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ABSTRACT 
 
University course timetabling problem (UCTP) is a scheduling problem that requires courses 

to be assigned to the limited time slots, classrooms, and lecturers, while adhering to a set of 

predefined constraints. Due to the effectiveness of genetic algorithm (GA) in optimisation 

problems, it has been widely discussed in numerous research to address UCTP. Nonetheless, 

the performance of GA in terms of operation techniques has not been studied enough, as the 

researchers have often focused on using a single GA combination or hybrid approaches to solve 

UCTP case studies. Therefore, this project aims to analyse the performance of different 

combinations of GA operation techniques and identify the best GA model. A flexible GA 

framework is developed, which allows alternative techniques to be integrated and executed 

easily. 64 combinations, involving 4 selection, 4 crossover, 1 mutation, and 4 replacement 

techniques, are evaluated on a partial mock dataset. In addition, this project proposes a new 

soft constraint, which requires consecutive classes for a student to be held in the same building. 

This constraint targets to reduce students’ travel distance, thus producing a more student-

friendly timetable. Experimental results shows that GA44 model which comprises of binary 

tournament selection, uniform crossover, swap mutation, and weak chromosome replacement 

is the best GA combination. In conclusion, the proposed constraint demonstrates clear benefits 

to student experience on campus and offers a fresh idea for future research with alternative 

approaches. 

 

Area of Study: Scheduling Problem 

 

Keywords: Optimisation, Combinatorial Optimisation Problem, University Course 

Timetabling Problem, Course Scheduling, Metaheuristics, Genetic Algorithm 



v 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

TABLE OF CONTENTS 
 

TITLE PAGE i 

ACKNOWLEDGEMENTS ii 

COPYRIGHT STATEMENT iii 

ABSTRACT iv 

TABLE OF CONTENTS v 

LIST OF FIGURES viii 

LIST OF TABLES Ix 

LIST OF SYMBOLS x 
  
LIST OF ABBREVIATIONS xi 

  

CHAPTER 1  INTRODUCTION 1 

1.1 Project Inspiration 1 

1.2 Problem Statements 3 

1.3 Project Objectives 3 

1.4 Project Scope 4 

1.5 Project Impact and Contribution 5 

1.6 Chapter Summary 6 

  

CHAPTER 2  LITERATURE REVIEW 7 

2.1 University Timetabling Techniques 

2.1.1 Single-Solution-Based Metaheuristics 

 2.1.1.1 Simulated Annealing 

 2.1.1.2 Tabu Search 

2.1.2 Population-Based Metaheuristics 

 2.1.2.1 Genetic Algorithm 

 2.1.2.2 Particle Swarm Optimisation 

 2.1.2.3 Ant Colony Optimisation 

7 

8 

8 

9 

10 

10 

12 

13 

 2.1.2.4 Cuckoo Search 14 

                           2.1.2.5 Harmony Search 15 



vi 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

2.2 Genetic Algorithm 

2.2.1 Selection 

 2.2.1.1 Roulette Wheel Selection 

 2.2.1.2 Random Selection 

 2.2.1.3 Tournament Selection 

 2.2.1.4 Linear Ranking Selection 

2.2.2 Crossover 

 2.2.2.1 Single-Point Crossover 

 2.2.2.2 Two-Point Crossover 

 2.2.2.3 Uniform Crossover 

 2.2.2.4 Shuffle Crossover 

2.2.3 Mutation 

 2.2.3.1 Swap Mutation 

2.2.4 Replacement 

 2.2.4.1 Weak Parent Replacement 

 2.2.4.2 Tournament Replacement 

16 

19 

19 

20 

21 

22 

23 

24 

24 

25 

26 

26 

27 

28 

28 

29 

2.3 Constraints 

2.3.1 Hard Constraints 

2.3.2 Soft Constraints 

30 

30 

30 

2.4 Critical Remarks of Previous Work 31 

  

CHAPTER 3  SYSTEM METHODOLOGY 33 

3.1 Project Development 33 

3.2    Data Collection 35 

3.3 System Constraint 

 3.3.1 Hard Constraint 

 3.3.2 Soft Constraint 

36 

36 

37 

  3.4    System Requirements 

 3.4.1 Hardware 

 3.4.2 Software 

37 

37 

37 

  3.5    Verification Plans 

 3.5.1 Hard Constraint Tests 

 3.5.2 Soft Constraint Tests 

38 

38 

39 



vii 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

 3.5.3 Resource Utilisation Tests 40 

  

CHAPTER 4  SYSTEM DESIGN 41 

4.1 System Architecture Design 

4.2 Input Design 

41 

41 

4.3 Output Design 43 

4.4  Genetic Algorithm Design 

 4.4.1  Chromosome Encoding 

 4.4.2  Population Initialisation 

 4.4.3  Fitness Evaluation 

 4.4.4  Repair 

 4.4.5  Selection 

  4.4.5.1 Roulette Wheel Selection 

  4.4.5.2 Random Selection 

  4.4.5.3 Binary Tournament Selection 

  4.4.5.4 Linear Ranking Selection 

 4.4.6  Crossover 

  4.4.6.1 Single-Point Crossover 

  4.4.6.2 Two-Point Crossover 

  4.4.6.3 Uniform Crossover 

  4.4.6.4 Shuffle Crossover 

 4.4.7  Mutation 

 4.4.8  Replacement 

  4.4.8.1 Weak Parent Replacement 

  4.4.8.2 Binary Tournament Replacement 

  4.4.8.3 Linear Ranking Replacement 

  4.4.8.4 Weak Chromosome Replacement 

 4.4.9  Parameter Settings 

 4.4.10  Operator Combinations 

48 

49 

50 

50 

50 

51 

52 

52 

52 

53 

54 

54 

55 

56 

56 

57 

58 

58 

59 

59 

60 

61 

62 

4.5 Data Storage Design 

 4.5.1  Database Structure 

 4.5.2  Table Structure 

 4.5.3  Database Trigger 

63 

64 

65 

67 



viii 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

  

CHAPTER 5  SYSTEM TESTING 70 

5.1 Experiment on Constraints 70 

5.2 Experiment on GA Models 

 5.2.1  Comparison among Operator Techniques 

  5.2.1.1 Selection 

  5.2.1.2 Crossover 

  5.2.1.3 Replacement 

 5.2.2  Comparison with Past Research 

72 

73 

74 

75 

77 

78 

5.3 Experiment on Resource Utilisation 78 

  

CHAPTER 6 DISCUSSION 81 

           6.1     Objective Evaluation 

           6.2     System Novelties 

           6.3     System Limitations 

           6.4     Future Enhancement/Improvement 

81 

82 

83 

84 

  

CHAPTER 7 CONCLUSION 85 

  

REFERENCES 87 

  

APPENDIX A  
 

A.1 Poster A-1 



ix 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

LIST OF FIGURES 
 

Figure Number Title Page 

   

Figure 2.1.1 Metaheuristics in UCTPs 7 

Figure 2.2.1 Genes, Chromosomes, and Population in GA. 17 

Figure 2.2.2 Flowchart of GA [23]. 17 

Figure 2.2.3 RW Selection [21] 20 

Figure 2.2.4 Process of Tournament Selection [21] 21 

Figure 2.2.5 Selection Probabilities Based on Fitness and Ranking 23 

Figure 2.2.6 Process of Two-Point Crossover [30] 25 

Figure 2.2.7 Process of Uniform Crossover [30] 26 

Figure 2.2.8 Swap Mutation [35] 27 

Figure 3.1.1 Gantt Chart for Project Development 33 

Figure 3.2.1 Timetable for February 2025 CS Y1T3 Students 35 

Figure 3.2.2 Programme Structure for February 2025 CS Y1T3 

Students 

35 

Figure 4.1.1 University Course Timetabling System Architecture 41 

Figure 4.2.1 Tailored Collected Data 42 

Figure 4.2.2 Mock Rooms Data 42 

Figure 4.2.3 Output of Class Generation 43 

Figure 4.2.4 Output of Group-to-Class Assignment 43 

Figure 4.3.1 Statistics of GA Experiment 44 

Figure 4.3.2 Timetable of Course UCCD1024 45 

Figure 4.3.3 Timetable of Lecturer Ts Dr Goh Chuan Meng 45 

Figure 4.3.4 Timetable of Student Student_087 from Group 9 45 

Figure 4.3.5 Timetable of Room N3 45 

Figure 4.3.6 Overall Timetable 45 

Figure 4.3.7 Statistics of 10 GA Experiments Per Combination 46 

Figure 4.3.8 Statistical Details of Each GA Combination 46 

Figure 4.3.9 Statistical Summary of All GA Combinations 47 

Figure 4.3.10 Worst GA Combination 47 



x 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

Figure 4.3.11 Comparison Table for Replacement Operator 47 

Figure 4.4.1 Flowchart of GA for University Course Timetabling 

System 

48 

 Overview of A Chromosome 49 

 Gene-Level View of A Room in A Chromosome 49 



xi 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

LIST OF TABLES 
 

Table Number Title Page 

   

Table 2.3.1 Hard Constraints of Previous Work 30 

Table 2.3.2 Soft Constraints of Previous Work 30 

Table 3.3.1 Hard Constraints for Project 36 

Table 3.3.2 Soft Constraints for Project 37 

Table 3.4.1 Specifications of Laptop 37 

Table 3.4.2 Specifications of Software 38 

Table 3.5.1 Tests for Hard Constraints 38 

Table 3.5.2 Tests for Soft Constraints 39 

Table 3.5.3 Tests for Resource Utilisation 40 

 

 

 

 

 

 

 

 

 

 

 

LIST OF SYMBOLS 

 

bw  pitch bandwidth 

 

 



xii 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

LIST OF ABBREVIATIONS 
 

UCTP University Course Timetabling Problem 

GA Genetic Algorithm 

NP-HARD Non-Deterministic Polynomial Hard 

OR Operational Research 

EA Evolutionary Algorithm 

MDVRP Multi Depot Vehicle Routing Problem 

TSP Travelling Salesman Problem 

IDE Integrated Development Environment 

SA Simulated Annealing 

TS Tabu Search 

UCTP University Course Timetabling Problem 

GP Goal Programming 

ATS Adaptive Tabu Search 

PSO Partial Swarm Optimisation 

ACO Ant Colony Optimisation 

CS Cuckoo Search 

HS Harmony Search 

PE-CTT Post-Enrolment Course Timetabling 

TSPP Tabu Search with Sampling and Perturbation 

RW Roulette Wheel 

CP Constraint Programming 

GD Great Deluge 

ANOVA Analysis of Variance 

UCSP University Course Scheduling Problem 

PSOSS Partial Swarm Optimisation with Selective Search 

PSM Producer-Scrounger Method 

ACOSP Ant Colony Optimisation with Selective Probability 

SI Swarm Intelligence 

LF Lévy Flight 

BNCS Best-Nests Cuckoo Search 



xiii 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

HM Harmony Memory 

HMS Harmony Memory Size 

MC Memory Consideration 

PA Pitch Adjustment 

RC Random Consideration 

HCMR Harmony Memory Consideration Rate 

PAR Pitch Adjustment Rate 

MI Maximum Number of Improvisations 

CBCTT Curriculum-Based Course Timetabling 

NP-COMPLETE Non-Deterministic Polynomial Complete 

GVRP Green Vehicle Routing Problem 

RCPSPTT Resource-Constrained Project Scheduling Problem with Transfer 

Times 

SQL Structured Query Language 

JDBC Java Database Connectivity 

API Application Programming Interface 

RDBMS Relational Database Management System 

ACID Atomicity, Consistency, Isolation, Durability 

ERD Entity Relationship Diagram 

CSV Comma-Separated Value 

SSN Simple Search Neighbourhood 

SWN Swap Search Neighbourhood 

LNS Large Neighbourhood Search 

 

 



Chapter 1 Introduction 

1 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

Chapter 1 

Introduction 
 

1.1 Project Inspiration 

A timetable is a tabulation that shows multiple events and their schedules [38]. 

Timetable scheduling problem is an optimisation problem where events are allocated to the 

limited resources such as space and time, while adhering to a set of predefined constraints 

[9,12]. It is a well-known problem across various fields, including education, hospitalisation, 

and transportation [12]. This is because a timetable plays an important role in smoothening the 

operations of multiple parties and facilitating the cooperations between them. Therefore, 

timetable scheduling problem has been and is still an important subject in a wide range of 

research areas [7]. 

The university course timetabling problem (UCTP) is one of the scheduling problems 

in which it requires courses to fit well into the limited time slots, classrooms, and lecturers with 

no conflicts [2,12]. This problem is significant because it resurfaces each semester as 

universities plan their course offerings [1]. Traditionally, university course timetables are 

manually created by university’s administration staff. This manual process is not only time-

consuming but also prone to errors, especially when accommodating large numbers of students 

and faculty with varying preferences and requirements [38]. 

In the context of UCTP, the constraints are typically modelled around courses, classes, 

lecturers, students, and classrooms. These constraints are not fixed, but instead they are highly 

specific and vary from institution to institution [2,38]. Furthermore, the different roles of 

timetable practitioners, such as students and lecturers, may lead to shifting priorities over time, 

further increasing the number of constraints. Together, these constraints define the feasibility 

of a timetable, where a high-quality timetable is one that satisfies all constraints. 

Generally, there are two types of constraints in UCTP, which are hard and soft 

constraints. Hard constraints are requirements that cannot be violated in order to produce a 

feasible timetable [2,38]. For example, hard constraints include ensuring that no student is 

assigned to more than one class at a time, that the classroom capacity is not exceeded, and that 

lecturers are not double-booked [38]. On the other hand, soft constraints are preferences that 
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are not strictly necessary for timetable feasibility [2,38]. It aims to improve the quality of the 

timetable by considering factors such as minimising the number of consecutive hours for 

lecturers and students and ensuring a balanced distribution of courses throughout the week 

[2,12]. 

With these complexities in UCTP, this problem is considered a non-deterministic 

polynomial hard (NP-hard) problem [1,8,9,38]. This implies that there is no conventional 

algorithm that is able to find an optimal solution in the polynomial time as the problem size 

such as number of students and constraints grows exponentially [3,8,38]. In addition, there is 

no particular solution that satisfies every UCTP due to the unique requirements of each 

university, let alone solving it manually [38]. Therefore, various optimisation algorithms are 

applied to tackle this problem, including metaheuristics, hyper-heuristics, multi-objective, 

operational research (OR), and hybrid approaches [1]. 

Among these feasible approaches, this project focuses on metaheuristics, particularly 

the genetic algorithm (GA). GA is first introduced by John Holland in 1975. It is an 

evolutionary algorithm (EA) [2] inspired by the principle of “survival of the fittest” proposed 

by Charles Darwin, which emphasises on natural selection and genetics [22]. GA is widely 

used to solve complex optimisation problems such as UCTP [2,8,12,38], multi depot vehicle 

routing problem (MDVRP) [23], and travelling salesman problem (TSP) [25]. This is because 

of its ability to explore large search spaces and find nearly optimal solutions in a reasonable 

amount of time. The algorithm begins with an initial population of candidate solutions, which 

is also known as chromosomes. These chromosomes then iteratively evolve over generations 

using genetic operators that mimics the biological processes such as selection, crossover, 

mutation, and replacement, and finally come up with a good-enough solution [22]. 

This project aims to study the absence of a significant constraint related to students’ 

comfort, which is the distance between classrooms for consecutive classes. Besides, this project 

seeks to investigate how effectively GA can handle both hard and soft constraints in the UCTP, 

particularly with the newly introduced constraints. There is a lack of research on GA 

applications in UCTP, especially involving different operator combinations. Therefore, this 

project focuses on providing perspectives on this unexplored area by applying various GA 

combinations. 
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1.2 Problem Statements 

The primary goal of university course timetabling problems (UCTPs) is to produce 

schedules that satisfy institutional requirements while supporting students’ learning 

experience. However, many schedules generated by existing timetabling systems place 

consecutive classes for the same student groups in different buildings. This forces them to 

spend valuable minutes walking between blocks and often arrive unprepared or miss the 

opening of the next lesson. It is obvious that such avoidable travel erodes attention and reduces 

effective studying time. 

Genetic algorithm (GA) is frequently adopted to solve UCTPs because it is a type of 

metaheuristics, which can explore large search spaces more quickly than exact mathematical 

techniques [4]. Nonetheless, most GA implementations in UCTPs embed only the common 

constraints and rely on a single combination of operators. Timetable quality can shift 

significantly when alternative selection, crossover, mutation, and replacement techniques are 

combined, either amplify or dampen the performance [37]. Therefore, comprehensive testing 

across operator combinations is essential, yet many authors choose to settle on one default 

configuration. This might be due to limited research time and incomplete familiarity with GA 

design. 

Consequently, existing work neither enforces the building-continuity constraint nor 

identifies which GA combination performs best when that constraint is present. This project 

closes both gaps by incorporating the same-building requirement into the problem model and 

by systematically benchmarking diverse combinations of genetic operators to discover a 

configuration that produces high-quality, student-friendly timetables. 

 

1.3 Project Objectives 

First, this project aims to formalise a comprehensive set of hard and soft constraints for 

the university course timetabling problem (UCTP). The new soft constraint requires a student’s 

consecutive classes to be held in the same building. A quantitative penalty is applied whenever 

a timetable forces an inter-building move in between consecutive classes, allowing the effect 

of the constraint to be measured across experiments. 
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Second, it targets to design and develop a flexible genetic algorithm (GA) framework 

whose operators can be exchanged without modifying the core code. This project evaluates 64 

unique operator combinations formed from four selection, four crossover, one mutation, and 

four replacement techniques, including two newly proposed replacement methods. There is 

also an immediate repair operator after crossover and mutation operations to ensure that the 

timetable represented by the chromosome satisfies the imposed constraints. 

Third, it seeks to assess the performance of every GA combination on a partial mock 

dataset. Each combination is executed in several independent trials, and the number of 

generations, execution time, and initial penalty cost are recorded. Statistical analysis of the 

repeated runs highlights the strengths and weaknesses of the individual techniques and 

pinpoints the best overall combination. 

 

1.4 Project Scope 

This project delivers a flexible genetic algorithm (GA) framework built in Java 

associated with the MySQL database engine. The framework aims to solve university course 

timetabling problem (UCTP) only. It respects 15 hard constraints and 4 soft constraints, 

including the proposed same-building requirement for consecutive classes. Other than that, it 

focuses on four selection, four crossover, one mutation, and four replacement techniques, 

which are combined to form 64 GA combinations. A repair operator is also adopted to further 

enforce the applied constraints. 

Besides, a partial mock dataset is constructed, which mirrors the real timetables of 

Computer Science (CS) programme at Universiti Tunku Abdul Rahman (UTAR). It reproduces 

room types and locations, weekly slot structure, offered courses and assigned lecturers, while 

student and class records are generated programmatically to complete the input. This dataset 

exercises every constraint and supports verification. 

The experiments run each combination with a population size of 100, chromosome 

length of 250, crossover probability of 0.7, and mutation probability of 0.4, on the partial mock 

dataset. The crossover and mutation probabilities are determined using grid search across 

parameter combinations of 0.5, 0.6, 0.7, 0.8, 0.9 crossover rate and 0.01, 0.2, 0.3, 0.4, 0.5 

mutation rate. A run only stops when it achieves a penalty cost of zero, which is the optimum. 

The number of generations, execution time, and initial penalty cost are recorded for 
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performance analysis A new metric, fitness improvement per generation, is also proposed to 

coordinate with the termination criterion. It is defined as the initial penalty cost divided by the 

number of generations. This offers a fairer comparison by mitigating bias arising from differing 

initial penalty cost. Besides, each run generates feasible timetables, including course, lecturer, 

student, and room timetables. Every combination is executed 10 times, and the averages of the 

metrics are computed for performance comparison. 

All coding work and experiments are conducted on a laptop equipped with an Intel i5-

10200H processor, 16 GB of memory, and an RTX 3060 laptop GPU. Visual Studio Code (VS 

Code) serves as the integrated development environment (IDE). 

To clarify, the study focuses exclusively on GA and does not investigate alternative 

optimisation algorithms. It also avoids both a fully real-world dataset and a fully synthetic 

dataset, opting instead for the balanced mock dataset described above. 

 

1.5 Project Impact and Contribution 

The project introduces the same-building soft constraint, producing timetables that 

minimise student travel between consecutive classes and therefore reduce lost learning time. 

Besides, it delivers a modular genetic algorithm (GA) framework in which the genetic 

operators are fully interchangeable. By benchmarking 64 operator combinations on a partial 

mock dataset, the study supplies the first systematic comparison of these techniques in the 

context of university course timetabling. Moreover, the crossover and mutation probabilities 

applied in the project are the best parameter combination found by performing grid search. The 

resulting insights help researchers select more effective operator combinations and parameter 

settings as well as design more rigorous experiments in the university course timetabling 

problem (UCTP) domain. 

Other than that, two replacement techniques are proposed in this project, which 

introduces different perspectives on the importance of replacement techniques. 

This project also proposes a new performance metric that introduces a fairer 

comparison on combination performance, which is the fitness improvement per generation, 

computed by dividing the initial penalty cost with the number of generations. This metric aims 

to mitigate the bias in performance comparison due to the differences in initial penalty cost. It 
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also suits the stopping condition adopted in this project, where GA models are let to run until 

a perfect timetable is generated, which has no penalty cost. Therefore, the final fitness value 

cannot be used as the performance metric, as they are all the same. On the other hand, the 

number of generations is not fair enough to measure the performance as the initial penalty cost 

is random for each experiment and higher penalty cost often requires higher number of 

generations. 

Furthermore, this project provides a foundation for future work in UTPs. Researchers 

can make further studies by extending the constraint set, integrating alternative optimisation 

approaches, or measuring new performance indicators. 

 

1.6 Chapter Summary 

The details of this research are shown in the following chapters. Chapter 2 reviews prior 

work on university timetabling, beginning with single-solution metaheuristics such as 

simulated annealing and tabu search, then moving to population-based techniques that include 

genetic algorithms, particle swarm optimisation, and other nature-inspired methods. This 

chapter also highlights common hard and soft constraints and critiques gaps in earlier research. 

Chapter 3 explains the methodology adopted in this project, detailing data collection, the 

complete constraint model, particularly to the  newly introduced soft constraint that requires a 

student’s consecutive classes to remain in the same building, system requirements, and 

verification plans. Chapter 4 gives particular attention to input and output design, data storage 

design, and genetic algorithm design, including the chromosome encoding, fitness evaluation, 

repair mechanisms, operator combinations and verification plans that ensure rigorous testing. 

Chapter 5 presents system testing, such as experiments on constraints, GA models, and 

comparison among operation techniques, as well as experiment on resource utilisation. Chapter 

6 focuses on discussion of objective evaluation, system novelties, system limitations, future 

enhancement and improvement. Lastly, Chapter 7 consolidates the conclusion. 
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Chapter 2 

Literature Review 

 

2.1 University Timetabling Techniques 

There are various optimisation algorithms applied to tackle the university course 

timetabling problems (UCTPs), including metaheuristics, hyper-heuristics, multi-objective 

approaches, operational research (OR) techniques and hybrid methods [1]. This project focuses 

on genetic algorithm (GA), which is a well-known metaheuristic. Therefore, studying this class 

of methods provides insights that are directly aligned with the goals of this project. Figure 2.1.1 

illustrates the hierarchy of metaheuristics for UCTPs that are studied in this project. 

 

Figure 2.1.1 Metaheuristics in UCTPs 

Metaheuristics are iterative processes that guide underlying heuristics so that they can 

explore and exploit the search space efficiently and locate near-optimal solutions at a 

reasonable computational cost. By operating at a higher level than heuristics (but lower than 
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hyper-heuristics), they make few assumptions about the problem, cope well with incomplete 

information and limited resources, and can handle a wide variety of optimisation tasks by 

searching large solution spaces effectively [1]. 

 

2.1.1 Single-Solution-Based Metaheuristics 

Single-solution-based metaheuristics focus on iteratively refining one candidate 

solution. These methods, often labelled as local search algorithms, start from a single solution 

that is chosen based on specific criteria. The solution then explores its neighbourhood to 

uncover improvements through repeated manipulation and relocation until a stopping condition 

is satisfied [2,12]. This family includes the techniques such as simulated annealing (SA) and 

tabu search (TS). 

 

2.1.1.1 Simulated Annealing 

Simulated annealing (SA) is a stochastic local search algorithm inspired by the 

annealing process, wherein a heated solid is slowly cooled to achieve a more stable state [1,3]. 

The algorithm begins with a randomly generated solution and iteratively replaces it with a 

neighbouring solution based on an acceptance probability criterion until a specified termination 

condition is met [1,2,3]. A temperature parameter guides the exploration of the search space. 

A high temperature in the early stages promotes exploration and helps the algorithm escape 

local optima. As the temperature is gradually decreased, the tendency for exploration reduces, 

encouraging convergence towards a global optimum [2,3]. SA is widely recognised for its ease 

of implementation and effective local search capability, although it is often limited by a slow 

convergence rate [1,3,4]. 

The research [4] applies the SA to address a faculty-level university course timetabling 

problem (UCTP). This research aims to ensure that students enrolled in double major and minor 

programmes can attend all necessary classes without time conflicts in an environment where 

classrooms are shared across faculties. This highlights its novelty, as it is the first to 

simultaneously take these constraints into consideration. The authors first formulate the 

problem as a goal programming (GP) model and then design an SA algorithm to overcome the 

GP model’s scalability issues. Both proposed methods are tested with a sample dataset (2 
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departments with 35 courses and 4 student groups), two randomly generated datasets (3 

departments with 57 courses and 4 departments with 77 courses), and a real-life engineering 

faculty dataset from a private university (5 departments with 107 courses, 53 lecturers, and 31 

classrooms). The results show that GP reaches the optimum only for the sample dataset; it fails 

to find a feasible solution within the specified time limit of 3600 seconds for the other datasets. 

On the other hand, SA outperforms GP on the sample dataset, obtaining a feasible solution with 

16 times less computational time. It also successfully generates solutions for the randomly 

generated datasets and improves the real-world dataset by 83 % in under 3 minutes. 

 

2.1.1.2 Tabu Search 

Tabu search (TS) is a memory-based metaheuristic built on local search [1,6]. The 

algorithm starts from an initial solution and iteratively explores the neighbourhood of the 

current solution until a termination criterion is satisfied [2]. It employs a short-term storage 

called a tabu list, which stores recently executed movements to prevent the search from cycling 

back to previously visited solutions. Nonetheless, this restriction can be overridden by an 

aspiration criterion when a movement leads to a solution better than any found so far, 

maintaining search flexibility. Furthermore, this storage is associated with a parameter known 

as tabu tenure, which defines how long a movement remains in the list [2,6]. By allowing non-

improving movements while blocking revisits, this short-term memory helps the search avoid 

trapping in the local optima [1,2,6]. In addition, TS adopts intermediate and long-term 

memories that drive intensification and diversification, which offers a balance between 

exploitation and exploration as the search progresses [1,6]. 

Awad et al. [5] introduce an adaptive tabu search (ATS) framework to resolve the 

university course timetabling problem (UCTP) in large-scale scenarios. The approach is 

divided into two stages. First, the authors construct a feasible solution by employing a least 

saturation degree algorithm, supported by two neighbourhood structures. This construction 

stage focuses on satisfying all hard constraints without considering the soft constraints. Next, 

the approach enters the improvement stage. Two additional neighbourhood operators are 

applied within the ATS algorithm to minimise soft-constraint violations in the early solution. 

Specifically, the adaptiveness of the proposed TS is shown on the tabu list, where its length 

can be dynamically reduced. If the total penalty cost fails to decrease after 1000 iterations, the 

list length is shortened by 2, subject to a lower bound of 2; otherwise, it remains unchanged. 
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This mechanism allows the algorithm to counteract search stagnation. The method is evaluated 

on 11 benchmark datasets from Socha et al., which are categorised into 5 small, 5 medium, and 

1 large instance. Its performance is assessed by comparing total penalty scores with those of 

14 published approaches, where 7 of them are TS-based and 7 of them are not. The proposed 

ATS approach ranks second on the medium and the large datasets, surpassed only by a 

simulated annealing (SA) approach. This demonstrates its adaptability and effectiveness. 

Nevertheless, this research comes with a limitation, where the numerical results for the small 

datasets are not provided. The authors merely report that there is a minor performance slippage 

in those cases. Overall, the research shows that adaptive control of the tabu list can enhance TS 

performance on large-scale UCTP datasets. 

 

2.1.2 Population-Based Metaheuristics 

Population-based metaheuristics work on a collection of solutions that co-evolve 

through repeated cycles of selection, variation and replacement. In each iteration, the methods 

select high-quality individuals from the current population, apply problem-specific operators 

to produce improved variants, and substitute weaker members with these offspring until a 

termination criterion is met, typically an acceptable result is reached [2,12]. This family 

includes the techniques such as genetic algorithm (GA), partial swarm optimisation (PSO), ant 

colony optimisation (ACO), cuckoo search (CS), and harmony search (HS). 

 

2.1.2.1 Genetic Algorithm 

Genetic algorithm (GA) is an evolutionary algorithm inspired by Darwin’s theory of 

natural selection, in which fitter individuals have a higher chance of survival [1,2,8]. Typically, 

a GA proceeds through 5 stages, including initialisation, selection, crossover, mutation, and 

replacement. First, it generates an initial population of candidate solutions and evaluates their 

fitness. Based on those fitness values, the algorithm chooses parent solutions. A crossover 

operator then combines selected parents to produce offspring, which are subsequently mutated 

to maintain diversity. During replacement, the offspring substitute an equal number of 

individuals in the current population, thus forming the next generation. These steps, excluding 

the initialisation, repeat until a termination criterion is satisfied [2]. GA is highly customisable 

through parameters such as population size and mutation probability. For instance, a moderate 
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mutation probability introduces randomness that prevents the search from getting trapped in 

local optima, while an excessively high value can cause the algorithm to degenerate into 

random search [7]. GA is widely favoured for tackling large-scale, non-linear optimisation 

problems due to its genetic operators offering a balance in exploration and exploitation [1,8]. 

The study [7] aims to automate the post-enrolment course timetabling (PE-CTT) 

process at University of Malaysia Sabah Labuan International Campus (UMSLIC). The authors 

propose a hybrid metaheuristic approach in which a tabu search with sampling and perturbation 

(TSPP) first builds a pool of feasible timetables, after which a GA repeatedly improves the 

solution quality. Particularly, the study focuses on GA. This is demonstrated by the conducted 

experiments, where the best parameter values for the GA under limited computational time are 

identified. The performance of two GA selection techniques, which are steady-state selection 

and roulette wheel (RW) selection, is also tested in a common environment with swap-transfer 

mutation and weak parent replacement. These experiments are run on a real-world dataset, 

which is the session 2018/2019 semester 1 student registration dataset that consists of 1993 

students, 144 courses, 35 time slots, and 24 rooms. Performance is evaluated based on hard- 

and soft-constraint violations, comparing the best timetables generated by the proposed 

approach with those scheduled by the university’s administrative staff. The former cuts the 

soft-constraint violations by 54 % relative to the latter. Moreover, the automated timetables 

have no hard-constraint violations, while the crafted timetables have 37 clashes that violate 2 

hard constraints. 

Another study [8] also focuses on tackling the university course timetabling problem 

(UCTP) for USMLIC using GA. The GA model employed in this study is configured as 

follows. First, a population of feasible solutions that satisfy all hard constraints is generated 

using constraint programming (CP). Then, the algorithm iteratively applies quinary tournament 

selection, one-point crossover, and random mutation to the population until 100,000 

generations are reached or a 300-second cut-off time is met. Two experiments are conducted, 

in which the authors first assess the GA’s capability to generate feasible timetables. Next, they 

compare the GA’s performance with two other metaheuristics, which are great deluge (GD) 

and simulated annealing (SA). Both experiments use two real-world datasets from UMSLIC, 

which are the session 14/15 semester 2 instance (2248 students, 112 courses, 35 time slots, and 

18 rooms) and the session 2015/16 semester 1 instance (2248 students, 112 courses, 35 time 

slots, and 18 rooms). Solution quality is evaluated according to the sum of penalties from hard- 
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and soft-constraint violations. Over 50 runs per dataset, GA lowers the average penalty cost of 

the initial solution by approximately 36 % for both datasets. On the other hand, GD improves 

the average quality of the initial solution by around 25 %, while SA achieves only an 

improvement of roughly 23 %. A one-way analysis of variance (ANOVA) confirms that these 

performance differences are statistically significant. The results indicate that GA outperforms 

both GD and SA, highlighting its effectiveness in the timetable scheduling domain. 

 

2.1.2.2 Particle Swarm Optimisation 

Particle swarm optimisation (PSO) is a stochastic optimisation technique that draws 

inspiration from the social behaviour of swarms, such as bird flocks and fish schools, 

particularly their coordinated movements [1,8,10]. The algorithm begins by initialising a 

swarm of particles, each representing a potential solution to the problem at hand [8]. Each 

particle is randomly placed in the search space and assigned an initial position and velocity 

[1,8]. Next, the algorithm enters an iterative cycle. During each iteration, a particle first updates 

its velocity based on three factors, which are its current velocity, the best position it has 

personally discovered, and the best position found by the entire swarm. Using this revised 

velocity, the particle then moves to a new position [1,8]. The personal best and global best 

values are refreshed whenever a particle or the swarm finds an improved solution, respectively. 

This cycle continues until a termination condition is met, at which point the global best position 

is returned as the final solution [8]. PSO is popular among researchers because it is simple to 

implement and requires only a few parameters to configure. However, in multi-dimensional or 

complex search spaces, the particles can easily stagnate, thus converging at a low speed and 

eventually affecting the solution quality. This stagnation occurs due to the swarm's liability to 

get trapped in local optima and the instabilities in particle velocities [10]. 

Hossain et al. [9] address the university course scheduling problem (UCSP) with a 

modified particle-swarm framework called PSO with selective search (PSOSS). They 

transform standard PSO operations by computing particle velocity with swap operators and 

swap sequences. On top of this, they propose two novel mechanisms. First, a forceful swap 

operator, combined with a repair technique, guarantees that every particle makes a feasible 

move. Second, a selective search operator retains the best intermediate timetable after each 

update. These innovations significantly enhance the algorithm's adaptability to the hard and 

soft constraints in UCSP. Experiments use a real-world dataset from the Computer Science and 
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Engineering (CSE) department of Khulna University of Engineering and Technology (KUET), 

comprising 38 courses, 27 lecturers, 5 student batches, and 13 rooms. In the experiments, 

PSOSS is compared against multiple metaheuristics, which are genetic algorithm (GA), 

traditional PSO, harmony search (HS), and producer-scrounger method (PSM). Performance 

evaluation proceeds in two stages, in which population size and iteration studies identify 

suitable parameters, after which solution quality is measured by a composite fitness score, 

calculated as the sum of lecturer-preference values minus consecutive-class penalties, and 

average lecturer-satisfaction percentage. On this benchmark, PSOSS achieves a best fitness of 

471 and an 83 % average satisfaction, outperforming other approaches. Particularly, it 

outscores the nearest rival GA by approximately 10 % on both metrics. Furthermore, it 

converges to its optimum in 155 iterations, slower than HS that takes only 60 iterations, but 

significantly faster than GA, PSO, and PSM, which each require over 400 iterations. Together, 

these results demonstrate that PSOSS is able to deliver higher quality timetables with better 

efficiency than the competing metaheuristics. 

 

2.1.2.3 Ant Colony Optimisation 

Ant colony optimisation (ACO) is a swarm intelligence (SI) method inspired by how 

the ants communicate and interact with each other during foraging [1,2,11,12]. When searching 

for foods, the ants seek the shortest route between a food source and their nest to transport food 

efficiently [2,12]. They start by moving randomly and leave a pheromone trail along their paths 

[1,2,12]. When other ants encounter a trail, they are drawn to it and follow the same route. If 

they find the food, they return to the nest and lay an additional pheromone trail next to the 

original one. This makes the trail more attractive [2]. Since pheromones are volatile, the 

stronger trails, which correspond to the shorter routes, are continually amplified by many ants 

[11]. In contrast, the weaker trails gradually evaporate and disappear [2,11]. Eventually, only 

the best route remains [11]. When ACO is applied to optimisation problems, the artificial ants 

first construct individual solutions [11,12]. They then pass the information about the quality of 

these solutions to each other, guiding subsequent searches [11,12]. Through iterative 

reinforcement, the solution set converges towards the global optimum [11,13]. ACO excels at 

combinatorial optimisation thanks to its decentralised search and frequent feedback, but it can 

converge slowly or become trapped in local optima on complex, large-scale problems [13]. 
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The research [11] seeks to tackle the university class scheduling problem (UCSP) for 

the Computer Science and Engineering (CSE) department of Khulna University of Engineering 

and Technology (KUET). The author focuses on two metaheuristics, which are a standard ACO 

and a proposed ACO with selective probability (ACOSP). Experiments are conducted in two 

different settings, which are a simple environment that uses a small dataset (10 courses, 8 

lecturers, and 2 student batches) and a highly constrained environment that uses a larger dataset 

(37 courses, 35 lecturers, and 4 student batches). Both ACO-based approaches are tested in the 

two environments, whereas a genetic algorithm (GA) is evaluated only in the simple 

environment. Solution quality is measured with a fitness function that sums lecturer-preference 

scores, averaged over 10 trials, while the population size (or ant count) and the number of 

iterations are varied. The results show that both ACO variants outperform the GA in the simple 

setting and that ACOSP consistently achieves the highest fitness in both datasets. According 

to the author, this superiority arises because the ACO variants compute probabilities for every 

unassigned time slot during course assignment, whereas the GA does not. Moreover, ACOSP 

restricts each choice to a shortlist of promising time slots and considers only their probabilities, 

hence reducing search effort and enabling faster convergence. 

 

2.1.2.4 Cuckoo Search 

Cuckoo search (CS) is another swarm intelligence (SI) optimisation algorithm that 

employs a Lévy flight (LF) search mechanism to locate high quality solutions within large and 

complex search spaces [14]. It draws inspiration from the aggressive brood parasitic behaviour 

of certain cuckoo species, which discreetly lay their eggs in the nests of other birds [1,14]. 

Mimicking this strategy, CS treats each candidate solution as an egg placed in a host nest, while 

a fraction of nests is periodically abandoned or replaced to simulate the host bird’s discovery 

and rejection of foreign eggs [15]. New solutions are then generated by LFs, a type of random 

walk featuring heavy-tailed step-length distributions. This mechanism enables the algorithm to 

balance extensive exploration with intensive exploitation of promising regions [14]. CS is 

widely applied to optimisation problems because it relies on only a few control parameters, 

offers a straightforward iteration that is easy to code, and yet maintains a strong random search 

capability [14]. 

Jebur and Abdullah [15] tackle the university course timetabling problem (UCTP) by 

proposing a best-nests CS (BNCS) variant designed to accelerate convergence and improve 
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timetable quality relative to the traditional CS. Their workflow first ranks a population of 

candidate timetables and splits them into “best” and “normal” sub-groups. It then generates a 

new solution solely from the elite subset and compares it against a randomly chosen member 

of the inferior subset, where the better solution replaces the worse one. Both sub-groups are 

subsequently aggregated, after which a ratio of the worst solutions from the combined 

population is discarded. These steps repeat until a stopping criterion is reached. Key 

parameters, such as population size, LF λ value, and best-nest ratio, are tuned experimentally. 

Evaluation uses four datasets from KTH Royal Institute of Technology, which are labelled as 

small, medium, large, and extra-large size, varying from 70 to 293 class events and 160 to 540 

time slots. Performance is measured as average fitness based on hard-constraint violations and 

compared with the traditional CS. The number of iterations scales with dataset size, ranging 

from 9500 to 57000. Across all datasets, BNCS converges faster and reaches higher fitness 

than CS, using a configuration that includes a population of 40, a λ of 1, and a best-nest ratio 

of 0.25. The newly introduced selection scheme clearly shows its capability in enhancing 

traditional CS, which helps accelerate exploitation without sacrificing exploration. 

 

2.1.2.5 Harmony Search 

Harmony search (HS) is an optimisation algorithm that frames each candidate solution 

as a musical harmony and seeks the best composition through iterative improvisation [9,16]. 

Inspired by how performers refine their instruments’ pitches to achieve an aesthetically 

pleasing sound, HS stores a population of solutions in a harmony memory (HM), whose size is 

termed the harmony memory size (HMS) [9,17]. It generates new harmonies through three 

operators, namely memory consideration (MC), pitch adjustment (PA) and random 

consideration (RC). These operators are regulated respectively by the harmony memory 

consideration rate (HMCR), pitch adjustment rate (PAR), and pitch bandwidth (bw). After 

setting these parameters and randomly filling the HM, the algorithm repeatedly improvises a 

new harmony, compares it with the current worst member of the HM, and replaces that worst 

harmony when an improvement is found. HM is thus continually updated until the maximum 

number of improvisations (MI) is reached, at which point the best harmony is returned [9,16]. 

Researchers have widely applied HS to real-world optimisation tasks due to its simple concept, 

limited tuneable parameters, and easy implementation, alongside its ability to balance 
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exploration and exploitation. Nevertheless, HS can still exhibit low optimisation accuracy and 

suffer from premature convergence [17]. 

The study [16] aims to improve timetable quality for the College of Arts and Sciences 

(CAS) at Universiti Utara Malaysia (UUM) by eliminating hard-constraint clashes and cutting 

soft-constraint penalties. Therefore, the authors propose a hybrid HS algorithm combined with 

the great deluge (GD) heuristic. The algorithm begins by constructing 10 feasible timetables to 

populate the HM and then iteratively improvises new solutions using various operators. MC 

and PA operators refine the lectures stored in the HM, while moves generated by the RC 

operator are filtered through a GD acceptance test whose water level, representing solution 

quality, is reset to the current best solution at the start of every improvisation cycle. The search 

terminates and returns the best solution after the MI is reached. Experiments use the UUM 

CAS session 13/14 semester 1 undergraduate dataset, which consists of 247 courses, 850 

lectures, 32 rooms, 350 lectures, and 20000 students. They tune the HMCR parameter of the 

proposed algorithm while comparing its output with the official timetable produced by 

commercial timetabling software. Timetable quality is evaluated using a curriculum-based 

course timetabling (CBCTT) validator algorithm that computes hard- and soft-constraint costs. 

The hybrid HS-GD approach achieves its best result when HMCR is set to 0.8, yielding a total 

cost of 708 with zero hard-constraint violations. It outperforms the university’s software, which 

produces a timetable with a total penalty score of 1230 spanning both hard and soft constraints. 

 

2.2 Genetic Algorithm 

Genetic algorithm (GA), introduced by John Holland in 1975, is grounded in the 

concepts of genetics and natural evolution [22]. This metaheuristic searches for good solutions 

through the iterative application of selection, crossover and mutation operators. As these 

operators rely on random choices, the approach is fundamentally stochastic [8]. This indicates 

that the algorithm may produce varying best solutions across multiple runs for the same 

problem due to the different search behaviours of the operators in each execution [19]. 
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Figure 2.2.1 Genes, Chromosomes, and Population in GA 

In the context of GA, a gene represents a single decision variable or attribute, a 

chromosome is an ordered collection of genes that encodes one candidate solution, and a 

population is the set of chromosomes that are evaluated together in the same generation [22]. 

Figure 2.2 illustrates these basic building blocks and their hierarchy within the algorithm. 

 

Figure 2.2.2 Flowchart of GA [23] 

Figure 2.3 presents the flowchart of GA that guides this part of discussion. The 

algorithm starts with a setup phase in which parameters such as population size, number of 

generations, mutation rate and crossover probability are defined. An initial population of 
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chromosomes is created at random, and each chromosome is evaluated with a problem-specific 

fitness function so that better solutions receive higher scores. If a termination criterion such as 

a maximum generation count, a time limit or satisfaction of a target fitness is met, the search 

stops, and the best chromosome is returned. Otherwise, two chromosomes are selected 

according to their fitness, typically favouring the stronger yet still giving weaker individuals a 

chance in order to preserve diversity. Those parents may undergo crossover which combines 

parts of both chromosomes, and the resulting offspring may then experience mutation which 

randomly alters one or more genes. Whether crossover or mutation occurs is governed by 

predefined probabilities, which allow offspring to be copied unchanged from one parent when 

crossover is skipped and to remain unmodified when the mutation probability test fails. After 

reproduction, the replacement strategy inserts the offspring into the population, the new 

generation is evaluated and the loop repeats until the stopping condition is satisfied. 

GA is widely favoured for tackling large scale and combinatorial optimisation tasks, 

including the multi depot vehicle routing problem (MDVRP) [23], the travelling salesman 

problem (TSP) [25], and the university course timetabling problem (UCTP) [7,8]. Its popularity 

in these domains stems from its capacity to explore vast search spaces efficiently, while 

retaining the flexibility to incorporate domain specific constraints and objectives [22]. 

An important strength of GA lies in the number of tuneable parameters and operator 

variants that can be combined to suit different problems. For instance, several techniques are 

available for each stage of the algorithm process and their selection directly affects 

performance [37]. Besides, the population size in particular has a measurable impact on 

exploration because larger populations tend to provide greater coverage of the search space and 

thus a higher probability of reaching near optimal solutions. In addition, mutation helps the 

algorithm avoid premature convergence to local optima, though an excessive rate can cause the 

search to resemble random sampling [7]. 

Despite these advantages, GA also faces limitations. Crafting an appropriate 

representation and designing a meaningful fitness function can be challenging, and the 

practitioner must decide various parameter settings such as population size and operator 

probabilities. Moreover, even with careful tuning, the algorithm offers no guarantee of finding 

the global optimum, especially on problems with rugged or deceptive fitness landscapes [22]. 

 



Chapter 2 Literature Review 

19 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

2.2.1 Selection 

The selection operator in genetic algorithm (GA) describes the process of selecting two 

chromosomes from the current population to act as parents. These two parents are responsible 

for breeding and producing offspring [18]. The main purpose of the selection operator is to 

ensure that the better genes are passed on to the next generation and progressively distributed 

among the population, thus increasing the overall fitness of the population [20]. Therefore, the 

selection of parents is based on the fitness values of the chromosomes, where fitter 

chromosomes have a higher probability of getting chosen [19]. 

However, favouring fitter chromosomes does not guarantee finding the global optimum. 

When the selection operator entirely depends on the best chromosome, there is a lack of variety 

in the mating pool. This results in the production of similar chromosomes in every generation, 

thereby reducing population diversity [21,22]. Consequently, the population prematurely 

converges and falls into the local optimum [20,21,22]. On the other hand, selecting unfit 

chromosomes slows down the convergence rate, resulting in a longer time to search for the 

global optimum. Hence, a good selection technique needs to maintain a balance between 

favouring fitter chromosomes and preserving population diversity to allow the solutions to 

converge to the global optimum within a reasonable time frame [21,22]. 

This section discusses two common selection techniques, which are roulette wheel (RW) 

selection, random selection, tournament selection, and linear ranking selection. 

 

2.2.1.1 Roulette Wheel Selection 

Roulette wheel (RW) selection is a selection technique in which all chromosomes in 

the population are distributed on a wheel proportionally based on their fitness [18,20]. The 

proportion assigned to each chromosome represents its chance of being selected as a parent. 

Hence, a fitter chromosome occupies a larger sector on the wheel and therefore has a higher 

chance of being chosen for the mating pool [20]. The wheel is then spun randomly. When the 

wheel stops, the chromosome occupying the sector pointed to by the pointer is selected as the 

parent [18,21]. Figure 2.2.3 shows that the “a2” chromosome, indicated by the pointer, is 

chosen as the parent. 
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Figure 2.2.3 RW Selection [21] 

Since better chromosomes are more likely to be chosen as parents, there is a risk of 

premature convergence [18]. Nevertheless, there is still a probability of selecting poorer 

chromosomes, which helps to avoid the solution being trapped in a local optimum [22,24]. 

Moreover, RW selection is widely used because it is easy to implement [18]. For instance, RW 

selection is used for optimising multi depot vehicle routing problem (MDVRP) with capacities 

and fixed endpoints in [23]. Besides, RW selection is applied in [25] to optimise travelling 

salesman problem (TSP), which is evaluated according to the minimum distance required to 

visit each city at least once and return to the starting city. This indicates that RW selection 

plays an important role in a genetic algorithm (GA) model for optimising non-deterministic 

polynomial complete (NP-complete) problems and combinatorial optimisation problems such 

as MDVRP and TSP. 

 

2.2.1.2 Random Selection 

Random selection is a selection technique in which all chromosomes in the population 

are sampled with equal probability, independent of fitness. Two parents are selected randomly 

from the population without any restriction. 

Because no fitness-based weighting is required, random selection is straightforward to 

implement and computationally inexpensive, making it a common baseline or a diversity-

preserving component in GA schemes. Furthermore, its unbiased sampling helps to maintain 

genetic diversity and reduces the risk of premature convergence, especially in noisy or 

deceptive fitness landscapes. However, the absence of selection pressure means that highly fit 
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chromosomes are not preferentially propagated, which can slow convergence and increase the 

number of evaluations needed to reach a good solution. This has been proven by past research 

which compares the performance of different selection techniques against benchmark functions. 

In the experiment, random selection performs the worst among roulette wheel selection and 

tournament selection [20]. 

 

2.2.1.3 Tournament Selection 

In tournament selection, several chromosomes are randomly selected to compete 

against each other [19,21] for a position as a parent. The winner of each tournament is evaluated 

by comparing the fitness of the participating chromosomes [23]. Hence, the fittest chromosome 

in the tournament is going to win and getting selected as the parent [19,21]. 

The number of chromosomes involved in each tournament is defined as the tournament 

size [21]. The larger the tournament size, the higher the chance that the best chromosome is 

selected and wins the tournament [19,23]. This increases the probability of losing diversity in 

the population [18,21]. Therefore, the tournament size needs to be carefully set to avoid 

premature convergence. The most commonly used variant is tournament selection with a 

tournament size of two, also known as binary tournament selection [21]. Figure 2.2.4 

demonstrates the process of tournament selection with a tournament size of three. 

 

Figure 2.2.4 Process of Tournament Selection [21] 
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Tournament selection is the most popular selection technique in genetic algorithm (GA) 

due to several advantages [21,23,25]. One of the advantages is its high efficiency compared to 

other techniques. This is because it does not require a ranking process and therefore has low 

time complexity [21,25]. Furthermore, tournament selection is able to maintain population 

diversity with small or moderate tournament sizes. Yet, the population starts to lose its diversity 

when the tournament size is too large [18,21]. The high efficiency of tournament selection is 

supported by various research studies utilising it for optimisation problems. For example, 

tournament selection was applied in solving the multi depot vehicle routing problem (MDVRP) 

[19] and the travelling salesman problem (TSP) [25], as described in section 2.2.1.1. 

 

2.2.1.4 Linear Ranking Selection 

In Section 2.2.1.1, the disadvantage of Roulette Wheel Selection (RWS) is highlighted, 

where better chromosomes occupy disproportionately larger sectors on the selection wheel [23]. 

This provides them with higher selection chances while limiting opportunities for weaker 

chromosomes [22]. To address this imbalance, Ranking Selection, a method that applies the 

concept of normalisation to selection probabilities, has been introduced [23], with Linear 

Ranking Selection being one of its variations [18,23]. 

Linear Ranking Selection is essentially a modified version of RWS [18]. This technique 

involves four steps. First, the chromosomes are sorted based on their fitness, from best to worst. 

Second, they are ranked according to their order [21]. The best chromosome is assigned rank 

“1”, whereas the worst chromosome receives rank “N”, where “N” represents the population 

size [8]. Third, the chromosomes are distributed on a selection wheel depending on their ranks. 

The size of the sectors, which corresponds to the selection probability, increases linearly and 

uniformly from the lowest to the highest rank [23]. Lastly, the wheel is spun to select a 

chromosome as the parent. 

By utilising ranking instead of fitness, the worst chromosome is able to maintain a 

relatively high selection probability [18]. This is illustrated in Figure 2.2.5, where 

chromosomes are more evenly distributed on the wheel when selection probabilities are 

assigned to them based on ranking rather than fitness. This approach preserves population 

diversity [22,23] and reduces the risk of premature convergence [18,23]. As a result, the 
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likelihood of finding the global optimum is increased. However, this technique has several 

limitations. First, it is not efficient in terms of computational performance due to the necessity 

of sorting and ranking [18]. Second, the low tendency to favour the best chromosome results 

in a slow convergence rate [18,22,23]. 

Despite these drawbacks, the advantages of Linear Ranking Selection make it a 

balanced technique, favoured by researchers for optimisation problems. For instance, this 

technique was applied in tackling the Multi Depot Vehicle Routing Problem (MDVRP) [23] 

and the Travelling Salesman Problem (TSP) [25], which are described in Section 2.2.1.1. In 

these two experiments, Linear Ranking Selection outperformed other techniques, including 

RWS and Tournament Selection with a tournament size of five. This shows that this selection 

technique is a promising method for finding optimal solutions to optimisation problems. 

 

Figure 2.2.5 Selection Probabilities Based on Fitness and Ranking 

 

2.2.2 Crossover 

The crossover operator in genetic algorithm (GA) controls how two parent 

chromosomes are combined to create offspring. By exchanging segments of genetic material 

between selected parents, the operator introduces new gene combinations into the population 

and increases the chance that offspring inherit advantageous traits that improve overall fitness. 

This is supported by an experimental observation, which confirms that highly fit individuals 

often share specific genetic patterns that can be propagated to the next generation through 

crossover [27]. 
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During crossover operation, giving too much emphasis to exploitation or exploration 

can hinder the search. Excessive exploitation, where parents are combined in very similar ways, 

limits diversity and increases the risk of premature convergence. On the other hand, excessive 

exploration, where chromosome segments are exchanged too randomly, slows down 

convergence and extends the searching time for the global optimum. Nonetheless, self-adaptive 

crossover rates can balance these tendencies by dynamically adjusting how aggressively 

genetic material is mixed, preserving diversity while still promoting fitter solutions [28]. 

This section discusses four common crossover technique, which are single-point 

crossover, two-point crossover, uniform crossover, and shuffle crossover. 

 

2.2.2.1 Single-Point Crossover 

Single-point crossover is a recombination operator where two parent chromosomes 

exchange genetic material at a single cut position to produce offspring [20,23]. After randomly 

choosing one crossover point along the genome, the first segment (from the start to the cut) is 

copied from first parent and the remaining segment (from the cut to the end) from second parent 

(and vice versa for the second child). 

 It is simple and fast, which can help propagate useful schemata and speed early 

progress. However, it assumes meaningful adjacency. If gene order does not reflect interacting 

features, the operator may disrupt dependencies or create invalid solutions and can reduce 

diversity if the cut often falls in similar places. Nonetheless, its simplicity makes it only offers 

low exploration compared to other crossover techniques [20], causing it infeasible [23]. 

 

2.2.2.2 Two-Point Crossover 

Two-point crossover is a technique that selects two crossover positions at random on 

each parent chromosome, partitions the parents at those positions, and exchanges the genes that 

lie between the two points to create new offspring [29]. Because exactly two breakpoints are 

chosen, the procedure always produces two children whose middle segments come from 

opposite parents. Figure 2.2.6 depicts this process, showing the two randomly chosen cut points 

on both parents and the swapped middle segments that generate the resulting offspring. 
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Figure 2.2.6 Process of Two-Point Crossover [30] 

This operation technique is straightforward to code because it only requires picking two 

random indices and swapping the intervening genes. However, this simplicity also limits 

diversity. This is because the genes outside the selected segment remain unchanged, therefore 

the search may converge prematurely [18]. Despite these limitations, two-point crossover has 

yielded strong performance on several combinatorial optimisation problems. It has been 

incorporated into genetic algorithm (GA) solutions for the green vehicle routing problem 

(GVRP), where it helps generate high quality routes [31]. Besides, the GA applying two-point 

crossover outperforms several previously published methods such as tabu search (TS) and 

multi-pass in the resource-constrained project scheduling problem with transfer times 

(RCPSPTT) [32]. These successes demonstrate that two-point crossover can be an effective 

component of GA frameworks that tackle non-deterministic polynomial complete (NP-

complete) tasks. 

 

2.2.2.3 Uniform Crossover 

Uniform crossover selects each gene independently from either parent with equal 

probability. Instead of cutting chromosomes into segments, it swaps individual bits by 

generating a random mask of 0s and 1s and copying genes accordingly: a mask bit of 1 takes 

the gene from the first parent, while 0 takes it from the second [29,39]. This produces two 

offspring whose genes are chosen uniformly from both parents. Because the mask is random, 

the effective number and location of crossover points are not predetermined, and inheritance is 

independent of position. 

Its strengths include unbiased exploration, suitability for large gene subsets, and strong 

recombination capability. By examining every gene position, it can probe a wider solution 

space. The main drawback is a typically slower convergence rate, since many genes may be 

swapped at once, dampening exploitation. In practice, uniform crossover has been used for the 



Chapter 2 Literature Review 

26 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

travelling salesman problem (TSP), where it helps maintain genetic diversity and can improve 

the algorithm’s speed in reaching optimal or near-optimal solutions [40]. 

 

Figure 2.2.7 Process of Uniform Crossover [30 

 

2.2.2.4 Shuffle Crossover 

Shuffle crossover aims to eliminate positional bias so that offspring do not depend on 

where the crossover cut happens [42,43]. The method selects two parents and a random cut 

point, then first applies the same random permutation to both parents’ genes. With the genes 

shuffled, the parents undergo a standard single-point crossover at the chosen position to create 

two children [43]. Finally, the inverse permutation unshuffles the offspring back to the original 

indexing. 

In spirit it resembles uniform crossover, but the crucial difference is that shuffle 

crossover exchanges contiguous segments rather than individual bits. Because a fresh random 

shuffling is used for each crossover, the original gene positions have far less influence on 

recombination and on the resulting offspring’s quality [41]. 

 

2.2.3 Mutation 

The mutation operator in genetic algorithm (GA) introduces small random changes into 

the chromosomes in order to preserve genetic diversity and broaden the search space. It 

typically alters one or two genes and is applied with a very low probability [23,33]. By injecting 

fresh variability after selection and crossover, the operator reduces the chance of premature 

convergence and helps the population escape local optima [28]. 
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When tuning the mutation probability, it requires high awareness. If the rate is set too 

low, exploration is limited, promising genes may never be tested, and the search can stick in 

local optima. If the rate is set too high, offspring differ so greatly from their parents that the 

algorithm struggles to learn from past generations, which slows down convergence [33]. An 

effective setting must balance diversity and refinement, so that the search progresses toward 

the global optimum within a reasonable time [28,34]. 

This section discusses a common mutation technique, which is swap mutation. 

 

2.2.3.1 Swap Mutation 

Swap mutation is an operation technique that selects two genes within a chromosome 

and exchanges their positions [36]. Figure 2.2.8 shows an example in which the genes “2” and 

“6” are swapped. Because only two positions change, most neighbouring genes stay together. 

Therefore, population diversity is maintained, where successful gene combinations are not 

drastically disrupted. 

 

Figure 2.2.8 Swap Mutation [35] 

Although this technique preserves much of the original adjacency information, it 

inevitably breaks some links, which can be problematic in sequence‐sensitive problems such 

as the travelling salesman problem (TSP), where the order of cities forms a path [36]. Even so, 

swap mutation is valued for its simplicity and its ability to inject diversity that helps the search 

escape local optima. These qualities explain its adoption in combinatorial optimisation tasks 

such as the multi-depot vehicle routing problem (MDVRP) [23] and the university course 
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timetabling problem (UCTP) [7], where maintaining feasibility while exploring alternative 

arrangements is essential. 

 

2.2.4 Replacement 

The replacement operator in genetic algorithm (GA) determines which chromosomes 

leave the population and which new offspring join the population [22]. Since the population 

size must be kept constant, space must be created for the new offspring to join the population 

[26]. There are two types of replacement techniques, which are steady state updates and 

generational updates [22,26]. 

Generational update techniques replace the entire population with newly produced 

offspring [22,26]. This restricts chromosomes to mating only with those from the same 

generation [22]. On the other hand, steady state update techniques allow new offspring to join 

the population immediately after each reproductive process [22,26]. This involves the 

replacement of existing chromosomes. Typically, a tournament method is used to decide which 

chromosome to replace. Sometimes, the worst or oldest chromosomes are replaced by the 

offspring to accelerate population convergence [22]. 

According to [20] and [26], steady state update techniques generally perform better than 

generational update techniques. This is because the nature of the latter, which replaces the 

entire population, prevents the best chromosome from the previous generation from being 

carried over and inherited in future generations. Therefore, this section mainly discusses steady 

state update techniques, specifically two of them, which are weak parent replacement and 

tournament replacement. 

 

2.2.4.1 Weak Parent Replacement 

Weak parent replacement is a technique where parents and offspring compete for a spot 

in the population. In this technique, the two fittest chromosomes out of the four (two parents 

and two offspring) are retained in the population [22,26]. This allows the weaker parents to be 

replaced by the stronger offspring, thus gradually increasing the overall fitness of the 

population [20,22]. This technique performs best when the selection operator includes both fit 
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and unfit chromosomes as parents. Nevertheless, if the selection operator consistently chooses 

only fitter chromosomes as the parents, the improvement in population fitness is limited [22]. 

Weak parent replacement was utilised in minimisation experiments on a test suite 

consisting of 6 benchmark functions and 3 real-world problems [26]. Besides, [20] used weak 

parent replacement in an experiment evaluating various combinations of operation techniques 

in GA with benchmark functions. The application of weak parent replacement in these research 

studies demonstrates its capability of maintaining population diversity, allowing the population 

to efficiently converge to the global optimum. 

 

2.2.4.2 Tournament Replacement 

Tournament replacement is a technique that replaces weaker chromosomes in the 

population with newly generated offspring. Unlike weak parent replacement and both parent 

replacement, which focus only on the parents and offspring for replacement decisions, 

tournament replacement selects chromosomes for replacement from the entire population. 

The selection process in tournament replacement resembles tournament selection, 

which is discussed in Section 2.2.1.3, except that the worst chromosome in the tournament is 

chosen, rather than the best [22]. In this process, the size of the tournament, representing the 

number of participating chromosomes, needs to be carefully determined [21]. A larger 

tournament size has a higher probability of selecting the worst chromosome from the 

population each time to win the tournament, which can lead to premature convergence [19,23]. 

Following this setup, the process begins by randomly selecting several chromosomes for a 

tournament. During the contest, these chromosomes compete against each other based on their 

fitness. The worst among the chosen chromosomes wins the tournament and is selected to be 

replaced by the offspring [19,21]. 

Although this technique consistently targets weaker chromosomes, it does not 

guarantee an improvement in the population’s overall fitness over successive generations. This 

is because the selected chromosomes are replaced with the newly generated offspring, 

regardless of their fitness. Consequently, there may be ineffective replacements if the offspring 

are not fitter than the chromosomes they replace. This results in a regression in the population’s 

overall fitness, thus slowing down the convergence rate. 
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Despite these limitations, tournament replacement remains a valuable technique. 

However, the discussion and application of this technique in both academic research and 

practical scenarios are notably insufficient, highlighting a domain that has yet to be explored. 

 

2.3 Constraints 

2.3.1 Hard Constraints 

No. Hard Constraints Previous Work 

1 
A student must attend at most one class per time slot. [1], [2], [4], [5], [7], [8], [9], 

[12], [15], [38] 

2 
A lecturer must teach at most one class per time slot. [1], [2], [4], [7], [9], [12], 

[15], [16], [38] 

3 
A room must host at most one class per time slot. [1], [2], [4], [5], [7], [8], [12], 

[15], [16], [38] 

4 A class must have exactly one lecturer. [2] 

5 A class must be assigned a room. [2], [4], [38] 

6 
A class must use a room whose features meet its 

requirements. 

[1], [5], [9], [12], [15] 

7 
A class must not enrol more students than the room’s 

capacity. 

[1], [2], [4], [5], [7], [8], [12], 

[15], [16], [38] 

8 A class must be scheduled on weekdays only. [7] 

9 
A class must be scheduled within the allowed daily 

time window. 

[2], [38] 

Table 2.3.1 Hard Constraints of Previous Work 

 

2.3.2 Soft Constraints 

No. Soft Constraints Previous Work 

1 
A student should not exceed the daily study-hours 

limit. 

[4] 
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2 
A student should not study beyond the consecutive-

hours limit. 

[1], [2], [7], [8], [12] 

3 
A student should attend more than one class when 

present on a day. 

[1], [2], [7], [12] 

4 
A student’s courses should be concentrated into as 

few days as possible. 

[4] 

5 A student’s timetable should minimise idle gaps. [4] 

6 
A lecturer should not exceed the daily teaching-hours 

limit. 

[4] 

7 
A lecturer should not teach beyond the consecutive-

hours limit. 

[2], [9], [38] 

8 
A lecturer’s courses should be concentrated into as 

few days as possible. 

[4] 

9 A lecturer’s timetable should minimise idle gaps. [2], [4] 

10 
A lecturer’s preferred time slots should be honoured 

where feasible. 

[2], [4], [9] 

11 A class should not occupy a lunch-break slot. [2], [4], [9], [12] 

12 
A class should use a room whose capacity closely 

matches its size. 

[8] 

13 
A departmental course should be held in its own 

department’s building. 

[4] 

14 
A course’s classes should follow any required 

sequence. 

[1], [12] 

15 
A course’s classes should span at least the specified 

minimum number of days. 

[1], [12], [16] 

Table 2.3.2 Soft Constraints of Previous Work 

 

2.4 Critical Remarks of Previous Work 

Existing studies on university course timetabling problems (UCTPs) demonstrate that 

a wide range of metaheuristics can deliver feasible and high-quality schedules. The research 

[4] applies goal programming (GP) with simulated annealing (SA) and performs well on a real 
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institutional dataset. Besides, the study [5] introduces adaptive tabu search (ATS) and validates 

its competitiveness against 14 published approaches. Particle swarm optimisation (PSO) with 

selective search (PSOSS) in the research [9] and ant colony optimisation (ACO) with selective 

probability (ACOSP) in the research [11] both reports best-in-class solutions for their 

respective experiments. Other than that, Harmony search (HS) enhanced by great deluge (GD) 

in the paper [16] and the best-nests (BS) variant of cuckoo search (CS) in the research [15] 

further illustrate how hybrid metaheuristics can unlock performance gains in UCTPs with real-

world datasets. 

Despite these contributions, three recurring limitations emerge. First, comparative 

approaches are either absent or narrow. The study [4] does not contrast its results with other 

metaheuristics, while the study [11] measures performance against only one genetic algorithm 

(GA) implementation. Second, several studies operate under settings that may hide additional 

improvements. The research [8] enforces a short runtime limit and filters crossover operations 

for feasibility, which constrains exploration, whereas the research [15] models only hard 

constraints. Third, most evaluations overlook everyday travelling challenges on university 

campus, particularly the proximity of classrooms for consecutive classes. 

Within the subgroup of GA papers, methodological diversity remains limited. The 

research [7] employs roulette wheel (RW) or steady-state selection with swap mutation and 

replaces the weakest individual with the fittest offspring yet omits crossover entirely. Other 

than that, the research [8] combines quinary tournament selection, one-point crossover, random 

mutation and conditional replacement, but does not investigate alternative operator 

combinations. Consequently, these studies vary parameters inside a narrow envelope rather 

than exploring how different combinations of selection, crossover, mutation and replacement 

interact. 

Furthermore, no work reviewed models the constraint that consecutive classes for the 

same student should be held in the same building, even though this requirement directly affects 

student well-being and campus logistics. In addition, the small set of GA operator combinations 

examined so far is insufficient to establish which arrangements truly balance exploration and 

exploitation when both hard and soft constraints are present. These gaps motivate this project, 

which introduces the building continuity constraint and systematically benchmarks a broader 

set of selection, crossover, mutation, and replacement techniques to identify a configuration 

that delivers high-quality timetables while reducing student travel. 
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Chapter 3 

System Methodology 
 

3.1 Project Development 

 

Figure 3..11 Gantt Chart for Project Development 

Figure 3.1.1 illustrates the project development workplan in a Gantt chart, consisting 

of 2 phases (FYP1 and FYP2) and 5 stages, which include planning, analysis, design, 

implementation, and testing. 

The project begins with a planning stage. Previous work on timetabling including 

variants, constraints, and approaches, is reviewed, followed by genetic algorithm (GA), in 

which various techniques of multiple GA operators are studied, to understand established 

optimisation strategies that best fit scheduling problems, specifically university timetabling 

course problems (UCTPs). Insights from these studies shape concise problem statements, 

particularly based on the shortcomings found in them. Besides, clear project scopes, such as 

datasets and constraints, are constructed. A set of achievable objectives are also defined to 

guide all subsequent work. 

Next, attention shifts to analysis. Real timetable data are gathered and cleansed for 

consistency. Data such as programme structures and lecturer information are studied to 

strengthen dataset understanding. Partial mock data is created using the data collected to serve 

as the dataset used in the project. In parallel, GA operation techniques are compared in terms 
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of their concepts, implementations, strengths, and weaknesses, in order to choose those worth-

testing techniques. The programming languages, code libraries, and development tools are also 

analysed to select the most suitable combinations for rapid experimentation. 

With requirements clarified, design tasks formalise how the system will operate. New 

constraints are enumerated to reflect fundamental focuses of the system. A high-level workflow 

is drafted to show how data flow from input to timetable generation and schedule validation in 

GA. Details such as chromosome encodings and operator designs are mentioned as well. 

Besides, a relational schema and data storage technology is designed to hold data used by the 

system, including courses, rooms, lecturers, and students. An entity relationship diagram 

(ERD) is drawn to show a clear structure. Lastly, verification plans specifying metrics and test 

scenarios that will later confirm whether generated timetables satisfy every constraint, are 

designed. 

The implementation stage then delivers a working prototype on the Visual Studio Code 

(VS Code) development platform, as previously decided, using the selected Java programming 

language and MySQL database technology. Core programme structures are coded, laying out 

the chromosome representation and the genetic techniques for selection, crossover, mutation, 

and replacement operators. Constraint-checking modules are integrated to penalise infeasible 

timetables, and persistent data storage is set up to save datasets. However, no graphical user 

interface (GUI) is developed, and output format is yet to be finalised. 

An interim report wraps up the first phase by documenting achievements, design 

decisions, and any limitations discovered along the way. 

The second phase opens with a brief design refinement that focuses on output format. 

The presentation method of the final timetables is determined so that these results can be easily 

interpreted. 

The stage is followed by the full-scale implementation. All remaining features such as 

GA operation techniques, are completed, including an experiment automation function. The 

system is expected to support end-to-end timetable generation and experimental result storage 

without manual intervention. 

Continue with the testing stage, system tests verify end-to-end workflows under 

realistic workloads. Experiments are conducted to measure timetable quality and runtime 
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efficiency against varying dataset sizes. Results are collected and analysed to report findings 

of this research. 

Lastly, a detailed report is produced that captures the completed system, experimental 

results, and recommendations for future enhancements, marking the formal conclusion of the 

project. 

 

3.2 Data Collection 

 

Figure 3.2.1 Timetable for February 2025 CS Y1T3 Students 

 

Figure 3.2.2 Programme Structure for February 2025 CS Y1T3 Students 
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Figures 3.2.1 and 3.2.2 present the official timetables and programme structures for 

February 2025 Computer Science (CS) year one, trimester three (Y1T3) students at Universiti 

Tunku Abdul Rahman (UTAR). These records are downloaded from the university’s Faculty 

of Information and Communication Technology (FICT) website. By studying these data, it is 

found that each timetable specifies the daily allocation of classes, the assigned room, and its 

building. A clear pattern emerges, as rooms in building L host lectures, whereas rooms in 

building N host tutorials and practical sessions. Furthermore, the timetable spans Monday to 

Friday and reserves a period each Friday for Muslim prayer. Besides, the accompanying 

programme structure lists the course code, course name, offered class type, duration, and 

lecturer for every course. Together, these data provide the baseline for a partial mock dataset 

used in this project. 

 

3.3 System Constraint 

3.3.1 Hard Constraints 

No. Hard Constraint 

1 A student must attend at most one class per time slot. 

2 A student must enrol in every course required for the semester. 

3 A lecturer must teach at most one class per time slot. 

4 A room must host at most one class per time slot. 

5 A class must enrol at least one student. 

6 A class must have exactly one lecturer. 

7 A class must be assigned a room once and only once. 

8 A lecture class must be held in a lecture hall. 

9 A tutorial class must be held in a tutorial room. 

10 A practical class must be held in a computer lab. 

11 A class must not enrol more students than the room’s capacity. 

12 A class must be scheduled on weekdays only. 

13 A class must be scheduled between 08:00 and 18:00. 

14 
A class must not be scheduled on Friday between 12:00 and 14:00 (Muslim prayer 

time). 

15 A class must not span across multiple days. 
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Table 3.3.1 Hard Constraints for Project 

 

3.3.2 Soft Constraints 

No. Soft Constraint 

1 A student should study no more than four consecutive hours. 

2 A lecturer should teach no more than four consecutive hours. 

3 A student’s consecutive classes should be held in the same building. 

4 A lecturer should receive at least one teaching hour. 

Table 3.3.2 Soft Constraints for Project 

 

3.4 System Requirements 

3.4.1 Hardware 

The hardware involved in this project is a laptop, which is used to develop the university 

timetabling system. 

Description Specification 

Model MSI GF65 Thin 10UE 

Processor Intel(R) Core(TM) i5-10200H CPU @ 2.40GHz 

Operating System Windows 11 Home Single Language 64-bit 

Graphic NVIDIA GeForce RTX 3060 Laptop GPU 

Memory 16GB DDR4 RAM 

Storage 512GB SSD 

Table 3.4.1 Specifications of Laptop 

 

3.4.2 Software 

The software involved in this project is an integrated development environment (IDE), 

which is associated with a programming language and a database engine to develop the 

university timetabling system. 
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Descriptions Specifications 

IDE Visual Studio Code (VS Code) version 1.99 

Programming Language Java OpenJDK version 21.0.5 

Database Engine MySQL version 8.0.40 

Database Driver MySQL Connector/J version 9.4.0 

Table 3.4.2 Specifications of Software 

 

3.5 Verification Plans 

3.5.1 Hard Constraint Tests 

No. Hard Constraint Verification 

1 
A student must attend at most 

one class per time slot. 

Scan each student timetable; every slot must 

contain no more than one class. 

2 

A student must enrol in every 

course required for the 

semester. 

Scan each student timetable; every compulsory 

course must appear. 

3 
A lecturer must teach at most 

one class per time slot. 

Scan each lecturer timetable; every slot must 

contain no more than one class. 

4 
A room must host at most one 

class per time slot. 

Scan each room timetable; every slot must contain 

no more than one class. 

5 
A class must enrol at least one 

student. 

Count student timetable entries per class and 

confirm the total is at least one. 

6 
A class must have exactly one 

lecturer. 

Scan each course timetable; every class must 

contain no more than one lecturer. 

7 
A class must be assigned a 

room once and only once. 

Scan each course timetable; every class must be 

assigned a room once and only once. 

8 
A lecture class must be held in 

a lecture hall. 

For each lecture in the courses timetable, verify its 

room in the rooms timetable is typed “lecture”. 

9 
A tutorial class must be held in 

a tutorial room. 

For each tutorial in the courses timetable, verify its 

room in the rooms timetable is typed “tutorial”. 
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10 

A practical class must be held 

in a computer lab. 

For each practical in the courses timetable, verify 

its room in the rooms timetable is typed 

“practical”. 

11 

A class must not enrol more 

students than the room’s 

capacity. 

Count student timetable entries per class and 

confirm the total is no more than room capacity. 

12 
A class must be scheduled on 

weekdays only. 

This constraint is initially satisfied. Every class day 

should be Monday to Friday. 

13 
A class must be scheduled 

between 08:00 and 18:00. 

This constraint is initially satisfied. Every class 

should start after 08:00 and end before 18:00. 

14 

A class must not be scheduled 

on Friday between 12:00 and 

14:00 (Muslim prayer time). 

Verify no class overlaps the Friday 12:00 to 14:00 

time slots. 

15 
A class must not span across 

multiple days. 

Scan each course timetable; every class must not 

span across multiple days.. 

Table 3.5.1 Tests for Hard Constraints 

 

3.5.2 Soft Constraint Tests 

No. Soft Constraint Verification 

1 

A student should study no 

more than four consecutive 

hours. 

For each student timetable, locate every contiguous 

block of occupied hours; the length of every block 

must be no more than four. 

2 

A lecturer should teach no 

more than four consecutive 

hours. 

For each lecturer timetable, locate every contiguous 

block of occupied hours; the length of every block 

must be no more than four. 

3 

A student’s consecutive 

classes should be held in the 

same building. 

For each student, examine every pair of back-to-back 

classes; use the rooms timetable to confirm both 

classes share the same building. 

4 
A lecturer should receive at 

least one teaching hour. 

This constraint is initially satisfied. Every lecturer 

should have at least one teaching hour. 
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Table 3.5.2 Tests for Soft Constraints 

 

3.5.3 Resource Utilisation Tests 

No. Resource Utilisation Percentage Verification 

1 30% Generate timetables with zero penalty cost. 

2 60% Generate timetables with zero penalty cost. 

3 90% Generate timetables with zero penalty cost. 

Table 3.5.3 Tests for Resource Utilisation 
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Chapter 4 

System Design 
 

4.1 System Architecture Design 

 

Figure 4.1.1 University Course Timetabling System Architecture 

The system adopts a two-tier client-server model with a three-layer data-access design. 

The Java-based university course timetabling system (client) issues Structured Query 

Language (SQL) operations through the Java Database Connectivity (JDBC) application 

programming interface (API), which provides a standard interface for creating connections, 

preparing statements, and handling results. The MySQL JDBC driver implements that 

interface, translating JDBC calls into the MySQL wire protocol and managing details such as 

authentication, transaction control, and data type mapping. At the back end, the MySQL 

database (server) stores the schema and data, and enforces integrity via keys, constraints, and 

triggers. Communication is bidirectional along the chain between application, JDBC API, 

MySQL driver, and MySQL database. This ensures the results, errors, and metadata flow back 

to the application while keeping database specifics encapsulated behind JDBC. 

 

4.2 Input Design 

The collected data described in Section 3.2 provides the foundation for the partial mock 

dataset used in this project. To reduce complexity, only local students are considered. 

Consequently, courses intended exclusively for international students are omitted. For 

example, the course Philosophy and Current Issues is excluded, while Penghayatan Etika dan 

Peradaban remains. This yields a more uniform programme structure and avoids handling 

multiple parallel scenarios. The adjustment preserves essential relationships among courses, 

rooms and lecturers while keeping the dataset compact and easier to manipulate during 

development. Figure 4.2.1 shows the tailored subset of the collected data. 
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Figure 4.2.1 Tailored Collected Data 

This information is used to generate mocked rooms data. Other than that, 150 students 

and 15 student groups are generated programmatically. Figure 4.2.1 shows the courses, 

lecturers, course-to-lecturer assignments data while Figure 4.2.2 shows the mocked rooms data. 

Based on this subset, the system initialises courses, lecturers, course-to-lecturer 

assignments, and per-course classes. Course, lecturer, and assignment data are generated from 

the available information. Besides, room conventions are defined, where building L hosts 

lectures, while building N hosts tutorials and practicals. These conventions inform the 

generation of the mock rooms dataset. In addition, 150 students and 15 student groups are 

created programmatically. Figure 4.2.1 shows the courses, lecturers, and course-to-lecturer 

assignments; Figure 4.2.2 shows the mock rooms data. 

 

Figure 4.2.2 Mock Rooms Data 

For each course, the system then generates the set of classes. It first estimates the 

number of parallel classes required by dividing the number of students by the capacity of the 

appropriate room type and taking the ceiling. For instance, 150 students enrol in course 

UCCD1024, which has 3 hours of lectures and 2 hours of practicals. Lectures are held in lecture 
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halls (capacity 300), so only 1 lecture class is required. On the other hand, practicals are held 

in practical labs (capacity 20), so 8 practical classes are needed (⌈150/20⌉). In total, the course 

requires 9 classes (1 lecture plus 8 practicals). Each class is then assigned a lecturer chosen 

from those linked to the course, prioritising the lecturer with the fewest current teaching hours. 

Figure 4.2.3 shows an example of class generation. 

 

Figure 4.2.3 Output of Class Generation 

After all classes are created, student groups are allocated to classes by academic year 

and trimester. Allocation is randomised but load-balancing, where each new group is placed 

into the currently least-loaded suitable class to maintain a balanced distribution. Room-capacity 

violations are prevented by a database trigger (see Section 4.5.3) that blocks any over-

enrolment at insert time. Figure 4.2.4 shows an example of group-to-class assignment. 

 

Figure 4.2.4 Output of Group-to-Class Assignment 

Together, these inputs form a coherent, valid dataset for the university course 

timetabling system. 

 

4.3 Output Design 
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The output of the university course timetabling system comprises several structured, 

well-organised components designed for analysis and usability. 

For each run, genetic algorithm (GA) experiment statistics, such as the number of 

generations required to reach zero penalty cost, the time taken (seconds), and the fitness value 

per generation, are written to a text file. These metrics characterise the optimisation process 

and support subsequent analysis. Figure 4.3.1 shows an example of GA run statistics. 

 

Figure 4.3.1 Statistics of GA Experiment 

Other than that, multiple timetables are also generated as comma-separated values 

(CSV) files for each run due to the format’s simplicity and broad tool support. Course, lecturer, 

student, and room timetables are produced. In course timetables (Figure 4.3.2), each class entry 

shows the class type, lecturer name, room, and enrolled student groups. In lecturer timetables 

(Figure 4.3.3), each class entry shows the course code, class type, room, and enrolled student 

groups. In student timetables (Figure 4.3.4), each class entry shows the course code, class type, 

lecturer name, and room. In room timetables (Figure 4.3.5), each class entry shows the course 

code, class type, and lecturer name. An overall timetable (Figure 4.3.6) that consolidates 

courses, lecturers, students, and rooms is also generated. There are some conventions adopted 

by the generated timetables: subsequent slots of a multi-hour class are marked “cont.”; empty 

slots are marked “----”; on Fridays, slots 5 and 6 (12:00-14:00) are marked “Prayer”. 
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Figure 4.3.2 Timetable of Course UCCD1024 

 

Figure 4.3.3 Timetable of Lecturer Ts Dr Goh Chuan Meng 

 

Figure 4.3.4 Timetable of Student Student_087 from Group 9 

 

Figure 4.3.5 Timetable of Room N3 

 

Figure 4.3.6 Overall Timetable 

For each operator combination, after 10 experiments, a summary table is created 

showing the per-run statistics and their averages. A new metric proposed in this project, fitness 

improvement per generation, is also reported. It is calculated by dividing the initial penalty cost 
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by the number of generations taken to achieve zero penalty cost. This provides a fairer basis 

for comparison because the GA initialises chromosomes randomly, leading to different initial 

fitness values. The metric mitigates this bias by emphasising per-generation progress rather 

than absolute fitness across an entire run. Figure 4.3.7 shows the statistics from 10 GA 

experiments for a single combination. 

 

Figure 4.3.7 Statistics of 10 GA Experiments Per Combination 

After all experiments (64 × 10) are completed, the results are summarised for 

comparison across combinations. The combinations with the lowest and highest average fitness 

improvement per generation are identified as the worst and best, respectively. Figure 4.3.8 

presents the detailed statistics for each combination; Figure 4.3.9 shows the overall summary; 

Figure 4.3.10 highlights the worst-performing combination. 

 

Figure 4.3.8 Statistical Details of Each GA Combination 
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Figure 4.3.9 Statistical Summary of All GA Combinations 

 

Figure 4.3.10 Worst GA Combination 

Operator-level comparison tables are also produced to enable like-for-like comparisons 

without confounding from other operators. For example, Figure 4.3.11 compares replacement 

operators. 

 

Figure 4.3.11 Comparison Table for Replacement Operator 
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4.4 Genetic Algorithm Design 

 

Figure 4.4.1 Flowchart of GA for University Course Timetabling System 

Figure 4.4.1 outlines the genetic algorithm (GA) used by the university course 

timetabling system in this project. After setting key parameters (population size, crossover rate, 

and mutation rates), the algorithm creates a random population and immediately repairs each 

chromosome to remove duplicate or missing classes and illegal placements (cross-day 

segments and protected Friday prayer slots). A penalty-based fitness function then scores every 

timetable by counting hard and soft constraint violations; this includes the proposed soft 

constraint that penalises consecutive classes for a student that occur in different buildings to 

discourage inter-building moves. If a chromosome reaches the target fitness (zero cost), the run 

ends, experiment statistics are written, and the best timetable is returned. Otherwise, two 

parents are chosen, crossover and mutation are applied according to their probabilities, and 
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each offspring is repaired before evaluation. A replacement policy then inserts the offspring 

into the population, typically displacing weaker chromosomes, and the loop repeats from 

fitness evaluation until the stopping condition is met. 

 

4.4.1 Chromosome Encoding 

Each chromosome encodes a complete weekly timetable as a fixed-length integer array 

of 250 genes (5 rooms × 5 days × 10 slots), with a small header that stores the current penalty 

score. Gene values are class IDs (see Section 4.2): a value greater than 0 refer to specific 

lecture, tutorial, or practical instance, while 0 denotes an empty time slot. Multi-hour classes 

are represented by repeating the same class ID across consecutive slots equal to the class 

duration. For example, a three-hour class with ID 7 appears as [7, 7, 7]. Physically, the array is 

laid out in room-major order, then day-major within each room: the 50 daily slots of Room 1 

(5 days × 10 slots) are followed by the 50 slots of Room 2, and so on to Room 5 (Figure 4.4.2); 

within each room, the 10 slots for Monday come before the 10 for Tuesday through to Friday. 

This layout supports constant-time edits per slot, fast checks for empty segments and 

contiguous blocks, and a clear, reproducible mapping between timetable semantics and array 

indices. Figure 4.4.3 illustrates the gene-level view of a room within the chromosome, 

including a three-hour class with ID 7 and empty slots. 

 

Figure 4.4.2 Overview of A Chromosome 

 

Figure 4.4.3 Gene-Level View of A Room in A Chromosome 
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4.4.2 Population Initialisation 

The initial population is generated with a greedy-random strategy to avoid early 

infeasibility and reduce timetable fragmentation. For each chromosome, an empty 250-gene 

array is created, and its header initialised. Classes are then ordered by its difficulty to place, 

with longer-duration classes treated as higher difficulty because they require more consecutive 

slots. The algorithm scans compatible rooms and days in index order to find a contiguous block 

long enough for the current class, then writes the class ID across those slots. This longest-first 

placement prevents classic fragmentation (for instance, two isolated one-slot gaps blocking a 

two-hour class) and leaves well-shaped space for later items. After longer classes are placed, 

shorter classes fill the remaining gaps. To maintain diversity, randomisation is injected at 

several points: when multiple feasible placements exist, one is chosen at random, and the room 

is randomly selected from the compatible set. Finally, each chromosome undergoes the 

standard repair process to address any residual overlaps or missing segments before fitness 

evaluation. 

 

4.4.3 Fitness Evaluation 

The fitness of a chromosome is indicated by its total penalty cost, where lower values 

signal better timetables. Penalties are accumulated per violation using fixed weights: hard-

constraint breaches incur 10000 each, standard soft-constraint breaches incur 10, and the 

building-continuity constraint is weighted 20 to emphasise its importance in this project. Hard 

checks include clashes for students and lecturers, room-type compatibility, room capacity, 

protection of Friday prayer periods, missing or duplicated classes, and cross-day segment 

violations. Soft checks include excessive consecutive hours for students and lecturers, plus the 

building-continuity rule. Many of these errors are minimised by the chromosome encoding, 

greedy initialisation, and repair routines in the GA loop. 

 

4.4.4 Repair 

After each chromosome is built, crossed over, or mutated, a dedicated repair process 

restores feasibility and compacts the timetable so that later operators do not accumulate errors.  
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The repair process consists of three steps. First, it scans all 250 genes to count how 

many slots each class currently occupies. It then compares these counts with the required 

durations. If the count is not equals to the duration, this indicates that the class has missing, 

overfilled, or duplicated segments. All occurrences of the class are cleared, and the class is 

queued for correct placement. This guarantees that every multi-hour class appears as one 

contiguous block of its exact length and that no cross-day fragments slip in. 

Second, for each queued class, the repair tries to place it using only compatible rooms 

and currently contiguous free slots. Friday’s protected period is treated specially, where the 

slots 5 and 6 are unavailable. An effective checking on capacity per day caps Friday at six 

hours, which prevents pathological cases such as two 3-hour and one 2-hour classes appearing 

capacity-feasible but actually unplaceable across the two segments on Friday. 

Third, if a class still unable to fit, the operator escalates through increasingly flexible, 

local repacking moves that behave like bounded backtracking. It starts with “same room, same 

day” relocation that clears that day in the room, then re-inserts all classes for that day tightly, 

block by block, to open a contiguous window for the target class. If unsuccessful, it practices 

“same room, across days” relocation that repeats the compact-and-reinsert process on another 

day of the same room until successful or there is no day left. If this approach failed as well, the 

process leverages “rooms of the same type, across days” strategy as a last resort, which clears 

and tightly repacks days across multiple rooms of the required type, subject to each day’s 

capacity. Each repack writes classes back-to-back without gaps inside the allowed segments, 

ensuring the day layout is maximally compact before the next attempt. 

Once all queued classes are placed, the chromosome contains no missing or duplicate 

segments, respects room-type compatibility and protected periods. 

In short, the repair operator combines strict consistency checks with constrained 

backtracking and compact re-packing: if a class cannot fit as-is, it shifts earlier placements 

locally to make space, limits Friday’s effective capacity to six hours to avoid impossible 

layouts, and packs contiguously so that future operations have the largest feasible blocks to 

work with. 

 

4.4.5 Selection 
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4.4.5.1 Roulette Wheel Selection 

In the roulette-wheel scheme, the implementation first finds the worst (maximum) penalty in 

the population and converts each chromosome’s penalty into a non-negative weight by using the 

formula: worst fitness minus own fitness plus one, so that lower penalties yield larger weights. The 

weights are summed, a random draw is taken in between 0 and the total weight, and the operator scans 

cumulatively across the population to pick the first chromosome whose running total exceeds the 

random value. Repeating this procedure twice to return two parents. Because probabilities are 

proportional to the inverted penalty, every chromosome retains a chance while better timetables are 

favoured. Figure 4.4.4 shows that the lower the penalty cost, the higher the fitness, and thus there is 

higher probability of getting chosen as the parent because it spans across more space. 

 

Figure 4.4.4 Roulette Wheel Selection in University Course Timetabling System 

 

4.4.5.2 Random Selection 

The random selector ignores fitness entirely. Each parent is drawn uniformly at random 

from the population, returning two independent picks per mating event. This maximises 

exploration and genetic diversity, providing a useful baseline and a way to inject variability 

without changing any other part of the pipeline. 

 

4.4.5.3 Binary Tournament Selection 

Binary tournament selection samples two distinct candidates uniformly at random and 

returns the one with the lower penalty; ties are effectively broken by the sampling order. This 

process is run twice to obtain two parents. The approach is simple, fast, and scale-free, where 

moderate selective pressure emerges naturally because mid-ranking individuals can still win 
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when paired against weaker ones. Figure 4.4.5 shows the higher fitness chromosome wins the 

tournament and getting chosen as the parent. 

 

Figure 4.4.5 Binary Tournament Selection in University Course Timetabling System 

 

4.4.5.4 Linear Ranking Selection 

Linear ranking selection begins by sorting a copy of the population in ascending order 

of penalty (best first). The operator assigns a linear rank weight to index i as (N − i), so the best 

individual has weight N, the next N−1, and so on, with total weight equal to N(N+1)/2, where 

N represents the population size. To pick a parent, a random draw is taken over this total and a 

cumulative scan over the sorted list identifies the selected rank; repeating yields the second 

parent. Because probabilities depend on rank rather than raw penalty gaps like roulette wheel 

selection, selective pressure is controlled and premature takeover by a single outlier is reduced. 

Figure 4.4.6 shows the process of linear ranking selection which assigns weight according to 

rank rather than fitness. 
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Figure 4.4.5 Linear Ranking Selection in University Course Timetabling System 

 

4.4.6 Crossover  

All crossover techniques in this system are room-based. Rooms are not interchangeable 

because capacity and room type (lecture hall, tutorial room, practical lab) are tied to the room 

itself, so cutting mid-room can easily produce invalid schedules (for example, a lecture class 

landing in a lab). Multi-hour classes also span consecutive slots, making it difficult to align 

identical cut points inside both parents without splitting a class. To avoid these issues, the 

algorithm performs crossover room by room: for each room, the offspring inherits the entire 

weekly schedule from one of the parents. This design preserves room-type and capacity 

semantics by construction and greatly reduces post-crossover repair. 

 

4.4.6.1 Single-Point Crossover 

A single classroom index is sampled as the crossover point in the room list (room-major 

layout). For each child, all classrooms before the point are copied wholesale from Parent 1, and 

all classrooms from the point onward are copied from Parent 2. The second child uses the 

complementary assignment. Because each classroom is transferred as a complete unit, no class 

is fragmented, and room constraints remain intact. Figure 4.4.6 shows the process of single-

point crossover in this project. 
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Figure 4.4.6 Single-Point Crossover in University Course Timetabling System 

 

4.4.6.2 Two-Point Crossover 

Two room indices are sampled. For each child, the middle block of rooms (from first 

room index (inclusive) to second room index (exclusive)) is copied from Parent 2, while the 

outer blocks come from Parent 1. The second child receives the complementary composition. 

This increases mixing compared with single-point crossover while still respecting classroom 

boundaries, ensuring that every inherited room timetable remains coherent. Figure 4.4.7 shows 

the process of two-point crossover in this project. 

 

Figure 4.4.7 Two-Point Crossover in University Course Timetabling System 
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4.4.6.3 Uniform Crossover 

Each classroom is treated independently with a Bernoulli draw, in which the possibility 

of each outcome is 0.5. If the generated random value is 0, the child takes the entire schedule 

of that classroom from Parent 1; otherwise from Parent 2. This produces fine-grained 

recombination at the level of rooms, encouraging diversity without risking mid-class splits or 

room-type mismatches. Figure 4.4.8 shows the process of uniform crossover in this project. 

 

Figure 4.4.8 Uniform Crossover in University Course Timetabling System 

 

4.4.6.4 Shuffle Crossover 

Before applying room crossover, the algorithm generates a random permutation of 

room indices and applies single-point crossover to the list of shuffled indexes. The rooms to be 

crossed over is then determined from the room indices after the crossover point. Shuffling 

breaks positional bias among adjacent rooms and promotes better mixing of room clusters, 

while maintaining the room-by-room guarantee that preserves capacity and type semantics. 

Figure 4.4.9 shows the process of shuffle crossover in this project. 
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Figure 4.4.9 Shuffle Crossover in University Course Timetabling System 

 

4.4.7 Mutation 

After crossover, each offspring is subjected to mutation with a fixed probability. The 

implementation uses a contiguity-aware swap that moves classes without breaking multi-hour 

blocks or violating room-type semantics. 

The operator first picks a random source index in the chromosome and maps it to (room, 

day, slot) using the room-major layout. It then restricts potential destinations to rooms of the 

same type as the source room, ensuring any move cannot place a lecture into a tutorial room or 

practical lab, or exceed capacity semantics tied to room type. For example, if the chosen gene 

is at lecture hall, the target gene must be selected from lecture halls only. A random destination 

index is drawn uniformly over all days and slots across these compatible rooms, which 

encourages broad exploration. As a result, the class may remain in place, move within the same 

room, or jump to a different but compatible room at the end of this operation. 

If both positions are empty, a trivial swap has no effect. Otherwise, the operator 

performs a contiguous-block swap: it detects whether either index lies inside a multi-hour class, 

locates that class’s full block, and swaps whole blocks rather than single genes. This preserves 

class contiguity by construction. The operator also guards against illegal shapes: swaps do not 
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cross day boundaries, and Friday’s protected period (slots 5 and 6) is treated as a hard split, so 

no block is allowed to straddle it. If a clean block-for-block exchange is not possible (for 

instance, destination area is partially occupied or the blocks differ in length), the routine 

performs the safest available partial move by checking slots before and after both contiguous 

class blocks, hoping to find sufficient spaces to utilise those empty slots for block-to-block 

exchange. If unsuccessful, it finds the empty blocks in the room without limitation to before 

and after target class blocks. If no empty block is found, no swap is performed. 

Two design choices make this mutation both safe and effective. First, room-type 

filtering means every mutated placement remains in a capacity- and usage-compatible room 

family, avoiding a large class of invalid schedules. Second, contiguity awareness means multi-

hour classes are never torn apart; mutations explore alternative placements of entire classes 

instead of introducing fragmentation. After mutation, the repair operator runs to clear up any 

side effects (duplicates, missing segments, or cross-day violations), and the individual is re-

evaluated for fitness. 

 

4.4.8 Replacement 

4.4.8.1 Weak Parent Replacement 

After producing two offspring from a mating pair, the algorithm builds a candidate pool 

consisting of both parents and both offspring. It then sorts the candidates according to their 

fitness. The two best chromosomes out of the four candidates replace the two parents. This 

approach ensures the child replaces the parent only if the child’s penalty is strictly lower. If 

both children outperform both parents, both parents are replaced; if neither child improves on 

its mapped parent, the parents are retained, and the offspring are discarded. This keeps 

population size constant, preserves strong parental building blocks, and prevents regressions 

caused by inferior children. Figure 4.2.10 shows that Parent 1 and Offspring 2 (highlighted in 

green) is the two best chromosomes among the two parent and two offspring, therefore 

replacing Parent 1 and Parent 2 (highlighted in red) in the population. 
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Figure 4.4.10 Weak Parent Replacement in University Course Timetabling System 

 

4.4.8.1 Binary Tournament Replacement 

For each offspring, two distinct candidates are sampled uniformly at random from the 

current population. The candidate with the higher penalty cost, that is the weaker one, is 

selected as the replacement target. This operation applies the opposite logic as the binary 

tournament selection, as selection aims to select good chromosomes while replacement aims 

to replace bad chromosomes. Figure 4.4.11 shows the process of choosing a replacement target 

from the population in binary tournament replacement. 

 

Figure 4.4.11 Replacement Target Selection Process in Binary Tournament Replacement 

 

4.4.8.1 Linear Ranking Replacement 
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This is a proposed replacement technique inspired by the linear ranking selection 

strategy. The population is copied and sorted by penalty in descending order (worst first). A 

linear rank weight is assigned to index i as (N − i), so lower-ranked (worse) chromosomes are 

more likely to be chosen as replacement targets, while top individuals have the smallest 

removal probability. For each offspring, a target is drawn according to these rank weights; this 

decouples replacement from raw penalty gaps, protects elites probabilistically, and avoids 

premature loss of diversity. This operation applies the opposite logic as the linear ranking 

selection, as selection aims to select good chromosomes while replacement aims to replace bad 

chromosomes. Figure 4.4.12 shows the process of choosing a replacement target from the 

population in linear ranking replacement. 

 

Figure 4.4.12 Replacement Target Selection Process in Liner Ranking Replacement 

 

4.4.8.1 Weak Chromosome Replacement 

This is a proposed replacement technique inspired by the weak parent replacement 

strategy. For each offspring, the algorithm identifies two global worst chromosomes in the 

population (maximum penalty) and adds it to a candidate pool consisting of both offspring. 

The candidates are then sorted according to their fitness. The best two chromosomes replace 

the positions of both parents in the population This policy injects a stronger selective pressure 

than the weak parent replacement toward continuous improvement while guaranteeing that the 

current best solutions are never overwritten by weaker individuals. Figure 4.3.13 shows that 

Worst 1 and Offspring 2 (highlighted in green) is the two best chromosomes among the two 

worst chromosomes and two offspring, therefore replacing Worst 1 and Worst 2 (highlighted 

in red) in the population. 
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Figure 4.4.13 Weak Chromosome Replacement in University Course Timetabling System 

 

4.4.9 Parameter Settings 

No. Parameter Value 

1 Population Size 100 

2 Crossover Probability 0.7 

3 Mutation Probability 0.4 

Table 4.4.1 Parameter Settings of GA in University Course Timetabling System 

The crossover and mutation rate are determined by performing grid search across 

various parameter combinations. Experiments using combinations of 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 

crossover rate and 0.01, 0.1, 0.2, 0.3, 0.4, 0.5 mutation rate are run to identify the best 

probabilities. The GA combination involved is using roulette wheel selection, single-point 

crossover, swap mutation, and weak parent replacement. Each parameter variation is run 10 

times using the specified GA model. The results are then evaluated using the proposed metric 

(see Section 4.3). 

Figure 4.4.14 shows the experiment results of the parameter testing. It is found that 

crossover rate at 0.7 and mutation rate at 0.4 performs the best. It can be clearly seen that the 

performance of GA increases as the mutation rate increases and reaches its peak at 0.4 and 

slowly falls at 0.5. On the other hand, the performance of GA model reaches its peak when 

crossover rate is set at 0.7. 
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Figure 4.4.14 Experiment Results of Crossover and Mutation Variations 

 

4.4.10 Operator Combinations 

Selection Crossover Mutation Replacement 

Roulette Wheel Single-Point Swap Weak Parent 

Random Two-Point - Binary Tournament 

Binary Tournament Uniform - Linear Ranking 

Linear Ranking Shuffle - Weak Chromosome 

Table 4.4.2 GA Operator Techniques for Project 

Table 4.4.2 shows the operator techniques applied in this project, which are 4 selection, 

4 crossover, 1 mutation, and 4 replacement techniques. These components allow for the 

formation of 64 different genetic algorithm (GA) combinations as shown in Figure 4.4.15. 
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Figure 4.4.15 GA Combinations 

 

4.5 Data Storage Design 

In this project, MySQL serves as the persistent data storage for the university course 

timetabling system. It is an open-source, production-grade, client-server relational database 

management system (RDBMS) that supports standard SQL and ACID (atomicity, consistency, 

isolation, durability) transactions. Its native features such as auto-increment columns, foreign 

keys, and triggers allow integrity rules to be enforced close to the data, reducing application-

side complexity. Furthermore, the database integration with Java, the development 

programming language for this project, is straightforward using the JDBC API and the MySQL 

Connector/J database driver. In summary, MySQL combines relational rigour and transactional 

reliability with a simple Java integration path, making it a solid foundation for research-based 

projects. 
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4.5.1 Database Structure 

 

Figure 4.5.1 ERD for University Course Timetabling System 

Figure 4.5.1 shows the entity relationship diagram (ERD) for the university timetabling 

system, comprising 6 core entities, which are Students, Student Groups, Courses, Lecturers, 

Classes, and Rooms, and the relationships that connect them. Each Student belongs to exactly 

one Student Group. Student Groups and Classes form a many-to-many relationship via an 

associative table, where students inherit class enrolments through their group rather than each 

student being linked to classes individually. Each Course generates one or more Classes, 

capturing the idea of parallel or repeat offerings. Every Class is taught by exactly one Lecturer, 

while a Lecturer may teach multiple Classes, creating a one-to-many association. Rooms are 

modelled independently. This is because class-to-room assignments are produced dynamically 

by the genetic algorithm (GA) during each run. Each chromosome represents a candidate 

timetable, therefore persisting these assignments in the database would create excessive, 

redundant writes and degrade performance. Keeping Rooms as a reference list ensures a 

consistent, controlled set of available spaces across experiments. Together, these relationships 
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yield a normalised, searchable schema that supports conflict-free allocation of lecturers, 

students, courses, and rooms. 

 

4.5.3 Table Structure 

Students table 

Attribute Data Type Constraint Description 

ID INT Primary key 
Unique identifier of 

student 

Name VARCHAR(100) Not NULL Student name 

Group ID INT Not NULL; Foreign key 
Reference to student 

group 

Table 4.5.1 Students Table Structure 

Student Groups table 

Attribute Data Type Constraint Description 

ID INT Primary key 
Unique identifier of 

student group 

Student 

count 
TINYINT 

Not NULL; Check if value 

is between 1 and 10 

Number of students in 

group 

Year TINYINT 
Not NULL; Check if value 

is more than or equals to 1 
Current academic year 

Trimester TINYINT 
Check if value is between 

1 and 3 
Current trimester 

Table 4.5.2 Student Groups Table Structure 

Courses table 

Attribute Data Type Constraint Description 

ID INT Primary key 
Unique identifier of 

course 

Code VARCHAR(20) Not NULL; Unique Course code 
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Name VARCHAR(200) Not NULL Course name 

Year TINYINT 
Not NULL; Check if value 

is more than or equals to 1 
Academic year 

Trimester TINYINT 
Check if value is between 

1 and 3 
Academic trimester 

Table 4.5.3 Courses Table Structure 

Lecturers table 

Attribute Data Type Constraint Description 

ID INT Primary key 
Unique identifier of 

lecturer 

Name VARCHAR(100) Not NULL Full name of lecturer 

Assigned 

class hours 
SMALLINT 

Default is 0; Check if 

value is more than or 

equals to 0 

Class hours assigned to 

lecturer 

Table 4.5.4 Lecturers Table Structure 

Rooms table 

Attribute Data Type Constraint Description 

ID INT Primary key Unique identifier of room 

Name VARCHAR(50) Not NULL Room name 

Building CHAR(1) 
Not NULL; Check if value 

is between ‘A’ and ‘Z’ 
Building identifier 

Type 

ENUM(‘lecture 

hall’, ‘tutorial 

room’, ‘practical 

lab’) 

Not NULL Room type 

Capacity SMALLINT 
Not NULL; Check if value 

is more than 0 
Room capacity 

Table 4.5.5 Rooms Table Structure 

Classes table 
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Attribute Data Type Constraint Description 

ID INT Primary key Unique identifier of class 

Type 

ENUM(‘lecture’, 

‘tutorial’, 

‘practical’) 

Not NULL Class type 

Duration TINYINT 
Not NULL; Check if value 

is between 1 and 10 
Class duration (hours) 

Course ID INT 
Not NULL; Foreign key 

Reference to course-to-

lecturer assignment Lecturer ID INT 

Table 4.5.6 Classes Table Structure 

Courses-Lecturers table 

Attribute Data Type Constraint Description 

Course ID INT Primary key; Foreign key Reference to course 

Lecturer ID INT Primary key; Foreign key Reference to lecturer 

Table 4.5.7 Courses-Lecturers Table Structure 

Groups-Classes table 

Attribute Data Type Constraint Description 

Group ID INT Primary key; Foreign key 
Reference to student 

group 

Class ID INT Primary key; Foreign key Reference to class 

Table 4.5.8 Groups-Classes Table Structure 

 

4.5.3 Database Trigger 
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Figure 4.5.2 Flowchart of Trigger 

In this project, the university course timetabling system defines a trigger that runs 

before inserting every group-to-class assignment into database to enforce enrolment limits at 

the database layer. The workflow of this trigger is shown in Figure 4.5.2. When the database 

attempts to insert a new group-to-class link, the trigger first calculates the projected total 

number of students in that class by summing the number of students of all already-linked 

groups and adding the incoming group’s size. Then, it looks up the class type and determines 

the applicable capacity threshold. For example, a lecture class is held in a lecture hall that has 

a capacity of 300 students. Lastly, it compares the projected total number of students against 

the limit. If the insert operation would exceed the allowed capacity, the database aborts the 

operation with a clear error message. By validating capacity close to the data, the trigger 
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guarantees data consistency, prevents over-enrolment even under concurrent writes, and keeps 

constraint logic centralised and auditable. 
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Chapter 5 

System Testing 
 

5.1 Experiments on Constraints 

The verification on constraints is conducted by observing the timetable in CSV format 

and making sure that all constraints are satisfied by the output. All output timetables are 

manually checked one-by-one to ensure the correctness since there is no one static, exact output 

due to the stochastic property of genetic algorithm (GA). 

 

Figure 5.2.1 Overall Timetable for Result Verification 

Figure 5.2.1 shows the overall timetable used for result verification for one experiment. 

This timetable consists of information from courses, lecturers, students, and rooms timetables, 

compiling all their data into one overview. Therefore, this summary timetable is used to verify 

the constraints in the timetable due to its simplicity without needing to check for other 

timetables. 

No. Hard Constraint Observation Status 

1 A student must attend at most one class 

per time slot. 

There is no repeating student group 

in each time slot. 

Pass 

2 A student must enrol in every course 

required for the semester. 

Each course has the enrolment of 

each student group. 

Pass 

3 
A lecturer must teach at most one class 

per time slot. 

There is no repeating lecturer in 

each time slot. 

Pass 

4 
A room must host at most one class per 

time slot. 

There is no repeating room in each 

time slot. 

Pass 

5 
A class must enrol at least one student. There is no class with no student 

group enrolment. 

Pass 
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6 
A class must have exactly one lecturer. There is only one lecturer for each 

class. 

Pass 

7 
A class must be assigned a room once 

and only once. 

There is only one lecturer for each 

class. 

Pass 

8 
A lecture class must be held in a lecture 

hall. 

All classes in room L1 (lecture 

hall) are lecture classes. 

Pass 

9 
A tutorial class must be held in a 

tutorial room. 

All classes in rooms N1 and N2 

(tutorial rooms) are tutorial classes. 

Pass 

10 

A practical class must be held in a 

computer lab. 

All classes in rooms N3 and N4 

(practical labs) are practical 

classes. 

Pass 

11 

A class must not enrol more students 

than the room’s capacity. 

The number of students (number of 

student groups × 10) does not 

exceed room capacity (300 for L1, 

30 for N1 and N2, 20 for N3 and 

N4) for each class. 

Pass 

12 
A class must be scheduled on 

weekdays only. 

Satisfied by system design. Pass 

13 
A class must be scheduled between 

08:00 and 18:00. 

Satisfied by system design. Pass 

14 

A class must not be scheduled on 

Friday between 12:00 and 14:00 

(Muslim prayer time). 

There is no class at the slot 5 and 6 

of Friday. 

Pass 

15 

A class must not span across multiple 

days. 

Every class at the last slot of a day 

is different from the classes at the 

first slot of next day. 

Pass 

Table 5.1.1 Hard Constraint Verifications 

No. Soft Constraint Observation Status 

1 

A student should study no more than 

four consecutive hours. 

There is no student group spanning 

across time slot more than four 

consecutive hours. 

Pass 
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2 

A lecturer should teach no more than 

four consecutive hours. 

There is no lecturer spanning 

across time slot more than four 

consecutive hours. 

Pass 

3 

A student’s consecutive classes should 

be held in the same building. 

Consecutive classes for each 

student group are in the same 

building. 

Pass 

4 
A lecturer should receive at least one 

teaching hour. 

Every lecturer has at least one class 

assignment. 

Pass 

Table 5.1.2 Soft Constraint Verifications 

 

5.2 Experiments on GA Models 

In these experiments, the input data design and output data format are specified in 

Section 4.2 and 4.3 respectively. The main performance comparison metric is the one proposed 

in this project, fitness improvement per generation. 

The experiments on each GA combination (10 runs) generate a result as shown in 

Figure 5.2.1. 

 

Figure 5.2.1 Experiment Result of GA01 Model 

The results of all the 64 GA combinations (see Section 4.4.10) are summarised into a 

table as shown in Figure 5.2.2. 
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Figure 5.2.2 Summary of Experiment Results of All GA Combinations 

From the summary table, it is clear that the GA18 is the worst model, which is formed 

by random selection, single-point crossover, swap mutation, and binary tournament 

replacement. On the other hand, the GA44 is the best model, which comprises of binary 

tournament selection, uniform crossover, swap mutation, and weak chromosome replacement. 

 

5.2.1 Comparison among Operator Techniques 
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Several operator-level comparison tables are constructed to enable easier comparison 

with each other without interference of other operators. 

 

5.2.1.1 Selection 

 

Figure 5.2.3 Selection Operator Comparison Table 

Overall, the selection operator makes a clear difference. Averaged across all crossover-

replacement pairings, Binary Tournament delivers the highest fitness improvement per 

generation (45.51), closely followed by Linear Ranking (43.56). Roulette Wheel lags behind 

(36.66), and Random is the weakest on average (31.70). In short, Binary Tournament is better 

than Linear Ranking, followed by Roulette Wheel and Random. 

Binary Tournament also contains the single best cell in the grid (67.99 with Uniform 

crossover and Weak Chromosome replacement, highlighted in green). This is consistent with 

the theory, where small-k (k represents tournament size) tournaments impose steady selection 

pressure that quickly amplifies fitter individuals while still allowing diversity from occasional 

upsets. When coupled with an aggressive replacement like Weak Chromosome, exploitation is 

intensified, and the generation count to reach zero-cost drops, hence resulting in a larger 

improvement per generation value. 

Linear Ranking is a close second on average and shows several strong combinations 

(for example, Single-point crossover with Weak Chromosome replacement at 63.97 and 

Single-Point crossover with Binary Tournament replacement at 52.13). Rank-based selection 

is insensitive to the absolute scaling of the penalty-based fitness used, so it avoids Roulette 
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Wheel’s tendency to over- or under-select when the population’s costs are tightly clustered or 

highly skewed. The result is consistent progress across many crossover and replacement 

settings. 

Roulette Wheel’s middling average and lack of top-end cells reflect that sensitivity to 

fitness scaling. With penalty sums that shrink as the population improves, proportional 

selection can become noisy, where tiny absolute differences in cost translate to near-uniform 

sampling, diluting selection pressure. It does produce respectable outcomes in some rows (for 

instance, Two-point crossover with Weak Chromosome replacement at 43.01), but it is less 

robust overall than tournament or ranking. 

Random selection performs worst and contains the global minimum (20.06 with Single-

Point crossover and Binary Tournament replacement, highlighted in blue). With essentially no 

selection pressure, progress depends almost entirely on the crossover-replacement pair to 

stumble into improvements. It can look adequate only when paired with very strong 

replacement (for example, Two-point crossover with Weak Chromosome replacement reaches 

approximately 50), which underlines that the gains come from replacement rather than 

selection. 

Taken together, the data supports using Binary Tournament as the main selector for the 

UCTP, with Linear Ranking as a solid alternative. 

 

5.2.1.2 Crossover 
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Figure 5.2.4 Crossover Operator Comparison Table 

Looking column-wise, the four crossover types are quite close on average, with Shuffle 

narrowly best (40.00), followed by Uniform (39.68), Single-point (39.10) and Two-point at 

last (38.65). The spread across column means is small (1.35). Therefore, it is concluded that, 

on this dataset and encoding, crossover choice affects progress per generation less than 

selection and replacement do. Still, there are meaningful differences in robustness and 

extremes. 

Uniform crossover is consistently strong and delivers the overall best cell (67.99) with 

Binary Tournament selection and Weak Chromosome replacement. It also posts high values 

across other selections when paired with Weak Chromosome replacement (for example, 52.94 

with Roulette Wheel selection, 55.58 with Linear Ranking selection). Room-wise mixing 

across the entire timetable injects diversity without relying on any particular cut position, so 

good room patterns discovered in one parent can permeate the other more reliably, especially 

under high selection pressure. 

On average, Shuffle edges out the rest (40.00) and is notably robust: 55.95 with Roulette 

Wheel selection and Weak Chromosome replacement, 52.76 with Linear Ranking and Weak 

Chromosome replacement, and 51.74 with Binary Tournament selection and Linear Ranking 

replacement. By randomising the order of rooms before exchanging a segment (and unshuffling 

after), it reduces positional bias in the room-level representation. The effect is similar to 

uniform, broad recombination within the room, but with slightly steadier returns across the 

board because it does not depend on lucky crossover points. 

The performance of Single-Point is highly pairing-sensitive. It reaches an excellent 

63.97 with Linear Ranking selection and Weak Chromosome replacement, and 52.13 with 

Linear Ranking selection and Binary Tournament replacement but drops to the table’s worst 

(20.06) under Random selection and Binar Tournament replacement. Because only one 

contiguous segment of timetable is exchanged, the operator tends to be exploitative: when 

parents are already strong (from stronger selection), it propagates useful structures; when 

parents are mediocre (such as Random selection), it lacks diversity and stalls, hence the 

volatility. 

Despite a few high spots (61.59 with Binary Tournament and Weak Chromosome; 

55.46 with Binary Tournament and Linear Ranking replacement), its average is the lowest. 
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Swapping two segments room-by-room preserves a lot of parental layouts while adding just 

enough disruption to require more repairs, which often yields less net gain per generation than 

more diversified mixing. In other words, it can improve quickly when coupled with very strong 

selection and replacement but otherwise under-explores. 

 

5.2.1.3 Replacement 

 

Figure 5.2.5 Replacement Operator Comparison Table 

Reading by columns, Weak Chromosome clearly dominates. It posts the highest 

column-average (48.79) by a large margin over Linear Ranking (37.40), Weak Parent (36.40), 

and Binary Tournament replacement (34.85). It also contains the global best cell, 67.99 with 

Binary Tournament selection and Uniform crossover (highlighted in green). This pattern fits 

intuition: always ejecting the worst individual each iteration maximises exploitation pressure 

and guarantees the population floor rises, so the fitness improvement per generation metric 

benefits directly. 

Linear Ranking is the next most reliable. Its column has few weak outliers and several 

strong pairings (e.g., Binary Tournament selection and Two-Point crossover at 55.46; Linear 

Ranking selection with Single-Point crossover at 40.75 and Uniform crossover at 54.19). Rank-

based survivor choice is scale-invariant and tempers stochasticity, so it preserves steady 

progress even when fitness values get tightly clustered, hence the solid average. 

Weak Parent sits close to Linear Ranking on average but is more sensitive to the quality 

of the two parents that produced the offspring. When one parent is already strong, replacing 
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the weaker of the pair is sensible. However, if both parents are middling, the operator can 

recycle mediocrity, which caps the per-generation gains. Nonetheless, there are still good rows 

when upstream selection is strong (for example, Binary Tournament selection and Shuffle 

crossover at 48.5), but it is less consistently high than Weak Chromosome. 

Binary Tournament replacement performs worst on average and includes the global 

minimum of 20.06 with Random selection and Single-point crossover (highlighted in blue). A 

small tournament to decide who leaves the population adds randomness at the survivor stage; 

without strong selection pressure, it can evict decent individuals and keep weaker ones, eroding 

building blocks assembled by crossover. That hurts measured improvement per generation 

unless counterbalanced by a very strong selector and an aggressive crossover. 

 

5.2.2 Comparison with Past Research 

In this experiment, the result of the past research [8] is used for comparison. [8] adopted 

a GA combination that consists of 5-tournament selection, single-point crossover, and random 

mutation with Simple Search Neighbourhood (SSN) and Swap Search Neighbourhood (SWN) 

strategies. In its experiment, [8] achieves a fitness improvement for both datasets tested by it, 

which reduced the penalty cost from approximately 24000 to 1400 in 5 minutes. However, no 

optimum value was achieved. 

With that said, the university course timetabling system developed in this project is 

theoretically better than the system of [8] in terms of performance since it is able to generate a 

perfect timetable. Nonetheless, the datasets applied in both research are different. Therefore, 

this conclusion still needs to be validated in the future study. 

 

5.3 Experiments on Resource Utilisation 

This section focuses on determining the maximum performance of the developed 

university timetabling system by testing it with different class-to-resource ratios. In these 

experiments, the inputs are the mostly the same as what described in section 4.2, except the 

number of students and the classes for each course. The number of students is manipulated in 

the experiments to control the resource utilisation percentage. On the other hand, the duration 

of some classes is adjusted, so that the class-to-resource ratio of all three types of classes 
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(lecture, tutorial, practical) can achieve the same percentage, making the experiments easier 

and fairer. Figure 5.3.1 shows the adjusted classes data for each course. Furthermore, these 

experiments only run the GA once instead of 10 times like others because the primary objective 

of this experiment is to determine the feasibility of the system. The GA combination applied 

in these experiments is the best combination found from previous experiments, which is GA44 

that comprises of binary tournament selection, uniform crossover, swap mutation, and weak 

chromosome replacement. 

 

Figure 5.3.1 Adjusted Class Information 

When the number of students is 300, the resource utilisation is 30%. The system 

performs well by reaching optimum in 1.37 seconds while using only 3366 generations. 

 

Figure 5.4.2 Experiment Result of 30% Resource Utilisation 

When the number of students is 600, the resource utilisation is 60%. The system 

successfully generates a feasible timetable in 6.75 seconds by using 9290 generations. 
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Figure 5.4.3 Experiment Result of 60% Utilisation Testing 

However, when the number of students is 900, and the resource utilisation is 90%, the 

system fails to generate a feasible solution. This might be because the experiments increase the 

number of students without adding lecturers, which raises the risk of breaching lecturer-related 

soft constraints, which is excessively long consecutive teaching hours. 

 

Figure 5.4.4 Experiment Result of 90% Utilisation Testing 
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Chapter 6 

Discussion 
 

6.1 Objective Evaluation 

Overall, this project meets all three stated objectives within the defined scope of a 

partial mock dataset and a GA-based solution pipeline. 

First, the objective to formalise a comprehensive set of hard and soft constraints for the 

UCTP is achieved. Hard constraints such as capacity and resource non-overlap are explicitly 

modelled. On the other hand, soft constraints, including the new “same building for consecutive 

classes” rule, are incorporated into the fitness function as quantitative penalties, so their impact 

could be measured across experiments. As documented in this report, the same-building rule is 

implemented as a binary penalty rather than a distance-weighted cost. Nonetheless, this 

simplification still enables controlled, interpretable analysis of the constraint’s effect and 

satisfies the objective’s requirement to formalise and measure it. 

Second, the project successfully designs and implements a flexible GA framework with 

exchangeable operators. Four selection methods, four crossover methods, one mutation, and 

four replacement methods (including two newly proposed replacement strategies) are 

composed into 64 distinct operator combinations without changes to the core engine. An 

immediate repair step after both crossover and mutation ensures chromosomes remains 

schedulable under the modelled constraints. This modularity and the use of room-based 

crossover are consistent with the design intent and demonstrate that the “plug-and-play” 

operator goal was achieved in practice. 

Third, the evaluation objective is achieved: every GA combination is assessed on the 

partial mock dataset through multiple independent trials. For each run, the number of 

generations to reach feasibility (zero penalty), execution time, and initial penalty cost are 

recorded. The aggregated statistics are also computed to allow fair, comparative analysis across 

combinations. The resulting summaries are used to identify both the overall best combination 

and technique-specific strengths and weaknesses, fulfilling the objective’s requirement for 

systematic, statistically informed evaluation. 
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6.2 System Novelties 

This project introduces a student-centred soft constraint, building continuity, that 

encourages consecutive classes for the same student to be scheduled within the same building. 

By penalising inter-building moves between back-to-back sessions, the system explicitly 

targets reduced walking time and less lost learning, without over-constraining the search space. 

A second novelty is a modular GA framework in which selection, crossover, mutation, 

and replacement operators are fully interchangeable. This design enables a like-for-like 

evaluation of 64 operator combinations on a controlled dataset, yielding the first systematic 

comparison of these techniques focused on the university course timetabling problem (UCTP). 

The resulting evidence helps researchers choose effective operator stacks and design more 

rigorous experiments. 

The study also proposes two novel replacement techniques, which are linear ranking 

replacement and weak chromosome replacement, highlighting the often-overlooked impact of 

the replacement phase on GA performance. Notably, one of these techniques, weak 

chromosome replacement, forms part of the best-performing genetic algorithm (GA) model 

discovered in the experiments, underscoring that replacement can be as decisive as selection or 

crossover in guiding convergence. 

Beyond operator design, the system conducts a targeted grid search over crossover and 

mutation probabilities and adopts the best-found settings in the final runs. This closes the loop 

between architecture and tuning, ensuring that reported gains come from principled parameter 

choices rather than ad-hoc defaults, and giving the community reproducible baselines for future 

comparisons. 

Finally, the project introduces a fairness-oriented performance metric, which is fitness 

improvement per generation, computed as initial penalty cost divided by the number of 

generations. Because runs terminate upon reaching a perfect (zero-penalty) timetable, final 

fitness cannot discriminate performance; raw generation counts are also biased by differing 

initial costs. The new metric normalises progress across runs, offering a clearer view of how 

efficiently each operator combination reduces violations. 
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Operationally, every crossover and mutation are followed by an immediate repair step 

that restores feasibility before the next evaluation. In GA-based UCTP studies, positioning 

repair as an always-on, post-operator mechanism is novel. It preserves the freedom of 

aggressive search operators while maintaining valid timetables at each generation, improving 

stability and speeding convergence. 

 

6.3 System Limitations 

At high resource utilisation (approximately 90%), the system can fail to produce a 

feasible timetable. This pressure might be induced primarily due to the experiments increase 

the number of students without adding lecturers, which raises the risk of breaching lecturer-

related soft constraints, which is excessively long consecutive teaching hours. 

Besides, the evaluation is confined to a single, partial mock dataset. While this enables 

controlled comparisons, it limits external validity: real institutions vary in room typologies, 

building layouts, lecturer availability patterns, class durations, and group structures. In 

particular, the same-building soft constraint is operationalised as a binary penalty rather than a 

campus-graph distance; this simplification ignores heterogeneity in inter-building travel, for 

instance, adjacent buildings versus distant ones. 

Algorithmically, this project benchmarks only genetic algorithms; no comparisons are 

made against other optimisation paradigms such as integer or constraint programming, large 

neighbourhood search, tabu search, simulated annealing, or hyper-heuristics. As a result, the 

work cannot claim algorithmic superiority since there is only relative performance within GA 

variants. Even within GA, tuning focuses on crossover and mutation probabilities; other 

influential knobs such as population size and alternative stopping criteria (fixed time or 

evaluation budgets) are not systematically explored. 

Other than that, the always-on post-operator repair improves feasibility but adds 

computational overhead and may bias search dynamics by regularly pulling individuals 

towards the same feasible basins, potentially reducing population diversity. Likewise, the 

room-by-room crossover safeguards room-type and capacity validity but constrains 

recombination granularity; inter-room exchanges that could yield better global timetables are 

inhibited, which may slow exploration or entrench substructures. 
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6.4 Future Enhancement/Improvement 

To strengthen external validity, the future research can evaluate the system on diverse, 

real-world datasets (different faculties, multiple campuses, variable slot lengths, mixed class 

durations). This should include public UCTP benchmarks and institution-specific corpora with 

richer heterogeneity (room typologies, lecturer availabilities, group structures). Alongside the 

current same-building constraint, researchers can model campus travel using a weighted graph 

(distances/elevators/stairs), so that penalties reflect true movement cost rather than a binary 

building match. 

Besides, the future research can broaden the optimisation method beyond GA and 

compare against integer or constraint programming, large neighbourhood search (LNS), tabu 

search, simulated annealing, and hyper-heuristics. Such cross-paradigm baselines will provide 

invaluable insights into the UCTP domain. 
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Chapter 7 

Conclusion 
 

This project set out to address a practical and recurrent challenge in higher education: 

building conflict-free, student-friendly university course timetables under diverse institutional 

constraints. It contributes three things in tandem: a richer formulation of the UCTP that 

explicitly penalises inter-building moves between consecutive classes, a modular genetic-

algorithm (GA) framework whose operators are fully interchangeable, and an empirical study 

that systematically benchmarks 64 operator combinations under a controlled, partially realistic 

dataset. 

Methodologically, the work shows that a carefully engineered GA, implemented in 

Java, backed by MySQL, and reinforced by an immediate repair step, can accommodate an 

extensive constraint set (15 hard constraint and 4 soft constraint) while still exploring the search 

space effectively. Decoupling selection, crossover, mutation, and replacement allows like-for-

like comparisons and clearer attribution of performance differences to operator design rather 

than to confounded implementation details. The grid-searched crossover and mutation 

probabilities, together with the proposed “fitness improvement per generation” metric aligned 

to a zero-penalty stopping rule, provide fairer, more interpretable comparisons when initial 

penalty costs vary across runs. 

Empirically, the study demonstrates that operator choice matters materially. Different 

selection, crossover, and replacement techniques meaningfully shift convergence speed and 

computational effort, and the two proposed replacement strategies broaden the perspective on 

how survivor selection influences progress. Crucially, integrating the same-building soft 

constraint proves tractable: the framework can find feasible, penalty-free timetables for the 

mock setting without collapsing under the added spatial preference, indicating that student-

centric travel considerations can be folded into automated timetabling at modest additional 

cost. 

Practically, the system produces complete, auditable artefacts, which are course, 

lecturer, student, and room timetables, and enforces key data-side invariants (class capacity) 

close to the database. This strengthens reproducibility and operational trust: results, errors, and 
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metadata flow cleanly through a standardised JDBC-MySQL stack, while the dataset mirrors 

key aspects of a real CS programme timetable to keep experiments realistic yet controllable. 

Like any focused study, this work has boundaries. Feasibility can degrade at very high 

resource utilisation; the dataset is a single, partial mock that cannot capture the heterogeneity 

of real campuses; and the algorithmic scope is intentionally limited to GA variants. These are 

honest constraints, not flaws, and they point directly to next steps: scaling to multi-cohort and 

multi-campus settings, modelling travel on a campus graph rather than with a binary penalty, 

and comparing against other optimisation paradigms. Beyond that, richer objectives, fairness 

across student groups, lecturer workload smoothness, and resilience to late changes, invite 

multi-objective or rescheduling extensions. 

In summary, the project closes two gaps at once: it operationalises a neglected but 

student-meaningful spatial preference, and it offers the first systematic comparison of 64 GA 

operator combinations for UCTP within a unified codebase. The resulting insights and 

artefacts, which are constraint set, dataset, framework, operators, and metrics, form a solid, 

reusable foundation. They help timetable practitioners pick effective operator configurations 

with greater confidence and give researchers a clear runway for deeper studies that push from 

feasibility toward equity, realism, and robustness in automated university course timetabling. 
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