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ABSTRACT

With the growing demand for energy-efficient and reliable battery-powered systems,
accurate estimation of battery State of Charge (SOC), State of Health (SOH), and
Remaining Useful Life (RUL) must be monitored to ensure safety, performance, and
longevity. Traditional estimation techniques such as Coulomb counting and model-
based approaches often suffer from error accumulation, calibration complexity, and
poor adaptability to dynamic conditions.

This project investigates machine learning (ML) techniques for estimating the SOC and
RUL based on Electrochemical Impedance Spectroscopy (EIS) data. A range of
regression and classification models including Random Forest (RF), Support Vector
Machines (SVM), Gaussian Process Regression (GPR), and Artificial Neural Networks
(ANN) were evaluated on both full-frequency and single-frequency EIS inputs. Results
show that full-spectrum EIS features provide superior predictive performance, with
Random Forest excelling in regression tasks and ANN achieving the highest
classification accuracy. For RUL estimation, ANN and CNN-SAM models
demonstrated competitive accuracy compared to baseline Gaussian Process Regression,
effectively capturing degradation patterns across different operating temperatures.

To enable deployment on resource-constrained embedded systems, pruning and
quantization techniques were employed to compress model size while preserving
predictive accuracy. Optimization reduced ANN size from 260 kB to 26 kB and CNN-
SAM from 1679 kB to 158 kB, confirming that lightweight yet robust models can be
achieved without significant performance loss.

The findings confirm the potential of integrating EIS data with optimized ML models
for real-time battery state estimation. This work provides a pathway toward practical,
efficient, and intelligent BMS capable of supporting the growing adoption of lithium-

ion batteries in diverse applications.

Area of Study: Battery State Estimation, Machine Learning

Keywords: Battery Management System, State of Charge, Remaining Useful Life,

Electrochemical Impedance Spectroscopy, Machine Learning, Model Optimization

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



TITLE PAGE
COPYRIGHT STATEMENT
ACKNOWLEDGEMENTS
ABSTRACT
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
CHAPTER 1 INTRODUCTION
1.1 Problem Statement and Motivation ..........ccccceeeeeevienieeiieennene
1.2 Research ODbJeCtiVES.......ccvieeiiiiieeiieiieeie et
1.3 Project Scope and Direction..........ccccecveeeevierieneenienienennicneen.
1.4 CONIIDULIONS. ...ttt
1.5 Report Organization...........eceeeereerierieneeneneeneeieeeeseeeeneens
CHAPTER 2 LITERATURE REVIEWS
2.1 Electrochemical Impedance Spectroscopy (EIS)........cccceeue..
2.2 Previous works on SOC prediction..........ccceeeeveeerveeenveeennnen.
23 Previous works on RUL prediction..........ccccecvevevvenieneenicnnen.
2.4 PrUNIng....coooiiiee e e
2.4.1 Structured pruning
2.4.2  Unstructured pruning
2.5 QUANTIZALION .....veeiiiie ettt ee e e e e e earee e
2.5.1 Post Training Quantization
2.5.2  Quantization Aware Training
CHAPTER 3 PROPOSED METHOD AND EXPERIMENT SETUP
3.1 SOC prediction with EIS .........ccocieiiiiie
3.1.1 Data acquisition
3.1.2 Experiment Setup
3.1.3 Machine Learning Models
3.1.4 Hyperparameter settings

TABLE OF CONTENTS

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

I

111

v

VIl

13

...... 13

13
14
15
17



3.2 RUL prediction with EIS .......cccoiiiiiiieeeee e
3.2.1 Data acquisition
3.2.2 Data pre-processing
3.2.3 Machine Learning Models
3.2.4 Experiment setup

33 Evaluation MELTICS ..eeeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeeeeeeeennene
3.3.1 Classification metrics

3.3.2 Regression metrics
CHAPTER 4 RESULT ANALYSIS
4.1 SOC prediction experiment reSults .........ccoceeevveerieeiienieenieenieennen.
4.2 RUL prediction reSUlts ........cccueeieriiirienieeieeeeeee e
CHAPTER 5 CONCLUSION
REFERENCES
APPENDIX
POSEET . ..ttt e e e e e et e e e e e e e nnrraeaeeeeeas
Data and code availability..........ccccieiiiiiiieiieeieeeecie e

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

19
21
22
24

26
26
27

28

28

35

40

41

46

Vi



LIST OF FIGURES

Figure 2.1 EIS impedance spectrum, adapted from [14] 5
Figure 2.2 Visualization of symmetric and asymmetric quantization 11
Figure 3.1 Workflow for SOC and RUL prediction 13
Figure 3.2 Flow of input features and output of experiment 1 and 2 15
Figure 3.3 Nine Stages where EIS data is collected 20
Figure 3.4 Degradation pattern of capacity for each battery 20
Figure 3.5 Change of EIS spectrum according to cycles 21
Figure 3.6 Architecture of CNN-SAM model 23
Figure 3.7 Spearman correlation analysis 25

Figure 4.1 Experiment 1 full EIS frequency range regression SOC prediction result
graph 28
Figure 4.2 Experiment 1 full EIS frequency range SOC classification result graph 29

Figure 4.3 Experiment 2 individual frequency regression SOC prediction result graph

30
Figure 4.4 Experiment 2 individual frequency SOC classification result graph 31
Figure 4.5 Model summary for ANN regression model in experiment 1 32
Figure 4.6 Model summary for ANN classification model in experiment 1 32

Figure 4.7 Confusion matrix of ANN classification model after pruning and
quantization 33

Figure 4.8 Predict vs True SOC of ANN regression model after pruning and

quantization 34
Figure 4.9 RUL prediction result of ANN model 37
Figure 4.10 RUL prediction result of CNN-SAM model 37

Figure 4.11 RUL prediction result of ANN model after pruning and quantization 38

vii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



Figure 4.12 RUL prediction result of ANN model after pruning and quantization 38

viii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



LIST OF TABLES

Table 3.1: Hyperparameter setting for regression models, experiment 1.................... 18
Table 3.2: Hyperparameter setting for classification models, experiment 1 ............... 18
Table 3.3: Hyperparameter setting for regression models, experiment 2 .................... 19
Table 3.4: Hyperparameter setting for classification models, experiment 2 ............... 19

Table 4.1 Experiment 1 full EIS frequency range regression SOC prediction result..28
Table 4.2 Experiment 1 full EIS frequency range SOC classification result............... 29
Table 4.3 Experiment 2 individual frequency regression SOC prediction result......... 30
Table 4.4 Experiment 2 individual frequency SOC classification result..................... 31
Table 4.5 Performance comparison of ANN and optimized ANN for classification..33

Table 4.6 Performance comparison of ANN and optimized ANN for regression....... 34

Table 4.7 Experiment with real and imaginary EIS data from all frequencies............ 35
Table 4.8 Experiment with imaginary EIS data from all frequencies............cccccc...... 35
Table 4.9 Experiment with imaginary EIS data from first 30 frequencies................... 36

Table 4.10 Comparison of R? performance of the proposed ANN and CNN-SAM
models with previous studies at different operating temperatures.............. 37
Table 4.11 Performance comparison of ANN and CNN-SAM models on individual test

batteries at different temperatures (25 °C, 35 °C, and 45 °C), before and after

pruning and qUANTIZALION. .......cuveeerureeririeeeieeeeieeertee e e e ereeeereeeaeeeereeenens 38

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



LIST OF ABBREVIATIONS

BMS Battery Management System
SocC State of Charge

SOH State of Health

RUL Remaining Useful Life

EOL End of Life

ML Machine Learning

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 1

Chapter 1 Introduction

1.1 Problem Statement and Motivation

As the use of battery-powered devices, electric vehicles, and renewable energy systems
expands, the demand for dependable and efficient Battery Management Systems has
significantly increased. The batteries require effective monitoring of their internal state,
which are the State of Charge (SOC), which reflects the available capacity at a given
moment, the State of Health (SOH), represent the remaining capacity of a battery
relative to its initial capacity, and the Remaining Useful Life (RUL), which indicates
the number of cycles left before the battery reaches its end of life (EOL) cycle. Accurate
estimation of SOC, SOH, and RUL is essential for ensuring safety and ensure optimal

performance and longevity [1].

Traditional methods for estimating battery SOC include Coulomb counting, Open
Circuit Voltage (OCV) measurement, and model-based approaches like Equivalent
Circuit Models (ECMs). In Coulomb counting, SOC is calculated by measuring and
integrating current over time. However, it accumulates errors over time due to sensor
inaccuracies [2]. OCV is defined as the voltage measured following a relaxation period
of several hours. However, this method requires the battery to rest for extended periods
to reach equilibrium, making it unsuitable for real-time applications [3]. ECMs, often
combined with Kalman filters, simulate the battery's behaviour using electrical
components to estimate SOC and SOH. Although more accurate, these models require

complex parameter tuning and are sensitive to temperature and aging effects [4], [5].

Machine Learning (ML) has developed as a promising solution to overcome these
challenges. Unlike physics-based models, ML methods nonlinear relationships from
operational data, enabling robust estimation of SOC and SOH under diverse operating
conditions, enhancing adaptability and accuracy. Recent studies [6], [7], [8] have
demonstrated the efficiency of various ML techniques, including Support Vector
Machines (SVM), Neural Networks (NN), and Ensemble Methods, in estimating SOC
and SOH with high accuracy. These models can process large datasets to capture
intricate patterns in battery behaviour, offering improved performance over traditional
methods. Moreover, combining Electrochemical Impedance Spectroscopy (EIS) with

ML models enhances SOH and RUL prediction by capturing the battery's internal
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electrochemical dynamics. This combination of data-driven and physics-based

approaches leverages the strengths of both methodologies for more reliable predictions.

Although ML offers significant advantages in battery state estimation, deploying these
models on embedded systems remains challenging because of limited computational
power and memory constraints. [9], [10]. High-complexity models may not meet the
real-time processing requirements of BMS. Thus, optimization techniques were
required to reduce model size and inference time. Model pruning involves eliminating
redundant or less important parameters from the neural network. This method reduces
the model size without significantly compromising accuracy. Quantization converts the
model's weights and activations from high-precision (e.g. 32 bits floating number) to
lower-precision (e.g. 8 bits integer) representations, decreasing memory usage and
increasing computational efficiency. Applying these optimization techniques enables
the deployment of ML models on resource-limited embedded platforms, facilitating

real-time SOC and RUL estimation in practical applications.

1.2 Research Objectives

The objectives of this project are outlined as follows:

1. Evaluate and compare the effectiveness of different machine learning
algorithms in estimating battery State of Charge (SOC) and Remaining Useful
Life (RUL).

2. Apply pruning and quantization techniques to reduce the model size to 200KB
or below, ensuring suitability for deployment on embedded systems without

significant loss of accuracy.

1.3 Project Scope and Direction

This project focuses on reproducing and evaluating existing machine learning-based
SOC prediction models using publicly available battery datasets. In addition, build an
RUL prediction model based on EIS spectrum.

1.4 Contributions

This project has the following contributions:

1. Provide a comprehensive evaluation of ML algorithms for battery state

estimation
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2. Development of optimized ML models suitable for real-time embedded

applications

1.5 Report Organization

Chapter 2 discusses literature and related works. Chapter 3 explains the experimental
setup and proposed methods. Chapter 4 presents preliminary results and findings.

Chapter 5 concludes the report and highlights future work.
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Chapter 2 Literature Reviews

2.1 Electrochemical Impedance Spectroscopy (EIS)

EIS is a powerful electroanalytical method for characterizing the electrical properties
of electrochemical systems, including batteries. It measures the impedance response to
a small sinusoidal perturbation in potential or current over a range of frequencies,
providing information on resistance, capacitance, and diffusion processes within the
system [11], [12]. Unlike other electrochemical methods, EIS introduces only a
minimal disturbance, making it suitable for monitoring under near-operating
conditions. This non-destructive nature is particularly advantageous for evaluating

battery health and performance evolution over time.
In EIS analysis, the system response is described by the complex impedance [12]:
Z = Z,e'® = Zy(cos ® + i sin ®)

where Zo is the impedance magnitude and ¢ is the phase shift between the applied
potential and the resulting current. When plotted, the real component Zea (Re) is
typically placed on the X-axis and the imaginary component Zimag (-Im) on the Y-axis
to generate a Nyquist plot, in which each point corresponds to a specific frequency.
High-frequency data appear on the left of the X-axis, while low-frequency data extend

to the right as shown in Figure 2.1.

To model and interpret the EIS spectrum, Equivalent Circuit Models (ECMs) are widely
used, which approximate electrochemical processes by electrical components such as
capacitors, constant phase elements (CPEs), resistors, and Warburg elements [13]. In
lithium-ion batteries, the impedance spectrum can be broadly divided into three
frequency regions, each corresponding to different physical/chemical processes inside

the cell:

1. High-frequency region (Section 1 in Figure 2.1): Represents very fast, ohmic
effects, including resistance in the electrolyte and electrodes and inductive
parasitic from wiring, cell leads etc.

2. Mid-frequency region (Section 2 in Figure 2.1): Reflects interfacial phenomena

such as charge transfer at electrode/electrolyte boundaries, double-layer
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capacitance, and effects from the solid electrolyte interphase (SEI). Modeled
using resistor - capacitor or resistor - CPE (constant phase element) networks.
3. Low-frequency region (Section 3 in Figure 2.1): Dominated by diffusion
processes including lithium-ion diffusion through electrode materials or porous
structure. These are modeled using Warburg or modified Warburg elements,
often connected to the mid-frequency elements to reflect realistic diffusion

behavior.

SecEioq 1 Sectipn 2 1 Section 3
' I 1
| Low-flequency

High-frequency
>1KH

\

-Im/mQ

Mid-frequency
1~999HZ

Re/mQ
Figure 2.1 EIS impedance spectrum, adapted from [14]

2.2 Previous works on SOC prediction

Several recent works [6] have been done on SOC prediction using machine learning
regression algorithms, including Neural Network, Support Vector Machine, and
Gaussian Process Regression. The study in [6] has done a comparative assessment of
the models, using input parameters such as humidity, pack voltage, pack current, pack
cell temperature, motor temperature, FET temperature, and ambient temperature. The
key result of the experiment was that the Gaussian Process Regression (GPR) model
demonstrated the best SOC prediction accuracy compared to the other machine learning

models.

On the other hand, [15] first done the feature sensitivity analysis with Pearson
correlation coefficient on impedances values across 54 frequencies ranging from 1 mHz
to 6 kHz. The study found that EIS data in high and mid-frequency regions are strongly

correlated with SOC. Then, two machine learning models were trained, a linear
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regression and a Gaussian Process Regression (GPR) to map the EIS features to SOC.

Importantly, the GPR model achieved a SOC prediction error under 3.8%.

In other studies, [16] proposed a novel method for estimating the state of charge (SOC)
of lithium-ion batteries by combining electrochemical impedance spectroscopy (EIS)
measurements with convolutional neural networks (CNNs). Their approach leverages
the distinctive visual patterns of impedance curves to classify SOC levels with high
accuracy, achieving up to 80% top-2 classification accuracy on previously unseen
batteries, and up to 100% top-2 accuracy on known batteries. However, the model’s
performance significantly declines when estimating SOC for unseen battery,
demonstrating only 62% accuracy. Thus, more datasets may be needed to build a better

model.

In addition, [17] has done a comprehensive analysis of using EIS for battery SOC
estimation in Lithium-Ion batteries, which compare different machine learning methods
and found that utilizing the full EIS frequency range of impedance as input yields better
performance than individual frequency-impedance pairs. The LSTM model excelled in
regression analysis with low error metrics and a high R? value, while ANN, DA, LSTM,
and TM demonstrated superior performance in the classification scenario. In addition,
[18] also explored ML based SOC estimation using EIS as classification problem with
the same dataset. The study transforms the original EIS data using an equivalent circuit
model and successfully demonstrated that this transformation enhances the accuracy of
SOC classification. As an output, the study trained a SOC classification model which

achieves an accuracy of above 93%

Furthermore, similar work done in [19] explores the application of tiny machine
learning (TinyML) for estimating the SOC of electric vehicle batteries, emphasizing
hardware-accelerated implementation on microcontrollers and microprocessors. It
contrasts traditional model-based SOC estimation techniques, which struggle with the
non-linear dynamics of batteries and require complex modelling. The study evaluated
various tiny neural network architectures, including Feedforward Neural Networks
(FNN), Long Short-Term Memory (LSTM), Temporal Convolutional Network (TCN),
Gated Recurrent Unit (GRU), and Legendre Memory Units (LMU), using a dataset
from a BMW 13. As a result, the Parallel TCN architecture achieved the highest

accuracy, while the stateless LSTM offered a balance between accuracy and
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computational demands, highlighting the potential of TinyML for efficient and
decentralized BMS in electric vehicles, especially when coupled with hardware

acceleration.

2.3 Previous works on RUL prediction

One of the foundational works in the field utilized a Gaussian Process Regression
(GPR) model to estimate capacity and predict RUL [20]. GPR is a probabilistic and
non-parametric machine learning model that is well-suited for regression tasks. This
research introduced a crucial concept: using the entire EIS spectrum as a direct input to
the model, rather than relying on an expert to manually select features from it. A key
aspect of this GPR model was its use of an Automatic Relevance Determination (ARD)
kernel, which functions as an automatic feature selection mechanism. The ARD kernel
assigns importance weights to each input feature, effectively down-weighting and
pruning irrelevant frequencies from the high-dimensional EIS spectrum. By analyzing
the weights assigned by the model, researchers could identify which spectral features
were most salient for predicting battery degradation. The GPR model achieved an R?
value of 0.96 for RUL prediction for batteries cycled at 25°C. The model's analysis of
the EIS spectrum for this dataset revealed that frequencies 17.80 Hz and 2.16 Hz were
sufficient to estimate capacity and predict RUL.

Another early approach [21] used a linear Lasso regression algorithm to predict RUL
based on a minimal number of features. Unlike the GPR model that automatically
selected features, this method relied on a pre-selected set of inputs from the first 20
cycles of a battery's life. The chosen features included the negative out-of-phase
impedance response (-Im(Z)) at 20 kHz and 8.8 Hz, in combination with temperature
data. This simplified model demonstrated remarkable accuracy, achieving RUL
predictions with an R? greater than 0.96. The research further showed that the model
could be simplified even more, to require only the 20 kHz impedance response and

temperature, with the model still maintaining an R? greater than 0.90.

More recent research has moved beyond foundational regression techniques to leverage
the power of advanced deep learning architectures. The CNN-BiLSTM model is a
sophisticated hybrid architecture that combines a 1d Convolutional Neural Network
(CNN) with a Bidirectional LSTM (BiLSTM) network [22]. The CNN component acts

as a feature extractor, automatically processing the high-dimensional EIS spectrum to

7
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identify critical degradation patterns. The BiLSTM component then analyzes the
temporal sequence of these extracted features across successive cycles, enabling the
model to learn and predict the long-term degradation trend. The model demonstrated
superior performance in SOH estimation and RUL prediction compared to the GPR
model and other standard neural networks like LSTM and CNN-LSTM. The model's
reported R? values for RUL prediction were 0.85 at 25°C, 0.86 at 35°C, and 0.94 at
45°C, surpassing the performance of earlier models on the same multi-temperature
dataset. A key strength of this approach is its ability to forecast the entire capacity
degradation trajectory from a limited number of early cycles, such as predicting 300

cycles of degradation from only the first 50 cycles.

Another hybrid model, the ConvlD-SAM [14], which combine CNN and self-attention
mechanism was developed to predict RUL using the negative imaginary part of the EIS
impedance as input. This study demonstrated that the negative imaginary component of
the impedance spectrum provides a strong representation for RUL prediction. This
feature was found to be more robust for RUL prediction as its change with aging was
less dependent on temperature compared to the real part of the impedance. The Conv1d-
SAM model was specifically engineered to mine the detailed degradation information
within the negative imaginary impedance data. It utilizes the self-attention mechanism
to weight the importance of different temporal features, improving the model's ability
to adapt to the inherent uncertainty in battery aging. The model demonstrated a
significant improvement over the "latest published method," with its Mean Absolute
Error (MAE) being improved by 72% on average across nine test cells.1 This suggests
that a focus on a specific, physically relevant subset of the EIS data can yield

exceptional results.

A third advanced hybrid model, the CNN-Transformer network [23], was also proposed
for SOH estimation and RUL prediction. This model initially uses a CNN to process
the EIS data, which is then passed to a Transformer network. The Transformer's self-
attention mechanism effectively captures long-range dependencies in sequential data,
making it well-suited for time-series tasks such as battery degradation prediction. In the
data pre-processing stage, this research used the Pearson correlation coefficient (PCC)
to select the most informative EIS features, confirming that EIS data from a fully rested
state (State V) had the highest correlation with battery capacity data. The model was

also tested on a low-performance platform without GPU support, demonstrating its

8
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practicality for real-world applications. The CNN-Transformer model achieved an

exceptional R? value of 0.9872 for SOH estimation.

2.4 Pruning

Pruning is a method used to reduce the number of parameters in a machine learning
model by eliminating weights or entire components that contribute little to the model’s
performance. This results in a smaller model, which can lower memory usage, speed
up inference, and improve energy efficiency. Pruning is generally classified into

structured and unstructured types.

2.4.1 Structured pruning

Structured pruning involves removing entire structures from the neural network, such
as neurons, filters, or channels [24]. In contrast with unstructured pruning, structured
pruning results in more regular and compact models that can be efficiently processed
by standard hardware structured sparsity and does not rely on special hardware or
software specification [25]. Previous work of structured pruning includes [26], [27],

[28], [29], [30], [31], [32].

The work done in [31] has proposed a CoFit pruning method while [27] has proposed
a structural pruning method which re-parameterize the Convolutional Neural Networks
(CNN) into two parts, remember part to minimize the size of model with slightly loss
in accuracy. Similar previous work that is inspired by neurobiology is also done in [33].
The paper [33] has discussed on the pruning plasticity, which means the speed of a
model recover its accuracy after pruning. It suggested that pruning techniques should
use low pruning with high learning rate to recover faster in terms of accuracy. The paper
[33] also proposed GraNet, which prune the model during training and introduce the
regeneration of connections. In addition of this previous work, the work done in[30]
proposed an EagleEye pruning method which can be used to plug-in on other pruning
methods to increase the effectiveness of structural pruning. In [32], the paper had
proposed a pruning on LLM using dependency graph. Where similar work done in [26]
also constructed dependency graph for structured pruning on neural networks (NN) but
the proposed method is more general which it can be applied to any type of NN. The

work in [28] also justifies that identify the redundancy layer instead of unimportant
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layer is more effective. For example, the proposed work in [28] prune the filters in the

most redundant layer that identified by the dependency graph.

2.4.2 Unstructured pruning

Unstructured pruning refers to pruning the redundant weights by setting their
corresponding masks to zero [25], resulting in a sparse weight matrix. This method can
achieve higher sparsity ratios compared to structured pruning, as it offers more
flexibility in identifying and eliminating less important parameters. However,
Specialized hardware or software libraries are often required to realize the full benefits
of unstructured pruning in terms of inference speedup [25]. Examples of previous work
which done on unstructured pruning includes [34], [35]. [34] has proposed Wanda
pruning technique, which utilizes the weights and activation to prune a pretrained Large
Language Model (LLM). On the other hand, [35] has use movement pruning to prune
language model. These unstructured pruning techniques are simple to be implemented

and lead to high compression rate [24].

2.5 Quantization

Quantization refers to reducing the precision of the data type to reduce the computations
power needed [36]. An example of quantization is converting data type of F32 (32-bit
floating-point) to INTS8 (8-bit integer). By quantization, the required computational
power is saved as the data are stored in less bits. Quantization can be categorized into
two groups; the first one is Post Training Quantization (PTQ) and the second is
Quantization Aware Training (QAT) according to the time to apply quantization on the

model.

In addition of PTQ and QAT, quantization can also divide into two groups, which are
symmetric quantization and asymmetric quantization. The main difference between
these two quantization techniques is, symmetric quantization restricts the zero-point to

0, while asymmetric quantization does not [37].

10
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Figure 2.2 Visualization of symmetric and asymmetric quantization

As shown in Figure 2.2, the centre of symmetric signed quantization is 0, while the
centre of asymmetric quantization is not. In this project, the asymmetric quantization
will be applied to activation while symmetric weight quantization will be applied to

weight as referred to [37].

2.5.1 Post Training Quantization

PTQ refers applying quantization on a trained model. Previous work for PTQ such as
[38] has developed Brecq and try to push the limit of PTQ to 2-bit. PTQ is done by
applying the quantization on the trained model. For example, quantization of the
weights and activations of a trained model so that the parameters will not take too much

space to be stored.

2.5.2 Quantization Aware Training

QAT is quantization of the parameters when the machine learning model is still within
training. This project will focus on the implementation of QAT on machine learning
model. Previous works that implement QAT is [39]. In [39], the study has proposed a
novel QAT by introducing the block-wise QAT into the traditional QAT which only
use end-to-end quantization. In addition, the work done in [40] has tried to proposed
Bit width-adaptive quantization. In which, the bit of quantization will vary and not fixed
like traditional quantization. However, this will require more computational time.

Furthermore, the work done in [41] had proposed two quantization algorithm which can

11
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avoid the overcoming oscillations in QAT. Oscillations means the change of quantized

value between two adjacent layers.

12
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Chapter 3 Proposed Method and Experiment Setup

This project conducted two experiments: the first focused on predicting the SOC with

EIS spectrum, and the second on predicting the RUL with EIS spectrum.

Y
EIS data inputs Model training
. l
Reshape SOC/RUL output
, l
Normalization Model evaluation

Figure 3.1 Workflow for SOC and RUL prediction

3.1 SOC prediction with EIS

This project begins by replicating the SOC prediction with EIS experiment from [17]
using a list of selected models. The implementation of the machine learning models
was done with Python Sklearn Library for non-neural network models and Tensorflow

Library for ANN.

3.1.1 Data acquisition

In this project, the dataset was sourced from [42]. The dataset was originally generated
using four newly manufactured Samsung cylindrical ICR18650-26] rechargeable
lithium-ion batteries, each with a nominal capacity of 2600 mAh and a nominal voltage
of 3.6 V. In the original study, experiments were repeated six times for each battery,
with the batteries fully charged according to the manufacturer’s specifications prior to

testing. The open-circuit voltage after charging was measured at 4.12 V.

EIS measurements were carried out using a broadband measurement strategy across
State of Charge (SOC) levels 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and
100%, with 14 frequencies sweeping from 0.05 Hz to 1 kHz after a relaxation period of

1800 seconds per SOC measurement, as proposed in [42]. This procedure resulted in a
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total of 3360 impedance values (6 measurements X 4 batteries x 10 SOC levels x 14

frequencies).

3.1.2 Experiment Setup

Following [17], two types of exploratory experiments were conducted:

1. In this experiment, impedance values across the entire frequency range were
used as input features for the machine learning (ML) models. This yielded a
total of 240 samples (6 measurements x 4 batteries x 10 SOC levels), with 200
samples used for training and 40 for testing.

2. Individual EIS Frequency-Impedance Pair Analysis: In this case, each
impedance value and its corresponding frequency were treated as individual
features, resulting in 3360 samples. The dataset was divided into 2800 training
samples and 560 testing samples.

Feature scaling was applied using standardization to ensure zero mean and unit

variance. The impedance at each frequency is represented as:
Z = Zreal +jZimag
Zreal = [Zreal,fOIJ Zreal,fOZ' ey Zreal,fn]

Zimag = [Zimag,fOL Zimag,fOZ' LN Zimag,fn]

The index fO1—fn corresponds to the frequency number. The data was normalized to
zero mean and unit variance using:

where x is the original value, X is the mean, and o is the standard deviation.

After normalization, the impedance data is expressed as:

_ Zreal,fOl - Zm,real,fOl Zreal,fOZ - Zm,real,fOZ Zreal,f60 - Zm,rea],fn
Zreal,norm - ) L)
0—real,f01 Greal,fOZ O-real,fn
Zimag,fOl - Zm,imag,fOl Zimag,OZ - Zm,imag,fOZ Zimag,f60 - Zm,imag,fn
Zimag,norm = ’ [ARLR]
Oimag,f01 Oimag,f02 Oimag,fn

Znorm = Zreal,norm + Zimag,norm

A summary of the data modeling workflow for both experiments is illustrated in Figure

3.2

14
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Figure 3.2 Flow of input features and output of experiment 1 and 2

3.1.3 Machine Learning Models

In this project, Gaussian Process Regression, Linear Regression, Support Vector
Machine, Kernel Ridge Regression, Random Forest and Artificial Neural Network were
used as regression models. K-Nearest Neighbor, Quadratic Discriminant Analysis,
Gaussian Naive Bayes, Support Vector Machine, Random Forest and Artificial Neural

Network were used as classification models.

i.  Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) is a non-parametric, probabilistic method
that defines a distribution over functions using a mean and a kernel (covariance)
function. Given training data, Bayesian inference updates the prior to a posterior
distribution, providing predictions with associated uncertainty. GPR works well
with small datasets, allows incorporation of prior knowledge, and gives
interpretable, probabilistic outputs, but it can be sensitive to kernel choice and

does not scale efficiently to large datasets [43].
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ii.  Linear Regression (LR)

Linear Regression is a method used to examine the relationship between a
dependent variable and a single independent variable. Simple Linear Regression
involves one predictor and one response variable, aiming to model their

relationship by fitting a regression line to the observed data [44].
ili.  Support Vector Machines (SVM)

Support Vector Machines (SVMs), originally developed for classification, can
also be applied to regression tasks (Support Vector Regression). SVMs aim to
find a hyperplane that best fits the data points within a certain margin of
tolerance (€), while minimizing the complexity of the model [45]. Instead of
minimizing the squared error, SVR minimizes the error within a defined margin,
making it robust to outliers. The use of kernel functions allows SVMs to model
non-linear relationships by mapping the data into a higher-dimensional feature

space.
iv.  Kernel Ridge Regression (KR)

Kernel Ridge Regression is a regression method that combines the kernel trick,
enabling nonlinear modeling, with regularization to prevent overfitting. It
minimizes the squared prediction error while controlling model complexity

through a regularization parameter that balances accuracy and stability [46].
v. Random Forest (RF)

Random Forest (RF) is an ensemble learning method consisting of multiple
decision trees. By using the bagging approach, it improves prediction accuracy
and reduces the risk of overfitting compared to a single decision tree, while

enabling parallel execution of trees for more efficient problem-solving [47].
vi.  Artificial Neural Network (ANN)

Artificial Neural Networks (ANNs) are computational models inspired by the
human brain, consisting of interconnected nodes (artificial neurons) that process

and transmit information collaboratively [48].

vii. K-Nearest Neighbor (KNN)
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viii.

ix.

The k-Nearest Neighbors (k-NN) algorithm is a classical nonparametric method
used for both classification and regression. It is an instance-based, or “lazy
learning,” approach, meaning that during training, the algorithm simply stores
the data, and all computations occur during testing to identify the k nearest
neighbors. For a test sample, k-NN predicts its class (for classification) by
taking a majority vote among its k closest neighbors, or its value (for regression)

by averaging the labels of these neighbors [49].
Quadratic Discriminant Analysis (QDA)

Quadratic Discriminant Analysis (QDA) is a classification technique that
assumes that the data for each class’s data follows a multivariate Gaussian
distribution and that each class has its own covariance matrix. Unlike Linear
Discriminant Analysis, which assumes equal covariance matrices across
classes, QDA allows for more flexibility by modeling quadratic boundaries
between classes. This makes QDA more powerful when the decision boundaries

are non-linear, but it requires more parameters to be estimated than LDA
Gaussian Naive Bayes (GNB)

Gaussian Naive Bayes is a probabilistic classification method that uses Bayes’
theorem, assuming that all features are conditionally independent given the
class. Specifically, for continuous features, it assumes that the likelihood of the
features given the class is distributed according to a Gaussian distribution. This
simplicity makes Gaussian Naive Bayes computationally efficient and effective,
particularly for high-dimensional datasets, despite the often-unrealistic

independence assumption

3.1.4 Hyperparameter settings

GPR Kernel scale 32772
LR Alpha 0.0023
Solver Isqr
SVM Kernel rbf
C 7.7298
Gamma 0.2582
Epsilon 0.9447
KR Alpha 0.000005249
Kernel rbf
Gamma 6.7342
RF N Estimators 486
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Min samples leaf 1

Boostrap True
ANN Activations Sigmoid

LayerSizes [298 275]

Table 3.1: Hyperparameter setting for regression models, experiment 1

Model Hyperparameter Value
KNN n_neighbors 1
metric chebyshev
QDA reg_param 0.2576
GNB (No specific hyperparameters
tuned)
SVM kernel rbf
C 0.0011
gamma 0.0196
decision_function_shape ovo
RF estimator max_depth=3, min_samples_leaf=5
(DecisionTreeClassifier)
n_estimators 18
learning_rate 0.9665
ANN layers [295, 30]
lambda_reg 0.000073798
optimizer Adam(learning_rate=0.001)
loss sparse categorical crossentropy

Table 3.2: Hyperparameter setting for classification models, experiment 1

Model Hyperparameter Value

GPR kernel (RBF) length scale=22.572
alpha 3

LR alpha 0.0024
solver Isqr

SVR kernel rbf
C 186.9
gamma 56.177
epsilon 0.1187

KR alpha 0.00000256
kernel rbf
gamma 0.62218

RF n_estimators 230
min_samples_leaf 1
bootstrap TRUE

ANN layers [251, 267]
lambda reg 0.0093249
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Table 3.3: Hyperparameter setting for regression models, experiment 2

Model Hyperparameter Value
KNN n_neighbors 5
metric minkowski
QDA reg_param 0.01
GNB (No specific hyperparameters tuned)
SVM kernel rbf
C 1
RF n_estimators 486
ANN layers [25, 268]
lambda_reg 4.04 x 107°

Table 3.4: Hyperparameter setting for classification models, experiment 2

3.2 RUL prediction with EIS
3.2.1 Data acquisition

The dataset used for RUL prediction is from [20]. It was generated from cycling tests
on 12 commercial 45 mAh Eunicell LR2032 Li-ion coin cells (LiCoO-/graphite). The
cells were aged in three climate chambers at 25 °C (8 cells, labelled 25C01 to 25C08),
35 °C (2 cells, labelled 35C01 and 35C02), and 45 °C (2 cells, labelled 45C01 and
45C02). Each cycle involved charging at 1C (45 mA) in CC—CV mode up to 4.2 V,
followed by discharging at 2C (90 mA) in CC mode down to 3 V. Electrochemical
impedance spectroscopy (EIS) was recorded every second cycle at nine states of
charge/discharge between 0.02 Hz and 20 kHz using a 5 mA excitation current, after a
15-minute rest at 0% and 100% SOC. Capacity fade was measured after every odd
cycle. Figure 3.3 shows 9 stages where EIS data is collected. This project will use stage

V (15 minutes rest after charging). Figure 3.4 shows the degradation pattern of batteries.
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Figure 3.3 Nine Stages where EIS data is collected
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Figure 3.4 Degradation pattern of capacity for each battery

20
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 3

25C01 25C02 2503 25C04
Impedance vs RUL Impedance vs RUL Impedance vs RUL Impedance vs RUL

20
" \\ w 2
o 2SD 50,

60,
075 s0 RUL

100
Nw(”%i.zs”“m 100

25C08
Impedance vs RUL

45C01
Impedance vs RUL

400

0.3
025
0.20| 300
15|
0.10)
005 200
[ 000
~0.05)
100
0
100
0

200
L
s

RUL
08 ez Rez) 30075, °
200 2)
" 7, /Opyy 200, 55 400

Figure 3.5 Change of EIS spectrum according to cycles

3.2.2 Data pre-processing

The electrochemical impedance spectroscopy (EIS) measurements cover a frequency
range of 0.02 Hz to 20 kHz, with n number of frequency points in total. The EIS data

was standardized using the same standardization method explained in Section 3.1.2.

To improve model robustness and reduce overfitting, Gaussian noise augmentation was
applied to the training data. For each impedance feature, zero-mean Gaussian noise was
added with a standard deviation proportional to the feature’s inherent variability.
Specifically, the standard deviation of the noise was set to a fraction of the per-feature

standard deviation:
Xaug = X + NV (0, (frac - 0x)?)

Where X is the original input feature, V' (0, (frac - 6x)?) denotes Gaussian noise, oy is

the per-feature standard deviation, frac is the noise scaling factor.

In this study, the noise fraction (frac) was set to 0.02, which means the added noise was
2% of the standard deviation of each feature. For every original sample, two extra noisy

versions were created, so the training dataset became three times larger. The target
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values stayed the same, since only the input features were changed by the noise. This
strategy introduces realistic variability into the training process, encouraging the
models to generalize better to new data while maintaining the physical consistency of

the impedance spectrum.

3.2.3 Machine Learning Models

i. Artificial Neural Network
The ANN baseline was implemented as a fully connected feedforward network.
It consists three hidden layers consisting of 128, 64, and 32 neurons, each using
ReLU activation, dropout for regularization, and the output layer is a neuron

with linear activation.

ii. Convolutional Neural Network with Self-Attention (CNN-SAM)
The CNN-SAM model [14] applies 1D convolutional layers to extract local
frequency-dependent features from the impedance spectrum. A custom self-
attention mechanism (SAM) is introduced after the convolutional blocks to
capture global dependencies and assign importance weights to relevant features.
The outputs from convolution and attention are combined via pooling and
passed to fully connected layers for regression. This hybrid design enhances

interpretability and improves feature learning beyond standard CNNss.
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Figure 3.6 Architecture of CNN-SAM model

iii. Long Short-Term Memory (LSTM)

iv.

The LSTM model consists of stacked recurrent layers (256, 128, 64 units)
designed to capture sequential dependencies across the EIS frequency domain.
Dropout regularization was used to prevent overfitting. Following the recurrent
layers, dense layers were applied before the regression output. This design
leverages LSTM’s strength in modeling long-range dependencies within

sequential data.

CNN + LSTM

This hybrid model integrates convolutional and recurrent layers. CNN blocks
first extract local features from the impedance spectrum, which are then fed into
stacked LSTMs to capture sequential dependencies. The combined approach
leverages CNN’s ability to detect localized patterns and LSTM’s capability to

model temporal relationships, leading to richer feature representation.
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V.

vi.

vii.

3.24

CNN + LSTM + Attention

In this variant, an attention mechanism is added after the CNN-LSTM
backbone. Specifically, multi-head self-attention (MHA) layers are employed
to highlight the most informative sequence elements when learning from
impedance data. The attention-enhanced sequence representation is then pooled
and passed through fully connected layers for regression. This improves model

interpretability and performance by adaptively weighing important features.

CNN + LSTM + Transformer

This architecture extends the CNN-LSTM model by integrating Transformer
encoder blocks. CNN layers capture local features, LSTM layers capture
sequential dependencies, and Transformer layers use multi-head attention along
with feed-forward networks and residual connections. to capture global
dependencies across the spectrum. The output is pooled and passed through
dense layers for regression. This model combines the strengths of convolution,

recurrence, and self-attention.

CNN + Transformer

The CNN-Transformer model removes recurrent layers and directly combines
CNN feature extraction with Transformer encoder blocks. CNNs first extract
local patterns, then Transformer layers capture long-range relationships using
multi-head attention and feed-forward networks. Compared to LSTM-based
hybrids, this model benefits from parallel computation and more effective

global dependency modeling.

Experiment setup

The dataset was divided into training and testing sets based on cell identifiers. Training
set includes cells 25C01-25C04, 35C01, and 45C01. While testing set includes cells
25C05-25C08, 35C02, and 45C02 following [20]. This split ensures that the models

are evaluated on unseen operating conditions and cells.

The end-of-life (EOL) cycle was defined as the cycle at which the capacity of a cell

dropped to 80% of its initial capacity. For most cells, the EOL cycle was determined

directly from the capacity measurements. However, for cell 25C04, the recorded
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capacity did not fall below the 80% threshold. Following previous work in [21], its

EOL cycle was fixed at 114 cycles to ensure consistency with the literature.

The Remaining Useful Life (RUL) was then calculated as the number of cycles between
the current cycle and the EoL.

RUL = Cycleg,;, — Cycleqyrent

A Spearman correlation analysis was performed to investigate the relationship between
EIS features and the RUL of the batteries. The Spearman correlation coefficient is

defined as

6 X di

=1 ==
p nn?—-1)

Where n is the number of paired observations and d; is the difference between the

ranks.

The analysis in Figure 3.7 showed the spearman correlation of EIS data with RUL at
each frequency point. The left plot is the real part of EIS, and the right plot is the
negative part of EIS data. The frequency of EIS data is increasing from left to right.
The more red or blue color shows stronger correlation of the EIS value towards RUL,
where red means stronger positive correlation and blue means stronger negative
correlation. As a result, the first 30 frequencies of the imaginary component of the
impedance spectrum exhibited a strong negative correlation with RUL. This result
suggests that as the battery approaches its end of life, the magnitude of the imaginary
impedance at these frequencies increases, making them potential predictors of

degradation.

Spearman Correlation of RUL vs Frequency (Real) Spearman Correlation of RUL vs Frequency (Imag)

4502 4

Figure 3.7 Spearman correlation analysis
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To evaluate model performance under different input representations, three types of

EIS features were extracted and used:

1. Full spectrum (Real + Imag): using the whole EIS spectrum with both real
and imaginary parts of the impedance at all frequency points.
2. Imaginary only (Imag): only the imaginary part of the impedance.
3. Lower-half Imaginary (Half-Imag): only the imaginary impedance at the
lower half (the first 30 frequencies) of the frequency range.
This design allows assessment of how different impedance components and frequency

ranges affect RUL prediction performance.

3.3 Evaluation metrics

To evaluate the performance of the models, both classification and regression metrics

were employed.

3.3.1 C(lassification metrics

Accuracy measures the proportion of correctly classified samples:

TP+TN
TP+TN + FP +FN

Accuracy =

where TP is true positives, TN is true negatives, FP is false positives, and FN is false

negatives.

Precision indicates the proportion of correctly predicted positive samples out of all

samples predicted as positives:

TP

P . . —
recision —TP TFP

Recall (Sensitivity) measures the proportion of correctly identified positive samples

among all actual positives:

TP

Recall = ——
= TP+ FN

Specificity evaluates the proportion of correctly identified negative samples among all

actual negatives:

TN
SpGlelClty = m
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F1 score is the harmonic mean of precision and recall, offering a balanced metric for

classification performance:

Precision - Recall

Fl1=2-
Precision + Recall

3.3.2 Regression metrics

Root Mean Squared Error (RMSE) is a metric that quantifies the average magnitude of
prediction errors by taking the square root of the mean of the squared differences
between predicted and actual values. It provides a measure of how closely a model’s

predictions match the observed data, with lower values indicating better accuracy.:

n
1
RMSE = |- (= 9
i=1

Mean Absolute Error (MAE) measures the average absolute difference between actual

and predicted values:
n
MAE = 12| 7
ey ’ Yi— N
l:

Coefficient of Determination (R?) evaluates how well the predictions approximate the

actual values:

2?:1(yi - 5]\1)2

R?=1- <
Y (i = 9)?

An R? value close to 1 indicates high predictive accuracy, while values near or below

0 indicate poor performance.
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Chapter 4 Result Analysis

4.1 SOC prediction experiment results

Experiment 1: Regression Metrics

N RMSE —&— R* L9
7 mm MAE
mmm StdDev
EEm Max Error

RMSE, MAE, STDDEV, MAX Errors
R2 Score

& K3 v“e é‘!\ 6,@- &

Model

Figure 4.1 Experiment 1 full EIS frequency range regression SOC prediction

result graph
Model MAE RMSE R? StdDev Max Error
RF 4.9567 7.5635 09178 7.5634 29.2387
LR 8.6615 11.5089 0.8096 11.5066 30.4726
ANN 9.4828 12.2886 0.7836 12.1070 22.5890
SVM 11.8805 18.8464 0.4894 18.2601 52.8337
GPR 12.2574 18.9421 0.4842 18.4905 64.9640
KR 57.4339 63.2048 -4.7425 26.3855 100.0000

Table 4.1 Experiment 1 full EIS frequency range regression SOC prediction
result

From the result, the random forest achieved the highest R? score with the lowest
standard deviation, indicating it performed better than other models. It is followed by
linear regression and artificial neural network, which has similar R? scores of 0.8096
and 0.7836. This proves the robustness of linear regression and ANN in SOC prediction

with the given hyperparameters.

28

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

1.0

Experiment 1: Classification Metrics
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Figure 4.2 Experiment 1 full EIS frequency range SOC classification result

graph
Model Accuracy Precision Recall F1 Specificity
ANN 0.9167 0.9333 0.9425 0.9234 0.9910
RF 0.7708 0.8071 0.8189 0.7890 0.9746
GNB 0.6875 0.8002 0.7086 0.7291 0.9647
KNN 0.5000 0.6000 0.5225 0.5373 0.9448
QDA 0.4792 0.5691 0.6133 0.5263 0.9443
SVM 0.0417 0.0042 0.1000 0.0080 0.9000

Table 4.2 Experiment 1 full EIS frequency range SOC classification result

This result of SOC classification using full EIS frequency range of impedance with

classification showed that ANN has the best performance with highest F1 score

compared to other models. This result can be explained by the ANN’s ability to

effectively capture complex nonlinear relationships in the impedance data. The poor

performance of SVM may be due to unsuitable hyperparameter settings, which indicate

that hyperparameter fine tuning is important to control the robustness of a model.
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Experiment 2: Regression Metrics
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Figure 4.3 Experiment 2 individual frequency regression SOC prediction result

graph
Model MAE RMSE R? StdDev Max Error
KR 17.9738 22.8460 0.3670 22.8219 85.9879
GPR 19.4713 24.3580 0.2804 24.2926 81.6593
RF 17.5255 24.4456 0.2752 24.4354 86.2609
ANN 20.7085 24.7957 0.2543 24.6786 78.3676
LR 23.8158 27.4301 0.0874 27.3979 68.7287
SVM 20.6067 27.8010 0.0626 27.5418 99.4350

Table 4.3 Experiment 2 individual frequency regression SOC prediction result

From the results obtained, it can be concluded that wusing individual
frequency-impedance pairs, none of the models were able to predict the SOC
accurately. This may be due to the insufficient information provided by a single
frequency point, which limits the model's ability to capture the overall electrochemical

behavior.
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Experiment 2: Classification Metrics
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Figure 4.4 Experiment 2 individual frequency SOC classification result graph

Model Accuracy Precision Recall F1 Specificity
RF 0.3661 0.3606 0.3676 0.3615 0.9296
KNN 0.3110 0.3061 0.3123 0.2925 0.9236
ANN 0.2619 0.2632 0.2650 0.2466 0.9183
SVM 0.2336 0.2417 0.2381 0.1983 0.9151
QDA 0.1860 0.1143 0.1936 0.1357 0.9101
GNB 0.1726 0.1257 0.1769 0.1264 0.9082

Table 4.4 Experiment 2 individual frequency SOC classification result

The poor performance of SOC estimation in the classification models further supports

the conclusion that individual frequency-impedance pairs are unsuitable for accurate

SOC prediction.

Given ANN achieved third highest R? score in regression SOC prediction and top F1

score in SOC classification in experiment 1, the model demonstrated strong overall

performance. As a result, this project proceeded with profiling and optimizing the

model.
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Layer (type) Output Shape Param #
dense (emse)  (Nome, 238)  sesz
dense_1 (Dense) (None, 275) 82225
dense_2 (Dense) (None, 1) 276

Total params: 91143 (356.03 KB)
Trainable params: 91143 (356.83 KB)
Non-trainable params: @ (©.08 Byte)

Figure 4.5 Model summary for ANN regression model in experiment 1

Layer (type) Output Shape Param #
‘dense_s (Dense)  (Nome, 295) ssss
dense_4 (Dense) (None, 38) 8880
dense_5 (Dense) (None, 18) 318

Total params: 17745 (69.32 KB)
Trainable params: 17745 (69.32 KB)
Non-trainable params: @ (©.00 Byte)

Figure 4.6 Model summary for ANN classification model in experiment 1

Figure 4.5 and Figure 4.6 presented the model summaries of the ANN developed for
regression and classification-based SOC prediction in Experiment 1. The summaries
indicated that the ANN regression model consists of 91,143 trainable parameters with
a total size of 356.03 KB, making it significantly larger than the classification model.
This increase in size is primarily due to a higher number of neurons in the hidden layers.
In contrast, the classification model contains only 17,745 parameters and occupies
69.32 KB of memory, which met the project’s objective of developing a lightweight
model suitable for deployment on resource-constrained embedded systems. Thus,
pruning and quantization techniques were applied to the regression model to make the
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model size lower than 200KB and make it compatible with embedded system

requirements.

Confusion Matrix - Experiment 1 Neural Network Classifier
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Figure 4.7 Confusion matrix of ANN classification model after pruning and

quantization
Model Accuracy | Precision | Recall F1 | Specificity
ANN 0.9167 0.9333 | 0.9425 | 0.9234 0.9910
ANN — Optimized 0.9167 0.9333 | 0.9425 | 0.9234 0.9910

Table 4.5 Performance comparison of ANN and optimized ANN for classification

Figure 4.7 presents the confusion matrix of the ANN classification model after applying
pruning and quantization. Table 4.5 summarizes the detailed performance metrics,
comparing the original ANN and ANN-Optimized (after pruning and quantization)

models in terms of accuracy, precision, recall, F1-score, and specificity.

It can be observed that the optimized ANN achieves performance almost identical to
the baseline ANN, indicating that pruning and quantization do not significantly degrade

the classification capability of the model.

33

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

100

80

Predicted SOC

40 +

20

Predicted vs True SOC - Experiment 1 Neural Network Regressor

60

R?z =0.783

L

T
20

T T
40 60
True SOC

T
80

T
100

Figure 4.8 Predict vs True SOC of ANN regression model after pruning and

quantization
Model MAE RMSE R? StdDev | Max Error
ANN 9.4828 12.2687 0.7836 12.1070 22.7176
ANN — Optimized 9.5025 12.2850 0.7831 12.1081 22.0378

Table 4.6 Performance comparison of ANN and optimized ANN for regression

Figure 4.8 presents the predicted versus true SOC of the ANN regression model after

pruning and quantization, with detailed regression metrics given in Table 4.6. Both the

baseline and optimized ANN models achieve very similar regression accuracy,

confirming that predictive capability is well preserved.

In addition to maintaining performance, pruning and quantization result in a substantial

reduction in model size. The Experiment 1 NN classifier decreased from estimated 71.5

KB to 25.3 KB, achieving a 64.6% reduction, while the Experiment 1 NN regressor

was reduced from estimated 358.1 KB to 100.3 KB, corresponding to a 72.0%

reduction. These results highlight the efficiency gains enabled by quantization,

allowing the models to run more efficiently on memory-constrained edge devices.
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4.2 RUL prediction results

The R? score of RUL prediction was recorded as follows:

Model 25°C 35°C 45°C
EIS-GPR [20] 0.87 0.75 0.92
ANN 0.90 0.88 0.75
CNN-SAM 0.86 0.44 -0.02
LSTM 0.22 -0.03 -0.19
CNN+LSTM -0.09 0.22 -0.07
CNN+LSTM+Attention 0.44 0.39 0.62
CNN+LSTM+Transformer 0.31 0.20 0.17
CNN+Transformer -0.12 0.11 0.86

Table 4.7 Experiment with real and imaginary EIS data from all frequencies

Model 25°C 35°C 45°C
EIS-GPR [20] 0.87 0.75 0.92
ANN 0.51 0.73 0.90
CNN-SAM 0.60 0.81 0.69
LSTM 0.40 -0.07 -0.04
CNN+LSTM 0.01 -0.38 -0.69
CNN+LSTM+Attention -3.09 0.40 0.92
CNN+LSTM+Transformer -4.78 0.78 0.98
CNN+Transformer 0.10 0.52 0.94

Table 4.8 Experiment with imaginary EIS data from all frequencies
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Model 25°C 35°C 45°C
EIS-GPR [20] 0.87 0.75 0.92
ANN -0.13 0.88 0.90
CNN-SAM -0.72 0.98 0.96
LSTM 0.14 0.00 -0.33
CNN+LSTM -0.05 0.52 0.57
CNN+LSTM+Attention -0.90 0.42 0.81
CNN+LSTM+Transformer 0.31 0.26 0.88
CNN+Transformer -3.56 0.91 0.84

Table 4.9 Experiment with imaginary EIS data from first 30 frequencies

From the results, it can be concluded that ANN was highly competitive with GPR.
Using all frequencies, ANN achieved the best performance at 25°C and 35°C, with R?
scores of 0.90 and 0.88, respectively. In contrast, CNN-SAM showed mixed
performance; however, in experiments using only imaginary EIS data, it demonstrated
better generalization compared to the other models. In contrast, the LSTM model
performed the worst across all input features, indicating that time-series—based
approaches may not be well-suited for this dataset or that the temporal dependencies in

the data are not strong enough for LSTM to capture effectively.

To continue the investigation, ANN and CNN-SAM were selected for further analysis
due to their competitive performance in the previous experiments. The training set was
updated to include batteries 25C03, 25C05, 25C06, 35C01 and 45C01, while the testing
set consisted of 25C01, 35C02 and 45C02 following previous studies in [22]. The
imaginary part of EIS data across all frequencies was selected as input features since
both models perform good with the selected feature. The next step involves applying

quantization to both models to evaluate how this affects their performance.
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Figure 4.9 RUL prediction result of ANN model
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Figure 4.10 RUL prediction result of CNN-SAM model
Model 25°C 35°C 45°C
EIS-GPR [20] 0.87 0.75 0.92
CNN-BiLSTM [22] 0.85 0.86 0.94
ANN 0.57 0.93 0.85
CNN-SAM 0.92 0.20 0.85

Table 4.10 Comparison of R? performance of the proposed ANN and CNN-SAM
models with previous studies at different operating temperatures

After applying the selected training and testing sets, the performance of ANN and
CNN-SAM improved notably. ANN achieved R? scores of 0.57, 0.93 and 0.85, while
CNN-SAM reached 0.92, 0.20, and 0.85 across the respective conditions. The R? score
and ANN and CNN-SAM has improved for battery at 25°C and 45°C. This
improvement is likely due to the more representative training set, which better captured
variations across different batteries and operating conditions, allowing the models to

generalize more effectively. However, the CNN-SAM R? score for 35°C has dropped.

37

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 4

The next step involves applying quantization to these models to assess how reducing

model precision impacts both performance and efficiency.
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Figure 4.11 RUL prediction result of ANN model after pruning and quantization
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Figure 4.12 RUL prediction result of ANN model after pruning and quantization

ANN CNN-SAM
Batteries Original Prune-d - Original Prune-d -
Quantized Quantized
25C01 0.5663 0.7947 0.9233 0.9656
35C02 0.9327 0.9250 0.2041 0.5119
45C02 0.8520 0.8346 0.8500 0.8481

Table 4.11 Performance comparison of ANN and CNN-SAM models on
individual test batteries at different temperatures (25 ‘C, 35 C, and 45 C),

before and after pruning and quantization.

After applying pruning and 8-bit quantization to both the ANN and CNN-SAM models,
the results indicate that these optimization techniques effectively reduced model size

without significantly compromising predictive accuracy as shown in Table 4.11.
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Pruning involves removing less significant weights from the model, resulting in a
smaller more and efficient structure. In this project, pruning was applied to increase
sparsity from 50% to 80% over the training epoch. This process resulted in a reduction
of the model sizes. These reductions are indicative of the efficiency gains achieved
through pruning, which eliminates less important parameters without substantially
affecting the model's performance. In this case, the pruning method has increased the
R? score of battery 25C01 for ANN and 35C02 for CNN-SAM because pruning
removed less important weights, which helped prevent overfitting and allowed the

models to generalize better.

Quantization was then applied to the pruned models. This technique lower the precision
of the model's weights and activations from 32-bit floating number to 8-bit integers,
leading to further reductions in model size and potential improvements in inference
speed. Despite the reduced numerical precision, the R* scores remained largely
unchanged or improved slightly across the tested batteries, suggesting that both models
are robust to reduced numerical precision. For instance, the ANN model's R? scores
showed only a slight decrease across the tested batteries, while the CNN-SAM model

maintained nearly identical performance before and after quantization.

In terms of model size, the ANN model decreased from 260 kB to 26 kB, and the
CNN-SAM model reduced from 1679 kB to 158.32 kB. By reducing model size and
computational requirements, these techniques enable the deployment of ML models on
resource-limited devices without significantly sacrificing predictive accuracy. This is
particularly beneficial for applications in edge computing, where storage and

processing capabilities are limited.
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Chapter 5 Conclusion

This project showed that machine learning algorithms can be effectively used and
optimized to estimate battery states using Electrochemical Impedance Spectroscopy
(EIS) data. For State of Charge (SOC) estimation, Random Forest achieved strong
regression performance, while Artificial Neural Networks (ANN) excelled in
classification tasks when trained on the full-frequency EIS spectrum. In contrast,
models relying on individual frequency—impedance pairs showed poor accuracy,

confirming the importance of comprehensive spectral features for reliable predictions.

For Remaining Useful Life (RUL) estimation, both ANN and CNN-SAM models were
explored. The results showed that these deep learning approaches can capture
degradation trends effectively, with pruning and quantization further improving model
efficiency. Specifically, pruning helped reduce overfitting by removing redundant
weights, while quantization significantly compressed model size (e.g., ANN reduced
from 260 kB to 26 kB) without substantial accuracy loss. These optimizations make the
models lightweight and suitable for deployment on embedded systems, which is

essential for real-time applications in BMS.

Overall, this study highlights that combining EIS data with machine learning and model
optimization techniques offers a promising pathway toward efficient, real-time SOC
and RUL monitoring in lithium-ion batteries. Future work may include extending the
framework to State of Health (SOH) estimation, integrating hybrid physics-informed
and data-driven models, and validating performance on larger, more diverse datasets to

ensure robustness across different battery chemistries and operating conditions.
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APPENDIX

Poster

Apply and optimize machine learning algorithms for
estimating battery health

Introduction

o SOC: How many energy leftin the battery?
Accurate estimation of battery State of Charge (SOC)

and Remaining Useful Life (RUL) is vital for safety

and performance. Traditional methods like Coulomb [
counting and QCV suffer from errors and complexity.
This project applies machine learing with

0% 2

Electrochemical Impedance Spectroscopy (EIS) to 5% 50% 75% 100% cHanse
improve estimation and optimize models for

embedded deployment. RUL: How long the battery can stillbe used?
Methods 35C01 - Capacity vs Cycle

@] * ' -- B cagacity
EIS data from lithium-ion batteries was pre- ol D :

processed and used to train models including -
Random Forest, SVM, GPR, and ANN. For RUL, ? .|
advanced deep learning models such as ANN *
and CNN-SAM were tested. Pruning and "]

quantization were applied to reduce model size a9 ;
for real-time use. - = — = = .
Results EIS data
SOC: . Normalization
Random Forest gave the bestregression H - "
(R* = 0.92); ANN achieved the highest ~ .
classification accuracy (= 91.7%). T 7o B 2
RUL: Tty Reshape
ANN and CNN-SAM showed strong performance
across different temperatures. : ; '
Optimization: Prumt.lg a_n <«—  Model Training
Model size reduced >80% (ANN: 260 kB - 26 kB; Quantization
CNN-SAM: 1679 kB ~+ 158 kB) with minimal
accuracy loss. :
Save Model SOC/RUL

The results demonstrate that full-spectrum EIS

f—J

features capture battery electrochemical behavior

more effectively than single-frequency features.

ANN models excel in classification due to their

ability to learn nonlinear relationships, while

CNMN-SAM leverages self-attention to identify key "

patterns in impedance data. Model optimization “"

through pruning and quantization not only Eol

reduced storage and computation requirements

but alsc helped mitigate overfitting, in some cases

improving accuracy. These findings suggest that o+

lightweight ML models can be effectively applied EEEE] O

for real-time battery monitoring in practical . .

battery management systems (BMS). Name: Chin Wai Yee
Supervisor: Dr. Lee Wai Kong

35002 - ANN
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APPENDIX

Data and code availability

The dataset used has been stated in the methodology. The code is available at
https://github.com/Chin-Wai-Yee/SOC-and-RULPrediction-via-EIS.
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