
Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

STOCK MARKET PREDICTION USING NATURAL LANGUAGE PROCESSING

BY

LOOI WEI HUNG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONOURS) BUSINESS INFORMATION

SYSTEMS

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2024

ii Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

(Supervisor’s signature)

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: STOCK MARKET PREDICTION USING NATURAL LANGUAGE PROCESSING(NLP)

Academic Session: JUNE/2024

I LOOI WEI HUNG

(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in

Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

(Author’s signature)

Address: Supervisor Name:

8,LALUAN MENGLEMBU 9

TAMAN MENGLEMBU BERLIAN

31450 IPOH,PERAK

Cik Nurul Syafidah Binti Jamil

Date: 13/9/2024 Date: 13/09/2024

iii Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY/INSTITUTE* OF _ INFORMATION AND COMMUNICATION

TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: _13/9/2024

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that LOOI WEI HUNG (ID No:

 20ACB04565) has completed this final year project/ dissertation/ thesis* entitled “_STOCK

MARKET PREDICTION USING NATURAL LANGUAGE PROCESSING(NLP)_” under the

supervision of Cik Nurul Syafidah Binti Jamil (Supervisor)

from the Department of Digital Economy Technology, Faculty/Institute* of _ INFORMATION

AND COMMUNICATION TECHNOLOGY .

I understand that University will upload softcopy of my final year project / dissertation/ thesis* in pdf

format into UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

_LOOI WEI HUNG

(Student Name)

*Delete whichever not applicable

iv Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “STOCK MARKET PREDICTION USING NATURAL LANGUAGE

PROCESSING(NLP)” is my own work except as cited in the references. The report has not been

accepted for any degree and is not being submitted concurrently in candidature for any degree

or other award.

Signature :

Name : LOOI WEI HUNG

Date : 13/9/2024

v Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I am immensely grateful to my project supervisor, Cik Nurul Syafidah Binti Jamil, for her

unconditional support and assistance throughout this time, patiently answering my questions

and humorously comforting me when I felt stressed about the progress of my project. Your

guidance has taught me to maintain a positive attitude and face challenges with a smile.

Also, I deeply appreciate the care from my academic supervisor, Mr. Tey Chee Chieh, has

shown towards my academic journey. Your youthful enthusiasm for academia is incredibly

infectious, and your continuous encouragement in facing academic challenges has been

invaluable. I must say, you are a very responsible and excellent advisor.

Besides that, I want to express my gratitude to my family for providing me with emotional

support at every stage of my life's growth. Thank you to my parents for their unwavering efforts

to nurture me with love, allowing me to enjoy a carefree learning journey. Thank you for

believing in me and allowing me to embark on the path of my own choice and always willing

to be my faithful listeners. Family is the strongest support for my soul and an indispensable

part of my heart. You have given me so much; this time, let me ease your worries and shoulder

your burdens.

Finally, I want to sincerely thank myself. Thank you for facing every aspect of yourself and

being honest with your inner self from beginning to end. Thank you for never giving up and

thank you for accepting your ordinariness. You don't have to be perfect; you are you, and I will

love you, love every aspect of you, every stage of you, and every state of you. Again, I wish

you to be strong and clear-headed, independent, and joyful. May every step you take be driven

by your passion.

vi Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

This project proposes a stock market prediction framework based on Natural Language

Processing (NLP) to improve investment decision-making, deal with the information. overload

and empower real-time decision-making. The proposed system aims to significantly enhance

prediction accuracy by leveraging NLP tools to analyse unstructured textual data and extract

hidden signals that might influence stock prices. Additionally, the project contributes to the

evolution of Financial Technology (FinTech) and provides innovative methods and techniques

to market participants to remain competitive. The report outlines the project's scope and

objectives, methods and technologies involved, and makes significant contributions to the

evolution of NLP research. The project's success offers significant benefits to a wide range of

financial stakeholders, such as investors, financial institutions, and academicians.

vii Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

1.1 PROBLEM STATEMENT 2

1.2 MOTIVATION 3

1.3 RESEARCH OBJECTIVES 4

1.4 PROJECT SCOPE AND DIRECTION 5

1.5 CONTRIBUTIONS 6

1.6 REPORT ORGANIZATION 7

CHAPTER 2: LITERATURE REVIEW 8

2.1 PREVIOUS WORKS ON STOCK MARKET PREDICTION USING NATURAL LANGUAGE PROCESSING (NLP) 8

2.2 STRENGTHS AND WEAKNESS 18

2.3 PROPOSED SOLUTION 20

CHAPTER 3: SYSTEM MODEL 22

3.1 STOCK PRICE PREDICTION FRAMEWORK 22

3.2 MODEL DESCRIPTIONS, EQUATIONS, AND THEIR ROLE IN THE FRAMEWORK 23

3.2.1 Support Vector Machine (SVM) 23

3.2.2 Long Short-Term Memory (LSTM) 25

3.2.3 Convolutional Neural Networks (CNN) 27

3.2.4 Recurrent Neural Networks (RNN) with Attention 28

3.2.5 FinBERT: Sentiment Analysis for Stock Price Prediction 32

3.2.6 FinBERT-SVM Hybrid Model 34

CHAPTER 4: EXPERIMENTAL SETUP 37

4.1 SYSTEM REQUIREMENT 37

4.1.1 Hardware 37

4.1.2 Software Involved 38

4.2 WORKFLOW 39

4.2.1 System Design Diagram 42

4.3 TIMELINE 54

CHAPTER 5: SYSTEM SIMULATION 56

5.1 DATA PREPARATION 56

5.1.1 Data Collection 57

5.1.2 Data Cleaning 58

5.1.3 Data Transformation 61

5.2 EXPLORATORY DATA ANALYSIS 70

5.3 SENTIMENT ANALYSIS 78

5.4 ADVANCED SENTIMENT ANALYSIS AND FURTHER DATA PREPROCESSING 83

viii Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5 TIME-SERIES STOCK PRICE DATA PREPROCESSING AND DATA VISUALISATION 89

5.6 MODELLING PHASE 108

5.6.1 Model Data Preparation and Transformation 108

5.6.2 Model Defining, Building And Compiling 117

5.6.3 Model Training and Training Performance Evaluation 123

5.6.4 Model Cross Validation Evaluation 130

5.6.4 Model Hyperparameters and Fine-Tuning 137

5.6.4 Model Test-Set Evaluation 144

5.6.4 Model Results Visualisation 148

5.6.5 Hybrid Modelling 167

5.7 SUMMARY 176

5.8 IMPLEMENTATION ISSUES AND CHALLENGES 177

CHAPTER 6: SYSTEM EVALUATION 179

6.1 MODEL PERFORMANCE 179

6.1.1 Perfomance Matrices 179

6.1.2 Model Train Result Evaluation 183

6.1.3 Model Cross Validation Evaluation 187

6.1.4 Model Test Set Evaluation 189

6.1.5 Final Hybrid Model Performance Evaluation 191

6.2 FINAL HYBRID MODEL VISUALIZATION 192

CHAPTER 7: CONCLUSION 194

7.1 CONCLUSION 194

7.2 FUTURE WORK 195

REFERENCES 196

APPENDIX A

ix Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure 2.1 FinBERT model architecture 10

Figure 2.2 Performance Results on RMSE in testing data 10

Figure 2.3 LSTM Model Layers 11

Figure 2.4 Accuracy metrics for IBM dataset 12

Figure 2.5 Performance Results on NASDAQ-100 Index 14

Figure 2.6 SVM’s Model Architecture 14

Figure 2.7 Classifier performance. 15

Figure 2.8 results between Original SVM and Ensemble SVM 17

Figure 2.9 Accuracy scoring between ANN and RNN 17

Figure 2.10 Average Error Value between the models with and

without sentiment

18

Figure 2.11 Prototype of proposed solution (FinBERT-LSTM) 22

Figure 3.1 Unlabelled Stock News Headline Data and its data

preparation process

26

Figure 4.2 Overall Project Framework of Stock Market Prediction 27

Figure 4.3 The type of data preparation 28

Figure 4.4 Implementation of FinBERT in sentiment Analysis and

output the Sentiment Data

31

Figure 4.5 Historical Stock Price data and its data preparation 32

Figure 4.6 Models need to train in FYP 2 32

Figure 4.7 Performance Matrices of Machine Learning models 33

Figure 4.8 Gantt Chart for FYP 1 36

Figure 4.9 Gantt Chart for FYP 2. 36

Figure 5.1 The Google Colab Platform with Colab Pro

Subscription

37

Figure 5.2 The Version of Python that Used for Project. 37

x Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3 Read “news” Csv file and its first 10 rows of data 38

Figure 5.4 Read the last 5 rows of data 39

Figure 5.5 Remove Punctuations Function 40

Figure 5.6 Remove Unknown Symbol Function 40

Figure 5.7 Drop Duplicates Rows Function 41

Figure 5.8 Output on the remaining rows after dropped duplicates 41

Figure 5.9 “Time” data type changed from object to datetime 42

Figure 5.10 “Date” data type changed from object to datetime 43

Figure 5.11 Expand Contractions Function 43

Figure 5.12 Data type of headline changed to string function 44

Figure 5.13 Normalization process on headline column. 44

Figure 5.14 remove stopwords process on headline column 45

Figure 5.15 conversion of all numbers into words process on

headline column.

46

Figure 5.16 lemmatization and tokenization process on headline

column

46

Figure 5.17 Removal of the data that consists of 3 or less than 3

tokens in tokens column

47

Figure 4.18 remaining rows of data after removal data of 3 or <3

tokens

47

Figure 5.19 Maximum and minimum tokens in tokens column 47

Figure 5.20 Do truncation and padding in tokens column 48

Figure 5.21 Vectorization results in Vec column 48

Figure 5.22 Implementation of MinMax Scaler in Vec column 48

Figure 5.23 Output of scaled data in Vec column 49

Figure 5.24 Histogram and KDE plot Diagram related distribution

of Scaled Data By Sentiment

51

Figure 5.25 Sentiment Score Distribution’s Pie Chart 52

Figure 5.26 Bar Chart related to the most frequent words in

headlines

53

Figure 5.27 Bar Chart related to the most frequent words in

headlines in term frequency

54

xi Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 4.1

Specifications of laptop

23

Table 4.2 Software Involved 24

Table 4.3 Data Description on provided Dataset “news.CSV”. 25

xii Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

NLP Natural language Processing

FinTech Financial technology

LSTM Long Short-Term Memory

RNN Recurrent Neural Network

SVM Support Vector Machine

FYP Final Year Project

BERT Bidirectional Encoder Representations from Transformers

CHAPTER 1

1 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1: INTRODUCTION

The endeavour of predicting stock market movements has been a very ongoing challenge in the

ever-evolving world of finance. Stock prices are volatile everyday and are strongly affected by

many variables, including economic trends, news events, and investor sentiment. Individual

traders and institutional investors are likely looking for the ways to acquire the competitive

advantage in understanding the dynamics of the stock market. The digital era, beside that, has

brought about a revolutional change. An abundance of textual data has identified as key aspect

of the financial sector, including financial news,social media opinions, viewpoints of experts,

and public sentiment. This textual valuable data provides priceless insights that might mean

difference between profit and loss, propelling the effort to extract actionable information from

textual sources to the forefront of financial strategy.

During this shifting terrain, Natural Language Processing (NLP), a powerful aspect of

artificial intelligence, takes the spotlight. NLP allows us to bridge the semantic complexity of

textual data with the huge number of stock market analytics algorithms can detect small

fluctuations in market sentiment, follow developing trends, and uncover crucial information

that would be hidden in massive of textual data through sentiment analysis, keyword

extraction, and linguistics pattern recognition.

Besides, the sentiment of investors is one of the most important factors that influence stock

prices movement. When investors are positive about the market, they are more inclined to

purchase stocks, and when they are pessimistic, they are likely to sell stocks. Textual data, such

as news articles, posts on social media, and financial reports, may be used to extract out

sentiment.

Consider the strength of NLP to identify an unforeseen shift in a CEO's tone during an

earnings call, identifying patterns in social media discussions about a specific stock, or quickly

summarizing the sentiment of a plethora of news articles about a specific industry sector.

These are only a few examples of NLP's transformational potential in the financial sector.

However, Natural Language Processing (NLP) face various obstacles when used to stock

market prediction in current volatile financial scenario, despite its enormous potential.

Financial markets move at breakneck pace, creating massive volumes of data in real time, and

CHAPTER 1

2 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

NLP systems must struggle with the sheer volume and velocity of this data to give timely

insights. Textual data sources can be loud and unstructured, making it difficult to ensure the

correctness and dependability of data inputs, as errors might lead to inaccurate predictions.

Furthermore, financial language is frequently sophisticated and filled with slang, sarcasm, and

metaphors, requiring NLP models to cope with the complexities of financial language in order

to effectively capture sentiment and trends. Because these models are subject to biases in the

data on which they are trained, it is important to address ethical problems and prevent prejudice

in financial sentiment research. Successful NLP projects in finance need a thorough grasp of

both language processing and financial markets, emphasizing the necessity of cooperation

between linguists and financial professionals in solving these complex issues.

1.1 Problem Statement

Inaccurate Predictions

The problem of inaccurate stock market predictions derives from traditional forecasting models'

excessive reliance on numerical data and quantitative research. These models rely heavily on

past market data, such as price movements and trade volumes, while mainly disregarding the

importance of textual data and mood. Financial news, social media posts, analyst reports, and

public sentiments are all rich sources of information that can have an immediate impact on

market sentiment and stock prices. Traditional models struggle to account for the market's

dynamic nature, resulting in projections that frequently overlook key subtleties caused by mood

and news events. The intrinsic complexity of human behaviour in financial markets, fast swings

in market sentiment, and stock market volatility all pose further challenges to the accuracy of

these models.

Information Overload

The difficulty of information overload in financial markets stems from the ever- growing

number of unstructured textual data sources such as articles on the news, social media

discussions, and expert opinions. In the modern era of technology, the vast amount of

information created on a daily basis can be intimidating for investors and traders looking to

make informed decisions. This deluge of data presents a big challenge since investors must not

only consume it but also extract significant insights from it. The process is exacerbated further

by the unstructured nature of textual data, which lacks the nicely organized arrangement of

CHAPTER 1

3 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

numerical data. Investors confront the onerous task of spotting crucial signals among the noise,

looking at market sentiment, and evaluating growing trends in real time.

Complicated Financial Language

Traditional stock market prediction models have significant problems due to the complexities

of complicated financial terminology. Financial discourse is characterized by its extensive use

of industry-specific terminologies, sophisticated terminology, and nuanced subtleties that can

evade simple understanding. This language complexity extends to diverse financial

instruments, market dynamics, and economic indicators, making traditional models difficult to

fully understand and analyze. Misinterpretations of sentiment and market trends occur

frequently because these algorithms struggle to distinguish tiny differences in language, tone,

and context. An apparently favourable remark in the financial industry, for example, may

include underlying risks or uncertainties that need a more sophisticated analysis.

1.2 Motivation

The motivation for this project stems from a essential need to improve the accuracy of stock

market predictions, a important part of the financial sector. The stock market is a gauge of

economic health, with a significant impact on global economies and individual financial well-

being. Accurate predictions of stock price changes have enormous significance that goes

beyond intellectual interest. They have a direct influence on investors, firms, and economies as

a whole. In the first , this project seeks to improve investor decision-making. Individual traders

managing their money or institutional investors managing large portfolios all have one aim in

mind: to make informed decision that result in favourable outcomes. The capability to

accurately predict stock price changes gives investors a competitive advantage, allowing them

to optimize their investment strategies, minimize risks, and maximize returns.

Furthermore, it addresses the difficulty of dealing with the digital age's information deluge.

The sheer volume of textual data produced daily, which includes financial news, social media

discussions, analyst reports, and company communications, provides both an opportunity and

an obstacle. While this data contains key details, manually collecting and evaluating it is a

daunting task. Natural Language Processing (NLP) emerges as an essential strategy for quickly

navigating this data landscape and extracting hidden signals that might influence stock prices.

Furthermore, this project makes significant contributions to the evolution of financial

CHAPTER 1

4 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

technology (FinTech). FinTech is revolutionising established financial practices, and the

financial industry has seen amazing technological innovation. We embrace the forefront of

financial technology by incorporating NLP into stock market prediction, pushing the limits of

what is possible. Besides, this project also makes a significant contribution to the continuous

evolution of FinTech by providing innovative methods and techniques to market participants

for them to remain competitive in a continually changing marketplace. Furthermore, it aims to

bridge the theoretical and practical divides. Academic research is frequently restricted to

theoretical domains, isolated from real- world applications. This project strives to fill that need

by turning cutting-edge NLP research into useful tools and methods. This promotes a closer

relationship between academia and industry, ensuring that our results have practical, real-world

systems that benefit both researchers and practitioners.

1.3 Research Objectives

To Enhance Prediction Accuracy with NLP

The objective is to build a stock market prediction system that leverages Natural Language

Processing (NLP) methods. The major goal is to drastically enhance the accuracy of predictions

by tackling a long-standing issue: the limits of traditional models that rely largely on numerical

data. Traditional prediction models are reliant mostly on numerical data, such as historical price

movements and trade volumes, and frequently overlook the ever-changing nature of financial

markets, which are impacted by real-time textual data sources such as financial news, social

media trends, analyst reports, and public sentiment. This research intends to overcome this gap

by using NLP approaches and employing NLP algorithms to extract significant insights from

textual material. This comprises sentiment analysis, keyword extraction, and linguistic

recognition of patterns, resulting in more exact predictions for investors and financial experts.

To Achieve Efficient Textual Data Processing

The objective focuses on developing streamlined mechanisms inside the stock market

prediction system to successfully handle and analyses massive amounts of textual data

provided from a variety of sources, such as financial news, social media discussions, analyst

reports, and public opinion. The crucial requirement here is to address the persistent issue of

information overload that afflicts financial markets in the digital age. The vast amount of textual

data generated daily is mind-boggling, posing both a chance and a major issue. It includes a

wide range of sources, each of which has significant information, but the unstructured nature

CHAPTER 1

5 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

of this data can overwhelm investors and financial experts. Sifting through this deluge manually

is a tremendous task, and typical numerical data analysis is insufficient in this case. To make

informed decisions, it is critical to analyses textual data rapidly, extract relevant signals, and

detect growing trends in real-time. This project intends to allow investors and financial

institutions to traverse this data landscape successfully by delivering efficient textual data

processing with NLP, guaranteeing they can stay well-informed, optimize their investment

strategies, and respond quickly to market dynamics.

To Handle Complex Financial Language

The objective is to include powerful NLP algorithms into the stock market prediction system

to comprehend complicated financial terminology. Financial conversations are loaded with

industry-specific jargon, complicated jargon, and nuanced nuances that defy simple

comprehension. These language complexities extend over a wide range of financial instruments,

market dynamics, and economic indicators, leaving traditional models insufficient for complete

analysis. Because of their incapacity to distinguish small linguistic differences in tone, context,

and meaning, they frequently misinterpret sentiment and market trends. By using cutting-edge

NLP algorithms, the stock market prediction system can successfully navigate this complex

financial language terrain, allowing for a deeper and more precise comprehension.

1.4 Project Scope and Direction

The primary scope of the "Stock Market Prediction Using NLP" project is to pioneer a novel

and revolutionary system that improves the accuracy and efficacy of stock market predictions.

At its core, this project's another crucial scope is to leverage the potential of Natural Language

Processing (NLP) tools, combining the complexities of language research with the

mathematical precision of financial forecasting. The project's scope encompasses several key

areas, including:

(1) Build a comprehensive stock market prediction framework.

(2) Implement Natural Language Processing (NLP) techniques for enhanced prediction

accuracy.

(3) Process and analyse large volumes of unstructured textual data from various sources,

including financial news, social media, analyst reports, and public sentiment.

CHAPTER 1

6 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

(4) Incorporate advanced NLP algorithms to decipher complex financial language,

industry-specific terminologies, and nuanced subtleties.

(5) Provide timely insights to investors and financial professionals.

(6) Address the challenge of information overload in the digital age.

(7) Bridge the gap between traditional numerical data analysis and the linguistic richness of

textual data for stock market predictions

1.5 Contributions

The project contributes significant benefits to a variety of financial stakeholders. First and

foremost, investors, both individual traders and institutional corporations, stand to benefit

greatly from this system. This project's improved prediction accuracy enables investors to make

better informed decisions. Investors may significantly enhance their financial well-being by

optimising their investing strategy, minimising risks, and maximising rewards.

Furthermore, the project provides tremendous advantages to a wide range of financial

stakeholders. At its core, this approach will enormously benefit investors, both individual traders

and bigger organizations. The enhanced prediction accuracy of this project allows investors to

make more informed decisions.

By maximising their investment approach, reducing risks, and optimising returns, investors

may dramatically improve their financial well-being. In addition, incorporating powerful NLP

algorithms improves comprehension of complicated financial jargon and industry-specific

terminology. This benefits not just investors by boosting the accuracy of sentiment and market

trend interpretation, but it also helps financial institutions and analysts provide more accurate

insights to their clients. A better understanding of market dynamics improves the financial

sector, enabling improved decision-making and risk management practises.

Also, the project's emphasis on real-time decision-making is extremely important in the

fast-paced world of financial markets. Investors and financial professionals may adapt quickly

to shifting market mood, seize opportunities, and reduce risks, all of which contribute to their

success.

CHAPTER 1

7 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.6 Report Organization

The report is divided into five sections, each of which focuses on various aspects of the "Stock

Market Prediction Using Natural Language Processing" project. In chapter 1, it introduced the

project’s problem statement, motivation, objectives, project scope and contributions, which

ended with an overview of the report organization. Then, in chapter 2, it will focus on reviews

the natural language processing and their applications in financial analysis, which is focusing

on the sentiment analysis with FinBERT, as well as LSTM,CNN,RNN with attention

mechanism, and SVM algorithms for the sequential data analysis in stock market prediction.

For the chapter 3,it will detail out project’s system model, which is the models used for the

whole project, that started from data preparation until Performance Evalaution, and also include

the Gantt Chart for Final Year Project (FYP) 1 and Gantt Chart for FYP 2.Furthermore,chapter

4 will present the project’s experimental work on the model’s development of financial news

sentiment analysis integration with the financial fine-tuned machine learning algorithm, which

is ML model.In chapter 6,,models evaluation and results showed and produced final model,

which was FinBERT-SVM Lastly, chapter 7 will conclude the whole FYP , providing a

comprehensive understanding of the project’s contents and outcome.

CHAPTER 2

8 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2: Literature Review

2.1 Previous works on Stock Market Prediction using Natural Language Processing

(NLP)

Natural Language Processing (NLP) and Stock Market Prediction

As stock market price prediction is not based on a predetermined mathematical formula, it will

be a very challenging task. It is sensitive to change at any time depending on a few factors,

such as changes in politics and inflation. Still, we may make reasonably accurate short-term

predictions by finding patterns in the data. Machine learning techniques have been applied to

overcome the short-term prediction problem, allowing humans to estimate figures that are

nearly right.[1] In addition, a large number of news articles are produced every day, offering an

extensive amount of helpful data for stock market analysis. These articles link positive news to

exceptional performance and negative news to an organization's subpar performance. This

implies that news reports can be studied to learn more about the trend of a stock. In order to

extract the important insights that financial institutions and investors need to make educated

decisions about stock market predictions, all textual data that contains valuable stock market

information has been used as indicators to increase stock prediction rates using natural

language processing (NLP). NLP can also be used to conduct sentiment analysis to understand

people's sentiment or reaction, such as analyst opinions, public perceptions, and investors'

emotions on news articles. As a result, the field of prediction analytics, which had previously

relied heavily on traditional quantitative models as well as technical analysis of the stock's graph

candle indications, has gained a fresh perspective with the introduction of NLP.

CHAPTER 2

9 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FinBERT and Stock News Sentiment Analysis

One excellent method of anticipating the short-term movement of equities is textual stock news

information. Stock news headline sentiment analysis is a useful method for evaluating a stock's

short-term performance.[1] A pre-trained NLP model called FinBERT, a BERT-based variant,

is particularly good at analysing the sentiment of financial textual data from stock news stories.

FinBERT is built by refining the BERT language model for financial sentiment categorization

with additional training in the finance domain utilizing a large financial text collection, as J.

Wang[4] has noted [2]. They achieved excellent results on FiQA's emotion scoring and

Financial PhraseBank. They also achieved a 15% improvement in the categorization task's

state- of-the-art accuracy. In addition, FinBERT uses textual news data as inputs for string

analysis, producing three sentiment labels—positive, negative, or neutral—as well as a score

between 0 and 1.Furthermore, a higher score The FinBERT analyser evaluates strings from 0

to 1 and outputs a sentiment label (positive, negative, or neutral) after analysis. Higher levels

of reliability in the corresponding label are indicated by higher scores. The FinBERT

algorithm's model architecture is shown in the figure below.

Figure 2.1 FinBERT model architecture

CHAPTER 2

10 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Based on [3], K.Puh and M.B.Babac also stated that FinBERT achieved the best Root Mean

Square Error (RMSE), 370.155, which is the lowest errors on average in term of calculate the

square root of the average of squared differences between predicted values and true values with

their data compared to Gated recurrent unit (GRU) with the pairs of price and sentiment score,

GRU with only prices, Autoregressive Integrated Moving Average(ARIMA),LSTM and also

Convolutional Neural Network (CNN).So that, it proved that the NLP model outperformed

other algorithms, which is some of them were pure time-series models in term of doing this type

of prediction task. So that, the FinBERT concluded as the best model to predict the stock price

movement by analyse the news sentiment.

Figure 2.2 Performance Results on RMSE in testing data[3]

Time Series models and Stock Market Prediction

The environment surrounding the stock market has changed dramatically in recent decades due

to technological advancements. Predicting stock prices and returns and evaluating stock market

activity are only two of the many fields in which machine learning and deep learning have

become indispensable. This development has greatly helped industry professionals, who now

have access to more precise stock market predictions to aid in their investment decisions [4].

The field of stock market prediction has fundamentally transformed because of machine

learning and deep learning, which make it easier to predict stock prices and market behavior.

Additionally, it has introduced new models for market analysis and managing time-series data.

CHAPTER 2

11 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Long Short-Term Memory (LSTM)

According to [5], LSTM networks are an improvement over conventional Recurrent Neural

Networks (RNNs), which were created to deal with the difficulty of remembering information

across longer sequences. LSTM networks are superior at managing long-term dependencies,

whereas RNNs are mainly concerned with capturing links between recent and present input.

The capacity of LSTM to retain knowledge from earlier phases is extremely helpful in the

context of stock market prediction, where projections mostly depend on large amounts of past

data. LSTM guarantees constant learning rates and improves prediction accuracy by addressing

problems such as the vanishing gradient problem, which is frequently encountered in models

handling huge datasets. Additionally, the model efficiently identifies pertinent features for

prediction and analyses sequential data.

Figure 2.3 LSTM Model Layers [5]

CHAPTER 2

12 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Based on[6], L.Kotapati et.al showed that the LSTM model achieved an quite better accuracy

of 66% and still outperformed most of the models,which is SVM(51%), Decision Tree(51%) ,

also Naïve Bayes(51%) and others models mentioned inside although it still lose to the highest

accuracy of 92 % from MLP. This shows that the LSTM still a better model to handle time-

series data in term odf stock market predictions and achieved a quite good stock patterns result.

The accuracy performance results of various models are shown in Figure 2.4.

It is specifically made for time series data categorization when integrating with FinBERT

for hybrid model, with FinBERT handling the sentiment analysis role.[7] In addition, the Long

Short-Term Memory (LSTM) model will extract features from sequential input data, such as

historical stock prices and sentiment scores produced by FinBert, which are required to forecast

changes in stock prices. Consequently, the sentiment results from FinBERT as well as previous

stock price data will have an impact on the final predictions.

Figure 2.4 Accuracy metrics for IBM dataset [6]

For the performance of FinBERT-LSTM hybrid model, S.Halder in [1] has examined few

models with NASDAQ-100 Index, which were Multilayer Perceptron(MLP), Long Short Term

Memory(LSTM) and also FinBERT-LSTM and found out that the FinBERT-LSTM has the

best accuracy in stock price prediction , which was 98.59% compare to the MLP(98.23%) and

LSTM(98.54%).In term of Mean Absolute Error(MAE),it was performed as the best, which is

174.94, the smallest errors on average compare to LSTM(180.58) and MLP(218.33).Also, In

results of Mean Absolute Percentage Error (MAPE), FinBERT-LSTM also achieved the best

CHAPTER 2

13 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

performance in result of 0.01410, smallest error percentage errors on average while compared

to LSTM(0.01457) and MLP(0.01767).That’s mean that integrate the news sentiment and time

series classification can improve the model to gain the best stock patterns in term of prediction

in stock market.

Figure 2.5 Performance Results on NASDAQ-100 Index [1]

CHAPTER 2

14 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Support Vector Machine (SVM)

Machine learning techniques that utilize Support Vector Machine (SVM) are used to create

regression analyses and classifications. An SVM operates by being given a training dataset that

consists of samples that are divided into two different groups. SVM takes centre stage in this

predictive modelling methodology. It takes data points and transforms them into a high-

dimensional feature space. Next, it finds the best hyperplane to distinguish between positive

and negative stock market performance.[6]

Figure 2.6 SVM’s Model Architecture [8]

In term of the performance of SVM , the researchers in [9] has showed its accuracy of

performance matrix, which is 86.67% , better than Random Forest (RF),73.33% in this case by

using the open-source available dataset using MATLAB software for training. It is considerable

as the model in classification task and suitable for handling time series sequential stock data

although it beat out by the Neural Network (NN) with the best score of 94.17%

Adding SVM to the hybrid model with FinBERT will involve using it first for feature

extraction from the sentiment analysis output of FinBERT, which is their sentiment score,

which is produced from an analysis of financial text data. After that, it will be trained to spot

patterns and connections between the input features and their matching labels, enabling it to

predict the stock market's most likely future movement.

CHAPTER 2

15 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.7 Classifier performance [9]

Based on the [10], J.X.Liu et.al stated the performance of ensemble SVM after integrated

with the FinBERT were higher than the original SVM in overall results as shown in Figure

2.8.The best F1 score that achieved by ensemble SVM is 65.30 % ,while original

SVM achieved the best one of 62.19%.This proved that Integrated with FinBERT is absolutely

an improved way on performance matrices for ensemble SVM and outperformed the original-

based SVM in order to increase the prediction rates in stock market price.

Figure 2.8 results between Original SVM and Ensemble SVM [10]

CHAPTER 2

16 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are widely used in many different applications due to its

built-in "memory" mechanism, which allows them to absorb information from previous

elements in a sequence during output creation. A directed graph is formed along the sequence

by the interconnected units that set RNNs apart and allow them to perform jobs where the

context provided by previous elements is necessary for output production. Specifically, RNNs

are very useful for analysing sequential data, such past stock prices, or market indicators, in

the context of stock prediction analysis. RNNs can identify underlying patterns and trends that

could impact future market behaviour by identifying temporal dependencies in the data. This

is a useful predicting tool for traders and investors.[12].

Based on [11], the researchers found out that RNN is outperformed the Artificial Neural

Network (ANN), which were 87.32 % compared to only 58% in term of accuracy. This means

that it will be a good option to choose for training as models for sequential data in form of time

series for stock market data. And can achieved good results for the stock price movement and

patterns.

Figure 2.9 Accuracy scoring between ANN and RNN [11]

Since RNNs are specifically made to handle sequential data, they are a good choice for

applications like analysing historical stock prices or market indicators. This is because they can

be integrated with the FinBERT. They generate output by processing data sequentially,

considering the pieces that came before it. Additionally, it functions in combination with RNNs

and FinBERT's sentiment analysis features. RNNs process sequential data, such as historical

CHAPTER 2

17 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

stock prices or market indicators, and add further insights to FinBERT's analysis by processing

it. FinBERT does sentiment analysis on financial text data. Then, as it goes through the training

process, it may adjust its parameters to maximize performance and boost accuracy in order to

produce the best prediction. It will then discover stock patterns and relationships within the

data.[2]

Based on [13], the researchers just mentioned that they are using FinBERT- RNN model to

do the stock price prediction task. However, there has no results related to its performance

matrices like accuracy showing in this paper due to the paper not accessible to public for free

of charge. So that, LSTM-GRU is used to integrate with FinBERT , which is similar to RNN

model as to shows the results of the model , that might closely to same performance as RNN

model. Therefore, in [14], the LSTM-GRU model with sentiment is smaller than the ones

without sentiment in term of average error value. For example, in term of RMSE, the LSTM-

GRU model with sentiment achieved the lowest of 10.02 compared the one without sentiment,

which was scored 11.31 in its lowest record. This means that integrated with the FinBERT can

improved significantly as hybrid model to increase the prediction rated in the area of stock

market to gain better insights in term of investing.

Figure 2.10 Average Error Value between the models with and without sentiment [14]

CHAPTER 2

18 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Strengths and Weakness

Model/ Algorithm Strength Weakness

FinBERT • Better sentiment understanding, which assists in

identifying the sentiment of news articles, which has

an impact on stock prices, by offering positivity,

negativity, and neutrality scores.[1]

• Domain-driven Analysis: designed specifically for

financial text analysis, it can comprehend and

evaluate sentiments specific to finance industry.[1]

• Accuracy decreased when the word orderings in

sentences randomized [13].

LSTM • Long-Term Dependency Handling: Able to capture

long-term dependencies in sequential data by solving

the vanishing gradient issue[1]

• Costly as well as difficult to understand and train:

Needs an extensive amount of computational power,

textual data, and training time.[15]

CHAPTER 2

19 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

SVM • Robust to overfitting: Their regularization parameters

that prevent overfitting issue even in the case of

limited training data.

• Better handling with sequential data: Helpful in time

series analysis and suited for processing the

sequential data like stock price changes over time,

where the order of the data points is important.[1]

• Lack of interpretability: less interpretable than some

other models because give limited insight into the

underlying relationships in the data.[7].

RNN with Attention

Mechanism
• Variable-length sequences: Adaptable for scenario

where the length of input data might vary since

able to handle input sequences of different length.[7]

• Training instability: RNN’s training can unstable,

particularly when deal with lengthy sequences, as

errors may vanish in process of back-propagation.[7]

• Difficult to capture the complex patterns: Struggling

in capturing complex patterns for sequential data

While dealing with tasks that require precise timing.

CHAPTER 2

20 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.3 Proposed Solution

The proposed solution for the "Stock Market Forecasting Using NLP" project introduces a

hybrid model that fuses FinBERT (Financial Bidirectional Encoder Representations from

Transformers) and SVM (Support Vector Machine) (FinBERT-SVM) architectures. This

hybrid models aims to combine the unique strengths of each model to enhance the accuracy

and robustness of stock market predictions.

FinBERT, a model based on transformer architecture, specializes in grasping the Financial

contextual intricacies of language. It gains proficiency by undergoing pre- training on extensive

financial textual data, allowing it to comprehend complex relationships between words and

phrases in textual information from financial news headlines. In the realm of stock market

prediction, FinBERT's proficiency lies in its ability to interpret the nuances of financial news

and analyst reports. This capability enables the model not only to gauge sentiments as positive

or negative or neutral but also to grasp the subtleties in language that can sway stock prices.

Conversely, SVM represents a recurrent neural network design tailored for the analysis of

sequential data. Its effectiveness is evident in capturing dependencies and patterns within time-

series data, which is critical for predicting stock market trends. SVM's sequential learning

capabilities enable it to identify trends, cycles, and recurring patterns within historical stock

price data. This sequential analysis complements FinBERT's contextual understanding as it

zeroes in on the temporal facets of market behaviour.

The integration of FinBERT and LSTM results in a symbiotic relationship. FinBERT excels

at preprocessing financial textual data, extracting significant features and embeddings that

LSTM can subsequently utilize for sequential analysis. The amalgamation of contextual

comprehension and sequential learning in the hybrid model leads to more accurate and insightful

stock market predictions. This approach considers a more extensive array of financial textual

data sources, acknowledges their historical context, and adapts to evolving market dynamics.

An essential benefit of this hybrid model lies in its refined sentiment analysis and time-series

classification. While FinBERT enhances sentiment polarity detection and intensity assessment,

LSTM further hones this analysis by incorporating historical trends. This fusion results in a

more nuanced grasp of market sentiment, equipping the model to detect subtle shifts that can

potentially influence stock prices.

CHAPTER 2

21 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.11 Prototype of proposed solution (FinBert-SVM)

CHAPTER 3

22 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: System Model

3.1 Stock Price Prediction Framework

The Stock Price Prediction Framework integrates both machine learning and deep learning

models to forecast the next day’s Close price of a stock. This framework leverages a variety of

quantitative features, such as historical stock prices, trading volume, and technical indicators,

alongside qualitative insights derived from market sentiment analysis, which is processed using

FinBERT. The dataset used in the framework includes several key features: ‘Open’, ‘High’,

‘Low’, ‘Close’ prices represent the stock's performance throughout a single trading day, with

the ‘Close’ price serving as the target for prediction. ‘Volume’ indicates the total number of

shares traded during the day, reflecting overall market activity. ‘Headline’ is a textual feature

that contains financial news, which is processed using FinBERT to generate sentiment insights.

‘sentiment_score’ is a numerical value generated by FinBERT that captures the sentiment of

the ‘Headline’ data, categorizing it as positive, neutral, or negative. ‘Close_lag1’ and

‘Close_lag2’ represent the stock’s closing price from the previous days, enabling the model to

capture the temporal dependencies in stock price behaviour. ‘Close_rolling_mean’ and

‘Close_rolling_std’ provide rolling statistics, such as the average price and volatility over a

certain time window, helping the model understand the stock’s trend and variability.

The framework utilizes six distinct models to maximize prediction accuracy. The Support

Vector Machine (SVM) is designed to capture non-linear relationships between features like

Volume and sentiment_score, which makes it ideal for modelling the complex interactions

within the dataset. Long Short-Term Memory (LSTM) networks are incorporated to handle

long-term dependencies in sequential stock price data, utilizing memory cells to retain crucial

historical patterns. Convolutional Neural Networks (CNN) are applied to detect local patterns

and short-term trends in stock price data, such as sudden spikes in price or volume.

In addition to these, Recurrent Neural Networks (RNN) with Attention mechanisms

prioritize critical time steps by assigning weights to important events or trends, ensuring that

key moments in the stock price history have a larger influence on predictions. The framework

also includes a hybrid model called FinBERT-SVM, which combines FinBERT's ability to

analyze sentiment from textual financial data with the SVM model’s capacity to model non-

linear relationships between market sentiment and stock prices. Lastly, FinBERT itself is used

CHAPTER 3

23 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

as an independent model to generate sentiment_score from Headline data, integrating market

sentiment directly into the stock price prediction process.

3.2 Model Descriptions, Equations, and Their Role in the Framework

3.2.1 Support Vector Machine (SVM)

Framework Structure and How It Works

The Support Vector Machine (SVM) is a supervised learning model primarily used to handle

non-linear relationships between stock price features and the target Close price. In stock

markets, the relationship between features like ‘Volume’, ‘sentiment_score’, and stock price

movement is often non-linear. The SVM model employs a Radial Basis Function (RBF) kernel

to map the input features into a higher-dimensional space where these non-linear relationships

become easier to model.

The SVM works by identifying support vectors, which are key data points that define the

decision boundary in the transformed feature space. In this case, the support vectors are the

most influential stock price data points that help in determining the stock’s future price.

[SVM Equation]

The SVM model is based on the following mathematical equation:

𝑛

𝒇(𝒙) = ∑ 𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑖=1

Where:

• 𝑥 is the input feature vector, which includes ‘Volume’, ‘sentiment_score’, ‘Close_lag1’,

‘Close_rolling_mean’, and ‘Close_rolling_std’.

• 𝐾(𝑥𝑖, 𝑥) is the Radial Basis Function (RBF) kernel

𝐾(𝑥𝑖, 𝑥) = exp (−γ||𝑥𝑖 − 𝑥||2

• where γ is a hyperparameter that controls the spread of the RBF kernel, determining

how flexible or complex the decision boundary will be.

CHAPTER 3

24 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• 𝛼𝑖 are the learned coefficients associated with each support vector 𝑥𝑖.

• 𝑏 is the bias term that adjusts the model’s prediction

Explanation

• RBF Kernel: The RBF kernel is essential for mapping the input features into a higher-

dimensional space, where non-linear relationships become linear and easier to model.

For example, the relationship between ‘Close’ and ‘sentiment_score’ may not be

straightforward, but the kernel transformation allows the SVM to model these

interactions more effectively.

• Support Vectors: The SVM model does not rely on all data points; instead, it focuses

on a subset of key data points called support vectors. These vectors are close to the

decision boundary and define the model’s predictive power, allowing it to generalize

well even with complex, non-linear data.

Role in the Framework

The SVM model is critical for modeling non-linear relationships between features like Volume

and sentiment_score and stock price movements. By transforming the input data using the RBF

kernel, SVM enables the framework to handle cases where stock price movements are not

directly proportional to changes in features. This is especially useful in predicting stock prices

influenced by market sentiment, where changes in sentiment_score may have a significant but

non-linear impact on stock price.

CHAPTER 3

25 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.2 Long Short-Term Memory (LSTM)

Framework Structure and How It Works

The LSTM model is a type of Recurrent Neural Network (RNN) that is designed to handle

sequential data by maintaining a memory of past information over long periods. Stock prices

are inherently sequential, and the price movements on one day are often influenced by prior

trends and patterns. The LSTM model is particularly useful in this context because it can learn

and remember long-term dependencies in stock prices.

An LSTM unit consists of three gates—the forget gate, input gate, and output gate—which

together control the flow of information. The forget gate decides how much of the past

information to retain, the input gate determines how much of the new information to store, and

the output gate decides what part of the information to pass on to the next step.

[LSTM Equations]

The LSTM model works through the following key equations:

1. Forget Gate:

𝒇𝒕 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓

The forget gate controls how much of the past information 𝐶𝑡−1should be retained.

2. Input Gate:

𝒊𝒕 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡]𝑏𝑖)

Å𝒕 = 𝜎(𝑊𝐴 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐴)

The input gate determines how much new information from the current input should be

added to the cell state.

CHAPTER 3

26 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Cell State Update:

𝑪𝑡 = 𝑓𝑡 ∙ 𝑪𝑡−1 + 𝒊𝑡 ∙ Å𝒕

The cell state 𝑪𝑡 is updated based on both the forget gate and input gate.

4. Output Gate:

𝒐𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡]𝑏𝑜)

𝒉𝑡 = 𝑜𝑡 ∙ tanh (𝑪𝑡)

The output gate decides what information from the cell state will be passed to the next hidden

state 𝒉𝑡.

Explanation

• Forget Gate: The forget gate 𝒇𝒕 is responsible for deciding what portion of the previous

information should be discarded. This is critical in stock price prediction, where not all

historical data is equally important. For example, the model may choose to forget

information about price fluctuations that occurred months ago if they are no longer

relevant.

• Cell State: The cell state 𝑪𝒕 retains long-term memory of the stock price trends. This is

particularly useful in capturing recurring patterns in stock prices, such as weekly or

monthly trends.

• Output Gate: The output gate decides which parts of the information stored in the cell

state should influence the next prediction.

Role in the Framework

The LSTM model is vital for capturing long-term dependencies in stock prices. It allows the

framework to learn from extended sequences of stock price data, ensuring that important trends

and patterns are preserved over time. For example, the LSTM model might learn that a

CHAPTER 3

27 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

consistent rise in ‘Close_lag1’ over several days often leads to an upward trend in stock prices.

By incorporating ‘sentiment_score’ along with traditional stock price features, the LSTM

model can better predict future price movements based on both quantitative and qualitative

data.

3.2.3 Convolutional Neural Networks (CNN)

Framework Structure and How It Works

The Convolutional Neural Network (CNN) is designed to identify local patterns and short-term

trends in stock price data. While CNNs are traditionally applied in image recognition tasks,

they have also proven effective in time-series data analysis, such as stock prices. In the context

of stock price prediction, CNNs capture small, localized patterns within sequences of input

features, such as sudden spikes in trading volume or sharp price movements over a short period.

The CNN model operates by applying convolutional filters over input sequences, such as

stock prices or sentiment scores, to extract relevant features. These features are then passed

through pooling layers to reduce the dimensionality and retain only the most important patterns,

followed by fully connected layers to combine the learned features and make a prediction. In

this framework, CNN focuses on detecting short-term variations in the stock prices, such as

rapid changes in the ‘Volume’, ‘Close’, and ‘sentiment_score’, that might indicate significant

price movements.

[CNN Equation]

The convolution operation in a 1D CNN for stock price data can be represented as:

𝒉𝒊 = ∑ 𝑋𝑖+𝑚 𝑤𝑚 + 𝑏

𝑚

Where:

• 𝑋𝑖+𝑚 represents the window of input data, such as stock prices, ‘Volume’, or

‘sentiment_score’, over a specific time period.

• 𝑤𝑚 are the filter weights learned by the model to detect important patterns in the input

sequence.

CHAPTER 3

28 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• 𝒉𝒊 is the output feature map, which represents the presence of certain patterns in the

stock price data.

• 𝑏 is the bias term added to the convolution output.

After the convolution operation, pooling layers are applied to reduce the size of the feature

maps, focusing on the most relevant information while discarding unnecessary details.

Explanation

• Convolutional Filters: CNNs use multiple filters to scan through input sequences (such

as ‘Volume’ or ‘Close’ prices) and detect important short-term trends or anomalies.

These filters are tuned to capture local relationships in the data, such as the impact of a

sudden increase in ‘Volume’ or changes in the ‘sentiment_score’ on the stock price

over a few days.

• Feature Maps: Each filter produces a feature map, which highlights areas in the data

where certain patterns are detected. For example, a filter might detect a sharp price

spike, which could indicate a significant short-term trend that affects the stock price.

• Pooling: After the convolution, pooling reduces the dimensionality of the feature maps

by retaining only the most important information. This ensures that the model focuses

on key trends without overfitting to minor fluctuations.

Role in the Framework

The CNN plays a crucial role in capturing short-term trends and local patterns in the stock price

data. By focusing on localized features, such as sudden changes in Volume or price movements

influenced by market sentiment, CNN enhances the framework’s ability to detect and react to

rapid fluctuations in stock prices. For instance, if a stock experiences a sudden surge in

‘Volume’ following a positive news headline, the CNN can detect this short-term pattern and

adjust the stock price prediction accordingly. This makes CNN particularly useful for

identifying trends that might not be visible when analyzing longer time frames or more complex

relationships captured by other models like LSTM or SVM.

3.2.4 Recurrent Neural Networks (RNN) with Attention

Framework Structure and How It Works

CHAPTER 3

29 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Recurrent Neural Networks (RNN) are designed to model sequential data by maintaining a

hidden state that updates with each time step. While standard RNNs are powerful in capturing

dependencies over time, they can struggle with long sequences where distant past information

is important for making current predictions. The Attention mechanism was introduced to

address this limitation by allowing the model to focus more heavily on the most relevant parts

of the sequence.

In stock price prediction, the RNN with Attention mechanism enables the model to weigh

certain historical events or trends more heavily than others. For example, the model might

assign more importance to time steps where there was significant price volatility or where

sentiment scores spiked, compared to more routine price movements. By focusing on these

critical time steps, the RNN with Attention is better equipped to make accurate predictions

based on both the sequence of stock prices and other features like volume and sentiment.

[RNN with Attention Equations]

The RNN model processes sequential data using the following key equations:

1. Hidden State Update:

𝒉𝑡 = 𝜎(𝑊ℎ ∙ [ℎ𝑡−1, 𝑥𝑡]𝑏ℎ)

Where:

• 𝒉𝑡is the hidden state at time 𝑡, which is influenced by both the previous hidden

state ℎ𝑡−1 and the current input 𝑥𝑡(example , stock prices, volume, sentiment).

• 𝑊ℎare the learned weights, and 𝑏ℎ is the bias term.

2. Attention Weights Calculation: The attention mechanism calculates a score for each

time step to determine its importance:

𝒆𝑡 = 𝑣𝑎 ∙ 𝑡𝑎𝑛ℎ(𝑊𝑎 ∙ ℎ𝑡𝑏𝑎)

where:

• 𝒆𝑡 represents the alignment score for time step 𝑡 , measuring how relevant the hidden

state ℎ𝑡is to the prediction.

CHAPTER 3

30 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• 𝑊𝑎 and 𝑣𝑎 are learned weight matrices, and 𝑏𝑎 is the bias term.

3. Attention Score (Softmax): The attention weights 𝛼𝑡 are computed using a softmax

function to normalize the alignment scores:

𝛼𝑡 =
∑𝑛

exp (𝑒𝑡)
exp (𝑒)

𝑘=1 𝑘

The attention weight 𝛼𝑡 represents the importance of the hidden state at time step 𝑡

relative to the entire sequence.

4. Context Vector: The context vector ccc is computed as a weighted sum of the hidden

states:

𝑻

𝒄 = ∑ 𝛼𝑡 ∙ 𝒉𝑡

𝒕=𝟏

where 𝑇 is the total number of time steps. The context vector 𝑐 summarizes the relevant

parts of the sequence, incorporating the most important time steps according to the

attention weights.

5. Final Prediction: The context vector 𝑐, along with the hidden state, is used to make the

final prediction:

Å = 𝑊Å ∙ 𝑐 + 𝑏Å

where 𝑊Å are learned weights and 𝑏Å is the bias.

CHAPTER 3

31 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Explanation

• Hidden State: The hidden state ℎ𝑡 summarizes the information from previous time steps

and is updated as new data (example, stock prices or volume) is processed. This allows

the RNN to maintain a memory of past events.

• Attention Mechanism: The attention mechanism assigns different weights 𝛼𝑡 to

different time steps based on their relevance to the prediction. This allows the model to

focus on critical time steps, such as price movements during a news announcement or

a period of high volume.

• Context Vector: The context vector 𝑐 captures the most important information from the

entire sequence, using the attention weights to prioritize relevant time steps over less

important ones.

Role in the Framework

The RNN with Attention is crucial for handling sequences of stock price data where some time

steps are more important than others. In stock markets, not all events are equally influential—

major announcements, significant shifts in sentiment, or high trading volumes might have a

greater impact on future stock prices than other, more routine fluctuations. The attention

mechanism allows the model to focus on these critical events, ensuring that they have a larger

influence on the final stock price prediction. For example, if a significant price spike occurred

due to a positive earnings report, the attention mechanism ensures that the model gives this

event more weight, improving the prediction accuracy.

CHAPTER 3

32 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.5 FinBERT: Sentiment Analysis for Stock Price Prediction

Framework Structure and How It Works

FinBERT is a specialized version of the BERT (Bidirectional Encoder Representations from

Transformers) model that has been fine-tuned for the financial domain. It processes textual

data, such as financial news headlines or market reports, to extract sentiment information that

can be used to predict stock prices. In the context of stock price prediction, market sentiment

often plays a key role in influencing stock prices, especially when driven by major news events.

FinBERT converts qualitative data (news headlines) into a ‘sentiment_score’ that reflects the

market’s emotional or behavioral reaction to the news.

The sentiment score can be categorized as positive, neutral, or negative and is used as an

additional input feature in the stock price prediction models. By incorporating sentiment

analysis, the framework becomes more dynamic, as it can react to real-time news and market

events.

[FinBERT Sentiment Score Equation]

The process of generating a sentiment score using FinBERT is as follows:

𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡_𝑠𝑐𝑜𝑟𝑒 = 𝑓𝐹𝑖𝑛𝐵𝐸𝑅𝑇(𝐻𝑒𝑎𝑑𝑙𝑖𝑛𝑒)

Where:

• 𝑓𝐹𝑖𝑛𝐵𝐸𝑅𝑇 is the FinBERT model function that processes the input text (news headlines

or financial reports) and outputs a sentiment score.

• ‘Headline’ refers to the textual input data, which contains news articles or financial

information.

• The output is the ‘sentiment_score’, a numerical value that represents the sentiment

(positive, neutral, or negative).

Explanation

• Pre-processing: The input text (‘Headline’) is first tokenized and converted into word

embeddings using BERT’s transformer architecture. These embeddings capture the

contextual meaning of each word in the sentence.

• Contextual Understanding: FinBERT, having been pre-trained on large-scale financial

data, is able to understand the specific nuances of financial language. For instance, it

CHAPTER 3

33 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

recognizes terms like “earnings growth” or “regulatory scrutiny” within a financial

context and assigns appropriate sentiment to them.

• Output: The model outputs a ‘sentiment_score’, which is typically represented as a

numerical value. For example, positive sentiment might be represented by a score of 1,

neutral sentiment as 0, and negative sentiment as -1.

Role in the Framework

• FinBERT plays a crucial role in providing the framework with qualitative insights from

news and financial reports, which can heavily influence stock prices. By converting

textual information into a ‘sentiment_score’, FinBERT allows the prediction models to

factor in market sentiment, something that purely quantitative models may overlook.

For instance, a series of negative news articles about a company could signal a potential

drop in its stock price. FinBERT captures this sentiment and feeds it into the prediction

models, allowing the framework to react to changes in market perception and improve

the accuracy of its predictions.

• FinBERT’s integration into the stock price prediction framework ensures that the model

is not solely reliant on historical price data but also takes into account the real-time

qualitative sentiment driving market behavior. This makes the framework more

responsive to external factors, such as news or regulatory changes, which can have an

immediate impact on stock prices.

CHAPTER 3

34 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.6 FinBERT-SVM Hybrid Model

Framework Structure and How It Works

The FinBERT-SVM model is a hybrid approach that combines FinBERT's sentiment analysis

capabilities with the Support Vector Machine (SVM)'s ability to model non-linear relationships

between stock features. This hybrid model aims to capture both qualitative data (example ,

sentiment from financial news headlines) and quantitative data (example., stock price, volume,

and technical indicators) to predict future stock prices.

FinBERT processes textual data (such as news headlines and financial reports) and converts

it into a sentiment_score (positive, neutral, or negative). This sentiment score, along with

traditional stock market features like ‘Volume’, ‘Close_lag1’, and ‘Close_rolling_mean’, is

used as an input to the SVM. The SVM then models the complex, non-linear relationships

between these inputs and the predicted Close price of the stock.

The strength of the FinBERT-SVM model lies in its ability to combine market sentiment

with traditional financial features, providing a more holistic prediction of stock prices. Market

sentiment often drives short-term price movements, while traditional features capture long-

term trends and price behavior. By integrating both into a single model, FinBERT-SVM

ensures that the influence of real-time news and external events is factored into the stock price

predictions.

[FinBERT-SVM Equation]

1. FinBERT Sentiment Score:

𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡_𝑠𝑐𝑜𝑟𝑒 = 𝑓𝐹𝑖𝑛𝐵𝐸𝑅𝑇(𝐻𝑒𝑎𝑑𝑙𝑖𝑛𝑒)

Where:

• 𝑓𝐹𝑖𝑛𝐵𝐸𝑅𝑇 represents the FinBERT model, which processes ‘Headline’ data (news,

reports, etc.) and generates a sentiment score.

• ‘Headline’ refers to the input textual data (example., news headlines or financial

articles).

• The output is a ‘sentiment_score’ that reflects the sentiment of the market (positive,

neutral, or negative).

CHAPTER 3

35 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. SVM Prediction

𝑛

𝒇(𝒙) = ∑ 𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑖=1

Where:

• 𝑥 is the input feature vector, which includes traditional financial features like ‘Volume’,

‘sentiment_score’ from FinBERT, ‘Close_lag1’, ‘Close_rolling_mean’, and

‘Close_rolling_std’.

• 𝐾(𝑥𝑖, 𝑥) is the Radial Basis Function (RBF) kernel

𝐾(𝑥𝑖, 𝑥) = exp (−γ||𝑥𝑖 − 𝑥||2

• where γ is a hyperparameter that controls the flexibility of the RBF kernel, determining

how it transforms the input space

• 𝛼𝑖 are the learned coefficients associated with each support vector 𝑥𝑖,which is represent

critical points in input space that define the decision boundary

• 𝑏 is the bias term that adjusts the model’s prediction based on input data

Explanation

• FinBERT Sentiment Score: FinBERT processes the input text (example, news

headlines) and generates a ‘sentiment_score.’ This score is a key indicator of how the

market views the stock, with positive sentiment typically leading to increased demand

and negative sentiment potentially signalling a price drop. The sentiment score is then

fed into the SVM model alongside other financial features to improve prediction

accuracy.

• SVM Prediction: The SVM uses the ‘sentiment_score’ from FinBERT along with

traditional stock features to predict the next day’s Close price. The RBF kernel maps

the input features into a higher-dimensional space, enabling the SVM to capture

complex, non-linear relationships between sentiment, volume, lagged stock prices, and

the target stock price. The support vectors define the decision boundary in this space,

allowing the model to generalize well on unseen data.

CHAPTER 3

36 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Role in the Framework

The FinBERT-SVM model serves a dual purpose by combining sentiment analysis with

financial data modeling. In the stock market, price movements are often influenced not only by

historical trends but also by external factors, such as news headlines, earnings reports, and

public sentiment. Traditional stock price prediction models that rely solely on quantitative data

may fail to capture the impact of real-time news and market sentiment, which can drive sudden

price changes. FinBERT-SVM addresses this gap by integrating sentiment as a core feature.

1. Market Sentiment Integration: FinBERT converts textual data into a ‘sentiment_score’

that reflects the market’s perception of the stock. For example, positive news about a

company’s earnings can drive up the stock price, even if traditional financial indicators

suggest otherwise. FinBERT-SVM captures this behavior by factoring in market

sentiment alongside traditional stock features like ‘Volume’ and ‘Close_lag1’.

2. Non-linear Modeling with SVM: SVM with the RBF kernel is particularly effective at

capturing non-linear relationships between features. For instance, the impact of a

negative ‘sentiment_score’ may not be linear with respect to stock price—minor

negative news might have a small impact, but major scandals or economic events could

trigger large price drops. The SVM model allows the framework to handle these

complex relationships more effectively.

3. Holistic Stock Prediction: By combining qualitative insights from FinBERT and the

quantitative modeling power of SVM, the FinBERT-SVM model provides a more

comprehensive approach to stock price prediction. It ensures that both real-time market

sentiment and long-term price patterns are considered, improving the accuracy of the

overall stock price prediction framework.

For example, a series of negative news reports about a company’s leadership or earnings could

lead to a negative sentiment score from FinBERT. When combined with rising Volume and

past price movements (example., ‘Close_lag1’), the FinBERT-SVM model might predict a

significant price drop, even if traditional indicators alone do not show such a trend.

CHAPTER 4

37 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4: Experimental Setup

The development of the proposed stock market prediction framework has different phases

included, Stock News Headline Data Preparation, Historical Stock Price Data Preparation,

Sentiment analysis, Final Processed Data Preparation, Modelling, Initial Model Performance

Evaluation, Best Model Selection, Hybrid Modelling and finally the Hybrid Model

Performance Evaluation.

4.1 System Requirement

4.1.1 Hardware

The hardware involved in this project is primarily a computer. A computer is used for various

essential tasks within the stock prediction system, including data collection, preprocessing, and

model training. It plays an important role in running the Natural Language Processing (NLP)

algorithm, which is FinBERT for sentiment analysis. Additionally, the computer is essential

for integrating NLP model, which is FinBERT with time series models, like SVM, LSTM,CNN

and RNN to enhance prediction accuracy for the stock price. Furthermore, it supports the

real-time prediction component, enabling the trained models to generate stock predictions.

Table 4.1 Specifications of laptop

Description Specifications

Model Dell Precision 5480 Workstation

Processor Intel Core i9-13900H

Operating System Windows 11 Pro

Graphic Integrated: Intel® Iris Xe Graphics

Discrete: NVIDIA® RTX 2000 Ada Generation laptop GPU,

8 GB GDDR6

Memory 64GB, LPDDR5, 6000MHz, integrated, dual-channel RAM

Storage M.2 2280, 512 GB, PCIe NVMe Gen4 x4, Class 40 SSD

CHAPTER 4

38 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.1.2 Software Involved

Table 4.2 Software Involved

1 Python

2 Google Colab

3 Microsoft Excel

Python: Python serves as the core programming language, providing versatility for

implementing NLP algorithm, like FinBERT and machine learning models like SVM, RNN

and LSTM. Key libraries such as NLTK, NumPy, Seaborn, Pandas, Matplotlib/Seaborn will

play pivotal roles in Exploratory Data Analysis, NLP (sentiment analysis), and predictive

modelling on time series stock data in term of machine learning. It’s is important during all

phases of development for the whole FYP 1 and 2 to build out the final model for the project

as it has lots of package and library that are essential for project development.

Web-based IDE Platform: Google Collaboratory, a robust Web Integrated Development

Environment platform providing a collaborative and efficient environment for the project's

NLP and machine learning models development and training. Besides that ,it is using the

Python programming language and the coding project will automatically stored on the Google

Cloud Server, which is more convenience for users to minimalize the risk of file losing. The

machine learning modelling part will be on the planning in FYP2, while the NLP(sentiment

analysis)part will be on existing planning , which is FYP 1.

Microsoft Excel: Excel serves as the application to use for the data collection and also the data

storing. The dataset “news.csv ” are stored in Excel and will search the historical stock price

data for FYP 2 in csv file format, which is also need to stored in the Microsoft Excel.

CHAPTER 4

39 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 Workflow

Data Preparation

The Stock Market Prediction Project will be using the news headlines data provided by Github

[16].The dataset consists of 3690 stock news headlines content textual data that related to

Company(Apple Inc), which was collected from December 2018 until February 2024 in related

to the Apple Incorporation that listed on NASDAQ Index with symbol (NASDAQ:AAPL).

Each headline is associated to the corresponding date and time provided in the dataset. Also,

there are sources of news agencies that linked with each headline in dataset. Since this dataset

is unlabelled, there was no any sentiment scores and class label found inside the dataset and

will be used for sentiment analysis by implement the NLP algorithm, which is the FinBERT

model.

Beside using the news headlines data, it also using the 6 historical stock price data which

consisted of 253,19,251,252,253 and 254 rows respectively. These numerical historical stock

data that related to Apple Inc, which were collected from Deecember 2018 until February

2024.Each stock price data is associated to the corresponding date and time provided in the

their datasets. Also, there were 6 columns of the Apple stock prices data, which were

Date,Open,High,Low,Close and Volume. The Table 4.3 below shown about both stock news

headlines and historical stock price data data description .

Table 4.3 Data Description on provided Dataset “news.CSV”. Source from [15]

Data Field Description

Date Date of the Apple’s stock news headlines published which is the

dates are between December 2018 and February 2024.

Time Time of the Apple’s stock news headlines published

Source Sources of Apple’s stock news headlines

Headline The contents of the Apple’s stock news headlines generated

Symbol Symbol of the Company. It is used to be “NASDAQ: AAPL” for all

the column data.

Company Company that related to the Stock news headlines, which is Apple

Incorporation.

CHAPTER 4

40 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.1 Unlabelled Stock News Headline Data and its data preparation process

Table 4.4 Data Description on provided by Dataset ‘Download Data

STOCK_US_XNAS_AAPL (1)-(6)’.Source from [15]

Data Field Description

Date Date of the Apple’s stock price movements recorded which is the

dates are between December 2018 and February 2024.

Open The opening price of Apple's stock on a given trading day. This field

reflects the price at which the stock first traded when the market

opened for that specific day.

High The highest price Apple's stock reached during the trading day. It

shows the peak value of the stock price for that day, providing insight

into intraday volatility.

Low The lowest price Apple's stock fell to during the trading day. This field

captures the minimum value of the stock price for that particular day,

indicating potential bearish pressure during the session.

Close The closing price of Apple's stock at the end of the trading day. This is

the primary target variable for prediction and represents the final price

at which the stock traded before the market closed.

Volume The total number of shares of Apple stock traded throughout the

trading day. This field serves as an indicator of market activity,

showing how much interest there was in trading Apple stock on that

particular day.

CHAPTER 4

41 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2 Historical Stock Price Data and its data preparation process

CHAPTER 4

42 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2.1 System Design Diagram

Figure 4.3 Overall Project Framework of Stock Market Prediction

CHAPTER 4

43 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Data Preprocessing

Figure 4.4 The type of data preparation

Data Cleaning:

For data preprocessing, it is a very important step for preparing both the textual news data and

time-series stock data. For the textual data, it begins with the data cleaning process to remove

noise and inconsistencies in the “news.csv” dataset. This includes removing punctuation marks

to ensure consistency and readability, and dropping duplicate rows to eliminate redundancy

and maintain data integrity. For the time-series stock data, missing values are a common issue.

Techniques like forward fill and backward fill are applied to handle missing values while

CHAPTER 4

44 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

preserving the chronological order of the data. By starting with these cleaning steps, we ensure

that clean, uniform data makes later sentiment analysis and stock price modeling more accurate

and effective.

Data Transformation:

For data transformation, this step involves converting both textual and time-series data into

structured formats for analysis and modeling. For the textual data, the “Time” column is

changed from object to a time-based format for consistency, and the “Date” column is

converted to a date type to facilitate time-series analysis. Additionally, contractions in the

"Headline" column are expanded, and the column is normalized by converting text to lowercase,

removing extra whitespace, and eliminating stopwords. The textual data is then lemmatized,

tokenized into individual words, and vectorized to transform it into numerical representations.

For the time-series data, transformations include extracting features like year, month, day, and

hour from the "Date" column. Resampling is done to maintain a consistent frequency (e.g.,

daily or weekly). Lag features are created by shifting stock price values to previous time steps

(e.g., 2-day lag), and rolling window features such as Cross Rolling Mean are added to capture

trends and volatility. These steps ensure that both textual and time-series data are transformed

into usable formats for further analysis and modeling.

Data Scaling:

Data scaling is an essential step to standardize the range of numerical features for both the

textual and time-series data, improving consistency and model performance. For the textual

data, the vectorized representations (in the "Vec" column) are scaled using the Min-Max Scaler,

which normalizes the feature values between 0 and 1. This step preserves the relative

importance of each vector while preventing large magnitudes from dominating the model. For

the time-series data, stock prices and volumes are also scaled using techniques like Min-Max

Scaling to ensure that all numerical values are on a comparable scale. This helps reduce the

impact of outliers and improves the robustness of machine learning models, leading to more

accurate predictions when relying on both stock price data and sentiment vectors.

CHAPTER 4

45 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Data Merging:

The final data preparation step involves merging both the processed textual and time-series

data into one comprehensive dataset. For the textual data, after performing sentiment analysis

and generating vectorized representations of the headlines (e.g., from FinBERT), this sentiment

data is merged with the time-series stock data. For the time-series data, after creating lag

features, rolling statistics, and scaling the numerical values, the cleaned and transformed stock

price data is combined with the sentiment features. This integration ensures that both qualitative

(sentiment) and quantitative (stock price) data are used together, enriching the final dataset for

modeling tasks like stock price prediction or sentiment-based trading decisions.

CHAPTER 4

46 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Sentiment Analysis Using FinBERT:

Figure 4.5 Implementation of FinBERT in sentiment Analysis and output the Sentiment Data

By using the FinBERT from Hugging face in term of NLP algorithm, it is now running the

sentiment analysis using processed news headlines textual data. The purpose of running this

algorithm may identify the tone or emotions expressed in textual data, like news headlines, which

might offer insightful information for predicting the stock market. We can extract complex

sentiment information from financial writings, such as sentiment polarity or scoring (positive,

negative, or neutral), intensity, and class label by utilizing the FinBERT model. We are able to

evaluate investor and market sentiment toward individual equities through this study, which

can help guide trading tactics and financial choices.

Moreover, the implementation of Hugging Face's FinBERT enables comprehensive

sentiment analysis customized for the financial industry. FinBERT can precisely analyze

financial texts and capture market sentiment thanks to its pre-trained knowledge of financial

language and sentiment nuances. We can improve our stock prediction model's predictive

accuracy and resilience by including FinBERT into our workflow. Sentiment research provides

us with insights that help us better understand market dynamics, spot new trends, and predict

future market movements. This helps investors make more educated decisions in the financial

markets by providing them with actionable information. Then, A new dataframe will added

which contain “Headline”, “Positive”, “Negative”, “Neutral” with their own scoring

respectively. Furthermore, based on the scoring, it will identify the sentiment and also identify

the class label, which 1 represents for stock increase and 0 represents for stock decrease. Also,

insert Vec column from previous dataframe into this new dataframe and output it as new csv

file.

CHAPTER 4

47 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Data Splitting

Figure 4.6 Splitting Final Stock Data into Test sets and Train sets

In the data splitting phase, the final processed stock data, which contains both the time-series

stock features and the sentiment scores data derived from textual analysis, is divided into two

key datasets: train sets and test sets.

For the train sets, a large portion of the data is used to train the machine learning models. This

ensures that the models can learn from historical stock prices, sentiment analysis features, and

any additional engineered features like lagged data or rolling averages. The models are trained

to detect patterns in the stock price movement and how it correlates with sentiment.

For the test sets, a separate portion of the data, which the models have not seen during training,

is used to evaluate their performance. This helps ensure that the model’s predictions are

generalizable and perform well on unseen data. Splitting the data in this manner helps in

measuring how well the model can forecast future stock prices based on both the historical

stock data and sentiment signals from news headlines.

CHAPTER 4

48 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Modelling

Figure 4.7 Modelling Phase for LSTM ,RNN with attention Mechanism,SVM and CNN

The modeling phase involves applying various machine learning algorithms to the

comprehensive and cleaned stock market dataset, which contained sentiment score and the

cleaned, transformed time-series stock data after the data splitting phase. For sequential

prediction tasks, Long Short-Term Memory (LSTM) is employed to capture long-term

dependencies in the stock price data, making it ideal for time-series forecasting. Additionally,

the Recurrent Neural Network (RNN) with Attention Mechanism enhances the model’s ability

to focus on the most relevant time periods or critical news events, allowing it to prioritize

important data points in both stock prices and sentiment scores.

For regression tasks, Support Vector Machine (SVM) is used to predict continuous

outcomes, such as stock prices. In this context, the SVM regression model fits a hyperplane

that best represents the relationship between the input features—historical stock data and

sentiment score data—and the target variable, which is the stock’s close price. This ensures

that the model can accurately forecast future stock prices based on both past trends and

sentiment features.

Finally, Convolutional Neural Network (CNN) is applied to the time-series data to capture

local patterns and short-term trends, providing additional insights into stock price movements.

CHAPTER 4

49 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

By implementing these diverse models, the system evaluates multiple approaches to identify

the best fit for predicting stock prices, ensuring both numerical and textual data are leveraged

effectively for accurate forecasting.

Model Performance Evaluation

Figure 4.8 Modelling Performance Evaluation Phase for LSTM ,RNN with attention

Mechanism, SVM and CNN

CHAPTER 4

50 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In the performance evaluation phase, the predictive capabilities of various models—Long

Short-Term Memory (LSTM), Recurrent Neural Network (RNN) with Attention Mechanism,

Support Vector Machine (SVM), and Convolutional Neural Network (CNN)—are assessed

using key regression metrics. These metrics provide insight into how well each model predicts

stock prices based on the merged dataset of time-series stock data and sentiment features.

One of the key metrics used for evaluation is Mean Absolute Error (MAE), which measures

the average magnitude of the errors in the model's predictions. MAE gives a clear indication of

how much, on average, the predicted stock prices deviate from the actual prices. Another

important metric is Mean Square Error (MSE), which squares the prediction errors before

averaging them. This ensures that larger errors are given more weight, helping to identify

significant discrepancies in the predictions.

Additionally, Root Mean Square Error (RMSE), the square root of MSE, is used to provide

a more interpretable error metric in the same units as the target variable, ‘Close’ which in this

case is stock prices. RMSE is particularly useful for understanding the magnitude of the

prediction errors and comparing models based on their overall performance.

To evaluate how well the models explain the variance in stock prices, R-squared (R²) is

applied. R² measures the proportion of the variance in the target variable that is captured by the

model’s predictions, with values closer to 1 indicating a better fit. By combining these metrics,

the performance evaluation phase ensures that the model with the overall smallest error values

(MAE, MSE, RMSE) and the highest R² score is chosen, providing the most reliable predictions

based on both stock and sentiment data. This comprehensive assessment ensures that the best

selected model is well-suited for forecasting stock price trends and making accurate predictions

and integrate with FinBERT for further hybrid modelling phase.

CHAPTER 4

51 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Hybrid Modelling

Figure 4.9 Hybrid Modelling Phase that Best model selected to integrate with

ProsusAI’s FinBERT

The Hybrid Modeling phase represents a crucial step in combining multiple types of data—

numerical stock data and textual sentiment data from news headlines—into a unified model.

This process aims to improve predictive accuracy by leveraging both structured (numerical)

and unstructured (textual) data.

The Best Model chosen from the performance evaluation phase (such as LSTM, RNN with

Attention, SVM, or CNN) is integrated with the FinBERT model, a pre-trained language model

specifically fine-tuned for financial sentiment analysis. FinBERT processes the headlines to

CHAPTER 4

52 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

extract sentiment scores, which are highly relevant in the financial domain, where market

sentiment can strongly influence stock prices. These sentiment scores are treated as additional

features to enrich the final dataset.

The Final Stock Data with Headline Data (Hybrid Features) is created by combining

traditional stock market data, such as historical stock prices, volumes, and technical indicators,

with sentiment features generated from FinBERT. This hybrid feature set allows the model to

incorporate both the numerical patterns observed in stock prices and the sentiment-driven

fluctuations influenced by news headlines.

In this phase, the hybrid model is constructed by training on both stock data and sentiment

data, creating a model that can predict stock prices or other financial outcomes more accurately

than using either data type alone. By merging the strengths of the Best Model (which captures

the numerical trends in stock price data) with FinBERT’s textual sentiment analysis, the hybrid

model can provide more informed predictions. This combination enables the model to account

for both the historical data patterns and real-time market sentiment shifts.

CHAPTER 4

53 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Hybrid Model Performance Evaluation

Figure 4.10 Hybrid Model Performance Evaluation Phase

The final phase of the Stock Price Prediction process is the Performance Evaluation of the

Hybrid Model. After integrating both historical stock data and sentiment analysis derived from

FinBERT, it becomes crucial to assess the model’s performance on unseen data. This

evaluation is conducted by comparing the model’s predictions with the actual stock prices in

the test set, using key metrics such as Mean Absolute Error (MAE), Mean Squared Error

(MSE), Root Mean Squared Error (RMSE), and R-squared (R²).

MAE provides an average measure of how much the predicted values deviate from the

actual stock prices, offering an easy-to-understand metric of the model’s overall error. On the

other hand, MSE and RMSE emphasize larger errors, which helps to detect any significant

deviations that the model might be making. R-squared (R²) evaluates the model’s explanatory

power, showing how much of the variance in stock prices is captured by the hybrid model, with

values closer to 1 indicating a strong fit.

This comprehensive performance evaluation is critical in determining whether the hybrid

model, which leverages both numerical stock data and market sentiment, outperforms models

that rely on either data type alone. By analyzing the results across multiple metrics, this phase

ensures that the hybrid model is not only accurate but also robust and reliable for real-world

stock price forecasting.

CHAPTER 4

54 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 Timeline

In Figure 3.8, The Gantt chart for Final Year Project 1 shows all of the completed

tasks along with their related timelines in Figure 3.3 Tasks include, but are not

restricted to, planning and initiating projects, understanding and visualizing data,

preprocessing data, NLP modeling, reports writing, and preparing FYP

presentations.

Figure 4.11 Gantt Chart for FYP 1

In Figure 3.9, Gantt chart for Final Year Project 2 is roughly drafted and outlined,

with works to be done with corresponding timeline during next trimester. Works

including, but not restricted to, revise previous work done, further studies on

relevant works, model training and model evaluation, model tuning, report writing

and FYP presentation preparation.

CHAPTER 4

55 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.12 Gantt Chart for FYP 2

CHAPTER 5

56 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Simulation

5.1 Data Preparation

In this phase, we have been chosen to use Google Colab instead of Jupyter Notebook. This is

because with the Web-based IDE environment, we don’t required to install any software and to

set up a local environment like JupyterLab environment. So that, everything in the project can

be ran and saved on the cloud server and does not face any configuration hassle when need to

start do coding project. Plus, We have upgrade to the Colab Pro because We need to access

more to computational resources, which is Tensor Processing Units(TPU) for more Virtual

Machine Memory RAM to speed up our training on the NLP and Machine learning alorigthms

for the whole FYP. The python version that I used in Google Colab is 3.10.12 to do our coding

project.

Figure 5.1 The Google Colab Platform with Colab Pro Subscription.

Figure 5.2 The Version of Python that Used for Project.

CHAPTER 5

57 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.1.1 Data Collection

Figure 5.3 Read “news” Csv file and its first 10 rows of data

We used this stock news headlines data that is unlabelled in terms of sentiment polarity and

scoring, which is found in Github.[15]. This stocks news headlines data is related to the Apple

Incorporation. It consisted of six columns, which are “Date”, “Time”, “Source”, “Headline”,

“Symbol” and “Company” in term of attributes. The data for all the rows in this “Symbol”

column is NASDAQ: AAPL and also the data for all the rows in “Company” columns is Apple

Inc.

CHAPTER 5

58 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4 Read the last 5 rows of data

This data consists of 3689 rows of news headlines data, which was using df.tail() to retrieve

the information of rows numbers as shown in Figure 5.4 above. We chose this data because it

was more suitable for our project that has the simple yet enough information for us to do the

analysis on this set of dataset. This dataset previously also used by the github users, which

called tyaan to do similar project title with us, which was “Stock Prediction with sentiment

analysis”. This dataset although is not quite widely used by public, but this dataset collected

until February 2024 as shown in figure 5.3, which was very latest and so far quite less people

use this dataset to do research or develop their own project.

5.1.2 Data Cleaning

Figure 5.5 Remove Punctuations Function

CHAPTER 5

59 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

For the first data cleaning step in figure 5.5 is to import the string module, which consist of set of

punctuation marks and remove punctuations , which also include “ ‘ ”, which is single quote

character for all the rows in “Headline” column in the dataset “news” , which later defined as

“df”. This is to ensure the data consistency in term of textual data. For example, “ Zed play

ball, and game” will become “Zed play ball and game”.

Figure 5.6 Remove Unknown Symbol Function

Secondly, figure 5.6 shown that it imported re module, which consist of set of unknown symbol

and remove all of them, which also include “ ‘ ” for all the rows in “Headline” column in df.

The purpose of adding the “ ‘ ” symbol again is because to ensure that the symbol can removed

completed to avoid any leftover form the data. Removal of those unknown symbol was a crucial

step for data cleaning to ensure the good data quality. For example, “Zed’ phone rings @#” will

become “Zed phone rings”.

Figure 5.7 Drop Duplicates Rows Function

CHAPTER 5

60 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Third, figure 5.7 shown that dropped all duplicates rows in the headline column permanently,

which was aimed to improve the accuracy of the analysis.

Figure 5.8 Output on the remaining rows after dropped duplicates

After that, the remaining dataset had became 2446 rows after performed the dropped duplicates

function, that’s mean had about 1243 duplicated rows has been removed.

CHAPTER 5

61 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.1.3 Data Transformation

Figure 5.9 “Time” data type changed from object to datetime

First of all, by changing the data type to datetime, the datetime module need to be imported as

dt and then changed the “Time” column data from object into time with format of 12-hours

clock. For example,2248 become 10:48 PM, which was aimed for data standardization in data

transformation.

CHAPTER 5

62 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.10 “Date” data type changed from object to datetime

As shown in figure 5.10, the step to change the datatype from object to datetime in “Date”

column with format “Year-Month-Day”. For example, 12/2/2024 become 2024-02-12, which

was ensured the good data quality of the dataset df.

Figure 5.11 Expand Contractions Function

In figure 5.11, it showed that the data transformation’s step to expand the contraction in all the

rows in data column of “headline”, which was to normalize the data for ensuring all the

consistency in textual data .Before that, the contractions package needed to install and import

to execute the function. For example, ‘don’ t’ become ‘do not’.

CHAPTER 5

63 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.12 Data type of headline changed to string function

As shown in figure 5.12, all of the rows in “Headline” column was changed to string as previous

data type was object in this case to allow the further text processing applied on it.

Figure 5.13 Normalization process on headline column

In figure 5.13, the normalization process, included converting to lowercase, remove extra

whitespace applied to the “Headline” column data and aimed to reduce redundancy in data and

standardized the data. For example, ‘ZED sleep’ become ‘zed sleep’.

CHAPTER 5

64 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.14 remove stopwords process on headline column

As figure 5.14,it showed that stopwords inside the Headline column data needed to be removed

and module “stopwords” of NLTK needed to be downloaded before execute this action.This

was because it was to reduce the noise inside the data. For example, ‘zed is sleep’ become ‘zed

sleep’.

CHAPTER 5

65 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.15 conversion of all numbers into words process on headline column

In figure 5.15, it was required to install num2words package before done this conversion. After

that, data transformation steps required to run, which was to enhance interpretability of the data

for NLP algorithm. For example, 2 become two.

Figure 5.16 lemmatization and tokenization process on headline column

Figure 5.17Output of the tokenization process

Based on figure 5.16, it is required to download the punkt and wordnet of NLTK library. Then,

lemmatization and tokenization process will be done to the “Headline” column during data

CHAPTER 5

66 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

transformation stage.For example, running become run. For the tokenization, the sentences in

Headline column will be separate into individual tokens(words) and put into the arrays, and

added the results into the new column called “tokens”in figure 5.17 in df .This was to reduce

dimensionality of the whole dataset.

Figure 5.18 Removal of the data that consists of 3 or less than 3 tokens in tokens column

Figure 5.19 remaining rows of data after removal data of 3 or <3 tokens

Based on figure 5.18, the step to remove the rows that only consist of 3 or less than 3

tokens(words) in array in ‘tokens’ column is to reduce the noise in term of the

data.After that, only 2411 rows, which 2412 need to minus 1 for the title row, remained and 35

rows removed which consisted of 3 or less than 3 tokens in figure 5.17.

CHAPTER 5

67 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.20 Maximum and minimum tokens in tokens column

Figure 5.21 Do truncation and padding in tokens column

As in figure 5.21, the truncation and padding process was applied to the tokens column, which

aimed to create uniform length for the input sequences in tokens column. The max length of the

tokens set to maximum length of 31 as the maximum tokens found in figure 5.18 was

31.Therefore, The “0” was added inside and the numbers of “0” added into the tokens data were

depending on the length of the tokens. For example, if the length of the tokens is 10, the numbers

of “0” added as tokens will be 21 to standardize the input length.

CHAPTER 5

68 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.22 Do vectorization to tokens column

Figure 5.23 Vectorization results in Vec column

Based on figure 5.22,the tokens column had been applied into the vectorization process that

need to install and import genism package for Word2Vec.Then, it changed the tokens(words)

into the numeric representation .So than the results outputted into a new column call Vec

column , which was compatible to the machine learning models for training as shown in figure

5.23.

CHAPTER 5

69 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.1.4 Data Scaling

Figure 5.24 Implementation of MinMax Scaler in Vec column

Figure 5.25 Output of scaled data in Vec column

In figure 5.24, Min-Maxscaler function was required to import from sklearn to normalize the

values in Vec column within the range between 0 and 1 and outputted the scaled data as shown

in figure 5.25.Let said if not performed data scaling, it can cause the poor model performance

during model training and increase the sensitivity to the outliers, so that it was better result to

do data scaling, which can improve convergence of the algorithm in term of quicker and stable.

Besides that, the scaled data can be fitted in SVM,RNN with Attention Mechanism, CNN

and LSTM in this FYP .The reason for chosen these algorithms, because firstly , SVM is

effective in handling the linear and nonlinear decision boundaries in high-dimensional

boundaries. Also, the RNN is able to capture the temporal dependencies , which is fit for the

sequential inputs. Lastly, in term of LSTM can capture the long-term dependencies, also excel

in solving the vanish gradient problem.

CHAPTER 5

70 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2 Exploratory Data Analysis

Figure 5.26 Histogram and KDE plot Diagram related distribution of

Scaled Data By Sentiment

Based on the graph which related to the distribution of Scaled Data By Sentiment, the positive

sentiment category had the highest mean scaled value of 0.326, followed by the neutral category

with a mean of 0.322 and the negative category with a mean of 0.321.Also,the positive

sentiment category also had the widest distribution, indicating that there is more variability in

CHAPTER 5

71 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

the scaled values for this category. Lastly,The neutral and negative sentiment categories had

similar distributions, with the positive category having a slightly wider distribution.

Figure 5.27 Sentiment Score Distribution’s Pie Chart

Based on Pie Chart, we can conclude that there is around 69.6% neutral in term of sentiment

scoring, followed by the negative sentiment score with 20.2 and lastly is the positive sentiment

score with only 10.2%.This predicted that the Apple company’s stock prices did not affect

much based on the sentiment from news headline data and stay neutral, which is not much

volatile in term of its stock prices movement.

CHAPTER 5

72 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.28 Bar Chart related to the most frequent words in headlines

Based on figure 5.28, it showed that the most frequent word in the headlines is 'apple’. This

proved that ‘apple’ words said that can be affected the most in terms of its stock price

movements but in other hand, also common since the news headlines is related to the Apple

Incorporation. It was followed by the word of ‘ update’, which might be meant about it have

the products update ,software update and others. Third, ‘stock’ words will be the third , which

is discuss about its stock by the news.

CHAPTER 5

73 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.29 Bar Chart related to the most frequent words in headlines in term frequency

Based on figure 5.29, it showed that the most frequent word in the headlines was 'apple’.

This proved that ‘apple’ words, with 0.6654229 in term of term frequency said that can be

appeared the most in terms of its stock news headlines but in other hand, also common since

the news headlines is related to the Apple Incorporation. It was followed by the word of

‘update’(0.1517413) and stock(0.1343283).

CHAPTER 5

74 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.30 Bar Chart related to the most frequent positive words in headlines

Based on figure 5.30, the most frequent positive word in the headlines was 'store'(107). This

proved that ‘store’ word will meant as Apple was open more stores in worldwide, or will store

its stock for waiting the opportunity for instant growth in stock prices market.It followed by

the word “top”(65), which meant it has the industry -leading technology and products at the top

level based on the prediction. The ‘share’ will be the third as meant to be related to its share

news that may brought positive news to its investors.

CHAPTER 5

75 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.31 Bar Chart related to the most frequent negative words in headlines

Based on 5.31, the most frequent negative word in the headlines was 'hit'(34).It might meant

that it’s hit by its competitor, which might be Samsung, especially on total sale on products

since long time ago had become rival. Secondly, it followed by the word ‘fight’(32), which

was meant to fight by its competitors in tough condition, especially against Samsung in

Smartphone Industry. Third, it would be the ‘correction’(26) , which meant Apple needed to

CHAPTER 5

76 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

do some correction in their mistakes, which related to their phone architecture or software bug

that make users more dissatisfied .

Figure 5.32 Bar Chart related to the most frequent word lengths in headlines

Based on figure 5.32, the most frequent word lengths was 5 characters (4513).This was

meant might be the word “apple”, “store” and also “stock”. Beside that, it followed by the 4

word characters (3303), which might be the words ‘rise’, ‘drop’ and others. Then, the word

characters with 6 will be the third with 3300, which might be ‘Supply’,’Streak’ and others.

CHAPTER 5

77 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.33 Bar Chart related to the most frequent word count in headlines

Based on figure 5.33, the most frequent word count in each sentence in Headline is 7 words in

each sentences, which was 380. For example, ‘stocks slide as growth fears spread wsj’ and

others. Besides that, it would be word count 8 with (360) and also followed by word count 9

with (329).

CHAPTER 5

78 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3 Sentiment Analysis

Figure 5.34 Library and Packages downloaded and installed for FinBERT

Figure 5.35 Convert df into Numpy array

Figure 5.36 FinBERT model By ProsusAI

Figure 5.37 Conversion from raw scores to probability scores

CHAPTER 5

79 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.38 Extract the results of sentiment scores and put into a new

dataframe

Figure 5.39 Extract the results of sentiment scores and put into a

new dataframe,df2

Figure 5.40 Add sentiment label into the df2

CHAPTER 5

80 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.41 output of the sentiment label

CHAPTER 5

81 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.42 add class label into the df2 Figure 5.43 insert Vec column of df into df2

Figure 5.44 Output the df2 as dataset.csv

Figure 5.45 Dataset.csv file output to files section

CHAPTER 5

82 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FinBERT, a financial fine-tuning Bert-Based model, specialize on analyse sentiment

on the financial text, which is use large financial corpus and trained with financial sentiment

classification task. The reason we chose this FinBERT because it excelled in a financial text

analysis and specialty for the financial sector, which suitable for our project. By started this

section,we firstly install transformers and import the AutoTokenizer and

AutoModelForSequenceClassification .Then , it converted the df data into numpy array as the

input to the FinBERT model. Then, we imported the FinBERT model from ProsusAI from

hugging face and ran the input from df, which outputted the sentiment scores with raw scores

in Logit form. Then, next would be converted into the probability scores for the respective

sentiment polarity (positive, negative and neutral).Then it extracted the results of sentiment

scores and put into a new dataframe,df2 will columns, like Headline, Positive , Negative and

Neutral with sentiment scores respectively.Additionally,it added sentiment label in new

column based on the sentiment scores for each headline news. Furthermore, it also added the

class label in new column based the sentiment label, which class 0 identified as stock might

decrease and class 1 might identified as stock might increase. After that, inserted the Vec

column from df into df2.Finally, it outputted the df2 as “dataset” csv.file and downloa into

filesection.

Based on the previous EDA result, the neutral sentiment had 69.6% of overall

distribution, which cannot proved that the news headline data does provide the result whether

was positive impacted or negative impacted to their stock prices. Therefore, the prediction will

go further to the next phase, modelling, which is for much more accurate prediction on the

stock price movement on Apple Incorporation.

CHAPTER 5

83 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 Advanced Sentiment Analysis and Further Data Preprocessing

Figure 5.46 Read “news_processed” Csv file

Figure 5.47 Output the “news_processed” columns data

In this time, processed stock news headlines data is used and that is now labeled in terms of

vectorized numerical data in “Vec” column as was derived from the data from “tokens” column

data, which was represented as the overall numerical meaning of those tokens for each rows.

CHAPTER 5

84 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This Csv file consisted of the 8 columns of data, which were consisted of 8 columns, “Date”,

”Time”, ”Source”, “Headline”, “Symbol”, “tokens” and “Vec”. This was because vectorized

data can be processed by machine learning models.

Figure 5.48 Load the FinBERT model for sentiment analysis by using the

Hugging Face Transformers library.

In this process, it imported the necessary components: AutoTokenizer,AutoModel For

Sequence Classification, and pipeline form transformers package, as well as the torch to enable

PyTorch functionality. Then, FinBERT model was loaded by initializing a tokenizer and

model, both sourced from Hugging Face's "ProsusAI/finbert" pre-trained model repository.

The tokenizer was responsible for converting raw text, which was the headlines data into

tokenized inputs that the model can understand, while the model itself was a sequence

classification model trained for financial sentiment analysis. After that,it initialized a sentiment

analysis pipeline using the pre-trained FinBERT model and tokenizer,which was allowing the

user to perform sentiment analysis on the “Headlines” data that contain financial information.

CHAPTER 5

85 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.50 Call the generalization of sentiment score function

To get the”Headline” data’s sentiment score ,get_sentiment function called to process text

of Headlines to generate the sentiment score using the FinBERT model.This function first

applies the sentiment analysis pipeline (nlp) to the input text,which was extracting the result’s

label (either ‘positive’,’negative’,or ‘neutral’) and score (a confidence measure. If the label is

'positive', the function returns the score as is; if the label is 'negative', it returns the negative of

the score to represent negative sentiment. In case of a neutral or unrecognized label, the

function returned 0 to signify neutral sentiment. A try-except block was used for error handling,

ensuring that if an exception occurs during text processing, it will print an error message and

return a neutral score of 0. Finally, the function was applied to each entry in the 'Headline'

column of “news_processed” dataframe using a lambda function, and the sentiment scores are

stored in a new column called 'sentiment_score'. This allows for automated sentiment scoring

of financial headlines in the dataset.

CHAPTER 5

86 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.51 Print the result of the sentiment score of the “Headline” data

After that, the column “sentiment score” being printed, which contains the sentiment scored

for the 2412 rows data of “news_processed” csv file. The scores range between positive and

negative values, with some values being neutral (0). Negative scores represented negative

sentiment in the text of news headlines, while positive scores represent positive sentiment, and

a score of 0 represents neutral sentiment. This output showed the application of the

get_sentiment function across the dataset, where each headline has been assigned a

corresponding sentiment score.

Figure 5.52 Output the updated dataframe with additional of “sentiment_score” column data.

Therefore, the processed Dataframe, which now included the calculated sentiment scores,

to a CSV file named news_processed_with_sentiment.csv. The to_csv function was used to

write the DataFrame to a CSV file, and the parameter index=False ensures that the row indices

are not written into the file. This allows for a clean output of the DataFrame content, with only

the 9 columns headers, “Date”, ”Time”, ”Source”, “Headline”, “Symbol”, “tokens” ,“Vec” and

“sentiment_score” and their corresponding data saved in the CSV file.

CHAPTER 5

87 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.53 Read “news_processed_with_sentiment” Csv file and then Filtering rows

with Zero Sentiment Scores.

For the first part, loaded a CSV file, “news_processed_with_sentiment.csv” into a new

DataFrame df2 using the pandas library. The path to the file is specified as

/content/news_processed_with_sentiment.csv, that is stored in the Colab environment.

Next, the next part of the code filters the DataFrame, df2 to remove rows where the

sentiment_score column has a value of 0. The line df2 = df2[df2['sentiment_score'] != 0]

creates a new DataFrame that only contains rows where the sentiment score is non-zero. This

removes any neutral entries, ensuring that the final dataset consists only of positive or negative

sentiments.

CHAPTER 5

88 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figures 5.54 and 5.55 The latest dataframe df2 results after filtering out

neutral sentiment scores.

In this latest dataframe of df2, Key columns include the “ Date” and “Time” of the financial

news, the “Source” of the news (such as IH Market News or Dow Jones News), the “Headline”

summarizing the financial event, and the associated stock “Symbol” (like NASDAQ for Apple

Inc.). Each headline has been tokenized into a list of Tokens, and there's a Vec column, likely

CHAPTER 5

89 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

representing some headlines data’s vectorized meanings in numerical form. The most

important column is the sentiment score, where negative values indicate negative sentiment

and positive values reflect positive sentiment. For instance, some of the headlines in figures

4.53 display negative sentiment with values like -0.783024 or -0.972149, while a few, such as

one in row 2410, show positive sentiment with a score of 0.705303. This dataset is now ready

for further analysis, such as examining the relationship between news sentiment and stock price

performance.

5.5 Time-Series Stock Price Data Preprocessing and Data Visualisation

Figure 5.56 Merged 6 CSV files containing Apple Inc. (AAPL) stock data into a

single DataFrame.

It begun by reading each CSV file using pd.read_csv(), which loads the stock data including

columns for Date, Open, High, Low, Close, and Volume. The six DataFrames were then

combined using pd.concat(), which merged them into one large DataFrame (merged_df) with

CHAPTER 5

90 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1,276 rows and 6 columns. The ignore_index=True parameter ensured that the rows are re-

indexed sequentially. Finally, the merged DataFrame was printed, showing the stock data in

chronological order with values for each day’s opening, closing, high, and low prices, as well

as trading volume.

Figure 5.57 Displayed the first row of the merged_df dataset

The output showed the stock data for Apple Inc. (AAPL) on December 31, 2020, by

accessing the first row of the merged DataFrame using the .iloc[0] method. This row included

key financial indicators for the day: the stock opened at a price of 134.08, reached a high of

134.74, a low of 131.72, and closed at 132.69. Additionally, the trading volume for that day

was 99,116,594, indicating the total number of shares traded. This row represented a typical

snapshot of Apple’s daily stock market data.

CHAPTER 5

91 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.58 and Figure 5.59 Process and Output of merging two DataFrames: one containing

stock data (merged_df) and the other containing sentiment scores (df2).

Firstly, it converted the Date column in both DataFrames to datetime objects to ensure

proper alignment for merging. Duplicate rows were then removed from the stock data

(merged_df). The two DataFrames were merged on the Date column using a left join, meaning

all rows from the stock data are retained, and corresponding sentiment scores from df2 were

added where available. After merging, rows with missing values (NaNs) were dropped,

ensuring that only complete rows remained. Additionally, rows with empty strings in any

column were removed.

CHAPTER 5

92 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Finally, the merged DataFrame was printed, showing 677 rows and 7 columns, including

the sentiment_score alongside stock data such as open, high, low, close prices, and volume.

This merged dataset now combined both stock and sentiment information.

Figure 5.60 Outlier detection and removal based on the Open column in the merged_df

DataFrame using the Interquartile Range (IQR) method.

This code used the Interquartile Range (IQR) method to detect and remove outliers in the Open

column of the merged_df DataFrame. First, the first quartile (Q1) and third quartile (Q3) of the

Open values were calculated to determine the IQR, which represents the range between these

quartiles. Using the IQR, lower and upper bounds are defined to identify outliers—values

below Q1 minus 1.5 times the IQR or above Q3 plus 1.5 times the IQR are considered outliers.

It also identified the rows that contain these outlier values and then removes them from the

dataset, ensuring that the cleaned DataFrame only contained values within the typical range for

the Open column. This process helped improve the reliability of subsequent analyses by

eliminating extreme or anomalous data points.

CHAPTER 5

93 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.61 Boxplot generated to visualize distrubtion of the Open column of merged_df after

handling outliers.

In this code, it generated a boxplot to visually represent the distribution of the Open stock prices

in the merged_df DataFrame after handling outliers. Using the matplotlib.pyplot library, the

boxplot displayed the interquartile range (IQR) as a box, with the median price indicated by a

line inside the box. In this case, it appeared that the median lies somewhere close to the middle

of the range of values.Also,It represented the middle 50% of the data, showing the interquartile

range between the first (Q1) and third quartiles (Q3). A relatively large box indicated variability

in the data, suggesting that while the majority of data is centered in the middle range, there are

some significant fluctuations in opening stock prices. The whiskers extended from the box

show the range of the data, excluding any outliers. If the box were smaller, it would indicated

that most of the Open prices cluster around a narrow range, meaning the stock opens at similar

CHAPTER 5

94 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

prices over time. Any remaining outliers are shown as individual dots outside the whiskers.

This visualization provides a clear summary of the central tendency (median), spread (IQR),

and any extreme values that still exist in the Open stock prices after outlier removal. The plot

helps highlight any significant deviations or trends in the stock prices, facilitating further

analysis of the data.

Figure 5.62 Process of Seasonal Composition of the Close Stock prices in merged_df

CHAPTER 5

95 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figures 5.63 and 5.64 showed the Output of Seasonal Decomposition’s visulaisations using

the seasonal_decompose function from statsmodels library.

In this process, it performed a seasonal decomposition of the stock's Close prices using an

additive model to separate the data into three components: trend, seasonality, and residuals.

The decomposition process isolated the long-term movement of the stock price (trend),

repetitive patterns that occur over a yearly cycle (seasonality), and the random fluctuations or

noise (residuals) not captured by the trend or seasonality. The trend component showed the

overall upward growth of the stock, while the seasonal component highlighted regular

fluctuations, potentially linked to market events or trading patterns. The residuals represented

unpredictable variations, such as responses to unexpected market news. Visualizing these

components helped better understand the behavior of stock prices, allowing for more informed

analyses by distinguishing systematic patterns from random noise.

CHAPTER 5

96 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figures 5.65 showed the Process for ensuring the Date column existed in df2 and Left join

performed between two DataFrames, merged_df and df2, based on the Date column.

First, it checked the columns of df2 to verify the presence of the Date column, which was

essential for merging the two DataFrames. If the Date column was missing, it may need to

reload or recreate df2 to include it. The merge operation was performed by aligning rows from

both DataFrames where the Date values match. The merge specifically added the Vec column

from df2 to merged_df, ensuring that all rows from merged_df were retained, even if no

matching dates were found in df2. The resulting DataFrame included columns such as “Date”,

“Time”, “Source”, “Headline”, “Symbol”, “Company”, “tokens”, “Vec”, and

“sentiment_score”, combining information from both DataFrames for further analysis.

CHAPTER 5

97 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figures 5.66 Displayed the merged DataFrame, which now consisted of 1,809 rows and 8

columns after previous merging process.

The columns include stock market data such as “Date”, “Open”, “High”, “Low”, “Close”,

“Volume”, and two additional columns: sentiment_score and Vec after merged from previous

code snippet. The stock market data represented daily information about Apple’s stock,

including its opening price, highest and lowest prices during the day, closing price, and the

trading volume. The sentiment_score column shows the sentiment analysis results, with

negative values representing negative sentiment and positive values reflecting positive

sentiment. The Vec column contains vectorized data from the sentiment analysis process,

which likely represents additional features derived from the headlines. Each row corresponds

to a specific trading day, showing how stock prices and sentiment evolve over time.

CHAPTER 5

98 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figures 5.67 Cleaning process of the Volume column in the merged_df DataFrame by

removing commas, and converting into float data type

In this code snippet, the str.replace(',', '') method removed all commas, which are used as

thousand separators, making the data consistent for numerical operations. Once the commas

are removed, the .astype(float) function is applied to convert the cleaned Volume values from

strings to floating-point numbers. This conversion allowed the Volume data to be used in

calculations and analysis, such as aggregating total volume or exploring correlations with other

stock metrics.

CHAPTER 5

99 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figures 5.68 and 5.69 Calculation and visualization of a correlation matrix for key stock

market features, including “sentiment_score”, “Open”, “High”, “Low”, “Close”, “Volume”,

and “Vec”numerical columns.

The correlation matrix, shown as a heatmap, highlighted the relationships between these

variables. The stock price variables (Open, High, Low, Close) were highly correlated with each

other (correlation of 1.0), indicating that they move closely together throughout the trading

day. The sentiment_score had a moderate positive correlation (0.24) with stock prices,

suggesting that positive sentiment may have a weak-to-moderate influence on higher stock

prices. The Volume showed a moderate negative correlation (-0.57) with stock prices, implying

that higher trading volumes might be associated with lower stock prices, potentially reflecting

selling pressure. The Vec column had low correlations with all other variables, indicating it

captures different features not directly tied to stock price movements or volume. This analysis

helped in understanding the relationships between sentiment, stock prices, and trading volume.

Figure 5.70 Displayed a merging process of merged_df DataFrame with df2 ‘s ‘Date’ and

“Headline” while aligning with the ‘Date’ columns from both dataframe with Left join.

The 9 columns include Date, Open, High, Low, Close, Volume, sentiment_score, Vec,

and Headline., which now consisting of 8,279 rows, were combining stock price data with

associated financial news headlines. The stock price data (Open, High, Low, Close, and

Volume) represented Apple's daily stock performance, while the sentiment_score indicated the

sentiment analysis of the news headlines, with negative values represented negative sentiment

and positive values represented positive sentiment. The Vec column contained vectorized data

CHAPTER 5

100 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

from the sentiment analysis process, likely represented features extracted from the news

articles. The Headline column contained news headlines associated with the stock's

performance on the corresponding dates, offering a textual context for the sentiment score. This

merged dataset can be used for further analysis, such as examining how specific news events

and their sentiment relate to changes in stock prices and trading volume.

Figure 5.71 Removed the Vec column from the merged_df DataFrame

In this code snippet, the .drop() method is used with the columns parameter to specify

that the column labeled Vec should be deleted. This operation resulted in a new version of

merged_df without the Vec column, which likely contained vectorized features or data that are

no longer needed for the analysis. The Vec column may have been useful during previous steps

of the analysis, but it might now be redundant or irrelevant for the final stages of the analysis,

such as correlating sentiment scores or news headlines with stock price movements. By

removing this column, the DataFrame is simplified into 8 columns, retaining only the essential

data for further analysis, such as stock prices, sentiment scores, and headlines, which were

more directly related to the prediction task at hand.

Figure 5.72 Functions to remove Missing Values and Duplicate Rows in merged_df Dataframe

CHAPTER 5

101 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.73 Output of the latest dataframe after perform data cleaning steps

This cleaned merged_df DataFrame consisted of 1,809 rows and 8 columns, combining

stock price data, sentiment scores, and associated financial news headlines. The columns

include Date, representing each trading day; Open, High, Low, and Close prices for Apple's

stock; Volume, indicating the number of shares traded; sentiment_score, which reflected the

sentiment of news headlines (positive or negative); and the Headline column contained the

relevant financial news articles. After performing data cleaning operations to remove missing

values and duplicate rows, the DataFrame was now one step away for ready to feed in to the

models .

CHAPTER 5

102 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.74 Functions to get sentiment score of Headline using FinBERT , filtered out

rows that not matched between two sets of sentiment scores and drop the new sentiment score

column after done filtering.

This code snippet is designed to validate and cross-check sentiment scores using

FinBERT. It begins by defining the get_sentiment(text) function, which processed each news

headline to calculate its sentiment. The function used a pre-trained FinBERT model to analyze

the headline text and returns a sentiment score based on whether the sentiment is positive,

negative, or neutral. If the sentiment was positive, the function returned the score, while a

negative sentiment returned a negative score. For neutral or unclassified sentiments, the

function returned 0. Additionally, if an error occured during the sentiment analysis, the function

catched the exception and logs an error message.

The function was then applied to the Headline column of the merged_df DataFrame to

generate a new sentiment score, which is stored in a column called new_sentiment_score. The

code filtered out rows where the original sentiment_score did not match the newly computed

score, ensuring only consistent sentiment scores remain. Once this validation was completed,

CHAPTER 5

103 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

the new_sentiment_score column is removed, as it is no longer needed. This process resulted

in a clean and validated dataset, where the sentiment analysis from FinBERT aligned with the

original data, improving the reliability of the sentiment scores.

Figure 5.75 Created Lagged Features and Rolling Statistics, filled missing values and

printed the final updated dataframe

This code created additional features from the existing Close price column in the

merged_df DataFrame to enhance the dataset for further analysis or modeling. It first generated

two lagged features: Close_lag1 and Close_lag2. These are created by shifting the Close

column by 1- and 2-time steps, respectively, to capture the closing prices of the previous day

and two days prior. Lagged features were useful for incorporating historical price data into

predictive models, as they provide context about the stock’s recent performance. Next, the code

calculated rolling statistics for the Close column. It computed the 5-day rolling mean

(Close_rolling_mean) and the 5-day rolling standard deviation (Close_rolling_std) to capture

short-term trends and volatility in the stock prices. These rolling statistics helped smooth out

daily fluctuations and provided a clearer picture of price movements over a defined period.

After generating the lagged features and rolling statistics, the code checked for any

missing values that may have been introduced (especially in the first few rows where lagging

and rolling operations would create NaN values). It used the fillna() method with forward fill

(ffill) to propagate the last valid observation forward, ensuring the dataset remains complete

and free of gaps. Finally, the updated DataFrame, including the newly created features, is

printed.

CHAPTER 5

104 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.76 Output of final merged_df Datframe

The output showed the merged_df DataFrame, which now includes 12 columns and 677

rows. The added columns were Close_lag1, Close_lag2, Close_rolling_mean, and

Close_rolling_std, which have been calculated based on the stock's Close prices. The

Close_lag1 column contained the closing price from the previous day, while Close_lag2

included the closing price from two days prior. The Close_rolling_mean represented the 5-day

moving average of the closing prices, and the Close_rolling_std captured the 5-day rolling

standard deviation, indicating price volatility over that period.

Rows with earlier dates (e.g., the first few rows) had 0.00 values for the lag and rolling

columns due to insufficient prior data, especially for calculating the rolling statistics. The

DataFrame also retained its previous columns: stock prices (Open, High, Low, Close), trading

volume, sentiment scores, and related news headlines. The addition of the lagged and rolling

features enriched the dataset by providing historical price context and trends, which can be

useful for predictive analysis or modelling.

CHAPTER 5

105 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.77 Process of Generalized a correlation matrix of numerical features

from the merged_df DataFrame

First, the numerical features were selected using select_dtypes() to exclude non-

numerical columns like dates and headlines. The correlation matrix was then calculated

using .corr(), which computed the pairwise correlation between all the numerical

features, such as Open, High, Low, Close, Volume, sentiment_score, and the newly

created features like Close_lag1, Close_lag2, Close_rolling_mean, and

Close_rolling_std.

CHAPTER 5

106 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.79 Visualization as a heatmap for numerical column in final merged_df

dataframe

The resulting heatmap visualized the strength of these relationships, with darker

colors indicating stronger correlations. For example, the stock price variables (Open,

High, Low, Close) had a near-perfect correlation of 1.0 with each other, indicating that

they move almost identically. Meanwhile, Volume showed a moderate negative

correlation with stock prices (-0.43), suggesting that higher trading volumes may

correspond with lower stock prices. The sentiment_score had a weak positive

correlation (around 0.15) with stock prices, indicated that positive sentiment might

slightly influence stock movements. The Close_lag and Close_rolling features also

showed strong correlations with the closing price, indicated that past prices and rolling

CHAPTER 5

107 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

statistics were good predictors of current prices. This heatmap helped in understanding

the interrelationships between the variables in the dataset. This dataset offered a

comprehensive view by merging stock performance metrics with sentiment analysis of

news headlines, enabling the exploration of relationships between sentiment and stock

price movements or trading volumes.

Figure 5.80 Output the final processed dataframe for further use of modelling phase

This code exported the merged_df DataFrame to a CSV file named

final_processed_data.csv. The .to_csv() function is used to write the DataFrame to a file, and

the index=False parameter ensures that the index column (row numbers) is not included in the

CSV file.Then ,the csv file was ready to feed into the models for further modelling steps.

CHAPTER 5

108 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.6 Modelling Phase

5.6.1 Model Data Preparation and Transformation

Support Vector Machine

Figure 5.81 SVM Model Data Preparation I (Imported Libraries, Loaded dataset, and

Preprocessed the numerical features, Dropped rows with missing target values and Defined

Target variable.

CHAPTER 5

109 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This code imported a diverse set of libraries to handle data loading, preprocessing,

model training, and model evaluation for performance on predicting stock market prices using

Support Vector Regression (SVR). First, pandas was used for data manipulation, allowing the

dataset to be loaded from a CSV file and processed efficiently. The sklearn.model_selection

module provided tools like train_test_split to split the dataset into training and testing subsets

and TimeSeriesSplit for cross-validation, ensuring time series data is handled sequentially.

RandomizedSearchCV from the same module was used for hyperparameter tuning to find the

optimal configuration for the SVR model. The core algorithm, SVR, was imported from

sklearn.svm, and StandardScaler from sklearn.preprocessing ensures that all numerical features

are scaled, improving the performance of the SVR model. Additionally, make_pipeline from

sklearn.pipeline simplified the sequential steps, combining preprocessing and model training

into a single process. Performance evaluation was handled with metrics like

mean_squared_error, r2_score, and mean_absolute_error from sklearn.metrics, which

quantified the model's prediction accuracy.High, Low, Close), lagged features (Close_lag1,

Close_lag2), rolling statistics (Close_rolling_mean, Close_rolling_std), and sentiment

scores.Also, numpy provided efficient numerical operations, such as converting data into

arrays, while matplotlib.pyplot and matplotlib.dates are used for visualizing actual vs predicted

prices trend and formatting date-based plots on those visuslisation for visualize them within

date ranges. Finally, joblib allowed the trained model to be saved for future use, ensuring that

the SVR model can be reloaded without retraining. Overall, this comprehensive set of libraries

enables the entire workflow, from data preparation and model training to evaluation and

visualization, facilitating the prediction of stock prices based on historical data and sentiment

scores

After loading the dataset, a list of numerical columns was defined to extract the

necessary features. The Volume column is cleaned again by removing commas and converting

it to a float data type to ensure consistency in numerical representation.

Next, the code handled any missing data in the Close column by dropping rows where the target

value is missing, ensuring the model has complete data for training. The Close column is then

defined as the target variable , which was also known as the variable that the model will predict.

This target data was extracted into the y variable. The input features, defined earlier in the

numerical_columns list, were extracted into the X_numerical variable, which will be used as

CHAPTER 5

110 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

inputs to the model. This setup ensured to prepare the data ready for training the SVR model,

which will attempt to predict future closing stock prices based on historical price data, lagged

features, rolling statistics, and sentiment analysis.

Figure 5.82 SVM Model Data Preparation II (split the data into training and testing sets)

In this step, the numerical features data in final_proceesed_data was being split into

training and testing sets, which was essential for building and evaluating the machine learning

model. The length of the dataset was determined using n = len(X_numerical), where

X_numerical represents the feature set of the data. The training set size is then calculated as

80% of the total number of samples, ensuring that the model is trained on the majority of the

data while the remaining 20% is reserved for testing the model’s performance. This is done

with train_size = int(n * 0.8). The features and target values were split accordingly: X_train

and y_train contain the first 80% of the samples for training, while X_test and y_test contain

the remaining 20% for testing. The training set will be used to fit the model, and the test set

will be used to evaluate how well the model generalizes to unseen data, ensuring it was not

overfitted to the training data.

This step is crucial as it ensures that the model is evaluated fairly, using a portion of the

data that the model has not been exposed to during training. This split helps in assessing the

model's ability to generalize well to future, unseen data, making it more reliable for real-world

applications.

CHAPTER 5

111 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Long Short-Term Memory (LSTM)

Figure 5.83 LSTM Model Data Preparation (Imported Libraries, Loaded dataset, and

Preprocessed the numerical features, Dropped rows with missing target values ,Splitted data

into Feature and Target variable, Scaled the numerical features, Reshaped X to fit LSTM input

shape and also split data into train and test data.)

The code prepares data for an LSTM (Long Short-Term Memory) model, following a

similar process as the SVR (Support Vector Regression) model but also incorporating

differences to handle time series data and the specific requirements of LSTM models. Like in

the SVR model, the dataset was loaded using pandas, and key numerical features, such as Open,

High, Low, Volume, sentiment_score and other lagged and rolling features, are extracted for

use in modeling. The Volume column was cleaned by removing commas and converting it to

float. Missing values in the Close column are also handled by dropping rows that contain

CHAPTER 5

112 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

missing target values. The feature set (X_numerical) and target variable (y, representing Close

values) are extracted similarly, preparing the data for model training.

In terms of libraries, there are several differences between the models. The LSTM

model requires TensorFlow for deep learning functionalities, including the construction of the

LSTM network. TensorFlow's submodules, such as keras, are imported to build and train the

model using layers like LSTM, Dense, and Dropout. Additionally, various optimizers such as

Adam and RMSprop were imported for model training, which are specific to deep learning

models like LSTM. Furthermore, keras-tuner is imported to assist with hyperparameter tuning,

which is commonly used to find the best architecture for LSTM networks. Besides, LSTM

leveraged deep learning frameworks, highlighting a key distinction between traditional

machine learning models and deep learning models designed to handle time series data.

Also, there were notable differences in how the data was processed for the LSTM model

compared to SVR. LSTM used MinMaxScaler instead of StandardScaler for scaling the data.

This scaled the features and target values to a range of [0,1], which was essential for LSTM as

it performed better when features are normalized between a small range. LSTMs also required

input data to be in a 3D shape .This is achieved by reshaping the scaled feature data (X_scaled)

into this format (X_scaled = X_scaled.reshape(X_scaled.shape[0], X_scaled.shape[1], 1)),

reflecting time steps, so the feature data was reshaped to (samples, timesteps, features) format,

allowing the model to learn sequential patterns in the data. Additionally, the dates column was

extracted and splitted alongside the features and target, which is crucial for time series

forecasting .The train_test_split function was used to divide the dataset into training and test

sets, but the LSTM model splits the dates for easier temporal tracking of predictions.

CHAPTER 5

113 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Convolution Neural Network (CNN)

Figure 5.84 CNN Model Data Preparation I (Install Optuna Library)

Figure 5.85 CNN Model Data Preparation II (Imported Libraries, Loaded dataset, and

Preprocessed the numerical features, Dropped rows with missing target values ,Splitted data

CHAPTER 5

114 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

into Feature and Target variable, Scaled the x and y numerical features, Reshaped X to fit CNN

input shape and also split data into train and test data.)

The provided codes demonstrated the data preparation process for a Convolutional

Neural Network (CNN) model for time-series forecasting. Similar to the previous models, the

data is loaded using pandas, where the dataset was read from a CSV file and numerical features

such as Open, High, Low, Volume, and engineered features (Close_lag1, Close_rolling_mean,

etc.) are extracted. Like in LSTM, MinMaxScaler was used to scale these numerical features

to a range of [0,1], ensuring that the input data was normalized for training. Missing values in

the target column (Close) were handled by dropping incomplete rows to maintain data integrity

during training. A key difference between CNN and the other models was the input data

reshaping process. CNN required the data to be reshaped into a 3D format (samples, timesteps,

features), which is done to allow convolutional layers to capture patterns in the time-series data.

This is similar to the reshaping required in LSTM but differs significantly from SVR, which

does not require reshaping and treats each data point independently. Also, the installation

process of optuna, a popular hyperparameter optimization library often used for fine-tuning

deep learning models like CNNs (Convolutional Neural Networks). Optuna helped automate

the process of finding the best hyperparameters for a CNN by evaluating different

configurations efficiently, allowing for improved performance without manually adjusting the

parameters.

Additionally, the CNN model involved specific libraries like TensorFlow and Keras,

which are used to construct and train the CNN architecture. These libraries provided layers

such as Conv1D (for performing convolutional operations over time-series data), Dense,

Dropout, and optimizers like Adam. This contrasts with SVR, which relies on scikit-learn and

traditional machine learning techniques. While both CNN and LSTM models used deep

learning frameworks, CNN's architecture focused on convolutional operations to extract spatial

features, whereas LSTM focused on capturing temporal dependencies through memory cells.

Overall, while some preprocessing steps were shared across models, CNN’s data preparation

was tailored for its specialized architecture, involving data reshaping and deep learning-

specific libraries to leverage convolution for time-series forecasting.

CHAPTER 5

115 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Recurrent neural network (RNN) with Attention Mechanism

Figure 5.86 RNN with Attention Mechanism Model Data Preparation I (Install Optuna Library)

Figure 5.87 RNN with Attention Mechnaism Model Data Preparation II (Imported Libraries,

Loaded dataset, and Preprocessed the numerical features, Defined Features (X) and Y(target) ,

Scaled and transform the x and y numerical features, Reshaped X to fit RNN with Attention

Mechanism input shape and also split data into train and test data.)

CHAPTER 5

116 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In these code snippets, the data preparation for an RNN model with an attention

mechanism builded on the same foundational steps used for other deep learning models such

as CNNs or LSTMs. The feature scaling process applied the StandardScaler from

sklearn.preprocessing, ensuring that numerical features like Open, High, Low, Volume, and

lagged features like Close_lag1 and Close_lag2 are standardized. This scaling were crucial for

improving model performance and convergence during training. The target variable (Close)

was also scaled to maintain consistency with the input features. After scaling, the input data

was reshaped into a 3D structure, necessary for RNNs to capture sequential dependencies over

time steps, formatted as (samples, timesteps, features). This was a common practice for RNNs

and LSTMs but differs from CNNs, which process data in spatial dimensions.

A key difference in this model preparation is the addition of the attention mechanism,

which helps the model weigh certain time steps more than others based on their relevance. For

this purpose, libraries such as tensorflow.keras.layers.Input, SimpleRNN, Dense, Dropout,

Permute, and Lambda are utilized. These layers allowed for greater flexibility in building

custom models that can incorporate attention, unlike CNNs, which rely on Conv1D layers to

capture spatial patterns, or standard RNNs that lack the capability to focus on specific time

steps. The optimizer Adam was imported to fine-tune the model's learning process, along with

additional optimizers like RMSProp and Nadam for flexibility during experimentation. Finally,

Optuna was introduced to handle hyperparameter optimization, making the RNN with attention

a more sophisticated model for time series prediction by selectively focusing on important input

data.

CHAPTER 5

117 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.6.2 Model Defining, Building And Compiling

Support Vector Machine (SVM)

Figure 5.88 SVM Model defining and building

This code snippet established an SVM (Support Vector Machine) model pipeline with

integrated scaling, streamlining the machine learning process by ensuring the features are

appropriately scaled before model training. The pipeline was built using the make_pipeline()

function, which combined two essential steps: feature normalization using StandardScaler()

and model creation with SVR() (Support Vector Regression). The StandardScaler() ensured

that all features had a mean of 0 and a standard deviation of 1, effectively normalizing the data.

This step is critical for SVM models, which are sensitive to the scale of input features and

perform better when the data is standardized.

The SVR model was configured with several specific hyperparameters. It employed the

RBF (Radial Basis Function) kernel, which is widely used in SVM due to its ability to handle

nonlinear relationships by transforming the data into a higher-dimensional space. The

gamma='auto' parameter defined the influence of individual training examples on the decision

boundary, controlling the flexibility of the model to adjust to data points. A higher gamma

leads to a more flexible model that fits the data closely, while a lower gamma makes the model

more rigid. The C=10 parameter regulated the trade-off between the model's complexity and

the margin of error. A higher C allowed the model to pay more attention to minimizing the

error on the training data, but it could lead to overfitting if not tuned properly. Lastly,

epsilon=0.2 specified the epsilon-tube, a margin within which predictions were not penalized

for being off-target. This helped the model tolerate small errors while focusing on capturing

significant trends.

CHAPTER 5

118 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Long Short-Term Memory (LSTM)

Figure 5.89 LSTM Model defining and building

This code defined an LSTM model using TensorFlow and Keras, specifically designed

for time series prediction. The function `create_model` allowed for flexible configuration of

units, dropout rate, and optimizer. The model began with the Keras `Sequential()` API, which

enabled easy stacking of layers. The first LSTM layer consisted of 50 units, with

`return_sequences=True` to output the entire sequence for further processing by the subsequent

LSTM layer. This layer was fed input with a shape defined by the training data, and L2

regularization (with a penalty of 0.001) was applied to avoid overfitting. Following the first

LSTM, a dropout layer was included to randomly drop 20% of the neurons during training,

further regularizing the model and enhancing its generalization.

The second LSTM layer, also with 50 units, had `return_sequences=False` since it was

the final recurrent layer and only the last output was required. Like the first LSTM, it was

regularized with L2. Another dropout layer with a 20% rate was applied after this LSTM to

prevent overfitting. Finally, the model ended with a dense layer containing a single neuron,

which predicted the target variable, in this case, the stock's "Close" price. The model was

compiled using the `adam` optimizer, which is known for its adaptive learning rate and

efficiency. The loss function was set to `mean_squared_error`, commonly used for regression

tasks like stock market prediction to minimize the squared difference between predicted and

actual values.

CHAPTER 5

119 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Convolution Neural Network (CNN)

Figure 5.90 CNN Model building

Figure 5.91 CNN model Compiling and function to display model summary

Figure 5.92 Output of CNN model’s model summary

These code snippets above showed CNN model was built to handle time series

forecasting tasks, specifically designed to capture sequential patterns in the data. The function

build_cnn_model constructed the model using the Keras Sequential API, allowing for the layer-

CHAPTER 5

120 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

by-layer addition of neural network components. The architecture started with two Conv1D

layers, both using 64 filters, which were small sliding windows that scanned through the time

series data to detect local patterns. These layers used a kernel size of 3, meaning each filter

looked at three consecutive time steps at a time to extract meaningful patterns. The padding

was set to 'same', ensuring that the output dimensions remained the same as the input

dimensions after convolution, preserving the size of the data for deeper layers.

The activation function in both convolutional layers was relu (Rectified Linear Unit),

which introduced non-linearity and helped the model learn complex representations by

allowing only positive values to pass through. The Flatten layer was crucial because it

converted the 3D output from the convolutional layers into a 2D array, making it suitable for

the fully connected layers that followed.

After flattening, a Dense layer with 50 neurons was added, which served as a fully

connected layer where each neuron was connected to all the outputs from the previous layer.

The relu activation continued to ensure non-linearity in the model. A Dropout layer with a rate

of 0.2 was applied to mitigate overfitting by randomly setting 20% of the neurons to zero during

each training iteration. This regularization technique helped prevent the model from

memorizing the training data and encouraged generalization.

The final layer was a Dense layer with a single output neuron because the task at hand

was regression, and the model was expected to predict a single continuous value (the stock

price or another target). The optimizer used for compiling the model was Adam, a widely

adopted optimizer known for its efficient and adaptive learning rate. The learning rate was set

at 0.001, which allowed the model to make gradual updates to weights, ensuring stability in

learning. The loss function, mean_squared_error, was chosen to measure the squared difference

between the predicted and actual values, penalizing large errors.

Finally, the model's summary was displayed, providing a detailed overview of each

layer, its output shape, and the number of parameters (trainable weights). The two Conv1D

layers contributed the most parameters because they contained several filters. The overall

model had 41,509 trainable parameters, indicating the complexity of the neural network. This

model was particularly useful for sequential data because the Conv1D layers captured temporal

CHAPTER 5

121 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

patterns effectively by using sliding filters across time steps, making it ideal for time series

forecasting tasks.

Recurrent neural network (RNN) with Attention Mechanism

Figure 5.92 Building the attention Layer, function to create the RNN with attention model and

create the initial model.

The code defines an RNN model with an attention mechanism, introducing a more

advanced structure that enables the network to focus on specific time steps within the sequence

data. The Attention Layer (attention_3d_block) was designed to enhance the RNN's ability to

focus on specific time steps in the sequence. The attention mechanism was applied across the

time dimension, with the input dimension determined by the shape of the input sequence,

specifically the number of features or units in the input data, denoted as X_train.shape[2]. In

this case, X_train.shape[2] refers to the number of features in each time step of the sequence.

For example, if the dataset contains stock data with features such as 'Open', 'Close', 'Volume',

etc., then X_train.shape[2] would represent the number of such features.

The Permute layer was used to change the input shape to (2, 1). Here, the numbers (2,

1) refer to the axes that were swapped—axis 2 (features) and axis 1 (time steps). This

permutation allows the attention mechanism to operate across the time steps rather than across

the features. After calculating the attention scores, the input sequence was permuted back to its

original shape using another Permute layer.

CHAPTER 5

122 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

A Dense layer was then applied with an output size equal to the number of time steps in the

input sequence, which is represented by X_train.shape[1]. The value X_train.shape[1] refers to

the length of the sequence (i.e., the number of time steps in each sequence). For instance, if

analyzing stock prices over 30 days, X_train.shape[1] would be 30. The Dense layer's output

size ensures that the attention mechanism can assign different importance to each time step.

The softmax activation function was used to ensure that the attention scores across all time

steps summed to 1, making it possible for the model to focus on the most relevant parts of the

sequence.

Once the attention scores were computed, the input sequence was multiplied by these scores

using the Multiply layer. This multiplication applied the attention mechanism, effectively

weighting each time step by its importance, as determined by the attention scores. This allowed

the model to concentrate on the most relevant time steps when making predictions.

In the Function to Create the RNN with Attention (create_rnn_attention_model), the core

layer was a SimpleRNN with 64 units (units=64). This means that the RNN output for each

time step had a dimensionality of 64, meaning it output 64 values at each time step. The

return_sequences=True parameter was essential because it made the RNN return the full

sequence of outputs across all time steps (as opposed to just the output from the final time step),

which was necessary for the attention mechanism to operate on the entire sequence. Without

this, the attention layer wouldn't have the full sequence to work with.

A Dropout layer with a rate of 0.2 (20%) was added after the RNN layer to reduce

overfitting. This layer randomly set 20% of the input units to zero during each training iteration,

helping the model generalize better to unseen data. The output from the RNN layer was then

passed to the custom attention_3d_block function, where the attention mechanism was applied

to the sequence, focusing the model on the most important time steps. After applying attention,

a Dense layer with a single unit was added to generate the final prediction. This single output

is typical for regression tasks, where the goal is to predict a single continuous value (such as a

stock price).

Finally, in the Create and Train the Initial Model section, the model was initialized by

calling the create_rnn_attention_model function. The model was compiled using the Adam

CHAPTER 5

123 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

optimizer, which is known for its efficient handling of large datasets and sparse gradients. The

mean_squared_error loss function was used, which is appropriate for regression tasks, where

the model is trained to minimize the difference between predicted and actual values.

5.6.3 Model Training and Training Performance Evaluation

Support Vector Machine (SVM)

Figure 5.93 SVM Model training and Training Performance Evaluation

The provided code aboved implemented the training and evaluation process of an SVM

model using various performance metrics to assess the accuracy and fit on the training dataset.

Initially, the svm_pipeline.fit(X_train, y_train) command fit the SVM model to the training

data, where the model learned patterns in the features (X_train) to predict the target values

(y_train). After training, the model was used to make predictions on the training data with the

svm_pipeline.predict(X_train) function, which stored the predicted target values

(y_train_pred).

CHAPTER 5

124 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

To evaluate the model's performance, several metrics were calculated. The Mean

Squared Error (MSE) was computed using mean_squared_error(y_train, y_train_pred), which

measured the average squared difference between the predicted values and the actual target

values, giving an idea of how close the predictions were. Next, R-squared (R²) was calculated

using r2_score(y_train, y_train_pred), indicating how well the predictions captured the

variance in the actual target values, with values closer to 1 showing a better fit. Additionally,

Root Mean Squared Error (RMSE), calculated as the square root of MSE, offered a more

interpretable error magnitude in the same unit as the target. Lastly, Mean Absolute Error

(MAE) was derived using mean_absolute_error(y_train, y_train_pred), providing the average

of the absolute differences between predicted and actual values. These metrics were printed out

to help assess the model's performance, giving insights into the error magnitude and how well

the model fit the training data.

Long Short-Term Memory (LSTM)

Figure 5.94 LSTM Model Training

CHAPTER 5

125 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.95 LSTM Model Training Performance Evaluation

The model training process for the LSTM began with the create_model() function,

which defined the LSTM architecture. The model was trained using the fit() method with 50

epochs and a batch size of 32. The training process included validation data (X_test and y_test),

allowing the model to be monitored for both training and validation performance during each

epoch. As the model iterated through the epochs, the loss and validation loss were printed,

reflecting how the model was adjusting its weights to reduce errors and improve its predictions

over time. The verbose=1 parameter ensured that detailed progress was displayed for each

epoch.

After training the LSTM model, predictions on the training dataset were generated

using the predict() method. To revert the scaled predictions and target values (y_train) back to

their original values, the inverse transform of the scaler was applied. The model's performance

on the training data was then evaluated using regression metrics: mean squared error (MSE),

root mean squared error (RMSE), mean absolute error (MAE), and R-squared (R²). These

metrics helped assess how well the model captured the underlying patterns in the training data,

providing insight into the error magnitude and the proportion of variance explained by the

model. This process effectively closed the loop on training by determining how well the LSTM

had learned from the data.

CHAPTER 5

126 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Convolution Neural Network (CNN)

Figure 5.96 CNN Model Training

Figure 5.97 CNN Model Training Performance Evaluation

CHAPTER 5

127 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In this code, the CNN model training and evaluation process was executed. The

cnn_model.fit() function was used to train the model with the training dataset (X_train,

y_train). The model was trained for 50 epochs with a batch size of 32, while validation was

performed using the test dataset (X_test, y_test). Each epoch’s progress was displayed with the

training loss and validation loss, indicating how well the model learned during training.

After training, the model was evaluated on the training set. Predictions were made using

cnn_model.predict(X_train), and these predictions were inverse transformed using the scaler

to return them to their original scale. The code then calculated various performance metrics on

the training set, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE),

Mean Absolute Error (MAE), and R-squared (R²). These metrics provided insight into the

model’s performance, specifically how closely the predictions matched the actual values. The

final step printed these metrics, allowing for a detailed evaluation of how well the CNN model

performed on the training data.

CHAPTER 5

128 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Recurrent neural network (RNN) with Attention Mechanism

Figure 5.98 RNN with Attention Mechanism Model Training

CHAPTER 5

129 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.99 RNN with Attention Mechanism Model Training Performance Evaluation

The model training and evaluation process for the RNN with attention mechanism were

carried out using 100 epochs, with a batch size of 32 and a validation split of 0.2, meaning 80%

of the data was used for training and 20% for validation. During training, the fit() function was

used to optimize the model by minimizing the mean squared error (MSE) loss for both the

training and validation datasets. The output for each epoch showed a progressive reduction in

both training and validation loss, indicating that the model was learning to predict the target

values effectively without overfitting. This decreasing trend in the loss functions suggested that

the model was improving its accuracy as training progressed.

After the training phase, the model's performance on the training data was evaluated.

Predictions were made on the training dataset using the predict() function, specifically targeting

CHAPTER 5

130 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

the last time step of the sequence since the task was to predict the next value in the sequence.

The predicted values were then inverse transformed, along with the original training data, using

the scaler that had been applied earlier during preprocessing to normalize the data. This step

restored the predictions and actual values to their original scale, enabling proper evaluation. It

was important to ensure that both the predicted and actual arrays had matching shapes for

evaluation, with the output shape of the predictions and original data being (541, 1), meaning

541 data points for each variable.

The model's performance was assessed using several key metrics: Mean Absolute Error

(MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R²).

MAE provided an average measure of prediction error, while MSE emphasized larger errors

by squaring the differences. RMSE, being the square root of MSE, offered an interpretable

error in the same scale as the data, and R² indicated the correlation between predicted and actual

values, with values closer to 1 showing strong predictive accuracy. Overall, these metrics,

along with the shape of the outputs, highlighted the RNN with attention mechanism's ability to

effectively capture temporal dependencies in the sequence, providing a solid performance on

the training data.

5.6.4 Model Cross Validation Evaluation

Support Vector Machine (SVM)

Figure 5.100 SVM Model TimeSeriesSplit Cross Validation

CHAPTER 5

131 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This code snippet implemented the cross-validation process for evaluating the

performance of the SVM model using a time series split. First, a TimeSeriesSplit object was

created with 5 splits (n_splits=5), which ensured that the data was split in a way that respected

the temporal order of the dataset, as is necessary in time series forecasting tasks. The cross-

validation was then performed using the cross_val_score() function, applying the SVM

pipeline to the features (X_numerical) and target variable (y). The scoring parameter was set

to neg_mean_squared_error, which means the function calculated the negative of the Mean

Squared Error (MSE) for each fold of the cross-validation. This is done because cross-

validation functions in scikit-learn are set up to maximize scores, so the negative sign allows

for minimization of MSE.

Once the cross-validation was completed, the average MSE across all the cross-

validation folds was calculated using np.mean() on the cv_scores. Since the MSE was negative,

it was multiplied by -1 to restore the correct MSE values. The Root Mean Squared Error

(RMSE) was also computed using np.sqrt() on the average MSE to provide a more interpretable

metric. Both the average MSE and RMSE were printed out for further analysis. These metrics

provided insight into the model's performance across different training and test splits, offering

a more robust evaluation than a single training-validation split would provide. The MSE and

RMSE values reflect the model's average prediction error during cross-validation.

Long Short-Term Memory (LSTM)

CHAPTER 5

132 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.101 LSTM Model TimeSeriesSplit Cross Validation

This code performed a time series cross-validation (CV) for an LSTM model using a

TimeSeriesSplit object with 5 splits (n_splits=5). The TimeSeriesSplit ensures that each fold

maintains the temporal order of the data, which is crucial for time series modeling.

Within the for loop, the training and validation indices (train_index and val_index) were

generated, and corresponding training and validation sets (X_train_cv, X_val_cv, y_train_cv,

y_val_cv) were defined for each fold. For each fold, the LSTM model (model_cv) was defined

and compiled. The model had two LSTM layers, both with 50 units. The first LSTM layer was

configured with return_sequences=True because it was not the final recurrent layer and needed

to pass the full sequence to the next LSTM layer. The model also had two dropout layers with

a dropout rate of 0.2 to prevent overfitting. Finally, a Dense layer with a single unit was added

to output the final prediction.

The model was then trained on the current fold's training data (X_train_cv, y_train_cv)

for 50 epochs with a batch size of 32. Once training was complete, the model was validated on

the current fold’s validation set (X_val_cv), and the predictions (y_val_pred_cv) were

evaluated using the Mean Squared Error (MSE). The MSE for each fold was appended to the

list cv_mse_scores.

After the loop completed all folds, the average cross-validation MSE was computed

using np.mean() on the cv_mse_scores. This value gave a robust estimate of the model’s

generalization performance across multiple time series splits.

CHAPTER 5

133 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Convolution Neural Network (CNN)

Figure 5.102 CNN Model TimeSeriesSplit Cross Validation

This code implemented a time series cross-validation (CV) for a CNN model using the

TimeSeriesSplit object with 6 splits (n_splits=6). The purpose was to evaluate the performance

of the CNN model on multiple time series folds, ensuring the temporal order of the data was

maintained.

The for loop iterated over the training and validation indices (train_index, val_index)

generated by tscv.split(). The training and validation sets (X_train_cv, X_val_cv, y_train_cv,

CHAPTER 5

134 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

y_val_cv) were extracted for each fold, and for each fold, the CNN model (model_cv) was built

and compiled. The CNN model included two Conv1D layers with 64 filters each, followed by

a Dense layer with 50 units, Dropout layers for regularization, and a final Dense layer for

regression. The model was compiled with the Adam optimizer and the loss function set to mean

squared error (MSE), which is commonly used for regression tasks.

The CNN model was trained on the current fold's training data (X_train_cv, y_train_cv)

for 50 epochs with a batch size of 32. After training, the model was validated on the current

fold’s validation set (X_val_cv), and the predictions (y_val_pred) were made. The predictions

were inverse transformed using the scaler, to match the scale of the original data.

Performance metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE),

Mean Absolute Error (MAE), and R-squared (R2) were calculated on the validation set, and

the results were stored in their respective lists (cv_mse_scores, cv_rmse_scores,

cv_mae_scores, cv_r2_scores).

After completing all folds, the mean cross-validation scores for MSE, RMSE, MAE,

and R2 were computed using np.mean() and printed, providing an overall assessment of the

model’s performance across all time series splits. This approach ensured that the CNN model's

generalization ability was thoroughly evaluated across multiple folds.

CHAPTER 5

135 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Recurrent neural network (RNN) with Attention Mechanism

Figure 5.103 RNN with attention Model Rolling Window Cross Validation

with the TimeSeriesSplit object-based

This code implemented a rolling window cross-validation for an RNN with attention

mechanism. The TimeSeriesSplit object was used to create 5 folds (n_splits=5), which ensured

that the temporal order of the data was preserved throughout the process.

In each iteration of the cross-validation loop, training and test indices were generated

(train_index and test_index), and the corresponding data folds (X_train_fold, X_test_fold,

y_train_fold, y_test_fold) were extracted from the scaled dataset (X_scaled and y_scaled).

Consistency checks were applied to ensure that the lengths of y_train_fold and y_test_fold

matched with the respective X_train_fold and X_test_fold.

Before feeding the data into the RNN model, the input was reshaped into a 3D format,

(samples, timesteps, features), required for RNNs. Both the training and test data were reshaped

accordingly. The model was then trained on the current fold's training data for 100 epochs with

CHAPTER 5

136 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

a batch size of 32. Callbacks, such as early_stopping and reduce_lr, were used to prevent

overfitting and dynamically adjust the learning rate based on the validation performance.

After training, the model was tested on the fold’s test data (X_test_fold), and

predictions were made (y_pred_fold). Since the model was predicting the next time step, only

the last time step prediction for each sample was extracted. This prediction was reshaped to 2D

and inverse-transformed back to the original scale using the scaler. The same inverse

transformation was applied to the true values (y_test_fold).

Both the predicted and true values were flattened into 1D arrays for metric calculation.

The Root Mean Squared Error (RMSE) was calculated for each fold using

mean_squared_error, and the square root of this value was stored in fold_scores. Finally, after

all folds were evaluated, the average RMSE across all folds was returned using

np.mean(fold_scores).

CHAPTER 5

137 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.6.4 Model Hyperparameters and Fine-Tuning

Support Vector Machine(SVM)

Figure 5.104 SVM model Hyperparmters and Fine-tuning for get best model

The code implemented hyperparameter tuning for an SVM model using RandomizedSearchCV

to find the optimal combination of hyperparameters. A parameter grid, param_dist, was

defined, which included a range of values for svr_C, svr_gamma, svr_epsilon, and svr_kernel.

These hyperparameters were essential for controlling various aspects of the Support Vector

Regressor (SVR). Specifically, svr_C, with values ranging from 0.1 to 100, determined the

regularization strength, controlling the trade-off between model complexity and training error.

The svr_gamma parameter, tested with values 'scale' and 'auto', controlled the influence range

of a single data point, while svr_epsilon, tested with values of 0.1, 0.2, and 0.5, defined the

epsilon-tube where errors were not penalized. The svr_kernel, set to 'rbf' and 'linear',

determined the kernel type used in the SVR.

The RandomizedSearchCV was configured with 20 iterations (n_iter=20) to randomly

sample combinations from the hyperparameter grid. The scoring metric used was the negative

mean squared error (neg_mean_squared_error), which is commonly used for regression tasks.

TimeSeriesSplit (cv=tscv) was applied to ensure that the temporal structure of the data was

preserved during cross-validation.

After completing the hyperparameter search, the best model (best_svm_model) was

selected, and the optimal hyperparameters were retrieved and printed using

random_search.best_params_. The n_jobs=-1 parameter was used to parallelize the search

CHAPTER 5

138 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

across all available processors, while the random_state=42 ensured reproducibility. This

process optimized the SVM model by exploring various combinations of hyperparameters,

ultimately identifying the configuration that minimized the model's mean squared error.

Long Short-Term Memory(LSTM)

CHAPTER 5

139 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.105 LSTM model Hyperparmters and Fine-tuning for get best models

CHAPTER 5

140 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.106 LSTM model add Function Early Stopping and Regularization and Train the best

model

The provided code defined a model-building function for Keras Tuner, which facilitated

hyperparameter optimization for an LSTM model. The function build_model(hp) allowed the

model to tune specific parameters such as the number of LSTM units (ranging from 50 to 300),

dropout rates (from 0.1 to 0.5), and the optimizer type. Inside the function, two LSTM layers

were added, with the first having return_sequences=True, allowing it to output the full

sequence to the subsequent layer. After each LSTM layer, a Dropout layer was applied to

prevent overfitting. The final Dense layer, with a single unit, output the model’s prediction.

Additionally, the optimizer was dynamically chosen based on the hyperparameters provided

by the hp.Choice() function. This included options like adam, rmsprop, nadam, and sgd, each

with a tunable learning rate defined by hp.Float().

The Keras Tuner was initialized using the Hyperband algorithm, which is a resource-

efficient tuning strategy. It searched for the optimal hyperparameters by monitoring the

val_loss over 50 epochs with a validation split of 0.2. The search process returned the best

model, and the best model's summary was printed for evaluation.

Early stopping and regularization were also implemented to optimize model

performance further. Early stopping monitored the val_loss, and if no improvement was

observed for five epochs, training was halted, and the best weights were restored. The best

model was trained with early stopping using 100 epochs and a batch size of 32, further

evaluated on the test data, ensuring the model did not overfit and reached its best performance

under the tuned conditions.

CHAPTER 5

141 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Convolution Neural Network (CNN)

Figure 5.107 CNN model hyperparameters tuning ,fine-tune and also Train the best model

The code provided utilized the Optuna library to perform hyperparameter tuning for a

Convolutional Neural Network (CNN). The goal was to optimize the model by adjusting

several key hyperparameters and evaluating the mean squared error (MSE) as the objective

metric.

In the objective(trial) function, a set of hyperparameters was defined for tuning. These

included the learning rate (learning_rate), number of filters in the convolutional layers (filters),

kernel size (kernel_size), and dropout rate (dropout_rate). Optuna’s suggest_float() and

suggest_categorical() methods were used to explore different values for these hyperparameters.

For instance, the learning rate was tuned between 1e-5 and 1e-2 on a logarithmic scale, and the

number of filters was set to choose between 32, 64, and 128.

CHAPTER 5

142 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The CNN model was built with two Conv1D layers, each using the suggested number of filters,

kernel size, and a 'relu' activation function. Dropout was applied after the convolutional layers

to prevent overfitting. Finally, a Dense layer was added for the regression task, outputting a

single value (likely the predicted stock price or some similar target).

The model was compiled using the Adam optimizer with the suggested learning rate

and the mean_squared_error loss function. The model was then trained for 50 epochs with a

batch size of 32 and validated on a test set during training. After training, the model predicted

the test set and computed the MSE between the predictions and the actual values.

The study object was created to minimize the MSE, and Optuna ran 100 trials to find the best

set of hyperparameters. The best parameters were printed, and the CNN model was rebuilt with

these best-performing hyperparameters. The best model was then compiled and retrained, this

time with the fine-tuned hyperparameters, to further improve its performance.

Recurrent neural network (RNN) with Attention Mechanism

Figure 5.108 RNN with attention mechanism model hyperparameters tuning ,fine-tune and also

Train the best model

CHAPTER 5

143 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The code above implemented hyperparameter tuning for an RNN with an attention

mechanism using the Optuna framework. The process involved adjusting several

hyperparameters to optimize the model for its task, and the objective was to minimize the loss,

specifically using mean squared error (MSE) as the evaluation metric.

First, the optuna.create_study() method was used to create a study with the objective of

minimizing the MSE. The study.optimize() function was called, where Optuna performed 50

trials (n_trials=50) to find the best combination of hyperparameters that resulted in the lowest

MSE.

Once the best hyperparameters were identified, they were retrieved using

study.best_params. These parameters included values for the optimizer type, learning rate,

number of units in the RNN layer, and dropout rate. Depending on the selected optimizer,

different learning rates were applied using Adam, RMSprop, Nadam, or SGD. Each optimizer’s

learning rate was dynamically set to the best value found during the tuning process.

The best model was then created using the create_rnn_attention_model() function,

which constructed an RNN with an attention mechanism. This function accepted the tuned

number of RNN units (best_params['units']), the dropout rate (best_params['dropout_rate']),

and the selected optimizer.

Finally, the model was trained on the scaled dataset for 100 epochs with a batch size of

32. Early stopping and learning rate reduction callbacks were applied to prevent overfitting and

to fine-tune the learning rate during training. These callbacks allowed the training process to

stop early if there was no significant improvement in validation loss, and they adjusted the

learning rate when the validation loss plateaued.

CHAPTER 5

144 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.6.4 Model Test-Set Evaluation

Support Vector Machine(SVM)

Figure 5.109 SVM model test-set evaluation

The code snippet demonstrated the evaluation process of the best Support Vector

Machine (SVM) model on the test dataset by calculating key performance metrics. First, the

predictions on the test set were generated using best_svm_model.predict(X_test), which

provided the predicted values (y_test_pred) based on the trained SVM model and the test

features (X_test).

Next, various performance metrics were computed to assess the model's accuracy. The

Mean Squared Error (MSE) was calculated with mean_squared_error(y_test, y_test_pred),

representing the average squared difference between actual and predicted values, indicating the

model's overall prediction error. The R-squared (R²) score, calculated using r2_score(y_test,

y_test_pred), measured how well the predicted values explained the variance in the actual test

data, with higher values (closer to 1) reflecting a better fit. To provide further clarity, the Root

Mean Squared Error (RMSE) was derived by taking the square root of the MSE using

np.sqrt(mse_test), offering a more interpretable error measurement in the same units as the

target variable. Additionally, the Mean Absolute Error (MAE) was computed using

mean_absolute_error(y_test, y_test_pred), representing the average absolute differences

between the predicted and actual values, helping to gauge the accuracy of predictions.

CHAPTER 5

145 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Long Short-Term Memory (LSTM)

Figure 5.110 LSTM model test-set Evaluation

The code provided evaluated the performance of the fine-tuned LSTM model on the

test dataset. The first step was to predict the target values (y_test_pred) using the model’s

predict() function. Since the predictions were generated in the scaled space (as the features and

target values were scaled during training), both the predicted values and the actual test values

were inverse transformed back to their original scale using scaler_y.inverse_transform(). This

step ensured that the error metrics would be computed in the original, meaningful units of the

target variable.

Next, the performance of the model was assessed using four key metrics. The Mean

Squared Error (MSE) calculated the average of the squared differences between the true values

and predictions, which provided insight into the overall accuracy of the model. The Root Mean

Squared Error (RMSE) was derived from the square root of the MSE, making it easier to

interpret since it presented the error in the same units as the target. The Mean Absolute Error

(MAE) measured the average magnitude of the errors, ignoring their direction, thus showing

how much the predictions deviated from the actual values on average. Finally, the R-squared

CHAPTER 5

146 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

(R²) score was calculated to evaluate how well the model explained the variance in the data,

with values closer to 1 indicating better predictive performance.

Convolution Neural Network (CNN)

Figure 5.111 CNN model test-set Evaluation

The code provided focused on evaluating the performance of a trained CNN model on

the test dataset. First, the test set predictions (y_test_pred) were generated using

best_model.predict(X_test). Since the model's predictions were scaled during the training

process, the predicted values were transformed back to their original scale using

scaler_y.inverse_transform(). Similarly, the actual test values (y_test_original) were also

inverse transformed to enable a fair comparison with the predicted values.

After transforming the values, several performance metrics were calculated to assess

the model's accuracy on the test data. The Mean Squared Error (MSE), computed with

mean_squared_error(), measured the average squared differences between the actual and

predicted values, providing insight into the overall prediction error. The R-squared (R²) score,

calculated using r2_score(), indicated the proportion of variance in the test set explained by the

CHAPTER 5

147 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

model, where a score closer to 1 suggests a stronger predictive capability. Additionally, the

Root Mean Squared Error (RMSE), calculated as the square root of the MSE, helped interpret

the model's error in the same units as the target variable, while the Mean Absolute Error (MAE)

captured the average magnitude of errors in the predictions without considering their direction.

Finally, the results of the evaluation, including MSE, R², RMSE, and MAE, were

printed, allowing for a detailed understanding of the CNN model's performance on the test set,

thus helping assess the model's generalization to unseen data.

Recurrent neural network (RNN) with Attention Mechanism

Figure 5.112 RNN with Attention Mechanism model test-set Evaluation

The code shown evaluated the final RNN with Attention Model on the test set. The

model's predictions on the test data were obtained using best_model.predict(), which returned

the predicted values (y_test_pred_final). Since the model was predicting a sequence, only the

final time step predictions were extracted using slicing (y_test_pred_final[:, -1, 0]). This 1D

array of predictions was reshaped to match the shape of the actual test data. Both the predicted

and actual test values were then inverse transformed using scaler_y.inverse_transform() to

revert them back to their original scale for meaningful interpretation.

CHAPTER 5

148 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Once the predictions were in their original scale, the model's performance was

evaluated using several metrics. The Mean Squared Error (MSE) was computed to measure the

average squared difference between the predicted and actual values. The Root Mean Squared

Error (RMSE), derived from the MSE, provided the error in the same units as the target

variable, making it easier to interpret. The Mean Absolute Error (MAE) quantified the average

magnitude of errors in the predictions. Lastly, the R-squared (R²) score was calculated to

determine how well the model explained the variance in the data, where a value closer to 1

indicated better model performance.

These evaluation metrics were printed to provide a comprehensive summary of how

well the fine-tuned RNN with Attention Model performed on the unseen test data.

5.6.4 Model Results Visualisation

Support Vector Machine (SVM)

Figure 5.113 Daily Forecast Visualisation of Actual Vs Predicted Close Prices in January 2019

that retrieved from results generated by SVM model

CHAPTER 5

149 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The provided code snippet filtered the dataset to include only daily data from January

2019 for visualization purposes. It first defined a start and end date (2019-01-01 to 2019-01-

31) and filtered the dataset accordingly. After filtering the data, the features (numerical

columns) and the target variable (Close price) for this date range were extracted.

Next, the best-trained SVM model predicted the Close price for the filtered January

2019 data. The predictions (y_jan_2019_pred) were then compared to the actual Close prices

(y_jan_2019) for the same period.

The visualization was created using Matplotlib. A figure was initialized with a size of

12 by 6 inches. Two lines were plotted on the same graph: one representing the actual close

prices (y_jan_2019) and the other representing the predicted close prices (y_jan_2019_pred).

The x-axis represented the date, while the y-axis represented the close price. Labels and a

legend were added to distinguish between actual and predicted values, and the x-ticks were

rotated for better readability. The graph was completed with grid lines for clarity and finally

displayed using plt.show().

This visualization provided a comparison of how well the SVM model's predicted close

prices aligned with the actual close prices for January 2019 in daily basis.

CHAPTER 5

150 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.113 Monthly Forecast Visualisation of Actual Vs Predicted Close Prices from January

2019 until January 2024 that retrieved from results generated by SVM model

CHAPTER 5

151 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The code implemented a visualization to compare the actual versus predicted stock

close prices using an SVM model over a monthly ranging from January 2019 to January 2024.

The process began by defining the date range, filtering the dataset to include only data between

these dates. Two empty lists, predicted_values and actual_values, were initialized to store the

predicted close prices and actual close prices, respectively, for each month. Another list, dates,

was created to store the corresponding dates for both predicted and actual values.

The code iterated over each month within the date range. For each iteration, it filtered the data

to extract the relevant features and target values for that month. It then checked if there was

available data for the current month. If data was present, the SVM model predicted the close

prices for that month. The predicted close prices, actual close prices, and the dates were

appended to their respective lists.

After collecting the predicted and actual values, the dates were converted into a pandas

datetime object for easy plotting. A dual-line plot was created using Matplotlib to visualize the

comparison between actual and predicted close prices. The actual close prices were plotted in

blue, while the predicted close prices were plotted in red. The plot was enhanced with

appropriate labels for the x-axis (Date) and y-axis (Close Price), and a title was added to

indicate the period of visualization. Additionally, the x-axis was formatted to display months

and years at a 3-month interval, with the dates presented in a %Y-%m format and rotated for

better readability. The grid lines were enabled to improve clarity, and the final visualization

was displayed.

This visualization provided an overview of how well the SVM model’s predictions aligned

with the actual stock prices over the entire 5-year in monthly period, allowing for easy

comparison and interpretation of model performance across time.

CHAPTER 5

152 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.114 Annually Forecast Visualisation of Actual Vs Predicted Close Prices from

January 2019 until January 2024 that retrieved from results generated by SVM model

This code generated an annual visualization of actual versus predicted stock close prices

using the SVM model for the years 2019 to 2023. The process began by defining the date range

from January 1, 2019, to January 31, 2024, and filtering the dataset based on this range. Empty

lists were initialized to store the predicted values, actual values, and the corresponding dates.

CHAPTER 5

153 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

A loop was then implemented to iterate through each year within the specified range.

For each year, the data was filtered for that specific year. The features (X_year) and the target

variable (y_year) were extracted for the stock close prices during that year. If data existed for

the selected year, the SVM model predicted the close prices (y_year_pred). Both the predicted

and actual values were appended to their respective lists, along with the corresponding dates.

After gathering the predicted and actual values across all years, the dates were

converted into datetime objects to enable proper plotting on the x-axis. The actual and predicted

values were plotted using Matplotlib, where the actual close prices were visualized in blue and

the predicted close prices in red. The plot's title indicated that it visualized the actual versus

predicted close prices for the period between 2019 and 2023.

The x-axis was formatted to display the years, with a major tick at each year using

YearLocator, and the labels for the years were formatted using DateFormatter. The x-axis tick

labels were rotated by 45 degrees for clarity, and a grid was added to the plot. This allowed a

clear comparison of actual versus predicted stock prices over the entire multi-year period.

CHAPTER 5

154 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Long Short-Term Memory (LSTM)

Figure 5.115 Daily Forecast Visualisation of Actual Vs Predicted Close Prices in January 2019

that retrieved from results generated by LSTM model

This code was used to generate a daily forecast visualization comparing actual versus

predicted stock close prices for January 2019 using the fine-tuned LSTM model. The first step

was to filter the dataset for the relevant date range, from January 1, 2019, to January 31, 2019.

The features (X_jan_2019) and target variable (y_jan_2019) were extracted for this specific

month. In addition, the dates (dates_jan_2019) were extracted to use them for labeling the x-

axis in the visualization.

The features were then scaled using the StandardScaler to standardize the input values

before they were fed into the LSTM model. After scaling, the data was reshaped into the

required 3D format of (samples, timesteps, features), suitable for the sequential data processing

nature of LSTM models.

CHAPTER 5

155 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The fine-tuned LSTM model was used to predict the stock close prices for January

2019, and the predicted values (y_pred_jan_2019_scaled) were transformed back to the

original scale using the inverse transformation of the scaler to make them comparable with the

actual stock prices.

Lastly, the visualization was created using Matplotlib, where the actual stock prices

were plotted in blue, and the predicted prices were plotted in red. The x-axis was labeled as

"Date," and the y-axis was labeled as "Close Price." The title of the plot indicated that the

visualization displayed actual versus predicted close prices for January 2019. The x-axis tick

labels were rotated by 45 degrees for better readability, and a grid was added to the plot for

clarity. This daily forecast allowed for a direct comparison between the actual and predicted

stock prices over the selected period.

Figure 5.116 Monthly Forecast Visualisation of Actual Vs Predicted Close Prices from January

2019 that retrieved from results generated by LSTM model

CHAPTER 5

156 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This code performed a monthly forecast visualization of actual versus predicted close

prices using the LSTM model. The process began by grouping the data by month and year. The

dataset was enriched by adding a 'YearMonth' column to capture each entry's corresponding

month and year. The grouped data was aggregated based on several features: 'Open,' 'High,'

'Low,' and 'Volume' were summarized through different aggregation functions, including sums,

averages, and minimums. Lagged values for close prices and other rolling statistics were also

included.

The next step involved predicting the monthly close prices using the LSTM model. The

aggregated monthly data (X_monthly) was prepared for prediction by scaling the features using

StandardScaler, ensuring that the input data was normalized before feeding it into the model.

After scaling, the data was reshaped into a 3D format, as LSTM models expect inputs of shape

(samples, timesteps, features). The LSTM model then predicted the monthly close prices, and

the predicted values were inverse-transformed back to their original scale for comparison with

the actual values.

The plot was generated to visualize the actual versus predicted monthly close prices.

The matplotlib library was used to create the figure. The x-axis represented the months, and

the y-axis displayed the close prices. The actual values were plotted in blue, while the predicted

values from the LSTM model were plotted in red. The x-axis labels were formatted to display

the year and month, with the tick labels rotated by 45 degrees for improved readability. The

grid was enabled to enhance clarity, and the figure title was set as "Actual vs Predicted Close

Price - Monthly."

This approach helped capture trends in monthly stock prices and allowed the

comparison of the LSTM model's performance in predicting the future values of close prices

on a monthly scale.

.

CHAPTER 5

157 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.117 Annually Forecast Visualisation of Actual Vs Predicted Close Prices from

January 2019 that retrieved from results generated by LSTM model

This code executed an annual visualization of actual versus predicted close prices using

the LSTM model. It began by grouping the data by both month and year, utilizing the

'YearMonth' column to aggregate the data based on different features like 'Open,' 'High,' 'Low,'

and 'Volume.' Other features like 'Close_lag1' and 'Close_lag2' were preserved for each last

value of the month, which helped in predicting future close prices.

The grouped monthly data was then scaled using StandardScaler to ensure that the

features were normalized before feeding into the model. The LSTM model required the data to

be reshaped into a 3D format, with each sample representing a time series for the year. After

reshaping and feeding the data into the LSTM model, the predicted close prices were generated.

CHAPTER 5

158 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Next, the model's predictions were inverse-transformed to bring them back to their

original scale, allowing a comparison between the actual and predicted close prices. The

predictions were reshaped as necessary for further processing.

The visualization plot was then generated using matplotlib, showing the actual and

predicted close prices for each year. The x-axis represented the years, and the y-axis showed

the close prices. The actual close prices were plotted in blue, while the predicted prices were

displayed in red. The x-axis tick labels were formatted to show years, with labels rotated by 45

degrees for clarity. A grid was added to enhance visualization, and the title of the plot was set

as "Actual vs Predicted Close Price - Yearly."

This visualization provided an annual-level perspective on how well the LSTM model

could capture and predict stock price movements, allowing the comparison of actual prices

with model-generated forecasts across years.

Convolution Neural Network (CNN)

Figure 5.118 Daily Forecast Visualisation of Actual Vs Predicted Close Prices in January 2019

that retrieved from results generated by CNN model

CHAPTER 5

159 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This code generated a daily forecast visualization using the CNN model for the month

of January 2019. The process started by filtering the data for the specific date range between

January 1, 2019, and January 31, 2019. The relevant features for prediction, including the

numerical columns and the target 'Close' prices, were extracted from the filtered data.

Next, the features were scaled using the StandardScaler to normalize them, which is essential

for CNN models to perform well. The data was reshaped into a 3D format to fit the

requirements of the CNN model, where the shape of the data was adjusted to match the input

format expected by the model. The CNN model then predicted the scaled data, and the resulting

predicted close prices were inverse-transformed to their original scale.

For visualization, the matplotlib library was used to create a plot of actual versus

predicted close prices for January 2019. The actual close prices were displayed in blue, while

the predicted close prices generated by the CNN model were shown in red. The x-axis

represented the dates, while the y-axis showed the close prices. To improve readability, the

date labels on the x-axis were rotated by 45 degrees, and a grid was added to the plot. The plot

title, "Actual vs Predicted Close Price - January 2019," provided a clear representation of the

performance of the CNN model over this period.

CHAPTER 5

160 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.119 Monthly Forecast Visualisation of Actual Vs Predicted Close Prices from January

2019 that retrieved from results generated by CNN model

This code generated a monthly forecast visualization using the CNN model. The data

was first grouped by month and year, creating a new column 'YearMonth' that aggregated the

'Close' price and other features. The monthly data was processed by aggregating different

statistical measures like the first, last, sum, or mean for each feature.

Next, the features were scaled using the StandardScaler to normalize the data. The data

was reshaped into a 3D format to match the input requirements of the CNN model. The CNN

model was used to predict the monthly close prices, and the predictions were inverse-

transformed to their original scale for comparison.

CHAPTER 5

161 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

To visualize the results, the matplotlib library was employed to plot the actual and

predicted close prices for each month. The actual close prices were plotted in blue, and the

predicted close prices were plotted in red. The x-axis represented the months, and the y-axis

displayed the close prices. The x-axis labels were formatted to show the month and year (e.g.,

'Jan-19') and rotated 45 degrees for readability.

This monthly forecast plot provided a clear comparison between the actual and

predicted close prices, showing how well the CNN model performed in predicting monthly

stock price trends over the given period.

Figure 5.120 Annually Forecast Visualisation of Actual Vs Predicted Close Prices from

January 2019 that retrieved from results generated by CNN model

This code generated an annual forecast visualization using a CNN model. The data was

first grouped by month and year to prepare for yearly predictions. A new column, 'YearMonth,'

was created, and the data was aggregated to calculate the last 'Close' price for each month.

The yearly data was extracted by grouping features like 'Open', 'High', 'Low', 'Volume',

and lag features, aggregating them with statistical functions such as 'first,' 'last,' 'mean,' and

'sum.' These aggregated features provided a summary of the year's performance to be used as

input for the model.

CHAPTER 5

162 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The features were then scaled using a StandardScaler to normalize the values, which

ensured that all inputs were on the same scale. The scaled data was reshaped to match the 3D

format required by the CNN model. The CNN model was used to predict the yearly close prices,

and the predicted values were inverse-transformed back to the original scale for a direct

comparison with the actual values.

To visualize the predictions, matplotlib was used to plot both the actual and predicted

close prices over the years. The actual close prices were shown in blue, while the predicted

close prices were represented in red. The x-axis denoted the year, and the y-axis displayed the

close prices. The x-axis labels were formatted to show the year, and a grid was added for clarity.

This annual forecast provided a clear comparison between the actual and predicted close

prices, showing how well the CNN model captured the overall trend in yearly stock price

movements.

Recurrent neural network (RNN) with Attention Mechanism

CHAPTER 5

163 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.121 Daily Forecast Visualisation of Actual Vs Predicted Close Prices in January 2019

that retrieved from results generated by RNN with Attention Mechanism model

This code snippet generated a daily forecast visualization for January 2019 using an

RNN with an attention mechanism. The code began by filtering the dataset to include data

between January 1st and January 31st, 2019, based on the date range specified in the start_date

and end_date variables.

Next, the features (input variables) and the target (the variable to predict) for January

2019 were extracted from the filtered dataset. The extracted features were then scaled using the

StandardScaler to ensure that the data was normalized for better model performance. After

scaling, the data was reshaped into a 3D format, which is essential for RNN models to capture

temporal dependencies effectively.

The RNN model with an attention mechanism was used to make predictions on the

scaled January 2019 data. The predicted values, initially scaled, were inverse-transformed to

revert them to their original scale for comparison with the actual values.

Finally, matplotlib was used to plot both the actual and predicted close prices for

January 2019. The plot displayed actual close prices in blue and predicted close prices in red.

The x-axis represented the dates, and the y-axis displayed the close prices. A grid and legend

CHAPTER 5

164 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

were included for clarity, and the x-axis labels were rotated for better readability. The title of

the plot, "Actual vs Predicted Close Price - January 2019," provided a clear summary of the

visualization's content, allowing for an intuitive comparison between the actual and predicted

stock prices for each day in January 2019.

Figure 5.122 Monthly Forecast Visualisation of Actual Vs Predicted Close Prices from January

2019 that retrieved from results generated by RNN with Attention Mechanism model

This code generated a monthly forecast visualization using an RNN model with an

attention mechanism. The first step was grouping the data by month and year using the

YearMonth column, which was derived from the Date column. Aggregation functions were

used to compute monthly statistics such as the first open price, the maximum high, the

CHAPTER 5

165 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

minimum low, and the last close price for each month, as well as other aggregated features like

sentiment score and rolling statistics.

The X_monthly features were then prepared by scaling them using StandardScaler and

reshaping them into a 3D format required by the RNN model to handle temporal sequences

effectively. The RNN model, enhanced with the attention mechanism, was used to predict the

close prices for each month. The predicted close prices, initially scaled, were inverse-

transformed back to their original scale for comparison with the actual monthly close prices.

The matplotlib library was used to plot the actual vs predicted close prices on a monthly

basis. The x-axis represented the months, and the y-axis represented the close prices. Actual

close prices were plotted in red, while predicted close prices were plotted in blue, providing a

clear visual comparison. The month labels were formatted using strftime to display them in

"Year-Month" format, and the x-axis labels were rotated for improved readability.

The plot was titled "Actual vs Predicted Close Price - Monthly," and a legend was

included to differentiate between the actual and predicted values. The grid provided a structured

layout, making it easy to observe the monthly trends and evaluate how closely the model’s

predictions aligned with the actual data.

Figure 5.123 Annually Forecast Visualisation of Actual Vs Predicted Close Prices from

January 2019 that retrieved from results generated by RNN with Attention Mechanism model

CHAPTER 5

166 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This code snippet created an annual visualization of stock prices using an RNN model

with an attention mechanism. The data was first grouped by year and month, with the

aggregation functions capturing the necessary statistics such as the first "Open" price,

maximum "High" price, and the last "Close" price for each year, alongside other important

aggregated features such as sentiment scores and rolling statistics.

The X_monthly dataset was then transformed using StandardScaler to ensure the data

was normalized, and it was reshaped into a 3D format required by the RNN for sequential data

processing. The attention mechanism allowed the model to focus on relevant portions of the

sequence before making predictions. The model's predictions for the annual close prices were

generated and inverse-transformed back to their original scale for easier comparison with actual

values.

To visualize the model's performance, matplotlib was used to plot the actual and

predicted close prices on an annual basis. The x-axis represented the years, and the y-axis

represented the close prices. Actual close prices were plotted in red, while the predicted close

prices were shown in blue, providing a clear comparison of model accuracy. The x-axis labels

were rotated to ensure proper formatting of the years.

This plot, titled "Actual vs Predicted Close Price - Yearly," allowed a clear

understanding of the model's performance over a longer time horizon, making it possible to

analyze how well the RNN model with an attention mechanism captured the annual trends in

stock prices.

CHAPTER 5

167 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.6.5 Hybrid Modelling

After done the comparison of models’ performance evaluations in Chapter 6, SVM has

been concluded that was the best overall prediction model for predicting the stock prices

regression task. However, in order to further improve the model’s predictive power and

implemented the strengths of the overall algorithms, here was the hybrid model proposed,

which was the integration of SVM with FinBERT, a financial-domain pre-trained language

model.This hybrid model allowed to predict not only from numerical stock price data, but also

from the sentiment analysis of the financial news, which was containing very important

information that could affect the volatility of stock price.So that, the overall performance has

been improved and with this type of setup, SVM will continue to handle the regression task, in

the same time,The FinBERT contributed by providing very useful sentiment analysis that

complements the stock data with financial market sentiment. Here were the steps below to

complete the hybrid modelling to build out a robust FinBERT-SVM model:

Figure 5.124 Used Joblib to save the best predict model,SVM for further hybrid modelling.

The code snippet demonstrated how the best-performing SVM model was saved for

future use for the hybrid modelling using the joblib library. First, the joblib library, which is

well-suited for efficiently serializing and de-serializing Python objects, was imported. The

model was then assigned a filename, 'best_svm_model.joblib', to indicate where the model

would be stored. Using the joblib.dump() function, the trained SVM model, referenced as

best_svm_model, was saved to this file. This approach allowed for the easy reuse of the model

in later integration stages, such as during deployment or further evaluation, without needing to

retrain it each time. By saving the model in this way, the computational cost of retraining was

avoided, and the model can be quickly loaded and used whenever required.

CHAPTER 5

168 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.125 Used Joblib to save the best predict model,SVM for further hybrid modelling.

The next crucial step in building the hybrid model was the integration of FinBERT for

extracting sentiment-related features from textual data, specifically headlines. FinBERT, a

specialized variant of BERT designed to handle financial texts, was loaded using the

BertTokenizer and BertModel classes from the Hugging Face library. The purpose of

incorporating FinBERT was to allow the model to process textual financial data and extract

meaningful sentiment features that could be used alongside the numerical stock data for stock

price prediction.

A function named process_text_with_finbert() was defined to handle this process. It

tokenized the input headlines, converting them into tensor representations suitable for the

FinBERT model. After running the input through the model, the hidden states of the CLS token

were extracted as sentiment features, as this token is designed to capture the overall meaning

of a sequence in BERT-based models. These features were then transformed into numpy arrays

for further processing.

CHAPTER 5

169 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Once the sentiment features were extracted, they were reshaped to ensure compatibility

with the numerical data that had been used for stock predictions. The sentiment features from

the headlines were combined with numerical stock features (e.g., prices, volume, technical

indicators) to form a complete dataset that included both types of information. This combined

dataset was essential for the hybrid model, as it allowed the model to leverage both the market

data and sentiment from news headlines to predict stock price movements.

Finally, the combined dataset was split into training and testing sets. This ensured that

the model could learn from both the stock and sentiment data during training and be evaluated

on unseen data during testing. This integration of numerical and textual features was a key step

in building a robust hybrid model capable of capturing both the quantitative and qualitative

factors influencing stock prices.

Figure 5.126 Loaded the previously trained SVM model

In this step, building the hybrid model involved loading the saved SVM model. This

step was crucial for using the previously trained SVM model alongside FinBERT-extracted

features.

Once the SVM model was loaded back into the environment, it was integrated with the

text features extracted using FinBERT.

CHAPTER 5

170 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.127 Model training and performance evaluation with combined features

The next step in building the hybrid model involved creating an SVM model pipeline

that incorporated both numerical features and FinBERT-extracted text features. This was done

by defining a pipeline with StandardScaler() for feature scaling and SVR() with an RBF kernel

as the regression model. The model was trained on a combined dataset that included both the

first nine numerical features from traditional stock data and the FinBERT-extracted features

from text data, such as news headlines.

The model was then evaluated on the training set, where the prediction was based solely

on the first nine numerical features. Several performance metrics were calculated to assess the

model’s effectiveness: Mean Squared Error (MSE) measured the average squared difference

between the actual and predicted values, R-squared (R²) evaluated how well the model fit the

data, Root Mean Squared Error (RMSE) provided the error in the same unit as the stock prices,

and Mean Absolute Error (MAE) captured the average magnitude of prediction errors.

These metrics were printed to allow for a comparison between using only numerical

data versus using the hybrid approach that included both numerical and FinBERT-extracted

features, providing insights into the benefit of integrating text data into the stock price

prediction process.

Figure 5.128 Time SeriesSplit Cross Validation with combined features

In this step, the cross-validation process was carried out using the combined numerical

features and FinBERT-extracted features. First, a TimeSeriesSplit object was created with 5

CHAPTER 5

171 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

splits to ensure the dataset was divided into sequential folds, preserving the time-based order

of the data, which is crucial for temporal predictions like stock prices. The cross_val_score

function was then employed to perform cross-validation on the SVM model that had been

trained using both feature types. This function calculated the negative mean squared error

(neg_mean_squared_error) across the folds to evaluate the model's performance.

Once the cross-validation process was completed, the average Mean Squared Error

(MSE) and Root Mean Squared Error (RMSE) were calculated by taking the mean of the cross-

validation scores. These metrics were then printed to assess the overall performance of the

hybrid model, offering a measure of how well the model predicted stock prices using the

combined feature set across different time periods. This cross-validation step was essential to

confirm the model’s robustness and ability to generalize well across unseen data.

Figure 5.129 Hyperparameters tuning and fine-tuning for the hybrid model

In this step, hyperparameter tuning was performed using a combined feature set that

included both numerical features and FinBERT-extracted text features. A parameter grid was

defined (param_dist_combined) that specified a range of hyperparameters for the Support

Vector Regressor (SVR). These hyperparameters included C, gamma, epsilon, and the kernel

type (rbf or linear), each having a range of values to explore.

To find the optimal combination of hyperparameters, RandomizedSearchCV was

employed with a 5-fold time series cross-validation (cv=tscv). The search iterated over 20

different combinations of hyperparameters (n_iter=20) from the grid to evaluate their

CHAPTER 5

172 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

performance using the negative mean squared error (neg_mean_squared_error) as the scoring

metric. The random state was set to ensure reproducibility.

After completing the search, the best-performing SVM model was selected and stored

in the best_svm_model_combined variable. The optimal hyperparameters for the combined

feature set were printed to provide insights into which configuration yielded the best results.

This tuning process was critical in refining the SVM model to achieve higher accuracy when

using both numerical and textual data features for stock price prediction for building the robust

hybrid model.

Figure 5.131 Model Test-set Performance Evaluation

In this step, the final evaluation of the hybrid model, which integrated SVM with

FinBERT features, was conducted using the test dataset. The model utilized the optimal

hyperparameters identified in the tuning process to predict stock prices on the combined test

dataset (X_test_combined), specifically focusing on the first 9 numerical features. Several key

performance metrics were calculated to assess the model's predictive ability, including the

Mean Squared Error (MSE), which quantified the average squared difference between actual

and predicted values, and R-squared (R²), indicating the proportion of variance explained by

the model. Additionally, the Root Mean Squared Error (RMSE) provided a measure of error in

the same units as the original data, while the Mean Absolute Error (MAE) represented the

average magnitude of prediction errors. These metrics were printed to determine how well the

CHAPTER 5

173 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

hybrid model (combining SVM and FinBERT-extracted text features) performed, offering a

comprehensive view of its predictive accuracy on the test set.

Figure 5.132 Daily Forecast Visualisation of Actual Vs Predicted Close Prices in January 2019

that retrieved from results generated by FinBERT-SVM hybrid model

In this visualisation step, the FinBERT-SVM model's daily performance for January

2019 was evaluated. First, the 'Date' column was converted to a datetime format to facilitate

filtering. The dataset was then filtered to include only the data between January 1, 2019, and

January 31, 2019. The actual closing stock prices for January 2019 were extracted from the

dataset, and the loaded_svm_model was used to predict the closing prices for the same period

based on the numerical features.

The actual and predicted values were then plotted on a graph, with dates on the x-axis

and closing prices on the y-axis. The graph compared the actual closing prices (displayed as a

CHAPTER 5

174 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

solid line) to the predicted closing prices (displayed as a dashed line), helping to visually assess

the model's accuracy in predicting daily stock prices. The plot was customized with labels for

the x-axis (Date), y-axis (Close Price), and a title that highlighted the period of the prediction,

in this case, "January 2019." A legend was included to differentiate between actual and

predicted values, and the x-axis labels were rotated for better readability.

Figure 5.133 Monthly Forecast Visualisation of Actual Vs Predicted Close Prices from January

2019 that retrieved from results generated by FinBERT-SVM hybrid model

In this code snippet, the hybrid model's (SVM + FinBERT) monthly performance was

evaluated. First, a DataFrame results_df was created, which contained both the actual and

predicted close prices along with their corresponding dates. The DataFrame was indexed by

the 'Date' column to ensure that time-series analysis could be conducted.

Next, the data was resampled on a monthly basis using the resample('M') method, which

grouped the daily data into monthly averages. This resampling helped reduce noise from daily

fluctuations and focused on broader trends in the data. Any months without data were dropped

to ensure the graph was clean.

A plot was then generated to visually compare the actual and predicted closing prices month

by month. The actual close prices were plotted as a solid line, while the predicted close prices

were plotted as a dashed line. The x-axis represented months (formatted as "Month Year"), and

the y-axis represented the closing prices. Labels, a title, and a legend were added for clarity,

and the x-axis tick labels were rotated to improve readability. The plot allowed for a clear

comparison of how well the hybrid model predicted stock prices over each month, highlighting

the model's ability to capture broader trends in the data.

CHAPTER 5

175 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.134 Annually Forecast Visualisation of Actual Vs Predicted Close Prices from

January 2019 that retrieved from results generated by FinBERT-SVM hybrid model

In this step, the hybrid model’s (SVM + FinBERT) performance was evaluated on an

annual basis. Similar to the monthly evaluation, a DataFrame results_df was created with the

actual and predicted close prices alongside their corresponding dates. This DataFrame was then

resampled by year using the resample('Y') method to compute the annual averages of the stock

prices, allowing a higher-level view of the stock price trends over the years. Any years without

data were dropped from the DataFrame.

The visualization was generated with the resampled yearly data. A line plot was created

to compare the actual close prices against the predicted close prices for each year. The actual

close prices were plotted as a solid line, while the predicted close prices were plotted as a

dashed line. The x-axis represented years (formatted as "Year"), and the y-axis represented the

closing prices. Labels, a title, and a legend were included for clarity, and the x-axis tick labels

were rotated to make the year labels easier to read. This visualization provided insights into

how well the hybrid model captured long-term stock price trends on a yearly basis.

CHAPTER 5

176 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.135 Saved the FinBERT-SVM hybrid model

In the final step, the best-performing hybrid model (FinBERT-SVM) was saved using the joblib

library. This involved saving the SVM model that had been trained with the combined

numerical and textual (FinBERT) features. The model was saved to a file named

best_hybrid_model.joblib. By saving the model, it could be reloaded and reused in the future

for making predictions without needing to retrain the model. This process ensured that the

hybrid model, which integrated both numerical stock data and text-based sentiment analysis

from FinBERT, could be efficiently preserved for future use or further evaluation.

5.7 Summary

This project was developed in a Google Colab environment using Python, focusing on

predicting stock prices by combining numerical stock data with sentiment analysis from stock

news headlines. The data used was from Apple Inc., merging stock price information with

sentiment analysis extracted from relevant headlines.

Initially, the stock price and sentiment data were cleaned, processed, and merged into a final

dataset comprising 677 rows. Sentiment scores were extracted using the FinBERT model,

adding features such as positive, neutral, and negative sentiment classifications for each

headline.

Several predictive models were developed, including Support Vector Machine (SVM)

for regression, Long Short-Term Memory (LSTM) networks to capture temporal patterns, and

Convolutional Neural Networks (CNN) for identifying complex patterns. Additionally, an

RNN with an attention mechanism was implemented, allowing the model to focus on key time

steps in the data sequence.

CHAPTER 5

177 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

After thorough evaluation, the SVM model emerged as the best-performing model for

predicting stock prices, leveraging the numerical stock data effectively. A hybrid model was

also created by combining the predictive strength of SVM with sentiment features from

FinBERT, further enhancing accuracy. The SVM-FinBERT hybrid model demonstrated

improved performance, solidifying SVM as the most effective model for stock price prediction.

In summary, integrating numerical and sentiment data for stock price prediction

resulted in higher accuracy compared to using either data type alone, with the SVM and SVM-

FinBERT hybrid model yielding the most accurate results.

5.8 Implementation issues and challenges

Data Quality and Alignment

A significant issue encountered was the challenge of aligning the stock price data with the

sentiment data from headlines. Stock prices typically follow a regular daily schedule, whereas

news headlines can be published sporadically throughout the day, creating mismatches in

timing. For example, a positive news headline published late in the day could inaccurately be

aligned with an already-declining stock price, leading to distorted sentiment analysis. The

inconsistency in data frequency between these two sources results in a misalignment that could

negatively affect model performance, making predictions less reliable and accurate.

Noisy Text Data

News headlines often contain noise in the form of irrelevant, ambiguous, or misleading

information. Headlines may not always directly reflect stock-related news, but could reference

broader market trends, global events, or even company promotions, which can skew sentiment

analysis results. Moreover, headlines that include sarcasm, technical language, or emotionally

charged but contextually unrelated content further complicate the sentiment scoring process.

This ambiguity can result in inaccurate sentiment classification, thereby impairing the

prediction model’s ability to make reliable forecasts based on headline data.

Overfitting of Complex Models

CHAPTER 5

178 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Complex models, especially those used in time-series prediction such as LSTM, CNN, or

RNNs with attention mechanisms, face the risk of overfitting. When these models become too

finely tuned to the specific patterns in the training data, they lose their ability to generalize to

unseen data. This issue is exacerbated in stock market prediction, where fluctuations and trends

may not follow consistent patterns. As a result, a model that performs well on training data

might fail to make accurate predictions in real-world stock price movements, leading to

unreliable forecasting.

Integrating Numerical and Textual Features

Integrating numerical stock data with sentiment-based textual features is inherently challenging

due to the different nature of these data types. Stock prices are continuous and time-sensitive,

whereas textual sentiment analysis involves transforming qualitative information into

quantitative scores. This integration poses a risk of imbalance, where either the stock price data

or the sentiment data could dominate the model’s decision-making process. If the sentiment

scores do not accurately capture the influence of news on stock prices or if the stock data

overshadows sentiment inputs, the predictive model might fail to appropriately weigh both data

sources, resulting in suboptimal predictions.

Feature Engineering Complexity

With the integration of sentiment analysis and numerical data, one of the major challenges is

determining which features contribute the most to the model's accuracy. The combination of

stock data with FinBERT sentiment features, such as positive, negative, or neutral scores,

requires thoughtful feature selection and engineering. It can be difficult to understand how each

feature, or combination of features, affects the final prediction. Inadequate feature selection

could lead to irrelevant data cluttering the model or important information being overlooked,

both of which impact prediction accuracy and model performance.

CHAPTER 6

179 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6: System Evaluation

6.1 Model Performance

6.1.1 Perfomance Matrices

Mean Squared Error (MSE)

The Mean Squared Error (MSE) is one of the most widely used metrics for evaluating

regression models, particularly in stock price prediction. It measures the average squared

difference between the actual stock prices and the predicted stock prices. Since the errors are

squared, MSE gives more weight to larger errors, making it particularly sensitive to large

deviations or outliers in the dataset.

Importance in Stock Price Prediction

In stock prediction, minor deviations between the predicted and actual prices may be

acceptable, but larger deviations can lead to significant losses for investors or traders. The

squaring of the errors in MSE ensures that models that make larger mistakes are penalized more

heavily. For instance, if a model incorrectly predicts a substantial stock drop or rise, the

resulting error will significantly impact the MSE, highlighting that the model needs

improvement for critical predictions.

Formula:

Where:

• 𝑦𝑖 represents the actual stock price at time iii.

• represents the predicted stock price at time iii.

• 𝑛 is the total number of predictions made.

CHAPTER 6

180 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Interpretation:

• Lower MSE values indicate better model performance, as they signify smaller average

errors between predicted and actual prices.

• Higher MSE values indicate that the model’s predictions deviate significantly from

actual values, suggesting the need for improvement.

• Since MSE squares the errors, it is more sensitive to large errors, making it a preferred

metric when avoiding big prediction mistakes is critical in the context of stock trading

or investment.

Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) is the square root of the MSE. RMSE has the advantage

of expressing the error in the same units as the target variable (in this case, stock prices). This

makes RMSE more interpretable than MSE, as the result is in the same scale as the original

data, allowing for a more intuitive understanding of the error magnitude.

Importance for Stock Price Prediction

RMSE provides an easy-to-interpret measure of how far off a model’s predictions are from

actual stock prices on average. Since the stock prices are usually in monetary units, RMSE

provides a clear picture of how far, in dollars, the predicted prices are from the actual prices.

This is particularly important when investors want to quantify the risk or error associated with

predictions in terms of actual price movements.

Formula:

Where:

• 𝑦𝑖 is the actual stock price at time iii.

• is the predicted stock price at time iii.

• 𝑛 is the number of predictions

CHAPTER 6

181 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Interpretation:

• Lower RMSE values signify a better-performing model. For example, an RMSE of 2

means that, on average, the model’s predictions are off by $2 from the actual stock

price.

• Higher RMSE values imply larger deviations between predictions and actual prices,

indicating that the model might not generalize well to unseen data.

• RMSE is particularly useful when you want a metric that directly relates to the units of

the target variable (dollars in stock price prediction).

Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) calculates the average absolute difference between the

predicted and actual stock prices. Unlike MSE and RMSE, MAE does not square the errors,

making it less sensitive to outliers. Each prediction error is treated equally, providing a

straightforward interpretation of how far off predictions are, on average.

Importance for Stock Price Prediction

In many stock price prediction scenarios, we might be more interested in knowing the average

magnitude of prediction errors, rather than disproportionately penalizing larger errors (as MSE

does). MAE provides a simple measure of the average error without being overly influenced

by extreme outliers, making it a practical metric when stock price predictions tend to have

fewer large deviations.

Formula:

Where:

• 𝑦𝑖 is the actual stock price at time iii.

• is the predicted stock price at time iii.

• 𝑛 is the number of predictions.

CHAPTER 6

182 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Interpretation:

• Lower MAE values indicate that, on average, the predictions are closer to the actual

stock prices, suggesting a more accurate model.

• Higher MAE values suggest that the model’s predictions deviate significantly from the

actual prices, making it less reliable.

• MAE is particularly useful when you want to measure the average magnitude of errors

without worrying about outliers or large mistakes affecting the results

disproportionately.

R-Squared (R² or Coefficient of Determination)

R-squared (R²), also known as the coefficient of determination, measures the proportion of the

variance in the actual stock prices that is predictable from the independent variables (such as

Volume, Open, Close, sentiment score, etc.). In simpler terms, R² evaluates how well the

features (independent variables) used in the model explain the variation in the target variable

(stock price). R² is typically expressed as a percentage.

Importance for Stock Price Prediction

In stock price prediction, the R² value gives an indication of how well the model fits the actual

data. A high R² value indicates that the model is effectively capturing the variability in the

stock price data, meaning that the model’s predictions are closely aligned with the actual price

movements. This is crucial for building models that can explain why stock prices change and

predict future changes with reasonable confidence.

Formula:

Where:

• 𝑦𝑖 is the actual stock price at time iii.

• is the predicted stock price at time iii.

• is the mean of the actual stock prices.

• 𝑛 is the number of predictions.

CHAPTER 6

183 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.1.2 Model Train Result Evaluation

Model Kernel

/Optimizer

Hypeprparameters Root

Mean

Square

Error

(RMSE)

Mean

Square

Error

(MSE)

Mean

Absolute

Error

(MAE)

R Square

(r2)

LSTM Adam Units: 50,

Dropout: 0.2,

L2=0.001

4.980 24.80 3.686 0.9896

RNN with

Attention

Mechanism

Adam Units: 64,

Dropout: 0.2,

2.581 2.581 1.859 0.9972

CNN Adam Filters: 32, Kernel

size: 3, Pool size:

2,learning_rate_0.

001

3.251 10.57 2.806 0.9956

SVM RBF Gamma: auto, C:

10, Epsilon: 0.2,

9.696 94.01 5.587 0.9558

Analysis of Training Performance Matrices Results

Mean Squared Error (MSE)

The Mean Squared Error (MSE) plays a critical role in evaluating how well each model predicts

stock prices by measuring the average of the squared differences between actual and predicted

values. In stock price prediction, a lower MSE value indicates that the model’s predictions are

more accurate, while a higher MSE suggests the model struggles to capture the underlying

trends in the data. From the results, the RNN with Attention model achieves the lowest MSE

of 2.581, indicating that it is particularly adept at predicting stock prices with minimal error.

This low MSE shows that the RNN with Attention can capture both short-term and long-term

relationships within the stock data, reducing the frequency and magnitude of large prediction

errors. In contrast, the SVM model has the highest MSE of 94.01, suggesting that it struggles

CHAPTER 6

184 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

to model the complex, non-linear relationships present in the stock data, leading to larger

deviations between predicted and actual prices. The LSTM model, with an MSE of 24.80,

performs moderately well, reflecting its ability to capture long-term dependencies in stock

prices but still allowing for occasional large errors. The CNN model, with an MSE of 10.57,

performs better than LSTM, suggesting that it effectively captures local patterns and short-term

movements in stock prices, leading to fewer large errors. Overall, a lower MSE value is

desirable in stock price prediction as it helps minimize large deviations that can have significant

financial impacts, and in this evaluation, the RNN with Attention model proves to be the best

performer in this regard.

Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) offers a more interpretable version of MSE by

providing the average error in the same units as the target variable—stock prices, in this case.

This makes RMSE particularly useful in stock price prediction, as it allows investors and

analysts to understand the typical size of the prediction error in dollar terms. The RNN with

Attention model has the lowest RMSE of 2.581, meaning that, on average, its predictions

deviate from actual stock prices by approximately $2.58. This small error highlights the

model’s strong predictive power and its ability to closely match the actual stock price

movements, which is critical in a volatile market where small deviations can result in

significant financial implications. The CNN model also performs well, with an RMSE of 3.251,

suggesting that its predictions are off by about $3.25 on average. This relatively low RMSE

indicates that CNN is effective at capturing short-term stock price fluctuations and patterns.

On the other hand, the LSTM model has an RMSE of 4.980, showing a higher average

prediction error of nearly $5, which may reflect its struggle to capture intricate short-term price

movements despite its strength in modeling long-term dependencies. The SVM model, with an

RMSE of 9.696, shows the largest average error, indicating that its predictions deviate

significantly from actual stock prices. This high RMSE highlights the limitations of the SVM

in stock price prediction, particularly when handling the volatility and non-linear relationships

often present in financial data. In summary, RNN with Attention outperforms other models by

providing the smallest error in dollar terms, making it the most reliable for investors and

analysts concerned with accurate stock price predictions

CHAPTER 6

185 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) measures the average magnitude of errors between predicted

and actual stock prices, providing a straightforward interpretation without emphasizing larger

errors as MSE does. In stock price prediction, a lower MAE signifies a model that consistently

predicts prices with minimal deviations, while a higher MAE suggests less accurate, more

error-prone predictions. The RNN with Attention model achieves the lowest MAE of 1.859,

meaning that, on average, its predictions are off by less than $2. This highlights the model’s

ability to make consistently accurate predictions, reinforcing its strength in capturing both

short-term and long-term stock price movements. The CNN model, with an MAE of 2.806,

also shows strong performance, as its predictions deviate by about $2.81 on average. This

suggests that CNN is particularly effective in detecting local patterns and making accurate

short-term predictions, although it still allows for slightly more error compared to the RNN

model. The LSTM model records an MAE of 3.686, indicating a higher average error of around

$3.69, reflecting the model’s occasional difficulty in handling the finer details of stock price

movements, especially in volatile markets. Meanwhile, the SVM model performs the worst,

with an MAE of 5.587, meaning its predictions are, on average, off by nearly $5.59. This large

error reflects the model’s inability to consistently capture the complex interactions between

stock prices, volume, and sentiment, resulting in less reliable predictions. In conclusion, the

RNN with Attention model demonstrates the highest consistency in predicting stock prices,

with the smallest average deviation, making it the preferred model for scenarios where accurate

predictions are critical.

R-Squared (R²)

R-Squared (R²), or the coefficient of determination, evaluates how well the model explains the

variance in stock prices. In stock price prediction, a high R² value indicates that the model

effectively captures the underlying factors driving price changes, while a lower R² value

suggests that the model fails to account for important influences on stock prices. The RNN with

Attention model achieves an R² value of 0.9972, meaning that it explains 99.72% of the

variance in stock prices, making it the most comprehensive model in terms of capturing the

relationships between input features and price movements. This high R² value demonstrates

the RNN’s ability to focus on critical time steps, such as large market swings or significant

news events, and incorporate them into its predictions. Similarly, the CNN model performs

exceptionally well, with an R² of 0.9956, indicating that it explains 99.56% of the variance.

This suggests that CNN is highly effective in capturing short-term trends and price patterns,

CHAPTER 6

186 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

which are crucial in stock market prediction. The LSTM model has an R² of 0.9896, explaining

98.96% of the variance. While still a strong result, the slightly lower R² suggests that LSTM

may not capture short-term fluctuations as effectively as the RNN or CNN models. Finally, the

SVM model records the lowest R² of 0.9558, indicating that it explains about 95.58% of the

variance in stock prices. While this is still a reasonable performance, it falls short compared to

the deep learning models, highlighting SVM’s limitations in handling complex, non-linear

relationships in the stock market. Overall, RNN with Attention emerges as the top performer

in terms of explaining stock price variability, making it the best choice for comprehensive stock

price prediction.

Summary

In analyzing the performance of these models using MSE, RMSE, MAE, and R², the RNN with

Attention model consistently outperforms the other models, making it the most suitable for

stock price prediction during model training. It not only minimizes large errors but also

provides consistently accurate predictions, explaining nearly all the variance in stock prices.

The CNN model follows closely behind, particularly excelling in short-term prediction

accuracy. The LSTM model, while effective in modeling long-term dependencies, struggles

somewhat with short-term price movements. Finally, the SVM model underperforms across all

metrics, demonstrating its limitations in handling the complex, non-linear dynamics of stock

price prediction. Based on these results, RNN with Attention and CNN are the most reliable

models for stock market forecasting during model training phase.

CHAPTER 6

187 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.1.3 Model Cross Validation Evaluation

where K is the total number of folds in cross validations

Model Number of

Splits

(TimeSeries

Splir

AverageRoot

Mean Square

Error

(RMSE)

Average

Mean

Square

Error

(MSE)

AverageMea

n Absolute

Error

(MAE)

Average R

Square (r2)

LSTM 5 0.001595 4.87 0.9901 0.9901

RNN with

Attention

Mechanism

5 2.58 6.66 0.9972 0.9972

CNN 5 3.15 10.37 0.9956 0.9956

SVM 5 38.19 1458.35 0.9558 0.9558

Analysis of Cross Validation Results

The cross-validation results provide a detailed look at the performance of the different models

when applied to the stock price prediction task. Each model underwent 5-fold cross-validation,

ensuring robustness in the evaluation process by testing the model's ability to generalize across

different subsets of the data.

The LSTM model performs well in capturing stock price movements, particularly long-

term dependencies. With an average RMSE of 4.87 and an MAE of 3.74, the LSTM model

indicates a reasonable error margin when predicting stock prices, with deviations from the

actual prices being around $4.87 on average. However, while the R² value of 0.9901 indicates

that the model can explain around 99% of the variance in stock prices, the higher MAE suggests

CHAPTER 6

188 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

that LSTM might struggle slightly with short-term fluctuations, as it tends to focus more on

long-term trends in the data.

On the other hand, the RNN with Attention Mechanism emerges as the top-performing

model across all evaluation metrics. With a low RMSE of 2.58 and a minimal MAE of 1.86,

this model consistently makes smaller errors across different time steps, proving its capability

to predict stock prices with remarkable accuracy. The R² value of 0.9972 shows that it explains

almost 99.72% of the variance in stock prices, making it the most reliable model in terms of

capturing the intricate patterns of stock market movements. The attention mechanism allows

the model to focus on crucial time steps, enhancing both its short-term and long-term prediction

capabilities.

The CNN model also shows strong performance, particularly in short-term prediction

accuracy. With an RMSE of 3.15 and an MAE of 2.54, CNN manages to capture local patterns

and short-term trends in stock price movements effectively. The R² value of 0.9956 indicates

that the model explains a significant portion of the variance in stock prices, making it a suitable

choice for capturing short-term fluctuations. CNN's ability to extract important features from

sequential data makes it a strong contender for stock price prediction tasks.

In contrast, the SVM model struggles to match the performance of the deep learning

models. With a much higher RMSE of 38.19 and an MAE of 5.59, the SVM model consistently

exhibits larger deviations from actual stock prices, indicating that it is less suitable for time-

series stock price prediction. The MSE of 1458.35 further highlights the large errors made by

the SVM model. Although the R² value of 0.9558 suggests that it captures around 95.58% of

the variance in stock prices, this is still significantly lower than the deep learning models.

SVM's difficulty in capturing complex and non-linear relationships in the time-series data

explains its underperformance in this scenario.

CHAPTER 6

189 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.1.4 Model Test Set Evaluation

Model Kernel

/Optimizer

Hypeprparameters Root

Mean

Square

Error

(RMSE)

Mean

Square

Error

(MSE)

Mean

Absolute

Error

(MAE)

R Square

(r2)

LSTM nadam Units: 200,

Dropout: 0.1,

Learning_rate:0.0

0005

2.321 5.389 1.584 0.9978

RNN with

Attention

Mechanism

Rmsprop Units: 96,

Dropout: 0.27,

learning_rate:

0.0005

2.831 8.017 2.051 0.9968

CNN Adam Filters: 128,

Kernel size: 5,

Pool size:

2,Learning_rate:0.

0011

3.251 10.57 2.806 0.9955

SVM linear Gamma: auto, C:

100, Epsilon: 0.2,

0.8383 0.7029 0.6819 0.9981

Analysis of Test set Evaluation

The LSTM model emerges as the strongest overall performer, achieving the lowest error

metrics among the deep learning models, with an RMSE of 2.321 and an MAE of 1.584. Its

high R² value of 0.9978 confirms that it effectively captures nearly all the variance in stock

price movements, making it an excellent choice for capturing both short- and long-term

dependencies. The well-tuned hyperparameters, including 200 units, 0.1 dropout, and a

learning rate of 0.0005, allow the model to generalize well, especially for long-term trend

forecasting.

CHAPTER 6

190 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The RNN with Attention Mechanism also performs well, though its error metrics—

RMSE of 2.831 and MAE of 2.051—are slightly higher than those of LSTM. The attention

mechanism provides a significant advantage by helping the model focus on important time

steps, but the model still struggles with short-term fluctuations. Its R² value of 0.9968 shows

that it captures a large proportion of the variance in stock prices, but it falls short of the LSTM

in terms of overall accuracy.

CNN, on the other hand, performs effectively in short-term price predictions, with an

RMSE of 3.251 and MAE of 2.806. Its ability to detect local patterns in the stock price data

makes it useful for short-term forecasting, but its overall performance is not as strong as LSTM

or RNN with Attention when dealing with more complex, long-term price movements. The R²

value of 0.9955 still reflects a high level of accuracy, but the higher error metrics suggest CNN

may need further tuning to capture more intricate patterns in stock prices.

Surprisingly, the SVM model delivers the lowest overall error metrics, with an RMSE

of 0.8383 and MAE of 0.6819. Additionally, the R² value of 0.9981 indicates that the SVM

model explains more variance in stock prices than any of the deep learning models. This strong

performance is unexpected, as SVM is generally considered less suited for handling the

complex, non-linear nature of stock price data. However, in this particular evaluation, the

combination of RBF kernel, Gamma set to auto, and C = 100 appears to have optimized the

model’s performance significantly. It’s important to note that SVM’s strong performance in

this test may be dataset-specific, and it might not generalize as well to other time-series data as

the deep learning models.Therefore,Svm model was the best model selected for the futher

hybrid modelling.

CHAPTER 6

191 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.1.5 Final Hybrid Model Performance Evaluation

Model Kernel

/Optimizer

Hypeprparameters Root

Mean

Square

Error

(RMSE)

Mean

Square

Error

(MSE)

Mean

Absolute

Error

(MAE)

R Square

(r2)

FinBERT-

SVM

linear Gamma=auto,svr

=0.2,C=100

0.8383 0.7029 0.6819 0.9981

Conclusion

The Final Hybrid Model Performance Evaluation for the FinBERT-SVM model reveals

exceptional accuracy in stock price prediction. This hybrid approach combines FinBERT's

sentiment analysis capabilities with the predictive power of a Support Vector Machine (SVM).

The model’s performance, as reflected in its key metrics, demonstrates strong predictive

capabilities. With a Root Mean Squared Error (RMSE) of 0.8383 and a Mean Squared Error

(MSE) of 0.7029, the model shows that its average prediction error is less than $1, indicating

highly precise predictions. Additionally, the Mean Absolute Error (MAE) of 0.6819 further

confirms its accuracy, as the average error in prediction remains very small.

The model's R² value of 0.9981 highlights that the FinBERT-SVM model captures

approximately 99.81% of the variance in stock prices, which is a near-perfect result. This

means the model explains almost all factors influencing the stock prices, making it an

extremely reliable tool for forecasting.

The FinBERT-SVM model employs key hyperparameters that optimize its

performance, including a linear kernel with Gamma set to auto, allowing the model to adjust

automatically based on the data spread. The C parameter is set to 100, balancing the complexity

of the model while ensuring correct classification of stock price predictions. The epsilon value

of 0.2 helps define a tolerance margin, ensuring the model remains robust against minor

prediction errors.

Overall, the FinBERT-SVM hybrid model effectively combines both quantitative

(stock data) and qualitative (sentiment data from FinBERT) features to produce highly accurate

CHAPTER 6

192 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

stock price predictions. The low error rates and high R² value suggest this model is particularly

powerful in scenarios where sentiment analysis plays a critical role in understanding market

behaviour.

6.2 Final Hybrid Model Visualization

 Daily Forecast Visualization For Actual Vs Predicted Stock Price with FinBERT-SVM

CHAPTER 6

193 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Monthly Forecast Visualization For Actual Vs Predicted Stock Price with FinBERT-SVM

 Yearly Forecast visualization For Actual Vs Predicted Stock Price with FinBERT-SVM

CHAPTER 7

194 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 7: Conclusion

7.1 Conclusion

In conclusion, the FinBERT-SVM hybrid model proves to be a highly effective tool for stock

price prediction, particularly in scenarios where both financial data and sentiment analysis play

crucial roles. Stock price movements are influenced not only by historical data such as prices

and volumes but also by market sentiment, which can rapidly shift based on news and economic

factors. By incorporating sentiment analysis from FinBERT, which is specifically trained for

financial text, the model gains the ability to respond dynamically to the market mood,

enhancing its predictive accuracy. This dual approach allows for a more comprehensive

understanding of stock price fluctuations, making the FinBERT-SVM hybrid model especially

valuable for traders and analysts who need to predict market trends with real-time insights.

The performance metrics of the FinBERT-SVM model highlight its precision and reliability

in stock prediction tasks. With a Root Mean Squared Error (RMSE) of 0.8383 and Mean

Absolute Error (MAE) of 0.6819, the model shows remarkably low errors, suggesting its

predictions are extremely close to actual stock prices. These low error margins are particularly

important in financial markets, where even small deviations can lead to significant profit or

loss. The R² value of 0.9981 further reinforces the model’s effectiveness, showing that it

explains nearly all the variance in stock prices, a critical factor when predicting such a complex

and volatile variable. The model’s ability to integrate sentiment data ensures that it remains

sensitive to the external factors that can cause sudden stock price shifts, giving it an edge over

traditional models that rely solely on quantitative data.

Overall, the FinBERT-SVM hybrid model showcases the importance of incorporating

sentiment analysis into stock price prediction. By combining FinBERT’s ability to interpret

financial news with the regression power of SVM, the model is able to predict stock prices with

remarkable accuracy. This hybrid approach ensures that the model not only captures historical

price trends but also adapts to current market sentiment, making it an indispensable tool for

modern traders and investors. As markets continue to be driven by both data and emotion,

models like FinBERT-SVM are likely to play an increasingly significant role in helping

investors make informed decisions in real-time.

CHAPTER 7

195 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

7.2 Future work

Incorporating Additional Data Sources

While the current model integrates sentiment analysis from financial news headlines and stock

price history, future work could involve incorporating other data sources such as social media

sentiment (e.g., Twitter, Reddit) and macroeconomic indicators (e.g., interest rates, inflation).

These additional data points could provide a more holistic view of the factors affecting stock

prices, improving the model’s accuracy. Moreover, real-time data streams could be integrated

to enable the model to make immediate adjustments in response to breaking news or sudden

market movements.

REFERENCE

196 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] S. Halder, “FinBERT-LSTM: Deep Learning based stock price prediction using News

Sentiment Analysis.” Available: https://arxiv.org/pdf/2211.07392.pdf

[2] W. Cheng and S. Chen, "Sentiment Analysis of Financial Texts Based on Attention

Mechanism of FinBERT and BiLSTM," 2021 International Conference on Computer

Engineering and Application (ICCEA), Kunming, China, 2021, pp. 73-78, doi:

10.1109/ICCEA53728.2021.00022.

[3] K. Puh and M. B. Babac, “Predicting stock market using natural language

processing,” American Journal of Business, vol. 38, no. 2, pp. 41–61, 2023, Accessed:

Apr. 19, 2024. [Online]. Available: https://ideas.repec.org/a/eme/ajbpps/ajb-08-2022-

0124.html

[4] N. Lumoring, D. Chandra, and A. A. S. Gunawan, “A Systematic Literature Review:

Forecasting Stock Price Using Machine Learning Approach,” IEEE Xplore, Aug. 01, 2023.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10277318

[5] I. Parmar et al., “Stock Market Prediction Using Machine Learning,” 2018 First

International Conference on Secure Cyber Computing and Communication (ICSCCC), Dec.

2018, doi: https://doi.org/10.1109/icsccc.2018.8703332.

[6] G. Sonkavde, D. S. Dharrao, A. M. Bongale, S. T. Deokate, D. Doreswamy, and S.

K. Bhat, “Forecasting Stock Market Prices Using Machine Learning and Deep Learning Models:

A Systematic Review, Performance Analysis and Discussion of Implications,” International

Journal of Financial Studies, vol. 11, no. 3, p. 94, Sep. 2023, doi:

https://doi.org/10.3390/ijfs11030094

[7] T. Fletcher, “Machine Learning in FX Carry Basket Prediction,” SSRN Electronic Journal,

2008, doi: https://doi.org/10.2139/ssrn.1319267.

https://arxiv.org/pdf/2211.07392.pdf
https://ideas.repec.org/a/eme/ajbpps/ajb-08-2022-0124.html
https://ideas.repec.org/a/eme/ajbpps/ajb-08-2022-0124.html
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp&arnumber=10277318
https://doi.org/10.1109/icsccc.2018.8703332
https://doi.org/10.3390/ijfs11030094
https://doi.org/10.2139/ssrn.1319267

REFERENCE

197 Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[8] M. Roushdy, “A Comparative Analysis for Support Vector Machines for Stroke Patients,”

www.academia.edu, Accessed: Apr. 19, 2024. [Online]. Available:

https://www.academia.edu/34236634/A_Comparative_Analysis_for_Support_Vector

_Machines_for_Stroke_Patients

[9] L. Mathanprasad and M. Gunasekaran, “Analysing the Trend of Stock Marketand Evaluate

the performance of Market Prediction using Machine Learning Approach,” IEEE Xplore, Jan.

01, 2022. https://ieeexplore.ieee.org/document/9752616

[10] J.-X. Liu, J.-S. Leu, and S. Holst, “Stock price movement prediction based on Stocktwits

investor sentiment using FinBERT and ensemble SVM,” vol. 9, pp. e1403– e1403, Jun. 2023,

doi: https://doi.org/10.7717/peerj-cs.1403.

[11] K. Ullah and M. Qasim, “Google Stock Prices Prediction Using Deep Learning,” IEEE

Xplore, Nov. 01, 2020. https://ieeexplore.ieee.org/document/9265146

[12] J. Patel, Miral Patel, and M. Darji, “Stock Price Prediction Using RNN and LSTM,”

2018. Available: https://www.jetir.org/papers/JETIRK006164.pdf

[13] C. Huang, Z. Chen, and Waleed Mahmoud Soliman, “Stock Price Prediction with

FinBERT and RNN,” Oct. 2023, doi: https://doi.org/10.1145/3631908.3631919.

H. G. B and S. N. B, “Cryptocurrency Price Prediction using Twitter Sentiment Analysis,”

Natural Language Processing, Information Retrieval and AI, Feb. 2023, doi:

https://doi.org/10.5121/csit.2023.130302.

[14] A. H. Huang, H. Wang, and Y. Yang, “FinBERT: A Large Language Model for Extracting

Information from Financial Text†,” Contemporary Accounting Research, Sep. 2022, doi:

https://doi.org/10.1111/1911-3846.12832.

[15] T. Singh, “tyaan/Stock-Prediction-with-Sentiment-Analysis,” GitHub, Feb. 26, 2024.

https://github.com/tyaan/Stock-Prediction-with-Sentiment-Analysis

http://www.academia.edu/
https://www.academia.edu/34236634/A_Comparative_Analysis_for_Support_Vector_Machines_for_Stroke_Patients
https://www.academia.edu/34236634/A_Comparative_Analysis_for_Support_Vector_Machines_for_Stroke_Patients
https://ieeexplore.ieee.org/document/9752616
https://doi.org/10.7717/peerj-cs.1403
https://ieeexplore.ieee.org/document/9265146
https://www.jetir.org/papers/JETIRK006164.pdf
https://doi.org/10.1111/1911-3846.12832

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
A

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 3

Student Name & ID:Looi Wei Hung 20ACB04565

Supervisor: Cik Nurul Syafidah Binti Jamil

Project Title: Stock Market Prediction Using Natural Language Processing

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Done Time Series Data Preprocessing

2. WORK TO BE DONE

Build and Define the LSTM model

3. PROBLEMS ENCOUNTERED

N/A

4. SELF EVALUATION OF THE PROGRESS

Good Progress in doing the time-series data preprocessing

Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
B

Supervisor’s signature

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 5

Student Name & ID: Looi Wei Hung 20ACB04565

Supervisor: Cik Nurul Syafidah Binti Jamil

Project Title: Stock Market Prediction Using Natural Language Processing

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Done Building and Training The LSTM model

2. WORK TO BE DONE

Apply Cross Validation method to the LSTM

3. PROBLEMS ENCOUNTERED

N/A

4. SELF EVALUATION OF THE PROGRESS

Still capable in doing the modelling although spend a lot of time to rea and search fot the

related knowledge

 Student’s signature

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
C

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 7

Student Name & ID: Looi Wei Hung 20ACB04565

Supervisor: Cik Nurul Syafidah Binti Jamil

Project Title: Stock Market Prediction Using Natural Language Processing

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Applied Cross Validation on LSTM model

2. WORK TO BE DONE

Model Test-set Evaluation and start with another models to be build like CNN and RNN

with Attention Mechanism

3. PROBLEMS ENCOUNTERED

Limited knowledge on doing TimeSeriesSplit on the model and still find a optimal way to

let model generalize well

4. SELF EVALUATION OF THE PROGRESS

A bit struggling on doing neural network model for the first time , but will keep moving

on the good progress

Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
D

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 9

Student Name & ID: Looi Wei Hung 20ACB04565

Supervisor: Cik Nurul Syafidah Binti Jamil

Project Title: Stock Market Prediction Using Natural Language Processing

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

LSTM model Test-set Evaluation and Started build CNN model layers in define and building stage

2. WORK TO BE DONE

CNN Model Cross Validation performance and also the hyperparameter tuning to the

models

3. PROBLEMS ENCOUNTERED

The test-set Evaluation for LSTM is quite long in term of time, but manageable to get the

result .It was not bad, but also the average results that I obtained

4. SELF EVALUATION OF THE PROGRESS

Training the Neural Network models were quite long in term of time-usage plus with a

limited knowledge on Deep learning.It was quite exhausted sometime, but still a good

improvement for me to learn something new.

Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
E

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 10

Student Name & ID: Looi Wei Hung 20ACB04565

Supervisor: Cik Nurul Syafidah Binti Jamil

Project Title: Stock Market Prediction Using Natural Language Processing

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Done CNN modelling and started on research how to build the attention layer of RNN

2. WORK TO BE DONE

Start to do modelling phase on RNN with attention mechanism

3. PROBLEMS ENCOUNTERED

N/A

4. SELF EVALUATION OF THE PROGRESS

Neural Network is getting fun for me and it is quite in term of their architecture instead of

just directly fit the train set into traditional machine learning model like Linear regression.

It is quite interesting for me

Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
F

Supervisor’s signature

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 12

Student Name & ID: Looi Wei Hung 20ACB04565

Supervisor: Cik Nurul Syafidah Binti Jamil

Project Title: Stock Market Prediction Using Natural Language Processing

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Done Modelling phases on those Neural Network models

2. WORK TO BE DONE

Start doing the last model , which is SVM that is quite simple training and test this model

in term of its model architecture although sometimes it has some difficult situation and

questions to be solved

3. PROBLEMS ENCOUNTERED

The results of the neural network models quite a bit out of my expectations

4. SELF EVALUATION OF THE PROGRESS

It is quite brain lagging week as I had lots of deep learning knowledge came into my mind,

but it is a good experience to me.

Student’s signature

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
G

Supervisor’s signature

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 13

Student Name & ID: Looi Wei Hung 20ACB04565

Supervisor: Cik Nurul Syafidah Binti Jamil

Project Title: Stock Market Prediction Using Natural Language Processing

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

SVM modelling phase done and also the Visualisation of the models on predicted close

prices vs actual in term of daily, monthly, and yearly basis

2. WORK TO BE DONE

Documentations and final refinement of my models code to make sure is generalized well

and good in term of performance

3. PROBLEMS ENCOUNTERED

Some of the visualizations of the graph is quite weird as is overlapped with others and

cannot capture the trends pattern. But finally solved with Miss Nurul

4. SELF EVALUATION OF THE PROGRESS

Good in doing the Models training,building and also the evaluation using test set.I would

like to said it is a tough week for me as I sicked twice in a week to doing the project .

Student’s signature

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
H

POSTER

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
I

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
J

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
K

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
L

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
M

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
N

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
O

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
P

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
Q

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
R

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
S

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
T

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
U

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
V

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
W

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
X

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
Y

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
Z

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
AA

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
BB

Signature of Supervisor

Form Title: Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

LOOI WEI HUNG

ID Number(s) 2004565

Programme / Course Business Information system

Title of Final Year Project Stock market prediction using natural language processing

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceed
the limits approved by UTAR)

Overall similarity index: 14 %

Similarity by source
Internet Sources: 12 %
Publications: 10 %
Student Papers: - %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required, and limits approved by UTAR are as Follows:

(i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note: Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

Name: Cik Nurul Syafidah Binti Ja_mil

Date: 13/09/2024

Signature of Co-Supervisor

Name:

Date:

APPENDIX

Bachelor of Information Systems (Honours) Business Information Systems

Faculty of Information and Communication Technology (Kampar Campus), UTAR
CC

FYP CHECKLIST

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB04565

Student Name LOOI WEI HUNG

Supervisor Name Cik Nurul Syafidah Binti Jamil

TICK (√) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Title Page

√ Signed Report Status Declaration Form

√ Signed FYP Thesis Submission Form

√ Signed form of the Declaration of Originality

√ Acknowledgement

√ Abstract

√ Table of Contents

√ List of Figures (if applicable)

√ List of Tables (if applicable)

√ List of Symbols (if applicable)

√ List of Abbreviations (if applicable)

√ Chapters / Content

√ Bibliography (or References)

√ All references in bibliography are cited in the thesis, especially in the chapter of

literature review
√ Appendices (if applicable)

√ Weekly Log

√ Poster

√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-

005)

√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this

report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my

report.

(Signature of Student)

Date: 13/09/2024

