

Crisis-Intervention Chatbot for Cyberbullying Victims

By

YU DONG YANG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONOURS)

INFORMATION SYSTEMS ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

COPYRIGHT STATEMENT

© 2025 Yu Dong Yang. All rights reserved.

This Final Year Project proposal is submitted in partial fulfillment of the requirements for the degree of Bachelor of Information Systems (Honours) Information Systems Engineering at Universiti Tunku Abdul Rahman (UTAR). This Final Year Project proposal represents the work of the author, except where due acknowledgment has been made in the text. No part of this Final Year Project proposal may be reproduced, stored, or transmitted in any form or by any means, whether electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author or UTAR, in accordance with UTAR's Intellectual Property Policy.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Farhan Bashir, for providing me with the opportunity to work on this meaningful project, a crisis-intervention chatbot for cyberbullying victims. His valuable guidance, support, and encouragement throughout this journey have been truly instrumental in helping me grow both technically and personally. Thank you for believing in me and giving me the chance to take my first step into this important and impactful field.

Lastly, I would like to give my heartfelt thanks to my parents and family, whose constant love and support have always been the foundation of my strength. Their encouragement means the world to me, and I would not have reached this point without them.

ABSTRACT

The common manifestation of cyberbullying in hear times has become an acute social problem, with dire impact on emotional health and psychological welfare of its victims, in especially teen and youth groups. Although support networks and counseling services are critical over the long term as a preventive mechanism in their mitigation of long-term impacts, they are not always capable of undertaking prompt, personalized intervention to the victims when their need becomes immediate and personal. This constraint leaves a gap in service provision in instances where members of the population who are in emotional distress can fail to get help promptly. To overcome this obstacle, this project proposes the use of a web-based crisis-intervention chatbot that is specifically dedicated to victims of cyberbullying. The proposed system is a hybrid conversational engine of ChatterBot and a large language model that can generate responses informed by context and an empathetic perspective. The backend is built on Flask, which allows lightweight and efficient deployments with MySQL as database to handle the user session and store conversation history safely. Another distinctive aspect of the system is its sentiment analysis based on Textblob that can recognize the emotions of users with sentiment analysis and inclusion of all typical NLP preprocessing techniques like tokenization, lemmatization, and removal of stopwords. Such processes improve the capabilities of a chatbot to find the intentions of users, present emotional sentiment patterns, and adequately respond to every distinct scenario. As with all user interactions, everything takes place on anonymity and is carefully organized and secure such as preserving privacy. The chatbot can deliver real-time emotional support, coping mechanisms, and references to specific mental health resources, utilizing a combination of natural language processing, sentiment analysis, and large language model intelligence.

Area of Study: Natural Language Processing (NLP), Mental Health

Keywords: Cyberbullying, Crisis-Intervention Chatbot, Emotional Support, Natural Language Processing, LLMs, Sentiment Analysis, Intent Detection, Anonymous Interaction, Web-based Support System, Machine Learning

TABLE OF CONTENTS

TITLE PAGE	i
COPYRIGHT STATEMENT	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	ix
LIST OF TABLES	xi
LIST OF ABBREVIATIONS	xii
CHAPTER 1 INTRODUCTION	1
1.1 Problem Statement	2
1.1.1 Problem Statement 1: Lack of Real-Time Crisis Intervention in Chatbots	2
1.1.2 Problem Statement 2: Lack of Human-Like Conversational Flow in Chatbots	2
1.1.3 Problem Statement 3: Insufficient Emotional Support in Chatbot Responses	3
1.1.4 Problem Statement 4: Limited Personalization in Chatbot Support	3
1.2 Motivation	4
1.3 Project Scope	5
1.3.1 Targeted Users	5
1.3.2 Type of Product	6
1.3.3 Focus of Project	6
1.4 Project Objectives	7
1.5 Report Organization	7
1.6 Contribution	8
1.7 Background	8

CHAPTER 2 LITERATURE REVIEW	10
2.1 Review of Technologies	10
2.1.1 Programming Language	10
2.1.2 Markup Language	12
2.1.3 Styling Language	12
2.1.4 Large Language Model (LLM)	12
2.1.5 Web Framework	13
2.1.6 Chatbot Framework	13
2.2 Review of Existing System/Application	14
2.3 Limitation of Existing System	15
2.4 Proposed Solution	16
CHAPTER 3 PROPOSED METHOD/APPROACH	17
3.1 Web-Based Chatbot Development Life Cycle	17
3.1.1 Planning and Requirement Gathering	17
3.1.2 Design	17
3.1.3 Development and Prototyping Website	19
3.1.3.1 Implementation	19
3.1.3.2 Prototyping	19
3.1.4 Testing and Validation	19
3.2 User Requirement	20
3.2.1 Demographic Information	21
3.2.2 Results Analysis	23
3.3 System Design Diagram	28
3.3.1 System Architecture Diagram	28
3.3.2 Chatbot Conversation Flowchart	30
3.3.3 Use Case	31
3.4 Database Design	33
3.4.1 Business Rule	33
3.4.2 Entity Relationship Diagram	33

CHAPTER 4 SYSTEM DESIGN	35
4.1 System Block Diagram	35
4.2 System Components Specifications	37
4.3 Component Design	39
4.4 Flask Backend Server	40
4.5 LLM Engine (Ollama + Vicuna)	44
4.6 Persona Prompt – Lumi	46
4.7 ChatterBot + MySQL Storage	47
4.8 Sentiment Analysis Module	48
4.9 Crisis Detection Module	49
4.10 Keyword Trigger System	49
CHAPTER 5 SYSTEM IMPLEMENTATION	51
5.1 Hardware Setup	51
5.2 Software Setup	52
5.3 System Operation	53
5.3.1 User Interface Interaction	53
5.3.2 Chatbot Interface	62
5.4 User-Chatbot Interaction	63
5.5 Keyword Detection	64
5.6 Crisis Handling Scenario	66
5.7 Implementation Issues and Challenges	68
5.8 Concluding Remark	69

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION	71
6.1 System Testing	71
6.1.1 Functional Testing (Chatbot Responses)	71
6.1.1.1 Test Case 1: General Conversation Response	71
6.1.1.2 Test Case 2: Cyberbullying Support Inquiry	72
6.1.1.3 Test Case 3: Emotion Detection and Supportive Response	73
6.1.2 Crisis Handling Test	73
6.1.2.1 Test Case 1: Suicide Ideation Detection	74
6.1.2.2 Test Case 2: Self-Harm Reference	74
6.1.2.3 Test Case 3: False Positive Prevention	76
6.2 Performance Metrics	76
6.2.1 Response Time	76
6.2.2 Accuracy of Responses	77
6.2.3 System Reliability	77
6.3 Project Challenge	77
6.4 Objectives Evaluation	78
6.5 Concluding Remark	79
CHAPTER 7 CONCLUSION AND RECOMMENDATION	81
7.1 Conclusion	81
7.2 Recommendation	82
REFERENCES	83
APPENDIX A	
A.1 User Requirement Questionnaire	A-1
A.2 Poster	A-4

LIST OF FIGURES

Figure Number	Title	Page
Figure 2.1.1.1	Calculating Linear Algebra Operations from geeksforgeeks.org	11
Figure 2.1.1.2	Data Cleaning and Preparation from geeksforgeeks.org	11
Figure 3.2.1.1	Age Proportion Chart	21
Figure 3.2.1.2	Gender Proportion Chart	21
Figure 3.2.1.3	Occupation Proportion Chart	22
Figure 3.2.1.4	Online Platform Usage Frequency Proportional Chart	22
Figure 3.2.2.1	Cyberbully Experience Proportional Chart	23
Figure 3.2.2.2	Chatbot Acceptance Proportional Chart	23
Figure 3.2.2.3	Chatbot Features Expectation Chart	24
Figure 3.2.2.4	Importance of Anonymity Proportion Chart	25
Figure 3.2.2.5	Chatbot Usage Frequency Proportion Chart	25
Figure 3.2.2.6	Chatbot Response Preference Proportion Chart	26
Figure 3.2.2.7	Chatbot Availability Proportion Chart	26
Figure 3.2.2.8	Chatbot Trust-Building Response Proportion Chart	27
Figure 3.2.2.9	Chatbot Additional Support Proportion Chart	27
Figure 3.2.2.10	User Concerns Proportion Chart	28
Figure 3.3.1.1	System Architecture Diagram	29
Figure 3.3.2.1	Chatbot Conversation Flowchart	31
Figure 3.3.3.1	Use Case Diagram of Crisis-Intervention Chatbot	32
Figure 3.4.2.1	Entity Relationship Diagram of Crisis-Intervention Chatbot	34
Figure 4.1.1	System Block Diagram of Crisis-Intervention Chatbot	36
Figure 4.4.1	Code Snippet for Flask	41
Figure 4.4.2	Code Snippet for Flask	42
Figure 4.4.3	Code Snippet for Flask	43
Figure 4.4.4	Code Snippet for Flask	44
Figure 4.5.1	Ollama Settings	44
Figure 4.5.2	Code Snippet of Ollama	45
Figure 4.5.3	Code Snippet of Ollama	45

Figure 4.6.1	Lumi's Persona	46
Figure 4.7.1	Chatterbot libraries	48
Figure 4.7.2	Chatterbot-MySQL Integration	48
Figure 4.8.1	Code Snippet of Sentiment Analysis	48
Figure 4.9.1	Code Snippet of Crisis Detection Module	49
Figure 4.10.1	Code Snippet of Keyword Detection Module	50
Figure 5.3.1.1	Main Interface	54
Figure 5.3.1.2	Community on Navigation Bar	54
Figure 5.3.1.3	Library on Navigation Bar	55
Figure 5.3.1.4	Help & Support on Navigation Bar	55
Figure 5.3.1.5	Navigate Cyberbullying with Confidence Section	56
Figure 5.3.1.6	Mental Health Library Section	56
Figure 5.3.1.7	About Us Section	57
Figure 5.3.1.8	Frequently Asked Question Part I Section	57
Figure 5.3.1.9	Frequently Asked Question Part II Section	58
Figure 5.3.1.10	Chatbot User Interface	58
Figure 5.3.1.11	Be Informed About Cyberbullying Page	59
Figure 5.3.1.12	Be Informed About Cyberbullying Page Cont.	59
Figure 5.3.1.13	Be Informed About Cyberbullying Page Cont.	60
Figure 5.3.1.14	Be Digital Wellbeing Page	60
Figure 5.3.1.15	Be Digital Wellbeing Page Cont.	61
Figure 5.3.1.16	Be Digital Wellbeing Page Cont.	61
Figure 5.3.1.17	Find Help Page	62
Figure 5.3.2.1	Zoom-In Chatbot User Interface	62
Figure 5.4.1	Chatbot-User Interaction	64
Figure 5.5.1	Chatbot Keyword Detection Interaction	66
Figure 5.6.1	Chatbot Crisis Handling Scenario	68

LIST OF TABLES

Table Number	Title	Page
Table 4.2.1	Specifications of Desktop	37
Table 4.2.2	Specifications of Operating System	37
Table 4.2.3	Specifications of Development Environment	37
Table 4.2.4	Specifications of Frontend Technologies	37
Table 4.2.5	Specifications of Backend Technologies	38
Table 4.2.6	Specifications of Chatbot Framework	38
Table 4.2.7	Specifications of NLP Framework	39
Table 4.2.8	Specifications of Processing Module	39
Table 4.3.1	Specifications of Core Components	40
Table 4.6.1	Lumi Persona Prompt	46
Table 4.7.1	MySQL Connection	47
Table 6.1.1.1.1	Test Case 1 Result	71
Table 6.1.1.2.1	Test Case 2 Result	72
Table 6.1.1.3.1	Test Case 3 Result	73
Table 6.1.2.1.1	Test Case 1 Result	74
Table 6.1.2.2.1	Test Case 2 Result	74
Table 6.1.2.3.1	Test Case 3 Result	76

LIST OF ABBREVIATIONS

<i>AI</i>	Artificial Intelligence
<i>NLP</i>	Natural Language Processing
<i>ML</i>	Machine Learning
<i>CSS</i>	Cascading Style Sheets
<i>HTML</i>	HyperText Markup Language
<i>JS</i>	JavaScript
<i>XML</i>	Extensible Markup Language
<i>CBT</i>	Cognitive Behavioural Therapy
<i>API</i>	Application Programming Interface
<i>VSC</i>	Visual Studio Code
<i>HTTPS</i>	Hypertext Transfer Protocol Secure
<i>FYP</i>	Final Year Project
<i>HTTP</i>	Hypertext Transfer Protocol
<i>KPWKM</i>	Talian Kasih
<i>AJAX</i>	Asynchronous JavaScript and XML
<i>LLM</i>	Large Language Model
<i>LLaMa</i>	Large Language Model Meta
<i>MySQL</i>	My Structured Query Language
<i>REST</i>	REpresentational State Transfer
<i>IDE</i>	Integrated Development Environment
<i>RAM</i>	Random Access Memory
<i>SSD</i>	Solid-State Drive

CHAPTER 1

Introduction

Cyberbullying is intentional and repeated harassment, intimidation, or control of people through digital media. This covers various issues such as the dissemination of rumors, threatening messages, and aggressive material displayed on Websites, and even exclusionary behaviors. Cyberbullying is free from such inhibitions in that it offers the offender anonymity, allowing harassment to be committed to victims constantly without their ever being traced.

In fact, studies done among adolescents in Peninsular Malaysia have indicated that 13.7% of the adolescents reported being victims of cyberbullying, while 3.8% were bullies [1]. Furthermore, the same research showed that 17.1% of teenagers developed suicidal behaviors, of which 8.4% had attempted suicide, marking the serious psychological impacts due to cyberbullying. Another study targeting Malaysian university students showed that the attitude towards cyberbullying was significantly impacted by psychological factors like low levels of self-esteem and antisocial behavior, while their social media usage was an important moderator in the relationship between their intention to cyberbully and their actual behavior [2].

Development of an extensive support system that provides short and long-term solutions for dealing with cyberbullying must remain a priority due to its frequent occurrence and severe consequences. This work fills a critical deficit in current systems since it focuses on creating and deploying a cyberbullying crisis-intervention chatbot to provide aftercare assistance. The project delivered an operational website platform to function as the base system for handling chatbot communications. Powered by ChatterBot the chatbot system provides live emotional care along with step-by-step coping techniques to assist victims. The system will recommend necessary resources that assist victims in healing from trauma alongside preventing their issues from deteriorating further.

1.1 Problem Statement

1.1.1 Problem Statement 1: Lack of Real-Time Crisis Intervention in Chatbots

The deployment of such chatbot technologies in mental health interventions poses significant questions about how effective these are in crisis situations of real-time support. While chatbots are available all day and night, many of them lack sophistication to detect, address, or even sense crises, thereby limiting their effectiveness as therapeutic tools in mental health services. Evidence shows that while chatbots can provide a non-judgmental space, their limited capacity to understand complex emotional situations may lead to misinterpretation in high-stakes situations [3] [4].

Systematic review identifies that even advanced AI chatbots are plagued by challenges in accurately representing the complexities involved in a crisis, thus compromising their ability to give proper and effective support when such crises arise [5][6]. For example, while chatbots can ease overall stress management, they are often unable to cope with situations involving high distress, such as suicidal thoughts [7]. Users identified the lack of sensitivity demonstrated by chatbots as a major issue, as this lack of sensitivity weakens trust and dependency on these services under adverse situations [8][9].

1.1.2 Problem Statement 2: Lack of Human-Like Conversational Flow in Chatbots

With the creation of chatbots, who are able to simulate conversation-like activities, we see a growing research domain with various challenges to address. Despite improved natural language processing (NLP) and dialog management, chatbots are often plagued with challenges when simulating the complexity and nuance of human communication. One of the primary concerns is their limited ability to employ emotional intelligence effectively during conversations, which significantly hampers user experience and engagement [10]. Current neural dialogue systems, such as sequence-to-sequence models, are frequently criticized for producing responses that lack depth and emotional resonance, resulting in interactions that may feel generic or unresponsive [11].

Studies have shown that while NLP applications are built to facilitate natural language interactions, many existing chatbots still operate within narrow parameters of response generation, leading to brief and formulaic exchanges [11]. This failure to deliver a conversational flow that matches human discourse is exacerbated by the fundamental

programming limitations of many chatbots, which rely heavily on predetermined scripts rather than real-time adaptive dialogues that can incorporate user emotions or contextual cues [12].

1.1.3 Problem Statement 3: Insufficient Emotional Support in Chatbot Responses

The administration of emotional assistance in chats with chatbots is a well-distinguished aspect of their utilization in areas of mental health and customer services. Despite this, empirical indicators have all pointed towards chatbots not being able to provide adequate emotional assistance, a shortcoming with repercussions reaching into customer experience as well as performance overall.

Humanoid chatbots, developed with an emphasis on emotional interaction, struggle to mimic empathetic responses as are common in human relationships. The above statement is underpinned by research carried out by Abd-Alrazaq et al., suggesting building empathy and rapport between users and chatbots to retain their motivational and engaging nature, as emphasized by Abd-Alrazaq et al. [13]. Failure to implement these vital features may cause users to find chatbots as poor alternatives to real human interaction, especially where sensitive topics like mental well-being are concerned. Additionally, chatbots' lack of emotionally subtle replies has also been cited as a major hindrance to their mass adoption; a significant number of users opted to interact with humans over communication with chatbots, especially where issues require emotional understanding.

1.1.4 Problem Statement 4: Limited Personalization in Chatbot Support

The trend of limited personalization in chatbot-mediated support has been extensively studied in various academic disciplines, with significant challenges reported in enhancing user engagement and satisfaction. While chatbots could deliver support services, their effectiveness is undermined by a lack of customized interaction and personalized user engagement. For instance, Jenneboer et al. argue that customer adoption of chatbots is hindered by their inability to deliver a personalized experience, which undermines the potential benefits of customer support services tailored to the specific needs of individual clients [14]. Similarly, the problem of poor service quality is a consistent theme in the work of Yu-Peng and Yu, who argue that chatbots fail to

CHAPTER 1

sufficiently account for the individual differences between users, with a resulting effect on the overall learning experience [15].

Within educational chatbots, Baskara emphasizes reaching a balance between human interaction and needed automations in order to achieve meaningful educational encounters [16]. Current literature shows a growing fear about disconnecting users due to the impersonal nature of chatbots. Mills et al. found that users longed to interact more humanly, thus promoting a shift in chatbot design towards a human-centered approach to creating personal relationships [17]. Utilization of personalization through user models can greatly improve interaction with chatbots; Haque and Rubya, for example, suggest creating individualized user profiles so that the chatbot can adjust its responses towards catering to individual users' specific needs [3].

1.2 Motivation

The present scenario is outstanding when it comes to the capabilities of the chatbots in rendering services in the domain of mental health. Increased accessibility and confidentiality, along with 24/7 availability, make them an acceptable means of welfare. The use of virtual assistants is increasingly favored to help those engaged with stress, anxiety, and depression, whether through interactive conversation, self-help, or therapeutic interventions. AI-powered tools offer a non-judgmental environment for their-users to internally release their feelings, hence acting as important apparatuses in the provision of mental health assistance [3]. With a lot at stake and on offer, the opportunity for the current chatbot to intervene in certain aspects of this fragile domain was fraught with enormous obstacles that quite extensively deterred their operational viability.

Most of them entertain possibilities of crisis in very limited ways, almost always failing to recognize high-risk situations like suicidal thoughts or extreme emotional distress, prematurely and inadequately responding with its "little" initial training that really began to pick out the human experience. Current models have a degree of converse congeniality, imitating human interaction with mechanical-sounding retorts that lack personalized engagement. The emotional inadequacy of most chatbots manifests in irrelevant and almost emotion-less responses bereft of contextual and emotional meaning. This weakness of most chatbots about personalized interaction also disheartened users, as such systems are unable to treat individuals with personal needs

CHAPTER 1

and emotional states in a manner hence diminishing effectiveness in delivering supportive care.

Machine Learning and Natural Language Processing advancements have positively impacted chatbot design and allowed them to act as powerful actors in various applications. However, there is a huge gap between their ability to simulate human conversational patterns and their potential to provide meaningful emotional counseling. Chatbots are in fact human dialogue interpretable with NLP, while ML enabling them to make decisions based on prior interaction and situation and modify their responses accordingly. But many mental health chatbots still rely overwhelmingly on preprogrammed responses, and do not work in a dynamic real-time interaction, making them even less likely to provide anything like personalized or emotionally relevant responses.

This project is aimed at designing and developing a cyberbullying-related crisis intervention chatbot that seeks to address those key problems typical to most of the current chatbot approaches. This designed chatbot will really mainstream real-time crisis recognition, an empathic conversation model, and user-regulated interaction to have a greater impact as a mental health tool. Advanced artificial intelligence methods will permit adaptive and emotive real-time conversation with users in need.

1.3 Project Scope

1.3.1 Targeted Users

This project is designed to help victims of cyberbullying by providing them with a secure, accessible platform system of emotional guidance and counseling. The negative effects of cyberbullying can deeply impair the psychological state of those who are victims, leading to amplified stress, anxiety, and emotional distress levels. Many such victims may not seek assistance because of fear of judgment or lack of appropriate networks. With an application of a system aided by a chatbot, this program hopes to provide an anonymous, judgmental space where users can verbalize their ordeal, receive emotional guidance, and become linked with appropriate resources tailored to their needs. The chatbot will be designed with real-time crisis recognition and intercession mechanisms to connect users with appropriate assistance resources, when necessary, both by time and location.

1.3.2 Type of Product

The suggested project involves creating a website with an AI-based chatbot, designed with great care to interact with victims of victimization in such a way as to mimic human-like interaction. Additionally, the site will also have a resource section meant to increase awareness about cyberbullying by having information, coping mechanisms, legal recourse available to victims, as well as referrals to qualified mental health counseling services. Through putting together, a single platform to combine interactive support with information, this project hopes to achieve an all-encompassing tool for those who need it. The chatbot will utilize Natural Language Processing (NLP) methods with sentiment analysis to understand users' emotional state and provide empathetic replies, as well as refer them to relevant information or crisis counseling services if needed.

1.3.3 Focus of Project

The very core of this project consists in the creation of the web-based space that would become the main point of access to the crisis-intervention chatbot that would be specifically focused on assisting cyber-bullying victims. It has managed to create a friendly and interactive style of the site, which gives a secure and reachable environment to people in need of support. The dedicated chatbot, completely built in and implemented in the platform, is the main functionality, used to provide real-time empathetic chat, sentiment analysis, and the recommendations to mental health resources.

Based on this background, the project highlights the implementation of machine learning and natural language processing tools in order to facilitate the chatbot to identify user intention, emotional sentiment, and context-based responses. The next steps are to increase the personalization process based on continuous learning by the means of user engagement, improve the crisis management process and connect to external professional assistance systems including the counseling and mental health agencies.

This project will create a digital intervention model based on the combination of useful web-based platforms with an engaging chatbot over intelligent system that facilitates advice and emotional support (immediate) and coping techniques as well as foundational resource advice (largely) to victims of cyberbullying

1.4 Project Objectives

This project aims to apply Machine Learning and Natural Language Processing (NLP) techniques in developing and implementing a chatbot system. The key purpose in using the two technologies is making the chatbot intelligent enough to understand as well as generate responses that reproduce natural human interaction, identify emotional signals in users, and provide contextually appropriate aid, particularly for victims of cyberbullying who could be in a vulnerable state.

- 1. To develop a chatbot system that offers instant emotional support to victims of cyberbullying.**
- 2. Using Natural Language Processing methods in the implementation of the chatbot will enhance the system to identify crisis indicators more effectively.**
- 3. To develop an information resource center built into the site, providing educational information on coping, legal rights, as well as mental health support for victims of cyberbullying.**

1.5 Report Organization

Various chapters are adopted in this project report to provide an organized approach towards project presentation. The opening chapter introduces the research materials along with the background information and then presents the problem definitions and research objectives and sets the project scope together with the benefits the project is likely to gain to develop a crisis-intervention chatbot to assist people who are victims of cyberbullying. The literature review conducted in Chapter 2 informs profusely about the currently available technologies as well as the development frameworks of chatbots and the current limitations of solutions. Chapter 3 presents the entire procedure beginning with the gathering of the requirements and transitioning to system design and backend development in the proposed methodology. Chapter 4 reveals the system architecture in terms of the block diagram, describes the tools and technologies required to develop the chatbot system, and forms a picture of the role played by each component of the system. Chapter 5 addresses the system implementation such as the development environment, software installation, and deployment of the chatbot, and implementation

CHAPTER 1

barriers. Chapter 6 is dedicated to the testing of the system, which discusses results under various angles, and to the discussion of the issues and the evaluation of the performance. Lastly, Chapter 7 completes the report, recapping the process of development, presenting major findings and recommending what could have been done better and the equipment put in place towards the future.

1.6 Contribution

Development of a crisis-intervention chatbot that would support victims of cyberbullying has great potential for the improvement of mental health among the affected, especially adolescents and other vulnerable groups active in the online sphere. With the rise in the current digital era, the issue of cyberbullying has increased exponentially, with the victims often experiencing it alone with little immediate help. With the purpose of the current project being the response to this issue, the goal would be the provision of an easily accessible, empathizing, and informative system of a web-based chatbot. Working as a nonjudgmental first point of interaction, the chatbot will provide instant emotional support and guidance for the users in addition to referring them to other aid or professional support as appropriate.

1.7 Background

The global interconnected digital world has created a serious social problem through the modern use of social media and additional internet communication methods called cyberbullying. Through electronic means cyberbullying represents a form of intimidation or threats or harassment where the perpetrator uses text messages and social media messages as well as electronic mail. The act represents a new type of bullying which gives perpetrators the ability to assault victims during any time of day through features that connect them to their targets at home. Victims who encounter cyberbullying experience severe psychological effects which lead to depression and nervousness as well as withdrawal habits and self-injury and thoughts of suicide in severe cases. The internet provides complete anonymity to bullies who feel safe along with an authoritarian position that inflicts suffering on their victims through a constant threat of public humiliation and possible revenge attacks.

The mental health disorder needs these environments to find solutions through new technology tools which enable quick support and assessment. The computer program

CHAPTER 1

known as a chatbot simulates human-human dialog through text or voice protocols. It is a system that implements Natural Language Processing (NLP) and Machine Learning (ML) that interpret user inputs to generate appropriate responses. The healthcare and mental wellness sectors implement chatbots for providing initial emotional assistance while offering question responses and professional service referrals to users. Chatbots utilized in mental health care currently encounter limitations in performing deep emotional understanding particularly when users encounter critical emergency situations.

Artificial intelligence (AI) explores Natural Language Processing as a method for machines to process human languages thus enabling them to understand and generate response to human communication. Natural conversational simulation requires tools such as sentiment analysis alongside intent recognition and contextual understanding to function effectively. The combination of NLP models with Machine Learning technology makes them improve their performance through user interactions to become both more precise and emotionally intelligent. Such situations call for immediate responses that require emotional intelligence to properly manage sensitive matters such as cyberbullying.

CHAPTER 2

Literature Reviews

This section reviews the relevant technological frameworks which support development of the proposed “Crisis-Intervention Chatbot for Cyberbullying Victims” project. The study reviews present methods which apply AI technology with NLP algorithms and chatbots to deliver emotional support while managing mental health crises as well as offering crisis interventions. The design of an intelligent chatbot requires these technologies to detect emotional distress and provide suitable responses that help victims cope with cyberbullying situations. The analysis of existing systems and research publications demonstrates the merits and difficulties in present approaches allowing identification of prospective project contributions.

2.1 Review of Technologies

2.1.1 Programming Language

There are few programming languages that involve in this project, such as Python and JavaScript.

Python has emerged as one of the leading programming languages for artificial intelligence (AI), data science, and machine learning (ML) applications [17]. Its simplicity, readability, and extensive library ecosystem make it a welcoming tool for developers and researchers to implement complex algorithms and create efficient models [18]. Python is also widely recognized for its efficacy in back-end development, particularly through the Django framework. Django enables rapid development of web applications by providing a full-featured web framework that emphasizes reusability and modularity. This contributes to the popularity of Python in web development, as developers can leverage pre-existing components to build functional applications more efficiently [19].

Python offers a rich ecosystem of libraries and frameworks tailored for machine learning and data analysis, such as Scikit-learn, TensorFlow, PyTorch, NumPy and Pandas. These libraries provide pre-built functions and utilities for mathematical operations, data manipulation, and machine learning tasks, reducing the need to write

CHAPTER 2

code from scratch [20]. These capabilities are essential when dealing with large dataset for training and evaluation.

Example: Linear Algebra Operations

```
import numpy as np
# Create a feature matrix (X) and target vector (y)
X = np.array([[1, 2], [3, 4], [5, 6]])
y = np.array([1, 2, 3])

# Calculate the mean of each feature
mean = np.mean(X, axis=0)
print("Mean of features:", mean)
```

Output:

```
Mean of features: [3. 4.]
```

Figure 2.1.1.1 Calculating Linear Algebra Operations from [geeksforgeeks.org](https://www.geeksforgeeks.org/calculating-linear-algebra-operations/)

```
import pandas as pd

# Create a DataFrame with missing values
data = {
    'Country': ['Brazil', 'Russia', 'India', None],
    'Population': [200.4, 143.5, None, 52.98]
}
df = pd.DataFrame(data)

# Fill missing values
df['Population'].fillna(df['Population'].mean(), inplace=True)
print(df)
```

Output:

	Country	Population
0	Brazil	200.40
1	Russia	143.50
2	India	132.99
3	None	52.98

Figure 2.1.1.2 Data Cleaning and Preparation from [geeksforgeeks.org](https://www.geeksforgeeks.org/data-cleaning-and-preparation/)

JavaScript (JS) is a high-level, dynamic, untyped, and interpreted programming language that has become a cornerstone of modern web development. Widely

recognized for enhancing web pages through interactivity and responsiveness, JavaScript executes client-side in the user's browser, reducing server load and improving user experience.

2.1.2 Markup Language

The foundations of presenting internet content and user interaction rely heavily on HTML which works as a vital web development element. HTML receives continuous improvements in its updates that enhance user experiences with improved accessibility and interactive capabilities. The expertise of developers in applying HTML principles allows them to build interactive web applications with superior functionality.

2.1.3 Styling Language

CSS represents a style sheet language that establishes document presentation for HTML and XML documents. The web content achieves improved visual appeal through CSS which allows designers to control presentation and build responsive structures and improves the user interaction experience. Continued growth and evolution of CSS give web developers access to develop complex well-designed interfaces. Implementation of responsive design through CSS core principles alongside best practices will create accessible web experiences that are engaging to users.

2.1.4 Large Language Model (LLM)

Vicuna-7B is an interesting large language model (LLM) produced as a sequel to the Vicuna series, which are also found in larger sizes, including Vicuna-13B and Vicuna-33B. Vicuna-7B, specifically fine-tuned to instruction adherence, is founded on the LLaMa (Large Language Model Meta) architecture by Meta and further uses the LLaMa-7B model as its foundation. It can process and generate natural language text in different situations and is particularly effective since it has up to 7 billion parameters. Vicuna-7B was well known due to having a very good achievement in conversational activities, especially keeping the context afloat and interpreting user intent during a conversation. Vicuna-7B is incorporated in this project to further add conversational intelligence to the chatbot so that it reacts to context and generates empathetic responses. By its use, the chatbot moves beyond mere rule-based responses and allows the

dynamic and personal interactions of responsiveness--a critical component to an effective crisis-intervention situation.

2.1.5 Web Framework

Flask is a lightweight and portable web framework for Python which is commonly used to create web applications and APIs [36]. It offers the functionality needed to route, handle requests, and process templates, but is simple enough to be quickly prototyped and implemented on a scale. In this project, Flask will be the backend structure since it can easily integrate the web-based interface and chatbot engine, as well as database and feelings-AI analysis system. Its extensibility and modularity make it suitable to handle real-time interactions between the user and the chatbot and promote easy operation and communication in the system.

2.1.6 Chatbot Framework

ChatterBot Python library is used to ease the development of reactive agents in conversation through production of automated responses to typed contents. It also uses various machine learning algorithms to generate diverse categories of responses, which is why it facilitates developers to create chatbots and automate conversations. The strong suit regarding ChatterBot is the modular structure of the program, which can be adapted and fitted with other frameworks and models to enhance the program in terms of converse functions [37].

As far as its functioning is concerned, ChatterBot starts as an untrained example with no previous experience of the way to react. On each input made by a user, the text and the response are stored on the library. With time, as the number of interactions increases, more data are stored in the communication system, which ensures that the system offers increased sets of possible responses and enhances precision of the responses. ChatterBot, when, as an input, fed with a new input, finds the nearest matching known statement in its database, will pick a suitable response regarding the known statement options [35].

The ChatterBot, in this project is combined with Vicuna-7B in the manner that dialogue flow is concerned and structured conversation management is achieved. As the intent recognition and a conversation storage are handled by the ChatterBot, the LLM adds to the system by creating responses that are empathetic and context aware. The hybrid will

take the structured learning abilities of ChatterBot with the more advanced natural language creation abilities of Vicuna-7B resulting in a chatbot that is at once versatile and capable of offering emotional comfort and functional advice to the victims of cyberbullying.

2.2 Review of Existing System/Application

The healthcare industry views chatbots in mental health care positively because they increase accessibility and deliver instant psychological support to patients. Two popular mental health chatbots named Wysa and Woebot utilize cognitive behavioural therapy (CBT) principles to support user conversations for therapy.

Wysa is a chatbot that provides emotional mental health and wellbeing services through its AI-driven system. Research reveals users experienced fewer depressive symptoms as the time passed especially among participants with major conditions. Research-based evidence shows that this app successfully increases ratings measured by both PHQ-9 and PHQ-2 depression scales in standardized assessments [21].

The depression score reduction with Woebot exceeded results from standard self-help techniques including CBT books, demonstrating interactive digital care systems are effective [22][23]. Both applications utilize smartphone accessibility to reach all types of users including people who avoid accessing regular therapy services [24][25].

Studies focus on a dedication model with mental health chatbots as one of their key research interests. Fitzsimmons-Craft et al. stress in their study that digital mental health intervention users face disruptions mainly because interactive chatbots serve as essential factors that both preserve participant interest and boost clinical results [26]. Woebot reaches millions of messages every week which demonstrates how its conversational nature builds both user reliability and satisfaction according to the research [27]. Wysa and similar chatbots provide students with real-time supportive care while eliminating mental health treatment stigma thus benefiting adolescent users [24].

The functionality of these chatbots extends beyond simple conversation. They are designed for personalized interaction, often incorporating features that adapt to a user's self-reported mood and engagement history, thereby crafting a more tailored therapeutic experience [28][23]. Studies investigating user perceptions of chatbots report a general

acceptance, with many users finding value in the supportive and empathetic nature of interactions provided by tools like Wysa and Woebot [21][25]. These platforms can potentially fulfill the need for immediate psychological support, particularly in contexts where mental health resources are scarce [23].

One of the opportunities provided by YesChat is a personalized and adaptive communications. As opposed to fixed prewritten replies, YesChat includes a set of tools of which the Tone Analyzer is one, changing the language style of the chatbot based on the user requirements and circumstances. This flexibility transforms conversations into ones that are more empathetic and user-friendly and assist users in perceiving complex information better as they feel less anxious. Scientific evidence demonstrates that personalized response of this nature enhances user interaction, user satisfaction and even understanding of information regarding sensitive topics, which is why YesChat is a better support platform than purely automation-based chatbots [34].

2.3 Limitation of Existing System

Natural language processing limitations create a negative impact on both Wysa and Woebot operations. Prewritten response mechanisms along with instruction prompts within these systems determine the success of achieving intended user engagement through dialogue. Users develop difficulties in transparent communication because their limited emotional expression possibilities lead individuals to either feel frustrated or stop using the systems [29]. Users face a problem because the chatbot lacks suitable support in dealing with unexpected text outside its predefined dialogue structure [29][24]. Their functioning is limited because they cannot properly reproduce essential human dialogue patterns needed for therapeutic work.

The user experience with personalized interventions from both chatbots remains strongly negative. Wysa implements CBT and mindfulness as therapy approaches [30], yet it fails to personalize responses at an individual level based on user context or personal information. Woebot loses its effectiveness for specific population groups when user-purposeful personalized interactions cannot be generated through sustained engagement [31]. The effectiveness of delivering efficient psychological help is hampered by this restriction. The combination of repetitive responses with inadequate personalization makes it challenging for systems to maintain extended user interaction since users eventually lose their interest and functionality declines over time.

The scientific evidence demonstrates that Wysa and Woebot provide helpful symptom relief for mental health issues though the results depend on user involvement and adherence to program standards. The success rate of AI therapy appears to decrease when users fail to devote regular focused attention to the platform according to research findings [30]. Technology remains beneficial for digital interventions but becomes a drawback when humans need emotional support in their human interactions because additional human checks need implementation [33].

2.4 Proposed Solution

The existing mental health chatbots **Wysa** and **Woebot** offer excellent cognitive behavioural therapy (CBT) assistance through emotional support but struggle with recognizing the distinctive problems of cyberbullying victims. These systems were established to support standard mental health needs, but they depend on pre-scripted responses that block their ability to read subtle emotional signs and properly activate appropriate responses during critical situations. Users who experience PTSD from online abuse will find limited help from these systems. This happens as they lack effective personalized solutions and delayed response capabilities. On the same note, despite **YesChat** indicating strengths, specifically in adaptive communication, the use of tools like tone analysis, it does not treat crisis-specific situations such as cyberbullying. Due to its dependence on NLP algorithms, it can be easily breached by misinterpreted by the user when he is not following the intended patterns, establishing obstacles in the way of a person experiencing distress.

The proposed project tackles cyberbullying victim needs with a web-based chatbot system that utilizes upgraded natural language processing (NLP) to enhance its detection of emotional crisis symptoms. This project delivers three distinct capabilities not found in current solutions which include real-time crisis detection functions alongside emotionally intelligent responses and dedicated access to an information resource center containing legal materials as well as emotional and educational resources. A specially designed cyberbullying solution for the chatbot seeks to deliver improved personalization while creating trustworthy experiences and better engagement with users and their victims needs immediate meaningful support.

CHAPTER 3

Proposed Method/Approach

3.1 Web-Based Chatbot Development Life Cycle

The chatbot technology development life cycle is comprised of several important stages, each crucial for the successful deployment of an effective chatbot system. This document outlines the critical phases involved in the development of web-based chatbots, including planning and requirement gathering, design, development and prototyping, testing and validation, and feedback.

3.1.1 Planning and Requirement Gathering

The successful development of the Crisis-Intervention Chatbot serving victims of cyberbullying depends on the planning stage. Prior to development the focus lies in defining emotional support and crisis intervention features along with identifying young victims of cyberbullying as the primary users. Understanding the needs and behaviors of this user group remains essential for developing a chatbot system that provides useful empathetic and effective assistance. A complete requirement gathering process uses multiple essential techniques. Questionnaires together with surveys provide an extensive view about user support needs and their expectations by administering them to research subjects including mental health professionals and school counsellors. The development of use case diagrams demonstrates different situations where users connect with the chatbot system. A benchmarking analysis reviews the features of mental health chatbots Woebot and Wysa to establish successful approaches alongside weak points which need development focused on cyberbullying management. A requirement specification report containing comprehensive findings will guide development while serving as the documental basis from this development phase.

3.1.2 Design

During the design stage the project needs transform its requirements into an operational schematic for web-based chatbot deployment. The system design incorporates five

CHAPTER 3

main elements which are the Natural Language Processing engine called **ChatterBot**, the Large Language Model (**Vicuna-7B**) for generating context-aware and empathetic responses, a **Flask** backend to execute application logic and handle API requests, **MySQL** as the database for managing user sessions and conversation history, and **HTML, CSS, and JavaScript** components for building a responsive and user-friendly interface. A user-friendly interface serves as the foundation of design since it supports emotional wellbeing of users who need help because of cyberbullying.

The designers use flowcharts to create a manual flow structure that presents realistic cyberbullying support situations so the chatbot assumes a relevant and empathetic tone. The developers built the UI through website frontend standards rather than Figma-type design tools which provides direct development control along with integration capabilities. Users can start interacting with the chatbot through an embedded interface upon visiting the site page. The straightforward design makes user support more reachable to anyone needing help emotionally.

The open-source ChatterBot library facilitates the development of Python using custom conversational model training utilizing existing inputs to create the chatbot. ChatterBot serves as the discussion bot in this project alongside the Large Language Model (Vicuna-7B). Opposite to ChatterBot, which controls meshing, intention detection, and response choice, Vicuna-7B performs a better task of managing the dialogue and providing more natural, compassionate, and situation-aware responses. This integration will not only enable the chatbot to adhere to a structured flow of conversation, but it will also enable it to dynamically respond to user contributions which is particularly tough to achieve when it comes to providing emotional support or tailored advice to victims of cyberbullying. Due to its lightweight design Flask is selected as the web framework backend because it harmonizes effortlessly with Python libraries. The client-side functions of JavaScript allow for a smooth communication channel between users and chatbots through AJAX or Fetch API requests that connect to the Flask server. A real-time user experience is achieved through this architectural combination which also enables scalability and maintenance of the system.

3.1.3 Development and Prototyping Website

3.1.3.1 Implementation

In the development stage, system design transitions to the next phase wherein a complete operational site with the functionality of a crisis intervention chatbot are developed. The app is based on Python programming language, and open-source ChatterBot library to create the chatbot conversational and logical capabilities and supplemented with the Large Language Model (Vicuna-7B) to offer the contextual, appraising, and natural speech prompt replies. Flask develops both API endpoints and backend services which run user sessions and control data storage as well as manage chatbot responses. An accessible user-friendly interface emerges through the implementation of HTML, CSS and JavaScript which enables browser-based interaction for users with the chatbot frontend. ChatterBot by default uses SQLite as its database, but it also allows customization to support other databases such as PostgreSQL or MySQL, depending on scalability and deployment requirements.

The support system obtains emotional intelligence through its natural dialogue while using specific dialogues concerning cyberbullying situations for training purposes. The design structure of the system allows new capabilities such as data logging and external mental health referral and emergency contact display to be added systematically.

3.1.3.2 Prototyping

An operational version of the chatbot system operates directly from the website platform to facilitate evaluation testing. Actual web elements replace design tools to construct our prototype because the project avoids using Figma. The system requires evaluation of both chatbot performance and interface reaction speed. The stage implements continuous testing periods which merge user feedback into developing the chatbot functionality for crisis situations and its conversational flow along with its verbal tone. The solution concentrates on making the chatbot recognize vital keywords and emotional distress indicators through natural language processing procedures.

3.1.4 Testing and Validation

Implementation tests and system validations are critical elements for ensuring proper execution and useful user support in chatbot interfaces. The system completes multiple testing stages to verify functional and reliable capabilities. The initial testing phase

verifies the proper functioning of each system component starting with the chatbot response logic which follows the Flask API endpoints and the data handling modules. Next in the testing sequence is integration testing that evaluates frontend JavaScript code interactions with Flask backend modules and ChatterBot's response accuracy to user queries. A user acceptance testing phase occurs with target users who understand cyberbullying who will assess chatbot usability and emotional relevance and clarity during interactions. The functional testing procedure evaluates whether the chatbot provides appropriate responses to different user inputs specifically designed for cyberbullying situations and emotional crisis scenarios.

3.2 User Requirement

The user requirement gathering procedure included distributing a questionnaire which aimed to understand user needs and expectations. A questionnaire including 14 questions contained four sections dedicated to collecting demographic information about age, gender, occupation and internet usage frequency. The demographic questions enabled user segregation to comprehend which groups would benefit most from using the chatbot system. The second phase of the study consisted of 10 purpose-built questions which evaluated how users experienced cyberbullying while measuring their interest in chatbot emotional support as well as their expectations for real-time help and their preferences for content and their views on privacy and accessibility and trustworthiness within such a system. The collected data played a vital role in determining how a user-focused chatbot system should be created to help victims of cyberbullying during crisis situations.

3.2.1 Demographic Information

What is your age group?

30 responses

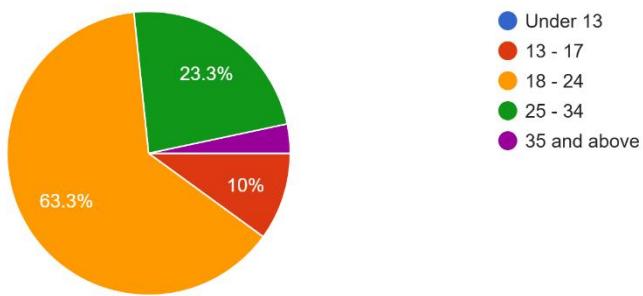


Figure 3.2.1.1 Age Proportion Chart

A majority of 63.3% participants belong to the 18–24 age group yet 23.3% belong to 25–34 and 10% belong to the 13–17 age bracket with 3.3% respondents aged 35 and above. Younger individuals made up most participants who completed the questionnaire because they belong to the youth and young adult groups. The population data shows that the target audience of the chatbot consists mainly of young individuals because these users already feel comfortable with digital media platforms and accept web-based mental health tools.

What is your gender?

30 responses

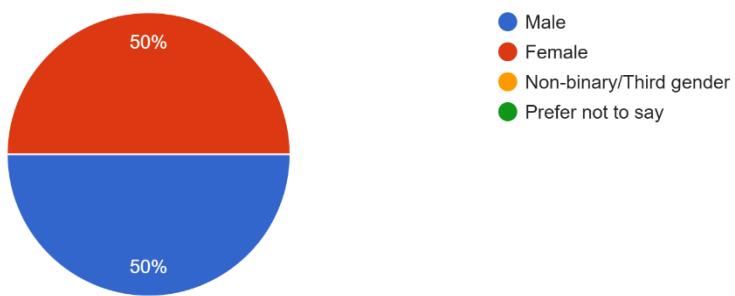


Figure 3.2.1.2 Gender Proportion Chart

Half of the participants identified as male while the other half identified as female according to the data presented in the figure. The equal distribution of participants provides results that represent the thoughts from both male and female populations. This demographic chart demonstrates readiness to use the gathered information for developing crisis-intervention chatbot requirements. The diverse user group that

CHAPTER 3

answered the questionnaire ensures the chatbot design will account for various user needs and expectations.

What is your occupation?

30 responses

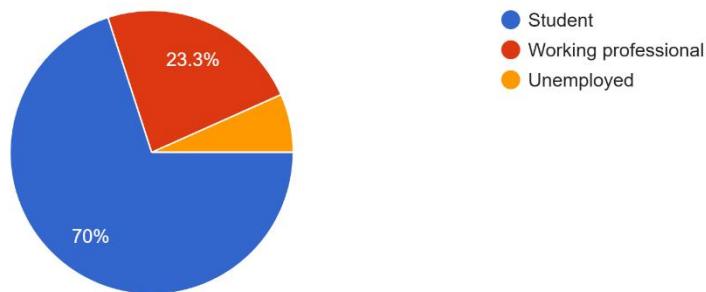


Figure 3.2.1.3 Occupation Proportion Chart

The aligned figure shows 70% of respondents report being students with 23.3% working professionals alongside 6.7% who are unemployed. The user requirement analysis for developing the crisis-intervention chatbot centered around the participants represented in this proportional chart. These data points show students make up the largest segment of potential chatbot users because of which the bot should be designed to suit younger users who might be particularly at risk. The project aims to deliver appropriate and easily accessible emotional support which receives backing through the chatbot platform.

How often do you use online platforms (social media, forums, etc.)?

30 responses

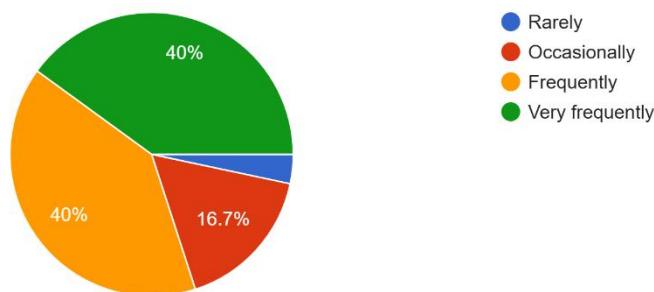


Figure 3.2.1.4 Online Platform Usage Frequency Proportional Chart

The survey demonstrates that 80% of users engage with online software both frequently and very frequently and 16.7% occasionally use it with only 3.3% reporting infrequent use. The information needed to understand the connection between crisis

intervention chatbot usage and platform habits came from a user requirement questionnaire. Most users demonstrate extensive familiarity with online platforms thus validating a web-based deployment system as appropriate because it matches their current behavior patterns.

3.2.2 Results Analysis

How you or someone you know experienced cyberbullying?

30 responses

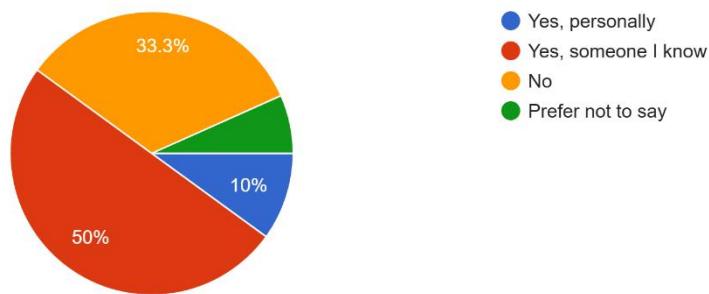


Figure 3.2.2.1 Cyberbully Experience Proportional Chart

The Cyberbully Experience Proportional Chart shows that 50% of participants have faced cyberbullying from known individuals whereas 33.3% reported no experience with cyberbullying and 10% received personal bullying from a stranger and 6.7% declined to provide an answer. The user requirement questionnaire shows that cyberbullying supports chatbots need to exist as most users have faced cyberbullying either firsthand or through secondary exposure.

Would you be comfortable using a chatbot to talk about your experiences or feelings related to cyberbullying?

30 responses

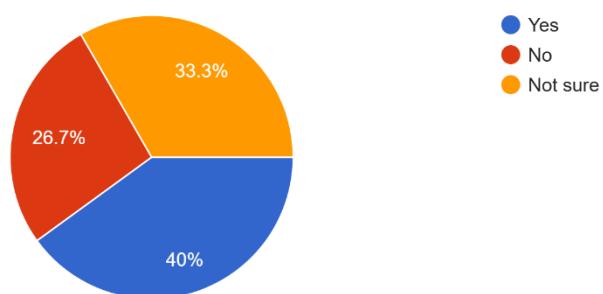


Figure 3.2.2.2 Chatbot Acceptance Proportional Chart

A total of 40% of users revealed their willingness through the graph to discuss cyberbullying experiences or emotions using a chatbot. 33.3% of respondents expressed uncertainty whereas 26.7% declined the use of chatbots for such delicate discussions. The user requirement analysis revealed this promising acceptance of chatbot-based support, yet a substantial segment of users maintains doubts about using this type of assistance which calls for emphasis on trust and privacy along with empathetic design when creating the chatbot.

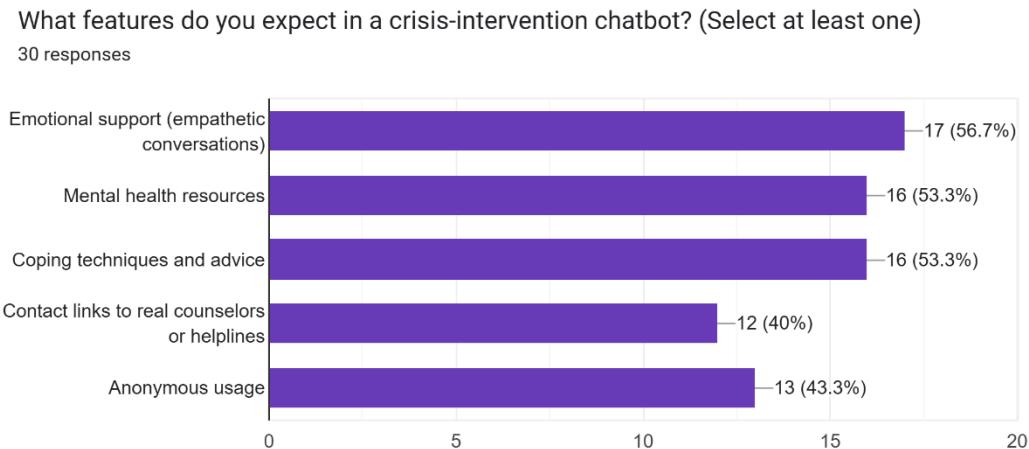


Figure 3.2.2.3 Chatbot Features Expectation Chart

User survey results demonstrated that emotional support through emotionally connected dialogue (56.7%) remains the primary expected function of the crisis-intervention chatbot according to respondents. They equally value the same tool's ability to connect users to mental health tools (53.3%). Users value two crucial features for these services: 43.3% want anonymous operation while 40% seek contact links to genuine counseling services or helplines. The questionnaire evaluates user requirements for a crisis-intervention chatbot and demonstrates that empathy features along with anonymous operation and practical mental health assistance must be central elements during development.

How important is anonymity when using a support chatbot?

30 responses

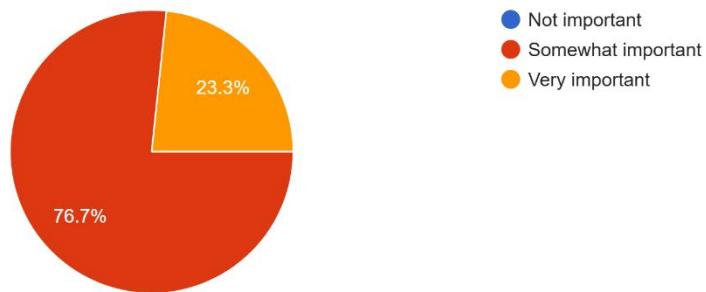


Figure 3.2.2.4 Importance of Anonymity Proportion Chart

Based on figure 3.2.2.4, the majority of 76.7% of survey participants judged anonymity to be Somewhat Important when using support chatbots whereas 23.3% rated it as Very Important and 0% identified it as Not Important during their evaluation process. User comfort and willingness to connect with the chatbot depends significantly on the availability of anonymity which proves essential especially when addressing emotional or crisis situations. The requirement exists for a chatbot to protect user identities because this feature promotes trust as well as open communication.

How often would you see yourself using a chatbot for emotional support?

30 responses

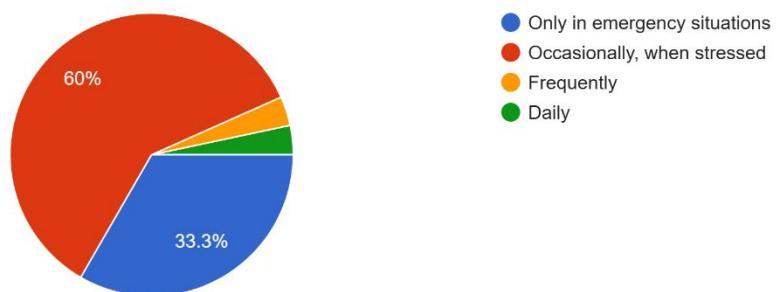


Figure 3.2.2.5 Chatbot Usage Frequency Proportion Chart

The survey data in the Chatbot Usage Frequency Proportion Chart demonstrates that 60% of participants would access emotional support from a chatbot by occasional use but 33.3% reserved it for emergency situations. A total of 3.3% of participants stated they would use it on a frequent basis while another 3.3% said it daily. Most potential users according to the user requirement questionnaire prefer to connect with an emotional support chatbot during their times of situational stress instead of making it

CHAPTER 3

an everyday practice thus demanding context-aware responsive support functions over continuous interaction.

Would you prefer the chatbot to respond in a more professional (clinical) tone or a friendly (casual) tone?

30 responses

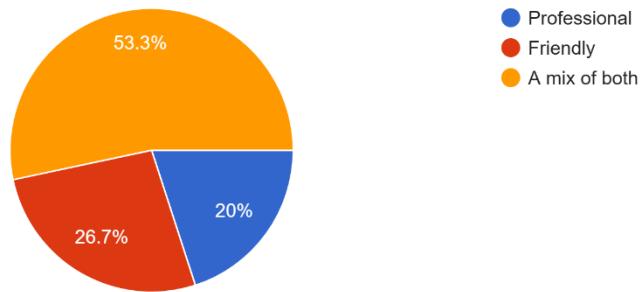


Figure 3.2.2.6 Chatbot Response Preference Proportion Chart

A vast majority of 53.3% of participants would like chatbot responses to contain a combination of friendly and professional tones. Among the respondents 26.7% chose friendly tone while 20% selected professional tone and 53.3% opted for a combination of friendly and professional tone. Most users react positively toward friendly professional communication which mixes empathy with useful information. Users expect the chatbot to communicate in a warm and clinically supportive manner according to data collected through this chart. The design of response behavior needs to demonstrate both professional attitudes and approachable interaction.

Do you feel that having a chatbot available 24/7 would encourage you to seek help more often?

30 responses

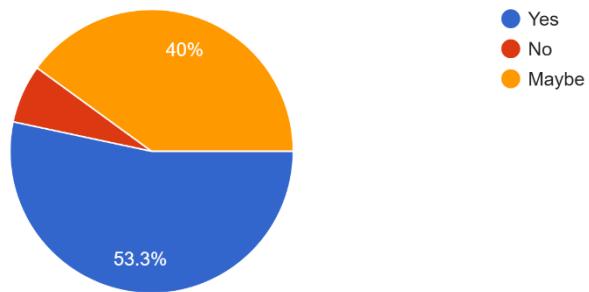


Figure 3.2.2.7 Chatbot Availability Proportion Chart

The data presented in the Chatbot Availability Proportion chart shows that 53.3% of users would utilize help services more frequently if the chatbot operated 24 hours daily

CHAPTER 3

yet 40% indicated no preference and 6.7% disagreed with this approach. Users highly prioritize uninterrupted chatbot availability thus demonstrating the need for the system to always be accessible. User demands for an accessible reliable support system back up the need for continuous chatbot availability while matching the results of the study.

What kind of responses would make you trust a chatbot more?

30 responses

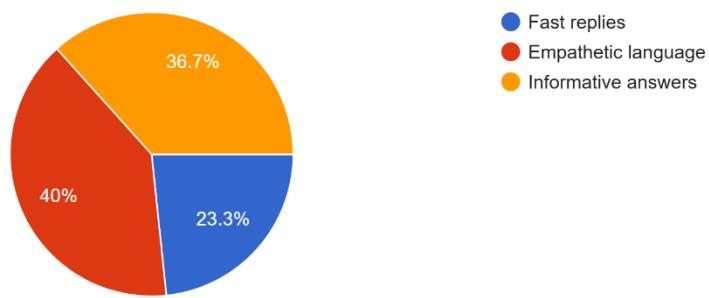


Figure 3.2.2.8 Chatbot Trust-Building Response Proportion Chart

Based on the Chatbot Trust-Building Response Proportion Chart, 40% of users prioritize empathetic language while 36.7% choose informative answers and 23.3% choose quick responses as the key factors for trusting a chatbot. According to user feedback, a chatbot must demonstrate both accurate information delivery together with empathetic understanding in its communications because emotional intelligence proves central in designing successful chatbots. The acquired user interactions serve as essential guidelines for the chatbot development process to achieve user satisfaction and generate trust.

Would you like the chatbot to provide suggestions for further help, like links to hotlines or professional counselors?

30 responses

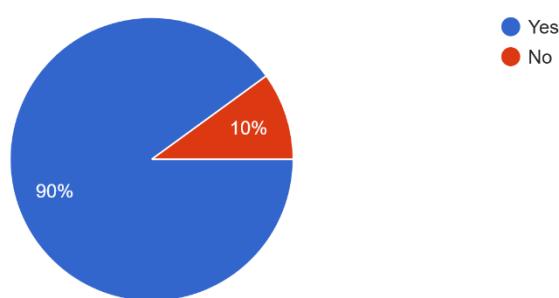


Figure 3.2.2.9 Chatbot Additional Support Proportion Chart

The results from the Chatbot Additional Support Proportion Chart demonstrate that 90% of users want chatbot to guide them with further assistance through hotline or professional counselor resources while 10% of users denied it. Users expect the chatbot to handle both conversational interaction and resource referrals because this combined support system ensures better assistance to cyberbullying victims. The gained understanding enables developers to define both the emotional care and direct advisory functions the chatbot will provide to users seeking its assistance.

What concerns might prevent you from using a chatbot for mental health support?

30 responses

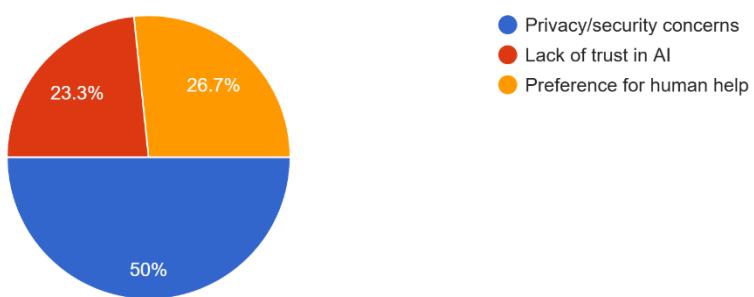


Figure 3.2.2.10 User Concerns Proportion Chart

Half of users displayed privacy and security-related concerns about mental health chatbots in the chart while the remaining split their concern between mistrust of AI technology at 23.3% and 26.7% who favor human interaction instead of AI systems. Research data indicates that users protect their privacy by avoiding AI-dependent solutions for sensitive mental health issues while choosing human support to face these problems. The survey demonstrates that users need secure systems with trustworthy elements along with dual artificial intelligence and human assistance for their requirements.

3.3 System Design Diagram

3.3.1 System Architecture Diagram

The user accesses the system through the Lumie website which is a platform of the chatbot and provides an interface of a live conversation built on the basis of HTML, CSS and JavaScript. Sent user text inputs to Flask Backend Server involve the use of REST API endpoints. Flask is the processing center of the system and is the central processor of data that would be transferred between the user interface, Natural

CHAPTER 3

Language Processing (NLP) engine, and database. After receiving it, it is initially processed by sentiment analysis, emotion detection, and crisis keyword detection in Flask server. The chatbot provides supportive content including emergency contacts right away in situations in which the crisis keywords have been identified or when it faces an emergency. The ChatterBot engine is used after this step to process the data and orders the flow and structure of the conversation. Interwoven with the ChatterBot engine, at this phase the Large Language Model (LLM), Vicuna-7B, adds the feature of generating intelligent and context-aware responses, and emotionally sensitive answers that extend beyond scripted responses. The MySQL Database is directly integrated with the ChatterBot engine, to which it can be saved, accessed and learnt the past conversations. This integration guarantees that ChatterBot may offer larger scale personalized and context-sensitive responses as time goes by. With a combination of these elements, Lumi can provide valuable, reliable, and compassionate service to targets of cyberbullying.

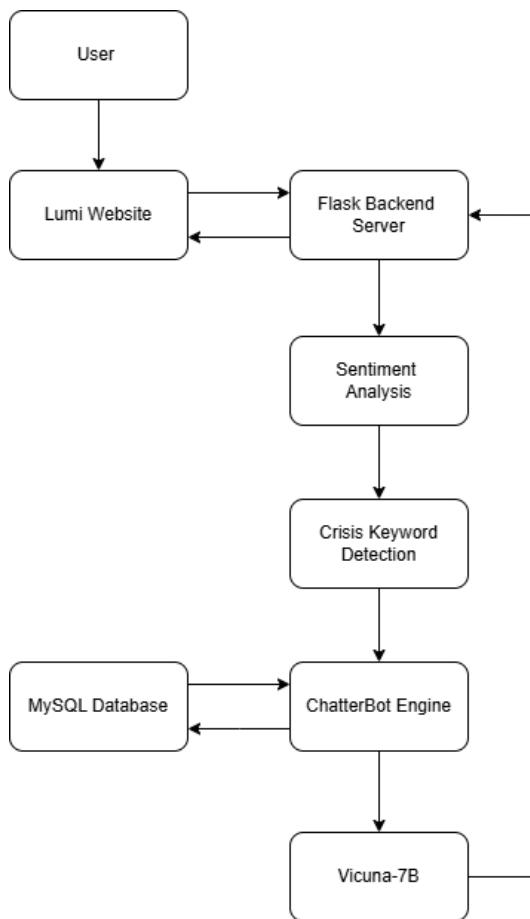


Figure 3.3.1.1 System Architecture Diagram

3.3.2 Chatbot Conversation Flowchart

When the user makes a visit to the Lumi website and clicks the chatbot box; the chatbot welcomes the user and triggers the interaction. After sending out a message, the system performs crisis keyword detection first as an effort to determine whether the content entered it contains high-risk words related to cyberbullying or emotional crisis. Should these types of keywords be identified, then the chatbot will, naturally, give such advice and propose sources of professional help, and they can keep conversing. In case of no crisis keywords, the system then goes to sentiment analysis to provide an emotional tone of the message. In the case of neutral sentiment determination, the Chatterbots are utilized as the input is processed, and the Vicuna-7B can be used to provide a contextual response to the input, and the sentiment score is used to modify it, and the processed response is made available to the end user. In case it is not a neutral sentiment, the system goes a notch higher to examine the message, whether it is negative or positive. The message is then sent to the ChatterBot in both scenarios, and Vicuna-7B is used to aid in the creation of responses that are intelligent and empathetic and specific to the underlying emotional condition detected during processing. The user is then given an option to proceed with the conversation where flow would go back to the message-sending stage or end the conversation terminating the system process.

CHAPTER 3

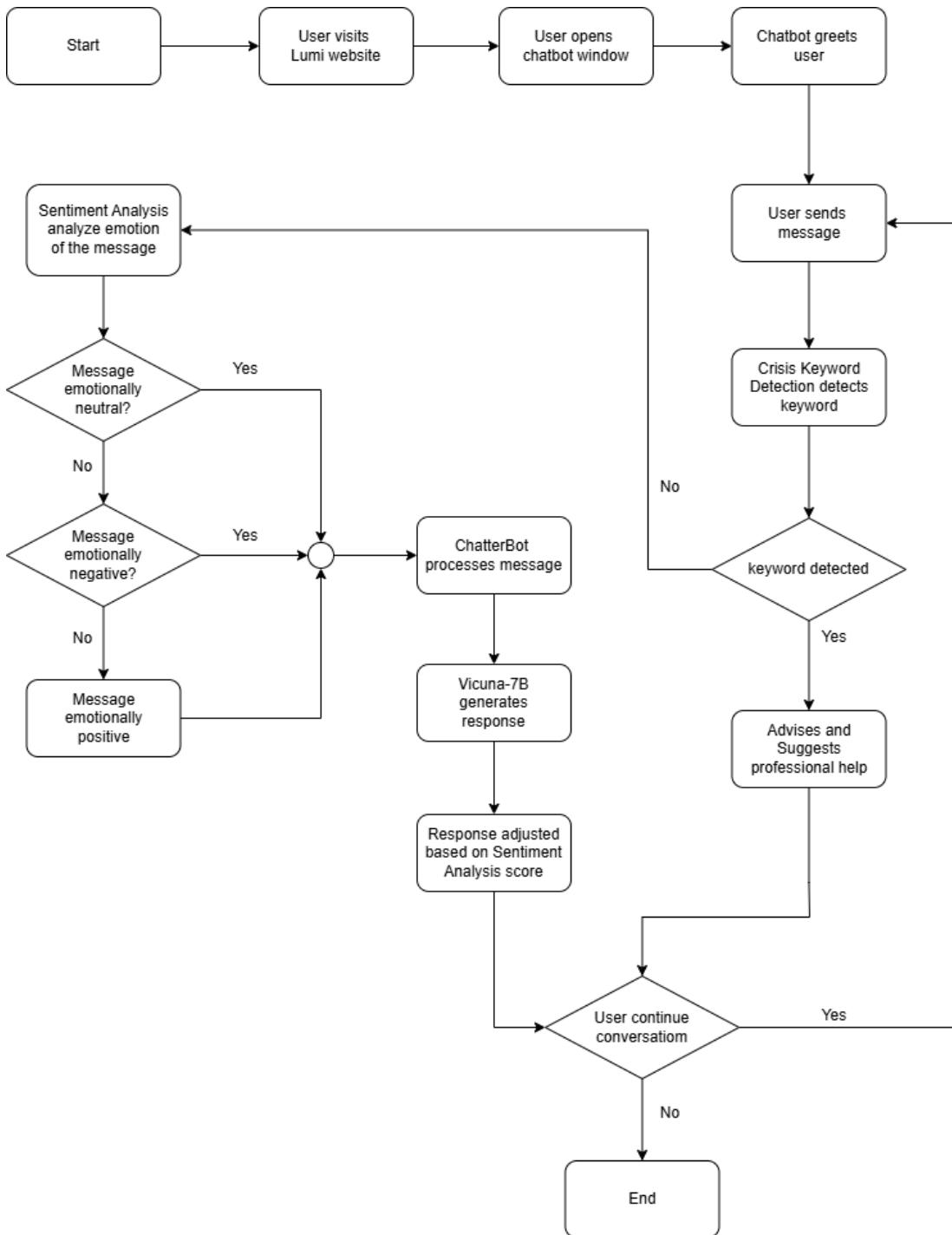


Figure 3.3.2.1 Chatbot Conversation Flowchart

3.3.3 Use Case

The proposed chatbot includes only one role which belongs to the user undergoing cyberbullying who needs assistance from the chatbot platform. User-initiated interface begins at the website access followed by starting a conversation with the chatbot system through chat session. The chatbot connects with the user by using a welcoming message

CHAPTER 3

after the chat starts to build a friendly relationship.

Users communicate with this system by expressing their concerns along with their emotions or simply attempting to transmit messages. Through evaluation that relies on the ChatterBot engine the designed system determines the underlying sentiment within user messages. Using this analysis method, the system delivers supportive reactions that help users to feel heard by the automated system.

Additional support appears from the chatbot as the user maintains communication with suggestions for further assistance. The chatbot activates its crisis management response to refer users toward professional support or emergency assistance and provides guidance to obtain actual assistance.

The user possesses the option to finish the dialogue while having gained sufficient assistance from the chatbot or when they feel ready to stop the session regardless of the level of support received. A system closing message concludes the session by creating an atmosphere of care aimed towards user comfort.

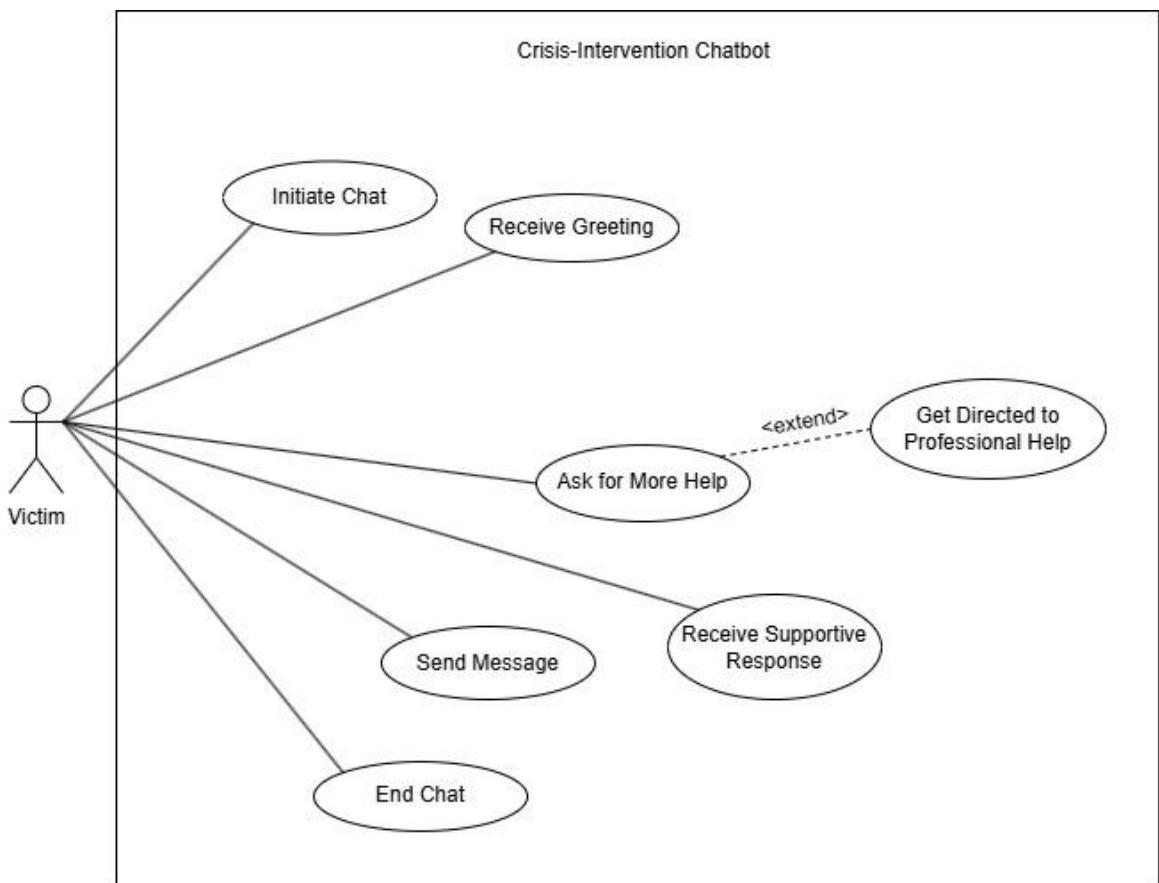


Figure 3.3.3.1 Use Case Diagram of Crisis-Intervention Chatbot

3.4 Database Design

3.4.1 Business Rule

A Conversation is a chat session with a defined start and (optional) end time.

One Conversation can contain many Messages.

A Message must be tied to a Conversation.

Each Message is labeled to identify whether it originated from the user or chatbot.

Response Table stores common input-output pairs.

TrainingData Table is used to fine-tune chatbot responses.

3.4.2 Entity Relationship Diagram

The main database component uses the Conversation Table to collect user interaction logs that serve as the primary data storage element. One Conversation Table record represents a complete chatbot session which contains conversation_id to identify it uniquely along with start and end time stamps. According to this relationship structure the Message Table appears multiple times within a single record of the Conversation Table. During every conversation session the Message Table saves all exchanged messages with a conversation_id foreign key connection to the conversation. Every message store message_type and timestamp labels to identify between user and bot interaction while showing message order.

The Response Table has two functions; it saves set responses used by the chatbot and keeps track of real responses the bot generates during discussions. A dynamic link with the session enables the foreign key to reference a single Conversation record until many responses uses the same session. The database maintains static information when not used for linking response and session records.

The TrainingData Table exists separately from all other tables for its sole purpose in development activities. Given to the chatbot to learn patterns, it consists of input examples and target output examples combined with optional tags for classification uses during model enhancement and training sessions. The TrainingData Table stands separately because it functions independently from foreign key relationships and thus serves the ChatterBot engine for training purposes instead of joining with main conversation tables. The system architecture maintains user confidentiality by enabling efficient log generation and model improvement and response process for the chatbot.

CHAPTER 3

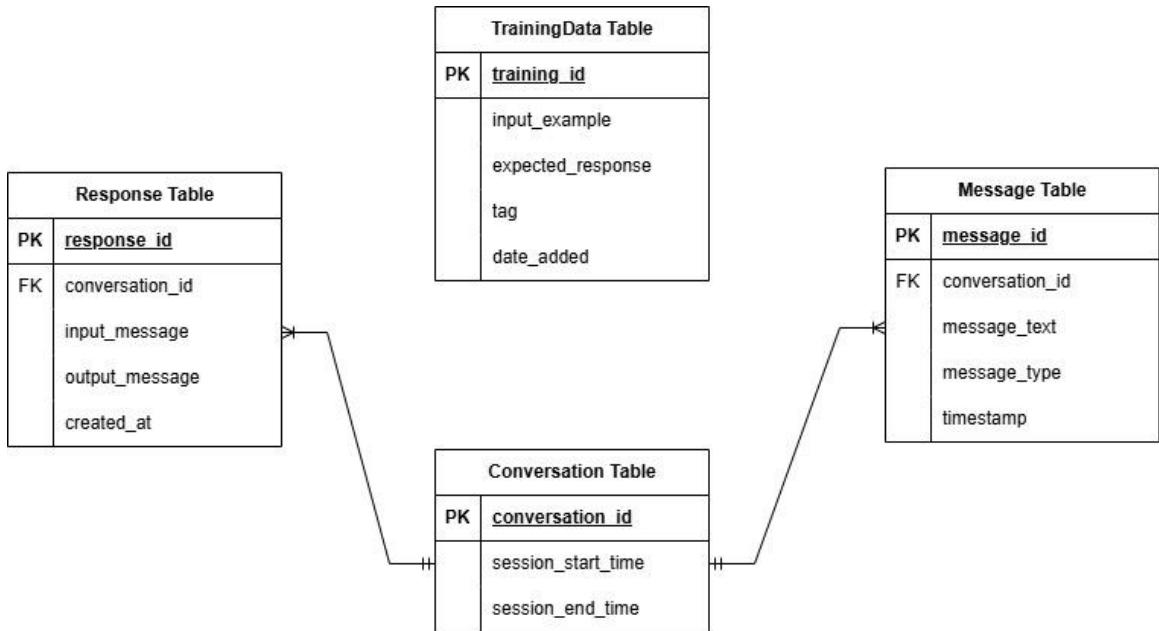


Figure 3.4.2.1 Entity Relationship Diagram of Crisis-Intervention Chatbot

CHAPTER 4

System Design

4.1 System Block Diagram

The system block diagram starts with user interface, whereby user feeds in a message via a web-based frontend. This request then sends this message to the Flask web server (app.py), as the primary controller which does routing and logic. The message then passes through the first stage called preprocessing, that is, it is cleansed and junked in case context management is to be done on it during the session. The system then tries to find out the emotional tone in the message and uses the TextBlob library to make sure that they can use emojis and empathetic tone in the message based on the sentiment analysis results.

After sentiment analysis, there is crisis keyword detection, whereby the system evaluates urgent self-hacking or suicide keywords. In case a crisis is identified, the system sends the message of crisis help immediately to the emergency contact details (including the Befrienders hotline). In case there is no risk detected, the message is scanned against crucial words to bullying (e.g., "bullied," "harass"). If a short keyword match occurs, then a preset supportive response comes back.

In general, or longer messages, a message is forwarded to the response generation engine. This engine tries to create a reply initially with Ollama local language model API and uses Vicuna-7B. In case that does not work or is too much like what the user has typed, the system then de-escalates to the ChatterBot engine or a few friendly fallback messages. The last response is supplemented with context-related emojis, depending on to which a sentiment is applied and further divided into manageable sentences to be displayed. It is sent back to the front end, and this is displayed in a conversation format to the user.

CHAPTER 4

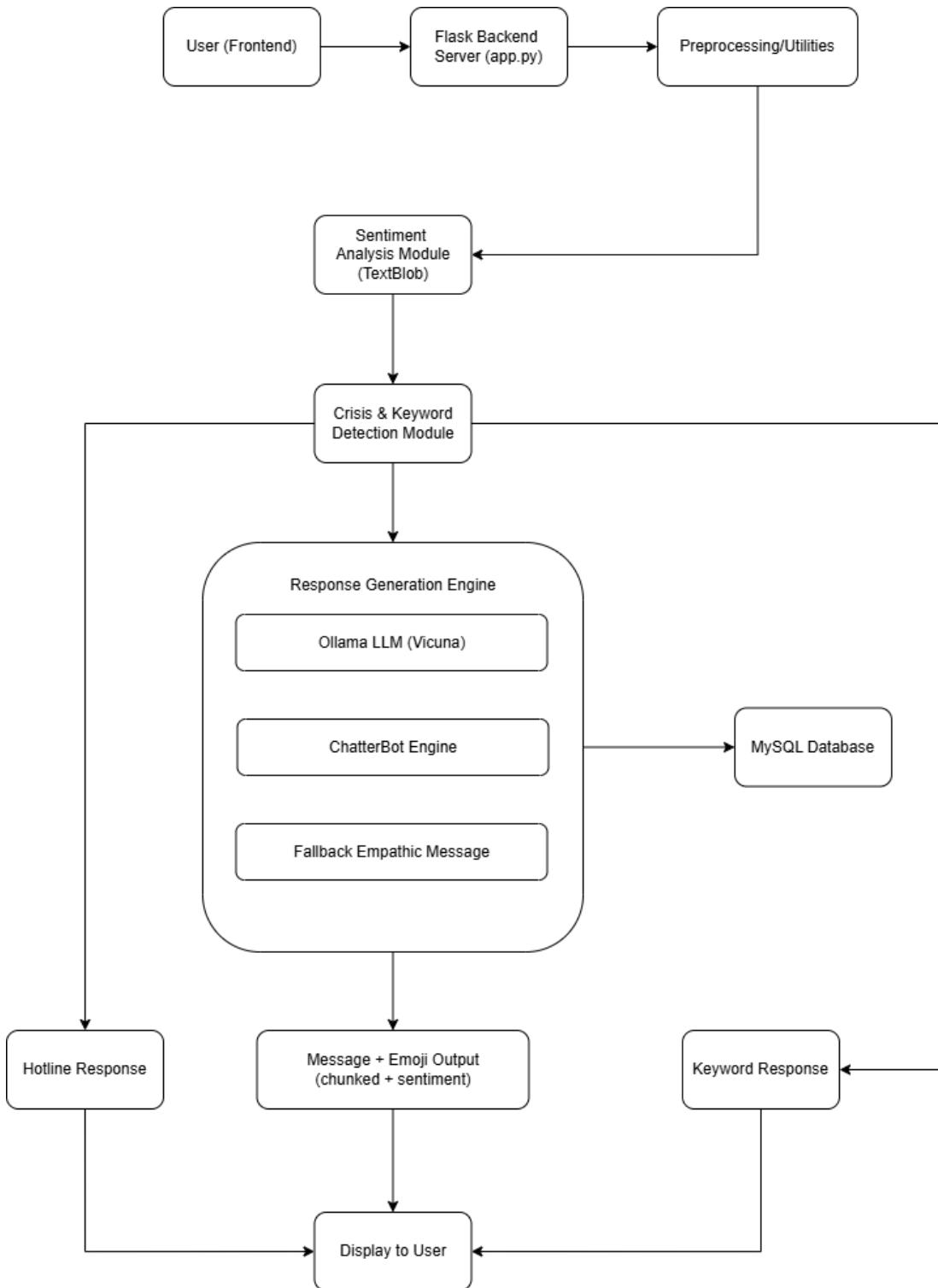


Figure 4.1.1 System Block Diagram of Crisis-Intervention Chatbot

4.2 System Components Specifications

1. User Device (Desktop):

Description	Specifications
System Model	MS-7C52
System Type	x64-based PC
Processor	AMD Ryzen 5 5600 with a 6-core Processor, 6 Cores, 12 Logical Processors
Graphic	NVIDIA GeForce RTX 4060
Memory	32GB RAM
Storage	1TB
Internet Connectivity	Yes
Input	Mouse, Keyboard

Table 4.2.1: Specifications of Desktop

Software Specifications:

1. Operating System:

Specifications	Function
Microsoft Windows 11 Pro	For local development and testing.

Table 4.2.2: Specifications of Operating System

2. Development Environment:

Specification	Function
Visual Studio Code (VS Code)	Primary Integrated Development Environment (IDE) used for coding, debugging and managing the chatbot system.
Python 3.11	Core programming language for developing backend logic, integrating framework and handling chatbot functionality.

Table 4.2.3: Specifications of Development Environment

3. Frontend Technologies:

Specifications	Function
HTML (HyperText Markup Language)	Defines the structure of the Lumi chatbot's web interface.

CHAPTER 4

CSS (Cascading Style Sheets)	Provides styling for the chatbot interface such as colors, fonts, button designs, and overall layout.
JavaScript (JS)	Adds interactivity and real-time responsiveness to the chatbot interface, enabling message display, animations, and communication with the Flask backend via REST API calls.
AJAX (Asynchronous JavaScript and XML)	Handles asynchronous data exchange between the frontend and Flask backend, allowing conversations to update without refreshing the entire page.

Table 4.2.4: Specifications of Frontend Technologies

4. Backend Technologies:

Specification	Function
Flask	Lightweight Python-based web framework that manages REST API endpoints, routes requests between components, and handles server-side logic.
MySQL Database	Stores user logs, chatbot training datasets, and past conversation histories. It is integrated directly with the ChatterBot engine to enable learning and retrieval.

Table 4.2.5: Specifications of Backend Technologies

5. Chatbot Framework:

Specification	Function
ChatterBot	Python-based conversational AI library used for structuring dialogue flow, training conversational models, and managing context in conversations.

Table 4.2.6: Specifications of Chatbot Framework

CHAPTER 4

6. Natural Language Processing Framework:

Specification	Function
Vicuna-7B via OLLAMA (LLM)	Integrated with ChatterBot to generate intelligent, context-aware, and emotionally sensitive responses.

Table 4.2.7: Specifications of NLP Framework

7. Processing Module:

Specification	Function
TextBlob (Sentiment Analysis Library)	Identifies the emotional polarity of user messages (positive, negative, or neutral).
Crisis Keyword Detection Module	Detects crisis-related terms (e.g., suicide, depression, abuse) and triggers supportive interventions, including emergency contact suggestions.

Table 4.2.8: Specifications of Processing Module

4.3 Component Design

This system incorporates several important elements, which collaborate to provide chatbot interactions that are sensitive to emotions and context. The Flask Web Server forms the core of the backend succeeding Internet request, session management, process of routing, as well as the coordination of all other subsystems. The LLM Engine, which is implemented with Ollama powered by Vicuna:7B language model, is one of the engines that are at the core of the response generation. The technology behind this engine is to calculate human-like, empathetic responses using conversation history and subject to a structured Persona Prompt the organized set of behavioral rules that tells the model to self-identify herself as the virtual therapist called Lumi, a victim of cyberbullying specialist.

Designed to supplement the LLM, the system also has a ChatterBot component interconnected to a MySQL database, which grants the chatbot memory permanence and permits the long-term learning of user interactions. To detect emotion, the system has a Sentiment Analysis Module that runs on TextBlob and detects the emotional polarity (positive, negative, or neutral) of the input of users thus influencing the tone of responses and choice of emojis. When there is division, Crisis Detection Module proactively searches the self-harm and suicidal sentiments through set key patterns.

CHAPTER 4

When it is detected, it disables the regular flow of response information to offer emergency support information. It also has a Keyword Trigger System that processes short and focused messages based on being matched against primarily bullying-related terms and provides customized, canned acknowledgments. These constituents (when combined) constitute a strong and receptive structure that should lead to emotional intelligence aimed at instilling mental health.

Core Components	Description
Flask Backend Server	The central controller of the system
LLM Engine (Ollama + Vicuna)	Local language model runtime (Ollama) running the Vicuna 7B model
Persona Prompt (Lumi)	A detailed behavioral guide injected into the language model, shaping the chatbot's tone
ChatterBot + MySQL Storage	Chatbot engine (ChatterBot) connected to a MySQL database for persistent training and fallback replies when the LLM is unavailable
Sentiment Analysis Module	Uses TextBlob to analyze the emotional tone (positive, negative, neutral) of user input and influence the response tone
Crisis Detection Module	Scans user messages for self-harm or suicidal keywords and overrides the normal flow to deliver critical mental health support information and hotline links
Keyword Trigger System	Matches short, bullying-related keywords in user input to pre-written, empathetic responses

Table 4.3.1 Specifications of Core Components

4.4 Flask Backend Server

Libraries:

- flask: The framework is a lightweight python-based web framework that is used to construct web applications.

CHAPTER 4

flask Import:

- Flask: The core application class.
- render_template: Render HTML templates from the template_folder.
- request: Handles incoming HTTP request data.
- jsonify: Returns JSON response.
- abort: Response to errors of HTTP (404,403).
- session: It is used to manage session information of a user; whereby temporary information is maintained between requests.
- make_response: Builds a custom HTTP response object.
- os: Generates a secure random secret key using os.urandom() for Flask sessions.

Flask App Configuration:

- template_folder='src/html': Location of HTML templates.
- static_folder='src': Location static files.
- static_url_path=: Serving at the path root of the URLs.

app.secret_key = os.urandom(24): This indicates a secret key that is used to protect session cookies in a secure way. The application is going to use os.urandom(24) to create a random string of 24 bytes.

```
from flask import Flask, render_template, request, jsonify, abort, session, make_response
from routes.home import home_bp
from routes.info import info_bp
import os
import re
import random
import requests
from textblob import TextBlob
from chatterbot import ChatBot
from chatterbot.conversation import Statement
from chatterbot.trainers import ChatterBotCorpusTrainer
import time
from difflib import SequenceMatcher
from datetime import timedelta

app = Flask(
    __name__,
    template_folder='src/html',
    static_folder='src',
    static_url_path=''
)

app.secret_key = "supersecret"
#app.permanent_session_lifetime = timedelta(hours=1) # session valid 1 hour

app.secret_key = os.urandom(24) # needed for session memory # each restart generates a new secret key → wipes all old sessions
```

Figure 4.4.1 Code Snippet for Flask

CHAPTER 4

Default Routes:

`@app.route('/')`:

Endpoint: Root URL (/)

Function: Returns and renders index.html.

`@app.route('/<page>.html')`:

Endpoint: Dynamic route to render pages like /about.html, /contact.html.

Function: Renders a template dynamically based on the page variable.

Blueprint Registration:

- `app.register_blueprint(home_bp)`: Better code organization across different files
- `app.register_blueprint(info_bp)`: Better code organization across different files

```
# ----- Default routes -----
@app.route('/')
def index():
    return render_template('index.html')

@app.route('/<page>.html')
def html_page(page):
    template_path = str(app.template_folder)
    filepath = os.path.join(template_path, f"{page}.html")
    if os.path.exists(filepath):
        return render_template(f"{page}.html")
    else:
        abort(404)

# Register blueprints
app.register_blueprint(home_bp)
app.register_blueprint(info_bp)
```

Figure 4.4.2 Code Snippet for Flask

Chatbot Routes:

`@app.route("/get_response", methods=["POST"])`

Endpoint: Accepts POST requests to receive a user message and return a chatbot response.

Function:

- Session Setup: Stores user and bot messages in session.
- Crisis Detection: Checks messages for urgent or suicidal content and returns a helpline message if detected.

- Keyword Matching: If message is short and contains specific distress-related words, returns a predefined empathetic reply.
- Sentiment Analysis: Uses TextBlob to determine emotional tone and select a matching emoji.
- LLM Integration: Uses Ollama API to generate a human-like empathetic response based on chat history.
- Similarity Filter: Ensures bot responses are not similar to user input.
- Chunking & Emoji Attachment: Splits the reply into chunks and attaches appropriate emoji before returning as JSON.

```
#chatbot routes
@app.route("/get_response", methods=["POST"])
def get_response():
    session.permanent = False # 🔑 keeps session across pages
    data = request.get_json()
    user_msg = data.get("message", "").strip()
```

Figure 4.4.3 Code Snippet for Flask

History Routes:

```
@app.route("/get_history", methods=["GET"])
```

Endpoint: Returns the entire stored conversation history from the current user session.

Function:

- To check if the session has a conversation key.
- Initializes it as an empty list if do have key.
- Returns all messages between the user and the bot that had exchanged.

Reset Routes:

```
@app.route("/reset_session", methods=["POST"])
```

Endpoint: Clears all conversation history and session data for the current user.

Function:

- Remove the "conversation" key from session if it exists.
- Also clears the session cookie by setting it to an empty string with an expired timestamp.
- Returns a confirmation JSON response.

```

@app.route("/get_history", methods=["GET"])
def get_history():
    if "conversation" not in session:
        session["conversation"] = []
    return jsonify(session["conversation"])


# ---- Optional: Reset session endpoint ----
@app.route("/reset_session", methods=["POST"])
def reset_session():
    session.pop("conversation", None)
    resp = make_response(jsonify({"status": "session cleared"}))
    resp.set_cookie("session", "", expires=0) # Clear browser session cookie
    return resp

```

Figure 4.4.4 Code Snippet for Flask

4.5 LLM Engine (Ollama + Vicuna)

OLLAMA_BASE_URL = <http://localhost:11434>

- Defines the path where the locally running Ollama API server is located.

OLLAMA_MODEL = “vicuna:7b”

- Determines which LLM (language model) should be used to make responses.

```

# ---- Ollama settings ----
OLLAMA_BASE_URL = "http://localhost:11434"
OLLAMA_MODEL = "vicuna:7b"

```

Figure 4.5.1 Ollama Settings

Function: Selects between what areas the local Ollama server supports /api/generate (when a single prompt is used as the input) or /api/chat (when the input is in a form of a conversation with multiple turns).

CHAPTER 4

```
def detect_ollama_endpoint():
    """Check whether Ollama responds to /generate or /chat"""
    test_prompt = "Hello"
    payload_generate = {"model": OLLAMA_MODEL, "prompt": test_prompt, "stream": False}
    payload_chat = {"model": OLLAMA_MODEL, "messages": [{"role": "user", "content": test_prompt}], "stream": False}
    try:
        resp = requests.post(f"{OLLAMA_BASE_URL}/api/generate", json=payload_generate, timeout=5)
        if resp.status_code == 200:
            return "/api/generate"
        resp = requests.post(f"{OLLAMA_BASE_URL}/api/chat", json=payload_chat, timeout=5)
        if resp.status_code == 200:
            return "/api/chat"
    except requests.RequestException:
        pass
    return None
```

Figure 4.5.2 Code Snippet of Ollama

endpoint = detect_ollama_endpoint()

- Determines whether there is Ollama API.
- In case it is available it prepares the request according to endpoint type.

Ollama Integration:

- Checks the /api/chat or /api/ generate supported by the Ollama server through test request.
- Gets history of conversation (6 messages or so) of the previous session to give historical context of the user.
- Posts to a detected endpoint having the prompt or message history.
- Extract the reply of the Ollama response JSON.

```
endpoint = detect_ollama_endpoint()

if endpoint:
    MAX_HISTORY = 6 # Reduce history to avoid confusion
    history = session["conversation"][-MAX_HISTORY:]

    if endpoint.endswith("/generate"):
        prompt_text = PERSONA_PROMPT + "\n"
        prompt_text += "Important: Never repeat what the user just said. Always respond with empathy and new content.\n\n"
        for msg in history[-1]: # Exclude the current message to avoid immediate echo
            role = "User" if msg["role"] == "user" else "Lumi"
            prompt_text += f'{role}: {msg["content"]}\n'

        prompt_text += f'User: {user_msg}\nLumi:'
        payload = {"model": OLLAMA_MODEL, "prompt": prompt_text, "stream": False}
    else:
        system_message = PERSONA_PROMPT + " CRITICAL: Never repeat the user's exact words or phrases. Always provide empathetic, original responses that show understanding without echoing."
        messages = [{"role": "system", "content": system_message}]

        for msg in history[-1]: # Exclude current message
            role = "user" if msg["role"] == "user" else "assistant"
            messages.append({"role": role, "content": msg["content"]})

        messages.append({"role": "user", "content": user_msg})
        payload = {"model": OLLAMA_MODEL, "messages": messages, "stream": False}

    try:
        resp = requests.post(f"{OLLAMA_BASE_URL}/{endpoint}", json=payload, timeout=20)
        resp.raise_for_status()
        data_resp = resp.json()
        reply = data_resp.get("response") or data_resp.get("message", {}).get("content", "")
    except requests.RequestException:
        pass
```

Figure 4.5.3 Code snippet of Ollama

CHAPTER 4

4.6 Persona Prompt – Lumi

Purpose: Gives the AI (Vicuna model) a flushed character prompt to produce responses written in the therapeutic, empathetic and emotionally caring manner, targeted at cyberbullying victims.

Figure 4.6.1 Lumi's Persona

Key Features:

Aspect	Description
Role Definition	Tells the model to assume the character of the kind, supportive therapists Lumi that support the victims of cyberbullying.
Core Principles	11 psychological and conversational principles (e.g. empathy, emotional validation, normalizing, safe space, encouragement) are listed.
Response Guidelines	Impose stylistic rules – long short natural sentences, no textbook tone, no repetition of the words of the user.
Emoji Usage	Facilitates the use of light context background emojis of emotional warmth or encouragement with the limitations.

CHAPTER 4

Crisis Handling	Advises AI to direct users to professional assistance in case of suicidal intent or intention to harm themselves and in terms of crisis, the AI should not pretend to be a therapist.
Limits of Advice	Avoids the provision of healthcare, law and diagnosis recommendations – AI is expected to provide emotional support and coping strategies.
Tone Management	Favors a moderate tone of the one man to another; compensates with sympathy without being too melancholic; approving without being artificial.
Continuity Handling	The technique of reminding Lumi of the context of past conversations when it is necessary, which brings a sense of realism and continuity of memory.

Table 4.6.1 Lumi Persona Prompt

4.7 ChatterBot + MySQL Storage

Purpose: Develops a simple chatbot instance based on ChatterBot making use of an SQL database storage with connection to a MySQL database.

Function:

- Initialize a chatbot called Lumi
- Uses SQLStorageAdapter to store conversations in a MySQL database.

ChatterBotCorpusTrainer(chatbot): To train the chatbot using a corpus-based trainer.
 trainer.train("chatterbot.corpus.english"): To train the chatbot using built-in English conversation corpus.

Connects to MySQL at:

Host	localhost
Port	3306
Username	root
Password	1234
Database	vicuna_chatterbot

Table 4.7.1 MySQL Connection

```
from chatterbot import ChatBot
from chatterbot.conversation import Statement
from chatterbot.trainers import ChatterBotCorpusTrainer
```

Figure 4.7.1 Chatterbot Libraries

```
# ---- ChatterBot with MySQL storage ----
chatbot = ChatBot(
    "LumiBot",
    storage_adapter="chatterbot.storage.SQLStorageAdapter",
    database_uri="mysql+pymysql://root:1234@localhost:3306/vicuna_chatterbot"
)
trainer = ChatterBotCorpusTrainer(chatbot)
trainer.train("chatterbot.corpus.english")
```

Figure 4.7.2 Chatterbot-MySQL Integration

4.8 Sentiment Analysis Module

Purpose: Deconstructs the emotions of the message posted by the user so that it can pick an emoji that suggests their mood.

Function:

- Adding emotive intelligent replies to bots.
- Adds empathy or incentive with the help of emojis, depending on the mood.

TextBlob(user_msg).sentiment.polarity: Gets a score of -1(Very negative) to +1(Very positive).

```
sentiment = TextBlob(user_msg).sentiment.polarity

if sentiment >= 0.5: # lower threshold
    emoji_pool = ["😊", "🥰", "🤗", "❤️", "🥰"]
elif sentiment > 0.1: # small positive
    emoji_pool = ["😊", "✿", "✿", "😊"]
elif sentiment <= -0.5: # strong negative
    emoji_pool = ["😢", "💔", "😢", "😢"]
elif sentiment < -0.1: # small negative
    emoji_pool = ["😢", "😢", "😢", "😢"]
else: # neutral
    emoji_pool = ["😊", "😊"]

base_emoji = random.choice(emoji_pool) # 🎲 random pick from category
```

Figure 4.8.1 Code Snippet of Sentiment Analysis

4.9 Crisis Detection Module

Purpose: To identify indications of a mental health crisis (e.g., suicide, emotional overload) in the message of the user and act in time and with supporting resources.

Function:

- The list of the crisis-related words (e.g., feel like I want to die, kill myself, feel worthless) is identified.
- Any of these keywords are scanned on the message of the user. With a match of the keyword, a crisis helping message is created containing empathetic validating contact details of Befrienders Malaysia (03-79568177) and a linkage to their web page.

```
# ---- 1. Check for crisis keywords ----
crisis_keywords = [
    "suicide", "self-harm", "kill myself", "end my life", "want to die", "looking for suicide information", "kill me", "can't take it anymore", "feeling worthless",
    "no way out", "feeling hopeless", "nothing left to live for", "I want to disappear",
    "isolated and alone", "done with life", "everything is too much", "feeling trapped",
    "I don't want to be here", "so tired of this", "I wish I wasn't alive", "feeling like I'm drowning", "life isn't worth it", "wish I could vanish", "just want to fade away"
]
if any(kw in user_msg.lower() for kw in crisis_keywords):
    crisis_reply = (
        "⚠ I hear how deeply painful this feels, and I want you to know you are not alone.  
"
        "It's really important to talk to someone right now who can support you directly.  
"
        "Malaysia Befrienders Hotline: <br><strong>03-79568177</strong><br>"
        "🌐 <a href='https://www.befrienders.org/' target='_blank'>Visit Befrienders Website</a><br>"
        "Reaching out can feel hard, but your safety and well-being matter most. ❤"
    )

    time.sleep(2)
    session["conversation"].append({"role": "bot", "content": crisis_reply})
    return jsonify({"chunks": [crisis_reply], "emoji": "⚠"})
```

Figure 4.9.1 Code Snippet of Crisis Detection Module

4.10 Keyword Trigger System

Purpose: Gives fast sensitive response where the user message has definite sensitive words (e.g. bully, harass, cyberbully), and especially where the message is short and where the intent is likely to be obvious.

Function:

- Mapping trigger words to help bot detects as a dictionary.
- In a case whereby a keyword is found, the bot verifies the message contains 6 words or less to remove false positives.
- In case both conditions are met, the pre-written response will be added to the session.
- Timely identification and reaction to emotionally sensitive discussion areas and guarantee users' immediate recognition and interaction even prior to additional processing by deeper LLMs.

CHAPTER 4

```
# ---- 2. Check keyword triggers (FIXED) ----
keyword_responses = {
    "bullied": "I'm so sorry you're going through this. Bullying is never okay. Can you tell me more about what's happening? 😔",
    "bully": "That must be really difficult to deal with. You're brave for talking about it. What kind of support do you need right now? ❤️",
    "harass": "I'm here to listen. Harassment is serious and you don't deserve to go through this alone. Can you tell me more about what happened? 💔",
    "friends": "Friends should be supportive. How are your friends helping you through this situation? 😊",
}

# --- Cyberbullying specific ---
"cyberbully": "Cyberbullying can feel overwhelming. You're not alone, and talking about it is a strong first step. 🌐",
"insult": "Being insulted can cut deep. You deserve kindness and respect. 🌟",
"threat": "Receiving threats can feel scary. You're not alone – your safety is important. 🔞",
"mean": "When people are mean online, it's not a reflection of your worth. ❤️",
"tease": "Being teased isn't easy. You deserve to be treated with respect. 🌟",
}

MAX_TRIGGER_LENGTH = 6 # only trigger if message is short

for keyword, response in keyword_responses.items():
    if keyword in user_msg.lower():
        word_count = len(user_msg.split())
        if word_count <= MAX_TRIGGER_LENGTH:
            session["conversation"].append({"role": "bot", "content": response})
            chunks = split_message(response)
            return jsonify({"chunks": chunks, "emoji": "✿"})
```

Figure 4.10.1 Code Snippet of Keyword Detection Module

CHAPTER 5

System Implementation

5.1 Hardware Setup

User Device (Desktop):

Processor: AMD Ryzen 5 5600 (6 Cores, 12 Threads). The multi-core architecture offered additional computational capacity to support the development work of the backend, such as training conversational models in the case of ChatterBot, running a large language model (Vicuna-7B) on the chip, and running multiple processes of a Flask server without bottlenecks in terms of performance.

GPU: NVIDIA GeForce RTX 4060. The specialized GPU also allowed running the Vicuna-7B model, which is computationally rather intensive, with hardware acceleration. Its high CUDA capability and Tensor cores made it an effective processor to handle natural language processing, themes with less time before making an inference, and to scale natural like chatbot interactions, in real-time.

Memory: 32GB RAM. The high memory had facilitated multithreading whereby MySQL and Flask as well as training scripts of the chatbot were run in parallel. It was also able to process large datasets and model parameters that the LLM serves without memory overflow, which made its performance safe under the influence of long testing sessions.

Storage: 1TB SSD. The storage was large which could store big LLM model files, training databases, chat logs, and libraries of a project. The data retrievability was fast and the system operations lower latency guaranteed by the SSD speed.

System Model: MS-7C52 (x64-based PC). The 64-bit system design was such that they were compatible with the current machine learning manufacturing, Python libraries as well as MySQL database integration, and they are all essential when creating a chatbot.

Internet Connectivity: Yes. It was needed to have stable internet connectivity that would enable APIs (sentiment analysis using TextBlob) and access the online resources, meet the Python packages, and deploy/test the chatbot on the Lumi web platform.

Input Devices: Mouse, Keyboard. Technical input tools facilitated the MTB development processes, testing, and debugging efforts with the aid of effective implementation of the code as well as the dialogue between chatbots and programmers or common users during testing processes.

5.2 Software Setup

Operating System: Windows 11 Pro. Windows 11 Pro emerged to be easy to develop in and safe, as it was bigger and more secure than other frameworks regarding compatibility with Python libraries, MySQL, and machine learning frameworks. It was also useful in resource allocation to execute Flask server, LLM inference, and front-end development at the same time.

Development Environment: Visual Studio Code, Python 3.11. The main Integrated Development Environment (IDE) was Visual Studio Code, which provided debugging services as well as integration with Git to manage a version. The programming basis of Python 3.11 allowed access to current libraries like ChatterBot, Flask, and TextBlob and the programming language had been implemented on Python, which supports powerful runtime execution of AI chatbots.

Frontend Technologies: HTML, CSS, JavaScript, AJAX. These technologies constituted the user interface of the Lumi chatbot. The chatbot window was built and styled with the help of HTML and CSS, and it was made available with JavaScript. This was made possible using AJAX since exchange of messages between the user browser and the Flask backend could conduct in real time reacting as it would in a live conversation without reloading pages.

Backend Technologies: Flask, MySQL Database. Flask served as the back-end web engine and processed serial judgments on REST API between the chatbot and the user interface. To store the user sessions, chat history and training data; MySQL Database

was integrated. This enabled conversations to be stored and retrieved in an organized manner which aided in personalization and long-term learning in chatbots.

Chatbot Framework: ChatterBot. ChatterBot was the NLP engine that controlled the direction of dialogues, intent identification and logic that followed a rule book. It gave the conversational dialogue background, and it was supplemented with the LLM features to integrate more context-sensitive information.

Natural Language Processing Framework: Vicuna-7B via OLLAMA API. Advanced response generation was made possible by Vicuna-7B, which is accessed via an OLLAMA API. Its 7B parameters made it able to give human-like answers, empathetic, and context-driven responses which moved past the predefined programs. This rendered the chatbot to be applicable in a sensitive field such as assisting the victims of cyberbullying.

Processing Module: TextBlob (Sentiment Analysis Library), Crisis Keyword Detection Module. TextBlob was the appropriate serious to understand the emotional tone of user inputs since it put messages in the categories of positive, negative, and neutral, and it acted on the message by providing responses to the chatbots differently. Crisis Keyword Detection Module searched the input words with the terms that signified the high probability of crisis (e.g., suicidal words, suicide, help), which led to an immediate crisis intervention response like by providing professional help contacts.

5.3 System Operation

5.3.1 User Interface Interaction

Through its design approach the website interface makes it easy for help seekers to navigate between different components. When users access the main page the interface displays "You're not alone" as its first message. Followed by "Let's rebuild together". At the end of support message is prepared to assist users as its main message leads to YOU matter. Users can find configurable immediate support through the "I Need Help" button which appears beneath the main messages on the interface. The slogans accompany visually enhanced images which run along the right side of the design.

CHAPTER 5

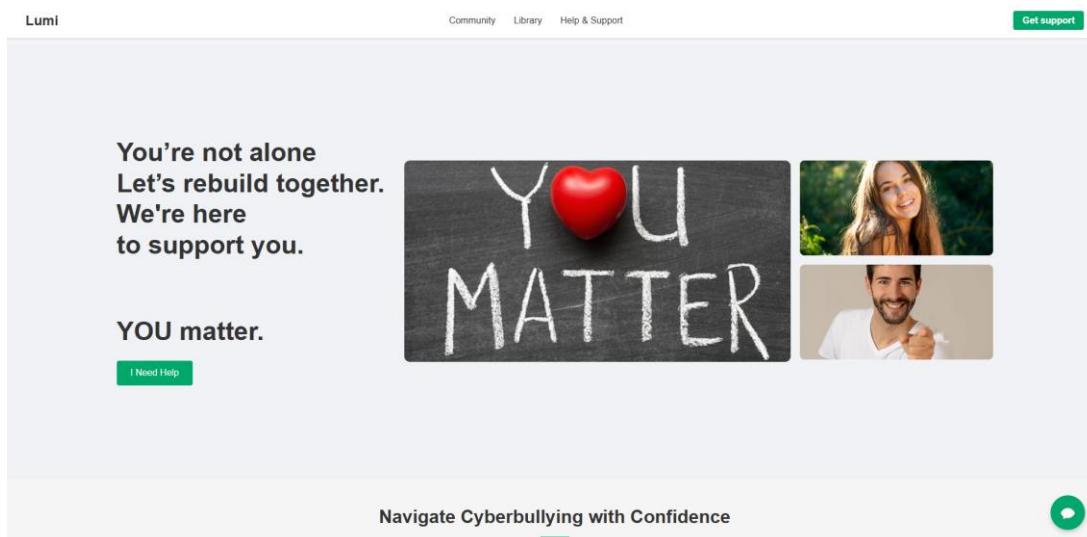


Figure 5.3.1.1 Main Interface

The essential website sections are accessible through a navigation bar positioned at the top of the page that includes “Community”, “Library” and “Help & Support”. The Community section of the website includes four options including "About Us", "Be Informed", "Digital Wellbeing Tips" and "Find Help". Users access the About Us section through the "About Us" link yet each other navigation point routes users to individual pages regarding their corresponding subjects.

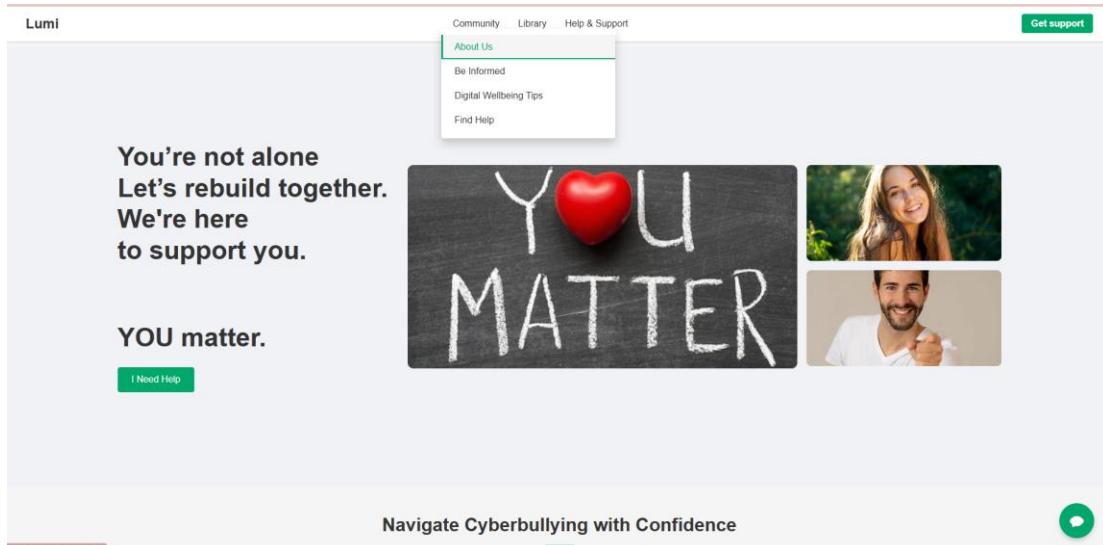


Figure 5.3.1.2 Community on Navigation Bar

Users who select the "View All Library" option inside the Library section can swiftly reach the Mental Health Library section that presents multiple articles about mental health and cyberbullying. The user experience provides the opportunity to reach external websites by selecting article titles for more resources.

CHAPTER 5

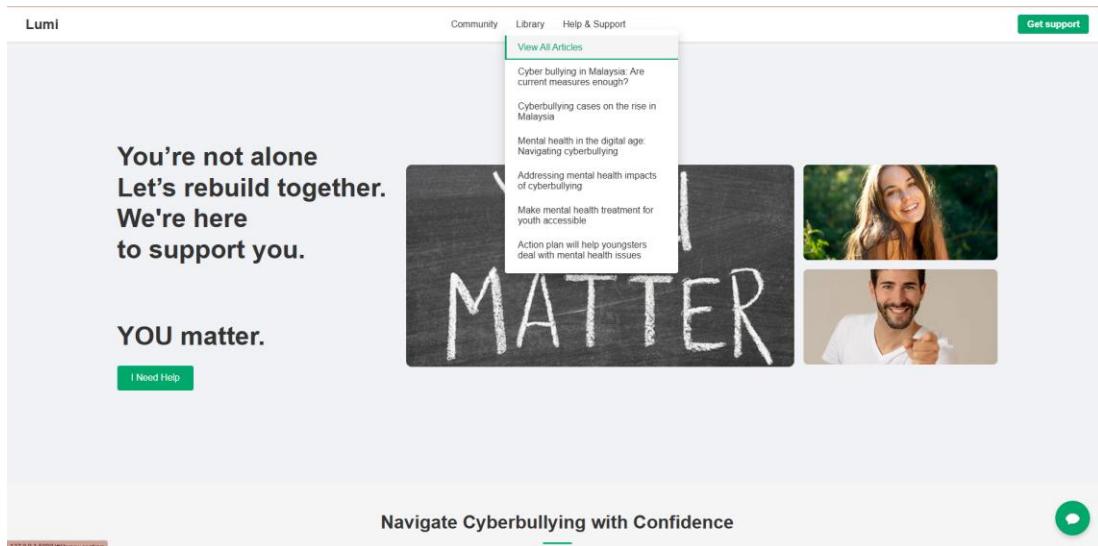


Figure 5.3.1.3 Library on Navigation Bar

Users who want to access Frequently Asked Questions can use the Help & Support section's "FAQ" link to instantly navigate to that section. There they will discover clear solutions to standard queries.

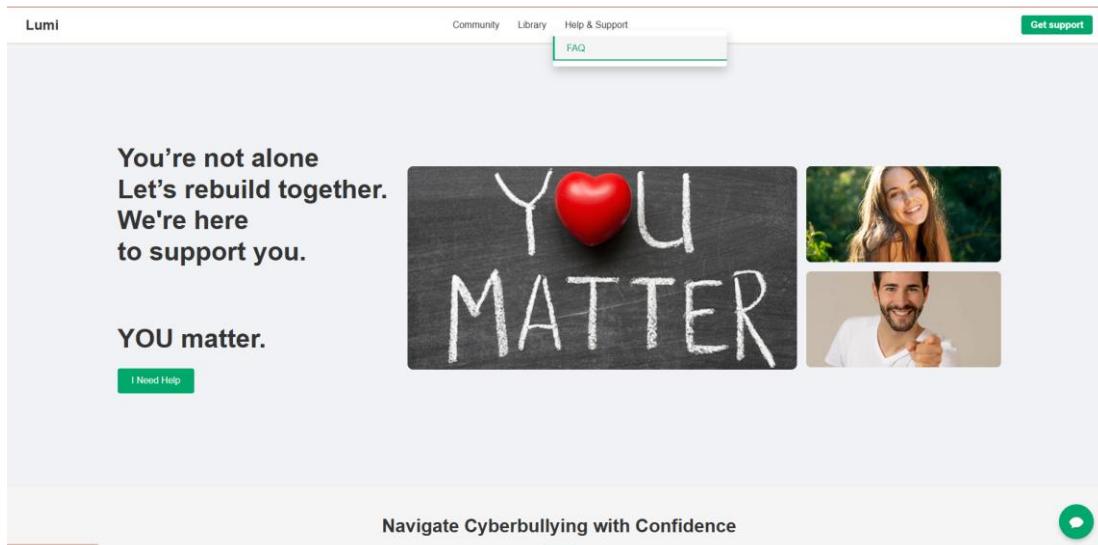


Figure 5.3.1.4 Help & Support on Navigation Bar

During user scroll-down operations the section named Navigate Cyberbullying with Confidence comes into view. The section consists of three separate content divisions: Be Informed and Digital Wellbeing Tips and Find Help with brief explanations for each. Users can find the "Read More" buttons in each content area they scroll through which directs them to the detailed pages.

CHAPTER 5

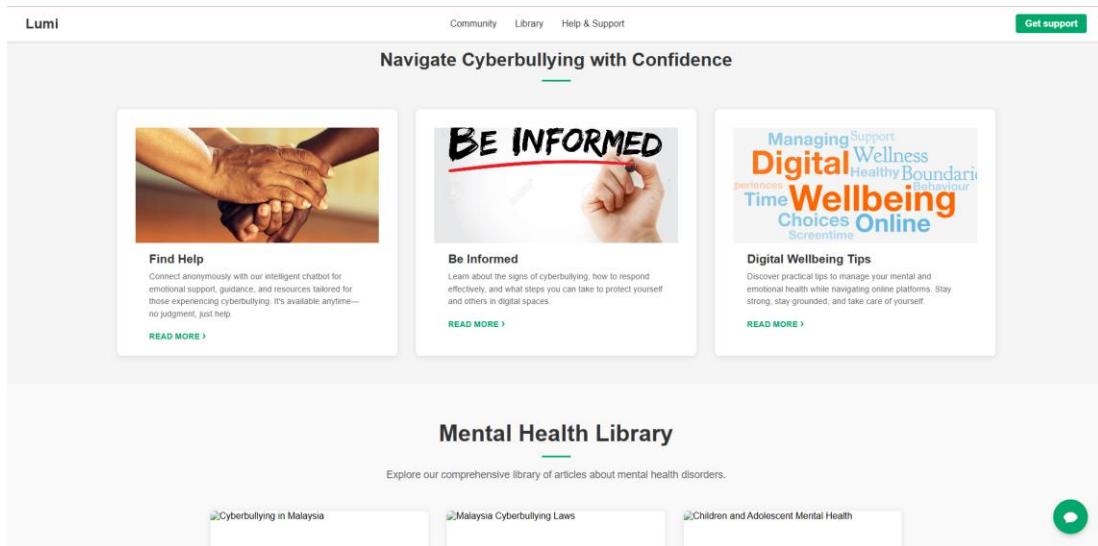


Figure 5.3.1.5 Navigate Cyberbullying with Confidence Section

After that, the section is the Mental Health Library that presents six articles related to cyberbullying and mental health. Users can obtain relevant information through this section to grasp the implications of cyberbullying better.

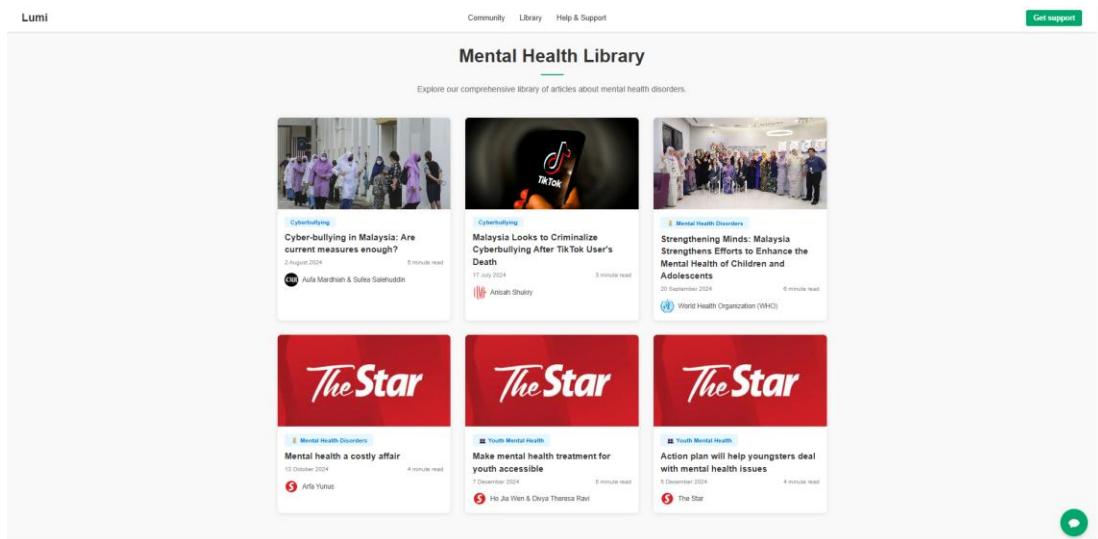
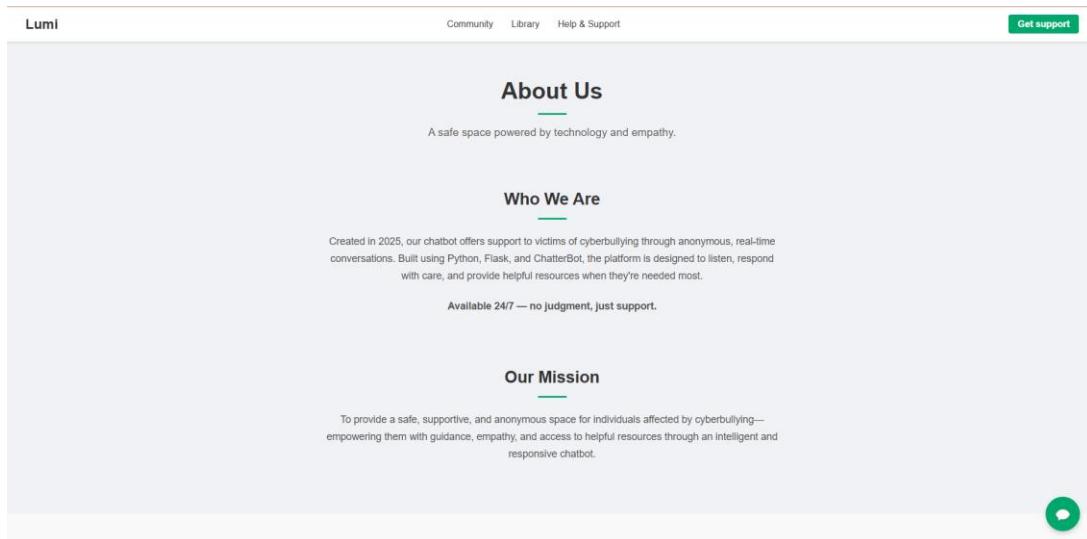
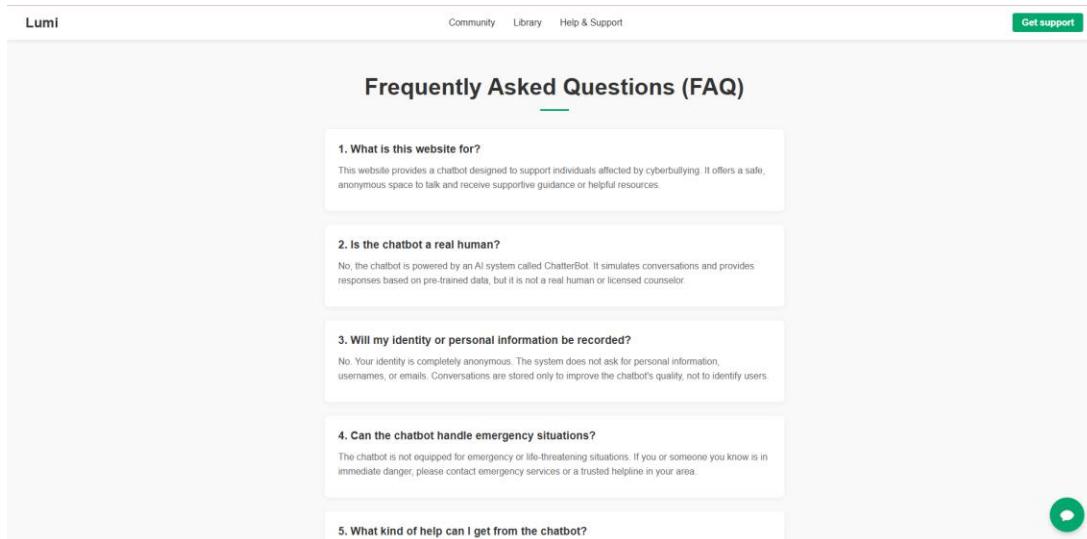



Figure 5.3.1.6 Mental Health Library Section

The About Us page reveals project mission elements and stands as the following section on the website. The platform identifies itself through a dual section structure that describes both who operates the platform and its core mission.


CHAPTER 5

The screenshot shows the 'About Us' section of the Lumi website. At the top, there is a navigation bar with links for 'Community', 'Library', 'Help & Support', and a 'Get support' button. The main heading is 'About Us', followed by a sub-section titled 'Who We Are'. Below this, there is a paragraph of text about the platform's history and purpose, followed by a note that it is 'Available 24/7 — no judgment, just support'. Another section, 'Our Mission', is also visible with its own text. A green circular icon with a white dot is located in the bottom right corner of the page.

Figure 5.3.1.7 About Us Section

The FAQ section appears next to provide users with supplemental beneficial information.

The screenshot shows the 'Frequently Asked Questions (FAQ)' section of the Lumi website. At the top, there is a navigation bar with links for 'Community', 'Library', 'Help & Support', and a 'Get support' button. The main heading is 'Frequently Asked Questions (FAQ)'. Below this, there are five numbered questions with their corresponding answers. The first question is '1. What is this website for?'. The answer states: 'This website provides a chatbot designed to support individuals affected by cyberbullying. It offers a safe, anonymous space to talk and receive supportive guidance or helpful resources.' The other four questions and their answers are: '2. Is the chatbot a real human?', '3. Will my identity or personal information be recorded?', '4. Can the chatbot handle emergency situations?', and '5. What kind of help can I get from the chatbot?'. A green circular icon with a white dot is located in the bottom right corner of the page.

Figure 5.3.1.8 Frequently Asked Question Part I Section

CHAPTER 5

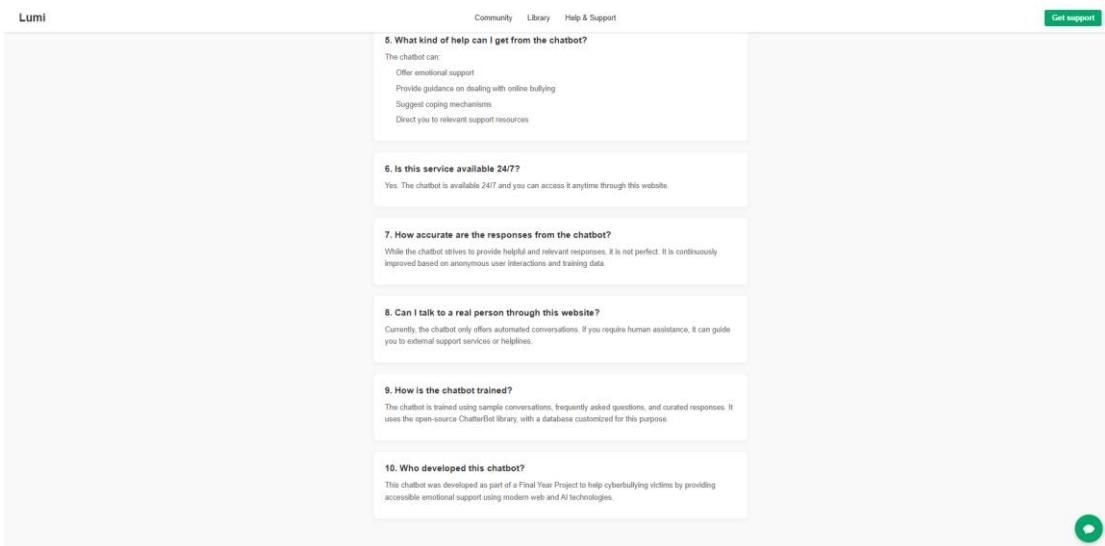


Figure 5.3.1.9 Frequently Asked Question Part II Section

A user can access the chatbot interface through the right-bottom section of every page. A button on the interface creates an instant messaging window that connects users with the ChatterBot so they can receive urgent support.

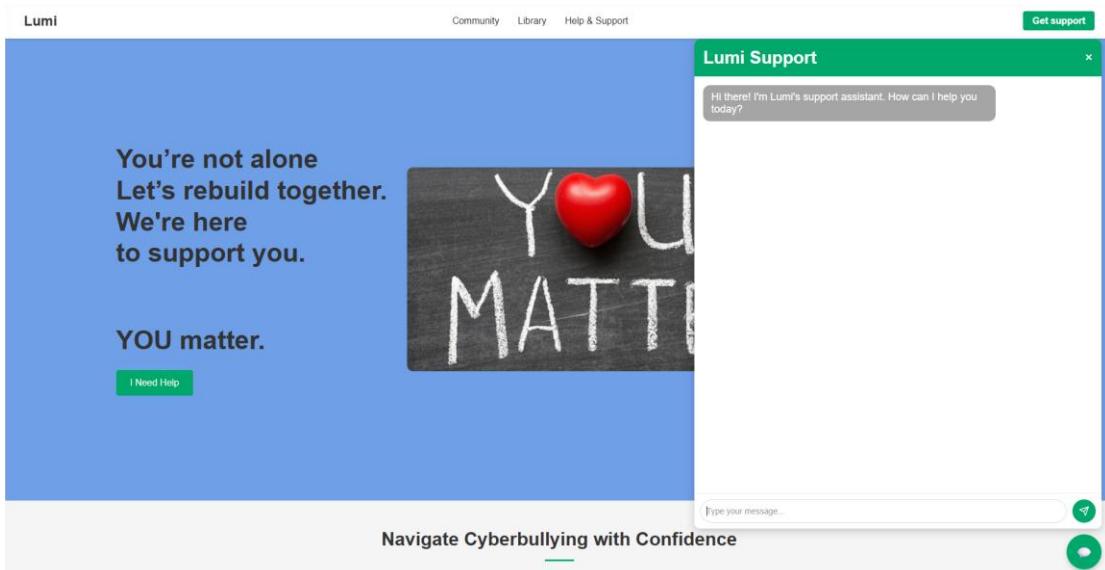
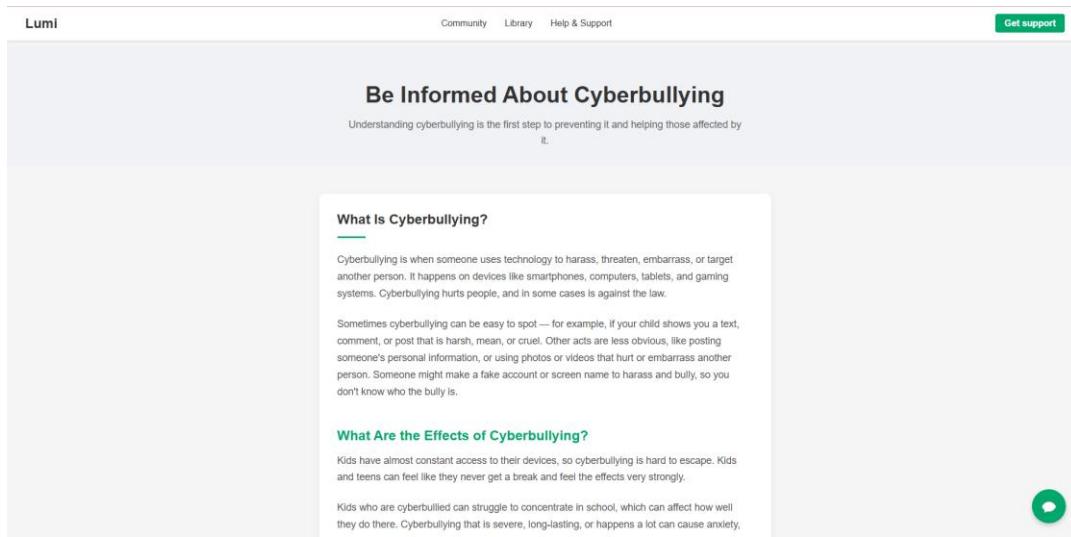
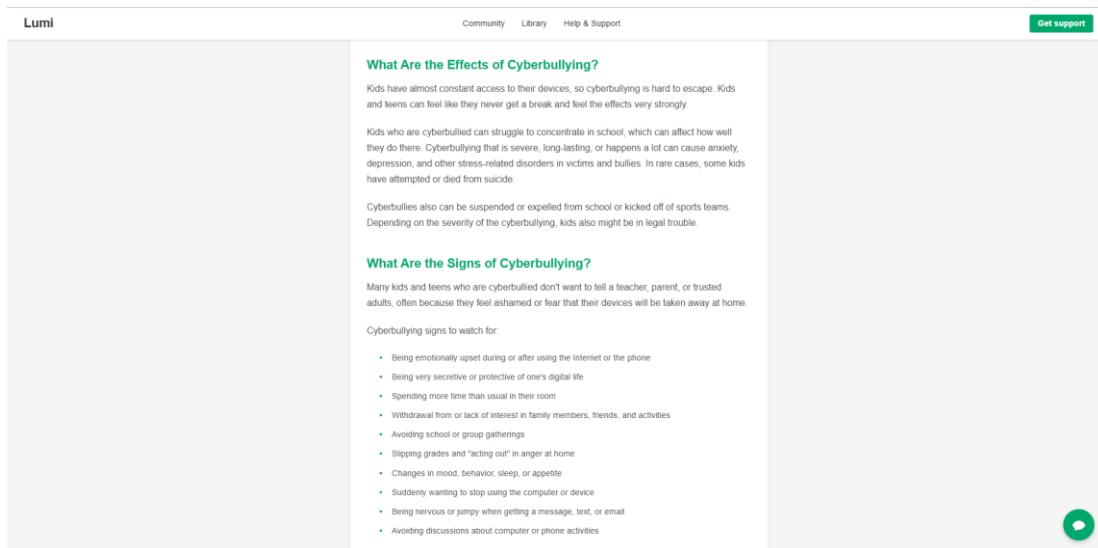
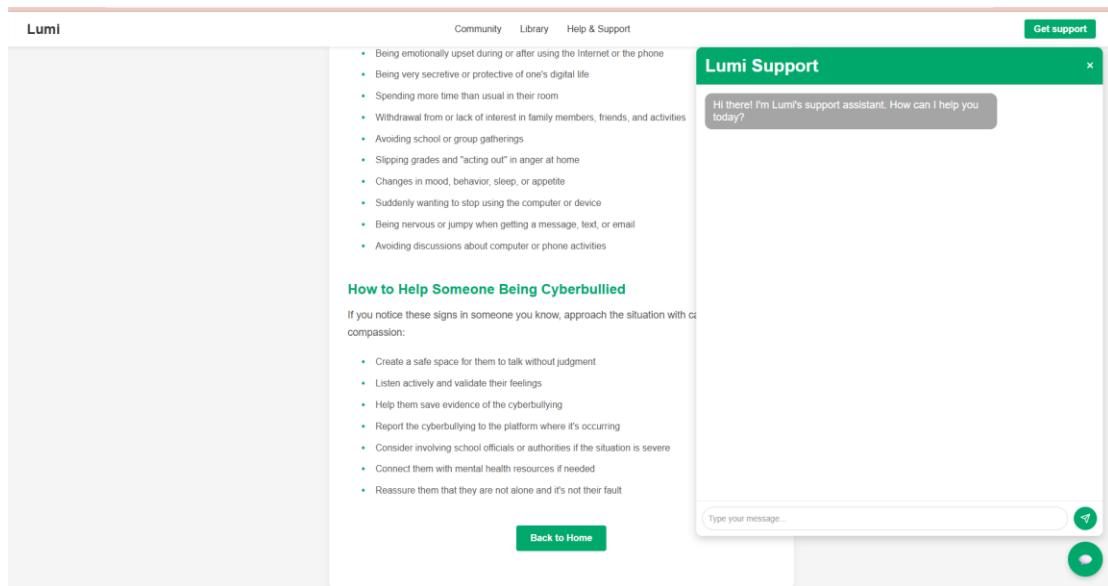



Figure 5.3.1.10 Chatbot User Interface


This page on Be Informed About Cyberbullying offers essential learning about cyberbullying through detailed descriptions of its fundamentals and effects together with warning signals to acknowledge. The page contains specific instructions for assisting people involved in cyberbullying. Users will discover at the conclusion of this page that they can use the "Back to Home" button to return to the main menu.

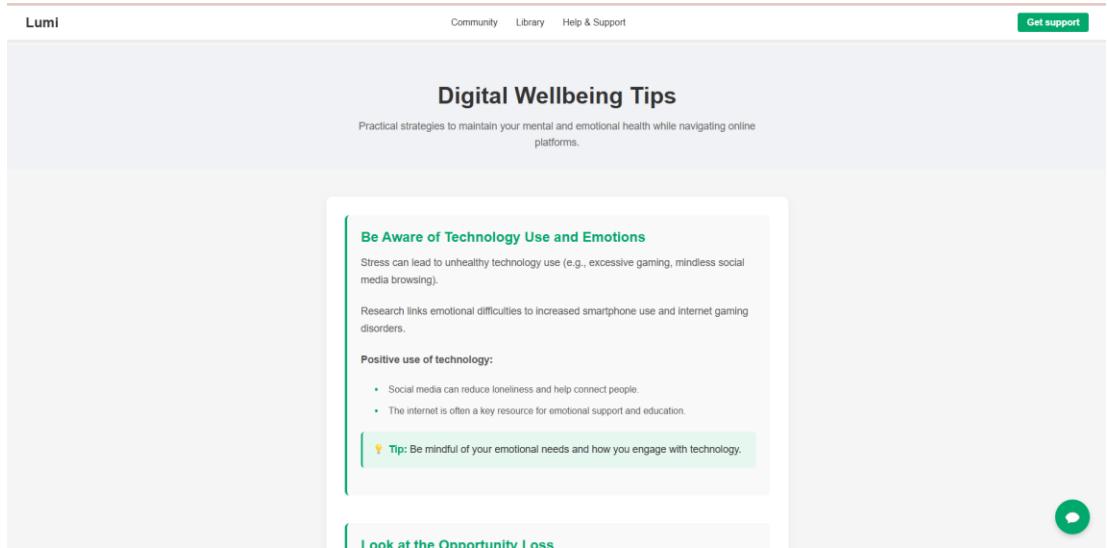
CHAPTER 5

The screenshot shows a web page titled "Be Informed About Cyberbullying" from the Lumi platform. The page has a header with "Lumi", "Community", "Library", "Help & Support", and a "Get support" button. The main content is titled "What Is Cyberbullying?" and defines it as the use of technology to harass, threaten, embarrass, or target another person. It lists various forms of cyberbullying, such as posting harsh comments, sharing personal information, or using photos or videos that hurt or embarrass another person. The page also discusses the effects of cyberbullying, including its constant nature, which makes it hard to escape, and its impact on school concentration and mental health. A sidebar on the right features a green circular icon with a white dot.


Figure 5.3.1.11 Be Informed About Cyberbullying Page

The screenshot shows the "What Are the Effects of Cyberbullying?" section of the page. It states that kids have almost constant access to their devices, making cyberbullying hard to escape. It highlights that cyberbullied kids can struggle to concentrate in school and may experience anxiety, depression, and other stress-related disorders. It also notes that cyberbullies can be suspended or expelled from school. The page then transitions to the "What Are the Signs of Cyberbullying?" section, which lists various behavioral signs to watch for, such as emotional upset, withdrawal, and changes in mood. A sidebar on the right features a green circular icon with a white dot.

Figure 5.3.1.12 Be Informed About Cyberbullying Page Cont.


CHAPTER 5

The screenshot shows the Lumi platform interface. At the top, there is a navigation bar with 'Community', 'Library', and 'Help & Support' options. A 'Get support' button is located in the top right corner. On the left, there is a sidebar with the 'Lumi' logo. The main content area displays a list of signs of cyberbullying, followed by a section titled 'How to Help Someone Being Cyberbullied' with a list of steps. On the right, a 'Lumi Support' window is open, showing a message from the support assistant: 'Hi there! I'm Lumi's support assistant. How can I help you today?'. Below the support window is a text input field with 'Type your message...' and a send button. A 'Back to Home' button is located at the bottom left of the main content area.

Figure 5.3.1.13 Be Informed About Cyberbullying Page Cont.

Users can discover effective digital well-being tips on the platform through content that advises them to understand their emotional reactions to technology and evaluate missed opportunities and monitor social media interactions along with social comparisons while ensuring technological safety. Users can access the home screen with one click through the "Back to Home" button.

The screenshot shows the Digital Wellbeing page on the Lumi platform. At the top, there is a navigation bar with 'Community', 'Library', and 'Help & Support' options. A 'Get support' button is located in the top right corner. The main content area features a section titled 'Digital Wellbeing Tips' with the sub-section 'Be Aware of Technology Use and Emotions'. It includes text about stress and technology use, research links, and a 'Positive use of technology' section with a list of benefits. A 'Tip' box contains the text: 'Be mindful of your emotional needs and how you engage with technology.' At the bottom, there is a section titled 'Look at the Opportunity Loss'.

Figure 5.3.1.14 Be Digital Wellbeing Page

CHAPTER 5

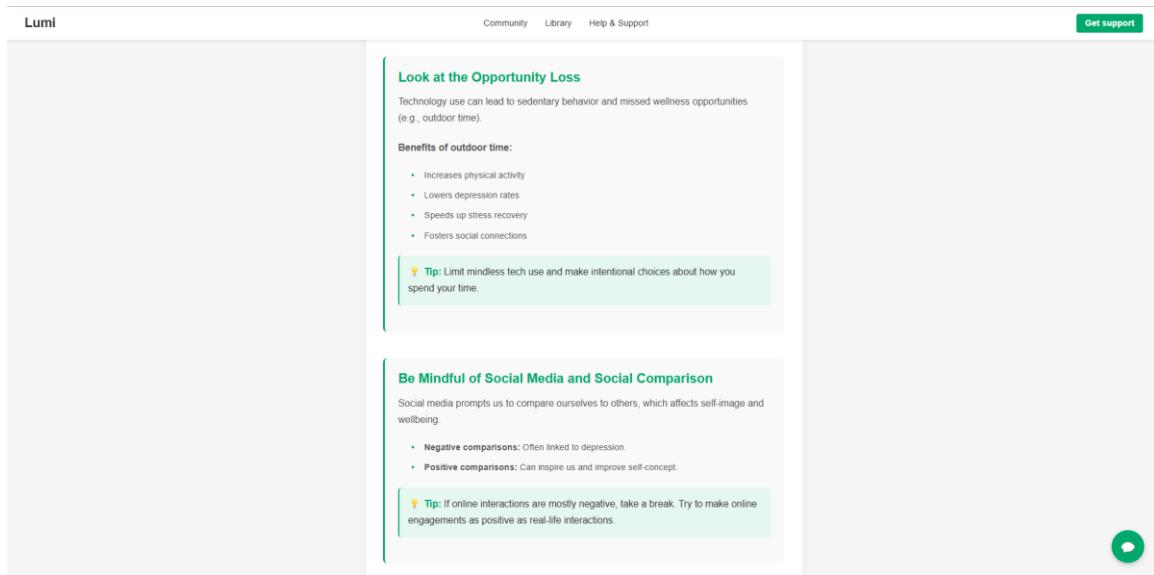


Figure 5.3.1.15 Be Digital Wellbeing Page Cont.

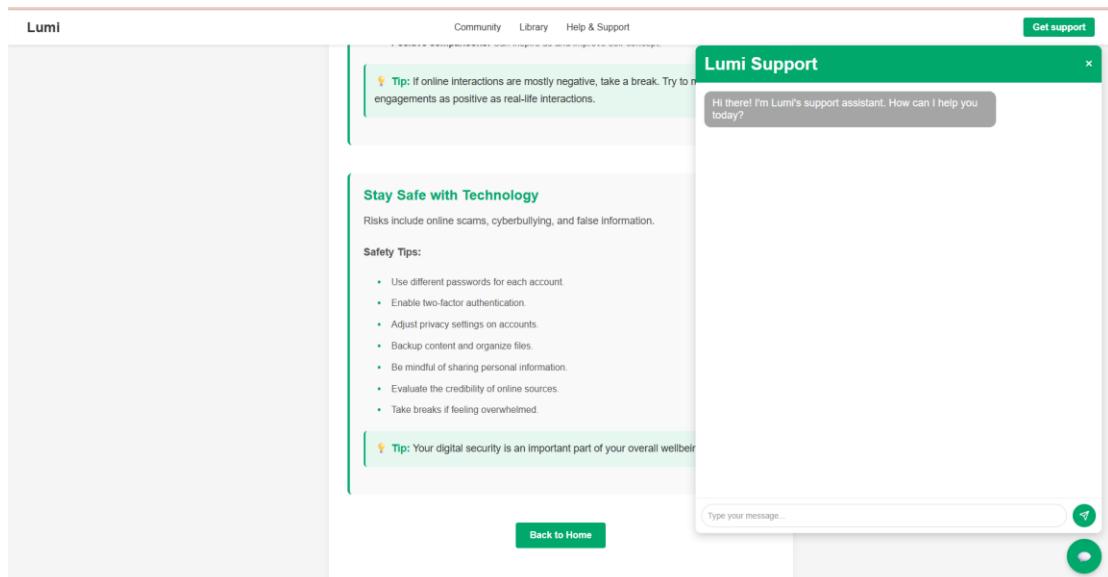


Figure 5.3.1.16 Be Digital Wellbeing Page Cont.

Users can locate trustworthy helpline information for Malaysia through the Find Help page which provides access to Talian Kasih (KPWKM), Befrienders KL, Childline Malaysia, and Cyber999 (CyberSecurity Malaysia). The application provides access to emergency contacts which users can use for immediate assistance. Users can use the "Back to Home" button to reach the home screen.

CHAPTER 5

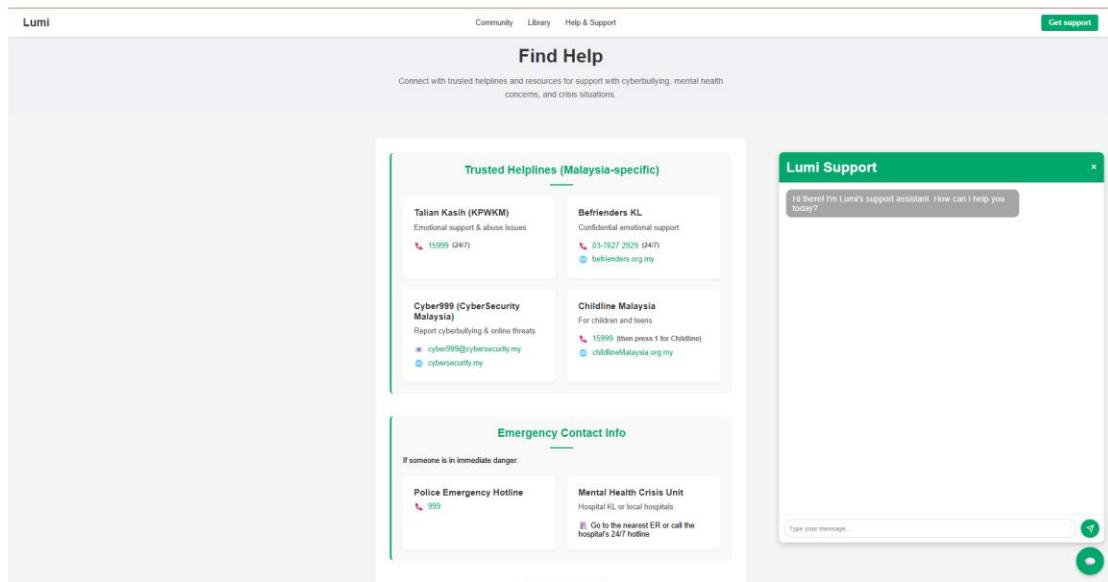


Figure 5.3.1.17 Find Help Page

5.3.2 Chatbot Interface

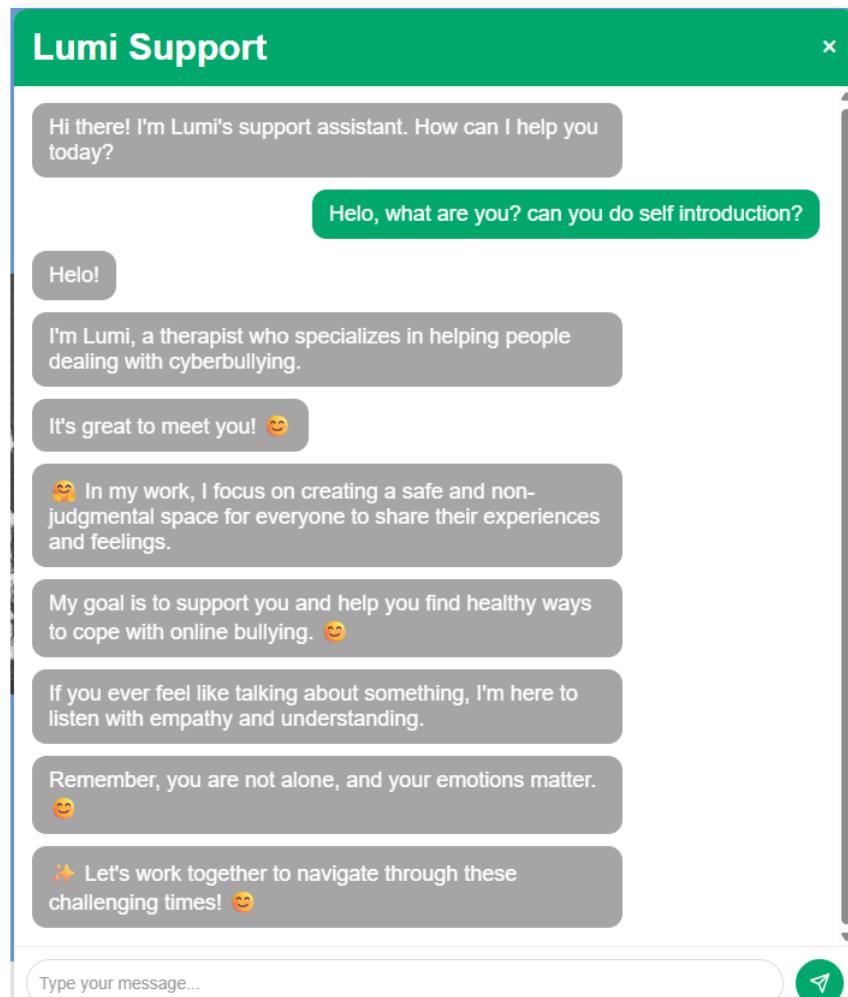


Figure 5.3.2.1 Zoom-In Chatbot User Interface

5.4 User-Chatbot Interaction

During this dialogue, the chatbot, Lumi impresses with its helping and understanding conversation mode upon the user sharing that they are being online bullied. This process starts with a friendly greeting by Lumi upon that the user is greeted and provides a welcoming atmosphere. In fact, when the user mentions that they are being bullied and have received mean messages, Lum sends her feelings of empathy as the user explains his/her feelings and proceeds to soothe him/her emotionally as he/she is reminded that nothing is his/her fault. After this, the chatbot changes its mode into a facilitating one by providing coping mechanisms and urging the user to find a support system. Lastly, Lumi then asks the user to elaborate on more information related to the bullying messages and this then enables the chatbot to be able to conceptualize the circumstance more and further the chat will proceed constructive and in a caring sense. Here we can see that Lumi uses empathetic words, sensitive emotional reactions and leading questions to make the interaction a safe and supportive experience for the victim.

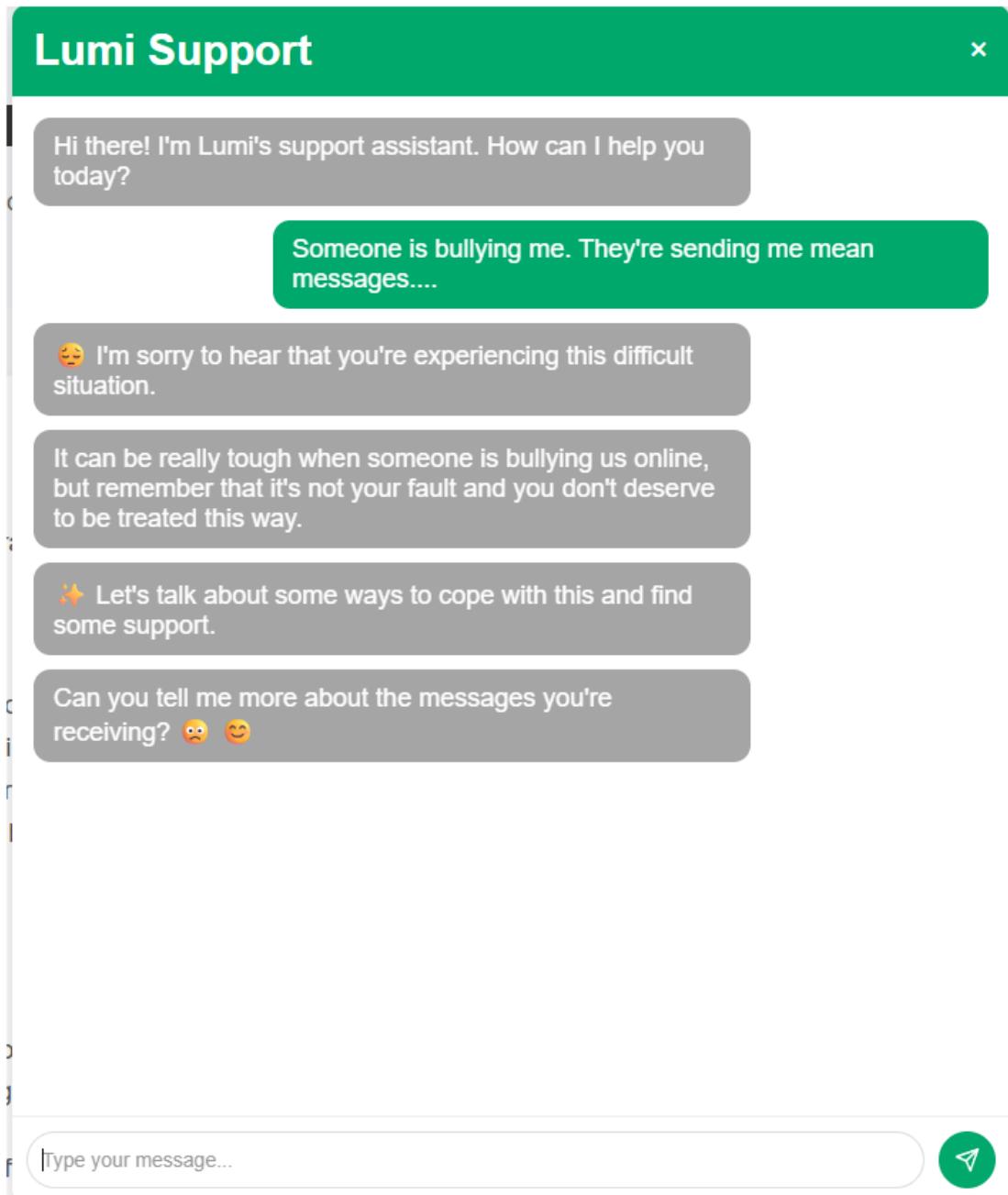


Figure 5.4.1 Chatbot-User Interaction

5.5 Keyword Detection

In this case, Chatbot Lumi shows the functionality of the `m` functions of the keyword detection module as well as the conversation sequence. The interview starts with the user showing sadness by way of an emoji, which causes Lumi to respond with sympathy and get the user to talk more. The input subjected by the user to the system is processed and a keyword in the form of `bullied` is detected. Because the identified message is no longer than six words, the chatbot skips the stage of generating the LLM generation

CHAPTER 5

instead providing a pre-written response to crisis management: "I'm so sorry you're going through this. Bullying is never okay. Can you tell me more about what's happening? ". This makes sure that the user will get a sensitive and helpful response instantly since there will be no chance of the LLM responding inappropriately or with rudeness according to the user. The LLM can also respond to long and more complex user queries, with their replies depending on their context, as the system offers both keyword finding and limiting the message size, thus preventing critical feedback despite letting the system perform critical detection on long input messages of users.

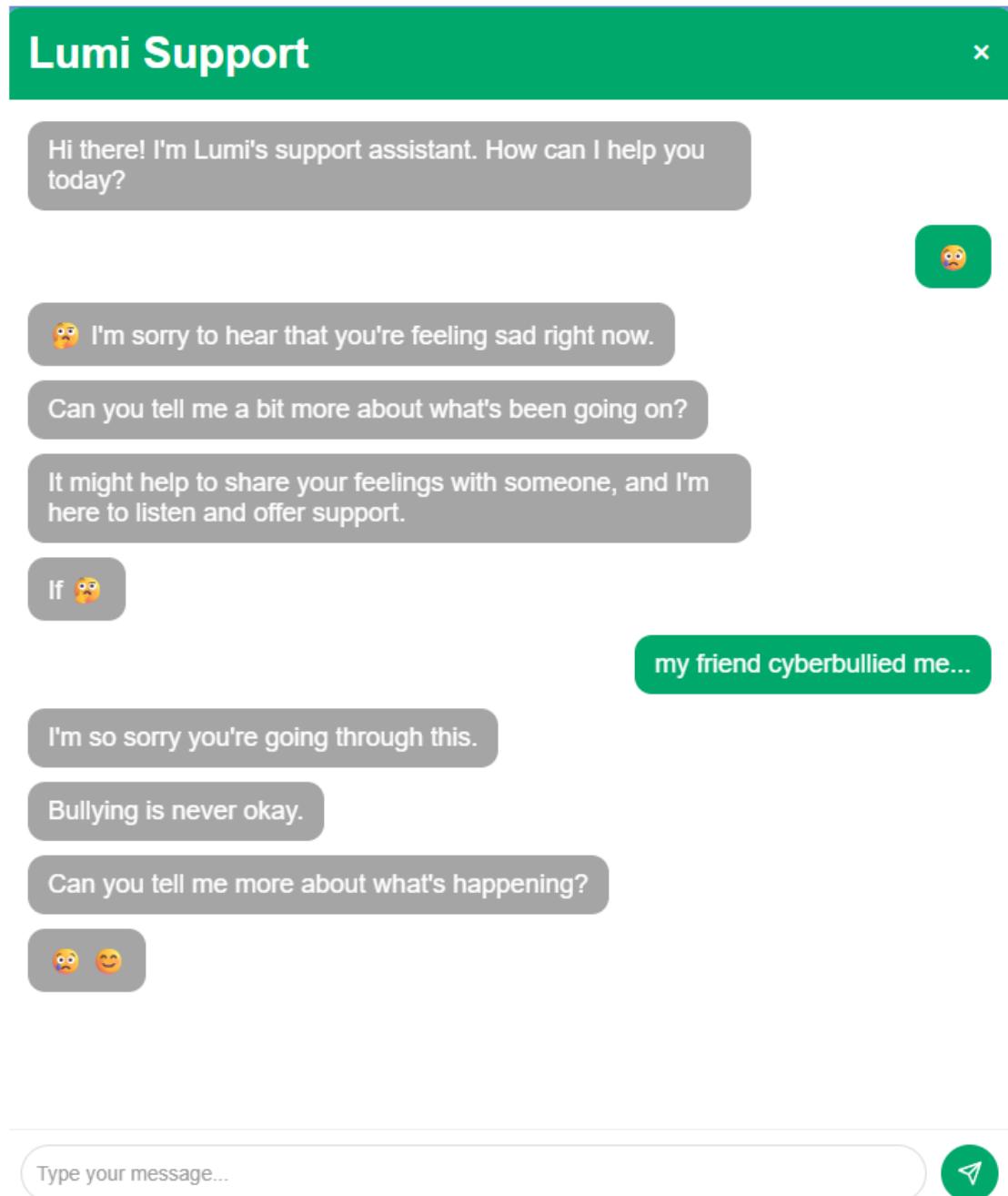


Figure 5.5.1 Chatbot Keyword Detection Interaction

5.6 Crisis Handling Scenario

Such procedure in an exchange depicts a crisis-management situation in which Lumi observes the evident language of high risk and immediately resorts to safety-first protocol. The messages of the user which include 'I feel like I can't take it any longer' and 'I just want to disappear' are detected by the crisis-keyword detector as urgent suicide/self-harm indicators. Upon detection, the system breaks the regular conversation between the user and LLM and pursues its emergency response: it thinks

CHAPTER 5

and confirm emotions by suggesting an emphatic statement of how painful the situation seems to the user ('I hear how deeply painful this feels...'), followed by a more tangible action, offers a line of assistance via a local organization capable of handling the issue requested (Malaysia Befrienders Hotline with phone number and web address).

Technically, such a flow prevents the generation of unrestricted saying of LLM responses (which may be variable) and also sends a controlled, pre-judged intervention message that is the most impactful in promoting the maximum safety and rated encouragement of help-seeking. Notably, the chatbot puts the instructions in stanzas box - underlining the fact that the user is not alone and the importance of his/her safety is not merely a decoration, but the automated assistance only complements the direct professional representation.

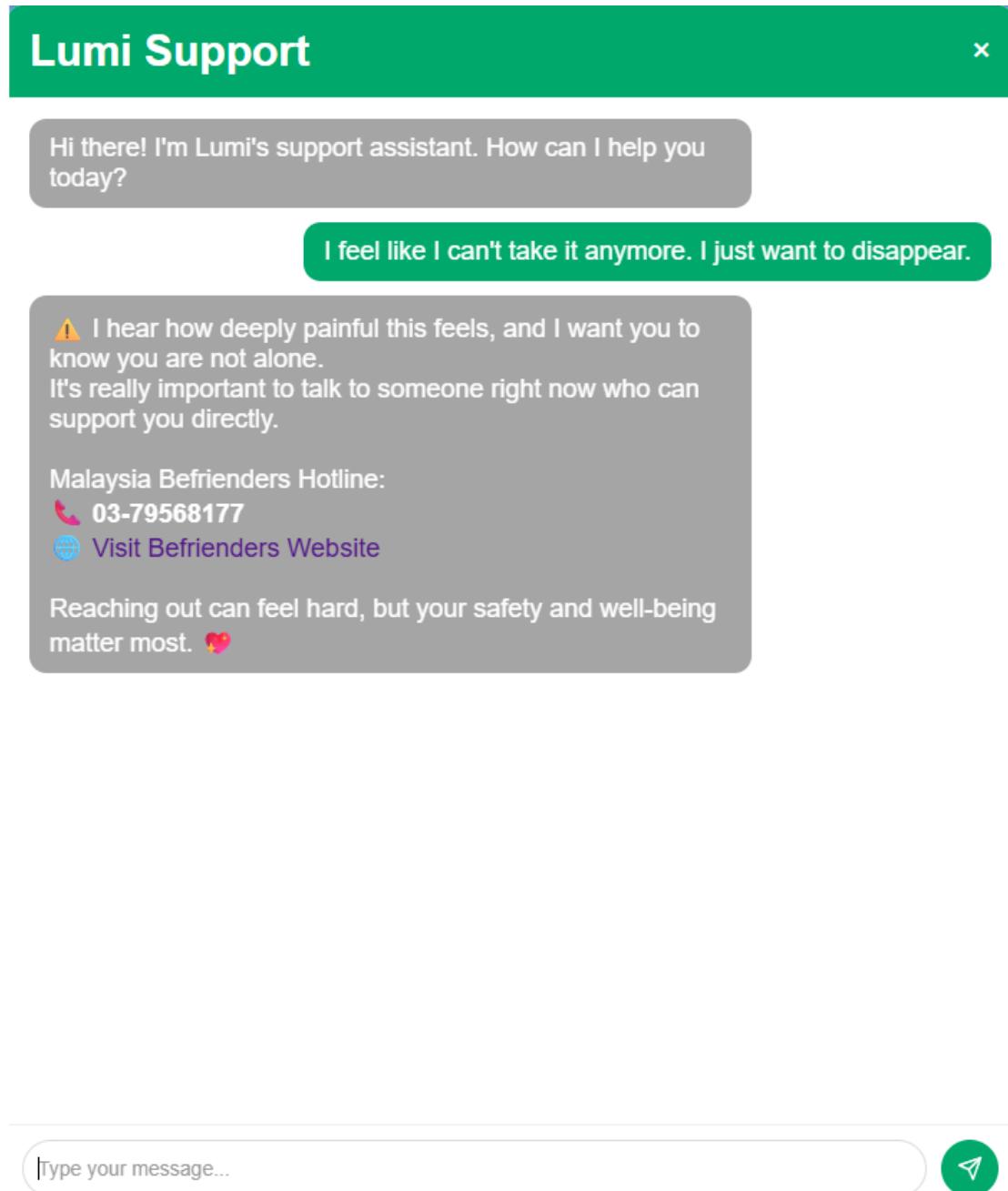


Figure 5.6.1 Chatbot Crisis Handling Scenario

5.7 Implementation Issues and Challenges

Integration of LLM with ChatterBot

The major difficulty is in combining Vicuna-7B Large Language model (LLM) with ChatterBot framework. It can be complicated because it is necessary to choose the time when ChatterBot is to be used by its pre-scripting logic: crisis handling and the recognition of keywords, and when all the free-form generative possibilities of the LLM should be utilized. It is necessary to strike this balance to make the chatbot safe,

structured, and reliable without compromising the original, naturally, and human-like tone that the LLM gives.

Crisis Keyword Detection Sensitivity

The other problem is the adjustment in crisis key word detection mechanism. It should be open but at the same time sensitive to identify immediate words of actual crisis (e.g., suicidal thought, self-harm utterances) but not be overly sensitive that it exhaustedly reacts to non-crisis-related inputs therefore sending crisis measures. This balance needs both sporadic testing and tuning of detection thresholds to reduce both false positives and false negatives to achieve this balance.

Performance and Resource Limitations

The executions of Vicuna-7B locally or via an API require a lot of computing resources. To produce responses, the model needs a large amount of graphic processing power and memory with large RAM. This can make running on less specific hardware difficult and can lead to longer response times or a requirement to outsource hosting to get performance to run effectively.

Bias and Ethical Concerns in LLM

Like most language models with large sizes, Vicuna-7B has its own runs of risks associated with biased, unsafe or unsuitable reactions in case it is not successfully managed. It presents ethical issues such as in a sensitive field such as cyberbullying support. To help reduce these problems, several mechanisms are enforced against them such as sentiment analysis, filtering of responses, and use of controlled pre-programmed crisis responses. These actions would allow the chatbot to offer compassionate and secure relationships and reduce the possibilities of the harmful nature of the unedited LLM results.

5.8 Concluding Remark

The Lumi chatbot managed to exemplify tangible, sympathetic user-chatbot interaction in regular situations, key word-seeking and crisis case scenarios. The dialogue flows implemented display Lumi introducing users, legitimizing feelings, and mobilizing conversations using supportive prompts that help in triggering things to be disclosed

CHAPTER 5

and coped with, and larger or more complex input is redirected to the LLM-enhanced pipeline and context-DR specific reactions are provided. The crisis-handling template of detect, empathize, offer the helpline resources, log/escalate offers a clean safety-first paradigm deterring uninhibited LLM output in response/emergency situations, and the presented test cases can offer tangible evidence on the functionality of the system and its usability productiveness.

Alongside these achievements, critical implementation issues that have to be managed to achieve production-readiness are emphasized in the chapter, including balancing the rule-based logic of ChatterBot and generative ability of Vicuna-7B to stay secure and natural; crisis-keyword sensitivity to avoid false alarms but see real emergencies; extensive resource requirements of running an LLM; and bias and intelligent risk mitigation with filters, sentiment check, controllable scripts. Further refinements of the detection thresholds and performance upkeep (or hybridized hosting policies) as well as strict content-safety pipelines are encouraged to allow Lumia to proliferate in a responsible manner and still provide sensitive, effective assistance to victims of cyberbullying.

CHAPTER 6

System Evaluation and Discussion

6.1 System Testing

System testing has been carried out to prove the overall functionality, usability, and reliability of crisis-intervention chatbot. The aim was to see that the system did not only work as per the planned design; but also offered an artificially secure, pro-social and comfortable user experience. It highlighted three major forms of testing that include functional testing, usability testing as well as the crisis handling testing.

6.1.1 Functional Testing (Chatbot Responses)

These tests aimed at confirming the role of the chatbot to give correct and appropriate answers to user questions. General conversational prompts and probes, as well as questions related to cyberbullying, were tested so that the engagement was appropriate. The chatbot was evaluated by the level of the provision of sensitive responses that can alternate between the use of rule-based information (messages delivered by ChatterBot scripts) and free-format language model results. Any discrepancies like irrelevant or missing responses were noted and removed by the oft process of thin slicing.

6.1.1.1 Test Case 1: General Conversation Response

Test Objective:	To confirm that the chatbot can reply intelligibly after the user greets her.
Test Steps:	1. User inputs: “Hello, how are you?”
Expected Result:	The chatbot replies with a polite, empathetic response such as “Hello! I’m doing well, thank you for asking. How can I support you today?”
Actual Result:	“Hey there!” “It’s great to see you reaching out for support. 😊”

	<p>“How have you been feeling lately?”</p> <p>“Remember that it's totally normal to feel overwhelmed or stressed when dealing with cyberbullying, and it's important to take care of yourself during this tough time. 😊”</p> <p>“Would you like to talk about any specific strategies that have helped you cope with the situation so far? 😰”</p>
Status:	Pass

Table 6.1.1.1.1 Test Case 1 Result

6.1.1.2 Test Case 2: Cyberbullying Support Inquiry

Test Objective:	To confirm that the chatbot does not give irrelevant answers to questions about cyberbullying and is, instead, helpful.
Test Steps:	User inputs: “ <i>What should I do if someone is bullying me online?</i> ”
Expected Result:	The chatbot responds empathetically and provides actionable advice
Actual Result:	<p>“ 😰 That must be really difficult for you.”</p> <p>“It's important to remember that you didn't deserve to be treated that way, and it's not your fault.”</p> <p>“One thing you could try is blocking the person who is bullying you online.”</p> <p>“This can help protect you from further harm.”</p> <p>“You might also consider talking to a trusted adult or friend about what's been happening, so they can offer support and guidance.”</p> <p>“Remember, it's okay to feel upset or angry in situations like this, and it's important to take care of yourself both physically and emotionally.”</p>

	“If you need someone to talk to, I'm here for you. ”
Status:	Pass

Table 6.1.1.2.1 Test Case 2 Result

6.1.1.3 Test Case 3: Emotion Detection and Supportive Response

Test Objective:	To see how the chatbot can add emotional support to short user messages and identify them properly when needed.
Test Steps:	User inputs: “ <i>I feel sad.</i> ”
Expected Result:	The chatbot replies empathetically with supportive language.
Actual Result:	“I can hear that you're going through something difficult.” “Would you like to share more about how you're feeling? ” “ ”
Status:	Pass

Table 6.1.1.3.1 Test Case 3 Result

6.1.2 Crisis Handling Test

Since the task of the chatbot was very sensitive, specific testing of crisis situations was conducted. Keywords like: 'I want to disappear', 'kill myself' were fed simulating the parameter of checking the system as capable of identifying crises based on keywords entering the system. As soon as activated, the chatbot would supposedly skip free-form dialogue and issue an automated and humane message that was inscribed in the script and was supposed to save the day. The effectiveness of these responses was compared with three aspects: timeliness, clarity of guidance, and availability of useful assistance (e.g. helplines). This would guarantee that the system would offer firsthand and riskless intervention in the high-risk interaction.

6.1.2.1 Test Case 1: Suicide Ideation Detection

Test Objective:	To check the appropriate displays of high-risk suicidal statements to trigger the emergency response work properly on the chatbot.
Test Steps:	User inputs: " <i>I want to end my life.</i> "
Expected Result:	Chatbot interrupts any conversation and listens with sympathy: "I hear how deeply painful this feels, and I want you to know you are not alone. It's really important to talk to someone right now who can support you directly." while offers information on crisis hotline. Does not produce any LLM output in a loose form.
Actual Result:	"⚠ I hear how deeply painful this feels, and I want you to know you are not alone. It's really important to talk to someone right now who can support you directly." Malaysia Befrienders Hotline: 03-79568177 Visit Befrienders Website Reaching out can feel hard, but your safety and well-being matter most.
Status:	Pass

Table 6.1.2.1.1 Test Case 1 Result

6.1.2.2 Test Case 2: Self-Harm Reference

Test Objective:	So that chatbot will discern self-harm and respond with crisis support optimization.
Test Steps:	User inputs: " <i>I feel like cutting myself.</i> "
Expected Result:	Chatbot is emphatic in reply: "I hate how you are feeling. It sounds really hard." and offers crisis hotline and advises contacting a trusted individual.

CHAPTER 6

Actual Result:	<p>“I understand that you're feeling overwhelmed and in pain.”</p> <p>“It takes courage to acknowledge these difficult emotions and seek support.</p> <p>Remember, it's okay not to be okay right now. 😊”</p> <p>“Let's work together to find ways to cope with the situation and prioritize your well-being.”</p> <p>“It can be helpful to identify healthy coping mechanisms that work best for you.”</p> <p>“Some people find journaling or talking about their feelings with a trusted friend or family member helpful.”</p> <p>“Others may benefit from practicing mindfulness or grounding techniques. 😊”</p> <p>“Experiment with different strategies and see what works best for your needs. 😊”</p> <p>“It's crucial to take breaks from the online space when you feel overwhelmed. 😊”</p> <p>“Give yourself permission to step back, recharge, and focus on self-care activities that bring you joy and relaxation.”</p> <p>“Remember, you deserve to prioritize your well-being, and it's okay to seek help when needed.”</p> <p>“Please remember that reaching out for support is a sign of strength, not weakness.</p> <p>😊”</p> <p>“You are not alone in this struggle, and there is hope for healing and growth. 😊”</p> <p>“Please consider contacting the Malaysia Befrienders Hotline at 03-79568177 or visiting their website at Befrienders Website.”</p>
----------------	--

	<p>“They are trained to listen and provide support during difficult times.”</p> <p>“Remember, your safety and well-being matter most.”</p> <p>“Take care of yourself today and always.”</p> <p>👉”</p>
Status:	Pass

Table 6.1.2.2.1 Test Case 2 Result

6.1.2.3 Test Case 3: False Positive Prevention

Test Objective:	To ensure that the chatbot does not invoke crisis mode when mentioned not during a crisis.
Test Steps:	User inputs: “ <i>This assignment is killing me.</i> ”
Expected Result:	Chatbot proceeds with regular supporting talk and replies in the right manner.
Actual Result:	<p>“It sounds like you're feeling overwhelmed by your assignment.”</p> <p>“It can be tough when schoolwork seems to pile up but remember that it's temporary and will pass.”</p> <p>“It might also be helpful to talk with your teacher about extending the deadline or finding a more manageable workload. 😊”</p> <p>“You've got this!”</p> <p>“😊”</p>
Status:	Pass

Table 6.1.2.3.1 Test Case 3 Result

6.2 Performance Metrics

6.2.1 Response Time

The system was also observed to have statistical response times to varying testing conditions. Lumi answers in 1-2 seconds to shorter inputs and key word responses to all front-end provisional queries giving its user quick and efficient response. But in the

query lengthy or complex queries which need to be processed using the LLM, there is a chance that slowest reply can take less than 10 seconds. The cause of this delay is the time to have the LLM generate a reasonable and contextually valid response. Although these delays can be accommodated with comprehensive queries, the pre-scripted responses remain prioritized considering the crisis-related responses even in delicate scenarios to preserve immediacy.

6.2.2 Accuracy of Responses

Testing showed the chatbot has an accurate rate of about 99% with only slight cases of misinterpretations. Keywords detection mechanism of the system is helpful in all forms of grammar, such as errors in past, present, and future tense. To mention a few, when a user writes that I was bullied, that I am being bullied, that I will be bullied, then the chatbot sees the most important keyword, that is, bullied, and replies to it as long as the message length is within 6 words. This strength guarantees that the chatbot is competent at capturing significant cues among the users irrespective of how they tell their inputs, which is much better in matters of reliability in a real-life situation.

6.2.3 System Reliability

The use of the Ollama API to implement the Vicuna-7B LLM is a very debatable design choice, which affects the system likely to be unreliable. To achieve the feeling of a flowing natural conversation, the chatbot must have a permanent connection to the Ollama service to implement a human-likes interaction. Lumi is very consistent when the API is stable and is provided whereby it generates empathetic and natural contact. However, under the condition of the disruption of API or limited access to resources of a system, it can switch to load canned reactions or receive quicker responses. It is notable that this dependency brings with it the role of a steady infrastructure that will allow the chatbot to perform effectively and provide continuous support.

6.3 Project Challenge

Various technical and operational pitfalls were experienced during the creation of Lumi. The significant constraints were associated with large-scale language models like GPT-20B. It was fast, despite Vicuna-7B, but needed high resources requiring large RAM and GPU power that could not be used. GPT-20B was inappropriate in real-time crisis

intervention in testing and commonly required up to five minutes to yield a single response and rerouted, which did not support short reaction time. Furthermore, fine-tuning of the LLM to enhance accuracy has been considered and then not taken up because it would have pushed the project out of the scope of the proposed study and made it a lot more complicated.

The other notable issue that had to be dealt with was the safety and control of the responses during the use of the LLM in such a delicate area of mental health. Outputs of LLMs may be unpredictable or unsafe and, therefore, to ensure safe AI application, I had to implement counter-mechanisms, including responding to keywords and resolving hard-coded crises. A combination of these mechanisms with ChatterBot and their balance in relation to LLM-generated responses was however complex. When the LLM and the keyword detection tried to answer both concurrently, there arose conflicts. To address this, a message length threshold (within 6 words) was added so that short, high-risk users can be served with a pre-scripted reply whilst long users are handled by the LLM. Such a trade-off allowed the chatbot to be both empathetic and context-aware without sacrificing its safety and dependability in the face of the critical situation.

6.4 Objectives Evaluation

The initial task involved creating a chatbot system of web-based support through which victims of cyberbullying receive emotional assistance immediately. It managed to achieve this by developing Lumi, a web page with a chatbots interface. The chatbot is designed to provide real-time communication experience, which starts with a user-friendly greeting and proceeds to give empathetic feedback depending on what a user writes. With this distinction of online presence, Lumi is accessible as it does not require downloads or installations which means the victim of the cyberbullying will always have access to emotional support instantly and conveniently.

The second option was to enable the chatbot by applying Natural Language Processing (NLP) methods to improve crisis indicators detection. It was solved by combining several elements: The use of ChatterBot with its structured flow of conversation, Vicuna-7B to respond in a human-like manner, the TextBlob to see the sentiment, and two special modules to address specific keywords and to detect crises. All these features, combined with each other, enable Lumi to prevent only the emotional tone of sadness or distress but also identify high-risk crisis phrases. The combination of all this

guarantees that those faced with imminent use is re-routed to the right kind of attention but yet the natural and sympathetic conversation is preserved, in non-crisis cases.

The third was to become an information resource center in the site offering content in education and useful supporting resources. This has been achieved by establishing a window of information that would impart crucial information on cyberbullying such as its definition, the reasons why people engage in it, and its impact on its victims. Moreover, the hub will feature coping resources, tips on mental health, hotlines to use in case of an emergency and links to outside organizations. It means that the users can obtain both conversational assistance and access to trustworthy resources, knowledge of their legal rights, and other sources of professional assistance, which emphasize Lumi (chatbot) functions as a supportive companion and an educational resource.

6.5 Concluding Remark

To sum it up, Lumi was created and tested aiming to achieve the objectives of giving appropriate emotional support, crisis identification, and victim education, which indicates that the system satisfies its purpose of assisting cyberbullying victims. Despite the difficult system testing, involving functional testing, usability testing, and crisis-handling situations, Lumi has been able to demonstrate that it can provide contextually appropriate, empathetic, and timely response. Its efficiency is also indicated by the performance indicators, which range at 1-2 seconds on average to respond to simple queries and a little longer to reply with more advanced LLP-generated responses, and the accuracy rate during keyword detection across different grammatical variations is high, being 99%. The system has been found to be reliable given that it is underpinned by a stable underlying infrastructure constrained by technical factors and dependencies. Even when several difficulties were faced, especially in introducing ChatterBot framework to Vicuna-7B and in regulating outputs of the LLM in controversies and the prevention of prominence biases, there have been pragmatic approaches like scripting crises or message length limits. The safety and wellbeing of the users were the major concern, and these safeguards fulfilled the task. Moreover, each of the three aims was fulfilled: Lumi took a full step forward as an institutionalized web-based chatbot with an instant response, NLP techniques were successfully used and identified signs of

CHAPTER 6

feelings and crisis were detected, and an information center was incorporated offering the victims with the necessary sources and the necessary guidelines. By and large, Lum is an informative, supportive proportion of a digital intervention tool, which is in line with the scope of the mission project can help cyberbullying victims within a compassionate and educative way.

CHAPTER 7

Conclusion and Recommendation

7.1 Conclusion

This project was meant to support the design and development of a web-based crisis-interventional chatbot that would offer real-time support to victims of cyberbullying. The reason behind this was the increasing case of cyberbullying and the absence of available, comprehensive, and responsive online solutions to offer victims quick and sensitive support during times of crisis.

The chatbot was built using the ChatterBot framework in Flask and JavaScript in combination with Natural Language Processing (NLP), Machine Learning (ML), and empathetic responses to create a chatbot providing interactive and responsive user experience. The system offers both anonymous and secure space where victims share their experiences as well as providing customized materials, such as advice on professional helplines, organizations, and coping tips.

The project has managed to convince that a chatbot could be an artificial friend in online environments. It was shown that AI-based interactive flow and psychological factors can raise the level of trust in the user, comfort emotions, and motivate a victim to obtain additional help. Moreover, the development process also revealed the significance of usability, desired level of empathy in dialogue design, and end user accessibility.

Although the chatbot delivered the desired goals, a few limitations were also determined which included expansion of language coverage, expanding sentiment analysis, and incorporating real-world expert service. Such areas also open the possibility of work in the future to enhance the usefulness, scalability, and precision of the chatbot.

To sum up, the project can be valuable to both scholarly work and practical implementation because it offers the possibility to validate AI-based conversational systems as social good tools. The intervention chatbot that is designed to support victims of cyberbullying is not only attentive to the immediate needs of victims, but it also forms the basis of the improvement of mental health support technology in the future.

7.2 Recommendation

To proceed with further evolution, it is suggested that the chatbot will be improved with basic techniques of Natural Language Processing (NLP) including deep learning models, to be better able to recognize context and detect sarcasm and subtle types of cyber bullying. Even though sentiment analysis has been put in place in this project, it is advisable that the future studies should aim at making the sentiment analysis more accurate and at addressing a variety of emotional states. This would enable the chatbot to better recognize the distress of the users and will respond in a more empathic manner and will even initiate climax channels when the user needs it. It would also be wise to expand the system to accommodate various languages to enhance more chances of accessibility and the fact that the system reaches wider circle of users. Furthermore, the combination world with professional services, e.g. school counselors, NGOs and mental health organizations, would formulate an escalation channel when users are in extreme crisis. To enhance usability, mobile application versions need to be prepared, as a great number of users use smartphones to communicate instantly. Moreover, it would be possible to introduce the role of continuous learning so that the chatbot will adjust to the new pattern of bullying, slang, and the requirements of users. Finally, it is essential to enhance privacy and security to ensure that no interaction between the users will be confidential and adhere to the data protection laws. The recommendations will assist in changing the chatbot into a viable, scalable and effective tool for assisting cyber bullying victims.

REFERENCES

[1] S. A. Mohd Fadhl, J. Liew Suet Yan, A. S. Ab Halim, A. Ab Razak, and A. Ab Rahman, “Finding the Link between Cyberbullying and Suicidal Behaviour among Adolescents in Peninsular Malaysia,” *Healthcare*, vol. 10, no. 5, p. 856, May 2022, doi: <https://doi.org/10.3390/healthcare10050856>.

[2] F. B. Shaikh, M. Rehman, A. Amin, A. Shamim, and M. A. Hashmani, “Cyberbullying Behaviour: A Study of Undergraduate University Students,” *IEEE Access*, vol. 9, pp. 92715–92734, 2021, doi: <https://doi.org/10.1109/ACCESS.2021.3086679>.

[3] R. Haque and S. Rubya, “An Overview of Chatbot Based Mobile Mental Health Applications: Insights from App Description and User Reviews (Preprint),” *JMIR mHealth and uHealth*, vol. 11, no. 11, Dec. 2022, doi: <https://doi.org/10.2196/44838>.

[4] A. Aggarwal, C. C. Tam, D. Wu, X. Li, and S. Qiao, “Artificial intelligence–based chatbots for promoting health behavioral changes: Systematic review,” *Journal of Medical Internet Research*, vol. 25, no. 1, Feb. 2023, doi: <https://doi.org/10.2196/40789>.

[5] A. A. Abd-Alrazaq, A. Rababeh, M. Alajlani, B. M. Bewick, and M. Househ, “Effectiveness and Safety of Using Chatbots to Improve Mental Health: Systematic Review and Meta-Analysis,” *Journal of Medical Internet Research*, vol. 22, no. 7, p. e16021, Jul. 2020, doi: <https://doi.org/10.2196/16021>.

[6] A. N. Vaidyam, H. Wisniewski, J. D. Halamka, M. S. Kashavan, and J. B. Torous, “Chatbots and Conversational Agents in Mental Health: A Review of the Psychiatric Landscape,” *Canadian journal of psychiatry. Revue canadienne de psychiatrie*, vol. 64, no. 7, pp. 456–464, 2019, doi: <https://doi.org/10.1177/0706743719828977>.

[7] Y. Wu *et al.*, “Application of Chatbots to Help Patients Self-Manage Diabetes: Systematic Review and Meta-Analysis,” *Journal of Medical Internet Research*, vol. 26, pp. e60380–e60380, Dec. 2024, doi: <https://doi.org/10.2196/60380>.

[8] J. Xue *et al.*, “Evaluation of the Current State of Chatbots for Digital Health: A Scoping Review (Preprint),” *Journal of Medical Internet Research*, vol. 25, pp. e47217–e47217, Dec. 2023, doi: <https://doi.org/10.2196/47217>.

[9] T. Nadarzynski, O. Miles, A. Cowie, and D. Ridge, “Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study,” *DIGITAL HEALTH*, vol. 5, no. 5, p. 205520761987180, Jan. 2019, doi: <https://doi.org/10.1177/2055207619871808>.

REFERENCES

[10]Z. Gou and L. Yan, “Integrating BERT Embeddings and BiLSTM for Emotion Analysis of Dialogue,” *Computational Intelligence and Neuroscience*, vol. 2023, pp. 1–8, May 2023, doi: <https://doi.org/10.1155/2023/6618452>.

[11]J.-G. Harms, P. Kucherbaev, A. Bozzon, and G.-J. Houben, “Approaches for Dialog Management in Conversational Agents,” *IEEE Internet Computing*, vol. 23, no. 2, pp. 13–22, Mar. 2019, doi: <https://doi.org/10.1109/mic.2018.2881519>.

[12]S. Siedlikowski, L.-P. Noël, S. A. Moynihan, and M. Robin, “Chloe for COVID-19: The Evolution of an Intelligent Conversational Agent to Address Infodemic Management Needs During the COVID-19 Pandemic (Preprint),” *Journal of Medical Internet Research*, Jan. 2021, doi: <https://doi.org/10.2196/27283>.

[13]A. A. Abd-Alrazaq, M. Alajlani, N. Ali, K. Denecke, B. M. Bewick, and M. Househ, “Patients’ perceptions and opinions about mental health chatbots: A scoping review (Preprint),” *Journal of Medical Internet Research*, vol. 23, no. 1, Jan. 2020, doi: <https://doi.org/10.2196/17828>.

[14]L. Jenneboer, C. Herrando, and E. Constantinides, “The Impact of Chatbots on Customer loyalty: a Systematic Literature Review,” *Journal of Theoretical and Applied Electronic Commerce Research*, vol. 17, no. 1, pp. 212–229, Jan. 2022, doi: <https://doi.org/10.3390/jtaer17010011>.

[15]Y. Lin and Z. Yu, “A bibliometric analysis of artificial intelligence chatbots in educational contexts,” *Interactive Technology and Smart Education*, vol. 21, no. 2, Mar. 2023, doi: <https://doi.org/10.1108/itse-12-2022-0165>.

[16]“Chatbots and Flipped Learning: Enhancing Student Engagement and Learning Outcomes through Personalised Support and Collaboration | IJORER : International Journal of Recent Educational Research,” *journal.ia-education.com*, Feb. 2023, Available: <https://journal.ia-education.com/index.php/ijorer/article/view/331>

[17] R. Mills, E. R. Mangone, N. Lesh, D. Mohan, and P. Baraitser, “Chatbots to Improve Sexual and Reproductive Health: Realist Synthesis,” *Journal of Medical Internet Research*, vol. 25, no. 1, p. e46761, Aug. 2023, doi: <https://doi.org/10.2196/46761>.

[18] A. Velimirovic, “Top 10 Python Machine Learning libraries,” phoenixNAP Blog, Aug. 15, 2024. <https://phoenixnap.com/blog/python-machine-learning-library>(accessed Apr. 04, 2025).

REFERENCES

[19] R. Pang, “Analysis of Python web development applications based on the Django framework,” pp. 348–348, Jul. 2024, doi: <https://doi.org/10.1117/12.3031411>.

[20] GeeksforGeeks, “Python for Machine Learning,” *GeeksforGeeks*, Apr. 16, 2024. <https://www.geeksforgeeks.org/python-for-machine-learning/?ref=lpb> (accessed Apr. 04, 2025).

[21] B. Inkster, S. Sarda, and V. Subramanian, “An Empathy-Driven, Conversational Artificial Intelligence Agent (Wysa) for Digital Mental Well-Being: Real-World Data Evaluation Mixed-Methods Study,” *JMIR mHealth and uHealth*, vol. 6, no. 11, p. e12106, Nov. 2018, doi: <https://doi.org/10.2196/12106>.

[22] C. Sweeney *et al.*, “Can Chatbots Help Support a Person’s Mental Health? Perceptions and Views from Mental Healthcare Professionals and Experts,” *ACM Transactions on Computing for Healthcare*, vol. 2, no. 3, pp. 1–15, Jul. 2021, doi: <https://doi.org/10.1145/3453175>.

[23] Batyrkhan Omarov, Zhandoz Zhumanov, Aidana Gumar, and Leilya Kuntunova, “Artificial Intelligence Enabled Mobile Chatbot Psychologist using AIML and Cognitive Behavioral Therapy,” *International Journal of Advanced Computer Science and Applications*, vol. 14, no. 6, Jan. 2023, doi: <https://doi.org/10.14569/ijacsa.2023.0140616>.

[24] K. Kretzschmar, H. Tyroll, G. Pavarini, A. Manzini, and I. Singh, “Can Your Phone Be Your Therapist? Young People’s Ethical Perspectives on the Use of Fully Automated Conversational Agents (Chatbots) in Mental Health Support,” *Biomedical Informatics Insights*, vol. 11, no. 1, p. 117822261982908, Jan. 2019, doi: <https://doi.org/10.1177/1178222619829083>.

[25] G. N. Rackoff, Z. Z. Zhang, and M. G. Newman, “Chatbot-delivered mental health support: Attitudes and utilization in a sample of U.S. college students,” *DIGITAL HEALTH*, vol. 11, Jan. 2025, doi: <https://doi.org/10.1177/20552076241313401>.

[26] E. E. Fitzsimmons-Craft *et al.*, “Effectiveness of a chatbot for eating disorders prevention: A randomized clinical trial,” *International Journal of Eating Disorders*, vol. 55, no. 3, Dec. 2021, doi: <https://doi.org/10.1002/eat.23662>.

[27] G. Park, J. Chung, and S. Lee, “Human vs. machine-like representation in chatbot mental health counseling: the serial mediation of psychological distance and trust on compliance intention,” Apr. 2023, doi: <https://doi.org/10.1007/s12144-023-04653-7>.

REFERENCES

[28] L. Balcombe, “AI Chatbots in Digital Mental Health,” *Informatics*, vol. 10, no. 4, p. 82, Dec. 2023, doi: <https://doi.org/10.3390/informatics10040082>.

2.3 Limitation of Existing System

[29] E. Broadbent and Norina Gasteiger, “Technology-enabled approaches to remote intervention delivery in health psychology.,” *American Psychological Association eBooks*, pp. 557–578, Aug. 2024, doi: <https://doi.org/10.1037/0000395-026>.

[30] R. Ahmad, D. Siemon, U. Gnewuch, and S. Robra-Bissantz, “Designing Personality-Adaptive Conversational Agents for Mental Health Care,” *Information Systems Frontiers*, Mar. 2022, doi: <https://doi.org/10.1007/s10796-022-10254-9>.

[31] L. Kettle and Y.-C. Lee, “User Experiences of Well-Being Chatbots,” *Human Factors: The Journal of the Human Factors and Ergonomics Society*, p. 001872082311624, Mar. 2023, doi: <https://doi.org/10.1177/00187208231162453>.

[32] “View of Artificial Intelligence-Powered Cognitive Behavioral Therapy Chatbots, a Systematic Review,” *Kne-publishing.com*, 2025. <https://publish.kne-publishing.com/index.php/IJPS/article/view/17395/16226>

[33] M. Mansoor, A. Hamide, and T. Tran, “Conversational AI in Pediatric Mental Health: A Narrative Review,” *Children*, vol. 12, no. 3, pp. 359–359, Mar. 2025, doi: <https://doi.org/10.3390/children12030359>.

[34] M. Moschofidou, G. Racine, I. Giordani, D. V. Chartoumpeki, A. Ameti, and G. P. Sykiotis, “Comprehensive evaluation of Medtronic’s Butterfly platform, a new audiovisual information material for patient education and shared decision-making in surgical thyroid disease,” Aug. 2025, doi: <https://doi.org/10.21203/rs.3.rs-7309071/v1>.

[35] Juan Carlos Farah, Kristoffer Bergam, Kristoffer Bergam, A. Holzer, and A. Holzer, “CHALLENGES AND OPPORTUNITIES IN INTEGRATING INTERACTIVE CHATBOTS INTO CODE REVIEW EXERCISES: A PILOT CASE STUDY,” *EDULEARN proceedings*, Jul. 2022, doi: <https://doi.org/10.21125/edulearn.2022.0932>.

[36] GeeksforGeeks, “Flask Tutorial,” *GeeksforGeeks*, Apr. 24, 2023. <https://www.geeksforgeeks.org/python/flask-tutorial> (accessed Sep. 12, 2025).

[37] “About ChatterBot — ChatterBot 1.2.7 documentation,” *Chatterbot.us*, 2025. <https://docs.chatterbot.us> (accessed Sep. 12, 2025).

APPENDIX

A1 - User Requirement Questionnaire

1. What is your age group?

Under 13

13 - 17

18 - 24

25 - 34

35 and above

2. What is your gender?

Male

Female

Non-binary/Third gender

Prefer not to say

3. What is your occupation?

Student

Working professional

Unemployed

Other:

4. How often do you use online platforms (social media, forums, etc.)?

Rarely

Occasionally

Frequently

Very frequently

5. How did you or someone you know experienced cyberbullying?

Yes, personally

Yes, someone I know

No

Prefer not to say

APPENDIX

6. Would you be comfortable using a chatbot to talk about your experiences or feelings related to cyberbullying?

Yes

No

Not sure

7. What features do you expect in a crisis-intervention chatbot?

(Select at least one)

Emotional support (empathetic conversations)

Mental health resources

Coping techniques and advice

Contact links to real counselors or helplines

Anonymous usage

8. How important is anonymity when using a support chatbot?

Not important

Somewhat important

Very important

9. How often would you see yourself using a chatbot for emotional support?

Only in emergency situations

Occasionally, when stressed

Frequently

Daily

10. Would you prefer the chatbot to respond in a more professional (clinical) tone or a friendly (casual) tone?

Professional

Friendly

A mix of both

APPENDIX

11. Do you feel that having a chatbot available 24/7 would encourage you to seek help more often?

Yes

No

Maybe

12. What kind of responses would make you trust a chatbot more?

Fast replies

Empathetic language

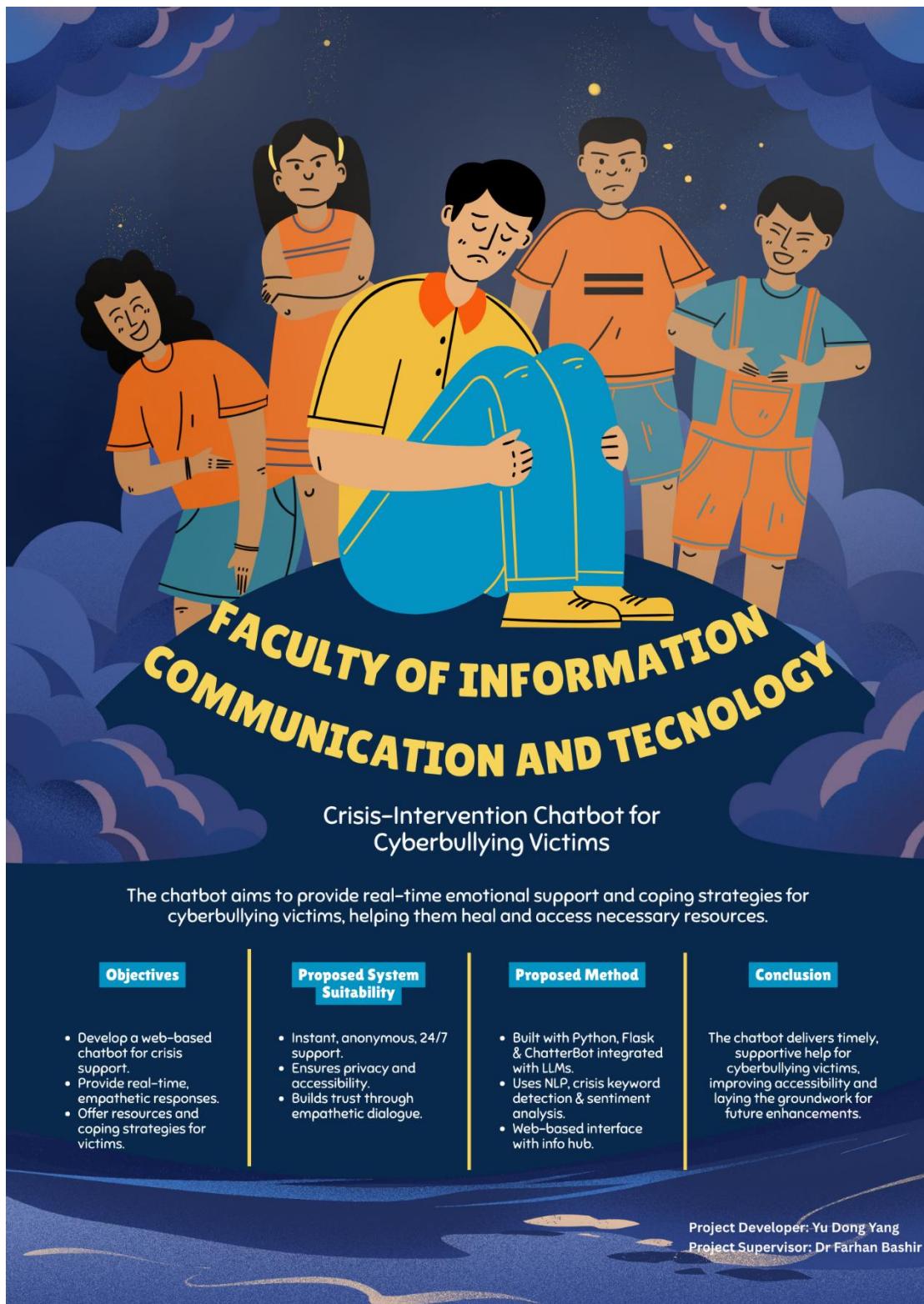
Informative answers

Other: _____

13. Would you like the chatbot to provide suggestions for further help, like links to hotlines or professional counselors?

Yes

No


14. What concerns might prevent you from using a chatbot for mental health support?

Privacy/security concerns

Lack of trust in AI

Preference for human help

A2 - Poster

