, and do solution searching and optimization all in one run. 

The program will stop temporarily after the solution searching and optimization 

algorithm converges. 

 
Figure 4.1 Start of Running Demo of The System 

 

 As shown in Figure 4.1, during the solution searching and optimization process, the 

current lowest inconvenience cost will be printed out every iteration for us to view the 

optimization process.  

 
Figure 4.2 End of Running Demo of The System 

  

 After the algorithm converges, the system will stop running. The final lowest 

inconvenience cost will be outputted, as shown in Figure 4.2 above. If users type “yes” 

on the terminal, the program will enter into schedule simulation, or else the program 

will exit. 
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4.2.1  Solution 
 

Both the initial and the best solution will be outputted into a text file. Figure 4.4 

shows the format of the output. The format is the same for both the initial and the best 

solution.  

 
Figure 4.3 Output of The Solution 

The “D: Norm” indicated a normal case, where the driver is also serving the driver’s 

own request when driving the car. The “D: DARP” indicated a special driver 

assignment case, where the driver is assigned solely to serve some participants’ 

requests. The “𝑥𝑥P” indicates the number of passengers excluding the driver on the car 

when the car reaches a node, where 𝑥𝑥 is the number of passengers. 

 

4.2.2 Simulation of the Schedule  

 To simulate the run of the schedule, first, the program will run a simulation clock 

starting from 8 am to 6.40 pm. If the end time of any request is reached, which means 

its end time is the same as the current time on the simulation clock, the request will be 

removed from the car serving it. This indicates that the request was served. The number 

of requests left to be served will be outputted every minute so that we can see the 

changes in the number of requests, and make sure that the simulation is running fine. 

When the simulation clock ends, the program will calculate the total number of requests 

again to make sure all requests are served. Figure 4.5 shows the screenshot of the 

simulation process. 
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Figure 4.4 Simulation of the Best Solution From the Static Scenario 

This simulation will only cover the static case. The simulation that includes 

dynamic cases will be done in Chapter 5 to evaluate the ability of the program to handle 

dynamic scenarios. 
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4.3  Experiment Configuration 

Parameter of the solution searching algorithm in the static scenario: 

• Number of loops: 5

• Number of iterations of not updated solution quality to converge, per loop: 35

• Starting temperature: 7

• Temperature increment rate: increment by 1 per 15 iterations

Parameter of the solution searching algorithm in the dynamic scenario: 

• Number of loops: 1

• Number of iterations of not updated solution quality to converge, per loop: 35

• Starting temperature: 7

• Temperature increment rate: increment by 1 per 15 iterations

• Optimization objectives are the same as static scenarios

• Same constraint as the static scenario

Planning horizon: 

From 8 am to 6.40 pm. The earliest request cannot start before 8 am, and the latest 

request cannot end after 6.40 pm. 

Test cases: 

To better represent the university scenario, the requests will be generated at a 

different probability in the different time frames within the planning horizon. The total 

number of requests will be set before the generating of requests, so the probability 

means the likelihood of the generated requests will fall in that time frame.  

The probability of generating requests for different time frames is as follows: 

• 8 am to 9 am: 25%

• 10 am to 11 am: 17.5%

• 12 pm to 1 pm: 10%

• 2 pm to 3 pm: 17.5%

• 4 pm to 6 pm: 25%

This means that if now we have 200 requests, the probable outcome will be: 50 

requests in 8 – 9 am, 35 requests in 10 – 11 am, 20 requests in 12 – 1 pm, 35 requests 
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in 2 – 3 pm, 50 requests in 4 – 6 pm. The sample outcome of this request-generating 

mechanism is shown in Figure 4.5. 

Figure 4.5 Different Probability of Request Generating in Different Time Frame 

Likewise, the occurrence of the dynamic requests is also in a different probability 

in different time frames across the planning horizon. But this probability is purely the 

likelihood of the occurrence of the dynamic requests, as the total number of dynamic 

requests is not set. The probabilities are as such: 

• 8 am – 10 am: 50%

• 11 am – 1 pm: 40%

• 2 pm – 4 pm: 30%

• 5 pm – 6 pm: 20%

The probabilistic requests generation mechanism will be run once every three

minutes of the simulation clock. If the mechanism hits the probability of generating 

dynamic requests, 1 dynamic request will be generated. 

 The test cases also include cars and maps. The number of cars will be fixed to 10, 

and each car will be assumed to be at the starting point of the first requests assigned to 

them before the schedule starts to run. The maps used in the experiment are randomly 

generated.  

The generated maps have the following characteristics: 

• Consist of 30 nodes

• Each node has 4 to 8 adjacent nodes

• The distance between each node with each other is between 0.35 km to 3 km



48 

4.3.1 Objective of Experiment 

1. To prove that the solution searching and optimization algorithm is working fine

2. Stress test the program

3. To tune the parameters of the algorithm

4. To show that the dynamic scenario handling mechanism is working fine

4.3.2 Experiment Method 

 To meet experiment objective 1, the algorithm will be run with two different weight 

configurations. The metrics of the top three ranked solutions from both configurations 

will be recorded and tabulated. Both configurations will be run with test cases 

consisting of 200 to 300 requests.  

Next, to fulfill experiment objective 2, the program will be tested with test cases 

consisting of various ranges of number of requests to determine the highest range of 

number of requests the program can take. For example, the test cases will have 0 to 100 

requests and 100 to 200 requests, and they will keep on increasing until the program 

cannot handle them. 

 From the result of the test on objective 2, we will then try out different weight 

configurations on the earliness weight (as the travel expenses weight had been fixed to 

1) to find the best weight configuration. Each configuration will be tested 500 times 

with different ranges of request sizes the program can handle, and the result will be 

presented on charts. We will use shell scripts to help run the test in parallel to save time. 

The scripts will be run on Microsoft PowerShell.

 For dynamic scenario handling, we will show that the program can reject and accept 

dynamic requests properly. The rejected requests should not be inserted into the 

schedule, and the accepted requests must be inserted into the schedule and be served. 

Other than that, we will show that the request-locking mechanism is working fine. In 

our scenario, there is at least one hour of reaction time, so the speed of re-optimization 

may not be crucial. But we would still show the average time the new solution can be 

re-optimized to ensure enough reaction time. 
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4.4  Implementation Issues and Challenges 

There are three main issues and challenges faced when implementing this model. 

 First, as there is a QOS constraint in our program, sometimes the algorithm may not 

be able to find a better solution that meets the QOS requirement. The algorithm will 

then output the initial solution as the only feasible solution. This problem is likely to 

happen when the number of requests is high. From our observations, this will happen 

when the total number of requests is more than 400, and the frequency of happening 

will increase when the number of requests increases. 

 Second, the dynamic scenario can only be simulated using test cases with at most 

150 requests. This is because there is a memory leaking problem when the algorithm 

runs, so a higher number of requests may result in memory allocation error. The 

memory leaking problem happens most likely because the objects in the program are 

not being defined or constructed properly when we start building the program. The 

source of leaking is hard to detect at this stage, and changes may need the whole revamp 

of the program, so we will only use test cases with 150 requests or less to conduct the 

dynamic scenario simulation.  
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Chapter 5 

System Evaluation 

5.1  Static Scenario 
The results of the three experiments done in the static scenario to test the ability of 

the algorithms and tune the weight of the objective function will be displayed and 

discussed in the below sub-sections. 

 

5.1.1 The Working of the Solution Searching and Optimization Algorithm 

 We conduct the test with earliness weight = 5 and earliness weight = 4. Table 5.1 

and Table 5.2 record the metrics of the top three tanked and initial solutions for both 

weight configurations. 

Table 5.1 Test Result for Weight Configuration 1 

Weight of earliness: 5  

Solution 

rank 

Inconvenience 

cost 

Total 

earliness 

waiting 

time 

Total 

DARP-

like 

cases 

Maximum 

single 

request 

waiting time 

Total 

traveling 

expenses 

1 1199.99 54 minutes 161 5 minutes RM929.99 

2 1209.81 57 minutes 160 5 minutes RM924.81 

3 1234.33 65 minutes 162 7 minutes RM909.33 

Initial 1464.47 66 minutes 235 8 minutes RM1134.47 

Number of requests: 277 

 

 

 

 

 

 

 

 

 



51 
 

Table 5.2 Test Result for Weight Configuration 2 

Weight of earliness: 4 

Solution 

rank 

Inconvenience 

cost 

Total 

earliness 

waiting 

time  

Total 

DARP-

like 

cases 

Maximum 

single 

request 

waiting time 

Total 

traveling 

expenses 

1 1349.11 86 minutes 160 8 minutes RM945.11 

2 1379.79 101 

minutes 

159 8 minutes RM939.79 

3 1401.48 110 

minutes 

174 8 minutes RM969.48 

Initial 1560.02 108 

minutes 

248 8 minutes RM1216.02 

Number of requests: 300  

 

 From the experiment result, we can see that across different weight configurations 

and different numbers of requests, the solution searching and optimization algorithm 

can tell which solution is better in both scenarios, as the best solution is better than the 

initial solution, and the algorithm can rank the solutions according to their quality. The 

QOS constraints are also met in every solution. These show that the algorithm is 

working fine. 

 

5.1.2 Stress Test 

 The stress test will use five request size ranges: 0-100, 100-200, 200-300, 300-400, 

and 400-500 requests. The maximum number of requests is set at 500 because the 

algorithm's ability to find optimal solutions visibly degrades when the request size 

exceeds 400. To determine whether weight configurations affect the algorithm's ability 

to handle larger request volumes, we will test the cases using three different weight 

configurations. We will then analyze the trends in travel expenses and earliness waiting 

time across the test cases with varying request sizes to evaluate how the algorithm's 

performance changes as the number of requests increases. As comparison across 

different request size ranges will be made in this test, all the metrics will be per request 
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rather than per solution to ensure fairness in comparison, as it is normal for the solution 

with the higher number of requests to have a higher value in each metric. 

 
Figure 5.1 Average Travel Expenses per Request, 𝑊𝑊𝐸𝐸 = 3 

 

 
Figure 5.2 Average Travel Expenses per Request, 𝑊𝑊𝐸𝐸 = 4 
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Figure 5.3 Average Travel Expenses per Request, 𝑊𝑊𝐸𝐸 = 5 

 

 Figures 5.1 to 5.3 show that the traveling expenses per request for both the initial 

and the best solutions will increase when the request size range increases from 0-100 

to 100-200 but will slightly decrease as the number of requests increases thereafter. The 

gap between the initial and best solutions also increases as the number of requests 

increases to 300 but decreases thereafter until there is only a little gap left when the 

request size range is 400-500. 

 

 
Figure 5.4 Average Earliness Waiting Time per Request, 𝑊𝑊𝐸𝐸 = 3 
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Figure 5.5 Average Earliness Waiting Time per Request, 𝑊𝑊𝐸𝐸 = 4 

 

 
Figure 5.6 Average Earliness Waiting Time per Request, 𝑊𝑊𝐸𝐸 = 5 

 Figures 5.4 to 5.6 show that the earliness waiting time per request for both the initial 

and the best solutions will increase as the number of requests increases. The earliness 

waiting time of the best requests is higher than the initial solutions when the request 

size range is less than 200. It will become almost the same for the request size range of 

200-300, and the best solutions will have a lower earliness waiting time than the initial 

solutions when the request size range is more than 300, and the gap between them will 

increase as the number of requests increases. 
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Explanation: 

 The increase in traveling expenses when the number of requests increases to 200 

may be caused by the increasing complexity of the problem as there are more requests. 

After that, the traveling expenses decrease as the number of requests increases. This 

may be because when there are more requests, the algorithm can cluster requests with 

nearby starting or ending points together more efficiently, thus reducing the distances 

of detours and the number of detours, so the traveling cost will decrease.  

 The earliness waiting time increases as the number of requests increases because 

the problem will be more complex when there are more requests. As for the gap between 

the initial and the best solutions, when the request size is less than 300, the optimization 

space for the traveling expenses may be larger than the earliness waiting time, so it may 

be easier for the algorithm to sacrifice the earliness waiting time to find the best solution 

with significantly less traveling expenses than the initial solution to achieve a lower 

inconvenience cost. Another reason will be the total traveling expenses per solution will 

be several hundred or more than a thousand, while the earliness waiting time at most 

will only exceed one hundred. So even if the weight on the earliness waiting time is 

much higher, the solution may still find it easier to find a solution with a lower cost by 

just focusing on reducing the traveling expenses. 

When the number of requests is increased further, and the optimization space for 

the traveling expenses decreases, to achieve a lower inconvenience cost, the algorithm 

will need to shift focus to the earliness waiting time with a higher weight on it. This 

may explain the trend of the gap between the initial and the best solutions for both 

traveling expenses and earliness waiting time when the number of requests increases. 

 

 

5.1.3 Weight Tuning  

For a university student or staff, wanting them to wait at their starting point earlier 

than intended will be more intolerable than a slightly higher cost. In the weight tuning 

test, we intend to find the weight configuration that ensures the best optimization 

strength on the earliness waiting time while also optimizing the expenses.  
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Figure 5.7 Average Travel Expenses Per Request in Different Weight Configurations 

 

 
Figure 5.8 Average Earliness Waiting Time Per Request in Different Weight 

Configurations 

  The optimization strength on the expenses decreases slightly as the weight ratio 

increases. This is because as the weight of the earliness waiting time increases, the focus 

of optimization will shift toward the earliness waiting time. 

 The optimization strength on the earliness waiting time is increasing as the weight 

of earliness increases. As we can see from Figure 5.8, the earliness waiting time of the 

best solution spikes high when the weight is 0.5, which means when the priority is given 
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earliness of the best solutions starts to decrease as more priority is given, typified by 

the higher weight. 

 The expenses of the best solutions, when prioritizing earliness above traveling 

expenses, are still being optimized properly, albeit the optimization strength is not that 

strong compared to when expenses and earliness are given equal priority. The reason 

we make the weight of earliness changeable is also because more priority will be given 

to the lower earliness waiting time. Thus, we can focus on the optimization strength of 

the earliness to determine the weight to be chosen.  

Table 5.3 Comparison of the Reduction Percentage of Two Weight Settings on the 

Earliness Waiting Time  

Weight Initial earliness Best earliness Reduction % 

4 0.2902 0.2548 12.2 

5 0.3071 0.2666 13.19 

6 0.2697 0.2263 16.09 

7 0.2677 0.2239 16.36 

8 0.2851 0.2282 19.96 

 As shown in Table 5.3, the reduction percentage of the best earliness compared to 

the initial earliness of weight 8 is higher, showing a stronger optimization strength. So, 

the weight of the earliness waiting time is set to 8. 

The number of iterations will be determined by observation. Throughout the 

experiments done in this project, if the solution quality is not updated for more than 30 

iterations, the algorithm will not find a better solution even though it is being run 100 

iterations after that. The algorithm's temperature will reach 10 after 45 iterations, 

regardless of the solution quality. Therefore, setting the parameter too high is not ideal, 

as the algorithm will primarily perform local searches after the 45th iteration. At that 

point, the search space becomes quite limited, reducing the chances of finding a better 

solution. This parameter setting will prevent the algorithm from spending unnecessary 

time and computing resources.  
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Figure 5.9 Total DARP-like Cases in Different Weight Configurations 

Figure 5.9 shows that the DARP-like cases, which means special driver assignment 

cases will be optimized even if not set as an individual objective function. By 

optimizing the traveling expenses, the number of DARP-like cases will also be 

optimized. 
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number of requests is low, as according to our observation of the algorithms, they tend 

to use more time to complete their search when the number of requests increases.  

 The average EDOD throughout the test is 0.1867. As it is lower than 0.3, the 

dynamic scenario will be classified as a weak dynamic scenario. The EDOD is low 

because the probability of the dynamic requests generating will be lower as the virtual 

time goes nearer to the end of the planning horizon, and requests that come in 1 hour 

before the planning horizon ends will be rejected. This gives the algorithm enough time 

to handle the requests. 

5.3  Concluding Remarks 
The working effectiveness of the algorithm: 

• Working fine as the algorithm can rank the solutions it found based on their

quality, and the best solution found is better than the initial solution.

The final parameter value of the algorithm: 

• Weight of earliness: 8

• Number of iterations of not updated solution quality to converge, per loop: 35

The findings from the stress test: 

• The ability of the algorithm to find the optimal solution will visibly degrade

when the number of requests exceeds 400.

Dynamic scenario: 

• An average of 50.25 dynamic requests are accepted per test

• The algorithm can accept and reject dynamic requests accurately according to 

whether they meet the time constraints

• EDOD: 0.1867, indicating the dynamic scenario studied in this project is a weak 

dynamic scenario
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Chapter 6 

Conclusion and Recommendation 

6.1  Conclusion 
Nowadays in the university, as most students and staff have cars, congestion can 

happen in the university. The timetable for students or staff is not fully full throughout 

the day, so they might leave the university if there is still some time before their class. 

Therefore, the congestion in the university will not only happen in classic peak hours, 

but it can happen anytime. Even though public transport will be provided, usually it 

will not stop at every block of the university, thus is not the most convenient for students 

and staff. Moreover, the increasing number of cars will cause the parking space in the 

university cannot accommodate all cars. Some will have no place to park, and some 

will need to park far away from their destination. They will need to walk under the hot 

sun to their destination, and the situation will be worse when it is raining. Other than 

that, due to the bad driving attitude of drivers, it is quite high risk for bikers to ride in 

the university, and sometimes accidents may happen to them. The university scenario 

consists of the static part and the dynamic part, where the timetable of the students and 

staff will generate static requests, and the sudden need to go to the university due to 

various reasons such as additional classes and urgent meetings will generate dynamic 

requests. 

 This project aims to formulate the problems above and develop a model that will 

come out with a vehicle pickup and drop-off schedule. A solution searching and 

optimization algorithm will be built to optimize the schedule to better meet the 

passengers’ and drivers’ objectives. A dynamic scenario handling mechanism will be 

built to handle dynamic requests. We attempt to combine some aspects of DARP and 

CPP in a hybrid way to formulate the problems that best suit the university setting of 

our problems. The outcome of this project will be a runnable program to generate the 

best solution from the given test cases.  

 Based on literature reviews on past works, the exact way to formulate the problems 

and the exact algorithm to use for solution searching and optimization is determined. 

The problems will be formulated as DARP-based, meaning the schedule is only for one 

day. Unlike the classic DARP setting, the participants can both be passengers or drivers, 
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meaning that university students and staff can serve themselves. No additional full-time 

drivers are needed; thus, this formulation approach is more feasible in the university 

setting. The objective of the model is to reduce the total costs, to reduce the total 

earliness waiting time, and to reduce the number of cases where drivers are specially 

assigned to serve some requests. Drivers will be specially assigned when there is 

currently no driver on the car and the car is not at the starting point of its next assigned 

request. This will be a multi-objective, many-to-many, static and dynamic model. 

 In this project, we will take care of the satisfaction of drivers by implementing an 

expense function that drivers will not need to pay the travel expenses, and if drivers are 

specially assigned, passengers will need to compensate the driver. Unserved requests 

will be penalized, and lateness will be removed by the lateness waiting time rollback 

mechanism, as these are intolerable for the participants. These penalties will also be 

applied to the driver’s own request. This ensured the fairness of between the drivers 

and the passengers. There will be 15 constraints the model must comply with when 

generating a schedule. If earliness waiting time is present, it should not be longer than 

10 minutes per request. This is implemented as the QOS constraint. The quality of the 

solution is determined by its inconvenience cost, which inconvenience cost = total 

earliness waiting time * weight + total costs + penalty. Only the weight of the 

earliness waiting time is adjusted, as the weight for earliness and travel expenses can 

be simplified to a ratio of weight : 1, and the lower earliness waiting time will be given 

more priority. The number of DARP-like cases is not being optimized individually as 

it is already included in the travel expenses. 

 Next, to start the solution searching and optimization process, metaheuristics search 

algorithms will be built. We choose to use the simulated annealing (SA) algorithm for 

its faster convergence speed, lower memory usage, and lower processing power needed. 

We tweaked the SA algorithm to improve its performance. The algorithm used in this 

project is called SA-based multi-direction iterative local search. The algorithm consists 

of three parts, the initial solution-generating algorithm, the local search algorithm, and 

the optimization algorithm. For the local search algorithm, the idea of [11] is referred 

to, but we improved the search rate of the algorithm by reducing the search step distance 

to avoid missing out on high-quality solutions. 

 Moving on to the optimization algorithms, we created a vector of 5 solutions and 

performed an SA-based local search for all 5 solutions every iteration. The algorithm 

will have multiple loops and each loop has multiple iterations. At the beginning of each 
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loop, the probability of accepting worse requests will be lowered to encourage global 

search. This enables the algorithm to explore the solution space more diversely, 

reducing the possibility of converging with a worse solution. To prevent premature 

convergence, the algorithm will only converge when the best solution is not updated 

for a certain number of iterations. 

 For the handling of the dynamic requests, we will lock the requests that start within 

1 hour from the current simulation virtual time. The locked request will not be touched 

in re-optimization, so their pickup and drop off time will remain the same throughout 

the simulation. This is to ensure enough reaction time for the participants. Requests that 

come in 1 hour from the current virtual time will be rejected, and requests that come in 

within 1 hour before the planning horizon ends will also be rejected. The dynamic 

request will be inserted into the service list of the car with the lowest inconvenient cost. 

If the new solution is better than the current solution, no re-optimization will be made. 

Or else the new solution will go through re-optimization using the same algorithms 

from the static scenario, with the same constraints and some parameters tweaked to 

reduce the time needed for re-optimization. The new solution will then become the 

current solution. Schedule simulation will be needed for dynamic scenarios, and we 

will run a virtual simulation clock to simulate the schedule. The requests that were 

served will be removed. 

 Experiments were done on the algorithm to fine-tune the parameters of the 

algorithm, and to verify that the algorithm works fine. This also shows that the 

algorithms can handle the university scenario well. Stress tests have been done to find 

out how the algorithms act when the number of requests increases, and the maximum 

number of requests the algorithms can handle while optimizing the solution effectively. 

For each test objective, the algorithms are tested with different configurations of test 

cases, with each configuration consisting of 100 test cases. Experiments on the dynamic 

part are mainly to ensure that the dynamic scenario handling mechanism is working 

fine. The main objectives will be ensuring the correct rejection and acceptance of 

requests, the average time needed for re-optimization, and the dynamism of the 

dynamic scenario, measured in EDOD. The time needed for re-optimization is just for 

reference as the reaction time in our scenario is long. 

 The algorithms are proven to be working fine as they can effectively identify the 

quality of the solutions and rank them according to their quality. The quality of the best 

solution found is also better than the initial solution. For the stress test, we find out that 
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the algorithms’ ability to find the optimal solution will visibly degrade when the number 

of requests exceeds 400. The trend we observed from the test results is caused by the 

shift of priority level of the algorithms on either the travel expenses or the earliness 

waiting time. The weight of the earliness waiting time is 8 as this is the configuration 

that gives the algorithms the strongest optimization strength out of our tested 

configurations on the earliness waiting time. Apart from that, based on our observation, 

the number of iterations of not updated solution quality to converge per loop is set to 

35 iterations to prevent unnecessary use of resources. Other than that, from our tests, 

we saw that the DARP-like cases will be optimized even if it is not being defined as an 

individual objective function.  

 Lastly, the experiment results on the dynamic scenario show that the dynamic 

scenario handling mechanism works fine. The requests are being accepted or rejected 

correctly. Due to some limitations, we will only use test cases with 100-150 requests 

for the dynamic scenario. The average re-optimization time is 27.0125 seconds, due to 

the low number of requests. The average EDOD is 0.1867, indicating a weak dynamic 

scenario as the reaction time for the handling mechanism is long enough. The average 

number of dynamic requests accepted in each test is 50.25 requests. 
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6.2  Recommendation 
Recommendations for future improvements can be made mainly on the algorithms 

and the dynamic scenario handling mechanism. 

To speed up the solution search and optimization process, parallel programming 

can be integrated into the algorithms, allowing multiple operations to run 

simultaneously. For even greater performance gains, the algorithms can be developed 

using Compute Unified Device Architecture (CUDA), which enables efficient use of 

the GPU's extensive parallel processing power. By utilizing the GPU's ability to handle 

thousands of threads concurrently, this approach significantly boosts computational 

efficiency and reduces the overall time required for optimization tasks, especially for 

large-scale problems. 

 Other than that, to handle more complex and dynamic scenarios, the implementation 

of deep reinforcement learning (DRL) algorithms as the solution searching and 

optimization algorithm can be studied. The DRL algorithms have a more stochastic 

nature, and newer ones even can take the context of all requests when searching for 

solutions as they are utilizing the transformer model [25]. These enable them to have 

the capability to produce high-quality solutions even in a very complex scenario. In 

dynamic scenarios, their ability to handle highly dynamic scenarios with many urgent 

requests should be further studied as this may be useful in developing a fully 

autonomous vehicle system.  
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