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PREFACE 

Transportation plays a fundamental role in promoting economic growth, social 

connectivity and industrial development. However, it has also emerged as one of the 

major contributors to the global carbon emissions resulting in environment dedication. 

This environmental consequences of transport emissions extend beyond rising global 

temperatures to encompass deteriorating air quality, public health concerns and long-

term threats to ecological sustainability. These challenges make transportation carbon 

emissions an increasingly critical issue that demand policy attention. 

China, as the world’s largest carbon dioxide emitter, represents a highly significant case 

for study. The rapid pace of economic expansion and urbanization has spurred an 

unprecedented demand for mobility, resulting in a surge in private car ownership, 

freight activity and reliance on fossil fuels. While transportation has contributed 

substantially to China’s economic transformation, it has simultaneously escalated 

environmental pressures, posing difficulties for the nation’s transition toward 

sustainable development. The growing tension between economic growth and 

environmental sustainability underscores the need to examine the key drivers of 

transportation-related carbon emission with the Chinese context. 

This study specifically focuses on three major determinants of transportation carbon 

emission including urbanization, GDP per capita and renewable energy consumption. 

By examining their influence over nearly four decades, the research aims to uncover 

how demographic shifts, economic growth and the transition toward clearer energy 

sources interact to shape emission trends. Through this investigation, the study seeks 

to provide empirical evidence and valuable insights that may guide policymakers in 

designing effective strategies to reduce transportation emission while supporting 

China’s sustainable development and long-term carbon neutrality goals. 
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ABSTRACT 

China is the world’s largest carbon dioxide emitter and has recorded the fastest 

transportation growth rate among the top-emitting countries. The rapid expansion 

of its economies and urbanization have significantly increased the demand for 

transport services, leading to a surge in private car ownership and overall transport 

activity, thereby contributing to rising carbon emissions. This study investigates 

how explanatory variables such as urbanization, GDP per capita and renewable 

energy influence the transportation carbon emission, with particular focus on 

existence of the Environmental Kuznets Curve (EKC) hypothesis in China over the 

38-year period from 1985 to 2023. Data for all variables were collected from the 

World Bank and Our World in Data. The study employs the Autoregressive 

Distributed Lag (ARDL) approach to examine the long-run relationship with 

robustness checks conducted using such as Fully Modified Ordinary Least Squares 

(FMOLS), Dynamic Ordinary Least Squares (DOLS) and Canonical Cointegration 

Regression (CCR). The empirical results showing that GDP per capita has 

significantly negative long-run relationship with transport carbon emission, 

indicating that the EKC hypothesis does not hold for China’s transport sector. 

Urbanization is found to be positively associated with emissions whereas renewable 

energy consumption shows a significant negative effect. All these results provide 

critical policy implications toward policymakers to achieve China’s dual carbon 

goals of peaking emissions by 2023 and reaching carbon neutrality by 2060. 
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Chapter 1: Research overview 

1.0 Introduction 

This chapter provides an overview of the research, including the research background, 

research topic, research questions, research objectives, and significance of study. This 

study's main goal is to investigate the factors that influence China's transportation-

related carbon emissions.  

 

1.1 Research Background 

Transportation, as the fundamental force for economic development, is highly energy-

intensive and has become one of the fastest-growing contributors to climate change, as 

highlighted by the IPCC's fifth assessment report (Grazi & van den Bergh, 2008; 

Stanley et al., 2011; Liu et al., 2022). In a globalized economy, the sector’s economic 

activities and opportunities are closely tied to the movement of people and goods. A 

well-developed transportation system is strongly correlated with increased economic 

development, which is reflected in higher output, job creation, and rising income levels. 

However, these economic benefits often come at a significant environmental cost, 

particularly through the escalation of GHG emissions (Go et al., 2020). Currently, GHG 

emissions have increased across multiple sectors, with the energy sector being the 

largest contributor (Appendix 1.1). Within the energy sector, transportation is the 

second-largest emitter, responsible for 13.7 of total GHG output (Ge et al., 2024).  

Globally, the transport sector plays a crucial role in daily activities around the world 

which contributes about 20% of global CO₂ emissions, with road transport accounting 

for the largest proportion. 75% of transport-related emissions in 2018 came from road 

transport, with passenger cars accounting for 45.1% and freight trucks for 29.4%. 

(Appendix 1.2) (Ritchie, 2020). Evidence from Wei et al. (2021) further indicates that 

private vehicles emit nearly three times more CO₂ per capita than public transport, 

emphasizing the disproportionate contribution to environmental degradation. Transport 

emissions are projected to triple by 2050 with urbanization accelerating and private 
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vehicle ownership rising, thereby intensifying climate change. In addition to harming 

the ecosystem, vehicle-related air pollution poses serious health concerns to the general 

public, which is why an estimated 3.7 million premature deaths occurred globally in 

2012 (Lindau, 2015). Taken together, this highlights two critical challenges facing the 

transport sector such as high energy consumption and substantial CO₂ emissions. 

Nevertheless, transportation remains indispensable for sustaining economic growth 

(Wei et al., 2021). 

At the core of these challenges lies the sector’s dependence on fossil fuel combustion, 

primarily gasoline and diesel, which releases not only CO₂ but also other potent 

greenhouse gases, including methane (CH₄), nitrous oxide (N₂O), and 

hydrofluorocarbons (HFCs) (United States Environmental Protection Agency, 2024). 

In the world’s seven largest transport-emitting economies1, transport energy demand 

continues to be predominantly met by fossil fuels, highlighting the transport sector’s 

persistent dependence (Solaymani, 2019). According to Igini (2025), the energy-

hungry world consumed 1.5% more fossil fuels in 2023 than the year before, with oil 

accounting for roughly one-third of total global energy use. This record level of 

consumption was largely driven by rising demand, more than half originated from 

Global South, where energy needs are expanding at nearly twice the global rate. Given 

that transportation represents one of the largest consumers of oil, it further intensifies 

global carbon emissions (Liu et al., 2022). 

While South Asia and Sub-Saharan Africa contribute very little to the world total, 

upper-middle-income and high-income countries are the main producers of transport 

emissions (Wang & Ge, 2019). Since the implementation of the 'Reform and Opening-

up' policy, China has experienced unprecedented economic growth driven by the 

development of its extensive transportation infrastructure, includes the world’s largest 

highway and railway networks (Xu & Xu, 2021). However, this rapid development has 

fueled surging energy demand in the transportation sector, leading to transport-related 

CO₂ emissions grow at faster rates than other industries (Xie et al., 2019). Thus, 

 
1 Seven largest transport-emitting economies include United States, China, India, Russia, Japan, Brazil 
and Canada (Solaymani, 2019). 
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identifying key drivers of transport-related CO₂ emissions is crucial for developing 

targeted strategies to reduce carbon emissions and meet China’s climate commitments 

under the 2015 Paris Agreement (Liu et al., 2021). 

 

Figure 1.1 Carbon dioxide (CO₂) emissions from Transport (Energy) in China (Mt CO₂e) 

Source: World Bank Data 

As observed in Figure 1.1, China’s transport carbon emission has increased over 30 

years from 1985 to 2023. In 2023, China has reached over 1000 Mt of the transport 

emissions. 

China, as part of the Global South and the world’s largest carbon dioxide (CO₂) emitter, 

contributed 31.9% of global emissions in 2020 (Zhou et al., 2013; Hu et al., 2024). This 

surge in emissions is largely driven by accelerated urbanization and growing 

motorization, especially in major cities such as Beijing (Wang & Liu, 2015). As the 

demand for transport services continues to rise, carbon emissions from the sector are 

also escalating (Xu & Xu, 2021). In 2020, road transport accounted for 81.1% of 

China’s total transport-related carbon emissions, making it a key sector for achieving 

transport decarbonization (Loo et al., 2023). These trends pose significant obstacles in 
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achieve the China's "dual carbon" goals2 (Cao & Liu, 2023). In response, China has 

made major strides in expanding both its renewable energy sector and transportation 

infrastructure in recent years, positioning itself as a global leader in renewable energy 

development. A strong renewable energy industry not only mitigates the broader 

impacts of climate change but also supports the transition to electric vehicles by 

providing clean power, therefore reducing the dependence on fossil fuels (Ding & Liu, 

2023). However, although renewables energy now makes up half of China’s installed 

power capacity, a recent rise in approvals for new coal plants and the fact that more 

than 70% of electricity still comes from fossil fuels. It indicates that the actual 

renewable energy usage is falling short of its capacity (Appendix 1.3). Therefore, while 

renewable energy holds strong prospects, unlocking its full potential will require 

significant and transformative reforms (Hilton, 2024). 

Building on the global trends, the case of China is particularly significant. Despite 

extensive research on emission trends, only a few studies have systematically examined 

the macro-level determinants of transport-related CO₂ emissions in China, such as 

urbanization, income levels, and renewable energy consumption. Although China has 

adopted various emission reduction measures, these efforts have not effectively 

addressed the underlying drivers of emissions. Thus, the significance of China’s 

transport industry cannot be overstated, as it has been a central driver of the nation’s 

rapid economic expansion during its urbanization and industrialization process. As the 

world’s leading manufacturing hub and most populous country, China’s rapid 

development has been accompanied by the rapid evolution of its modern transportation 

systems, which play a vital role in facilitating economic growth (Lin & Benjamin, 

2017). Determining carbon emission factors in transportation sector is therefore crucial, 

as studies indicate that transportation is poised to become the largest contributor to 

carbon emissions, thereby accelerating global warming (Lim & Lee, 2012). 

 

 
2 President Xi unveiled China's "dual carbon" ambitions at the UN General Assembly in September 
2020, with the goal of reaching carbon neutrality by 2060 and peaking carbon emissions by 2030 
(Huld, 2023). 
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1.2 Research Problem 

Transportation is one of the largest energy consumers and direct sources of CO₂ 

emissions, making it a key sector in achieving climate mitigation goals. As the 

expansion of population and economy, along with the increasing complexity of the 

structures, it has resulted in a significant rise in transportation demand and energy 

consumption, leading to substantial carbon emissions (Sun et al., 2020). Between 1990 

and 2018, China has experienced substantial growth in both urban population and 

construction land area which increase fossil fuel consumption (Zheng et al., 2022). 

Evidence from the Oxford Institute of Energy Studies (2022) further reinforce that, 

over 235 million people in China have moved from rural to urban areas in the last 

decade. By 2021, seven cities including Shanghai, Beijing, Shenzhen, Chongqing, 

Guangzhou, Chengdu, and Tianjin, each had a population exceeding 10 million, while 

14 other cities had populations ranging from 5 to 10 million. This large-scale of urban 

relocation underscores that about 75% of China's population, which equivalent to more 

than 1 billion people, are projected to reside in urban areas by 2030. As a result, a higher 

mobile population correlates with more vehicles on the road, driving greater energy 

consumption and higher CO₂ emissions in the transport sector (Li et al., 2016). 

In addition, the evolution of urban transport networks has a significant impact on how 

locals commute. In China, the expansion of car-centric road infrastructure has led to 

continuous growth in urban road networks, which in turn encourages greater private 

car ownership and contributes to rising carbon emissions from daily commuting (Yang 

et al., 2024). Evidence from Lu et al. (2022) show that private car ownership jumped 

from 65 million in 2010 to 244 million in 2020, an annual growth rate of 14.14%. As a 

result, China's transport sector's carbon emissions increased significantly from 248 Mt 

in 2000 to 950 Mt in 2020, making up 9% of the nation's overall emissions. By 2021, 

the number of vehicles in China had surpassed 300 million, nearly double the total from 

a decade earlier (Qian, 2024). In 2023, China had maintained its position as the world’s 

largest vehicle market for over a decade and surpassed the U.S. in vehicle ownership 

by 2020 (Chen et al., 2024). This rapid rise in car ownership has made the China’s 

transportation sector one of the fastest-growing sources of emissions. Although China 
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was the second-largest transport CO₂ emitter (11% of global transport emissions), 

behind U.S. (21%) (Xue & Liu, 2023). It has experienced the fastest growth among all 

sectors since 2010, continuing to rise until 2019 before temporarily declining in 2020 

due to travel restrictions caused by the COVID-19 pandemic (World Bank, 2024). 

Overall, China recorded the fastest growth rate in transport emissions among the top 

emitters between 1990 and 2022 (Appendix 1.4) (Wang & Ge, 2019; Li et al., 2023).  

China’s urbanization, driven by energy-intensive industrial growth, has fueled 

infrastructure development, raised energy demand, and expanded freight transport to 

support goods movement, all of which have significantly increased transport demand 

and emissions (Lv et al., 2018). About 1.308 billion tonnes of greenhouse gases were 

released by urban transportation vehicles in 2021, including trucks, buses, cars, and 

ships. This amount is almost equal to the total transportation emissions of the United 

Kingdom and European countries (Qian, 2024). Economic growth has led to a rising 

demand for transportation vehicles, posing significant threats to sustainable long-term 

development. For example, the construction of roads, railways, and airports consumes 

a growing number of resources including land, technology, and energy. It is driven by 

urbanization, industrialization, and economic externalities. These activities both 

directly and indirectly reduce green spaces and contribute to the release of greenhouse 

gases (Hussain et al., 2022). 

Apart from that, one of the main factors influencing the increase in transportation-

related carbon emissions is GDP per capita. As income rises, people's living standards 

improve, so does consumer demand for goods. Since the logistics sector heavily 

depends on transportation, this further drives up CO₂ emissions (Li et al., 2016). 

Additionally, the growing demand for tourism-related travel significantly contributes 

to increased emissions. Consequently, emissions from transport rose from 12.96 million 

tons in 2001 to 42.17 million tons in 2019 (Gu et al., 2024). Looking ahead, forecasts 

suggest that as transportation demand continues to increase and without strict 

regulatory measures, car ownership could rise dramatically by 2050 compared to 2015 

levels, surpassing that of OECD nations. Consequently, addressing road transport 
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emissions remains a complex challenge for China’s ambitious ‘dual carbon’ goals (Liu 

& Zhou, 2025).  

Last but not least, renewable energy comes from geothermal, hydro, wind, solar, and 

biofuel sources. To lessen the adverse effects of climate change, greenhouse gas 

emissions and reliance on fossil fuels must be reduced. As a result, this approach can 

indirectly help lower carbon emissions within the transportation industry (Cui et al., 

2025). Ding and Liu (2023) noted that China's potential for sustainable growth and 

carbon neutrality has been strengthened by its technological and renewable energy 

breakthroughs. However, a key concern is whether the growing share of renewable 

energy, particularly in transportation, will be sufficient for China’s net-zero goal by 

2060. Moreover, Ahmed and Khan (2024) emphasized that China has made significant 

investments in renewable energy, especially solar and wind, and will lead the world in 

new installations by 2020. Despite this, debates persist regarding the slow pace of 

China’s low-carbon transition. Rising energy demand is expected to prolong reliance 

on fossil fuels, challenging emission reduction targets. Additionally, while the adoption 

of electric vehicles (EVs) is widely promoted as a strategy to reduce transport-related 

emissions, the environmental benefits are largely dependent on the energy mix used for 

electricity generation. Zhao et al. (2023) indicated that, to date, the fact that more than 

half of China's electricity is still produced by burning fossil fuels highlights the 

country's energy structure's present shortcomings.  

Not only that, although China has introduced numerous policies to foster the growth of 

its electric vehicle (EV) market, evidence from the International Council on Clean 

Transportation (ICCT) indicates that current measures such as the stringent 2025 fuel 

consumption standards for passenger vehicles and fuel efficiency standards for medium 

and heavy commercial vehicles (MHCVs) remain insufficient. Under a “Low Ambition” 

pathway, emissions would decline temporarily before rising again, while even under a 

“High Ambition” pathway, additional measures after 2035 are required to meet the 

2060 net-zero target (Appendix 1.5) (Callahan, 2022). As a result, fully ‘decoupling’ 

transportation development from carbon emissions remains a major obstacle. The 

Digital Travel Helps Carbon Neutrality report further highlights this challenge, noting 
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that in China, the transportation sector’s high energy dependence and structural 

limitations make achieving carbon peaking and neutrality goals more difficult than in 

other industries (Sun et al., 2023). 

 

1.3 Research Questions 

1) What is the impact of urban expansion on the transport carbon emissions in 

China? 

2) What is the relationship between GDP per capita and transport carbon emissions 

in China under the EKC hypothesis? 

3) What is the impact of renewable energy consumption on the transport carbon 

emissions in China? 

 

1.4 Research Objectives 

1.4.1 General Objective 

This study's main objective is to investigate the relationship between China's transport 

carbon emissions and urbanization, GDP per capita, and renewable energy usage. 

Additionally, this study aims to investigate the relationship between independent 

variables and transportation carbon emissions in the context of China's changing 

economic environment and to give a better understanding of how these drivers have 

contributed to emissions over time. 
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1.4.2 Specifics Objective 

1) To examine the impact of urbanization on the transport-related CO₂ emissions in 

China. 

2) To examine the existence of the EKC hypothesis between GDP per capita and 

transport carbon emissions in China. 

3) To examine the impact of renewable energy consumption on transport-related carbon 

emissions in China 

 

1.5 Research Significance 

As the world’s largest automotive markets and one of its fastest-growing economies, 

China is also a major contributor to global transport emissions. This study holds 

significant academic and practical value by examines the key determinants of 

transportation-related carbon emissions in China, focusing on urbanization, GDP per 

capita, and renewable energy consumption using a time series approach over a 30-year 

period.  

Academically, this study contributes to existing literature by examining how various 

factors influence China’s transport sector emissions over time, offering insights into 

whether these key variables have positive or negative effect on carbon emissions. 

Furthermore, this study provides a valuable theoretical contribution by applying the 

Environmental Kuznets Curve (EKC) hypothesis to transportation emissions in China, 

specifically assessing the relationship between GDP per capita and carbon emissions 

(Aslam et al., 2021). This study also employed robustness checks using FMOLS, 

DOLS and CCR methods which distinguish from previous research. The result of these 

alternative cointegration techniques confirmed the significant of variable and showed 

consistency in the size of coefficients, thereby reinforcing the validity of the findings. 

On a practical level, the findings offer direct implications for policymakers by 

identifying the most influential drivers of TCE, thereby supporting efforts to balance 

economic growth with environmental sustainability. China's ambitious goal of reaching 
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carbon peak by 2030 and carbon neutrality by 2060, which is in line with international 

frameworks for climate action, such as the Sustainable Development Goals (SDGs) of 

the United Nations, especially SDG 11 (Sustainable Cities and Communities) and SDG 

13 (Climate Action), makes this especially important. It also yields significant co-

benefits, such as improved air quality, reduced respiratory diseases, and enhanced 

urban livability through decreased traffic congestion. As the world’s largest carbon 

emitter, China’s experience in mitigating TCE can serve as a valuable reference for 

other developing and urbanizing economies. Therefore, this study not only contributes 

to the academic discourse on sustainable development but also offers actionable 

insights for advancing long-term economic prosperity. 
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Chapter 2: Literature Review 

2.0 Introduction 

Previous studies have highlighted key factors influencing transport CO₂ emissions, and 

the theoretical insights derived from these studies form the foundation of our research 

framework. This chapter discusses three primary determinants such as urbanization, 

GDP per capita, and renewable energy consumption and their relationship with 

transport sector CO₂ emissions (TCE). 

 

2.1 Theories Reviewed 

2.1.1 Environmental Kuznets Curve (EKC) Hypothesis 

Grossman and Krueger (1995) first suggested the Environmental Kuznets Curve (EKC) 

theory, which depicts an inverse U-shaped relationship between environmental 

deterioration and wealth. This shows that the environmental quality declines initially 

and then improve as income increases. 

 

Figure 2.1: Environmental Kuznets Curve from Mitic, Kresoja, and Minović (2019) 
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The early stage of economic development, the turning point, and the advanced stage 

are the three stages that make up the Environmental Kuznets Curve (EKC). In the initial 

stage, economic growth relies heavily on resource consumption, resulting in a sharp 

rise in environmental degradation. The turning point occurs when income reaches a 

certain threshold, prompting a shift in the pollution trend. This leads to the final stage, 

where environmental degradation begins to decline. After the turning point, this 

relationship becomes less direct, reflecting the close relationship between growth and 

emissions in the early phase. This is because higher wealth encourages the adoption of 

clean technology and innovation in the later phase (Leal & Marques, 2022). 

According to Muhammad et al. (2020) study, the EKC hypothesis is supported by the 

results for high- and upper-middle-income countries, but not for low- and lower-

middle-income ones. This suggests that only wealthier nations have reached the income 

level needed to reduce emissions through development, while lower-income countries 

remain focused on industrialization and economic growth, with less emphasis on 

environmental concerns. 

Xu and Lin (2015) confirmed the transportation industry has an EKC relationship, with 

urbanization having an inverted U-shaped impact. This is due to significant population 

movement during the early stages and increased adoption of cleaner urban rail systems 

and hybrid vehicles in the later stages. Guo et al. (2022) and Oladunni, Olanrewaju, 

and Lee (2024) found that GDP and transportation-related carbon emissions have an 

inverse U-shaped relationship. Using ARDL model, Saqib et al. (2022) analyzed the 

EKC for E-7 countries (1995–2019), determining that using renewable energy lowers 

emissions later on. A rise in renewable energy consumption lowers transportation-

related CO₂ emissions by approximately 12%, confirming the EKC hypothesis Amin 

et al. (2020).  

However, Azlina et al. (2014), Gill, Viswanathan, and Hassan (2018) and Htike et al. 

(2021) find a significant positive relationship between GDP and CO₂ emissions, but the 

squared GDP term is statistically insignificant, supported by Alshehry and Belloumi 

(2017) finding in Saudi Arabia. It means the data do not support EKC pattern or 

inverted-U relationship in the short and long run. Shabir et al. (2022) show that the 
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EKC relationship between income and CO₂ emissions is valid only in Singapore, while 

in Indonesia, Malaysia, the Philippines, and Thailand, income growth leads to increased 

CO₂ emissions. Jebli and Youssef (2015) found no long-run support for the inverted U-

shaped EKC in Tunisia, indicating the country has not reached the necessary GDP per 

capita level. Pablo-Romero et al. (2017), analyzing panel data from 27 EU countries 

between 1995 and 2009, found no evidence that the income threshold for reduced 

emissions had been met, suggesting the absence of the expected EKC turning point. 

Same goes to Al-Mulali et al. (2015), Du et al. (2012) and S. Wang et al. (2011) that 

the EKC hypothesis was not validated in their studies. 

 

2.1.2 Energy Transition Theory 

Energy transition is essentially the process of making major adjustments to the key 

energy system components to move toward a new energy service structure. According 

to Yang et al. (2024), this shift includes a complicated and multifaceted system that 

includes energy production, storage, transmission, and consumption in addition to 

technology, management techniques, and concerns about energy security, geopolitics, 

and governance. Many countries are prioritizing the shift to cleaner, renewable energy 

sources in their policies. Due to growing skepticism regarding the viability and public 

acceptance of alternative strategies for attaining low-carbon growth, such as nuclear 

energy and carbon capture and storage, the focus on renewables has recently increased 

(Berkhout et al., 2012). Transitions to more sustainable patterns of economic evolution 

are viewed as structural changes occurring across decadal time periods, similar to 

processes of economic development (Berkhout et al., 2009).  

The shift to cleaner energy in transportation is viewed as a practical approach to 

achieving decarbonization in the sector. Adoption of zero- and low-emission vehicle 

technologies will help to reduce the dependent on fossil fuels. Electric, hydrogen, and 

biofuel-powered vehicles are at the forefront of this movement. Electrifying transport 

is seen as the key technological solution with considerable potential to lower pollution 

and decrease dependence on fossil fuels (Raslavičius et al., 2015). In regions where 
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direct electrification is not possible, renewable electricity-based fuels help meet 

transport demand. Globally, renewable energy potential is sufficient to support even 

rapid growth in the sector. The shift improves energy efficiency through better engines, 

electric motors, and cleaner power sources (Bogdanov et al., 2024). 

High energy consumption, especially from fossil fuels, greatly increases CO₂ emissions. 

To address this, developed countries should lead the shift toward renewable energy 

sources. Both developed and developing nations need to embrace innovative 

technologies to lessen the environmental impact of energy use. The adoption of electric 

and hybrid vehicles can substantially lower CO2 emissions, potentially achieving 

reductions of up to 45% over time (Ahmad et al., 2024). 

 

2.2 Empirical Review 

2.2.1 Urbanization and Transportation Carbon Emissions 

The relationship between urbanization and CO₂ emissions has been widely examined, 

with many studies generally suggesting that urbanization increases transport-related 

CO₂ emissions, especially due to higher energy consumption in transportation demands. 

For instance, Xu and Lin (2015) investigated China's transportation sector using a 

Vector Autoregressive (VAR) model and discovered that urbanisation raises CO₂ 

emissions over the long and short terms, mostly as a result of intra-city movements and 

rural-to-urban migration. Similarly, Ali et al. (2017) applied the ARDL approach to 

study Pakistan and found that a 1% increase in urbanization led to a 0.84% rise in CO₂ 

emissions, mainly due to the poor public transport. This short-term effect was 

unidirectional, with urbanization directly causing higher emissions. Another study by 

Awan et al. (2022) verified that urbanization considerably raises TCE by employing a 

rigorous quantile methodology to analyze panel data from 33 high-income countries 

between 1996 and 2014. Xie et al. (2017) further support this relationship, showing that 

urbanization increases transport carbon emissions through large-scale infrastructure 
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development. Using the STIRPAT model on 283 cities from 2003 to 2013, they found 

a significant impact in large cities but not in smaller ones. 

In contrast to studies emphasizing one-way causality, other research has identified 

bidirectional relationships between urbanization and CO₂ emissions. Bekhet and 

Othman (2017) conducted a study in Malaysia and found a long-run bidirectional 

relationship between urbanization and CO₂ emissions in Malaysia, confirming the EKC 

hypothesis whereas emissions rise in early urbanization but decline as development 

stabilize. Similarly, Shafique et al. (2021), analyzing data from 10 high-emission Asian 

economies (1995–2017), found that urbanization significantly increased vehicle 

numbers, thereby raising CO₂ emissions. They also observed that rising emissions 

influenced urban development, indicating a bidirectional relationship. 

On the other hand, some studies have found either no significant impact or a weaker 

negative impact of urbanization on transport CO₂ emissions, especially in developed 

countries. Amin et al. (2020) investigated the European transportation industry using 

dynamic OLS estimation and ordinary least squares (OLS). Their results indicated that 

urbanization does not have a significant impact on CO₂ emissions in these countries. 

Similarly, Wang et al. (2021) employed a dynamic panel ARDL model to study OECD 

high-income countries and found that the benefits of urbanization slightly outweighed 

its energy consumption impacts. This led to a small reduction in CO₂ emissions, with 

their study concluding that urbanization in these countries had a weak negative impact 

on carbon emissions.  

In summary, the relationship between urbanization and transportation carbon emissions 

is complex and varies across countries. Generally, urbanization tends to increase 

transport-related CO₂ emissions, especially in developing nations. While several 

studies demonstrate a bidirectional relationship where emissions also affect urban 

development patterns. In contrast, the impact of urbanization on emissions may be 

weaker or even negative in developed countries. 
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2.2.2 GDP per capita and Transportation Carbon Emissions 

GDP per capita is widely recognized as a key driver of transportation sector carbon 

emissions (TCE). For instance, Xu and Xu (2021) found that TCE is significantly and 

favorably impacted by GDP per capita, suggesting that as regional economies expand 

and individual income levels rise, transportation activities intensify, thereby leading to 

increased CO₂ emissions. In line with this, Cao et al. (2024) and Dalde et al. (2025) 

reported that higher income levels typically result in increased private vehicle 

ownership and greater transport demand, both of which contribute to rising emissions. 

Likewise, Wang et al. (2018), focusing on China’s passenger and freight transport 

sectors between 1990 and 2015, also observed that economic growth accelerates CO₂ 

emissions in both areas. Moreover, Lv et al. (2018) emphasized significant regional 

disparities in freight transport emissions across China, further reinforcing the view that 

economic development can exacerbate transport-related carbon outputs in unequal 

ways. Alshehry and Belloumi (2017) using ARDL approach and their results indicate 

per capita GDP continues to exert a significant and positive influence on transport-

related CO₂ emissions, thereby negatively impacting environmental quality in the 

country. 

In contrast, Asumadu-Sarkodie and Owusu (2016) found that in Rwanda, a 1% rise in 

GDP per capita led to a 1.45% reduction in carbon emissions in the long run, lending 

support to the EKC hypothesis. According to Kasperowicz (2015), over time, there is 

a negative correlation between GDP and CO2 emissions, as advancements in low-

carbon technologies allow for maintaining the same level of production with reduced 

emissions. Go et al. (2020) studies in Malaysia found that The GDP per capita 

coefficient was negatively significant, indicating that rising income levels will likely 

result in falling transportation-related CO2 emissions. 

In short, most studies show that higher GDP per capita increases transport-related CO₂ 

emissions due to higher vehicle ownership and transport demand. However, in some 

countries, long-term economic growth supported by technological advancements can 

help reduce emissions, consistent with the EKC hypothesis. 
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2.2.3 Renewable energy consumption and Transportation Carbon 

Emissions 

Electric vehicles (EVs) may be powered sustainably by renewable energy sources 

including wind, solar, and hydroelectric power, which also helps to lower CO2 

emissions associated with transportation. Liu et al. (2022) suggested that alternative 

fuels and sustainable transport modes can lower emissions in the transport sector. 

Similarly, Zaman et al. (2021) and Kwilinski et al. (2024) found that higher renewable 

energy consumption has a significant negative correlation with transport CO₂ emissions, 

indicating that increased renewable energy use helps lower transport-related emissions. 

This result is consistent with that of Maji and Adamu (2021), who used the OLS method 

to establish an inverse link between carbon emissions and the use of renewable energy 

in Nigeria's transport sector from 1989 to 2019.  

Advanced renewable technologies, including EVs, hydrogen fuel cell vehicles 

(HFCVs), and biofuel-powered vehicles, have also been developed to support emission 

(Zeng et al., 2022). Alnour (2022) further highlights the negative correlation between 

Turkey's transportation-based emissions and renewable energy consumption between 

1990 Q1 and 2014 Q1, indicating that boosting the usage of biofuels and renewable 

energy sources can greatly lower CO2 emissions associated with transportation. In 

Ethiopia, Desta et al. (2022) highlighted the success of a biofuel program using cane 

molasses-based ethanol and jatropha biodiesel, which reduced fossil fuel use and 

greenhouse gas emissions. 

However, several studies present a more nuanced or limited impact of renewable energy 

consumption on transport CO₂ emissions. Neves et al. (2017) argued that while the use 

of renewable fuels helps reduce emissions in both the short and long run, the 

significance level of this effect is relatively lower. This is further supported by 

Solaymani (2022) examined the transport sector in Malaysia from 1978 to 2018 using 

the ARDL and found short-term emission increases due to low renewable energy use, 

and long-term effects that were negative but statistically insignificant, indicating that 

its usage remains insufficient to effectively reduce CO₂ emissions in this sector. 
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Summary, many studies support that increased renewable energy consumption helps 

reduce transportation CO₂ emissions, especially using EVs and biofuels. However, 

some research highlights that the impact may be limited or statistically weak in certain 

countries due to low consumption rates or insufficient renewable energy use in the 

transport sector. 

 

2.3 Conceptual Framework 

 

Figure 2.2: Conceptual Research Framework 

In this research, Figure 2.2 explains how the explanatory variables like urbanization, 

GDP per capita, and energy consumption from renewable sources influence 

transportation carbon emissions in China. 
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2.4 Research Gap 

Most existing studies focus on urbanization and GDP per capita, often in combination 

with other macroeconomic variables (Xu & Lin, 2015; Aslam et al., 2021; Xu & Xu, 

2021). However, relatively few studies especially in the context of China's 

transportation industry, have included renewable energy consumption as a variable in 

creating a comprehensive framework. This omission limits understanding of how 

renewable energy consumption influences transport-related carbon emissions. In order 

to close this gap and offer China more thorough views, our study incorporates 

renewable energy use into the framework. 
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Chapter 3: Methodology 

3.0 Introduction 

The research methodology refers to the set of processes used to address the research 

problem in this study. A wide range of information from the empirical review in Chapter 

2 is utilized to support the construction of the econometric model presented in this 

chapter. The chosen econometric model will be covered in Chapter 3, along with the 

steps for empirical testing and diagnostic tests to guarantee the model's accuracy and 

dependability. 

 

3.1 Data Description 

The relationship between the explanatory and response variables is examined using the 

data. In this study, the dependent variable is transportation carbon emissions, whereby 

urbanization, GDP per capita and renewable energy consumption are the independent 

variables. 

Table 3.1: Variables and Proxy 

Variables Variable 

Description and 

Measurement 

Unit 

Measurements 

Sources 

Transportation 
Carbon Emissions  
 

Carbon dioxide 

(CO2) emissions 

from Transport 

Energy 

metric tons per 

capita 

World Bank 

Urbanization Urban population  Number of people World Bank 

GDP per capita GDP per capita 

(constant 2015 

US$) 

Constant 2015 

US$ per person 

World Bank 
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Renewable Energy 

Consumption 

Share of primary 

energy 

consumption from 

renewable sources 

% equivalent 

primary energy 

Our world in data 

 

3.1.1 Definition of Variables 

3.1.1.1. Transport Carbon Emissions (DV) 

Transportation carbon emission (TCE) refers to the release of CO₂ and other 

greenhouse gases produced by different types of transportation, typically during 

the vehicle operation phase. Commonly associated with energy-consuming 

travel activities, TCE can be applied to anything from individual trips to the 

entire transportation sector. Its measurement is usually focused on the mobility 

process and emphasize direct emissions resulting from fuel consumption. TCE, 

as an indicator linked to different transportation activities, is present across 

numerous branches of the transport sector, such as road traffic, international 

shipping, aviation, and railway systems (Ling et al., 2024). 

3.1.1.2. Urbanization (IV) 

Urbanization is fundamentally defined as the process of population 

concentration, occurring through the multiplication of urban centers and the 

growth in size of existing ones (Tisdale, 1942). Williamson (1988) expands this 

definition by describing urbanization as a demographic and economic 

transformation, where population and labor shift from rural to urban areas due 

to population pressures and economic opportunities. This process is a key 

aspect of development, driven by technological progress, industrialization, and 

supportive policy environments. 
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3.1.1.3. GDP per capita (IV) 

Economic growth is typically measured by the rise in a nation’s gross domestic 

product (GDP), which serves as an official indicator of economic progress. GDP 

reflects the total monetary or market value of all final goods and services 

produced within a country over a specific time frame. Meanwhile, GDP per 

capita represents the average economic output generated per individual in that 

country (Adam & Alzuman, 2024). GDP per capita plays a crucial role in the 

economy as it reflects the outcome of a country’s economic activities over the 

course of a year. Beyond that, it serves as a key indicator of development and 

well-being. It is also used to assess sustainable economic growth and evaluate 

a nation's self-sufficiency based on the income levels of its population 

(Juliannisa & Artino, 2022). 

3.1.1.4. Renewable Energy Consumption (IV) 

Daniel Ciolkosz3 highlights that renewable energy comes from natural sources 

like sunlight, wind, water, geothermal heat, and biomass that replenish faster 

than they are used. Unlike fossil fuels, these sources are sustainable and 

environmentally friendly. He emphasizes that transitioning to renewable energy 

is crucial for addressing climate change, energy security, and growing 

population demands (Ernst et al., 2023). Furthermore, ongoing advancements 

in renewable energy technologies are focused on improving energy conversion 

efficiency, ensuring that these sources can meet the ever-expanding energy 

needs (Ang et al., 2022). 

 

 

 

 
3 Dr. Ciolkosz, an associate research professor at Penn State, supports bioenergy development and 
energy efficiency for Pennsylvania farms and co-leads the university’s renewable energy extension 
program (West Virginia University, n.d.). 
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3.2 Econometric Model 

An econometric model is proposed in this study to investigate the relationship between 

China's transportation carbon emissions and three important explanatory variables. In 

this analysis, CO₂ emissions from transport energy (measured in metric tons per capita) 

serve as a proxy for Transport Carbon Emissions (TCE). The dataset spans the period 

from 1985 to 2023. 

Transport Carbon Emission = f (Urbanization, GDP, GDP2 , Renewable Energy 

Consumption) 

Model 1 

𝑙𝑙𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙𝑙𝑙𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡 + 𝛽𝛽2𝑙𝑙𝑙𝑙𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 + 𝛽𝛽3(𝑙𝑙𝑙𝑙𝐺𝐺𝐺𝐺𝐺𝐺2)𝑡𝑡 + 𝛽𝛽4𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 + 𝜇𝜇𝑡𝑡 

Where: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡= Transport Carbon Emissions (metric tons per capita) at time t 

𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡= Urban population at time t 

𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡= GDP per capita (constant US$) at time t 

𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡2= GDP per capita squared (to test EKC) at time t 

𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡= Share of primary energy consumption from renewable sources (% equivalent 

primary energy) at time t 

𝛽𝛽0 = Slope intercept 

𝛽𝛽1, 𝛽𝛽2, 𝛽𝛽3, 𝛽𝛽4 = Coef�icients of the explanatory variables 

𝑙𝑙𝑙𝑙 = Natural logarithm 

𝜇𝜇𝑡𝑡 = Error term at time t 

t = 1985, 1986, 1987,…, 2023 

This study's model was developed as illustrated above. All dependent and explanatory 

variables are transformed into their natural logarithmic forms to examine the nature of 
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their relationships and to assess their long-run effects on transport carbon emissions 

(TCE) in China. Additionally, In order to standardize data fluctuation for improved 

comparability over time and to make testing the Environmental Kuznets Curve (EKC) 

hypothesis easier, the natural logarithm of GDP per capita is also squared. 

According to the preceding model, adjustments to the coefficient could affect the two 

variables relationship, making it either positive or negative.. In line with our 

expectations, the signs for 𝛽𝛽1 is positive, consistent with the findings of Ali et al. (2017). 

Similarly, 𝛽𝛽2 is also expected to be positive indicating that an increase in GDP will lead 

to a further increase in TCE, as supported by Xu and Xu (2021). In contrast, 𝛽𝛽3  is 

expected to have a negative sign, while 𝛽𝛽4 is also likely to be negative, as support by 

the result of Maji & Adamu, (2021). 

 

3.3 Emprical Testing Procedures 

3.3.1 Unit Root Test 

The unit root test is used as the initial stage in this study to assess the variables' 

integration order and stationarity. This is crucial as regression results may be spurious 

if the t-statistics are unusually large, the R-squared is significantly higher than the 

Durbin-Watson statistics, or the outcomes contradict economic theory or common 

sense. These signs suggest that the model may be unreliable due to non-stationary data 

or autocorrelation (Phillips, 1987). As highlighted by Zivot and Wang (2003), When 

analysing trending data, unit root testing aids in deciding whether time-trend regression 

or first differencing should be used. For I(0) series, time-trend regression works well, 

however for I(1) series, the first difference is used. This stage guarantees accurate 

model formulation and permits the exploration of long-term relationships using co-

integration approaches if variables are I(1). The Kwiatkowski–Phillips–Schmidt–Shin 

(KPSS) Test and the Augmented Dickey-Fuller (ADF) unit root test are used to evaluate 

the stationarity of the variables in our study model. 
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3.3.1.1 Augmented Dickey-Fuller (ADF) Test  

Augmented Dickey-Fuller Test (ADF) is a standard method for detecting unit 

roots and assessing the stationarity of the time series data, which is essential to 

avoid spurious results when applying Ordinary Least Squares (OLS) regression. 

It also serves as a key step in testing for cointegration between variables 

(Dickey & Fuller, 1979). By including lagged values of the dependent variable, 

the ADF test improves upon the basic Dickey-Fuller test, allowing it to detect 

serial correlation and handle more complex time series structures. To ensure 

reliable results, the appropriate lag length is typically selected using model 

selection criteria such as Akaike’s Information Criterion (AIC) to eliminate 

residual autocorrelation (Otero & Baum, 2018). The null hypothesis states that 

unit root exists in the variables (non-stationary) while the alternative hypothesis 

is the variable unit root does not exist (stationary).  

H0: Unit root exists 

HA: Unit root does not exist  

The ADF test's decision rules specify that if the p-value is less than the 

significance level at 1%, 5%, or 10%, the null hypothesis should be rejected; if 

not, the null hypothesis should not be rejected. If the null hypothesis is rejected, 

the variables are said to be stationary; if it is not rejected, the variables are said 

to be non-stationary.  

 

3.3.1.2 Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test 

According to Kwiatkowski et al. (1992), a statistical technique known as the 

KPSS test is used to compare the alternative hypothesis of a unit root with the 

null hypothesis of a time series being stationary around a constant mean or a 

deterministic trend. It depicts the series as the product of a random walk, a 

deterministic trend, and a stationary error term; stationarity is assumed when 

the random walk's variance is zero. 



26 
 

H0: Unit root does not exist 

HA: Unit root exists 

 

3.3.2 Model Estimation 

3.3.2.1 Autoregressive Distributed Lag (ARDL) Model Bounds 

Cointegration Test 

The ARDL Bounds Cointegration Test, developed by Pesaran et al. (2001), used 

to determine the existence of a long run relationship between a dependent 

variable and independent variables, regardless of whether the underlying 

variables are stationary at level (1(0)), first difference (1(1)), or a mix of both. 

The test is based on estimating an unrestricted error correction model (ECM) 

and performing a Wald or F-test on the joint significance of the lagged level 

variables. Murthy and Okunade (2016) stated that a key strength of the ARDL 

Bounds testing approach lies in its ability to estimate long-run economic 

relationships without the need to pre-test the time series data for unit roots as 

long as none of (I(2)) within the cointegration framework. The ARDL 

coefficient estimates remain highly reliable, even when applied to small sample 

sizes. However, despite not requiring all variables to be integrated of order one 

(I(1)), the method becomes invalid if any of the variables are found to be 

integrated of order two (I(2)). 

H0: The cointegration relationship between DV and IV does not exist. 

HA: The cointegration relationship between DV and IV exist 

The calculated F-statistics are compared with two sets of critical value 

constraints to determine cointegration. The lower bound assumes that all 

variables are I(0), whereas the higher bound assumes that all variables are I(1). 

There is no long-run relationship if the F-statistics fall below the lower bound, 

a long-run relationship if it exceeds the upper bound, and an inconclusive 

conclusion if it falls between the boundaries. 
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ARDL Bound Cointegration Test Model: 

∆𝑙𝑙𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡−1 + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡−1 + 𝛼𝛼3𝑙𝑙𝑙𝑙𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡−1

+ 𝛼𝛼4ln (𝐺𝐺𝐺𝐺𝐺𝐺2)𝑡𝑡−1 + 𝛼𝛼5𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−1 + �𝛽𝛽1∆𝑙𝑙𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=1

+ �𝛽𝛽2∆𝑙𝑙𝑙𝑙𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=1

+ �𝛽𝛽3∆𝑙𝑙𝑙𝑙𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=1

+ �𝛽𝛽4∆ln (𝐺𝐺𝐺𝐺𝑃𝑃)2𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=1

+ �𝛽𝛽5∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=1

+ 𝜇𝜇𝑡𝑡 

 

3.3.2.2 Error Correction Model (ECM) 

The Error Correction Model (ECM) will be used to analyse cointegration 

between variables after the ARDL Bounds Test. According to Banerjee et al. 

(1998), ECM uses an autoregressive distributed lag (ARDL) model as its 

foundation and emphasizes the coefficient of the lagged dependent variable. 

The ECM captures the equilibrium connection between variables throughout 

the long term as well as the short-term dynamics. Regressors rectify departures 

from the long-run path in the situation of cointegration by adjusting the 

dependent variable's lagged level. Because it does not impose potentially 

invalid common-factor restrictions, the test is beneficial. Additionally, the t-

ratio form has better power qualities, particularly when the long-run and short-

run coefficients diverge. The t-statistics of the lagged level term in the ECM are 

usually used to do the test. If this coefficient is notably negative, it indicates 

that the system returns to equilibrium after a shock, confirming the existence of 

a long-term link. The ECM test does not rely on nuisance parameters but is 

sensitive to the number of regressors. 
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ECM Model is expressed as below: 

∆𝑙𝑙𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡−1 + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡−1 + 𝛼𝛼3𝑙𝑙𝑙𝑙𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡−1

+ 𝛼𝛼4ln (𝐺𝐺𝐺𝐺𝐺𝐺2)𝑡𝑡−1 + 𝛼𝛼5𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−1 + �𝛽𝛽1∆𝑙𝑙𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=1

+ �𝛽𝛽2∆𝑙𝑙𝑙𝑙𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=1

+ �𝛽𝛽3∆𝑙𝑙𝑙𝑙𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=1

+ �𝛽𝛽4∆ln (𝐺𝐺𝐺𝐺𝑃𝑃)2𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=1

+ �𝛽𝛽5∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=1

+ 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝑡𝑡−1 + 𝜇𝜇𝑡𝑡 

 

3.4 Diagnostic Checking 

Diagnostic checking involving statistical tests to ensure that the estimated model 

accurately reflects the behavior of the observed data. According to BEGGS (1988), 

even well-fitting models can yield misleading inferences if underlying assumptions are 

violated. Therefore, to detect potential econometric issues and ensure reliability, this 

study will conduct several diagnostic tests, such as the Jarque-Bera Test, the Breusch-

Godfrey Serial Correlation LM Test, the Autoregressive Conditional 

Heteroskedasticity (ARCH) Test, the CUSUM, and the CUSUMSQ Test. To find and 

evaluate whether the model has any econometric issues, these tests will be carried out 

using EViews 12. 

 

3.4.1 Jarque-Bera Test 

Large datasets can benefit greatly from the parametric Jarque-Bera test, which 

determines if a dataset has a normal distribution. It is predicted on two essential metrics 

that characterise a distribution's shape: kurtosis, which represents the data's peakedness, 

and skewness, which denotes asymmetry. The skewness of a normal distribution is zero, 

while its kurtosis is three (Jarque & Bera, 1980). The test evaluates how much the 

sample's skewness and kurtosis deviate from the values expected under a normal 
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distribution. Normality is important in statistical analysis, as many statistical methods 

assume data are normally distributed, and violations can lead to inaccurate and 

misleading results (Jarque & Bera, 1987). In the JB test, the null hypothesis assumes 

normality of the error term, while the alternative assumes non-normality. If the test 

yields a significant result, we reject the null hypothesis and come to the conclusion that 

the data is not normally distributed. If the finding is not significant, we cannot reject 

the null hypothesis and infer that the data is normally distributed. 

H0: Normally distribution exists in error terms 

HA: Normally distribution does not exist in error terms 

 

3.4.2 Breusch-Godfrey Serial Correlation LM Test 

Breusch (1978) stated that if the error terms in a linear model are autocorrelated, the 

ordinary least squares (OLS) estimate of the coefficient parameters remain unbiased 

but are no longer efficient. However, in dynamic models where lagged dependent 

variables are included as regressors, OLS estimates become biased and typically 

inconsistent. Therefore, when estimating dynamic models using OLS, it is crucial to 

conduct tests for autocorrelation. Rois et al. (2012) also mentioned that the Breusch-

Godfrey (BG) test is the most suitable method for detecting higher-order 

autocorrelation, especially when the model includes stochastic regressors like lagged 

dependent variables. The alternative hypothesis makes the assumption that 

autocorrelation exists, whereas the null hypothesis makes the assumption that it does 

not. The presence of autocorrelation in the data is indicated if the test produces a 

significant result. If the result is not significant, we conclude that the data does not 

exhibit autocorrelation. 

H0: No autocorrelation exists. 

HA: Autocorrelation exists. 
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3.4.3 Autoregressive Conditional Heteroskedasticity (ARCH) Test 

Heteroscedasticity occurs when the error components in a regression model exhibit 

non-constant variance across observations. In the presence of heteroscedasticity, the 

Ordinary Least Squares (OLS) estimator is consistent, but it becomes inefficient and 

produces statistical inferences that are not reliable. Engle (1982) introduced the ARCH 

test to examine time-varying variance by modeling the conditional variance of errors 

as a function of past squared residuals. The ARCH test is specifically suited for time 

series data, as it examines volatility patterns that depend on historical error behavior. 

H0: No heteroscedasticity exists 

HA: Heteroscedasticity exists 

 

3.4.4 CUSUM and CUSUMSQ Test 

Brown et al. (1975) developed the cumulative sum (CUSUM) and cumulative sum of 

squares (CUSUMSQ) to determine if the regression connection is stable over time. 

According to Nica et al. (2024), the CUSUM test is mainly used to identify gradual 

shifts or drifts in the mean level of a process or time series over time, particularly 

highlighting changes in the regression coefficients. It works by calculating the 

cumulative sum of residual deviations from the model’s mean. The difference between 

the actual and expected values is added up at each time point. The CUSUMSQ test, on 

the other hand, is intended to identify abrupt or noteworthy shifts in a data series' 

variance. Compared to the CUSUM test, it is better at detecting sudden changes in 

structure. The CUSUMSQ plot plots the cumulative sum of the squared residuals 

against a reference boundary; a large deviation from this line may suggest a structural 

break. The parameters of the model appear to be stable over time if the points on the 

CUSUM and CUSUMSQ plots stay inside the lines at the 5% significance level. 
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3.5 Robustness Checking 

3.5.1 Fully Modified Ordinary Least Squares (FMOLS) 

Phillips and Hansen (1990) developed FMOLS as an estimation technique to correct 

biases in cointegrated systems by making non-parametric adjustments that account for 

both serial correlation and endogeneity. This approach uses long-run covariance 

estimates to modify the dependent variable and/or regressors, thereby producing 

asymptotically unbiased and efficient estimates. By addressing these issues without 

sacrificing a substantial degree of freedom, FMOLS is particularly suitable for small-

sample time series analysis and is widely used for obtaining reliable long-run parameter 

estimates in cointegration studies. 

H0: The independent variable has no significant long-run effect. 

H1: The independent variable has a significant long-run effect. 

 

3.5.2 Dynamic Ordinary Least Squares (DOLS) 

Stock and Watson (1993) has introduced DOLS as a parametric technique in 

cointegration analysis to correct simultaneity bias and serial correlation in the residuals. 

It eliminates endogeneity and takes higher-order integrated variables into account by 

adding leads and lags of the regressors' first differences to the cointegration equation. 

By simulating these extra variables, DOLS removes the link between the error term 

and the regressors, allowing for an accurate and impartial estimate using ordinary least 

squares. A critical aspect of applying DOLS is selecting the optimal number of leads 

and lags, as too few may leave bias uncorrected while too many can reduce estimation 

efficiency. 
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3.5.3 Canonical Cointegrating Regression (CCR) 

According to Park (1992), CCR is a transformation-based methodology that provides 

efficient estimation and standard inference in cointegrated systems. To eliminate 

correlation between the error term and the regressors, stationary components and long-

run covariance estimations are used to adjust both the dependent and independent 

variables. This transformation preserves the original cointegrating relationships while 

allowing ordinary least squares (OLS) to be applied to the adjusted variables to obtain 

efficient estimates. 
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Chapter 4: Data Analysis 

4.0 Introduction 

This chapter will use E-view 12 to perform diagnostic checks and investigate the 

relationship between transportation carbon emissions and all independent factors.  

After that, we will perform and analyze the result of tests. 

 

4.1 Unit Root Test 

Table 4.1.1: The values of the Dickey-Fuller test 

 ADF 

 Intercept Trend and intercept 

Level 1st Difference Level 1st Difference 

lnTCEt -0.4736(5) -6.1173(0)*** -1.8736(0) -6.0314(0)*** 

lnGDPt -2.7164(1)* -4.8009(1)*** -4.5200(0)*** -4.2387(5)** 

lnGDP2
t -2.1527(1) -4.8301(1)*** -2.5210(0) -7.2391(1)*** 

RENt 2.3703(0) -5.8866(0)*** -0.4447(0) -7.4462(0)*** 

Notes: *, **, *** shows significant at the 10%, 5%, and 1% significance level 

respectively. The figure in parentheses is the lag chosen in the Schwarz information 

criteria (SIC). The bandwidth utilized is Newey-West Bandwidth. The Bartlett Kernel 

is employed in the Spectral estimation technique. 

 

Table 4.1.1 displays the ADF unit root test results for lnTCE, lnGDP, lnGDP2, and 

REN. lnGDP is stationary at the level of the intercept and the trend and intercept. lnTCE, 

lnGDP2, and REN are stationary at the first difference between the intercept and the 

trend and intercept. In conclusion, the variables are either stationary at level form I(0) 

or first difference I(1). 
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Table 4.1.2: The values of the Kwiatkowski-Phillips-Schmidt-Shin test  

 KPSS 

 Intercept Trend and intercept 

Level 1st Difference Level 1st Difference 

lnURBt 0.7576(5)*** 0.7130(5)** 0.2032(5)** 0.1975(4)** 

Notes: *, **, *** shows significant at the 10%, 5%, and 1% significance level 

respectively. The figure in parentheses is the lag chosen in the Schwarz information 

criteria (SIC). The bandwidth utilized is Newey-West Bandwidth. The Bartlett Kernel 

is employed in the Spectral estimation technique. 

Table 4.1.2 displays the findings of the Kwiatkowski-Phillips-Schmidt-Shin unit root 

test for lnURB. lnURB is stationary at the level of trend and intercept, as well as at the 

first difference between intercept and trend and intercept. The variable is either 

stationary at level form I(0) or at first difference I(1), so we may use the ARDL model. 

 

4.2 Model Estimation 
4.2.1 ARDL Cointegration Bounds Test 

Table 4.2.1: The ARDL Bounds Test Result 

Bounds testing approach to co-integration 

 F(LNTCE, LNGDP, LNGDP2, LNURB, REN) 

Optimal lags (2, 2, 1, 1, 0) 

F-statistics 4.7054*** 

Critical values (k=4, T=37) 

Significance level (%) Lower bounds I(0) Upper bounds I(1) 

1 3.29 4.37 

5 2.56 3.49 

10 2.2 3.09 

Remarks: ***, ** and * show the null hypothesis reject at significance level 1%, 5% 

and 10% respectively. 

The ARDL Cointegration Bounds Test is used to analyze the long-term connection 
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between the independent and dependent variables. If the F-statistic is more than the 

upper bound I(1), it indicates a long-run association; if it is less than the lower bound 

I(0), it indicates no long-run relationship; and if it falls in the middle of the bounds, it 

is considered inconclusive. The findings demonstrated that, at the 1% significance level, 

the F-statistic (4.7054) is higher than the upper bound I(1) (4.37). As a result, we reject 

the null hypothesis and conclude that the dependent and independent variables have a 

lasting association. 

 

Table 4.2.1.1: The Long Run Coefficient Result 

Variables Coefficient Standard Error t-statistic P-value 

lnGDPt -2.5919*** 0.2745 -9.4417 0.0000 

lnGDP2
t 0.1488*** 0.0285 5.2133 0.0000 

lnURBt 3.8966*** 0.8239 4.7295 0.0001 

RENt -0.0418*** 0.0130 -3.2200 0.0034 

C -61.9534*** 15.5665 -3.9799 0.0005 

Remarks: ***, ** and * show the null hypothesis reject at significance level 1%, 5% 

and 10% respectively. 

Table 4.2.1.1 shows that at the 1% significance level, the P-value of lnGDP (0.0000) is 

less than (0.01) indicating negatively significant. Therefore, there is a long-run 

relationship between the transport carbon emissions  and GDP per capita. This indicates 

that if the GDP per capita increases by 1%, the transport carbon emissions will decrease 

by -2.5919%. The result is consistent with Asumadu-Sarkodie and Owusu (2016) study 

in Rwanda, GDP per capita leads to a decrease in carbon emissions in the long run. 

Similar with Kasperowicz (2015) study result indicated that in the long run, the 

relationship between GDP and CO2 emissions is negative, as advancements in low-

carbon technologies allow for maintaining the same level of production with reduced 

emissions. 

At the significance level of 1%, the lnGDP2 P-value (0.0000) is less than (0.01), 

indicating positive significance. It shows that there are substantial long-term 

relationships between GDP2 and carbon emissions from transportation. The coefficient 
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of the lnGDP2 is positive, which means it does not follow the inverted U-shaped pattern 

of the EKC hypothesis. However, its positive coefficient would indicate that the 

environmental degradation follows a U-shaped pattern in relative to the GDP per capita. 

It is still consistent with Alshehry and Belloumi (2017), Al-Mulali et al. (2015), Du et 

al. (2012) and S. Wang et al. (2011) studies, where the EKC hypothesis does not 

validated. 

At the significance level of 1%, the lnURB’s P-value (0.0001) is less than its positive 

significance value (0.01). Hence, there is a long-run relationship between urbanization 

and transport carbon emissions. If the urban population increases by 1%, the transport 

carbon emissions will increase by 3.8966%. The result is consistent with the study by 

Xu and Lin (2015), Ali et al. (2017), Awan et al. (2022) and Xie et al. (2017), the result 

showed the urbanization leads to an increase in carbon emissions. 

At the 1% significance level, the REN’s P-value (0.0034) is smaller than its negative 

significance (0.01). There is a long-run relationship between renewable energy 

consumption and transport carbon emissions, which means that if renewable energy 

consumption increases by 1%, the transport carbon emissions will decrease by -

0.0418%. The result is aligned with the study by Zaman et al. (2021), Kwilinski et al. 

(2024) and Maji and Adamu (2021), where higher renewable energy consumption has 

a significant negative correlation with transport CO₂ emissions, indicating that 

increased renewable energy use helps lower transport-related emissions. 

4.2.2 Error Correction Model 
Table 4.2.2: The ECM Result 

Variables GDP, GDP2, URB, REN 

ECTt-1 Coefficient -1.4382*** 

Standard Error 0.2479 

t-statistic -5.8019 

P-value 0.0000 

Remarks: ***, ** and * show the null hypothesis reject at significance level 1%, 5% 

and 10% respectively. 
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According to Table 4.2.2, the ECT coefficients are statistically significant, with a P-

value (0.0000) of less than 0.01 at 1% significance level. The ECT coefficient is -

1.4382 which exceeds the range of 0 and -1. The value of -1.4382 implies that 143.82% 

of deviations from the long-run equilibrium are adjusted in the next period. The 

magnitude of the coefficient (-1.4382) is quite high, might indicate that it is 

overshooting. The results are consistent with Bekhet and Othman (2017), Rahman and 

Kashem (2017), Kwakwa et al. (2022) and Qodirov et al. (2024). This may be due to 

the new energy vehicle boom led by government policies and technological 

advancement. 

 

4.3 Diagnostic Checking 

4.3.1 Jarque-Bera Test, LM Test and ARCH Test 
Table 4.3.1: The Jarque-Bera Test, LM Test and ARCH Test Result 

Diagnostic Testing t-statistic/F-

statistic 

P-value Conclusion 

Jarque-Bera 

normality test 

4.5982 0.1003 Normally 

distributed 

Serial Correlation 

LM test 

0.6219 0.5454 No autocorrelation 

exists 

ARCH test 0.6235 0.4352 No 

heteroscedasticity 

exists 

Remarks: ** show the null hypothesis rejected at significance level 5% 

 

The results in Table 4.3.1 reveal that there is no econometric concern. The P-value for 

the Jarque-Bera normality test is 0.1003, the Serial Correlation LM test is 0.5454, and 

the ARCH test is 0.4352, all of which surpass the 5% significance level. As a result, we 

do not reject the null hypothesis and conclude that the model is normally distributed, 

with no autocorrelation or heteroscedasticity. 
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4.3.2 CUSUM Test and CUSUM Square Test 
CUSUM Test 

 
Figure 4.1 

CUSUM Square Test

 
Figure 4.2 

CUSUM test and CUSUMSQ tests results are shown in the Figure 4.1 and 4.2 

respectively. The model's parameters appear to be stable over time, since both points 

stayed inside the straight-line boundaries at the 5% significance level. 

 

4.4 Robustness Checking 

4.4.1 FMOLS, DOLS and CCR 
Table 4.4.1: The FMOLS, DOLS and CCR Result 

Variables FMOLS   

 Coefficient T-statistic P-value 

lnGDP -2.3290*** -6.7907 0.0000 

lnGDP2 0.1304*** 3.6697 0.0009 

lnURB 3.9514*** 3.4398 0.0016 

REN -0.0862*** -5.4406 0.0000 

Constant -62.8211*** -2.9162 0.0063 

 DOLS   

 Coefficient t-statistic  

lnGDP -2.2990*** -9.1689 0.0000 

lnGDP2 0.1155*** 4.6200 0.0002 

lnURB 4.7266*** 6.4189 0.0000 

REN -0.0310** -2.6074 0.0173 
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Constant -79.1472*** -5.6818 0.0000 

 CCR   

 Coefficient t-statistic  

lnGDP -2.1603*** -7.4314 0.0000 

lnGDP2 0.1281*** 3.5654 0.0011 

lnURB 3.5331*** 3.2900 0.0024 

REN -0.0832*** -5.1564 0.0000 

Constant -55.6222** -2.7245 0.0102 

***, ** and * show the statistical significance at 1%, 5% and 10% levels. 

 

To confirm the result's robustness, FMOLS, DOLS, and CCR are used. Except for the 

DOLS result, which shows that the energy consumption from renewable sources is only 

significant at the 5% significance level, the results of FMOLS, DOLS, and CCR 

verified that all independent variables are significant at the 1% significance level. The 

coefficients for the GDP per capita and renewable energy consumption are negative. 

However, the coefficients for the quadratic term of the GDP and urbanization are 

positive. The results are robust since the FMOLS, DOLS, and CCR coefficient signs 

match the ARDL Bounds test result. 
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Chapter 5: Discussion, Conclusion and Implications 

5.0 Introduction 

The summary of the major findings, policy implications, limitations and 

recommendations for future research will be discussed in this chapter.  

 

5.1 Summary of Major Findings 

The primary objective of the study is to determine what factors affect China's 

transportation-related carbon emissions. Urbanization, GDP per capita, and the 

renewable energy consumptions are the explanatory factors. The ARDL Bounds Test 

for the year 1985–2023 is used to analyze the relationship between the explanatory and 

response variables. 

At a significant level of 1%, GDP per capita is negatively significant. There is a long 

run negative relationship between GDP per capita and transport carbon emissions, 

which means if the GDP per capita increases, the transport carbon emission will 

decrease. The result is consistent with some past studies. According to Asumadu-

Sarkodie and Owusu (2016) research in Rwanda, GDP per capita eventually reduces 

carbon emissions in the long run. Kasperowicz (2015) study result indicated that in the 

long run, the relationship between GDP and CO2 emissions is negative, as 

advancements in low-carbon technologies allow for maintaining the same level of 

production with reduced emissions. Go et al. (2020) studies in Malaysia found that The 

GDP per capita coefficient was negatively significant, indicating that rising income 

levels will likely result in falling transportation-related CO2 emissions. The result is 

most likely due to China rising GDP per capita leads to greater purchasing power for 

electric vehicles. China electric vehicles market has grown rapidly, reaching over 50% 

last year (Kaur, 2025). Also, China high economic growth makes it affordable in 

providing subsidies and expanding infrastructure to support the EV adoption. For 

example, subsidies and tax exemption on EV and expansion of the renewables charging 
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station. Evidence from Yang (2023) stated that in order to enable EV producers to 

produce cars, buses, or taxis for individual consumers, China began offering financial 

subsidies to them in 2009. Between 2009 and 2022, the government spent about 200 

billion RMB ($29 billion) on relevant tax breaks and subsidies. The implementation of 

policy along with people’s high income accelerates transport decarbonization. In 

conclusion, the result showed GDP per capita leads to a decrease in carbon emissions. 

Urbanization is positively significant at 1% significance level. Hence, in the long run, 

urbanization and transport carbon emissions are positively correlated, meaning that as 

urbanization rises, so will transport carbon emissions. The result aligns with the 

research conducted by Xu and Lin (2015), due to extensive population movements, 

urbanization also significantly affects carbon dioxide emissions. In addition to the 

migration of rural excess labor from rural to urban areas, urbanization also causes large 

population migration between cities, which raises CO2 emissions in the transportation 

sector. Ali et al. (2017) studies found that Pakistan's ongoing urbanization has a 

negative relationship between CO2 emissions. Pakistan is another developing nation 

with a high pace of urbanization growth. According to research by Awan et al. (2022), 

the percentage of individuals who live in cities has a bigger influence on transportation-

related carbon emissions. The need for transport services is expected to grow as 

urbanization increases. Xie et al. (2017) findings also show a strong and positive 

correlation between urbanization and carbon emissions. As mentioned by Lv et al. 

(2018), the result might be due to the China's urbanization is accelerating. The creation 

of infrastructure is accelerated by urbanization, which raises the need for energy and 

other bulk products. It also speeds up the movement of goods, which will surely 

increase the demand for transportation. Urbanization will therefore eventually have an 

even greater effect on carbon emissions from freight transportation. In conclusion, the 

result showed urbanization leads to an increase in carbon emissions. 

At the 1% significance level, the consumption of renewable energy is negatively 

significant. Long-term consumption of renewable energy and transportation carbon 

emissions are negatively correlated, indicating that as renewable energy consumption 

rises, transportation carbon emissions will fall. The results are in line with a research 



42 
 

by Zaman et al. (2021), which discovered that a greater percentage of renewable energy 

consumption relative to total final energy consumption aids in the reduction of 

environmental issues by lowering atmospheric CO₂ emissions. Kwilinski et al. (2024) 

results show that the EU's carbon dioxide emissions related to energy production are 

declining in tandem with its growing usage of renewable energy. In other words, the 

quantity of CO₂ released into the atmosphere as a result of energy generation tends to 

decline when renewable energy sources such as wind, solar, hydro, and geothermal 

power are more widely used and incorporated into the energy mix. Maji and Adamu 

(2021) studies found that outcome also demonstrates a negative relationship between 

transportation-related carbon emissions and the consumption of renewable energy. This 

implies that using more renewable energy will improve environmental quality and 

lower carbon emissions from these industries. The result might be due to the China 

rapidly adoption of renewable energy in vehicles where China is the world largest EV 

market with proper policy support that has played a crucial role. The usage of fossil 

fuels like petrol, which release greenhouse gases into the atmosphere, can be greatly 

decreased by switching to renewable energy. In conclusion, there is a substantial 

negative association between transportation CO₂ emissions and higher renewable 

energy consumption, suggesting that using more renewable energy reduces emissions 

associated with transportation. 

The EKC hypothesis states that environmental degradation and per capita income have 

an inverse U-shaped connection, with environmental quality first decreasing and then 

increasing as wealth increases. The existence of EKC is tested by including GDP per 

capita and the GDP per capita quadratic term. If the EKC hypothesis exists, the GDP 

per capita quadratic term should be negatively significant, and the GDP per capita 

coefficient should be positively significant.  

However, the results of the ARDL Bounds test indicate that the GDP quadratic term is 

positive and significant, whereas the GDP per capita coefficient is negative and 

significant. It indicates that the transport carbon emission decreases initially with rising 

income and then increases again at higher income levels. Therefore, it shows that the 

EKC hypothesis is not validated in China transport sector. This result is consistent with 
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Alshehry and Belloumi (2017), research indicates that there is no inverse-U 

relationship between Saudi Arabia's economic growth and transport CO2 emissions, 

and the country is still to the left of the EKC's turning point. Jebli and Youssef (2015) 

study found that in the long run, the inverted U-shaped environmental Kuznets curve 

(EKC) is unsupported by any data. This indicates that Tunisia has not yet attained the 

GDP per capita level necessary to obtain an inverted U-shaped EKC. This outcome is 

expected since developed countries often validate the EKC hypothesis. According to 

research by Al-Mulali et al. (2015), Vietnam does not follow the EKC theory. 

The U-shaped EKC relationship in China might be because of the GDP per capita 

initially improve efficiency and reduced emissions due to adoption of clean energy 

technologies like wind, solar and hydrogen. But as both the GDP per capita and 

urbanization increase further, it might lead to an increase in transport demand, and the 

growth of the transport demand might be faster than the renewable technology adoption 

and cause the transport emissions to increase again. This is likely to be true since most 

of the China renewable energy production still comes from the fossil fuel. 

 

5.2 Policy Implications 
5.2.1 Widespread Green Hydrogen Corridor 

Since the GDP per capita is negatively affected the transport carbon emissions, China 

should develop more green hydrogen corridor. Countries with higher GDP per capita 

can afford large scale green infrastructure projects like hydrogen refueling stations for 

freight transport which require huge initial costs. Also, people with higher incomes tend 

to have greater environmental awareness, therefore they will adopt various types of 

potential clean logistics and transport in the future. Not only that, as GDP per capita 

increases, people buy more goods as their purchasing power increases. It means that 

the logistic activity will increase, which increases the transport emissions. Green 

hydrogen corridors enable wealthier regions to decarbonize freight and long-distance 

transport, ensure that income growth does not lead to higher emissions. 
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China now produces more than 50 million tonnes of hydrogen a year, making it the 

greatest producer in the world. Therefore, China has the largest potential to use 

hydrogen as its primary energy consumption towards the transportation system in the 

future. However, fossil fuels, such as coal and natural gas, provide 81% of its hydrogen 

generation, with 62% and 19% coming from these sources, respectively (Fan et al., 

2025). China is currently leveraging its abundant renewable energy resources, for 

example according to FuelCellsWorks (2024), green hydrogen technology has 

advanced significantly with Sinopec's opening of its first large-scale research plant for 

direct hydrogen production from seawater in Qingdao, Shandong Province. As a result, 

China hydrogen production that rely on fossil fuels could be reduced significantly in 

the future. Hence, China should implement more comprehensive hydrogen highway 

system across the nations for the Hydrogen Fuel Cell Vehicles (HFCVs). It encourages 

people to adopt (HFCVs) as an option other than Electric Vehicles (EV). 

China is still in early development of its hydrogen infrastructure for its Hydrogen Fuel 

Cell Vehicles, where it does not have a wide coverage across the nation. China could 

build a nation-wide hydrogen corridor for the hydrogen-powered vehicles. As a first 

move, China has launched its first cross-regional hydrogen trucking corridor in the mid 

of 2025 with public-private partnerships. According to FuelCellsWorks (2025), In order 

to connect inland logistics with the Port of Qinzhou, Sinopec has started China's first 

cross-regional hydrogen trucking corridor, which will stretch 1,150 km across 

Chongqing, Guizhou, and Guangxi. The route will enhance green logistics and 

facilitate heavy-duty hydrogen trucking. China can continue to expand the 

development of the hydrogen corridor towards other larger port like the Port of 

Shanghai where it is the largest port in China, and eventually towards the large city 

across the nation. 

 

 

 



45 
 

5.2.2 Widespread Congestion Pricing 

Furthermore, car ownership rises when the urban areas expand. Traffic jams and a rise 

in transportation-related emissions will result from this. The number of commuting and 

delivery trips rises in tandem with the urban population density. Since the urbanization 

in China is positively affected the transport carbon emissions, China should implement 

congestion pricing in the urban cities to reduce the reliance on the private vehicles by 

the people living in the urban areas.  

According to Green et al. (2020) study, there has been growing concern over air 

pollution in key cities. Congestion charging provides a way to reduce overall travel 

miles and standstills, which in turn reduces pollution, since vehicle exhaust accounts 

for a significant portion of urban pollution. The reductions are significantly greater than 

what would be predicted if traffic volumes were reduced alone. Additional social 

advantages resulted from the charge scheme's lowering of the externality caused by 

traffic. Pollution per mile decreased as a result of shorter stoppages and faster travel 

times.  

For example, Teo (2025) mentioned that prior to places like Stockholm, Sweden, and 

London, the capital of Britain, Singapore was the first to adopt the upgraded ALS, 

which is now called the automated Electronic Road Pricing (ERP) system, in 1998. In 

order to charge drivers to travel specific routes during peak hours, the ERP system uses 

gantries that integrate a short-range wireless technology with an in-vehicle unit. To 

detect negligent drivers, gantries are equipped with cameras that can record a car's back 

license plate. During peak rush hours, this fee serves as a financial deterrent to promote 

the use of public transportation or alternative routes. In addition to reducing traffic, the 

ERP offers beneficial knock-on effects like less environmental damage from vehicle 

emissions and more pedestrian-friendly routes. Khosravani (2025) also highlighted the 

effect of Singapore’s congestion pricing on urban mobility. The decrease in the number 

of cars on the road during rush hour was one of the most obvious consequences. This 

instantaneous decrease in traffic volume eased congestion and enhanced traffic flow in 

general. By forcing cars to pay for their actual trip expenses, congestion pricing can 
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also have an impact on urban growth by encouraging more economical land use and 

preventing urban expansion. 

According to Menon and Guttikunda (2010), congestion pricing is thought to have 

promoted non-motorized transport and decreased 20–30% of downtown passenger 

automobile traffic in London on average. The average speed of traffic rose by at least 

15 kph in Singapore. The everyday use of cars in Stockholm immediately decreased by 

at least 20%. Overall, by implementing congestion pricing in the urban areas, it can 

encourage people living in urban areas to reduce the usage of vehicles and utilize the 

public transport system available in the area. 

 

5.2.3 Building-to-Vehicle (B2V) Energy  

Moreover, since China renewable energy consumption is negatively affected the 

transport carbon emissions, China should develop Building-to-Vehicle (B2V) energy 

system since China has the largest EV market. The B2V system allows the buildings to 

store excess energy in electric vehicles (EVs) when production is more than the demand, 

and the energy stored can be used to discharge to the grid. Instead of using the grid 

electricity from fossil fuels, B2V can use EV batteries as storage. 

The electricity infrastructure may face serious challenges because of the electric vehicle 

industry's explosive growth. For instance, the increasing unregulated demands of EV 

charging could degrade power quality and place a great deal of strain on utility grid 

transformers and distribution networks (He et al., 2022). According to Zhou et al. (2019) 

the vehicle-to-building (V2B) and building-to-vehicle (B2V) interaction can be 

realized to lessen dependency on the electric grid for both transportation and household 

use by putting in place a device for managing the bidirectional power flow. B2V can 

contribute to the development of a more sustainable energy system by promoting the 

use of renewable energy sources and reducing reliance on fossil fuel-based energy 

sources, as over 70% of China's electricity still originates from these sources. With B2V 

technology, an electric car may be charged using the excess photovoltaic production 
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capacity mounted on the building roof. Another efficient way to store electricity is with 

a charge and discharge electric vehicle (Hou et al., 2022). Utilising the potential of 

battery storage systems and renewable energy sources, the Smart Energy Management 

System (SEMS) manages building energy and EV charging. The effective use of 

available energy resources is maximised by carefully planning EV charging and 

discharging activities (Lo et al., 2023). This technology is suitable for China to 

implement since the China have the largest market of Electric Vehicles (EVs), with the 

sales over 11 million. In 2024, nearly two-thirds of all electric cars sold worldwide 

were in China, where nearly half of all car sales were electric (International Energy 

Agency, 2025). 

 

5.3 Limitations and Recommendations 

This study on the determinants of transport carbon emissions identified several 

limitations. Accordingly, several recommendations are proposed to address these 

limitations and guide future research. First, all of the study's finding might only apply 

to China's transportation industry and significant in guiding local policymakers. This is 

because the study's data source originated solely from China. The factors influencing 

transportation carbon emissions may vary greatly between countries due to each one's 

unique history, political systems, and economic conditions. Consequently, the results 

and conclusions of this study may not be directly generalized to other countries. The 

discussions and implications can only be presented as a reference in other contexts that 

investigate the determinants of transport carbon emissions. Future researchers are 

therefore encouraged to conduct comparative studies across multiple countries to 

evaluate similarities and differences. 

Additionally, the limitation of this study is the omission of relevant variables. This 

study consists of 4 explanatory variables such as urbanization, GDP, GDP2 and 

renewable energy consumption. Other potentially important determinants, such as 

government effectiveness, were excluded in the models due to limitations of data. The 
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reliable data on government effectiveness in China are only available from 1996 

onwards, whereas this study employed a 39-year time series dataset. Moreover, 

urbanization was selected as a more suitable explanatory variable than population 

because the rate of urbanization has increased significantly over the past decades, while 

population growth has remained relatively slow due to the implementation of the one-

child policy (Lin & Benjamin, 2017). Future researchers can therefore examine by 

employing panel data covering multiple countries, which would provide sufficient 

observations. Furthermore, the choice of urbanization over population in this study is 

context-specific to China and may not be directly applicable to other nations. Therefore, 

future studies should adapt their variable selection according to the demographic, 

economic, and policy characteristics of the countries under investigation. 

The last research limitation is that the time series data did not include a structural break. 

China has undergone major legislative changes, the COVID-19 pandemic, and the 

Global Financial Crisis of 2008–2009 throughout the course of the 39-year period, all 

of which may have changed the relationship between factors and transportation carbon 

emissions. However, this study did not include dummy variables to capture such events, 

which assumes parameter stability for the whole sample period. This omission could 

bias the ARDL model's short- and long-run estimates, which would ultimately 

undermine the validity of the findings. Future research could address this limitation by 

using structural break tests, such as the Zivot Andrews or Perron methods and 

incorporate dummy variables to improve the robustness of findings.
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Appendix 4.1.1: Augmented Dickey Fuller Test (ADF) 

Level Form: Intercept Without Trend 

  

  

 

 

 

 

 

 

Null Hypothesis: LNTCE has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -0.511303  0.8779
Test critical values: 1% level -3.615588

5% level -2.941145
10% level -2.609066

Null Hypothesis: LNGDP has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -2.335991  0.1666
Test critical values: 1% level -3.621023

5% level -2.943427
10% level -2.610263

Null Hypothesis: LNGDP2 has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -2.047297  0.2663
Test critical values: 1% level -3.621023

5% level -2.943427
10% level -2.610263

Null Hypothesis: RENEWABLES____EQUIVALENT_PRIMARY_ENERGY_ has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic  2.488118  1.0000
Test critical values: 1% level -3.615588

5% level -2.941145
10% level -2.609066
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First Difference: Intercept Without Trend 

  

  

 

 

 

 

 

 

 

 

Null Hypothesis: D(LNTCE) has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -6.213729  0.0000
Test critical values: 1% level -3.621023

5% level -2.943427
10% level -2.610263

Null Hypothesis: D(LNGDP) has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -4.527155  0.0009
Test critical values: 1% level -3.626784

5% level -2.945842
10% level -2.611531

Null Hypothesis: D(LNGDP2) has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -4.142409  0.0026
Test critical values: 1% level -3.626784

5% level -2.945842
10% level -2.611531

Null Hypothesis: D(RENEWABLES____EQUIVALENT_PRIMARY_ENERGY_) has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -5.883648  0.0000
Test critical values: 1% level -3.621023

5% level -2.943427
10% level -2.610263
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Level Form: Intercept With Trend 

  

 

 

 

 

 

 

 

 

 

Null Hypothesis: LNTCE has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -1.838839  0.6659
Test critical values: 1% level -4.219126

5% level -3.533083
10% level -3.198312

Null Hypothesis: LNGDP has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -1.448869  0.8290
Test critical values: 1% level -4.226815

5% level -3.536601
10% level -3.200320

Null Hypothesis: LNGDP2 has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -0.998718  0.9323
Test critical values: 1% level -4.219126

5% level -3.533083
10% level -3.198312

Null Hypothesis: RENEWABLES____EQUIVALENT_PRIMARY_ENERGY_ has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -0.431883  0.9826
Test critical values: 1% level -4.219126

5% level -3.533083
10% level -3.198312
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First Difference: Intercept With Trend 

 

 

 

 

 

 

 

 

 

 

Null Hypothesis: D(LNTCE) has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -5.392137  0.0005
Test critical values: 1% level -4.234972

5% level -3.540328
10% level -3.202445

Null Hypothesis: D(LNGDP) has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -3.631312  0.0406
Test critical values: 1% level -4.226815

5% level -3.536601
10% level -3.200320

Null Hypothesis: D(LNGDP2) has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -3.688843  0.0358
Test critical values: 1% level -4.226815

5% level -3.536601
10% level -3.200320

Null Hypothesis: D(RENEWABLES____EQUIVALENT_PRIMARY_ENERGY_) has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -7.558037  0.0000
Test critical values: 1% level -4.226815

5% level -3.536601
10% level -3.200320
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Appendix 4.1.2: Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test 

Level Form: Intercept Without Trend 

  

First Difference: Intercept Without Trend 

  

Level Form: Intercept With Trend 

  

First Difference: Intercept With Trend 

 

 

 

Null Hypothesis: LNURB is stationary
Exogenous: Constant
Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

LM-Stat.

Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.757599
Asymptotic critical values*: 1% level  0.739000

5% level  0.463000
10% level  0.347000

Null Hypothesis: D(LNURB) is stationary
Exogenous: Constant
Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

LM-Stat.

Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.712961
Asymptotic critical values*: 1% level  0.739000

5% level  0.463000
10% level  0.347000

Null Hypothesis: LNURB is stationary
Exogenous: Constant, Linear Trend
Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

LM-Stat.

Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.203234
Asymptotic critical values*: 1% level  0.216000

5% level  0.146000
10% level  0.119000

Null Hypothesis: D(LNURB) is stationary
Exogenous: Constant, Linear Trend
Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

LM-Stat.

Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.197497
Asymptotic critical values*: 1% level  0.216000

5% level  0.146000
10% level  0.119000
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Appendix 4.2.1: ARDL Cointegration Bounds Test 

 

 

 

 

 

 

 

 

 

ARDL Long Run Form and Bounds Test
Dependent Variable: D(LNTCE)
Selected Model: ARDL(2, 2, 1, 1, 0)
Case 2: Restricted Constant and No Trend
Date: 08/20/25   Time: 17:37
Sample: 1985 2023
Included observations: 37

Levels Equation
Case 2: Restricted Constant and No Trend

Variable Coefficient Std. Error t-Statistic Prob.   

LNGDP -2.591911 0.274518 -9.441681 0.0000
LNGDP2 0.148802 0.028543 5.213264 0.0000
LNURB 3.896620 0.823900 4.729482 0.0001

RENEWABLES____... -0.041832 0.012991 -3.220013 0.0034
C -61.95336 15.56646 -3.979925 0.0005

EC = LNTCE - (-2.5919*LNGDP + 0.1488*LNGDP2 + 3.8966*LNURB 
        -0.0418*RENEWABLES____EQUIVALENT_PRIMARY_ENERGY_ -
        61.9534)

F-Bounds Test Null Hypothesis: No levels relationship

Test Statistic Value Signif. I(0) I(1)

Asymptotic: n=1000
F-statistic  4.705422 10%  2.2 3.09
k 4 5%  2.56 3.49

2.5%  2.88 3.87
1%  3.29 4.37

Actual Sample Size 37 Finite Sample: n=40
10%  2.427 3.395
5%  2.893 4
1%  3.967 5.455

Finite Sample: n=35
10%  2.46 3.46
5%  2.947 4.088
1%  4.093 5.532
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Appendix 4.2.2: Error Correction Model 

  

Appendix 4.3: Diagnostic Checking 

Appendix 4.3.1.1: Jarque-Bera Test 

  

Appendix 4.3.1.2: LM Test 

  

Appendix 4.3.1.3: ARCH Test 

 

ARDL Error Correction Regression
Dependent Variable: D(LNTCE)
Selected Model: ARDL(2, 2, 1, 1, 0)
Case 2: Restricted Constant and No Trend
Date: 08/20/25   Time: 17:40
Sample: 1985 2023
Included observations: 37

ECM Regression
Case 2: Restricted Constant and No Trend

Variable Coefficient Std. Error t-Statistic Prob.   

D(LNTCE(-1)) 0.539398 0.165237 3.264386 0.0031
D(LNGDP) -6.949467 1.263760 -5.499038 0.0000

D(LNGDP(-1)) 1.310977 0.402237 3.259220 0.0031
D(LNGDP2) 0.447438 0.080502 5.558071 0.0000
D(LNURB) 31.70529 5.643437 5.618081 0.0000

CointEq(-1)* -1.438154 0.247877 -5.801884 0.0000

0

2

4
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8

10

12

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

Series: Residuals
Sample 1987 2023
Observations 37

Mean      -1.34e-14
Median  -0.002380
Maximum  0.200963
Minimum -0.131894
Std. Dev.   0.069006
Skewness   0.705882
Kurtosis   3.994753

Jarque-Bera  4.598193
Probability  0.100349


Breusch-Godfrey Serial Correlation LM Test:
Null hypothesis: No serial correlation at up to 2 lags

F-statistic 0.621854     Prob. F(2,24) 0.5454
Obs*R-squared 1.822917     Prob. Chi-Square(2) 0.4019

Heteroskedasticity Test: ARCH

F-statistic 0.623515     Prob. F(1,34) 0.4352
Obs*R-squared 0.648303     Prob. Chi-Square(1) 0.4207



78 
 

Appendix 4.4.1:Cointegration (Robustness Checking) 

Appendix 4.4.1.1: FMOLS 

  

Appendix 4.4.1.2: DOLS 

  

 

 

 

 

Dependent Variable: LNTCE
Method: Fully Modified Least Squares (FMOLS)
Date: 08/20/25   Time: 17:43
Sample (adjusted): 1986 2023
Included observations: 38 after adjustments
Cointegrating equation deterministics: C
Long-run covariance estimate (Bartlett kernel, Newey-West fixed
        bandwidth = 4.0000)

Variable Coefficient Std. Error t-Statistic Prob.  

LNGDP -2.329039 0.342977 -6.790652 0.0000
LNGDP2 0.130401 0.035535 3.669685 0.0009
LNURB 3.951409 1.148719 3.439839 0.0016

RENEWABLES____EQUIVALENT_PRI... -0.086208 0.015845 -5.440615 0.0000
C -62.82105 21.54211 -2.916198 0.0063

R-squared 0.987846     Mean dependent var 5.787647
Adjusted R-squared 0.986373     S.D. dependent var 0.870573
S.E. of regression 0.101627     Sum squared resid 0.340824
Long-run variance 0.012442

Dependent Variable: LNTCE
Method: Dynamic Least Squares (DOLS)
Date: 08/20/25   Time: 17:43
Sample (adjusted): 1987 2022
Included observations: 36 after adjustments
Cointegrating equation deterministics: C
Fixed leads and lags specification (lead=1, lag=1)
Long-run variance estimate (Bartlett kernel, Newey-West fixed bandwidth
        = 4.0000)

Variable Coefficient Std. Error t-Statistic Prob.  

LNGDP -2.298951 0.250734 -9.168868 0.0000
LNGDP2 0.115504 0.025001 4.619999 0.0002
LNURB 4.726559 0.736351 6.418893 0.0000

RENEWABLES____EQUIVALENT_PRI... -0.031012 0.011894 -2.607361 0.0173
C -79.14719 13.92984 -5.681846 0.0000

R-squared 0.995964     Mean dependent var 5.789001
Adjusted R-squared 0.992566     S.D. dependent var 0.846290
S.E. of regression 0.072968     Sum squared resid 0.101163
Long-run variance 0.001438
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Appendix 4.4.1.3: CCR 

 

Dependent Variable: LNTCE
Method: Canonical Cointegrating Regression (CCR)
Date: 08/20/25   Time: 17:44
Sample (adjusted): 1986 2023
Included observations: 38 after adjustments
Cointegrating equation deterministics: C
Long-run covariance estimate (Bartlett kernel, Newey-West fixed
        bandwidth = 4.0000)

Variable Coefficient Std. Error t-Statistic Prob.  

LNGDP -2.160304 0.290698 -7.431433 0.0000
LNGDP2 0.128134 0.035938 3.565414 0.0011
LNURB 3.533094 1.073874 3.290045 0.0024

RENEWABLES____EQUIVALENT_PRI... -0.083203 0.016136 -5.156359 0.0000
C -55.62219 20.41576 -2.724473 0.0102

R-squared 0.987751     Mean dependent var 5.787647
Adjusted R-squared 0.986267     S.D. dependent var 0.870573
S.E. of regression 0.102022     Sum squared resid 0.343480
Long-run variance 0.012442


