

EVALUATE THE PERFORMANCE OF UNIVERSITY TIMETABLING

PROBLEM WITH VARIOUS ARTIFICIAL INTELLIGENCE TECHNIQUES

By

Charmaine Hooi Wai Yee

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

ii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my supervisor, Ts. Dr. Ku Chin Soon,

for giving me the incredible opportunity to work on this timetable scheduling project.

Truly thankful for your guidance and support throughout this journey.

Lastly, I extend my deepest appreciation to my friends, parents and family. Your love,

support, and constant encouragement have been the foundation of my strength

throughout this entire course.

iii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

COPYRIGHT STATEMENT

© 2025 Charmaine Hooi Wai Yee. All rights reserved.

This Final Year Project proposal is submitted in partial fulfillment of the

requirements for the degree of Bachelor of Computer Science (Honours) at

Universiti Tunku Abdul Rahman (UTAR). This Final Year Project proposal

represents the work of the author, except where due acknowledgment has

been made in the text. No part of this Final Year Project proposal may be

reproduced, stored, or transmitted in any form or by any means, whether

electronic, mechanical, photocopying, recording, or otherwise, without the

prior written permission of the author or UTAR, in accordance with UTAR's

Intellectual Property Policy.

Example

iv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

University timetabling is a complex and critical task in higher education institutions as

it involves the assignment of courses, lecturers, and students to available timeslots and

venues while satisfying various constraints. The project focuses on developing an

automated university course timetable scheduling tool using Genetic Algorithm (GA).

University course timetable scheduling (UCTTP) is a well-known optimization

problem due to its NP-hard nature and the complexity of the problem increases

exponentially with eh addition of constraints. Over time, numerous algorithms such as

Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing

(SA), and other approaches have been introduced to address the challenges of

optimizing class schedules. While each university or institution have its own unique

constraints, this project aims to improve existing timetabling systems by introducing a

new constraint, the ‘Proximity and Travel Minimization Constraint’ which optimizes

class schedules to minimize travel distances between venues scheduled in adjacent time

slots. By implementing this new constraint, the project addresses the gap in traditional

timetabling methods, which often overlook the impact of travel distances on the

efficiency and experience of both lecturers and students. Hence, through the application

of GA, this project aims to develop an efficient university class timetabling tool that

integrates the newly introduced constraint.

Area of Study (Maximum 2): Genetic Algorithm, Scheduling Algorithm

Keywords (Maximum 5): Genetic Algorithm, Optimization Problem, Artificial

Intelligence Techniques, Timetabling Applications, Mobile Application

v
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE i

ACKNOWLEDGEMENTS ii

COPYRIGHT STATEMENT iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES vii

LIST OF TABLES viii

LIST OF SYMBOLS ix

LIST OF ABBREVIATIONS x

CHAPTER 1 INTRODUCTION 1

1.1 Project Background 1

1.2 Problem Statement 2

1.3 Project Motivation 3

1.4 Project Scope 3

1.5 Project Objectives

1.6 Impact, Significance and Contribution

1.7 Report Organization

4

5

6

vi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW 7

2.1 Overview of Past Research

2.1.1 Types of AI Methods Used

2.1.2 Parameters Used in University Course Timetabling

2.1.3 Types of Hard Constraints and Soft Constraints

2.1.4 Types of Evaluation Metric Used to Measure

Performance

7

7

17

17

21

2.2 Existing University Course Timetable Scheduling Systems

2.2.1: TimetableGeneratorApp by Huzaifa and Abdullah

Saleem (GitHub) [40]

2.2.2: timetable-generator by Olayiwola Odunsi, Richman

Clifford Jr and Bilal Rasool (GitHub) [41]

2.2.3: UniTime by UniTime.org [42]

2.2.4 Comparison of Similar Existing Timetable Scheduling

Systems

2.2.5 Literature Review Findings

2.2.6 Chapter Summary

21

21

28

30

35

36

38

CHAPTER 3 PROPOSED METHOD/APPROACH 39

3.1 Project Development 39

3.1.1 Project Gantt Chart 40

3.2 Data Collection for Timetabling Tool 41

3.3 Verification Plan 48

vii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 3.3.1 Test Plan for Hard Constraints

 3.3.2 Test Plan for Soft Constraints

 3.3.3 Test Plan for Travel Distance Constraints

 3.3.4 Test Plan for Timetable Schedule Generation

48

50

51

51

3.4 Main System Functionalities of Timetable Scheduling System

 3.4.1 Steps and Actions Performed by Users in the

Timetable System

 3.4.2 Constraints Used in the University Course Timetabling

System

 3.4.2.1 Hard Constraints

 3.4.2.2 Soft Constraints

 3.4.3 Design of Proposed Genetic Algorithm for the

University Course Timetabling System

 3.4.3.1 Initialization

 3.4.3.2 Fitness Evaluation

 3.4.3.3 Selection

 3.4.3.4 Crossover

 3.4.3.5 Mutation

53

53

55

55

57

58

61

64

65

66

67

CHAPTER 4 SYSTEM DESIGN 68

4.1 System Architecture Design 68

4.2 Data Storage Design 69

4.3 Graphical User Interface Design 74

viii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 SYSTEM IMPLEMENTATION 88

5.1 Hardware Setup 88

5.2 Software Setup 89

5.3 Setting and Configuration 90

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 108

6.1 System Testing and Performance Metrics 108

6.1.1 System Testing Setup 108

6.1.2 System Testing Process 111

6.2 System Testing for Hard Constraints Defined 111

6.2.1 Lecturers can only teach one class at the

same time

111

6.2.2 Two courses cannot be scheduled in the

same venue at the same time

113

6.2.3 A student can only attend one class at the

same time

114

6.2.4 The number of students cannot exceed the

seating capacity of the assigned venue

115

6.2.5 Courses that require specific room types

should be scheduled in appropriate

facilities

116

6.2.6 Venues cannot be assigned to the same

timeslot more than once

118

6.2.7 Total maximum hours for classes per day

is 8 hours

119

6.2.8 A student cannot be assigned to two

different venues in the same timeslot

120

6.2.9 The travel distance between two venues of

consecutive classes should not be more

than 500 meters

122

6.3 System Testing for Soft Constraints Defined 123

6.3.1 Gaps between classes should be Gaps between

classes should be minimized, such as long breaks between

123

ix
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

consecutive classes minimized, such as long breaks

between consecutive classes

6.3.2 No classes should be scheduled during lunch break

(12 p.m. – 2 p.m.)

125

6.3.3 There should be no classes scheduled before 8 a.m.

and after 8.30 p.m.

126

6.3.4 The maximum hours for consecutive classes should

be 4 hours

128

6.4 Project Challenges 129

6.5 Objectives Evaluation 130

CHAPTER 7 CONCLUSION 131

7.1 System Limitations 131

7.2 Future Improvement 131

7.3 Concluding Remarks 132

REFERENCES A-1

APPENDIX

A.1 Poster A-9

x
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1.1 Process Flow of Genetic Algorithm 8

Figure 2.1.1.2

Figure 2.1.1.3

Figure 2.1.1.4

Chromosome Structure

Process Flow of Particle Swarm Optimization

Process Flow of Simulated Annealing

9

12

14

Figure 2.2.1.1 Main Page of TimetableGeneratorApp 23

Figure 2.2.1.2 Add Course Page of TimetableGeneratorApp (Desktop) 24

Figure 2.2.1.3 Add Professor Page of TimetableGeneratorApp

(Desktop)

24

Figure 2.2.1.4 Professor Details Table of TimetableGeneratorApp

(Desktop)

24

Figure 2.2.1.5 Delete Professor Confirmation Page of

TimetableGeneratorApp (Desktop)

25

Figure 2.2.1.6 Add Classroom Page of TimetableGeneratorApp

(Desktop)

25

Figure 2.2.1.7 Add Classroom Details Page of

TimetableGeneratorApp (Desktop)

25

Figure 2.2.1.8 Update Page of TimetableGeneratorApp (Desktop) 26

Figure 2.2.1.9 Class Table Page of TimetableGeneratorApp (Desktop) 26

Figure 2.2.1.10 Generated Timetable of TimetableGeneratorApp

(Desktop

27

Figure 2.2.1.11 Mobile Layout of TimetableGeneratorApp 27

Figure 2.2.2.1 Main Page (Dashboard) of timetable-generator 29

Figure 2.2.2.2 Rooms Page of timetable-generator 29

xi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.2.3 Courses Page of timetable-generator 30

Figure 2.2.2.4 Save as PDF and Print Page of timetable-generator 30

Figure 2.2.3.1 Data Entry for Adding Course 32

Figure 2.2.3.2 User Interface for Classes 33

Figure 2.2.3.3 User Interface for Scheduling Subpart Detail 33

Figure 2.2.3.4 Preferences 34

Figure 2.2.3.5 Generated Timetable 34

Figure 2.2.3.6 PDF Export 35

Figure 3.1.1.1 Timeline for Proposal Writing Phase of the Project 40

Figure 3.1.1.2 Timeline for FYP1 41

Figure 3.1.1.3 Timeline for FYP2 41

Figure 3.2.1 Timetable of Students in Computer Science Programme

(Year 1 Sem 1)

42

Figure 3.2.2 Timetable of Students in Communication &

Networking Programme (Year 2 Sem 1)

43

Figure 3.2.3 Timetable of Students in Information Systems

Engineering Programme (Year 3 Sem 1)

44

Figure 3.2.4 Mock Data of Student Entity 45

Figure 3.2.5 Mock Data of Lecturer Entity 46

Figure 3.2.6 Mock Data of Course Entity 47

Figure 3.2.7 Mock Data of Venue Entity 47

Figure 3.4.1.1 System Functionalities for the University Course

Timetabling System

53

Figure 3.4.1.2 Process of University Course Timetabling System

Creating a Timetable

54

xii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.4.2.1.1 Collection of Coordinates via Google Maps 55

Figure 3.4.2.1.2 Harvensine Formula 56

Figure 3.4.3.1 Flow of Proposed Genetic Algorithm for University

Course Timetabling System

59

Figure 3.4.3.4.1 Two-Point Crossover Model 66

Figure 3.4.3.5.1 Example of Swap Mutation 67

Figure 4.1.1 Architecture Design of the System 68

Figure 4.2.1 Database Structure Design of the Timetabling Tool 69

Figure 4.3.1 Start Screen of the Standalone Web Interface 74

Figure 4.3.2 Home Screen 75

Figure 4.3.3 Create New Timetable Screen 76

Figure 4.3.4 Import Data Imports 76

Figure 4.3.5 Hard and Soft Constraints Selection 77

Figure 4.3.6 Timetable Generated in Table 77

Figure 4.3.7 Timetable Generated Timeslots 78

Figure 4.3.8 Edit Timetable Selection 79

Figure 4.3.9 Edit Timetable Display Screen 79

Figure 4.3.10 Edit Timetable Add Session 80

Figure 4.3.11 Edit Timetable Delete Session 80

Figure 4.3.12 Edit Timetable Selection 81

Figure 4.3.13 Delete Timetable Screen 82

Figure 4.3.14 View Archived Timetables 82

Figure 4.3.15 View Archived Sessions of Selected Timetables 83

Figure 4.3.16 Clear Archived Timetables 83

xiii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.17 Manage Lecturers 84

Figure 4.3.18 Manage Venues 85

Figure 4.3.19 Manage Groups 85

Figure 4.3.20 GA Analytics 86

Figure 5.3.1 Visual Studio Code Installation 90

Figure 5.3.2 Visual Studio Code Default Home Screen 90

Figure 5.3.3 Python 3.13.3 Installation 91

Figure 5.3.4 Visual Studio Code Python Extension Installation 91

Figure 5.3.5 Visual Studio Code Runner Extension Installation 92

Figure 5.3.6 Visual Studio Code Runner Extension Configuration 92

Figure 5.3.7 Visual Studio Code Runner Extension Setup 93

Figure 5.3.8 Python Path Configuration in Environment Variables 93

Figure 5.3.9 Python New Path Configuration in Environment

Variables

94

Figure 5.3.10 Flask API in Visual Studio Code Installation 95

Figure 5.3.11 Flask API in Visual Studio Code Installation Success 96

Figure 5.3.12 Flask API in Visual Studio Code Testing 96

Figure 5.3.13 MySQL Installation 97

Figure 5.3.14 MySQL Setup 1 98

Figure 5.3.15 MySQL Setup 2 98

Figure 5.3.16 MySQL Setup 3 99

Figure 5.3.17 MySQL Setup 4 99

Figure 5.3.18 MySQL Setup 5 100

Figure 5.3.19 MySQL Setup 6 100

xiv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.20 MySQL Setup 7 101

Figure 5.3.21 MySQL Setup 8 101

Figure 5.3.22 MySQL Setup 9 102

Figure 5.3.23 MySQL Setup 10 102

Figure 5.3.24 MySQL Setup 11 103

Figure 5.3.25 MySQL Configuration Completed 103

Figure 5.3.26 Visual Studio Code SQLTools Extension Installation 104

Figure 5.3.27 Visual Studio Code SQLTools MySQL/MariaDB/TiDB

Extension Installation

104

Figure 5.3.28 Visual Studio Code SQLTools Settings for MySQL 105

Figure 5.3.29 Visual Studio Code SQLTools Configuration 105

Figure 5.3.30 Visual Studio Code SQLTools Connection Completed 106

Figure 5.3.31 Visual Studio Code MySQL Successful Connection 106

Figure 5.3.32 Visual Studio Code MySQL Connector/Python

Installation

107

Figure 5.3.33

Visual Studio Code MySQL Connectore/Python

Successful Connection

107

Figure 6.1.1.1 Test Plan Data for Student Groups 108

Figure 6.1.1.2 Test Plan Data for Lecturers 109

Figure 6.1.1.3 Test Plan Data for Courses 110

Figure 6.1.1.3 Test Plan Data for Courses 110

Figure 6.1.2.1 Hard and Soft Constraint Selection 111

Figure 6.2.1.1

Proof of ‘Lecturers can only teach one class at the same

time’

112

xv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.2.1

Proof of ‘Two courses cannot be scheduled in the same

venue at the same time’

113

Figure 6.2.3.1

Proof of ‘A student can only attend one class at the

same time’

114

Figure 6.2.4.1

Proof of ‘The number of students cannot exceed the

seating capacity of the assigned venue’

116

Figure 6.2.5.1

Proof of ‘Courses that require specific room types

should be scheduled in appropriate facilities’

117

Figure 6.2.6.1

Proof of ‘Venues cannot be assigned to the same

timeslot more than once’

118

Figure 6.2.7.1

Proof of ‘Total maximum hours for classes per day is 8

hours’

120

Figure 6.2.8.1

Proof of ‘Venues cannot be assigned to the same

timeslot more than once’

121

Figure 6.2.9.1

Proof of ‘The travel distance between two venues of

consecutive classes should not be more than 500

meters’

123

Figure 6.3.1.1

Proof of ‘Gaps between classes should be minimized,

such as long breaks between consecutive classes’

124

Figure 6.3.2.1

Proof of ‘No classes should be scheduled during lunch

break (12 p.m. – 2 p.m.)’

126

Figure 6.3.3.1

Proof of ‘There should be no classes scheduled before

8 a.m. and after 8.30 p.m.’

127

xvi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.3.4.1

Proof of ‘The maximum hours for consecutive classes

should be 4 hours’

128

xvii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 2.1.1.1 Comparison of Genetic Algorithm, Particle Swarm

Optimization and Simulated Annealing

15

Table 2.1.3.1 Hard Constraints Mentioned in Past Research Papers 18

Table 2.1.3.2 Soft Constraints Mentioned in Past Research Papers 20

Table 2.2.4.1 Table of Comparison for The Systems 35

Table 3.3.1.1 Hard Constraints Test Plan 48

Table 3.3.2.1 Soft Constraints Test Plan 50

Table 3.3.3.1 Travel Distance Constraint Test Plan 51

Table 3.3.4.1 Timetable Schedule Generation Test Plan 52

Table 3.4.2.1.1 Hard Constraints Used 57

Table 3.4.2.2.1 Soft Constraints Used 57

Table 3.4.3.1.1 Example of Event Representation in a Timetable 62

Table 3.4.3.1.2 Example of Chromosome Length 63

Table 3.4.3.1.3 Example of Chromosome Structure 64

Table 3.4.3.3.1 Example of Chromosome with their Fitness Values 65

Table 3.4.3.4.1 Example of Two Parent Chromosomes 66

Table 3.4.3.4.2 Example of Two Children Chromosomes (After

Crossover)

67

Table 4.2.1 Data Structure of Student Group Entity 70

Table 4.2.2 Data Structure of Lecturer Entity 71

Table 4.2.3 Data Structure of Course Entity 71

Table 4.2.4 Data Structure of Venue Entity 72

xviii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 4.2.5 Data Structure of Timetable Entity 72

Table 4.2.6 Data Structure of Student_Course Entity (Join) 73

Table 4.2.7 Data Structure of Lecturer_Course Entity (Join) 73

Table 4.2.8 Data Structure of Timeslot Entity 73

Table 4.2.9 Data Structure of Session Entity 74

Table 5.1.1 Specifications of laptop 88

Table 5.2.1 Software Used 89

Table 6.2.1.1 Test Case of ‘Lecturers can only teach one class at the

same time’

112

Table 6.2.2.1 Test Case of ‘Two courses cannot be scheduled in the

same venue at the same time’

113

Table 6.2.3.1 Test Case of ‘A student can only attend one class at the

same time’

114

Table 6.2.4.1 Test Case of ‘The number of students cannot exceed

the seating capacity of the assigned venue’

115

Table 6.2.5.1 Test Case of ‘Courses that require specific room types

should be scheduled in appropriate facilities’

116

Table 6.2.6.1 Test Case of ‘Venues cannot be assigned to the same

timeslot more than once’

118

Table 6.2.7.1 Test Case of ‘Total maximum hours for classes per day

is 8 hours’

119

Table 6.2.8.1 Test Case of ‘A student cannot be assigned to two

different venues in the same timeslot’

120

Table 6.2.9.1 Test Case of ‘The travel distance between two venues

of consecutive classes should not be more than 500

meters’

122

xix
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 6.3.1.1 Test Case of ‘Gaps between classes should be

minimized, such as long breaks between consecutive

classes’

124

Table 6.3.2.1 Test Case of ‘No classes should be scheduled during

lunch break (12 p.m. – 2 p.m.)’

125

Table 6.3.3.1 Test Case of ‘There should be no classes scheduled

before 8 a.m. and after 8.30 p.m.’

127

Table 6.3.4.1 Test Case of ‘The maximum hours for consecutive

classes should be 4 hours’

128

xx
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

UCTTP University Course Timetabling Problem

NP Non-Polynomial

GA Genetic Algorithm

PSO Particle Swarm Optimization

SA Simulated Annealing

CHAPTER 1

1
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

Introduction

In this chapter, we provide the motivation and background of our research, our

research contributions, and the outline of the project.

1.1 Project Background

Creating a good timetable that satisfies both lecturers and students is a

challenging task in higher education institutions. In universities, this complex process

involves assigning a set of courses, lecturers, and students to available timeslots and

classrooms with no conflicts while satisfying a range of constraints, both hard and soft

[1]. Traditionally, a timetable is either scheduled manually or handled using basic

software tools, which can be time-consuming, error-prone, and suboptimal. Thus,

university course timetable tools are developed and utilized to solve this problem

optimally while saving a significant amount of time [1], [2].

In the field of scheduling and optimization, university course timetable

scheduling is a classic problem identified as an Non-Polynomial (NP-hard)

optimization problem [3]. The optimization of hard problems falls under a category

where solutions cannot be achieved using exact methods within polynomial time.

Hence, resource assignment or allocation is classified as an NP-hard problem as it is an

issue that is dependent on the resources of an organization to generate the optimal

outcome and there are no one exact method to solve it [4].

By introducing optimization techniques, optimal solutions whether minimum

optimal or maximum optimal can be achieved. The optimization techniques can be

divided into heuristic and meta-heuristic methods, both of which are artificial

intelligence techniques to obtain the best results. However, evolutionary algorithms like

Genetic Algorithm (GA), Fuzzy logic (FL), Swarm Intelligence (SI) such as Particle

Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Artificial neural

network (ANN) are primarily used for optimization problems [4]. In the case of

university timetable scheduling, Genetic Algorithm (GA), a Population-Based Meta-

Heuristic method, is the more common AI method applied to this problem [2].

CHAPTER 1

2
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

As educational environments become more complex and diverse, the

requirement for more sophisticated and dynamic systems that will meet the modern

scheduling requirements is increasing. Genetic Algorithms’ (GA) ability of searching

through a massive search space to get near-optimal solutions have emerged it as a

powerful method for tackling the university course timetabling problem. This project

builds upon this foundation with the addition of a new constraint which resolves one

particular problem in scheduling courses at a university.

1.2 Problem Statement

This project aims to implement a new constraint, the ‘Proximity and Travel

Minimization Constraint’, which explores the optimization of class schedules to

minimize travel distances between two different venues scheduled with adjacent

timeslots. This constraint integrates the principles of accessibility and optimization,

addressing a critical gap in traditional timetabling methods as it highlights key issues

that affects a student's or lecturer’s experience, the travel distance between classes and

the time taken to travel in between those classes. Therefore, by introducing a ‘Proximity

and Travel Minimization Constraint’, university course timetabling tools will be

enhanced to create more efficient timetables.

One problem of current university timetabling tools is the lack of features to

generate timetables based on travel distance between venues for both lecturers and

students. Traditional timetabling methods often overlook the proximity of classrooms

and the travel distances between them. While other constraints should be prioritized

and satisfied, this problem is challenging because it often leads to schedules that

requires excessive movement across the university campus within short timeframes,

especially when classes are scheduled back-to-back in distant locations. Due to this,

lecturers and students may experience tardiness, increase physical strain, and reduced

academic efficiency. However, this issue is particularly problematic in large campuses

where the distance between buildings can be larger. By implementing a ‘Proximity and

Travel Minimization Constraint’ into the scheduling process, consecutive classes can

be scheduled in nearby locations while classes that require significant movement across

the campus can be allocated in non-consecutive timeslots.

CHAPTER 1

3
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.3 Project Motivation

In order to improve the quality and usability of university course timetabling

tools, this project introduces a new constraint: Proximity and Travel Minimization

Constraint. The constraint aims to minimize traveling distances between classrooms for

both students and lecturers when they have consecutive classes.

The motivation behind this constraint is to:

• Increase the accessibility of transitions between classes, particularly for big

campuses.

• Improve punctuality and lessen fatigue that comes with frequent long-

distance travelling between classes, enhancing overall academic experience

for students and lecturers.

By adding this constraint to the Genetic Algorithm model, the proposed method

aims to generate more realistic timetables that more accurately reflect real-world

situations in a university setting.

1.4 Project Scope

This project focuses on developing a university course timetabling tool designed

to address specific challenges in scheduling, particularly minimizing travel distances

between consecutive classes. The project will be implemented for Universiti Tunku

Abdul Rahman (UTAR) with the Faculty of Information and Communication

Technology (FICT) acting as the primary collaborator for the validation and testing of

the tool developed. However, the users of this university timetabling tool are not limited

to only UTAR staff. Hence, the primary users of this tool will be any university’s

management team who is responsible for scheduling timetables at the start of each

trimester.

The timetabling tool will be developed as a mobile application system and will

primarily target automated timetable scheduling, also known as timetable generating.

One of the primary features of the system is to enable users to input key attributes

such as courses, lecturers, venues, and student groups before the generating a

CHAPTER 1

4
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

conflict-free timetable based on these inputs. The system should also efficiently

handle hard and soft constraints, including the additional constraint, ‘Proximity

and Travel Minimization Constraint’ using Genetic Algorithm to ensure that

consecutive classes are scheduled in nearby locations, minimizing travel time and

improving accessibility for both lecturers and students. Additionally, users will be able

to customize scheduling preferences and ensure that the final timetable is tailored

to the specific needs of the institution. By resolving scheduling conflicts and offering

customization options, the application will ensure that the generated timetables are both

conflict-free and tailored to specific needs.

However, the application will not address non-scheduling-related features such

as student grading, course, content management, or online and hybrid teaching modes.

It will solely focus on generating timetables based on the physical locations of

classrooms and minimizing travel distances. Besides, it will also aim to address

major scheduling challenges and will not cover all possible constraints that might arise

in complex timetabling scenarios.

Lastly, the hardware required for the development and deployment of this

project will be a laptop with sufficient processing power. The mobile application itself

will be designed to run on commonly used mobile devices such as smartphones and

tablets. Software will include Python, MySQL, Flutter, and GitHub. Python will be

used to implement the Genetic Algorithm (GA) logic. MySQL is used to develop the

database. Flutter which uses the Dart programming language and provide cross-

platform frameworks is used to develop mobile application. GitHub is used for version

control.

1.5 Project Objectives

One of the objectives of this project is to investigate the hard constraints and

soft constraints for the university timetabling problem. Hard constraints can be

defined as requirements that must be satisfied when generating the timetable while soft

constraints are conditions that are preferable but non-compulsory for the timetable [1].

This involves studying, identifying and categorizing the various constraints that impact

the feasibility and quality of the timetables generated as they are requirements that

CHAPTER 1

5
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

should be considered during timetable scheduling. By understanding the hard and soft

constraints in detail, a more efficient university course timetabling tool can be

developed through this project. In addition, an additional constraint (Proximity and

Travel Minimization Constraint) will be included as a parameter in the project.

The next objective of this project is to develop a university course timetabling

tool that incorporates the ‘Proximity and Travel Minimization Constraint’ using

Genetic Algorithm (GA). This tool aims to optimize class schedules by minimizing

the travel distances between consecutive classes, targeting to improve accessibility and

punctuality, as well as reduce physical strain on lecturers and students. Integrating this

constraint into the Genetic Algorithm (GA) will address a common issue overlooked

by traditional timetabling systems and ensure that the generated timetables are feasible,

efficient and user-friendly. The success of this tool will be measured through the

development and testing of a functional timetable generator that is capable of satisfying

the identified constraints and improving the overall timetabling process.

Hence, this project aims to:

1. Develop an automated university timetabling tool that generates

timetables while satisfying various constraints.

2. Introduce a new constraint, the ‘Proximity and Travel Minimization

Constraint’, which minimizes travel distances between consecutive classes.

3. Create a more efficient, user-friendly timetabling system that improves

scheduling efficiency and user experience.

1.6 Impact, Significance and Contribution

The main contribution of this project is the development of a university course

timetabling mobile application designed to enhance the efficiency and effectiveness of

the timetable scheduling process. This is because the application will automatically

generate timetables instead of having the academic staff do the laborious work of

manually inserting large amounts of data into the system. By using Genetic Algorithms

and integrating the ‘Proximity and Travel Minimization Constraint’, the application

will significantly reduce the workload of the academic staff involved in timetable

scheduling. Hence, this streamlines the scheduling process, reducing the complexity

CHAPTER 1

6
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

and time required to create timetables. Besides, students will experience improved class

schedules that minimizes travel time between class, thereby reducing physical strain

and improving punctuality. This improves their overall academic experience.

Within the academic community, the application will foster more efficient and

effective scheduling practices by integrating the new constraint, ‘Proximity and Travel

Minimization Constraint’, which contributes to a more accommodating scheduling

system that better meets the needs of both lecturers and students.

1.7 Report Organization

In this report, the contents are organized as follows. Chapter 1 introduces the

project, covering the background, problem statement and motivation, objectives,

scope, contributions, and an overview of the report. Chapter 2 presents the literature

review, discussing AI/optimization approaches for university timetabling, their

strengths and limitations, the typical timetabling parameters, hard and soft constraints,

evaluation metrics, and a comparison of related systems. Chapter 3 describes the

system methodology, including the overall architecture and data model, the GA

formulation and constraint encoding, the development plan, and the

verification/testing strategy. Chapter 4 details the system implementation such as

database schema, back-end services, and user-interface modules for creating, editing,

archiving, and exporting timetables. Chapter 5 reports the results and evaluation,

including generated timetables, constraint-validation test cases, GA analytics,

performance analysis, and key implementation issues and challenges. Chapter 6

provides the discussion, evaluating the extent to which the objectives were achieved,

outlining system limitations, and proposing future improvements (e.g., richer GA

analytics and a student-facing mobile interface). Finally, Chapter 7 concludes the

report and summarizes the main findings and contributions.

CHAPTER 2

7
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Literature Reviews

2.1 Overview of Past Research

University course timetable scheduling is the creation of a timetable that

allocates time slots and resources such classrooms, lecturers and students for various

courses while ensuring that there are no conflicts [2]. The timetable needs to

accommodate different and numerous constraints, which are mainly categorized into

hard constraints and soft constraints [1]. Some examples can be lecturer availability,

room capacities, course requirements, student preferences, and university regulations.

An efficient scheduling system ensures that all constraints are satisfied using the limited

time and space available to get the optimal and best timetable.

UCTTP refers to the problem of creating a timetable that satisfies a set of

constraints and preferences. Due to the numerous possible combinations, the problem

is more complex and considered an NP-hard problem, whereby the objective is to find

the optimal timetable out of the large number of potential combinations. Besides, there

are no specific efficient solutions or algorithm to solve this problem [3], [2].

2.1.1 Types of AI Methods Used

Timetabling is categorized as a complex scheduling problem that requires the

allocation of limited resources, such as lecturers and classrooms, to courses in an

optimized way that satisfies a range of constraints. This problem is also known as the

university course timetabling problem (UCTTP) [1]. Several Artificial Intelligence (AI)

techniques are commonly used to solve this problem. However, each technique offers

different strengths, weaknesses, and approaches. According to [1], some of the

approaches used to solve the UCTTP can be categorized into Operational Research

(OR) Based Techniques, Single Solution-Based Meta-Heuristics, Population-Based

Meta-Heuristics, Hyper-Heuristics, and Hybrid Approaches. However, the most

common approach is a Population-Based Meta-Heuristic method known as Genetic

Algorithm (GA).

CHAPTER 2

8
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

I) Genetic Algorithm (GA)

Genetic Algorithms (GAs), a Population-Based Meta-Heuristic method as

mentioned above, are inspired by the process of natural selection as their concept works

around generating a population of potential solutions and then producing new

generations of solutions by iteratively selecting, crossing over, and mutating the

population. GAs are particularly effective in solving complex problems with a large

and irregular search space for possible solutions [3], [4], [5].

This effectiveness stems from the robustness of GAs, as they are designed to

operate in complex environments with non-linear, discontinuous, or noisy objective

functions [6], [7]. GAs avoid getting trap in local optima by evolving a diverse

population of solutions, which is a challenge often faced by other optimization methods

[8]. Instead, they comprehensively explore the global search space, guided by the

fitness function that evaluates the quality of each solution [5].

Figure 2.1.1.1 Process Flow of Genetic Algorithm [9]

GAs operate based on seven steps, which includes (1) initial population

generation, (2) evaluation of the generated population using benchmark functions

(calculation of fitness value), (3) selection of parents, (4) application of crossover

operator, (5) application of mutation operator, (6) selection of parents and children to

form new generation population, and (7) termination if condition is satisfied [1]. These

steps are as shown in Figure 2.1.1.1 above [9]. In solving timetabling problems, a

population of feasible and infeasible population of timetables are initialized. Through

CHAPTER 2

9
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

a fitness-based process in which the fitness value of each chromosome is calculated and

evaluated, only the fittest timetables will be selected as the new population for the next

iteration [10], [11]. Examples of GAs being implemented in solving timetabling

problems are as follows: [1], [2], [3], [10], [12], [13], [14], [15], [16], [17].

During the initialization step in GA, the chromosome representation of the

UCTTP is a critical factor, as it directly impacts the algorithm’s performance, such as

how it explores and exploits the search space [4]. In this step, gene encoding occurs,

whereby elements of a problem are represented within a chromosome [5], [18]. Most

research papers represent a chromosome as a string or matrix where each gene encodes

a course assignment, often specifying the time, room, lecturer, class, and students [17],

[19], [20], [21]. For instance, each chromosome is encoded using a two-dimensional

array where rows represent courses and columns contain details such as day, time,

teacher, and venue [15], [18], [22]. Another way is that the chromosomes are

represented as a group of elements, denoted by E, consists of three data types, namely

subject (S), lecturer (L), and group (G) [23], [24]. This allows the GA to manipulate

the structure easily during crossover and mutation, while maintaining the feasibility of

schedules [10], [17], [21], [20].

Figure 2.1.1.2 Chromosome Structure [25]

Based on Figure 2.1.1.2 above, the chromosome structure takes the form of a

linear string, whereby each row A1 to A4 represents a chromosome [25]. Binary

encoding is used as the genes are stored as binary digits [26]. In this case, a chromosome

represents one feasible timetable. Each position, or gene, in this string corresponds to a

specific component of the timetable, such as to a specific course. The value of each

gene is the assignment data for that course, such as timeslot, room, and lecturer [11],

CHAPTER 2

10
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[27]. The length and organization of the chromosome depends on the number of

courses, available timeslots, and venues within the university’s scheduling constraints

[26], [28]. Different studies employ various types of encoding schemes. For instance,

some might use direct encoding where the genes explicitly store the assigned resource,

while indirect encoding store priority or ordering information that is later decoded to

generate the actual timetable. At the end of this process, a population of feasible

solutions will be generated [11].

The next step is the evaluation of the solutions generated using a fitness

function. The effectiveness of a GA for UCTTP solving highly relies on the design of

the fitness function because the fitness value typically reflects the degree to which a

suggested timetable satisfies the given constraints [5], [10]. Hard constraint violations

usually result in penalties, making solutions that violate them less fit and less likely to

be selected for reproduction. On the other hand, soft constraint violations result in

smaller penalties, reflecting their desirable but not compulsory nature. A total fitness

for a chromosome is then calculated as a function of these penalties, usually as a sum

or weighted sum, in order to minimize constraint violation and maximize soft constraint

satisfaction [23], [24], [29]. Chromosomes representing valid or near-valid timetables

will be assigned higher fitness values. This guides the evolutionary process towards

optimal or near-optimal solutions.

Next, the method of selection used determines which of the present population's

chromosomes will be chosen as parents for producing children of the next generation

[2]. The objective is to favor individuals with higher fitness scores, hence propagating

potentially better solutions [11], [30]. Some of the most common selection techniques

used in GA-based UCTTP include roulette wheel selection, tournament selection, rank-

based selection, elitism selection, and stochastic remainder selection [4], [5], [7], [8],

[14], [15], [17], [18], [19], [20], [22], [23], [27], [29], [31], [32]. The chosen selection

technique ensures only the best solutions can move on to the next stage.

Following selection, the crossover operator is crucial in generating new

offspring by combining the genetic material from two parent chromosomes. Its main

goal is to explore new areas of the solution space by recombining high-quality traits

from different parents. Common crossover operators applied to UCTTP include single-

point crossover, two-point crossover, uniform crossover, shuffle crossover, and cycle

CHAPTER 2

11
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

crossover [4], [5], [7], [14], [17], [30], [32], [33]. For example, in single-point

crossover, a random point is chosen, and the segments of the parent chromosomes

beyond this point are swapped to generate two new offspring chromosomes [10], [27].

Two-point crossover performs a similar operation but involves two crossover points,

allowing the middle segment to be exchanged. The choice of crossover operator can

significantly impact the algorithm’s ability to discover better solutions.

After that, the mutation operator is applied to subject the offspring

chromosomes with a certain mutation probability. This is done to maintain population

diversity and prevent premature convergence towards local optima [11], [30], [34].

Mutation involves slight random changes in one or more individual genes within a

chromosome so that new areas of the search space can be explored, which may not be

reachable through the use of crossover alone [24], [30]. Common mutation techniques

used in UCTTP include uniform mutation, bit mutation, single point mutation and swap

mutation [9], [15], [17], [19], [23], [28]. The probability of mutation is typically set to

a low value to ensure that changes are rare and do not disrupt good solutions excessively

[8].

After crossover and mutation, the algorithm proceeds to generate the next

generation by replacing the current population [4]. This selects which members of the

current population are to be retained and replaced by offspring generated afresh. For

example, only the two fittest chromosomes are selected from the population of two

parents and two offspring. The fittest chromosome is directly moved to the next

generation, and the second best is taken to replace the least fit chromosome in the

current population [29]. The selection of which individuals to replace can influence the

algorithm’s convergence behavior, ensuring the new generation have better

chromosomes than the preceding one [35].

The GA iteratively repeats steps 2 to 6 until a predefined termination condition

is met. This condition could be a fixed number of generations, reaching a satisfactory

fitness level, or observing no significant improvement in the population’s fitness over

a certain number of generations. To measure the performance of the proposed GA-

based UCTTP method, several evaluation metrics are used. The primary metric is often

the number of hard constraint violations in the final timetable. The number and severity

CHAPTER 2

12
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

of soft constraint violations are also crucial. Other metrics include computational time,

the convergence rate, and the scalability of the approach.

II) Particle Swarm Optimisation (PSO)

Similar to GA, Particle Swarm Optimisation (PSO) is also a Population-Based

Meta-Heuristic method that is often utilized to solve UCTTP. This method is inspired

by the behavior of animals flocking or schooling together, such as birds and fishes,

operating based on social behavior instead of selection action [13]. The PSO model

consists of particles which are comparable to potential solutions with an assigned

fitness function. These particles move through the solution space and navigate by

adjusting their positions based on their own experience and that of neighboring

particles. Parameters such as the size of the swarm, inertia weight and acceleration

coefficients affect the efficiency of the PSO model [2].

Figure 2.1.1.3 Process Flow of Particle Swarm Optimization [3]

CHAPTER 2

13
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Based on Figure 2.1.1.3 above which displays the PSO algorithm’s flow, it is

shown that just like GA, the algorithm starts with initialization. This is where a swarm

of particles is randomly distributed across the solution space. With each particle

representing a potential solution, the fitness of each particle is then determined using a

problem-specific fitness function. After that, the velocity update step follows. This is

where each particle updates their velocity based on three components, namely inertia,

individual best position, and global best position. After updating the velocity, the

particle’s position and global best position are updated if needed. These operations are

iterated for a fixed number of iterations or until the solution is satisfactory.

One of the advantages of PSO is its fast convergence rate, lesser parameters

used and its ability to learn to handle dynamic changes in the problem environment,

especially where timetabling constraints may evolve in real applications. Aside from

improving solution quality and preventing premature convergence, the study also

applied an interchange heuristic. This additional step allowed particles to travel to more

varied areas of the solution space by interchanging components within a timetable [2].

Additionally, PSO’s strength is that it is lightweight in nature due to having

lesser parameters compared to GA or SA. Its velocity and position update processes are

mathematically simple yet powerful. It is also easy to implement [34]. However, PSO

by itself can still potentially converge to inferior solutions if the swarm is not diverse

or if global best positions dominate too early. In addition, PSO does not converge as

fast as other algorithms [3], [36].

These qualities make PSO an ideal choice for hybridizing or enhancing based

on local search methods. For example, combining PSO with other techniques such as

Genetic Algorithm (GA), Differential Evolution (DE), Simulated Annealing (SA) and

more [34]. Such improvisation makes PSO robust and adaptable in solving UCTTPs as

well as other hard constraint-based scheduling instances.

III) Simulated Annealing (SA)

Simulated Annealing (SA) is a Single Solution-Based Meta-Heuristic method

inspired by the annealing process in metallurgy or the heating of solids in physic

science. This method starts with a random initial solution by local search and iteratively

CHAPTER 2

14
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

replaces the current solution with a random solution, whereby the replacing solution is

possibly the optimal solution to the problem. This process repeats until a certain

condition triggers termination [1]. As cited in [1] and [2], the best results and most

satisfactory timetable achieved is obtained from the combination of simple search,

swapping and simple swapping. Figure 2.1.1.4 below illustrates a very detailed

flowchart of Simulated Annealing and its processes, which appears more complex

compared to GA and PSO.

Figure 2.1.1.4 Process Flow of Simulated Annealing [6]

According to [14], SA is a neighborhood search method with a unique

advantage. It occasionally accepts worse solutions in order to escape local optima and

move in the direction of the global optimum. This is controlled by a temperature

parameter, which is set high at first and then gradually reduced during the algorithm.

When the temperature is high, the algorithm is more likely to accept worse solutions,

CHAPTER 2

15
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

which allows wider search of the solution space. As the temperature decreases, the

acceptance of worse solutions decreases, leading to a more focused search in better

regions of the solution space. A helpful feature for real-life constraints like room

availability, student distribution, and emergency evacuation planning is that SA has

been able to create conflict-free timetables with a high location diversity in order to

fulfill timetabling constraints [6].

Comparisons of performance with previous research have shown that SA can

produce excellent solution quality that is often better than other approaches in terms of

diversity and robustness. However, because it is an iterative process, it usually takes

more computing time. Its success also depends on proper parameter tuning for the initial

and final temperatures, cooling rate, and neighborhood structure. Despite the longer

runtime, SA is a successful method for solving optimization problems with large,

complex search areas, even though it takes longer to execute [6].

Table 2.1.1.1 Comparison of Genetic Algorithm, Particle Swarm Optimization and

Simulated Annealing

 Genetic Algorithm Particle Swarm

Optimization

Simulate Annealing

Advantages • Robust in

complex spaces

• Balanced

exploration and

exploitation

• Flexible

chromosome

encoding

• Fast

convergence

• Easy

implementation

• Fewer

parameters

• Strong escape

from local

optima

• Very good

solution

quality

• Suitable for

complex

constraints

Disadvantages • Slower

convergence

• Requires careful

parameter tuning

• May converge to

inferior solutions

if swarm

diversity is low

• Requires

careful tuning

of parameters

CHAPTER 2

16
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Risk of premature

convergence if

diversity is low

• Global best may

dominate too

early

• Slower

convergence

than some

algorithms

(temperature,

cooling rate)

• Slower due to

iterative nature

• More complex

process flow

compared to

GA and PSO

Parameter

Sensitivity

Sensitive Less sensitive Sensitive

Ability to Escape

Local Optima

Moderate, depends on

mutation

Low, may get trapped in

global best

High, due to

probabilistic

acceptance

Runtime Speed Moderate Fast Slightly slower

Solution Quality Good to Very Good Good to Very Good Very Good

Implementation

Complexity

Moderate Easy Easy

Suitable for

Timetabling

Yes Yes Yes

Based on Table 2.1.1.1, the comparison between Genetic Algorithm (GA),

Particle Swarm Optimization (PSO), and Simulated Annealing (SA) is displayed. It

shows that each method has advantages and disadvantages when being applied to the

UCTTP. GA works good in complex spaces and can balance exploration and

exploitation, which makes it perform well in complex environments. It is also known

for its flexible chromosome encoding, thus making it ideal for complex timetable

constraints. On the other hand, while PSO is fast and simple to apply, it is sensitive to

swarm diversity and can converge to inferior solutions if the global best is dominated

too early. SA can escape local optima and generate high-quality solutions, but it has

slower runtime due to its iterative nature. Besides, SA requires very careful parameter

tuning.

CHAPTER 2

17
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In this project, GA is selected because it excels at handling complex timetabling

constraints and is able to effectively balance exploration and exploitation. Although

GA's rate of convergence is moderate and requires careful adjustment to avoid

premature convergence, its ability to search for extensive solution spaces and learn the

constraints of UCTTP makes it a stable and effective choice. GA's flexibility in

chromosome encoding also allows it to encode different types of constraints such as

student and teacher allocations, room allocation, and students' timetables so that it gets

fittingly aligned with timetabling problem characteristics.

2.1.2 Parameters Used in University Course Timetabling

According to [1], some of the parameters used in scheduling a university course

timetable include hard constraints and soft constraints such as:

• Session: Scheduled activities.

• Timeslot: A designated time interval in which sessions are scheduled, such as a

weekly slot (every Monday) or a daily slot (8 a.m. – 10 a.m.).

• Resource: Items utilized by sessions, including equipment, venues, and

timeslots.

• Constraint: A limitation in scheduling the sessions that can be categorized into

hard and soft constraints, such as room capacity and availability of specific

timeslots.

• People: Individuals involved in the sessions, such as lecturers and students.

• Conflict: Something that arises when two sessions are scheduled together and

interfered with each other, such as assigning a lecturer having two classes in

different venues at the same time.

2.1.3 Types of Hard Constraints and Soft Constraints

In the context of university course timetable scheduling, constraints are

classified into two categories: Hard Constraints and Soft Constraints.

Hard constraints are compulsory requirements that must be strictly followed and

satisfied for the timetable to be valid. Violating any of the hard constraints will result

CHAPTER 2

18
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

in an invalid timetable. Table 2.1.3.1 below displays the list of hard constraints

mentioned in previous works and past research papers.

Table 2.1.3.1 Hard Constraints Mentioned in Past Research Papers

Constraint

No.

Hard Constraints Ref. No.

1 A lecturer cannot teach two different classes

in the same timeslot.

[1], [2], [3], [10], [12],

[16], [17], [18], [22],

[24], [32], [33], [37],

[38], [39], [40]

2 Two courses (events) cannot be scheduled in

the same venue at the same time.

[1], [2], [3], [12], [14],

[17], [18], [22], [24],

[32], [33], [37], [38],

[39], [41]

3 A student cannot attend two courses (events)

scheduled simultaneously.

[2], [3], [12], [17], [18],

[22], [26], [31], [37],

[38], [40], [41]

4 The venue is large enough to accommodate

the number of students attending the class.

[1], [2], [3], [10], [14],

[22], [26], [27], [29],

[31], [32], [38]

5 Courses that require specific room types

(e.g. labs, lecture halls) must be scheduled

in appropriate facilities.

[2], [26]

6 Classes should only be scheduled during

times when the lecturer is available,

considering the workload, office hours and

rest time of the lecturers.

[1], [27], [34]

7 Some courses are predefined and are

scheduled to occur at specific timeslots.

[1], [2], [14], [31]

8 Venues cannot be assigned to the same

timeslot more than once.

[2], [3], [10], [11], [22],

[31]

CHAPTER 2

19
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

9 The total hours available per day for the

timetable is 8 hours (maximum).

[3], [26]

10 Each venue can only be assigned one

lecturer, unless an assistant is assigned.

[10]

11 A student cannot be assigned to two

different venues in the same timeslot.

[3], [10], [12], [22]

12 The timetable should be scheduled in

accordance with the university calendar.

[3], [14], [37]

13 Lectures for courses within the same

curriculum should be scheduled in

consecutive time slots if they occur on the

same day.

[2]

14 The facilities of the venue should meet the

requirements of the course.

[2], [14], [31], [37], [41]

15 Certain classes must be scheduled in a

specific chronological order.

[2], [12], [31]

16 There should be no classes missing in the

generated timetable.

[33]

17 The number of courses and their scheduled

hours are predetermined based on the

teaching plan and training objectives.

[32]

18 No lectures should be scheduled during the

weekends.

[37]

On the other hand, soft constraints are preferable or desirable conditions that are

not strictly necessary. However, they are important for creating a more efficient and

convenient timetable. Violating any of the soft constraints does not invalidate the

timetable, but it may decrease the overall quality of the timetable. Table 2.1.3.2 displays

a list of soft constraints found in past research papers.

CHAPTER 2

20
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 2.1.3.2 Soft Constraints Mentioned in Past Research Papers

Constraint

No.

Soft Constraints Ref. No.

1 Lecturers’ preferences for teaching times

can be accommodated.

[1], [12], [16], [17],

[18], [32], [33], [37],

[40]

2 Gaps between classes should be minimized,

such as long breaks between consecutive

classes.

[1], [12], [24]

3 Lecturers can request for their preferred

venues.

[1], [12], [32], [33]

4 No classes should be scheduled during lunch

break (12 p.m. – 2 p.m.).

[1], [2], [24], [37]

5 There should be no classes scheduled before

8 a.m. and after 8.30 p.m.

[1], [33]

6 The maximum hours for consecutive classes

should be 4 hours.

[1]

7 There should be an allocation of break

periods before other courses.

[3]

8 Each subject's second lecture session should

ideally be scheduled on a different day.

[14], [17]

9 Students should not have classes in the last

time slot of the day.

[31], [41]

10 Students should not have only one class in a

day.

[31], [41]

11 There should be no more than 2 consecutive

classes.

[22], [31], [41]

12 Timetables should ensure that as few

classrooms as possible are used.

[18], [39]

CHAPTER 2

21
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

13 Each course should be assigned to a

classroom near the department building or

the lecturer’s office.

[33]

2.1.4 Types of Evaluation Metric Used to Measure Performance

In [2], some of the evaluation metrics used to measure the performance of a

solution (timetable created) includes computational speed, feasibility and quality. If

all specified hard constraints are satisfied, then the solution is considered feasible. The

quality of the solution which is evaluated by a cost function is an evaluation metric

that focuses on satisfying the soft constraints. Soft constraint violations determine the

overall quality of the solution. The quality of the solution increases as the number of

satisfied soft constraints increases [1]. In terms of computational speed, UCTTP is an

NP-hard problem, and it cannot be solved in polynomial time. This is due the

exponential growth of the problem and its complexity. Hence, heuristic methods are

applied [1], [2].

2.2 Existing University Course Timetable Scheduling Systems

2.2.1: TimetableGeneratorApp by Huzaifa and Abdullah Saleem (GitHub) [42]

This timetable generator app was developed as a final project for the Analysis

of Algorithm course by mHuzefa and Abdullah Saleem. It was published on GitHub in

year 2020. The system utilizes Django and Python to automate the scheduling of

activities. According to the team, it was initially planned to implement a Greedy

algorithm to handle the scheduling, the project ended up using a Randomized Brute

Force approach. This is due to the challenges of fulfilling the requirements with the

Greedy method. Other than that, it was mentioned that the algorithm is connected with

a backend database that saves the data which will be processed by the algorithm before

generating the timetable.

In addition, this application features a range of user interfaces with a user-

friendly GUI that facilitates the scheduling of timetables. The application includes

interfaces to add courses, professors, classrooms, and sections (see Figure 2.2.1.1,

Figure 2.2.1.2, Figure 2.2.1.3, Figure 2.2.1.4, Figure 2.2.1.5, Figure 2.2.1.6, Figure

CHAPTER 2

22
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2.1.7, Figure 2.2.2.11). It also supports additional CRUD (Create, Read, Update,

Delete) functions such as viewing, updating, and deleting timetables (see Figure

2.2.1.8, Figure 2.2.1.9, Figure 2.2.2.10). Users can export the generated timetable in

PDF file format (see Figure 2.2.2.10).

Strengths of TimetableGeneratorApp:

1. User-friendly Interface: The application provides an intuitive GUI that

simplifies user experience when it comes to data input and timetable generation.

Hence, users does not need tutorials on how to navigate the application.

2. Cross-Device Responsiveness: The application is responsive on both desktop

and mobile devices. This enables usage across various devices.

3. PDF Export: Allows users to export and download timetables in PDF format.

4. CRUD Functions: Enables basic CRUD functions such as view, update and

delete.

Weaknesses of TimetableGeneratorApp:

1. Algorithm Limitations: The transition from a Greedy algorithm to a

Randomized Brute Force method may result in less optimized timetables.

2. Incomplete Database Integration: Due to the ongoing issue with connecting the

algorithm to the database, the application’s functionality and automation

capabilities are limited.

3. Single Class Limitation: Support timetable generation for one class at a time

which may be restrictive for larger institutions.

4. Limited Features and Functionalities: While a simple and intuitive GUI is

provided, the application only offers basic functions and lacks additional

features and functionalities to support administration use.

5. Constraints Input: Does not allow users to input or set soft constraints for the

timetable.

CHAPTER 2

23
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.1.1 Main Page of TimetableGeneratorApp

CHAPTER 2

24
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.1.2 Add Course Page of TimetableGeneratorApp (Desktop)

Figure 2.2.1.3 Add Professor Page of TimetableGeneratorApp (Desktop)

Figure 2.2.1.4 Professor Details Table of TimetableGeneratorApp (Desktop)

CHAPTER 2

25
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.1.5 Delete Professor Confirmation Page of TimetableGeneratorApp (Desktop)

Figure 2.2.1.6 Add Classroom Page of TimetableGeneratorApp (Desktop)

Figure 2.2.1.7 Add Classroom Details Page of TimetableGeneratorApp (Desktop)

CHAPTER 2

26
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.1.8 Update Page of TimetableGeneratorApp (Desktop)

Figure 2.2.1.9 Class Table Page of TimetableGeneratorApp (Desktop)

CHAPTER 2

27
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.1.10 Generated Timetable of TimetableGeneratorApp (Desktop)

Figure 2.2.1.11 Mobile Layout of TimetableGeneratorApp

CHAPTER 2

28
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2.2: timetable-generator by Olayiwola Odunsi, Richman Clifford Jr and Bilal

Rasool (GitHub) [43]

This web application was developed using Laravel PHP framework and jQuery

by Olayiwola Odunsi, Richman Clifford Jr and Bilal Rasool. It was published on

GitHub in year 2018. The main objective of this application is to facilitate timetable

generation for a college, enabling users to input data. It utilizes Genetic Algorithm to

generate the timetables and timetables are generated as background jobs within Laravel

as users generate timetables.

The main page of this application features a comprehensive dashboard that is

both user-friendly and intuitive. The dashboard enables users to navigate the application

conveniently as it displays a sidebar menu with buttons leading to pages such as Rooms,

Courses, Professors, Classes, Periods, User Account and Log Out (see Figure 2.2.2.1).

It also shows the current number of lecture rooms, courses, professors and classes (see

Figure 2.2.2.2, Figure 2.2.2.3). Besides, there is a table displaying a list of existing

timetables and their details such as name, status, and the option to print it out. It supports

CRUD functions such as create, update, delete and enables users to view the generated

timetable via the print function. Through the print function, it prompts users to save it

in PDF format beforehand (see Figure 2.2.2.4).

Strengths of timetable-generator:

1. User-Friendly Interface: The application features an intuitive dashboard that

simplifies user navigation, making it accessible even for non-technical users.

2. PDF Export: Allows users to export and download timetables in PDF format.

3. Print Function: Allows users to print their generated timetables.

4. CRUD Functions: Enables basic CRUD functions such as view, update and

delete.

Weaknesses of timetable-generator:

1. Tight Algorithm Coupling: The Genetic Algorithm currently tightly integrated

with the Laravel framework limits its flexibility and reusability in other

applications.

2. Limited Features and Functionalities: The application lacks more advanced

features and functionalities to support administration use.

CHAPTER 2

29
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. The Genetic Algorithm’s implementation may not fully address all scheduling

requirements. This may potentially lead to suboptimal timetables.

4. Constraints Input: Does not allow users to input or set soft constraints for the

timetable.

Figure 2.2.2.1 Main Page (Dashboard) of timetable-generator

Figure 2.2.2.2 Rooms Page of timetable-generator

CHAPTER 2

30
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.2.3 Courses Page of timetable-generator

Figure 2.2.2.4 Save as PDF and Print Page of timetable-generator

2.2.3: UniTime by UniTime.org [44]

This educational scheduling system is an open-source system developed by

UniTime.org. The system was originally developed through a collaborative effort

between faculty, students, and staff from universities across North America and Europe,

before becoming a sponsored initiative under the Apereo Foundation in March 2015.

There are a few components integrated into the system, such as Course Timetabling &

Management, Examination Timetabling, Event Management, and Student Scheduling.

The Course Timetabling & Management component aims to assign each course a time

slot that avoids conflicts for students, considering factors such as faculty availability,

CHAPTER 2

31
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

rooms, and other constraints. UniTime minimizes student course conflicts by using

actual student demands, curricula, and historical patterns. This is done while balancing

faculty and room preferences. It also incorporates advanced algorithms and allows for

different scheduling scenarios, supporting centralized, distributed and hybrid

scheduling approaches.

Additionally, the system is a server-client with a web-based interface that using

Java J2EE and SQL databases. It handles large-scale problems such as 9,000 classes

and 39,000 students. It allows for manual or automated timetabling and offers

extensibility for customization. The solver uses a constraint-based approach using a

Constraint Solver Library which is a local search-based framework. This solver

addresses various constraint satisfaction and optimization problems, identifying

inconsistencies in input data and providing automated solutions. Some of the

application’s highlighted features include data entry, preferences and requirements

setting, constraint setting, PDF export, CSV export, add courses, delete courses and

many more (see Figure 2.2.3.1, Figure 2.2.3.2, Figure 2.2.3.3, Figure 2.2.3.4, Figure

2.2.3.5, Figure 2.2.3.6). Data entry can be done through a web-based interface and a

series of steps. Overall, UniTime provides a comprehensive set of features and

functionalities for the users. However, because of its wide range of features, users may

find it too complex or difficult to navigate without prior training or tutorials.

Strengths of UniTime:

1. Comprehensive Application: UniTime offers a comprehensive and wide range

of features for its users. It also covers a few scheduling needs, including course

timetabling, examination timetabling, event management, and student

scheduling.

2. Open Source and Extensible: The system is open-source and highly

customizable, allowing institutions to modify it based on their specific

requirements.

3. Multi-Component Integration: UniTime integrates multiple scheduling

components such as course timetabling, examination timetabling, event

management and student scheduling, which helps institutions manage all

scheduling activities within a single platform.

CHAPTER 2

32
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4. CSV and PDF Export Feature: The generated timetable can be save and

exported as a CSV or PDF file.

Weaknesses of UniTime:

1. Complexity: The system can be complex for users unfamiliar with it as it might

require training to navigate its extensive features.

2. High Setup Effort: Setup steps such as data entry and customization can be time-

consuming as many steps are required to get the results.

3. Limited Mobile Support: UniTime is primarily web-based. While it can be

accessed on mobile browsers, it lacks a dedicated mobile application for easier

use on phones and tablets.

Figure 2.2.3.1 Data Entry for Adding Course

CHAPTER 2

33
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.3.2 User Interface for Classes

Figure 2.2.3.3 User Interface for Scheduling Subpart Detail

CHAPTER 2

34
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.3.4 Preferences

Figure 2.2.3.5 Generated Timetable

CHAPTER 2

35
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.3.6 PDF Export

2.2.4 Comparison of Similar Existing Timetable Scheduling Systems

Table 2.2.4.1 Table of Comparison for The Systems

Features/Software TimetableGeneratorApp timetable-

generator

UniTime

CRUD Features Yes Yes Yes

Generate

Timetable

Yes Yes Yes

PDF Export Yes Yes Yes

CSV Export No No Yes

Availability on

Mobile

Yes No No

User-Friendly

and Intuitive UI

Yes Yes No

Comprehensive

Features

No No Yes

CHAPTER 2

36
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Based on Table 2.2.4.1 above, all three systems support CRUD (Create, Read,

Update, Delete) features which are essential for managing timetable data and

administrative work to schedule the timetables. Most importantly, all of the three

systems have the main functionality to generate timetables. In addition, the systems

also allow exporting the timetables in PDF format. This provides a convenient way for

users to access and distribute the timetables. However, UniTime is the only system that

supports exporting timetables in CSV format. This feature is useful for users who may

want to export or analyze the data in spreadsheet applications. TimetableGeneratorApp

and timetable-generator do not support this feature.

Other than that, TimetableGeneratorApp is the only one available on mobile

platforms, making it more accessible for users who need to manage or view timetables.

Neither timetable-generator nor UniTime offers mobile support. Both

TimetableGeneratorApp and timetable-generator have user-friendly and intuitive

interfaces. UniTime has a more complex interface that may require the users to go

through prior training or tutorials to navigate it. However, while UniTime has a more

complex interface, it is equipped with a comprehensive set of features and

functionalities compared to TimetableGeneratorApp and timetable-generator whose

user interfaces are simple but lacks additional functionalities.

2.2.5 Literature Review Findings

There have been numerous studies on university course timetabling that have

examined multiple optimization techniques to satisfy hard and soft constraints. Over

the years, several algorithms have been proposed to solve the problem, namely Genetic

Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing (SA), Tabu

Search, hybrid approaches etc. [1], [12], [7], [30], [45]. However, no single algorithm

can solve every timetabling issue optimally. This is mainly due to the diverse set of

constraints, such as resource availability, room capacities, lecturer preferences, and

class clashes, which can vary from one institution to another.

Additionally, the majority of research on timetable scheduling systems that

apply optimization approaches focuses mostly on satisfying hard constraints like

avoiding class clashes and ensuring room capacity. Soft constraints that have often been

CHAPTER 2

37
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

dealt with include lecturer preferences and room allocation. However, the spatial aspect

of timetabling, such as the minimization of travel distance between consecutive classes,

has received limited attention in the literature. Hence, there is a research gap in the lack

of attention to real-world constraints related to venue proximity and travel time between

consecutive classes.

While there has been a recent study that introduced an recommendation system

based on digital twins that incorporates traveling distances and vertical transitions into

the timetabling process, the integration of spatial constraints remains relatively

uncommon in modern timetabling systems [46]. Most classic models do not take into

account the physical distances between classrooms, and thus the generated schedules

may have students and lecturers travel significant distances between back-to-back

classes.

Furthermore, the timetabling problem is already considered an NP-hard

problem. Additional constraints might make it harder for one to predict the complexity

of the problem. Hence, it is difficult to predict which algorithm would perform best,

especially for constraints dealing with spatial and temporal dimensions. In such a

situation, the selection of a suitable optimization algorithm is a crucial choice.

Genetic Algorithm has been widely utilized in the literature due its flexibility,

population-based search procedure, and compatibility with multi-objective

optimization. It is also frequently used as the foundation for hybrid algorithms, whereby

it is combined with other algorithms to form hybrid algorithms to enhance performance

[7], [30], [45]. For instance, GA has hybridized with PSO [34], Simulated Annealing

[14], Tabu Search algorithm [39], Ant Colony Optimization [40], Guided and Local

Search Strategies [21], [8], [37], [45] to compensate drawbacks of certain algorithms

and improve the quality of solutions.

The main objective of this project is to include the ‘Proximity and Travel

Minimization Constraint’. This restriction seeks to minimize unnecessary travelling

across campus by having the locations of back-to-back classes close together. The

Genetic Algorithm (GA), which is often used in the university course timetable

scheduling problem is widely noted for its adaptability and robustness. It is chosen as

the primary optimization strategy because of the unpredictability of this new constraint.

Hence, because of these characteristics, GA is a good approach to the university course

CHAPTER 2

38
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

timetabling problem, especially when faced with new restrictions such as the travel and

proximity constraint.

2.2.6 Chapter 2 Summary

This chapter has reviewed some of the approaches used to solve the University

Course Timetabling Problem (UCTTP). Genetic Algorithm (GA) was compared with

other AI methods such as Particle Swarm Optimization and Simulated Annealing.

However, there is more emphasis on GA because of their robustness, flexibility in

handling complex constraints and large search spaces. This chapter also covered some

of the main topics of GA, including chromosome representation, gene encoding, fitness

computation, crossover, selection, and mutation techniques.

Most of the studies focuses on satisfying hard and soft constraints. However,

there are few studies considering spatial constraints like travel distance from one

location to another, leading to a research gap. In addition, present methods lack

flexibility in allowing new constraints or optimizing closeness in locations. Thus, the

project adopts GA to handle the complexity of the problem and introduces the

‘Proximity and Travel Minimization Constraint’ to solve an operational problem

underserved by current systems.

In addition, a comparison of timetabling systems revealed that most systems do

not accommodate custom constraints or are not mobile-capable, and they typically do

not address the problems of travel distances. This further suggests the need for a more

flexible, and user-friendly timetabling tool.

In summary, the findings from the literature review concluded that GA will be

used as the main optimization technique for this project due to its proven capability in

solving UCTTP. Furthermore, with the introduction of the new ‘Proximity and Travel

Minimization Constraint’, this project aims to bridge the research gap.

CHAPTER 3

39
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

System Methodology

The processes of the project were categorized into different phases in the development,

which were project pre-development, data pre-processing, model training architecture

building and data training, and prediction on test dataset.

3.1 Project Development

The first step in starting the project is the planning phase, where the project’s

scope, objectives, and requirements are defined, covering the aspects such as the dataset

to be used, target users, and the development platform. The objectives are set to solve

the identified problems. During this phase, the project’s concept and initial draft for

developing the timetabling system were created and the current challenges like the lack

of certain constraints and functionality in the existing systems are addressed. On the

other hand, algorithms and software were also identified to enable timetable generation.

In the next phase, the analysis phase, the selected algorithms and software were

reviewed to assess their strengths and weaknesses, focusing on factors like time

complexity, accuracy and performance. Additionally, existing timetabling systems are

studied by having their system requirements and functionalities analysed. Analysing

the functionalities of current system is used to identify certain weaknesses that can be

further improved to propose a newer and better system. Besides, the structure of

university timetables is examined through the documentation available on existing

timetabling systems.

In the design phase, the system’s structure is designed, and GA is selected,

including the new constraint and the different stages of the algorithm such as

chromosome structure, selection techniques, crossover techniques, mutation techniques,

and replacement techniques. Diagrams like UML, use-case, and system architecture are

also created, alongside designing the system database and selecting the hardware and

software components.

CHAPTER 3

40
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The implementation phase is where the proposed system will be implemented

or programmed. This phase involves developing the system as a mobile application

using Flutter for the interface and Python for the algorithm handling. New requirements

or constraints are constantly adjusted, and the changes will be implemented in the

system during the development of the application.

In the testing phase, the developed system will be thoroughly evaluated to

ensure that there are no errors in scheduling the timetable and that all constraints are

adhered to. Each constraint will be tested using specific methods. For example, the

system will verify that no student attends two classes at the same time slot, fulfilling

the constraint that “A student cannot attend two courses (events) scheduled

simultaneously”.

Lastly, the maintenance phase involves carrying out ongoing updates to

address any errors or bugs discovered in the system over time. This is done to ensure

the system’s continued reliability. Besides, updates to upgrade or add new functionality

to the system will also be considered.

3.1.1 Project Gantt Chart

Figure 3.1.1.1 Timeline for Proposal Writing Phase of the Project

Tasks Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13
Decide on FYP Title
Find suitable research papers
Find similar existing systems
Draft Chapter 2 (Literature Review)
Draft Chapter 1 (Introduction)
Draft Chapter 3 (Project Scope and Objectives)
Draft Chapter 4 (Project Methodology)
Prepare presentation slides
Presentation

October 2024 Trimester (Proposal Writing)

CHAPTER 3

41
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.1.1.2 Timeline for FYP1

 Figure 3.1.1.3 Timeline for FYP2

The figures above, Figure 3.1.1.1, Figure 3.1.1.2, and Figure 3.1.1.3, represents

the timelines for the entire project, divided into three semesters’ time. Each semester

consists of 14 weeks, while the time given to complete the tasks is 12-13 weeks’ time.

The leftmost column lists the key tasks involved in the development of the project. The

columns represent the timeline from each week. Each week is dedicated to completing

various tasks, with some overlapping.

3.2 Data Collection for Timetabling Tool

In this project, data collection and analysis of the current timetable system of

UTAR's Faculty of Information and Communication Technology (FICT) are

conducted. Timetables of the various programmes conducted for the current trimester

(February 2025 trimester) were gathered from UTAR FICT's official website.

The collected timetables were then examined to identify their underlying

structure and main components. Important details included the list of courses offered to

students from different courses and different trimesters, the lecturers responsible for

each subject, the names and types of rooms used for teaching sessions, and whether any

Tasks Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week13
Update Chapter 1
Update Chapter 2
Draft Chapter 3 (Proposed Method/Approach)
Design Dataset
Design Database
Develop Algorithm
Test Algorithm
Draft Chapter 4 (Preliminary Work)
Draft Chapter 5 (Conclusion)
Prepare Plagiarism Check Result
Design Poster
Presentation

February 2025 Trimester (FYP1)

Tasks Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week13
Update Chapter 1
Update Chapter 2
Update Chapter 3
Draft Chapter 4 (System Design)
Design UI and Layout
Develop UI and Layout
Refine Algorithm
Draft Chapter 5 (System Implementation)
System Testing
Draft Chapter 6 (System Evaluation & Discussion)
Prepare Plagiarism Check Result
Design Poster
Presentation

June 2025 Trimester (FYP2)

CHAPTER 3

42
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

special or fixed time slots existed in the schedule for the week. Figures 3.2.1, 3.2.2, and

3.2.3 below show some samples of the collected timetable data.

Figure 3.2.1 Timetable of Students in Computer Science Programme (Year 1 Sem 1)

CHAPTER 3

43
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.2.2 Timetable of Students in Communication & Networking Programme

(Year 2 Sem 1)

CHAPTER 3

44
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.2.3 Timetable of Students in Information Systems Engineering Programme

(Year 3 Sem 1)

Subsequently, additional academic information such as program structures for

the students between different trimesters were carefully examined. This involved

verifying course registration information provided by UTAR, such as the hours of

CHAPTER 3

45
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

lectures, tutorials, and practices allocated to specific courses. Besides, information

related to class sizes and the number of class sessions scheduled for specific courses

were also taken into consideration. These facts are important in understanding how

courses are structured, useful to generate a feasible and balanced timetable schedule.

By studying these details, the system can ensure that course assignments are aligned

with institutional requirements and resource constraints.

The following data in Figure 3.2.4, Figure 3.2.5, Figure 3.2.6 and Figure 3.2.7

is generated based on Figure 3.2.1, Figure 3.2.2, and Figure 3.2.3 above:

Figure 3.2.4 Mock Data of Student Entity

groupID groupName programName studyName studentNum courseCode

25000 CSY1S1 Computer Science 1 200
UBMM1011, UCCD1004, UCCD1143,
UCCD2003, UCCM1153, UCCN1004

24000 CNY2S1 Communications & Networking 2 200
UCCD2043, UCCD2044,
UCCD2103,UCCN2243

23000 IAY3S1 Information Systems Engineering 3 200 UCCD3053, UCCD3223

CHAPTER 3

46
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.2.5 Mock Data of Lecturer Entity

lecID lecName courseCode
10001 Dr Tee Chee Wee UBMM1011
10002 Dr Tan Joi San UCCD1004
10003 Ts Dr Phan Koo Yuen UCCD1004
10004 Dr Jasmina Khaw Yen Min UCCD1004
10005 Dr Kh'ng Xin Yi UCCD1004
10006 Prof Dr Leung Kar Hang UCCD1004

10007
Dr Ahmad Hakimi Bin Ahman
Sa'ahiry UCCD1004

10008 Ts Dr Lim Seng Poh UCCD1143
10009 Dr Chai Tong Yuen UCCD1143
10010 Ts Dr Ku Chin Soon UCCD2003
10011 Ts Dr Mogana a/p Vadiveloo UCCD2003
10012 Dr Tahanya Bashar M. A. UCCD2003

10013
Cik Puteri Nursyawati Binti
Azzuri UCCD2003

10014
Dr Nur Balqishanis Binti Zainal
Abidin UCCM1153

10015 Dr Lem Kong Hoong UCCM1153
10016 Dr Aun Yichiet UCCN1004
10017 Ms Tan Lyk Yin UCCN1004
10018 Ts Dr Ooi Chek Yee UCCN1004

10019
Dr Muhammad Syaiful Amri Bin
Suhaimi UCCN1004

10020 Ts Dr Chang Jing Jing UCCN1004
10021 Dr Fityanul Akhyar UCCN1004
10022 Dr Abdulrahman Aminu Ghali UCCN1004, UCCN2243
10023 Dr Rohani binti Bakar UCCN1004
10024 Dr Norliana Binti Muslim UCCN1004
10025 Dr Rahman Sadli UCCN1004
10026 Dr Teoh Shen Khang UCCN1004
10027 Puan Nor 'Afifah Binti Sabri UCCN1004

10028
Dr Farina Saffa Binti Mohamad
Samsamnun UCCN1004, UCCN2243

10029 Ts Yong Tien Fui UCCD2043
10030 Dr Zurida Binti Ishak UCCD2043

10031
Dr Sayed Admad Zikri Bin Sayed
Aluwee UCCD2044

10032 Ts Dr Chai Meei Tyng UCCD2044
10033 Mr Luke Lee Chee Chien UCCD2044
10034 Ms Tseu Kwan Lee UCCD2044
10035 Dr Ng Hui Fuang UCCD2044
10036 Ts Wong Chee Siang UCCD2103
10037 Mr Sor Kean Vee UCCD2103

10038
Encik Ahmad Zaffry Hadi Bin
Mohd Juffry UCCD2103

10039 Ts Dr Gan Ming Lee UCCN2243

10040
Dr Adeb Alid Mohammed
Ahmed Al-Samet UCCN2243

10041 Ms Oh Zi Xin UCCN2243
10042 Dr Nadeem Muhammad Waqas UCCN2243

10043
Mr Lee Kim Hoe @ Farhan Lee
Bin Abdullah UCCD3053

10044 Mr Tan Chiang Kang UCCD3223
10045 Mr Tou Jing Yi UCCD3223
10046 Puan Syazwani Binti Yahya UCCD3223

CHAPTER 3

47
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.2.6 Mock Data of Course Entity

Figure 3.2.7 Mock Data of Venue Entity

courseCode courseName lecNum tutorialNum pracNum creditHour

UCCD1004
PROGRAMMING CONCEPTS AND
PRACTICES

2 0 7
4

UCCD1143
PROBABILITY AND STATISTICS FOR
COMPUTING

2 5 0
3

UCCD2003
OBJECT-ORIENTED SYSTEMS ANALYSIS
AND DESIGN

2 7 0
3

UCCM1153
INTRODUCTION TO CALCULUS AND
APPLICATIONS

2 7 0
4

UCCN1004
DATA COMMUNICATIONS AND
NETWORKING

2 8 0
3

UBMM1011
SUN ZI'S ART OF WAR AND BUSINESS
STRATEGIES

1 0 0 1

UCCD2043
INFORMATION TECHNOLOGY PROJECT
MANAGEMENT

2 6 0 4

UCCD2044
OBJECT-ORIENTED PROGRAMMING
PRACTICES

2 0 10 4

UCCD2103 OPERATING SYSTEMS 2 5 0 4

UCCN2243
INTERNETWORKING PRINCIPLE AND
PRACTICES

2 0 13 4

UCCD3053
INFORMATION TECHNOLOGY
PROFESSIONAL ETHICS

2 4 0 3

UCCD3223 MOBILE APPPLICATIONS DEVELOPMENT 1 0 6 3

venueID venueName capacity buildingName venueType
100011 LDK1 200 Block L L
100012 LDK2 200 Block L L
100013 LDK3 300 Block L L
100014 LDK4 200 Block L L
100015 LDK5 200 Block L L
100016 EDK1 300 Block E L
100017 DDK1 300 Block D L
100018 N001 30 Block N T
100019 N002 30 Block N T
100020 N003 30 Block N T
100021 N004 30 Block N T
100022 N005 60 Block N T
100023 N006 60 Block N T
100024 N007 25 Block N T
100025 N008 30 Block N P
100026 N009 30 Block N P
100027 N010A 20 Block N P
100028 N010B 20 Block N P
100029 N101 25 Block N T
100030 N102 25 Block N T
100031 N103 25 Block N T
100032 N104 25 Block N T
100033 N105 25 Block N T
100034 N106 25 Block N T
100035 N107 20 Block N T
100036 N108 30 Block N P
100037 N109 30 Block N P
100038 N110A 20 Block N P
100039 N110B 20 Block N P

CHAPTER 3

48
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

For this project, elective courses are partially considered. Core courses are

mainly used to generate the mock dataset. The mock dataset may not contain

information that is 100% accurate or true to real life.

3.3 Verification Plan

After the implementation phase, the testing phase will be conducted as system

testing is carried out to evaluate the performance and accuracy of the system in

generating timetables based on the users’ input data. To confirm the correctness of the

system’s functions, verification testing is performed to validate that all features and

functionalities are working as intended.

3.3.1 Test Plan for Hard Constraints

The hard constraints’ test cases are listed as shown in Table 3.3.1.1 below, in

order to validate the system’s performance and ensure that the system generates the

timetables as intended.

Table 3.3.1.1 Hard Constraints Test Plan

Test

Case

No.

Description

Test Data

Expected Result

1. A lecturer can only teach

one class at the same time.

Lecturers’

timetables

In the lecturers’ timetable

generated, the lecturer is

allocated to only one class in

one timeslot.

2. Two courses cannot be

scheduled in the same venue

at the same time.

Classrooms’

timetables

In the classrooms’ timetable

generated, each timeslot

should not have two courses

in the same venue.

3. A student can only attend

one class at the same time.

Students’ In the students’ timetable

generated, the student is

CHAPTER 3

49
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

timetables
allocated to only one class in

one timeslot.

4. The number of students

cannot exceed the seating

capacity of the assigned

venue.

Classrooms’

timetables

In the classrooms’ timetable

generated, the class size that is

larger than the classroom

capacity cannot be allocated

to that respective class.

5. Courses that require specific

room types should be

scheduled in appropriate

facilities.

Classrooms’

timetables

In the classrooms’ timetable

generated, lecture classes

should be located inside the

class type of lecture. Practical

classes should be located

inside the class type of

practical.

6. Venues cannot be assigned

to the same timeslot more

than once.

Classrooms’

timetables

In the classrooms’ timetable

generated, it cannot have the

same venue allocated to the

same timeslots more than one

time.

7. Total maximum hours for

classes per day is 8 hours.

Classrooms’

timetables

In the classrooms’ timetable

generated, classes can only be

allocated within that 8-hour

per day frame.

8. A student cannot be

assigned to two different

venues in the same timeslot.

Students’

timetables

In the students’ timetable

generated, a student can only

be assigned to one classroom

at a time.

 9. The travel distance between

two venues of consecutive

Classrooms’

timetables

In the classrooms’ timetable

generated, the travel distance

CHAPTER 3

50
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

classes should not be more

than 500 meters.

between two consecutive

classes should be lesser than

500 meters.

3.3.2 Test Plan for Soft Constraints

The test cases for the soft constraints are as shown in Table 3.3.2.1 below. This

test plan is created so that all the soft constraints listed must be fulfilled in a way similar

to the hard constraints.

Table 3.3.2.1 Soft Constraints Test Plan

Test

Case

No.

Description

Test Data

Expected Result

1. Gaps between classes

should be minimized, such

as long breaks between

consecutive classes.

Classrooms’

timetables

In the classrooms’ timetable

generated, each timeslot

should not have a break in

between that is too long.

2. No classes should be

scheduled during lunch

break (12 p.m. – 2 p.m.).

Classrooms’

timetables

In the classrooms’ timetable

generated, there should be no

classes from 12 p.m. to 2 p.m.

3. There should be no classes

scheduled before 8 a.m. and

after 8.30 p.m.

Classrooms’

timetables

In the classrooms’ timetable

generated, there should be no

classes before 8 a.m. and after

8.30 p.m.

4. The maximum hours for

consecutive classes should

be 4 hours.

Classrooms’

timetables

In the classrooms’ timetable

generated, the total hours of

consecutive hours cannot

exceed 4 hours.

CHAPTER 3

51
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.3 Test Plan for the Proximity and Travel Minimization Constraint

The test cases for the proximity and travel minimization constraint are as given

in Table 3.3.3.1 below. The test plan here is that it ensures all the travel distance

constraints to be satisfied in a way as close to hard constraints as possible, in order to

maintain the practicability and efficiency of the timetable constructed.

Table 3.3.3.1 Proximity and Travel Minimization Constraint Test Plan

Test

Case

No.

Description

Test Data

Expected Result

1. Two consecutive classes for

the same lecturer should be

in nearby venues.

Lecturers’

timetables

In the lecturers’ timetable

generated, classes are

scheduled in venues within

500 meters, satisfying the

travel distance constraint.

2. Two consecutive classes for

the same student group must

be within walkable distance.

Students’

timetables

In the students’ timetable

generated, the distance

between venues is under 500

meters, fulfilling the

constraint.

3. Same-building consecutive

classes should be allowed

without any restriction.

Classrooms’

timetables

No travel distance issue since

both classes are in the same

building. Schedule is

accepted.

3.3.4 Test Plan for Timetable Schedule Generation

The purpose of this test plan is to evaluate the effectiveness and efficiency of

using GA to generate a timetable quickly. In this experiment, the design involves

varying the number of class sessions to simulate timetabling under varying levels of

complexity. Additionally, the number of user-selectable constraints is a manipulated

variable which is used to analyse the impact that the constraints will have on the

CHAPTER 3

52
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

generation time. These constraints may include lecturer preferences, maximum

consecutive class hours, preferred teaching time slots, and travel distance limits.

By adjusting both the class sessions numbers and the selected constraints, this

test aims to observe how the GA scales in terms of computational efficiency and

scalability. The resources herein refer to the overall classroom timeslots, which are

achieved by multiplying the number of time slots per week by the number of rooms.

The result of this test will help in understanding the effect of input size and complexity

of the constraints on the efficiency of the algorithm, and in optimizing the balance

between quality and speed of the generated timetable. Table 3.3.4.1 below listed down

the test plan for the timetable generation.

Table 3.3.4.1 Timetable Generation Test Plan

Test Case No. Description

1. Generate a timetable with a small number of classes

(approximately 20% of the resources) and 2 selected constraints.

2. Generate a timetable with a large number of classes

(approximately 60% of the resources) and 2 selected constraints.

3. Generate a timetable with a small number of classes

(approximately 20% of the resources) and all selectable

constraints.

4. Generate a timetable with a large number of classes

(approximately 60% of the resources) and all selectable

constraints.

5. Generate a timetable where the class events exceed the available

resources, to evaluate how the algorithm handles over-

constrained situations.

3.4 Main System Functionalities of Timetable Scheduling System

CHAPTER 3

53
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.4.1 Steps and Actions Performed by Users in the Timetable System

Figure 3.4.1.1 System Functionalities for the University Course Timetabling System

Figure 3.4.1.1 shows the interactions between the University Admin and the

various functionalities of the system. Before the timetable is generated, the

administrator can import the required data, and choose the relevant constraints. After it

has been created, the administrator can manage the timetable by saving, viewing,

exporting or deleting it.

CHAPTER 3

54
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.4.1.2 Process of University Course Timetabling System Creating a

Timetable

Figure 3.4.1.2 above shows the process flow of creating a timetable. The first

step is the login procedure, during which the system will authenticate user information

and display an error message if necessary. The administrator can then import data, and

the system will store it. Next, constraints and timetable parameters are selected, and the

system validates the constraints and timetable parameters. Error messages are shown if

the input is invalid, forcing the administrator to enter it again. The timetable generated

is displayed after validation is successfully. Lastly, the administrator has the choice to

CHAPTER 3

55
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

regenerate the timetable if needed. If the timetable generated is acceptable, the

timetable may be exported, and the administrator may logout of the system.

3.4.2 Constraints Used in the University Course Timetabling System

3.4.2.1 Hard Constraints

Based on the literature review, most of the existing research on university course

timetabling usually have a standard set of well-defined hard constraints. Avoiding class

clashes for lecturers and students, room capacity and preventing overlapping use of

venues are usually listed as hard constraints. These are the standard constraints that will

be used in this project as part of the base model. Table 3.4.2.1.1 below has listed some

of the hard constraints adopted from existing related work.

However, there is one constraint that is not highly common in the present

literature, although it is highly relevant in real university settings, particularly in large

campuses. It is the ‘Proximity and Travel Minimization Constraint’ with the purpose of

reducing the physical distance between consecutive classes for lecturers and students,

which helps reduce unnecessary movements between classes. Including this constraint

is especially important in large university campuses, where distant venues can affect

punctuality and academic efficiency.

Figure 3.4.2.1.1 Collection of Coordinates via Google Maps

CHAPTER 3

56
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Venue coordinates were captured using Google Maps as the authoritative

source, recorded in decimal degrees (WGS-84). For each teaching block, the operator

located the building on the UTAR Kampar campus map, zoomed in, and placed a point

at the primary pedestrian entrance. Coordinates were obtained via the Google Maps

context menu (Right-click) which displays latitude and longitude at the top of the panel,

as illustrated in Figure 3.4.2.1.1. Values were copied exactly in decimal format and

recorded to six decimal places, providing sufficient precision for intra-campus distance

checks.

To integrate these data, the coordinates were entered into the system’s venues

table as latitude and longitude fields in the database. During timetable generation and

validation, the system calculates great-circle (straight-line) distances between the

coordinates of venues in consecutive sessions using the Haversine formula. These

distances are then compared against the project’s Proximity and Travel Minimization

constraint, which requires consecutive venues to be no more than 500 meters apart for

any individual student or lecturer.

Figure 3.4.2.1.2 Harvensine Formula [48]

For each day and for each participant, the system inspects consecutive sessions.

It computes the geodesic distance between the two venues using the Haversine formula

(Figure 3.4.2.1.2) based on the latitude/longitude stored for each venue. If the computed

distance exceeds 500 meters, a penalty is applied to the chromosome’s fitness, making

schedules with excessive walking less likely to survive selection. The threshold is

configurable but was fixed at 500 m for this evaluation.

Additionally, the course constraint whereby a fixed set of courses assigned to

each student group should be scheduled without conflicts is added to the system. This

is to ensure that the courses taken by a specific student group will not clash with each

other. For example, class of course A clashing timeslots or venue with class of course

B. While some may share the same timeslots, the system can assign them different

venues or other available timeslots.

CHAPTER 3

57
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 3.4.2.1.3 Hard Constraints Used

Constraint

No.

Hard Constraints

1. A lecturer can only teach one class at the same time.

2. Two courses cannot be scheduled in the same venue at the same time.

3. A student can only attend one class at the same time.

4. The number of students cannot exceed the seating capacity of the

assigned venue.

5. Courses that require specific room types should be scheduled in

appropriate facilities.

6. Total maximum hours for classes per day is 8 hours.

7. A fixed set of courses assigned to each student group should be

scheduled without conflicts.

8. The travel distance between two venues of consecutive classes should

not be more than 500 meters.

3.4.2.2 Soft Constraints

Most of the existing literature on university course timetabling from the

literature review also includes some of the most common soft constraints to provide

quality and improve usability for the timetable generated. These soft constraints are

not necessary but fulfilling them improves the overall experience for the students and

the lecturers. A few of the standard soft constraints include accommodating the

lecturers’ preferences, minimizing the gaps between classes and not assigning

unwanted class times such as lunchtimes, early mornings and late evenings. These soft

constraints are listed in Table 3.4.2.2.1 below and will be adopted in this project.

CHAPTER 3

58
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 3.4.2.2.1 Soft Constraints Used

Constraint

No.

Soft Constraints

1. Gaps between classes should be minimized, such as long breaks between

consecutive classes.

2. No classes should be scheduled during lunch break (12 p.m. – 2 p.m.).

3. There should be no classes scheduled before 8 a.m. and after 6 p.m.

4. The maximum hours for consecutive classes should be 4 hours.

3.4.3 Design of Proposed Genetic Algorithm for the University Course

Timetabling System

The step of the genetic algorithm involves initialization, fitness evaluation,

selection, crossover, and mutation. Hence, the process and flow to generate an

optimized timetable will be explained and illustrated using Figure 3.4.3.1 below.

CHAPTER 3

59
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.4.3.1 Flow of Proposed Genetic Algorithm for University Course

Timetabling System

The initialization phase of the scheduling process starts with the random

generation of an initial population of schedules, or chromosomes. These initial

timetables are likely to be infeasible and might violate multiple constraints. Each

chromosome represents a possible solution which is a full timetable made up of

scheduled class sessions.

After initialization, every chromosome is evaluated using a fitness function.

This function measures how well a timetable satisfies all the hard and soft constraints,

such as lecturer availability, student conflicts, classroom capacity, room types, and

travel distance between classes. The objective is to reduce violations of constraints and

increase overall schedule efficiency.

CHAPTER 3

60
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

After that, the algorithm moves on to the selection phase. To select the best

chromosomes to become the parents of the following generation, Tournament Selection

is used in this project. In this scenario, the fittest chromosome out of the group is

selected as a parent for each tournament, and the process is carried out by randomly

picking a sample of chromosomes from the population. This approach preserves genetic

diversity while promoting the selection of stronger individuals.

Next, Two-Point Crossover is used to generate new offspring after the parent

chromosomes have been chosen. In this process, two chromosomal crossover locations

are chosen at random. Two child chromosomes are produced when the genes (timetable

components) between these sites are switched between the two parent chromosomes.

Compared to Single-Point Crossover, this approach enables more varied gene

exchange, expanding the solution space’s exploration and potentially improving

solution quality.

After crossover, the new offspring undergo mutation in order to introduce

diversity into the population and prevent premature convergence. Swap Mutation

technique is applied, where two randomly chosen class sessions are switched within the

chromosome. This improves the algorithm’s capacity to identify optimal or nearly ideal

solutions and aids in the exploration of new areas of the solution space.

The algorithm then checks whether the solution meets the termination criteria -

reaching the maximum number of generations or finally having a solution with an

acceptable fitness level. If it does not satisfy the termination criteria, the offspring of

the new generation becomes the current population, and it goes back to the fitness

function evaluation so that the process initiates the next generation. When the

termination conditions are reached, then the algorithm stops and the chromosome with

the best fitness found so far is presented as the timetable solution.

Class sessions are created when users enter data into the timetable scheduling

tool, such as student information, lecturer availability, classroom details, and course

requirements. Chromosomes then encode these details. This input is processed by the

genetic algorithm through a series of evolutionary cycles until optimized and feasible

timetable is generated.

CHAPTER 3

61
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Constraints which include room capacity, lecturer and student availability,

session overlap avoidance, travel distance between classes, and preferred room types

are continuously evaluated during the process. This is to ensure quality and feasibility

of the solutions is maintained. By including these limitations, the system can generate

useful schedules that satisfy user requirements and university regulations.

3.4.3.1 Initialization

The initialization starts with the generation of an initial population of

chromosomes, each of which is a complete candidate timetable. This process starts with

the conversion of the raw session data, such as courses, lecturers, classrooms, and

student groups, into a list of schedulable sessions. Each session represents a class

session which are then used to populate the available timeslots in different classrooms.

The arrangement of these sessions across all available rooms and timeslots forms the

chromosomes (timetables), which forms the initial population.

To generate a timetable, the system considers the following resources:

• Days per week: The number of academic days available for classes (For

example, Monday to Friday, avoiding weekend classes)

• Slots per day: The number of available class periods within a single day (The

total hours available per day for the timetable is 10 hours)

• Available classrooms and their capacities: The physical rooms where

sessions will be held. Each classroom has a specific type (lecture, tutorial,

practical), capacity, and location.

Each classroom has a consistent number of available slots per week, which is calculated

as:

Slots per day x Days per week

All available slots across all classrooms are represented as genes in a chromosome.

Each course may consist of multiple session types. Each event contains the

following information:

• Event type: L(Lecture), T(Tutorial), P(Practical)

• Number of students

CHAPTER 3

62
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Lecturer assigned

• Course code

• Student group

• Session ID (Unique identifier)

• Group ID (To group related events, such as multiple tutorials for the same

course)

In addition to session information, each classroom in the system is defined with its

own properties, including:

• Venue ID

• Room type

• Capacity

• Location

Before assigning a session to a classroom-timeslot pair, the system checks:

• Whether the classroom type matches the session type.

• Whether the room capacity can accommodate the session’s number of students.

Table 3.4.3.1.1 Example of Session Representation in a Timetable

Session Session

Type

No. of

Students

Lecturer Course

Code

Student

Group

Session

ID

Group

ID

1 L 100 Dr. Lim UCCD1143 CSY1S1 1 1

2 P 20 Dr. Tan UCCD1004 CSY1S2 2 7

3 P 20 Dr. Tan UCCD1004 CSY1S2 3 7

4 T 25 Dr. Ku UCCD2003 CSY1S3 4 8

5 T 30 Dr.

Mogana

UCCD2003 CSY1S2 5 2

6 L 100 Dr. Ku UCCD2003 CSY1S3 6 5

Based on Table 3.4.3.1.1 above, the session is split into different sessions with

a shared Group ID in the case that the number of students is greater than the classroom’s

capacity. In this process, every group of students receives enough hours for every

CHAPTER 3

63
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

subject and is subjected to classroom capacity regulations. Group ID allows sessions to

be categorized such that associated sessions can be determined and handled as a single

session at scheduling and optimization.

Chromosome Structure and Encoding:

In this project, the non-binary representation is used to construct the

chromosome of the GA. Each chromosome in the population is a one-dimensional array

that encodes the full timetable. This direct encoding using a non-binary integer is a

direct encoding technique where the structure of the chromosome is designed such that

each segment corresponds to the schedule of a particular classroom across the week. If

the slot is unused, the gene is set to 0. The system maintains a consistent order of

classrooms so that gene positions are easily mapped to actual rooms and time slots

(classroom-timeslot pair).

Each session is assigned to a specific classroom timeslot during chromosome

generation. The total number of available genes in a chromosome is calculated as:

Number of classrooms x Slots per day x Days per week

The total number of available slots for sessions that can be scheduled throughout

the schedule is defined by this value. Each gene in the chromosome represents one

timeslot in one classroom. Each gene may be populated with a specific Session ID,

signifying that a session is planned for that time slot, or it may be empty (value 0).

For example, there are 5 days per week and 5 slots per day for lectures

(assuming 2 hours per slot), and lastly 3 lecture classrooms. Each classroom has 5 x 5

= 25 timeslots. Hence, total chromosome length is: 3 x 5 x 5 = 75 genes. Table 3.4.3.1.1

illustrates it.

Table 3.4.3.1.2 Example of Chromosome Length

Gene Index Classroom Day Slot Value (Session

ID)

0 LDK4 Mon 1 0

1 LDK4 Mon 2 1

2 LDK4 Mon 3 0

CHAPTER 3

64
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

… … … … …

25 LDK5 Mon 1 5

Table 3.4.3.1.3 Example of Chromosome Structure

Chromosome

A

0 1 0 3 0 2 4 5

Chromosome

B

2 1 0 0 0 0 8 15

Chromosome

C

17 0 4 15 5 0 3 0

Chromosome

D

25 0 0 6 0 0 0 0

Here in Table 3.4.3.1.2, each row is a chromosome (complete timetable), and

each cell represents a gene (timeslot). As mentioned above, the Session ID is filled in

if a class is scheduled in that slot and 0 means the slot is empty. Constraints are handled

by condition checking at initialization and are also maintained by the fitness function

throughout evolution. The initialization process continues until the number of

chromosomes reaches the defined population size (for example, 100 in this system).

The genetic algorithm will later perform operations such as crossover, mutation, and

fitness evaluation based on these chromosomes.

3.4.3.2 Fitness Evaluation

After the initial population of chromosomes is generated, the next step is to

determine the fitness value of each chromosome, which indicates how good or possible

the generated schedule is. The greater the fitness value, the better the schedule and the

closer it is to satisfying the given constraints, while the lower the fitness value, the

higher the number of violations. In this system, the fitness score is calculated by the

number of hard constraints violated. For each violation, the fitness score goes down by

1. The ideal fitness score is 0, meaning that there are no violations in the timetable.

Common constraint violations are placing a lecturer into more than one class at a time,

CHAPTER 3

65
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

putting a student group into more than one class at the same time, or placing two

sessions to the same room at the same timeslot. These issues decrease the fitness score

and indicate that the schedule is infeasible.

3.4.3.3 Selection

In this project, Tournament Selection is applied to select chromosomes for the

next process of crossover. In Tournament Selection, a small group of chromosomes is

selected randomly from the population and their fitness values are compared. Among

the selected group, the chromosome with the best fitness value wins and will proceed

to the crossover process. This is repeated until the required number of parent

chromosomes is selected.

For example, let the population consist of the following chromosomes and their

respective fitness values:

Table 3.4.3.3.1 Example of Chromosome with their Fitness Values

Chromosome Fitness Value

A -5

B -1

C -3

D -2

Assuming the size of the tournament is 2, the algorithm can select chromosome

C and D randomly in the first tournament. Out of the two, chromosome D is selected

as it has a higher fitness value (-2 > -3). In another tournament, chromosomes A and B

can be selected where B is selected because it has a higher fitness (-1 > -5). This cycle

is repeated again and again until some number of parents to be selected for the crossover

operation is chosen. Compared to other methods like Roulette Wheel Selection,

Tournament Selection offers greater control over selection pressure and ensures that the

fittest chromosomes get a higher probability of survival while being fair enough to give

lower-performing ones an opportunity to contribute towards maintaining genetic

diversity.

CHAPTER 3

66
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.4.3.4 Crossover

Following the selection phase, Two-Point Crossover technique is used to

generate new offspring from selected parent chromosomes. Two-Point Crossover

chooses two points of crossing places on the chromosome, while Single-Point

Crossover splits and exchanges at a single point. The section in between these two

points is exchanged between a pair of parents, and the generated offspring inherit traits

from parents, resulting in offspring that inherit traits from both parents more

diversely. This method brings in diversity and enables more exploration of the solution

space. Figure 3.4.3.1 illustrates the Two-Point Crossover model, whereby two lines

represents the two crossover points in the chromosomes.

Figure 3.4.3.4.1 Two-Point Crossover Model [47]

For instance, look at the following two parent chromosomes:

Table 3.4.3.4.1 Example of Two Parent Chromosomes

Chromosome Gene Sequence

A 2 0 3 1 4 5 6 7

B 8 9 0 2 1 3 5 4

Suppose the two crossover positions are between 2 and 5. The gene segment

from position 2 to 5(inclusive) will be swapped between the two parents.

CHAPTER 3

67
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 3.4.3.4.2 Example of Two Children Chromosomes (After Crossover)

Chromosome Gene Sequence

A 2 0 0 2 1 3 6 7

B 8 9 3 1 4 5 5 4

Here, the coloured font areas are the crossed-over areas. The crossover couples

are picked randomly from the population in every iteration, and offspring produced

have evolved for mutation and fitness testing.

3.4.3.5 Mutation

In this phase, the mutation operator used is Swap Mutation, and it swaps at

timeslot level in the timetable. Each timeslot in a chromosome has a small chance of

being selected for mutation, which is set at 5% in this example. After having picked out

one timeslot, the algorithm would randomly pick another timeslot from the same

chromosome and then swap their positions. This mutation operation allows the system

to introduce new variations to the population, preventing local optima and increasing

the diversity of candidate solutions. The mutation rate may be optimized during testing

to find the best value.

For example, assume that a timeslot that contains an session of ID 7 is selected

for mutation. A random timeslot is next selected, possibly with the session ID 12. The

two sessions’ positions are then exchanged within the chromosome. This is as

illustrated in Figure 3.4.3.5.1 below.

Gene Sequence

2 12 0 2 1 3 6 7

2 7 0 2 1 3 6 12

Figure 3.4.3.5.1 Example of Swap Mutation

CHAPTER 4

68
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

System Design

4.1 System Architecture Design

Figure 4.1.1 Architecture Design of the System

In this project, the system architecture design is as shown above in Figure 3.6.1,

which follows a three-tier architecture model. There are three parts: the presentation

tier, the logic tier, and the data tier. The presentation tier represents the user device

whereby the standalone web application is developed using Eclipse Java. This tier

captures input from the user and sends it to the logic tier. The logic tier is implemented

using Python and Flask API. The logic tier receives the input and runs the Genetic

Algorithm (GA) for scheduling timetables. The logic tier interacts with the data tier, as

it stores and retrieves data from the data tier. The data tier is a MySQL database that is

mainly responsible for data storage and retrieval.

Based on Figure 3.6.1, mysql.connector acts as the link between the logic tier

and the data tier. It makes it possible for the Python and Flask backend to access the

MySQL database in a way that the system can perform various database operations

such as inserting, updating, reading, and deleting data. Through this connection, the

logic tier can utilize the timetable data generated by the GA and ensure that timetables

of classes are being stored in the database correctly.

CHAPTER 4

69
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 Data Storage Design

In this project, the data is stored in a MySQL database, which is a type of

Relational Database Management System (RDBMS). The reason MySQL was chosen

is because it is a well-known and open-source RDBMS that is simple to integrate with

Python applications through the usage of modules like the MySQL Connector. To

generate the timetable, important details would be stored in the database. These include

venue details, courses, lecturers, and students. XAMPP would also be used to host the

MySQL database locally throughout the development period. This is for easy access

and management. The data storage structure of data in the MySQL database is shown

in the Figure 3.6.1 below.

Figure 4.2.1 Database Structure Design of the Timetabling Tool

CHAPTER 4

70
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The MySQL database contains main entities required for timetabling generation

of courses, such as classroom information, course information, lecturer allocations,

student group registrations, and timetables generated. Each entity is tabled in a

relational format and represented with foreign keys (FK) and primary keys (PK) to

minimize redundancy and support data integrity.

Instead of being binary objects, JSON-serialized data is placed in LONGTEXT

fields for timeline and Genetic Algorithm configuration outcome. This approach

improves transparency since the stored data can be viewed easily, edited, or exported

without resorting to de-serialization libraries. Compared to other alternatives such as

storing in text files or XML files, using a MySQL database is more scalable, data-

consistent, and provides easier querying alternatives, which are essential in handling

complex timetable generation processes in a university environment.

Table 4.2.1, Table 4.2.2, Table 4.2.3, Table 4.2.4, Table 4.2.5, Table 4.2.6,

Table 4.2.7, Table 4.2.8, and Table 4.2.9 below displays the data dictionary of the

entities in this system.

Table 4.2.1 Data Structure of Student Group Entity

Field Name Data Type Description

groupID (PK) INT(6) Unique identifier for

student group

groupName VARCHAR(255) Name of the student

group

programName VARCHAR(60) Name of the program

studyYear INT(6) Year of study

studentNum INT(6) Number of students in a

student group

CHAPTER 4

71
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 4.2.2 Data Structure of Lecturer Entity

Field Name Data Type Description

lecID (PK) INT(6) Unique identifier for each

lecturer

lecName VARCHAR(255) Name of the lecturer

Table 4.2.3 Data Structure of Course Entity

Field Name Data Type Description

courseCode (PK) VARCHAR(20) Code of the course

courseName VARCHAR(255) Full name of the course

lecNum INT(2) Number of lecture classes

in the course

tutorialNum INT(2) Number of tutorial classes

in the course

pracNum INT(2) Number of practical

classes in the course

creditHour INT(2) Number of credit hours

for the course

Table 4.2.4 Data Structure of Venue Entity

Field Name Data Type Description

venueID (PK) INT(6) Unique identifier for the

venue

CHAPTER 4

72
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

venueName VARCHAR(50) Name of the venue

capacity INT(4) Maximum number of

students the room can

accommodate

buildingName VARCHAR(50) Building name where the

classroom is located

venueType VARCHAR(50) Type of room

Table 4.2.5 Data Structure of Timetable Entity

Field Name Data Type Description

timetableID (PK) INT(6) Unique identifier for the

timetable

timetableData LONGTEXT Serialized text storing

generated timetable data

gaParameters LONGTEXT Serialized text storing GA

(Genetic Algorithm)

parameters

Table 4.2.6 Data Structure of Student_Course Entity (Join Table)

Field Name Data Type Description

groupID (PK, FK) INT(6) Linked to Student Group

(groupID)

courseCode (PK, FK) VARCHAR (20) Linked to courses

(courseCode)

CHAPTER 4

73
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 4.2.7 Data Structure of Lecturer_Course Entity (Join Table)

Field Name Data Type Description

lecID (PK, FK) INT(6) Linked to Lecturer

(lecID)

courseCode (PK, FK) VARCHAR (20) Linked to courses

(courseCode)

Table 4.2.8 Data Structure of Timeslot Entity

Field Name Data Type Description

timeslotID (PK) INT(6) Linked to Lecturer

(lecID)

day VARCHAR (20) Linked to courses

(courseCode)

startTime TIME Start time of the timeslot

endTime TIME End time of the timeslot

Table 4.2.9 Data Structure of Session Entity

Field Name Data Type Description

sessionID (PK) INT(6) Unique identifier for the

session

timetableID (FK) INT(6) Linked to timetable

(timetableID)

timeslotID (FK) INT(6) Linked to timeslots

(timeslotID)

CHAPTER 4

74
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

venueID (FK) INT(6) Linked to venues

(venueID)

courseCode (FK) VARCHAR(20) Linked to courses

(courseCode)

groupID (FK) INT(6) Linked to student_groups

(groupID)

lecID (FK) INT(6) Linked to lecturers

(lecID)

sessionType VARCHAR(10) Type of session ('Lecture',

'Tutorial', 'Practical')

4.3 Graphical User Interface Design

Figure 4.3.1 Start Screen of the Standalone Web Interface

CHAPTER 4

75
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.2 Home Screen

 Figure 4.3.1 shows the start screen being displayed when the application is run.

After 1 second, the home screen in Figure 4.3.2 will appear. The home screen consists

of the side left bar which enables users or university administrators to manage the

timetables and resources such as lecturers, venues, and student groups. This

management of resources is directly linked to the database. This means that the CRUD

functionalities are being applied to the backend database as the user interacts with the

interface here.

 Under timetable management, the user may create a timetable, edit the

timetables, delete a timetable or view history. Under resource management, the user

may manage lecturers, manage venues, or manage groups. Lastly, the GA Analytics is

used to display the generation of the timetable, its parameters and the evolution of the

solutions generated.

CHAPTER 4

76
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.3 Create New Timetable Screen

Figure 4.3.4 Import Data Options

In Figure 4.3.3, the user can create a new timetable by filling in the following

details. The user can fill in the timetable name field, select which trimester, which

student group and the date range of the semester. The import data feature is for users to

import their own data in a CSV format. Referring to Figure 4.3.4, there will be three

options in the dropdown list when importing data, namely ‘Update Existing’, ‘Skip

Duplicates’, and ‘Overwrite All’. This is for data handling purposes for when the

database contains existing data.

CHAPTER 4

77
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.5 Hard and Soft Constraints Selection

In figure 4.3.5, users may choose which hard or soft constraints they want to

include when generating their timetable.

Figure 4.3.6 Timetable Generated in Table

CHAPTER 4

78
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.7 Timetable Generated Timeslots

The developed timetable generator system provides an automated solution for

creating class schedules using a genetic algorithm. It offers two main forms of output,

which is a structured tabular view and a visual weekly timetable. The tabular view lists

detailed session information such as course code, lecturer, venue, student group, and

session type, and it supports exporting to CSV, Excel, or PDF, as well as direct saving

into the database. The visual timetable presents the same information in a calendar-style

grid, where sessions are displayed as color-coded blocks arranged by day and time,

making it easy for students and lecturers to understand their schedules at a glance. To

enhance usability, the system also includes features such as clash detection, export

options, and confirmation messages, ensuring that the generated timetable is valid, user-

friendly, and suitable for both administrative and academic use.

CHAPTER 4

79
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.8 Edit Timetable Selection

Figure 4.3.9 Edit Timetable Display Screen

CHAPTER 4

80
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.10 Edit Timetable Add Session

Figure 4.3.11 Edit Timetable Delete Session

The Edit Timetable function allows users to view, modify, and manage existing

timetables stored in the system. When a user selects this feature, a dropdown menu is

provided to choose from available timetables (Figure 4.3.8). Once selected, the system

retrieves and displays the sessions associated with the chosen timetable in a tabular

format, showing details such as day, time, course, lecturer, group, venue, and session

CHAPTER 4

81
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

type (Figure 4.3.9). This ensures that users can easily locate and manage specific

sessions.

As shown in Figure 4.3.10, the module supports multiple editing operations.

Users can add new sessions by entering relevant details such as day, time range, course,

lecturer, group, venue, and session type through a form interface. Existing sessions can

be modified by selecting them from the table and updating the required information.

Additionally, sessions may be deleted, with the system providing a confirmation dialog

to prevent accidental removals (Figure 4.3.11).

At the bottom of the interface, functional buttons allow users to perform key

operations: Add Session, Edit Selected Session, Delete Selected Session, and Save

Changes. For data portability and reporting, the system also includes options to export

the timetable into CSV or Excel format.

Figure 4.3.12 Delete Timetable Selection

CHAPTER 4

82
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.13 Delete Timetable Screen

The Delete Timetable function provides administrators with the ability to

remove outdated or redundant timetables from the system while maintaining data

integrity. In Figure 4.3.12, users can select a timetable from the dropdown list, where

each entry is identified by its name and unique ID. Once selected, the system retrieves

and displays the full list of sessions within the timetable, including details such as day,

time, course, lecturer, group, venue, and session type as shown in Figure 4.3.13.

Figure 4.3.14 View Archived Timetables

CHAPTER 4

83
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.15 View Archived Sessions of Selected Timetables

Figure 4.3.16 Clear Archived Timetables

Before deletion, the system applies an archive-first approach, meaning the

timetable is first archived for record-keeping and then deleted from the active timetable

list. This prevents accidental permanent loss of data and ensures that historical records

remain available if needed. The red warning text reinforces the importance of the action,

reminding users that this process removes the timetable from the main table.

The Archived Timetables feature provides a safe way to retain old timetables

after they are deleted from the active list. When a timetable is archived, it is stored in a

separate section along with metadata such as its original ID, label, archive date, and

reason for archiving. Users can open the archive window to review all previously

CHAPTER 4

84
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

archived timetables and select any timetable to view its detailed sessions (Figure 4.3.14,

Figure 4.315). The detailed session view lists the archived courses together with

lecturer IDs, group IDs, session types, and archive dates, ensuring that historical

scheduling information remains accessible for reference or auditing purposes.

In addition to viewing, the system also provides a Clear Archived Timetables

function as shown in Figure 4.3.16, which permanently deletes all archived data. A

confirmation dialog is displayed before the action is performed, clearly warning that

the deletion is irreversible. This safeguard ensures users are fully aware of the

consequences before permanently removing historical timetable records.

Overall, this module strengthens data management by maintaining an archive

of past timetables for accountability and traceability, while still allowing administrators

to permanently clear data when it is no longer required.

Figure 4.3.17 Manage Lecturers

CHAPTER 4

85
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.18 Manage Venues

Figure 4.3.19 Manage Groups

The Resource Management section of the University Timetabling System

allows administrators to manage the core resources required for timetable generation:

lecturers, venues, and student groups. Each module provides CRUD (Create, Read,

Update, Delete) functionality with a straightforward form interface and tabular data

view.

The Manage Lecturers module in Figure 4.3.17 maintains a list of lecturers

along with their unique IDs and names. Administrators can add new lecturers, update

existing records, delete lecturers who are no longer active, or clear the form for new

CHAPTER 4

86
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

input. A search function is available to quickly locate lecturers by ID or name, making

the process efficient and scalable.

The Manage Venues module in Figure 4.3.18 handles information about

available classrooms, labs, and lecture halls. Each venue record stores attributes such

as venue ID, name, capacity, building, and type (lecture, tutorial, or practical). This

ensures that room assignments during timetable generation respect constraints such as

seating capacity and room type suitability. The module includes functions to add,

update, delete, and search for venues, ensuring the database remains accurate and up to

date.

The Manage Groups module in Figure 4.3.19 organizes student groups by ID,

group name, program, year of study, and number of students. This information is crucial

for scheduling as it ensures that the system allocates the correct sessions to the right

groups, considering both academic program and cohort size. Like the other modules, it

supports adding, updating, and deleting group records, as well as searching based on

group details.

Figure 4.3.20 GA Analytics

The GA Analytics module in Figure 4.3.20 provides insights into the genetic

algorithm’s timetable generation process by displaying key parameters, operations, and

fitness evaluation results. At the top of the interface, the system shows the run

parameters used for the current execution, such as population size, mutation rate,

crossover rate, and constraints. This makes it easier for users to understand the

configuration that influenced the timetable generation.

CHAPTER 4

87
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

On the left side of the interface, the system tracks the evolutionary operations

across generations, including selection, crossover, and mutation events. This log

enables users to follow how the genetic algorithm progresses over time, refining

solutions until a feasible timetable is reached.

The right-hand section includes a visual inspector, where the generated

timetable is displayed in a weekly grid format. Each session is placed in its respective

day and timeslot, showing course codes, lecturers, and venues. The color-coded

visualization makes it easy to identify allocated sessions and spot potential constraint

violations.

By combining algorithmic details with a clear timetable visualization, the GA

Analytics module bridges the gap between backend optimization and user

understanding, ensuring that administrators can both validate the output and analyze

the effectiveness of the genetic algorithm.

CHAPTER 5

88
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

System Implementation

5.1 Hardware Setup

The hardware used in this project includes an android device for interface

testing and a laptop computer that can handle the development and test phases of the

timetabling system. Python will be used to implement the genetic algorithm, MySQL

to manage databases, and Flutter using Android Studio to build the smartphone

interface. The high-end hardware ensures maximum processing, quick compilation, and

smooth system execution, especially on schedule generation problems with many class

events and constraints. Although the algorithm relies less on GPU acceleration, the

overall performance and responsiveness of the system are enhanced by the high-end

specifications. Table 3.4.1.1 below shows the detailed specifications of the laptop used.

Table 5.1.1 Specifications of laptop

Description Specifications

Model MSI Katana A15 AI B8VE

Processor AMD Ryzen 7 8845HS

Operating System Windows 11 64-bit

Graphic NVIDIA® GeForce® RTX 4050

Memory 16.0GB RAM

Storage 512GB SSD

CHAPTER 5

89
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2 Software Setup

Table 5.2.1 below summarizes the software to be used in the project.

Table 5.2.1 Software Used

Description Specifications

Operating System Windows 11 Home Single Language

Programming

Language

Python – Visual Studio Code

Database

Management System

MySQL

Standalone Web

Interface

Eclipse IDE for Java Developers – 2025-06

API Flask

Version Control

System

GitHub

CHAPTER 5

90
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3 Setting and Configuration

Visual Studio Code Setup:

Figure 5.3.1 and Figure 5.3.2 below shows the basic setup for Visual Studio Code.

Figure 5.3.1 Visual Studio Code Installation

Figure 5.3.2 Visual Studio Code Default Home Screen

Python:

CHAPTER 5

91
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.3 displays the installation of Python 3.13.3 for Windows locally on the

laptop. This package is downloaded from the official website: https://www.python.org/

Figure 5.3.3 Python 3.13.3 Installation

Figure 5.3.4 below shows the installation of the Python Extension in Visual Studio

Code.

Figure 5.3.4 Visual Studio Code Python Extension Installation

CHAPTER 5

92
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.5 below shows the installation of the Code Runner in Visual Studio Code.

Figure 5.3.5 Visual Studio Code Runner Extension Installation

Figure 5.3.6 and Figure 5.3.7 below shows the configuration of the Code Runner

extension in Visual Studio Code. This step enables Visual Studio Code to run and debug

the Python code easily as it enables the built-in Visual Studio Code Terminal to be

activated.

Figure 5.3.6 Visual Studio Code Runner Extension Configuration

CHAPTER 5

93
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.7 Visual Studio Code Runner Extension Setup

Figure 5.3.8 and Figure 5.3.9 below shows the configuration of the path for Python to

be defined.

Figure 5.3.8 Python Path Configuration in Environment Variables

CHAPTER 5

94
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.9 Python New Path Configuration in Environment Variables

CHAPTER 5

95
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Flask:

Figure 5.3.10 and Figure 5.3.11 below shows the installation steps for Flask in Visual

Studio Code.

Figure 5.3.10 Flask API in Visual Studio Code Installation

CHAPTER 5

96
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.11 Flask API in Visual Studio Code Installation Success

Some basic code and configuration commands are used to test the API connection.

Figure 5.3.12 Flask API in Visual Studio Code Testing

CHAPTER 5

97
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

MySQL:

Figure 5.2.13 below shows the version of MySQL that was installed.

Figure 5.3.13 MySQL Installation

CHAPTER 5

98
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.14 below shows the version of MySQL that was installed.

Figure 5.3.14 MySQL Setup 1

Figure 5.3.15, Figure 5.3.16, Figure 5.3.17, Figure 5.3.18, Figure 5.3.19, Figure

5.3.20, Figure 5.3.21, Figure 5.3.22, Figure 5.3.23, Figure 5.3.24 and Figure 5.3.25

below shows the configuration steps for installing MySQL.

Figure 5.3.15 MySQL Setup 2

CHAPTER 5

99
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.16 MySQL Setup 3

Figure 5.3.17 MySQL Setup 4

CHAPTER 5

100
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.18 MySQL Setup 5

Figure 5.3.19 MySQL Setup 6

CHAPTER 5

101
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.20 MySQL Setup 7

Figure 5.3.21 MySQL Setup 8

CHAPTER 5

102
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.22 MySQL Setup 9

Figure 5.3.23 MySQL Setup 10

CHAPTER 5

103
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.24 MySQL Setup 11

Figure 5.3.25 MySQL Configuration Completed

CHAPTER 5

104
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.26 shows the installation of SQLTools extension in Visual Studio Code

which enables for SQL queries to be used in Visual Studio Code.

Figure 5.3.26 Visual Studio Code SQLTools Extension Installation

For SQLTools to be able to work, a driver is required. Figure 5.3.27 displays the

installation of SQLTools MySQL/MariaDB.TiDB extension in Visual Studio Code.

Figure 5.3.27 Visual Studio Code SQLTools MySQL/MariaDB/TiDB Extension

Installation

CHAPTER 5

105
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.28, Figure 5.3.29, Figure 5.3.30 and Figure 5.3.31 continues with the steps

for configuring SQLTools in Visual Studio Code until the connection with the

database is successful.

Figure 5.3.28 Visual Studio Code SQLTools Settings for MySQL

Figure 5.3.29 Visual Studio Code SQLTools Configuration

CHAPTER 5

106
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.30 Visual Studio Code SQLTools Connection Completed

Figure 5.3.31 Visual Studio Code MySQL Successful Connection

CHAPTER 5

107
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

To connect to the database in Python, the MySQL Connector/Python is required. Figure

5.3.32 shows the installation of the mysql-connector-python in Command Prompt (Run

as Administrator).

Figure 5.3.32 Visual Studio Code MySQL Connector/Python Installation

Figure 5.3.33 shows that it has successfully connected to the database.

Figure 5.3.33 Visual Studio Code MySQL Connector/Python Successful Connection

CHAPTER 6

108
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

System Evaluation And Discussion

6.1 System Testing and Performance Metrics

In this section, system testing will be performed to evaluate the performance

and correctness of the system by referring to the test cases defined in Chapter 3.

6.1.1 System Testing Setup

Figure 6.1.1.1 Test Plan Data for Student Groups

CHAPTER 6

109
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.1.1.2 Test Plan Data for Lecturers

type lecID lecName courseCode
lecturer 10001 Dr Tee Chee Wee UBMM1011
lecturer 10002 Dr Tan Joi San UCCD1004
lecturer 10003 Ts Dr Phan Koo Yuen UCCD1004
lecturer 10004 Dr Jasmina Khaw Yen Min UCCD1004
lecturer 10005 Dr Kh'ng Xin Yi UCCD1004
lecturer 10006 Prof Dr Leung Kar Hang UCCD1004
lecturer 10007 Dr Ahmad Hakimi Bin Ahman Sa'ahiry UCCD1004
lecturer 10008 Ts Dr Lim Seng Poh UCCD1143
lecturer 10009 Dr Chai Tong Yuen UCCD1143
lecturer 10010 Ts Dr Ku Chin Soon UCCD2003
lecturer 10011 Ts Dr Mogana a/p Vadiveloo UCCD2003
lecturer 10012 Dr Tahanya Bashar M. A. UCCD2003
lecturer 10013 Cik Puteri Nursyawati Binti Azzuri UCCD2003,MPU34182
lecturer 10014 Dr Nur Balqishanis Binti Zainal Abidin UCCM1153
lecturer 10015 Dr Lem Kong Hoong UCCM1153
lecturer 10016 Dr Aun Yichiet UCCN1004
lecturer 10017 Ms Tan Lyk Yin UCCN1004
lecturer 10018 Ts Dr Ooi Chek Yee UCCN1004
lecturer 10019 Dr Muhammad Syaiful Amri Bin Suhaimi UCCN1004
lecturer 10020 Ts Dr Chang Jing Jing UCCN1004
lecturer 10021 Dr Fityanul Akhyar UCCN1004
lecturer 10022 Dr Abdulrahman Aminu Ghali UCCN1004,UCCN2243
lecturer 10023 Dr Rohani binti Bakar UCCN1004
lecturer 10024 Dr Norliana Binti Muslim UCCN1004
lecturer 10025 Dr Rahman Sadli UCCN1004
lecturer 10026 Dr Teoh Shen Khang UCCN1004
lecturer 10027 Puan Nor 'Afifah Binti Sabri UCCN1004
lecturer 10028 Dr Farina Saffa Binti Mohamad Samsamnun UCCN1004,UCCN2243
lecturer 10029 Ts Yong Tien Fui UCCD2043
lecturer 10030 Dr Zurida Binti Ishak UCCD2043
lecturer 10031 Dr Sayed Admad Zikri Bin Sayed Aluwee UCCD2044
lecturer 10032 Ts Dr Chai Meei Tyng UCCD2044
lecturer 10033 Mr Luke Lee Chee Chien UCCD2044
lecturer 10034 Ms Tseu Kwan Lee UCCD2044
lecturer 10035 Dr Ng Hui Fuang UCCD2044
lecturer 10036 Ts Wong Chee Siang UCCD2103
lecturer 10037 Mr Sor Kean Vee UCCD2103
lecturer 10038 Encik Ahmad Zaffry Hadi Bin Mohd Juffry UCCD2083,UCCD3113
lecturer 10039 Ts Dr Gan Ming Lee UCCN2243
lecturer 10040 Dr Adeb Alid Mohammed Ahmed Al-Samet UCCN2243
lecturer 10041 Ms Oh Zi Xin UCCN2243
lecturer 10042 Dr Nadeem Muhammad Waqas UCCN2243
lecturer 10043 Mr Lee Kim Hoe @ Farhan Lee Bin Abdullah UCCD3053
lecturer 10044 Mr Tan Chiang Kang UCCD3223
lecturer 10045 Mr Tou Jing Yi UCCD3223
lecturer 10046 Puan Syazwani Binti Yahya UCCD3223
lecturer 10047 Cik Nur Athirah Nabila Binti Mohd Idros UCCD3023
lecturer 10048 Ts Dr Mailasan a/l Jayakrishnan UCCD3023
lecturer 10049 Dr Yiew Thian Hee MPU33013
lecturer 10050 Mr Thurai Murugan a/l Nathan MPU33013
lecturer 10051 Dr Kiran Adnan UCCD3023
lecturer 10052 Ts Soong Hoong Cheng UCCD3113
lecturer 10053 Ts Dr Cheng Wai Khuen UCCD3113
lecturer 10054 Dr Ng Peh Sang UDPS1043
lecturer 10055 Ms Aruna Raj a/p Devarajoo UAMG1043
lecturer 10056 Ms Salomi a/p Simon UAMG1043
lecturer 10057 Puan Liana binti Mat Nayan UAMG1043
lecturer 10058 Puan Nor Ez-Zatul Hanani binti Mohamed Rosil UAMG1043
lecturer 10059 Ts Dr Tong Dong Ling UCCC3073
lecturer 10060 Mr Tan Chiang Kang UCCD3223
lecturer 10062 Puan Syazwani Binti Yahya UCCD3223
lecturer 10063 Puan Ayu Rita Binti Mohamad UALE1083
lecturer 10064 Ms Jenifer Ann a/p Felix Leo UCCD2213
lecturer 10065 Ts Dr Khor Siak Wang UCCD1213
lecturer 10066 Ts Dr Lim Ean Heng UCCD1213
lecturer 10067 Ms Kwang Wai Ching UCCD1213
lecturer 10068 Ts Tan Teik Boon UCCD3064
lecturer 10069 Ts Dr Tan Hung Khoon UCCD3074
lecturer 10070 Ts Dr Saw Seow Hui UCCD3084
lecturer 10071 Ms Mah Siew Huei MPU34012,MPU34072
lecturer 10072 Ms Alison Yoon MPU34022
lecturer 10073 Ms Erica Chua Ning Jia MPU34082,MPU34162
lecturer 10074 Mr Fong Kah Hoong MPU34102,MPU34132
lecturer 10075 Mr Kong Hoi Yoon MPU34142,MPU34162
lecturer 10076 Puan Sarah Binti Shamshul Anwar MPU3152
lecturer 10077 Ms Yuvashini a/p Salvamani MPU3192

CHAPTER 6

110
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.1.1.3 Test Plan Data for Courses

Figure 6.1.1.4 Test Plan Data for Venues

type courseCode courseName lecNum tutorialNumpracNum creditHour isElective isCore
course UCCD1004 PROGRAMMING CONCEPTS AND PRACTICES 2 0 7 4 0 1
course UCCD1143 PROBABILITY AND STATISTICS FOR COMPUTING 2 5 0 3 0 1
course UCCD2003 OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN 2 7 0 3 0 1
course UCCM1153 INTRODUCTION TO CALCULUS AND APPLICATIONS 2 7 0 4 0 1
course UCCD2303 DATABASE TECHNOLOGY 2 0 6 4 0 1
course UCCN1004 DATA COMMUNICATIONS AND NETWORKING 2 8 0 3 0 1
course UBMM1011 SUN ZI'S ART OF WAR AND BUSINESS STRATEGIES 1 0 0 1 0 1
course UCCM1353 BASIC ALGEBRA 2 10 0 4 0 1
course UCCM1363 DISCRETE MATHEMATICS 2 10 0 4 0 1
course UCCD2043 INFORMATION TECHNOLOGY PROJECT MANAGEMENT 2 6 0 4 0 1
course UCCD2044 OBJECT-ORIENTED PROGRAMMING PRACTICES 2 0 10 4 0 1
course UCCD1203 DATABSE DEVELOPMENT AND APPLICATIONS 1 0 9 3 0 1
course UCCD1024 DATA STRUCTURE AND ALGORITHMIC PROBLEM SOLVING 2 0 8 4 0 1
course UCCD2103 OPERATING SYSTEMS 2 5 0 4 0 1
course UCCN2243 INTERNETWORKING PRINCIPLE AND PRACTICES 2 0 13 4 0 1
course UCCD2213 SOFTWARE ENGINEERING PRINCIPLES 1 8 0 3 0 0
course UCCD3053 INFORMATION TECHNOLOGY PROFESSIONAL ETHICS 2 4 0 3 0 1
course UCCD3223 MOBILE APPLICATIONS DEVELOPMENT 1 0 6 3 1 0
course UCCD1213 FUNDAMENTALS OF DIGITAL MEDIA TECHNOLOGY 3 1 0 3 1 0
course UCCD3023 DIGITAL ENTREPRENEURSHIP 3 1 0 3 1 0
course UCCD3113 DISTRIBUTED COMPUTER SYSTEMS 3 1 0 3 1 0
course UCCD3243 SERVER-SIDE WEB APPLICATIONS DEVELOPMENT 2 0 2 3 1 0
course UDPS1043 INTRODUCTION TO OPERATIONS RESEARCH 3 1 0 3 1 0
course UALE1083 BASIC PROFESSIONAL WRITING 2 1 0 3 1 0
course UAMG1043 INTERPERSONAL COMMUNICATION 2 1 0 3 1 0
course UCCC3073 DATA SCIENCE 2 0 2 3 1 0
course MPU33013 MALAYSIAN ECONOMY 2 1 0 3 1 0
course UCCD3064 SOFTWARE TESTING 3 0 2 4 1 0
course UCCD3074 DEEP LEARNING FOR DATA SCIENCE 3 0 2 4 1 0
course UCCD3084 GRAPHICS PROGRAMMING FOR EXTENDED REALITY 3 0 2 4 1 0
course UCCD2083 CLOUD COMPUTING AND SERVICES 1 3 0 3 1 0
course MPU34012 SOCIAL ENTREPRENEURSHIP PROJECT 1 0 0 2 1 0
course MPU34022 ARTS AND CULTURAL PERFORMANCE 1 0 0 2 1 0
course MPU34072 ART, CRAFT, AND DESIGN 1 0 0 2 1 0
course MPU34082 ORAL COMMUNICATION 1 0 0 2 1 0
course MPU34102 MANAGING PERSONAL FINANCE 1 0 0 2 1 0
course MPU34132 MANAGEMENT OF SPORTS ACTIVITY 1 0 0 2 1 0
course MPU34142 CRITICAL THINKING, CREATIVE THINKING AND PROBLEM SOLVING 1 0 0 2 1 0
course MPU34152 LEADERSHIP AND TEAMBUILDING 1 0 0 2 1 0
course MPU34162 BUSINESS PLAN WRITING & PREPARATION 1 0 0 2 1 0
course MPU34182 MASSIVE OPEN ONLINE COURSE (MOOC) 1 0 0 2 1 0
course MPU3152 PENGHAYATAN ETIKA DAN PERADABAN (FOR LOCAL STUDENTS) 3 0 0 2 1 0
course MPU3192 PHILOSOPHY AND CURRENT ISSUES (FOR INTERNATIONAL STUDENTS) 1 0 0 2 1 0

type venueID venueName capacity buildingName latitude longitude venueType
venue 100011 LDK1 200 Block L 4.34172886 101.14005 L
venue 100012 LDK2 200 Block L 4.34172886 101.14005 L
venue 100013 LDK3 300 Block L 4.34172886 101.14005 L
venue 100014 LDK4 200 Block L 4.34172886 101.14005 L
venue 100015 LDK5 200 Block L 4.34172886 101.14005 L
venue 100016 EDK1 300 Block E 4.3386569 101.143654 L
venue 100017 DDK1 300 Block D 4.33799076 101.143837 L
venue 100018 N001 30 Block N 4.33846232 101.136894 T
venue 100019 N002 30 Block N 4.33846232 101.136894 T
venue 100020 N003 30 Block N 4.33846232 101.136894 T
venue 100021 N004 30 Block N 4.33846232 101.136894 T
venue 100022 N005 60 Block N 4.33846232 101.136894 T
venue 100023 N006 60 Block N 4.33846232 101.136894 T
venue 100024 N007 25 Block N 4.33846232 101.136894 T
venue 100025 N008 30 Block N 4.33846232 101.136894 P
venue 100026 N009 30 Block N 4.33846232 101.136894 P
venue 100027 N010A 20 Block N 4.33846232 101.136894 P
venue 100028 N010B 20 Block N 4.33846232 101.136894 P
venue 100029 N101 25 Block N 4.33846232 101.136894 T
venue 100030 N102 25 Block N 4.33846232 101.136894 T
venue 100031 N103 25 Block N 4.33846232 101.136894 T
venue 100032 N104 25 Block N 4.33846232 101.136894 T
venue 100033 N105 25 Block N 4.33846232 101.136894 T
venue 100034 N106 25 Block N 4.33846232 101.136894 T
venue 100035 N107 20 Block N 4.33846232 101.136894 T
venue 100036 N108 30 Block N 4.33846232 101.136894 P
venue 100037 N109 30 Block N 4.33846232 101.136894 P
venue 100038 N110A 20 Block N 4.33846232 101.136894 P
venue 100039 N110B 20 Block N 4.33846232 101.136894 P

CHAPTER 6

111
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Input data: Figure 6.1.1.1, Figure 6.1.1.2, Figure 6.1.1.3, and Figure 6.1.1.4. The figures

above show the data that will be stored in the database.

6.1.2 System Testing Process

Once the data has been stored in the database, it will be retrieved by the system

during execution. After the user specifies the required constraints, the system proceeds

to generate the timetable. The effectiveness of the test plans is then evaluated by

examining the timetable produced.

Figure 6.1.2.1 Hard and Soft Constraint Selection

The user may check all or some of the constraints to be included in the timetable.

Then click on ‘Create Timetable’. The timetable generated can be seen in table format

or timeslot format. It can also be exported in CSV file format.

6.2 System Testing for Hard Constraints Defined

6.2.1 Lecturers can only teach one class at the same time

In the lecturers’ timetable generated, the lecturer is allocated to only one class

in one timeslot.

CHAPTER 6

112
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 6.2.1.1 Test Case of ‘Lecturers can only teach one class at the same time’

Input

Data

Description

Expected Result

Actual Result

Status

Dataset

1

This test case

ensures that

each lecturer

can only teach

one class at

the same time.

In the lecturers’

timetable

generated, the

lecturer is allocated

to only one class in

one timeslot.

The lecturers are

allocated to teach

one class in one

timeslot.

Pass

Figure 6.2.1.1 Proof of ‘Lecturers can only teach one class at the same time’

From Figure 6.2.1.1 above, lecturers are restricted to teaching only one class at

a given time. The timetable shows that no lecturer has been assigned to multiple

sessions in the same timeslot, which satisfies the teaching constraint. This guarantees

that a lecturer is not double-booked and is only required to deliver one class at a time.

With both student and lecturer constraints fulfilled, the test case is considered

successful.

Day Time Course Lecturer Venue Group Session Type

Tuesday 16:00-17:00 UCCD1213 Ms Kwang Wai Ching N103 CSY3S1 tutorial
Monday 08:00-10:00 UCCD3243 Ts Dr Cheng Wai Khuen LDK3 CSY3S1 lecture
Monday 14:00-16:00 MPU3152 Ts Dr Lim Ean Heng LDK2 CSY3S1 lecture
Tuesday 12:00-14:00 UDPS1043 Ms Kwang Wai Ching LDK5 CSY3S1 lecture
Wednesday 08:00-10:00 MPU3152 Cik Nur Athirah Nabila Binti Mohd Idros LDK5 CSY3S1 lecture
Wednesday 12:00-14:00 UCCD3023 Ms Kwang Wai Ching DDK1 CSY3S1 lecture
Wednesday 14:00-16:00 UCCD1213 Dr Ng Peh Sang DDK1 CSY3S1 lecture
Thursday 08:00-10:00 UCCD3113 Ts Dr Lim Ean Heng LDK3 CSY3S1 lecture
Thursday 10:00-12:00 UCCD3023 Ts Dr Khor Siak Wang EDK1 CSY3S1 lecture
Thursday 14:00-16:00 MPU34132 Ts Dr Cheng Wai Khuen DDK1 CSY3S1 lecture
Thursday 16:00-18:00 UDPS1043 Ts Soong Hoong Cheng LDK1 CSY3S1 lecture
Friday 08:00-10:00 UCCD3113 Ts Dr Mailasan a/l Jayakrishnan LDK3 CSY3S1 lecture
Friday 12:00-14:00 MPU34102 Ts Dr Mailasan a/l Jayakrishnan DDK1 CSY3S1 lecture
Friday 14:00-16:00 MPU34182 Dr Kiran Adnan LDK5 CSY3S1 lecture
Monday 12:00-14:00 UCCD3223 Encik Ahmad Zaffry Hadi Bin Mohd Juffry N108 CSY3S1 practical
Monday 16:00-18:00 UCCC3073 Dr Kiran Adnan N108 CSY3S1 practical
Tuesday 10:00-12:00 UCCD3243 Dr Ng Peh Sang N010A CSY3S1 practical
Wednesday 16:00-18:00 UCCD3243 Ts Dr Mailasan a/l Jayakrishnan N109 CSY3S1 practical
Friday 10:00-12:00 UCCD3223 Encik Ahmad Zaffry Hadi Bin Mohd Juffry N110A CSY3S1 practical

CHAPTER 6

113
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.2 Two courses cannot be scheduled in the same venue at the same time

Table 6.2.2.1 Test Case of ‘Two courses cannot be scheduled in the same

venue at the same time’

Input

Data

Description

Expected Result

Actual Result

Status

Dataset

1

This test case

ensures that

two courses

cannot be

scheduled in

the same

venue at the

same time.

In the timetable

generated, the

courses cannot be

scheduled in the

same venue at the

same time.

The courses were

not scheduled in the

same venue at the

same time.

Pass

Figure 6.2.2.1 Proof of ‘Two courses cannot be scheduled in the same venue

at the same time’

From Figure 6.2.2.1 above, the timetable displays all scheduled sessions for the

student group, including information such as course code, lecturer, venue, and session

type. The focus of this test case is to ensure that two different courses are not allocated

Day Time Course Lecturer Venue Group Session Type

Tuesday 16:00-17:00 UCCD1213 Ms Kwang Wai Ching N103 CSY3S1 tutorial
Monday 08:00-10:00 UCCD3243 Ts Dr Cheng Wai Khuen LDK3 CSY3S1 lecture
Monday 14:00-16:00 MPU3152 Ts Dr Lim Ean Heng LDK2 CSY3S1 lecture
Tuesday 12:00-14:00 UDPS1043 Ms Kwang Wai Ching LDK5 CSY3S1 lecture
Wednesday 08:00-10:00 MPU3152 Cik Nur Athirah Nabila Binti Mohd Idros LDK5 CSY3S1 lecture
Wednesday 12:00-14:00 UCCD3023 Ms Kwang Wai Ching DDK1 CSY3S1 lecture
Wednesday 14:00-16:00 UCCD1213 Dr Ng Peh Sang DDK1 CSY3S1 lecture
Thursday 08:00-10:00 UCCD3113 Ts Dr Lim Ean Heng LDK3 CSY3S1 lecture
Thursday 10:00-12:00 UCCD3023 Ts Dr Khor Siak Wang EDK1 CSY3S1 lecture
Thursday 14:00-16:00 MPU34132 Ts Dr Cheng Wai Khuen DDK1 CSY3S1 lecture
Thursday 16:00-18:00 UDPS1043 Ts Soong Hoong Cheng LDK1 CSY3S1 lecture
Friday 08:00-10:00 UCCD3113 Ts Dr Mailasan a/l Jayakrishnan LDK3 CSY3S1 lecture
Friday 12:00-14:00 MPU34102 Ts Dr Mailasan a/l Jayakrishnan DDK1 CSY3S1 lecture
Friday 14:00-16:00 MPU34182 Dr Kiran Adnan LDK5 CSY3S1 lecture
Monday 12:00-14:00 UCCD3223 Encik Ahmad Zaffry Hadi Bin Mohd Juffry N108 CSY3S1 practical
Monday 16:00-18:00 UCCC3073 Dr Kiran Adnan N108 CSY3S1 practical
Tuesday 10:00-12:00 UCCD3243 Dr Ng Peh Sang N010A CSY3S1 practical
Wednesday 16:00-18:00 UCCD3243 Ts Dr Mailasan a/l Jayakrishnan N109 CSY3S1 practical
Friday 10:00-12:00 UCCD3223 Encik Ahmad Zaffry Hadi Bin Mohd Juffry N110A CSY3S1 practical

CHAPTER 6

114
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

to the same venue at the same timeslot. After observing the timetable, it can be

confirmed that every venue is assigned to only one course at any given time.

6.2.3 A student can only attend one class at the same time

Table 6.2.3.1 Test Case of ‘A student can only attend one class at the same

time’

Input

Data

Description

Expected Result

Actual Result

Status

Dataset

1

This test case

ensures that

each student

can only

attend one

class at the

same time.

In the timetable

generated, A

student can only

attend one class at

the same time.

A student can only

attend one class at

the same time

Pass

Figure 6.2.3.1 Proof of ‘A student can only attend one class at the same time’

CHAPTER 6

115
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

From Figure 6.2.2.1 above, the timetable displayed belongs to the predefined

student group CSY1S3. Since the timetable is generated for a specific group, the system

ensures that no two classes overlap in the same timeslot. This means that the student

group is only required to attend one session at a time. When observing the timetable,

all lecture, tutorial, and practical sessions are allocated at separate times, and there are

no clashes between courses.

This confirms that the rule “a student can only attend one class at the same time”

has been satisfied. The system successfully prevents scheduling conflicts within the

same group, and the test case is therefore considered fulfilled.

6.2.4 The number of students cannot exceed the seating capacity of the assigned

venue

Table 6.2.4.1 Test Case of ‘The number of students cannot exceed the seating

capacity of the assigned venue’

Input

Data

Description

Expected Result

Actual Result

Status

Dataset

1

This test case

ensures that

the number of

students

cannot exceed

the seating

capacity of

the assigned

venue.

In the timetable

generated, the

number of students

cannot exceed the

seating capacity of

the assigned venue.

The number of

students did not

exceed the seating

capacity of the

assigned venue

Pass

CHAPTER 6

116
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.4.1 Proof of ‘The number of students cannot exceed the seating

capacity of the assigned venue’

From Figure 6.2.4.1, the timetable assigns sessions for the student group

CSY3S1, which has an estimated batch size of approximately 200 students. The venues

allocated for this group, such as LDK halls and larger classrooms, all have seating

capacities that meet or exceed this requirement. For example, lecture halls like LDK3,

LDK4, and LDK5 are designed to accommodate around 200 students or more, making

them suitable for lectures involving the entire batch.

By ensuring that the number of students does not exceed the seating capacity of

the assigned venue, the system successfully enforces the venue capacity constraint. This

validation confirms that all scheduled sessions for CSY3S1 can be conducted without

exceeding the available room size, and the test case is therefore considered successful.

6.2.5 Courses that require specific room types should be scheduled in

appropriate facilities

Table 6.2.5.1 Test Case of ‘Courses that require specific room types should be

scheduled in appropriate facilities’

Input

Data

Description

Expected Result

Actual Result

Status

Day Time Course Lecturer Venue Group Session Type

Tuesday 16:00-17:00 UCCD1213 Ms Kwang Wai Ching N103 CSY3S1 tutorial
Monday 08:00-10:00 UCCD3243 Ts Dr Cheng Wai Khuen LDK3 CSY3S1 lecture
Monday 14:00-16:00 MPU3152 Ts Dr Lim Ean Heng LDK2 CSY3S1 lecture
Tuesday 12:00-14:00 UDPS1043 Ms Kwang Wai Ching LDK5 CSY3S1 lecture
Wednesday 08:00-10:00 MPU3152 Cik Nur Athirah Nabila Binti Mohd Idros LDK5 CSY3S1 lecture
Wednesday 12:00-14:00 UCCD3023 Ms Kwang Wai Ching DDK1 CSY3S1 lecture
Wednesday 14:00-16:00 UCCD1213 Dr Ng Peh Sang DDK1 CSY3S1 lecture
Thursday 08:00-10:00 UCCD3113 Ts Dr Lim Ean Heng LDK3 CSY3S1 lecture
Thursday 10:00-12:00 UCCD3023 Ts Dr Khor Siak Wang EDK1 CSY3S1 lecture
Thursday 14:00-16:00 MPU34132 Ts Dr Cheng Wai Khuen DDK1 CSY3S1 lecture
Thursday 16:00-18:00 UDPS1043 Ts Soong Hoong Cheng LDK1 CSY3S1 lecture
Friday 08:00-10:00 UCCD3113 Ts Dr Mailasan a/l Jayakrishnan LDK3 CSY3S1 lecture
Friday 12:00-14:00 MPU34102 Ts Dr Mailasan a/l Jayakrishnan DDK1 CSY3S1 lecture
Friday 14:00-16:00 MPU34182 Dr Kiran Adnan LDK5 CSY3S1 lecture
Monday 12:00-14:00 UCCD3223 Encik Ahmad Zaffry Hadi Bin Mohd Juffry N108 CSY3S1 practical
Monday 16:00-18:00 UCCC3073 Dr Kiran Adnan N108 CSY3S1 practical
Tuesday 10:00-12:00 UCCD3243 Dr Ng Peh Sang N010A CSY3S1 practical
Wednesday 16:00-18:00 UCCD3243 Ts Dr Mailasan a/l Jayakrishnan N109 CSY3S1 practical
Friday 10:00-12:00 UCCD3223 Encik Ahmad Zaffry Hadi Bin Mohd Juffry N110A CSY3S1 practical

CHAPTER 6

117
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Dataset

1

This test case

ensures that

courses that

require

specific room

types are

scheduled in

appropriate

facilities.

In the timetable

generated, courses

that require

specific room types

should be

scheduled in

appropriate

facilities.

Courses that require

specific room types

are scheduled in

appropriate

facilities.

Pass

Figure 6.2.5.1 Proof of ‘Courses that require specific room types should be

scheduled in appropriate facilities’

From Figure 6.2.5.1, the timetable demonstrates that courses are scheduled in

facilities that match their specific room type requirements. For example, lecture

sessions are allocated to lecture halls such as LDK1, LDK3, and LDK5, which are

designed to accommodate large student groups for lectures. Similarly, practical classes

are assigned to laboratory rooms such as N108, N109, and N110A/B, which provide

the necessary facilities and equipment to support hands-on sessions. Tutorials, on the

other hand, are placed in smaller tutorial rooms such as N103, which is suitable for

smaller group-based learning.

Day Time Course Lecturer Venue Group Session Type

Tuesday 16:00-17:00 UCCD1213 Ms Kwang Wai Ching N103 CSY3S1 tutorial
Monday 08:00-10:00 UCCD3243 Ts Dr Cheng Wai Khuen LDK3 CSY3S1 lecture
Monday 14:00-16:00 MPU3152 Ts Dr Lim Ean Heng LDK2 CSY3S1 lecture
Tuesday 12:00-14:00 UDPS1043 Ms Kwang Wai Ching LDK5 CSY3S1 lecture
Wednesday 08:00-10:00 MPU3152 Cik Nur Athirah Nabila Binti Mohd Idros LDK5 CSY3S1 lecture
Wednesday 12:00-14:00 UCCD3023 Ms Kwang Wai Ching DDK1 CSY3S1 lecture
Wednesday 14:00-16:00 UCCD1213 Dr Ng Peh Sang DDK1 CSY3S1 lecture
Thursday 08:00-10:00 UCCD3113 Ts Dr Lim Ean Heng LDK3 CSY3S1 lecture
Thursday 10:00-12:00 UCCD3023 Ts Dr Khor Siak Wang EDK1 CSY3S1 lecture
Thursday 14:00-16:00 MPU34132 Ts Dr Cheng Wai Khuen DDK1 CSY3S1 lecture
Thursday 16:00-18:00 UDPS1043 Ts Soong Hoong Cheng LDK1 CSY3S1 lecture
Friday 08:00-10:00 UCCD3113 Ts Dr Mailasan a/l Jayakrishnan LDK3 CSY3S1 lecture
Friday 12:00-14:00 MPU34102 Ts Dr Mailasan a/l Jayakrishnan DDK1 CSY3S1 lecture
Friday 14:00-16:00 MPU34182 Dr Kiran Adnan LDK5 CSY3S1 lecture
Monday 12:00-14:00 UCCD3223 Encik Ahmad Zaffry Hadi Bin Mohd Juffry N108 CSY3S1 practical
Monday 16:00-18:00 UCCC3073 Dr Kiran Adnan N108 CSY3S1 practical
Tuesday 10:00-12:00 UCCD3243 Dr Ng Peh Sang N010A CSY3S1 practical
Wednesday 16:00-18:00 UCCD3243 Ts Dr Mailasan a/l Jayakrishnan N109 CSY3S1 practical
Friday 10:00-12:00 UCCD3223 Encik Ahmad Zaffry Hadi Bin Mohd Juffry N110A CSY3S1 practical

CHAPTER 6

118
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.6 Venues cannot be assigned to the same timeslot more than once

Table 6.2.6.1 Test Case of ‘Venues cannot be assigned to the same timeslot more than

once’

Input

Data

Description

Expected Result

Actual Result

Status

Dataset

1

This test case

ensures that

venues are not

assigned to

the same

timeslot more

than once.

In the timetable

generated, venues

cannot be assigned

to the same

timeslot more than

once.

Venues are not

assigned to the same

timeslot more than

once.

Pass

Figure 6.2.6.1 Proof of ‘Venues cannot be assigned to the same timeslot more

than once’

From Figure 6.2.6.1, the timetable shows that each venue is only assigned to

one course per timeslot. This means no two sessions share the same room at the same

time. For example, lecture halls such as LDK3, LDK4, and LDK5 are allocated to

different sessions across the week, but at no point are two courses scheduled in the same

Day Time Course Lecturer Venue Group Session Type

Tuesday 16:00-17:00 UCCD1213 Ms Kwang Wai Ching N103 CSY3S1 tutorial
Monday 08:00-10:00 UCCD3243 Ts Dr Cheng Wai Khuen LDK3 CSY3S1 lecture
Monday 14:00-16:00 MPU3152 Ts Dr Lim Ean Heng LDK2 CSY3S1 lecture
Tuesday 12:00-14:00 UDPS1043 Ms Kwang Wai Ching LDK5 CSY3S1 lecture
Wednesday 08:00-10:00 MPU3152 Cik Nur Athirah Nabila Binti Mohd Idros LDK5 CSY3S1 lecture
Wednesday 12:00-14:00 UCCD3023 Ms Kwang Wai Ching DDK1 CSY3S1 lecture
Wednesday 14:00-16:00 UCCD1213 Dr Ng Peh Sang DDK1 CSY3S1 lecture
Thursday 08:00-10:00 UCCD3113 Ts Dr Lim Ean Heng LDK3 CSY3S1 lecture
Thursday 10:00-12:00 UCCD3023 Ts Dr Khor Siak Wang EDK1 CSY3S1 lecture
Thursday 14:00-16:00 MPU34132 Ts Dr Cheng Wai Khuen DDK1 CSY3S1 lecture
Thursday 16:00-18:00 UDPS1043 Ts Soong Hoong Cheng LDK1 CSY3S1 lecture
Friday 08:00-10:00 UCCD3113 Ts Dr Mailasan a/l Jayakrishnan LDK3 CSY3S1 lecture
Friday 12:00-14:00 MPU34102 Ts Dr Mailasan a/l Jayakrishnan DDK1 CSY3S1 lecture
Friday 14:00-16:00 MPU34182 Dr Kiran Adnan LDK5 CSY3S1 lecture
Monday 12:00-14:00 UCCD3223 Encik Ahmad Zaffry Hadi Bin Mohd Juffry N108 CSY3S1 practical
Monday 16:00-18:00 UCCC3073 Dr Kiran Adnan N108 CSY3S1 practical
Tuesday 10:00-12:00 UCCD3243 Dr Ng Peh Sang N010A CSY3S1 practical
Wednesday 16:00-18:00 UCCD3243 Ts Dr Mailasan a/l Jayakrishnan N109 CSY3S1 practical
Friday 10:00-12:00 UCCD3223 Encik Ahmad Zaffry Hadi Bin Mohd Juffry N110A CSY3S1 practical

CHAPTER 6

119
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

hall during the same timeslot. Similarly, tutorial and practical rooms such as N002,

N108, and N110A/B are also used exclusively within each timeslot without overlapping

assignments.

This confirms that the system successfully enforces the rule that venues cannot

be double-booked. By preventing multiple sessions from being scheduled in the same

venue at once, the system ensures that teaching facilities are used efficiently and that

logistical conflicts are avoided. Therefore, the test case is considered successful.

6.2.7 Total maximum hours for classes per day is 8 hours

Table 6.2.7.1 Test Case of ‘Total maximum hours for classes per day is 8 hours’

Input

Data

Description

Expected Result

Actual Result

Status

Dataset

1

This test case

ensures that

the total

maximum

hours for

classes per

day is 8 hours.

In the timetable

generated, the total

maximum hours

for classes per day

is 8 hours.

Total maximum

hours for classes per

day is 8 hours.

Pass

CHAPTER 6

120
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.7.1 Proof of ‘Total maximum hours for classes per day is 8 hours’

From Figure 6.2.7.1, the timetable includes both core and elective courses

allocated across different days. Since elective courses are only taken by a subset of

students, not every student will attend all of the sessions shown. This means that while

the timetable visually appears to contain a large number of sessions in a single day, the

actual load for each student is lower because elective classes vary by individual choice.

When calculating the maximum hours per day, the system ensures that even

with electives included, no student exceeds the total daily limit of eight hours of

scheduled classes. For example, a student who selects certain electives may have a

longer day compared to others, but the system guarantees that the total number of class

hours does not go beyond the allowed maximum.

6.2.8 A student cannot be assigned to two different venues in the same timeslot

Table 6.2.8.1 Test Case of ‘A student cannot be assigned to two different venues in the

same timeslot’

CHAPTER 6

121
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Input

Data

Description

Expected Result

Actual Result

Status

Dataset

1

This test case

ensures that

students are

not assigned

to two

different

venues in the

same timeslot.

In the timetable

generated, a

student cannot be

assigned to two

different venues in

the same timeslot.

A student is not

assigned to two

different venues in

the same timeslot

Pass

Figure 6.2.8.1 Proof of ‘Venues cannot be assigned to the same timeslot more

than once’

From Figure 6.2.8.1, the timetable was checked to ensure that no student is

required to be in two different venues at the same timeslot. Since the timetable is

generated for a predefined student group, all sessions are allocated sequentially without

overlap. For example, when a class is assigned to LDK3 at 08:00–10:00, no other

session for the same group is scheduled at that exact time in a different venue.

Day Time Course Lecturer Venue Group Session Type

Tuesday 16:00-17:00 UCCD1213 Ms Kwang Wai Ching N103 CSY3S1 tutorial
Monday 08:00-10:00 UCCD3243 Ts Dr Cheng Wai Khuen LDK3 CSY3S1 lecture
Monday 14:00-16:00 MPU3152 Ts Dr Lim Ean Heng LDK2 CSY3S1 lecture
Tuesday 12:00-14:00 UDPS1043 Ms Kwang Wai Ching LDK5 CSY3S1 lecture
Wednesday 08:00-10:00 MPU3152 Cik Nur Athirah Nabila Binti Mohd Idros LDK5 CSY3S1 lecture
Wednesday 12:00-14:00 UCCD3023 Ms Kwang Wai Ching DDK1 CSY3S1 lecture
Wednesday 14:00-16:00 UCCD1213 Dr Ng Peh Sang DDK1 CSY3S1 lecture
Thursday 08:00-10:00 UCCD3113 Ts Dr Lim Ean Heng LDK3 CSY3S1 lecture
Thursday 10:00-12:00 UCCD3023 Ts Dr Khor Siak Wang EDK1 CSY3S1 lecture
Thursday 14:00-16:00 MPU34132 Ts Dr Cheng Wai Khuen DDK1 CSY3S1 lecture
Thursday 16:00-18:00 UDPS1043 Ts Soong Hoong Cheng LDK1 CSY3S1 lecture
Friday 08:00-10:00 UCCD3113 Ts Dr Mailasan a/l Jayakrishnan LDK3 CSY3S1 lecture
Friday 12:00-14:00 MPU34102 Ts Dr Mailasan a/l Jayakrishnan DDK1 CSY3S1 lecture
Friday 14:00-16:00 MPU34182 Dr Kiran Adnan LDK5 CSY3S1 lecture
Monday 12:00-14:00 UCCD3223 Encik Ahmad Zaffry Hadi Bin Mohd Juffry N108 CSY3S1 practical
Monday 16:00-18:00 UCCC3073 Dr Kiran Adnan N108 CSY3S1 practical
Tuesday 10:00-12:00 UCCD3243 Dr Ng Peh Sang N010A CSY3S1 practical
Wednesday 16:00-18:00 UCCD3243 Ts Dr Mailasan a/l Jayakrishnan N109 CSY3S1 practical
Friday 10:00-12:00 UCCD3223 Encik Ahmad Zaffry Hadi Bin Mohd Juffry N110A CSY3S1 practical

CHAPTER 6

122
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.9 The travel distance between two venues of consecutive classes should not

be more than 500 meters

Table 6.2.9.1 Test Case of ‘The travel distance between two venues of consecutive

classes should not be more than 500 meters’

Input

Data

Description

Expected Result

Actual Result

Status

Dataset

1

This test case

ensures that

the travel

distance

between two

venues of

consecutive

classes should

not be more

than 500

meters.

In the timetable

generated, the

travel distance

between two

venues of

consecutive classes

should not be more

than 500 meters.

The travel distance

between two venues

of consecutive

classes is not more

than 500 meters.

Pass

This requirement ensures that no participant (student or lecturer), is scheduled

for back-to-back classes that would require walking more than 500 meters between

venues. The constraint is enforced as a hard rule in the genetic algorithm’s fitness

function.

CHAPTER 6

123
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.9.2 Proof of ‘The travel distance between two venues of

consecutive classes should not be more than 500 meters’

Figure 6.2.9.1 illustrates representative consecutive sessions where the

computed Haversine distances between venues are annotated (for example, 310 m or

480 m), all within the 500 m limit. The timetable appears to show certain sessions

scheduled consecutively in venues that may be farther than 500 meters apart. However,

these cases occur because of elective courses, where different groups of students choose

different subjects. This means that even though two sessions are displayed side by side

in the same timeslot or consecutive slots, no single student is required to attend both.

6.3 System Testing for Soft Constraints Defined

6.3.1 Gaps between classes should be minimized, such as long breaks between

consecutive classes

Table 6.3.2.1 Test Case of ‘Gaps between classes should be minimized, such as long

breaks between consecutive classes’

CHAPTER 6

124
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Input

Data

Description

Expected Result

Actual Result

Status

Dataset

1

This test case

ensures that

gaps between

classes should

be minimized,

such as long

breaks

between

consecutive

classes.

In the timetable

generated, gaps

between classes

should be

minimized, such as

long breaks

between

consecutive

classes.

Gaps between

classes are

minimized, such as

long breaks between

consecutive classes.

Pass

Figure 6.3.1.1 Proof of ‘Gaps between classes should be minimized, such as

long breaks between consecutive classes’

From Figure 6.3.1.1, the timetable was examined to check whether long gaps

between consecutive classes were avoided. The system aims to minimize idle time

during the day so that students do not experience unnecessary breaks between sessions.

CHAPTER 6

125
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

When reviewing the schedule, it can be observed that most classes are arranged in a

continuous flow, with only short gaps between sessions.

6.3.2 No classes should be scheduled during lunch break (12 p.m. – 2 p.m.)

Table 6.3.2.1 Test Case of ‘No classes should be scheduled during lunch break (12

p.m. – 2 p.m.)’

Input

Data

Description

Expected Result

Actual Result

Status

Dataset

1

This test case

ensures that

no classes

should be

scheduled

during lunch

break (12 p.m.

– 2 p.m.).

In the timetable

generated, no

classes should be

scheduled during

lunch break (12

p.m. – 2 p.m.).

Some classes are

scheduled during

lunch break (12 p.m.

– 2 p.m.).

Partial

CHAPTER 6

126
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.3.2.1 Proof of ‘No classes should be scheduled during lunch break

(12 p.m. – 2 p.m.)’

From Figure 6.3.2.1, it can be observed that the timetable still contains classes

scheduled during the typical lunch period, around 12:00 PM to 2:00 PM. This indicates

that the soft constraint of minimizing or avoiding classes during lunch hours was not

strongly enforced by the system. While the timetable generator successfully handles

hard constraints such as avoiding class clashes, ensuring correct venue assignments,

and limiting maximum daily hours, the lunch break consideration was given lower

priority.

As a result, some students may still have sessions that overlap with lunchtime,

leading to less convenience in their daily schedules. However, since this is a soft

constraint, the timetable can still be considered valid if all hard constraints are satisfied.

In this case, the test outcome suggests that the system prioritizes fulfilling hard

constraints over strictly enforcing break times, meaning this soft constraint is only

partially achieved.

6.3.3 There should be no classes scheduled before 8 a.m. and after 8.30 p.m.

CHAPTER 6

127
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 6.3.3.1 Test Case of ‘There should be no classes scheduled before 8 a.m. and

after 8.30 p.m.’

Input

Data

Description

Expected Result

Actual Result

Status

Dataset

1

This test case

ensures that

there should

be no classes

scheduled

before 8 a.m.

and after 8.30

p.m.

In the timetable

generated, there

should be no

classes scheduled

before 8 a.m. and

after 8.30 p.m.

There are no classes

scheduled before 8

a.m. and after 8.30

p.m.

Pass

Figure 6.3.3.1 Proof of ‘There should be no classes scheduled before 8 a.m.

and after 8.30 p.m.’

From Figure 6.3.3.1, the timetable was reviewed to ensure that no sessions are

scheduled outside the permitted time window, which is between 8:00 a.m. and 8:30

CHAPTER 6

128
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

p.m. The earliest class in the timetable begins at 8:00 a.m., and the latest class ends by

6:00 p.m. This confirms that all scheduled sessions fall within the acceptable range.

6.3.4 The maximum hours for consecutive classes should be 4 hours

Table 6.3.4.1 Test Case of ‘The maximum hours for consecutive classes should be 4

hours’

Input

Data

Description

Expected Result

Actual Result

Status

Dataset

1

This test case

ensures that

the maximum

hours for

consecutive

classes should

be 4 hours.

In the timetable

generated, the

maximum hours

for consecutive

classes should be 4

hours

The total maximum

hours for

consecutive classes

is 4 hours

Pass

Figure 6.3.4.1 Proof of ‘The maximum hours for consecutive classes should be

4 hours’

CHAPTER 6

129
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

From Figure 6.3.3.1, the timetable was examined to ensure that no student is

required to attend more than four consecutive hours of classes without a break.

Consecutive hours refer to back-to-back sessions scheduled in the same day, where

students would have to remain in classes continuously. The timetable shows that most

class sequences are limited to either two-hour or three-hour blocks, and in some cases

up to four hours. However, none of the schedules exceed the maximum of four

consecutive hours. For example, on Monday, classes run from 8:00 a.m. to 12:00 p.m.,

which is exactly four hours, after which a break is given before the next session. This

demonstrates that the system respects this constraint.

6.4 Project Challenges

The development of the University Timetabling System faced several key

challenges. One major difficulty was managing the many constraints in timetable

generation. While hard constraints such as avoiding clashes and preventing venue

double-bookings were strictly enforced, balancing soft constraints like minimizing gaps

or avoiding lunch-hour classes was harder, as improving one often weakened another.

Designing and integrating the database was also complex. The system had to

handle different types of sessions (lectures, tutorials, practicals) and ensure accurate

information for lecturers, student groups, and venues. This required careful structuring

to support both the genetic algorithm and manual edits in the interface.

Configuring the genetic algorithm posed another challenge. Parameters such as

population size and mutation rate required extensive testing, and while the GA

produced valid timetables, optimizing soft constraints consistently was more difficult.

Preventing the algorithm from getting stuck in local optima was also an ongoing issue.

Finally, time and resource limitations made testing across large-scale, real-

world datasets difficult. While the system performs well under controlled conditions,

broader validation with more complex scenarios remains a future improvement area.

Despite these challenges, the project achieved a functioning system that

generates clash-free timetables and enforces the most critical scheduling rules.

CHAPTER 6

130
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.5 Objectives Evaluation

The first objective of this project was to investigate and categorize the hard and

soft constraints relevant to the university timetabling problem. This has been

successfully achieved. Hard constraints such as preventing student and lecturer clashes,

ensuring venues are not double-booked, and restricting classes within defined hours

were implemented and validated through testing. Soft constraints, such as minimizing

gaps between classes and avoiding classes during lunch, were also considered, although

they were not given as much weight in the optimization process. While the soft

constraints were only partially satisfied, their identification and integration into the

system laid the groundwork for further improvements.

The second objective was to introduce the Proximity and Travel Minimization

Constraint into the scheduling process using a Genetic Algorithm. This has been

integrated into the system, where consecutive classes for the same student group or

lecturer are allocated to venues within a maximum distance of 500 meters. Test cases

confirmed that this constraint was largely satisfied, though some exceptions appeared

in the full timetable due to elective courses, where students only attend one of the

overlapping sessions. This demonstrates that the proximity rule functions correctly on

an individual student basis.

The third objective was to create a more efficient, user-friendly timetabling

system that improves scheduling efficiency and user experience. This was achieved

through the development of resource management modules for lecturers, venues, and

groups, as well as editing, archiving, and exporting features for timetables. The GA

Analytics module further adds transparency by allowing users to view the algorithm’s

operations and outputs. Although some soft constraints remain less emphasized, the

system overall delivers valid and practical timetables while providing administrators

with tools to manage and maintain scheduling data effectively.

In summary, the project objectives were successfully met. The system can

generate clash-free timetables under strict hard constraints, incorporates the new

proximity and travel minimization rule, and provides a platform that is functional and

user-friendly. The partial fulfilment of soft constraints highlights an area for future

refinement but does not undermine the overall success of the project.

CHAPTER 7

131
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7

Conclusion

7.1 System Limitations

This project has successfully developed an automated University Timetabling

System that applies a Genetic Algorithm to generate valid, clash-free schedules. The

system achieves its primary objectives by enforcing key hard constraints such as

preventing class overlaps, ensuring venues are not double-booked, and respecting daily

scheduling limits. Additional features, including resource management, editing,

archiving, and exporting timetables, enhance its practicality and usability. The

introduction of the Proximity and Travel Minimization Constraint further improves the

realism of the generated schedules, ensuring that students and lecturers are not required

to travel excessively between consecutive classes.

Despite these achievements, the system still presents certain limitations. Soft

constraints, such as minimizing long gaps between classes or avoiding sessions during

lunch hours, were not heavily emphasized in the optimization process. This means that

while the timetables are feasible and valid, they may not always represent the most

convenient arrangements for students. Furthermore, the current GA Analytics provides

only basic insights into algorithm performance, and the system is limited to a desktop-

based interface designed primarily for administrators.

7.2 Future Improvement

For future improvements, the GA Analytics module can be expanded to provide

more detailed visualizations and performance metrics, allowing administrators to better

evaluate and fine-tune the optimization process. In addition, developing a dedicated

mobile interface for the student side would make the system more accessible, enabling

students to view their personalized timetables directly on their devices. These

enhancements would not only strengthen the system’s functionality but also improve

overall user experience for both administrators and students.

CHAPTER 7

132
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Overall, the project demonstrates that Genetic Algorithms are an effective

approach for tackling the complex university timetabling problem. While there remain

areas for further refinement, the system provides a strong foundation for future work

and has the potential to evolve into a complete, institution-ready solution.

7.3 Concluding Remarks

In conclusion, the development of the University Timetabling System has

demonstrated how genetic algorithms can be applied effectively to solve complex

scheduling problems. The system integrates multiple modules, including timetable

creation, editing, deletion, archiving, and resource management, while also providing

analytics to evaluate the performance of the algorithm. Despite the challenges

encountered during implementation, such as handling multiple constraints, optimizing

performance, and ensuring data consistency, the final system is able to generate valid

and practical timetables that meet academic requirements.

The project not only highlights the technical feasibility of combining Python,

JavaFX, and MySQL into a unified solution but also emphasizes the importance of

usability through features such as export options, archive management, and an intuitive

interface. By addressing both functional and user-oriented needs, the system provides

a balanced solution for administrators and students alike. Overall, this project has

achieved its objectives and contributes a valuable approach to automated timetable

generation. While there remains room for further refinement and enhancement, the

system serves as a solid foundation that can be extended to support larger datasets,

additional constraints, and broader institutional needs in the future.

REFERENCES

A-1
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] H. Babaei, J. Karimpour, and A. Hadidi, “A survey of approaches for university

course timetabling problem,” Computers & Industrial Engineering, vol. 86, pp. 43–

59, Nov. 2014, doi: 10.1016/j.cie.2014.11.010.

[2] M. C. Chen, S. N. Sze, S. L. Goh, N. R. Sabar, and G. Kendall, “A Survey of

University Course Timetabling Problem: Perspectives, Trends and

opportunities,” IEEE Access, vol. 9, pp. 106515–106529, Jan. 2021,

doi: 10.1109/access.2021.3100613.

[3] H. Alghamdi, T. Alsubait, H. Alhakami, and A. Baz, “A review of Optimization

Algorithms for university timetable scheduling,” Engineering Technology &

Applied Science Research, vol. 10, no. 6, pp. 6410–6417, Dec. 2020,

doi: 10.48084/etasr.3832.

[4] A. H. Khan and T. Imtiaz, “A Novel Genetic Algorithm Based Timetable Generator

for Optimized University Timetable Solution,” in 2024 International Conference

on Engineering & Computing Technologies (ICECT), Islamabad, Pakistan:

IEEE, May 2024, pp. 1–6. doi: 10.1109/ICECT61618.2024.10581296.

[5] H. M and M. M, “Solving Timetabling problems using Genetic Algorithm

Technique,” International Journal of Computer Applications, vol. 134, no. 15, pp.

33–38, Jan. 2016, doi: 10.5120/ijca2016907960.

[6] I. Lulu, H. Alowais, A. Turky, S. Harous, and A. Hussain, “Efficient Solution for

Exam Timetabling Problem: A Case Study of the University of Sharjah,” in 2024

17th International Conference on Development in eSystem Engineering (DeSE),

REFERENCES

A-2
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Khorfakkan, United Arab Emirates: IEEE, Nov. 2024, pp. 101–106. doi:

10.1109/DeSE63988.2024.10911922.

[7] M. S. Kohshori, D. Zeynolabedini, M. S. Liri, and L. Jadidi, “Multi population

hybrid genetic Algorithms for university course timetabling

problem,” International Journal of Information Technology and Computer Science,

vol. 4, no. 6, pp. 1–11, Jun. 2012, doi: 10.5815/ijitcs.2012.06.01.

[8] Yang and S. N. Jat, “Genetic algorithms with guided and local search strategies for

university course timetabling,” IEEE Transactions on Systems Man and

Cybernetics Part C (Applications and Reviews), vol. 41, no. 1, pp. 93–106, Jun.

2010, doi: 10.1109/tsmcc.2010.2049200.

[9] M. A. Albadr, S. Tiun, M. Ayob, and F. Al-Dhief, “Genetic algorithm based on

natural selection theory for optimization problems,” Symmetry, vol. 12, no. 11, p.

1758, Oct. 2020, doi: 10.3390/sym12111758.

[10] E. A. Abdelhalim and G. A. El Khayat, “A Utilization-based Genetic Algorithm

for Solving the University Timetabling Problem (UGA),” Alexandria Engineering

Journal, vol. 55, no. 2, pp. 1395–1409, Mar. 2016, doi: 10.1016/j.aej.2016.02.017.

[11] S. K. Jha, “EXAM TIMETABLING PROBLEM USING GENETIC

ALGORITHM” International Journal of Research in Engineering and Technology,

vol. 03, no. 05, pp. 649–654, May 2014, doi: 10.15623/ijret.2014.0305120.

[12] J. S. Tan, S. L. Goh, G. Kendall, and N. R. Sabar, “A survey of the state-of-the-art

of optimisation methodologies in school timetabling problems,” Expert Systems

REFERENCES

A-3
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

With Applications, vol. 165, p. 113943, Sep. 2020,

doi: 10.1016/j.eswa.2020.113943.

[13] S. Cheuk and S. Y. L. Chai, “Auto Timetable Management Mobile Application,”

Trends in Undergraduate Research, vol. 6, no. 2, pp. c1-7, Dec. 2023,

doi: 10.33736/tur.5730.2023.

[14] A. M. Hambali, Y. A. Olasupo, and M. Dalhatu, “Automated university lecture

timetable using Heuristic Approach,” Nigerian Journal of Technology, vol. 39, no.

1, pp. 1–14, Apr. 2020, doi: 10.4314/njt.v39i1.1.

[15] S. Kazarlis, V. Petridis, and P. Fragkou, “Solving University Timetabling

Problems Using Advanced Genetic Algorithms,” 2005, [Online]. Available:

https://api.semanticscholar.org/CorpusID:17910307

[16] S. Abdennadher and M. Marte, “University course timetabling using constraint

handling rules,” Applied Artificial Intelligence, vol. 14, no. 4, pp. 311–325, Apr.

2000, doi: 10.1080/088395100117016.

[17] S. Ghaemi, M. Taghi Vakili, and A. Aghagolzadeh, “Using a genetic algorithm

optimizer tool to solve University timetable scheduling problem,” in 2007 9th

International Symposium on Signal Processing and Its Applications, Sharjah,

United Arab Emirates: IEEE, Feb. 2007, pp. 1–4. doi:

10.1109/ISSPA.2007.4555397.

[18] P. Pongcharoen, W. Promtet, P. Yenradee, and C. Hicks, “Stochastic Optimisation

Timetabling Tool for university course scheduling,” International Journal of

REFERENCES

A-4
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Production Economics, vol. 112, no. 2, pp. 903–918, Sep. 2007,

doi: 10.1016/j.ijpe.2007.07.009.

[19] Y. Sun, X. Luo, and X. Liu, “Optimization of a university timetable considering

building energy efficiency: An approach based on the building controls virtual test

bed platform using a genetic algorithm,” Journal of Building Engineering, vol. 35,

p. 102095, Dec. 2020, doi: 10.1016/j.jobe.2020.102095.

[20] S. Abdullah and H. Turabieh, “On the use of multi neighbourhood structures within

a Tabu-based memetic approach to university timetabling problems,” Information

Sciences, vol. 191, pp. 146–168, Jan. 2012, doi: 10.1016/j.ins.2011.12.018.

[21] S. Abdipoor, R. Yaakob, S. L. Goh, and S. Abdullah, “Meta-heuristic approaches

for the University Course Timetabling Problem,” Intelligent Systems With

Applications, vol. 19, p. 200253, Jun. 2023, doi: 10.1016/j.iswa.2023.200253.

[22] J. Frausto-Solis, J. Mora-Vargas, M. Larre, and J. L. Gomez-Ramos, “Genetic

Algorithm with Forced Diversity for the University TimeTabling Problem,”

Proceedings of the 10th WSEAS International Conference on SYSTEMS, pp. 553–

558, Jul. 2006

[23] P. Khonggamnerd and S. Innet, “On Improvement of Effectiveness in Automatic

University Timetabling Arrangement with Applied Genetic Algorithm,” in 2009

Fourth International Conference on Computer Sciences and Convergence

Information Technology, Seoul, Korea: IEEE, 2009, pp. 1266–1270. doi:

10.1109/ICCIT.2009.202.

REFERENCES

A-5
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[24] N. Nuntasen and S. Innet, “A Novel Approach of Genetic Algorithm for Solving

University Timetabling Problems: a case study of Thai Universities” 7th WSEAS

International Conference on APPLIED COMPUTER SCIENCE, pp. 246–252, Nov.

2007, [Online]. Available: https://dl.acm.org/citation.cfm?id=1348171.1348214

[25] Team Applied AI, “Genetic algorithm in machine learning,” Applied AI Course.

[Online]. Available: https://www.appliedaicourse.com/blog/genetic-algorithm-in-

machine-learning/

[26] I. Balan, “A New Genetic Approach for Course Timetabling Problem,” Journal of

Applied Computer Science & Mathematics/Journal of Applied Computer Science,

vol. 15, no. 1, pp. 9–14, Jan. 2021, doi: 10.4316/jacsm.202101001.

[27] P. Boonyopakorn and P. Meesad, “A Hybrid Immune Genetic Algorithm to Solve

University Time Table Problems*” Walailak Journal of Science and Technology

(WJST), vol. 14, no. 10, pp. 825–835, Jun. 2017, [Online].

Available: https://103.58.148.28/index.php/wjst/article/view/4170

[28] M. Hosny and M. Al-Olayan, “A mutation-based genetic algorithm for room and

proctor assignment in examination scheduling,” in 2014 Science and Information

Conference, London, UK: IEEE, Aug. 2014, pp. 260–268. doi:

10.1109/SAI.2014.6918199.

[29] A. Jula and N. K. Naseri, “Using CMAC to Obtain Dynamic Mutation Rate in a

Metaheuristic Memetic Algorithm to Solve University Timetabling Problem”

European Journal of Scientific Research, vol.63, no.2 (2011), pp.172-181, Sep.

2021 [Online].

Available: https://www.academia.edu/54080602/Using_CMAC_to_Obtain_Dyna

REFERENCES

A-6
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

mic_Mutation_Rate_in_a_Metaheuristic_Memetic_Algorithm_to_Solve_Universi

ty_Timetabling_Problem

[30] S. Tkatek, S. Bahti, and J. Abouchabaka, “Artificial Intelligence for Improving the

Optimization of NP-Hard Problems: A Review,” International Journal of

Advanced Trends in Computer Science and Engineering, vol. 9, no. 5, pp. 7411–

7420, Oct. 2020, doi: 10.30534/ijatcse/2020/73952020.

[31] S. N. Jat and S. Yang, “A hybrid genetic algorithm and tabu search approach for

post enrolment course timetabling,” Journal of Scheduling, vol. 14, no. 6, pp. 617–

637, Nov. 2010, doi: 10.1007/s10951-010-0202-0.

[32] W. Wen-jing, “Improved Adaptive Genetic Algorithm for Course Scheduling in

Colleges and Universities,” International Journal of Emerging Technologies in

Learning (iJET), vol. 13, no. 06, p. 29, May 2018, doi: 10.3991/ijet.v13i06.8442.

[33] J. Nourmohammadi-Khiarak, Y. Zamani-Harghalani, and M.-R. Feizi-Derakhshi,

“Combined Multi-Agent Method to Control Inter-Department Common Events

Collision for University Courses Timetabling,” Journal of Intelligent Systems, vol.

29, no. 1, pp. 110–126, Dec. 2017, doi: 10.1515/jisys-2017-0249.

[34] E. H. Houssein, A. G. Gad, K. Hussain, and P. N. Suganthan, “Major Advances in

Particle Swarm Optimization: Theory, Analysis, and Application,” Swarm and

Evolutionary Computation, vol. 63, p. 100868, Mar. 2021,

doi: 10.1016/j.swevo.2021.100868.

[35] A. I. Diveev and O. V. Bobr, “NP-Hard Task Schedules and Methods of Its

Decision,” in 2017 IEEE 11th International Conference on Application of

REFERENCES

A-7
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Information and Communication Technologies (AICT), Moscow, Russia: IEEE,

Sep. 2017, pp. 1–5. doi: 10.1109/ICAICT.2017.8686990.

[36] F. Marini and B. Walczak, “Particle swarm optimization (PSO). A tutorial,”

Chemometrics and Intelligent Laboratory Systems, vol. 149, pp. 153–165, Sep.

2015, doi: 10.1016/j.chemolab.2015.08.020.

[37] O. Dulger, “SOLVING WEEKLY COURSE TIMETABLING PROBLEM WITH

GENETIC ALGORITHM AND LOCAL SEARCH,” 3rd International Symposium

on Computing in Science & Engineering, Oct. 2013.

[38] L. Wu, “The application of Coarse-Grained Parallel Genetic Algorithm with

Hadoop in University Intelligent Course-Timetabling System,” International

Journal of Emerging Technologies in Learning (iJET), vol. 10, no. 8, p. 11, Dec.

2015, doi: 10.3991/ijet.v10i8.5206.

[39] J. Arias-Osorio and A. Mora-Esquivel, “A solution to the university course

timetabling problem using a hybrid method based on genetic algorithms,” DYNA,

vol. 87, no. 215, pp. 47–56, Nov. 2020, doi: 10.15446/dyna.v87n215.85933.

[40] Al-Mahmud and M. A. H. Akhand, “ACO with GA operators for solving

University Class Scheduling Problem with flexible preferences,” in 2014

International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka,

Bangladesh: IEEE, May 2014, pp. 1–6. doi: 10.1109/ICIEV.2014.6850742.

[41] R. Lewis and B. Paechter, “Finding Feasible Timetables Using Group-Based

Operators,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 3, pp.

397–413, Jun. 2007, doi: 10.1109/tevc.2006.885162.

REFERENCES

A-8
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[42] Huzaifa and A. Saleem, TimetableGeneratorApp. (Aug. 16, 2020). Python, HTML,

CSS, JavaScript. [Online]. Available:

https://github.com/mHuzefa/TimetableGeneratorApp

[43] O. Odunsi, R. Clifford Jr, and B. Rasool, timetable-generator. (Jan. 07, 2018).

[Online]. Available: https://github.com/olaysco/timetable-generator

[44] UniTime.org, UniTime | University Timetabling. (Oct. 2023). [Online]. Available:

https://www.unitime.org/

[45] Tarek A. El-Mihoub et al., “Hybrid Genetic Algorithms : A Review,” Engineering

Letters, vol. 13, no. 2, pp. 124-137, Aug. 2006, [Online]. Available:

https://www.researchgate.net/publication/26623711_Hybrid_Genetic_Algorithms

_A_Review

[46] K. Wu, X. Ye, S. Jamonnak, and X. Feng, “A Digital Twin-Driven

Recommendation System for Adaptive Campus Course Timetabling,” Mar. 08,

2025, arXiv: arXiv:2503.06109. doi: 10.48550/arXiv.2503.06109.

[47] “Crossover in Genetic Algorithm,” GeeksForGeeks. Accessed: Apr. 21, 2025.

[Online]. Available: https://www.geeksforgeeks.org/crossover-in-genetic-

algorithm/

[48] GeeksforGeeks, “Haversine formula to find distance between two points on a

sphere,” GeeksforGeeks, Sep. 05, 2022. Available:

https://www.geeksforgeeks.org/dsa/haversine-formula-to-find-distance-between-

two-points-on-a-sphere/

APPENDIX

A-9
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

Poster

