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PREFACE

Transportation plays a fundamental role in promoting economic growth, social
connectivity and industrial development. However, it has also emerged as one of the
major contributors to the global carbon emissions resulting in environment dedication.
This environmental consequences of transport emissions extend beyond rising global
temperatures to encompass deteriorating air quality, public health concerns and long-
term threats to ecological sustainability. These challenges make transportation carbon

emissions an increasingly critical issue that demand policy attention.

China, as the world’s largest carbon dioxide emitter, represents a highly significant case
for study. The rapid pace of economic expansion and urbanization has spurred an
unprecedented demand for mobility, resulting in a surge in private car ownership,
freight activity and reliance on fossil fuels. While transportation has contributed
substantially to China’s economic transformation, it has simultaneously escalated
environmental pressures, posing difficulties for the nation’s transition toward
sustainable development. The growing tension between economic growth and
environmental sustainability underscores the need to examine the key drivers of

transportation-related carbon emission with the Chinese context.

This study specifically focuses on three major determinants of transportation carbon
emission including urbanization, GDP per capita and renewable energy consumption.
By examining their influence over nearly four decades, the research aims to uncover
how demographic shifts, economic growth and the transition toward clearer energy
sources interact to shape emission trends. Through this investigation, the study seeks
to provide empirical evidence and valuable insights that may guide policymakers in
designing effective strategies to reduce transportation emission while supporting

China’s sustainable development and long-term carbon neutrality goals.



ABSTRACT

China is the world’s largest carbon dioxide emitter and has recorded the fastest
transportation growth rate among the top-emitting countries. The rapid expansion
of its economies and urbanization have significantly increased the demand for
transport services, leading to a surge in private car ownership and overall transport
activity, thereby contributing to rising carbon emissions. This study investigates
how explanatory variables such as urbanization, GDP per capita and renewable
energy influence the transportation carbon emission, with particular focus on
existence of the Environmental Kuznets Curve (EKC) hypothesis in China over the
38-year period from 1985 to 2023. Data for all variables were collected from the
World Bank and Our World in Data. The study employs the Autoregressive
Distributed Lag (ARDL) approach to examine the long-run relationship with
robustness checks conducted using such as Fully Modified Ordinary Least Squares
(FMOLS), Dynamic Ordinary Least Squares (DOLS) and Canonical Cointegration
Regression (CCR). The empirical results showing that GDP per capita has
significantly negative long-run relationship with transport carbon emission,
indicating that the EKC hypothesis does not hold for China’s transport sector.
Urbanization is found to be positively associated with emissions whereas renewable
energy consumption shows a significant negative effect. All these results provide
critical policy implications toward policymakers to achieve China’s dual carbon

goals of peaking emissions by 2023 and reaching carbon neutrality by 2060.
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Chapter 1: Research overview

1.0 Introduction

This chapter provides an overview of the research, including the research background,
research topic, research questions, research objectives, and significance of study. This
study's main goal is to investigate the factors that influence China's transportation-

related carbon emissions.

1.1 Research Background

Transportation, as the fundamental force for economic development, is highly energy-
intensive and has become one of the fastest-growing contributors to climate change, as
highlighted by the IPCC's fifth assessment report (Grazi & van den Bergh, 2008;
Stanley et al., 2011; Liu et al., 2022). In a globalized economy, the sector’s economic
activities and opportunities are closely tied to the movement of people and goods. A
well-developed transportation system is strongly correlated with increased economic
development, which is reflected in higher output, job creation, and rising income levels.
However, these economic benefits often come at a significant environmental cost,
particularly through the escalation of GHG emissions (Go et al., 2020). Currently, GHG
emissions have increased across multiple sectors, with the energy sector being the
largest contributor (Appendix 1.1). Within the energy sector, transportation is the
second-largest emitter, responsible for 13.7 of total GHG output (Ge et al., 2024).

Globally, the transport sector plays a crucial role in daily activities around the world
which contributes about 20% of global CO. emissions, with road transport accounting
for the largest proportion. 75% of transport-related emissions in 2018 came from road
transport, with passenger cars accounting for 45.1% and freight trucks for 29.4%.
(Appendix 1.2) (Ritchie, 2020). Evidence from Wei et al. (2021) further indicates that
private vehicles emit nearly three times more CO: per capita than public transport,
emphasizing the disproportionate contribution to environmental degradation. Transport

emissions are projected to triple by 2050 with urbanization accelerating and private

1



vehicle ownership rising, thereby intensifying climate change. In addition to harming
the ecosystem, vehicle-related air pollution poses serious health concerns to the general
public, which is why an estimated 3.7 million premature deaths occurred globally in
2012 (Lindau, 2015). Taken together, this highlights two critical challenges facing the
transport sector such as high energy consumption and substantial CO: emissions.
Nevertheless, transportation remains indispensable for sustaining economic growth

(Wei et al., 2021).

At the core of these challenges lies the sector’s dependence on fossil fuel combustion,
primarily gasoline and diesel, which releases not only CO: but also other potent
greenhouse gases, including methane (CHa), nitrous oxide (N20), and
hydrofluorocarbons (HFCs) (United States Environmental Protection Agency, 2024).
In the world’s seven largest transport-emitting economies', transport energy demand
continues to be predominantly met by fossil fuels, highlighting the transport sector’s
persistent dependence (Solaymani, 2019). According to Igini (2025), the energy-
hungry world consumed 1.5% more fossil fuels in 2023 than the year before, with oil
accounting for roughly one-third of total global energy use. This record level of
consumption was largely driven by rising demand, more than half originated from
Global South, where energy needs are expanding at nearly twice the global rate. Given
that transportation represents one of the largest consumers of oil, it further intensifies

global carbon emissions (Liu et al., 2022).

While South Asia and Sub-Saharan Africa contribute very little to the world total,
upper-middle-income and high-income countries are the main producers of transport
emissions (Wang & Ge, 2019). Since the implementation of the 'Reform and Opening-
up' policy, China has experienced unprecedented economic growth driven by the
development of its extensive transportation infrastructure, includes the world’s largest
highway and railway networks (Xu & Xu, 2021). However, this rapid development has
fueled surging energy demand in the transportation sector, leading to transport-related

CO: emissions grow at faster rates than other industries (Xie et al., 2019). Thus,

! Seven largest transport-emitting economies include United States, China, India, Russia, Japan, Brazil
and Canada (Solaymani, 2019).



identifying key drivers of transport-related CO- emissions is crucial for developing
targeted strategies to reduce carbon emissions and meet China’s climate commitments

under the 2015 Paris Agreement (Liu et al., 2021).

1200
1000
800
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200

Figure 1.1 Carbon dioxide (CO:) emissions from Transport (Energy) in China (Mt COze)
Source: World Bank Data

As observed in Figure 1.1, China’s transport carbon emission has increased over 30
years from 1985 to 2023. In 2023, China has reached over 1000 Mt of the transport

emissions.

China, as part of the Global South and the world’s largest carbon dioxide (CO:) emitter,
contributed 31.9% of global emissions in 2020 (Zhou et al., 2013; Hu et al., 2024). This
surge in emissions is largely driven by accelerated urbanization and growing
motorization, especially in major cities such as Beijing (Wang & Liu, 2015). As the
demand for transport services continues to rise, carbon emissions from the sector are
also escalating (Xu & Xu, 2021). In 2020, road transport accounted for 81.1% of
China’s total transport-related carbon emissions, making it a key sector for achieving

transport decarbonization (Loo et al., 2023). These trends pose significant obstacles in



achieve the China's "dual carbon" goals? (Cao & Liu, 2023). In response, China has
made major strides in expanding both its renewable energy sector and transportation
infrastructure in recent years, positioning itself as a global leader in renewable energy
development. A strong renewable energy industry not only mitigates the broader
impacts of climate change but also supports the transition to electric vehicles by
providing clean power, therefore reducing the dependence on fossil fuels (Ding & Liu,
2023). However, although renewables energy now makes up half of China’s installed
power capacity, a recent rise in approvals for new coal plants and the fact that more
than 70% of electricity still comes from fossil fuels. It indicates that the actual
renewable energy usage is falling short of its capacity (4dppendix 1.3). Therefore, while
renewable energy holds strong prospects, unlocking its full potential will require

significant and transformative reforms (Hilton, 2024).

Building on the global trends, the case of China is particularly significant. Despite
extensive research on emission trends, only a few studies have systematically examined
the macro-level determinants of transport-related CO. emissions in China, such as
urbanization, income levels, and renewable energy consumption. Although China has
adopted various emission reduction measures, these efforts have not effectively
addressed the underlying drivers of emissions. Thus, the significance of China’s
transport industry cannot be overstated, as it has been a central driver of the nation’s
rapid economic expansion during its urbanization and industrialization process. As the
world’s leading manufacturing hub and most populous country, China’s rapid
development has been accompanied by the rapid evolution of its modern transportation
systems, which play a vital role in facilitating economic growth (Lin & Benjamin,
2017). Determining carbon emission factors in transportation sector is therefore crucial,
as studies indicate that transportation is poised to become the largest contributor to

carbon emissions, thereby accelerating global warming (Lim & Lee, 2012).

2 President Xi unveiled China's "dual carbon" ambitions at the UN General Assembly in September
2020, with the goal of reaching carbon neutrality by 2060 and peaking carbon emissions by 2030
(Huld, 2023).
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1.2 Research Problem

Transportation is one of the largest energy consumers and direct sources of CO-
emissions, making it a key sector in achieving climate mitigation goals. As the
expansion of population and economy, along with the increasing complexity of the
structures, it has resulted in a significant rise in transportation demand and energy
consumption, leading to substantial carbon emissions (Sun et al., 2020). Between 1990
and 2018, China has experienced substantial growth in both urban population and
construction land area which increase fossil fuel consumption (Zheng et al., 2022).
Evidence from the Oxford Institute of Energy Studies (2022) further reinforce that,
over 235 million people in China have moved from rural to urban areas in the last
decade. By 2021, seven cities including Shanghai, Beijing, Shenzhen, Chongqing,
Guangzhou, Chengdu, and Tianjin, each had a population exceeding 10 million, while
14 other cities had populations ranging from 5 to 10 million. This large-scale of urban
relocation underscores that about 75% of China's population, which equivalent to more
than 1 billion people, are projected to reside in urban areas by 2030. As a result, a higher
mobile population correlates with more vehicles on the road, driving greater energy

consumption and higher CO: emissions in the transport sector (Li et al., 2016).

In addition, the evolution of urban transport networks has a significant impact on how
locals commute. In China, the expansion of car-centric road infrastructure has led to
continuous growth in urban road networks, which in turn encourages greater private
car ownership and contributes to rising carbon emissions from daily commuting (Yang
et al., 2024). Evidence from Lu et al. (2022) show that private car ownership jumped
from 65 million in 2010 to 244 million in 2020, an annual growth rate of 14.14%. As a
result, China's transport sector's carbon emissions increased significantly from 248 Mt
in 2000 to 950 Mt in 2020, making up 9% of the nation's overall emissions. By 2021,
the number of vehicles in China had surpassed 300 million, nearly double the total from
a decade earlier (Qian, 2024). In 2023, China had maintained its position as the world’s
largest vehicle market for over a decade and surpassed the U.S. in vehicle ownership
by 2020 (Chen et al., 2024). This rapid rise in car ownership has made the China’s

transportation sector one of the fastest-growing sources of emissions. Although China



was the second-largest transport CO: emitter (11% of global transport emissions),
behind U.S. (21%) (Xue & Liu, 2023). It has experienced the fastest growth among all
sectors since 2010, continuing to rise until 2019 before temporarily declining in 2020
due to travel restrictions caused by the COVID-19 pandemic (World Bank, 2024).
Overall, China recorded the fastest growth rate in transport emissions among the top

emitters between 1990 and 2022 (Appendix 1.4) (Wang & Ge, 2019; Li et al., 2023).

China’s urbanization, driven by energy-intensive industrial growth, has fueled
infrastructure development, raised energy demand, and expanded freight transport to
support goods movement, all of which have significantly increased transport demand
and emissions (Lv et al., 2018). About 1.308 billion tonnes of greenhouse gases were
released by urban transportation vehicles in 2021, including trucks, buses, cars, and
ships. This amount is almost equal to the total transportation emissions of the United
Kingdom and European countries (Qian, 2024). Economic growth has led to a rising
demand for transportation vehicles, posing significant threats to sustainable long-term
development. For example, the construction of roads, railways, and airports consumes
a growing number of resources including land, technology, and energy. It is driven by
urbanization, industrialization, and economic externalities. These activities both
directly and indirectly reduce green spaces and contribute to the release of greenhouse

gases (Hussain et al., 2022).

Apart from that, one of the main factors influencing the increase in transportation-
related carbon emissions is GDP per capita. As income rises, people's living standards
improve, so does consumer demand for goods. Since the logistics sector heavily
depends on transportation, this further drives up CO: emissions (Li et al., 2016).
Additionally, the growing demand for tourism-related travel significantly contributes
to increased emissions. Consequently, emissions from transport rose from 12.96 million
tons in 2001 to 42.17 million tons in 2019 (Gu et al., 2024). Looking ahead, forecasts
suggest that as transportation demand continues to increase and without strict
regulatory measures, car ownership could rise dramatically by 2050 compared to 2015

levels, surpassing that of OECD nations. Consequently, addressing road transport



emissions remains a complex challenge for China’s ambitious ‘dual carbon’ goals (Liu

& Zhou, 2025).

Last but not least, renewable energy comes from geothermal, hydro, wind, solar, and
biofuel sources. To lessen the adverse effects of climate change, greenhouse gas
emissions and reliance on fossil fuels must be reduced. As a result, this approach can
indirectly help lower carbon emissions within the transportation industry (Cui et al.,
2025). Ding and Liu (2023) noted that China's potential for sustainable growth and
carbon neutrality has been strengthened by its technological and renewable energy
breakthroughs. However, a key concern is whether the growing share of renewable
energy, particularly in transportation, will be sufficient for China’s net-zero goal by
2060. Moreover, Ahmed and Khan (2024) emphasized that China has made significant
investments in renewable energy, especially solar and wind, and will lead the world in
new installations by 2020. Despite this, debates persist regarding the slow pace of
China’s low-carbon transition. Rising energy demand is expected to prolong reliance
on fossil fuels, challenging emission reduction targets. Additionally, while the adoption
of electric vehicles (EVs) is widely promoted as a strategy to reduce transport-related
emissions, the environmental benefits are largely dependent on the energy mix used for
electricity generation. Zhao et al. (2023) indicated that, to date, the fact that more than
half of China's electricity is still produced by burning fossil fuels highlights the

country's energy structure's present shortcomings.

Not only that, although China has introduced numerous policies to foster the growth of
its electric vehicle (EV) market, evidence from the International Council on Clean
Transportation (ICCT) indicates that current measures such as the stringent 2025 fuel
consumption standards for passenger vehicles and fuel efficiency standards for medium
and heavy commercial vehicles (MHCVs) remain insufficient. Under a “Low Ambition”
pathway, emissions would decline temporarily before rising again, while even under a
“High Ambition” pathway, additional measures after 2035 are required to meet the
2060 net-zero target (Appendix 1.5) (Callahan, 2022). As a result, fully ‘decoupling’
transportation development from carbon emissions remains a major obstacle. The

Digital Travel Helps Carbon Neutrality report further highlights this challenge, noting



that in China, the transportation sector’s high energy dependence and structural
limitations make achieving carbon peaking and neutrality goals more difficult than in

other industries (Sun et al., 2023).

1.3 Research Questions

1) What is the impact of urban expansion on the transport carbon emissions in
China?

2) What is the relationship between GDP per capita and transport carbon emissions
in China under the EKC hypothesis?

3) What is the impact of renewable energy consumption on the transport carbon

emissions in China?

1.4 Research Objectives

1.4.1 General Objective

This study's main objective is to investigate the relationship between China's transport
carbon emissions and urbanization, GDP per capita, and renewable energy usage.
Additionally, this study aims to investigate the relationship between independent
variables and transportation carbon emissions in the context of China's changing
economic environment and to give a better understanding of how these drivers have

contributed to emissions over time.



1.4.2 Specifics Objective

1) To examine the impact of urbanization on the transport-related CO- emissions in

China.

2) To examine the existence of the EKC hypothesis between GDP per capita and

transport carbon emissions in China.

3) To examine the impact of renewable energy consumption on transport-related carbon

emissions in China

1.5 Research Significance

As the world’s largest automotive markets and one of its fastest-growing economies,
China is also a major contributor to global transport emissions. This study holds
significant academic and practical value by examines the key determinants of
transportation-related carbon emissions in China, focusing on urbanization, GDP per
capita, and renewable energy consumption using a time series approach over a 30-year

period.

Academically, this study contributes to existing literature by examining how various
factors influence China’s transport sector emissions over time, offering insights into
whether these key variables have positive or negative effect on carbon emissions.
Furthermore, this study provides a valuable theoretical contribution by applying the
Environmental Kuznets Curve (EKC) hypothesis to transportation emissions in China,
specifically assessing the relationship between GDP per capita and carbon emissions
(Aslam et al., 2021). This study also employed robustness checks using FMOLS,
DOLS and CCR methods which distinguish from previous research. The result of these
alternative cointegration techniques confirmed the significant of variable and showed

consistency in the size of coefficients, thereby reinforcing the validity of the findings.

On a practical level, the findings offer direct implications for policymakers by
identifying the most influential drivers of TCE, thereby supporting efforts to balance
economic growth with environmental sustainability. China's ambitious goal of reaching
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carbon peak by 2030 and carbon neutrality by 2060, which is in line with international
frameworks for climate action, such as the Sustainable Development Goals (SDGs) of
the United Nations, especially SDG 11 (Sustainable Cities and Communities) and SDG
13 (Climate Action), makes this especially important. It also yields significant co-
benefits, such as improved air quality, reduced respiratory diseases, and enhanced
urban livability through decreased traffic congestion. As the world’s largest carbon
emitter, China’s experience in mitigating TCE can serve as a valuable reference for
other developing and urbanizing economies. Therefore, this study not only contributes
to the academic discourse on sustainable development but also offers actionable

insights for advancing long-term economic prosperity.

10



Chapter 2: Literature Review

2.0 Introduction

Previous studies have highlighted key factors influencing transport CO: emissions, and
the theoretical insights derived from these studies form the foundation of our research
framework. This chapter discusses three primary determinants such as urbanization,
GDP per capita, and renewable energy consumption and their relationship with

transport sector CO2 emissions (TCE).

2.1 Theories Reviewed

2.1.1 Environmental Kuznets Curve (EKC) Hypothesis

Grossman and Krueger (1995) first suggested the Environmental Kuznets Curve (EKC)
theory, which depicts an inverse U-shaped relationship between environmental
deterioration and wealth. This shows that the environmental quality declines initially

and then improve as income increases.

MIDDLE INCOME LEVELS

LOW INCOME LEVELS HIGH INCOME LEVELS

COMPOSITION
AND TECHIQUE
EFFECT

SCALE
EFFECT

PRE-INDUSTRIAL INDUSTRIAL POST-INDUSTRIAL
ECONOMY ECONOMY ECONOMY

ENVIRONMENTAL DEGRADATION

INCOME

Figure 2.1: Environmental Kuznets Curve from Mitic, Kresoja, and Minovi¢ (2019)
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The early stage of economic development, the turning point, and the advanced stage
are the three stages that make up the Environmental Kuznets Curve (EKC). In the initial
stage, economic growth relies heavily on resource consumption, resulting in a sharp
rise in environmental degradation. The turning point occurs when income reaches a
certain threshold, prompting a shift in the pollution trend. This leads to the final stage,
where environmental degradation begins to decline. After the turning point, this
relationship becomes less direct, reflecting the close relationship between growth and
emissions in the early phase. This is because higher wealth encourages the adoption of

clean technology and innovation in the later phase (Leal & Marques, 2022).

According to Muhammad et al. (2020) study, the EKC hypothesis is supported by the
results for high- and upper-middle-income countries, but not for low- and lower-
middle-income ones. This suggests that only wealthier nations have reached the income
level needed to reduce emissions through development, while lower-income countries
remain focused on industrialization and economic growth, with less emphasis on

environmental concerns.

Xu and Lin (2015) confirmed the transportation industry has an EKC relationship, with
urbanization having an inverted U-shaped impact. This is due to significant population
movement during the early stages and increased adoption of cleaner urban rail systems
and hybrid vehicles in the later stages. Guo et al. (2022) and Oladunni, Olanrewaju,
and Lee (2024) found that GDP and transportation-related carbon emissions have an
inverse U-shaped relationship. Using ARDL model, Saqib et al. (2022) analyzed the
EKC for E-7 countries (1995-2019), determining that using renewable energy lowers
emissions later on. A rise in renewable energy consumption lowers transportation-
related CO: emissions by approximately 12%, confirming the EKC hypothesis Amin
et al. (2020).

However, Azlina et al. (2014), Gill, Viswanathan, and Hassan (2018) and Htike et al.
(2021) find a significant positive relationship between GDP and CO- emissions, but the
squared GDP term is statistically insignificant, supported by Alshehry and Belloumi
(2017) finding in Saudi Arabia. It means the data do not support EKC pattern or
inverted-U relationship in the short and long run. Shabir et al. (2022) show that the
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EKC relationship between income and CO-2 emissions is valid only in Singapore, while
in Indonesia, Malaysia, the Philippines, and Thailand, income growth leads to increased
CO: emissions. Jebli and Youssef (2015) found no long-run support for the inverted U-
shaped EKC in Tunisia, indicating the country has not reached the necessary GDP per
capita level. Pablo-Romero et al. (2017), analyzing panel data from 27 EU countries
between 1995 and 2009, found no evidence that the income threshold for reduced
emissions had been met, suggesting the absence of the expected EKC turning point.
Same goes to Al-Mulali et al. (2015), Du et al. (2012) and S. Wang et al. (2011) that
the EKC hypothesis was not validated in their studies.

2.1.2 Energy Transition Theory

Energy transition is essentially the process of making major adjustments to the key
energy system components to move toward a new energy service structure. According
to Yang et al. (2024), this shift includes a complicated and multifaceted system that
includes energy production, storage, transmission, and consumption in addition to
technology, management techniques, and concerns about energy security, geopolitics,
and governance. Many countries are prioritizing the shift to cleaner, renewable energy
sources in their policies. Due to growing skepticism regarding the viability and public
acceptance of alternative strategies for attaining low-carbon growth, such as nuclear
energy and carbon capture and storage, the focus on renewables has recently increased
(Berkhout et al., 2012). Transitions to more sustainable patterns of economic evolution
are viewed as structural changes occurring across decadal time periods, similar to

processes of economic development (Berkhout et al., 2009).

The shift to cleaner energy in transportation is viewed as a practical approach to
achieving decarbonization in the sector. Adoption of zero- and low-emission vehicle
technologies will help to reduce the dependent on fossil fuels. Electric, hydrogen, and
biofuel-powered vehicles are at the forefront of this movement. Electrifying transport
is seen as the key technological solution with considerable potential to lower pollution

and decrease dependence on fossil fuels (Raslavicius et al., 2015). In regions where
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direct electrification is not possible, renewable electricity-based fuels help meet
transport demand. Globally, renewable energy potential is sufficient to support even
rapid growth in the sector. The shift improves energy efficiency through better engines,

electric motors, and cleaner power sources (Bogdanov et al., 2024).

High energy consumption, especially from fossil fuels, greatly increases CO: emissions.
To address this, developed countries should lead the shift toward renewable energy
sources. Both developed and developing nations need to embrace innovative
technologies to lessen the environmental impact of energy use. The adoption of electric
and hybrid vehicles can substantially lower CO2 emissions, potentially achieving

reductions of up to 45% over time (Ahmad et al., 2024).

2.2 Empirical Review

2.2.1 Urbanization and Transportation Carbon Emissions

The relationship between urbanization and CO: emissions has been widely examined,
with many studies generally suggesting that urbanization increases transport-related
CO: emissions, especially due to higher energy consumption in transportation demands.
For instance, Xu and Lin (2015) investigated China's transportation sector using a
Vector Autoregressive (VAR) model and discovered that urbanisation raises CO:
emissions over the long and short terms, mostly as a result of intra-city movements and
rural-to-urban migration. Similarly, Ali et al. (2017) applied the ARDL approach to
study Pakistan and found that a 1% increase in urbanization led to a 0.84% rise in CO-
emissions, mainly due to the poor public transport. This short-term effect was
unidirectional, with urbanization directly causing higher emissions. Another study by
Awan et al. (2022) verified that urbanization considerably raises TCE by employing a
rigorous quantile methodology to analyze panel data from 33 high-income countries
between 1996 and 2014. Xie et al. (2017) further support this relationship, showing that

urbanization increases transport carbon emissions through large-scale infrastructure
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development. Using the STIRPAT model on 283 cities from 2003 to 2013, they found

a significant impact in large cities but not in smaller ones.

In contrast to studies emphasizing one-way causality, other research has identified
bidirectional relationships between urbanization and CO: emissions. Bekhet and
Othman (2017) conducted a study in Malaysia and found a long-run bidirectional
relationship between urbanization and CO: emissions in Malaysia, confirming the EKC
hypothesis whereas emissions rise in early urbanization but decline as development
stabilize. Similarly, Shafique et al. (2021), analyzing data from 10 high-emission Asian
economies (1995-2017), found that urbanization significantly increased vehicle
numbers, thereby raising CO: emissions. They also observed that rising emissions

influenced urban development, indicating a bidirectional relationship.

On the other hand, some studies have found either no significant impact or a weaker
negative impact of urbanization on transport CO: emissions, especially in developed
countries. Amin et al. (2020) investigated the European transportation industry using
dynamic OLS estimation and ordinary least squares (OLS). Their results indicated that
urbanization does not have a significant impact on CO: emissions in these countries.
Similarly, Wang et al. (2021) employed a dynamic panel ARDL model to study OECD
high-income countries and found that the benefits of urbanization slightly outweighed
its energy consumption impacts. This led to a small reduction in CO2 emissions, with
their study concluding that urbanization in these countries had a weak negative impact

on carbon emissions.

In summary, the relationship between urbanization and transportation carbon emissions
is complex and varies across countries. Generally, urbanization tends to increase
transport-related CO: emissions, especially in developing nations. While several
studies demonstrate a bidirectional relationship where emissions also affect urban
development patterns. In contrast, the impact of urbanization on emissions may be

weaker or even negative in developed countries.
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2.2.2 GDP per capita and Transportation Carbon Emissions

GDP per capita is widely recognized as a key driver of transportation sector carbon
emissions (TCE). For instance, Xu and Xu (2021) found that TCE is significantly and
favorably impacted by GDP per capita, suggesting that as regional economies expand
and individual income levels rise, transportation activities intensify, thereby leading to
increased CO: emissions. In line with this, Cao et al. (2024) and Dalde et al. (2025)
reported that higher income levels typically result in increased private vehicle
ownership and greater transport demand, both of which contribute to rising emissions.
Likewise, Wang et al. (2018), focusing on China’s passenger and freight transport
sectors between 1990 and 2015, also observed that economic growth accelerates CO-
emissions in both areas. Moreover, Lv et al. (2018) emphasized significant regional
disparities in freight transport emissions across China, further reinforcing the view that
economic development can exacerbate transport-related carbon outputs in unequal
ways. Alshehry and Belloumi (2017) using ARDL approach and their results indicate
per capita GDP continues to exert a significant and positive influence on transport-
related CO- emissions, thereby negatively impacting environmental quality in the

country.

In contrast, Asumadu-Sarkodie and Owusu (2016) found that in Rwanda, a 1% rise in
GDP per capita led to a 1.45% reduction in carbon emissions in the long run, lending
support to the EKC hypothesis. According to Kasperowicz (2015), over time, there is
a negative correlation between GDP and CO2 emissions, as advancements in low-
carbon technologies allow for maintaining the same level of production with reduced
emissions. Go et al. (2020) studies in Malaysia found that The GDP per capita
coefficient was negatively significant, indicating that rising income levels will likely

result in falling transportation-related CO2 emissions.

In short, most studies show that higher GDP per capita increases transport-related CO:
emissions due to higher vehicle ownership and transport demand. However, in some
countries, long-term economic growth supported by technological advancements can

help reduce emissions, consistent with the EKC hypothesis.
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2.2.3 Renewable energy consumption and Transportation Carbon

Emissions

Electric vehicles (EVs) may be powered sustainably by renewable energy sources
including wind, solar, and hydroelectric power, which also helps to lower CO2
emissions associated with transportation. Liu et al. (2022) suggested that alternative
fuels and sustainable transport modes can lower emissions in the transport sector.
Similarly, Zaman et al. (2021) and Kwilinski et al. (2024) found that higher renewable
energy consumption has a significant negative correlation with transport CO2 emissions,
indicating that increased renewable energy use helps lower transport-related emissions.
This result is consistent with that of Maji and Adamu (2021), who used the OLS method
to establish an inverse link between carbon emissions and the use of renewable energy

in Nigeria's transport sector from 1989 to 2019.

Advanced renewable technologies, including EVs, hydrogen fuel cell vehicles
(HFCVs), and biofuel-powered vehicles, have also been developed to support emission
(Zeng et al., 2022). Alnour (2022) further highlights the negative correlation between
Turkey's transportation-based emissions and renewable energy consumption between
1990 Q1 and 2014 QI, indicating that boosting the usage of biofuels and renewable
energy sources can greatly lower CO2 emissions associated with transportation. In
Ethiopia, Desta et al. (2022) highlighted the success of a biofuel program using cane
molasses-based ethanol and jatropha biodiesel, which reduced fossil fuel use and

greenhouse gas emissions.

However, several studies present a more nuanced or limited impact of renewable energy
consumption on transport CO2 emissions. Neves et al. (2017) argued that while the use
of renewable fuels helps reduce emissions in both the short and long run, the
significance level of this effect is relatively lower. This is further supported by
Solaymani (2022) examined the transport sector in Malaysia from 1978 to 2018 using
the ARDL and found short-term emission increases due to low renewable energy use,
and long-term effects that were negative but statistically insignificant, indicating that

its usage remains insufficient to effectively reduce CO: emissions in this sector.
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Summary, many studies support that increased renewable energy consumption helps
reduce transportation CO: emissions, especially using EVs and biofuels. However,
some research highlights that the impact may be limited or statistically weak in certain
countries due to low consumption rates or insufficient renewable energy use in the

transport sector.

2.3 Conceptual Framework

Independent Variable Dependent variable

Urbanization

GDP per capita @ Transportation carbon emission

Energy consumption from
renewable sources

Figure 2.2: Conceptual Research Framework

In this research, Figure 2.2 explains how the explanatory variables like urbanization,
GDP per capita, and energy consumption from renewable sources influence

transportation carbon emissions in China.
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2.4 Research Gap

Most existing studies focus on urbanization and GDP per capita, often in combination
with other macroeconomic variables (Xu & Lin, 2015; Aslam et al., 2021; Xu & Xu,
2021). However, relatively few studies especially in the context of China's
transportation industry, have included renewable energy consumption as a variable in
creating a comprehensive framework. This omission limits understanding of how
renewable energy consumption influences transport-related carbon emissions. In order
to close this gap and offer China more thorough views, our study incorporates

renewable energy use into the framework.
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Chapter 3: Methodology

3.0 Introduction

The research methodology refers to the set of processes used to address the research
problem in this study. A wide range of information from the empirical review in Chapter
2 is utilized to support the construction of the econometric model presented in this
chapter. The chosen econometric model will be covered in Chapter 3, along with the

steps for empirical testing and diagnostic tests to guarantee the model's accuracy and

dependability.

3.1 Data Description

The relationship between the explanatory and response variables is examined using the
data. In this study, the dependent variable is transportation carbon emissions, whereby

urbanization, GDP per capita and renewable energy consumption are the independent

variables.

Table 3.1: Variables and Proxy

Variables Variable Unit Sources
Description and | Measurements
Measurement
Transportation Carbon dioxide | metric tons per | World Bank
Carbon Emissions (CO2) emissions | capita
from Transport
Energy
Urbanization Urban population | Number of people | World Bank
GDP per capita GDP per capita | Constant 2015 | World Bank
(constant 2015 | USS per person
US$)
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Renewable Energy | Share of primary | % equivalent | Our world in data

Consumption energy primary energy

consumption from

renewable sources

3.1.1 Definition of Variables

3.1.1.1. Transport Carbon Emissions (DV)

Transportation carbon emission (TCE) refers to the release of CO. and other
greenhouse gases produced by different types of transportation, typically during
the vehicle operation phase. Commonly associated with energy-consuming
travel activities, TCE can be applied to anything from individual trips to the
entire transportation sector. Its measurement is usually focused on the mobility
process and emphasize direct emissions resulting from fuel consumption. TCE,
as an indicator linked to different transportation activities, is present across
numerous branches of the transport sector, such as road traffic, international

shipping, aviation, and railway systems (Ling et al., 2024).
3.1.1.2. Urbanization (IV)

Urbanization is fundamentally defined as the process of population
concentration, occurring through the multiplication of urban centers and the
growth in size of existing ones (Tisdale, 1942). Williamson (1988) expands this
definition by describing urbanization as a demographic and economic
transformation, where population and labor shift from rural to urban areas due
to population pressures and economic opportunities. This process is a key
aspect of development, driven by technological progress, industrialization, and

supportive policy environments.
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3.1.1.3. GDP per capita (IV)

Economic growth is typically measured by the rise in a nation’s gross domestic
product (GDP), which serves as an official indicator of economic progress. GDP
reflects the total monetary or market value of all final goods and services
produced within a country over a specific time frame. Meanwhile, GDP per
capita represents the average economic output generated per individual in that
country (Adam & Alzuman, 2024). GDP per capita plays a crucial role in the
economy as it reflects the outcome of a country’s economic activities over the
course of a year. Beyond that, it serves as a key indicator of development and
well-being. It is also used to assess sustainable economic growth and evaluate
a nation's self-sufficiency based on the income levels of its population

(Juliannisa & Artino, 2022).
3.1.1.4. Renewable Energy Consumption (IV)

Daniel Ciolkosz® highlights that renewable energy comes from natural sources
like sunlight, wind, water, geothermal heat, and biomass that replenish faster
than they are used. Unlike fossil fuels, these sources are sustainable and
environmentally friendly. He emphasizes that transitioning to renewable energy
is crucial for addressing climate change, energy security, and growing
population demands (Ernst et al., 2023). Furthermore, ongoing advancements
in renewable energy technologies are focused on improving energy conversion
efficiency, ensuring that these sources can meet the ever-expanding energy

needs (Ang et al., 2022).

3 Dr. Ciolkosz, an associate research professor at Penn State, supports bioenergy development and
energy efficiency for Pennsylvania farms and co-leads the university’s renewable energy extension
program (West Virginia University, n.d.).
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3.2 Econometric Model

An econometric model is proposed in this study to investigate the relationship between
China's transportation carbon emissions and three important explanatory variables. In
this analysis, CO: emissions from transport energy (measured in metric tons per capita)
serve as a proxy for Transport Carbon Emissions (TCE). The dataset spans the period

from 1985 to 2023.

Transport Carbon Emission = f (Urbanization, GDP, GDP?, Renewable Energy

Consumption)
Model 1
InNTCE, = By + B1InURB; + B,InGDP;, + B3(InGDP?), + B4InREN, + u,
Where:
TCE,= Transport Carbon Emissions (metric tons per capita) at time t
URB;= Urban population at time t
GDP,= GDP per capita (constant US$) at time t
GDP.*= GDP per capita squared (to test EKC) at time t

REN,= Share of primary energy consumption from renewable sources (% equivalent

primary energy) at time t

Bo = Slope intercept

P1, B2, B3, s = Coefficients of the explanatory variables
In = Natural logarithm

U = Error term at time t

t =1985, 1986, 1987,..., 2023

This study's model was developed as illustrated above. All dependent and explanatory

variables are transformed into their natural logarithmic forms to examine the nature of
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their relationships and to assess their long-run effects on transport carbon emissions
(TCE) in China. Additionally, In order to standardize data fluctuation for improved
comparability over time and to make testing the Environmental Kuznets Curve (EKC)

hypothesis easier, the natural logarithm of GDP per capita is also squared.

According to the preceding model, adjustments to the coefficient could affect the two
variables relationship, making it either positive or negative.. In line with our
expectations, the signs for 3, is positive, consistent with the findings of Ali et al. (2017).
Similarly, 3, is also expected to be positive indicating that an increase in GDP will lead
to a further increase in TCE, as supported by Xu and Xu (2021). In contrast, 5 is
expected to have a negative sign, while £, is also likely to be negative, as support by

the result of Maji & Adamu, (2021).

3.3 Emprical Testing Procedures

3.3.1 Unit Root Test

The unit root test is used as the initial stage in this study to assess the variables'
integration order and stationarity. This is crucial as regression results may be spurious
if the t-statistics are unusually large, the R-squared is significantly higher than the
Durbin-Watson statistics, or the outcomes contradict economic theory or common
sense. These signs suggest that the model may be unreliable due to non-stationary data
or autocorrelation (Phillips, 1987). As highlighted by Zivot and Wang (2003), When
analysing trending data, unit root testing aids in deciding whether time-trend regression
or first differencing should be used. For I(0) series, time-trend regression works well,
however for I(1) series, the first difference is used. This stage guarantees accurate
model formulation and permits the exploration of long-term relationships using co-
integration approaches if variables are I(1). The Kwiatkowski—Phillips—Schmidt—Shin
(KPSS) Test and the Augmented Dickey-Fuller (ADF) unit root test are used to evaluate

the stationarity of the variables in our study model.
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3.3.1.1 Augmented Dickey-Fuller (ADF) Test

Augmented Dickey-Fuller Test (ADF) is a standard method for detecting unit
roots and assessing the stationarity of the time series data, which is essential to
avoid spurious results when applying Ordinary Least Squares (OLS) regression.
It also serves as a key step in testing for cointegration between variables
(Dickey & Fuller, 1979). By including lagged values of the dependent variable,
the ADF test improves upon the basic Dickey-Fuller test, allowing it to detect
serial correlation and handle more complex time series structures. To ensure
reliable results, the appropriate lag length is typically selected using model
selection criteria such as Akaike’s Information Criterion (AIC) to eliminate
residual autocorrelation (Otero & Baum, 2018). The null hypothesis states that
unit root exists in the variables (non-stationary) while the alternative hypothesis

is the variable unit root does not exist (stationary).
H,: Unit root exists
H,: Unit root does not exist

The ADF test's decision rules specify that if the p-value is less than the
significance level at 1%, 5%, or 10%, the null hypothesis should be rejected; if
not, the null hypothesis should not be rejected. If the null hypothesis is rejected,
the variables are said to be stationary; if it is not rejected, the variables are said

to be non-stationary.

3.3.1.2 Kwiatkowski—Phillips—Schmidt—Shin (KPSS) Test

According to Kwiatkowski et al. (1992), a statistical technique known as the
KPSS test is used to compare the alternative hypothesis of a unit root with the
null hypothesis of a time series being stationary around a constant mean or a
deterministic trend. It depicts the series as the product of a random walk, a
deterministic trend, and a stationary error term; stationarity is assumed when

the random walk's variance is zero.
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H,: Unit root does not exist

H,: Unit root exists

3.3.2 Model Estimation

3.3.2.1 Autoregressive Distributed Lag (ARDL) Model Bounds

Cointegration Test

The ARDL Bounds Cointegration Test, developed by Pesaran et al. (2001), used
to determine the existence of a long run relationship between a dependent
variable and independent variables, regardless of whether the underlying
variables are stationary at level (1(0)), first difference (1(1)), or a mix of both.
The test is based on estimating an unrestricted error correction model (ECM)
and performing a Wald or F-test on the joint significance of the lagged level
variables. Murthy and Okunade (2016) stated that a key strength of the ARDL
Bounds testing approach lies in its ability to estimate long-run economic
relationships without the need to pre-test the time series data for unit roots as
long as none of (I(2)) within the cointegration framework. The ARDL
coefficient estimates remain highly reliable, even when applied to small sample
sizes. However, despite not requiring all variables to be integrated of order one
(I(1)), the method becomes invalid if any of the variables are found to be

integrated of order two (1(2)).
Hy: The cointegration relationship between DV and IV does not exist.
Hp: The cointegration relationship between DV and IV exist

The calculated F-statistics are compared with two sets of critical value
constraints to determine cointegration. The lower bound assumes that all
variables are 1(0), whereas the higher bound assumes that all variables are I(1).
There is no long-run relationship if the F-statistics fall below the lower bound,
a long-run relationship if it exceeds the upper bound, and an inconclusive

conclusion if it falls between the boundaries.
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ARDL Bound Cointegration Test Model:

AlnTCEt = 0{0 + allnTCEt_l + azanRBt_l + 0(3lnGDPt_1

q
+ a4ln (GDP?),_, + asInREN,_, + Z B1AINTCE,_;
i=1

q q
4 Z B,AINURB,_; + Z B;AInGDP,_,
i=1 i=1

q q
4 Z B.Aln (GDP)?,__ + z BAINREN,_; + i,
i=1

i=1

3.3.2.2 Error Correction Model (ECM)

The Error Correction Model (ECM) will be used to analyse cointegration
between variables after the ARDL Bounds Test. According to Banerjee et al.
(1998), ECM uses an autoregressive distributed lag (ARDL) model as its
foundation and emphasizes the coefficient of the lagged dependent variable.
The ECM captures the equilibrium connection between variables throughout
the long term as well as the short-term dynamics. Regressors rectify departures
from the long-run path in the situation of cointegration by adjusting the
dependent variable's lagged level. Because it does not impose potentially
invalid common-factor restrictions, the test is beneficial. Additionally, the t-
ratio form has better power qualities, particularly when the long-run and short-
run coefficients diverge. The t-statistics of the lagged level term in the ECM are
usually used to do the test. If this coefficient is notably negative, it indicates
that the system returns to equilibrium after a shock, confirming the existence of
a long-term link. The ECM test does not rely on nuisance parameters but is

sensitive to the number of regressors.
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ECM Model is expressed as below:

AlnTCEt = 0{0 + allnTCEt_l + azanRBt_l + 0(3lnGDPt_1

q
+ ay4ln (GDP?),_, + asInREN,_, + Z B1AINTCE,_;
i=1

q q
4 Z B,AINURB,_; + Z B;AInGDP,_,
i=1 i=1

q q
4 Z B.Aln (GDP)?,__ + z BAIMREN,_; + 0ECM,_; + 1,

i=1 =1

3.4 Diagnostic Checking

Diagnostic checking involving statistical tests to ensure that the estimated model
accurately reflects the behavior of the observed data. According to BEGGS (1988),
even well-fitting models can yield misleading inferences if underlying assumptions are
violated. Therefore, to detect potential econometric issues and ensure reliability, this
study will conduct several diagnostic tests, such as the Jarque-Bera Test, the Breusch-
Godfrey Serial Correlation LM Test, the Autoregressive Conditional
Heteroskedasticity (ARCH) Test, the CUSUM, and the CUSUMSQ Test. To find and
evaluate whether the model has any econometric issues, these tests will be carried out

using EViews 12.

3.4.1 Jarque-Bera Test

Large datasets can benefit greatly from the parametric Jarque-Bera test, which
determines if a dataset has a normal distribution. It is predicted on two essential metrics
that characterise a distribution's shape: kurtosis, which represents the data's peakedness,
and skewness, which denotes asymmetry. The skewness of a normal distribution is zero,
while its kurtosis is three (Jarque & Bera, 1980). The test evaluates how much the

sample's skewness and kurtosis deviate from the values expected under a normal
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distribution. Normality is important in statistical analysis, as many statistical methods
assume data are normally distributed, and violations can lead to inaccurate and
misleading results (Jarque & Bera, 1987). In the JB test, the null hypothesis assumes
normality of the error term, while the alternative assumes non-normality. If the test
yields a significant result, we reject the null hypothesis and come to the conclusion that
the data is not normally distributed. If the finding is not significant, we cannot reject

the null hypothesis and infer that the data is normally distributed.
Hy: Normally distribution exists in error terms

H,: Normally distribution does not exist in error terms

3.4.2 Breusch-Godfrey Serial Correlation LM Test

Breusch (1978) stated that if the error terms in a linear model are autocorrelated, the
ordinary least squares (OLS) estimate of the coefficient parameters remain unbiased
but are no longer efficient. However, in dynamic models where lagged dependent
variables are included as regressors, OLS estimates become biased and typically
inconsistent. Therefore, when estimating dynamic models using OLS, it is crucial to
conduct tests for autocorrelation. Rois et al. (2012) also mentioned that the Breusch-
Godfrey (BG) test is the most suitable method for detecting higher-order
autocorrelation, especially when the model includes stochastic regressors like lagged
dependent variables. The alternative hypothesis makes the assumption that
autocorrelation exists, whereas the null hypothesis makes the assumption that it does
not. The presence of autocorrelation in the data is indicated if the test produces a
significant result. If the result is not significant, we conclude that the data does not

exhibit autocorrelation.
Hy: No autocorrelation exists.

H,: Autocorrelation exists.
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3.4.3 Autoregressive Conditional Heteroskedasticity (ARCH) Test

Heteroscedasticity occurs when the error components in a regression model exhibit
non-constant variance across observations. In the presence of heteroscedasticity, the
Ordinary Least Squares (OLS) estimator is consistent, but it becomes inefficient and
produces statistical inferences that are not reliable. Engle (1982) introduced the ARCH
test to examine time-varying variance by modeling the conditional variance of errors
as a function of past squared residuals. The ARCH test is specifically suited for time

series data, as it examines volatility patterns that depend on historical error behavior.
H,: No heteroscedasticity exists

H,: Heteroscedasticity exists

3.4.4 CUSUM and CUSUMSQ Test

Brown et al. (1975) developed the cumulative sum (CUSUM) and cumulative sum of
squares (CUSUMSQ) to determine if the regression connection is stable over time.
According to Nica et al. (2024), the CUSUM test is mainly used to identify gradual
shifts or drifts in the mean level of a process or time series over time, particularly
highlighting changes in the regression coefficients. It works by calculating the
cumulative sum of residual deviations from the model’s mean. The difference between
the actual and expected values is added up at each time point. The CUSUMSAQ test, on
the other hand, is intended to identify abrupt or noteworthy shifts in a data series'
variance. Compared to the CUSUM test, it is better at detecting sudden changes in
structure. The CUSUMSQ plot plots the cumulative sum of the squared residuals
against a reference boundary; a large deviation from this line may suggest a structural
break. The parameters of the model appear to be stable over time if the points on the

CUSUM and CUSUMSAQ plots stay inside the lines at the 5% significance level.
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3.5 Robustness Checking

3.5.1 Fully Modified Ordinary Least Squares (FMOLS)

Phillips and Hansen (1990) developed FMOLS as an estimation technique to correct
biases in cointegrated systems by making non-parametric adjustments that account for
both serial correlation and endogeneity. This approach uses long-run covariance
estimates to modify the dependent variable and/or regressors, thereby producing
asymptotically unbiased and efficient estimates. By addressing these issues without
sacrificing a substantial degree of freedom, FMOLS is particularly suitable for small-
sample time series analysis and is widely used for obtaining reliable long-run parameter

estimates in cointegration studies.
H,: The independent variable has no significant long-run effect.

H;: The independent variable has a significant long-run effect.

3.5.2 Dynamic Ordinary Least Squares (DOLS)

Stock and Watson (1993) has introduced DOLS as a parametric technique in
cointegration analysis to correct simultaneity bias and serial correlation in the residuals.
It eliminates endogeneity and takes higher-order integrated variables into account by
adding leads and lags of the regressors' first differences to the cointegration equation.
By simulating these extra variables, DOLS removes the link between the error term
and the regressors, allowing for an accurate and impartial estimate using ordinary least
squares. A critical aspect of applying DOLS is selecting the optimal number of leads
and lags, as too few may leave bias uncorrected while too many can reduce estimation

efficiency.
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3.5.3 Canonical Cointegrating Regression (CCR)

According to Park (1992), CCR is a transformation-based methodology that provides
efficient estimation and standard inference in cointegrated systems. To eliminate
correlation between the error term and the regressors, stationary components and long-
run covariance estimations are used to adjust both the dependent and independent
variables. This transformation preserves the original cointegrating relationships while
allowing ordinary least squares (OLS) to be applied to the adjusted variables to obtain

efficient estimates.
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Chapter 4: Data Analysis

4.0 Introduction

This chapter will use E-view 12 to perform diagnostic checks and investigate the
relationship between transportation carbon emissions and all independent factors.

After that, we will perform and analyze the result of tests.

4.1 Unit Root Test

Table 4.1.1: The values of the Dickey-Fuller test

ADF
Intercept Trend and intercept
Level 15t Difference | Level 15t Difference
InTCE: -0.4736(5) -6.1173(0)*** | -1.8736(0) -6.0314(0)***
InGDP; -2.7164(1)* -4.8009(1)*** | -4.5200(0)*** | -4.2387(5)**
InGDP? -2.1527(1) -4.8301(1)*** | -2.5210(0) -7.2391(1)***
REN; 2.3703(0) -5.8866(0)*** | -0.4447(0) -7.4462(0)***

Notes: *, ** *** ghows significant at the 10%, 5%, and 1% significance level
respectively. The figure in parentheses is the lag chosen in the Schwarz information
criteria (SIC). The bandwidth utilized is Newey-West Bandwidth. The Bartlett Kernel

is employed in the Spectral estimation technique.

Table 4.1.1 displays the ADF unit root test results for INTCE, InGDP, InGDP2, and
REN. InGDP is stationary at the level of the intercept and the trend and intercept. InNTCE,
InGDP2, and REN are stationary at the first difference between the intercept and the
trend and intercept. In conclusion, the variables are either stationary at level form I(0)

or first difference I(1).
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Table 4.1.2: The values of the Kwiatkowski-Phillips-Schmidt-Shin test

KPSS
Intercept Trend and intercept
Level 15t Difference | Level 15 Difference
InURB; 0.7576(5)*** | 0.7130(5)** 0.2032(5)** 0.1975(4)**

Notes: *, ** *** shows significant at the 10%, 5%, and 1% significance level
respectively. The figure in parentheses is the lag chosen in the Schwarz information
criteria (SIC). The bandwidth utilized is Newey-West Bandwidth. The Bartlett Kernel

is employed in the Spectral estimation technique.

Table 4.1.2 displays the findings of the Kwiatkowski-Phillips-Schmidt-Shin unit root
test for INURB. InURB is stationary at the level of trend and intercept, as well as at the
first difference between intercept and trend and intercept. The variable is either

stationary at level form I(0) or at first difference I(1), so we may use the ARDL model.

4.2 Model Estimation

4.2.1 ARDL Cointegration Bounds Test
Table 4.2.1: The ARDL Bounds Test Result
Bounds testing approach to co-integration
F(LNTCE, LNGDP, LNGDP?, LNURB, REN)
Optimal lags 2,2,1,1,0)
F-statistics 4.7054%***
Critical values (k=4, T=37)

Significance level (%) Lower bounds I(0) Upper bounds I(1)
1 3.29 4.37
5 2.56 3.49
10 2.2 3.09

Remarks: *** ** and * show the null hypothesis reject at significance level 1%, 5%
and 10% respectively.

The ARDL Cointegration Bounds Test is used to analyze the long-term connection
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between the independent and dependent variables. If the F-statistic is more than the
upper bound I(1), it indicates a long-run association; if it is less than the lower bound
1(0), it indicates no long-run relationship; and if it falls in the middle of the bounds, it
is considered inconclusive. The findings demonstrated that, at the 1% significance level,
the F-statistic (4.7054) is higher than the upper bound I(1) (4.37). As a result, we reject
the null hypothesis and conclude that the dependent and independent variables have a

lasting association.

Table 4.2.1.1: The Long Run Coefficient Result

Variables Coefficient  Standard Error t-statistic P-value
InGDP; -2.5919%** 0.2745 -9.4417 0.0000
InGDP?% 0.1488*** 0.0285 5.2133 0.0000
InURB; 3.8966%** 0.8239 4.7295 0.0001

REN; -0.0418%** 0.0130 -3.2200 0.0034
C -61.9534%*** 15.5665 -3.9799 0.0005

Remarks: *** ** and * show the null hypothesis reject at significance level 1%, 5%

and 10% respectively.

Table 4.2.1.1 shows that at the 1% significance level, the P-value of InGDP (0.0000) is
less than (0.01) indicating negatively significant. Therefore, there is a long-run
relationship between the transport carbon emissions and GDP per capita. This indicates
that if the GDP per capita increases by 1%, the transport carbon emissions will decrease
by -2.5919%. The result is consistent with Asumadu-Sarkodie and Owusu (2016) study
in Rwanda, GDP per capita leads to a decrease in carbon emissions in the long run.
Similar with Kasperowicz (2015) study result indicated that in the long run, the
relationship between GDP and CO2 emissions is negative, as advancements in low-
carbon technologies allow for maintaining the same level of production with reduced

emissions.

At the significance level of 1%, the InGDP? P-value (0.0000) is less than (0.01),
indicating positive significance. It shows that there are substantial long-term

relationships between GDP? and carbon emissions from transportation. The coefficient
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of the InGDP? is positive, which means it does not follow the inverted U-shaped pattern
of the EKC hypothesis. However, its positive coefficient would indicate that the
environmental degradation follows a U-shaped pattern in relative to the GDP per capita.
It is still consistent with Alshehry and Belloumi (2017), Al-Mulali et al. (2015), Du et
al. (2012) and S. Wang et al. (2011) studies, where the EKC hypothesis does not
validated.

At the significance level of 1%, the InURB’s P-value (0.0001) is less than its positive
significance value (0.01). Hence, there is a long-run relationship between urbanization
and transport carbon emissions. If the urban population increases by 1%, the transport
carbon emissions will increase by 3.8966%. The result is consistent with the study by
Xu and Lin (2015), Ali et al. (2017), Awan et al. (2022) and Xie et al. (2017), the result

showed the urbanization leads to an increase in carbon emissions.

At the 1% significance level, the REN’s P-value (0.0034) is smaller than its negative
significance (0.01). There is a long-run relationship between renewable energy
consumption and transport carbon emissions, which means that if renewable energy
consumption increases by 1%, the transport carbon emissions will decrease by -
0.0418%. The result is aligned with the study by Zaman et al. (2021), Kwilinski et al.
(2024) and Maji and Adamu (2021), where higher renewable energy consumption has
a significant negative correlation with transport CO: emissions, indicating that

increased renewable energy use helps lower transport-related emissions.

4.2.2 Error Correction Model
Table 4.2.2: The ECM Result

Variables GDP, GDP?, URB, REN
ECT¢. Coefficient -1.4382%**
Standard Error 0.2479
t-statistic -5.8019
P-value 0.0000

Remarks: *** ** and * show the null hypothesis reject at significance level 1%, 5%

and 10% respectively.
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According to Table 4.2.2, the ECT coefficients are statistically significant, with a P-
value (0.0000) of less than 0.01 at 1% significance level. The ECT coefficient is -
1.4382 which exceeds the range of 0 and -1. The value of -1.4382 implies that 143.82%
of deviations from the long-run equilibrium are adjusted in the next period. The
magnitude of the coefficient (-1.4382) is quite high, might indicate that it is
overshooting. The results are consistent with Bekhet and Othman (2017), Rahman and
Kashem (2017), Kwakwa et al. (2022) and Qodirov et al. (2024). This may be due to
the new energy vehicle boom led by government policies and technological

advancement.

4.3 Diagnostic Checking
4.3.1 Jarque-Bera Test, LM Test and ARCH Test

Table 4.3.1: The Jarque-Bera Test, LM Test and ARCH Test Result

Diagnostic Testing t-statistic/F- P-value Conclusion
statistic
Jarque-Bera 4.5982 0.1003 Normally
normality test distributed
Serial Correlation 0.6219 0.5454 No autocorrelation
LM test exists
ARCH test 0.6235 0.4352 No
heteroscedasticity
exists

Remarks: ** show the null hypothesis rejected at significance level 5%

The results in Table 4.3.1 reveal that there is no econometric concern. The P-value for
the Jarque-Bera normality test is 0.1003, the Serial Correlation LM test is 0.5454, and
the ARCH test is 0.4352, all of which surpass the 5% significance level. As a result, we
do not reject the null hypothesis and conclude that the model is normally distributed,

with no autocorrelation or heteroscedasticity.
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4.3.2 CUSUM Test and CUSUM Square Test

CUSUM Test CUSUM Square Test
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Figure 4.1 Figure 4.2

CUSUM test and CUSUMSQ tests results are shown in the Figure 4.1 and 4.2
respectively. The model's parameters appear to be stable over time, since both points

stayed inside the straight-line boundaries at the 5% significance level.

4.4 Robustness Checking

4.4.1 FMOLS, DOLS and CCR
Table 4.4.1: The FMOLS, DOLS and CCR Result

Variables FMOLS

Coefficient T-statistic P-value
InGDP -2.3290%** -6.7907 0.0000
InGDP? 0.1304%*** 3.6697 0.0009
InURB 3.9514%** 3.4398 0.0016
REN -0.0862%** -5.4406 0.0000
Constant -62.8211*** -2.9162 0.0063

DOLS

Coefficient t-statistic
InGDP -2.2990%** -9.1689 0.0000
InGDP? 0.1155%** 4.6200 0.0002
InURB 4.7266%** 6.4189 0.0000
REN -0.0310** -2.6074 0.0173
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Constant -79.1472%** -5.6818 0.0000
CCR
Coefficient t-statistic
InGDP -2.1603*** -7.4314 0.0000
InGDP? 0.1281%** 3.5654 0.0011
InURB 3.5331%** 3.2900 0.0024
REN -0.0832%** -5.1564 0.0000
Constant -55.6222%%* -2.7245 0.0102

*dx % and * show the statistical significance at 1%, 5% and 10% levels.

To confirm the result's robustness, FMOLS, DOLS, and CCR are used. Except for the
DOLS result, which shows that the energy consumption from renewable sources is only
significant at the 5% significance level, the results of FMOLS, DOLS, and CCR
verified that all independent variables are significant at the 1% significance level. The
coefficients for the GDP per capita and renewable energy consumption are negative.
However, the coefficients for the quadratic term of the GDP and urbanization are

positive. The results are robust since the FMOLS, DOLS, and CCR coefficient signs

match the ARDL Bounds test result.
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Chapter 5: Discussion, Conclusion and Implications

5.0 Introduction

The summary of the major findings, policy implications, limitations and

recommendations for future research will be discussed in this chapter.

5.1 Summary of Major Findings

The primary objective of the study is to determine what factors affect China's
transportation-related carbon emissions. Urbanization, GDP per capita, and the
renewable energy consumptions are the explanatory factors. The ARDL Bounds Test
for the year 1985-2023 is used to analyze the relationship between the explanatory and

response variables.

At a significant level of 1%, GDP per capita is negatively significant. There is a long
run negative relationship between GDP per capita and transport carbon emissions,
which means if the GDP per capita increases, the transport carbon emission will
decrease. The result is consistent with some past studies. According to Asumadu-
Sarkodie and Owusu (2016) research in Rwanda, GDP per capita eventually reduces
carbon emissions in the long run. Kasperowicz (2015) study result indicated that in the
long run, the relationship between GDP and CO2 emissions is negative, as
advancements in low-carbon technologies allow for maintaining the same level of
production with reduced emissions. Go et al. (2020) studies in Malaysia found that The
GDP per capita coefficient was negatively significant, indicating that rising income
levels will likely result in falling transportation-related CO2 emissions. The result is
most likely due to China rising GDP per capita leads to greater purchasing power for
electric vehicles. China electric vehicles market has grown rapidly, reaching over 50%
last year (Kaur, 2025). Also, China high economic growth makes it affordable in
providing subsidies and expanding infrastructure to support the EV adoption. For

example, subsidies and tax exemption on EV and expansion of the renewables charging
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station. Evidence from Yang (2023) stated that in order to enable EV producers to
produce cars, buses, or taxis for individual consumers, China began offering financial
subsidies to them in 2009. Between 2009 and 2022, the government spent about 200
billion RMB ($29 billion) on relevant tax breaks and subsidies. The implementation of
policy along with people’s high income accelerates transport decarbonization. In

conclusion, the result showed GDP per capita leads to a decrease in carbon emissions.

Urbanization is positively significant at 1% significance level. Hence, in the long run,
urbanization and transport carbon emissions are positively correlated, meaning that as
urbanization rises, so will transport carbon emissions. The result aligns with the
research conducted by Xu and Lin (2015), due to extensive population movements,
urbanization also significantly affects carbon dioxide emissions. In addition to the
migration of rural excess labor from rural to urban areas, urbanization also causes large
population migration between cities, which raises CO2 emissions in the transportation
sector. Ali et al. (2017) studies found that Pakistan's ongoing urbanization has a
negative relationship between CO2 emissions. Pakistan is another developing nation
with a high pace of urbanization growth. According to research by Awan et al. (2022),
the percentage of individuals who live in cities has a bigger influence on transportation-
related carbon emissions. The need for transport services is expected to grow as
urbanization increases. Xie et al. (2017) findings also show a strong and positive
correlation between urbanization and carbon emissions. As mentioned by Lv et al.
(2018), the result might be due to the China's urbanization is accelerating. The creation
of infrastructure is accelerated by urbanization, which raises the need for energy and
other bulk products. It also speeds up the movement of goods, which will surely
increase the demand for transportation. Urbanization will therefore eventually have an
even greater effect on carbon emissions from freight transportation. In conclusion, the

result showed urbanization leads to an increase in carbon emissions.

At the 1% significance level, the consumption of renewable energy is negatively
significant. Long-term consumption of renewable energy and transportation carbon
emissions are negatively correlated, indicating that as renewable energy consumption

rises, transportation carbon emissions will fall. The results are in line with a research

41



by Zaman et al. (2021), which discovered that a greater percentage of renewable energy
consumption relative to total final energy consumption aids in the reduction of
environmental issues by lowering atmospheric CO: emissions. Kwilinski et al. (2024)
results show that the EU's carbon dioxide emissions related to energy production are
declining in tandem with its growing usage of renewable energy. In other words, the
quantity of CO: released into the atmosphere as a result of energy generation tends to
decline when renewable energy sources such as wind, solar, hydro, and geothermal
power are more widely used and incorporated into the energy mix. Maji and Adamu
(2021) studies found that outcome also demonstrates a negative relationship between
transportation-related carbon emissions and the consumption of renewable energy. This
implies that using more renewable energy will improve environmental quality and
lower carbon emissions from these industries. The result might be due to the China
rapidly adoption of renewable energy in vehicles where China is the world largest EV
market with proper policy support that has played a crucial role. The usage of fossil
fuels like petrol, which release greenhouse gases into the atmosphere, can be greatly
decreased by switching to renewable energy. In conclusion, there is a substantial
negative association between transportation CO: emissions and higher renewable
energy consumption, suggesting that using more renewable energy reduces emissions

associated with transportation.

The EKC hypothesis states that environmental degradation and per capita income have
an inverse U-shaped connection, with environmental quality first decreasing and then
increasing as wealth increases. The existence of EKC is tested by including GDP per
capita and the GDP per capita quadratic term. If the EKC hypothesis exists, the GDP
per capita quadratic term should be negatively significant, and the GDP per capita

coefficient should be positively significant.

However, the results of the ARDL Bounds test indicate that the GDP quadratic term is
positive and significant, whereas the GDP per capita coefficient is negative and
significant. It indicates that the transport carbon emission decreases initially with rising
income and then increases again at higher income levels. Therefore, it shows that the

EKC hypothesis is not validated in China transport sector. This result is consistent with
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Alshehry and Belloumi (2017), research indicates that there is no inverse-U
relationship between Saudi Arabia's economic growth and transport CO2 emissions,
and the country is still to the left of the EKC's turning point. Jebli and Youssef (2015)
study found that in the long run, the inverted U-shaped environmental Kuznets curve
(EKC) is unsupported by any data. This indicates that Tunisia has not yet attained the
GDP per capita level necessary to obtain an inverted U-shaped EKC. This outcome is
expected since developed countries often validate the EKC hypothesis. According to

research by Al-Mulali et al. (2015), Vietnam does not follow the EKC theory.

The U-shaped EKC relationship in China might be because of the GDP per capita
initially improve efficiency and reduced emissions due to adoption of clean energy
technologies like wind, solar and hydrogen. But as both the GDP per capita and
urbanization increase further, it might lead to an increase in transport demand, and the
growth of the transport demand might be faster than the renewable technology adoption
and cause the transport emissions to increase again. This is likely to be true since most

of the China renewable energy production still comes from the fossil fuel.

5.2 Policy Implications
5.2.1 Widespread Green Hydrogen Corridor

Since the GDP per capita is negatively affected the transport carbon emissions, China
should develop more green hydrogen corridor. Countries with higher GDP per capita
can afford large scale green infrastructure projects like hydrogen refueling stations for
freight transport which require huge initial costs. Also, people with higher incomes tend
to have greater environmental awareness, therefore they will adopt various types of
potential clean logistics and transport in the future. Not only that, as GDP per capita
increases, people buy more goods as their purchasing power increases. It means that
the logistic activity will increase, which increases the transport emissions. Green
hydrogen corridors enable wealthier regions to decarbonize freight and long-distance

transport, ensure that income growth does not lead to higher emissions.
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China now produces more than 50 million tonnes of hydrogen a year, making it the
greatest producer in the world. Therefore, China has the largest potential to use
hydrogen as its primary energy consumption towards the transportation system in the
future. However, fossil fuels, such as coal and natural gas, provide 81% of its hydrogen
generation, with 62% and 19% coming from these sources, respectively (Fan et al.,
2025). China is currently leveraging its abundant renewable energy resources, for
example according to FuelCellsWorks (2024), green hydrogen technology has
advanced significantly with Sinopec's opening of its first large-scale research plant for
direct hydrogen production from seawater in Qingdao, Shandong Province. As a result,
China hydrogen production that rely on fossil fuels could be reduced significantly in
the future. Hence, China should implement more comprehensive hydrogen highway
system across the nations for the Hydrogen Fuel Cell Vehicles (HFCVs). It encourages
people to adopt (HFCVs) as an option other than Electric Vehicles (EV).

China is still in early development of its hydrogen infrastructure for its Hydrogen Fuel
Cell Vehicles, where it does not have a wide coverage across the nation. China could
build a nation-wide hydrogen corridor for the hydrogen-powered vehicles. As a first
move, China has launched its first cross-regional hydrogen trucking corridor in the mid
of 2025 with public-private partnerships. According to FuelCellsWorks (2025), In order
to connect inland logistics with the Port of Qinzhou, Sinopec has started China's first
cross-regional hydrogen trucking corridor, which will stretch 1,150 km across
Chongqing, Guizhou, and Guangxi. The route will enhance green logistics and
facilitate heavy-duty hydrogen trucking. China can continue to expand the
development of the hydrogen corridor towards other larger port like the Port of
Shanghai where it is the largest port in China, and eventually towards the large city

across the nation.
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5.2.2 Widespread Congestion Pricing

Furthermore, car ownership rises when the urban areas expand. Traffic jams and a rise
in transportation-related emissions will result from this. The number of commuting and
delivery trips rises in tandem with the urban population density. Since the urbanization
in China is positively affected the transport carbon emissions, China should implement
congestion pricing in the urban cities to reduce the reliance on the private vehicles by

the people living in the urban areas.

According to Green et al. (2020) study, there has been growing concern over air
pollution in key cities. Congestion charging provides a way to reduce overall travel
miles and standstills, which in turn reduces pollution, since vehicle exhaust accounts
for a significant portion of urban pollution. The reductions are significantly greater than
what would be predicted if traffic volumes were reduced alone. Additional social
advantages resulted from the charge scheme's lowering of the externality caused by
traffic. Pollution per mile decreased as a result of shorter stoppages and faster travel

times.

For example, Teo (2025) mentioned that prior to places like Stockholm, Sweden, and
London, the capital of Britain, Singapore was the first to adopt the upgraded ALS,
which is now called the automated Electronic Road Pricing (ERP) system, in 1998. In
order to charge drivers to travel specific routes during peak hours, the ERP system uses
gantries that integrate a short-range wireless technology with an in-vehicle unit. To
detect negligent drivers, gantries are equipped with cameras that can record a car's back
license plate. During peak rush hours, this fee serves as a financial deterrent to promote
the use of public transportation or alternative routes. In addition to reducing traffic, the
ERP offers beneficial knock-on effects like less environmental damage from vehicle
emissions and more pedestrian-friendly routes. Khosravani (2025) also highlighted the
effect of Singapore’s congestion pricing on urban mobility. The decrease in the number
of cars on the road during rush hour was one of the most obvious consequences. This
instantaneous decrease in traffic volume eased congestion and enhanced traffic flow in

general. By forcing cars to pay for their actual trip expenses, congestion pricing can
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also have an impact on urban growth by encouraging more economical land use and

preventing urban expansion.

According to Menon and Guttikunda (2010), congestion pricing is thought to have
promoted non-motorized transport and decreased 20-30% of downtown passenger
automobile traffic in London on average. The average speed of traffic rose by at least
15 kph in Singapore. The everyday use of cars in Stockholm immediately decreased by
at least 20%. Overall, by implementing congestion pricing in the urban areas, it can
encourage people living in urban areas to reduce the usage of vehicles and utilize the

public transport system available in the area.

5.2.3 Building-to-Vehicle (B2V) Energy

Moreover, since China renewable energy consumption is negatively affected the
transport carbon emissions, China should develop Building-to-Vehicle (B2V) energy
system since China has the largest EV market. The B2V system allows the buildings to
store excess energy in electric vehicles (EVs) when production is more than the demand,
and the energy stored can be used to discharge to the grid. Instead of using the grid

electricity from fossil fuels, B2V can use EV batteries as storage.

The electricity infrastructure may face serious challenges because of the electric vehicle
industry's explosive growth. For instance, the increasing unregulated demands of EV
charging could degrade power quality and place a great deal of strain on utility grid
transformers and distribution networks (He et al., 2022). According to Zhou et al. (2019)
the vehicle-to-building (V2B) and building-to-vehicle (B2V) interaction can be
realized to lessen dependency on the electric grid for both transportation and household
use by putting in place a device for managing the bidirectional power flow. B2V can
contribute to the development of a more sustainable energy system by promoting the
use of renewable energy sources and reducing reliance on fossil fuel-based energy
sources, as over 70% of China's electricity still originates from these sources. With B2V

technology, an electric car may be charged using the excess photovoltaic production
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capacity mounted on the building roof. Another efficient way to store electricity is with
a charge and discharge electric vehicle (Hou et al., 2022). Utilising the potential of
battery storage systems and renewable energy sources, the Smart Energy Management
System (SEMS) manages building energy and EV charging. The effective use of
available energy resources is maximised by carefully planning EV charging and
discharging activities (Lo et al., 2023). This technology is suitable for China to
implement since the China have the largest market of Electric Vehicles (EVs), with the
sales over 11 million. In 2024, nearly two-thirds of all electric cars sold worldwide
were in China, where nearly half of all car sales were electric (International Energy

Agency, 2025).

5.3 Limitations and Recommendations

This study on the determinants of transport carbon emissions identified several
limitations. Accordingly, several recommendations are proposed to address these
limitations and guide future research. First, all of the study's finding might only apply
to China's transportation industry and significant in guiding local policymakers. This is
because the study's data source originated solely from China. The factors influencing
transportation carbon emissions may vary greatly between countries due to each one's
unique history, political systems, and economic conditions. Consequently, the results
and conclusions of this study may not be directly generalized to other countries. The
discussions and implications can only be presented as a reference in other contexts that
investigate the determinants of transport carbon emissions. Future researchers are
therefore encouraged to conduct comparative studies across multiple countries to

evaluate similarities and differences.

Additionally, the limitation of this study is the omission of relevant variables. This
study consists of 4 explanatory variables such as urbanization, GDP, GDP? and
renewable energy consumption. Other potentially important determinants, such as

government effectiveness, were excluded in the models due to limitations of data. The
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reliable data on government effectiveness in China are only available from 1996
onwards, whereas this study employed a 39-year time series dataset. Moreover,
urbanization was selected as a more suitable explanatory variable than population
because the rate of urbanization has increased significantly over the past decades, while
population growth has remained relatively slow due to the implementation of the one-
child policy (Lin & Benjamin, 2017). Future researchers can therefore examine by
employing panel data covering multiple countries, which would provide sufficient
observations. Furthermore, the choice of urbanization over population in this study is
context-specific to China and may not be directly applicable to other nations. Therefore,
future studies should adapt their variable selection according to the demographic,

economic, and policy characteristics of the countries under investigation.

The last research limitation is that the time series data did not include a structural break.
China has undergone major legislative changes, the COVID-19 pandemic, and the
Global Financial Crisis of 2008—-2009 throughout the course of the 39-year period, all
of which may have changed the relationship between factors and transportation carbon
emissions. However, this study did not include dummy variables to capture such events,
which assumes parameter stability for the whole sample period. This omission could
bias the ARDL model's short- and long-run estimates, which would ultimately
undermine the validity of the findings. Future research could address this limitation by
using structural break tests, such as the Zivot Andrews or Perron methods and

incorporate dummy variables to improve the robustness of findings.

48



References

Adam, N. A., & Alzuman, A. (2024). Effect of per capita income, GDP growth, FDI,
sectoral composition, and domestic credit on employment patterns in GCC
countries: GMM and OLS approaches. Economies, 12(11), 315.
https://doi.org/10.3390/economies12110315

Ahmad, M., Jida, Z., Haq, 1. U., Tufail, M., & Saud, S. (2024). Linking green
transportation and technology, and environmental taxes for transport carbon

emissions. Transportation Research Part D Transport and Environment, 136,

104450. https://doi.org/10.1016/.trd.2024.104450

Ahmed, K., & Khan, B. (2024). China's post-pandemic energy rebound and climate
targets under the current regulations and green innovation capacity. Energy, 302,

131829. https://doi.org/10.1016/j.energy.2024.131829

Ali, R., Bakhsh, K., & Yasin, M. A. (2019). Impact of urbanization on CO2 emissions
in emerging economy: Evidence from Pakistan. Sustainable Cities and

Society, 48, 101553. https://doi.org/10.1016/].s¢5.2019.101553

Al-Mulali, U., Saboori, B., & Ozturk, I. (2015). Investigating the environmental

Kuznets curve hypothesis in Vietnam. Energy  Policy, 76, 123—

131. https://doi.org/10.1016/j.enpol.2014.11.019

Alnour, M. (2022). Do Innovation in Environmental-Related Technologies and
Renewable Energies Mitigate the Transport-Based CO2 Emissions in
Turkey? Frontiers in Environmental Science, 10.

https://doi.org/10.3389/fenvs.2022.902562

Alshehry, A. S., & Belloumi, M. (2017). Study of the environmental Kuznets curve for
transport carbon dioxide emissions in Saudi Arabia. Renewable and
Sustainable Energy Reviews, 75, 1339-1347.
https://doi.ore/10.1016/j.rser.2016.11.122

49


https://doi.org/10.3390/economies12110315
https://doi.org/10.1016/j.energy.2024.131829
https://doi.org/10.1016/j.scs.2019.101553
https://doi.org/10.1016/j.enpol.2014.11.019
https://doi.org/10.3389/fenvs.2022.902562
https://doi.org/10.1016/j.rser.2016.11.122

Amin, A., Altinoz, B., & Dogan, E. (2020). Analyzing the determinants of carbon
emissions from transportation in European countries: The role of renewable

energy and urbanization. Clean Technologies and Environmental Policy, 22(7),

1725-1734. https://doi.org/10.1007/s10098-020-01910-2

Ang, T.-Z., Salem, M., Kamarol, M., Das, H. S., Nazari, M. A., & Prabaharan, N.
(2022). A Comprehensive Study of Renewable Energy sources: Classifications,
Challenges and Suggestions. Energy Strategy Reviews, 43(100939), 100939.
https://doi.org/10.1016/j.esr.2022.100939

Aslam, B., Hu, J., Shahab, S., Ahmad, A., Saleem, M., Shah, S. S. A., Javed, M. S.,
Aslam, M. K., Hussain, S., & Hassan, M. (2021). The nexus of industrialization,
GDP per capita and CO2 emission in China. Environmental Technology &
Innovation, 23, 101674. https://doi.org/10.1016/1.et1.2021.101674

Asumadu-Sarkodie, S., & Owusu, P. A. (2016). Carbon dioxide emissions, GDP per
capita, industrialization and population: An evidence from Rwanda.

Environmental Engineering Research, 22(1), 116-124.
https://doi.org/10.4491/eer.2016.097

Awan, A., Alnour, M., Jahanger, A., & Chukwuma, O. J. (2022). Do technological
innovation and urbanization mitigate carbon dioxide emissions from the
transport sector? Technology in Society, 102128.
https://doi.org/10.1016/j.techsoc.2022.102128

Azlina, A., Law, S. H., & Mustapha, N. H. N. (2014). Dynamic linkages among
transport energy consumption, income and CO2 emission in Malaysia. Energy

Policy, 73, 598—606. https://doi.org/10.1016/j.enpol.2014.05.046

Banerjee, A., Dolado, J., & Mestre, R. (1998). Error-correction mechanism tests for
cointegration in a single-equation framework. Journal of Time Series Analysis,

19(3), 267-283. https://doi.org/10.1111/1467-9892.00091

BEGGS, J. J. (1988). Diagnostic Testing in Applied Econometrics. Economic
Record, 64(2), 81-101. https://doi.org/10.1111/].1475-4932.1988.tb02044.x

50


https://doi.org/10.1007/s10098-020-01910-2
https://doi.org/10.1016/j.esr.2022.100939
https://doi.org/10.1016/j.eti.2021.101674
https://doi.org/10.1016/j.techsoc.2022.102128
https://doi.org/10.1016/j.enpol.2014.05.046
https://doi.org/10.1111/j.1475-4932.1988.tb02044.x

Bekhet, H. A., & Othman, N. S. (2017). Impact of urbanization growth on Malaysia
CO2 emissions: Evidence from the dynamic relationship. Journal of Cleaner

Production, 154, 374-388. https://doi.org/10.1016/1.jclepro.2017.03.174

Berkhout, F., Angel, D., & Wieczorek, A. J. (2009). Asian development pathways and
sustainable socio-technical regimes. Technological Forecasting and Social

Change, 76(2), 218-228. https://doi.org/10.1016/j.techfore.2008.03.017

Berkhout, F., Marcotullio, P., & Hanaoka, T. (2012). Understanding energy transitions.
Sustainability Science, 7(2), 109-111. https://doi.org/10.1007/s11625-012-
0173-5

Bogdanov, D., Ram, M., Khalili, S., Aghahosseini, A., Fasihi, M., & Breyer, C. (2024).
Effects of direct and indirect electrification on transport energy demand during
the energy transition. Energy Policy, 192, 114205.
https://doi.org/10.1016/j.enpol.2024.114205

Breusch, T. S. (1978). TESTING FOR AUTOCORRELATION IN DYNAMIC
LINEAR MODELS*. Australian Economic Papers, 17(31), 334-355.
https://doi.org/10.1111/1.1467-8454.1978.tb00635.x

Breusch, T. S., & Pagan, A. R. (1979). A simple test for heteroscedasticity and random
coefficient variation. Econometrica, 47(5), 1287.

https://doi.ore/10.2307/1911963

Brown, R. L., Durbin, J., & Evans, J. M. (1975). Techniques for testing the constancy
of regression relationships over time. Journal of the Royal Statistical Society
Series B (Statistical Methodology), 37(2), 149-163.
https://doi.org/10.1111/1.2517-6161.1975.tb01532.x

Callahan, J. (2022, March 18). China’s efforts to decarbonize road transport: Decent,
but not sufficient. International Council on Clean Transportation.

https://theicct.org/china-ev-efforts-mar22/

51


https://doi.org/10.1016/j.jclepro.2017.03.174
https://doi.org/10.2307/1911963

Cao, P, & Liu, Z. (2023). The impact of population characteristics on transportation
CO2 emissions—does population aging important? Environmental Science and
Pollution Research, 31(7), 10148—10167. https://doi.org/10.1007/s11356-023-
26465-9

Cao, P, Liu, Z., Zhang, H., Yan, P., & Qin, C. (2024). Household size and transport
carbon emissions in China: Direct, heterogeneity and mediating effects. Science
of The Total Environment, 925,
171650. https://doi.org/10.1016/].scitotenv.2024.171650

Chen, Y., Dai, X., Fu, P, Luo, G., & Shi, P. (2024). 4 review of China's automotive
industry policy.: Recent developments and future trends. Journal of Traffic and
Transportation  Engineering  (English ~ Edition),  11(5), 867-895.
https://doi.org/10.1016/.jtte.2024.09.001

Cui, Q., Li, X., Bai, X., He, L., & Liu, M. (2025). How the synergy effect between
renewable electricity deployment and terminal electrification mitigates
transportation sectors’ carbon emissions in China? Transport Policy.

https://doi.org/10.1016/j.tranpol.2025.03.007

Dalde, M. C., Nitivattananon, V., Sharma, D., & Ninsawat, S. (2025). Effects of urban
form and socio-economic factors on transport-related carbon dioxide emissions:

A structural equation approach. International Journal of Transportation

Science and Technology. https://doi.org/10.1016/1.11tst.2025.01.013

Daoud, J. 1. (2017). Multicollinearity and Regression Analysis. Journal of Physics:
Conference Series, 949(1). https://doi.org/10.1088/1742-6596/949/1/012009

Desta, M., Lee, T., & Wu, H. (2022). Life cycle energy consumption and environmental
assessment for utilizing biofuels in the development of a sustainable
transportation system in Ethiopia. Energy Conversion and Management: X, 13,

100144-100144. https://doi.org/10.1016/j.ecmx.2021.100144

52


https://doi.org/10.1007/s11356-023-26465-9
https://doi.org/10.1007/s11356-023-26465-9
https://doi.org/10.1016/j.scitotenv.2024.171650
https://doi.org/10.1016/j.jtte.2024.09.001
https://doi.org/10.1016/j.tranpol.2025.03.007
https://doi.org/10.1016/j.ijtst.2025.01.013
https://doi.org/10.1088/1742-6596/949/1/012009
https://doi.org/10.1016/j.ecmx.2021.100144

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive
Time Series with a Unit Root. Journal of the American Statistical

Association, 74(366), 427-431. https://doi.org/10.2307/2286348

Ding, X., & Liu, X. (2023). Renewable energy development and transportation
infrastructure matters for green economic growth? Empirical evidence from
China. Economic Analysis and Policy, 79, 634—-646.
https://doi.org/10.1016/j.eap.2023.06.042

Du, L., Wei, C., & Cai, S. (2012). Economic development and carbon dioxide
emissions in China: Provincial panel data analysis. China Economic

Review, 23(2), 371-384. https://doi.org/10.1016/j.chieco.2012.02.004

Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of
the Variance of United Kingdom Inflation. Econometrica, 50(4), 987.
https://doi.org/10.2307/1912773

Fan, G., Zhang, H., Sun, B., & Pan, F. (2025). Economic and environmental
competitiveness of multiple hydrogen production pathways in China. Nature

Communications, 16(1). https://doi.org/10.1038/s41467-025-59412-y

FuelCellsWorks. (2024, December 18). China launches pioneering seawater hydrogen
production facility. FuelCellsWorks.

https://fuelcellsworks.com/2024/12/18/green-hydrogen/china-launches-

pioneering-seawater-hydrogen-production-facility

FuelCellsWorks. (2025, April 15). Sinopec launches China’s first cross-regional
hydrogen trucking corridor across western trade route. FuelCellsWorks.

https://fuelcellsworks.com/2025/04/15/clean-energy/sinopec-launches-china-

s-first-cross-regional-hydrogen-trucking-corridor-across-western-trade-route

53


https://doi.org/10.2307/2286348
https://doi.org/10.1016/j.eap.2023.06.042
https://doi.org/10.1016/j.chieco.2012.02.004
https://doi.org/10.1038/s41467-025-59412-y
https://fuelcellsworks.com/2024/12/18/green-hydrogen/china-launches-pioneering-seawater-hydrogen-production-facility
https://fuelcellsworks.com/2024/12/18/green-hydrogen/china-launches-pioneering-seawater-hydrogen-production-facility
https://fuelcellsworks.com/2025/04/15/clean-energy/sinopec-launches-china-s-first-cross-regional-hydrogen-trucking-corridor-across-western-trade-route
https://fuelcellsworks.com/2025/04/15/clean-energy/sinopec-launches-china-s-first-cross-regional-hydrogen-trucking-corridor-across-western-trade-route

Ge, M., Friedrich, J., & Vigna, L. (2024, December 5). 4 charts explain greenhouse gas
emissions by countries and sectors. World Resources Institute.

https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-

countries-and-sectors

Gill, A. R., Viswanathan, K. K., & Hassan, S. (2018). A test of environmental Kuznets
curve (EKC) for carbon emission and potential of renewable energy to reduce

greenhouse gases (GHG) in Malaysia. Environment, Development and

Sustainability, 20(3), 1103—1114. https://doi.org/10.1007/s10668-017-9929-5

Go, Y., Lau, L., Liew, F., & Senadjki, A. (2020). A transport environmental Kuznets
curve analysis for Malaysia: exploring the role of corruption. Environmental
Science and Pollution Research, 28(3), 3421-
3433. https://doi.org/10.1007/s11356-020-10736-w

Grazi, F., & van den Bergh, J. C. J. M. (2008). Spatial organization, transport, and
climate change: Comparing instruments of spatial planning and
policy. Ecological Economics, 67(4), 630-639.
https://doi.org/10.1016/j.ecolecon.2008.01.014

Green, C. P., Heywood, J. S., & Paniagua, M. N. (2020). Did the London congestion
charge reduce pollution? Regional Science and Urban Economics, 84,

103573. https://doi.org/10.1016/j.regsciurbeco.2020.103573

Grossman, G. M., & Krueger, A. B. (1995). Economic growth and the environment.
The Quarterly  Journal  of  Economics, 110(2), 353-377.
https://doi.org/10.2307/2118443

Gu, J., Jiang, S., Zhang, J., & Jiang, J. (2024). An analysis of the decomposition and
driving force of carbon emissions in transport sector in China. Scientific Reports,

14, Article 30177. https://doi.org/10.1038/s41598-024-80486-z

54


https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors
https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors
https://doi.org/10.1007/s10668-017-9929-5
https://doi.org/10.1016/j.regsciurbeco.2020.103573
https://doi.org/10.2307/2118443
https://doi.org/10.1038/s41598-024-80486-z

Guo, M., Chen, S., Zhang, J., & Meng, J. (2022). Environment Kuznets Curve in
transport sector’s carbon emission: Evidence from China. Journal of Cleaner

Production, 371, 133504. https://doi.org/10.1016/j.jclepro.2022.133504

He, Z., Khazaei, J., & Freihaut, J. D. (2022). Optimal integration of Vehicle to Building
(V2B) and Building to Vehicle (B2V) technologies for commercial
buildings. Sustainable Energy Grids and Networks, 32,

100921. https://doi.org/10.1016/j.segan.2022.100921

Hilton, I. (2024, March 13). How China became the world’s leader on renewable energy.

Yale Environment 360. https://e360.vyale.edu/features/china-renewable-energy

Hou, Y., Zhu, N., Ni, S., & Zhang, Z. (2022). Building-to-vehicle and vehicle-to-
building concepts toward net zero energy building: A small solar house case
study in China. E3S Web of Conferences, 356,

01004. https://doi.org/10.1051/e3scont/202235601004

Htike, M. M., Shrestha, A., & Kakinaka, M. (2021). Investigating whether the
environmental Kuznets curve hypothesis holds for sectoral CO2 emissions:
evidence from developed and developing countries. Environment Development
and Sustainability, 24(11), 12712—12739. https://doi.org/10.1007/s10668-021-
01961-5

Huy, L., Hu, X, Li, B., Guo, L., Chen, D., Yang, Y., Ma, M., Li, X., Feng, R., & Fang,
X. (2024). Carbon dioxide emissions from industrial processes and product use
are a non-ignorable factor in China's mitigation. Communications Earth &

Environment, 5(1), Article 1951. https://doi.org/10.1038/s43247-024-01951-1

Huld, A. (2023, October 5). China’s pivot from energy consumption to carbon

emissions controls: Impact on companies. China Briefing. https://www.china-

briefing.com/news/china-carbon-emissions-reduction-dual-control-explained/

Hussain, Z., Khan, M. K., & Shaheen, W. A. (2022). Effect of economic development,
income inequality, transportation, and environmental expenditures on transport

55


https://doi.org/10.1016/j.jclepro.2022.133504
https://doi.org/10.1016/j.segan.2022.100921
https://e360.yale.edu/features/china-renewable-energy
https://doi.org/10.1051/e3sconf/202235601004
https://doi.org/10.1007/s10668-021-01961-5
https://doi.org/10.1007/s10668-021-01961-5
https://doi.org/10.1038/s43247-024-01951-1
https://www.china-briefing.com/news/china-carbon-emissions-reduction-dual-control-explained/
https://www.china-briefing.com/news/china-carbon-emissions-reduction-dual-control-explained/

emissions: Evidence from OECD countries. Environmental Science and

Pollution Research, 29(4), 1-16. https://doi.org/10.1007/s11356-022-19580-6

Igini, M. (2025, July 11). Fossil fuel comprised 82% of global energy mix in 2023.
Earth.Org. https://earth.org/fossil-fuel-accounted-for-82-of-global-energy-
mix-in-2023-amid-record-consumption-report/

Ilori, O. O., & Tanimowo, F. O. (2022). Heteroscedasticity Detection in Cross-
Sectional Diabetes Pedigree Function: A comparison of Breusch-Pagan-
Godfrey, Harvey and Glejser tests. International Journal of Scientific and
Management Research, 05(12), 150-163.
https://doi.org/10.37502/ijsmr.2022.51211

International Energy Agency. (2025). Trends in electric car markets (Global EV

Outlook 2025). 1EA. https://www.iea.org/reports/global-ev-outlook-

2025/trends-in-electric-car-markets-2

J. Emst, A., Ansah, 1., Bachus, K., Kporxah, C., & S. Tomomewo, O. (2023). The Role
of Energy Storage in the Evolution of Renewable Energy and Its Effect on the
Environment. American Journal of Energy Research, 11(3), 128-143.
https://doi.org/10.12691/ajer-11-3-4

Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and
serial independence of regression residuals. Economics Letters, 6(3), 255-259.

https://doi.org/10.1016/0165-1765(80)90024-5

Jarque, C. M., & Bera, A. K. (1987). A Test for Normality of Observations and
Regression Residuals. International Statistical Review / Revue Internationale

de Statistique, 55(2), 163. https://doi.org/10.2307/14031928

Jebli, M. B., & Youssef, S. B. (2015). The environmental Kuznets curve, economic
growth, renewable and non-renewable energy, and trade in Tunisia. Renewable
and Sustainable Energy Reviews, 47, 173-185.
https://doi.org/10.1016/j.rser.2015.02.049

56


https://doi.org/10.1007/s11356-022-19580-6
https://www.iea.org/reports/global-ev-outlook-2025/trends-in-electric-car-markets-2
https://www.iea.org/reports/global-ev-outlook-2025/trends-in-electric-car-markets-2
https://doi.org/10.12691/ajer-11-3-4
https://doi.org/10.1016/0165-1765(80)90024-5
https://doi.org/10.2307/1403192
https://doi.org/10.1016/j.rser.2015.02.049

Juliannisa, 1. A., & Artino, A. (2022). Determinants analysis of GDP Per capita’s
growth and state regulations of 7 ASEAN countries. International Journal of
Research in Business and Social Science (2147-4478), 11(2), 195-206.
https://doi.org/10.20525/ijrbs.v11i2.1664

Kasperowicz, R. (2015). Economic Growth and CO2 Emissions: The ECM Analysis.
Journal of International Studies, 8(3), 91-98. https://doi.org/10.14254/2071-
8330.2015/8-3/7

Kaur, D. (2025, January 7). China EV sales set to surpass traditional cars in historic

shift. TechWire Asia. https://techwireasia.com/2025/01/china-ev-sales-set-to-

surpass-traditional-cars-in-historic-shift/

Khosravani, P. (2025, June 16). The impact of Singapore congestion pricing on urban

mobility. Citiesabc. https://www.citiesabc.com/resources/singapore-

congestion-pricing/

Kwakwa, P. A., Adjei-Mantey, K., & Adusah-Poku, F. (2022). The effect of transport
services and ICTs on carbon dioxide emissions in South Africa. Environmental
Science and Pollution Research, 30(4), 10457—
10468. https://doi.org/10.1007/s11356-022-22863-7

Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null
hypothesis of stationarity against the alternative of a unit root. Journal of
Econometrics, 54(1-3), 159—178. https://doi.org/10.1016/0304-
4076(92)90104-y

Kwilinski, A., Lyulyov, O., & Pimonenko, T. (2024). Reducing transport sector CO2
emissions patterns: Environmental technologies and renewable energy. Journal
of Open Innovation: Technology, Market, and Complexity, 10(1), 100217.
https://doi.org/10.1016/].joitmc.2024.100217

57


https://doi.org/10.14254/2071-8330.2015/8-3/7
https://doi.org/10.14254/2071-8330.2015/8-3/7
https://techwireasia.com/2025/01/china-ev-sales-set-to-surpass-traditional-cars-in-historic-shift/?utm_source=chatgpt.com
https://techwireasia.com/2025/01/china-ev-sales-set-to-surpass-traditional-cars-in-historic-shift/?utm_source=chatgpt.com
https://www.citiesabc.com/resources/singapore-congestion-pricing/
https://www.citiesabc.com/resources/singapore-congestion-pricing/
https://doi.org/10.1016/j.joitmc.2024.100217

Lafi, S. Q., & Kaneene, J. B. (1992). An explanation of the use of principal-components
analysis to detect and correct for multicollinearity. Preventive Veterinary

Medicine, 13(4), 261-275. https://doi.org/10.1016/0167-5877(92)90041-d

Leal, P. H., & Marques, A. C. (2022). The evolution of the environmental Kuznets
curve hypothesis assessment: A literature review under a critical analysis
perspective. Heliyon, 8(11), ell521.
https://doi.org/10.1016/j.heliyon.2022.e11521

Li, W, Li, H., Zhang, H., & Sun, S. (2016). The analysis of CO: emissions and
reduction potential in China’s transport sector. Mathematical Problems in

Engineering, 2016, Article 1043717. https://doi.org/10.1155/2016/1043717

Li, X.-Y., Chen, T., & Chen, B. (2023). Research on the Influencing Factors and
Decoupling State of Carbon Emissions in China’s Transportation
Industry. Sustainability, 15(15), 11871. https://doi.org/10.3390/sul51511871

Lim, S., & Lee, K. T. (2012). Implementation of biofuels in Malaysian transportation
sector towards sustainable development: A case study of international
cooperation between Malaysia and Japan. Renewable and Sustainable Energy
Reviews, 16(4), 1790-1800. https://doi.org/10.1016/j.rser.2012.01.010

Lin, B., & Benjamin, N. 1. (2017). Influencing factors on carbon emissions in China
transport industry. A new evidence from quantile regression analysis. Journal
of Cleaner Production, 150, 175-187.
https://doi.org/10.1016/j.jclepro.2017.02.171

Lindau, T. (2015, February 3). Transport plays a key role in urban air quality. World

Resources Institute. https://www.wri.org/insights/transport-plays-key-role-

urban-air-quality

Ling, C., Tang, J., Zhao, P., Xu, L., Lu, Q., Yang, L., Huang, F., Lyu, W., & Yang, J.

(2024). Unraveling the relation between carbon emission and carbon footprint:

58


https://doi.org/10.1016/0167-5877(92)90041-d
https://doi.org/10.1016/j.heliyon.2022.e11521
https://doi.org/10.1155/2016/1043717
https://www.wri.org/insights/transport-plays-key-role-urban-air-quality
https://www.wri.org/insights/transport-plays-key-role-urban-air-quality

A literature review and framework for sustainable transportation. Deleted

Journal, 1(1). https://doi.org/10.1038/s44333-024-00013-5

Liu, J., Li, S., & Ji, Q. (2021). Regional differences and driving factors analysis of
carbon emission intensity from transport sector in China. Energy, 224, 120178.

https://doi.org/10.1016/.enerey.2021.120178

Liu, J., Quddoos, M. U., Akhtar, M. H., Amin, M. S., Yu, Z., & Janjua, L. R. (2022).
Investigating the Impact of Transport Services and Renewable Energy on

Macro-Economic and Environmental Indicators. Frontiers in Environmental

Science, 10. https://doi.org/10.3389/fenvs.2022.916176

Liu, M., Wang, J., Wen, J., He, G., Wu, J., Chen, H., & Yang, X. (2022). Carbon
emission and structure analysis of transport industry based on input-output

method: China as an example. Sustainable Production and Consumption, 33,

168—188. https://doi.org/10.1016/1.spc.2022.06.021

Liu, X., & Zhou, X. (2025). Determinants of carbon emissions from road transportation
in China: An extended input-output framework with production-theoretical

approach. Energy, 316, 134493. ¢
Lo, K., Yeoh, J. H., & Hsieh, I. L. (2023). Towards nearly Zero-Energy buildings:
smart energy management of Vehicle-to-Building (V2B) strategy and

renewable  energy  sources. Sustainable  Cities  and  Society, 99,

104941. https://doi.org/10.1016/1.5¢s.2023.104941

Loo, B. P. Y, Li, L., & Namdeo, A. (2023). Reducing road transport emissions for
climate policy in China and India. Transportation Research Part D: Transport

and Environment, 122, 103895. https://doi.org/10.1016/1.trd.2023.103895

Lu, Q., Duan, H., Shi, H., Peng, B., Liu, Y., Wu, T., Du, H., & Wang, S. (2022,
December 31). Decarbonization scenarios and carbon reduction potential for
China’s road transportation by 2060. Npj Urban Sustainability, 2(1).
https://doi.org/10.1038/s42949-022-00079-5

59


https://doi.org/10.1016/j.energy.2021.120178
https://doi.org/10.3389/fenvs.2022.916176
https://doi.org/10.1016/j.spc.2022.06.021
https://doi.org/10.1016/j.scs.2023.104941
https://doi.org/10.1016/j.trd.2023.103895
https://doi.org/10.1038/s42949-022-00079-5

Luo, X., Dong, L., Dou, Y., L1, Y., Liu, K., Ren, J., Liang, H., & Mai, X. (2017). Factor
decomposition analysis and causal mechanism investigation on urban transport
CO2 emissions: Comparative study on Shanghai and Tokyo. Energy
Policy, 107, 658—668. https://doi.org/10.1016/j.enpol.2017.02.049

Lv, Q., Liu, H., Yang, D., & Liu, H. (2018). Effects of urbanization on freight transport
carbon emissions in China: Common characteristics and regional disparity.
Journal of Cleaner Production, 211, 481-489.
https://doi.org/10.1016/j.jclepro.2018.11.182

Maji, I. K., & Adamu, S. (2021). The impact of renewable energy consumption on
sectoral environmental quality in Nigeria. Cleaner Environmental Systems, 2,

100009. https://doi.org/10.1016/j.cesys.2021.100009

Menon, G., & Guttikunda, S. K. (2010). Electronic road pricing: Experience & lessons
from Singapore (SIM-air Working Paper Series No. 33-2010). SIM-air.

http://dx.doi.org/10.2139/ssrn.4893051

Mitic, P., Kresoja, M., & Minovi¢, J. (2019). A literature survey of the Environmental
Kuznets Curve. Economic Analysis, 52(1), 109-127.
https://doi.org/10.28934/¢a.19.52.12.pp109-127

Muhammad, S., Long, X., Salman, M., & Dauda, L. (2020). Effect of urbanization and
international trade on CO2 emissions across 65 belt and road initiative

countries. Energy, 196, 117102. https://doi.org/10.1016/j.energy.2020.117102

Murthy, V. N., & Okunade, A. A. (2016). Determinants of U.S. health expenditure:
Evidence from autoregressive distributed lag (ARDL) approach to
cointegration. Economic Modelling, 59, 67-73.
https://doi.org/10.1016/j.econmod.2016.07.001

Neves, S. A., Marques, A. C., & Fuinhas, J. A. (2017). Is energy consumption in the
transport sector hampering both economic growth and the reduction of CO 2
emissions? A disaggregated energy consumption analysis. Transport Policy, 59,

64—70. https://doi.org/10.1016/j.tranpol.2017.07.004

60


https://doi.org/10.1016/j.enpol.2017.02.049
https://doi.org/10.1016/j.cesys.2021.100009
http://dx.doi.org/10.2139/ssrn.4893051
https://doi.org/10.28934/ea.19.52.12.pp109-127
https://doi.org/10.1016/j.energy.2020.117102
https://doi.org/10.1016/j.tranpol.2017.07.004

Nica, I., Georgescu, 1., & Kinnunen, J. (2024). Evaluating renewable energy’s role in
mitigating CO2 emissions: A case study of solar power in Finland using the

ARDL approach. Energies, 17(16), 4152. https://doi.org/10.3390/en17164152

Oladunni, O. J., Olanrewaju, O. A., & Lee, C. K. M. (2024). The Environmental
Kuznets Curve (EKC) Hypothesis on GHG Emissions: Analyses for
Transportation Industry of South Africa. Discover Sustainability, 5, 302.
https://doi.org/10.1007/s43621-024-00518-6

Otero, J., & Baum, C. F. (2018). Unit-root Tests Based on Forward and Reverse
Dickey—Fuller Regressions. The Stata Journal: Promoting Communications on
Statistics and Stata, 18(1), 22-28. SagePub.
https://doi.org/10.1177/1536867x1801800103

Oxford Institute of Energy Studies (2022, October 25). Guide to Chinese Climate

Policy. https://chineseclimatepolicy.oxfordenergy.org/book-content/domestic-

policies/urbanization/#reference-3

Pablo-Romero, M., Cruz, L., & Barata, E. (2017). Testing the transport energy-
environmental Kuznets curve hypothesis in the EU27 countries. Energy

Economics, 62, 257-269. https://doi.org/10.1016/j.eneco0.2017.01.003

Park, J. Y. (1992). Canonical cointegrating regressions. Econometrica, 60(1), 119.

https://doi.org/10.2307/2951679

Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the
analysis of level relationships. Journal of Applied Econometrics, 16(3), 289—
326. https://doi.org/10.1002/jae.616

Phillips, P. C. B. (1987). Time Series Regression with a Unit Root. Econometrica, 55(2),
277. https://doi.org/10.2307/1913237

61


https://doi.org/10.1007/s43621-024-00518-6
https://doi.org/10.1177/1536867x1801800103
https://chineseclimatepolicy.oxfordenergy.org/book-content/domestic-policies/urbanization/#reference-3
https://chineseclimatepolicy.oxfordenergy.org/book-content/domestic-policies/urbanization/#reference-3
https://doi.org/10.1016/j.eneco.2017.01.003
https://doi.org/10.2307/2951679
https://doi.org/10.1002/jae.616
https://doi.org/10.2307/1913237

Phillips, P. C. B., & Hansen, B. E. (1990). Statistical Inference in Instrumental
Variables Regression with I(1) Processes. The Review of Economic Studies,
57(1), 99. https://doi.org/10.2307/2297545

Qian, L. H. (2024). An empirical study on the relationship between urbanization,
transportation infrastructure, industrialization and environmental degradation
in China, India and Indonesia. Environment, Development and Sustainability.

Advance online publication. https://doi.org/10.1007/s10668-024-05773-1

Qodirov, A., Urakova, D., Amonov, M., Masharipova, M., Ibadullaev, E., Xolmurotov,
F., & Matkarimov, F. (2024). The Dynamics of tourism, economic growth, and
CO2 Emissions in Uzbekistan: An ARDL approach. International Journal of
Energy Economics and Policy, 14(6), 365—
370. https://doi.org/10.32479/ijeep.16591

Rahman, M. M., & Kashem, M. A. (2017). Carbon emissions, energy consumption and
industrial growth in Bangladesh: Empirical evidence from ARDL cointegration
and Granger causality analysis. Energy Policy, 110, 600—
608. https://doi.org/10.1016/j.enpol.2017.09.006

Raslavicius, L., Azzopardi, B., KerSys, A., Starevicius, M., Bazaras, 7., & Makaras, R.
(2015). Electric vehicles challenges and opportunities: Lithuanian review.
Renewable  and  Sustainable  Energy  Reviews, 42,  786-800.
https://doi.org/10.1016/j.rser.2014.10.076

Ritchie, H. (2020, October 6). CO: emissions from transport. Our World in Data.

https://ourworldindata.org/co2-emissions-from-transport

Rois, R., Basak, T., Rahman, M. M., & Majumder, A. K. (2012). Modified Breusch-
Godfrey Test for restricted higher order autocorrelation in dynamic linear model
— a distance-based approach. International Journal of Business and

Management, 7(17). https://doi.org/10.5539/ijbm.v7n17p88

Saqib, N., Usman, M., Radulescu, M., Sinisi, C. L., Secarea, C. G., & Tolea, C. (2022).

Revisiting EKC hypothesis in context of renewable energy, human

62


https://doi.org/10.1007/s10668-024-05773-1
https://ourworldindata.org/co2-emissions-from-transport

development and moderating role of technological innovations in E-7 countries.
Frontiers in Environmental Science, 10, 1077658.

https://doi.org/10.3389/fenvs.2022.1077658

Shabir, M., Gill, A. R., & Ali, M. (2022). The impact of transport energy consumption
and foreign direct investment on CO2 emissions in ASEAN countries. Frontiers

in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.994062

Shafique, M., Azam, A., Rafig, M., & Luo, X. (2021). Investigating the nexus among
transport, economic growth and environmental degradation: Evidence from
panel ARDL approach. Transport Policy, 109, 61-71.
https://doi.org/10.1016/j.tranpol.2021.04.014

Shahbaz, M., Loganathan, N., Muzaffar, A. T., Ahmed, K., & Ali Jabran, M. (2016).
How urbanization affects CO 2 emissions in Malaysia? The application of
STIRPAT model. Renewable and Sustainable Energy Reviews, 57, 83-93.
https://doi.org/10.1016/j.rser.2015.12.096

Solaymani, S. (2019). CO2 emissions patterns in 7 top carbon emitter economies: The
case of transport sector. Energy, 168, 989-1001.
https://doi.org/10.1016/j.energy.2018.11.145

Solaymani, S. (2022). CO2 Emissions and The Transport Sector in Malaysia. Frontiers
in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.774164

Stanley, J. K., Hensher, D. A., & Loader, C. (2011). Road transport and climate change:
Stepping off the greenhouse gas. Transportation Research Part A: Policy and
Practice, 45(10), 1020—1030. https://doi.org/10.1016/j.tra.2009.04.005

Stock, J. H., & Watson, M. W. (1993). A simple estimator of cointegrating vectors in
higher order integrated systems. Econometrica, 61(4), 783.

https://doi.org/10.2307/2951763

63


https://doi.org/10.3389/fenvs.2022.1077658
https://doi.org/10.3389/fenrg.2022.994062
https://doi.org/10.1016/j.tranpol.2021.04.014
https://doi.org/10.1016/j.rser.2015.12.096
https://doi.org/10.3389/fenvs.2021.774164
https://doi.org/10.2307/2951763

Sun, Y., Yang, Y., Liu, S., & Li, Q. (2023). Research on transportation Carbon emission
peak Prediction and Judgment System in China. Sustainability, 15(20), 14880.
https://doi.org/10.3390/sul152014880

Sun, Y., Zhang, Y., & Liu, X. (2020). Driving factors of transportation CO- emissions
in Beijing: An analysis from the perspective of urban development. Chinese
Journal of Urban and Environmental Studies, 8(3), 2050013.
https://doi.org/10.1142/S234574812050013X

Teo, K. X. (2025, March 21). Made In Singapore: ERP, the traffic solution pioneered

by the Republic. The Straits Times. https://www.straitstimes.com/life/made-in-

singapore-erp-and-the-polarising-traffic-solution-pioneered-by-the-republic

Tisdale, H. (1942). The Process of Urbanization. Social Forces, 20(3), 311.
https://doi.org/10.2307/3005615

United States Environmental Protection Agency. (2024, May 14). Carbon Pollution

from  Transportation. US EPA. https://www.epa.gov/transportation-air-

pollution-and-climate-change/carbon-pollution-transportation

Wang, B., Sun, Y., Chen, Q., & Wang, Z. (2018). Determinants analysis of carbon
dioxide emissions in passenger and freight transportation sectors in China.
Structural ~ Change  and  Economic  Dynamics, 47, 127-132.
https://doi.org/10.1016/j.strueco.2018.08.003

Wang, S., & Ge, M. (2019, October 16). Everything You Need to Know About the
Fastest-Growing Source of Global Emissions: Transport. World Resources

Institute. https://www.wri.org/insights/everything-you-need-know-about-

fastest-growing-source-global-emissions-transport

Wang, S., Zhou, D., Zhou, P., & Wang, Q. (2011). CO2 emissions, energy consumption
and economic growth in China: A panel data analysis. Energy Policy, 39(9),

4870-4875. https://doi.org/10.1016/j.enpol.2011.06.032

64


https://doi.org/10.3390/su152014880
https://doi.org/10.1142/S234574812050013X
https://www.straitstimes.com/life/made-in-singapore-erp-and-the-polarising-traffic-solution-pioneered-by-the-republic
https://www.straitstimes.com/life/made-in-singapore-erp-and-the-polarising-traffic-solution-pioneered-by-the-republic
https://doi.org/10.2307/3005615
https://www.epa.gov/transportation-air-pollution-and-climate-change/carbon-pollution-transportation
https://www.epa.gov/transportation-air-pollution-and-climate-change/carbon-pollution-transportation
https://doi.org/10.1016/j.strueco.2018.08.003
https://www.wri.org/insights/everything-you-need-know-about-fastest-growing-source-global-emissions-transport
https://www.wri.org/insights/everything-you-need-know-about-fastest-growing-source-global-emissions-transport
https://doi.org/10.1016/j.enpol.2011.06.032

Wang, W.-Z., Liu, L.-C., Liao, H., & Wei, Y.-M. (2021). Impacts of urbanization on
carbon emissions: An empirical analysis from OECD countries. Energy

Policy, 151, 112171. https://doi.org/10.1016/j.enpol.2021.112171

Wang, Z., & Liu, W. (2015). Determinants of CO2 emissions from household daily
travel in Beijing, China: Individual travel characteristic perspectives. Applied
Energy, 158, 292-299. https://doi.org/10.1016/j.apenergy.2015.08.065

Wei, F., Zhang, X., Chu, J., Yang, F., & Yuan, Z. (2021). Energy and environmental
efficiency of China’s transportation sectors considering CO2 emission
uncertainty. Transportation Research Part D: Transport and

Environment, 97, 102955. https://doi.org/10.1016/1.trd.2021.102955

West Virginia University. (n.d.). Daniel Ciolkosz. MASBio.

https://masbio.wvu.edu/members/daniel-ciolkosz

Williamson, J. G. (1988). Chapter 11 Migration and urbanization. Handbook of
Development Economics, 425-465. https://doi.org/10.1016/s1573-
4471(88)01014-9

World Bank. (2024). China: Low Carbon Transition of Urban Mobility in Yichang.
https://documents1.worldbank.org/curated/en/099021924101531203/pdf/P172
38815afl16e0el81c31e47d39bb2254.pdf

Xie, R., Fang, J., & Liu, C. (2017). The effects of transportation infrastructure on urban
carbon emissions. Applied Energy, 196, 199-207.
https://doi.org/10.1016/j.apenergy.2017.01.020

Xie, R., Huang, L., Tian, B., & Fang, J. (2019). Differences in Changes in Carbon
Dioxide Emissions among China’s Transportation Subsectors: A Structural
Decomposition Analysis. Emerging Markets Finance and Trade, 55(6), 1294—

1311. https://doi.org/10.1080/1540496x.2018.1526076

65


https://doi.org/10.1016/j.enpol.2021.112171
https://doi.org/10.1016/j.trd.2021.102955
https://masbio.wvu.edu/members/daniel-ciolkosz
https://doi.org/10.1016/s1573-4471(88)01014-9
https://doi.org/10.1016/s1573-4471(88)01014-9
https://documents1.worldbank.org/curated/en/099021924101531203/pdf/P17238815af16e0e181c31e47d39bb2254.pdf
https://documents1.worldbank.org/curated/en/099021924101531203/pdf/P17238815af16e0e181c31e47d39bb2254.pdf
https://doi.org/10.1016/j.apenergy.2017.01.020
https://doi.org/10.1080/1540496x.2018.1526076

Xu, B., & Lin, B. (2015). Carbon dioxide emissions reduction in China’s transport
sector: A dynamic VAR (vector autoregression) approach. Energy, 83, 486—495.
https://doi.org/10.1016/j.energy.2015.02.052

Xu, B., & Lin, B. (2015). Factors affecting carbon dioxide (CO:) emissions in China's
transport sector: A dynamic nonparametric additive regression model. Journal
of Cleaner Production, 101, 311-322.
https://doi.org/10.1016/].jclepro.2015.03.088

Xu, X., & Xu, H. (2021). The driving factors of carbon emissions in China's
transportation sector: A spatial analysis. Frontiers in Energy Research, 9,

Article 664046. https://doi.ore/10.3389/fenre.2021.664046

Xue, L., & Liu, D. (2023, March 23). 4 solutions to enhance the credibility of China's
subnational transport carbon emissions inventories. World Resources Institute.

https://www.wri.org/technical-perspectives/4-solutions-enhance-credibility-

chinas-subnational-transport-carbon

Yang, W., Chen, Y., Gao, Y., & Hu, Y. (2024). The impact of urban transportation
development on daily travel carbon emissions in China: Moderating effects
based on urban form. Land, 13(12), 2107.
https://doi.org/10.3390/1and13122107

Yang, Y., Xia, S., Huang, P., & Qian, J. (2024). Energy transition: Connotations,
mechanisms and effects. FEnergy Strategy Reviews, 52, 101320.
https://doi.org/10.1016/j.esr.2024.101320

Yang, Z. (2023, February 21). How did China come to dominate the world of electric
cars? MIT Technology
Review. https://www.technologyreview.com/2023/02/21/1068880/how-did-

china-dominate-electric-cars-policy/

Zaman, Q. uz, Wang, Z., Zaman, S., & Rasool, S. F. (2021). Investigating the nexus

between education expenditure, female employers, renewable energy

66


https://doi.org/10.1016/j.energy.2015.02.052
https://doi.org/10.1016/j.jclepro.2015.03.088
https://doi.org/10.3389/fenrg.2021.664046
https://www.wri.org/technical-perspectives/4-solutions-enhance-credibility-chinas-subnational-transport-carbon
https://www.wri.org/technical-perspectives/4-solutions-enhance-credibility-chinas-subnational-transport-carbon
https://doi.org/10.3390/land13122107
https://doi.org/10.1016/j.esr.2024.101320

consumption and CO2 emission: Evidence from China. Journal of Cleaner

Production, 312, 127824. https://doi.org/10.1016/j.jclepro.2021.127824

Zeng, X., Chen, G., Luo, S., Teng, Y., Zhang, Z., & Zhu, T. (2022). Renewable
transition in the power and transport sectors under the goal of carbon-neutral in
Sichuan, China. Energy Reports, 8, 738-748.
https://doi.org/10.1016/j.egyr.2022.02.213

Zhao, X., Hu, H., Yuan, H., & Chu, X. (2023). How does adoption of electric vehicles
reduce carbon emissions? Evidence from China. Heliyon, 9(9), €20296.

https://doi.org/10.1016/j.heliyon.2023.¢20296

Zheng, S., Huang, Y., & Sun, Y. (2022). Effects of urban form on carbon emissions in
China: Implications for low-carbon urban planning. Land, 11(8), 1343.
https://doi.org/10.3390/land11081343

Zhou, G., Chung, W., & Zhang, X. (2013). A study of carbon dioxide emissions
performance of China's transport sector. Energy, 50, 302-314.
https://doi.org/10.1016/j.enerey.2012.11.045

Zhou, Y., Cao, S., Hensen, J. L., & Lund, P. D. (2019). Energy integration and
interaction  between  buildings and vehicles: A  state-of-the-art
review. Renewable and Sustainable Energy Reviews, 114,

109337. https://doi.org/10.1016/j.rser.2019.109337

Zivot, E., Wang, J. (2003). Rolling Analysis of Time Series. In: Modeling Financial
Time Series with S-Plus. Springer, New  York, NY.
https://doi.org/10.1007/978-0-387-21763-5_9

67


https://doi.org/10.1016/j.jclepro.2021.127824
https://doi.org/10.1016/j.egyr.2022.02.213
https://doi.org/10.1016/j.heliyon.2023.e20296
https://doi.org/10.3390/land11081343
https://doi.org/10.1016/j.energy.2012.11.045
https://doi.org/10.1016/j.rser.2019.109337
https://doi.org/10.1007/978-0-387-21763-5_9

Appendices
Appendix 1.1

Global greenhouse gas emissions by sector and end use, 2021
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Appendix 1.2

This is based on global transport emissions in 2018, which totalled 8 billion tonnes CO..
Transport accounts for 24% of CO, emissions from energy.

Global CO, emissions {rom transport

74.5% of transport emissions
' come from road vehicles

PR

Road (passenger) Road (freight)

(includes cars, motorcy ,buses, and t

(includes trucks and lorries)

29.4%

Of passenger emissions:

] —
60% from international; Rlaz;l
40% from domestic flights °
Other

(mainly transport of oil, gas, water, steam and
other materials via pipelines)
2.2%

Data Source: Our World in Data based on International Energy Agency (IEA) and the International Council on Clean Transportation (ICCT)

Licensed under CC-BY by the author Hannah Ritchie.

OurWorldinData.org - Research and data to make progress against the world’s largest problems.
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Appendix 1.3

Domestic energy production, China, 2022
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Appendix 1.4

Data source: Climate Watch; Location: Top Emitters; Sectors/Subsectors: Transportation; Gases: CO2; Calculation: Total; Show data
by Countries.
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Appendix 1.5

Well-to-wheel CO_e (million tonnes)
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Appendix 4.1.1: Augmented Dickey Fuller Test (ADF)

Level Form: Intercept Without Trend

Null Hypothesis: LNTCE has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*
Auamented Dickev-Fuller test statistic -0.511303 0.8779
Test critical values: 1% level -3.615588
5% level -2.941145
10% level -2.609066
Null Hypothesis: LNGDP has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=9)
t-Statistic Prob.*
Augmented Dickey-Fuller test statisti -2.
Test critical values: 1% level -3.621023
5% level -2.943427
10% level -2.610263

Null Hypothesis: LNGDP2 has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Auamented Dickevy-Fuller test statistic -2.047297 0.2663
Test critical values: 1% level -3.621023
5% level -2.943427
10% level -2.610263

Null Hypothesis: RENEWABLES EQUIVALENT PRIMARY ENERGY has a unit root

Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic 2.488118 1.0000
Test critical values: 1% level -3.615588
5% level -2.941145
10% level -2.609066
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First Difference: Intercept Without Trend

Null Hypothesis: D(LNTCE) has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -6.213729 0.0000
Test critical values: 1% level -3.621023

5% level -2.943427

10% level -2.610263

Null Hypothesis: D(LNGDP) has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Auagmented Dickey-Fuller isti -4.5271

Test critical values: 1% level -3.626784
5% level -2.945842
10% level -2.611531

Null Hypothesis: D(LNGDP2) has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Auamented Dickev-Fuller test statistic -4.142409 0.0026
Test critical values: 1% level -3.626784

5% level -2.945842

10% level -2.611531

Null Hypothesis: D(RENEWABLES EQUIVALENT PRIMARY ENERGY ) has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -5.883648 0.0000
Test critical values: 1% level -3.621023

5% level -2.943427

10% level -2.610263
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Level Form: Intercept With Trend

Null Hypothesis: LNTCE has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -1.838839 0.6659
Test critical values: 1% level -4.219126
5% level -3.533083
10% level -3.198312
Null Hypothesis: LNGDP has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Automatic - based on SIC, maxlag=9)
t-Statistic Prob.*
Auagmented Dickey-Fuller isti -1.44
Test critical values: 1% level -4.226815
5% level -3.536601
10% level -3.200320

Null Hypothesis: LNGDP2 has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Auamented Dickev-Fuller test statistic -0.998718 0.9323
Test critical values: 1% level -4.219126
5% level -3.533083
10% level -3.198312

Null Hypothesis: RENEWABLES EQUIVALENT PRIMARY ENERGY has a unit root

Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -0.431883 0.9826
Test critical values: 1% level -4.219126
5% level -3.533083
10% level -3.198312
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First Difference: Intercept With Trend

Null Hypothesis: D(LNTCE) has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -5.392137 0.0005
Test critical values: 1% level -4.234972

5% level -3.540328

10% level -3.202445

Null Hypothesis: D(LNGDP) has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Auagmented Dickey-Fuller isti -3.631312 .04
Test critical values: 1% level -4.226815

5% level -3.536601

10% level -3.200320

Null Hypothesis: D(LNGDP2) has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Auamented Dickev-Fuller test statistic -3.688843 0.0358
Test critical values: 1% level -4.226815

5% level -3.536601

10% level -3.200320

Null Hypothesis: D(RENEWABLES EQUIVALENT PRIMARY ENERGY ) has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -7.558037 0.0000
Test critical values: 1% level -4.226815

5% level -3.536601

10% level -3.200320
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Appendix 4.1.2: Kwiatkowski—Phillips—Schmidt—Shin (KPSS) Test

Level Form: Intercept Without Trend

Null Hypothesis: LNURB is stationary
Exogenous: Constant
Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

LM-Stat.
Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.757599
Asymptotic critical values*: 1% level 0.739000
5% level 0.463000
10% level 0.347000
First Difference: Intercept Without Trend
Null Hypothesis: D(LNURB) is stationary
Exogenous: Constant
Bandwidth: 5 (Newey-West automatic) using Bartlett kernel
LM-Stat.
Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.712961

Asymptotic critical values™*: 1% level 0.739000
5% level 0.463000
10% level 0.347000

Level Form: Intercept With Trend

Null Hypothesis: LNURB is stationary
Exogenous: Constant, Linear Trend
Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

LM-Stat.
Asymptotic critical values*: 1% level 0.216000
5% level 0.146000
10% level 0.119000
First Difference: Intercept With Trend
Null Hypothesis: D(LNURB) is stationary
Exogenous: Constant, Linear Trend
Bandwidth: 4 (Newey-West automatic) using Bartlett kernel
LM-Stat.
Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.197497
Asymptotic critical values™*: 1% level 0.216000
5% level 0.146000
10% level 0.119000
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Appendix 4.2.1: ARDL Cointegration Bounds Test

ARDL Long Run Form and Bounds Test
Dependent Variable: D(LNTCE)

Selected Model: ARDL(2, 2, 1, 1, 0)

Case 2: Restricted Constant and No Trend
Date: 08/20/25 Time: 17:37

Sample: 1985 2023

Included observations: 37

Levels Equation
Case 2: Restricted Constant and No Trend

Variable Coefficient ~ Std. Error t-Statistic Prob.
LNGDP -2.591911 0.274518 -9.441681 0.0000
LNGDP2 0.148802 0.028543 5.213264 0.0000
LNURB 3.896620 0.823900 4.729482 0.0001
RENEWABLES ... -0.041832 0.012991  -3.220013 0.0034
C -61.95336 15.56646  -3.979925 0.0005

EC = LNTCE - (-2.5919*LNGDP + 0.1488*LNGDP2 + 3.8966*LNURB
-0.0418* RENEWABLES EQUIVALENT PRIMARY ENERGY -
61.9534)

F-Bounds Test Null Hypothesis: No levels relationship
Test Statistic Value Signif. I(0) (1)
Asymptotic: n=1000
F-statistic 4.705422 10% 2.2 3.09
k 4 5% 2.56 3.49
2.5% 2.88 3.87
1% 3.29 4.37
Actual Sample Size 37 Finite Sample: n=40
10% 2.427 3.395
5% 2.893 4
1% 3.967 5.455
Finite Sample: n=35
10% 2.46 3.46
5% 2.947 4.088
1% 4.093 5.532
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Appendix 4.2.2: Error Correction Model

ARDL Error Correction Regression
Dependent Variable: D(LNTCE)

Selected Model: ARDL(2, 2, 1, 1, 0)

Case 2: Restricted Constant and No Trend
Date: 08/20/25 Time: 17:40

Sample: 1985 2023

Included observations: 37

ECM Regression
Case 2: Restricted Constant and No Trend
Variable Coefficient ~ Std. Error t-Statistic Prob.

D(LNTCE(-1)) 0.539398 0.165237 3.264386 0.0031
D(LNGDP) -6.949467 1.263760 -5.499038 0.0000
D(LNGDP(-1)) 1.310977 0.402237 3.259220 0.0031
D(LNGDP2) 0.447438 0.080502 5.558071 0.0000
D(LNURB) 31.70529 5.643437 5.618081 0.0000
CointEq(-1)* -1.438154 0.247877 -5.801884 0.0000

Appendix 4.3: Diagnostic Checking

Appendix 4.3.1.1: Jarque-Bera Test

12
Series: Residuals
10 Sample 1987 2023
Observations 37
8 Mean -1.34e-14
Median -0.002380
6 Maximum  0.200963
Minimum -0.131894
4 Std. Dev. 0.069006
Skewness 0.705882
2 III I Kurtosis 3.994753
. N -.- N [ I———
-0.15  -0.10  -0.05 0. 0.05 0.10 0.15 0.20 Probability  0.100349%
Appendix 4.3.1.2: LM Test
Breusch-Godfrey Serial Correlation LM Test:
Null hypothesis: No serial correlation at up to 2 lags
F-statistic 0.621854 Prob. F(2,24) 0.5454
Obs*R-squared 1.822917 Prob. Chi-Square(2) 0.4019

Appendix 4.3.1.3: ARCH Test

Heteroskedasticity Test: ARCH

F-statistic 0.623515 Prob. F(1,34) 0.4352
Obs*R-squared 0.648303 Prob. Chi-Square(1) 0.4207

77




Appendix 4.4.1:Cointegration (Robustness Checking)

Appendix 4.4.1.1: FMOLS

Dependent Variable: LNTCE

Method: Fully Modified Least Squares (FMOLS)

Date: 08/20/25 Time: 17:43

Sample (adjusted): 1986 2023

Included observations: 38 after adjustments

Cointegrating equation deterministics: C

Long-run covariance estimate (Bartlett kernel, Newey-West fixed
bandwidth = 4.0000)

Variable Coefficient ~ Std. Error t-Statistic Prob.
LNGDP -2.329039 0.342977 -6.790652 0.0000
LNGDP2 0.130401 0.035535 3.669685 0.0009
LNURB 3.951409 1.148719 3.439839 0.0016
RENEWABLES EQUIVALENT PRI... -0.086208 0.015845 -5.440615 0.0000
C -62.82105 21.54211  -2.916198 0.0063
R-squared 0.987846 Mean dependent var 5.787647
Adjusted R-squared 0.986373 S.D. dependent var 0.870573
S.E. of regression 0.101627 Sum squared resid 0.340824
Long-run variance 0.012442

Appendix 4.4.1.2: DOLS

Dependent Variable: LNTCE

Method: Dynamic Least Squares (DOLS)

Date: 08/20/25 Time: 17:43

Sample (adjusted): 1987 2022

Included observations: 36 after adjustments

Cointegrating equation deterministics: C

Fixed leads and lags specification (lead=1, lag=1)

Long-run variance estimate (Bartlett kernel, Newey-West fixed bandwidth

=4.0000)
Variable Coefficient ~ Std. Error t-Statistic Prob.
LNGDP -2.298951 0.250734 -9.168868 0.0000
LNGDP2 0.115504 0.025001 4.619999 0.0002
LNURB 4.726559 0.736351 6.418893 0.0000
RENEWABLES EQUIVALENT PRI... -0.031012 0.011894  -2.607361 0.0173
C -79.14719 13.92984 -5.681846 0.0000
R-squared 0.995964 Mean dependent var 5.789001
Adjusted R-squared 0.992566 S.D. dependent var 0.846290
S.E. of regression 0.072968 Sum squared resid 0.101163
Long-run variance 0.001438

78



Appendix 4.4.1.3: CCR

Dependent Variable:

LNTCE

Method: Canonical Cointegrating Regression (CCR)
Date: 08/20/25 Time: 17:44
Sample (adjusted): 1986 2023

Included observations: 38 after adjustments

Cointegrating equation deterministics: C
Long-run covariance estimate (Bartlett kernel, Newey-West fixed
bandwidth = 4.0000)

Variable Coefficient ~ Std. Error t-Statistic Prob.
LNGDP -2.160304 0.290698 -7.431433 0.0000
LNGDP2 0.128134 0.035938 3.565414 0.0011
LNURB 3.533094 1.073874 3.290045 0.0024
RENEWABLES EQUIVALENT PRI... -0.083203 0.016136  -5.156359 0.0000
C -55.62219 20.41576  -2.724473 0.0102
R-squared 0.987751 Mean dependent var 5.787647
Adjusted R-squared 0.986267 S.D. dependent var 0.870573
S.E. of regression 0.102022 Sum squared resid 0.343480
Long-run variance 0.012442
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