
 
 

Personalized workout planner 

By 

Cornelius Wong Qin Jun 

 

 

 

 

 

 

 

 

 

 

 

  
 

 
A REPORT 

SUBMITTED TO 

Universiti Tunku Abdul Rahman 

in partial fulfillment of the requirements 

for the degree of 

BACHELOR OF COMPUTER SCIENCE (HONOURS) 

Faculty of Information and Communication Technology 

(Kampar Campus) 

 

June 2025 

 

 

 

 

 

 

 

 

 

 

 



Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    iii 
 

Personalized workout planner 

By 

Cornelius Wong Qin Jun 

 

 

 

 

 

 

 

 

 

 

 

  
 

 
A REPORT 

SUBMITTED TO 

Universiti Tunku Abdul Rahman 

in partial fulfillment of the requirements 

for the degree of 

BACHELOR OF COMPUTER SCIENCE (HONOURS) 

Faculty of Information and Communication Technology 

(Kampar Campus) 

 

June 2025 

 



Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    ii 
 

 

 

 

 

COPYRIGHT STATEMENT 

 

© 2025 Cornelius Wong Qin Jun. All rights reserved. 

 

This Final Year Project proposal is submitted in partial fulfillment of the 

requirements for the degree of Bachelor of Computer Science (Honours) at 

Universiti Tunku Abdul Rahman (UTAR). This Final Year Project proposal 

represents the work of the author, except where due acknowledgment has been made 

in the text. No part of this Final Year Project proposal may be reproduced, stored, or 

transmitted in any form or by any means, whether electronic, mechanical, 

photocopying, recording, or otherwise, without the prior written permission of the 

author or UTAR, in accordance with UTAR's Intellectual Property Policy. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 



Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    iii 
 

ACKNOWLEDGEMENTS 

 

I would like to express my sincere thanks and appreciation to my supervisors, Ms Chai Meei 

Tyng who has given me this bright opportunity to engage in a machine learning and mobile 

application design project. It is my first step to establish a career machine learning and mobile 

application design field. A million thanks to you.   

 

To a very special person in my life, Mr Chong Chee Wai, for her patience, unconditional 

support, and love, and for standing by my side during hard times.  Finally, I must say thanks to 

my parents and my family for their love, support, and continuous encouragement throughout 

the course. 

 

 

 

 

 

 

 



Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    iv 
 

ABSTRACT 

 

In modern times, people often neglect exercise due to busy schedules and reliance on 

conveniences like advanced transportation, leading to decreased physical activity. 

Additionally, the effectiveness of workouts is a major concern, as not all routines suit everyone. 

A personalized workout planner is essential to recommend effective exercise plans based on 

factors like height, weight, gender, level of activity, and specific goals. However, traditional 

workout plans may not adapt to injury or difficulties encountered by the user, which can lead 

to further complications or reduced progress. To address these issues, this project proposes the 

development of a Personalized Workout Planner mobile application that incorporates injury 

and failure adjustment features. This app aims to provide users with adaptable workout 

routines, ensuring safety and efficiency even in cases of injury or when the user struggles with 

certain exercises. The proposal outlines the project’s background, objectives, existing systems, 

and the proposed method and system to offer an effective, customized fitness solution.  The 

final product of the project is the combination of FastAPI backend, Google Cloud Platform, 

Supabase and an React native mobile application with the ability to recommend workouts, fetch 

workouts, update profile for recommendation needs, feedback for 4 type of uncertainty cases 

and link with Google Calendar for free slot schedules. 

 

Area of Study: Machine learning, Mobile app development 

 

Keywords: Recommendation system, cosine similarity, Feedback System, Mobile Application, 

Google Calendar integration 

  



Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    v 
 

TABLE OF CONTENTS 

TITLE PAGE 

COPYRIGHT STATEMENT 

ACKNOWLEDGEMENTS 

ABSTRACT 

TABLE OF CONTENTS 

LIST OF FIGURES 

LIST OF TABLES 

LIST OF ABBREVIATIONS 
 

 

i 

ii 

iii 

iv 

v-viii 

ix- xi 

xii 

xiii 

 

 

  

CHAPTER 1 Project Background 1 

1.1.1 Introduction 1 

1.1.2 Information Background 2 

1.2 Problem statement 3 

1.3 Motivation 3-4 

1.4 Project Scope 

1.5    Project Objective                                                  

1.6     Impact, significance and contribution 

4 

5-6 

6 

  

CHAPTER 2  LITERATURE REVIEW 7 

2.1 Reviewed Application and Previous Works on Workout Planner  

2.1.1 Features in four reviewed Workout Planner mobile applications  

2.1.2 Strengths and Limitations in four reviewed Workout Planner mobile 

applications  

7 

7-13 

14-19 

2.2    Machine learning for the diet and workout recommendations 20 

2.3    Rehabilitation application 20-21 

2.4 High Intensity interval Training (HIIT) Benefits 22- 

2.5 Proposed App 22-23 



Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    vi 
 

2.6 Review of Technologies 23 

2.6.1 React Native 23-24 

2.6.2 Supabase 24 

2.6.3 Fastapi 25 

2.6.4 Google Cloud Platform 25 

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH (FOR 

DEVELOPMENT-BASED PROJECT) 

26 

3.1 System Design Diagram 26 

3.1.1 System Architecture Diagram 26-28 

3.1.2 Use Case Diagram and Description 28-30 

3.1.3 Activity Diagram  31 

3.1.3.1 Flow 1: The Core Loop - Generating and Starting a 

Workout 

31-32 

3.1.3.2 Flow 2: Providing Manual Feedback 33-34 

3.1.3.3 Flow 3: Scheduling a Workout 35-36 

3.1.3.4 Flow 4: User Onboarding, Authentication, and Profile 

Management 

37-38 

  

CHAPTER 4 SYSTEM DESIGN 39 

          4.1   System Block Diagram 39 

                    4.1.1 React native app frontend Block Diagram 39-40 

                    4.1.2 FastAPI Backend Block Diagram 41-42 

          4.2   System component top-down flow diagram 43 

                    4.2.1 Workout page, index.tsx 43-44 

                    4.2.2 Profile page, profile.tsx 45-46 

                    4.2.3 schedule page, schedule.tsx 47-50 

                    4.2.4 log page, log.tsx 50-51 

                    4.2.5 Recommendation and Feedback in FastAPI 52-55 

          4.3   Core Component diagram and relative function 56-59 

          4.4   Supabase table design and Data schema 60-65 

          4.5 Data Flow diagram 66-67 

  



Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    vii 
 

CHAPTER 5 SYSTEM IMPLEMENTATION (FOR DEVELOPMENT-  

         BASED PROJECT) 

68 

         5.1    Software Setup 68-69 

5.2 Setting and Configuration 69 

         5.2.1 Machine learning model implementation 

                 5.2.1.1 Dataset Collection                                              69         

69 

                  5.2.1.2 Pre-processing and Data Cleaning 70 

                  5.2.1.3 Specific workout recommendation with user’s input 71-76 

                  5.2.1.4 Feedback workout recommendation system 76 

                  5.2.1.5 Boring Feedback 76-77 

                  5.2.1.6 Time Feedback 77-78 

                  5.2.1.7 Injury Feedback 78-80 

                  5.2.1.8 Difficulty Feedback 80-81 

                  5.2.1.9 User preference workout recommendation 82-83 

         5.2.2 Service configuration 83-84 

5.3 System Operation (with Screenshot) 85 

         5.3.1 User Authentication and profile setup 85-86 

         5.3.2 Generating and Viewing Recommendations 87-88 

         5.3.3 Executing a Workout 89-90 

         5.3.4 Schedule workout session and log dashboard 91-95 

5.4 Implementation Issues and Challenges 96 

5.5 Concluding Remark 96 

  

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 97 
     

6.1 System Testing and Performance Metrics 

 

97 

6.2    Testing Setup and Result 97- 

         6.2.1 Response Time test case. 97-98 

         6.2.2 Recommendation Relevance Test Case 98-105 

         6.2.3 Functional Correctness  106-107 

6.3    Project Challenges 107-108 

6.4    Objectives Evaluation 109-110 

6.5    Concluding Remark 110 



Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    viii 
 

  

CHAPTER 7 CONCLUSION AND RECOMMENDATION 110 

7.1 Conclusion 110 

7.2 Recommendation 111 

  

REFERENCES 112-115 

 APPENDIX                          115 

 POSTER                           116 



Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    ix 
 

LIST OF FIGURES 

 

Figure Number Title Page 

   

Figure 2.1.1 Target settings in Lose weight in 30-day 1 

Figure 2.1.2 Integration with other health applications in HealthifyMe 

app.. 

10 

Figure 2.1.3 Progress tracker in Fitbod app 13 

Figure 2.1.4 Report for workout in MyFitnessPal app. 14 

Figure 2.3.1 Information page for the injury type in Sports Injury 

Rehabilitation app. 

19 

Figure 2.3.2 Plan for rehabilitation exercise in Sports Injury 

Rehabilitation app. 

20 

Figure 3.1.1.1 System Architecture Diagram 26 

Figure 3.1.2.1  Use case diagram 28 

Figure 3.1.3.1 Flow 1, The Core Loop - Generating and Starting a 

Workout 

31 

Figure 3.1.3.2  Flow 2, Providing Manual Feedback 33 

Figure 3.1.3.3 Flow 3, Scheduling a Workout 35 

Figure 3.1.3.4 Flow 4, User Onboarding, Authentication, and Profile 

Management 

37 

Figure 4.1.1 React native app frontend Block Diagram 39 

Figure 4.1.2 FastAPI Backend Block Diagram 41 

Figure 4.2.1 Workout page, index.tsx 43 

Figure 4.2.2 Profile page, profile.tsx 45 

Figure 4.2.3.1 schedule page, schedule.tsx, Data Loading and Suggestion 

Generation 

47 

Figure 4.2.3.2 schedule page, schedule.tsx, Confirm and Cancel schedule 49 

Figure 4.2.4 log page, log.tsx 50 

Figure 4.2.5.1 Recommendation and feedback injury, difficult, busy 52 

Figure 4.2.5.2 feedback boring 54 

Figure 4.2.5.3 feedback favorite 55 

Figure 4.3.1 Core Component diagram  56 

Figure 4.4  ERD diagram for Supabase tables 60 



Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    x 
 

Figure 4.5  data flow diagram 66 

Figure 5.2.1.3.1 Value counts of the category in the original and balanced 

datasets 

73 

Figure 5.2.1.3.2 Bar chart for original workout category distribution 73 

Figure 5.2.1.3.3 Bar chart for balanced workout category distribution. 74 

Figure 5.2.1.3.5  Top 5 workout recommendations with user input for fat loss 75 

Figure 5.2.1.3.6  Top 5 workout recommendations with user input for muscle 

gain 

75 

Figure 5.2.1.5.1 Boring feedback results for 5 workouts are recommended to 

user for muscle gain 

77 

Figure 5.2.1.6.1 Time feedback results for 5 workouts are recommended 78 

Figure 5.2.1.7.2  The filtered dataframe without injury muscle part on knee 80 

Figure 5.2.1.8.1  Success message for lowering difficulty 81 

Figure 5.2.1.8.2  Fallback message for already easiest level 81 

Figure 5.2.1.9.1 Top 5 recommended workouts with favorite workout 82 

Figure 5.2.1.9.2 Favorite workout not suitable message 83 

Figure 5.3.1.1  Create an account and sign-in page 85 

Figure 5.3.1.2  Pre-user profile interface before enter main screen 85 

Figure 5.3.1.3  Successful create account for Abu 86 

Figure 5.3.2.1  Profile data of Cornelius for recommendation 87 

Figure 5.3.2.2  Returned recommendation workouts list. 87 

Figure 5.3.2.3  Mark as favorite  88 

Figure 5.3.2.4  Workout detail 88 

Figure 5.3.3.1  Timer screen  89 

Figure 5.3.3.2  Stop timer  89 

Figure 5.3.3.3  Success shown after complete  90 

Figure 5.3.3.4  Record the weight  90 

Figure 5.3.4.1  schedule page without connection  91 

Figure 5.3.4.2  Authentication and grant permission for Google account for 

the Google Calendar connection  

91 

Figure 5.3.4.3  Success connection to Google Calendar  92 

Figure 5.3.4.4  schedule page without connection  92 

Figure 5.3.4.5  Confirm schedule from suggestion 93 

Figure 5.3.4.6  Schedule reach limit set by the user 93 

Figure 5.3.4.7  log screen part 1 94 



Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    xi 
 

Figure 5.3.4.8  log screen part 2 94 

Figure 5.3.4.9  log screen part 3 95 

Figure 6.2.2.1  Test fat loss return HIIT 98 

Figure 6.2.2.2  Test muscle gain return strength 98 

Figure 6.2.2.3  Test endurance return cardio 99 

Figure 6.2.2.4  Test flexibility return yoga 99 

Figure 6.2.2.5  Profile before feedback test 101 

Figure 6.2.2.6  Workout before feedback test 101 

Figure 6.2.2.7  feedback boring with different workouts but retain user 

needs 

102 

Figure 6.2.2.8  feedback difficult lowering 1 level from intermediate to 

beginner 

102 

Figure 6.2.2.9  Before feedback busy  103 

Figure 6.2.2.10  After feedback busy  103 

Figure 6.2.2.11  Filling injury with knee and shoulder  104 

Figure 6.2.2.12  After feedback injury  104 

Figure 6.2.2.13  favorite feedback output  105 

Figure 6.2.2.14  favorite feedback output when goal is not the same as the 

favorite 

105 

Figure 6.2.2.15  lowering fitness level after 3 consecutive <50 % completion 

rate of workout logs 

   

107 

Figure 6.2.3  Overlapping label for average heart rate beat per 

Minutes and calories burned for 4 workout types 

108 

 

 



Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    xii 
 

LIST OF TABLES 

 

Table Number Title Page 

   

Table 2.1.5 Common feature comparison between 5 applications   4 

Table 2.1.2.1 Strengths and weaknesses of the reviewed application 

 

 16 

Table 4.3.2 Table of Components and Dependencies  18 

Table 5.2.1.3.4  Example of Text Preprocessing Example 74 

Table 5.2.1.7.1  Injury common body parts term and muscles mapping 79 

 

 

 

 

 

  



Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    xiii 
 

LIST OF ABBREVIATIONS 

 

HIIT High-Intensity Interval Training 

BPM rate Beats per minute rate 

BMI Body mass index 

KNN k-nearest neighbors 

HRpeak Maximum Heart Rate 

VO2peak Volume of oxygen uptake during peak exercise 

MICT  Moderate-Intensity Continuous Training 

RLS  Row-level security 

JWT   JSON Web Token 

BaaS Backend as a Service 

 

 

  



CHAPTER 1 

                                                                                                                                        1                                                                                                                                     
Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

CHAPTER 1 

Project Background 

 

1.1.1  Introduction  

In today's fast-paced world, physical inactivity has become a widespread issue. Modern 

conveniences, such as advanced transportation, have led to a decline in daily physical 

activity, as people often rely on vehicles instead of walking. Additionally, the demands 

of a busy lifestyle make it challenging for individuals to find time for regular exercise.  

 

Effective workouts require careful consideration of various factors, including weight, 

height, activity level, age, and gender [1]. According to [2], research has shown that 

most beginners struggle to maintain their workout routines due to interdependent 

psychological processes, such as the human tendency to follow the law of least effort. 

The additional effort required to manually plan and adhere to a workout routine can 

further discourage individuals from pursuing a healthier lifestyle. 

 

To address these challenges, personalized diet and fitness planners have emerged as 

convenient and accessible tools that help individuals create and follow workout plans 

suited to their unique circumstances and even motivate them. Recent research has 

explored the use of machine learning techniques, such as Random Forest and Support 

Vector Machine to develop personalized workout recommendation systems [1]. 

 

In this proposal, I propose the development of a personalized workout planner mobile 

application that leverages these advanced technologies to provide tailored exercise 

recommendations. 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    2 
 

1.1.2 Information Background 

 

Initially, wearable fitness trackers presented a universal metric-focused goal, like 

burning 500 calories and walking 10000 steps, which did not yield effective long-term 

results for users. These metrics may not align with individual user goals, causing 

motivation to diminish after a few months, user just acts it as numbers. To enhance this 

experience, Human-Computer Interaction (HCI) is introduced to have better to support 

workout experience that suit to user. Jasmine Niess suggests that hedonic and 

eudaimonic well-being serve as fundamental concepts for developing adaptive fitness 

goals for users.   Hedonic wellbeing emphasizes positive emotions, often associated 

with pleasure and enjoyment. In contrast, eudaimonic wellbeing centers on self -

fulfillment and pursuing a meaningful life. These can ensure the user stays motivated 

and improves adherence to the fitness app to stay healthy and achieve their goals with  

HCI  based personalized workout planner.[3] 

 

High-Intensity Interval Training  

High-Intensity Interval Training (HIIT) consists of cardiovascular exercises 

characterized by short, intense aerobic intervals followed by rest or low-intensity 

periods to optimize the body's oxygen consumption. High-intensity exercises should 

reach 85-95% of the peak heart rate (HRpeak), without exceeding the body's peak 

oxygen uptake (VO2peak ), which is approximately 80-90% for short durations like 4 

minutes. The recovery or low-intensity phase allows users to recover, enabling them to 

repeat the high-intensity intervals later. This recovery phase should maintain a heart 

rate of 60-70% HRpeak, such as through walking, for a duration of 2-3 minutes. HIIT 

depends on individual HRpeak, so it can vary among people and done in several interval 

sets. HIIT can improve cardiovascular disease risk factors such as blood pressure, 

weight and fat regulation. Since it short duration properties, it is more time-efficient 

way to get health benefits. [4] 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    3 
 

1.2  Problem Statement  

 

According to Patrick G. Kidman, 1 in 3 adults suffers from chronic diseases, leading to 

a rise in health-related app usage for lifestyle and physical activity management. 

However, the abandonment rate of these apps is notably high, with 66% of health apps 

and 69% of fitness apps being discarded within 90 days. [5] There are two main stages 

of abandonment: the early stage and the later stage. During the early stage, users leave 

apps due to generic workout plans that fail to meet their goals, overwhelming 

notifications, and a lack of personalization. In the later stage, users stop using the app 

because they feel unmotivated and don't see any results. [6] Additionally, changes such 

as a job switch, a new living environment, or injury can disrupt routines, making app 

usage impractical. Shifting goals can also lead users to quit if the app doesn't provide 

solutions for their new objectives. 

 

Today, many workout planner apps center around daily routines aimed at specific 

fitness goals, which is quite standard. However, life can be unpredictable, and users 

might face injuries, like those to the arm or leg. In such circumstances, a personalized 

planner that ignores these uncertainties and persists with pre-injury guidelines can 

exacerbate the injury and lead to adverse effects. Research indicates that factors such 

as excessive loading, insufficient recovery, and lack of preparedness can increase the 

risk of injury by subjecting individuals to unsustainable levels of strain [7]. The 

musculoskeletal system, when exposed to excessive strain, can experience different 

types of overuse injuries that may impact bones, muscles, tendons, and ligaments. This 

highlights the importance of adapting workout plans to avoid exacerbating injuries and 

to ensure proper recovery. 

 

1.3  Motivation 

This project aim to propose a mobile application for a personalized workout planner 

that addresses the uncertainties of life, such as the challenge of dealing with injuries. 

The system will provide workout recommendations tailored to the user's injury 

condition, ensuring that exercises do not worsen the injury. This feature will not suggest 

a workout that worsens the user’s injury and will replan user's workout planner. 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    4 
 

 

Additionally, project includes the failure adjustment feature improves flexibility, 

allowing users to adjust their workout plans if the exercises are too difficult or cause 

discomfort. This adaptability ensures that the workout plan remains beneficial while 

aligned with the user’s current physical condition. Besides, adjusting workout times 

using a calendar API to sync with the user's schedule enhances the user experience by 

ensuring workouts fit seamlessly into their routine to prevent disruptions due to a busy 

lifestyle.  

 

1.4 Project Scope 

The scope of this project included the development of a personalized workout planner 

mobile application designed to accommodate user-specific needs, particularly in 

managing injuries and adapting workout plans based on user feedback. The application 

uses AI-driven recommendations to generate a personalized workout plan tailored to 

individual data and user input, including weight, height, activity level, and fitness goals. 

Besides standard fitness tracking, the app will offer unique functionalities, such as 

injury-aware fitness planning, where users can report their injuries and receive modified 

exercise recommendations that avoid exacerbating their condition. Another key feature 

is the failure adjustment feature, which allows the workout plan to be adjusted if users 

find the exercises too difficult, ensuring that the plan remains effective and let users 

still able to continue following. The Calendar feature will sync users’ calender to plan 

the users’ routine to schedule the workout that suits the user.  

 

The key features include smart workout recommendations, personalized feedback-

based adjustments, alternative workout suggestions, streak tracking for motivation, and 

an AI-powered assistant for guiding users. The apps also track user progress with streak 

recorder, encourage notifications, and provide workout performance insight to motivate 

users and prevent abandonment. The project results a fully functional mobile 

application that engages user's workout experience by providing adaptive 

personalization and motivation tracking and injury awareness fitness planning.  

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    5 
 

1.5 Project Objectives 

The objective of the project is to develop an AI-driven personalized workout planner 

mobile app based on user data to tackle the key causes of user abandonment problem. 

Objective 1:  Reduce early-stage and later-stage abandonment 

To address the high abandonment rate of fitness app in the early and later stages, 

personalized workout plan recommendations will be developed to achieve different 

user goals, such as fat loss, muscle gain, flexibility, and endurance. This can help reduce 

user dissatisfaction caused by the generic plan that fell short of their expectations. 

Objective 2:  Handle user’s life uncertainly 

To address the issue of sudden changes of the user’s routine, the project includes 2 

major categories.  

First is the project aim to handle the injury uncertainty in user life by implementing 

injury awareness workout recommendations. The injury-aware workout 

recommendation adjusts the plan to prevent worsening injuries based on user feedback 

to the system. This helps the user work out safely without risking injury and stay 

consistent when the injury isn’t too serious. 

Second is the project's aim to handle time uncertainty, like busy weeks or timetable 

reschedules due to emergencies or switching jobs. The app will implements Calender 

sync workout adjustment to sync their workout routines with their daily schedule. This 

provides flexibility by rescheduling the workout plan or shifting to high-intensity 

interval training(HIIT) plan recommendation for those who are busy instead of 

skipping.  

Objective 3: Maintain motivation and promote consistency 

To maintain the long-term user motivation and prevent later-stage abandonment, the 

app will implement streak tracking, encourage notifications, and interactive feedback 

options that allow users to adjust their workout plans based on difficulty level that 

causes failure to be consistence. This is capable for workout plan that is too challenging 

or painful, ensuring continued adherence and effectiveness. These features can solve 

the common issues like annoying notifications, lack of motivation, and workout 

difficulty mismatches that lead them to suffer and quit. To tackle the problem that user 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    6 
 

lose motivation when not visually see the result, track progress and useful insight 

metrics are implemented to enable the user to view their progress through metrics like 

weight and performance status on reports generated and referring suggestions for 

improvement. This visual insight serves to provide tangible help and help users stay 

motivated to ensure they are on the right track. 

 While this project focuses on personalized workout planning, it does not provide 

medical diagnoses, wearable device, dietary planning, or real-time exercise correction. 

The scope is narrowed to encounter routine uncertainties and user feedback adjustment 

workout recommender. The project aims to fill a gap in the current market of workout 

planners, offering a more personalized to suit the user's routine, a safer fitness 

experience for injury cases, and feedback-adjusted workout planning. 

 

1.6 Impact, significance and contribution 

 

The impact of the project is to contribute a healthier, safer, and more consistent fitness 

culture. Many user abandoned fitness apps within 90 days due to lack of personalization 

and routine change. [5] This project directly addresses these issues by user feedback 

workout recommendations for injury, busy, and failure cases. By keeping users engaged 

and providing solutions for uncertain cases, this app ensures more people maintain an 

active lifestyle without getting frustrated on impractical workout plan.  

 

This project is significant as it bridges the gap between static fitness plans and real-

world user challenges. Unlike existing apps, it provides personalization and feedback 

adjustment on uncertainty, preventing users from quitting due to workout difficulty. 

pain and schedule conflict. Calendar sync, rescheduling options, and alternative 

workout recommendations, which is HIIT for busy people to support their fitness 

experience. In the long run, the app has the potential to reduce fitness dropouts, reduce 

low adherence exercise problem, thus improving public health.  By implementing these 

features, the app ensures flexibility, motivation, and consistency in workout habits to 

safeguard a sustainable and enjoyable workout experience. 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    7 
 

CHAPTER 2 

 

Literature Reviews 

 

 

2.1 Reviewed Application and Previous Works on Workout Planner  

Four Diet and Workout Planner mobile applications reviewed are HealthifyMe, Fitbod, 

MyFitnessPal, and Lose Weight in 30 Days and Injurymap [8] [9] [10] [11] [12]. The 

strength/sale points and limitations, application features, and machine learning on 

personalized diet and workout recommender will be discussed. 

2.1.1  Features in four reviewed Workout Planner mobile applications  

Table 2.1.1.1 presents a comparison of five diet and workout planner applications: 

HealthyFity, Lose Weight in 30 Days, Fitbod, MyFitnessPal and Injurymap. Each 

application is evaluated based on features that are critical to users aiming to manage 

their diet and exercise routines effectively. The common features that can be 

categorized into 10 which are Prompts for Essential Details, Target Settings, Nutrition 

Tracking, Custom Diet Planning, Custom Workout Planning, Integration with Other 

Health Applications, Social Element, Progress Tracking, Report and Insight, and Coach 

Appointment. 

1) Prompts for Essential Details: 

All applications prompt users to enter essential details such as gender, weight, height, 

active level, and age. This is crucial for personalized recommendations so that can help 

the user according to their situation. In Healthifyme, myfitnesspal and Lose weight in 

30-day, users are also asked about their dietary preferences (e.g., vegetarian or non-

vegetarian) and any food allergies, which allows the app to recommend a diet that suits 

their dietary restrictions. The proposed app consists this feature. 

2) Target Settings: 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    8 
 

Setting goals is a feature present in all applications. In Healthifyme and Lose weight in 

30-day, there is target weight validation feature for the validate the entered target 

weight fit the BMI normal and healthy range by calculate using weight and height that 

entered. For the Fitbod , and Lose weight in 30-day and myfitnesspal, more specific 

goal for specific muscle training can be setted. Then the system will recommend the 

suitable workout task based on the active level (e.g. not active such as working as 

deskjob, normal such as standing like waiter and active such as construction job). There 

are also prompt user to enter their workout level either beginner, moderate or expert. 

The proposed app consists this feature. Figure 2.1.1 shows the target settings in Lose 

weight in 30-day. 

 

Figure 2.1.1 Target settings in Lose weight in 30-day. 

3) Nutrition Tracking: 

Healthifyme and MyFitnessPal offer robust nutrition tracking features, which are vital 

for users who want to monitor their diet. These two applications can show and record 

the recommended diet nutrients and micronutrients such as protein, carbohydrate, 

vitamin A, calcium, and more. The user can view and manage to take more food with 

nutrients that the user's body most needed. Lose Weight in 30 Days , Injurymap and 

Fitbod do not provide this feature, focusing more on exercise rather than dietary 

management. The proposed app do not consists this feature. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    9 
 

4) Custom Diet Planning: 

Healthifyme and  myfitnesspal offers a custom diet planning feature, making it stand 

out for users who need specific dietary guidance. In HealthyFity, user able to choose 

their diet preferences to let the system to recommend such as according to the type of 

cuisine like Malay, Chinese, Indian, western. This allows the user to eat healthy without 

pain and be forced to eat the food that they do not like. The other applications do not 

provide this level of customization, which could be a drawback for those with particular 

dietary needs. The proposed app do not consists this feature. 

5) Custom Workout Planning: 

All application except Healthifyme excel in custom workout planning. They offer 

detailed workout customization options by the level for expertise of user in workout 

and the target of muscle selected to train. In Lose Weight in 30 Days, the user able to 

feedback to the system is that too difficult to complete the work plan and do 

modifications. while HealthyFity do not emphasize too much workout planning but 

with simple walking tracker only. Injurymap offers treatment-based exercise to reduce 

body pain. The proposed app consists this feature. 

6) Integration with Other Health Applications: 

All applications except injurymap offer integration with other health apps, which is 

beneficial for users who want to have a holistic view of their health metrics. The system 

will integrate with the health data of the user so that can do a more accurate 

recommendation and record. The health application that able to connect such as Health 

Connect, Samsung Health, Google Fit and more. In Healthifyme, Bluetooth connection 

for the automated recording using smart scale is also included. The proposed app do 

not consists this feature. Figure 2.1.2 shows integration with other health applications 

in HealthifyMe app. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    10 
 

 

Figure 2.1.2 Integration with other health applications in HealthifyMe app. 

7) Social Element: 

MyFitnessPal and HealthifyMe include social networking features that allow users to 

share their diet or exercise progress on social media or within the app. There is a 

leaderboard feature that can compare points between users which is significant as the 

completed workout plan. According to H. E. Lee, this fosters encouragement, 

competition, and a sense of community among users, which can significantly boost user 

engagement and enhance adherence to health activities [13]. This networkability will 

improve the willingness of users to continue to use the application. The proposed app 

do not consists this feature.  

8) Progress Tracking: 

Progress tracking is available in all the applications. The tracker allow user to monitor 

their change throughout the whole diet and workout activities by time such as their 

weight. The system also allows user to take photos to log their body shape changes. 

Besides, other trackers such as water tracker, sleep tracker, weight tracker and more are 

included to track and monitor user overall health better. The integrated with other health 

app like Health Connect ease the progress record. The proposed app consists this 

feature. Injurymap consists phases progress for rehabilitation exercise in reduce pain. 

Figure 2.1.3 shows the Progress tracker in Fitbod app. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    11 
 

 

Figure 2.1.3 Progress tracker in Fitbod app. 

9) Report and Insight: 

Each application includes features for generating reports and providing insights that 

help users understand their progress and make informed decisions. The system 

generates reports on aspects such as calorie intake and weight changes over time, 

highlighting areas where users may need to improve, such as reducing calorie 

consumption. The graphical representation of weight change against target weight helps 

users visualize their progress. Injurymap include pain rating in graph for weeks to 

visualize the progress in reduce pain. The proposed app consists this feature. Figure 

2.1.4 shows report for workout in MyFitnessPal app. 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    12 
 

 

Figure 2.1.4 Report for workout in MyFitnessPal app. 

10) Coach Appointment: 

Healthifyme and Lose Weight in 30 Days stands out by offering the option to appoint 

a real person coach, providing users with personalized guidance. Coaches recommend 

specific actions or dietary choices based on the user's needs, and users can contact their 

coach anytime and anywhere for support. The proposed app do not consists this feature. 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    13 
 

Feature Healthifyme Lose 

Weigh

t in 30 

Days 

Fitbo

d 

MyFitnessP

al 

Injuryma

p 

Propose

d 

App 

Prompts 

for 

Essential 

Details 

(e.g., 

gender, 

weight, 

height, 

age) 

✓ ✓ ✓ ✓ ✓ ✓ 

Target 

settings 
✓ ✓ ✓ ✓ ✓ ✓ 

Nutrition 

Tracking  

✓ ✗ ✗ ✓ x x 

Custom 

Diet 

Planning 

✓ ✗ ✗ ✓ x x 

Custom 

Workout 

Planning  

✗ ✓ ✓ ✓ ✓ ✓ 

Integratio

n with 

other 

health 

applicatio

ns 

✓ ✓ ✓ ✓ x x 

Social 

element 
✓ ✗ ✗ ✓ x x 

Progress 

Tracking 
✓ ✓/ ✓ ✓ ✓ ✓ 

Report 

and 

insight 

✓ ✓ ✓ ✓ ✓ ✓ 

Coach 

appointm

ent 

✓ ✓ x x x x 

Table 2.1.5 Common feature comparison between 5 applications 

 

 

 

 

2.1.2  Strengths and Limitations in four reviewed Workout Planner mobile 

applications  



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    14 
 

The strengths and limitations are compared in the table 2.1.2.1.  

1) HealthifyMe 

The first sale point in HealthifyMe is embedded with AI called RIA as a 

coach/assistant. The AI will provide insight into the diet and workout plan about 

how should be modified to yield better results with clear explanations to the user. 

Besides, RIA also will motivate the user by giving encouraging words to let the user 

continue to stay with the plan instead of giving up. Ai can improve the information 

quality in the application which will motivate the user to continue to use the 

application. Information is only valuable if users can understand and apply it, and 

RIA ensures this through its clear and actionable insights [13]. Another key strength 

of HealthifyMe is its extensive food database, which includes a wide variety of 

foods, including localized options. This allows users to easily search for foods with 

detailed information on calories and nutrients. The comprehensive database also 

enables more personalized recommendations based on user's preferences and the 

foods available to them. Users can even eliminate foods that they are allergic to 

from recommendations. Additionally, HealthifyMe offers the option to consult with 

a real coach or expert at any time, providing users with convenience and access to 

professional advice. 

However, HealthifyMe has limited multilingual support. The food name that is 

searched must be in English and this makes users inconvenient when do not know 

the food name in English. The users need to google the food name and translate it 

by themselves to search and still, it can be inaccurate. 

 

2) Lose weight in 30 days 

 

Lose Weight in 30 Days app appeals strongly to female users by offering 

targeted body-shaping goals. The app includes various beauty-focused 

objectives, such as slimming the face, legs, or eliminating a double chin. It also 

features programs for overall body shaping and getting "bikini ready," which 

means achieving a body shape that looks good in a bikini. Each target comes 

with clear, step-by-step workout instructions, complete with videos, to help 

users understand and follow the routines. The app's female-focused workout 

plans offer specific options tailored to meet the unique needs of women. In 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    15 
 

addition to its workout routines, the app provides a well-structured 30-day diet 

and exercise plan designed to help users achieve their goals within a month. 

These plans are customized based on the user's activity level—beginner, 

intermediate, or advanced—and even consider rest times for optimal recovery. 

Furthermore, the app includes a feedback and adjustment feature that allows 

users to modify their plans. If a user finds a workout too difficult, they can 

provide feedback, and the system will suggest a more manageable yet still 

effective alternative. 

 

However, a limitation of "Lose Weight in 30 Days" is its fixed food 

recommendations. The app does not customize meal suggestions based on 

individual preferences while still considering the necessary nutrients or calorie 

intake. This lack of flexibility may make it harder for users to stick to the diet 

plan, potentially reducing the program's effectiveness. 

3) Fitbod 

Fitbod's standout feature is its focus on training specific muscle groups. Users 

can select which muscles they want to target and specify whether they have 

access to workout equipment, are training at the gym, or have weightlifting 

experience. This makes Fitbod particularly valuable for advanced users. 

Additionally, Fitbod offers AI-powered workouts that adapt over time. The AI 

learns from users' previous workouts and adjusts future plans accordingly. For 

example, advanced exercises are only recommended later in the program if the 

user starts as a beginner.Another key feature is the app's customizable workout 

plans. Users can tailor their routines based on their preferences, with options to 

adjust workout equipment weight or increase rest times according to their needs. 

However, Fitbod has a limitation which it is less beginner-friendly for those 

without prior workout knowledge. Users need a basic understanding of 

exercises and their purposes, as well as clear fitness goals. Without this 

knowledge, users may struggle with the terminology and end up following 

routines without fully understanding their benefits. Information loses its value 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    16 
 

if users do not comprehend it, especially for those who lack clear targets and 

cannot connect specific exercises to their goals. 

 

4) MyFitnessPal 

 

MyFitnessPal's primary selling point is its barcode scanner feature. This feature 

allows users to scan the barcode on food packages to instantly check nutritional 

information, such as calories, protein, and macronutrients. Users can then 

directly record this information in their MyFitnessPal diary, enabling the app to 

generate a detailed diet analysis. This makes it convenient for users to track their 

food intake when a barcode is available. Another strength of MyFitnessPal is its 

extensive food database, which includes accurate calorie and nutrient data for a 

wide range of foods. The app also provides macronutrient recommendations, 

which is particularly helpful for users looking to improve specific aspects of 

their nutrition. Additionally, the app incorporates social features, like recipe 

sharing, allowing users to share their diet recipes with friends or copy them for 

their own use. This fosters a sense of community and provides users with more 

references and ideas for maintaining a healthy diet. The app also allows users 

to export reports or data into a CSV file for more advanced analysis. 

 

However, MyFitnessPal has some limitations. Manually entering food data can 

be time-consuming, especially if the food item doesn't have a barcode. Users 

must search for and manually log these foods into their diary, which can be 

burdensome for those who are not in the habit of tracking their meals 

regularly. Additionally, the app does not offer localized food 

recommendations, which can be a drawback for users in regions where certain 

foods are not readily available. 

  

 

5) Injurymap 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    17 
 

Injurymap’s main sale points is pain recovery goal-based workout 

recommendations. The app prompts user to select the area of the body where 

they feel pain, then suggests a corresponding workout plan in 3 phases with 

professional doctor advice and validation.  It also provides personalized focus 

areas, activities to avoid, and useful tips to help users get effective results. 

Injurymap includes a wide range of guided exercises, expert advice, and 

tutorial videos. 

However, Injurymap has some limitations. The advice of professional doctor 

and expert is written in fully text-based paragraph. This will overwhelm the 

user to read and obviously know what should take care. The long paragraph 

can make users lose what they should actually pay attention to. The user can 

lose patience and quit due to long reading. 

 

6) Proposed app 

The proposed app's strength is it tackles and solves the uncertain in real life by 

feedback back to the system to adjust the workout plan. The user allows to 

feedback on when they are busy or get injured to adjust the workout plan to 

align with their current situation. Unlike other applications that suggest 

workouts for the general case without these uncertainties, the proposed more 

flexible and personalized to the user's real life. The workout that worsens the 

injury will be avoided so ensure users have a safe workout experience. The 

time feedback allows user to adjust their calendar event plan seamlessly for 

the workout plan allocation and provide HIIT exercise for time-efficient 

workouts with effective results for busy people.  

However, this proposed app is limited to integrate with the wearable device to 

track the user’s body data. These will reduce the users efficiency when the user 

is required to manually enter the value. Besides, the proposed app do not 

include a diet recommendation system which is useful in managing user health 

to support and improve workout plan effectiveness. An incorrect dietary plan 

will reduce or worsen the workout plan results. While integration of wearable 

device and diet recommender can be good to improve user workout journey, 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    18 
 

this are not considered in the current scope due to the project time and 

resource constraints. 

 

Application 
reviewed 

Strength/sale points limitation 

HealthifyMe • AI or RIA as a coach/assistant 

(insights, motivation) 
• Real coach or human expert 

available for chat 

• Strong food database and 
localised 

• Customized diet plan with 
preference and allergy 

options 

• limited 
multilingual 
support 

Lose weight 
in 30 days 

• Different types of beauty 

targets (slim legs, angel 
body) 

• Organized 30-day plan with 

rest time  
• Feedback and replan if 

workouts are too hard 

• Do not have a 

personalized diet 
according to 
preferences 

 

Fitbod 

 

• AI-powered workouts that 
adapt over time 

• Customizable workout plans 
(e.g., add weight, rest 

timer，gym or home) 

• Target specific muscle 
groups 

• Advanced report metric 

 

• Less friendly to 
beginners basic 

knowledge about 
the workout  

• A lot of terminology 
burden user 

understanding 

 

MyFitnessPal • Barcode scanner for quick 
nutrient/calorie detail entry 

• Food recommendations 
according to target nutrients 

• Social feature: Share own 
recipes of food with others 

• Option to export reports in 
CSV format 

• Strong food database 

• Manually record 
daily food taken 
requires some time 

• Do not have 

localized food 

recommendation. 

 

Injurymap • Pain recovery on different 
body parts  

• paragraph-like 
advice in text 
which 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    19 
 

• Professional doctor's 
advice 

• Multiple workout type with 

video tutorials 

overwhelmed the 
user to 
understand 

Proposed app • Uncertainty feedback 

system (injury, time) 

• Calendar sync workout 
scheduler 

 

• Do not integrate 

with a wearable 
tracker device to 
record user data.  

• Do not have diet 
recommendation 
plan for 
supporting user's 
workout journey. 

Table 2.1.2.1 Strengths and weaknesses of the reviewed application 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    20 
 

2.2  Machine learning for the diet and workout recommendations 

Previous studies did cover on types of machine learning to build the diet and workout 

recommender system which are four different algorithms (k-nearest neighbors, Support vector 

machine, Random forest, AdaBoost) [1]. The researcher had found out that the random forest 

get the highest F1 score among others which mean high precision and high recall.  The C4.5 

classifier is used as it consists of additional features such as pre-pruning, handling continuous 

attributes and missing values, and rule induction to improve accuracy. The step can be 

concluded into few steps. First, the global entropy and entropy of each attribute will be 

calculated. Next, calculate the information gain and compute splinting information. The highest 

information gain ratio attribute will be chosen become the root of the decision tree. Then the 

dataset is splited based on the root to create subtrees by recursion. The multiple-decision tree 

will be created to become random forest. The database chosen is  using USDA Food 

Composition Database by the researcher. The algorithm will will receive user input to do 

recommendation on diet and workouts. 

 

 

2.3 Rehabilitation application 

The rehabilitation app that was reviewed is Sports Injury Rehabilitation [14]. The app consists 

of two types of users: athletes and coaches. The system will consist of an injury information 

page for the user to choose the injury type and provide details and causes of the injury. The 

user can choose the rehabilitation exercise plan after choosing the injury type. The system will 

provide a plan in multiple phases for the user to follow for effective recovery. Besides the 

system has a tracker for the progress in days and the phases. With these features, the user is 

able to know more details about the user’s injury and monitor it to prevent worsening it or to 

have effective recovery. The Figure 2.3.1 and 2.3.2 show the information page for the injury 

type and the plan for rehabilitation exercise. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    21 
 

 

Figure 2.3.1 Information page for the injury type in Sports Injury Rehabil itation app. 

 

Figure 2.3.2 Plan for rehabilitation exercise in Sports Injury Rehabilitation app. 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    22 
 

 

2.4 High Intensity interval Training (HIIT) Benefits 

As introduced in the background information, HIIT is a time-efficient workout that involves 

switching between short, high-intensity exercise and recovery phase. HIIT have double better 

performance in improving VO2peak compared to Moderate-Intensity Continuous Training 

(MICT). Short time and better result can be obtained with HIIT in cardiorespiratory fitness and 

VO2peak with is suitable for busy people to stay healthy. The HIIT is good in improving 

cardiovascular risk factor such as blood pressure, cholesterol, body weight and fat regulation 

[4]. The Merling Phaswana team had proved that HIIT gain better result which the HIIT group 

trained for about 60% less time than the MICT group, but still ended up burning more energy 

weekly and recommend that HIIT had potential to be included in vocational working hours 

[15]. However, MICT is still better in weight loss goal. HIIT is safe to perform basically but it 

increases risk in cardiometabolic disease such as heart attack. Despite that, its benefit is still 

outweigh its risk under proper monitoring. The key to performing HIIT are warming up, 

adjusting the workload, and measuring HRpeak properly. Warming up can help in reaching 

targeted heart rate safely. Besides, workouts should depend on individual HRpeak and should 

gradually increase over time, such as after a few weeks if capable to improving the outcome. 

Last, the HRpeak should be measured properly to prevent underestimating or over. By offering 

HIIT training in a personalized workout planner app, busy people can gain better results with 

less time. [4] 

 

 

2.5 Proposed App 

 This project aims to propose a personalized workout planner with adaptive, goal -based 

workout recommendations based on user details. The project includes common features like 

prompting essential user data, target settings, a custom workout planner with 

recommendations, a progress tracker, and a report generator. Prompting essential user data is 

for further analysis and recommendation purposes. AI-powered customizable workout plans 

will be based on user details such as equipment, fitness level, and fitness goals. The progress 

tracker allows users to track their progress through various metrics like weight and performance 

stats. The report and insight generator will create reports based on user activities and workouts 

over time. Automatic difficulty scaling based on progress completion percentage to ensure user 

can keep consistency after adjust more suitable difficulty. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    23 
 

A unique aspect of this project is its feedback adjustment feature. The user able to feedback 

user’s injury to the system. The system will offer injury-prevention workout advice. Based on 

this information, it will avoid recommending exercises that could worsen the injury. This 

injury-focused approach addresses a significant gap that is not commonly found in existing 

workout applications. Furthermore, the failure/difficulty adjustment feedback system is 

designed to enhance the user experience by offering flexibility. If a user finds it challenging to 

complete their workout plan, the system will suggest adjustments to make the plan more 

manageable while still effective. Users can manually indicate if a plan is too difficult, and the 

system will recommend easier alternatives to ensure that the exercise routine remains beneficial 

without being overly painful. 

If the user feedback busy to the system, HIIT exercise will be suggested on a busy day 

instead of allowing the user to skip or reduce workload to get convenience. The Calendar API 

is integrated to get the free slot of user to plan the workout. The app can smartly check the 

user calendar event to suggest a workout schedule time for user. If user feedback is boring to 

the system, system will suggest alternative workouts that have the same goal to the user. A 

streak recorder is also included to keep the user motivated and consistent on user workout 

journey. Notifications such as workout reminders and streak lost reminders are included to 

notice the user to keep consistent 

 

 

 

2.6 Review of Technologies 

2.6.1 React Native 

 

React Native, an open-source framework developed by Meta Platforms, Inc. which its 

significant advantages in cross-platform development stand up in the market. The framework's 

core principle is "Learn once, write anywhere". React native allows the creation of applications 

for both Android and iOS with a single JavaScript codebase by bridging the JavaScript with 

the native platform. Developer can use React and the app platform’s native capabilities to build 

the app. This can reduces development time and operational costs because it eliminates the 

need for separate development teams and codebases for each platform and speed up the 

development while having uniform experience for user[16]. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    24 
 

Apart from that, Expo has further enhanced the React Native development experience. It is an 

open-source platform and toolset built around the framework with file-based routing, and 

standard library of native modules. Expo simplifies development a lot through its "managed 

workflow," which conceals much of native configuration overhead such that developers only 

write their React/JavaScript code. A key strength is the Expo Go client, an application that 

enables developers to instantly run and test their projects on physical iOS and Android devices 

by using Expo go app.  Additionally, Expo provides a robust SDK for seamless access to device 

capabilities like notifications, which is useful in proposed app for notice user on workouts[17]. 

 

However, React native will have slightly less performance than the native platform. React 

native has a “bridge” to enable JavaScript code to communicate with native rendering APIs . 

Native Android applications generally maintain a performance advantage since they access a 

platform's optimized runtime, Android Run-time directly alongside native APIs with 

absolutely no overhead present in the JavaScript bridge or reliance upon third-party 

components.[18] Despite this weakness, react native is suitable for developing the proposed 

app as its shared codebase for different mobile platforms and easy in setup and test with 

expo. 

 

2.6.2 Supabase 

Supabase is a Postgres development platform that serve as the backend infrastructure, which is 

an alternative of Firebase. It's an open-source platform that provides a suite of backend tools 

built directly on a dedicated PostgreSQL database [19].  Supabase offers a portable, realtime 

and extendable easily PostgreSQL database with security enhancement by using powerful Row 

Level Security (RLS). It enables fine-grained control over data access and ensures that each 

user's data remains private and secure. Furthermore, Supabase Auth delivers a comprehensive 

user management system that supports various methods, including email/password and other 

providers such as Google. It can also be used to store large files such as images and video, 

which are the needs for the proposed app for workouts images and video. Additionally, 

Postgres Vector database in Supabase supports using pgvector to store vector embedding of 

machine learning and large language model with AI Toolkit. These strengths of Supabase meet 

the requirements of the proposed app for storing a CSV data format dataset and user 

authentication [19]. Although Supabase has a feature called edge function that can run code 

directly, it is not compatible with the Python and sklearn library as it is in node.js. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    25 
 

2.6.3 Fastapi 

FastAPI, a modern, high-performance web framework for building APIs with Python for 

custom server-side logic [20]. One of its greatest strengths is its high performance, which is 

not as heavy as NodeJS and Go, making it one of the fastest Python frameworks available. 

FastAPI uses standard Python type hints for data validation by Pydantic, a python data 

validation library and editor support in Visual Studio Code‘s auto-completion to speed up the 

development process. Another is its interactive automated API documentation. FastAPI 

generates a valid OpenAPI schema with absolutely no extra work and serves it through two 

distinct web interfaces: a Swagger UI (at /docs) and ReDoc (at /redoc). It allows one to instantly 

see, test, and interact with each individual one of the API endpoints directly within a browser, 

making development easier and future integrations [20]. This FastAPI is suitable for handling 

the custom server-side workout recommendation logic in the proposed app with quick testing, 

deployment, and the same Python environment as the machine learning Python environment. 

 

2.6.4 Google Cloud Platform 

 

To facilitate integration with users' personal schedules, the project utilizes Google Cloud 

Platform (GCP). Google Cloud Platform is behind managing and securely accessing Google's 

extensive collection of APIs, such as the Google Calendar API[21]. The Google Cloud 

Platform enables the implementation of the OAuth 2.0 standard, which is a standard for 

delegated access with user approval to get the access token to ensure a robust and secure 

authentication and authorization[22]. This protocol allows the proposed app to securely request 

specific, user-consented permissions (scopes) to access their calendar data with the least 

privilege, but never having to handle or store a user's Google password. By managing the API 

credentials and user consent flow through the Google Cloud Console, the application ensures 

that the calendar integration is secure, private, and reliable. 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    26 
 

Chapter 3 

System Methodology 

3.1 System Design Diagram 

3.1.1 System Architecture Diagram 

 

 

Figure 3.1.1.1: System Architecture Diagram 

 

 

This diagram illustrates a hybrid system architecture for a mobile fitness application. The 

design is centered around a React native App Front-End. It acts as the user interface that 

interacts directly with the user and links to other services. Instead of depending on a single 

monolithic backend, the architecture divides tasks 3 parts of services: a custom FastAPI 

Backend for complex recommendation logic, a Supabase Backend for core functionalities like 

data storage and management, authentication, and user management and Google Calendar from 

Google Cloud Console to authorize and fetch calendar events. Unlike the traditional 

archituecture (Front-End -> API -> Database), this method allows the front-end mobile app to 

directly communicate with the supabase database (Front-End -> Supabase) with low latency 

and securely. This is capable due to the supabase acting as a Backend as a Service and its 

feature, Row Level security. All requests include a new JSON Web Token (JWT) that 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    27 
 

authenticates the user’s identity as long as they remain signed in with Supabase Auth [23]. 

JWT provides the foundation of RLS and  RLS at PostgreSQL checks the token against policies 

that are pre-specified, so that users can only view or modify data that they’re authorized to[24]. 

JWT authentication and database-level policies together make it secure for to leave out a 

custom backend. This architecture pattern can ease and speed up development, reduce latency, 

and remain secure. 

 

Component Roles and Rationale 

React native App Frontend: This is the user's entry point to the system. It is responsible for 

rendering the user interface, capturing user input, and communicating directly with the others 

services. By acting as the center of the system, it controls and calls service to ensure the 

workflow success and displays to the user to meet user needs. It will requires suggested 

workouts from FastAPI, update user profile and retrieve workouts detail from supabase and 

connect with google calendar to get permission and fetch the user calendar event. 

 

FastAPI Backend: This is a specialized microservice whose primary role is to handle 

computationally intensive business logic, which includes recommending and feedback on 

workouts. It runs cosine similarity on the precomputed encoding vector of workouts and returns 

the top 5 similar workouts back to the front end based on user inputs. For the feedback case, it 

is similar as normal recommendation but with feedback required user input obtained from the 

frontend. It returns the workouts ID to the front for frontend to fetch the workouts detail directly 

from Supabase by using the workouts ID. FastAPI with python backend can run complex 

algorithm for cosine similarity easily with heavy reliance on the frontend and isoslates the 

complex logic. FastAPI is selected instead of Supabase Edge Function because edge functions 

do not support the sklearn library for computing cosine similarity.  

 

Supabase Backend: Supabase serves as the foundational backend for the application, handling 

all standard data operations and storage. It is responsible for user authentication (providing 

access tokens), storing workout details, and logging user profiles and workout history. Using a 

BaaS like Supabase can accelerates development as it provides ready-to-use solutions for 

common needs like database management, user sign-ups, and secure file storage, thus allowing 

the development to focus more on application-specific aspects. The mobile app communicates 

directly with Supabase to fetch and store data with the presence of RLS.. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    28 
 

 

Google Calendar API: This is an external, third-party service integrated into the system to 

provide scheduling functionality. The mobile app makes direct calls to this API to fetch 

calendar events data and suggest the workouts schedule based on user free time and preference, 

workout time, and frequency per week. This can enhance the user experience by connecting 

their fitness plan to their daily schedule. 

 

3.1.2 Use Case Diagram and Description 

 

 

 

Figure 3.1.2.1 Use case diagram 

 

 

Use case name: Get 

recommended workout plan 

ID : 1 Important level: High 

Primary actor: User Use case type: Detail, Essential 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    29 
 

Brief description: This use case describes how user can obtain the recommended workout 

plan according to user’ situation. 

Trigger: User inputs user data such as height, weight, goal, fitness level, injury notes, 

equipment, workouts per week, preferred workout time, and favorite workout to the 

personalized workout planner system. 

Type: external 

Relationship: 

Association: User 

Extend: feedback injury/difficulty/boring/busy, modify user data 

Include: view recommended workout plan 

Generalization: - 

Normal Flow of Events: 

1) The user inputs user data such as height, weight, goal, fitness level, injury notes, 

equipment, workouts per week, and preferred workout time to the personalized 

workout planner system during the initial setup. User can connect to Google 

Calendar. 

2) The personalized workout planner system recommends a suitable workout plan to 

the user to achieve the user’s goal. 

3) The user can view the recommended workout plan. 

4) User can select or cancel the schedule time after the user connect with Google 

Calendar. 

5) The user starts following the workout plan using the timer feature. 

6) The system marks the workout plan task as progress based on the completation 

percentage after done or stop.  

7) The personalized workout planner system will show the workouts logs such as 

average percentage of completion and its trend, BMI, weight changes, number of 

workouts completed this month, current weekly workout streak in weeks, and 

Muscle Group Focus bar. 

8) Repeat 4-7 until reaching the goal. 

SubFlows: - 

Alternate/Exceptional Flows: 

5a) If the user gets injured, 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    30 
 

1. The user reports the injury to the system. 

2. The system will identify the injury and recommend the latest workout plan that not 

worsen the injury. 

5b) If the user felt the workout is too challenging, 

1. The user reports the workout is too challenging to the system. 

2. The system will recommend the latest workout plan that is easier and painless but 

still effective. 

5c) If the user felt the workout is boring, 

1. The user reports the workout is boring. 

2. The system will recommend the latest workout plan that alternative workout with 

the same goal. 

5d) If the user is busy and no time for exercise, 

1. The user reports is busy. 

2. The system will recommend the latest workout plan that alternative workout which 

is HIIT exercise, and adjust the workout per week to 1. 

 

6a) If the user has a workout complete rate <50% for 3 in a row, 

1. The system will recommend the latest workout plan that is easier and painless but 

still effective. 

6b) if the user stop and mentions failure, 

a) The system will calculate the current workout completion rate and record into the 

database. 

6c) if the user clicks discard, 

1. The system will not save the current workout data. 

. 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    31 
 

3.1.3 Activity Diagram 

3.1.3.1 Flow 1: The Core Loop - Generating and Starting a Workout

 

Figure 3.1.3.1: Flow 1, The Core Loop - Generating and Starting a Workout 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    32 
 

This activity flow outlines the application's core functionality, dynamic generation and 

initiation of a personalized workout recommendation. This process is core to deliver a 

tailored fitness experience to the user based on user profile data. 

The flow starts when the authenticated user navigates to the main "Workout" screen. Upon 

loading, the frontend system initiates a checking process. Firstly, it performs an automated 

check on the user's recent performance by querying the workout_logs table in the Supabase 

database. If it detects a three consecutive workouts completed at less than 50% of low 

completion rates, the system automatically triggers a difficult feedback request to the 

Recommendation API, indicating that the workouts have been too difficult to lower one 

difficulty level. Then, it will proceeds with workout recommendation. 

If no performance-based adjustment is needed, the system proceeds with the standard 

workout recommendation. It retrieves the user's profile data, including their fitness level, 

goals, available equipment, and any noted injuries, from the user_profile_new table in 

Supabase. This data is then packed into a request to the Recommendation API. The API 

processes these parameters and returns a list of recommended workout IDs. 

With these IDs, the frontend system connects to Supabase’s Workouts database table to fetch 

respective details for each exercise, such as instructions and muscle groups targeted. The data 

from the recommendation API and the Supabase database are then merged and presented to 

the user as a list of recommended workouts in a visual display. 

After that, the user is ready to start a workout. The user clicks the "Start Full Workout" 

button, and then the system constructs a detailed, step-by-step workout timer plan. It 

dynamically adjusts the structure of this plan based on the workout category. For instance, a 

HIIT workout session is built with specific work_duration, rest, and set intervals fetched from 

the HIIT_duration table. The workout duration, rest and number of set based on fitness level 

is referred to the DAREBEE website to create[25]. For others workout will use a standard 

workout timer plan. Finally, the system navigates the user to the timer interface, passing the 

structured plan to begin the guided workout. If the user completes the workout session or 

presses stop to declare failure, the system will calculate the current percentage of completion, 

ask the user to input their latest weight, and then record it to the Supabase workout_logs 

table. The user can also choose to discard the timer, and this workout log will not be recorded 

for misclick purpose. 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    33 
 

 

3.1.3.2 Flow 2: Providing Manual Feedback 

 

Figure 3.1.3.2: Flow 2, Providing Manual Feedback 

This flow details how the system adjusts workout recommendations based on direct user 

feedback, ensuring the fitness plan remains aligned with the user's changing needs and 

preferences to counter real-life uncertainty. 

The interaction starts when the user clicks the "Feedback" button on the main workout 

screen, which it will renders a selection of feedback options. The system's response is tailored 

to the specific type of feedback submitted in the handleFeedbackSubmit function. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    34 
 

• Injury Feedback: If the user reports an injury, the system directly updates the 

injury_notes field in the user_profile_new table in Supabase. This ensures that all 

future workout generations will automatically consider this new physical limitation 

without call this injury feedback again. After the user recover from injury, the user 

can manually remove the injury notes field in the account profile. 

• Boring Feedback: The system makes a direct call to the Recommendation API to 

recommend similar workouts from the previous randomly but this meet the user 

current needed by their user profile parameters. 

• Difficult Feedback: the system reduces 1 level of fitness level and call the 

Recommendation API with the rest of the user profile parameters to request a new set 

of workouts. The lower fitness level will be updated in supabase. 

• Availability Feedback (Busy): If the user indicates they are "busy," the system 
performs two actions. It updates the workouts_per_week in their Supabase profile to 

a lower frequency (e.g., 1) and simultaneously calls the Recommendation API with 

the "busy" feedback to generate a shorter, more time-efficient HIIT workout plan. 

• Preference Feedback (Favorite): When the user provides feedback on a favorite 

workout by marking a workout as favorite, the system calls the Recommendation API 

with the favorite_workout_id to recommend similar workouts that within the user 

profile parameters. This ensures the favorite workout can still achieve user needs 

In all cases where the API is called, it returns a new list of workout IDs. The frontend then 

fetches the corresponding workout details from Supabase and refreshes the UI, presenting the 

user with the latest workout recommendation list. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    35 
 

3.1.3.3 Flow 3: Scheduling a Workout 

 

Figure 3.1.3.3: Flow 3, Scheduling a Workout 

This flow describes the adaptive scheduling feature, which integrates with the user's Google 

Calendar to suggest free slots times and manage their fitness schedule. 

The process is start when the user navigates to the "Schedule" screen. First, the system will 

calls getValidAccessToken() to get a Google auth token from the user_google_tokens 

table in Supabase. If valid token is not found, the user is prompted to connect their Google 

account via the profile screen. The user will be navigated to the profile page after clicking the 

“Go to Profile”. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    36 
 

With a valid token, the frontend fetches existing workout_schedules, workout_logs, 

workout_per_week, and preferred_workoit_time from Supabase. It also making an API 

call to the Google Calendar API to retrieve the user's events for the upcoming week 

simultaneously . After that, the system processes these data, identifying free time slots that 

align with the user's preferred_workout_time and generates a list of suggestions. 

The system will displays the user's upcoming scheduled workouts, their recent history, and 

the new suggestions. The user can select and "Confirm" a suggested time slot  same as the 

number of workout_per_week set by the user in their profile. Upon confirmation, the 

handleConfirmWorkout function performs two key actions. It schedules a local push 

notification on the device to remind the user of their session and saves the new schedule, 
including the notification_id, to the workout_schedules table in Supabase. Next, UI is 

refreshed to reflect the newly added workout. The user also able to cancel a scheduled 

workout, which removes the associated notification and deletes the record from the database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    37 
 

3.1.3.4 Flow 4: User Onboarding, Authentication, and Profile Management 

 

Figure 3.1.3.4: Flow 4, User Onboarding, Authentication, and Profile Management 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    38 
 

This flow covers the complete user lifecycle, from initial sign-up and authentication to profile 

management and Google Calendar service integration. 

When a user opens the app, the frontend checks for an active session with Supabase 

immediately. If no session exists, the user is redirected to a login/sign-up screen. The user can 

either sign up to create an account or log in to authenticate their credentials using email and 

password. After successful authentication, Supabase establishes a new session, and the 

frontend detects this change, allowing user to navigate to the main application content. 

Once logged in, the user can manage their profile. The system fetches their complete profile 
data from the user_profile_new table in Supabase and display the form in the <Account> 

component in the profile page. The user has several options: 

• Update Profile Details: The user can edit their information and click "Save Profile." 
The changes will be recorded to update in the user_profile_new table in Supabase. 

• Connect Google Calendar: By clicking "Connect Google Calendar," the system will 

initiate an OAuth flow with Google. User will be redirected to the Google sign-in and 

consent page to select their Google account and authenticate as an authorized user. 

After granting permission, Google returns authentication tokens. The frontend system 

will process and save securely to the user_google_tokens table in Supabase. The UI 

re-renders to reflect the successful connection with the connected green button. 

• Sign Out: The user can click "Sign Out" to calls the supabase.auth.signOut() 

method. Supabase will invalidates the current session, and the frontend redirects the 

user back to the login screen, completing the session lifecycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    39 
 

Chapter 4: System Design  

4.1   System Block Diagram 

4.1.1 React native app frontend Block Diagram 

 

Figure 4.1.1: React native app frontend Block Diagram 

a) Screens & Components 

The block is responsible for rendering all pages, visual elements of the application, and 
capturing user input for the user control. This is the main interface that users interact with 
the system. The UI is built using react native components and a pre-built kit from react 
native paper, a UI component library. This allows speeding up development with a standard 
outlook instead of building from scratch. The application is divided into several key screens, 
including the main workout recommendation screen (index.tsx), the scheduling screen  

(schedule.tsx), the user's progress log screen (log.tsx), the workout timer 

(timer.tsx), and the profile management screen (profile.tsx and Account.tsx). 

b) Navigation 

 

This block is responsible to manage the navigation and flow among different screen with 
Expo Router. By putting the file in the “(tabs)” folder in the project and defining navigation 

tabs in “(tabs)/_layout.tsx”, the Expo router can easily route users using the 
navigation tab bar that is located at the bottom of the screen. Screens such as timer.tsx 

which is not included in the tabs navigation bar, can use useRouter hook from Expo router 
to moving to the timer screen after a user starts a workout. 

c) State Management 

 
This block is responsible for a centralized way to manage and share application-wide data, 

such as user profile information, without having to pass props through many layers of 
components. ProfileProvider from ProfileContext.tsx include all the necessary data 
that is needed across all pages and is used to wrap the screen parent layout, which is 
”_layout.tsx” in the app folder. This ensures the screens can access data. It holds and 

provides user profile data for screens. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    40 
 

d) Service Layer (API Clients) 

 
This block is responsible to all external communication, acting as a single gateway for 
fetching or sending data to the external service such as Supabase, FastAPI recommendation 
backend, and Google Calendar. This separates the UI logic from the data-fetching logic.  
 
The Supabase Client is an interface used for all interactions with the Supabase, including 
user account authentication and database operations like fetching workout logs in 
log.tsx or saving scheduled workouts in schedule.tsx. This supabase client is 
created in “lib/supabase.ts”. 
 

The Recommendation API Client part is responsible for handling all HTTP fetch requests to 

the FastAPI backend. This is used in index.tsx  to get workout recommendations and 

send feedback request. This can reduce duplication of code and centralize the HTTP request 

in “lib/api.ts “. 

 
The Google API Client part is responsible for logic for authenticating and fetching events 

from the Google Calendar API, which is included in the schedule.tsx and Account.tsx 
components.. 

e) Device Services (Expo APIs) 

This block is responsible for handling the mobile device's native hardware and software 
capabilities for a better user experience. The Expo library is used to simplify the usage and 
integration. The expo-notifications is used to to schedule local push notifications to 

remind the user of an upcoming workout session in the schedule page. For the expo-
auth-session, it is used to handle the OAuth 2.0 flow required for secure user 

authentication with Google Calendar. 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    41 
 

4.1.2 FastAPI Backend Block Diagram 

 

Figure 4.1.2: FastAPI Backend Block Diagram 

 

1. Web Server (FastAPI) 

 
This block is responsible for acting as the main entry point for the backend service. It will listen 

to the HTTP requests and the application lifecycle. The FastAPI framework is used and created 

in main.py. It also configures Cross-Origin Resource Sharing (CORS) middleware to 

securely accept requests from the React Native frontend. The CORS middleware is a special 

handler for the web application that has a different origin, including different port number, so 

that they can communicate[26]. While mobile app requests from Android and IOS are not 

subject to browser CORS restrictions. This is still included for future web application 

possibilities and ease for testing. At the beginning, it is defined with the 

@app.on_event("startup") decorator for loading machine learning artifacts into memory. This 

allows those artifacts to be ready before any requests are served. 

2. API Router 

This block is inside the web server block and is responsible for mapping incoming request 

URLs to the specific business logic functions that can handle them within the backend 
application. It is created in routes.py and used to manage all API endpoints such as POST 

request to the /recommend path is routed to the recommendation function for workout 

recommendation, and then returns the output for the HTTP response. 

. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    42 
 

3. Data Schemas (Pydantic) 

This block is responsible for data validation so that the data in JSON format will not causes 

error and fit to the python data format. This ensures data integrity by validating the structure 

and types that are expected for data processing. It is created in schemas.py using Pydantic 

BaseModel. Classes is created, such as RecommendRequest, InjuryFeedback and more. They 

are used as type hints in the router functions for automatically parsing and validating API 

requests. 

4. Logic - Recommendation Engine 

This block is the core logic of the recommendation system by running the algorithms for user 

input filter, which is based on user profile data, running cosine similarity, and generating a 
ranked list of personalized workouts with ID to return. It is created in recommender.py and 

relies on ML Artifacts for running the operation. The operation includes filters workouts, 

performs the core similarity calculation against the pre-loaded matrix, final_matrix.npz, 

and gets the top 5 high score workouts as recommendations. 

5. Logic - Feedback Logic 

This block is the special handler for modifying the recommendation process based on specific 

types of user feedback for solving their real-life uncertain needs. It is created in feedback.py 

and has 5 types which are busy, injury, boring, difficulty, and favorite.  Special functions for 

handling data are also created, such as filter_workouts_by_injury for preprocess the user’s 

request before it is passed to the main recommendation engine. 

 

 

6. ML Artifacts 

 

This block is the pre-computed of data or models that created from the Jupiter notebook for the 

recommendation engine and feedback logic to use. This allows the system can perform 

efficiently by recomputing the heavy and repetitive logic, such as matrix encoding for the 

workout data and for mapping the matrix with its workout ID. The artifacts includes 6 types. 

 

• a Scikit-learn TF-IDF vectorizer (vectorizer.joblib) 

• SciPy sparse matrix of workout features (final_matrix.npz 

• CSV files for mapping workout IDs to matrix indices (workout_index_mapping.csv) 

• Workout dataset for referring if needed (four_workout_merged_df.csv) 

• List of filter columns needed for recommendations for documentation purposes 

(filter_columns.json) 

• Reference of efficient pre-filtering for the user input filter before cosine similarity step  

(cat_df_encoded) 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    43 
 

4.2 System component top-down flow diagram 

4.2.1 Workout page, index.tsx 

 

 

Figure 4.2.1: Workout page, index.tsx 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    44 
 

1. Initialization and Initial Data Fetching  

The process start when the user navigate to the workout page(index.tsx). The system will 

directly calls the useProfile hook. While the profile is loading, a spinner which is  

“<ActivityIndicator />” in react native paper library, is shown. After the user’s user's profile 

is successfully loaded, it runs two independent processes in parallel. 

• Performance Check: 

The checkWorkoutPerformance function runs in the background and fetchesthe 

user's last three workout logs from the Supabase database. If all 3 logs are < 50% 

of completion rate and no recent feedback difficult record in Supabase 

(lastFeedbackTimestamp < lastWorkoutTimestamp), it automatically triggers the 

feedback difficult flow and refreshes the workout list. Otherwise, it will do a normal 

workout recommendation. 

• Standard Workout Fetch:  

The fetchAndCombineWorkouts function will run and start normal 

recommendation flow. If the injury notes field is not null for the user profile, it will 

call the feedback injury instead. It calls FastAPI backend to get a list of 

recommended workout IDs. 

After getting the list of workout IDs, it is used to fetch full workout details such as 

instructions, image, primary, and secondary muscles from the Supabase Workouts table. 

The data of from the backend and Supabase are then combined and displayed to the user in 

a list of WorkoutCard components. 

2. User-Initiated Feedback Loop  

When user clicks the "Feedback" button, which opens the FeedbackModal pop up screen. 

The user can choose 5 options which are boring, busy, difficult, injury and favorite 

workouts. For the injury option, the user needs to type the injury parts with a comma as 

delimiter and submit. The modal's onSubmit function calls handleFeedbackSubmit in the 

main screen then calls fetchAndCombineWorkouts again with a specific feedback function 

to reach specific FastAPI endpoint. The list of recommended workout IDs will return and 

undergo the normal flow to display. 

 

3. Starting a Workout  

 

When the user clicks the "Start Full Workout" button, onStartWorkout function analyzes 

the workout type. If it is a HIIT workout, an extra call to Supabase to get specific timings 

(work, rest, sets) from the HIIT_duration table to build a detailed, multi-set plan. Otherwise, 

it will use a standard default plan which are 3 minutes for doing workout and 2 minutes of 

rest for 1 workout. The constructed plan will be pass to timer screen for display timer. 

 

Other actions, such as Mark Favorite by tapping the heart icon on a WorkoutCard calls 

handleToggleFavorite. This will update the favorite_workout_id in the user's profile on 

Supabase and then refetch the profile to update the UI. To get more information, the user can 

tap on the view instruction button of a WorkoutCard to navigate to the workout-detail screen, 

passing all the workout data for that card. The user can also tap the the refresh button to refresh 

to do a normal recommendation flow. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    45 
 

4.2.2 Profile page, profile.tsx 

 

 

Figure 4.2.2: Profile page, profile.tsx 

 

a) Initial Screen and Data Loading 

When a user navigates to the profile tab, the application first checks for an active user session 

with Supabase. If a valid session exists, the Account component is rendered. Otherwise, the 

screen waits for a change in authentication state. This is for secure purpose since if not 

authenticated, the user will navigate to sign up or sign in. After successful, system will uses 

the useProfile hook to fetch the user's detailed informationsuch as their name, goal, and fitness 

level from the user_profile_new table in the database The screen will display the field with 

user information.  

b) Update profile, Sign out and Connect to Google Calendar 

There are three main actions the user can perform on this screen. First, in order to update their 

profile, the user is able to modify the fields of the form and press "Save Profile." This executes 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    46 
 

the upsertUserProfile function, which puts the new data into the user_profile_new table. On a 

successful update, the profile details are refreshed so that the UI reflects current data, and a 

success alert is given to the user. Second, the user can connect their Google Calendar by 

pressing the appropriate button. This executes Google authentication flow. In the case that the 

user grants the permissions, authentication tokens are acquired and are added to the 

user_google_tokens table via an upsert command. An alert is given to the user stating that the 

integration was successful and the button is updated in appearance. Third, the user is able to 

logout via the "Sign Out" button, which executes the supabase.auth.signOut() command. This 

is caught by an authentication state listener, who clears out the session and removes the 

Account component from the screen. This will leads to navigate to the sign in page as no active 

user session   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    47 
 

4.2.3 schedule page, schedule.tsx 

 

Figure 4.2.3.1: schedule page, schedule.tsx, Data Loading and Suggestion Generation 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    48 
 

Data Loading and Suggestion Generation 

The schedule screen is used for managing a user's weekly workout plan, suggest a scheduling 

system integrated with their Google Calendar. When the user navigates to the schedule page, 

the useFocusEffect hook to trigger the main fetchData function. It validates the user’s profile 

and then checks for a valid Google Calendar access token with the getValidAccessToken helper. 

If the token is expired but a refresh token exists, a new access token is requested from Google’s 

OAuth service and the user’s record in the Supabase database is updated. If authorization fails, 

the token will be removed and the user is prompted to connect their Google account. After 

validation of the token, it can proceed with fetching all existing workout_schedules from 

Supabase, retrieves the user’s workout_logs to cross-check completed sessions, and calls the 

Google Calendar API to obtain events scheduled for the upcoming week concurrently. This 

can optimize loading time.  

Then data preprocessing is undergone by analyzing calendar events that mark “busy” slots, and 

adding buffer time which is 30 minutes before and after the event , and the remaining 

availability is used to generate potential workout times based on the user’s saved preferences 

workout time (e.g., “morning” or “evening”). These suggestions help to filter out any already 

confirmed slots in the calendar event. At the same time, past schedules are compared against 

workout logs to classify them as “Completed” or “Missed.” Last, upcoming workouts, new 

suggestions, and recent history are rendered on the screen. 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    49 
 

 
Figure 4.2.3.2: schedule page, schedule.tsx, Confirm and Cancel schedule 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    50 
 

Confirm and Cancel schedule 

For Confirming a Workout, user selects “Confirm” on a suggestion, the 

handleConfirmWorkout function runs. It first checks whether the user has reached their 

configured workouts_per_week limit, which is set at the profile page. If not, it performs two 

actions. First, it calls Expo Notifications to schedule a local push notification reminding the 

user at the workout’s start time, storing its unique ID. Next, it inserts a new record into the 

workout_schedules table in Supabase with the user ID, start/end times, and notification_id. 

The data is then re-fetched so the new workout appears in the UI. 

For Canceling a Workout, user taps “Cancel” on a previously confirmed workout. The 

handleCancelWorkout function cancels the scheduled push notification using the stored 

notification_id via Expo Notifications, and it deletes the corresponding record from the 

workout_schedules table in Supabase. After success, the screen’s data is re-fetched to update 

the UI. 

4.2.4 log page, log.tsx 

 
Figure 4.2.4: log page, log.tsx 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    51 
 

The Log Screen is the user's exercise dashboard. It is used workout logs, weight history, and 

user profile data, sorting it all out into meaningful stats and trends, and displaying it back with 

a set of summary cards and graphs. 

When user navigate to log page, it triggers a data-fetching to a Supabase backend and 

simultaneously loads all the weight logs and workout logs of the user. Then, it loads the actual 

details for each exercise, such as main muscles worked, using the IDs of the workout logs. 

Meanwhile, weight and height is loaded from the ProfileContext which is the provider that 

store user profile data for entire system. 

After all the needed data is pulled, the component will process the data by doing some 

calculations for the dashboard. The calculateStats method from log-helpers.ts makes an 

assessment of the logs depending on the number of workouts achieved in the current month, 

the number of weeks the customer worked out in the past, and their completion percentage on 

average. The calculateMuscleFocus method counts the distribution of muscle groups the 

customer worked out the most. The user's BMI is calculated based on the latest weight and 

height from their profile. The data is then formatted to display in the charts, and then the UI is 

rendered, presenting the customer with a detailed and easy-to-understand analysis of their 

progress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    52 
 

4.2.5 Recommendation and Feedback in FastAPI 

 

Figure 4.2.5.1: Recommendation and feedback injury, difficult, busy 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    53 
 

This flowchart shows how most of the feedback routes act as an up-front "input adjustment" 

step before feeding into a common, core recommendation engine. The "Favorite" and "Bored" 

feedback routes each have special logic and are represented separately. 

The process starts when a request is received from the user's HTTP request. For standard 

recommendations or feedback related to being busy, injured, and difficult, the system first 

adjusts the input. For a busy user, the request is modified so that the 'hiit' category is prioritized. 

For an injury, a pre-filtered list of safe workouts is created first by mapping the injury part with 

the primary and secondary muscles of the workouts, and then exclude those affected workouts, 

and then other preferences are applied. If a workout is too difficult, it lowers the user’s workout 

level (e.g., intermediate → beginner) if the workout is marked too hard or after three 

consecutive fails. If it is already the lowest level, then remain that level (beginner). Once the 

input is prepared, it is passed into the Core Recommendation Engine. 

This engine start with the get_filtered_indices function in recommender.py processes the user’s 

filters. For each filter, such as level='beginner', it creates the matching column name (e.g., 

level_beginner), which exists in the cat_df_encoded.csv file. It then builds a boolean mask to 

select only the rows where all specified filter columns equal 1 and returns the integer indices 

of the corresponding workouts. 

The next step is to create user vector. The get_user_vector function takes these indices to 

extract the relevant workout vectors (rows) from the full final_matrix. It calculates the column-

wise mean of these vectors, producing a single averaged vector that numerically represents the 

user’s taste based on the filtered workouts. 

Next, it will be chosen as the seed base for computing cosine similarity. The 

get_cosine_similarity function performs the core mathematical operation. Using 

sklearn.metrics.pairwise.cosine_similarity, it efficiently computes the similarity between the 

single seed user vector and every workout vector in the final_matrix. The result is an array of 

scores (ranging from 0 to 1), where each score indicates how closely a workout aligns with the 

user’s needs. 

Finally, the recommend_from_cos_sim takes this array of scores and applies argsort() to 

identify the indices of the highest scores, ranking all workouts from most to least similar. It 

selects the top 5 indices, retrieves their corresponding workout_id and name from the mapping 

DataFrame, and formats the data into a JSON list to send back to the client. 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    54 
 

 
Figure 4.2.5.2: feedback boring 

 

For feedback boring, to introduce variety, handle_bored_feedback in feedback.py first retrieves 

the similarity scores from the core engine. It then loops through these scores and creates a new 

list containing only workouts that score above the defined similarity_threshold, 0.6. Next, it 

uses Python’s random.shuffle() function to randomize the order of this pool of sufficiently 

similar workouts before selecting the top k, which is 5 as default. This ensures the user still 

gets relevant recommendations but not always the same top results. The rest will be similar to 

the normal flow. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    55 
 

 

 

 

Figure 4.2.5.3: feedback favorite 

 

For feedback favorite, this finds workouts similar to one specific item within their user input 

needs. It begins by searching the mapping DataFrame for the numerical row index that matches 

the user’s favorite_workout_id and its corresponding encoded matrix. Instead of building a 

user preference vector as a seed, it computes a full similarity matrix of every workout compared 

to every other workout by “cosine_similarity(recommender.final_matrix)”. From this, it 

extracts the similarity scores of the favorite workout against all others.  This list is then filtered 

to include only workouts that also satisfy the user’s additional criteria (such as level and goal) 

before being sorted to return the top k matches. 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    56 
 

4.3 Core Component diagram and relative function 

 
Figure 4.3.1: Core Component diagram  

The figure is the component diagram of frontend. The below are the functions inside them 

and descriptions of each component 

ProfileContext.tsx 

Component for central manage the user profile date for global usage easily. 

• fetchProfile(): Retrieves the logged-in user’s profile by getting the current session 

from Supabase Auth, querying the user_profile_new table using the user ID, and 

storing the details in state. 

• refetchProfile(): Refreshes the profile data by calling fetchProfile() again, 

ensuring changes like profile updates or favorite workouts are reflected 

immediately. 

index.tsx (Workout Screen) 

Component for workout screen display for display workout recommendation and viewing 

detail. 

• fetchAndCombineWorkouts(): Generates a personalized list of workouts by 

reading user details from ProfileContext, calling the external recommendation API, 

fetching full details from the Supabase Workouts table, and combining everything 

into a DisplayWorkout[] array. 

• checkWorkoutPerformance(): Detects when a user is struggling by checking if 

the last three workouts are below 50% completion and validating the 

difficulty_feedback_triggered_at timestamp before suggesting easier workouts. 

• handleToggleFavorite(): Updates the user’s favorite_workout_id in the 

user_profile_new table and calls refetchProfile() to refresh the UI after setting or 

removing a favorite workout. 

• onStartWorkout(): Prepares the workout plan by converting recommendations 

into a WorkoutStep[] array, retrieving timing from the HIIT_duration table for 

HIIT workouts, applying default durations for others, and passing the plan as JSON 

to the Timer screen. 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    57 
 

schedule.tsx (Schedule Screen) 

Component for schedule page display to show and suggest workout schedule. 

• handleConfirmWorkout(): Schedules a workout by calling 

schedulePushNotification() to create a reminder and inserting the workout details 

with the notification ID into the workout_schedules table. 

• handleCancelWorkout(): Cancels a workout by removing its notification using 

the notification ID and deleting the corresponding entry from the 

workout_schedules table. 

 

timer.tsx (Timer Screen) 

Component for the timer page display for the user to use after starting a workout. 

• logWorkout(): Records the results of a workout session by calculating completion 

percentage, inserting a log into the workout_logs table, checking the latest weight 

from the profile, and prompting the user with the WeightLogModal to update 

weight. 

 

log.tsx (Log Screen) 

Component for the log page display for the user to access the dashboard for performance and 

useful metrics. 

• fetchLogData(): Retrieves workout logs and weight logs in parallel, fetches 

workout details like muscle groups, and provides the data for the “Muscle Focus” 

chart. 

• calculateBmi(): Computes BMI using the formula weight_kg ÷ (height_cm/100)² 

and returns a text result such as “Normal” or “Overweight.” 

Account.tsx and Profile.tsx (Profile Screen) 

Component for the show and update user profile data and connect to google calendar which 

call by the profile.tsx. 

• upsertUserProfile(): Saves user profile information by collecting form data (e.g., 

name, height, weight, goal) into an update object and calling Supabase’s upsert to create 

or update the record. 

• saveGoogleTokens(): Stores Google Calendar authentication tokens by receiving 

access and refresh tokens after login and saving them into the user_google_tokens 

table linked to the user’s ID. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    58 
 

Auth.tsx  

This component manages user sign-in and sign-up, serving as the app’s entry point for 

unauthenticated users. 

• signInWithEmail(): Collects the user’s email and password from state and sends 

them to supabase.auth.signInWithPassword to authenticate and establish a 

session. 

• signUpWithEmail(): Registers a new user via supabase.auth.signUp. If 

successful but no session is created, it alerts the user to check their email for 

verification. 

WeightLogModal.tsx  

This modal appears after a workout, prompting the user to log their weight. 

• handleSaveWeight(): The core function that performs a dual-write operation: 

1. Inserts a time-stamped entry into the weight_logs table for history tracking. 

2. Updates the weight_kg field in the user_profile_new table, ensuring the 

app always has the most recent weight 

FeedbackModal.tsx  

This modal centralizes user feedback on workout plans. 

• handleFavoriteSubmit(): Instead of being disabled, the button now checks if a 

favorite_workout_id exists in the user profile. If not, it shows an alert guiding 

the user to set a favorite. 

• handleInjurySubmit(): Cleans up the comma-separated input and passes it as an 

array of strings to the onSubmit handler 

Utility & Helper Files 

1. supabase.ts: Initializes and configures the Supabase client using project URL and anon 

key from environment variables. It sets up AsyncStorage for mobile session 

persistence and exports a ready-to-use supabase object for database and auth 

interactions. 
2. api.ts: A centralized wrapper for the FastAPI backend. Its post function standardizes 

POST requests—handling headers, body serialization, and error checking—keeping UI 

code clean. 

3. log-helpers.ts: Extracts business logic from UI. Includes pure functions like 

calculateStats (monthly workouts, weekly streak) and calculateMuscleFocus, 

which transform raw logs into structured data for charts and stats. 

4. notifications.ts: Manages push notification setup. 

registerForPushNotificationsAsync abstracts platform-specific details, including 

permissions and Android channel configuration, to ensure consistent behavior. 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    59 
 

Components and Dependencies 

Component Depends On 

Account.tsx ProfileContext.tsx, supabase.ts 

api.ts None (Independent) 

Auth.tsx supabase.ts 

ExploreScreen (index.tsx) FeedbackModal.tsx, WorkoutCard.tsx, api.ts, 

ProfileContext.tsx, supabase.ts 

FeedbackModal.tsx ProfileContext.tsx 

log-helpers.ts None (Independent) 

LogScreen (log.tsx) log-helpers.ts, ProfileContext.tsx, supabase.ts 

notifications.ts None (Independent) 

Profile.tsx (the screen) Account.tsx, supabase.ts 

ProfileContext.tsx supabase.ts 

ScheduleScreen 

(schedule.tsx) 

ProfileContext.tsx, supabase.ts, notifications.ts 

supabase.ts None (Independent) 

TimerScreen (timer.tsx) WeightLogModal.tsx, supabase.ts 

WeightLogModal.tsx supabase.ts 

WorkoutCard.tsx None (Independent) 

WorkoutDetailScreen.tsx None (Independent) 

Table 4.3.2: Table of Components and Dependencies 

This table shows the dependency among the components in the react native frontend app. 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    60 
 

4.4 Supabase table design and Data schema 

 

Figure 4.4: ERD diagram for Supabase tables 

This Entity-Relationship Diagram (ERD) illustrates the database table needed for storing user 

data to provide full services. The user_profile_new table, which acts as the main of the system. 

It stores basic user identification details like name and email and key fitness-related attributes 

such as height_cm, weight_kg, personal goals (e.g., “fat loss”), and current fitness_level. 

It directly integrates with the authentication system using supabase Auth, with its primary key 

id also serving as a foreign key to auth.users, ensuring both data integrity and security. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    61 
 

From this central profile table, several one-to-many relationships extend to track different 

aspects of user activity. The workout_schedules table manages planned fitness sessions,store 

notification_id, linking each schedule to the user through user_id. The workout_logs table 

records completed workouts, capturing metrics like completion_percentage and the 

completed_at timestamp. Weight over time is tracked via the weight_logs table, which stores 

historical weight data. Together, these relationships allow the application to build a start-to-

end workout service for each user’s engagement and progress. 

The diagram also includes one-to-one relationships for specialized data. Each user profile is 

associated with a single record in the user_google_tokens table, which securely manages API 

tokens from Google Calendar integration. Apart from that, the Workouts table, serving as the 

catalog of all available exercises, is linked one-to-one with the HIIT_duration table which 

store the HIIT workouts plan time data such as rest duration, workout duration and number of 

sets of workout to perform for different fitness level. This structure enhances workout data by 

attaching detailed timing information only to HIIT workouts to handle HIIT workout due to 

their high intensity and rest interval flow. 

To solve the many-to-many relationship between workouts and logs , the workout_logs table 

use a workout_ids array field for later retrieval from the workout table. This allows a single 

workout log to point to multiple exercises from the Workouts table, making it easier to record 

sessions that include many workouts. This is also useful for creating the muscle focus chart 

for the log page in the frontend. This method keeps the database structure simpler while still 

capturing the variety of real workout routines. 

Below is the SQL code for creating table and an explanation of the column data purpose. 

user_profile_new 

create table public.user_profile_new ( 

  id uuid not null, 

  created_at timestamp with time zone not null default now(), 

  updated_at timestamp with time zone not null default now(), 

  name text not null, 

  email text not null, 

  height_cm numeric not null, 

  weight_kg numeric not null, 

  goal text not null default 'fat loss'::text, 

  fitness_level text not null default 'beginner'::text, 

  injury_notes text null, 

  favorite_workout_id text null, 

  equipment text null, 

  workouts_per_week bigint null default '3'::bigint, 

  preferred_workout_time text null default 'any'::text, 

  difficulty_feedback_triggered_at timestamp with time zone null, 

  constraint user_profile_new_pkey primary key (id), 

  constraint user_profile_new_email_key unique (email), 

  constraint user_profile_new_id_fkey foreign KEY (id) references auth.users (id) on delete 

CASCADE, 

  constraint fitness_level_check check ( 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    62 
 

    ( 

      fitness_level = any ( 

        array[ 

          'beginner'::text, 

          'intermediate'::text, 

          'expert'::text 

        ] 

      ) 

    ) 

  ), 

  constraint user_profile_new_workouts_per_week_check check ((workouts_per_week >= 

0)) 

) TABLESPACE pg_default; 

 

For the user_profile_new table, the id (UUID): The Primary Key that uniquely identifies each 

user profile. At the same time, it's also a Foreign Key referencing the id in auth.users,  

establishing a direct one-to-one connection between the profile data and the corresponding 

authentication record. The name, email, goal, fitness_level, injury_notes, equipment, 

favorite_workout_id are attributes that are used as user profile data for workout 

recommendation. The goal will be mapped to the workouts category in the frontend. The 

injury_notes and equipment are optional for physical limitations or available workout gear. The 

height_cm and weight_kg is for weight tracking and BMI calculation. The workouts_per_week 

store the user's target number of weekly workouts, with a default of 3 and 

preferred_workout_time for the time zone for schedule.  

 

The difficulty_feedback_triggered_at is an attribute that store the latest feedback difficult 

timestamp to prevent duplication, lowering fitness level before the user starts a new workout.  

For the RLS, the authenticated users can view and write their record. 

 

 

workout_schedules 

 

create table public.workout_schedules ( 

  id uuid not null default gen_random_uuid (), 

  user_id uuid not null, 

  start_time timestamp with time zone not null, 

  end_time timestamp with time zone not null, 

  created_at timestamp with time zone not null default now(), 

  notification_id text null, 

  constraint workout_schedules_pkey primary key (id), 

  constraint workout_schedules_user_id_fkey foreign KEY (user_id) references auth.users 

(id) on delete CASCADE 

) TABLESPACE pg_default; 

  

For the workout_schedules, user_id (UUID) column, which is a Foreign Key that links the 

record back to the user who created it. The start_time and end_time are the schedule time zone 

and notification_id is to store the schedule local notification in the frontend device. For the 

RLS, the authenticated users can view, delete, and write their record. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    63 
 

 

 

 

workout_logs 

create table public.workout_logs ( 

  id uuid not null default gen_random_uuid (), 

  user_id uuid not null, 

  completion_percentage real not null, 

  completed_at timestamp with time zone not null default now(), 

  workout_ids text[] not null, 

  constraint workout_logs_pkey primary key (id), 

  constraint workout_logs_user_id_fkey foreign KEY (user_id) references auth.users (id) 

on delete CASCADE, 

  constraint workout_logs_completion_percentage_check check ( 

    ( 

      (completion_percentage >= (0)::double precision) 

      and (completion_percentage <= (100)::double precision) 

    ) 

  ) 

) TABLESPACE pg_default;  

 

For the workout_logs, similarly user_id (UUID) column is for retrieve how created and 

authentication. The completion_percentage is record the completion percentage of the 

workout progress from 0-100 and a completed_at is very important as checking and proof for 

the is that user has completed the workout during the scheduled time in the schedule page in 

the app. The workout_ids (an array of TEXT) is to store workout ids that the user takes 

during the workout session. 

 

For the RLS, the authenticated users can view and write their record. 

 

 

Workouts 

create table public."Workouts" ( 

  name text not null, 

  force text null, 

  level text null, 

  mechanic text null, 

  equipment text null, 

  primarymuscles jsonb null, 

  secondarymuscles jsonb null, 

  instructions text null, 

  category text null, 

  images text null, 

  id text not null, 

  musclesaffected text null, 

  goal text not null, 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    64 
 

  constraint Workouts_pkey primary key (id), 

  constraint Workouts_id_key unique (id) 

) TABLESPACE pg_default;  

 

For Workouts table, it store name, level, equipment, instructions, goal, image, category, 

primary and secondary muscles to display to the user for more detail information. 

For the RLS, the authenticated users can view all the record. 

 

 

HIIT_duration 

create table public."HIIT_duration" ( 

  data_id uuid not null default gen_random_uuid (), 

  created_at timestamp with time zone not null default now(), 

  id text not null, 

  work_duration bigint null, 

  rest_duration bigint null default '120'::bigint, 

  sets jsonb null default '{"expert": 7, "beginner": 3, "intermediate": 5}'::jsonb, 

  instructions text null, 

  constraint HIIT_duration_pkey primary key (data_id), 

  constraint HIIT_duration_id_key unique (id), 

  constraint HIIT_duration_id_fkey foreign KEY (id) references "Workouts" (id) on delete 

CASCADE 

) TABLESPACE pg_default;  

For HIIT_duration table, it is to store specific timing details (work_duration , rest_duration , 

sets) that are only relevant for HIIT workouts, avoiding having many null for others workout 

category in Workouts table. This is used for the create a workout plan for timer components 

in app. Both work_duration and rest_duration are stored as unit of second. A FOREIGN KEY 

constraint points to Workouts(id), enforcing a strict one-to-one relationship. This ensures that 

each HIIT entry corresponds to exactly one workout, and each workout can have at most one 

associated set of HIIT details that match with Wrokouts table. 

 

For the RLS, the authenticated users can view all record. 

 

 

user_google_tokens 

create table public.user_google_tokens ( 

  id uuid not null, 

  created_at timestamp with time zone not null default now(), 

  updated_at timestamp with time zone not null default now(), 

  access_token text not null, 

  refresh_token text null, 

  expires_at timestamp with time zone not null, 

  constraint user_google_tokens_pkey primary key (id), 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    65 
 

  constraint user_google_tokens_id_fkey foreign KEY (id) references auth.users (id) on 

delete CASCADE 

) TABLESPACE pg_default;  

 

For user_google_tokens table, id field (UUID) serves as the primary key while also acting as 

a foreign key to auth.users(id), creating a one-to-one connection between each user and their 

stored tokens. The table holds two key credentials, access_token and refresh_token, which 

are used to interact with the Google API, along with an expires_at timestamp that specifies 

when the access_token will expire and require renewal. To protect sensitive data, the foreign 

key on id is defined with ON DELETE CASCADE, ensuring that a user’s tokens are 

automatically removed if their account is deleted. 

 

For the RLS, the authenticated users can view, delete and write their record. 

 

 

 

weight_logs 

create table public.weight_logs ( 

  id uuid not null default gen_random_uuid (), 

  user_id uuid not null, 

  weight_kg real not null, 

  created_at timestamp with time zone not null default now(), 

  constraint weight_logs_pkey primary key (id), 

  constraint weight_logs_user_id_fkey foreign KEY (user_id) references auth.users (id) on 

delete CASCADE, 

  constraint weight_logs_weight_kg_check check ((weight_kg >= (0)::double precision))  

) TABLESPACE pg_default;  

For the weight_logs, it store the weight record in kg of the user with the created_at timestamp 

for tracking the weight changes using the app. The constraint that the weight should be 

positive is checked to prevent invalid data.  

 

For the RLS, the authenticated users can view and write their record 

 

 

 

 

 

4.5 Data Flow diagram 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    66 
 

 
Figure 4.5 data flow diagram 

Data Flow for User Management (Process 1.0) 

The user management process starts when the user provides authentication credentials and 

profile updates, which is to 1.0 Manage User & Profile process. In this process, to verify the 

credentials, the process sends an Auth Request to the external Supabase Auth entity. After 

verification, the system produces a Session Info output, such as an authentication token, 

which is returned to the user to grant access to the application. After that System interacts 

with the D1 User Profiles data store, which is a Supabase database, involving both read and 

write operations to ensure accurate profile management for user update and profile 

management. 

Data Flow for Recommendations (Process 2.0) 

The recommendation engine is initiated when the user submits either a Recommendation 

Request or Feedback Data to the 2.0 Generate Workout Recommendations process. This 

process packs information from multiple sources, User Preferences are retrieved from D1 

User Profiles as recommendation input, Workout Details are obtained from the D2 Workouts 

Dataset, and Past Workout Performance is read from the D3 Workout Logs for checking 

failure for difficulty adjustment. In cases where recommendations lead to changes in the 

user’s profile, an Updated Preferences data flow is written back into D1 User Profiles. The 

final output is a structured list of Recommended Workouts, which flows back to the user for 

display. 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    67 
 

Data Flow for Scheduling (Process 3.0) 

The scheduling process is triggered when the user submits a Schedule Confirmation or 

Cancellation Request to the 3.0 Manage Workout Schedule process. This interaction prompts 

a Calendar Data Request to the Google Calendar API, which responds with the user’s 

Availability data. At the same time, the process references Scheduling Preferences from D1 

User Profiles and manages Workout Schedule Entries through read, write, and delete 

operations in the D4 Workout Schedules data store. As outputs, the user receives Workout 

Suggestions, a Confirmed Schedule, and Workout Reminders in the form of push 

notifications. 

Data Flow for Progress Logging (Process 4.0) 

The progress logging process begins when Completed Workout Data from the user’s session 

flows into the 4.0 Log & Track Progress process. This information is transformed into a 

structured log entry and written into the D3 Workout Logs data store. To generate meaningful 

insights, the process performs additional read operations which is retrieving Historical Logs 

from D3, Workout Details from D2, and User Profile Data from D1. These datasets are 

combined and analyzed to create a comprehensive Progress Data output, which is delivered 

back to the user in the form of charts and statistics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5  System Implementation (For Development-Based Project)   

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    68 
 

5.1 Software Setup 

 

1. Development Environment 

This section covers the foundational tools required to run and develop your project. 

• Runtime Environment: Node.js  

• Programming language frontend: JavaScript and Typescript 

• Package Manager: npm  for managing project dependencies. 

• Mobile Development Tool: Expo, and using the Expo Go app for testing. 

• Python Version: Python 3.12.10 for the backend API. 

• Code Editor: Visual Studio Code (or a similar modern editor) 

2. Frontend (Client-Side) Setup  

This details the technologies and libraries used to build your mobile application. 

• Core Framework: React Native with Expo was used to build the cross-platform 

mobile application. 

• Key Libraries & Packages: 

o Navigation: Expo Router for file-based routing and navigation between 

screens. 

o UI Components: React Native Paper. 

o Backend Communication: The Supabase Client Library (@supabase/supabase-

js) is used for all interactions with the Supabase database and authentication 

services. 

o Notifications: Expo Notifications for local push notifications for workout 

reminders. 

o Data Visualization: react-native-chart-kit and react-native-calendars for 

displaying user progress charts and the workout calendar on the log screen. 

o External Authentication: expo-auth-session is used to handle the OAuth 2.0 

flow for connecting with Google Calendar. 

3. Backend (Server-Side) Setup     

This section lists the components that make up your recommendation API. 

• Core Framework: Python with the FastAPI framework for quick and debug-friendly. 

• Key Libraries & Packages: 

o Data Validation: Pydantic for data validation for HTTP requests. 

o Recommendation Engine: scikit-learn, pandas, and NumPy for computing 

cosine similarity for returning top 5 workouts similar to user needs. 

o Model Persistence: Joblib and for vectorizer for encoder to create model 

artifacts into the application. 

o Sparse Matrix Handling: SciPy for efficiently load and handle the sparse 

matrix (final_matrix.npz). 

4. Database & External Services    



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    69 
 

This covers the third-party platforms your application relies on to function. 

• Database & Authentication: Supabase (using a PostgreSQL database) serves as the 

primary backend-as-a-service platform. 

• Calendar Integration: The Google Calendar API is used to fetch a user's calendar 

events, allowing the app to suggest free time slots for workouts. 

 

5.2 Setting and Configuration 

 

 

5.2.1 Machine learning model implementation 

 

Before starting development the App, machine learning model part is built in a Jupyter 

notebook. 

 

5.2.1.1 Dataset Collection  

Before starting to develop the workout recommendation system, 4 datasets were collected. 

Below shows the datasets and their column: 

There are 4 datasets is used: 

 

1) User Exercise Dataset (age, gender, weight, height, BPM stats, session duration, 

calories burned, workout type, fat percentage, water intake, workout frequency, 

experience level, BMI). [27] 

2) Workout Dataset (name, force, level, mechanic, equipment, primary/secondary 

muscles, instructions, category, images, ID). [28] 

 

3) Cardio Dataset (name, force, level, mechanic, equipment, primary/secondary muscles, 

instructions, category, images, ID). 

 

4) HIIT Dataset (name, force, level, mechanic, equipment, primary/secondary muscles, 

instructions, category, images, ID). 

 

Additionally, two datasets generated by ChatGPT, namely Cardio and HIIT workouts, are 

combined with the Workout dataset to address the skewness in the workout category column. 

In future, more detailed workout information will be manually gathered from a fitness website 

to enhance the ChatGPT-generated dataset for improved robustness and accuracy. 

 

 

5.2.1.2 Pre-processing and Data Cleaning 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    70 
 

In this process, the datasets are cleaned for better performance in the later machine learning 

process. The null value should be filled or removed. 

The following are the steps of pre-process and data cleaning process: 

i. User exercise and workout dataset CSV files are imported into Jupyter notebook. 

ii. Null values in both datasets are checked and the column with missing value are 

identified using the function isnull().sum(), which are force, mechanic, 

secondaryMuscles, and instructions columns in the workout dataset. 

iii. The workout tuples with null are removed in the instructions column. The workouts 

without instructions are meaningless for the user. 

iv. The missing values in force and mehanic columns are handled with their corresponding 

mode value. 

v. Since a workout may not have a secondary muscle and only involve primary muscle, a 

muscleAffected column is created with following steps: 

a. The missing values in the secondaryMuscles columns are filled with “Primary 

Muscle Only”. 

b.  Since secondaryMuscle are stored as multiple of muscles using delimiter 

comma, the column data are converted into list and intra-row duplicates (e.g., 

"shoulder, shoulder, lower back") are removed to prevent distraction in the later 

cosine similarity process. If “Primary Muscle Only” is found, an empty list is 

returned.  

c. The primaryMuscles is duplicated to increase weight and are combined with 

secondaryMuscles column to create a new column called muscleAffected.  

d. The muscleAffected column is converted from list to string with a delimiter 

space for later cosine similarity process. For example, duplication of primary 

muscle, hamstrings combined with secondary muscle, calves to get "hamstrings 

hamstrings calves" for muscleAffected column 

 

 

 

 

 

 

 

 

 

5.2.1.3 Specific workout recommendation with user’s input 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    71 
 

The planning to predict the user's suitable workout type in FYP1 is removed due to the low 

quality of data to predict the correct workout type. The reason will be discussed in the project 

challenges section.  It switched to a direct Workout goal and workout type direct mapping. 

 

 

In this process, the user input, such as goal, level of fitness, and equipment will be obtained. 

For the initial setup of the app, the system will use the rule-based workout type 

recommendation to specific fitness goals. Workout goal and workout type will be direct 

mapping. The workout type will also be included as user input for the specific workout 

recommendation.  

The following are the steps of the specific workout recommendation with user’s input process: 

 

i. In Figure 5.2.1.3.1, the workout category or type is highly skewed as strength 

workout is the majority, followed by stretching. Only 14 cardio workout type and 

HIIT workout is not available. Figure 5.2.1.3.2 and 5.2.1.3.3 shows bar chart for 

the dataset category distribution. A balanced workout dataset is created. 

ii. The 40 strength and 40 stretching workout tuples are randomly sampled and 

combined with the 40 cardio and 40 HIIT workouts generated by ChatGPT to 

create a new dataframe called “four_workout_merged_df”. 

iii. The category names are refined to lowercase, and the “stretching” category is 

renamed to “yoga” to keep naming consistent with the workout type in the user 

exercise dataset. 

iv. The workout categories are mapped to specific fitness goals. HIIT maps to fat 

loss, isolation strength to muscle gain, cardio to endurance, yoga to flexibility, and 

compound strength to general fitness. These mappings are based on the typical 

benefits of each workout category to create goal column. 

v. The rare equipments, which is below 5 in the dataset are grouped as others to 

reduce overfitting and better performance. 

vi. Meaningless column such as id, image, primaryMuscles and secondaryMuscles 

are removed. 

vii. The one hot encoding of pandas is applied to categorical column such as force, 

level, mechanic, equipment, category, goal to converting each unique category 

into a separate binary column. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    72 
 

viii. The preprocessing is applied on the instructions and muscleAffected columns with 

following steps and refer Table 5.2.1.3.4 for text preprocessing sample: 

a. All characters are converted to lowercase to prevent duplication of 

semantically identical tokens with different casing. 

b. The punctuation are removed to reduce noise. 

c. Texts are tokenized using NLTK's word tokenizer to enable granular 

processing 

d. Stopwords are removed to retain informative words 

e. Lemmatization is applied to reduce words into their base form to prevent 

them from being identified as different features.  

f. The tokens of words are joined with spacing to create a string. 

ix. The instructions and muscleAffected columns are combined to create a new 

column called ‘combined_text’ 

x. The name of workouts with each index are recorded into a workout_names 

variable for reference. 

xi. Term Frequency–Inverse Document Frequency (TF-IDF) vectorization was 

applied to the ‘combined_text’ column for converting textual data to numerical 

data which suitable for machine learning model.  Each combined text is convert 

into vector that reflects the importance of each term relative to the entire corpus. 

This help to capture meaningful information for model. 

xii. The encoded categorical binary columns and the vectorized text column are 

combined to create a SciPy sparse matrix called “final matrix”. 

xiii. User input of goal, equipment, fitness level and workout type are collected. 

xiv. The workouts that met the requirement are filtered to create a dataframe with 

suitable workouts called “user_input_filtered_df” 

xv. The indices of the filtered workouts is mapped with the “final matrix” to get 

filtered workouts with the encoded and vectorized data. 

xvi. If the workouts that meet the requirements are available, the first workout is 

selected to be suggested for initial stage. 

xvii. Cosine similarity is applied to the first selected workout to compare with the rest 

of the filtered workouts to find similar workout. 

xviii. The indices of the top 5 workouts that are similar to the first selected workout are 

recorded and mapped with the name. The first selected workout is included in the 

top 5. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    73 
 

xix. The top 5 workout names are printed which are shown in Figure 5.2.1.3.5 

 

Figure 5.2.1.3.1 Value counts of the category in the original and balanced datasets. 

 

Figure 5.2.1.3.2Bar chart for original workout category distribution. 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    74 
 

 

Figure 5.2.1.3.3 Bar chart for balanced workout category distribution. 

In Figure 5.2.1.3.1, the value count of the category column for the original workout dataset is 

shown. The strength workout consists of 577 and stretching with 123. There is only 14 cardio 

and no HIIT workouts. In Figure 5.2.1.3.2, the original data were skewed, with strength and 

stretching workouts dominating, while cardio and HIIT were underrepresented. ChatGPT 

generated dataset is included to balance the distribution to get a fair distribution for the later 

process. In Figure 5.2.1.3.3, a balanced dataset is formed in which each category consists of 40 

workouts. 

 

Field Before After 

Instructions "Start by having a dumbbell 

in each hand with y..." 

"start dumbbell hand arm fully extended 

side us..." 

muscleAffected "Shoulders Shoulders 

Triceps" 

"shoulder shoulder triceps" 

Combined Text - "start dumbbell hand arm fully extended 

side us... shoulder shoulder triceps" 
Table 5.2.1.3.4 Example of Text Preprocessing Example 

Table 5.2.1.3.4 shows the before and after of textual pre-processing. In Both instruction and 

muscleAffected, the text is lowercased and stopwords such as “by” and “a” are removed. The 

punctuations are removed to reduce noise, and texts are undergo lemmatization. They are both 

combined to form a combined text column. 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    75 
 

Result 

 

Figure 5.2.1.3.5 Top 5 workout recommendations with user input for fat loss 

In Figure 5.2.1.3.5, top 5 workouts are recommended to user. The user input example is as 

below: 

User input:  

• level: intermediate 

• goal: fat loss 

• equipment: body only 

• workout type: HIIT 

For level, goal, and equipment are obtained from the user input and the workout type is from 

the initial rule-based logic. The displayed score serves as an indicator of how similar the 

workout to the chosen recommended workout. This score is only show for checking and not to 

the user. The closer the score to 1, the more similar to the chosen recommended workout and 

vice versa. A score of 1 indicates an exact match in feature vectors between the chosen 

recommended workout (represented as user_vector = filtered_matrix[0]) and the rest of filtered 

workouts. In Figure 5.2.1.3.5, the "basic burpees HIIT," "basic variation 26 HIIT," and "basic 

variation 6 HIIT" workouts all receive a score of 1 because "basic burpees HIIT" is the chosen 

recommended workout (filtered_matrix[0]). The other two workouts share identical features 

due to issues with the ChatGPT-generated dataset, which includes different names for the same 

features, resulting in the same score. This can be addressed by manually creating a more 

reliable dataset in the future by sourcing workout details from trusted websites. The system 

will recommend the top five workouts with the highest scores to help the user achieve their 

goal. 

 

Figure 5.2.1.3.6Top 5 workout recommendations with user input for muscle gain 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    76 
 

In Figure 5.2.1.3.6, top 5 workouts are recommended to user for muscle gain. The user input 

example is as below: 

User input:  

• level: beginner 

• goal: muscle gain 

• workout type: strength 

The user can optionally input equipment if the user does not know the specific equipment. All 

type of equipment will be suggested to the user. This provides dynamic to the user to not be 

forced to enter all types of input. Workout of Close-Grip Standing Barbell Curl is the chosen 

workout recommended since it has a score of 1. The similar workouts will be suggested for 

users with high similarity score. 

5.2.1.4 Feedback workout recommendation system 

In this process, feedback from the user is handled to adjust workout plan recommendations to 

align with the user’s condition. The feedback system is divided into four categories: injury, 

difficulty, boring, and time. User workout preferences are also considered to suggest similar 

alternatives. 

5.2.1.5 Boring Feedback 

When users give feedback on being bored with their current workout, the system use uses a 

content-based filtering approach powered by cosine similarity with score threshold to 

recommend workouts. 

The following are the steps of handling the boring feedback process: 

i. Boring variable is recorded from user feedback and passed to the 

handle_bored_feedback() function. 

ii. When boring variable is true, the function is triggered. 

iii. The cosine similarity scores of the current workout and filtered workouts are evaluated. 

iv. Workouts with a similarity score above the 0.6 threshold are added to the pool. The 0.6 

threshold is chosen to ensure the workouts are reasonably similar, avoiding both 

unrelated and overly strict matches. 

v. When no workouts match the threshold,  a fallback message is returned to inform the 

user. 

vi. The pool is randomly shuffled and 5 workouts are selected to recommend the user to 

avoid repetitiveness. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    77 
 

 

Figure 5.2.1.5.1, Boring feedback results for 5 workouts are recommended to user for muscle gain. 

In Figure 5.2.1.5.1 , top 5 workouts are recommended to user for muscle gain. The user input 

example is as below: 

User input:  

• level: beginner 

• goal: muscle gain 

• workout type: strength 

The 5 workouts that are more than 0.6 similarity threshold are suggested. The randomization 

allows users to have more diversity in workout plan with similar benefits to user to achieve 

goal. 

5.2.1.6 Time Feedback 

When users give feedback on they are busy and no time for workouts, the system will set the 

workout category to HIIT which is time-efficient workouts. 

The following are the steps of handling the busy feedback process: 

i. User input will be saved as backup user input to store the original input. 

ii. Busy variable is recorded from user feedback and pass to 

adjust_user_input_for_busy_feedback() function. 

iii. The category entered by user for user input will be modified into hiit. 

iv. The modified user input will be sent to filter the workout for the busy case. 

v. The filtered workout will go through the normal process to get the recommended 

workouts. 

This feature will be combined with the calendar API to give better output. The system will 

fetch calendar events to check the user’s schedule to identify how busy the day. When the 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    78 
 

day is packed, the system will ask for user to switch to HIIT workout and reallocate the 

workout time.  

 

5.2.1.6.1, Time feedback results for 5 workouts are recommended 

In Figure 5.2.1.6.1, top 5 workouts are recommended to user for muscle gain. The user input 

example is as below: 

User input:  

• level: beginner 

• goal: muscle gain 

• workout type: strength 

Adjusted User input:  

• level: beginner 

• workout type: HIIT 

 

The user input is altered by changing the workout type into HIIT. The original workout input 

will be store as backup user input and will be reused when during not busy. The adjusted user 

input will be go through normal workflow to get recommended workout plan. 

 

5.2.1.7 Injury Feedback 

In this process, system will handle the user injury body parts feedback to recommend safe 

workouts that do not include those corresponding muscle parts. The system will map the 

common body part term with the corresponding muscle parts and exclude those workouts that 

include those muscles.  

The following are the steps of handling the injury feedback process: 

i. The muscles are collected from the cleaned muscleAffected column that was 

previously done and recorded by using set() to get unique muscles. 

ii. A dictionary of common body parts terms to muscles is defined and it is shown in 

Table 5.2.1.7.1 for reference. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    79 
 

iii. Serious injury case is handled by responding an advice message to rest instead of 

workouts. 

iv. The common body parts entered by users will be mapping to their corresponding 

muscles. 

v. The workouts that target those muscles will be filtered out by using disjoint(). 

vi. The safe workouts will remain and stored in a dataframe, then pass to undergo user 

input filter and cosine similarity as stated in Section 4.4. 

 

 

Injury Common Body Parts Muscles 

shoulder shoulder, trap, deltoid 

neck neck, trap 

arm biceps, triceps, forearm 

chest chest, pectorals 

back back, lat, trap, middle 

lower back lower, back 

core abdominal 

hip hip, glute, flexor 

leg leg, quadriceps, hamstring, calf 

knee quadriceps, hamstring, calf 

foot foot 

inner thigh adductor 

outer thigh abductor 

full body (empty – all muscles to be avoided) 

Table 5.2.1.7.1 Injury common body parts term and muscles mapping 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    80 
 

 

Figure 5.2.1.7.2 The filtered dataframe without injury muscle part on knee 

The user feedback injury part as knee. Knee is mapping to muscle of hamstring, quadriceps, 

and calf. In Figure 5.2.1.7.2, a snapshot of 5 data tuple from the injury filtered dataframe is 

shown, which excludes hamstring, quadriceps, and calf. The filtered dataframe will be used to 

The adjusted user input will be go through the section normal workflow to get a recommended 

workout plan. 

 

 

5.2.1.8 Difficulty Feedback 

In this process, user feedback on difficult workouts will be handled. The difficulty level will  

be downgraded to provide easier workouts. When the user consistently fails in completing the 

workout, the difficulty will also decrease. 

The following are the steps of handling the Difficulty feedback process: 

i. The “hard” difficult feedback is recorded and passed to the 

adjust_difficulty_level() function. 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    81 
 

ii. If the function triggered when user feedback as hard and 3 times in a row 

(fail_streak >= 3). 

iii. The current level of the user input is checked. 

iv. If the user is not already at the lowest level ("beginner"), the level will be shifted one 

level down. 

v. Fallback message of to inform already in the lowest message will be informed if the 

current level is “beginner”. 

 

Figure 5.2.1.8.1 Success message for lowering difficulty 

 

Figure 5.2.1.8.2 Fallback message for already easiest level 

In Figure 5.2.1.8.1, the initial user input is shown below: 

User input:  

• level: intermediate 

• goal: fat loss 

• equipment: body only 

• workout type: HIIT 

Then the difficulty is successfully lowered from intermediate to beginner.  

In Figure 5.2.1.8.2, the initial user input is shown below: 

User input:  

• level: beginner 

• goal: fat loss 

• equipment: body only 

• workout type: HIIT 

Since it is already in the easiest level, it remains and fallback message to notice user is 

displayed. Both user input will be go through the normal workflow to get a recommended 

workout plan. 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    82 
 

5.2.1.9 User preference workout recommendation 

In this process, the index of the favorite workout marked by the user will be used to process to 

get similar workouts within the user input requirement context. 

i. The user's marked favorite workout index is recorded. 

ii. The cosine similarity for all workouts to all workouts is calculated and saved as 

all_vs_all_cos_similarity_matrix . 

iii. The favorite workout index related scores are selected out from 

all_vs_all_cos_similarity_matrix and stored as 

fav_workout_similarity. 

iv. The filtered workouts from the previous normal workflow is used and check the favorite 

workout exists in the filtered workouts to ensure the favorite workouts can help the user 

to achieve goal. If not, fallback message that the favorite workout is not suitable for the 

user to achieve the current goal. 

v. The filtered workouts score will be checked and arranged top 5 similar workouts, 

including the favorite workout itself. 

In the all_vs_all_cos_similarity_matrix , all cosine similarity scores between 

workouts are stored. Since there are 160 workouts (40 for each workout type), the matrix is 

sized 160×160, where each workout is compared against every other workout, including 

itself. 

The fav_workout_similarity contains the similarity scores for a selected workout 

(favorite workout) against all 160 workouts. This includes the score of the workout compared 

with itself. 

Next, filtered_similarities = [(i, fav_workout_similarity[i]) 

for i in filtered_indices] is used to get the similarity scores between the 

favorite workout and only the workouts that match the user's current input filters. It checks if 

those filtered workouts exist in the 160 similarity scores linked to the favorite 

workout.Finally, the filtered similarities are sorted, and the top 5 workouts with the highest 

similarity scores are selected. The favorite workout itself is included in the top 5 since its 

self-similarity score is 1. 

 

Figure 5.2.1.9.1 top 5 recommended workouts with favorite workout 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    83 
 

 

Figure 5.2.1.9.1 shows the top 5 recommended workout by using the favorite workout. The 

favorite workout is basic variation 36 HIIT (index 155). The system gets two scores of 1 due 

to the ChatGPT-generated datasets problem which is the same reason in normal workflow, 

Figure 5.2.1.9.1 discussion. 

 

Figure 5.2.1.9.2 Favorite workout not suitable message 

 

Figure 5.2.1.9.2 shows the fallback message when the Favorite workout not suitable to the 

current user input requirement. 

 

5.2.2 Service configuration 

 

Backend configuration 

 

Once the machine learning model part is done, the model artifact is created to build for API 

usage instead of re-computing the heavy operation. 

 

The below artifact is created: 

 

• a Scikit-learn TF-IDF vectorizer (vectorizer.joblib) 

• SciPy sparse matrix of workout features (final_matrix.npz 

• CSV files for mapping workout IDs to matrix indices (workout_index_mapping.csv) 

• Workout dataset for referring if needed (four_workout_merged_df.csv) 

• List of filter columns needed for recommendations for documentation purposes 

(filter_columns.json) 

• Reference of efficient pre-filtering for the user input filter before cosine similarity step  

(cat_df_encoded) 

 

The backend API in FastAPI will load the model artifact for use. FastAPI use uvicorn to host 

the API app using running “uvicorn app.main:app --host 0.0.0.0 --port 8000 –reload”. This 

command allows the FastAPI backend to host the app in port 8000 and automatic update if 
changes in the code, ease for development. In the future, the FastAPI Backend can be hosted 
in the Replit platform for a quick, easy, and lightweight backend service for production. The 

current setup is enough for the demo. 
 
 
 
 

 
 
 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    84 
 

Supabase configuration 

 
To use the Supabase services, a project needs to be created in the Supabase account . In this 

project, FYP_Personalized_Workout_Planner project is created. The Supabase anon key and 

the Supabase project URL are saved for the frontend app env file for safety access. Create the 

tables and RLS based on the previous chapter. 

 

 

Google cloud console configuration 

 

To integrate Google Calendar, a project needs to be created in Google cloud console, called 

MyWorkoutPlannerApp. Next, Google Calendar API is searched and enabled. Enabling this 

API authorizes the project to access the Calendar endpoints and accept requests from the 

application. Before credentials can be generated, the OAuth 2.0 consent screen must be 

configured. This interface is displayed to users when the application requests access to their 

Google data.  

 

The setting is shown below: 

1. The User Type is set to External to allow authorization from any Google account. 

2. The application name, user support email, and developer contact information is filled 

to show the frontend app name to mention this app want to have access and support 

email for users to contact to ask questions during production. 

3. Scope of access id defined. The Access privileges should be least privileges. The  two 

scope are: 

• https://www.googleapis.com/auth/calendar.events.readonly – allows the 

application to read events from the user’s primary calendar. The app is planned 

not to write the schedule to the calendar to block the user's calendar event to 

provide flexibility for their job event. The workout is expected to be lesser 

priority and flexible to fit their life 

• https://www.googleapis.com/auth/userinfo.profile – grants access to basic user 

profile information. 

 

4. Test Users of specific Google accounts were added to allow secure testing during 

development and to bypass the unverified app screen 

 

 

Different OAuth 2.0 Client IDs is needed for Web, Android, and iOS platforms to ensure 

secure, platform-specific authentication. Web client ID can be very useful for testing. For Web 

Client ID, “Web Application” type is selected, with an Authorized Redirect URI pointing to 

the localhost:8081 of the expo react native app. This URI handles redirect flows during 

development and in web builds. It a new web client ID can be create when the app is ready for 

production. For the mobile app Android and IOS, “Android” and “IOS” types are selected and 

enter a package name and SHA-1 certificate fingerprint for Android and Bundle ID for IOS 

when ready for production. These OAuth 2.0 Client IDs are saved and put in the env file of the 

frontend app to use them for better security instead of hardcoding. 

 

 

5.3 System Operation  

                    



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    85 
 

 5.3.1 User Authentication and profile setup . 
 
If the user does not have an account, new users are able to register by creating an account, 

while existing users can securely sign in using their email and password. Authentication is 

managed through Supabase Auth, which is responsible for verifying credentials, generating 

session tokens, and maintaining secure access control throughout the application. 

 

 

 
Figure 5.3.1.1 Create an account and sign-in page Figure 5.3.1.2 Pre-user profile interface before enter 

main screen 

 

In Figure 5.3.1.1, a sign-up and sign-in page is shown. User can enter email and password to 

sign for an existing user and sign up for new user. The password will be hide for security 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    86 
 

purpose. In this case, a new user is created with email, abu123@gmail.com and password, 

abu123. This is a testing email for demo. It is not a real google email so it will not able to use 

the Google Calendar feature. In figure 5.3.1.2, a pre user profile interface is shown for update 

necessary user information for workout recommendations before entering the main app screen. 

This can prevent no information for recommended. User can fill their name, height, weight, 

workout frequency per week and injury notes. User can also select options for goal, preferred 

workout time, and equipment. Once done, click save profile to sign in. In figure 5.3.1.3, Abu 

is successful create an account and enters the main screen with evidence having a navigation 

bar. The user can do the same way to update the profile to have latest information for workout 

recommendation. 

 

 
Figure 5.3.1.3 Successful create account for Abu 

 

 

 

5.3.2 Generating and Viewing Recommendations 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    87 
 

 
 
For workout recommendation, it will use the data stored in the profile, the system fetches 
and displays a tailored list of workouts on the workout screen. In this case, the existing 
account “Cornelius” is used. In Figure 5.3.2.1, the profile is store user data as fat loss for goal, 
intermediate for fitness level, any for equipment and null for injury notes. This data will be 
used for the workout recommendation. 
 

 
 

Figure 5.3.2.1 Profile data of Cornelius for 

recommendation 
Figure 5.3.2.2 Returned recommendation workouts 

list. 
In figure 5.3.2.2, a list of 5 workouts is returned when user navigate to the workout page. The 
workouts is shown in a workout card box with image, name, level, equipment, primary 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    88 
 

muscle. The image section is empty and shows a rectangle placeholder due to the ChatGPT-
generated dataset without images. In the future, the image can be added. The user can click 
the heart icon to mark the workouts as favorites for later feedback favorite. The heart icon 
will turn into red after update shown in figure 5.3.2.3. When the user clicks the “view 
instruction” button, the user will be navigated to the workout detail page, which shows 
additional workout categories, secondary muscles, and instructions. The image problem is 
similar to the previous situation. 
 

  
Figure 5.3.2.3 Mark as favorite  Figure 5.3.2.4 Workout detail 

 

 
 
 
 
 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    89 
 

5.3.3 Executing a Workout 
 
To start a workout session, the user can click the “Start Full Workout” button. User will be 
navigated to the timer screen. In figure 5.3.3.1, the a timer screen is display with a countdown 
for the workout duration, workout name, number of sets (1 set is equal to the whole 
recommendation list), current progress of steps, and sets and instructions. The sets are 
considered repeating the recommended workouts list. In the future, an image or a video can 
be shown instead of only instructions for a clearer guide. The user can click the pause button 
for pause and stop button to declare failure or cancel the workout session. If the user chooses 
to declare failure, it will ask the user to input the current weight and record the workout log. 
If the user chooses discard, no workout log will be recorded for a mis-click to start a workout 
case. These are shown in Figure 5.3.3.2. 
 

  
Figure 5.3.3.1 Timer screen  Figure 5.3.3.2 Stop timer  



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    90 
 

When the timer reaches the end, the user can click the “finish and save” button and it will be 
show a pop-up menu for the user to input their current weight. The user can choose to record 
or not to record. This is shown in Figure 5.3.3.3 and Figure 5.3.3.4. 
 
 

  
Figure 5.3.3.3 Success shown after complete  Figure 5.3.3.4 Record the weight  

 
 

5.3.4 Schedule workout session and log dashboard. 
 
When the user navigates to the schedule page, the system will check for google calendar 

connection. If not connected, the user can click the “Go to profile” button to navigate to the 
profile page to connect the Google Calendar shown In figure 5.3.4.1. It will nagivate to the 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    91 
 

Google consent page for choosing Google account and granting permission shown In figure 
5.3.4.2. 
 
 

 

 

Figure 5.3.4.1 schedule page without connection  Figure 5.3.4.2 Authentication and grant permission for 
Google account for the Google Calendar connection  

 

 
 
 
 
 
 
 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    92 
 

After the connection is successful, the button will turn green and display as “Calendar 
Connected” shown in figure 5.3.4.3. Now, when navigate to the schedule page, the schedule 
content is updated shown in figure 5.3.4.4. It can be categorized into 3 sections: Weekly plan, 
schedule suggestion, and history schedule. For the Weekly plan, the number of schedule limits 
is based on the workout per week data set in the profile page. Currently, it has no schedule 
yet. For the schedule suggestion part, the suggestion is given based on the user's free slot in 
the Google Calendar. It will return the nearest time zone of free slot based on the user’s 
preferred workout time set in the profile page. The user can click on the “confirm” button to 
select the schedule to put into the weekly plan. For the history schedule part, it shows the 
user's history schedule and completion status. If not workout logs is created in within the 
timestamp of schedule, it will be marked as missed, otherwise completed. 
 

 

 
Figure 5.3.4.3 Success connection to Google Calendar  Figure 5.3.4.4 schedule page without connection  

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    93 
 

When the user confirms the schedule, it will be moved into the weekly plan section and the 
suggestion section will fill the gap to show the next suggestion shown in figure 5.3.4.5.  
Meanwhile, the notification will be scheduled to notice user when the schedule time zone 
reached. If the schedule reach the workout per week limit, the schedule suggestion section 
will be close shown in figure 5.3.4.6. 
 
 

  
Figure 5.3.4.5 Confirm schedule from suggestion Figure 5.3.4.6 Schedule reach limit set by the user 

 
 
 
 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    94 
 

When the user navigate to the log page, the system will fetch the needed data to construct 
the dashboard. In Figure 5.3.4.7, the statistical data is shown such as number of workouts in 
this month, weekly streak, and average completion percentage of workouts and BMI. The 
weight changes are shown in a chart for the user to view the trend easily. In Figure 5.3.4.8, 
the primary muscle group focus distribution is shown in the bar chart to show which muscles 
users train the most. The completion rate of the workout chart against date is shown to view 
the trend of completion for consistency evaluation. In Figure 5.3.4.9, a workout calendar is 
shown with the dot indicator at the date that the user has a workout log to have overview of 
workout days. 
 

 

 
Figure 5.3.4.7 log screen part 1 Figure 5.3.4.8 log screen part 2 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    95 
 

 

 
Figure 5.3.4.9 log screen part 3 

 

 
 
 
 
 

 
 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    96 
 

 

5.4 Implementation Issues and Challenges 

 

For the challenges, the first is the incompleteness of the dataset of workout details. The dataset 

of workouts is highly skewed to strength and yoga. The cardio and HIIT workout dataset is 

generated by ChatGPT which causes low quality of the dataset and there are no images and 

videos. To overcome this in the future, the workout dataset can be obtained from the authorized 

fitness website manually, and get the image and video. If there is no images and videos, Image 

generation model can be used to generate an image or video of a workout with the instructions 

and a few sample images and videos. The generated image and video are then evaluated by an 

authorized expert. 

 

Apart from that, the decision of not to include the integration of health apps such as the 

Samsung app, causes the app to lack rich, contextual health metrics such as heart rate. The 

proposed app does not plan to ask the user to manually count the heart rate and input the system 

due to the concern of time-consuming manual input, causing user fatigue, and inaccuracy for 

the data. This will cause the loss of user, which breaks the main goal of the proposed app. The 

HIIT exercise is highly dependent on the heart rate as only reaching 85-95% of the peak heart 

rate (HRpeak) can be considered as High intensity, and it varies among different user body 

situations. In this case, the user might under intensity when doing a HIIT workout and reduce 

the effectiveness of the workouts. To solve this, the application should support the health app 

integration and smart device integration to record the user's heart rate while they are doing a 

HIIT workout. 

 

5.5 Concluding Remark 

 

In conclusion, the system implementation starts with creating a machine learning model for 

workout recommendation. After that, services needed, such as Supabase, FastAPI backend, 

and Google Cloud Console, are configured before proceeding to frontend development. The 

last one is the frontend react native development. The needed libraries are imported and the 

components. The components are connected and interact with each other to have a complete 

app. 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    97 
 

Chapter 6  :System Evaluation And Discussion 

 

6.1    System Testing and Performance Metrics 

 

In this section, a structured testing strategy was developed and executed. This ensure the 

reliability, functionality, and effectiveness of the personalized fitness application to achive the 

objective. Testing can be categorized into 3 types, which are response time, recommendation 

relevancy, and functional correctness. 

 

1. Response Time (Quantitative) 

 

These metric measures backend and frontend latency, measuring the time (in seconds) from 

when a request start to when a response is returned. It is a critical indicator of system efficiency 

and has a direct impact on the responsiveness of the app so that the user will not to keep waiting 

until fatigue. The user will quit the app if the waiting time is too long 

 

Target: For all update profile, schedule confirmation, recommendation, and feedback endpoints 

such as /recommend, /feedback/injury, the target response time was set at under 1s, and under 

2s for the log dashboard loaded, ensuring smooth and responsive interactions 

 

2. Recommendation Relevance (Qualitative) 

 

This metric assesses the appropriateness and logical quality of workout recommendations 

produced by the system. It evaluates whether the recommendation engine provides results that 

are contextually relevant and meet the user's personalized needs. 

 

Test scenarios were created to simulate specific contexts, such as submitting feedback for an 

injury, and the resulting recommendations were manually inspected. For example, 

recommendations for a user who reported a “knee” injury were checked to ensure that exercises 

that could hurt the knee would not be recommended.  

 

3. Functional Correctness (Binary) 

 

This metric of a binary Pass/Fail metric determines whether a feature or function operates 

exactly as expected, without producing errors or unintended behavior. It spans the full 

application workflow, from user interface interactions to database transactions. 

 

Functional correctness was tested through predefined test cases covering core user journeys, 

including registration, profile updates and feedback submission with the edge cases. Each test 

outcome was classified as “Pass” if the feature executed correctly, or “Fail” if  deviations or 

errors were observed.  

 

6.2 Testing Setup and Result 

 

 

6.2.1 Response Time test case. 

 

For the recommendation and all feedback flow, the latency test is < 1s. For the schedule 

suggestion and workout log dashboard load, it is also < 1s and <2s. This shown that the latency 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    98 
 

is very low and it will not causes user to keep waiting. However, to confirm the schedule time 

zone, the latency is > 1s. To solve it in the future, the process can be done in parallel to reduce 

the latency. Another thing is the current test is a test on a localhost and it do not represent the 

actual networking flow latency. When the app in moves to production, the tools like Postman 

can be used to check the latency when passing through the network. 

 

6.2.2 Recommendation Relevance Test Case 

 

The test case will go through each goal test case and each feedback test case. First, the profile 

data is set to a different goal with the same fitness level, which is beginner, and the equipment 

is any. The injury notes remain null. Fat loss should get HIIT, muscle gain get strength, 

endurance get cardio and flexibility get yoga as expected. 

 

Profile data 

• Goal: fat loss/ muscle gain /endurance/flexibility  

• fitness level: beginner 

• equipment: any 

• injury not: null 

 

For the fat loss goal case, the HIIT workout is returned as expected shown in the side-by-side 

figure 6.2.2.1 of recommendation workouts list and details. For the muscle gain case goal case, 

the strength workout is returned as expected, shown in the side-by-side figure 6.2.2.2 of 

recommendation workouts list and details. For the endurance goal case, the cardio workout is 

returned as expected shown in the side-by-side figure 6.2.2.3 of recommendation workouts list 

and details. For the flexibility goal case, the yoga workout is returned as expected, shown in 

the side-by-side figure 6.2.2.4 of the recommendation workouts list and details.  

 

 

  

Figure 6.2.2.1 Test fat loss return HIIT Figure 6.2.2.2 Test muscle gain return strength 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    99 
 

  
Figure 6.2.2.3 Test endurance return cardio Figure 6.2.2.4 Test flexibility return yoga 

 

 

Next is for testing the feedback system, the profile data will be set up for goal as fat loss, fitness 

level as intermediate, the equipment as any and the injury notes as null. For testing busy 

feedback, the goal is set to muscle gain. The expectation for boring feedback is returned 

different workouts, but still remains the profile data input request. For feedback busy, it expects 

to return a HIIT workout and set the workout per week to 1 in the profile. For feedback difficult, 

it is expected to lower one level of fitness level and return those workouts. For feedback injury, 

it expected to exclude workout that worsen the injured parts for example set the injury notes to 

knee and shoulder. For favorite feedback, it is expected to return workouts similar to the 

favorite workout while retaining the user profile data request needs. 

 

Profile data 

• Goal: fat loss/ muscle gain (for testing busy) 

• fitness level: intermediate 

• equipment: any 

• injury not: null / knee, shoulder ( for testing injury) 

 

 

In Figure 6.2.2.5 and Figure 6.2.2.6, the profile and the workout recommendation before the 

feedback logic is triggered. In Figure 6.2.2.7, different workouts are recommended, but retain 

user needs, which are HIIT, intermediate, and any equipment, as expected. In Figure 6.2.2.8, 

the workout recommendation is lowering 1 level from intermediate to beginner as expected. 

But the update is not reflected in the profile data to lower 1 level for this manual case which is 

not expected. This issue can be solved in the future by rechecking the update flow. In Figure 

6.2.2.9, the goal is set to muscle gain, and the workout per week is 3 before testing the feedback 

busy. In Figure 6.2.2.10, the workout recommendation turns into HIIT workouts and the 

workout per week turns into 1 as expected. In Figure 6.2.2.11, the knee and shoulder is submit 

for a feedback injury. In Figure 6.2.2.12, the adjusted workouts that were excluded the injury 

parts are returned. The primary and second muscle that affected by those workouts will not 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    100 
 

causes further injury to the mentioned injury based on the table of body part and muscle 

mapping in table 5.2.1.7.1. However, the climber HIIT exercise do will further worsen the knee 

as movement puts repetitive stress and pressure on the knee joint. The current logic is not robust 

as it only considers the primary and secondary muscles that will be trained by the workout 

without the joint affection. The climber exercise do not directly train the muscles of affected 

by the knee, such as the quadriceps, hamstrings, and calves, but it will affect as the joint. For 

Figure 6.2.2.13, the workout that similar to the favorite workout is return as expected which is  

basic variation of HIIT series workouts, including the favorite workout itself since user love it.  

These still meet the user profile data needs. However, if the user switches to another goal, such 

as muscle gain, it will prioritize to meet the user's needs instead of similarity to the favorite 

workouts, but still consider similarity with the favorite one shown in Figure 6.2.2.14. 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    101 
 

 

 
Figure 6.2.2.5 Profile before feedback test Figure 6.2.2.6 Workout before feedback test 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    102 
 

 

 

Figure 6.2.2.7 feedback boring with different workouts 
but retain user needs 

Figure 6.2.2.8 feedback difficult lowering 1 level 
from intermediate to beginner. 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    103 
 

  
Figure 6.2.2.9 Before feedback busy  Figure 6.2.2.10 After feedback busy  

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    104 
 

 

 

Figure 6.2.2.11 Filling injury with knee and 
shoulder  

Figure 6.2.2.12 After feedback injury  

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    105 
 

 

 

Figure 6.2.2.13 favorite feedback output  Figure 6.2.2.14 favorite feedback output when goal is 
not the same as the favorite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    106 
 

6.2.3 Functional Correctness  

 

For this section, edge cases are tested. The first test is input the weight with a negative value. 

The expected output is the action fails. In this case, the weight is still set to -1 despite setting 

constraints in the table. To solve this, the additional logic checking need to be handle in the 

frontend app. The test failed. 

 

The second is to test the 3 consecutive workouts < 50 % completion rate should trigger the 

difficult feedback. The expected output is similar to the feedback difficult. By using the same 

condition in the previous feedback difficult, the 3 consecutive workouts < 50 % completion 

rate is created. The fitness level is lower and then recommend the corresponding workouts as 

expected when reload shown in figure 6.2.3.1. It does not refresh immediately due to the 

useffect checking. This can be solve by switching to usefocuseffect., 

 

       



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    107 
 

 
Figure 6.2.2.15 lowering fitness level after 3 consecutive <50 % completion rate of workout logs 

   

6.3 Project Challenges 

 

The current challenges is the implementation relies on a direct mapping between injured body 

parts and their associated primary muscles. For example, a reported “knee” injury excludes 

workouts that target the quadriceps, hamstrings, and calves. This approach is effective for 

filtering out exercises that explicitly train the muscles surrounding an injured joint. However, 

it fails to consider exercises that, while not directly targeting those muscles, still place 

biomechanical stress on the joint itself. For instance, the climber HIIT exercise under the 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    108 
 

current logic would remain available to a user with a knee injury. But the movement inherently 

involves repetitive knee flexion and extension under load, which could worsen the injury. 

This exposes a fundamental gap in the muscle-centric filtering strategywhich does not account 

for the kinematic and biomechanical demands of an exercise. To address this limitation, the 

filtering model would need to be expanded to include data on joint movement, range of motion, 

and impact load for each exercise, thereby providing a more robust and injury-aware 

recommendation system. 

The second challenge is the abandoned workout type prediction model that build in FYP1. In 

the planning, personal and physiological data of the user is used to predict the user’s suitable 

workout type (Cardio, HIIT, Strength, or Yoga). The methodology involved data preprocessing, 

training a baseline Random Forest model, analyzing feature importance, and retraining the 

model with selected features. To ensure robustness, three additional models—Logistic 

Regression, K-Nearest Neighbors (KNN), and Gradient Boosting were also tested for 

comparison. The results show that all models performed poorly. The best-performing model, 

Logistic Regression, achieved an accuracy of only 0.2872, which is significantly below a 

practical threshold for reliable classification. The root cause is the lack of separability between 

the workout categories within the dataset. Input features such as average and  Calories Burned, 

considerable overlap across users labeled for different workout types is shown in Figure 6.2.3. 

This causes the model to hard to differentiate the workout type.  

 
Figure 6.2.3 Overlapping label for average heart rate beat per 

Minutes and calories burned for 4 workout types 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    109 
 

6.4    Objectives Evaluation 

 

This section evaluates the success of the project by comparing the final implemented system 

against the three primary objectives 

 

Objective 1: Reduce Early-Stage and Later-Stage Abandonment 

 

Evaluation: achieve 

 

The first objective was achieved by making a personalization application. Rather than relying 

on a generic workout plan, the system generates tailored workouts list from the very first 

interaction using user profile data such as their primary fitness goal, fitness level, and available 

equipment. These steps are minimal but effective in reducing the massive of data input needs 

before start-up for user friendly. This approach directly addresses early abandonment driven 

by dissatisfaction with generic plans and fatigue, while ongoing personalization mitigates later-

stage abondon. 

 

Objective 2: Handle User’s Life Uncertainty 

 

This objective was divided into two sub-categories: injury-related uncertainty and time-related 

uncertainty. 

 

Sub-objective 2a: Injury Uncertainty 

Evaluation: partially achieved 

 

The system includes an injury-aware recommendation feature, enabling users to report injuries 

via the feedback modal. The backend then filters workouts, excluding exercises that directly 

target the injured muscles. This prevents worsening injuries and can remains consistency. 

However, testing revealed a limitation, which is that the filtering is muscle-centric and does 

not account for exercises that stress joints without directly targeting the surrounding muscles. 

This may worsen the injury, and the user blind trust the app will think that there is not problem 

and make it worse. 

 

Sub-objective 2b: Time Uncertainty 

Evaluation: achieved 

 

Time flexibility was fully addressed through two mechanisms. First, the application integrates 

with Google Calendar, allowing the system to fetch user availability from calendar event and 

suggest optimal workout slots. Second, the feedback busy option, which generates an 

alternative plan centered on short, high-intensity interval training (HIIT) sessions for a time-

efficient workout. These features provide a robust solution for managing time uncertainty, 

ensuring that users can adapt their routines without losing momentum. 

 

Objective 3: Maintain Motivation and Promote Consistency 

 

Evaluation: Achieved 

 

Several features were implemented to sustain user engagement and motivation. A “Weekly 

Streak” is calculated and displayed on the progress screen to encourage consistency. Push 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    110 
 

notifications act as motivational reminders for scheduled workouts. For stay motivation, the 

instant manual difficult adjustment feedback system allows users to report when workouts feel 

too hard and prompts the system to immediately adjust workout plans. This can prevent user 

from losing motivation due to the difficulty of the workouts and failure. In addition, an 

automated mechanism detects repeated failures to complete workouts and proactively suggests 

easier alternatives. These allow addressing motivational challenges, reducing the risk of 

abandonment caused by difficulty mismatch. 

 

 

 

6.5    Concluding Remark   

 

In conclusion, the app is considered to achieve the expected output in the recommendation and 

feedback logic, except the injury feedback. It also performs well in scheduling the workout and 

log presentation. This can be helpful to keep the user consistent by reducing the friction of 

doing a workout by automatically scheduling and adapting to real-life different cases. 

 

 

Chapter 7: Conclusion and Recommendation 

 

7.1 Conclusion  

 

In conclusion, this project is aimed at solving the abandonment issue in the early and later 

stages, which commonly results from a lack of personalization, uncertainty in daily routines, 

and loss of motivation. The Personalized Workout Planner was proposed as a comprehensive 

solution to tackle the issue by fulfilling the need for customized fitness experiences that adapt 

to individual goals and conditions. A novel aspect of this project is the development of a 

dynamic, user-centric workout planner that provides a seamless experience in handling real-

life uncertainty. Personalized workouts are recommended with a feedback system based on 

boredom, injury, time constraints, and difficulty level. Safe workouts are recommended by 

excluding exercises that could worsen injuries. Due to the muscle centrix only problem, the 

feedback injury system needs to refine to consider joints for more robust and safe 

recommendation. Next, HIIT exercise alternatives for a busy schedule is provided to ensure 

time-efficient workouts. Automated scheduling is implemented by accessing with users' 

Google Calendars to plan the workout plan and improve the workout experience. Personalized, 

seamless and dynamic workouts that are provided can improve the user workout experience 

and reduce the abandonment rate. 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    111 
 

7.2 Recommendation 

 

The first recommendation is to integrate the system with health app platforms and smart 

wearable devices such as Samsung health. The current design lacks rich metrics such as heart 

rate. This allows access to real-time biometric data, enabling the ability to accurately check 

heart rate for workout intensity checking for meet HIIT standard. Real-time feedback can be 

included during HIIT sessions, ensuring users remain within their optimal training zone or need 

to have rest. This enhancement would effectively transform the system from a static workout 

planner into an interactive coach. Furthermore, integration would enable more precise tracking 

such as calories and fat percentage. 

 

The second is that exercises should be tagged with metadata for joint stress and biomechanical 

impact. For instance, exercises involving “high knee impact” could be automatically excluded 

for users reporting a knee injury. This refinement would allow the system to make more 

nuanced and safer recommendations, significantly reducing the risk of injury and strengthening 

user trust in the platform. The generative AI can be integrated to have a double evaluation for 

workout safety and provide chat-based responses for things to take care of or rehabilitation. 

 

The third is to improve user-friendliness and experience by providing short, looping 

instructional videos that demonstrate proper form. This is particularly important for beginners, 

who often require visual guidance to correctly perform complex movements. This make 

application would make learning safer, easier, and more engaging. Besides, the option to 

choose a free slot by user direct input instead of the nearest free slot in the schedule feature can 

let the user have more control. 

 

 

 

 

 

 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    112 
 

 

REFERENCES 

 

[1] D. Mogaveera, V. Mathur, and S. Waghela, “e-Health Monitoring System with Diet and 

Fitness Recommendation using Machine Learning,” in Proc. 6th Int. Conf. Inventive 

Comput. Technol. (ICICT), Jan. 2021, doi: 10.1109/ICICT50816.2021.9358605. 

 

[2] S. Iso-Ahola, “Conscious-nonconscious processing explains why some people exercise 

but most don’t,” J. Nat. Sci., vol. 3, no. 6, e384. [Online]. Available: 

https://www.researchgate.net/publication/317411823_Conscious-

Nonconscious_Processing_Explains_Why_Some_People_Exercise_but_Most_Don't  

 

[3] J. Niess and P. W. Woźniak, “Supporting meaningful personal fitness: the Tracker Goal 

Evolution Model,” in Proc. 2018 CHI Conf. Human Factors Comput. Syst. (CHI '18), 

New York, NY, USA: ACM, 2018, pp. 1–12, doi: 10.1145/3173574.3173745. 

 

[4] T. Karlsen, I.-L. Aamot, M. Haykowsky, and Ø. Rognmo, “High Intensity Interval 

Training for Maximizing Health Outcomes,” Prog. Cardiovasc. Dis., vol. 60, no. 1, 

pp. 67–77, 2017, doi: 10.1016/j.pcad.2017.03.006. 

 

[5] P. Kidman, R. Curtis, A. Watson, and C. Maher, “When and why adults abandon lifestyle 

behavior and mental health mobile apps: scoping review,” J. Med. Internet Res., vol. 

26, 2024, Art. no. e56897, doi: 10.2196/56897. 

 

[6] C. Attig and T. Franke, “Abandonment of personal quantification: A review and empirical 

study investigating reasons for wearable activity tracking attrition,” Comput. Human 

Behav., vol. 102, pp. 223–237, 2020, doi: 10.1016/j.chb.2019.08.025. 

 

[7] R. Aicale, D. Tarantino, and N. Maffulli, “Overuse injuries in sport: a comprehensive 

overview,” J. Orthop. Surg. Res., vol. 13, no. 1, Dec. 2018, doi: 10.1186/s13018-018-

1017-5. 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    113 
 

[8] HealthifyMe, 16 Apr. 2025, “HealthifyMe – Calorie Counter,” distributed by Google Play 

Store. [Online]. Available: 

https://play.google.com/store/apps/details?id=com.healthifyme.basic 

 

[9] Fitbod, 18 Apr. 2025, “Fitbod: Workout & Gym Planner,” distributed by Google Play 

Store. [Online]. Available: 

https://play.google.com/store/apps/details?id=com.fitbod.fitbod 

 

[10] MyFitnessPal, Inc., 22 Apr. 2025, “MyFitnessPal: Calorie Counter,” distributed by 

Google Play Store. [Online]. Available: 

https://play.google.com/store/apps/details?id=com.myfitnesspal.android 

 

[11] Simple Design Ltd., 21 Apr. 2025, “Lose Weight in 30 Days,” distributed by Google 

Play Store. [Online]. Available: 

https://play.google.com/store/apps/details?id=loseweight.weightloss.workout.fitness 

 

[12] Injurymap, 27 Aug. 2024, “Injurymap,” distributed by Google Play Store. [Online]. 

Available: https://play.google.com/store/apps/details?id=com.injurymap.injurymap 

 

[13] H. E. Lee and J. Cho, “What motivates users to continue using diet and fitness apps? 

Application of the uses and gratifications approach,” Health Commun., vol. 32, no. 

12, pp. 1445–1453, Jun. 2016, doi: 10.1080/10410236.2016.1167998. 

 

[14] www.sportsinjuryclinic.net, 27 Jan. 2025, “Sports Injury Rehabilitation,” distributed by 

Google Play Store. [Online]. Available: 

https://play.google.com/store/apps/details?id=com.sportsinjuryclinic.rehab.program 

 

[15] M. Phaswana, D. V. Khumalo, D. Constantinou, et al., “Effectiveness of high-intensity 

interval training and moderate-intensity continuous training on cardiometabolic health 

in university labourers,” World J. Clin. Med., vol. 6, no. 1, pp. 25–32, 2024, doi: 

10.18772/26180197.2024.v6n1a4. 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    114 
 

[16] Meta Platforms, Inc., "React Native Documentation," 2025. [Online]. Available: 

https://reactnative.dev/ 

 

[17] Expo, Inc., "Expo Documentation," 2025. [Online]. Available: https://docs.expo.dev/ 

 

[18] W. Danielsson, ‘React Native application development : A comparison between native 

Android and React Native’, Dissertation, 2016. https://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A998793&dswid=1904 

[19] Supabase, Inc., "Supabase Documentation," 2025. [Online]. Available: 

https://supabase.com/docs 

[20] S. Tiangolo, "FastAPI," 2025. [Online]. Available: https://fastapi.tiangolo.com/ 

 

[21] Google, "Google Calendar API Overview," 2025. [Online]. Available: 

https://developers.google.com/calendar/api/guides/overview 

[22] Google, "OAuth 2.0 for Mobile & Desktop Apps," 2025. [Online]. Available: 

https://developers.google.com/identity/protocols/oauth2 

[23]Supabase, “JWTs,” Supabase Documentation. [Online]. Available: 

https://supabase.com/docs/guides/auth/jwts. [Accessed: Sept. 18, 2025]. 

[24] Supabase, “Row Level Security,” Supabase Documentation. [Online]. Available: 

https://supabase.com/docs/guides/database/postgres/row-level-security. [Accessed: Sept. 

18, 2025]. 

[25] DAREBEE, “100 HIIT Workouts by DAREBEE,” Darebee.com, 2025. 

https://darebee.com/100-hiit-workouts.html (accessed Sep. 21, 2025). 

 

[26]FastAPI, “CORS (Cross-Origin Resource Sharing),” FastAPI Tutorial, FastAPI. 

[Online]. Available: https://fastapi.tiangolo.com/tutorial/cors/ (accessed Sep. 20, 2025). 

 

 



CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    115 
 

[27] V. Khorasani, Sep. 2024, “Gym Members Exercise Dataset,” distributed by Kaggle. 

[Online]. Available: https://www.kaggle.com/datasets/valakhorasani/gym-members-exercise-

dataset 

 

[28] R. Gradien, Apr. 2023, “exercises_cleaned,” distributed by Github. [Online]. Available: 

https://github.com/RalphGradien/HomeWorkoutRecommendations/blob/main/data/exercises

_cleaned.csv 

 

 
APPENDIX 

 

GitHub link: 

 

https://github.com/CWUtar/Personalized_Workout_Planner.git 

 

https://github.com/CWUtar/backend_api.git 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/CWUtar/Personalized_Workout_Planner.git


CHAPTER 2 

Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    116 
 

 

 

POSTER 

 


