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ABSTRACT 

 

FEATURE SELECTION BY MUTUAL INFORMATION: ROBUST 

RANKING ON HIGH- DIMENSION LOW- SAMPLE-SIZE DATA 

 

CHIN FUNG YUEN 

 

 

Feature selection is a process of selecting a group of relevant features by 

removing unnecessary features for use in constructing the predictive model. The 

current benchmark for the data set is obtained by including all the features, such 

as redundancy and noise. Therefore, for this research, an optimal baseline for 

the data set will be proposed using the feature ranking method. To achieve this 

optimal baseline, a total number of features will be obtained at the same time to  

serve as the guideline on the number of features needed in a feature selection 

method.  In addition, the high dimensional data which increases the difficulty 

on the features selection due to the curse of dimensionality. To overcome this 

problem, a robust feature selection algorithm, named ranked mutual information 

with support vector machine (rMI-SVM) can be applied on the data with 

missing value regardless of the linearity of the data set, as it does not require 

additional parameter or preset on the number of features needed. The features 

selected by rMI-SVM can avoid overfitting as the chosen candidate feature will 

provide new information to the predictive model. The receiver operating 

characteristic curve has been plotted to show the sensitivity of the model built 

by rMI-SVM compared  to the regression method under the same number of 
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features. Also, the Z- score graph was plotted to confirm that the features chosen 

by rMI-SVM were not selected by chance. The experimental results show that 

the proposed method can select a compact subset of features that can perform 

better than the benchmark of the data set and the optimal baseline proposed in 

this study. The biological meaning of the selected features confirmed that the 

selected features are related to the relevant disease. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Brief of Bioinformatics 

 

The global population is now living in an era of information and 

technology, judging from the impact of computers and technology that has 

been around us. Undeniably, our lives are inseparable from information and 

networks. People are not only receiving information through the internet but 

also using online banking, online shopping, and online stock trading popularly 

called online transactions. Bioinformatics is a popular term and is an emerging 

discipline in modern science.  Bioinformatics is a potent technology to search, 

process and to apply big data in biological science. As a methodology, 

bioinformatics is a comprehensive, data-driven, genome-wide and systematic 

approach that generates new hypotheses, discovers new patterns, and finds 

new functional elements. It helps to overcome the shortcomings in traditional 

experimental biology method. The potent combination of computational and 

experimental methods should be the most significant way in learning 

biological data (Gauthier et al., 2018).  

 

Bioinformatics has a history of about 70 years when people are keen 

on developing molecular biology and computer science where many of the 

fundamental concepts and techniques were established in molecular biology 
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between 1950 and 1960. In 1944, Avery et al. extracted pure deoxyribonucleic 

acid (DNA) from a relay of preset of several features (Avery et al., 1944). In 

1952, Hershey and Chase asserted that the DNA contained genetic information 

(Hershey and Chase, 1952).  Subsequently, a year later, Watson and Crick 

(1953) pioneered the discovery of the double-helix structure of DNA (Watson 

and Crick, 1953). At the same time, the first protein sequence, insulin was 

solved and published by Sanger and Thompson (1953) (Sanger and Thompson, 

1953). These findings further prompted the research of molecular biology to 

the golden age. Pauling and Zuckerkandl (1963) introduced evolutionary 

biology by analysing the protein sequences of haemoglobin (Pauling and 

Zuckerkandl, 1963).  

  

Margaret Dayhoff (1962) was the first bioinformatician to use the 

computational methods in electrochemistry. She was the first person to apply 

the computation method in protein sequences evolution (Dayhoff and Ledley, 

1962). Until today, the one-letter amino acid code proposed by Davhoff  (1965) 

is still being used. Fitch (1970) defined the concept of ontology and stressed 

that human haemoglobin is more closely related to chimpanzee haemoglobin 

than rat haemoglobin. Maxam and Gilbert (1977) proposed the first DNA 

sequencing method in 1976 which was followed by a proposal by Sanger et al. 

(1977) on the sequencing of Sanger DNA (Maxam and Gilbert, 1977; Sanger 

et al., 1977; Fitch, 1970). This induced the developing of the DNA sequencing 

when prior to that the researchers studied more on protein sequencing.  

Furthermore, Dayhoff, Schwartz and Orcutt (1978) proposed the evolution of 

a protein model by using probability and constructing a famous peptidyglycine 
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alpha-amidating monooxygenase (PAM) amino acid substitution matrices to 

solve the problem in protein alignment.   

 

Consequently, Staden (1979) developed the first software for analysing 

the Sanger DNA sequencing (Staden, 1979).  In addition, Murata et al. (1985) 

developed the first multiple sequence alignment (MSA) by generalising the 

first dynamic programming algorithm developed by Needleman and Wunsch 

(1970)  which is a more practical algorithm of MSA published by Feng and 

Doolitle (1987) (Feng and Doolitle, 1987; Murata et al., 1985). Later, a 

popular MSA software CLUSTAL was developed in 1988, which was used 

and maintained until today (Sievers and Higgins, 2014). In 1995, Craig Venter 

sequenced the first free-living organism genome, which was 1.83Mbp long 

(Fleischmann et al., 1995). In 2005, a total of  454 sequencing technologies 

were made available (Ouzounis and Valencia, 2003).    

 

1.2  Development of Computational Bioinformatics 

 

When life science was hastily developed in the last 70 years, computer 

technologies were also progressing and developing significantly. Nowadays, 

laptop, cell phones, tablets, smartwatch, and internet are deemed pervasive. A 

significant breakthrough in computer science was the information theory 

proposed by Shannon (1948). The development of bioinformatics as an 

interdisciplinary field of life science and computer science is an inevitable 

historical trend. The problem of the classic bioinformatics first started in  1960. 
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Sequence analysis has always been a core issue in bioinformatics. Information 

was concealed in the sequences of the function, evolution and regulation of 

genes and protein. Dayhoff and Ledley (1962) proposed a COMPROTEIN 

algorithm to solve the protein sequences by breaking down the proteins into 

small pieces, then rejoining them together to form a complete protein sequence.  

Subsequently, Dayhoff (1965) published the “Atlas of Protein Sequence and 

Structure”, which became the first database in bioinformatics (Dayhoff, 1965).  

 

Needleman and Wunsch (1970) developed the first Dynamic 

Programme algorithm to find the optimal alignment (Needleman and Wunsch, 

1970). Additionally, a practical technique for secondary structure prediction 

method was developed by Chou and Fasman (1974) (Chou and Fasman, 1974). 

Consequently, Michael and Arieh (1975) developed the complex chemical 

systems of protein folding and was awarded the Nobel Prize in Chemistry in 

2013 (Michael and Arieh, 1975). Similarly, in 1994 John Moult and his team 

started the Critical Assessment of Protein Structure Prediction (CASP) to 

provide an efficient prediction method (John, 2005). In 1990, the expressed 

sequence tag (EST) sequencing and microarray technology was started and 

became widely used. Numerous algorithms and techniques were created for 

gene expression data analysis. Gradually, genome sequencing, genome 

alignment, and gene prediction became popular in the bioinformatics research 

area. Currently, the research area of bioinformatics Dayhoffs sequence 

alignment and assembly, gene expression and identification, protein prediction 

which is a tool of evolutionary development (Dayhoffs et al., 1978). 
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Biology techniques have always generated large amount of data with 

noise. Biological data are complex and highly dimensional. Similar to data 

mining, bioinformatics also used mathematical tools to extract useful 

biological information from a large amount of data. The human organism is a 

complex system, and contains cells with a nucleus comprising the 

chromosomes.   

 

1.3  Research in Cancer Biomarker 

 

DNA microarray, also known as DNA array, are commonly referred to 

as gene chips. The core principle behind a microarray is the hybridisation 

between two DNA strands, the property itself matches a nucleic acid with each 

other by creating the hydrogen bonds between paired nucleotide base pairs. It 

is an instrument for research in genomics and genetics. Researchers can collect 

a large number of gene expression at the same time, and it is a fast, precise and 

a cheaper bioanalytical testing skill. It can provide comprehensive information 

that are related to the genetic sequence. The emergence of microarray 

experiments have produced several bioinformatics challenges such as 

experimental design, pre-processing of the data, significance analysis, cluster 

analysis and predictive analysis, relevant analysis and experimental validation. 

The primary purpose of predictive analysis or classification method is to use 

gene expression data to build a classification model to predict the existence of 

diseases. This includes how to select the essential features from a large 

number of genes, and then build the predictive model. The aim of this analysis 

is to recognise genes that may be affected by the disease as a biomarker for 
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early diagnosis and to successfully establish the diagnostic models (Le et al., 

2015). 

 

A biomarker is a quantifiable indicator of some physiological state or 

disease condition. In genetics, a biomarker is a DNA sequence that causes the 

disease or is related to a predisposition to the disease. Microarray data analysis 

has become a popular research area. One of the applications of DNA 

microarray is gene expression profiling. A cancer biomarker refers to a 

substance which was formed directly by a tumour cell or induced by a non-

tumour cell. The detection of tumour markers can gauge the existence of a 

tumour or pathogenesis and prognosis of tumours. Cancer biomarker can help 

in diagnosing the presence of a tumour and the type of tumour. At the same 

time, it can help in the prognosis of the tumour whether it is benign or 

malignant and which type of treatment is suitable.  Also, it helps to predict 

whether the tumour will attack again or not.  

 

Researchers at the University of Texas MD Anderson Cancer Centre 

have confirmed that a protein called CSN6 relates to low survival rates in 

patients with colorectal cancer. This discovery may have significant inference 

on alternative treatment for colorectal cancer (Aranda et al., 2015). A 

researcher found that a molecule called IL13RA2 gives a higher expression in 

the final stage of Basal-like breast cancer (BLBC); therefore, IL13RA2 can be 

used to predict the progression-free survival of BLBC. At the same time, a 

high level of IL13RA2 also indicated that BLBC can spread quickly to the 
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lungs  (Papageorgis et al., 2015). Furthermore, researchers from the Johns 

Hopkins Kimmel Cancer Centre found that mutations in the mismatch repair 

(MMR) gene may help to predict the reaction of the inhibitor drug PD-1 in 

patient accurately. This study transmits a sign to tell how chemotherapy works 

in cancer and based on the genetic characteristics of cancer it can give 

guidance on chemotherapy. The use of this predictive biomarker can help 

researchers to prescribe correctly the drug to the responded patient to avoid 

expensive treatment and increase the treatment time to heal patients (Ranjan et 

al., 2015).  

 

Researchers from the University of Sheffield in the United Kingdom 

have identified 788 biomarkers from the blood test, and these biomarkers were 

used to develop early cancer screening test (Uttley et al., 2016; University of 

Sheffield, 2016). Researchers have developed a new technique for detecting 

pancreatic cancer biomarkers in the serum of cancer patients (Sogawa et al., 

2016). Biomarkers have great significance in the research and development of 

life science, as well as medical diagnosis, clinical treatment and new drug 

development. It helps researchers to be more effective in diagnosis or 

treatment, especially in the prevention and control of complex and chronic 

diseases such as cancer, cardiovascular disease, diabetes, etc. For example, a 

new combination of four proteins (APOE, ITIH3, APOA1 and APOL1) form 

an accurate biomarker diagnosis of pancreatic cancer as early diagnosis and 

early treatment may improve prognosis and increase the chances of survival 

(Liu et al., 2017). 



 

8 
 

1.4  Motivation 

 

In 2011, the population of Peninsular Malaysia was 29.1 million, 

which comprised of  50.7%, (male) and  49.3%, (female). According to the 

distribution of ethnicity, Malay was 54.7%, Chinese was 24.3%, Indian was 

7.3%, Bumiputera was 12.8%, and others was 0.9% (Department of Statistic 

Malaysia). Between 2007 and  2011, there were 103507 new cancer cases 

diagnosed in Malaysia made up 45.2% of male and 54.8% female. Table 1.1 

shows the breakdown of percentage based on gender and race. On average, 

every year, about 20000 new cancer cases were diagnosed out of which 55 

people were diagnosed every day with cancer. From the population view, one 

out of 1455 people was diagnosed with cancer. In Malaysia, the top three most 

common type of cancer was breast cancer (32.1%), colorectal cancer (27.1%) 

and lung cancer (21.4%). Table 1.2 shows the breakdown of the percentage of 

the top 10 most common cancer among male and female. 

 

Table 1.1: Percentage of incidence by gender and ethnic 

Race  Male  Female 

 Malay  18.1%  23.4% 

 Chinese 19.7%  21.4% 

 Indian  2.6%  4.6% 

 Others  4.8%  5.4% 
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Table 1.2: Percentage of the top 10 most common cancer among male and 

female 

Male      Female 

Colorectal  16.4%  Breast   32.1% 

Lung   15.8%  Colorectal  10.7% 

Nasopharynx  8.1%  Cervix Uteri  7.7% 

Lymphoma  6.8%  Ovary   6.1% 

Prostate  6.7%  Lung   5.6% 

Liver   6.5%  Lymphoma  3.9% 

Leukaemia  5.4%  Corpus Uteri  3.8% 

Stomach  4.3%  Leukaemia  3.5% 

Bladder  3.2%  Thyroid  3.0% 

Other Skin  3.0%  Stomach  2.6% 

 

In the absence of other causes of death, it is very likely that one out of 

ten males will develop cancer before the age of 75 and one out of nine females, 

though females are at slightly higher risk than males. Among the race, Chinese 

has a higher risk than others and among the genders, the female has a higher 

risk than the male. Studies found that the diagnosis of cancer usually occurs 

after the age of 30 for male and female. However, the incidence of the male is 

higher than female after the age of 60. Breast cancer is the most common 

cancer in Malaysia. The incidence percentage is the highest among the 

Chinese, followed by Indians and Malays. Most of the cases were diagnosed 

between 45 years old to 69 years old which decreases after the age of 70. 

Overall, Chinese female has a higher risk than other races. Breast cancer is 

divided into four stages, and the first and second stages belong to early-stage 

while the third and fourth stages belong to the late stage. Among 11938 cases, 

20% diagnosed was at the early stage, 37% diagnosed was at the second stage, 
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23% diagnosed was at the third stage and 20% diagnosed was at the fourth 

stage, and 43% of the incidence diagnosed at the late stage. 

 

Colorectal cancer is the most common cancer among the male, and 

second among the female. Studies found that the diagnosis of colorectal cancer 

showed an increase after 60 years old in male and female. Overall, Chinese 

has a higher risk than other races and most of the colorectal cancer diagnosed 

was at the late stage (66% in male and 65% in female). Lung cancer was the 

second common cancer among male and fifth among female. Studies found 

that the diagnosis of lung cancer started to increase after 60 years old in male. 

Again the Chinese have a higher risk than other races and an extremely high 

percentage of the incidences diagnosed were at the late stage (89% in male 

and 91% in female).   

 

From the study, most cancer cases were diagnosed at the late stage.  

Although cancer cells are not naturally found in the human body, nevertheless,  

there are cancer cells in each of us, but not everyone will develop malignant 

tumours. Many small tumours not easily detected during physical examination. 

If they missed the first physical examination, the cancer cells would start 

growing. It may take just a few weeks or as slow as years or decades to grow. 

Secondly, not all physical examinations can detect cancer because the standard 

physical tests usually check the blood, urine and physical function and do not 

deliberately check the cancer biomarker. Many early cancers do not affect the 

blood, urine or physical function; therefore, it becomes difficult to detect 

cancer in the first stage. Many cancers have no symptoms or signs in the early 
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stages, such as liver cancer and stomach cancer, which are often considered as 

typical stomach diseases. Bleeding caused by ovarian cancer may be treated as 

irregular menstruation. Some people are unaware of the high risk of cancer 

since some cancers are genetically inherited. (National Cancer Registry 

Department. Summary of Malaysian National Cancer registry report 2007-

2011) 

 

In 2016, cancer was the fourth biggest killer in Malaysia. The highest 

mortality rate of cancer is lung cancer (14.4%), followed by breast cancer 

(9.21%) and colorectal cancer (7.3%). The main reason for the increasing 

mortality rate of cancer patient is because of neglecting to seek treatment at 

the beginning of the disease. In Malaysia, 60% of the cancer cases were 

discovered at the final stage, and the main factor is people lack awareness 

about cancer screening. Even some patients tend to seek alternative treatment 

rather than treatment at a hospital. In the end, most of the patients only return 

to the hospital for treatment when the cancer cells have spread to a severe 

condition thus reducing the chances of full recovery. Early diagnosis and early 

treatment may improve prognosis. Biomarkers play an essential role in the 

early detection of cancer. However, finding a biomarker from a microarray 

data is not an easy task as microarray datasets are commonly high dimensional 

with a low number of instance. Therefore, traditional statistical analysis is not 

suitable to deal with the curse of dimensionality.  
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1.5 Problem Statement 

 

High dimensional datasets commonly come with noise, irrelevant 

features and redundant features, which will decrease the power of classifying 

between the tumours and non-tumours. Microarray data are always in high 

dimensionality with a small sample size which is the main challenge in 

microarray data analysis. A variety of statistical method and machine learning 

tools are used in the classification task. The microarray data analysis can be 

classified into supervised learning and unsupervised learning (Vinh and Bailey, 

2013). The simplest method for detecting differential gene expression analysis 

is the t-test. When the p-value exceeds the selected criteria according to the 

confidence level, the features are then considered different. However, the t-test 

is often limited by the sample size. Small sample size leads to an unreliable 

estimation in the predictive model and the same in the analysis of variance 

(ANOVA).  

 

Since “noise” always exists in the microarray data and the assumption 

of the normal distribution, a statistical method such as t-test, the regression 

model may not be suitable or is risky to use. The non-parametric test does not 

require the data to satisfy the assumption of different distribution. However, 

the shortcoming of the non-parametric method is that the analysis has a 

hypothesis test. For example, changing the variation in the sample can affect 

the analysis result. Therefore, to extract the information from high 

dimensional data in the classification task has become the most challenging 

problem in bioinformatics. Current research shows that there are numerous 

https://www.sciencedirect.com/science/article/pii/S0031320312004621#!
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feature selection methods in reducing the dimension of high dimensional data. 

However, most of the feature selection methods had produced a different 

subset of selected features when the training set chooses a different sample 

except for one unsettling question. What is the optimal baseline of a build 

training model, since the optimal baseline usually depends on the amount of 

information contained in the data set.   

 

One of the most controversial issues in feature selection is how many 

genes are needed to interpret the predictive model? As the smallest number of 

genes is preferable when going through the clinical test or validation test in the 

lab (Elyasigomari et al., 2017). Currently, research are usually not involved as 

to how many features are needed in building a predictive model. It only shows 

that the more relevant features are added to the built predictive model, the 

better is the accuracy of the prediction. Therefore, when more features are 

added into the predictive model, from the past research, not every newly added 

feature will provide new information to the predictive model. From the 

previous study, the accuracy of the predictive model was frustrated when more 

features were added to the predictive model, causing this to be very 

unexpected. If the newly added feature cannot improve on the predictive 

model, then the meaning of choosing this new feature is lost. 

 

1.6  Objectives and Significance of the Study 

 

The objectives of this research are 1) to develop a robust algorithm to 

handle the high dimension with low instance data set in the classification task, 
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2) to use the ranked features to obtain an optimal baseline with minimal 

features, instead of using all the features, 3) to obtain an algorithm which 

strictly increases the information content per feature added and 4) do not rely 

on the preset number of features needed in building the predictive model. The 

idea from information theory is adopted to capture the most relevant subset of 

features by ranking the features according to the mutual information score.  

On the contrary, the support vector machine (SVM) classifier plays a vital role 

to reduce the dimensionality of the data set. The ranked features also give an 

optimal baseline for the predictive model which is better than using all the 

features. The number of ranked features, k needed to obtain this optimal 

baseline plays an essential role in feature selection where any of the feature 

selection method should not use more than k features to achieve this optimal 

baseline. The k features serve as the unique cutoff number of features to obtain 

the optimal baseline. This is a significant breakthrough because the past 

research has no idea how many features are needed to achieve the baseline as 

the current baseline is obtained using all the features. 

 

In addition, the proposed algorithm will obtain a smaller number of 

features to build the predictive model, and the proposed algorithm is able to 

show that the selected features give a better performance compared to the 

model when using all features (benchmark). The number of features selected 

by the proposed algorithm also provides the same or better performance 

compared to the new proposed baseline using the ranked features. At the same 

time, the proposed algorithm will guarantee that the newly added feature will 

provide new information to the predictive model and obtain a strictly 
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increasing accuracy graph versus the number of features which alleviates the 

problem of overfitting. The features selected by the proposed algorithm will 

guarantee that the predictive model will only get better and better when more 

features are added to the predictive model. 

 

The robustness of the model will measure by the Z-score, showing that 

the information theory is able to retain the maximum information in the 

predictive model during the feature selection process. Furthermore, the 

receiver operating characteristic curve (ROC curve) plots to show the 

sensitivity of the predictive model. The predictive model is compared to the 

regression model and Minimal-redundancy-maximal-relevance criteria by 

using different classifiers such as SVM, k- nearest neighbour, naïve Bayes and 

decision tree. 
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Chapter 2 

 

REVIEW ON FEATURE SELECTION 

 

2.1  Machine Learning 

 

Machine Learning (ML) is part of the development of artificial 

intelligence. It allows the machine to learn independently and enhance the 

algorithm. As more data is input, the algorithm will continue to modify and 

make the prediction more accurate. For example, when you click on YouTube, 

the website will predict the type of video based on history and display it in 

“Recommended Videos”. Additionally, Machine Learning is classified into 

supervised and unsupervised learning. In supervised learning, a data set with 

the label class where the relationship between the independent variables and 

the dependent variables are known. Unsupervised learning is to let the 

algorithm find the patterns from a huge number of data and classify the data, 

customarily is called clustering. The application of machine learning has 

appeared in our daily life for a long time. For example, handwriting 

recognition on mobile phones, automatic filtering of junk mail in the e-mail, 

automatic driving of crewless vehicles.  

 

One of the developments of machine learning – “AlphaGo”  which 

trains its algorithm through a large number of professional chess games, 

making AlphaGo the professional chess within a period of two years. Imagine 

if two AlphaGo competes with each other and further strengthens their 
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algorithms during the chess game, it will be developed to the extent that the 

human brain cannot reach it. Machine learning is a process of processing data 

and building the training model. In building the training model, there is a set 

of process in the training strategy by taking into account the training model in 

terms of correlation, dependency, and relevancy (Hu et al., 2018). A good 

predictive model is related to the feature selection method and the algorithm. 

Cai et al. (2015) proposed an ensemble-based feature selection method which 

combines receiving the operating curve, information theory, classifying 

followed by machine learning to categorise three different types of lung cancer.  

Also, it will show that the proposed method, combined with incremental 

feature selection gives a better result with only 16 selected features (Cai et al., 

2015). 

 

2.2  Dimensional Reduction 

2.2.1 Feature Extraction 

 

In the field of machine learning and statistics, dimension reduction 

refers to the process of reducing the number of attributes to obtain a set of 

essential variables. Dimensionality reduction is classified into two groups: 

feature selection and feature extraction. Feature selection selects the most 

informative features from the original features to reduce the dimension of the 

data set and to improve the performance of the learning algorithm. Feature 

extraction is the process of transforming a high dimensional raw data into low 

dimensional so that machine learning can learn it; but, the transformed data 

irreversible. Feature selection and feature extraction have some similarities.  
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Though they have the same objective that is trying to reduce the number of 

attributes in the data set, but the way they are being used is different. The 

feature extraction is mainly through the relationship between the attributes, 

such as combining different attributes to obtain a new attribute. Thus, 

changing the original feature dimension whereas the feature selection is to 

select a subset from the original feature data set without changing the original 

feature space where the subset well represents the data set (Ang et al., 2016). 

 

Principal component analysis, singular value decomposition and deep 

learning belong to the feature extraction method. The principal component 

analysis is a statistical method where a set of variables that may be related to 

each other transforms into a set of linearly uncorrelated variables by 

orthogonal transformation. The transformed set of variables is called the 

principal component. Singular value decomposition is a vital matrix 

decomposition in linear algebra. It is the generalisation of feature 

decomposition on a matrix. The concept of deep learning comes from the 

study of artificial neural networks. The deep learning structure contains 

multiple hidden layers. It creates a high-level theoretical representation of 

attributes by combining low-level features to find the distribution of the data. 

However, feature extraction does not fully explain the model in detail as the 

original data set. For example, in principal component analysis, the principal 

component with a small contribution rate may often contain some vital 

information.  
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Also, feature extraction such as deep learning with the complex 

structure, the ability of the neural network to fit the model is becoming better, 

but this often leads to over-fitting which creates a severe problem in machine 

learning. It means that the performance of the training data is outstanding, but 

the prediction ability is feeble. The purpose of building a predictive model is 

to learn the structure and nature of the original data set to solve some real-life 

problem. At the same time, the selected features should be able to explain the 

problem better. Therefore, the feature selection should be building a faster and 

lower- predictive cost model, improving the accuracy of the prediction, and 

having a better understanding and explanation of the model. (Pedrycz and 

Chen, 2020) 

 

2.2.2 Feature Selection 

 

Feature selection is classified into three groups, filter method, wrapper 

method and embedded method (Kohavi and John, 1997). The main idea of the 

filter method is to rank the features according to the importance of the features 

using measurements such as Pearson correlation coefficient, rank correlation 

coefficient, Chi-square test and mutual information (Li F, 2017; Herman et al., 

2013; Guyon, 2004). Pearson correlation coefficient is used to measure the 

linear correlation coefficient between two variables. The higher the absolute 

value of the correlation coefficient, the stronger is the correlation. The rank 

correlation coefficient is a statistical analysis indicator that shows the degree 

of relevance of the variables. The conventionally used rank correlation 

analysis methods are Spearman rank and Kendall rank. Chi-square test is a 
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widely used hypothesis test method. It is applied in the statistical inference for 

data classification. Mutual information is used to evaluate the amount of 

information contributed by the existence of one event to the existence of 

another event (Nguyen et al., 2014). 

 

The wrapper method searches the selection of a subset as an 

optimisation issue by generalising many different combinations of subset and 

evaluating one by one to obtain the best subset (Aksakalli and Malekipirbazari, 

2016). The typical optimisation method is a recursive feature elimination. The 

recursive feature elimination method uses a machine learning model to train 

the data set, so that features that correspond to the weight coefficient will be 

eliminated. This process continues until it has obtained an optimised subset of 

features; usually, the number of features have to decide before running the 

algorithm. Guyon et al., (2002) proposed a gene selection on microarray data 

using Support Vector Machine based on Recursive Feature Elimination (RFE) 

which requires pre-processing before training the classifier. The embedded 

method studies the best attributes to improve the accuracy of the predictive 

model when setting the model. The embedded method integrates the feature 

selection process with the model training process, and both processes are 

complete in an optimisation process. The embedded method will select the 

essential attributes to train the predictive model.  

 

The example of embedded methods is the least absolute shrinkage and 

selection operator (LASSO) (Kukreja et al., 2006). It is easy to overfit by 
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using only the ordinary least square method because the noise is over-focused 

and the slightest difference in the training data may cause a significant 

difference in the model. The LASSO uses a cost function with a regular term 

can overcome the overfitting problem. There are always limited features under 

LASSO, but the parameter corresponding to these features is zero, therefore 

during the feature selection, those zero coefficient will be removed from the 

data set. However, LASSO depends on the parameter of lambda, where the 

enormous lambda value, the more sparse features and consequently, fewer 

features will be selected (Kamkar et al., 2015).   

 

2.3  Evolution of Feature Selection on Information Theory 

 

Information theory is a widely used theory in feature selection. The 

feature selection is an essential part of building a predictive model. How many 

essential features are useful for the classification should be selected from a 

thousand to a few ten thousand features is a challenging question in 

microarray data analysis. For the past 30 years, information theory was mostly 

applied using the filter method since it can evaluate both linear and nonlinear 

dependencies among the features. Mutual information (MI), conditional 

mutual information and joint mutual information are information measures 

used to measure the relevance and redundancy between the features and the 

label class (Novovičová et al., 2007; Cheng et al., 2011; Peng and Fan, 2017).  

For over  20 years,  feature selection had used mutual information.    

 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Cheng%2C+Grong
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According to Lewis, (1992), Mutual Information Maximization (MIM) 

was used in feature selection on text categorisation, and the features ranked 

according to the expected mutual information and selection of the different 

size of features had been investigated. In addition, Lewis found that the 

optimal feature set size are between 10 to 15 features as the number of 

selected features is relatively low during that time (Lewis, 1992). 

Subsequently, Battiti (1994) proposed a new algorithm using mutual 

information which was based on the greedy selection named Mutual 

Information based Feature Selection (MIFS). MIFS shows that mutual 

information is capable of measuring the dependence between variables 

regardless of the relation between the variables, either linear or nonlinear. 

Also, MIFS considers the interaction between features and label class and 

among the features. The number of features selected were based on the 

optimisation of the greedy selection. The mutual information between the 

feature and the class by Battiti was defined as 𝐼(𝑋: 𝐶) = 1 + 𝛼 log (
2𝛼−1

2𝛼
) −

1

2
log(2𝛼 − 1) where X represents the feature, and C is the label class, α is a 

parameter that was calculated using the fisher factor. Battiti showed that when 

the α is between 
1

2
 and

1

√2
, the more informative features will be selected. Battiti 

is the pioneer who started using mutual information in feature selection (Batiti, 

1994). 

 

Joint Mutual Information (JMI) Yang and Moody, (1999) highlighted 

that Joint Mutual Information (JMI) considered the joint mutual information 

between the features and the selected features with the class. The joint mutual 
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information was defined as 𝐼(𝑋𝑖, 𝑋𝑗; 𝑌) = 𝐼(𝑋𝑖; 𝑌) + 𝐼(𝑋𝑗; 𝑌|𝑋𝑖) whereby this 

algorithm has to maximise the 𝐼(𝑋𝑖; 𝑌)  which represented the mutual 

information between feature and label class. Similarly, 𝐼(𝑋𝑗; 𝑌|𝑋𝑖)  was 

maximised which represented the conditional mutual information between 

selected feature with the label class and the already selected features. The 

conditional mutual information overcomes the limitation on feature selection 

when there exists a group of features with the same mutual information. 

Therefore JMI will select feature 𝑋2 from {𝑋2, 𝑋3}  with the same mutual 

information when 𝐼(𝑋2; 𝑌|𝑋1) > 𝐼(𝑋3; 𝑌|𝑋1).  In general, JMI uses conditional 

mutual information to filter redundant features (Yang and Moody, 1999).  

 

MIFS-U is an evolution of the MIFS. Kwak and Choi (2002) proposed 

two feature selection algorithms using mutual information method and 

Taguchi method. These two methods can complement each other to overcome 

any drawback. MIFS only consider the relationship between the features and 

the class in the greedy selection algorithm. Furthermore, Kwak and Choi 

(2002) considered the relationship between the selected features with the new 

candidate with the label class. Therefore, Kwak and Choi tried to choose a 

new candidate to maximise the 𝐼(𝐶; 𝑓𝑖) − 𝛽 ∑
𝐼(𝐶;𝑓𝑠)

𝐻(𝑓𝑠)
𝐼(𝑓𝑖; 𝑓𝑠)𝑓𝑠

, which is the 

new information that inputs into the selected features. Evidently,   𝐼(𝐶; 𝑓𝑖) was 

the mutual information between the label class C and the selected feature and 

𝛽  is a parameter. 𝑓𝑠  represented the already selected features while 𝐻(𝑓𝑠) 

represented the entropy of the already selected features, 𝐼(𝐶; 𝑓𝑠) and 𝐼(𝑓𝑖; 𝑓𝑠)  

represented the mutual information between the label class and already 
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selected features and candidate feature with the previously selected features 

respectively. However, the algorithm used by Kwak and Choi sets the 

parameter 𝛽 = 1  in 𝐼(𝐶; 𝑓𝑖) − 𝛽 ∑
𝐼(𝐶;𝑓𝑠)

𝐻(𝑓𝑠)
𝐼(𝑓𝑖; 𝑓𝑠)𝑓𝑠

. MIFS-U overcomes the 

limitation in MISF and shows that MISF will not perform well in nonlinear 

cases (Kwak and Choi, 2002).  

 

Peng et al. (2005)  proposed a feature selection method based on the 

criteria of maximising the relevance between feature and class and, at the 

same time, minimising the redundancy between the feature called Minimal-

Redundancy-Maximal-Relevance” (mRMR). In addition, Peng and his team 

members use mRMR together with the wrapper method to obtain a more 

compact subset to illustrate that their approach performs better compared to 

the popular maximum dependency method. They selected the compact 

features using a two-stage algorithm where the first step is to choose a subset 

of features using the mRMR criteria. The mRMR incremental algorithm 

optimises the [𝐼(𝑥𝑗; 𝑐) −
1

𝑚−1
∑ 𝐼(𝑥𝑗; 𝑥𝑖)𝑥𝑗∈𝑆𝑚−1

]
𝑥𝑗∈𝑋−𝑆𝑚−1

𝑚𝑎𝑥

. X represents the 

full features while the 𝑆𝑚−1  represents the features set with 𝑚 − 1features 

(Peng et al., 2005).  

 

The objective of mRMR is to select the m features that maximise the 

maximal relevancy- minimum redundancy. 𝐼(𝑥𝑗; 𝑐)  represents the mutual 

information between the candidate feature and the label class while  𝐼(𝑥𝑗; 𝑥𝑖) 

represents the mutual information between the two features. During the second 
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stage, the wrapper method was used to select the compact features based on 

the minimum classification error from the cross-validation classifier. 

Subsequently, Peng et al. (2005) proposed two search algorithms during the 

second stage which comprised the backward selection and forward selection. 

It showed that the mRMR primary approach was maximising the dependency 

and showed a practical approach to high dimensional data. Although their 

selected features might not be independent and were highly correlated to each 

other but the selected features were maximising the relevancy and minimising 

the redundancy to yield better performance. They stated that though all the 

selected features are independent but are usually less optimised. However, 

they also indicated that mRMR might choose a high relevancy feature with 

high redundancy at the same time because of the selected feature based on the 

difference of relevance and redundancy.  

 

Estevez et al. (2009) defined Normalised Mutual Information Feature 

Selection (NMIFS) as an enhanced edition of MIFS, MIFS-U and mRMR.  

NMIFS does not depend on any parameter like MIFS, MIFS-U and mRMR, 

and in practice there is no clear guidance on how to select the value of the 

parameter. The NMIFS proposed to use average normalised mutual 

information to measure the redundancy between the features (Estevez et al., 

2009). Later, the genetic algorithm combines with NMIFS to become a genetic 

algorithm mutual information feature selection (GAMIFS).  
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GAMIFS measures the dependency among the features, and its team 

members define the normalised mutual information as 𝑁𝐼(𝑓𝑖; 𝑓𝑠) =

𝐼(𝑓𝑖;𝑓𝑠)

𝑚𝑖𝑛{𝐻(𝑓𝑖),𝐻(𝑓𝑠)}
 and the average normalised mutual information as 

1

|𝑆|
∑ 𝑁𝐼(𝑓𝑖; 𝑓𝑠)𝑓𝑠∈𝑆 .  𝐼(𝑓𝑖; 𝑓𝑠)  represents the mutual information between the 

features, whereas  𝐻(𝑓𝑖) represents the entropy of the feature and S is the sum 

of the features. NIMIFS selected a feature by maximising the 𝐺 = 𝐼(𝐶; 𝑓𝑖) −

1

|𝑆|
∑ 𝑁𝐼(𝑓𝑖; 𝑓𝑠)𝑓𝑠∈𝑆  while 𝐼(𝐶; 𝑓𝑖)  represents the mutual information between 

the label class and the feature. The difference between NMIFS and JMI is that 

NMIFS only consider the mutual information between features and the 

features with the label class upon removing the redundant features.  

 

Hoque et al. (2014) stressed that MIFS-ND is also another evolution of 

the MIFS. MIFS-ND selected the features based on an optimisation algorithm 

known as Non-dominated Sorting Genetic Algorithm II (NSGA-II). MIFS-ND 

considered the relation between features and features and class with mutual 

information. The mutual information between feature usage is to find out the 

redundant features while the mutual information between features and class 

usage is for finding the relevant features. NSGA-II will select the feature with 

the higher mutual information between feature and class when there is a tie in 

the condition where the selected features are of the same value (Hoque et al., 

2014). The difference between the MIFS and MIFS-ND is that MIFS 

algorithm depends on the α while MIFS-ND does not rely on any parameter. 

The difference between mRMR and MISF-ND is mRMR which uses a two-
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stage features selection that involved filter method and wrapper method, while 

MISF-ND only uses the filter method in feature selection.  

 

Bennasar, Hicks, and Setchi (2015) proposed the Joint Mutual 

Information Maximisation (JMIM) and Normalised Joint Mutual Information 

(NJMIM). Both the feature selection methods are based on the criteria 

maximising the relevance and minimising the redundancy, and these methods 

have demonstrated the ability to solving the overestimates problem. JMIM 

selected the features based on the ( 𝐼(𝑓𝑖 , 𝑓𝑠; 𝐶)𝑓𝑠∈𝑆
𝑚𝑖𝑛 )

𝑓𝑖∈𝐹−𝑆

𝑚𝑎𝑥
 where F is the initial 

data set, S is the already selected subset of features. The joint mutual 

information 𝐼(𝑓𝑖, 𝑓𝑠; 𝐶)  defined as 𝐼(𝑓𝑖, 𝑓𝑠; 𝐶) = [− ∑ 𝑝(𝑐) log(𝑝(𝑐))𝑐∈𝐶 ] −

[∑ ∑ ∑ log (
𝑝(𝑓𝑖𝑓𝑠,𝑐 𝑓𝑠

⁄ )

𝑝(
𝑓𝑖

𝑓𝑠
⁄ )𝑝(𝑐

𝑓𝑠
⁄ )

)𝑓𝑠∈𝑆𝑓𝑖∈𝐹−𝑠𝑐∈𝐶 ]  where C is the label class, 𝑓𝑖 is the 

candidate feature and 𝑓𝑠 is the already selected subset of features. The NJMIM 

used the normalised mutual information instead of mutual information to 

select the feature based on ( (
𝐼(𝑓𝑖,𝑓𝑠;𝐶)

𝐻(𝑓𝑖,𝑓𝑠,𝐶)
)

𝑓𝑠∈𝑆

𝑚𝑖𝑛

)
𝑓𝑖∈𝐹−𝑆

𝑚𝑎𝑥

. The JMIM showed a better 

performance in discrete data compared to NJMIM (Bennasar et al., 2015). 

 

Wang et al. (2017) pointed out that the Max-Relevance and Max-

Independence (MRI) has relevancy between the features and classification of 

independent features. Furthermore, Wang et al. (2017) proposed a new 

information term “independent classification information” (ICI) disclosing 

that the selected candidate feature will provide substantial new information 
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and less redundancy to the predictive model. The selection of the candidate 

feature is based on the higher MRI score where the score of MRI is defined as 

𝐽𝑀𝑅𝐼(𝑥𝑘) = 𝐼(𝑦; 𝑥𝑘) + ∑ 𝐼𝐶𝐼(𝑦; 𝑥𝑗 , 𝑥𝑘)𝑥𝑗∈𝑆
, 𝐼(𝑦; 𝑥𝑘)  which represents the 

mutual information between the label class y and candidate feature, while S 

represents the already selected subset of features. ∑ 𝐼𝐶𝐼(𝑦; 𝑥𝑗 , 𝑥𝑘)𝑥𝑗∈𝑆
 became 

the loose upper bound of the mutual information between label class and the 

already selected subset of features with the candidate feature defined as 

∑ 𝐼𝐶𝐼(𝑦; 𝑥𝑗 , 𝑥𝑘)𝑥𝑗∈𝑆
= ∑ [𝐼(𝑦; 𝑥𝑗|𝑥𝑘) + 𝐼(𝑦; 𝑥𝑘|𝑥𝑗)]𝑥𝑗∈𝑆

where  𝐼(𝑦; 𝑥𝑗|𝑥𝑘) =

𝐼(𝑦; 𝑥𝑘) − 𝐼(𝑦; 𝑥𝑗; 𝑥𝑘) .  𝐼(𝑦; 𝑥𝑘)  represents the mutual information between 

the label class and candidate feature while 𝐼(𝑦; 𝑥𝑗; 𝑥𝑘) represents the multi-

information between the label class, that have already selected the subset of 

features and the candidate feature (Wang et al., 2017). 

 

Gao, Hu and Zhang (2018) proposed a dynamic change between the 

features and the label called dynamic change of selected feature (DCSF). The 

next candidate feature will be chosen when it is dependent on the already 

selected subset of features. Therefore,  DCSF will choose a candidate feature 

based on the maximum value of J(𝑥𝑘) = 𝐼(𝑥𝑘; 𝑦) −
3

|𝑆|
∑ 𝐼(𝑥𝑗; 𝑥𝑘) +𝑥𝑗∈𝑆

2

|𝑆|
∑ 𝐼(𝑥𝑗; 𝑥𝑘|𝑦)𝑥𝑗∈𝑆  where 𝐼(𝑥𝑘; 𝑦) represents the mutual information between 

the candidate feature and the label class, S represents the already selected 

subset of features and 𝐼(𝑥𝑗; 𝑥𝑘|𝑦)  represents the conditional mutual 

information of the already selected subset of features with the candidate 

feature given the label class. Gao and his team members showed that the 
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previous methods such as MIM, MIFS, mRMR, JMI and MRI did not take 

into consideration the dynamic change in building the predictive model. 

However, the current DCSF will only consider the feature selection in linear 

but does not include nonlinear yet (Gao et al., 2018).   

 

Elyasigomari et al. (2017) applied a two-stage gene selection which 

combines the mRMR criteria in searching the essential genes in stage one, and 

use the SVM with the new algorithm cuckoo optimisation algorithm for stage 

two. The proposed method shows that the selected features are biologically 

relevant to cancer diseases. This research also highlights that only a few 

features are relevant in the microarray data analysis (Elyasigomari et al., 2017).  

Li, Xie and Liu (2018) proposed an efficient feature selection method to 

overcome the drawback of the SVMRFE proposed by Guyon in the year 2002. 

The proposed method improves the SVMRFE with the variable step size to 

minimise the computation time. Besides this, the proposed method also use the 

resampling method to overcome the common problem of small sample size 

and class imbalance in the microarray data set (Li et al., 2018). 

 

The graph theory, Fisher scores, modified Ant Colony Optimization 

with local search algorithm were proposed by Bir-Jmel et al. (2019). This 

proposed method focuses on reducing the high dimensionality of the 

microarray data. For more details on features selection on microarray dataset 

and mutual information methods, review articles are recommended. (Bolón-

Canedo et al., 2013; Vergara and Estév, 2014)                    
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2.4  Common Problems and Limitation in the Past Research 

 

Based on past researches, feature selection is a very challenging task in 

bioinformatics because of the high dimensionality of the data set combined 

with a low number of instances. Feature selection always raises an issue on 

how to select the most relevant features with minimum redundancy from 

hundreds to tens of thousands of features. The relevant features will improve 

the performance of the classification model, while the redundancy features 

will decrease the performance of the classification model. In general, the 

problem that occurs during the feature selection can be classified into three 

domains: 1) how to select the most relevant features with minimum 

redundancy, 2) how to maximise the new information that is added into the 

predictive model, 3) how many minimum features are needed in a predictive 

model, 4) which is the better baseline other than using all the features and 5) 

what is the relationship among the selected features. 

 

Several past researchers had tried to solve the first problem by 

maximising the mutual information between the feature and class such as 

MIM, MIFS, MIFS-ND, mRMR and GAMIFS. However, while selecting the 

high relevance features, the redundant features might be chosen at the same 

time (Pascoal et al., 2017). The methods mentioned earlier did not consider the 

maximisation of the increment of the information content, which was the 

relationship between the candidate feature with the already selected subset of 

features and the label class. MIFS-U, JMI, MRI, DCSF used conditional 

mutual information and joint mutual information to solve the second problem. 
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They considered the relationship between the candidate feature with the 

already selected subset of features and the label class to maximise the 

increment of the information contained in the model.  

 

The existing methods failed to carry out an in-depth study on the 

minimum features needed in a predictive model. Until today, the number of 

features needed to build a predictive model is still a hot topic in most of the 

learning machine task. Besides this, the baseline of the data set often involved 

all the features and the researchers are always comparing their findings with 

previous results. Usually, the baseline of the microarray data depends on the 

information contained in the data set, and this varies among the different data 

set. The information content can only be increased when more real data or 

sample are added. The baseline is obtained by using all the features which are 

often far worse because it also contains irrelevant features and noise, so there 

is a need to find a way to get a better baseline.  

 

Most of the feature selection methods are concentrated in selecting the 

most informative features to build a predictive model. Not much study has 

been done on the biological meaning of the selected features in the microarray 

data analysis. It is an essential step to ensure the chosen features are relevant 

to the diseases. However,  more time is needed for the features to undergo an 

experiment in the wet lab to confirm that the selected features are in fact 

related to the disease.   
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CHAPTER 3 

 

RANKED MUTUAL INFORMATION 

 

3.1  Information Theory 

3.1.1  Entropy 

 

Along with the development of computer science and technology, 

researchers are aware of the value of the information in biological science. 

There was a vast information hype in microarray data, and there is an urgent 

need to extract and find useful information. Information theory is applied 

mathematics that adopts the probability theory and mathematical statistics to 

study the information, data compression, cryptography, and data transmission. 

Information theory considers the transmission of information as a statistical 

occurrence and offers a method to estimate the communication channel 

volume. Information transmission and information compression are two major 

research areas of information theory. The beginning of the information theory 

research was a paper entitled “A Mathematical Theory of Communication” 

published by Shannon (1948). Because of this new finding, Shannon is known 

as the “father of information theory”. Shannon defined the information 

entropy of X as H(𝑋) = − ∑ 𝑝(𝑥) log 𝑝(𝑥) 𝑥  where 𝑝(𝑥) is a probability mass 

function of the random variable X (Shannon, 19448).  

 

This definition is used to estimate the volume of bandwidth required to 

pass a binary encoded original information. The base of the logarithm was two 
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as it is the smallest unit in information which is “bit”. The base of the 

logarithm can change to other value. For example, when the base of the 

logarithm was natural logarithm, and the unit was “nat”. In this research, the 

base of the logarithm has two uses in the calculation. Information theory 

applied the probability to describe the uncertainty and entropy was used to 

measure the uncertainty. The probability of occurrence of a random variable is 

small, and has more uncertainty, as the amount of information is vast and vice 

versa.   

 

From a statistical point of view, the small probability of an event 

brings much information. Therefore, the lower the probability of an event, the 

higher the amount of information. That is, the amount of information is 

inversely proportional to the frequency of occurrence of the events, (Cover 

and Thomas, 2006). The range of the entropy was from zero to  log(𝑛), where 

n is the number of outcomes. The minimum value of entropy was zero when 

only one probability was one and the others were 0’s while the maximum 

value of the entropy occurs when all the probabilities equal to 
1

𝑛
.  

 

3.1.2  Conditional Entropy and Joint Entropy 

 

Conditional entropy, 𝐻(𝑋|𝑌) indicates the uncertainty of the random 

variable Y on condition that random variable X is known. It means that the 

more information is known, the less uncertain the random event will be. The 

mathematical expectation of the 𝐻(𝑌|𝑋) is defined as follows: 
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𝐻(𝑌|𝑋) = ∑ 𝑝(𝑥)𝐻(𝑌|𝑋 = 𝑥)

𝑥

 

=− ∑ 𝑝(𝑥) ∑ 𝑝(𝑦|𝑥) log 𝑝(𝑦|𝑥)𝑦𝑥  

=− ∑ ∑ 𝑝(𝑥, 𝑦) log  𝑝(𝑦|𝑥)𝑦𝑥  

=− ∑ 𝑝(𝑥, 𝑦) log  𝑝(𝑦|𝑥)𝑥𝑦  

where 𝑝(𝑥, 𝑦) is the joint distribution of random variables X and Y. 

 

Conditional entropy 𝐻(𝑌|𝑋) is equivalent to the difference in the joint 

entropy 𝐻(𝑋, 𝑌) and the individual entropy 𝐻(𝑋). 

 

𝐻(𝑋, 𝑌) = − ∑ 𝑝(𝑥, 𝑦) log  𝑝(𝑥, 𝑦)

𝑥𝑦

 

= − ∑ 𝑝(𝑥, 𝑦) log[ 𝑝(𝑦|𝑥)𝑝(𝑥)]

𝑥𝑦

 

= − ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑦|𝑥) − ∑ 𝑝(𝑥, 𝑦) log  𝑝(𝑥)

𝑥𝑦𝑥𝑦

 

= 𝐻(𝑌|𝑋) − ∑ 𝑝(𝑥, 𝑦) log  𝑝(𝑥)

𝑥𝑦

 

= 𝐻(𝑌|𝑋) − ∑ ∑ 𝑝(𝑥, 𝑦) log  𝑝(𝑥)

𝑦𝑥

 

= 𝐻(𝑌|𝑋) − ∑ log  𝑝(𝑥)

𝑥

∑ 𝑝(𝑥, 𝑦)

𝑦
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= 𝐻(𝑌|𝑋) − ∑[log  𝑝(𝑥)] 𝑝(𝑥)

𝑥

 

= 𝐻(𝑌|𝑋) − ∑ 𝑝(𝑥)[log  𝑝(𝑥)] 

𝑥

 

= 𝐻(𝑌|𝑋) + 𝐻(𝑋) 

 

The joint entropy was  𝐻(𝑋, 𝑌) = 𝐻(𝑌|𝑋) + 𝐻(𝑋) and the conditional 

entropy was 𝐻(𝑌|𝑋) = 𝐻(𝑋, 𝑌) − 𝐻(𝑋). The amount of information added by 

the two events was higher than a single event. When 𝐻(𝑋) was known, the 

amount of information left by 𝐻(𝑋, 𝑌) will be the conditional entropy. The 

conditional entropy 𝐻(𝑌|𝑋)  ≠ 𝐻(𝑋|𝑌)  but 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐻(𝑌) −

 𝐻(𝑌|𝑋). For random variables X, Y and Z, 𝐻(𝑋, 𝑌|𝑍) = 𝐻(𝑋|𝑍) + 𝐻(𝑌|𝑋, 𝑍). 

 

3.1.3  Mutual Information 

 

Mutual information measures the amount of information contributed 

by the presence of one event to the occurrence of another event. The mutual 

information of two discrete random variables X and Y is defined as 𝐼(𝑋; 𝑌) =

∑ ∑ 𝑝(𝑥, 𝑦) log [
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
]𝑥𝑦 . Intuitively, mutual information measured the 

share information between random variables X and Y. For example, if the 

random variables X and Y were independent of each other, then the known 

random variable X does not contribute any information to the random variable 

Y and vice versa; therefore the mutual information was zero. On the other 

extreme case, if the random variable X was the deterministic function of 
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random variable Y and random variable Y was also the deterministic function 

of random variable X, then all the information passed was shared by both 

random variables. Besides, mutual information was non-negative, 𝐼(𝑋; 𝑌) ≥ 0 

and it was symmetrical, 𝐼(𝑋; 𝑌) = 𝐼(𝑌; 𝑋). 

 

The mutual information is not based on two specific messages, but 

from the overall viewpoint of the random variables X and Y, therefore the 

mutual information does not have a negative value. When the extract 

information is from one event, the worst case is zero. The uncertainty of an 

event will not increase just because the other event was known. The mutual 

information was symmetrical since the amount of information on random 

variable X obtained from the random variable Y was the same as the amount of 

information on random variable Y received from the random variable X. The 

amount of information obtained from another event was at most as much 

entropy as another event, and it will not exceed the amount of information 

contained in itself, 𝐼(𝑋; 𝑌) ≤ 𝐻(𝑋)  or 𝐼(𝑌; 𝑋) ≤ 𝐻(𝑌) . When the random 

variables X and Y corresponds one to one it implies that 𝐼(𝑋; 𝑌) = 𝐻(𝑋) and 

𝐻(𝑋/𝑌) = 0. When the random variables X and Y were stand-alone of each 

other, 𝐻(𝑋/𝑌) = 𝐻(𝑋)  implies that 𝐼(𝑌; 𝑋) = 0 . No information was 

obtained from one event to another event which was the same as the situation 

of channel interruption. The entropy of the random variables X and Y,  the 

joint entropy of the random variables X and Y and mutual information between 

random variables X and Y is illustrated in Figure 3.1 below. 
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Figure 3.1: Relation between mutual information and entropy 

 

Mutual information measures the amount of information contained 

between the features and the label class. If the feature belongs to the label 

class, then it has an enormous amount of mutual information. The mutual 

information does not require any assumptions about the nature of the 

relationship between the features and the label class, and it is well suited for 

the feature selection in bioinformatics. The mutual information calculation is 

similar to information gain, and the average of mutual information is also 

information gain. 

 

The mutual information can also be written as: 

𝐼(𝑋; 𝑌) = ∑ 𝑝(𝑥, 𝑦) log
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑥,𝑦       (1) 

= ∑ 𝑝(𝑥, 𝑦) log
𝑝(𝑥|𝑦)

𝑝(𝑥)
𝑥,𝑦
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= ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑥)

𝑥,𝑦

+ ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑥|𝑦)

𝑥,𝑦

 

= ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑥)

𝑥,𝑦

− (− ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑥|𝑦)

𝑥,𝑦

) 

= 𝐻(𝑋) − 𝐻(𝑋|𝑌) 

 

By symmetry, 𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) . Since 

𝐻(𝑋, 𝑌) = 𝐻(𝑌|𝑋) + 𝐻(𝑋), therefore  𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌). 

 

3.2  The Optimal Baseline based on Ranked Features 

 

In this section, an optimal baseline will be obtained using the ranked 

features based on mutual information. The past researches have proven that 

the mutual information can measure the similarity between the two elements 

regardless of their distribution, whether linear or nonlinear. When the mutual 

information is most significant, it means that these two elements are closest to 

each other. The optimal baseline can be obtained using the measurement of 

mutual information of all the features in the label class. When all the features 

are ranked according to the mutual information, the most significant feature is 

the most similar to the label class, and this feature is sufficient to represent the 

label class. When more significant features are selected, the compact subset of 

features will well present the label class. By measuring the performance of the 

ranked features in a classifier, the more ranked features added into the 
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classifier, the better is the performance. From this point of view, there will be 

a point or a few points on the number of ranked features which will indicate 

the highest performance in the classification.  

 

In microarray data, due to the high dimensionality,  the data set always 

contain irrelevant features and noise. It is essential to find a better baseline 

involving as many as relevant features rather than using all the features. Since 

the relevant features are ranked according to the mutual information, likewise 

the ranked features are ranked according to their relevancy to the label class. 

The performance of using these relevant features will outperform than using 

all the features in classification, hence a better baseline can be obtained using 

those ranked features. At the same time, the number of features, k that is 

needed to achieve this optimal baseline, can also be known. The number of 

features, k plays a vital role in a classification problem, as current research has 

no idea on how many features are needed to achieve the current baseline 

because the current baseline is obtained using all the features. Therefore, 

previous research in feature selection only focused on getting some selected 

feature which are less than all other features is reasonable. Thus, there is no 

standard guideline on the selected features that cannot exceed the specified 

number of features. Now with this new number of feature, k, any other feature 

selection method should not exceed excess k to achieve the same performance 

in the classification problem. 
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3.3 Algorithm on Ranked Features 

 

Mutual information can measure the similarity between the features 

and class. When the mutual information score is more significant, it means 

that the feature is closer to the label class. The mutual information score for all 

the features between the label class can be computed using equation (1). The 

microarray data set was a 𝑁 × 𝑀 matrix where N represents the number of 

attributes, and M represents the number of samples. For a feature set 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑁} of a data set D with N dimension and M sample, the mutual 

information for each 𝑥𝑖  between the label class will be computed. The real 

experimental data will be normalised into (-1,1) before calculating the mutual 

information score. The advantage of remapping the feature into three equal 

bins is that no data pre-processing is needed when the data has a missing value, 

as the calculation of mutual information only depends on the remapped 

frequency count and not based on the original value. Again, mutual 

information did not consider the nature of the relationship between the 

features and the label class; therefore, mutual information can be applied to 

the data either linear or nonlinear. 

 

Each feature will be divided into three equal bins, and these three bins 

represent the expression of the microarray data in low, normal and high 

categories. The label class will be divided into p equal bins, where p is the 

number of classes of the label class. The features with three equal bins and the 

label class with p equal bins will then be remapped into a frequency count and 

form a probability mass function (pmf) and the joint probability mass function 
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(pdf) of each 𝑥𝑖 and label class. The mutual information score for each feature 

and label class will be computed using the equation (1). Then, the features will 

be ranked according to the mutual information score and the graph of accuracy 

versus the cumulative of ranked features will be plotted. The highest accuracy 

from the graph will represent the optimal baseline, and the cutoff number of 

the feature can be obtained at the same time. Figure 3.2 shows the flowchart of 

finding the optimal baseline and the unique cutoff number of features. 

 

 

Figure 3.2: Flowchart of finding the optimal baseline and the unique 

cutoff number of features 

 

The performance of the ranked feature measure using the support 

vector machine classifier and the accuracy of the research was defined as 

follows: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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or 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

The next section shows the algorithm on calculating the mutual 

information score for each feature in a microarray data set. 

 

The algorithm on calculating mutual information score: 

Input:  

A training sample D with a full feature set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} and the label 

class C with N dimension. 

Output: 

1. (Initialisation) Set X ← “initial set of N features” 

2. (Normalising) For ∀ 𝑥𝑖 ∈ 𝑋, normalise each 𝑥𝑖 in [0,1] 

3. (Remapping) For ∀ 𝑥𝑖 ∈ 𝑋, remapped each 𝑥𝑖 into three equal bins and for 

remapped the label class C into p equal bins 

4. (Forming) For ∀ 𝑥𝑖 ∈ 𝑋 , formed a frequency count and a joint pdf the each 

𝑥𝑖 and label class C 

5. (Calculating) For ∀ 𝑥𝑖 ∈ 𝑋, calculate the mutual information for each pair of 

𝑥𝑖 and label class C using the joint pdf 

6. (Ranking) For ∀ 𝑥𝑖 ∈ 𝑋, ranked the mutual information score for each 𝑥𝑖 in 

descending order 

7. (Plotting) Plotted a graph of accuracy versus cumulative ranked features 
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8. (Identifying) Identify the highest accuracy and the number of features 

 

Table 3.1 shows an example of a feature with microarray expression 

versus the label class. Assume that the label class “1” represents the tumour 

cell, and label class “0” represents the normal cell. 

 

Table 3.1: The expression of feature respect to label class  

Label   1       1        1        1        1       0        0        0         0            0 

Feature          0.53   1.83   2.25   0.86   0.31   8.69   9.56   10.34   13.57   12.76 

  

The feature and the label class in Table 3.1 will then be remapped into 

a frequency count in three equal bins for a feature and two equal bins for label 

class in Figure 3.3 which shows the 3-dimensional histogram plot. The 

probability mass functions (pmf) and the joint probability mass functions (pdf) 

of a feature and the label class are shown in Table 3.2 below. 

 

 

Figure 3.3: Joint distribution for a feature in the 3-dimensional histogram 
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Table 3.2: Joint probability mass function of a feature and the label class 

Joint pmf of X and Y   Label Class 

    0  0.5 

Feature 0  0 

    0.5  0 

 

Using the information in Table 3.2, the mutual information between 

the feature and label class was 1 bit; this value was derived using equation (1). 

The same calculation will be applied to all features in the microarray data set, 

and a set of mutual information score, MI, will be obtained in 𝑁 × 1 

dimension. The mutual information score will be ranked in descending order.  

The first feature with the highest mutual information score was the feature 

which is most similar to the label class where this feature will be well 

presented in the label class. Again, when more features with high mutual 

information were added to the predictive model, the performance of the 

classification will become better. The performance of the predictive model, 

which is accuracy, will be plotted against the accumulative ranked features. 

From the graph, it can be observed that the first highest accuracy serves as the 

optimal baseline for this data set. At the same time, the number of features, k 

to obtain this highest accuracy can be obtained. Figure 3.4 shows an example 

of the accuracy graph versus the cumulative ranked features. The data set used 

in this example consists of 50 features, and the full features are ranked 

according to the mutual information score. From this data set, it is shown that 

the highest mutual information score of the feature gives an accuracy of 90.7%, 

and the baseline using all the features was 93.3%. 
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Figure 3.4: Average accuracy versus the ranked features based on the 

mutual information score 

 

The proposed idea here is to obtain an optimal baseline based on the 

ranked features, and from the graph, the optimal baseline has the highest 

accuracy of 94% with 39 ranked features. Therefore, the optimal baseline will 

be 94% instead of the baseline using all the features, which are 93.4%. Not 

only can the optimal baseline be obtained from the ranked features using a 

mutual information score, but the number of features needed to achieve this 

optimal baseline is also known. This study tells us that as long as not more 

than 39 features can reach this optimal baseline, that is to say, the feature 

selection method need only less than 39 features to reach this optimal baseline. 

From here, we can deduce how best is this data set on classification, and we 

should not take more than 39 features to reach the optimal baseline. This idea 

allows us to compare the performance within the data set itself unlike the 
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previous research. We have no clear idea of how many features are needed to 

achieve the baseline because the previous baseline was obtained using all the 

features. Therefore, we not only have an optimal baseline but a unique cutoff 

number of features before we start to reduce the dimension of the data. 
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CHAPTER 4 

 

DIMENSION REDUCTION WITH SUPPORT VECTOR 

MACHINE 

 

4.1  Ranked Mutual Information with Support Vector Machine (rMI-

SVM algorithm) 

4.1.1 Dimension Reduction 

 

 The earlier chapter explained how to obtain the optimal baseline based 

on the ranked features by mutual information. This present chapter will 

describe how to reduce the high dimensional data set, such as microarray data 

that always consist of more than a thousand to ten thousand features. These 

microarray data always consist of redundant features, irrelevant features and 

noise. Therefore, it is essential to remove all these features and noise before 

building the predictive model. With the inclusion of these features it will 

increase the complexity of the predictive model and yield a low performance 

in classification resulting to overfitting which is another issue that requires 

attention. The proposed algorithm in this chapter will select the newly added 

features to provide new information to the predictive model. The idea adopted 

from mutual information captured the most relevant subset of features by 

ranking the features according to the mutual information score. Thus, the 

support vector machine (SVM) classifier plays a vital role to reduce the 

dimensionality of the data set. 
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 In addition, the proposed algorithm will obtain a smaller number of 

features to build the predictive model, and is also able to show that the 

selected features give a better performance compared to the model when using 

full features (existing baseline). The number of features selected by the 

proposed algorithm also provides the same or better performance compared to 

the new proposed baseline in the previous chapter using ranked features. At 

the same time, the proposed algorithm will guarantee that the newly added 

feature will provide new information to the predictive model and obtain a 

strictly increasing accuracy graph versus the number of features. The features 

selected by the proposed algorithm will guarantee that the predictive model 

will only get better and better when more features are added to the predictive 

model.  

  

4.1.2 Relevancy and Redundancy 

 

In this study, the feature relevancy and feature redundancy will be 

defined as follows:  

 

Definition 1: (Feature relevancy). Feature 𝑥𝑖 is more relevant to the label class 

C than feature 𝑥𝑗 if 𝐼(𝑥𝑖; 𝐶) > 𝐼(𝑥𝑗; 𝐶). 

 

Definition 2: (Feature redundancy). Feature 𝑥𝑖 is a redundant feature to feature 

𝑥𝑗 with respect to the label class C, if 𝐼(𝑥𝑖; 𝐶) = 𝐼(𝑥𝑗; 𝐶). 
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Mutual information is a powerful tool in finding the relevant features 

from a vast and high dimensional data set. However, from definition 2, with 

only the mutual information score, the relevant features and the redundant 

features cannot be differentiated. The mutual information score in the previous 

chapter is only able to rank the relevancy among the features with the label 

class but it failed to give any information between the features themselves. 

Therefore, removing the redundant features is an essential step to reduce the 

dimensionality of the high dimensional data set. This study uses the filter 

method with a support vector machine to remove the redundant features. 

Although the filter method is widespread in the feature selection method, 

nevertheless, it has only been studied during the past few decades. The 

previous researchers filtered the redundant features by using the mutual 

information score between the features (non-dynamic change methods) and 

subsequently use the conditional mutual information score between the 

already selected features and label class with the newly added feature 

(dynamic change methods).   

 

In this study, the proposed algorithm used a support vector machine 

(SVM) to filter the redundant features taking into consideration the dynamic 

change between the newly added feature with the already selected features and 

label class. The proposed method can avoid overly burdensome calculations 

on the conditional mutual information, and can quickly remove the redundant 

features. The proposed method indicates that the first screening will 

significantly reduce the dimension of the data set, and with a small number of 

screening processes, smaller features can be obtained. The predictive model 
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using these smaller features can achieve the same performance, or better 

performance compared to the optimal baseline. 

 

The first feature in the ranked features is the most relevant feature with 

respect to the class while the last feature in the ranked features will contain 

less amount of information needed in the predictive model. The feature with 

the highest mutual information score will set as a targetted feature in the 

selected subset, S. Towards the end, the selected subset, S, will gather the 

needed smaller features to build the predictive model. In general, the 

remaining ranked features after excluding the targetted feature can be 

categorised into two groups.  

 

Group 1: Features that has high relevancy to the class but with low 

redundancy to the selected subset S.  

 

Group 2: Features that has high relevancy to the class but with high 

redundancy to the selected subset S.  

 

Features from Group 1 will provide better performance in the 

predictive model than the features from Group 2. In past researches, the 

researchers always use conditional mutual information to filter out the features 

from Group 2. The proposed algorithm is to find the features that are highly 

relevant to the class but with low redundancy to the selected subset S, which is 

the feature from Group 1.  
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4.1.3 Increment of the Information Content 

 

The proposed algorithm will select the new candidate feature by 

observing the performance of the predictive model using a SVM classifier. 

The next candidate feature will be chosen according to the amount of new 

information added to the predictive model. When new information is added to 

the predictive model, the performance of the classification will become better. 

Conversely, if no new information is added to the predictive model, then the 

performance of the classification will remain the same or become worse. In 

general, when a candidate feature is added to the model, three different 

phenomena will happen:  

 

1) First phenomenon, if the candidate feature 𝑥𝑗 was an irrelevant feature or 

noise in respect to the subset S, then the performance of the model will 

decrease. Therefore, the performance of the predictive model with 𝑆 ∪ {𝑥𝑗} 

will be lower than the performance of the predictive model with 𝑆 only. 

 

2) Second phenomenon, if the candidate feature 𝑥𝑗 was a relevant feature but 

is redundant, meaning that this candidate feature did not provide additional 

information content to the predictive model to the subset S, then the 

performance of the predictive model will remain unchanged. Therefore, the 

performance of the predictive model with 𝑆 ∪ {𝑥𝑗} will be the same with the 

performance of the predictive model with 𝑆 only.  
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3) Third phenomenon, if the candidate feature 𝑥𝑗 was relevant, and it provides 

an increment of information content to the subset S, then the performance of 

the predictive model will increase. Therefore, the performance of the 

predictive model with 𝑆 ∪ {𝑥𝑗}  will be higher than the performance of the 

predictive model with 𝑆 only. 

 

These three phenomena can be shown in the graph of the performance 

of the predictive model using SVM versus the cumulative ranked features. 

Therefore, the next selected candidate feature will be the feature from the third 

phenomenon. The performance of the predictive model will be tested by 

adding the ranked candidature feature one by one. When the newly added 

candidate feature gives a better performance than the performance of the 

predictive model, before adding this candidate feature, then this candidate 

feature will be selected. The newly added candidate feature provides new 

information to the predictive model. When the newly added candidate feature 

provides the same performance as the performance of the predictive model 

before adding this candidate feature, then this candidate feature will be filtered 

out. The newly added candidate feature is a redundant feature with respect to 

the selected subset S; therefore, no new information is added to the predictive 

model. When the newly added candidate feature gives a lower performance 

than the performance of the predictive model before adding this candidate 

feature, then this candidate feature will be filtered out. The newly added 

candidate feature might be an irrelevant feature or noise.  
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4.1.4 Minimal Features  

  

In past researches, the performance of the model will become better 

when more relevant features are added to the predictive model. When more 

informative features are added to the predictive model, the predictive model 

will perform better. Based on the methods of past researches, the researchers 

have great freedom in choosing any number of features that are needed to 

build the predictive model. Usually, researchers will test the performance of 

the predictive model with a range of k, 5 ≤ 𝑘 ≤ 50, where k is the number of 

a feature used to build the predictive model. The optimum value k differs 

among the data set, and this will depend on the amount of information 

contained in the data set. For example, a subset of five features can give better 

classification performance compared to a subset of ten features, if the five 

features contained high information content compared to the ten features. 

Therefore, it does not always guarantee that more features in a predictive 

model will yield better performance, but in contrast, it will increase the 

complexity of the predictive model.  

 

The proposed method in this study will search all the ranked features, 

until there are no more features added into the predictive model. Also, the 

proposed algorithm guarantees that the next added feature will improve the 

performance of the predictive model. As evidenced from past researches, 

when more features are added into the predictive model, the performance of 

the classification are not rising, but are gradually increasing with frustrated 

motion. This will lead to a significant problem when someone wants to choose 



 

54 
 

a certain number of elements. For example, a researcher can set a value for k  

from five to seven. At the same time, the accuracy of using five features was 

90%, and the accuracy of using six features may become 88%, and when using 

seven features, the accuracy rose to 92%. In this situation, what is the 

optimum number of features as the minimum number of features can be five, 

but with seven features, the predictive model can achieve better performance.  

 

The most exciting is the existence of the sixth feature which is either 

essential or is not important. Since it is not a relatively small number of 

selected features, and the performance is not the best, so why does this feature 

appeared in the subset of selected features. Is this feature redundant? If this 

feature is removed, will the performance of the predictive model get better? 

The proposed algorithm can alleviate this issue by getting a subset of features 

that give strictly increasing performance when more features are added, and 

obtained the minimal features. Additionally, a smaller number of features is 

more preferable and by reducing it helps the biologists to predict the disease 

accurately (Bir-Jmel et al., 2019). 

 

4.2  Algorithm on the rMI-SVM algorithm 

 

From the proposed algorithm, a smaller number of features can be 

obtained, and the performance of the predictive model is better than using the 

full features (baseline). The performance using these lower number of features 

also gives the same or better performance compared to the new proposed 

baseline using the ranked features in Chapter 3. At the same time, the 
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proposed algorithm will guarantee that the newly added feature will provide 

new information to the predictive model and obtain a strictly increasing 

accuracy graph versus the number of features. The features selected by the 

proposed algorithm will guarantee that the predictive model will only get 

better and better when more features are added to the predictive model. 

 

 

Figure 4.1: Flowchart of finding a smaller selected feature 

 

Figure 4.1 shows the flowchart of finding a smaller selected feature. 

The accuracy for the ranked cumulative features has been calculated after 

which the feature will be deleted based on the comparison of the accuracy. A 

graph can be plotted using the accuracy versus the ranked cumulative features.  

 

The next section shows the algorithm upon selecting the smaller 

features using the support vector machine. 

 

 

 



 

56 
 

The algorithm upon selecting the smaller features: 

Input:  

A training sample D with a full feature set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} and the label 

class C with N dimension. 

Output: 

1. (Initialisation) Set X ← “initial set of N features” 

2. (Normalising) For ∀ 𝑥𝑖 ∈ 𝑋, normalise each 𝑥𝑖 in [0,1] 

3. (Remapping) For ∀ 𝑥𝑖 ∈ 𝑋, remapped each 𝑥𝑖 into three equal bins and for 

remapped the label class C into p equal bins 

4. (Forming) For ∀ 𝑥𝑖 ∈ 𝑋 , formed a frequency count and a joint pdf  for each 

𝑥𝑖 and label class C 

5. (Calculating) For ∀ 𝑥𝑖 ∈ 𝑋, calculate the mutual information for each pair of 

𝑥𝑖 and label class C using the joint pdf 

6. (Ranking) For ∀ 𝑥𝑖 ∈ 𝑋, ranked the mutual information score for each 𝑥𝑖 in 

descending order 

7. (Plotting) Plotted a graph of accuracy versus cumulative ranked features 

8. (Filtering) Deleted the feature when the accuracy is same or lower than the 

accuracy of the previous cumulative features 

9. (Recompute) Compute the accuracy of the remaining ranked cumulative 

features from step 8 

10. (Repeating) Repeat  steps 8-9 until no more features are filtered out 

 

For example, Figure 4.2 shows the average accuracy versus the ranked 

features based on the mutual information score. The third feature will be 

deleted because when the third feature is added into the predictive model, the 
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average accuracy is dropped. The third feature did not give any newly added 

information to the predictive model; because the third feature is noise which 

may worsen the predictive model. The fifth feature until the 20th feature will 

be removed because when these 16 features are added into the predictive 

model, the performance of the predictive model remains the same showing 

that these 16 features did not give newly added information to the predictive 

model; these 16 features are, therefore, deemed redundant. Based on Figure 

4.2, only the first, second, fourth, 21st, and 39th will be selected in the first 

round. Then, the same process will be repeated for these five features, until no 

more features can be deleted based on the comparison of the accuracy. 

 

 

Figure 4.2: Average accuracy versus the ranked features based on the 

mutual information score 
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Figure 4.3 shows the average accuracy for a smaller selected feature 

from the example above. The example in Figure 4.2 uses data with 50 features. 

After removing those redundant features and noise, only two features remain. 

The number of features has reduced 96% of the original features, and it shows 

that there is an excellent dimensionality reduction. The average accuracy 

shows an increment from 93.3% (using full features- existing baseline) to 95.5% 

(using two selected features). The optimal baseline as proposed in Chapter 3 

was 94% with 39 features, and after dimension reduction, the accuracy 

becomes 95.5% with two features only. As promised earlier, the proposed 

algorithm is able to get smaller features to achieve better accuracy compared 

to the accuracy using all the features and it is even better than the optimal 

baseline proposed in Chapter 3. Besides this, a strictly increasing graph as 

observed in  Figure 4.3, where the newly added feature will provide new 

information to the predictive model. The features selected by the proposed 

algorithm show that the performance of the predictive model will only get 

better and better when more features are added to the predictive model. 
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Figure 4.3: Average accuracy for a smaller selected feature 

 

The proposed method rMI-SVM algorithm will select a smaller 

number of features by plotting the strictly increasing average accuracy graph, 

and the proposed method significantly reduces the dimension of the data set 

with minimal features. The new findings of this proposed method are the 

redundant features and noise can easily be detected in an accuracy 

performance graph versus the cumulative ranked features. The horizontal line 

in the accuracy graph indicates the redundant features because there is no 

input of new information to the predictive model, as a result, there is no 

increment in the accuracy. When noise is added to the predictive model, the 

accuracy of the predictive model will decrease. These redundant features and 

noise will then be deleted, and the same process will continue until all 

remaining features provide new information to the predictive model. 
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CHAPTER 5 

 

EVALUATION OF rMI-SVM 

 

5.1  Classifier 

 

 The classifier is an essential tool in data mining. The concept of 

classification is to learn a classification function and the classifier builds a 

classification model based on the existing data. The building model can then 

be applied to data prediction. According to Akadi et al., (2008); Che et al., 

(2017) there are several classifiers such as linear regression, logistic regression, 

support vector machine classifier, naïve Bayes classifier, k-nearest neighbour, 

decision trees classification, random forest, gradient boost, and so on.  For this 

research, the support vector machine classifier will be used due to the high 

predictive accuracy performance compared to k- nearest neighbour classifier 

or decision tree classifier. To evaluate the classification error rate, the k- fold 

cross-validation will be used in this research.  

 

 There are several kernel functions in support vector machine classifier 

such as linear, polynomial, radial basis function (RBF) and sigmoid. In this 

research, the data set will be tested by four different types of kernel functions 

and from here a kernel function will be chosen that gives the highest 

performance in the predictive model. The four types of kernel functions are 

linear, quadratic, cubic and RBF. The purpose of testing the data set with these 
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four different kernel functions is to identify which kernel function is suitable 

for a given data set because the distribution of the data set was unknown until 

it has been tested. 

 

5.2 Receiver Operating Characteristic Curve 

 

The receiver operating characteristic curve has been used in the fields 

of biology, criminal psychology and recently it has been well developed in the 

areas of machine learning and data mining. In medicine, it is widely used in 

the diagnosis of diseases, and is also applied in empirical medical research, 

radiology and social science research. The receiver operating characteristic 

curve acts as alternative methods that are easy to operate and incorporate with 

the gold standard for clinical identification. For example, to identify a biopsy 

of cancer, the receiver operating characteristic curve can be used to replace the 

gold standard in classifying the tumour into cancerous or non-cancerous. The 

y-axis of the receiver operating characteristic curve represents the true positive 

rate, also known as sensitivity while the x-axis of the receiver operating 

characteristic curve represents the false-positive rate. The sensitivity refers to 

the probability that the result is correctly classified as positive, and the 

specificity refers to the probability that the result is correctly classified as 

negative. In medicine, sensitivity indicates the probability that a person with a 

disease is classified as positive and the specificity indicates the probability that 

a normal person is classified as negative. 
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Figure 5.1: Confusion matrix 

 

Figure 4.4 shows the confusion matrix. The sensitivity, specificity, 

false-positive rate and false-negative rate were defined as follows: 

 

Sensitivity =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Specificity =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

False − positive Rate =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

False − negative Rate =
𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

Precision and recall are two metrics which are widely used in the field 

of information retrieval and statistical classification to evaluate the quality of 

the results. The precision refers to the ratio of the number of related items 

retrieved from the total number of items retrieved, the recall rate refers to the 
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ratio of the number of related items retrieved from the number of related items 

in the system. In general, precision is the number of items accurately retrieved 

while recall is on how many accurate items are retrieved. The definitions of 

precision and recall are as follows: 

 

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

The higher the precision and recall, the better it is, but these two are 

contradictory in some cases. In medicine, the recall is much more important 

than precision. The reason is that false-negative is more critical than the false-

positive in diagnosis cases. False-positive did not give any harm to the patient 

without the disease because they only need to run through more test to confirm 

the absence of the disease. The true positive and false-negative are relevant 

elements in disease diagnosis cases. The receiver operating characteristics 

curve has an outstanding characteristic that it will remain unchanged when the 

distribution of the positive samples and negative samples change in the test. 

When the receiver operating characteristics curve was investigated, the 

diagonal line was taken as a reference line. If the receiver operating 

characteristics curve of the classifier just falls on the diagonal reference line, it 

means that the classifier does not discriminate the diagnosis of a disease. If the 

receiver operating characteristics curve moves to the upper left, the higher is 

the sensitivity of the classifier to the disease and the lower the false-positive 

rate, this means the discriminating power of the classifier is better. When the 
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point closest to the upper left corner (0,1), it becomes the point of least 

misclassification, its sensitivity is the largest, and the false-positive rate the 

smallest.  

 

Generally, when measuring the quality of a classifier, in addition to the 

receiver operating characteristics curve, the area under curve can be used to 

discriminate the discriminating power of the receiver operating characteristics 

curve. The area under the curve value ranges from 0 to 1, and the larger, the 

better is the classifier. In medical diagnosis, the main task is to find out the 

disease of the patient, which is high in true positive rate. At the same time, the 

misdiagnosing of the patient without disease as with the disease that was low 

in false-positive rate. It is not difficult to establish that the true positive rate 

and the false-positive rate are mutually restrictive. If a doctor was sensitive to 

a symptom of a disease, then with a small symptom, the doctor will judge the 

patient with the disease. Therefore, the true positive rate should be high, but 

the false-positive rate will become higher accordingly. In the most extreme 

case, the doctor will treat all the patients with the disease; therefore, both the 

true positive rate and the false-positive rate will reach 1. In the case of the area 

under curve, which is greater than 0.5 and the closer the area under curve was 

to one, the better is the diagnostic effect. When the area under curve is equal 

to 0.5, it means that the diagnostic method is utterly ineffective and has no 

diagnostic effect.  
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5.3  Robustness  

 

The sample size of the microarray data analysis is relatively small, 

therefore feature selection in small sample size might affect the feature 

selection by chance. The biomarker was an essential tool in diagnosis, 

prognosis or treatment in cancer and other medical diseases; therefore it is 

vital to have an algorithm that is able to figure out the necessary features and 

not feature selection by chance. In this research, the Z-score analysis (Li et al., 

2001; Jirapech-Umpai and Aitken, 2005) is applied to determine the 

robustness of the algorithm in feature selection. The Z- score measures the 

significance of the occurrence of the feature selected. A feature with high Z-

score value indicates that the feature was not chosen by chance. Besides that, 

an algorithm that selected a subset of features were among those selected 

features with a high Z-score value and were deemed to be more robust.   

 

The Z-score of the feature defined as 𝑍 =
𝑓𝑖−𝐸(𝑓𝑖)

𝜎
, where 𝑓𝑖  was the 

frequency of the feature was selected, and 𝜎 was the standard deviation of 𝑓𝑖. 

Let N be the total number of features and 𝐸(𝑓𝑖) was the expected number of 

times feature i was selected and 𝑓𝐶̅ be the average number of selected features, 

then the probability of feature i was selected was 
𝑓𝐶̅

𝑁
  and 𝐸(𝑓𝑖) = 𝑃(𝑓𝑖)𝐾, 𝜎 =

√𝑃(𝑓𝑖)(1 − 𝑃(𝑓𝑖))𝐾, where K is the number of replicates. 
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5.4 Comparison with other Relevant Work 

 

Most of the methods were focused on the three essential criteria: 

relevancy, redundancy, and dynamic change on the increment of information 

content. Those previous methods were focused on maximising the relevancy 

between the features and label class and minimising the redundancy between 

the features simultaneously. This measurement can be in terms of 

independently as a dynamic change or dependently. The earlier research on 

feature selection methods based on information theory such as MIFS, MIFS-U, 

mRMR, was dependent on a parameter where this parameter was not well-

defined and had no further information on how to determine the value of the 

parameter. Besides using the mutual information in finding the relevancy 

between the features and class, past research also combine mutual information 

with other methods or algorithm in searching for the redundant features. For 

example, MIFS-U was the evolution of the MIFS, and MIFS-U was combined 

with the Taguchi method in searching the new information, and while mRMR 

combines the filter method and wrapper method in obtaining the compact 

subset of features. The combine method or algorithm used by MIFS-U and 

mRMR might select the features with high relevancy and high redundancy at 

the same time.   

 

Later on, NMIFS and NMIFS-ND became the enhanced edition of 

MIFS, MIFS-U and mRMR where these proposed methods did not involve 

any parameter in the algorithm. NMIFS used average normalised mutual 

information combined with genetic algorithm in finding the compact subset of 
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features. Similarly,  NMIFS-ND used mutual information was combined with 

NSGA-II algorithm in finding the compact subset of features. These were the 

first generation of the feature selection methods that involve mutual 

information when combined with other techniques or algorithm in finding the 

compact subset of features.  

 

The second generation of the feature selection methods starts to use the 

calculation on conditional mutual information or joint mutual information. 

JMI, JMIM, NJMIM, and MRI were using conditional mutual information. 

The joint mutual information can overcome the problem when two features to 

the label class had the same mutual information score. Therefore, the proposed 

second-generation methods used joint mutual information to filter redundant 

features. These methods consider the relevant features by calculating the 

mutual information between the features and label class. Next, the redundant 

features were filtered by using the joint mutual information between the 

candidate feature and the already selected features to the label class. That was 

the second generation method that considered the increment of information 

content into the predictive model.  

 

In the year 2018, the third generation feature selection not only 

considered the relevancy, redundancy, increment of information content but 

also the dynamic change when the new candidate feature was added into the 

compact subset. MIFS, mRMR, JMI and MRI were the first and second-

generation methods that did not consider the dynamic change when the new 
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candidate feature was added into the compact subset. DCSF was a proposed 

method that involved the dynamic change when the new candidate feature was 

added into the compact subset. DCSF used conditional mutual information 

between the feature and the label class to find the relevant feature which was 

different from the traditional proposed methods. However, DCSF needs to set 

a parameter as one of the first generation methods.  

 

Overall, the previously proposed feature selection methods have 

slowly improved and strengthened from the first generation until the third 

generation. The past research have always used only the baseline which was 

generated using full features which was far away from the real result as this 

includes all the features which involved the irrelevant features, redundant 

features and noise. Besides this, the past research methods did not show the 

continually increasing performance when a new candidate feature was added 

into the predictive model and no guideline on how to select the minimum 

feature that was needed in the predictive model. The first proposed idea here 

to improve and strengthen the past feature selection method is to find a new 

and better baseline using ranked features by mutual information score. The 

proposed algorithm in Chapter 3 was able to obtain a better baseline that 

involves as many as relevant features that were ranked by mutual information 

score. Besides a better baseline can be obtained using the proposed algorithm, 

at the same time, the number of features that are needed to achieve this 

optimal baseline can be obtained. The number of features serves as a guideline 

on the maximum number of features that are required for any feature selection 

algorithm to get the new proposed baseline.  
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Secondly, the rMI-SVM algorithm was proposed in this research to 

reduce the dimensionality of the data set, and at the same time, a compact 

subset of features can be obtained. This compact subset guarantees that every 

newly added feature will provide new information to the predictive model. 

The rMI-SVM algorithm does not depend on any parameter as this method 

only use the information theory on mutual information. Therefore rMI-SVM 

algorithm was free from the trouble of setting the parameter in the algorithm. 

The rMI-SVM algorithm is a simple method that only involved the calculation 

on mutual information, unlike some of the past feature selection method such 

as MIFS-U and mRMR that requires a more complex calculation and time-

consuming wrapped method to obtain the compact subset of features. The 

redundant features and noise can be easily detected from the performance 

graph versus the cumulative ranked features. When the newly added feature 

lowers down the performance of the predictive model, then this newly added 

feature is a noise. When the newly added feature, shows no improvement or 

remains unchanged in the performance of the predictive model, then this 

newly added feature is redundant.  

 

The rMI-SVM algorithm considers the dynamic change of the newly 

added candidate feature by evaluating the performance of the predictive model 

using SVM classifier, and not as the previous feature selection method that 

used conditional mutual information. The rMI-SVM algorithm is able to select 

a compact subset of a feature that ensures each added new candidate feature 

will provide new information to the predictive model. Therefore, a strictly 

increasing average accuracy versus the number of features graph will be 
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obtained. Overall, the rMI-SVM algorithm considers the maximum relevancy 

of the features and filter the redundant features by taking into account the 

newly added candidate feature with the already selected subset of features to 

the label class. 

 

5.5  Influence on the Classifier to the Predictive Model 

 

Several classifiers are used in gene expression analysis, such as 

decision tree classifier, support vector machine classifier, and k-nearest 

neighbour classifier. The rMI algorithm combined with the SVM classifier is 

used in this model because the predictive accuracy is high, and the memory 

usage is acceptable. The rMI algorithm can combine with any classifiers as 

rMI is a classifier independent feature selection algorithm. The role of the 

classifier is to filter out the redundancy features based on the predictive model 

performance. The redundant features will give no additional information to the 

model and thus no improvement is shown in the predictive model. The rMI 

algorithm will only select the next candidate feature if new information is 

added to the predictive model. Although different classifiers may have a 

different level of accuracy, such as support vector machine classifier was high 

in predictive accuracy. In contrast, the accuracy of the k-nearest neighbour 

depends on the dimensional of the data set. Nevertheless, when a non-

redundant informative feature was added to the model, all the classifiers will 

show an improvement in the accuracy. 
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5.6  Experimental Setup 

 

The experiment was performed to study the efficiency and 

effectiveness of the proposed mutual information-based feature selection 

method, rMI-SVM algorithm. The experiments were conducted on a laptop 

with Processor Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz, 2401 Mhz, 2 

Core(s), 4 Logical Processor(s) and 8 GB of random access memory (RAM). 

The rMI-SVM algorithm was performed using MATLAB R2017b. 
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CHAPTER 6 

 

RESULTS 

 

6.1  Data Set 

 

The data sets used in this research were microarray data sets, diseases 

data set, and a handwriting data set. Indeed, the microarray data used in this 

research were public microarray data where the data can be downloaded from 

the National Center for Biotechnology Information (NCBI) and UCI Machine 

Learning Repository, http://archive.ics.uci.edu/ml/index.php. The Gene 

Expression Omnibus (GEO) at NCBI was the largest fully public repository 

for molecular data and gene expression data. The GEO database was publicly 

accessible via the www at http://www.ncbi.nlm.nih.gov/geo. A large number 

of publications are published in several journals such as Expert Systems with 

Applications, BioMed Central (BMC) Bioinformatics, Journal of Machine 

Learning Research, International Journal of Computer Science and Network 

Security, Institute of Electrical and Electronics Engineers (IEEE), Nature 

Genetics, Bulletin of Mathematical Biology, Computers in Biology and 

Medicine, Journal of Bioinformatics and Computational Biology, Journal of 

Mathematical Biology, etc.  

 

Also, the microarray data have been used by other authors and 

publishers in many journal publications. Ten data sets had been downloaded to 

http://archive.ics.uci.edu/ml/index.php
http://www.ncbi.nlm.nih.gov/geo
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evaluate the performance of the rMI-SVM algorithm. The first six data set 

were the microarray data with high dimensional attributes, but a low number 

of sample size while the next four data set were the clinical data which relate 

to some diseases with low dimensional in attributes, but a high number of 

sample size and the last data set were handwriting recognition data set. The 

summary of the 10 data was shown in Table 6.1. There were six binary 

classification data set and four multiclass classification data set.  

 

The reason for choosing these 10 data set was that the microarray data 

set is a high dimensional data set with low sample size and widely used in the 

published journal; the rMI-SVM algorithm can be applied here to evaluate its 

performance on dimension reduction.   

 

Table 6.1: Summary of the downloaded data set 

No. Name   No. of  No. of  Type of 

attribute  sample  classification 

1. Colon cancer  1988  62  Binary 

2. Leukaemia  7128  72  Binary 

3. Prostate cancer 2135  102  Binary 

4. Lung cancer  1626  181  Binary 

5. Skin cancer  22215  15  3 classes 

6. Lymphoma  4026  96  9 classes 

7. Parkinson  22  195  Binary 

8. Breast cancer  30  569  Binary 

9. Lung cancer  56  326  3 classes 

10. Handwriting  649  2000  10 classes 
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The first data set was colon cancer data set with 1988 number of 

attributes and 62 samples. The colon cancer data set contains 40 tumour 

samples and 22 normal samples. Table 6.2 shows part of the ribosomal protein 

cluster (Alon, 1999). The second data set was leukaemia data set with 7128 

attributes and 72 samples (Golub et al., 1999). The leukaemia data set contains 

47 acute lymphocytic leukaemia (ALL) and 25 acute myeloid leukaemia 

(AML). The third data set was prostate cancer data set with 2135 attributes 

and 102 samples. The prostate cancer data set contains 52 tumour samples and 

50 normal samples (Dessì et al., 2013). 

 

Table 6.2: Part of the ribosomal protein cluster of colon cancer data set 
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The fourth data set was lung cancer data set with 1626 number of 

attributes and 181 samples. The lung cancer data set contains 31 malignant 

pleural mesotheliomas (MPM) and 150 adenocarcinomas (AD) (Podolsky et 

al., 2016). The fifth data set was skin cancer data set with 22215 number of 

attributes and 15 samples. The skin cancer data set contains six healthy people, 

four patient with actinic keratosis and five patient with squamous cell 

carcinoma (Nestor and Zarraga, 2012.). The sixth data set was lymphoma data 

set with 4026 number of attributes and 96 samples. There were nine classes in 

this data set. The samples were categorised into nine classes according to the 

category of the mRNA sample studied (Aguilar-Ruiz et al., 2004; Alomari et 

al., 2017).  

 

The seventh data set was Parkinson data set with 22 number of 

attributes and 195 samples. The Parkinson data set contains 48 healthy 

samples and 147 Parkinson disease (PD) samples (Ramani and Sivagami, 

2011). This data set consists of a series of biomedical speech measurements 

from 31 people, of which 23 had Parkinson disease. Each attribute in the data 

set represented a specific voice metric, and there were approximately six 

recordings per people. The attributes covered the measurements of average, 

maximum and minimum fundamental vocal frequency, several measurements 

on variation in fundamental frequency and amplitude, two measures of the 

ratio of noise to tonal elements in the voice, two nonlinear measurements of 

dynamical complexity, signal fractal scaling exponent and three nonlinear 

measurements in fundamental frequency variation.  

https://www.inderscienceonline.com/author/Alomari%2C+Osama+Ahmad
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The eighth data set was breast cancer data set with 30 number of 

attributes and 569 samples. The breast cancer data set contains 212 malignant 

samples and 357 benign samples (Salama et al., 2012). The data set was 

calculated from a digitised image of fine-needle aspiration of the breast lumps. 

It described the characteristics of the nucleus that are present in the image. For 

each cell nucleus, ten real-valued attributes were computed such as radius, 

perimeter, area, texture, smoothness, compactness and concavity, concave 

points, symmetry and fractal dimension of the nucleus. The ninth data was 

lung cancer data set with 56 number of attributes and 32 samples (Hong and 

Yang, 1991; Naseriparsa et al., 2013.). This data set was published in the 

Journal of Pattern Recognition (1991). Hong and Yang (Year) have used this 

data set on the optimal discriminant plane for a small sample size. This data 

set described the three types of pathological lung cancers. The 10th data set 

was a handwritten data set with 649 number of attributes and 2000 samples 

(Bins and Draper 2001). This data set consists of a number of handwritten 

features from zero to nine, and there were a total of ten classes in this data set.   

 

6.2 Experiment Procedure 

 

The optimal baseline will be computed for all data sets using the 

ranked features, as described in Chapter 3. This process will be repeated for 50 

times to obtain the average mutual information score for each feature. Each 

time, a new training and the test set will be obtained. The optimal baseline 

with the number of features will be identified before using the rMI-SVM 

algorithm as described in Chapter 4 to reduce the dimensionality of the data 
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set and for choosing the compact subset of a feature to build the predictive 

model. All the performance of the compact subset of a feature will be 

evaluated by four different classifiers such as SVM, k-nearest neighbour, 

Naïve Bayes and Tree Decision with k-fold cross-validation. The rMI-SVM 

algorithm will be repeated five times to get the average accuracy. After this, 

the evaluation tools such as confusion matrix, ROC curve will be used to 

evaluate the performance of the chosen compact subset of a feature. The Z-

score will be applied to the compact subset of a feature to show that the 

features are not selected by chance. Figure 6.1 shows the flowchart of the 

experimental procedure for obtaining the optimal baseline and the number of 

features, and Figure 6.2 shows the flowchart of the experimental procedure for 

dimension reduction on feature selection. 

 

 

Figure 6.1: Flowchart of the experimental procedure for obtaining an 

optimal baseline and number of features 
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Figure 6.2: Flowchart of the experimental procedure for dimension 

reduction on feature selection 

 

6.3  Evaluation on Four Different SVM Classifiers of Binary Data Set 

 

Tables 6.3- 6.8 show the average accuracy of SVM cross-validation 

and average accuracy of SVM predictive model obtained from the four types 

of kernel function of SVM classifier of binary data set. 
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Table 6.3: Average accuracy of cross-validation and predictive model on 

four different kernel functions of classifier of colon cancer data set 

 Type of classifier SVM Cross-validation SVM Accuracy 

SVM Linear  82.7273   80 

SVM Quadratic 80    72.2222 

SVM Cubic  60.9091   67.7778 

SVM RBF  68.1818   68.8888 

 

From Table 6.3, the colon cancer data set achieved the highest average 

accuracy of 80% by using the SVM classifier with linear kernel function, 

followed by SVM classifier with quadratic kernel function with the average 

accuracy of 72.22%.  Similarly, the SVM classifier with radial basis function 

kernel function achieved the average accuracy of 68.89% and the lowest 

average accuracy was 67.78% by using SVM classifier with a cubic kernel 

function. 

 

Table 6.4: Average accuracy of cross-validation and predictive model on 

four different kernel functions of classifier of a leukaemia data set 

 Type of classifier SVM Cross-validation SVM Accuracy 

SVM Linear  97.6471   96.1905 

SVM Quadratic 92.9412   82.8571 

SVM Cubic  79.2157   70.4762 

SVM RBF  89.8039   84.7619 

 

From Table 6.4, the leukaemia cancer data set achieved the highest 

average accuracy of 96.19% by using the SVM classifier with linear kernel 

function, followed by SVM classifier with radial basis function kernel 

function with the average accuracy of 84.76%, SVM classifier with quadratic 
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kernel function with the average accuracy of 82.86% and the lowest average 

accuracy was 70.48% by using SVM classifier with a cubic kernel function. 

 

Table 6.5: Average accuracy of cross-validation and predictive model on 

four different kernel functions of classifier of a prostate cancer data set 

 Type of classifier SVM Cross-validation SVM Accuracy 

SVM Linear  91.3889   91.3333 

SVM Quadratic 89.4444   90 

SVM Cubic  90    70.4638 

SVM RBF  83.3333   88 

 

From Table 6.5, the prostate cancer data set achieved the highest 

average accuracy of 91.33% by using the SVM classifier with linear kernel 

function, followed by SVM classifier with quadratic kernel function with the 

average accuracy of 90%, SVM classifier with radial basis function kernel 

function with the average accuracy of 88% and the lowest average accuracy 

was 70.46% by using SVM classifier with a cubic kernel function. 

 

Table 6.6: Average accuracy of cross-validation and predictive model on 

four different kernel functions of classifier of lung cancer data set 

 Type of classifier SVM Cross-validation SVM Accuracy 

SVM Linear  99.0551   100 

SVM Quadratic 99.2126   100 

SVM Cubic  98.7402   94.4444 

SVM RBF  97.9528   100 
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From Table 6.6, the lung cancer data set achieved the same average 

accuracy for the three classifiers: SVM classifier with linear kernel function, 

SVM classifier with quadratic kernel function and SVM classifier with radial 

basis function kernel function with an average accuracy of 100%. The lowest 

average accuracy was 94.44% by using SVM classifier with a cubic kernel 

function.  

 

Table 6.7: Average accuracy of cross-validation and predictive model on 

four different kernel functions of classifier of Parkinson data set 

 Type of classifier SVM Cross-validation SVM Accuracy 

SVM Linear  87.7372   80.3448 

SVM Quadratic 87.5912   74.1379 

SVM Cubic  89.0511   80 

SVM RBF  89.0511   88.6207 

 

From Table 6.7, the Parkinson data set achieved the highest average 

accuracy of 88.62% by using the SVM classifier with radial basis function 

kernel function, followed by SVM classifier with linear kernel function with 

the average accuracy of 80.34%, SVM classifier with cubic kernel function 

with the average accuracy of 80% and the lowest average accuracy was 74.14% 

by using SVM classifier with a quadratic kernel function. 
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Table 6.8: Average accuracy of cross-validation and predictive model on 

four different kernel functions of classifier of breast cancer data set 

 Type of classifier SVM Cross-validation SVM Accuracy 

SVM Linear  97.3935   91.7647 

SVM Quadratic 97.1930   85.5294 

SVM Cubic  95.6892   86.4706 

SVM RBF  95.8897   86.3529 

 

From Table 6.8, the breast cancer data set achieved the highest average 

accuracy of 91.76% by using the SVM classifier with linear kernel function, 

followed by SVM classifier with cubic kernel function with the average 

accuracy of 86.47%, SVM classifier with radial basis function kernel function 

with the average accuracy of 86.35% and the lowest average accuracy was 

85.53% by using SVM classifier with a quadratic kernel function. Therefore, 

based on the average accuracy analysis on SVM classifier with a different 

kernel function, the colon data set, leukaemia data set, prostate cancer data set, 

lung cancer data set, and breast cancer data set used SVM-Linear whereas the 

Parkinson data set used SVM-RBF in the algorithm later. 

 

6.4  Optimal baseline of the Binary Data 

 

The optimal baseline for binary data will be obtained using the 

algorithm provided in Chapter 3. Figures 6.3-6.8 show the average accuracy of 

the ranked features for colon cancer data set, the leukaemia data set, prostate 

cancer data set, lung cancer data set, Parkinson data set and breast cancer data 

set. 
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Figure 6.3: Average accuracy of the ranked features for colon cancer data 

set 

 

 

Figure 6.4: Average accuracy of the ranked features for the leukaemia 

data set 
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Figure 6.5: Average accuracy of the ranked features for prostate cancer 

data set 

 

 

Figure 6.6: Average accuracy of the ranked features for lung cancer data 

set 
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Figure 6.7: Average accuracy of the ranked features for Parkinson data 

set 

 

 

Figure 6.8: Average accuracy of the ranked features for breast cancer 

data set 
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From the figures above, the highest average accuracy is the optimal 

baseline of the data set and the number of features that obtained this optimal 

baseline were also obtained at the same time. From the figures, it was noticed 

that when using all the features as a baseline, it usually does not produce a 

good baseline, as these baselines are lower than the proposed optimal 

baselines. When all the features are included, meaning that at the same time,  

the redundancy and noise are included as well. Table 6.9 shows the baseline 

using the full features and the optimal baseline was obtained using the 

algorithm in Chapter 3 with the number of features to achieve this optimal 

baseline. The proposed algorithm shows that the optimal baselines are better 

than the baseline using the full attributes and the number of features required 

to obtain the optimal baseline are also lower than the full features. The 

features obtained using the proposed algorithm is a ranked feature where 

information contained in the features are also ranked from the most relevant to 

less relevant. Therefore, this number of features obtained from the proposed 

algorithm will provide better prediction power in the predictive model.  

 

Table 6.9: The baseline using full features and the optimal baseline with 

the number of features 

Data Set Baseline Full features Optimal baseline   No. of features

  

Colon  80%  1988  87.78% 202 

Leukaemia 96.19% 7128  99.05% 38 

Prostate 91.33% 2135  94%  330 

Lung  100%  1626  100%  9  

Parkinson 88.62% 22  88.62% 22 

Breast  91.76% 30  95.06% 13 
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The number of features obtained using the proposed algorithm plays a 

vital role in the features selection, and the features selection method should 

not take more than this number of features to achieve the same accuracy. 

Therefore, we can have a new guideline on what is the maximum number of 

features that are allowed in a feature selection. For the past research, they are 

using the full features to obtain the baseline, therefore no clear guideline on 

how many features are needed in a predictive model or more clearly what is 

the maximum number of features that allow a researcher to build a predictive 

model. 

 

6.5  rMI-SVM algorithm for Binary Data Set 

 

In this section, the rMI-SVM algorithm will be applied in the binary 

data set to reduce the dimension of the data set by filtering out the redundant 

features and noise. The redundant features and the noise can be easily detected 

from the average accuracy graph plotted using the ranked features. The ranked 

features are ranked according to the information contained, and the higher 

mutual information score indicated the features contain more information. 

When more ranked features are added to the predictive model, then more 

information are also added to the predictive model and the prediction power of 

the model will be better. A newly added feature to the predictive model, is the 

performance of the predictive model which will have three phenomena 

discussed in Chapter 4. When the newly added feature contains new 

information, then the performance of the predictive model will increase. When 

the newly added feature contains the same information with the already 
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selected features, then the performance of the predictive model will remain the 

same. When a noise is added to the predictive model, the performance of the 

predictive model will decrease. Therefore, based on the performance of the 

predictive model, the redundant features and noise can be detected and be 

filtered out. 

 

Those redundant features, irrelevant features or noise will be filtered 

out by rMI-SVM algorithm to provide better performance using a lower 

number of features. Table 6.10  summarises the number of features selected by 

the rMI-SVM algorithm for six binary data set. Table 6.10 also shows the 

percentage of the dimension reduction of each binary data set. On average, the 

percentage of the dimension of the six binary data set has been reduced by 

about 90%, and the reduction is most significant in the microarray data set. 

 

Table 6.10: Number of features selected by the rMI-SVM algorithm for 

six binary data set 

Data set  No of features selected  Dimension to reduce 

Colon   7    99.65% 

Leukaemia  5    99.93% 

Prostate  3    99.86% 

Lung   4    99.75% 

Parkinson  7    68.18% 

Breast   11    63.33% 

 

The performance of the predictive model using the number of features 

selected by the rMI-SVM algorithm was tested using four different classifiers, 

support vector machine classifier (SVM), k- nearest neighbour classifier 
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(KNN), naïve Bayes classifier (NB) and tree classification classifier (TC). On 

the other hand, the performance of the predictive model using the regression 

method and minimal-redundancy-maximal-relevance (mRMR) method on the 

same number of features was tested. SVM-CV and SVM-Acc represent the 

average accuracy of the cross-validation of the support vector machine 

classifier and the average accuracy from the predictive model of the support 

vector machine classifier. NB-CV and NB-Acc represent the average accuracy 

of the cross-validation of the naïve Bayes classifier and the average accuracy 

from the predictive model of the naïve Bayes classifier. KNN-CV and KNN-

Acc represent the average accuracy of the cross-validation of the k-nearest 

neighbour classifier and the average accuracy from the predictive model of the 

k-nearest neighbour classifier. TC-CV and TC-Acc represent the average 

accuracy of the cross-validation of the tree classification classifier and the 

average accuracy from the predictive model of the tree classification classifier. 

The baseline indicated the cross-validation and average accuracy using full 

features. 

 

Table 6.11 shows the 10- fold cross-validation, and average accuracy 

for four different classifiers using full features, seven features using the rMI-

SVM algorithm, regression method and mRMR method for colon data set. The 

10-fold cross-validation and average accuracy using full features achieved by 

SVM- linear kernel function classifier was 82.73% and 80%. The 10-fold 

cross-validation and average performance obtained by using tree classification 

classifier were 75% and 77.78%. The 10-fold cross-validation and average 

performance obtained by using naïve Bayes classifier were 56.36% and 
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74.44%, and the 10-fold cross-validation and average performance obtained 

by using k-nearest neighbour classifier were 73.64% and 73.33%.  

 

The seven features selected by the rMI-SVM algorithm with linear 

kernel function gave the highest average accuracy with the SVM classifier- 

linear kernel function were compared with the regression method and mRMR 

method. The seven features selected by the rMI-SVM algorithm with linear 

kernel function gave the 10-fold cross-validation and average performance 

obtained by using SVM classifier - linear kernel function were 88.64% and 

87.78%, the seven features selected by regression method gave the 10-fold 

cross-validation and average performance obtained by using SVM - linear 

kernel function classifier was 83.18% and 82.22%, and the seven features 

selected by mRMR method gave the 10-fold cross-validation and average 

performance obtained by using SVM- linear kernel function classifier was 

85.45% and 81.11%.  

 

The seven features selected by the rMI-SVM algorithm with linear 

kernel function gave the highest average accuracy with the naïve Bayes 

classifier compared to the regression method and mRMR method. The seven 

chosen features by the rMI-SVM algorithm with linear kernel function gave 

the 10-fold cross-validation, and average performance obtained by using naïve 

Bayes classifier was 88.64% and 86.67%.  Whereas, the seven features 

selected by regression method gave the 10-fold cross-validation, and average 

performance obtained by using naïve Bayes classifier was 85.45% and 80%.  
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Finally,  the seven chosen features by mRMR method gave the 10-fold cross-

validation and average performance obtained by using naïve Bayes classifier 

was 85.45% and 78.89%.  

 

The seven features selected by the rMI-SVM algorithm with linear 

kernel function gave the highest average accuracy with the k-nearest 

neighbour classifier was compared to the regression method and mRMR 

method. The seven chosen features by the rMI-SVM algorithm with linear 

kernel function gave the 10-fold cross-validation, and average performance 

obtained by using k-nearest neighbour classifier was 85.45% and 84.44%. 

Whereas the seven features selected by regression method gave the 10-fold 

cross-validation, and average performance obtained by using k-nearest 

neighbour classifier was 78.64% and 73.33%, and the seven chosen features 

by mRMR method gave the 10-fold cross-validation and average performance 

obtained by using k-nearest neighbour classifier was 79.09% and 80%.  

 

The seven features selected by mRMR gave the highest average 

accuracy with the tree classification classifier were compared with the 

regression method and rMI-SVM algorithm with a linear kernel function. The 

seven features chosen by the rMI-SVM algorithm with linear kernel function 

gave the 10-fold cross-validation, and the average performance obtained by 

using tree classification classifier was 80% and 75.56%. Whereas, the seven 

features selected by regression method gave the 10-fold cross-validation, and 

the average performance obtained by using tree classification classifier was 
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78.64% and 74.44%.  Finally, the seven chosen features by mRMR method 

gave the 10-fold cross-validation and the average performance obtained by 

using tree classification classifier was 80% and 85.56%. 

 

Table 6.11: Ten-fold cross-validation and average accuracy for four 

different classifiers using full features, seven features using the rMI-SVM 

algorithm, Regression method and mRMR method of the colon data set 

  SVM-CV SVM-Acc NB-CV NB-Acc 

Baseline 82.7273 80  56.3636 74.4444 

rMI-SVM 88.6364 87.7778 88.6364 86.6667 

Regression 83.1818 82.2222 85.4546 80 

mRMR 85.4546 81.1111 85.4546 78.8889 

   KNN-CV KNN-Acc TC-CV TC-Acc 

Baseline 73.6364 73.3333 75  77.7778 

rMI-SVM 85.4546 84.4444 80  75.5556 

Regression 78.6364 73.3333 78.6364 74.4444 

mRMR 79.0909 80  80  85.5556 

 

Table 6.12 shows the output of the confusion matrix and the ROC 

curve of the colon cancer data using full features, seven features selected by 

the regression method, mRMR, the rMI-SVM algorithm using SVM - linear 

kernel function classifier with 10-fold cross-validation. The negative “0” 

indicated the patient with colon cancer while the positive “1” indicated the 

normal person. When 2000 features were using the predictive model, the 

accuracy was 81.8%, the prediction speed was about 22 observations per 

second, and the training time was 7.727 second. The true negative count was 

25, the false-positive count was three, the false-negative count was five, and 

the true positive count was 11; therefore, the recall was 0.89. The seven 
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features selected by the regression method, the accuracy was 79.5%, the 

prediction speed was about 1900 observation per second, and the training time 

was 0.75102 second. The true negative count was 26, the false-positive count 

was two, the false-negative count was seven, and the true positive count was 

nine; therefore, the recall was 0.93.  

 

The seven features selected by the mRMR method, the accuracy was 

84.1%, the prediction speed was about 2100 observations per second, and the 

training time was 0.80822 second. The true negative count was 25, the false-

positive count was three, the false-negative count was four, and the true 

positive count was 12; therefore, the recall was 0.89. The seven features 

selected by the rMI-SVM algorithm, the accuracy was 86.4%, the prediction 

speed was about 1800 observation per second, and the training time was 

0.65991 second. The true negative count was 27, the false-positive count was 

one, the false-negative count was five, and the true positive count was 11; 

therefore, the recall was 0.96. The seven features selected by rMI-SVM 

algorithm achieved the highest accuracy and fastest training time compared to 

the baseline using full features, regression method, and mRMR method. 

Therefore, the seven features selected by rMI-SVM algorithm provided a 

better prediction power. 
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Table 6.12: Output of the confusion matrix and the ROC curve of colon 

cancer data using seven features 

   TP TN FP FN Accuracy  

Full features  11 25 3 5 81.8% 

Regression  9 26 2 7 79.5% 

mRMR  12 25 3 4 84.1% 

rM-SVM  11 27 1 5 86.4% 

   Prediction speed Training time  AUC 

Full features  22 obs/sec  7.727 sec  0.87 

Regression  1900 obs/sec  0.75102 sec  0.8 

mRMR  2100 obs/sec  0.080822 sec  0.88 

rM-SVM  1800 obs/sec  0.65991 sec  0.94 

 

When full features were used in the predictive model, the area under 

curve was 0.87, but the seven features selected by the regression method, the 

area under curve was 0.8. The seven features chosen by the mRMR method, 

the area under curve was 0.88, and the seven features selected by the rMI-

SVM algorithm, the area under curve was 0.94. The seven chosen features by 

rMI-SVM algorithm gave the highest area under curve value indicated that the 

prediction model built by these seven selected features was better when 

compared to the baseline using full features, regression method and mRMR 

method. Therefore, the classifier using the seven features chosen by the rMI-

SVM algorithm was rightly predicted. In general, the predictive model that 

uses the seven features of the colon cancer data set that selected by rMI-SVM 

algorithm gave the highest accuracy in SVM classifier, naïve Bayes classifier 

and k-nearest neighbour classifier compared to the regression method and 

mRMR under the same classifiers and with the same number of features. The 

area under curve shows that the seven features selected by rMI-SVM 
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algorithm gives a better predictive model compared to the same number of 

features selected by the regression method and mRMR method, even when 

compared to the predictive model that was built using full features. The seven 

chosen features by rMI-SVM algorithm also achieved the highest recall value 

compared to the seven features selected by the mRMR method and regression 

method. 

 

Table 6.13 shows the 10-fold cross-validation and average accuracy for 

four different classifiers using full features, five features used the rMI-SVM 

algorithm, regression method and mRMR method for leukaemia data set. By 

using full features, the 10-fold cross-validation and average performance 

achieved using SVM -linear kernel function classifier was 97.65% and 96.19%, 

and the 10-fold cross-validation and average performance obtained using k-

nearest neighbour classifier were 90.2% and 94.29%. The 10-fold cross-

validation and average performance obtained using tree classification 

classifiers were 88.24% and 88.57%, and the 10-fold cross-validation and 

average accuracy obtained using naïve Bayes classifier were 93.4% and 

83.81%.  

 

The five features selected by the rMI-SVM algorithm with linear 

kernel function gave the highest average accuracy with the SVM classifier- 

linear kernel function compared to the regression method and mRMR method. 

The five features selected by the rMI-SVM algorithm with linear kernel 

function gave the 10-fold cross-validation and average performance obtained 
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using SVM classifier - linear kernel function were 94.51% and 100%, the five 

features selected by regression method gave the 10-fold cross-validation and 

average performance obtained using SVM - linear kernel function classifier 

was 96.08% and 98.1%, and the five features selected by mRMR method gave 

the 10-fold cross-validation and average performance obtained using SVM - 

linear kernel function classifier was 98.04% and 94.29%.  

 

The five features selected by the rMI-SVM algorithm with linear 

kernel function and regression method gave the highest average accuracy with 

the naïve Bayes classifier compared to the mRMR method. The five chosen 

features by the rMI-SVM algorithm with linear kernel function and regression 

method gave the 10-fold cross-validation, and average performance obtained 

using naïve Bayes classifier was 94.51% and 98.1%, and the five features 

selected by mRMR method gave the 10-fold cross-validation, and average 

performance obtained using naïve Bayes classifier were 95.69% and 93.33%.  

 

The five features selected by the rMI-SVM algorithm with linear 

kernel function gave the highest average accuracy with the k-nearest 

neighbour classifier compared to the regression method and mRMR method. 

The five chosen features by the rMI-SVM algorithm with linear kernel 

function gave the 10-fold cross-validation, and average performance obtained 

by using k-nearest neighbour classifier was 98.04%, and 99.05%, the five 

features selected by regression method gave the 10-fold cross-validation, and 

average performance obtained by using k-nearest neighbour classifier was 
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96.47% and 98.1%, and the five chosen features by mRMR method gave the 

10-fold cross-validation, and average performance obtained by using k-nearest 

neighbour classifier was 96.86% and 95.24%.  

 

The five features selected by rMI-SVM algorithm gave the highest 

average accuracy with the tree classification classifier compared to the 

regression method and mRMR method. The five chosen features by the rMI-

SVM algorithm with linear kernel function gave the 10-fold cross-validation, 

and average performance obtained by using tree classification classifier was 

87.45%, and 94.29%, the five features selected by regression method gave the 

10-fold cross-validation, and average performance obtained by using tree 

classification classifier were 90.98% and 89.52%, and the five chosen features 

by mRMR method gave the 10-fold cross-validation and average performance 

obtained by using tree classification classifier was 89.02% and 93.33%. 

 

Table 6.13: Ten-fold cross-validation and average accuracy for four 

different classifiers using full features, five features using the rMI-SVM 

algorithm, Regression method and mRMR method of the leukaemia data 

set 

  SVM-CV SVM-Acc NB-CV NB-Acc 

Baseline 97.6471 96.1905 93.3981 83.81 

rMI-SVM 94.5098 100  94.5098 98.0952 

Regression 96.0784 98.0952 94.5098 98.0952 

mRMR 98.0392 94.2857 95.6863 93.3333 

   KNN-CV KNN-Acc TC-CV TC-Acc 

Baseline 90.1961 94.2857 88.2353 88.5714 

rMI-SVM 98.0392 99.0476 87.451  94.2857 

Regression 96.4706 98.0952 90.9804 89.5238 

mRMR 96.8628 96.8628 89.0196 93.3333 
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Table 6.14 shows the output of the confusion matrix and the ROC 

curve of the leukaemia data using full features, five of the features were 

selected by the regression method, mRMR, the rMI-SVM algorithm using 

SVM - linear kernel function classifier with 10-fold cross-validation. The 

negative “0” indicated the patient with acute myeloid leukaemia (AML) while 

the positive “1” indicated the patient with acute lymphocytic leukaemia (ALL). 

When 7128 features were used in the predictive model, the accuracy was 98%, 

the prediction speed was about 4.8 observation per second, and the training 

time was 36.35 second. The true negative count was 17, the false-positive 

count was one, the false-negative count was zero, and the true positive count 

was 33; therefore, the recall was one. The five features selected by the 

regression method, the accuracy was 94.1%, the prediction speed was about 

1800 observation per second, and the training time was 0.72975 second. The 

true negative count was 16, the false-positive count was 2, the false-negative 

count was one, and the true positive count was 32; therefore, the recall was 

0.97.  

 

The five features when selected by mRMR method, the accuracy was 

96.1%, the prediction speed was about 1800 observation per second, and the 

training time was 0.75703 second. The true negative count was 18, the false-

positive count was zero, the false-negative count was two, and the true 

positive count was 31; therefore, the recall was 0.94. The five features selected 

by the rMI-SVM algorithm, the accuracy was 96.1%, the prediction speed was 

about 2200 observation per second, and the training time was 0.7383 second. 

The true negative count was 16, the false-positive count was two, the false-
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negative count was zero, and the true positive count was 33; therefore, the 

recall was one. The classifier using full features gave the highest accuracy, 

however, using full features in a classifier was not a practical way in 

classifying as the training time, and the prediction speed will be much slower 

and time-consuming. The prediction speed was highest in using five features 

selected by the regression method and mRMR method, while the fastest 

training time was using five features selected by the regression method. 

Although the training was fastest when using five features selected by the 

regression method, the recall value by using the regression method was 0.97. 

The best recall value achieved by using full features in the classifier and five 

features selected by the rMI-SVM algorithm, again using full features was not 

a practical way in classification. Therefore, the classifier using the five 

features selected by the rMI-SVM algorithm was rightly predicted. 

 

Table 6.14: Output of the confusion matrix and the ROC curve of 

leukaemia data using five features 

   TP TN FP FN Accuracy  

Full features  33 17 1 0 98.0% 

Regression  32 16 2 1 94.1% 

mRMR  31 18 0 2 96.1% 

rM-SVM  33 16 2 0 96.1% 

   Prediction speed Training time  AUC 

Full features  4.8 obs/sec  36.35 sec  1 

Regression  1800 obs/sec  0.72975 sec  0.99 

mRMR  1800 obs/sec  0.75703 sec  0.99 

rM-SVM  2200 obs/sec  0.7383 sec  1 
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When full features using the predictive model, the area under curve 

was one of the five features selected by the regression method, hence the area 

under curve was 0.99. The five chosen features by mRMR method, the area 

under curve were 0.99, and the five features selected by the rMI-SVM 

algorithm, the area under curve was one. The highest area under curve was 

achieved by using full features in the classifier and the five chosen features by 

rMI-SVM algorithm. However, using full features in classification was not a 

practical way and the training time was prolonged. Therefore, the five features 

selected by rMI-SVM algorithm gave a better prediction model compared to 

the baseline using full features, regression method and mRMR method. 

Therefore, the classifier using the five features selected by the rMI-SVM 

algorithm was rightly predicted. In general, the prediction model built by 

using full features and five features selected by rMI-SVM algorithm gave a 

better prediction. However, a prediction model that contains many features 

will make the training time longer. When using five features selected from 

different methods among regression method, mRMR method and rMI-SVM 

algorithm, the rMI-SVM algorithm showed a better area under curve value 

among the other two methods.  

 

Table 6.15 showed the 10-fold cross-validation and average accuracy 

for three different classifiers using full features, rMI-SVM algorithm, 

regression method and mRMR method for prostate cancer data set. By using 

full features, the 10-fold cross-validation and average performance obtained 

by using SVM - linear kernel function classifier was 91.39% and 91.33%, and 

the 10-fold cross-validation and average performance obtained by using k-
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nearest neighbour classifier was 78.89% and 83.33%. The 10-fold cross-

validation and average performance obtained by using tree classification 

classifier were 81.67% and 75.33%.  

 

The three features selected by the rMI-SVM algorithm with linear 

kernel function and regression method gave the highest average accuracy with 

the SVM classifier- linear kernel function compared to the mRMR method. 

The three features selected by the rMI-SVM algorithm with linear kernel 

function gave the 10-fold cross-validation and the average performance 

obtained by using SVM classifier - linear kernel function were 92.22% and 

93.33%.  The three features selected by regression method gave the 10-fold 

cross-validation and average performance obtained using SVM - linear kernel 

function classifier was 91.94% and 93.33%.  Lastly, the three features selected 

by mRMR method gave the 10-fold cross-validation and the average 

performance was obtained using SVM - linear kernel function classifier was 

87.78% and 80%.  

 

The three features selected by the rMI-SVM algorithm with linear 

kernel function and regression method gave the highest average accuracy with 

the k-nearest neighbour classifier compared to mRMR method. The three 

chosen features by the rMI-SVM algorithm with linear kernel function gave 

the 10-fold cross-validation, and average performance obtained by using k-

nearest neighbour classifier was 91.39% and 88%, the three features selected 

by regression method gave the 10-fold cross-validation, and average 
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performance obtained by using k-nearest neighbour classifier was 90.56% and 

88%, and the three chosen features by mRMR method gave the 10-fold cross-

validation, and average performance obtained by using k-nearest neighbour 

classifier was 87.5% and 85.33%.  

 

The three features selected by rMI-SVM algorithm and regression 

method gave the highest average accuracy with the tree classification classifier 

compared to the mRMR method. The three chosen features by the rMI-SVM 

algorithm with linear kernel function gave the 10-fold cross-validation, and 

the average performance obtained by using tree classification classifier was 

88.33% and 90%. Whereas, the three features selected by regression method 

gave the 10-fold cross-validation, and the average performance obtained by 

using tree classification classifier was 89.17% and 90%, and the three chosen 

features by mRMR method gave the 10-fold cross-validation and average 

performance obtained by using tree classification classifier was 86.94% and 

85.33%. The naïve Bayes classifier did not apply in this data set as this data 

set has zero variance. The rMI-SVM algorithm and regression method selected 

the same three features from prostate cancer data set; therefore, the average 

accuracy was the same by using the selection in rMI-SVM algorithm and 

regression method. 
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Table 6.15: Ten-fold cross-validation and average accuracy for four 

different classifiers using full features, three features using the rMI-SVM 

algorithm, Regression method and mRMR method of prostate cancer 

data set 

  SVM-CV SVM-Acc NB-CV NB-Acc 

Baseline 91.3889 91.3333 nil  nil 

rMI-SVM 92.2222 93.3333 nil  nil 

Regression 91.9444 93.3333 nil  nil 

mRMR 87.7778 88  nil  nil 

   KNN-CV KNN-Acc TC-CV TC-Acc 

Baseline 78.8889 83.3333 81.6667 75.3333 

rMI-SVM 91.3889 88  88.3333 90 

Regression 90.5556 88  89.1667 90 

mRMR 87.5  85.3333 86.9444 85.3333 

 

Table 6.16 shows the output of the confusion matrix and the ROC 

curve of the prostate cancer data using full features. Three features were 

selected by the regression method, mRMR, the rMI-SVM algorithm using 

SVM - linear kernel function classifier with 10-fold cross-validation. The 

negative “0” indicated the patient with prostate cancer while the positive “1” 

indicated the normal person. When 2135 features were used in the predictive 

model, the accuracy was 88.9%, the prediction speed was about 34 

observation per second, and the training time was 13.087 second. The true 

negative count was 31, the false-positive count was six, the false-negative 

count was two, and the true positive count was 33; therefore, the recall was 

0.84. The three features selected by the regression method, showed the 

accuracy was 93.1%, the prediction speed was about 3400 observation per 

second, and the training time was 1.0846 second. The true negative count was 
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33, the false-positive count was four, the false-negative count was one, and the 

true positive count was 34; therefore, the recall was 0.89.  

 

The three features selected by mRMR method, the accuracy was 88.9%, 

the prediction speed was about 3200 observation per second, and the training 

time was 0.7727 second. The true negative count was 35, the false-positive 

count was two, the false-negative count was six, and the true positive count 

was 29; therefore, the recall was 0.95. The three features selected by the rMI-

SVM algorithm, the accuracy was 93.1%, the prediction speed was about 3400 

observation per second, and the training time was 1.0846 second. The true 

negative count was 33, the false-positive count was four, the false-negative 

count was one, and the true positive count was 34; therefore, the recall was 

0.971. The classifier using the three selected features by regression method 

and rMI-SVM algorithm gave the highest accuracy. The prediction speed and 

the training time were fastest in using three features selected by mRMR 

method. The prediction speed was fastest when using three features selected 

by regression method and rMI-SVM algorithm. 

 

In comparison, the training time was fastest when using the three 

features selected by mRMR method. Still, the recall value by using the mRMR 

method was lower than the regression method and rMI-SVM algorithm. The 

highest accuracy and recall value were achieved by the classifier using the 

three selected features by regression method and rMI-SVM algorithm. The 

regression method and rMI-SVM algorithm chose the same three features. 
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Table 6.16: Output of the confusion matrix and the ROC curve of 

prostate cancer data using three features 

   TP TN FP FN Accuracy  

Full features  33 31 6 2 88.9% 

Regression  34 33 4 1 93.1% 

mRMR  29 35 2 6 88.9% 

rM-SVM  34 33 4 1 93.1% 

   Prediction speed Training time  AUC 

Full features  34 obs/sec  13.087 sec  0.94 

Regression  3400 obs/sec  1.0846 sec  0.97 

mRMR  3200 obs/sec  0.7727 sec  0.96 

rM-SVM  3400 obs/sec  1.0846 sec  0.97 

 

When full features were used in the predictive model, the area under 

curve was 0.94 and with the three features selected by the regression method, 

the area under curve was 0.97. The three chosen features by mRMR method, 

the area under curve were 0.96, and the three features selected by the rMI-

SVM algorithm, the area under curve was 0.97. The three features that were 

selected by regression method and rMI-SVM algorithm achieved the highest 

area under curve as obtained in the classifier compared to the three chosen 

features by mRMR method and using full features in the classifier. Therefore, 

the classifier using the three features selected by the regression method and 

rMI-SVM algorithm was rightly predicted. In general, the three chosen 

features that used regression method and rMI-SVM algorithm performed well 

in the support vector classifier as the same features were selected between 

regression method and rMI-SVM algorithm compared to using full features 

and three features selected by mRMR method.  
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  Table 6.17 shows the 10-fold cross-validation and average accuracy 

for three different classifiers using full features, rMI-SVM algorithm, 

regression method and mRMR method for lung cancer data set. By using full 

features, the 10-fold cross-validation and average performance were obtained 

by using SVM - linear kernel function classifier was 99.06% and 100%, and 

the 10-fold cross-validation and average performance were obtained by using 

k-nearest neighbour classifier was 98.58% and 99.63%. The 10-fold cross-

validation and average performance were obtained by using tree classification 

classifier was 94.8% and 94.81%.  

 

The four features selected by the rMI-SVM algorithm with linear 

kernel function gave the highest average accuracy with the SVM classifier- 

linear kernel function compared to the regression and mRMR method. The 

four features selected by the rMI-SVM algorithm with linear kernel function 

gave the 10-fold cross-validation, and average performance obtained by using 

SVM classifier - linear kernel function was 99.06% and 100%, whereas the 

four features selected by regression method, and mRMR method gave the 10-

fold cross-validation and average performance obtained by using SVM - linear 

kernel function classifier was 98.74% and 99.26%.  

 

The four features selected by the rMI-SVM algorithm with linear 

kernel function gave the highest average accuracy with the k-nearest 

neighbour classifier compared to the regression mRMR method. The four 

features chosen by the rMI-SVM algorithm with linear kernel function gave 
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the 10-fold cross-validation, and average performance obtained by using k-

nearest neighbour classifier was 98.58% and 99.63%.  Whereas, the four 

features selected by regression method gave the 10-fold cross-validation, and 

average performance obtained by using k-nearest neighbour classifier was 

97.17% and 99.26%, and the four chosen features by mRMR method gave the 

10-fold cross-validation, and average performance obtained by using k-nearest 

neighbour classifier was 97.8% and 98.89%.  

 

The four features selected by rMI-SVM algorithm gave the highest 

average accuracy with the tree classification classifier compared to the 

regression method and mRMR method. The four chosen features by the rMI-

SVM algorithm with linear kernel function gave the 10-fold cross-validation, 

and average performance obtained by using tree classification classifier was 

95.59% and 97.04%, whereas the four features selected by regression method 

gave the 10-fold cross-validation, and average performance obtained by using 

tree classification classifier were 96.54% and 96.67%, and the four chosen 

features by mRMR method gave the 10-fold cross-validation and average 

performance obtained by using tree classification classifier was 96.69% and 

95.93%. The naïve Bayes classifier did not apply in this data set as this data 

set has zero variance. 
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Table 6.17: Ten-fold cross-validation and average accuracy for four 

different classifiers using full features, four features using the rMI-SVM 

algorithm, Regression method and mRMR method of lung cancer data set 

  SVM-CV SVM-Acc NB-CV NB-Acc 

Baseline 99.0551 100  nil  nil 

rMI-SVM 99.0551 100  nil  nil 

Regression 98.7402 99.2593 nil  nil 

mRMR 98.7402 99.2593 nil  nil 

   KNN-CV KNN-Acc TC-CV TC-Acc 

Baseline 98.5827 99.6296 94.8032 94.8148 

rMI-SVM 98.5827 99.6296 95.5906 97.0370 

Regression 97.1654 99.2593 96.5354 96.6667 

mRMR 97.7953 98.8889 96.6929 95.9259 

 

Table 6.18 shows the output of the confusion matrix and the ROC 

curve of the lung cancer data using full features. Four features were selected 

by the regression method, mRMR, the rMI-SVM algorithm using SVM - 

linear kernel function classifier with 10-fold cross-validation. The negative “0” 

indicated the malignant pleural mesothelioma (MPM) while the positive “1” 

indicated the adenocarcinoma (AD). When 1626 features are used in the 

predictive model, the accuracy was 99.2%, the prediction speed was about 130 

observation per second, and the training time was 9.5591 second. The true 

negative count was 21, the false-positive count was one, the false-negative 

count was zero, and the true positive count was 105; therefore, the recall was 

one. The four features selected by the regression method, the accuracy was 

99.2%, the prediction speed was about 6000 observation per second, and the 

training time was 0.91766 second. The true negative count was 21, the false-
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positive count was one, the false-negative count was zero, and the true positive 

count was 105; therefore, the recall was one.   

 

The accuracy of the four features selected by mRMR method was 

99.2%, the prediction speed was about 3500 observation per second, and the 

training time was 0.84527 second. The true negative count was 21, the false-

positive count was one, the false-negative count was zero, and the true positive 

count was 105; therefore, the recall was one. For the four features selected by 

the rMI-SVM algorithm, the accuracy was 99.2%, the prediction speed was 

about 3100 observation per second, and the training time was 0.89517 second. 

The true negative count was 21, the false-positive count was one, the false-

negative count was zero, and the true positive count was 105; therefore, the 

recall was one. The classifier using the four selected features by regression 

method, mRMR method and rMI-SVM algorithm gave the same accuracy 

with the classifier using full features. The prediction speed was fastest when 

using the four features selected by the regression method while the fastest 

training was achieved by using the four features selected by mRMR method. 

The recall value was the same in the classifier using full features, four features 

selected by regression method, mRMR method and rMI-SVM algorithm. The 

mRMR method has three selected features that are similar with the features 

selected by the regression method. Therefore, the regression method, mRMR 

method and rMI-SVM algorithm selected four with almost the same features 

in the lung cancer data set. 
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Table 6.18: Output of the confusion matrix and the ROC curve of lung 

cancer data using four features 

   TP TN FP FN Accuracy  

Full features  105 21 1 0 99.2% 

Regression  105 21 1 0 99.2% 

mRMR  105 21 1 0 99.2% 

rM-SVM  105 21 1 0 99.2% 

   Prediction speed Training time  AUC 

Full features  130 obs/sec  9.5591 sec  1 

Regression  6000 obs/sec  0.91766 sec  1 

mRMR  3500 obs/sec  0.84527 sec  1 

rM-SVM  3100 obs/sec  0.89517 sec  1 

 

When full features are using the predictive model, the area under curve 

was one, and the four features selected by the regression method, mRMR 

method and rMI-SVM algorithm, the area under curve was one. Since the four 

selected features were almost the same among the regression method, mRMR 

method and rMI-SVM algorithm, therefore the receiver operating 

characteristic curve and area under curve were the same. In general, the four 

selected features by using the regression method, mRMR and rMI-SVM 

algorithm were well performed in the support vector classifier because almost 

the same features were selected compared to using full features in the 

classifier. 

 

Table 6.19 shows the 10-fold cross-validation and average accuracy for 

four different classifiers using full features, rMI-SVM algorithm, regression 

method and mRMR method for Parkinson data set. By using full features, the 
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10-fold cross-validation and average performance obtained by using k-nearest 

neighbour classifier were 93.14% and 90.69%, and the 10-fold cross-

validation and average performance obtained by using SVM - Gaussian kernel 

function classifier was 89.05% and 88.62%. The 10-fold cross-validation and 

average performance obtained by using tree classification classifier were 84.67% 

and 78.28%, and the 10-fold cross-validation and average performance 

obtained by using naïve Bayes classifier was 70.8% and 65.86%.  

 

The seven features selected by the rMI-SVM algorithm with Gaussian 

kernel function gave the highest average accuracy with the SVM classifier- 

Gaussian kernel function compared to the regression method and mRMR 

method. The seven features selected by the rMI-SVM algorithm with Gaussian 

kernel function gave the 10-fold cross-validation and average performance 

obtained by using SVM classifier - Gaussian kernel function were 88.61% and 

90.69%,  whereas the seven features selected by regression method gave the 

10-fold cross-validation and average performance obtained by using SVM - 

Gaussian kernel function classifier was 85.99% and 84.83%, and the seven 

features selected by mRMR method gave the 10-fold cross-validation and 

average performance obtained by using SVM - Gaussian kernel function 

classifier was 87.59% and 86.21%.  

 

The seven features selected by mRMR gave the highest average 

accuracy with the naïve Bayes classifier compared to the regression method 

and rMI-SVM algorithm. The seven chosen features by the rMI-SVM 
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algorithm with Gaussian kernel function gave the 10-fold cross-validation, and 

average performance obtained by using the naïve Bayes classifier was 71.97% 

and 72.07%, whereas the seven features selected by regression method gave 

the 10-fold cross-validation, and average performance obtained by using naïve 

Bayes classifier was 78.25% and 73.79%, and the seven chosen features by 

mRMR method gave the 10-fold cross-validation and average performance 

obtained by using naïve Bayes classifier was 75.62% and 74.48%.  

 

The seven features selected by the rMI-SVM algorithm with Gaussian 

kernel function gave the highest average accuracy with the k-nearest 

neighbour classifier compared to the regression method and mRMR method. 

The seven features chosen by the rMI-SVM algorithm with Gaussian kernel 

function gave the 10-fold cross-validation, and average performance obtained 

by using k-nearest neighbour classifier was 90.37% and 86.21%, whereas the 

seven features selected by regression method gave the 10-fold cross-validation, 

and average performance obtained by using k-nearest neighbour classifier was 

91.67% and 81.03%, and the seven chosen features by mRMR method gave 

the 10-fold cross-validation and average performance obtained by using k-

nearest neighbour classifier was 88.61% and 83.79%.  

 

The seven features selected by mRMR method gave the highest 

average accuracy with the tree classification classifier compared with the 

regression method and rMI-SVM algorithm. The seven features chosen by the 

rMI-SVM algorithm with Gaussian kernel function gave the 10-fold cross-
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validation, and the average performance obtained by using tree classification 

classifier was 87.01% and 81.03%, whereas the seven features selected by 

regression method gave the 10-fold cross-validation and average performance 

obtained by using tree classification classifier was 83.07% and 80.34% and the 

seven chosen features by mRMR method gave the 10-fold cross-validation and 

average performance obtained by using tree classification classifier was 86.72% 

and 82.41%. 

 

Table 6.19: Ten-fold cross-validation and average accuracy for four 

different classifiers using full features, seven features using the rMI-SVM 

algorithm, Regression method and mRMR method of Parkinson data set 

  SVM-CV SVM-Acc NB-CV NB-Acc 

Baseline 89.0511 88.6207 70.8029 65.8621 

rMI-SVM 88.6131 90.6897 71.9708 72.069 

Regression 85.9854 84.8276 78.2482 73.7931 

mRMR 87.5912 86.2069 75.6204 74.4828 

   KNN-CV KNN-Acc TC-CV TC-Acc 

Baseline 93.1387 90.6897 84.6715 78.2759 

rMI-SVM 90.365  86.2069 87.0073 81.0345 

Regression 91.6788 81.0345 83.0657 80.3448 

mRMR 88.6131 83.7931 86.7153 82.4138 

 

Table 6.20 shows the output of the confusion matrix and the ROC 

curve of the Parkinson data using full features, seven features were selected by 

the regression method, mRMR, rMI-SVM algorithm using SVM with 

Gaussian kernel function classifier with 10-fold cross-validation. The negative 

“0” indicated the patient with Parkinson disease while the positive “1” 

indicated the normal person. When full features using the predictive model, 
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the accuracy was 85.4%, the prediction speed was about 4600 observation per 

second, and the training time was 0.69047 second. The true negative count 

was 16, the false-positive count was 18, the false-negative count was two, and 

the true positive count was 101; therefore, the recall was 0.47. The seven 

features selected by the regression method, the accuracy was 82.5%, the 

prediction speed was about 4600 observation per second, and the training time 

was 0.80413 second. The true negative count was 13; the false-positive count 

was 21, the false-negative count was three, and the true positive count was 100; 

therefore, the recall was 0.38.  

 

The seven features selected by mRMR method, the accuracy was 

85.4%, the prediction speed was about 5800 observation per second, and the 

training time was 0.7306 second. The true negative count was 15, the false-

positive count was 19, the false-negative count was one, and the true positive 

count was 102; therefore, the recall was 0.44. The seven features selected by 

the rMI-SVM algorithm, the accuracy was 86.9%, the prediction speed was 

about 5400 observation per second, and the training time was 0.73833 second. 

The true negative count was 16, the false-positive count was 18, the false-

negative count was zero, and the true positive count was 103; therefore, the 

recall was 0.47. The classifier using seven features selected by rMI-SVM 

algorithm gave the highest accuracy. The prediction speed was fastest using 

seven features selected by mRMR, and training time was fastest using full 

features. However, using full features in a classifier was not a practical way of 

doing classification. The best recall value was achieved using seven features 

selected by the rMI-SVM algorithm and using full features in the classifier. 
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However, using full features in the prediction model was not a practical way. 

The prediction speed of the rMI-SVM algorithm was slightly slower than the 

prediction speed when using the seven features selected by mRMR. 

 

Table 6.20: Output of the confusion matrix and the ROC curve of 

Parkinson data using seven features 

   TP TN FP FN Accuracy  

Full features  101 16 18 2 85.4% 

Regression  100 13 21 3 82.5% 

mRMR  102 15 19 1 85.4% 

rM-SVM  103 16 18 0 86.9% 

   Prediction speed Training time  AUC 

Full features  4600 obs/sec  0.69074 sec  0.89 

Regression  4600 obs/sec  0.80413 sec  0.89 

mRMR  5800 obs/sec  0.7306 sec  0.85 

rM-SVM  5400 obs/sec  0.73833 sec  0.92 

 

When full features were using the predictive model, the area under 

curve was 0.89 and the seven features selected by the regression method, the 

area under curve was 0.89. For the seven features selected by mRMR method, 

the area under curve was 0.85, and the seven features chosen by rMI-SVM 

algorithm, the area under curve was 0.92. The highest area under curve 

achieved by using seven features was selected by rMI-SVM algorithm in the 

classifier. Therefore, the classifier using the seven features chosen by the rMI-

SVM algorithm was rightly predicted. In general, the prediction model built 

by seven features selected by rMI-SVM algorithm gave a better prediction 

with the area under curve was 0.92 compared to the prediction model built by 
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seven features selected by regression method or mRMR method or when using 

full features. 

 

Table 6.21 shows the 10-fold cross-validation and average accuracy for 

four different classifiers using full features, rMI-SVM algorithm, regression 

method and mRMR method for breast cancer data set. By using full features, 

the 10-fold cross-validation and average performance obtained by using k-

nearest neighbour classifier was 95.14% and 92.35%, whereas the 10-fold 

cross-validation and average accuracy obtained by using SVM- linear kernel 

function classifier was 97.39% and 91.76%. The 10-fold cross-validation and 

average performance obtained by using tree classification classifier was 93.83% 

and 89.29%, and the 10-fold cross-validation and average performance 

obtained by using naïve Bayes classifier was 93.58% and 84.24%.  

 

The eleven features selected by the rMI-SVM algorithm with linear 

kernel function gave the highest average accuracy with the SVM classifier- 

linear kernel function compared to the regression method and mRMR method. 

The eleven features selected by the rMI-SVM algorithm with linear kernel 

function gave the 10-fold cross-validation and the average performance 

obtained by using SVM classifier - linear kernel function was 97.59% and 

96.59%, whereas the eleven features selected by regression method gave the 

10-fold cross-validation and the average performance obtained by using SVM 

- linear kernel function classifier was 94.24% and 92.82% and the eleven 

features selected by mRMR method gave the 10-fold cross-validation and 
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average performance obtained by using SVM - linear kernel function classifier 

was 97.24% and 93.29%.  

 

The eleven features selected by the rMI-SVM algorithm with linear 

kernel function give the highest average accuracy with the naïve Bayes 

classifier compared to the regression method and mRMR method. The eleven 

features chosen by the rMI-SVM algorithm with linear kernel function gave 

the 10-fold cross-validation, and the average performance obtained by using 

naïve Bayes classifier was 94.19% and 91.53%, whereas the eleven features 

selected by regression method gave the 10-fold cross-validation, and the 

average performance obtained by using naïve Bayes classifier was 94.19% and 

90.12%, and the eleven features selected by mRMR method gave the 10-fold 

cross-validation and average performance obtained by using naïve Bayes 

classifier was 95.49% and 90.82%.  

 

The eleven features selected by mRMR method gave the highest 

average accuracy with the k-nearest neighbour classifier compared to the 

regression method and rMI-SVM algorithm. The eleven chosen features by the 

rMI-SVM algorithm with linear kernel function gave the 10-fold cross-

validation, and average performance obtained by using k-nearest neighbour 

classifier was 95.13% and 93.53%, the eleven features selected by regression 

method gave the 10-fold cross-validation, and average performance obtained 

by using k-nearest neighbour classifier was 93.93% and 91.53% and the 

eleven features selected by mRMR method gave the 10-fold cross-validation 
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and average performance obtained by using k-nearest neighbour classifier was 

96.29% and 93.76%.  

 

The eleven features selected by rMI-SVM algorithm gave the highest 

average accuracy with the tree classification classifier compared to the 

regression method and mRMR. The eleven features chosen by the rMI-SVM 

algorithm with linear kernel function gave the 10-fold cross-validation, and 

average performance obtained by using tree classification classifier was 94.09% 

and 89.18%, whereas the eleven features selected by regression method gave 

the 10-fold cross-validation, and the average performance obtained by using 

tree classification classifier was 92.63% and 88.94%, and the eleven features 

selected by mRMR method gave the 10-fold cross-validation and the average 

performance obtained by using tree classification classifier was 94.64% and 

88.71%. 
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Table 6.21: Ten-fold cross-validation and average accuracy for four 

different classifiers using full features, eleven features using the rMI-SVM 

algorithm, Regression method and mRMR method of breast cancer data 

set 

  SVM-CV SVM-Acc NB-CV NB-Acc 

Baseline 97.3935 91.7647 93.584  84.2353 

rMI-SVM 97.594  96.5882 94.1855 91.5294 

Regression 94.2356 92.8235 94.1855 90.1177 

mRMR 97.2431 93.2941 95.4887 90.8235 

   KNN-CV KNN-Acc TC-CV TC-Acc 

Baseline 95.1378 92.3529 93.8346 89.2941 

rMI-SVM 95.1378 93.5294 94.0852 89.1765 

Regression 93.9348 91.5294 92.6316 88.9412 

mRMR 96.2907 93.7647 94.6366 88.7059 

 

Table 6.22 shows the output of the confusion matrix and the ROC 

curve of the breast cancer data using all features, eleven features were selected 

by the regression method, mRMR, the rMI-SVM algorithm using SVM - 

linear kernel function classifier with 10-fold cross-validation. The negative “0” 

indicated the malignant while the positive “1” indicated the benign. When full 

features used the predictive model, the accuracy was 93.7%, the prediction 

speed was about 15000 observation per second, and the training time was 

0.77129 second. The true negative count was 138, the false-positive count was 

eleven, the false-negative count was 14, and the true positive count was 236; 

therefore, the recall was 0.93. For the eleven features selected by the 

regression method, the accuracy was 94%, the prediction speed was about 

12000 observation per second, and the training time was 0.79358 second. The 

true negative count was 134, the false-positive count was 15, the false-
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negative count was nine, and the true positive count was 241; therefore, the 

recall was 0.9.  

 

For the eleven features selected by mRMR method, the accuracy was 

96.2%, the prediction speed was about 15000 observation per second, and the 

training time was 0.75591 second. The true negative count was 139, the false-

positive count was 10, the false-negative count was five, and the true positive 

count was 245; therefore, the recall was 0.93. For the eleven features selected 

by the rMI-SVM algorithm, the accuracy was 97%, the prediction speed was 

about 17000 observation per second, and the training time was 0.76167 second. 

The true negative count was 142, the false-positive count was seven, the false-

negative count was five, and the true positive count was 245; therefore, the 

recall was 0.95. The classifier using eleven features selected by rMI-SVM 

algorithm gave the highest accuracy. The prediction speed was fastest in 

classifier using eleven features selected by rMI-SVM algorithm while the 

training time was fastest in classifier using eleven features selected by mRMR 

method. The best recall value achieved using eleven features was selected by 

mRMR method and rMI-SVM algorithm in the classifier. 
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Table 6.22: Output of the confusion matrix and the ROC curve of breast 

cancer data using eleven features 

   TP TN FP FN Accuracy  

All features  236 138 11 14 93.7% 

Regression  241 134 15 9 94.0% 

mRMR  245 139 10 5 96.2% 

rM-SVM  245 142 7 5 97% 

   Prediction speed Training time  AUC 

All features  15000 obs/sec  0.77129 sec  0.93 

Regression  12000 obs/sec  0.79358 sec  0.98 

mRMR  15000 obs/sec  0.75591 sec  0.99 

rM-SVM  17000 obs/sec  0.76167 sec  0.99 

 

When full features used the predictive model, the area under curve was 

0.93 and the eleven features selected by the regression method, the area under 

curve was 0.98. The eleven features chosen by mRMR method, the area under 

curve was 0.99, and the eleven features selected by the rMI-SVM algorithm, 

the area under curve was 0.99. The highest area under curve achieved by the 

classifier using eleven features was selected by mRMR method and rMI-SVM 

algorithm. Therefore, the classifier using the eleven features selected by 

mRMR method and the rMI-SVM algorithm was rightly predicted. In general, 

the prediction model built by eleven features selected by mRMR method and 

rMI-SVM algorithm gave a better prediction compared to the prediction model 

built by full features and eleven features selected by the regression method. 
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6.6  Evaluation on Four Different Classifiers for Multiclass Data Set 

 

Tables 6.23- 6.26 show the average accuracy of SVM cross-validation 

and average accuracy of SVM predictive model obtained from the four types 

of kernel function of SVM classifier of the multiclass data set. 

 

Table 6.23: Average accuracy of 2-fold cross-validation and predictive 

model on four different kernel functions of classifier of skin cancer data 

set  

 Type of classifier SVM Cross-validation SVM Accuracy 

SVM Linear   60   66.6667 

SVM Quadratic  20   33.3333 

SVM Cubic   25   40 

SVM RBF   41.6667  40 

 

From Table 6.23, the 2-fold cross-validation was used in the SVM 

classifier with different kernel functions. The skin cancer data set achieved the 

highest average accuracy of 66.67% by using the SVM classifier with linear 

kernel function, followed by SVM classifier with cubic kernel function and 

with radial basis function kernel function gave an average accuracy of 40%, 

and the lowest average accuracy was 33.33% by using SVM classifier with a 

quadratic kernel function.  
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Table 6.24: Average accuracy of 2-fold cross-validation and predictive 

model on four different kernel functions of classifier of the lymphoma 

data set  

 Type of classifier SVM Cross-validation SVM Accuracy 

SVM Linear   83.6111  98.3333 

SVM Quadratic  53.0556  80 

SVM Cubic   25   70 

SVM RBF   58.0556  67.5 

 

From Table 6.24, the 2-fold cross-validation was used in the SVM 

classifier with different kernel functions. The lymphoma data set achieved the 

highest average accuracy of 98.33% by using the SVM classifier with linear 

kernel function, followed by SVM classifier with quadratic kernel function 

with the average accuracy of 80%, SVM classifier with cubic kernel function 

with the average accuracy of 70% and the lowest average accuracy was 67.5% 

by using SVM classifier with radial basis function kernel function. 

 

Table 6.25: Average accuracy of 3-fold cross-validation and predictive 

model on four different kernel functions of classifier of lung cancer data 

set  

 Type of classifier SVM Cross-validation SVM Accuracy 

SVM Linear   51.6667  67.5 

SVM Quadratic  37.5   45 

SVM Cubic   37.5   55 

SVM RBF   35.8333  35 

 

From Table 6.25, the 3-fold cross-validation was used in the SVM 

classifier with different kernel functions. The lung cancer data set achieved the 

highest average accuracy of 67.5% by using the SVM classifier with linear 
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kernel function, followed by SVM classifier with cubic kernel function with 

the average accuracy of 55%, SVM classifier with quadratic kernel function 

with the average accuracy of 45% and the lowest average accuracy was 35% 

by using SVM classifier with radial basis function kernel function. 

 

Table 6.26: Average accuracy of 10-fold cross-validation and predictive 

model on four different kernel functions of classifier of the handwriting 

data set  

 Type of classifier SVM Cross-validation SVM Accuracy 

SVM Linear   98.2286  98.2 

SVM Quadratic  94.3714  95.6 

SVM Cubic   24.1   29.8667 

SVM RBF   97.8   97.8 

 

From Table 6.26, the 10-fold cross-validation was used in SVM 

classifier with different kernel functions. The handwriting data set achieved 

the highest average accuracy of 98.2% by using the SVM classifier with linear 

kernel function, followed by SVM classifier with radial basis function kernel 

function with the average accuracy of 97.8%, SVM classifier with quadratic 

kernel function with the average accuracy of 95.6% and the lowest average 

accuracy was 29.87% by using SVM classifier with a cubic kernel function. 

Therefore, based on the average accuracy analysis on SVM classifier with a 

different kernel function, the skin cancer data set, lymphoma data set, lung 

cancer data set, and handwriting data set use SVM-linear in the rMI-SVM 

algorithm later. 
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6.7 Optimal Baseline of the Multiclass Data    

 

The optimal baseline for multiclass data will be obtained using the 

algorithm provided in Chapter 3. Figures 6.9-6.12 show the average accuracy 

of the ranked features for skin cancer data set, the lymphoma data set, lung 

cancer data set, and handwriting data set. 

 

 

Figure 6.9: Average accuracy of the ranked features for skin cancer data 

set 
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Figure 6.10: Average accuracy of the ranked features for the lymphoma 

data set 

 

 

Figure 6.11: Average accuracy of the ranked features for lung cancer data 

set 
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Figure 6.12: Average accuracy of the ranked features for the handwriting 

data set 

 

From the figures above, the highest average accuracy is the optimal 

baseline of the data set and the number of features that obtained this optimal 

baseline were also obtained at the same time. From the figures, it was noticed 

that when using all the features as a baseline, it usually does not produce a 

good baseline, as these baselines are lower than the proposed optimal 

baselines. When all the features are included, the redundant features and noise 

will be added at the same time. Table 6.27 shows the baseline using full 

features and the optimal baseline obtained using the algorithm in Chapter 3 

with the number of features to achieve this optimal baseline. The proposed 

algorithm shows that the optimal baselines are better than the baseline using 

full features and the number of features required to obtain the optimal baseline 
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are also lower than the full features. The features obtained using the proposed 

algorithm is a ranked feature where information contained in the features are 

also ranked from the most relevant to less relevant. Therefore, the number of 

features obtained from the proposed algorithm will provide better prediction 

power in the predictive model. 

 

Table 6.27: The baseline using full features and the optimal baseline with 

the number of features for the multiclass data set 

Data Set Baseline Full features Optimal baseline   No. of features

  

Skin  66.67% 22215  86.67% 2 

Lymphoma 98.33% 4026  99.17% 460 

Lung  67.5%  56  70%  51 

Handwriting 98.2%  649  98.3%  434  

 

The number of features obtained using the proposed algorithm plays a 

vital role in features selection, and a features selection method should not take 

more than this number of features to achieve the same accuracy. Therefore, we 

can have a new guideline on what is the maximum number of features allowed 

in a features selection. In the previous research, they used the full features to 

obtain the baseline, as there is no clear guideline to show how many features 

are needed in a predictive model or to be more specific what is the maximum 

number of features that a researcher is allowed in order to build a predictive 

model.  
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6.8  rMI-SVM algorithm for Multiclass Data Set 

 

In this section, the rMI-SVM algorithm will be applied in the 

multiclass data set to reduce the dimension of the data set by filtering out the 

redundant features and noise. The redundant features and noise can be easily 

detected from the average accuracy graph plotted using the ranked features. 

The ranked features are ranked according to the information contained, and the 

higher mutual information score indicated that the features contain more 

information. When more ranked features are added to the predictive model, 

the prediction power of the model will then be better. A newly added feature 

to the predictive model, is that the performance of the predictive model will 

have the three phenomena as discussed in Chapter 4. When the newly added 

feature contains new information, then the performance of the predictive 

model will increase. When the newly added feature contains the same 

information with the already selected features, then the performance of the 

predictive model will remain the same. When a noise added to the predictive 

model, the performance of the predictive model will decrease. Therefore, 

based on the performance of the predictive model, the redundant features and 

noise can be detected and filtered out.   

 

Those redundant features, irrelevant features or noise will be filtered 

out by rMI-SVM algorithm to provide better performance using a lower 

number of features. Table 6.28 summarises the number of features selected by 

the rMI-SVM algorithm for six binary data set.  Also, Table 6.28  shows the 

percentage of the dimension reduction of each binary data set. On average, the 
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percentage of the dimension of the six binary data set has been reduced by 

about 96%, and the reduction is most significant in the microarray data set. 

 

Table 6.28: Number of features selected by the rMI-SVM algorithm for 

six binary data set 

Data set  No of features selected  Dimension to reduce 

Skin   4    99.98% 

Lymphoma  22    99.45% 

Lung   5    91.07% 

Handwriting  50    92.3% 

 

The performance of the predictive model using the number of features 

selected by the rMI-SVM algorithm has been tested using SVM. On the other 

hand, the performance of the predictive model using regression method on the 

same number of features was also tested. The k-fold cross-validation of the 

support vector machine classifier and the average accuracy of the predictive 

model was shown in the next section. SVM-CV and SVM-Acc will represent 

the average accuracy of the cross-validation of the SVM classifier and the 

average accuracy from the predictive model of the SVM classifier. The 

baseline indicated the cross-validation and average accuracy using full 

features. 

 

Table 6.29 shows the 2-fold cross-validation and average accuracy for 

the SVM classifier using full features, rMI-SVM algorithm and regression 

method. The four features selected by the rMI-SVM algorithm with linear 

kernel function gave the highest average accuracy with the SVM classifier- 
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linear kernel function compared to the regression method and classifier using 

full features. By using full features, the 2-fold cross-validation and average 

accuracy achieved by using SVM - linear kernel function classifier were 63.33% 

and 66.67%. The four features selected by the rMI-SVM algorithm with linear 

kernel function gave the 2-fold cross-validation and average accuracy 

achieved by using SVM classifier - linear kernel function were 88.33% and 

100%. The four features selected by the regression method gave the 2-fold 

cross-validation, and average accuracy achieved by using SVM - linear kernel 

function classifier was 60% and 86.67%. 

 

Table 6.29: Two-fold cross-validation and average accuracy for SVM 

classifier using full features, rMI-SVM algorithm, and regression method 

for skin cancer data set 

   SVM-CV  SVM-Acc 

Baseline  63.3333  66.6667 

rMI-SVM  83.3333  100 

Regression  60   86.6667 

 

The confusion matrix and the receiver operating characteristic curve 

(ROC curve) were built to show the distribution of the true class versus the 

predicted class for the full features.  Four of the features selected by regression 

method and rMI-SVM algorithm with linear kernel function used the SVM 

classifier with 2-fold cross-validation. Figures 6.13 (a)- (c) shows the 

confusion matrix of the skin cancer data using (a) full features, (b) four 

features selected by regression method, (c) four features selected by the rMI-

SVM algorithm using SVM - linear kernel function classifier with 2-fold 
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cross-validation. The value “0” indicated the normal person; while value “1” 

indicated the actinic keratosis and value “2” indicated the squamous cell 

carcinoma.  

 

When full features used the predictive model, the accuracy was 58.3%, 

the prediction speed was about 0.04 observation per second, and the training 

time was 962.58 second. There were seven subjects which were classified 

correct while five other subjects were wrongly classified. The four features 

selected by the regression method, the accuracy was 41.7%, the prediction 

speed was about 860 observation per second, and the training time was 

0.81714 second. Five subjects were classified correct while seven other 

subjects were wrongly classified. The four features selected by the rMI-SVM 

algorithm, the accuracy was 83.3%, the prediction speed was about 1300 

observation per second, and the training time was 0.73549 second. There were 

ten subjects classified correct while two other subjects were wrongly 

classified.. The four features selected by rMI-SVM algorithm achieved the 

highest accuracy, fastest prediction speed and shortest training time compared 

to the baseline using all features and regression method. Therefore, the four 

features selected by rMI-SVM algorithm provided a better prediction power. 
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(a) Full features  

 

(b) Four features selected by regression method 
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(c) Four features selected by the rMI-SVM algorithm 

Figure 6.13: Confusion matrix for skin cancer data with 2-fold cross-

validation 

 

Table 6.30 shows the output of the ROC curve of the skin cancer data 

using full features.  Four of the features were selected by the regression 

method, rMI-SVM algorithm using SVM - linear kernel function classifier 

with 2-fold cross-validation. When full features use the predictive model, the 

area under curve was 0.97, and the four features selected by the regression 

method, the area under curve was 0.71. The four features chosen by rMI-SVM 

algorithm, the area under curve was one. The four features selected by rMI-

SVM algorithm gave the highest area under curve value indicated that the 

prediction model built by these four selected features was better compared to 

the baseline using full features and regression method. Therefore, the classifier 

using the four features selected by the rMI-SVM algorithm was rightly 

predicted. In general, the predictive model using the four features of the skin 
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cancer data set selected by rMI-SVM algorithm gave the highest accuracy in 

SVM classifier compared to the regression method with the same number of 

features. The area under curve shows that the four features selected by rMI-

SVM algorithm gave a better predictive model compared to the same number 

of features chosen by regression method even when compared to the 

predictive model that was built using full features. 

 

Table 6.30: Output of the ROC curve of skin cancer data using four 

features 

   AUC 

Full features  0.97 

Regression  0.71 

rM-SVM  1 

 

Table 6.31 shows the 2-fold cross-validation and average accuracy for 

the SVM classifier using all features, rMI-SVM algorithm and regression 

method. The 22 features selected by the rMI-SVM algorithm with linear 

kernel function gave the highest average accuracy with the SVM classifier- 

linear kernel function compared to the regression method that used all the 

features. By using full features, the 2-fold cross-validation and average 

accuracy achieved by using SVM - linear kernel function classifier was 81.39% 

and 98.33%. The 22 features selected by the rMI-SVM algorithm with linear 

kernel function gave the 2-fold cross-validation and the average accuracy 

achieved by using SVM classifier - linear kernel function was 87.22% and 

99.17%. The 22 features selected by the regression method gave the 2-fold 
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cross-validation, and average accuracy achieved by using SVM - linear kernel 

function classifier was 60.56% and 55%. 

 

Table 6.31: Two-fold cross-validation and average accuracy for SVM 

classifier using full features, rMI-SVM algorithm, and regression method 

for lymphoma data set  

   SVM-CV  SVM-Acc 

Baseline  81.3889  98.3333 

rMI-SVM  87.2222  99.1667 

Regression  60.5556  55 

 

The confusion matrix and the receiver operating characteristic curve 

(ROC curve) were built to illustrate the distribution of the true class versus the 

predicted class for the full variables.  The 22 features selected by regression 

method and rMI-SVM algorithm with linear kernel function used SVM 

classifier with 2-fold cross-validation. Figures 6.14 (a)- (c) shows the 

confusion matrix of the lymphoma data set using (a) full features, (b) 22 

features selected by regression method, (c) 22 features selected by the rMI-

SVM algorithm using SVM - linear kernel function classifier with 2-fold 

cross-validation. When full features used the predictive model, the accuracy 

was 65.3%, the prediction speed was about 78 observation per second, and the 

training time was 14.224 second. There were 47 subjects which were 

classified correct while 25 other subjects were wrongly classified. The 22 

features selected by the regression method, the accuracy was 61.1%, the 

prediction speed was about 1700 observation per second, and the training time 

was 1.7242 second. There were 44 subjects which were classified correct 
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while 28 other subjects were wrongly classified. The 22 features selected by 

the rMI-SVM algorithm, the accuracy was 73.6%, the prediction speed was 

about 1600 observation per second, and the training time was 1.2064 second. 

There were 53 subjects classified correct while 19 other subjects were wrongly 

classified. The 22 features selected by rMI-SVM algorithm achieved the 

highest accuracy and shortest training time compared to the baseline using full 

features and regression method. Therefore, the 22 features selected by rMI-

SVM algorithm provided a better prediction power. 

 

   

(a) Full features  
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(b) 22 features selected by the regression method 

  

(c) 22 features selected by the rMI-SVM algorithm 

Figure 6.14: Confusion matrix for lymphoma data set with 2-fold cross-

validation 
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Table 6.32 shows the output of the ROC curve of the lymphoma data 

using full features, 22 features were selected by the regression method, rMI-

SVM algorithm, using SVM - linear kernel function classifier with 2-fold 

cross-validation. When full features used the predictive model, the area under 

curve was 0.93 and the 22 features selected by the regression method, the area 

under curve was 0.74. The 22 features selected by the rMI-SVM algorithm, 

the area under curve was 0.97. The 22 features selected by rMI-SVM 

algorithm gave the highest area under curve value indicated that the prediction 

model built by these 22 selected features was better compared to the baseline 

using full features and regression method. Therefore, the classifier using the 

22 features selected by the rMI-SVM algorithm was rightly predicted. In 

general, the predictive model that used the 22 features of the lymphoma data 

set selected by rMI-SVM algorithm gave the highest accuracy to support the 

vector machine classifier compared to the regression method with the same 

number of features. The area under curve shows that the 22 features selected 

by rMI-SVM algorithm gave a better predictive model compared to the same 

number of features chosen by regression method which was compared to the 

predictive model that was built using full features. 

 

Table 6.32: Output of the ROC curve of lymphoma data using 22 features 

   AUC 

All features  0.93 

Regression  0.74 

rM-SVM  0.97 
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Table 6.33 shows the 3-fold cross-validation and average accuracy for 

the SVM classifier using all the features, rMI-SVM algorithm and regression 

method. The five features selected by the rMI-SVM algorithm with linear 

kernel function gave the highest average accuracy with the SVM classifier- 

linear kernel function compared to the regression method and using all the 

features. By using full features, the 3-fold cross-validation and average 

accuracy achieved by using SVM - linear kernel function classifier was 41.17% 

and 67.5%. The five features selected by the rMI-SVM algorithm with linear 

kernel function gave the 3-fold cross-validation and average accuracy 

achieved by using SVM classifier - linear kernel function was 64.17% and 

77.5%. The five features selected by the regression method gave the 3-fold 

cross-validation, and the average accuracy achieved by using SVM - linear 

kernel function classifier was 56.67% and 67.5%. 

 

Table 6.33: Three-fold cross-validation and average accuracy for SVM 

classifier using full features, rMI-SVM algorithm, and regression method 

for lung cancer data set 

   SVM-CV  SVM-Acc 

Baseline  44.1667  67.5 

rMI-SVM  64.1667  77.5 

Regression  56.6667  67.5 

 

The confusion matrix and the receiver operating characteristic curve 

(ROC curve) were built to illustrate the distribution of the true class versus the 

predicted class for the full features. The five features selected by regression 

method and rMI-SVM algorithm with linear kernel function used the SVM 
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classifier with 3-fold cross-validation. Figures 6.15 (a)-(c) shows the 

confusion matrix of the lung cancer data set using (a) full features, (b) five 

features selected by regression method, (c) five features chosen by the rMI-

SVM algorithm using SVM - linear kernel function classifier with 3-fold 

cross-validation. When full features are using the predictive model, the 

accuracy was 41.7%, the prediction speed was about 240 observation per 

second, and the training time was 7.0111 second. There were ten subjects 

which were classified correct while 14 other subjects were wrongly classified. 

The five features selected by the regression method, the accuracy was 66.7%, 

the prediction speed was about 1500 observation per second, and the training 

time was 0.77055 second. There were 16 subjects which were classified 

correctly while eight other subjects were wrongly classified. The five features 

selected by the rMI-SVM algorithm, the accuracy was 70.8%, the prediction 

speed was about 1500 observation per second, and the training time was 

0.79158 second. There were 17 subjects which were classified correct while 

seven other subjects were classified wrongly. The five features selected by 

rMI-SVM algorithm achieved the highest accuracy compared to the baseline 

using all features and regression method. Therefore, the five features selected 

by rMI-SVM algorithm provided a better prediction power. 
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(a) Full features  

 

(b) Five features selected by regression method 
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(c) Five features selected by the rMI-SVM algorithm 

Figure 6.15: Confusion matrix for lung cancer data set with 3-fold cross-

validation 

 

Table 6.34 shows the output of the ROC curve of the lung cancer data 

using full features, five features were selected by the regression method, rMI-

SVM algorithm using SVM - linear kernel function classifier with 3-fold 

cross-validation. When full features used the predictive model, the area under 

curve was 0.53 and the five features selected by the regression method, the 

area under curve was 0.89. The five features chosen by rMI-SVM algorithm, 

the area under curve was 0.97. The five features selected by rMI-SVM 

algorithm gave the highest area under curve value indicated that the prediction 

model built by these five selected features was better compared to the baseline 

using all features and regression method. Therefore, the classifier using the 

five features chosen by the rMI-SVM algorithm was rightly predicted. In 

general, the predictive model that used the five features of the lung cancer data 
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set selected by rMI-SVM algorithm gave the highest accuracy in SVM 

classifier compared to the regression method with the same number of features. 

The area under curve shows that the five features selected by rMI-SVM 

algorithm give a better predictive model compared to the same number of 

features chosen by regression method even when compared with the predictive 

model that was built using full features. 

 

Table 6.34: Output of the ROC curve of lung cancer data using four 

features 

   AUC 

All features  0.53 

Regression  0.89 

rM-SVM  0.97 

  

Table 6.35 shows the 10-fold cross-validation and average accuracy for 

the SVM classifier using full features, rMI-SVM algorithm and regression 

method. The 50 features selected by the rMI-SVM algorithm with linear 

kernel function gave the highest average accuracy with the SVM classifier- 

linear kernel function compared to the regression method using all the features. 

By using full features, the 10 –fold cross-validation and average accuracy 

achieved by using SVM - linear kernel function classifier was 98.23% and 

98.2%. The 50 features selected by the rMI-SVM algorithm with linear kernel 

function gave the 10-fold cross-validation and average accuracy achieved by 

using SVM classifier - linear kernel function was 98.37% and 98.8%. The 50 

features selected by the regression method gave the 10-fold cross-validation, 
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and average accuracy achieved by using SVM - linear kernel function 

classifier was 96.89% and 96.5%.   

 

Table 6.35 Ten-fold cross-validation and average accuracy for support 

vector machine classifier using full features, rMI-SVM algorithm, and 

regression method for handwriting data set  

   SVM-CV  SVM-Acc 

Baseline  98.2286  98.2 

rMI-SVM  98.3714  98.8 

Regression  95.8857  96.5 

 

The confusion matrix and the receiver operating characteristic curve 

(ROC curve) were built to illustrate the distribution of the true class versus the 

predicted class for the 649 variables. The 50 features selected by regression 

method and rMI-SVM algorithm with linear kernel function used SVM 

classifier with 10-fold cross-validation. Figure 6.16 (a)-(c) shows the 

confusion matrix of the handwriting data set using (a) full features, (b) 50 

features selected by regression method, (c) 50 features selected by the rMI-

SVM algorithm using SVM - linear kernel function classifier with 10-fold 

cross-validation. When full features used the predictive model, the accuracy 

was 98.1%, the prediction speed was about 1400 observation per second, and 

the training time was 29.619 second. There were 1374 subjects which were 

classified correct while 26 other subjects were wrongly classified. The 50 

features selected by the regression method, the accuracy was 96.9%, the 

prediction speed was about 3600 observation per second, and the training time 

was 11.546 second. There were 1357 subjects which were classified correct 

while 43 other subjects were wrongly classified. The 50 features selected by 
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the rMI-SVM algorithm, the accuracy was 98.6%, the prediction speed was 

about 4900 observation per second, and the training time was 5.3171 second. 

There were 1381 subjects which were classified correct while only 19 subjects 

were wrongly classified. The 50 features selected by rMI-SVM algorithm 

achieved the highest accuracy, fastest prediction speed and shortest training 

time compared to the baseline using all features and regression method. 

Therefore, the 50 features selected by rMI-SVM algorithm provided a better 

prediction power. 

 

 

(a) Full features 
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(b) 50 features selected by the regression method 

 

(c) 50 features selected by the rMI-SVM algorithm 

Figure 6.16: Confusion matrix for handwriting data set with 10-fold 

cross-validation 
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Table 6.36 shows the output of the ROC curve of the handwriting data 

using full features. The 50 features selected by the regression method, rMI-

SVM algorithm used the SVM - linear kernel function classifier with 10-fold 

cross-validation. When full features used the predictive model, the area under 

curve was one, and the 50 features selected by the regression method, the area 

under curve was one. The 50 features selected by the rMI-SVM algorithm, the 

area under curve was 1. The 50 features selected by rMI-SVM algorithm gave 

a better and true positive in the current classifier which indicated that the 

prediction model built by these 50 selected features was better compared to the 

baseline using full features and regression method. Therefore, the classifier 

using the 50 features selected by the rMI-SVM algorithm was rightly 

predicted. In general, the predictive model that use the 50 features of the 

handwriting data set selected by rMI-SVM algorithm gave the highest 

accuracy in SVM classifier compared to the regression method with the same 

number of features. The area under curve shows that the 50 features selected 

by rMI-SVM algorithm gave a better predictive model compared to the same 

number of features chosen by regression method and even when compared to 

the predictive model that was built using full features. 

 

Table 6.36: Output of the ROC curve of handwriting data using 50 

features 

   AUC 

All features  1 

Regression  1 

rM-SVM  1 
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 This chapter shows the result of the optimal baseline and dimension 

reduction using the rMI-SVM algorithm for the ten data sets. Some of the data 

sets are microarray data with high dimensional but low sample size; these data 

sets have been chosen to evaluate the performance of the proposed algorithm. 

The optimal baselines were obtained using the mutual information score to 

show that this optimal baseline is better than the existing baseline used by the 

researcher. The current baseline is using the full features which will contain 

the irrelevant features and noise in the predictive model. The built predictive 

model using full features has less predictive power; therefore, the baseline 

using all the features is less reliable. The proposed algorithm in Chapter 3 by 

excluding the irrelevant features in the predictive model will provide a better 

baseline and also obtain the number of features needed for this baseline. The 

number of features obtained from the proposed algorithm serves as a guideline 

on features selection as the number of cut off features that is needed in 

building a predictive model.  

 

 Besides this, the proposed algorithm in Chapter 4 has been evaluated 

using the ten chosen data sets. It shows that the dimension of the data has been 

reduced tremendously, up to 90% of the original dimension. After reduction of 

dimension, the performance of the predictive model built by the selected 

features using rMI-SVM algorithm provides a better than the existing baseline, 

regression method and mRMR. The sensitivity test through the confusion 

matrix and ROC curve also shows that the features selected by the proposed 

algorithm perform better than using full features and the features chosen by 

the regression method and mRMR. 
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CHAPTER 7 

 

DISCUSSION 

 

7.1 Evaluation of the features selected by the rMI-SVM algorithm 

 

The features selected using various feature selection methods face the 

same problem, as to whether the chosen features are coincidence or whether 

the chosen features are represented in the predictive model. In this chapter, the 

features selected by the proposed algorithm will be evaluated using the Z-

score. The Z-score has been discussed in Chapter 5.3, since the sample size in 

the microarray is relatively small. Therefore, Z-score that helps to evaluate the 

features selected by the proposed algorithm is representative and not chosen 

by chance. The representative features will give high value in the Z-score; but, 

the Z-score only highlights those relevant features and at the same time also 

highlights the redundant features. The redundant features are represented in 

the predictive model. When more redundant features are included in the 

predictive model, it does not guarantee that the performance will become 

better but it will increase the complexity of the predictive model. Therefore, 

the Z-score will show all the relevant features that are not selected by chance.  

Later, the features chosen by the proposed algorithm will compare the 

performance of the predictive model with some existing feature selection 

methods as discussed in Chapter 2.  
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7.2 Z-score Analysis 

7.2.1 Z-score Analysis for Binary Data Set 

 

Figure 7.1 shows the Z-score versus the features for colon cancer data 

set with K=50. When K value increases, more features with higher Z-score 

will show in the figure. From Figure 7.1, there were 185 features with the 

value of Z-score which indicated that a predictive model that contains these 

features with a high value of Z-score would be more robust.  

 

 

Figure 7.1: Z-score versus the features for colon cancer data set 

 

Table 7.1 shows the top 20 ranked features with the Z-score which 

were selected by regression method, mRMR method and rMI-SVM algorithm. 

The regression method chose the top six ranked features, whereas the mRMR 
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method chose only three features from the top 20 ranked features and the rMI-

SVM algorithm only selected six features from the top 20 ranked features. 

Although the rMI-SVM algorithm only selected six features from the top 20 

ranked features, nevertheless, the predictive model built by the rMI-SVM 

algorithm using seven features gave the highest average accuracy compared to 

the regression method and mRMR method.  

 

Although the Z-score was calculated based on the specific feature but it 

did not take a count on the dynamic change on the already selected features 

with the newly added feature. The Z-score is able to figure out the significance 

of the occurrence of a selected feature. This means that those features with 

high Z-score were not chosen by chance and contain more information needed 

in the predictive model. However, the features that provide high information 

and not selected by chance might be redundant to other features. Therefore, 

those redundant features will be filtered out by the rMI-SVM algorithm. From 

Table 7.1, the regression method did not take into account the dynamic change 

on the already selected features with the newly added feature in the predictive 

model. 
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Table 7.1: The top 20 ranked features with Z-score selected by regression 

method, mRMR method and rMI-SVM algorithm for colon cancer data 

set 

Z score  Feature Regression mRMR rMI-SVM  

70.35624 245  v    v 

67.51356 1423  v    v 

64.67088 267  v 

61.82821 765  v  v 

57.56419 822  v 

56.14286 249  v  v  v 

54.72152 1892 

39.0868 415 

39  20 

31.98011 377      v 

31.98011 467      v 

29.13743 72      v 

27.71609 897 

27.71609 1967 

26.29476 43 

24.87342 66 

24.87342 515 

24.87342 1917 

24  34 

22.03074 1772    v 

 

Figure 7.2 shows the Z-score versus the features for leukaemia data set 

with K=50. When the K value increases, more features with higher Z-score 

will show in the figure. From Figure 7.2, there were 91 features with the value 

of Z-score which indicated that a predictive model that contains more features 

with a high value of Z-score would be more robust.  
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Figure 7.2: Z-score versus the features for the leukaemia data set 

 

Table 7.2 shows the top 30 ranked features with the Z-score selected 

by regression method, mRMR method and rMI-SVM algorithm. The 

regression method selected five ranked features from the top 30 ranked 

features, whereas the mRMR method chose only three features from the top 30 

ranked features and the rMI-SVM algorithm selected five features from the 

top 30 ranked features. Although the rMI-SVM algorithm did not choose the 

top five features, nevertheless, the predictive model built by the rMI-SVM 

algorithm using five features gave the highest average accuracy, compared to 

the regression method and mRMR method. From Table 7.2, the regression 

method did not take into account the dynamic change on the already selected 

features with the newly added feature in the predictive model.  
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Table 7.2: The top 30 ranked features with Z-score selected by regression 

method, mRMR method and rMI-SVM algorithm for leukaemia data set 

Z score  Feature Regression mRMR rMI-SVM  

133.3042 760 

133.3042 1834  v  v 

133.3042 1882  v 

133.3042 2288  v 

133.3042 3252  v    v 

133.3042 6854  v 

130.6306 1685    v 

122.6098 2121 

119.9362 2354    v 

111.9155 1144 

106.5683 804 

90.5268 6376 

82.50605 758 

71.81171 6281 

63.79096 2128      v 

63.79096 5171 

61.11737 1745 

58.44379 6041 

53.09662 2642 

50.42303 6225 

47.74945 4377      v 

42.40228 4847 

39.72869 4211 

39.72869 5501 

34.38152 4373 

31.70794 3189      v 

31.70794 4973 

29.03435 1779      v 

23.68718 4328 

21.0136 1909 
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Figure 7.3 shows the Z-score versus the features for prostate data set 

with K=50. When the K value increases, more features with higher Z-score 

will be shown in the figure. From Figure 7.3, there were 101 features with 

value of Z-score which indicated that a predictive model that contains more 

features with high value of Z-score will be more robust.  

 

 

Figure 7.3: Z-score versus the features for the prostate data set 

 

Table 7.3 shows the top 10 ranked features with the Z-score selected 

by regression method, mRMR method and rMI-SVM algorithm. The 

regression method selected three ranked features from the top 10 ranked 

features, whereas the mRMR method chose only two features from the top 10 

ranked features and the rMI-SVM algorithm selected three features from the 

top 10 ranked features. The regression method and rMI-SVM algorithm had 
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chosen the same three features; therefore, the average accuracy was the same 

for the regression method, and rMI-SVM algorithm compared to the mRMR 

method.  

 

Table 7.3: The top 10 ranked features with Z-score selected by regression 

method, mRMR method and rMI-SVM algorithm for prostate data set 

Z score  Feature Regression mRMR rMI-SVM  

72.7152 1181 

72.7152 1226  v    v 

72.7152 1970  v  v  v 

72.7152 2035 

68.31103 728 

68.31103 1945 

65.37492 432  v  v  v 

65.37492 939 

59.50269 1737 

58.03464 1303 

 

Figure 7.4 shows the Z-score versus the features for colon cancer data 

set with K=50. When the K value increases, more features with higher Z-score 

will be shown in the figure. From Figure 7.4, there were 61 features with the 

value of Z-score which indicated that a predictive model that contains more 

features with a high value of Z-score would be more robust.  
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Figure 7.4: Z-score versus the features for lung cancer data set 

 

Table 7.4 shows the top 20 ranked features with the Z-score selected 

by regression method, mRMR method and rMI-SVM algorithm. The 

regression method selected four ranked features from the top 20 ranked 

features, whereas the mRMR method chose only three features from the top 20 

ranked features and the rMI-SVM algorithm  selected only four features from 

the top 20 ranked features. The four chosen features by rMI-SVM algorithm 

gave the highest average accuracy compared to the regression method and 

mRMR method.  
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Table 7.4: The top 20 ranked features with Z-score selected by regression 

method, mRMR method and rMI-SVM algorithm for lung cancer data 

set 

Z score  Feature Regression mRMR rMI-SVM  

123  67 

119  105 

110  17 

103  9 

103  102 

103  100 

101  94 

96  94 

64  7 

63.36403 389 

63.36403 937 

63.36403 1018  v    v 

63.36403 1428  v  v  v 

63.36403 1523 

62.08097 441  v  v 

59.51484 821  v  v  v 

59.51484 1100 

56.94872 234      v 

55.66565 922 

54.38259 444 

 

Figure 7.5 shows the Z-score versus the features for Parkinson data set 

with K=50. When the K value increases, more features with higher Z-score 

will be shown in the figure. From Figure 7.5, there were 13 features with the 

value of Z-score which indicated that a predictive model that contains more 

features with a high value of Z-score would be more robust.  
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Figure 7.5: Z-score versus the features for Parkinson data set 

 

Table 7.5 shows the top 10 ranked features with the Z-score selected 

by regression method, mRMR method and rMI-SVM algorithm. The 

regression method selected six ranked features from the top 10 ranked features, 

whereas the mRMR method chose only three features from the top 10 ranked 

features and the rMI-SVM algorithm only selected four features from the top 

10 ranked features. Although the rMI-SVM algorithm only selected four 

features from the top 10 ranked features, nevertheless, the predictive model 

built by the rMI-SVM algorithm using seven features gave the highest average 

accuracy compared to the regression method and mRMR method.  
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Table 7.5: The top 10 ranked features with  Z-score selected by regression 

method, mRMR method and rMI-SVM algorithm for Parkinson data set 

Z score  Feature Regression mRMR rMI-SVM  

7.745967 1      v 

7.745967 3  v  v  v 

7.745967 19  v  v  v 

7.745967 22  v    v 

7.461948 20  v  v 

6.89391 9  v 

5.189798 16 

4.62176 11 

2.633629 14 

2.34961 21  v 

 

Figure 7.6 shows the Z-score versus the features for breast cancer data 

set with K=50. When the K value increases, more features with higher Z-score 

will be shown in the figure. From Figure 7.6, there were 12 features with the 

value of Z-score  which indicated that a predictive model that contains more 

features with a high value of Z-score would be more robust.   
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Figure 7.6: Z-score versus the features for breast cancer data set 

 

Table 7.6 shows the top 10 ranked features with the Z-score selected 

by regression method, mRMR method and rMI-SVM algorithm. The 

regression method selected all the top 10 ranked features, whereas the mRMR 

method only picked eight features from the top 10 ranked features, and the 

rMI-SVM algorithm only selected seven features from the top 10 ranked 

features. Although the rMI-SVM algorithm only selected seven features from 

the top 10 ranked features, nevertheless, the predictive model built by the rMI-

SVM algorithm using eleven features gave the highest average accuracy 

compared to the regression method and mRMR method. 

 

The Z-score is able to figure out the significance of the occurrence of a 

selected feature. This means that those features with high Z-score were not 



 

163 
 

chosen by chance and contain more information needed in the predictive 

model. However, the features that provide high information and not selected 

by chance might be redundant to other features; therefore, those redundant 

features will be filtered out by the rMI-SVM algorithm. From Table 7.6, the 

regression method did not take into account the dynamic change on the 

already selected features with the newly added feature in the predictive model. 

 

Table 7.6: The top 10 ranked features with Z-score selected by regression 

method, mRMR method and rMI-SVM algorithm for breast cancer data 

set 

Z score  Feature Regression mRMR rMI-SVM  

10  1  v 

10  4  v  v 

10  7  v  v  v 

10  8  v  v  v 

10  21  v  v  v 

10  23  v  v  v 

10  28  v  v  v 

6.7  24  v  v  v 

3.4  27  v  v  v 

1.9  6  v 

 

7.2.2  Z-score Analysis for Multiclass Data Set 

 

Figure 7.7 shows the Z-score versus the features for skin cancer data 

set with K=50. When the K value increases, more features with higher Z-score 

will be shown in the figure. From Figure 7.7, there were 313 features with the 
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value of Z-score which indicated that a predictive model that contains more 

features with a high value of Z-score would be more robust. 

 

 

Figure 7.7: Z-score versus the features for skin cancer data set 

 

Table 7.7 shows the top 20 ranked features with the Z-score selected 

by regression method and rMI-SVM algorithm. The regression method did not 

select any of the features in the top 20 ranked features, whereas the rMI-SVM 

algorithm selected two features from the top 20 ranked features. Although the 

rMI-SVM algorithm chose only two features from the top 20 ranked features, 

the predictive model built by the rMI-SVM algorithm using four features gave 

the highest average accuracy compared to the regression method because the 

Z-score was calculated based on the particular feature but did not take into 

account on the dynamic change on the already selected features with the newly 
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added feature. The features that contain high information and not chosen by 

chance might be redundant to other features; therefore, those redundant 

features will be filtered out using the rMI-SVM algorithm.  

 

Table 7.7: The top 20 ranked features with  Z-score selected by regression 

method and rMI-SVM algorithm for skin cancer data set 

Z score  Feature Regression rMI-SVM  

197.8346 1582 

122.3882 2680 

112.9574 2706 

98.81118 21462    v 

94.09578 5952 

79.94958 3456 

65.80337 4394 

65.80337 17618 

61.08797 8986 

61.08797 11825 

56.37256 931 

56.37256 2862 

56.37256 3546 

56.37256 4280 

56.37256 4979 

56.37256 6359 

56.37256 17128    v 

51.65716 1120 

51.65716 3408 

51.65716 3764 

 

Figure 7.8 shows the Z-score versus the features for lymphoma data set 

with K=50. When the K value increases, more features with higher Z-score 
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will be shown in the figure. From Figure 7.8, there were 191 features with the 

value of Z-score which indicated that a predictive model that contains more 

features with a high value of Z-score would be more robust.  

 

 

Figure 7.8: Z-score versus the features for the lymphoma data set 

 

Table 7.8 shows the top 20 ranked features with the Z-score selected 

by regression method and rMI-SVM algorithm. The regression method picked 

six features from the top 20 ranked features, whereas the rMI-SVM algorithm 

selected seven features from the top 20 ranked features. The predictive model 

built by the rMI-SVM algorithm using 22 features gave the highest average 

accuracy compared to the regression method because the Z-score was 

calculated based on the specific feature but did not take a count on the 

dynamic change on the already selected features with the newly added feature.  
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Table 7.8: The top 20 ranked features with  Z-score selected by regression 

method and rMI-SVM algorithm for lymphoma data set 

Z score  Feature Regression rMI-SVM  

94.0405 273  v  v 

79.96005 394  v 

71.91408 263  v 

67.8911 262  v 

67.8911 266    v 

65.87961 265 

53.81066 2391 

51.79917 71    v 

49.78767 277 

45.76469 250 

45.76469 2084    v 

39.73021 147  v  v 

33.69574 271 

33.69574 3831    v 

31.68425 276 

31.68425 1722 

29.67275 148  v 

29.67275 274 

29.67275 1926 

27.66126 236    v 

 

Figure 7.9 shows the Z-score versus the features for lymphoma data set 

with K=50. When the K value increases, more features with higher Z-score 

will be shown in the figure. From Figure 7.9, there were 37 features with the 

value of Z-score which indicated that a predictive model that contains more 

features with a high value of Z-score would be more robust. 
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Figure 7.9: Z-score versus the features for lung cancer data set 

 

Table 7.9 shows the top 15 ranked features with the Z-score selected 

by regression method and rMI-SVM algorithm. The regression method picked 

five features from the top 15 ranked features, whereas the rMI-SVM algorithm  

selected four features from the top 15 ranked features. The predictive model 

built by the rMI-SVM algorithm using five features gave the highest average 

accuracy compared to the regression method. 
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Table 7.9: The top 15 ranked features with Z-score selected by regression 

method and rMI-SVM algorithm for lung cancer data set 

Z score  Feature Regression rMI-SVM  

15.16575 6    v 

15.16575 14  v  v 

15.16575 20  v  v 

10.36546 56 

9.626955 2 

8.149943 8  v 

7.78069 23  v 

7.411437 13 

4.826665 15 

4.826665 19  v 

2.611147 24 

2.241894 34 

-0.34288 10    v 

-0.71213 27 

-1.08138 9 

 

Figure 7.10 shows the Z-score versus the features for handwriting data 

set with K=50. When the K value increases, more features with higher Z-score 

will be shown in the figure. From Figure 7.10, there were 38 features with the 

value of Z-score which indicated that a predictive model that contains more 

features with a high value of Z-score would be more robust.  
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Figure 7.10: Z-score versus the features for the handwriting data set 

 

Table 7.10 shows the top 20 ranked features with the Z-score selected 

by regression method and rMI-SVM algorithm. The regression method 

selected 12 features from the top 20 ranked features, whereas the rMI-SVM 

algorithm selected 17 features from the top 20 ranked features. The predictive 

model built by the rMI-SVM algorithm using 50 features gave the highest 

average accuracy compared to the regression method. 
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Table 7.10: The top 20 ranked features with  Z-score selected by 

regression method and rMI-SVM algorithm for handwriting data set 

Z score  Feature Regression rMI-SVM  

39.65476 31    v 

39.65476 37    v 

39.65476 103  v  v 

39.65476 217  v  v 

39.65476 295    v 

39.65476 357  v  v 

39.65476 358    v 

39.65476 415  v  v 

39.65476 416  v  v 

39.65476 601  v  v 

38.83645 417  v  v 

38.01813 192    v 

37.19982 362    v 

32.28994 292  v  v 

30.65332 6    v 

29.83501 96  v 

27.38007 72    v 

27.38007 600  v 

24.92513 97  v  v 

17.56031 586  v 

 

7.3  Cross-validation 

7.3.1 Cross-validation for Binary Data Set 

 

Overfitting is a widespread issue in machine learning or classification. 

When a statistical model or predictive model uses too many parameters, it is 

easy to cause overfitting. In machine learning, the machine becomes too 

entangled to construct a predictive model with a low error rate, and it covers 
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many data points so the error rate will be lower. In reality, when using this 

predictive model, it is not possible to predict the other data besides the training 

data. The easy way is to increase the sample size to overcome the overfitting. 

However, microarray data analysis usually involves a small sample size. 

Therefore, it is essential to determine the predictive model that was built as not 

overfitting.  

 

A simple way to determine whether the predictive model was 

overfitting or not, an average accuracy of cross-validation and average 

accuracy of the predictive model versus the selected features was plotted. The 

average accuracy of the cross-validation increase and the average accuracy of 

the predictive model increase simultaneously when more features are added. If 

the average accuracy of cross-validation is growing while the average 

accuracy of the predictive model starts to decrease, overfitting occurs at the 

point where the average accuracy of the predictive model starts to drop. 

Figures 7.11 (a)-(f) show the average accuracy of the predictive model and 

cross-validation versus the selected features by the rMI-SVM algorithm for 

colon cancer data set, leukaemia data set, prostate cancer data set, lung cancer 

data set, Parkinson data set and breast data set. The rMI-SVM algorithm had 

selected seven features for colon cancer data set; the average accuracy of the 

predictive model shows a strictly increasing graph when the number of 

features increases. The average accuracy of the cross-validation shows there is 

not much difference from the average accuracy of the predictive model. 

Therefore, the seven features selected by rMI-SVM algorithm in the predictive 

model did not show an overfitting issue.  
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Five features were selected by the rMI-SVM algorithm for leukaemia 

data set, the average accuracy of the predictive model shows a strictly 

increasing graph when the number of features increases. The average accuracy 

of the cross-validation was lower than the average accuracy of the predictive 

model as the number of features increase. Therefore, the five features selected 

by rMI-SVM algorithm in the predictive model did not show an overfitting 

issue. The rMI-SVM algorithm had chosen three features for the prostate data 

set; the average accuracy of the predictive model shows a strictly increasing 

graph when the number of features increases. The average accuracy of the 

cross-validation was lower than the average accuracy of the predictive model 

as the number of features increase. Therefore, the three features selected by 

rMI-SVM algorithm in the predictive model did not show an overfitting issue. 

The rMI-SVM algorithm had chosen four features for the lung data set, the 

average accuracy of the predictive model shows a strictly increasing graph 

when the number of features increases. The average accuracy of the cross-

validation was lower than the average accuracy of the predictive model as the 

number of features increase. Therefore, the four features selected by rMI-SVM 

algorithm in the predictive model did not show an overfitting issue.  

 

The rMI-SVM algorithm had selected seven features for Parkinson 

data set, the average accuracy of the predictive model shows a strictly 

increasing graph when the number of features increases. The average accuracy 

of the cross-validation shows there is not much difference from the average 

accuracy of the predictive model. Therefore, the seven features selected by 

rMI-SVM algorithm in the predictive model did not show an overfitting issue. 
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The rMI-SVM algorithm had chosen eleven features for breast cancer data set; 

the average accuracy of the predictive model shows a strictly increasing graph 

when the number of features increases. The average accuracy of the cross-

validation was lower than the average accuracy of the predictive model as the 

number of features increase. Therefore, the eleven features selected by rMI-

SVM algorithm in the predictive model did not show an overfitting issue. 

 

 

(a) colon cancer data set  
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(b) leukaemia data set 

 

(c) prostate data set  
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(d) lung cancer data set 

 

(e) Parkinson data set  
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(f) breast cancer data set 

Figure 7.11: Average accuracy of the predictive model and cross-

validation versus the selected features by the rMI-SVM algorithm for the 

binary data set 

 

Overall, the Figures 7.11(a)-(f) show that the features selected by rMI-

SVM algorithm did not show an overfitting issue in the predictive model for 

the colon cancer data set, leukaemia data set, prostate cancer data set, lung 

cancer data set, Parkinson data set and breast data set. 

 

7.3.2  Cross-validation for Multiclass Data Set 

 

Figures 7.12 (a) - (d) show the average accuracy of the predictive 

model and cross-validation versus the selected features by the rMI-SVM 

algorithm for skin cancer data set, lymphoma data set, lung cancer data set and 

handwriting data set. The rMI-SVM algorithm had selected four features for 
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skin cancer data set; the average accuracy of the predictive model shows a 

strictly increasing graph when the number of features increases. The average 

accuracy of the cross-validation shows there is not much difference from the 

average accuracy of the predictive model. Therefore, the four features selected 

by rMI-SVM algorithm in the predictive model did not show an overfitting 

issue.  

 

The rMI-SVM algorithm has selected twenty features for lymphoma 

data set; the average accuracy of the predictive model shows a strictly 

increasing graph when the number of features increases. The average accuracy 

of the cross-validation was lower than the average accuracy of the predictive 

model as the number of features increase. Therefore, the 20 features selected 

by rMI-SVM algorithm in the predictive model did not show an overfitting 

issue. The rMI-SVM algorithm had selected five features for lung cancer data 

set; the average accuracy of the predictive model shows a strictly increasing 

graph when the number of features increases. The average accuracy of the 

cross-validation shows there is not much difference from the average accuracy 

of the predictive model. Therefore, the five features selected by rMI-SVM 

algorithm in the predictive model did not show an overfitting issue. The rMI-

SVM algorithm had chosen fifty features for handwriting data set, the average 

accuracy of the predictive model shows a strictly increasing graph when the 

number of features increases. The average accuracy of the cross-validation 

shows there is not much difference from the average accuracy of the predictive 

model. Therefore, the 50 features selected by rMI-SVM algorithm in the 

predictive model did not show an overfitting issue. 
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(a) skin cancer data set  

 

(b) lymphoma data set 
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(c) lung data set  

 

(d) handwriting data set 

Figure 7.12: Average accuracy of the predictive model and cross-

validation versus the selected features by the rMI-SVM algorithm for the 

multiclass data set 
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Overall, the Figures 7.12 (a)-(d) show that the features selected by 

rMI-SVM algorithm did not show an overfitting issue in the predictive model 

for skin cancer data set, lymphoma data set, lung cancer data set and 

handwriting data set. 

 

7.4  Comparison of Performance  

7.4.1 Comparison of Performance for Binary Data Set       

 

The colon cancer data set contains 2000 variables with 62 samples, 

where 40 of the samples belong to tumour group, and 22 samples belong to the 

healthy group. The optimal baseline from the proposed algorithm in Chapter 3 

is 87.78% with 202 ranked features. Table 7.11 shows the average accuracy 

with the number of features obtained from several feature selection methods 

for colon cancer data set. The rMI-SVM algorithm can achieve the same 

average accuracy with the baseline by using only seven features. With the 

same number of features, the regression method achieved the average 

accuracy of 82.22% while the mRMR method achieved the average accuracy 

of 81.11%. Additionally, several studies were conducted on the same data set 

using different feature selection methods. Yang and Moody (1999)  proposed a 

feature selection using the joint mutual information (JMI). JMI achieved the 

highest average accuracy of 85.4% using 11 features.  

 

Similarly,  Zhu et al. (2007) proposed a Markov blanket-embedded 

genetic algorithm (MBEGA) for feature selection. MBEGA achieved the 
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highest average accuracy of 85.66% using 24 features. Joint mutual 

information maximisation (JMIM) was proposed by Mohamed Bennasar, 

Yulia Hicks and Rossitza Setchi (2015). JMIM achieved the highest average 

accuracy of 85.4% using 12 features. Furthermore, Vanitha et al. (2015) 

proposed a feature selection using support vector machine and mutual 

information (SVM-MI), SVM-MI selected three features and achieved the 

average accuracy of  80%.  

 

Jun Wang et al. (2017)  proposed a feature selection method using the 

criterion of maximum relevance and maximum independence (MRI). On an 

average of 50 groups of feature sets, MRI achieved the average accuracy of 

86.84%. A dynamic change of selected feature with a class (DCSF) was 

proposed by Wanfu Gao, Liang Hu and Ping Zhang (2018).  On an average of 

30 groups of feature sets, DCSF achieved the average accuracy of 80.48%. 

Among the feature selection method discussed, the rMI-SVM algorithm is 

able to achieve the highest average accuracy using only seven features. 

Although SVM-MI proposed to select only three features, the average 

accuracy was only 80% which was the lowest among the feature selection 

method as listed in Table 7.11. 
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Table 7.11: Average accuracy with the number of features obtained from 

several feature selection methods for colon cancer data set 

   No. of features  Average accuracy 

Optimal baseline 202   87.78% 

rMI-SVM  7   87.78% 

Regression  7   82.22% 

mRMR  7   81.11% 

JMI   11   85.4% 

MBEGA  24   85.66% 

JMIM   12   85.4% 

SVM-MI  3   80% 

MRI   In Average  86.84% 

DCSF   In Average   80.48% 

 

The leukaemia data set contains 7128 variables with 72 samples, where 

47 of the samples belong to acute lymphocytic leukaemia (ALL), and 25 

belong to acute myeloid leukaemia (AML). The optimal baseline from the 

proposed algorithm in Chapter 3 is 99.05% with 38 ranked features. Table 

7.12 shows the average accuracy with the number of features obtained from 

several feature selection methods for the leukaemia data set. The rMI-SVM 

algorithm can achieve the 100% average accuracy with only five features. 

With the same number of features, the regression method achieved the average 

accuracy of 98.1%, while the mRMR method achieved the average accuracy 

of 94.28%. There were several studies on the same data set using different 

feature selection methods. Howard Hua Yang and John Moody (1999) 

proposed a feature selection using the joint mutual information (JMI). JMI 

achieved the highest average accuracy of  99% using five features.  
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Zexuan Zhu, Yew-Soon Ong and Manoranjan Dash (2007)  proposed a 

Markov blanket-embedded genetic algorithm (MBEGA) for feature selection. 

MBEGA achieved the highest average accuracy of 95.89% using 12 features. 

A hybrid feature selection using the filters method and wrappers method was 

also proposed by Hsu et al. (2011). The proposed method achieved the highest 

average accuracy of 98.6% using 70 features. Joint mutual information 

maximisation (JMIM) was proposed by Mohamed Bennasar, Yulia Hicks and 

Rossitza Setchi  (2015). JMIM achieved the highest average accuracy of 97.25% 

using four features. Among the feature selection method that was discussed, 

the rMI-SVM algorithm is able to achieve the highest average accuracy using 

only five features.  

 

Table 7.12: Average accuracy with the number of features obtained from 

several feature selection methods for leukaemia data set 

   No. of features  Average accuracy 

Optimal baseline 38   99.05% 

rMI-SVM  5   100% 

Regression  5   98.1% 

mRMR  5   94.28% 

JMI   5   99% 

MBEGA  12   95.89% 

Hybrid   70   98.6% 

JMIM   4   97.25% 

 

The prostate data set contains 2135 variables with 102 samples, of 

which 52 samples belong to the tumour group, and 50 samples belong to the 

healthy group. The optimal baseline from the proposed algorithm in Chapter 3 
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is 94% with 330 ranked features. Table 7.13 shows the average accuracy with 

the number of features obtained from several feature selection methods for 

prostate data set. The rMI-SVM algorithm can achieve the 93.33% average 

accuracy with only three features. With the same number of features, the 

regression method produced the same average accuracy of 93.33% while the 

mRMR method achieved the average accuracy of 88%. Zexuan Zhu, Yew-

Soon Ong and Manoranjan Dash (2007) proposed a Markov blanket-

embedded genetic algorithm (MBEGA) for feature selection. MBEGA 

achieved the highest average accuracy of 95.89% using 12 features. Therefore, 

the rMI-SVM algorithm is able to achieve the highest average accuracy using 

only three features. 

 

Table 7.13: Average accuracy with the number of features obtained from 

several feature selection methods for prostate data set 

   No. of features  Average accuracy 

Optimal baseline 330   94% 

rMI-SVM  3   93.33% 

Regression  3   93.33% 

mRMR  3   88% 

 

The lung cancer data set contains 1626 variables with 181 samples, of 

which 31 samples belong to malignant pleural mesothelioma (MPM), and 150 

samples belong to adenocarcinoma (AD). The optimal baseline from the 

proposed algorithm in Chapter 3 is 100% with nine ranked features. Table 

7.14 shows the average accuracy with the number of features obtained from 

several feature selection methods for lung cancer data set. The rMI-SVM 
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algorithm can achieve the 100% average accuracy with only four features. 

With the same number of features, the regression method and mRMR 

achieved the average accuracy of 99.26%. Zexuan Zhu, Yew-Soon Ong and 

Manoranjan Dash (2007) proposed a Markov blanket-embedded genetic 

algorithm (MBEGA) for feature selection. MBEGA achieved the highest 

average accuracy of 98% using 24 features. Among the feature selection 

methods that were discussed, the rMI-SVM algorithm is able to achieve the 

highest average accuracy by using only four features. 

 

Table 7.14: Average accuracy with the number of features obtained from 

several feature selection methods for lung cancer data set 

   No. of features  Average accuracy 

Optimal baseline 9   100% 

rMI-SVM  4   100% 

Regression  4   99.26% 

mRMR  4   99.26% 

MBEGA  24   98% 

 

The Parkinson data set contains 22 variables with 195 samples, of 

which 147 samples belong to the healthy group, and 48 samples belong to 

Parkinson disease group. The optimal baseline from the proposed algorithm in 

Chapter 3 is 88.97% with 22 features. Table 7.15 shows the average accuracy 

with the number of features obtained from several feature selection methods 

for Parkinson data set. The rMI-SVM algorithm can achieve the 90.69% 

average accuracy with seven features. With the same number of features, the 

regression method achieved the average accuracy of 84.83% while the mRMR 

method achieved the average accuracy of 86.21%.  
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There were several studies on the same data set using different features 

selection method. Howard Hua Yang and John Moody (1999) proposed a 

feature selection using the joint mutual information (JMI). JMI achieved the 

highest average accuracy of 89.5% using three features. Joint mutual 

information maximisation (JMIM) was proposed by Mohamed Bennasar, 

Yulia Hicks and Rossitza Setchi (2015). JMIM achieved the highest average 

accuracy of 91% using eight features. Among the feature selection method that 

was discussed, the rMI-SVM algorithm is able to achieve the average accuracy 

by using only seven features. Although the highest average accuracy achieved 

by JMIM, JMIM used eight features to achieve this average accuracy while 

rMI-SVM algorithm used only seven features to achieve similar average 

accuracy. 

 

Table 7.15: Average accuracy with the number of features obtained from 

several feature selection methods for Parkinson data set 

   No. of features  Average accuracy 

Optimal baseline 22   88.97% 

rMI-SVM  7   90.69% 

Regression  7   84.83% 

mRMR  7   86.21% 

JMI   3   89.5% 

JMIM   8   91% 

 

The breast data set contains 30 variables with 569 samples, of which 

357 samples belong to the benign group, and 212 samples belong to the 

malignant group. The optimal baseline from the proposed algorithm in 

Chapter 3 was 95.06% with 13 ranked features. Table 7.16 shows the average 
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accuracy with the number of features obtained from several feature selection 

methods for breast cancer data set. The rMI-SVM algorithm can achieve the 

highest average accuracy of 96.59% by using eleven features. With the same 

number of features, the regression method achieved the average accuracy of 

92.82% while the mRMR method achieved the average accuracy of 93.29%. 

There were several studies on the same data set using different features 

selection method.  

 

Howard Hua Yang and John Moody (1999) proposed a feature 

selection using the joint mutual information (JMI). JMI achieved the highest 

average accuracy of 95.8% using 20 features. Joint mutual information 

maximisation (JMIM) was proposed by Mohamed Bennasar, Yulia Hicks and 

Rossitza Setchi  (2015). JMIM achieved the highest average accuracy of 96.2% 

using five features. Among the feature selection methods that were discussed, 

the rMI-SVM algorithm is able to achieve the highest average accuracy by 

using eleven features.   

 

Table 7.16: Average accuracy with the number of features obtained from 

several feature selection methods for breast cancer data set 

   No. of features  Average accuracy 

Optimal baseline 13   95.06% 

rMI-SVM  11   96.59% 

Regression  11   92.82% 

mRMR  11   93.29% 

JMI   20   95.8% 

JMIM   5   96.2% 
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7.4.2  Comparison of Performance for Multiclass Data Set 

 

The skin data set contains 22215 variables with 15 samples, of which 

six samples belong to the healthy group, four belong to actinic keratosis group, 

and five samples belong to squamous cell carcinoma group. The optimal 

baseline from the proposed algorithm in Chapter 3 is 86.67% with two ranked 

features. Table 7.17 shows the average accuracy with the number of features 

obtained from several feature selection methods for skin cancer data set. The 

rMI-SVM algorithm can achieve 100% average accuracy by using only four 

features. With the same number of features, the regression method achieved 

the average accuracy of 86.67%. Among the feature selection method that was 

discussed, the rMI-SVM algorithm is able to achieve the highest average 

accuracy by using only four features. 

 

Table 7.17: Average accuracy with the number of features obtained from 

several feature selection methods for skin cancer data set 

   No. of features  Average accuracy 

Optimal baseline 2   86.67% 

rMI-SVM  4   100% 

Regression  4   86.67% 

 

The lymphoma data set contains 4026 variables with 96 samples. 

There were nine classes in this data set. The optimal baseline from the 

proposed algorithm in Chapter 3 is 99.17% with 460 ranked features. Table 

7.18 shows the average accuracy with the number of features obtained from 

several feature selection methods for the lymphoma data set. The rMI-SVM 
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algorithm can achieve the same average accuracy with the baseline by using 

only 22 features. With the same number of features, the regression method 

achieved the average accuracy of 55%. There were several studies on the same 

data set using different features selection method. Howard Hua Yang and John 

Moody (1999)  proposed a feature selection using the joint mutual information 

(JMI). JMI achieved the highest average accuracy of 91% using 55 features.  

 

Furthermore, Zexuan Zhu, Yew-Soon Ong and Manoranjan Dash 

(2007)  proposed a Markov blanket-embedded genetic algorithm (MBEGA) 

for feature selection. MBEGA achieved the highest average accuracy of 97.68% 

using 34 features. Joint mutual information maximisation (JMIM) was 

proposed by Mohamed Bennasar, Yulia Hicks and Rossitza Setchi (2015). 

JMIM achieved the highest average accuracy of 91% using 59 features. In the 

same year, Devi A.V.C, Devaraj D, and Venkatesulu M proposed a feature 

selection using support vector machine and mutual information (SVM-MI).  

SVM-MI selected four features and achieved the average accuracy of 48.33%. 

Among the feature selection methods that were discussed, the rMI-SVM 

algorithm is able to achieve the average accuracy which is similar with the 

baseline by using only 22 features.   
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Table 7.18: Average accuracy with the number of features obtained from 

several feature selection methods for lymphoma data set 

   No. of features  Average accuracy 

Optimal baseline 460   99.17% 

rMI-SVM  22   99.17% 

Regression  22   55% 

JMI   55   91% 

MBEGA  34   97.68% 

JMIM   59   91% 

SVM-MI  4   48.33% 

 

The lung cancer data set contains 1626 variables with 181 samples, of 

which 31 of the samples belong to malignant pleural mesothelioma (MPM), 

and 150 samples belong to adenocarcinoma (AD). The optimal baseline from 

the proposed algorithm in Chapter 3 is 70% with 51 ranked features. Table 

7.19 shows the average accuracy with the number of features obtained from 

several feature selection methods for lung cancer data set. The rMI-SVM 

algorithm can achieve the 77.5% average accuracy by using only five features. 

With the same number of features, the regression method achieved the average 

accuracy of 67.5%. The rMI-SVM algorithm can achieve the highest average 

accuracy by using only five features.   

 

Table 7.19: Average accuracy with the number of features obtained from 

several feature selection methods for lung cancer data set 

   No. of features  Average accuracy 

Optimal baseline 51   70% 

rMI-SVM  5   77.5% 

Regression  5   67.5% 
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The handwriting data set contains 649 variables with 2000 samples. 

This data set consists of the number of handwritten features from zero to nine, 

and there were ten classes in this data set. The optimal baseline from the 

proposed algorithm in Chapter 3 is 98.3% with 434 ranked features. Table 

7.20 shows the average accuracy with the number of features obtained from 

several feature selection methods for handwriting data set. The rMI-SVM 

algorithm is able to achieve the highest average accuracy of 98.8% by using 

only 50 features. With the same number of features, the regression method 

achieved the average accuracy of 96.5%.  Several studies were conducted on 

the same data set using different features selection method. Additionally, 

Howard Hua Yang and John Moody (1999) proposed a feature selection 

method using the joint mutual information (JMI). JMI achieved the highest 

average accuracy of 97% by using 33 features. A joint mutual information 

maximisation (JMIM) was proposed by Mohamed Bennasar, Yulia Hicks and 

Rossitza Setchi  (2015). JMIM achieved the highest average accuracy of  97.5%  

by using 39 features.  

 

Among the feature selection methods that were discussed, the rMI-

SVM algorithm was able to achieve the highest average accuracy using only 

50 features. Although JMI produced the average accuracy of 97%  by using 

only 33 features while using the same number of features, rMI-SVM algorithm 

was able to achieve the average accuracy of 97.97%. JMIM achieved the 

average accuracy of 97.5% by using only 39 features while using the same 

number of features; whereas the rMI-SVM algorithm can achieve the average 

accuracy of 98.3%.   
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Table 7.20: Average accuracy with the number of features obtained from 

several feature selection methods for handwriting data set 

   No. of features  Average accuracy 

Optimal baseline 434   98.3% 

rMI-SVM  50   98.8% 

Regression  50   96.5% 

JMI   33   97% 

JMIM   39   97.5% 

 

A total of ten data sets had been tested on the performance of the 

prediction model using the proposed method, rMI-SVM algorithm. Among the 

ten data sets, there were six binary classification data set and four multiclass 

classification data set. The rMI-SVM algorithm had shown an excellent 

performance using the features selected compared to using all features or 

using the same number of features in the regression method and mRMR 

method. Besides that, the performance of the ten data sets were also compared 

with other feature selection methods such as JMI, MBEGA, JMIM, SVM-MI, 

MRI, DCFS. The features selected using mutual information were able to 

retain the maximum information in the predictive model. The sensitivity of the 

classifier using the selected features test used the ROC curve, and all the ten 

data sets gave a high recall value. At the same time, the classifier using the 

selected features also provide high value in the area under the curve. Overall, 

the rMI-SVM algorithm is able to choose a compact subset of features that 

yields better performance in the predictive model. 
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7.5 Biological Meaning of the Selected Features 

 

 The proposed algorithm rMI-SVM is able to select the most 

informative and less redundant features that maximise the performance of the 

predictive model by ensuring that the next candidate feature chosen will 

provide new information to the predictive model. Therefore, it is necessary to 

do further biological analysis on the selected features to the relevant diseases. 

In this sub-chapter, the features chosen by the proposed algorithm on colon 

cancer data will further investigate on its biological meaning. There are seven 

features selected by the proposed algorithm, and the biological description of 

each feature was shown in Table 7.21. 

 

Table 7.21: Features selected by rMI-SVM for colon cancer data set 

No. Description 

1 Human 20-kDa myosin light chain mRNA 

2 Homo sapiens cysteine-rich protein gene 

3 Homo sapiens desmin gene 

4 Thioredoxin (Human) 

5 Homo sapiens mRNA for GCAP-II/uroguanylin precursor 

6 Alpha Enolase (Human)   

7 Major Histocompatibility Complex Enhancer-Binding Protein MAD3 

 

 The first feature selected by the proposed algorithm for the colon data 

set is the most informative because this feature has the highest mutual 

information score. Human 20-kDa myosin light chain mRNA has been related 

to colon cancer in several studies (Hadas et al., 1986; Kumar et al., 1989). The 
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second selected feature is homo sapiens cysteine-rich protein gene, and it is a 

peptide that exists in the colon (O’Dell, 1992). The next feature is the homo 

sapiens desmin gene. It was shown in immunohistochemical studies that as the 

tumour cell increases, the desmin was also present (Hinton and Halliday, 

1984). Thioredoxin presents a high level in the cancer cells (Kontou et al., 

2004). Experimental studies have shown that thioredoxin contributes to the 

growth and transformation in the cancer cells. Therefore, by reducing the 

thioredoxin level, it can regulate the growth of cancer cells (Gallegos et al., 

1997).  

 

Homo sapiens mRNA for GCAP-II/uroguanylin precursor activates the 

guanylate cyclase receptor of the colon cells (Hess et al., 1995). Northern 

hybridisation showed that the expression of homo sapiens mRNA for GCAP-

II/uroguanylin precursor is the highest in the colon (Mägert et al., 1998). It is 

also shown that this expression plays a vital role in mediated functions in the 

colon (Hill et al., 1995). The alpha-enolase shows high activities in colon 

cancer compared to the normal cell (Durany et al., 1997). Major 

Histocompatibility Complex Enhancer-Binding Protein MAD3 is an antigen-

presenting immune cell. A study has shown that it enhances the addition of 

tumour necrosis factor (Rahat et al., 2001). The seven selected features by 

rMI-SVM in colon cancer are biologically relevant to colon cancer.  
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7.6  New Findings 

 

Some new findings were developed through the study of the proposed 

methods, using mutual information. The new benchmark of the average 

accuracy is determined by plotting the graph of average accuracy versus the 

cumulative ranked features. From the proposed algorithm in Chapter 3, the 

features were ranked according to their relevancy measured by the mutual 

information score. The higher the score indicates the more information content 

of the feature in respect to the label class. Therefore, the cumulative ranked 

features give extra information on two critical information: (1) a new 

benchmark on the average accuracy of the data set, (2) the number of features 

required to achieve this new benchmark. The benchmark of the data set 

provides  essential measurement of how good is the classification model and 

serves as the baseline before feature selection. Researchers can then compare 

the classification result using various feature selection method with this new 

benchmark. At the same time, the number of features required to achieve this 

new benchmark also play an essential role. A classification model that uses 

more than this number of features to obtain this new benchmark will not be 

considered as an efficient model.  

 

In past research, the researcher always uses the full features to achieve 

the benchmark of the average accuracy of the predictive model. However, 

when all the features are included, the irrelevance and noise are also added to 

the predictive model. Besides this, there is no guideline on how many features 

are needed in a classification model or guideline on the number of features 
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that can be selected. The past researches always show a range of several 

features versus the average accuracy and leave a problem on how many 

features should be taken to build a predictive model. 

 

From the second proposed algorithm discussed in Chapter 4, the fast 

dimension reduction algorithm - rMI-SVM algorithm allows the selection of a 

compact of features that are needed to produce the same or better performance 

compared to the new benchmark in a few iterations. The rMI-SVM algorithm 

can reduce more than 70% of the data in the first step that will make the 

feature selection process complete in a few step. The rMI-SVM algorithm is 

different from the iteration algorithm, such as the wrapper method. The 

wrapper method searches all the features in each iteration to select the next 

feature. In contrast, the rMI-SVM algorithm only selects the remaining 

features from the previous step after filtering out the redundant features and 

noise. By using the rMI-SVM algorithm, the algorithm will filter out those 

features not giving new information and select only those features that will 

provide some improvement to the average accuracy of the predictive model.  

 

The selected features using the rMI-SVM algorithm will not face many 

problems on overfitting, as the next chosen new candidate feature will provide 

further information to the predictive model and increase the performance of 

the predictive model, which means that a strictly growing curve for the 

average accuracy of the predictive model versus the number of features. 

Therefore, when plotting the average accuracy of the predictive model and 
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cross-validation versus the number of features, there was no such point where 

the average accuracy of cross-validation is increasing while the average 

accuracy of the predictive model starts to decrease, the point that overfitting 

occurs.  

 

7.7  Contribution of Feature Selection in Malaysia’s Medical Research 

 

In clinical data, the feature selection was one of the ways to identify 

the biomarker. Biomarkers are great significance for the research and 

development of life science, as well as medical diagnosis, clinical treatment 

and new drug development. It helps researchers to be more effective in 

diagnosis or treatment, especially in the prevention and control of complex 

and chronic diseases such as cancer, cardiovascular disease, diabetes, etc. 

However, biomarker needs to go through the clinical test or validation test in 

the lab after the theoretical analysis. Therefore, a smaller number of features 

will be preferable as running a clinical test for one feature may need plenty of 

time. They do not have time to run the clinical examination for full features 

and the combination of features or trial and error. Clinical validity must be 

established before a biomarker is used in the clinic. The proposed algorithm in 

Chapter 3 helps the researchers to get a better baseline using the ranked 

features by mutual information score. This new proposed baseline can give a 

rough idea on how best will the classification be, as the performance of the 

predictive model depends on the information contained in the data set. 
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The rMI-SVM algorithm can reduce the high dimensionality of the 

data set and obtain a compact subset of features that yield a better performance 

or lower the classification rate. In most of the proposed feature selection 

method, the first selected feature can achieve accuracy up to 70% on average. 

Still, in the clinical test for a biomarker, it is safer to have a combination of a 

group of features (typically 2-5 proteins), instead of depending on only one 

protein. For example, a new combination of four proteins (APOE, ITIH3, 

APOA1 and APOL1) form an accurate biomarker diagnosis of pancreatic 

cancer as early diagnosis and early treatment may improve prognosis and 

increase the survival chance.  

 

In Malaysia, most of the cancer diagnosis was detected at a late stage. 

Therefore, there was an urgent need in Malaysia on developing the new 

biomarker for cancer diagnosis and other medical diagnoses such as stroke, 

hypertension, kidney disease, etc. In the latest 2019 Budget of Malaysia, the 

government will continue programmes such as free mammograms to detect 

breast cancer, HPV vaccinations, and pap smear tests at government hospitals 

and clinics. The plans, with an allocation of RM20 million, is expected to 

benefit as many as 70,000 women. Malaysia’s badminton player Dato Lee 

Chong Wei was detected early for nasal cancer in July 2018. After two 

month’s treatment in Taiwan, now Dato Lee Chong Wei has recovered.  

Evidently, this shows that early detection of cancer can increase the chance of 

survival.  
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Most of the past researchers did not study in depth about the minimum 

number of features needed in the predictive model, as most of the time the 

proposed method only shows the accuracy of the predictive model for a range 

of k. Strictly speaking, the past researcher did not explain how to choose the 

minimum number of k. The selection of k was based on the researchers, and 

usually, the range of k was from 1 up to 50 features. The proposed algorithm 

in Chapter 3 is able to solve this problem by getting the number of features to 

obtain the optimal baseline. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

201 
 

CHAPTER 8 

 

CONCLUSION 

 

8.1  Summary 

 

The mutual information has been used in this study. There are 

advantages in using mutual information in feature selection, as mutual 

information can evaluate both linear and nonlinear dependencies among the 

features. Besides this, the mutual information score can be easily calculated 

regardless of the linearity of the features and even the data have some missing 

values. Besides this, no normal assumption was applied here, unlike some 

statistical method such as t-test or ANOVA, where the data set must fulfil the 

normal assumption. The proposed algorithm in Chapter 3 gives an optimal 

baseline by using the ranked cumulative features with mutual information 

score. The features were ranked according to the mutual information, and the 

higher the mutual information score, the more information are contained in 

that feature. The result shows that the optimal baseline is better than the 

current benchmark that involved all the features because when all the features 

are included, the irrelevant, redundant features and noise will also be included 

as well. At the same time, the number of features to achieve this optimal 

baseline can be obtained. The number of features will serve as a guideline on 

how many features are needed in a predictive model.  
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Secondly, the rMI-SVM algorithm reduces the high dimensional data 

and is able to select a compact subset of features. The rMI-SVM algorithm 

filters out the redundant features and noise according to the newly added 

information in the predictive model. When a new candidate feature is added to 

the predictive model, the feature will then be selected if this feature provides 

additional information to the predictive model. Therefore, a strictly increasing 

performance graph will be obtained with minimal features. The predictive 

model will face less overfitting as the next added candidate feature must 

provide some information to the predictive model. The mutual information can 

help in feature selection to retain the maximum information in the predictive 

model. In the rMI-SVM algorithm, the redundancy of the features will be 

minimised, and at the same time, the dynamic change of the already selected 

features with the newly added candidate feature to the label class will be 

considered. 

 

The Z-score measured the robustness of the proposed rMI-SVM 

algorithm and indicated that the features selected by the rMI-SVM algorithm 

were not chosen by chance. Later, the sensitivity test of the predictive model 

has been measured using the ROC curve and the area under curve was used to 

measure the effectiveness of the built model. The performance of the 

predictive model using the same number of selected features has also been 

compared with other feature selection method such as the regression method, 

mRMR method, JMI, JMIM, DCSF, MRI etc.  

 



 

203 
 

The biological meaning of the features selected in the colon data set 

has been studied and confirmed that the chosen features are related to colon 

cancer. These selected features can further help in finding the potential 

features for biomarkers (Miyazaki et al., 2016). Biomarkers are important in 

medical diagnosis, clinical treatment and new drug development. With the 

help of the biomarker, cancer diseases and other medical diseases can easily 

be detected and help in clinical treatment to treat the patient more effectively, 

improve the healing effects, survival rate and reduce the chance of recurrence. 

It is a big step forward in the medical field. In this way, people can be 

healthier, the country will be more prosperous, and the world will become 

better.  

 

8.2  Limitation 

 

In this study, when comes to a tie condition, where the mutual 

information score is similar, then the selected features will be based on the 

indexed order, and the feature with the lowest index will then be chosen. 

Similarly, when the additional improvement on the average accuracy was the 

same for two features, then the feature with higher mutual information score 

will then be selected. The sample size of the microarray data was always small, 

and due to this issue, not much information can be obtained from the small 

sample data set. Boost strapping method failed to help to increase the amount 

of information contained in a small sample data set as the information only 

comes from the original raw data. Besides this, the imbalanced class of the 

data set was not considered in this study. Therefore, for a multiclass data set 
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with small sample size, the predictive model might bebias to the particular 

label class. 

 

8.3  Future Study 

 

Further study on the relationship between the selected features can be 

further investigated by building a network model using mutual information. 

Furthermore, ordering of the features has always been an issue in feature 

selection. Therefore, further study on how to select the feature when the 

features selection comes to a tie condition is very important as the contribution 

of these features in respect to the label class might differ. Also, to increase the 

sample size of the data set and to increase the amount of information 

contained in the data set, merging the two data set will be the next challenging 

task. Therefore, this is an important issue and there is an urgent need in feature 

selection with small sample size. Other than that, the current algorithm can be 

improved by searching more relevant feature by combining with other 

selection methods. Last but not least, the imbalanced class issue also plays a 

vital role in feature selection to avoid the bias of the predictive model to a 

particular class. 
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