

AI FOR A POSITIVE WEB:

ANALYZING HATE IN SOCIAL MEDIA

BY

CHAI YUN WAI

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONOURS) BUSINESS INFORMATION

SYSTEMS

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2024

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: _____________ AI FOR A POSITIVE WEB:_____________________

 _____________ ANALYZING HATE IN SOCIAL MEDIA_________

 __

Academic Session: ___Jun 2024___

 I ____________________CHAI YUN WAI__________________

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _____ ___ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 ____LC 697,Kampung Baru__

 ____31700,Malim Nawar,____ _________________________

 ___________Perak__________ Supervisor’s name

 Date: ___13 September_2024_____ Date: ____________________

Dr. Abdulkarim Kanaan Jebna

13/09/2024

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY/INSTITUTE* OF __________FICT___________________

UNIVERSITI TUNKU ABDUL RAHMAN

Date: ______13 September 2024____________

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that ______Chai Yun Wai_________ (ID No: __22ACB00222) has

completed this final year project/ dissertation/ thesis* entitled “___AI FOR A POSITIVE WEB:

ANALYZING HATE IN SOCIAL MEDIA _” under the supervision of ____Dr Abdulkarim Kanaan

Jebna___ (Supervisor) from the Department of _______FICT_____________, Faculty/Institute* of

_____Universiti Tunku Abdul Rahman_____ , and _____ Dr Choo Peng Yin____ (Co-Supervisor)*

from the Department of ___FICT______, Faculty/Institute* of ___Universiti Tunku Abdul

Rahman____.

I understand that University will upload softcopy of my final year project / dissertation/ thesis* in pdf

format into UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

____Chai Yun Wai_____

(Student Name)

*Delete whichever not applicable

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “METHODOLOGY, CONCEPT AND DESIGN OF A 2-

MICRON CMOS DIGITAL BASED TEACHING CHIP USING FULL-CUSTOM

DESIGN STYLE” is my own work except as cited in the references. The report has not been

accepted for any degree and is not being submitted concurrently in candidature for any degree

or other award.

Signature : ______ ____

Name : ______Chai Yun Wai__________

Date : ____13 September 2024________

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

ACKNOWLEDGEMENTS

I would like to express thanks and appreciation to my supervisor, Dr. Dr Abdulkarim Kanaan

Jebna and my moderator, Dr Choo Peng Yin who have given me a golden opportunity to

involve in the Internet of Things field study. Besides that, they have given me a lot of guidance

in order to complete this project. When I was facing problems in this project, the advice from

them always assists me in overcoming the problems. Again, a million thanks to my supervisor

and moderator.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

ABSTRACT

Hate speech detection on social media is a significant challenge due to the diverse and evolving

nature of online language. This project aims to create an effective and user-friendly hate speech

detection system using advanced machine learning and deep learning techniques. By

developing various models, including Logistic Regression, Naive Bayes, Decision Trees,

LSTM, BiLSTM, and CNN-LSTM, and incorporating an ensemble learning approach with a

voting classifier, the system improves detection accuracy and reliability. A web interface built

with Streamlit allows users to test text inputs and understand model decisions through

explainability tools like SHAP and LIME. The best model achieved an accuracy of 88% with

strong precision and recall, demonstrating the effectiveness of the proposed solution in

detecting hate speech while mainta CNN_LSTM Training Phase ining interpretability and

ease of use.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

Contents

CHAPTER 1 ... 1

INTRODUCTION.. 1

1.1 Problem Statement and Motivation .. 2

1.2 Objectives ... 3

1.3 Project Scope and Direction.. 4

1.4 Contributions.. 5

1.5 Report Organization .. 6

CHAPTER 2 ... 8

LITERATURE REVIEW ... 8

2.1 Review of the Existing Work .. 8
2.1.1 HateBERT .. 8
2.1.2 HateXplain ... 10
2.1.3 Deep Learning for Hate Speech Detection .. 11
2.1.5 Application of the Dataset in Model Training 14
2.1.6 Summary of Existing Systems ... 16

2.2 Review of the Technologies.. 17
2.2.1 Hardware Platform ... 17
2.2.2 Firmware/OS .. 17
2.2.3 Database ... 18
2.2.4 Programming Language ... 18
2.2.5 Algorithm ... 19
2.2.6 Summary of the Technologies Review .. 21

SYSTEM METHODOLOGY/APPROACH ... 23

3.1 CRISP-DM Methodology Overview .. 23

3.2 Description of CRISP-DM Phases .. 23

SYSTEM DESIGN ... 32

4.1 System Block Diagram ... 32

4.2 Use Case Description .. 41

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

4.3 System Components Specifications .. 45

SYSTEM IMPLEMENTATION .. 46

5.1 Implementation of CRISP-DM Methodology .. 46

SYSTEN EVALUATION AND DISCUSSION ... 63

6.1 Testing Cases .. 63

6.2 Model Evaluation .. 64

6.3 Project Challenges .. 66

CONCLUSION AND RECOMMENDATIONS ... 67

7.1 Conclusion .. 67

7.2 Recommendations ... 68

REFERENCES ... 70

FINAL YEAR PROJECT WEEKLY REPORT .. 72

PLAGIARISM CHECK RESULT ... 74

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF FIGURES

Figure Number Title Page

Figure 3.1.1

CRISP-DM Methodology 1

Figure 4.1.1 Training Process for Machine Learning Approach 10

Figure 4.1.2 Training Process for Deep Learning Approach 13

Figure 4.1.3 Hate Speech Detection System Use Case Diagram 14

Figure 5.1.1 Word Cloud for All Comments 19

Figure 5.1.2 Word Cloud for NonHate Comments 20

Figure 5.1.3 Word Cloud for Hate Comments

Figure 5.1.4 CNN_LSTM Training Phase

Figure 5.1.3

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF TABLES

Table Number Title Page

Table 2.1 Specifications of laptop 4

Table 2.2 Comparison between the existing applications and

proposed application

 16

Table 3.1 Use Case Description of Register Account

 18

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF ABBREVIATIONS

TFIDF Term Frequency-Inverse Document Frequency

CNN_LSTM Convolutional Neural Network-Long Short-Term Memory

LSTM Long Short-Term Memory

SHAP SHapley Additive exPlanations

LIME Local Interpretable Model-agnostic Explanations

BiLSTM

Bidirectional Long Short-Term Memory

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

In recent years, the prevalence of hate speech on social media platforms has reached alarming

levels, prompting urgent calls for effective detection and mitigation strategies. A 2023 report

by the European Union Agency for Fundamental Rights revealed that over 52% of social media

users in the EU have encountered hate speech online, highlighting the widespread nature of

this issue. In the United States, a 2022 study by the Anti-Defamation League indicated that

41% of Americans experienced online harassment, with marginalized groups, such as racial

minorities, facing disproportionately higher rates of abuse.

The rise of hate speech is not merely a digital concern; it has real-world implications. The

number of hate crimes reported in major U.S. cities increased by 11% in 2023, with notable

spikes in anti-Jewish and anti-Muslim incidents, driven in part by socio-political tensions [16].

This escalating trend underscores the urgent need for comprehensive approaches to combat

hate speech and its associated risks, which can lead to discrimination, violence, and societal

fragmentation.

Despite the growing awareness of these issues, current mechanisms for detecting hate speech

often fall short. Many automated systems lack transparency and accessibility, leaving users

without a clear understanding of how their content is evaluated. Furthermore, the nuanced

nature of language complicates the identification of hate speech, as definitions can vary widely

across different contexts.

This project aims to address these challenges by developing an interactive web page that

empowers users to assess their comments for hate speech. By promoting accessibility,

transparency, and community engagement, this initiative seeks to foster a more responsible and

respectful online environment. Through this platform, users will gain insights into the potential

impact of their communications, contributing to a broader culture of awareness and

accountability in the digital landscape.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

1.1 Problem Statement and Motivation

Problem Statement

The proliferation of hate speech on social media platforms has become a pressing concern in

today's digital age. Hate speech, defined as written or oral communication that abuses or

threatens a specific group or target based on characteristics such as race, religion, ethnic origin,

national origin, sex, disability, sexual orientation, or gender identity, poses significant risks to

individuals and communities [1]. The spread of hate speech can lead to increased tensions,

discrimination, and even violence against targeted groups. Despite the growing awareness of

this issue, effective mechanisms for detecting and mitigating hate speech remain elusive due

to the complexity of language and the subtleties involved in identifying hate speech content

[2].

Current approaches to hate speech detection often rely on automated systems integrated within

larger platforms, which may not provide users with direct access to these tools or transparency

into how they operate [3]. This lack of accessibility and understanding can hinder efforts to

combat hate speech effectively. Moreover, existing models frequently struggle with the

nuances of language and the varying definitions of hate speech across different contexts [2].

Additionally, the availability of training data for these systems is limited, further complicating

their development and refinement [2].

Motivation

To address the challenges of detecting hate speech effectively, this final year project aims to

create an interactive web page where individuals can test their comments or texts for hate

speech. By providing a user-friendly interface for evaluating hate speech content, this project

seeks to empower users with insights into the potential impact of their online communications.

The initiative is driven by the following key factors:

i. Accessibility: By making hate speech detection accessible to individual users, the

project fosters greater awareness and responsibility among online communicators. Even if

the model's predictions are not always perfect, the tool provides users with a means to

understand the potential risks associated with their language or content.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

ii. Transparency: Offering insights into the decision-making process behind hate speech

detection can enhance trust in automated systems. The project employs interpretability

methods such as LIME (Local Interpretable Model-agnostic Explanations) and SHAP

(SHapley Additive exPlanations) to show users how their text is being evaluated. This

transparency is crucial for building trust, even if the model's judgments are occasionally

inconsistent.

iii. Community Engagement: Engaging individuals directly in the detection process

promotes a sense of community responsibility for maintaining a positive online

environment. By allowing users to test and understand the impact of their comments, the

project encourages more thoughtful and respectful online communication.

In summary, this project aims to meet the critical need for accessible and transparent hate

speech detection tools by developing a user-friendly web page that empowers individuals to

test their content for hate speech. Although the current models may sometimes provide

imperfect results, the approach focuses on raising awareness, promoting engagement, and

fostering a culture of responsibility among online users.

1.2 Objectives

The primary objectives of this project are to develop an effective hate speech detection system

and to ensure its usability and interpretability. The specific objectives are:

i. Create a Model Able to Distinguish Hate and Non-Hate:

• Develop a robust model that accurately distinguishes between hate speech and

non-hate speech. This includes comprehensive data cleaning and preprocessing

to ensure data quality, such as removing inconsistencies, handling missing

values, and standardizing text data.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

ii. Experiment with Different Algorithms to Build Models:

• Experiment with various algorithms to build and optimize hate speech detection

models. This includes training machine learning algorithms such as Logistic

Regression, Naive Bayes, and Decision Trees, as well as deep learning

architectures like LSTM, BiLSTM, and CNN-LSTM. Evaluate the performance

of these models using metrics such as accuracy, precision, recall, and F1-score.

iii. Incorporate Ensemble Learning Techniques:

• Implement ensemble learning methods, such as Voting Classifiers, to combine

the predictions of multiple models. This approach aims to enhance overall

performance and robustness by leveraging the strengths of different models and

reducing individual model weaknesses.

iv. Enhance Model Interpretability:

• Utilize interpretability techniques such as SHAP and LIME to provide

transparent and understandable explanations of the model's predictions. This

will help users to understand how different features contribute to the detection

of hate speech and build trust in the system's decisions.

v. Develop a User Interface:

• Create a web-based interface using Streamlit that allows users to easily input

text and receive real-time feedback on potential hate speech. The interface

should be intuitive and provide clear insights into the results and explanations

generated by the models.

1.3 Project Scope and Direction

The scope of this project involves developing a comprehensive hate speech detection system

using advanced machine learning and deep learning techniques. The project aims to create a

robust and user-friendly tool that enables individuals to assess their text content for hate speech.

The key components of the project are outlined as follows:

i. Model Development:

⚫ Training Models: Develop and train various machine learning and deep learning

models for hate speech detection. This includes experimenting with different

algorithms to build effective models that can accurately classify text as hate speech or

non-hate speech.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

⚫ Model Evaluation: Evaluate the trained models to ensure they meet performance

criteria. This involves assessing the models' accuracy, precision, recall, and overall

reliability in detecting hate speech.

ii. User Interface Creation:

⚫ Web Interface: Design and develop an intuitive web-based interface using Streamlit.

This interface will allow users to input their text and receive real-time feedback on the

likelihood of hate speech.

iii. Interpretability and Transparency:

⚫ Explainability Tools: Integrate explainability tools such as SHAP and LIME to

provide users with insights into how the models make their predictions. This

transparency is crucial for building trust and understanding in the system's decisions.

The project is designed to offer a comprehensive solution for hate speech detection with several

key capabilities:

• Versatility in Classification: Supports multiple classifiers and models, including

ensemble methods, allowing users to choose the most suitable model for their needs.

• Real-Time Analysis: Provides immediate feedback on text input, enabling quick and

efficient detection of hate speech.

• Enhanced Transparency: Utilizes advanced explainability tools to make model

predictions more understandable and trustworthy.

• Scalability: The system is designed to handle varying amounts of data and text inputs,

making it adaptable to different use cases and environments.

1.4 Contributions

i. Comprehensive Exploration of Methodologies:

⚫ Diverse Method Application: This project contributes by applying a wide range of

methodologies to a dataset that has seen limited exploration. The project explores

various preprocessing techniques, including stopword removal and lemmatization,

and evaluates different model architectures, such as embedding-based LSTM models.

By thoroughly investigating these methods, the project identifies effective approaches

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

for training models on this dataset, thus contributing new insights into optimizing hate

speech detection systems.

ii. Enhanced Usability and Accessibility:

⚫ User Interface: By creating an intuitive web-based interface, the project makes

advanced hate speech detection technology accessible to individual users. This

contribution is significant for democratizing the use of such tools and providing users

with a straightforward way to assess their text content.

iii. Increased Transparency and Trust:

⚫ Explainability Tools: The integration of SHAP and LIME for model interpretability

enhances the transparency of the hate speech detection system. This contribution helps

users understand how the models arrive at their predictions, fostering greater trust and

confidence in the technology.

iv. Educational Value:

⚫ Showcase of Practical Application: The project serves as a practical example of

applying advanced machine learning and deep learning techniques to a real-world

problem. It provides valuable insights into model development, evaluation, and

deployment, which can be useful for researchers, developers, and practitioners in the

field.

1.5 Report Organization

This report is organized to provide a comprehensive overview of the hate speech detection

project, structured to guide the reader through the development process and findings. Chapter

1, Introduction, sets the foundation by presenting the problem statement, motivation behind the

project, the scope of work, and the contributions made. It provides context for understanding

the importance and objectives of the hate speech detection system.

Chapter 2, Literature Review, delves into the existing body of research on hate speech detection.

It reviews current methods, discusses challenges and advancements in the field, and identifies

gaps that the project aims to address. This chapter establishes the academic and practical

context for the project’s approach.

Chapter 3, System Methodology/Approach, outlines the methodologies employed in the project.

It details the processes of data cleaning, preprocessing techniques, and the development and

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

training of various models. This chapter explains the rationale behind the selected methods and

the experimental setup used to achieve the project goals.

Chapter 4, System Design, focuses on the design aspects of the hate speech detection system.

It describes the architectural decisions, design choices, and the integration of different

components, including the machine learning models and the user interface. This chapter

illustrates how the system was structured to meet the project's objectives.

Chapter 5, System Implementation, provides insights into the practical implementation of the

system. It covers the development of machine learning and deep learning models, the creation

of the web interface using Streamlit, and the integration of explainability tools like SHAP and

LIME. This chapter details the steps taken to bring the system from design to deployment.

Chapter 6, System Evaluation and Discussion, evaluates the performance of the hate speech

detection system. It assesses the models’ accuracy, precision, recall, and overall effectiveness,

discussing the results and challenges encountered during the evaluation phase. This chapter

offers a thorough analysis of how well the system meets its goals.

Finally, Chapter 7, Conclusion and Recommendations, summarizes the project’s key findings

and contributions. It reflects on the impact of the work and provides recommendations for

future research and development. This chapter highlights the overall significance of the project

and suggests areas for further exploration.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

Chapter 2

Literature Review

The emergence of hate speech as a pervasive issue in online communication has prompted

significant scholarly and technological interest in developing effective detection systems. As

social media platforms continue to grow in popularity and influence, the challenge of

identifying and mitigating hate speech has become increasingly critical. Researchers and

developers have explored various methodologies, ranging from traditional rule-based

approaches to advanced machine learning techniques, in an effort to create systems that can

accurately discern hate speech from benign content.Existing literature highlights the

complexity of hate speech detection, which involves not only linguistic analysis but also an

understanding of contextual nuances and cultural sensitivities. A review of current systems

reveals a diverse array of applications, each employing different algorithms and frameworks to

tackle the multifaceted nature of hate speech. For instance, some systems utilize natural

language processing (NLP) techniques to analyze text, while others incorporate user-generated

content and feedback to refine their detection capabilities.Despite advancements in technology,

many existing applications face challenges related to accuracy, scalability, and user

engagement. The lack of transparency in how these systems operate often leads to mistrust

among users, further complicating efforts to combat hate speech effectively. This literature

review aims to critically examine the strengths and weaknesses of current hate speech detection

systems, providing a foundation for the development of more accessible and transparent tools

that empower users to take an active role in addressing this pressing social issue.

2.1 Review of the Existing Work

2.1.1 HateBERT

Overview

HateBERT is a hate speech detection model that leverages the BERT (Bidirectional Encoder

Representations from Transformers) architecture, fine-tuned specifically for identifying hate

speech in textual data. BERT's deep learning-based approach allows HateBERT to understand

the context and subtle nuances of language, which is crucial for detecting various forms of hate

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

speech, including covert expressions, sarcasm, or coded language that might not be overtly

offensive but still have harmful implications.

Key Features

i. Architecture: HateBERT is based on the BERT model, which is designed to capture

the contextual relationships in text by leveraging bidirectional training of Transformer

models. The model was further fine-tuned on large, annotated hate speech datasets to

enhance its ability to differentiate between hate speech and non-hate speech.

ii. Training Data: The model was trained on diverse datasets that encompass a broad

range of hate speech examples, collected from social media platforms, forums, and

other online sources. This variety helps ensure that the model can generalize well across

different contexts, languages, and expressions of hate speech.

iii. Performance Metrics: HateBERT has demonstrated competitive performance metrics,

such as accuracy and F1 scores, on various benchmark datasets. For instance, in some

studies, HateBERT achieved an accuracy of approximately 82% on the Stormfront

dataset, outperforming many traditional machine learning approaches [2][9]. This

performance highlights its capability to effectively handle complex hate speech

detection tasks in different contexts.

iv. Explainability: One significant advantage of HateBERT is its explainability. The

model uses the attention mechanisms inherent in BERT to provide insights into its

decision-making process, highlighting specific parts of the text that contributed most to

its classification outcomes. This feature is crucial for building trust in automated hate

speech detection systems.

Limitations

i. Contextual Challenges: Despite its strengths, HateBERT may struggle with context-

dependent hate speech, such as sarcasm, humor, or coded language that was not

explicitly labeled in the training data. Its reliance on labeled data means that any

missing context or nuance in the data can impact the model's performance.

ii. Resource Intensive: The model requires significant computational resources for both

training and inference. The need for extensive GPU or TPU resources may limit its

accessibility for smaller organizations or applications with limited infrastructure.

iii. Dataset Bias: The effectiveness of HateBERT heavily depends on the quality and

diversity of the training datasets. If the training data is biased or lacks representation of

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

certain groups or forms of hate speech, the model's performance may suffer, leading to

potential misclassifications.

HateBERT represents a notable advancement in the field of hate speech detection by combining

the capabilities of deep learning with the contextual understanding of natural language

processing. Its strengths lie in its ability to detect various forms of hate speech and provide

explainable outputs. However, the model's reliance on extensive computational resources and

potential dataset biases present challenges that require ongoing efforts to improve robustness

and ensure fairness.

2.1.2 HateXplain

Overview

HateXplain is a pioneering benchmark dataset specifically designed to advance explainable

hate speech detection. Addressing the critical need for transparency and interpretability in

automated hate speech detection systems, HateXplain not only provides classifications of hate

speech but also offers the rationales behind these classifications. This focus on explainability

enhances understanding of model decision-making, thereby fostering trust and accountability

in AI systems.

Key Features

i. Multi-Faceted Annotation: HateXplain provides annotations from three distinct

perspectives:

• Classification: Posts are categorized into three classes: hate speech, offensive

language, and normal content.

• Target Community: Identifies the community affected by the hate speech or

offensive language.

• Rationales: Highlights specific text segments that informed the labeling

decision, offering insight into the reasoning behind the classification.

ii. Dataset Composition: The dataset includes a total of 20,148 posts, with 9,055 sourced

from Twitter and 11,093 from Gab [10]. This diverse sourcing ensures broad

representation of hate speech across different platforms.

iii. Explainability Focus: HateXplain emphasizes explainability in hate speech detection.

Research utilizing this dataset has demonstrated that models trained with human

rationales exhibit reduced bias against target communities, thus contributing to the

development of fair and accountable AI systems.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

iv. Performance Evaluation: HateXplain has been used to benchmark various state-of-

the-art models, highlighting that even high-performing classifiers often lack

explainability. Models incorporating human rationales tend to achieve higher scores on

explainability metrics such as model plausibility and faithfulness.

Limitations

i. Language Restriction: The dataset is primarily focused on English, limiting its

applicability in multilingual contexts. This is a notable limitation given the global

nature of online communication.

ii. Lack of Contextual Information: The dataset does not include additional contextual

information such as user profiles or historical posting behavior, which could provide

further insights for classification tasks.

iii. Inter-Annotator Agreement: Despite efforts to ensure high-quality annotations, the

inter-annotator agreement score (Krippendorff's alpha of 0.46) indicates some

variability in labeling, which may affect the dataset's reliability.

HateXplain represents a significant advancement in the field of hate speech detection by

prioritizing explainability and accountability. Its comprehensive annotation framework enables

researchers and developers to build more transparent models that effectively address the

complexities of online hate speech. Future improvements, including expanding linguistic

coverage and incorporating contextual information, will be essential for enhancing the dataset's

utility and impact.

2.1.3 Deep Learning for Hate Speech Detection

Overview

This system presents a comparative study of various deep learning methods for hate speech

detection on social media platforms, particularly Twitter. The study evaluates the effectiveness

of different deep learning architectures, including Convolutional Neural Networks (CNNs) and

Long Short-Term Memory (LSTMs), in identifying hate speech and compares their

performance with traditional machine learning approaches [11][12].

Key Features

i. Comprehensive Evaluation: The study analyzes several deep learning models,

including CNN, LSTM, and Bidirectional LSTM (BiLSTM), to identify the most

effective algorithms for hate speech detection. It also compares these deep learning

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

models to traditional machine learning methods such as Logistic Regression and

Support Vector Machines.

ii. Datasets: Researchers utilize multiple publicly available datasets for hate speech,

including the Waseem and Hovy dataset, the Davidson et al. dataset, and the Founta et

al. dataset. These datasets offer a diverse range of examples, encompassing tweets

labeled as hate speech, offensive language, and neutral content.

iii. Performance Metrics: The evaluation is based on standard performance metrics

including accuracy, precision, recall, and F1-score. Additionally, the study examines

the models' ability to handle imbalanced datasets, a common challenge in hate speech

detection.

iv. Scalability: The deep learning models are designed to handle large-scale data typical

of social media platforms, showcasing their potential for real-world applications.

Findings

The study reveals that deep learning models, particularly BiLSTM, outperform traditional

machine learning methods in detecting hate speech on Twitter. BiLSTM achieves the highest

F1-score of 0.78 on the Waseem and Hovy dataset.

CNN models also demonstrate promising results by capturing relevant features and patterns in

the text. However, they tend to be more sensitive to the length of the input text compared to

LSTM-based models.

The performance of all models is influenced by the quality and diversity of the training

data[11][13]. Datasets with more examples and better representation of different types of hate

speech lead to improved classification accuracy.

Limitations

i. The study is limited to English-language datasets, which may affect the performance of

the models in other languages or dialects.

ii. The computational resources required for training deep learning models can be a barrier

for smaller organizations or those with limited infrastructure.

iii. The models may struggle with context-dependent hate speech or subtle, coded forms of

hate speech.

The comparative study highlights the potential of deep learning techniques for effective hate

speech detection on social media. By leveraging architectures such as BiLSTM and CNN,

researchers can develop robust models that surpass traditional approaches. However, ongoing

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

efforts to improve model robustness, address imbalanced datasets, and adapt to different

languages and contexts are essential for broader adoption and real-world impact.

2.1.4 A Curated Dataset for Hate Speech Detection on Social Media Text

Overview

The dataset titled "A Curated Dataset for Hate Speech Detection on Social Media Text" is a

comprehensive resource specifically designed for research in hate speech detection[14]. It

aggregates data from various social media platforms, such as Twitter and Reddit, and other

sources like Kaggle and GitHub, providing a rich dataset for training and evaluating machine

learning models aimed at identifying hate speech in text data. This dataset is particularly

valuable for researchers and developers seeking to create robust hate speech detection systems.

Key Features

i. Diverse Sources: The dataset is compiled from multiple online sources, ensuring a

wide range of examples that reflect the complexity of hate speech in real-world

contexts. This diversity helps models generalize better across different types of social

media interactions.

ii. Annotation Process: Each entry in the dataset is meticulously labeled by human

annotators. The annotation process classifies posts into two primary categories:

• Hate Speech: Texts labeled as '1', indicating content that promotes violence or

hatred against individuals or groups based on attributes such as race, ethnicity,

religion, gender, or sexual orientation.

• Non-Hate Speech: Texts labeled as '0', which may not necessarily promote

violence but are considered derogatory or disrespectful.

iii. Dataset Size: The dataset originally contains 451,709 entries, with 371,452 entries

categorized as hate speech and 80,250 as non-hate speech. To enhance the dataset's

balance and representativeness, an augmented version has been generated, consisting

of 726,120 samples[14]. This augmented dataset helps create a custom vocabulary of

145,046 words, reducing the number of out-of-vocabulary words and improving model

performance.

iv. Balanced Representation: The dataset aims to provide a balanced representation of

hate speech across different demographics and contexts. This balance is essential for

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

reducing bias in machine learning models, ensuring fair performance across various

groups.

v. Textual Features: The dataset includes various textual elements such as emoticons,

emojis, hashtags, slang, and contractions, which are common in social media

communications. This comprehensive set of features enhances the understanding of the

intent behind the text and aids in effective hate speech detection.

Limitations

i. Language Restriction: Currently, the dataset is limited to English content, which may

hinder its applicability in multilingual contexts, given that hate speech manifests

differently across languages.

ii. Annotation Quality: While the dataset is meticulously curated, the quality of

annotations may vary. Human annotators may have differing interpretations of what

constitutes hate speech, leading to inconsistencies in labeling.

iii. Temporal Context: The dataset may not fully capture the evolving nature of hate

speech, as language and social norms change over time. This temporal aspect is crucial

for maintaining the relevance of hate speech detection systems.

"A Curated Dataset for Hate Speech Detection on Social Media Text" is a critical resource for

advancing research and development in hate speech detection. Its diverse sources,

comprehensive annotations, and augmented dataset size make it a valuable tool for training and

evaluating machine learning models. However, researchers should be mindful of its limitations,

particularly regarding language scope and annotation quality, as they work toward developing

effective and fair hate speech detection systems.

2.1.5 Application of the Dataset in Model Training

Overview

The dataset has been widely applied on platforms like Kaggle, where one user achieved a

validation accuracy of 0.8863 by training a model using this dataset [15]. This result

demonstrates the effectiveness and potential of the dataset for hate speech detection tasks.

Preprocessing Steps

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

Before training the model, the user performed extensive text preprocessing to enhance the

model's performance. The preprocessing steps included:

• Removal of Irrelevant Information: Regular expressions were used to remove links,

HTML tags, and extra whitespace from the text.

• Punctuation Removal: All punctuation marks were removed from the text to focus

solely on the words themselves.

• Number Removal: Words containing numbers were removed to reduce noise.

• Stopword Removal: Common but meaningless words, such as "and" or "is," were

filtered out using a defined stopword list.

• Lemmatization: Words were reduced to their base form using lemmatization

techniques to reduce vocabulary diversity and improve the model's generalization

capability.

After these preprocessing steps, the text was tokenized and prepared for input into a neural

network.

Model Architecture

The user employed a simple yet effective deep learning model for hate speech detection, with

the following architecture:

• Embedding Layer: Maps the input vocabulary to a 100-dimensional vector space to

capture semantic relationships between words.

• SpatialDropout1D Layer: Applies spatial dropout after the embedding layer to reduce

overfitting.

• LSTM Layer: Uses a Long Short-Term Memory (LSTM) network with 128 units to

capture temporal dependencies and contextual information within the text, applying

both dropout and recurrent dropout to further prevent overfitting.

• Dense Layer: A final dense layer with a sigmoid activation function outputs a binary

classification result, indicating whether the text contains hate speech.

Model Performance

Following the preprocessing and model training steps described above, the user achieved a

validation accuracy of 0.8863 on the validation set, demonstrating the powerful capability of

deep learning models in the task of hate speech detection.

This successful case not only validates the quality and applicability of the dataset but also

provides valuable insights for future research and development. By leveraging the experience

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

of existing model training approaches, researchers can more effectively build and optimize

their own hate speech detection systems.

2.1.6 Summary of Existing Systems

The reviewed systems and datasets demonstrate the diverse approaches to hate speech

detection, ranging from specialized models like HateBERT and HateXplain to comprehensive

datasets and deep learning methodologies. Each of these systems offers unique strengths and

faces specific challenges:

i. HateBERT leverages the BERT architecture's contextual understanding capabilities,

fine-tuned for hate speech detection. It excels in handling nuanced language and

provides explainable outputs through its attention mechanisms. However, its reliance

on extensive computational resources and potential biases in training data are

significant limitations.

ii. HateXplain introduces a benchmark dataset emphasizing explainability by providing

classifications with rationales and identifying affected communities. This dataset

promotes transparency and fairness in hate speech detection models but is limited by

its focus on English and the lack of additional contextual data.

iii. Deep Learning Methods offer powerful solutions for hate speech detection, with

architectures like BiLSTM and CNNs outperforming traditional machine learning

models. However, they require substantial computational resources and may struggle

with context-dependent or subtle hate speech.

iv. Curated Datasets like "A Curated Dataset for Hate Speech Detection on Social Media

Text" provide extensive resources for training and evaluating hate speech detection

models. They offer diverse examples and comprehensive annotations, facilitating

improved model generalization. Nonetheless, the limitations regarding language scope

and the temporal context of hate speech remain challenges.

v. Applications in Model Training highlight the effectiveness of datasets when

combined with deep learning techniques. Through careful preprocessing and model

design, high validation accuracy can be achieved, demonstrating the potential for

practical deployment in real-world scenarios.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

2.2 Review of the Technologies

2.2.1 Hardware Platform

In this project, the choice and utilization of hardware platforms play a critical role in the

training and development process, given the substantial computational resources required for

handling large datasets and training deep learning models. The following hardware platforms

were selected to support different tasks:

The local Jupyter Notebook environment is used for developing and running most of the

machine learning algorithms. These algorithms generally have lower computational

complexity, allowing them to execute quickly on a local CPU. The local environment provides

greater flexibility and control, enabling rapid iteration and debugging of models. However, the

local Jupyter Notebook lacks GPU support, which can result in memory constraints or longer

training times for deep learning tasks.

To overcome the limitations of local hardware, Google Colab is used as the primary platform

for deep learning training. Google Colab offers free TPU and GPU options that significantly

accelerate the model training process, as well as ample RAM to handle larger datasets. For

deep learning tasks, either a GPU or TPU is chosen depending on specific requirements. When

faster computation is needed, the GPU is selected; when the model demands extensive RAM,

the TPU is utilized. However, in Google Colab, only one type of hardware (GPU or TPU) can

be selected per training session, requiring careful consideration to make the best choice for

each task.

When switching between Google Colab and the local Jupyter Notebook, it is essential to ensure

consistency in the environment. Issues were encountered where a model trained on Google

Colab could not be loaded correctly on the local Jupyter Notebook due to version mismatches.

To mitigate this, efforts were made to maintain consistent software packages and framework

versions across both platforms, ensuring cross-platform stability and reliability of the models.

2.2.2 Firmware/OS

Operating Systems

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

i. Local Operating System: The local development and training environment utilizes

Windows. This operating system supports running machine learning algorithms via

Jupyter Notebook for tasks that do not require extensive computational resources.

ii. Cloud Platform Operating System: For tasks demanding higher computational

power, Google Colab is employed, which operates on a Linux-based system. This

environment provides access to advanced hardware resources, including TPUs and

GPUs, essential for efficient deep learning model training.

Impact on the Project

Windows is adequate for running machine learning models locally and handling initial

experiments. However, the Linux-based environment in Google Colab enhances performance

for deep learning tasks by offering additional computational resources.

2.2.3 Database

Data Storage

The dataset is obtained from Kaggle in CSV format. It includes two columns: "Content" and

"Label." The "Content" column contains the text data, while the "Label" column indicates

whether the text is categorized as hate speech (1) or non-hate speech (0).

Data Management

i. Local Handling: The CSV file is read and processed locally using Jupyter Notebook

with the pandas library. This approach allows efficient loading and manipulation of the

data for machine learning tasks.

ii. Cloud Handling: For cloud-based training on Google Colab, the CSV file is stored in

Google Drive and accessed through Google Colab's drive API. Data is read and

processed using pandas to maintain consistency across environments.

Impact on the Project

Utilizing CSV files and pandas for data management in both local and cloud environments

ensures a streamlined and effective approach for handling and processing the dataset.

2.2.4 Programming Language

Programming Languages Used

Python is the primary programming language used for this project. It is widely adopted in the

fields of machine learning and data science due to its extensive libraries and frameworks that

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

simplify complex tasks. Python provides robust support for data manipulation, model training,

and evaluation.

Rationale for Choice

i. Libraries and Frameworks: Python's rich ecosystem of libraries, such as pandas for

data manipulation, scikit-learn for machine learning algorithms, and PyTorch for deep

learning models, makes it an ideal choice for developing and deploying machine

learning solutions. These tools facilitate efficient development and implementation of

various algorithms and models.

ii. Community Support: Python has a large and active community that contributes to a

wealth of resources, documentation, and support. This community involvement ensures

that developers can access up-to-date solutions and best practices.

Additional Tools

Streamlit is also used in this project to create a user-friendly web interface. As a Python-based

framework, Streamlit allows for quick and efficient development of interactive web

applications. It provides an easy way to deploy machine learning models and offers real-time

feedback to users through a simple and intuitive interface.

Advantages

i. Ease of Use: Python's syntax is straightforward and readable, which accelerates

development and reduces the learning curve for new users.

ii. Flexibility: Python's versatility allows it to be used across different stages of the project,

from data preprocessing to model training, evaluation, and web interface creation.

iii. Integration: Python seamlessly integrates with various platforms and tools, such as

Jupyter Notebook, Google Colab, and Streamlit, enabling efficient workflow

management and collaboration.

2.2.5 Algorithm

Logistic Regression

Logistic Regression is a statistical technique used for binary classification tasks. It employs a

logistic (or sigmoid) function to convert a linear combination of input features into a probability

value between 0 and 1. The primary objective is to determine the optimal weight parameters

that minimize the discrepancy between predicted probabilities and actual outcomes. Logistic

Regression is widely used in areas such as medical diagnosis, credit scoring, and marketing.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

Naive Bayes

Naive Bayes is a straightforward yet powerful classification algorithm that relies on Bayes'

Theorem. It operates under the assumption that the features are conditionally independent given

the class label, allowing the calculation of joint probabilities by multiplying individual feature

probabilities. Due to its simplicity and computational efficiency, Naive Bayes is especially

suitable for text classification tasks like spam detection and sentiment analysis. [4][5].

Decision Tree

Decision Trees are a type of algorithm used for both classification and regression tasks,

employing a tree-like structure to represent decisions and their possible outcomes. The

algorithm divides the dataset into smaller subsets based on feature-based rules until a specific

stopping condition is met, such as maximum depth or minimum impurity at the leaf nodes.

Each internal node represents a decision rule, each branch represents an outcome, and each leaf

node indicates a class label. Decision Trees are valued for their interpretability and are

frequently used in applications such as customer segmentation and risk assessment.

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a specialized type of Recurrent Neural

Network (RNN) designed to capture long-term dependencies in sequential data. LSTMs utilize

memory cells along with gating mechanisms, including input, forget, and output gates, to

regulate information flow and mitigate the vanishing gradient problem that often occurs in

traditional RNNs. These networks are widely applied in fields like time series forecasting.,

speech recognition, and natural language processing [6].

2.2.5.5 Bidirectional Long Short-Term Memory (BiLSTM)

Bidirectional Long Short-Term Memory (BiLSTM) is an advanced version of the LSTM

network that processes data in both forward and backward directions along the time sequence.

By analyzing input from both directions, BiLSTM provides a more comprehensive context,

significantly enhancing performance in various sequential tasks such as machine translation

and sentiment analysis. [7].

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM)

The CNN-LSTM model integrates the strengths of Long Short-Term Memory (LSTM)

networks and Convolutional Neural Networks (CNN). While LSTM networks are adept at

capturing long-term dependencies in sequential data, CNNs excel at extracting local patterns

from the data using their convolutional structures. By combining these capabilities, the CNN-

LSTM architecture is highly effective for text classification tasks, as it can learn both sequential

dependencies and local features in textual data. [8].

2.2.6 Summary of the Technologies Review

This section reviews the various technologies utilized in this project, highlighting their

contributions and roles in achieving the project's objectives.

i. Hardware Platform: The project relies on two main hardware platforms, a local

Jupyter Notebook environment and Google Colab. The local environment, running on

a CPU, is suitable for developing and testing machine learning models with lower

computational demands, while Google Colab provides access to powerful GPUs and

TPUs, significantly speeding up deep learning model training. The use of both

platforms allows for flexibility and resource optimization, ensuring efficient model

development and training.

ii. Firmware/OS: The choice of operating systems, including Windows for the local

environment and Linux for the cloud-based environment (Google Colab), directly

impacts the project's computational efficiency and scalability. Windows supports initial

model development and experiments, while the Linux-based Google Colab offers the

necessary computational power for deep learning tasks, benefiting from its advanced

hardware capabilities.

iii. Database: Data management is crucial to the project's success. The dataset, stored in

CSV format, is managed consistently across local and cloud environments using the

pandas library. This approach allows seamless data handling, manipulation, and

preprocessing, ensuring a streamlined workflow and minimizing potential issues related

to data transfer and versioning between different platforms.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

iv. Programming Language: Python is the primary programming language used

throughout the project due to its extensive libraries and frameworks, such as pandas,

scikit-learn, and PyTorch, which facilitate efficient development and deployment of

machine learning models. The choice of Python enhances ease of use, flexibility, and

integration with other tools like Streamlit, enabling the creation of a user-friendly web

interface for real-time feedback.

v. Algorithms: A diverse set of algorithms was employed to tackle the hate speech

detection task. Logistic Regression serves as a straightforward yet effective approach

for binary classification problems, making it a strong baseline model. Naive Bayes is

particularly useful for text classification tasks due to its simplicity and efficiency.

Decision Trees offer interpretability and are effective for both classification and

regression tasks. For deep learning models, various architectures were explored to

handle the complexity and nuances of text data. LSTM (Long Short-Term Memory)

networks are designed to capture long-term dependencies in sequence data, which is

crucial for understanding the context in text. BiLSTM (Bidirectional Long Short-Term

Memory) extends the LSTM by processing input sequences in both forward and

backward directions, allowing the model to gain a more comprehensive understanding

of the context. The CNN-LSTM model combines the strengths of Convolutional Neural

Networks (CNNs) and LSTMs, enabling it to capture both local patterns and sequential

dependencies in text, making it particularly well-suited for text classification tasks.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

Chapter 3

System Methodology/Approach

3.1 CRISP-DM Methodology Overview

The Cross-Industry Standard Process for Data Mining (CRISP-DM) is a widely recognized

framework for conducting data mining projects. This methodology consists of six key phases,

as illustrated in the diagram below:

Figure 3.1.1 CRISP-DM Methodology

3.2 Description of CRISP-DM Phases

Business Understanding

The main goal of this project is to create a hate speech detection tool that is both accessible and

user-friendly, catering to a diverse audience, including social media users, content moderators,

educators, and organizations. Hate speech refers to any form of communication that demeans

an individual or group based on attributes such as race, color, ethnicity, gender, sexual

orientation, nationality, religion, or other traits, and has become an increasing concern on social

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

media platforms. The spread of hate speech can lead to serious consequences, such as

psychological harm, social division, and, in severe cases, incitement to violence.

Context and Need for the Tool: With billions of users worldwide, social media platforms

offer spaces for connection and free expression, but they also serve as hotspots for hate speech.

Traditional moderation techniques, which often rely on manual review, cannot cope with the

vast amount of content generated each day. Automated detection tools are therefore essential

to maintain a safer and more positive online environment. However, many existing tools are

either too complicated for the general public to use or lack the transparency necessary to build

trust in their results.

Goals and Success Criteria:

To tackle these issues, the project aims to develop a hate speech detection tool that:

• Is accessible and easy to use: The tool will be designed with a user-friendly interface

that requires minimal technical knowledge, allowing people from different

backgrounds to use it effectively.

• Provides real-time detection: The tool will use advanced machine learning models to

deliver quick feedback on the likelihood of hate speech in text inputs.

• Ensures model transparency and interpretability: To build trust in its decisions, the

tool will incorporate SHAP (SHapley Additive exPlanations) and LIME (Local

Interpretable Model-agnostic Explanations) to help users understand why specific

content is flagged.

• Achieves a validation accuracy of at least 0.8: The tool's machine learning models

will be trained to reach a minimum validation accuracy of 0.8, ensuring consistent and

reliable performance in distinguishing hate speech from non-hate speech.

Data Understanding

In this phase, we perform an initial analysis of the collected dataset to assess its quality and

relevance for the project. The dataset consists of social media posts labeled as hate speech or

non-hate speech. To ensure the data is suitable for building effective models, several key steps

are undertaken:

i. Duplicate Data Analysis: The dataset is checked for duplicate entries. Duplicate

records are identified and removed to maintain the independence of each data point and

ensure the model is not biased by repeated information.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

ii. Missing Values Handling: The dataset is examined for any missing values. Missing

data points can affect model performance and lead to inaccurate predictions, so they are

addressed by either removing them or applying appropriate imputation techniques.

iii. Label Distribution Analysis: The distribution of labels (i.e., hate speech or non-hate

speech) is analyzed to understand the balance of the dataset. A skewed distribution can

result in biased models, so any imbalance will be identified and considered for potential

data augmentation or weighting adjustments during the modeling phase.

iv. Text Length Analysis: The length of each text entry is analyzed to check for any

single-character texts (e.g., "c," "a") that may have been incorrectly labeled as hate

speech (label 1). Texts of insufficient length are likely to lack meaningful content and

could negatively impact the model's ability to learn and generalize. Such entries will be

examined and appropriately handled to improve data quality.

v. Text Content Visualization: Data visualization techniques, such as word clouds, are

used to gain insights into the most frequently occurring words and phrases within the

dataset. This helps identify common themes, patterns, or potential biases in the data.

Word clouds provide a visual representation of word frequency, allowing for a quick

overview of prominent words and their relevance to hate speech detection.

Data Preparation

The data preparation phase involves cleaning, transforming, and formatting the raw data to

make it suitable for effective machine learning and deep learning modeling. This phase

includes several critical steps to ensure the dataset's quality and relevance for training the

models.

i. Removing Duplicates: Duplicate entries are removed to maintain the integrity of the

dataset. Retaining only unique records ensures that the models do not learn redundant

patterns, which could lead to overfitting or biased predictions.

ii. Removing Non-ASCII Characters: Any non-ASCII characters present in the dataset

are removed. This step ensures that the text data is compatible with various processing

tools and libraries that might not support extended character sets, and also helps to

standardize the input text for consistent analysis.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

iii. Filtering Text Length: Texts shorter than 5 characters are removed, as they are

unlikely to contain meaningful content that contributes to hate speech detection. For

texts longer than 20 characters, an additional check is performed to ensure that the

content is in English. Non-English texts are filtered out to maintain consistency, as the

models are specifically trained to detect hate speech in English.

iv. Removing Stopwords: Common stopwords (such as "is," "and," "the") that do not

contribute to the meaning or sentiment of the text are removed. This reduces the noise

in the data and allows the model to focus on more relevant words that are likely to be

indicators of hate speech.

v. Lemmatization: The text is lemmatized to reduce words to their base or root form. For

example, "running" becomes "run." This step helps standardize the text data by

consolidating different forms of a word, thus improving the model's ability to generalize

across variations.

vi. Tokenization: The cleaned text is tokenized, breaking it down into individual words

or tokens. This step prepares the text for further processing and numerical conversion,

allowing it to be effectively utilized by machine learning algorithms.

vii. Text-to-Numeric Conversion: Different methods are employed to convert the textual

data into numerical representations:

a. Machine Learning Approach: For traditional machine learning models,

CountVectorizer and TFIDF (Term Frequency-Inverse Document Frequency) are

used to transform the text into vectors. These methods provide a structured

numerical representation of the text data, capturing word frequency and importance.

b. Deep Learning Approach: For deep learning models, advanced word embedding

techniques such as Word2Vec and BERT (Bidirectional Encoder Representations

from Transformers) are used to represent words in a dense vector space that captures

contextual meaning and relationships. If Word2Vec or BERT is not used, the

tokenized text is directly fed into the first Embedding Layer of the neural network,

which learns the word representations during the training process.

Modeling

The modeling phase involves selecting and training various machine learning and deep learning

algorithms to detect hate speech in social media text effectively. Given the nature of this project

as a classification task, both traditional machine learning algorithms and advanced deep

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

learning neural networks are employed to explore different approaches to achieving optimal

performance.

i. Machine Learning Algorithms:

Since this is a binary classification task, several machine learning algorithms are

selected for their effectiveness in handling text data and classification problems:

a. Logistic Regression: A linear model that is widely used for binary

classification problems. Logistic Regression is chosen for its simplicity and

interpretability, as well as its effectiveness in scenarios with a clear decision

boundary.

b. Naive Bayes: A probabilistic classifier based on Bayes' theorem, particularly

suitable for text classification tasks due to its assumption of feature

independence. It is efficient and often performs well with large datasets.

c. Decision Tree: A non-linear model that splits the data into branches based on

feature values. It is chosen for its ability to handle complex decision boundaries

and its interpretability. Decision trees can capture non-linear patterns in the data,

making them useful for this classification task.

ii. Deep Learning Neural Networks:

In addition to traditional machine learning models, deep learning techniques are

employed to capture complex patterns in text data and better understand the nuances of

language in the context of hate speech detection. The following neural network

architectures are utilized:

a. LSTM (Long Short-Term Memory): An advanced form of recurrent neural

network (RNN) that is capable of learning long-term dependencies in sequential

data. LSTM is chosen for its ability to capture contextual information and the

order of words, which is critical for understanding the semantics of text in hate

speech detection.

b. BiLSTM (Bidirectional Long Short-Term Memory): An extension of LSTM

that processes the input sequence in both forward and backward directions. This

bidirectional approach allows the model to capture context from both directions,

enhancing its ability to understand the text comprehensively.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

c. CNN_LSTM (Convolutional Neural Network with LSTM): A hybrid

architecture that combines the strengths of CNNs (Convolutional Neural

Networks) and LSTMs. The CNN layers are used to extract local features from

the text (such as phrases and n-grams), which are then fed into LSTM layers to

capture the sequential dependencies and context. This combination is

particularly useful for capturing both local and global features in the text.

By employing a combination of machine learning and deep learning models, the project aims

to explore multiple approaches to hate speech detection, comparing their performance and

selecting the most effective model for deployment.

Evaluation

The evaluation phase is dedicated to measuring the performance of the models developed in

the preceding phase. A variety of metrics are used to thoroughly assess the models' ability to

detect hate speech:

• Accuracy: Represents the ratio of correctly predicted instances (both hate speech and

non-hate speech) to the total instances in the dataset. Although accuracy provides an

overall view of model performance, it might not accurately reflect the model's

effectiveness in detecting hate speech, particularly when the dataset is imbalanced.

• Recall (Sensitivity or True Positive Rate): Indicates the model's capability to

correctly identify all instances of hate speech. A high recall suggests that the model

successfully detects most cases of hate speech, thereby reducing the number of false

negatives. This metric is particularly important in situations where failing to identify

hate speech can have serious consequences.

• Precision: Measures the proportion of instances that are actually hate speech among

those predicted as hate speech. A high precision score indicates that the model is usually

correct when it identifies content as hate speech, thereby minimizing false positives.

This is essential to avoid incorrectly flagging non-hate speech content.

• F1-Score: The harmonic mean of precision and recall, providing a balanced metric that

accounts for both false positives and false negatives. The F1-score is especially useful

in cases where the dataset is imbalanced, or when both types of errors have significant

consequences.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

Beyond these performance metrics, SHAP (SHapley Additive exPlanations) and LIME (Local

Interpretable Model-agnostic Explanations) are used to interpret and explain the decision-

making process of the model:

• SHAP: Offers insights into how much each feature contributes to a specific prediction

by assigning Shapley values. These values explain the impact of individual features on

the model's output, helping to understand how various words or phrases influence the

classification of text as hate speech or non-hate speech.

• LIME: Builds locally interpretable models around each prediction to clarify the

decisions made by complex models, such as deep learning networks. By providing

understandable explanations for individual predictions, LIME helps to determine if the

model's reasoning aligns with human intuition and understanding.

By combining these quantitative evaluation metrics with interpretability tools, the evaluation

phase ensures not only that the models achieve high performance but also that their decision-

making processes are transparent, understandable, and trustworthy to users.

Deployment

The deployment phase involves integrating the developed hate speech detection models into a

user-facing application and making them available for use in real-world scenarios. This phase

ensures that the models are accessible, functional, and reliable in practical settings. Key aspects

of the deployment phase include:

i. Deployment Environment: The hate speech detection system is deployed on a web-

based platform using Streamlit. This choice allows for easy accessibility and user

interaction through a web interface, which is accessible from various devices and

platforms.

ii. Integration: The trained models are integrated into the Streamlit application, allowing

users to input text and receive real-time feedback on hate speech detection. This

involves setting up the necessary backend infrastructure to handle user requests, run the

models, and return predictions.

iii. Testing and Validation: Prior to full deployment, the system undergoes extensive

testing to ensure it operates correctly in the production environment. This includes unit

testing of individual components, integration testing to ensure all parts work together

seamlessly, and user acceptance testing to verify that the system meets the needs and

expectations of its users.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

Iteration and Refinement

The CRISP-DM methodology is inherently iterative and flexible, allowing for continuous

refinement and improvement throughout the data mining process. After completing the

Evaluation phase, it is often necessary to revisit earlier phases to enhance the overall

effectiveness of the project. This iterative approach ensures that the models and data

preparation processes remain aligned with the project's objectives and performance goals.

Iteration and Refinement Process:

i. Revisiting Data Understanding:

o Based on the results from the Evaluation phase, the understanding of the data

may need to be revisited. This could involve further analysis of the data

distribution, detecting new patterns or anomalies, or addressing issues that were

initially overlooked. Enhanced data insights can lead to improved data

preparation and more effective feature engineering.

ii. Adjusting Data Preparation:

o The data preparation steps may require adjustments based on feedback from the

Evaluation phase. For example, if certain features are found to be less relevant,

they may be refined or replaced. New preprocessing techniques or feature

engineering methods might be introduced to better capture the characteristics of

the data.

iii. Exploring Different Algorithms:

o The Evaluation phase may reveal that certain algorithms perform better or worse

than anticipated. In response, it may be beneficial to experiment with alternative

algorithms or models. This could involve trying different machine learning

techniques, adjusting hyperparameters, or exploring new deep learning

architectures to achieve better performance.

iv. Re-evaluating Model Performance:

o After making changes to the data or models, a new round of evaluation is

conducted to assess the impact of these adjustments. This helps ensure that the

improvements align with the project's performance criteria and goals.

v. Continuous Improvement:

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

o The iterative process supports ongoing refinement and enhancement of the hate

speech detection system. By continuously cycling through these phases, the

project can adapt to new insights, address emerging challenges, and achieve

higher levels of accuracy and reliability.

In summary, the CRISP-DM methodology supports a dynamic and iterative approach, enabling

the project to evolve and improve through repeated cycles of data understanding, preparation,

modeling, and evaluation. This iterative refinement process is crucial for developing a robust

and effective hate speech detection system.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

Chapter 4

System Design

4.1 System Block Diagram
Figure 4.1.1 provides a detailed overview training process of the machine learning approach

used in this project. The diagram visually represents the complete workflow from data

collection through model training and evaluation to the creation of a user interface. Each

component of the process is described below:

1. Data Collection:

• Source: Kaggle dataset.

• Description: The dataset used for training and evaluating the models is sourced from

Kaggle. It contains labelled social media posts classified as hate speech or non-hate

speech.

2. Data Preprocessing:

• Prepare the raw data for model training by cleaning and transforming it into a suitable

format.

• Clean Data:

o Drop Duplicated Entries: Identifies and removes duplicate records to ensure

that each data point is unique. This step is crucial for avoiding biased model

training.

o Handle Missing Values: Detects and addresses missing values using

appropriate techniques, such as imputation or removal, to prevent skewed

results.

o Filter Out Short Sentences: Removes sentences shorter than 5 characters, as

they are unlikely to provide meaningful information for hate speech detection.

• Text Processing:

o Remove Stopwords: Common words like "is," "and," "the" are removed

because they do not contribute significant meaning to the text and can add noise

to the model.

o Lemmatization: Reduces words to their base or root form (e.g., "running" to

"run"), which helps in normalizing the text data and improving model

consistency.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

• Tokenization:

o Description: Breaks down the text into individual words or tokens, preparing it

for numerical representation.

o Purpose: Tokenization is essential for transforming text into a format that can

be processed by machine learning algorithms.

• Vectorization:

o CountVectorizer:

▪ Converts tokens into a numerical matrix where each row represents a

document, and each column represents a word's frequency in the

document.

o TFIDF (Term Frequency-Inverse Document Frequency):

▪ Converts tokens into a numerical matrix where each row represents a

document, and each column represents the importance of a word in the

document relative to its frequency in the entire dataset.

3. Model Training:

• Train various machine learning models using the vectorized data to classify text as hate

speech or non-hate speech.

• Logistic Regression:

o A linear model used for binary classification tasks. It is trained to predict the

probability of text being hate speech based on the vectorized input.

• Naive Bayes:

o A probabilistic classifier based on Bayes' theorem, assuming feature

independence. It is trained to estimate the likelihood of a text being hate speech.

• Decision Tree:

o A non-linear model that splits the data into branches based on feature values. It

is trained to create a decision tree that classifies text into hate speech or non-

hate speech.

4. Model Evaluation:

• Assess the performance of each trained model using various metrics.

• Confusion Metrics:

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

o Description: Evaluates the model’s performance using accuracy, precision,

recall, and F1-score. These metrics provide insights into how well the model

distinguishes between hate speech and non-hate speech.

• SHAP and LIME:

o SHAP (SHapley Additive exPlanations):

▪ Description: Provides explanations for model predictions by

calculating Shapley values, which attribute the contribution of each

feature to the final prediction.

o LIME (Local Interpretable Model-agnostic Explanations):

▪ Description: Creates interpretable explanations for individual

predictions by generating locally approximated models around each

prediction.

5. User Interface:

• Develop a user-friendly interface to facilitate the use of the hate speech detection

models.

• Streamlit:

o A web-based application framework used to create an interactive and intuitive

user interface. Users can input text and receive real-time feedback on the

likelihood of hate speech.

o Makes the models accessible and easy to use for individuals without technical

expertise.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

Figure 4.1.1 Training Process for Machine Learning Approach

Figure 4.1.2 provides a detailed overview training process of the deep learning approach used

in this project. The diagram visually represents the complete workflow from data collection

through model training and evaluation to the creation of a user interface. Each component of

the process is described below:

1. Dataset Collection

o Source: Downloaded from Kaggle.

o Description: A collection of social media posts labeled as either hate speech or

non-hate speech.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

2. Data Preprocessing

o Data Cleaning:

i. Remove Duplicates: Identify and eliminate duplicate entries to ensure

each data point is unique.

ii. Handle Missing Values: Detect and address any missing values by

either removing records with missing data or applying imputation

techniques.

iii. Filter Out Short Sentences: Remove text entries with fewer than 5

characters to eliminate entries that are likely not meaningful for analysis.

o Text Processing:

i. Remove Stopwords: Filter out common, non-informative words (e.g.,

"the", "is") that do not contribute to the meaning of the text.

ii. Lemmatization: Normalize words to their base or root form (e.g.,

"running" to "run") to standardize text data and improve model

consistency.

iii. Tokenization: Break down text into individual tokens (words or

phrases) to prepare it for vectorization.

o Word Embedding:

i. Word2Vec: Convert tokens into dense vector representations based on

their context within the text. These vectors capture semantic meanings

and relationships between words.

ii. BERT: Generates contextual embeddings for tokens using the BERT

model. BERT produces vectors that reflect the context of words within

a sentence, providing rich and nuanced representations.

iii. Embedding Layer: Converts tokens directly into embeddings if neither

Word2Vec nor BERT is used. This layer learns the representation of

words during training.

3. Modeling

o Word2Vec + Double LSTM: A two-layer LSTM network that processes the

vectors obtained from Word2Vec. This setup helps capture long-term

dependencies and contextual information in the text.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

o BERT + BiLSTM: A Bidirectional LSTM network that processes the contextual

embeddings from BERT. This model reads text in both forward and backward

directions to enhance context understanding.

o Embedding Layer + Deep Learning Models:

i. LSTM: A single-layer LSTM network that processes embeddings

generated by the embedding layer. This model captures sequential

dependencies and contextual patterns in the text.

ii. CNN_LSTM: A hybrid model combining Convolutional Neural

Network (CNN) layers with LSTM layers. CNN layers extract local

features from the text, while LSTM layers capture sequential

dependencies and context.

4. Evaluation

o Confusion Matrix: Evaluate model performance using metrics such as accuracy,

precision, recall, and F1-score.

i. Accuracy: Proportion of correctly classified instances out of the total

instances.

ii. Precision: Proportion of true positives out of all instances predicted as

positive.

iii. Recall: Proportion of true positives out of all actual positives.

iv. F1-Score: Harmonic mean of precision and recall, providing a balanced

measure of model performance.

o Explainability:

i. SHAP: Provides insights into how each feature (word or phrase)

contributes to the model's prediction.

ii. LIME: Creates interpretable models around individual predictions to

explain the decisions made by complex models.

5. Deployment

o User Interface: Develop a user interface that allows users to interact with the

trained models, input text, and receive predictions about hate speech. The

interface provides a practical tool for end-users to leverage the model's

capabilities.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

Figure 4.1.2 Training Process for Deep Learning Approach

Figure 4.1.3 is the use case diagram illustrates the various functionalities of the hate speech

detection system built using Streamlit, along with the relationships between these

functionalities. The system enables users to select a model, choose an explainer, input text, and

generate predictions with explanations.

Use Cases and Their Relationships:

1. Model Selection:

o The user can select a model from the list of trained models available in the

system.

o This use case includes the Prepare Model use case, indicating that once a model

is selected, the system automatically proceeds to prepare the model for

prediction.

2. Prepare Model (Included Use Case):

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

o This use case is automatically invoked when the user selects a model. It involves

loading the model's parameters, initializing the necessary libraries, and ensuring

that the model is ready for use.

3. Explainer Selection:

o The user selects an explainer tool, such as SHAP or LIME, to interpret the

model's predictions.

o This use case includes the Prepare Explainer use case, which prepares the

selected explainer for interpreting predictions.

4. Prepare Explainer (Included Use Case):

o Once an explainer is selected, the system initializes the explainer, loads relevant

libraries, and sets up the necessary configuration to use the explainer with the

chosen model.

5. Enter Text:

o The user inputs a text snippet to analyze for potential hate speech. This is the

initial step in the prediction process.

6. Predict Button:

o After entering the text, the user clicks the 'Predict' button to start the analysis.

o This use case includes several subsequent use cases that are part of the

prediction workflow:

▪ Check Text: The system checks the input text for errors.

▪ This use case extends to Text Error if any errors are detected,

providing feedback to the user to correct the input.

▪ Text Preprocessing: If no errors are found, the text is preprocessed,

which involves tokenization, removal of stop words, lemmatization, and

vectorization.

▪ Model Prediction: The preprocessed text is fed into the selected model

to generate a prediction.

▪ Explain Prediction: The system uses the chosen explainer tool to

interpret the model's output and provides insights on which words or

phrases influenced the decision.

7. Check Text (Included Use Case):

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

o This use case is invoked by the Predict Button and checks the input text for

errors, such as invalid characters or inappropriate length.

o It extends to Text Error when errors are found.

8. Text Error (Extended Use Case):

o If the system detects errors during the Check Text process, it provides feedback

to the user, suggesting corrections for the input text.

9. Text Preprocessing (Included Use Case):

o Prepares the text for model prediction by converting it into a suitable format.

10. Model Prediction (Included Use Case):

o Takes the preprocessed text and generates a prediction using the selected model.

11. Explain Prediction (Included Use Case):

o Uses the selected explainer to provide an interpretation of the model's

prediction, offering insights into the decision-making process.

Figure 4.1.3 Hate Speech Detection System Use Case Diagram

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

4.2 Use Case Description

Use Case ID UC-01

Use Case Name Model Selection

Actor User

Preconditions The system is running, and the user has accessed the model

selection interface.

Postconditions The selected model is prepared and loaded for use.

Main Flow 1. The user selects a desired model from the list of available

models.

2. The system retrieves the selected model.

3. The system prepares the model for use.

Alternate Flow The default model will be selected

Include Prepare Model

Table 4.2.1 Model Selection Use Case Description

Use Case ID UC-02

Use Case Name Explainer Selection

Actor User

Preconditions The system is running, and the user has accessed the explainer

selection interface.

Postconditions The selected explainer is prepared and loaded for use.

Main Flow 1. The user selects an explainer (SHAP or LIME).

2. The system retrieves the selected explainer.

3. The system prepares the explainer for use.

Alternate Flow The default explainer will be selected

Include Prepare Explainer

Table 4.2.2 Explainer Selection Use Case Description

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

Use Case ID UC-03

Use Case Name Enter Text

Actor User

Preconditions The system is running, and the user is on the text input interface.

Postconditions The text is entered and ready for further processing.

Main Flow 1. The user inputs text into the designated field.

2. The system accepts and displays the entered text.

Table 4.2.3 Enter Text Use Case Description

Use Case ID UC-04

Use Case Name Predict Button

Actor User

Preconditions The system is running, the user has selected a model and explainer,

and text has been entered.

Postconditions The system provides a prediction and an explanation for the input

text.

Main Flow 1. The user clicks the 'Predict' button.

2. The system checks the entered text for errors (Include: Check

Text).

3. If no errors, the system preprocesses the text (Include: Text

Preprocessing).

4. The system uses the selected model to make a prediction

(Include: Model Prediction).

5. The system uses the selected explainer to provide an explanation

for the prediction (Include: Explainer).

Alternate Flow If text errors are found, the system displays an error message

(Extend: Text Error).

Table 4.2.4 Predict Button Use Case Description

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

Use Case ID UC-05

Use Case Name Check Text

Actor System

Preconditions The user has clicked the 'Predict' button, and the system checks

whether text has been entered.

Postconditions The text is either accepted for preprocessing or an error is reported

if no text or invalid input is detected.

Main Flow 1. The system verifies that the user has entered text.

2. The system checks the entered text for errors, such as

inappropriate characters or overly short text.

3. If the text is valid, the system proceeds to text preprocessing.

Extend Text Error (if no text is entered or errors are found in the text).

Table 4.2.5 Check Text Use Case Description

Use Case ID UC-06

Use Case Name Text Preprocessing

Actor System

Preconditions Text has been checked and confirmed to be error-free.

Postconditions The text is tokenized and vectorized, ready for model prediction.

Main Flow 1. The system removes stopwords and applies lemmatization.

2. The system tokenizes and vectorizes the text using the chosen

method (e.g., CountVectorizer, TFIDF, Word2Vec, BERT).

Table 4.2.6 Text Preprocessing Use Case Description

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

Use Case ID UC-07

Use Case Name Model Prediction

Actor System

Preconditions Preprocessed text is available.

Postconditions The system generates a prediction for the entered text.

Main Flow 1. The system uses the selected model to predict whether the input

text contains hate speech.

2. The prediction result is generated.

Table 4.2.7 Model Prediction Use Case Description

Use Case ID UC-08

Use Case Name Explainer

Actor System

Preconditions Model prediction is complete.

Postconditions The system provides an explanation for the prediction.

Main Flow
1. The system uses the selected explainer (SHAP or LIME) to

interpret the prediction.

2. The explanation is generated and displayed to the user.

Table 4.2.8 Explainer Use Case Description

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

4.3 System Components Specifications

Specifications Local Computer Cloud Google Colab

Hardware Specification:

Processor Intel i5-10300H CPU@

(2.50GHz)

-

RAM 16GB TPU: 334.6 GB

T4 GPU: 12.7 GB

Storage 465 GB HDD -

GPU/TPU NVIDIA GTX 1650 T4 GPU, TPU v2

Software Specification:

Operating System Windows 11 Linux

Programming Language Python 3.12.4

Libraries and Frameworks Data Manipulation: NumPy, Pandas

Data Visualization: Matplotlib, Seaborn

Deep Learning: TensorFlow, Keras

Machine Learning: Scikit-learn

Natural Language Processing: NLTK (Natural Language

Toolkit)

Feature Extraction: Keras Tokenizer, Scikit-learn's

TfidfVectorizer

Interpretability: LIME (Local Interpretable Model-agnostic

Explanations)

Other Tools: WordCloud (for visual representation)

Development Environment Jupyter Notebook

Visual Studio Code

Google Colab

Table 4.3.1 System Components Specifications

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

Chapter 5

System Implementation

5.1 Implementation of CRISP-DM Methodology

1. Business Understanding

In this project, the business understanding phase focused on defining clear objectives and

success criteria to guide the development and design of a hate speech detection tool. By

thoroughly analyzing the complexities of hate speech on social media and understanding

user needs, the following goals were established:

• Goal 1: Create an Accessible Hate Speech Detection Tool

To ensure that the tool is easy to use for all individuals, regardless of their technical

background, the project utilized the Streamlit framework to build an intuitive user

interface. The design includes simple features such as model selection and text

input, allowing users to quickly get started and input text for analysis without

needing complex operations.

• Goal 2: Provide Real-Time Detection

To meet the need for real-time detection, the project employed various machine

learning and deep learning models to efficiently process user input. Using a

combination of optimized models such as Logistic Regression, Naive Bayes,

Decision Trees, and LSTM networks, the system can quickly provide feedback on

whether the input contains hate speech.

• Goal 3: Ensure Model Transparency and Interpretability

Trust and understanding of the model are crucial to the success of the tool.

Therefore, the project integrated SHAP (SHapley Additive exPlanations) and LIME

(Local Interpretable Model-agnostic Explanations) tools. These tools help explain

why each text input is classified as hate speech or non-hate speech, providing users

with insights into the model's decision-making process and increasing transparency

and interpretability.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

• Goal 4: Achieve a Minimum Validation Accuracy of 0.8

The project set a minimum validation accuracy benchmark of 0.8. To achieve this,

multiple strategies were employed in data preprocessing, feature extraction, and

model selection. These included data cleaning, noise removal, using various feature

extraction methods like CountVectorizer, TF-IDF, Word2Vec, and BERT, and

iterative training and optimization of different models.

By setting and implementing these goals, the business understanding phase laid the

foundation for the subsequent system implementation, ensuring that the hate speech

detection tool meets practical requirements while being efficient, transparent, and user-

friendly.

2. Data Understanding + Data Preparation

i. Initial Data Understanding

The original dataset used for this project consisted of two columns: "Content" (textual

data) and "Label" (binary value: 0 or 1). The initial exploration of the dataset revealed

the following:

• Total Records: 726,119

• Duplicated Values: 25,046 entries were identified as duplicates.

• Null Values: No null values were found in the dataset.

The distribution of labels in the initial dataset was:

• Label 1 (Hate Speech): 364,525 entries

• Label 0 (Non-Hate Speech): 361,594 entries

This shows a fairly balanced dataset, with a slight majority of entries labeled as hate

speech.

ii. Initial Data Preprocessing

To clean and standardize the dataset, several preprocessing steps were performed:

a. Remove Duplicate Entries: Duplicates were removed based on the "Content" column

to ensure each piece of text is unique.

b. Text Cleaning: The clean_text function was applied to normalize the text and remove

unwanted characters, including:

• Converting Unicode characters to ASCII.

• Keeping only letters, numbers, spaces, and some punctuation.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

• Reducing repeated characters while preserving at least three (to avoid

removing emphasis).

Figure 5.1.2.2.1 clean_text function

c. Remove Short Texts: Texts shorter than 5 characters were removed to avoid noise in

the data.

d. Language Detection: Only English texts were retained, based on language detection

using the langdetect library. Shorter texts (less than 20 characters) were kept without a

language check to avoid misclassification due to lack of context.

e. Save Cleaned Dataset: The cleaned dataset was saved as cleaned_dataset.csv for future

use in training and evaluation.

iii. New Data Understanding for Cleaned Dataset

After preprocessing, the cleaned dataset was re-evaluated:

• Duplicated Values: New duplicates were identified, likely due to text

normalization and cleaning steps that caused different original texts to

become identical after cleaning. These were subsequently removed.

• Null Values: No null values were present in the cleaned dataset.

The updated distribution of labels in the cleaned dataset was:

• Label 1 (Hate Speech): 335,703 entries (50.3%)

• Label 0 (Non-Hate Speech): 331,051 entries (49.7%)

The dataset remained balanced, which is favorable for training models.

iv. Frequency Analysis of Cleaned Data

A frequency analysis was conducted to identify the most common words in the

dataset, separated by hate speech and non-hate speech categories:

• Top 5 Words in All Comments: ['slut', 'article', 'like', 'page', 'would']

• Top 5 Words in Hate Speech Comments: ['like', 'people', 'fuck', 'fucking',

'get']

• Top 5 Words in Non-Hate Speech Comments: ['article', 'slut', 'page',

'would', 'wikipedia']

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

This analysis helped identify key words associated with hate speech, providing

insights into common patterns that models could use for training.

Figure 5.1.1 Word Cloud for All Comments

Figure 5.1.2 Word Cloud for Non Hate Speech Comments

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

Figure 5.1.3 Word Cloud for Hate Speech Comments

v. Data Preparation for Modeling

Following the frequency analysis, further data preparation was undertaken to

optimize the dataset for both machine learning and deep learning approaches. This

process involves several key steps tailored to different modeling techniques.

Machine Learning Approach

For the machine learning models, the following steps were taken to prepare the

dataset:

a. Stopword Removal and Lemmatization: To reduce noise and standardize the

text data, stopwords were removed, and lemmatization was applied. This

process helps in reducing word variations to their base forms, making the data

more manageable and consistent for training models.

b. Splitting the Dataset: The cleaned dataset was split into training and test sets.

This step is crucial for evaluating model performance, allowing for the

assessment of a model's ability to generalize to unseen data. The split was done

in a stratified manner to maintain the label distribution in both subsets.

c. Tokenization and Vectorization: Different vectorization techniques were

employed to transform the text data into a numerical format suitable for machine

learning models:

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

o CountVectorizer: This method converts the text into a matrix of

token counts, capturing the frequency of each word within the

dataset.

o TF-IDF (Term Frequency-Inverse Document Frequency): This

technique measures the importance of a word in a document relative

to the entire dataset, reducing the weight of commonly used words

while highlighting more distinctive words.

Only the training set was fit-transformed using these vectorizers, ensuring that the test set was

not influenced by the training data. The test set was subsequently transformed using the

vectorizers fitted on the training data.

Deep Learning Approach

For deep learning models, the preparation process differed depending on the type of word

embedding technique used. Three primary approaches were implemented:

i. Word2Vec Embedding:

o Tokenization: The cleaned text data was tokenized to convert words

into sequences of integers, where each integer represents a unique word

in the vocabulary.

o Word2Vec Vectorization: Using the Word2Vec algorithm, words were

embedded into a dense vector space where semantically similar words

have closer vector representations.

o Padding Sequences: To handle varying text lengths, the sequences were

padded to a fixed length using pad_sequences to ensure uniform input

size for the model.

o Train-Test Split: The dataset was split into training and test sets post-

vectorization, maintaining the integrity of the embeddings.

ii. BERT Embedding:

o BERT Tokenizer: Text data was tokenized using the BERT tokenizer,

which handles sub-word tokenization and provides special tokens for

sentence classification tasks.

o Padding within Tokenizer: During tokenization, padding was applied

to ensure all sequences were of the same length, as required by BERT.

o BERT Embedding Extraction: The tokenized data was passed through

the BERT model to obtain the last_hidden_state — a representation of

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

the input that encodes contextual information for each word. This state

was used as input features for subsequent layers of the deep learning

model.

iii. Neural Network Embedding Layer:

o Tokenization: Similar to the Word2Vec approach, the text was tokenized into

sequences of integers.

o Padding Sequences: The tokenized data was padded using pad_sequences to

ensure uniform sequence lengths.

o Train-Test Split: The dataset was split into training and test sets before feeding

the tokenized data into the neural network's Embedding Layer. This layer learns

word embeddings during the model training process, which are optimized for

the specific task of hate speech detection.

By employing these various data preparation techniques, the dataset was made ready for both

machine learning and deep learning models, ensuring that each model had appropriately

formatted inputs for optimal performance.

3. Modeling

The modeling phase involved developing and training a variety of machine learning and deep

learning models to detect hate speech in social media text. This section provides a detailed

overview of the different approaches and their specific configurations, ensuring a robust

evaluation of model performance.

i. Machine Learning Approach

For the machine learning models, two different text vectorization techniques —

CountVectorizer and TF-IDF — were used to represent the text data. These vectorized

datasets were then used to train three different machine learning algorithms:

a. Logistic Regression:

o Logistic Regression is a popular algorithm for binary classification tasks due

to its simplicity and effectiveness. It was configured using the following

parameters:

▪ Penalty: 'l2' (Ridge Regularization)

▪ Inverse Regularization Strength (C): [0.01, 0.1, 1]

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

o To ensure the robustness of the model, GridSearchCV with 5-fold cross-

validation (cv=5) was applied to identify the optimal hyperparameters. The

model was evaluated using accuracy as the scoring metric.

b. Naive Bayes:

o The Naive Bayes classifier, specifically the Multinomial Naive Bayes variant,

is suitable for text classification tasks due to its ability to handle high-

dimensional data efficiently. Since Naive Bayes has fewer hyperparameters, no

specific grid search parameters were set (param_NB = {}).

o Similar to Logistic Regression, GridSearchCV with 5-fold cross-validation

(cv=5) was utilized to ensure consistent and reliable model performance, using

accuracy as the scoring metric.

c. Decision Tree:

o Decision Trees were employed to explore the hierarchical structure of decision-

making in the text data. The model was configured with the following

parameters:

▪ Maximum Depth (max_depth): [5, 8]

▪ Minimum Samples Split (min_samples_split): [1, 2, 5]

o Due to the complexity of the model, GridSearchCV with 2-fold cross-

validation (cv=2) was used to determine the optimal parameters, with accuracy

as the scoring metric.

o Bagging Classifier: To improve the performance and stability of the Decision

Tree model, a BaggingClassifier was used with the following parameters:

▪ Estimator: DecisionTreeClassifier

▪ Number of Estimators (n_estimators): 5

▪ Random State: 42

By employing GridSearchCV, all models were trained iteratively across different parameter

combinations to identify the best-performing configurations.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

ii. Deep Learning Approach

For the deep learning approach, four distinct models were implemented using various word

embedding techniques and neural network architectures. Each model was evaluated to

determine its effectiveness in detecting hate speech. The following sections provide details on

the configurations and parameters for each deep learning model used in this project.

a. Stacked LSTM with Word2Vec Embeddings

Architecture:

• Input Layer: Takes Word2Vec embeddings as input vectors.

• LSTM Layer 1: 100 units, return_sequences=True to pass the sequence to the next

LSTM layer.

• LSTM Layer 2: 100 units, processes the sequence output from the first LSTM

layer.

• Dense Layer: 1 unit with sigmoid activation to output the prediction.

b. BiLSTM with BERT Embeddings

Architecture:

• BERT Layer: Pre-trained BERT model used to obtain contextual embeddings for

the input text.

• BiLSTM Layer: Bidirectional LSTM with dropout for regularization.

• Fully Connected Layer: Linear layer for classification output.

c. Single-Layer LSTM with Embedding Layer

 Architecture:

• Embedding Layer: Converts input tokens to dense vectors with an output

dimension of 130.

• LSTM Layer: Includes a single LSTM layer with 100 units and dropout for

regularization.

• Dense Layer: Output layer with a sigmoid activation function for binary

classification.

Parameters:

• Embedding Dimension: 130

• LSTM Units: 100

• Dropout Rate: 0.2

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

d. CNN-LSTM with Embedding Layer

Architecture:

• Embedding Layer: Converts input tokens to dense vectors with an output

dimension of 100.

• CNN Layers: Uses multiple convolutional filters for feature extraction:

o Number of Filters: 100

o Filter Sizes: 3, 4, 5

• LSTM Layer: Processes combined features from CNN layers with 64 units.

• Dense Layer: Output layer with a sigmoid activation function for binary

classification.

Parameters:

• Embedding Dimension: 100

• Number of Filters: 100

• Filter Sizes: 3, 4, 5

• LSTM Units: 64

• Dropout Rate: 0.3

• Learning Rate: 0.0001

4. Evaluation

The evaluation of both machine learning and deep learning models was conducted using four

key metrics: Accuracy, Precision, Recall, and F1-score. These metrics provide a

comprehensive understanding of each model's performance, particularly in the context of

binary classification tasks such as hate speech detection.

Machine Learning Models

The performance of the machine learning models trained with two different text vectorization

techniques, CountVectorizer and TF-IDF, is summarized in Table 5.1.4.1.1 below.

Model Accuracy Precision Recall F1-Score

Logistic Regression (CountVectorizer) 0.84 0.84 0.84 0.84

Naive Bayes (CountVectorizer) 0.80 0.74 0.92 0.82

Decision Tree (CountVectorizer) 0.66 0.61 0.93 0.73

Bagging Decision Tree

(CountVectorizer)

0.83 0.82 0.84 0.83

Logistic Regression (TF-IDF) 0.84 0.84 0.84 0.84

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

Naive Bayes (TF-IDF) 0.82 0.78 0.89 0.83

Decision Tree (TF-IDF) 0.66 0.61 0.93 0.73

Bagging Decision Tree (TF-IDF) 0.83 0.82 0.85 0.83

Table 5.1.1 Evaluation of Machine Learning Approach

Analysis:

• Logistic Regression: Both with CountVectorizer and TF-IDF, Logistic Regression

achieved relatively high performance, with accuracies of 0.84 and 0.84, respectively.

Precision, recall, and F1-scores were also balanced, indicating its effectiveness in

handling the text classification task.

• Naive Bayes: The Naive Bayes classifier showed a higher recall (0.92 and 0.89 for

CountVectorizer and TF-IDF) but lower precision (0.74 and 0.78). This suggests that

the model is more inclined towards correctly identifying the positive class but at the

cost of a higher false positive rate.

• Decision Tree: The Decision Tree model performed poorly, especially in terms of

accuracy (0.66 and 0.66) and precision (0.61 and 0.61). However, its recall was high,

which indicates that the model was also biased towards identifying positive cases.

• Bagging Decision Tree: By applying the Bagging technique, the Decision Tree's

performance improved significantly. The Bagging Decision Tree achieved better

accuracy (0.83 and 0.83) and F1-scores (0.83 and 0.83) for both vectorization methods,

demonstrating enhanced stability and robustness in model predictions.

Overall, Logistic Regression and Bagging Decision Tree were the best-performing machine

learning models. Logistic Regression maintained a balanced performance across all metrics,

while Bagging Decision Tree showed a good trade-off between precision and recall after

boosting the base Decision Tree.

Deep Learning Models

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

The performance of the deep learning models with different architectures and embedding

methods is summarized in Table 5.1.4.2.1 below.

Model Accuracy Precision Recall F1-Score

Word2Vec + Stacked LSTM 0.80 0.79 0.83 0.81

BERT + BiLSTM 0.82 0.83 0.81 0.82

Embedding + CNN-LSTM 0.88 0.87 0.89 0.88

Embedding + Single-Layer LSTM 0.85 0.84 0.87 0.85

Table 5.1.2 Evaluation of Deep Learning Approach

Analysis:

• Word2Vec + Stacked LSTM: The model achieved an accuracy of 0.80 and an F1-

score of 0.81, indicating that it performed reasonably well in both precision (0.79) and

recall (0.83). However, it did not outperform the other deep learning models, especially

in terms of accuracy and F1-score.

• BERT + BiLSTM: Utilizing BERT embeddings and a bidirectional LSTM, this model

achieved an accuracy of 0.82 and an F1-score of 0.82. The precision (0.83) and recall

(0.81) scores were balanced, demonstrating its capability to handle more complex

contextual information from the text data.

• Embedding + CNN-LSTM: This model performed the best among all the deep

learning architectures, achieving the highest accuracy (0.88) and F1-score (0.88). The

combination of CNN for feature extraction and LSTM for sequence modeling proved

highly effective in capturing both local and global dependencies in the text data.

• Embedding + Single-Layer LSTM: The Single-Layer LSTM model achieved an

accuracy of 0.85 and an F1-score of 0.85. It also maintained a good balance between

precision (0.84) and recall (0.87), making it a solid choice for binary classification

tasks, though slightly less effective than the CNN-LSTM model.

Comparative Analysis

Comparing both approaches, it is evident that the deep learning models generally

outperformed the machine learning models in terms of all evaluated metrics:

• CNN-LSTM emerged as the top-performing model overall, achieving the highest

scores in all metrics, including accuracy, precision, recall, and F1-score.

• BERT + BiLSTM and Single-Layer LSTM also demonstrated strong performance,

suggesting that deep learning models, especially those incorporating advanced

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

embeddings (like BERT) or hybrid architectures (like CNN-LSTM), can handle the

complexities of text data more effectively.

• Among machine learning models, Logistic Regression and Bagging Decision Tree

performed well, but they were still outpaced by the best deep learning models,

highlighting the benefits of using neural networks for tasks requiring deeper contextual

understanding and feature extraction.

CNN-LSTM Model Performance and Overfitting Mitigation

The CNN-LSTM model demonstrated strong performance during training, with the training

accuracy increasing from 70.18% in Epoch 1 to 94.17% in Epoch 10. However, signs of

potential overfitting were observed as the validation accuracy plateaued, while the validation

loss started to increase after Epoch 7. For example, the validation loss decreased until Epoch 7

(0.3011) but began to rise from Epoch 8 (0.3078) onwards.

To address this overfitting issue, the EarlyStopping mechanism was applied with the following

settings:

• Monitor: Validation loss (val_loss)

• Patience: 3 epochs (the model stops training if the validation loss does not improve for

3 consecutive epochs)

• Restore Best Weights: True (the model restores weights from the epoch with the

lowest validation loss)

In this case, EarlyStopping selected the weights from Epoch 7, where the validation loss was

at its minimum (0.3011) before it began to increase. This approach effectively prevented

overfitting by restoring the best model state from the epoch with the optimal balance between

training and validation performance. As a result, the model maintained robust generalization

to new data, preventing it from learning noise and irrelevant patterns from the training set.

By applying EarlyStopping, the CNN-LSTM model's performance was optimized for both

accuracy and generalization, ensuring that it did not overfit to the training data.

Figure 5.1.4 CNN_LSTM Training Phase

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

The evaluation shows that deep learning models, particularly the CNN-LSTM, outperformed

traditional machine learning models in detecting hate speech, achieving the highest scores

across all metrics. While Logistic Regression and Bagging Decision Tree were the best among

machine learning approaches, they were still outpaced by deep learning methods that

effectively capture complex text patterns. The use of EarlyStopping in the CNN-LSTM model

also helped mitigate overfitting, ensuring robust generalization to new data. Overall, deep

learning models, especially those with advanced embeddings and hybrid architectures, proved

to be more effective for this task.

5. Deployment

To deploy the trained models and facilitate user interaction, a Streamlit web application was

developed. The main features and functionalities of the application are as follows:

1. Model Selection:

• Users can choose from a variety of classifiers, including specific models or an ensemble

option labeled “VotingClassifier” which included CNN_LSTM, BiLSTM, Bagging

Decision Tree. If no specific classifier is selected, the default is the “VotingClassifier”

option, which aggregates predictions from all available models using a voting classifier

approach.

Figure 5.1.4 Model Selection Interface

2. Explainer Selection:

• The application provides options to choose between SHAP and LIME for model

explanation. Note that when the “VotingClassifier” classifier is selected, explainer

options are disabled.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

Figure 5.1.5 Explainer Selection Interface

3. Text Input and Prediction:

• Users can input text into a prompt and click the “Result” button to generate predictions.

The chosen model will then provide probabilities for both non-hate and hate

classifications.

Figure 5.1.6 Text Input and Result Button Interface

4. Output Display:

• For “VotingClassifier”:

o A table displays probabilities for non-hate and hate classifications from

CNN_LSTM, BiLSTM, Bagging Decision Tree models.

o It includes results from hard voting and soft voting. Hard voting typically

determines the final result.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

Figure5.1.7 Output Display of Voting Classifier

• For Specific Models:

o The selected model’s probabilities for non-hate and hate classifications are

displayed.

o Additionally, the selected explainer (SHAP or LIME) provides insights into the

model’s decision-making process.

This deployment ensures an interactive and user-friendly interface for real-time hate speech

detection and model interpretation.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

Figure 5.1.8 Output Display for Specific Models

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

Chapter 6

Systen Evaluation and Discussion

6.1 Testing Cases

Test

Case ID

Description Expected Result Actual Result

(Pass/Fail)

TC-001 Streamlit able to load trained

model

No error when starting the

web application

Pass

TC-002 User able to prompt text in text

area and see the result

Display result after clicking

“Result” button

Pass

TC-003 System able to check the text

error

When user click “Result”

button:

If no text: “No Data

received”

If all digits: “Digits dont

have hate element”

Pass

TC-004 Every Classifier should be able

to predict

Classifier “All Models”

display the table have all

classifiers’ output

Pass

TC-005 Classifier “All Models” should

be able to make final output

Classifier able to determine

final decision through hard

voting and soft voting

Pass

TC-006 Input hate speech to “All

Models”

Final predicts “hate” class

with high voting

Pass

TC-007 Input valid non-hate text to “All

Models”

Final Predicts “non-hate”

class with hight voting

Fail

TC-008 Input valid non-hate text to

CNN-LSTM model

Model predicts "non-hate"

class with high probability

Pass

TC-009 Input valid hate text to CNN-

LSTM model

Model predicts " hate" class

with high probability

Pass

TC-010 Input valid hate text to Logistic

Regression model

Model predicts "hate" class

with high probability

Pass

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

TC-011 Input valid non-hate text to

Logistic Regression model

Model predicts "non-hate"

class with high probability

Fail

TC-012 Input valid hate text to Naive

Bayes model

Model predicts "hate" class

with high probability

Pass

TC-013 Input valid non-hate text to

Naive Bayes model

Model predicts "non-hate"

class with high probability

Fail

TC-014
Input valid hate text to Bagging

Decision Tree model

Model predicts "hate" class

with high probability

Pass

TC-015 Input valid non-hate text to

Bagging Decision Tree model

Model predicts "non-hate"

class with high probability

Pass

TC-016 Input valid hate text to LSTM

model

Model predicts "hate" class

with high probability

Pass

TC-017 Input valid non-hate text to

LSTM model

Model predicts "non-hate"

class with high probability

Fail

TC-018 Input valid hate text to BiLSTM

model

Model predicts "hate" class

with high probability

Pass

TC-019 Input valid non-hate text to

BiLSTM model

Model predicts "non-hate"

class with high probability

Pass

6.2 Model Evaluation

Model Accuracy Precision Recall F1-Score

Logistic Regression (CountVectorizer) 0.84 0.84 0.84 0.84

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

Naive Bayes (CountVectorizer) 0.80 0.74 0.92 0.82

Decision Tree (CountVectorizer) 0.66 0.61 0.93 0.73

Bagging Decision Tree

(CountVectorizer)

0.83 0.82 0.84 0.83

Logistic Regression (TF-IDF) 0.84 0.84 0.84 0.84

Naive Bayes (TF-IDF) 0.82 0.78 0.89 0.83

Decision Tree (TF-IDF) 0.66 0.61 0.93 0.73

Bagging Decision Tree (TF-IDF) 0.83 0.82 0.85 0.83

Word2Vec + Stacked LSTM 0.80 0.79 0.83 0.81

BERT + BiLSTM 0.82 0.83 0.81 0.82

Embedding + CNN-LSTM 0.88 0.87 0.89 0.88

Embedding + Single-Layer LSTM 0.85 0.84 0.87 0.85

The evaluation of the models reveals that the deep learning models generally outperformed the

machine learning models in all key metrics. Among the machine learning approaches, Logistic

Regression and Bagging Decision Tree achieved the highest scores, with consistently strong

performance across accuracy, precision, recall, and F1-score. In contrast, the Decision Tree

models, both with CountVectorizer and TF-IDF, showed lower accuracy and precision,

although they excelled in recall.

The deep learning models, particularly the Embedding + CNN-LSTM architecture,

demonstrated superior performance with the highest accuracy and F1-score. This model

effectively captured both local and global dependencies in the text data, making it the most

effective for the hate speech detection task. The other deep learning models, such as BERT +

BiLSTM and Embedding + Single-Layer LSTM, also performed well but did not surpass the

CNN-LSTM model.

Overall, the results highlight the effectiveness of advanced deep learning techniques in

handling complex text classification tasks compared to traditional machine learning methods.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

6.3 Project Challenges

Several challenges were encountered during the development of this project, requiring careful

problem-solving strategies.

The first challenge was managing memory usage when using BERT embeddings. Due to the

large size of the dataset and the complexity of the BERT model, the training process consumed

an excessive amount of RAM. Even in a high-performance environment such as Google Colab

with 334GB of RAM and TPU support, the training could not proceed without running out of

memory. To address this issue, PyTorch's DataLoader was implemented with an appropriate

batch size to handle the data in smaller, more manageable portions, effectively reducing the

RAM usage and allowing the training process to complete successfully.

The second challenge arose with the Decision Tree classifier, which showed signs of

underfitting and resulted in poor performance metrics. This was likely due to the high variance

and instability associated with Decision Trees, particularly when dealing with complex

datasets. To overcome this, a Bagging Classifier was employed, combining multiple Decision

Trees to reduce variance and stabilize the model's predictions. This approach significantly

improved the accuracy score, providing a more reliable model for classification tasks.

By addressing these challenges, the overall model performance and resource management were

enhanced, leading to more effective and efficient machine learning workflows.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

Chapter 7

Conclusion and Recommendations

7.1 Conclusion
This project aimed to develop a comprehensive hate speech detection system utilizing

advanced machine learning and deep learning techniques. The objectives outlined in Chapter

1 were:

1. Create a Model Able to Distinguish Hate and Non-Hate: This objective was

achieved by developing and training various machine learning models (Logistic

Regression, Naive Bayes, Decision Trees, Bagging Decision Tree) and deep learning

models (Word2Vec + Stacked LSTM, BERT + BiLSTM, Embedding + CNN-LSTM,

Embedding + Single-Layer LSTM). Each model was rigorously evaluated for its

accuracy, precision, recall, and F1-score, demonstrating the system's capability to

effectively distinguish between hate and non-hate speech.

2. Experiment with Different Algorithms to Build Models: A variety of algorithms

were tested, including both traditional machine learning methods and advanced deep

learning architectures. The experimentation revealed that deep learning models,

particularly the CNN-LSTM model, outperformed traditional methods in all evaluation

metrics. The use of ensemble learning through a voting classifier further enhanced the

model's performance.

3. Enhance Model Interpretability: To address the need for transparency,

interpretability tools such as SHAP and LIME were integrated into the system. This

addition allowed users to gain insights into how the models made their predictions,

thereby building trust and understanding in the system's decisions.

4. Develop a User Interface: A user web interface was created using Streamlit, enabling

users to input text, select classifiers, and receive real-time feedback. The interface also

supports model explainability, providing users with clear explanations of the prediction

results.

In summary, the project successfully met its objectives by developing a robust and interpretable

hate speech detection system with a user interface. The integration of various machine learning

and deep learning models, coupled with ensemble learning techniques, ensured high accuracy

and reliability. Future work could focus on further enhancing model performance through

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

additional data sources, exploring new algorithms, and refining the user interface for even

better user experience.

7.2 Recommendations
Implement User Feedback Collection with Reinforcement Learning

1. Integrate a User Feedback Mechanism:

• Incorporate a feedback feature into the user interface to allow users to evaluate the

model's prediction outcomes. Users can mark whether a prediction is correct or

incorrect, helping identify model misclassifications and biases.

• The feedback collection could be implemented simply, such as with a

"Correct/Incorrect" button or by allowing users to provide additional details on why a

prediction might be wrong.

2. Apply Reinforcement Learning (RL) Techniques:

• Use user feedback as a reward signal in a reinforcement learning framework. Adjust

the model by incorporating RL techniques to optimize its decision-making strategy

continuously based on feedback.

• Methods like policy gradient algorithms (e.g., REINFORCE or PPO) could be utilized

to train the model, enabling it to perform better with new inputs and adapt to dynamic

environments. Positive user feedback (correct classifications) would provide positive

reinforcement, while negative feedback would result in penalties, driving the model to

improve.

3. Develop a Continuous Learning Pipeline:

• Establish a continuous learning pipeline that updates model parameters dynamically

based on user feedback. This pipeline can operate in the background, fine-tuning the

model in real-time to better accommodate new input data and user expectations.

• Such an approach would allow the system to adapt to changes in language and social

trends, handling new forms of hate speech and expressions effectively.

4. Monitor and Evaluate Feedback-Driven Learning:

• Regularly monitor and evaluate the model's performance throughout the feedback-

driven learning process to ensure that incorporating user feedback and RL techniques

improves the prediction capabilities.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

• Set baseline metrics (such as performance improvement curves) to measure the actual

benefits brought by reinforcement learning and ensure the effectiveness and reliability

of user feedback.

By combining user feedback with reinforcement learning, the model can self-optimize

continuously, gradually reducing misclassifications and increasing the accuracy and robustness

of hate speech detection. This approach enhances both the practical effectiveness of the model

and user trust and engagement, making the system more human-centered and dynamically

adaptable.

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

REFERENCES

[1]I. Mollas, Z. Chrysopoulou, S. Karlos, and G. Tsoumakas, “ETHOS: a multi-label hate

speech detection dataset,” Complex & Intelligent Systems, Jan. 2022, doi:

https://doi.org/10.1007/s40747-021-00608-2

[2]S. MacAvaney, H.-R. Yao, E. Yang, K. Russell, N. Goharian, and O. Frieder, “Hate speech

detection: Challenges and solutions,” PLOS ONE, vol. 14, no. 8, p. e0221152, Aug. 2019, doi:

https://doi.org/10.1371/journal.pone.0221152

[3]Wafa Alorainy, An Integrated Framework for Detecting Online Harms, Modelling and

Disrupting of Cyberhate Networks. Wafa S. Alorainy, 2022.

[4]D. Soni, “Introduction to Naive Bayes Classification,” Medium, May 17, 2018. Available:

https://towardsdatascience.com/introduction-to-naive-bayes-classification-4cffabb1ae54

[5]A. Awan, “Naive Bayes Classifier Tutorial: with Python Scikit-learn,” www.datacamp.com,

Mar. 2023. Available: https://www.datacamp.com/tutorial/naive-bayes-scikit-learn

[6]M. Banoula, “Introduction to Long Short-Term Memory(LSTM) | Simplilearn,”

Simplilearn.com, Apr. 27, 2023. Available: https://www.simplilearn.com/tutorials/artificial-

intelligence-tutorial/lstm

[7]“Create Bidirectional LSTM Layer,” Mathworks.cn, 2024. Available:

https://ww2.mathworks.cn/help/deeplearning/ref/nnet.cnn.layer.bilstmlayer.html. [Accessed:

Sep. 11, 2024]

[8]J. Zhang, Y. Li, J. Tian, and T. Li, “LSTM-CNN Hybrid Model for Text Classification,”

IEEE Xplore, Oct. 01, 2018. doi: https://doi.org/10.1109/IAEAC.2018.8577620. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8577620

[9]Jitendra Singh Malik, H. Qiao, and G. Pang, “Deep Learning for Hate Speech Detection: A

Comparative Study,” arxiv.org, Dec. 07, 2023. Available: https://arxiv.org/html/2202.09517v2

[10]B. Mathew, P. Saha, S. M. Yimam, C. Biemann, P. Goyal, and A. Mukherjee, “HateXplain:

A Benchmark Dataset for Explainable Hate Speech Detection,” Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 35, no. 17, pp. 14867–14875, May 2021, doi:

https://doi.org/10.1609/aaai.v35i17.17745

[11]A. Arango, J. Pérez, and B. Poblete, “Hate speech detection is not as easy as you may

think: A closer look at model validation (extended version),” Information Systems, p. 101584,

Jun. 2020, doi: https://doi.org/10.1016/j.is.2020.101584. Available:

https://www.sciencedirect.com/science/article/abs/pii/S0306437920300715

https://doi.org/10.1007/s40747-021-00608-2
https://doi.org/10.1371/journal.pone.0221152
https://towardsdatascience.com/introduction-to-naive-bayes-classification-4cffabb1ae54
https://www.datacamp.com/tutorial/naive-bayes-scikit-learn
https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/lstm
https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/lstm
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8577620
https://arxiv.org/html/2202.09517v2
https://doi.org/10.1609/aaai.v35i17.17745
https://www.sciencedirect.com/science/article/abs/pii/S0306437920300715

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

[12]S. Zannettou, J. Finkelstein, B. Bradlyn, and J. Blackburn, “A Quantitative Approach to

Understanding Online Antisemitism,” Proceedings of the International AAAI Conference on

Web and Social Media, vol. 14, pp. 786–797, May 2020, doi:

https://doi.org/10.1609/icwsm.v14i1.7343

[13]T. Ranasinghe and M. Zampieri, “An Evaluation of Multilingual Offensive Language

Identification Methods for the Languages of India,” Information, vol. 12, no. 8, p. 306, Jul.

2021, doi: https://doi.org/10.3390/info12080306

[14]D. Mody, Y. Huang, and T. E. Alves de Oliveira, “A curated dataset for hate speech

detection on social media text,” Data in Brief, vol. 46, p. 108832, Feb. 2023, doi:

https://doi.org/10.1016/j.dib.2022.108832

[15]souravkr26, “Hate_Speech,” Kaggle.com, Jul. 03, 2024. Available:

https://www.kaggle.com/code/souravkr26/hate-speech. [Accessed: Sep. 11, 2024]

[16]N. Yancey-Bragg, “Hate crimes reached record levels in 2023. Why ‘a perfect storm’ could

push them higher,” USA TODAY, Jan. 05, 2024. Available:

https://www.usatoday.com/story/news/nation/2024/01/05/hate-crimes-hit-record-levels-in-

2023-why-2024-could-be-even-worse/72118808007/

https://doi.org/10.1609/icwsm.v14i1.7343
https://doi.org/10.3390/info12080306
https://doi.org/10.1016/j.dib.2022.108832

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: T2 Y3 Study week no.:2

Student Name & ID: Chai Yun Wai (22ACB00222)

Supervisor: Dr Abdulkarim Kanaan Jebna

Project Title: AI FOR A POSITIVE WEB:

ANALYZING HATE IN SOCIAL MEDIA

1. WORK DONE

- Model Training Using Machine Learning

2. WORK TO BE DONE

- Model Training Using Deep Learning

- Create User Interface

3. PROBLEMS ENCOUNTERED

- Decision Tree Underfitting

4. SELF EVALUATION OF THE PROGRESS

- Great

 _________________________ ___ ____

 Supervisor’s signature Student’s signature

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

POSTER

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

PLAGIARISM CHECK RESULT

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

Chai Yun Wai

ID Number(s)

22ACB00222

Programme / Course IB

Title of Final Year Project AI FOR A POSITIVE WEB:ANALYZING HATE IN

SOCIAL MEDIA

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: ___ %

Similarity by source
Internet Sources: _______________%
Publications: _________ %
Student Papers: _________ %

Number of individual sources listed of
more than 3% similarity:

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: __________________________

 Name: __________________________

Date: ___________________________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

Dr. Abdulkarim M. Jamal Kanaan Jebna

13/09/2024

20

13
13
12

0

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 22ACB00222

Student Name Chai Yun Wai

Supervisor Name Dr Abdulkarim Kanaan Jebna

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract

 Table of Contents

 List of Figures (if applicable)

 List of Tables (if applicable)

 List of Symbols (if applicable)

 List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
√ Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)
√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my
report.

______ _____
(Signature of Student)
Date:13 September 2024

