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ABSTRACT

University course timetabling problem (UCTP) is a scheduling problem that requires courses
to be assigned to the limited time slots, classrooms, and lecturers, while adhering to a set of
predefined constraints. Due to the effectiveness of genetic algorithm (GA) in optimisation
problems, it has been widely discussed in numerous research to address UCTP. Nonetheless,
the performance of GA in terms of operation techniques has not been studied enough, as the
researchers have often focused on using a single GA combination or hybrid approaches to solve
UCTP case studies. Therefore, this project aims to analyse the performance of different
combinations of GA operation techniques and identify the best GA model. A flexible GA
framework is developed, which allows alternative techniques to be integrated and executed
easily. 64 combinations, involving 4 selection, 4 crossover, 1 mutation, and 4 replacement
techniques, are evaluated on a partial mock dataset. In addition, this project proposes a new
soft constraint, which requires consecutive classes for a student to be held in the same building.
This constraint targets to reduce students’ travel distance, thus producing a more student-
friendly timetable. Experimental results shows that GA44 model which comprises of binary
tournament selection, uniform crossover, swap mutation, and weak chromosome replacement
is the best GA combination. In conclusion, the proposed constraint demonstrates clear benefits
to student experience on campus and offers a fresh idea for future research with alternative

approaches.

Area of Study: Scheduling Problem

Keywords: Optimisation, Combinatorial Optimisation Problem, University Course

Timetabling Problem, Course Scheduling, Metaheuristics, Genetic Algorithm
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Chapter 1 Introduction

Chapter 1

Introduction

1.1 Project Inspiration

A timetable is a tabulation that shows multiple events and their schedules [38].
Timetable scheduling problem is an optimisation problem where events are allocated to the
limited resources such as space and time, while adhering to a set of predefined constraints
[9,12]. It 1s a well-known problem across various fields, including education, hospitalisation,
and transportation [12]. This is because a timetable plays an important role in smoothening the
operations of multiple parties and facilitating the cooperations between them. Therefore,
timetable scheduling problem has been and is still an important subject in a wide range of

research areas [7].

The university course timetabling problem (UCTP) is one of the scheduling problems
in which it requires courses to fit well into the limited time slots, classrooms, and lecturers with
no conflicts [2,12]. This problem is significant because it resurfaces each semester as
universities plan their course offerings [1]. Traditionally, university course timetables are
manually created by university’s administration staff. This manual process is not only time-
consuming but also prone to errors, especially when accommodating large numbers of students

and faculty with varying preferences and requirements [38].

In the context of UCTP, the constraints are typically modelled around courses, classes,
lecturers, students, and classrooms. These constraints are not fixed, but instead they are highly
specific and vary from institution to institution [2,38]. Furthermore, the different roles of
timetable practitioners, such as students and lecturers, may lead to shifting priorities over time,
further increasing the number of constraints. Together, these constraints define the feasibility

of a timetable, where a high-quality timetable is one that satisfies all constraints.

Generally, there are two types of constraints in UCTP, which are hard and soft
constraints. Hard constraints are requirements that cannot be violated in order to produce a
feasible timetable [2,38]. For example, hard constraints include ensuring that no student is
assigned to more than one class at a time, that the classroom capacity is not exceeded, and that

lecturers are not double-booked [38]. On the other hand, soft constraints are preferences that
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Chapter 1 Introduction

are not strictly necessary for timetable feasibility [2,38]. It aims to improve the quality of the
timetable by considering factors such as minimising the number of consecutive hours for
lecturers and students and ensuring a balanced distribution of courses throughout the week

[2,12].

With these complexities in UCTP, this problem is considered a non-deterministic
polynomial hard (NP-hard) problem [1,8,9,38]. This implies that there is no conventional
algorithm that is able to find an optimal solution in the polynomial time as the problem size
such as number of students and constraints grows exponentially [3,8,38]. In addition, there is
no particular solution that satisfies every UCTP due to the unique requirements of each
university, let alone solving it manually [38]. Therefore, various optimisation algorithms are
applied to tackle this problem, including metaheuristics, hyper-heuristics, multi-objective,

operational research (OR), and hybrid approaches [1].

Among these feasible approaches, this project focuses on metaheuristics, particularly
the genetic algorithm (GA). GA is first introduced by John Holland in 1975. It is an
evolutionary algorithm (EA) [2] inspired by the principle of “survival of the fittest” proposed
by Charles Darwin, which emphasises on natural selection and genetics [22]. GA is widely
used to solve complex optimisation problems such as UCTP [2,8,12,38], multi depot vehicle
routing problem (MDVRP) [23], and travelling salesman problem (TSP) [25]. This is because
of its ability to explore large search spaces and find nearly optimal solutions in a reasonable
amount of time. The algorithm begins with an initial population of candidate solutions, which
is also known as chromosomes. These chromosomes then iteratively evolve over generations
using genetic operators that mimics the biological processes such as selection, crossover,

mutation, and replacement, and finally come up with a good-enough solution [22].

This project aims to study the absence of a significant constraint related to students’
comfort, which is the distance between classrooms for consecutive classes. Besides, this project
seeks to investigate how effectively GA can handle both hard and soft constraints in the UCTP,
particularly with the newly introduced constraints. There is a lack of research on GA
applications in UCTP, especially involving different operator combinations. Therefore, this
project focuses on providing perspectives on this unexplored area by applying various GA

combinations.
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Chapter 1 Introduction

1.2 Problem Statements

The primary goal of university course timetabling problems (UCTPs) is to produce
schedules that satisfy institutional requirements while supporting students’ learning
experience. However, many schedules generated by existing timetabling systems place
consecutive classes for the same student groups in different buildings. This forces them to
spend valuable minutes walking between blocks and often arrive unprepared or miss the
opening of the next lesson. It is obvious that such avoidable travel erodes attention and reduces

effective studying time.

Genetic algorithm (GA) is frequently adopted to solve UCTPs because it is a type of
metaheuristics, which can explore large search spaces more quickly than exact mathematical
techniques [4]. Nonetheless, most GA implementations in UCTPs embed only the common
constraints and rely on a single combination of operators. Timetable quality can shift
significantly when alternative selection, crossover, mutation, and replacement techniques are
combined, either amplify or dampen the performance [37]. Therefore, comprehensive testing
across operator combinations is essential, yet many authors choose to settle on one default
configuration. This might be due to limited research time and incomplete familiarity with GA

design.

Consequently, existing work neither enforces the building-continuity constraint nor
identifies which GA combination performs best when that constraint is present. This project
closes both gaps by incorporating the same-building requirement into the problem model and
by systematically benchmarking diverse combinations of genetic operators to discover a

configuration that produces high-quality, student-friendly timetables.

1.3 Project Objectives

First, this project aims to formalise a comprehensive set of hard and soft constraints for
the university course timetabling problem (UCTP). The new soft constraint requires a student’s
consecutive classes to be held in the same building. A quantitative penalty is applied whenever
a timetable forces an inter-building move in between consecutive classes, allowing the effect

of the constraint to be measured across experiments.
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Chapter 1 Introduction

Second, it targets to design and develop a flexible genetic algorithm (GA) framework
whose operators can be exchanged without modifying the core code. This project evaluates 64
unique operator combinations formed from four selection, four crossover, one mutation, and
four replacement techniques, including two newly proposed replacement methods. There is
also an immediate repair operator after crossover and mutation operations to ensure that the

timetable represented by the chromosome satisfies the imposed constraints.

Third, it seeks to assess the performance of every GA combination on a partial mock
dataset. Each combination is executed in several independent trials, and the number of
generations, execution time, and initial penalty cost are recorded. Statistical analysis of the
repeated runs highlights the strengths and weaknesses of the individual techniques and

pinpoints the best overall combination.

1.4 Project Scope

This project delivers a flexible genetic algorithm (GA) framework built in Java
associated with the MySQL database engine. The framework aims to solve university course
timetabling problem (UCTP) only. It respects 15 hard constraints and 4 soft constraints,
including the proposed same-building requirement for consecutive classes. Other than that, it
focuses on four selection, four crossover, one mutation, and four replacement techniques,
which are combined to form 64 GA combinations. A repair operator is also adopted to further

enforce the applied constraints.

Besides, a partial mock dataset is constructed, which mirrors the real timetables of
Computer Science (CS) programme at Universiti Tunku Abdul Rahman (UTAR). It reproduces
room types and locations, weekly slot structure, offered courses and assigned lecturers, while
student and class records are generated programmatically to complete the input. This dataset

exercises every constraint and supports verification.

The experiments run each combination with a population size of 100, chromosome
length of 250, crossover probability of 0.7, and mutation probability of 0.4, on the partial mock
dataset. The crossover and mutation probabilities are determined using grid search across
parameter combinations of 0.5, 0.6, 0.7, 0.8, 0.9 crossover rate and 0.01, 0.2, 0.3, 0.4, 0.5
mutation rate. A run only stops when it achieves a penalty cost of zero, which is the optimum.

The number of generations, execution time, and initial penalty cost are recorded for

4
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Chapter 1 Introduction

performance analysis A new metric, fitness improvement per generation, is also proposed to
coordinate with the termination criterion. It is defined as the initial penalty cost divided by the
number of generations. This offers a fairer comparison by mitigating bias arising from differing
initial penalty cost. Besides, each run generates feasible timetables, including course, lecturer,
student, and room timetables. Every combination is executed 10 times, and the averages of the

metrics are computed for performance comparison.

All coding work and experiments are conducted on a laptop equipped with an Intel i5-
10200H processor, 16 GB of memory, and an RTX 3060 laptop GPU. Visual Studio Code (VS

Code) serves as the integrated development environment (IDE).

To clarify, the study focuses exclusively on GA and does not investigate alternative
optimisation algorithms. It also avoids both a fully real-world dataset and a fully synthetic

dataset, opting instead for the balanced mock dataset described above.

1.5  Project Impact and Contribution

The project introduces the same-building soft constraint, producing timetables that

minimise student travel between consecutive classes and therefore reduce lost learning time.

Besides, it delivers a modular genetic algorithm (GA) framework in which the genetic
operators are fully interchangeable. By benchmarking 64 operator combinations on a partial
mock dataset, the study supplies the first systematic comparison of these techniques in the
context of university course timetabling. Moreover, the crossover and mutation probabilities
applied in the project are the best parameter combination found by performing grid search. The
resulting insights help researchers select more effective operator combinations and parameter
settings as well as design more rigorous experiments in the university course timetabling

problem (UCTP) domain.

Other than that, two replacement techniques are proposed in this project, which

introduces different perspectives on the importance of replacement techniques.

This project also proposes a new performance metric that introduces a fairer
comparison on combination performance, which is the fitness improvement per generation,
computed by dividing the initial penalty cost with the number of generations. This metric aims

to mitigate the bias in performance comparison due to the differences in initial penalty cost. It

5
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also suits the stopping condition adopted in this project, where GA models are let to run until
a perfect timetable is generated, which has no penalty cost. Therefore, the final fitness value
cannot be used as the performance metric, as they are all the same. On the other hand, the
number of generations is not fair enough to measure the performance as the initial penalty cost
is random for each experiment and higher penalty cost often requires higher number of

generations.

Furthermore, this project provides a foundation for future work in UTPs. Researchers
can make further studies by extending the constraint set, integrating alternative optimisation

approaches, or measuring new performance indicators.

1.6  Chapter Summary

The details of this research are shown in the following chapters. Chapter 2 reviews prior
work on university timetabling, beginning with single-solution metaheuristics such as
simulated annealing and tabu search, then moving to population-based techniques that include
genetic algorithms, particle swarm optimisation, and other nature-inspired methods. This
chapter also highlights common hard and soft constraints and critiques gaps in earlier research.
Chapter 3 explains the methodology adopted in this project, detailing data collection, the
complete constraint model, particularly to the newly introduced soft constraint that requires a
student’s consecutive classes to remain in the same building, system requirements, and
verification plans. Chapter 4 gives particular attention to input and output design, data storage
design, and genetic algorithm design, including the chromosome encoding, fitness evaluation,
repair mechanisms, operator combinations and verification plans that ensure rigorous testing.
Chapter 5 presents system testing, such as experiments on constraints, GA models, and
comparison among operation techniques, as well as experiment on resource utilisation. Chapter
6 focuses on discussion of objective evaluation, system novelties, system limitations, future

enhancement and improvement. Lastly, Chapter 7 consolidates the conclusion.
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Chapter 2

Literature Review

2.1 University Timetabling Techniques

There are various optimisation algorithms applied to tackle the university course
timetabling problems (UCTPs), including metaheuristics, hyper-heuristics, multi-objective
approaches, operational research (OR) techniques and hybrid methods [1]. This project focuses
on genetic algorithm (GA), which is a well-known metaheuristic. Therefore, studying this class
of methods provides insights that are directly aligned with the goals of this project. Figure 2.1.1

illustrates the hierarchy of metaheuristics for UCTPs that are studied in this project.

Simulated Annealing

A 4

Single-Solution-Based

h J

Tabu Search

h 4

Metaheuristics in UCTP Genetic Algorithm

h 4

o ) - Particle Swarm
' Population-Based * Optimisation
- Ant Colony
i Optimisation

Cuckoo Search

¥

h 4

Harmony Search

Figure 2.1.1 Metaheuristics in UCTPs

Metaheuristics are iterative processes that guide underlying heuristics so that they can
explore and exploit the search space efficiently and locate near-optimal solutions at a

reasonable computational cost. By operating at a higher level than heuristics (but lower than
7
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Chapter 2 Literature Review

hyper-heuristics), they make few assumptions about the problem, cope well with incomplete
information and limited resources, and can handle a wide variety of optimisation tasks by

searching large solution spaces effectively [1].

2.1.1 Single-Solution-Based Metaheuristics

Single-solution-based metaheuristics focus on iteratively refining one candidate
solution. These methods, often labelled as local search algorithms, start from a single solution
that is chosen based on specific criteria. The solution then explores its neighbourhood to
uncover improvements through repeated manipulation and relocation until a stopping condition
is satisfied [2,12]. This family includes the techniques such as simulated annealing (SA) and

tabu search (TS).

2.1.1.1 Simulated Annealing

Simulated annealing (SA) is a stochastic local search algorithm inspired by the
annealing process, wherein a heated solid is slowly cooled to achieve a more stable state [1,3].
The algorithm begins with a randomly generated solution and iteratively replaces it with a
neighbouring solution based on an acceptance probability criterion until a specified termination
condition is met [1,2,3]. A temperature parameter guides the exploration of the search space.
A high temperature in the early stages promotes exploration and helps the algorithm escape
local optima. As the temperature is gradually decreased, the tendency for exploration reduces,
encouraging convergence towards a global optimum [2,3]. SA is widely recognised for its ease
of implementation and effective local search capability, although it is often limited by a slow

convergence rate [1,3,4].

The research [4] applies the SA to address a faculty-level university course timetabling
problem (UCTP). This research aims to ensure that students enrolled in double major and minor
programmes can attend all necessary classes without time conflicts in an environment where
classrooms are shared across faculties. This highlights its novelty, as it is the first to
simultaneously take these constraints into consideration. The authors first formulate the
problem as a goal programming (GP) model and then design an SA algorithm to overcome the

GP model’s scalability issues. Both proposed methods are tested with a sample dataset (2
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departments with 35 courses and 4 student groups), two randomly generated datasets (3
departments with 57 courses and 4 departments with 77 courses), and a real-life engineering
faculty dataset from a private university (5 departments with 107 courses, 53 lecturers, and 31
classrooms). The results show that GP reaches the optimum only for the sample dataset; it fails
to find a feasible solution within the specified time limit of 3600 seconds for the other datasets.
On the other hand, SA outperforms GP on the sample dataset, obtaining a feasible solution with
16 times less computational time. It also successfully generates solutions for the randomly

generated datasets and improves the real-world dataset by 83 % in under 3 minutes.

2.1.1.2 Tabu Search

Tabu search (TS) is a memory-based metaheuristic built on local search [1,6]. The
algorithm starts from an initial solution and iteratively explores the neighbourhood of the
current solution until a termination criterion is satisfied [2]. It employs a short-term storage
called a tabu list, which stores recently executed movements to prevent the search from cycling
back to previously visited solutions. Nonetheless, this restriction can be overridden by an
aspiration criterion when a movement leads to a solution better than any found so far,
maintaining search flexibility. Furthermore, this storage is associated with a parameter known
as tabu tenure, which defines how long a movement remains in the list [2,6]. By allowing non-
improving movements while blocking revisits, this short-term memory helps the search avoid
trapping in the local optima [1,2,6]. In addition, TS adopts intermediate and long-term
memories that drive intensification and diversification, which offers a balance between

exploitation and exploration as the search progresses [1,6].

Awad et al. [5] introduce an adaptive tabu search (ATS) framework to resolve the
university course timetabling problem (UCTP) in large-scale scenarios. The approach is
divided into two stages. First, the authors construct a feasible solution by employing a least
saturation degree algorithm, supported by two neighbourhood structures. This construction
stage focuses on satisfying all hard constraints without considering the soft constraints. Next,
the approach enters the improvement stage. Two additional neighbourhood operators are
applied within the ATS algorithm to minimise soft-constraint violations in the early solution.
Specifically, the adaptiveness of the proposed TS is shown on the tabu list, where its length
can be dynamically reduced. If the total penalty cost fails to decrease after 1000 iterations, the

list length is shortened by 2, subject to a lower bound of 2; otherwise, it remains unchanged.
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This mechanism allows the algorithm to counteract search stagnation. The method is evaluated
on 11 benchmark datasets from Socha et al., which are categorised into 5 small, 5 medium, and
1 large instance. Its performance is assessed by comparing total penalty scores with those of
14 published approaches, where 7 of them are TS-based and 7 of them are not. The proposed
ATS approach ranks second on the medium and the large datasets, surpassed only by a
simulated annealing (SA) approach. This demonstrates its adaptability and effectiveness.
Nevertheless, this research comes with a limitation, where the numerical results for the small
datasets are not provided. The authors merely report that there is a minor performance slippage
in those cases. Overall, the research shows that adaptive control of the tabu list can enhance TS

performance on large-scale UCTP datasets.

2.1.2 Population-Based Metaheuristics

Population-based metaheuristics work on a collection of solutions that co-evolve
through repeated cycles of selection, variation and replacement. In each iteration, the methods
select high-quality individuals from the current population, apply problem-specific operators
to produce improved variants, and substitute weaker members with these offspring until a
termination criterion is met, typically an acceptable result is reached [2,12]. This family
includes the techniques such as genetic algorithm (GA), partial swarm optimisation (PSO), ant

colony optimisation (ACO), cuckoo search (CS), and harmony search (HS).

2.1.2.1 Genetic Algorithm

Genetic algorithm (GA) is an evolutionary algorithm inspired by Darwin’s theory of
natural selection, in which fitter individuals have a higher chance of survival [1,2,8]. Typically,
a GA proceeds through 5 stages, including initialisation, selection, crossover, mutation, and
replacement. First, it generates an initial population of candidate solutions and evaluates their
fitness. Based on those fitness values, the algorithm chooses parent solutions. A crossover
operator then combines selected parents to produce offspring, which are subsequently mutated
to maintain diversity. During replacement, the offspring substitute an equal number of
individuals in the current population, thus forming the next generation. These steps, excluding
the initialisation, repeat until a termination criterion is satisfied [2]. GA is highly customisable

through parameters such as population size and mutation probability. For instance, a moderate
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mutation probability introduces randomness that prevents the search from getting trapped in
local optima, while an excessively high value can cause the algorithm to degenerate into
random search [7]. GA is widely favoured for tackling large-scale, non-linear optimisation

problems due to its genetic operators offering a balance in exploration and exploitation [1,8].

The study [7] aims to automate the post-enrolment course timetabling (PE-CTT)
process at University of Malaysia Sabah Labuan International Campus (UMSLIC). The authors
propose a hybrid metaheuristic approach in which a tabu search with sampling and perturbation
(TSPP) first builds a pool of feasible timetables, after which a GA repeatedly improves the
solution quality. Particularly, the study focuses on GA. This is demonstrated by the conducted
experiments, where the best parameter values for the GA under limited computational time are
identified. The performance of two GA selection techniques, which are steady-state selection
and roulette wheel (RW) selection, is also tested in a common environment with swap-transfer
mutation and weak parent replacement. These experiments are run on a real-world dataset,
which is the session 2018/2019 semester 1 student registration dataset that consists of 1993
students, 144 courses, 35 time slots, and 24 rooms. Performance is evaluated based on hard-
and soft-constraint violations, comparing the best timetables generated by the proposed
approach with those scheduled by the university’s administrative staff. The former cuts the
soft-constraint violations by 54 % relative to the latter. Moreover, the automated timetables
have no hard-constraint violations, while the crafted timetables have 37 clashes that violate 2

hard constraints.

Another study [8] also focuses on tackling the university course timetabling problem
(UCTP) for USMLIC using GA. The GA model employed in this study is configured as
follows. First, a population of feasible solutions that satisfy all hard constraints is generated
using constraint programming (CP). Then, the algorithm iteratively applies quinary tournament
selection, one-point crossover, and random mutation to the population until 100,000
generations are reached or a 300-second cut-off time is met. Two experiments are conducted,
in which the authors first assess the GA’s capability to generate feasible timetables. Next, they
compare the GA’s performance with two other metaheuristics, which are great deluge (GD)
and simulated annealing (SA). Both experiments use two real-world datasets from UMSLIC,
which are the session 14/15 semester 2 instance (2248 students, 112 courses, 35 time slots, and
18 rooms) and the session 2015/16 semester 1 instance (2248 students, 112 courses, 35 time

slots, and 18 rooms). Solution quality is evaluated according to the sum of penalties from hard-
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and soft-constraint violations. Over 50 runs per dataset, GA lowers the average penalty cost of
the initial solution by approximately 36 % for both datasets. On the other hand, GD improves
the average quality of the initial solution by around 25 %, while SA achieves only an
improvement of roughly 23 %. A one-way analysis of variance (ANOVA) confirms that these
performance differences are statistically significant. The results indicate that GA outperforms

both GD and SA, highlighting its effectiveness in the timetable scheduling domain.

2.1.2.2 Particle Swarm Optimisation

Particle swarm optimisation (PSO) is a stochastic optimisation technique that draws
inspiration from the social behaviour of swarms, such as bird flocks and fish schools,
particularly their coordinated movements [1,8,10]. The algorithm begins by initialising a
swarm of particles, each representing a potential solution to the problem at hand [8]. Each
particle is randomly placed in the search space and assigned an initial position and velocity
[1,8]. Next, the algorithm enters an iterative cycle. During each iteration, a particle first updates
its velocity based on three factors, which are its current velocity, the best position it has
personally discovered, and the best position found by the entire swarm. Using this revised
velocity, the particle then moves to a new position [1,8]. The personal best and global best
values are refreshed whenever a particle or the swarm finds an improved solution, respectively.
This cycle continues until a termination condition is met, at which point the global best position
is returned as the final solution [8]. PSO is popular among researchers because it is simple to
implement and requires only a few parameters to configure. However, in multi-dimensional or
complex search spaces, the particles can easily stagnate, thus converging at a low speed and
eventually affecting the solution quality. This stagnation occurs due to the swarm's liability to

get trapped in local optima and the instabilities in particle velocities [10].

Hossain et al. [9] address the university course scheduling problem (UCSP) with a
modified particle-swarm framework called PSO with selective search (PSOSS). They
transform standard PSO operations by computing particle velocity with swap operators and
swap sequences. On top of this, they propose two novel mechanisms. First, a forceful swap
operator, combined with a repair technique, guarantees that every particle makes a feasible
move. Second, a selective search operator retains the best intermediate timetable after each
update. These innovations significantly enhance the algorithm's adaptability to the hard and

soft constraints in UCSP. Experiments use a real-world dataset from the Computer Science and
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Engineering (CSE) department of Khulna University of Engineering and Technology (KUET),
comprising 38 courses, 27 lecturers, 5 student batches, and 13 rooms. In the experiments,
PSOSS is compared against multiple metaheuristics, which are genetic algorithm (GA),
traditional PSO, harmony search (HS), and producer-scrounger method (PSM). Performance
evaluation proceeds in two stages, in which population size and iteration studies identify
suitable parameters, after which solution quality is measured by a composite fitness score,
calculated as the sum of lecturer-preference values minus consecutive-class penalties, and
average lecturer-satisfaction percentage. On this benchmark, PSOSS achieves a best fitness of
471 and an 83 % average satisfaction, outperforming other approaches. Particularly, it
outscores the nearest rival GA by approximately 10 % on both metrics. Furthermore, it
converges to its optimum in 155 iterations, slower than HS that takes only 60 iterations, but
significantly faster than GA, PSO, and PSM, which each require over 400 iterations. Together,
these results demonstrate that PSOSS is able to deliver higher quality timetables with better

efficiency than the competing metaheuristics.

2.1.2.3 Ant Colony Optimisation

Ant colony optimisation (ACO) is a swarm intelligence (SI) method inspired by how
the ants communicate and interact with each other during foraging [1,2,11,12]. When searching
for foods, the ants seek the shortest route between a food source and their nest to transport food
efficiently [2,12]. They start by moving randomly and leave a pheromone trail along their paths
[1,2,12]. When other ants encounter a trail, they are drawn to it and follow the same route. If
they find the food, they return to the nest and lay an additional pheromone trail next to the
original one. This makes the trail more attractive [2]. Since pheromones are volatile, the
stronger trails, which correspond to the shorter routes, are continually amplified by many ants
[11]. In contrast, the weaker trails gradually evaporate and disappear [2,11]. Eventually, only
the best route remains [11]. When ACO is applied to optimisation problems, the artificial ants
first construct individual solutions [11,12]. They then pass the information about the quality of
these solutions to each other, guiding subsequent searches [11,12]. Through iterative
reinforcement, the solution set converges towards the global optimum [11,13]. ACO excels at
combinatorial optimisation thanks to its decentralised search and frequent feedback, but it can

converge slowly or become trapped in local optima on complex, large-scale problems [13].
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The research [11] seeks to tackle the university class scheduling problem (UCSP) for
the Computer Science and Engineering (CSE) department of Khulna University of Engineering
and Technology (KUET). The author focuses on two metaheuristics, which are a standard ACO
and a proposed ACO with selective probability (ACOSP). Experiments are conducted in two
different settings, which are a simple environment that uses a small dataset (10 courses, 8
lecturers, and 2 student batches) and a highly constrained environment that uses a larger dataset
(37 courses, 35 lecturers, and 4 student batches). Both ACO-based approaches are tested in the
two environments, whereas a genetic algorithm (GA) is evaluated only in the simple
environment. Solution quality is measured with a fitness function that sums lecturer-preference
scores, averaged over 10 trials, while the population size (or ant count) and the number of
iterations are varied. The results show that both ACO variants outperform the GA in the simple
setting and that ACOSP consistently achieves the highest fitness in both datasets. According
to the author, this superiority arises because the ACO variants compute probabilities for every
unassigned time slot during course assignment, whereas the GA does not. Moreover, ACOSP
restricts each choice to a shortlist of promising time slots and considers only their probabilities,

hence reducing search effort and enabling faster convergence.

2.1.2.4 Cuckoo Search

Cuckoo search (CS) is another swarm intelligence (SI) optimisation algorithm that
employs a Lévy flight (LF) search mechanism to locate high quality solutions within large and
complex search spaces [14]. It draws inspiration from the aggressive brood parasitic behaviour
of certain cuckoo species, which discreetly lay their eggs in the nests of other birds [1,14].
Mimicking this strategy, CS treats each candidate solution as an egg placed in a host nest, while
a fraction of nests is periodically abandoned or replaced to simulate the host bird’s discovery
and rejection of foreign eggs [15]. New solutions are then generated by LFs, a type of random
walk featuring heavy-tailed step-length distributions. This mechanism enables the algorithm to
balance extensive exploration with intensive exploitation of promising regions [14]. CS is
widely applied to optimisation problems because it relies on only a few control parameters,
offers a straightforward iteration that is easy to code, and yet maintains a strong random search

capability [14].

Jebur and Abdullah [15] tackle the university course timetabling problem (UCTP) by

proposing a best-nests CS (BNCS) variant designed to accelerate convergence and improve
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timetable quality relative to the traditional CS. Their workflow first ranks a population of
candidate timetables and splits them into “best” and “normal” sub-groups. It then generates a
new solution solely from the elite subset and compares it against a randomly chosen member
of the inferior subset, where the better solution replaces the worse one. Both sub-groups are
subsequently aggregated, after which a ratio of the worst solutions from the combined
population is discarded. These steps repeat until a stopping criterion is reached. Key
parameters, such as population size, LF A value, and best-nest ratio, are tuned experimentally.
Evaluation uses four datasets from KTH Royal Institute of Technology, which are labelled as
small, medium, large, and extra-large size, varying from 70 to 293 class events and 160 to 540
time slots. Performance is measured as average fitness based on hard-constraint violations and
compared with the traditional CS. The number of iterations scales with dataset size, ranging
from 9500 to 57000. Across all datasets, BNCS converges faster and reaches higher fitness
than CS, using a configuration that includes a population of 40, a A of 1, and a best-nest ratio
of 0.25. The newly introduced selection scheme clearly shows its capability in enhancing

traditional CS, which helps accelerate exploitation without sacrificing exploration.

2.1.2.5 Harmony Search

Harmony search (HS) is an optimisation algorithm that frames each candidate solution
as a musical harmony and seeks the best composition through iterative improvisation [9,16].
Inspired by how performers refine their instruments’ pitches to achieve an aesthetically
pleasing sound, HS stores a population of solutions in a harmony memory (HM), whose size is
termed the harmony memory size (HMS) [9,17]. It generates new harmonies through three
operators, namely memory consideration (MC), pitch adjustment (PA) and random
consideration (RC). These operators are regulated respectively by the harmony memory
consideration rate (HMCR), pitch adjustment rate (PAR), and pitch bandwidth (bw). After
setting these parameters and randomly filling the HM, the algorithm repeatedly improvises a
new harmony, compares it with the current worst member of the HM, and replaces that worst
harmony when an improvement is found. HM is thus continually updated until the maximum
number of improvisations (MI) is reached, at which point the best harmony is returned [9,16].
Researchers have widely applied HS to real-world optimisation tasks due to its simple concept,

limited tuneable parameters, and easy implementation, alongside its ability to balance
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exploration and exploitation. Nevertheless, HS can still exhibit low optimisation accuracy and

suffer from premature convergence [17].

The study [16] aims to improve timetable quality for the College of Arts and Sciences
(CAS) at Universiti Utara Malaysia (UUM) by eliminating hard-constraint clashes and cutting
soft-constraint penalties. Therefore, the authors propose a hybrid HS algorithm combined with
the great deluge (GD) heuristic. The algorithm begins by constructing 10 feasible timetables to
populate the HM and then iteratively improvises new solutions using various operators. MC
and PA operators refine the lectures stored in the HM, while moves generated by the RC
operator are filtered through a GD acceptance test whose water level, representing solution
quality, is reset to the current best solution at the start of every improvisation cycle. The search
terminates and returns the best solution after the MI is reached. Experiments use the UUM
CAS session 13/14 semester 1 undergraduate dataset, which consists of 247 courses, 850
lectures, 32 rooms, 350 lectures, and 20000 students. They tune the HMCR parameter of the
proposed algorithm while comparing its output with the official timetable produced by
commercial timetabling software. Timetable quality is evaluated using a curriculum-based
course timetabling (CBCTT) validator algorithm that computes hard- and soft-constraint costs.
The hybrid HS-GD approach achieves its best result when HMCR is set to 0.8, yielding a total
cost of 708 with zero hard-constraint violations. It outperforms the university’s software, which

produces a timetable with a total penalty score of 1230 spanning both hard and soft constraints.

2.2 Genetic Algorithm

Genetic algorithm (GA), introduced by John Holland in 1975, is grounded in the
concepts of genetics and natural evolution [22]. This metaheuristic searches for good solutions
through the iterative application of selection, crossover and mutation operators. As these
operators rely on random choices, the approach is fundamentally stochastic [8]. This indicates
that the algorithm may produce varying best solutions across multiple runs for the same

problem due to the different search behaviours of the operators in each execution [19].
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Figure 2.2.1 Genes, Chromosomes, and Population in GA

In the context of GA, a gene represents a single decision variable or attribute, a
chromosome is an ordered collection of genes that encodes one candidate solution, and a
population is the set of chromosomes that are evaluated together in the same generation [22].

Figure 2.2 illustrates these basic building blocks and their hierarchy within the algorithm.
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Figure 2.2.2 Flowchart of GA [23]

Figure 2.3 presents the flowchart of GA that guides this part of discussion. The
algorithm starts with a setup phase in which parameters such as population size, number of
generations, mutation rate and crossover probability are defined. An initial population of
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chromosomes is created at random, and each chromosome is evaluated with a problem-specific
fitness function so that better solutions receive higher scores. If a termination criterion such as
a maximum generation count, a time limit or satisfaction of a target fitness is met, the search
stops, and the best chromosome is returned. Otherwise, two chromosomes are selected
according to their fitness, typically favouring the stronger yet still giving weaker individuals a
chance in order to preserve diversity. Those parents may undergo crossover which combines
parts of both chromosomes, and the resulting offspring may then experience mutation which
randomly alters one or more genes. Whether crossover or mutation occurs is governed by
predefined probabilities, which allow offspring to be copied unchanged from one parent when
crossover is skipped and to remain unmodified when the mutation probability test fails. After
reproduction, the replacement strategy inserts the offspring into the population, the new

generation is evaluated and the loop repeats until the stopping condition is satisfied.

GA is widely favoured for tackling large scale and combinatorial optimisation tasks,
including the multi depot vehicle routing problem (MDVRP) [23], the travelling salesman
problem (TSP) [25], and the university course timetabling problem (UCTP) [7,8]. Its popularity
in these domains stems from its capacity to explore vast search spaces efficiently, while

retaining the flexibility to incorporate domain specific constraints and objectives [22].

An important strength of GA lies in the number of tuneable parameters and operator
variants that can be combined to suit different problems. For instance, several techniques are
available for each stage of the algorithm process and their selection directly affects
performance [37]. Besides, the population size in particular has a measurable impact on
exploration because larger populations tend to provide greater coverage of the search space and
thus a higher probability of reaching near optimal solutions. In addition, mutation helps the
algorithm avoid premature convergence to local optima, though an excessive rate can cause the

search to resemble random sampling [7].

Despite these advantages, GA also faces limitations. Crafting an appropriate
representation and designing a meaningful fitness function can be challenging, and the
practitioner must decide various parameter settings such as population size and operator
probabilities. Moreover, even with careful tuning, the algorithm offers no guarantee of finding

the global optimum, especially on problems with rugged or deceptive fitness landscapes [22].
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2.2.1 Selection

The selection operator in genetic algorithm (GA) describes the process of selecting two
chromosomes from the current population to act as parents. These two parents are responsible
for breeding and producing offspring [18]. The main purpose of the selection operator is to
ensure that the better genes are passed on to the next generation and progressively distributed
among the population, thus increasing the overall fitness of the population [20]. Therefore, the
selection of parents is based on the fitness values of the chromosomes, where fitter

chromosomes have a higher probability of getting chosen [19].

However, favouring fitter chromosomes does not guarantee finding the global optimum.
When the selection operator entirely depends on the best chromosome, there is a lack of variety
in the mating pool. This results in the production of similar chromosomes in every generation,
thereby reducing population diversity [21,22]. Consequently, the population prematurely
converges and falls into the local optimum [20,21,22]. On the other hand, selecting unfit
chromosomes slows down the convergence rate, resulting in a longer time to search for the
global optimum. Hence, a good selection technique needs to maintain a balance between
favouring fitter chromosomes and preserving population diversity to allow the solutions to

converge to the global optimum within a reasonable time frame [21,22].

This section discusses two common selection techniques, which are roulette wheel (RW)

selection, random selection, tournament selection, and linear ranking selection.

2.2.1.1 Roulette Wheel Selection

Roulette wheel (RW) selection is a selection technique in which all chromosomes in
the population are distributed on a wheel proportionally based on their fitness [18,20]. The
proportion assigned to each chromosome represents its chance of being selected as a parent.
Hence, a fitter chromosome occupies a larger sector on the wheel and therefore has a higher
chance of being chosen for the mating pool [20]. The wheel is then spun randomly. When the
wheel stops, the chromosome occupying the sector pointed to by the pointer is selected as the
parent [18,21]. Figure 2.2.3 shows that the “a2” chromosome, indicated by the pointer, is

chosen as the parent.
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Figure 2.2.3 RW Selection [21]

Since better chromosomes are more likely to be chosen as parents, there is a risk of
premature convergence [18]. Nevertheless, there is still a probability of selecting poorer
chromosomes, which helps to avoid the solution being trapped in a local optimum [22,24].
Moreover, RW selection is widely used because it is easy to implement [18]. For instance, RW
selection is used for optimising multi depot vehicle routing problem (MDVRP) with capacities
and fixed endpoints in [23]. Besides, RW selection is applied in [25] to optimise travelling
salesman problem (TSP), which is evaluated according to the minimum distance required to
visit each city at least once and return to the starting city. This indicates that RW selection
plays an important role in a genetic algorithm (GA) model for optimising non-deterministic
polynomial complete (NP-complete) problems and combinatorial optimisation problems such

as MDVRP and TSP.

2.2.1.2 Random Selection

Random selection is a selection technique in which all chromosomes in the population
are sampled with equal probability, independent of fitness. Two parents are selected randomly

from the population without any restriction.

Because no fitness-based weighting is required, random selection is straightforward to
implement and computationally inexpensive, making it a common baseline or a diversity-
preserving component in GA schemes. Furthermore, its unbiased sampling helps to maintain
genetic diversity and reduces the risk of premature convergence, especially in noisy or

deceptive fitness landscapes. However, the absence of selection pressure means that highly fit
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chromosomes are not preferentially propagated, which can slow convergence and increase the
number of evaluations needed to reach a good solution. This has been proven by past research
which compares the performance of different selection techniques against benchmark functions.
In the experiment, random selection performs the worst among roulette wheel selection and

tournament selection [20].

2.2.1.3 Tournament Selection

In tournament selection, several chromosomes are randomly selected to compete
against each other [19,21] for a position as a parent. The winner of each tournament is evaluated
by comparing the fitness of the participating chromosomes [23]. Hence, the fittest chromosome

in the tournament is going to win and getting selected as the parent [19,21].

The number of chromosomes involved in each tournament is defined as the tournament
size [21]. The larger the tournament size, the higher the chance that the best chromosome is
selected and wins the tournament [19,23]. This increases the probability of losing diversity in
the population [18,21]. Therefore, the tournament size needs to be carefully set to avoid
premature convergence. The most commonly used variant is tournament selection with a
tournament size of two, also known as binary tournament selection [21]. Figure 2.2.4

demonstrates the process of tournament selection with a tournament size of three.

Best Selected
Individual

ORC

-
ololololooIoIon

Figure 2.2.4 Process of Tournament Selection [21]
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Tournament selection is the most popular selection technique in genetic algorithm (GA)
due to several advantages [21,23,25]. One of the advantages is its high efficiency compared to
other techniques. This is because it does not require a ranking process and therefore has low
time complexity [21,25]. Furthermore, tournament selection is able to maintain population
diversity with small or moderate tournament sizes. Yet, the population starts to lose its diversity
when the tournament size is too large [18,21]. The high efficiency of tournament selection is
supported by various research studies utilising it for optimisation problems. For example,
tournament selection was applied in solving the multi depot vehicle routing problem (MDVRP)

[19] and the travelling salesman problem (TSP) [25], as described in section 2.2.1.1.

2.2.1.4 Linear Ranking Selection

In Section 2.2.1.1, the disadvantage of Roulette Wheel Selection (RWS) is highlighted,
where better chromosomes occupy disproportionately larger sectors on the selection wheel [23].
This provides them with higher selection chances while limiting opportunities for weaker
chromosomes [22]. To address this imbalance, Ranking Selection, a method that applies the
concept of normalisation to selection probabilities, has been introduced [23], with Linear

Ranking Selection being one of its variations [18,23].

Linear Ranking Selection is essentially a modified version of RWS [18]. This technique
involves four steps. First, the chromosomes are sorted based on their fitness, from best to worst.
Second, they are ranked according to their order [21]. The best chromosome is assigned rank
“1”, whereas the worst chromosome receives rank “N”, where “N” represents the population
size [8]. Third, the chromosomes are distributed on a selection wheel depending on their ranks.
The size of the sectors, which corresponds to the selection probability, increases linearly and
uniformly from the lowest to the highest rank [23]. Lastly, the wheel is spun to select a

chromosome as the parent.

By utilising ranking instead of fitness, the worst chromosome is able to maintain a
relatively high selection probability [18]. This is illustrated in Figure 2.2.5, where
chromosomes are more evenly distributed on the wheel when selection probabilities are
assigned to them based on ranking rather than fitness. This approach preserves population
diversity [22,23] and reduces the risk of premature convergence [18,23]. As a result, the
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likelihood of finding the global optimum is increased. However, this technique has several
limitations. First, it is not efficient in terms of computational performance due to the necessity
of sorting and ranking [18]. Second, the low tendency to favour the best chromosome results

in a slow convergence rate [18,22,23].

Despite these drawbacks, the advantages of Linear Ranking Selection make it a
balanced technique, favoured by researchers for optimisation problems. For instance, this
technique was applied in tackling the Multi Depot Vehicle Routing Problem (MDVRP) [23]
and the Travelling Salesman Problem (TSP) [25], which are described in Section 2.2.1.1. In
these two experiments, Linear Ranking Selection outperformed other techniques, including
RWS and Tournament Selection with a tournament size of five. This shows that this selection

technique is a promising method for finding optimal solutions to optimisation problems.

Based on fitness Based on ranks

Figure 2.2.5 Selection Probabilities Based on Fitness and Ranking

2.2.2 Crossover

The crossover operator in genetic algorithm (GA) controls how two parent
chromosomes are combined to create offspring. By exchanging segments of genetic material
between selected parents, the operator introduces new gene combinations into the population
and increases the chance that offspring inherit advantageous traits that improve overall fitness.
This is supported by an experimental observation, which confirms that highly fit individuals
often share specific genetic patterns that can be propagated to the next generation through

crossover [27].
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During crossover operation, giving too much emphasis to exploitation or exploration
can hinder the search. Excessive exploitation, where parents are combined in very similar ways,
limits diversity and increases the risk of premature convergence. On the other hand, excessive
exploration, where chromosome segments are exchanged too randomly, slows down
convergence and extends the searching time for the global optimum. Nonetheless, self-adaptive
crossover rates can balance these tendencies by dynamically adjusting how aggressively

genetic material is mixed, preserving diversity while still promoting fitter solutions [28].

This section discusses four common crossover technique, which are single-point

crossover, two-point crossover, uniform crossover, and shuffle crossover.

2.2.2.1 Single-Point Crossover

Single-point crossover is a recombination operator where two parent chromosomes
exchange genetic material at a single cut position to produce offspring [20,23]. After randomly
choosing one crossover point along the genome, the first segment (from the start to the cut) is
copied from first parent and the remaining segment (from the cut to the end) from second parent

(and vice versa for the second child).

It is simple and fast, which can help propagate useful schemata and speed early
progress. However, it assumes meaningful adjacency. If gene order does not reflect interacting
features, the operator may disrupt dependencies or create invalid solutions and can reduce
diversity if the cut often falls in similar places. Nonetheless, its simplicity makes it only offers

low exploration compared to other crossover techniques [20], causing it infeasible [23].

2.2.2.2 Two-Point Crossover

Two-point crossover is a technique that selects two crossover positions at random on
each parent chromosome, partitions the parents at those positions, and exchanges the genes that
lie between the two points to create new offspring [29]. Because exactly two breakpoints are
chosen, the procedure always produces two children whose middle segments come from
opposite parents. Figure 2.2.6 depicts this process, showing the two randomly chosen cut points

on both parents and the swapped middle segments that generate the resulting offspring.
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Figure 2.2.6 Process of Two-Point Crossover [30]

This operation technique is straightforward to code because it only requires picking two
random indices and swapping the intervening genes. However, this simplicity also limits
diversity. This is because the genes outside the selected segment remain unchanged, therefore
the search may converge prematurely [18]. Despite these limitations, two-point crossover has
yielded strong performance on several combinatorial optimisation problems. It has been
incorporated into genetic algorithm (GA) solutions for the green vehicle routing problem
(GVRP), where it helps generate high quality routes [31]. Besides, the GA applying two-point
crossover outperforms several previously published methods such as tabu search (TS) and
multi-pass in the resource-constrained project scheduling problem with transfer times
(RCPSPTT) [32]. These successes demonstrate that two-point crossover can be an effective
component of GA frameworks that tackle non-deterministic polynomial complete (NP-

complete) tasks.

2.2.2.3 Uniform Crossover

Uniform crossover selects each gene independently from either parent with equal
probability. Instead of cutting chromosomes into segments, it swaps individual bits by
generating a random mask of Os and 1s and copying genes accordingly: a mask bit of 1 takes
the gene from the first parent, while 0 takes it from the second [29,39]. This produces two
offspring whose genes are chosen uniformly from both parents. Because the mask is random,
the effective number and location of crossover points are not predetermined, and inheritance is

independent of position.

Its strengths include unbiased exploration, suitability for large gene subsets, and strong
recombination capability. By examining every gene position, it can probe a wider solution
space. The main drawback is a typically slower convergence rate, since many genes may be

swapped at once, dampening exploitation. In practice, uniform crossover has been used for the
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travelling salesman problem (TSP), where it helps maintain genetic diversity and can improve

the algorithm’s speed in reaching optimal or near-optimal solutions [40].

UNIFORM CROSSOVER

RN [ e
HEREEE B EBE
PARENT CHROMOSOMES OFFSPRING CHROMOSOMES

’ 0.55 ‘ 0.24 ‘ 0.64 ‘ 0.16 ’ 0.46 ‘ 0.88 ‘

UNIFORMLY GENERATED VALUES [0,1]

Figure 2.2.7 Process of Uniform Crossover [30

2.2.2.4 Shuffle Crossover

Shuffle crossover aims to eliminate positional bias so that offspring do not depend on
where the crossover cut happens [42,43]. The method selects two parents and a random cut
point, then first applies the same random permutation to both parents’ genes. With the genes
shuffled, the parents undergo a standard single-point crossover at the chosen position to create
two children [43]. Finally, the inverse permutation unshuffles the offspring back to the original

indexing.

In spirit it resembles uniform crossover, but the crucial difference is that shuffle
crossover exchanges contiguous segments rather than individual bits. Because a fresh random
shuffling is used for each crossover, the original gene positions have far less influence on

recombination and on the resulting offspring’s quality [41].

2.2.3 Mutation

The mutation operator in genetic algorithm (GA) introduces small random changes into
the chromosomes in order to preserve genetic diversity and broaden the search space. It
typically alters one or two genes and is applied with a very low probability [23,33]. By injecting
fresh variability after selection and crossover, the operator reduces the chance of premature

convergence and helps the population escape local optima [28].
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When tuning the mutation probability, it requires high awareness. If the rate is set too
low, exploration is limited, promising genes may never be tested, and the search can stick in
local optima. If the rate is set too high, offspring differ so greatly from their parents that the
algorithm struggles to learn from past generations, which slows down convergence [33]. An
effective setting must balance diversity and refinement, so that the search progresses toward

the global optimum within a reasonable time [28,34].

This section discusses a common mutation technique, which is swap mutation.

2.2.3.1 Swap Mutation

Swap mutation is an operation technique that selects two genes within a chromosome
and exchanges their positions [36]. Figure 2.2.8 shows an example in which the genes “2”” and
“6” are swapped. Because only two positions change, most neighbouring genes stay together.
Therefore, population diversity is maintained, where successful gene combinations are not

drastically disrupted.

4

(a) Before applying the swap mutation operator

|0153452739

(b) Before applying the swap mutation operator

Figure 2.2.8 Swap Mutation [35]

Although this technique preserves much of the original adjacency information, it
inevitably breaks some links, which can be problematic in sequence-sensitive problems such
as the travelling salesman problem (TSP), where the order of cities forms a path [36]. Even so,
swap mutation is valued for its simplicity and its ability to inject diversity that helps the search
escape local optima. These qualities explain its adoption in combinatorial optimisation tasks

such as the multi-depot vehicle routing problem (MDVRP) [23] and the university course

27

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



Chapter 2 Literature Review

timetabling problem (UCTP) [7], where maintaining feasibility while exploring alternative

arrangements is essential.

2.2.4 Replacement

The replacement operator in genetic algorithm (GA) determines which chromosomes
leave the population and which new offspring join the population [22]. Since the population
size must be kept constant, space must be created for the new offspring to join the population
[26]. There are two types of replacement techniques, which are steady state updates and

generational updates [22,26].

Generational update techniques replace the entire population with newly produced
offspring [22,26]. This restricts chromosomes to mating only with those from the same
generation [22]. On the other hand, steady state update techniques allow new offspring to join
the population immediately after each reproductive process [22,26]. This involves the
replacement of existing chromosomes. Typically, a tournament method is used to decide which
chromosome to replace. Sometimes, the worst or oldest chromosomes are replaced by the

offspring to accelerate population convergence [22].

According to [20] and [26], steady state update techniques generally perform better than
generational update techniques. This is because the nature of the latter, which replaces the
entire population, prevents the best chromosome from the previous generation from being
carried over and inherited in future generations. Therefore, this section mainly discusses steady
state update techniques, specifically two of them, which are weak parent replacement and

tournament replacement.

2.2.4.1 Weak Parent Replacement

Weak parent replacement is a technique where parents and offspring compete for a spot
in the population. In this technique, the two fittest chromosomes out of the four (two parents
and two offspring) are retained in the population [22,26]. This allows the weaker parents to be
replaced by the stronger offspring, thus gradually increasing the overall fitness of the

population [20,22]. This technique performs best when the selection operator includes both fit
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and unfit chromosomes as parents. Nevertheless, if the selection operator consistently chooses

only fitter chromosomes as the parents, the improvement in population fitness is limited [22].

Weak parent replacement was utilised in minimisation experiments on a test suite
consisting of 6 benchmark functions and 3 real-world problems [26]. Besides, [20] used weak
parent replacement in an experiment evaluating various combinations of operation techniques
in GA with benchmark functions. The application of weak parent replacement in these research
studies demonstrates its capability of maintaining population diversity, allowing the population

to efficiently converge to the global optimum.

2.2.4.2 Tournament Replacement

Tournament replacement is a technique that replaces weaker chromosomes in the
population with newly generated offspring. Unlike weak parent replacement and both parent
replacement, which focus only on the parents and offspring for replacement decisions,

tournament replacement selects chromosomes for replacement from the entire population.

The selection process in tournament replacement resembles tournament selection,
which is discussed in Section 2.2.1.3, except that the worst chromosome in the tournament is
chosen, rather than the best [22]. In this process, the size of the tournament, representing the
number of participating chromosomes, needs to be carefully determined [21]. A larger
tournament size has a higher probability of selecting the worst chromosome from the
population each time to win the tournament, which can lead to premature convergence [19,23].
Following this setup, the process begins by randomly selecting several chromosomes for a
tournament. During the contest, these chromosomes compete against each other based on their
fitness. The worst among the chosen chromosomes wins the tournament and is selected to be

replaced by the offspring [19,21].

Although this technique consistently targets weaker chromosomes, it does not
guarantee an improvement in the population’s overall fitness over successive generations. This
is because the selected chromosomes are replaced with the newly generated offspring,
regardless of their fitness. Consequently, there may be ineffective replacements if the offspring
are not fitter than the chromosomes they replace. This results in a regression in the population’s

overall fitness, thus slowing down the convergence rate.
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Despite these limitations, tournament replacement remains a valuable technique.

However, the discussion and application of this technique in both academic research and

practical scenarios are notably insufficient, highlighting a domain that has yet to be explored.

23 Constraints
2.3.1 Hard Constraints
No. Hard Constraints Previous Work
| A student must attend at most one class per time slot. | [1], [2], [4], [5], [7], [8], [9].
[12], [15], [38]
5 A lecturer must teach at most one class per time slot. | [1], [2], [4], [7], [9], [12],
[15], [16], [38]
; A room must host at most one class per time slot. [11, [2], [4], [5], [7], [8], [12],
[15], [16], [38]
4 | A class must have exactly one lecturer. [2]
5 | A class must be assigned a room. [2], [4], [38]
A class must use a room whose features meet its [1], [5], [9], [12], [15]
¢ requirements.
. A class must not enrol more students than the room’s | [1], [2], [4], [5], [7], [8], [12],
capacity. [15], [16], [38]
8 | A class must be scheduled on weekdays only. [7]
9 A class must be scheduled within the allowed daily [2], [38]
time window.

Table 2.3.1 Hard Constraints of Previous Work

2.3.2 Soft Constraints

No.

Soft Constraints

Previous Work

A student should not exceed the daily study-hours

limit.

[4]
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A student should not study beyond the consecutive-

[11, [2], [7], [8], [12]

? hours limit.

; A student should attend more than one class when [1], 121, [7], [12]
present on a day.

A A student’s courses should be concentrated into as [4]
few days as possible.

5 | A student’s timetable should minimise idle gaps. [4]

6 A lecturer should not exceed the daily teaching-hours | [4]
limit.

. A lecturer should not teach beyond the consecutive- | [2], [9], [38]
hours limit.

. A lecturer’s courses should be concentrated into as [4]
few days as possible.

9 | A lecturer’s timetable should minimise idle gaps. [2], [4]

0 A lecturer’s preferred time slots should be honoured | [2], [4], [9]
where feasible.

11 | A class should not occupy a lunch-break slot. [2], [4], [9], [12]

. A class should use a room whose capacity closely [8]
matches its size.

3 A departmental course should be held in its own [4]
department’s building.

” A course’s classes should follow any required [1], [12]
sequence.

s A course’s classes should span at least the specified | [1], [12], [16]
minimum number of days.

Table 2.3.2 Soft Constraints of Previous Work
24 Critical Remarks of Previous Work

a wide range of metaheuristics can deliver feasible and high-quality schedules. The research

[4] applies goal programming (GP) with simulated annealing (SA) and performs well on a real

Existing studies on university course timetabling problems (UCTPs) demonstrate that
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institutional dataset. Besides, the study [5] introduces adaptive tabu search (ATS) and validates
its competitiveness against 14 published approaches. Particle swarm optimisation (PSO) with
selective search (PSOSS) in the research [9] and ant colony optimisation (ACO) with selective
probability (ACOSP) in the research [11] both reports best-in-class solutions for their
respective experiments. Other than that, Harmony search (HS) enhanced by great deluge (GD)
in the paper [16] and the best-nests (BS) variant of cuckoo search (CS) in the research [15]
further illustrate how hybrid metaheuristics can unlock performance gains in UCTPs with real-

world datasets.

Despite these contributions, three recurring limitations emerge. First, comparative
approaches are either absent or narrow. The study [4] does not contrast its results with other
metaheuristics, while the study [11] measures performance against only one genetic algorithm
(GA) implementation. Second, several studies operate under settings that may hide additional
improvements. The research [8] enforces a short runtime limit and filters crossover operations
for feasibility, which constrains exploration, whereas the research [15] models only hard
constraints. Third, most evaluations overlook everyday travelling challenges on university

campus, particularly the proximity of classrooms for consecutive classes.

Within the subgroup of GA papers, methodological diversity remains limited. The
research [7] employs roulette wheel (RW) or steady-state selection with swap mutation and
replaces the weakest individual with the fittest offspring yet omits crossover entirely. Other
than that, the research [8] combines quinary tournament selection, one-point crossover, random
mutation and conditional replacement, but does not investigate alternative operator
combinations. Consequently, these studies vary parameters inside a narrow envelope rather
than exploring how different combinations of selection, crossover, mutation and replacement

interact.

Furthermore, no work reviewed models the constraint that consecutive classes for the
same student should be held in the same building, even though this requirement directly affects
student well-being and campus logistics. In addition, the small set of GA operator combinations
examined so far is insufficient to establish which arrangements truly balance exploration and
exploitation when both hard and soft constraints are present. These gaps motivate this project,
which introduces the building continuity constraint and systematically benchmarks a broader
set of selection, crossover, mutation, and replacement techniques to identify a configuration

that delivers high-quality timetables while reducing student travel.
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Chapter 3
System Methodology

3.1 Project Development

Figure 3..11 Gantt Chart for Project Development

Figure 3.1.1 illustrates the project development workplan in a Gantt chart, consisting
of 2 phases (FYP1 and FYP2) and 5 stages, which include planning, analysis, design,

implementation, and testing.

The project begins with a planning stage. Previous work on timetabling including
variants, constraints, and approaches, is reviewed, followed by genetic algorithm (GA), in
which various techniques of multiple GA operators are studied, to understand established
optimisation strategies that best fit scheduling problems, specifically university timetabling
course problems (UCTPs). Insights from these studies shape concise problem statements,
particularly based on the shortcomings found in them. Besides, clear project scopes, such as
datasets and constraints, are constructed. A set of achievable objectives are also defined to

guide all subsequent work.

Next, attention shifts to analysis. Real timetable data are gathered and cleansed for
consistency. Data such as programme structures and lecturer information are studied to
strengthen dataset understanding. Partial mock data is created using the data collected to serve

as the dataset used in the project. In parallel, GA operation techniques are compared in terms
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of their concepts, implementations, strengths, and weaknesses, in order to choose those worth-
testing techniques. The programming languages, code libraries, and development tools are also

analysed to select the most suitable combinations for rapid experimentation.

With requirements clarified, design tasks formalise how the system will operate. New
constraints are enumerated to reflect fundamental focuses of the system. A high-level workflow
is drafted to show how data flow from input to timetable generation and schedule validation in
GA. Details such as chromosome encodings and operator designs are mentioned as well.
Besides, a relational schema and data storage technology is designed to hold data used by the
system, including courses, rooms, lecturers, and students. An entity relationship diagram
(ERD) is drawn to show a clear structure. Lastly, verification plans specifying metrics and test
scenarios that will later confirm whether generated timetables satisfy every constraint, are

designed.

The implementation stage then delivers a working prototype on the Visual Studio Code
(VS Code) development platform, as previously decided, using the selected Java programming
language and MySQL database technology. Core programme structures are coded, laying out
the chromosome representation and the genetic techniques for selection, crossover, mutation,
and replacement operators. Constraint-checking modules are integrated to penalise infeasible
timetables, and persistent data storage is set up to save datasets. However, no graphical user

interface (GUI) is developed, and output format is yet to be finalised.

An interim report wraps up the first phase by documenting achievements, design

decisions, and any limitations discovered along the way.

The second phase opens with a brief design refinement that focuses on output format.
The presentation method of the final timetables is determined so that these results can be easily

interpreted.

The stage is followed by the full-scale implementation. All remaining features such as
GA operation techniques, are completed, including an experiment automation function. The
system is expected to support end-to-end timetable generation and experimental result storage

without manual intervention.

Continue with the testing stage, system tests verify end-to-end workflows under

realistic workloads. Experiments are conducted to measure timetable quality and runtime
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efficiency against varying dataset sizes. Results are collected and analysed to report findings

of this research.

Lastly, a detailed report is produced that captures the completed system, experimental
results, and recommendations for future enhancements, marking the formal conclusion of the

project.

3.2 Data Collection

UNIVERSITI TUNKU ABDUL RAHMAN
FACULTY OF INFORMATION AND COMMUHNICATION TECHNOLOGY (KAMPAR CAMPUS)
BACHELOR OF COMPUTER SCIENCE (HONS)
10 February 2025 — 18 May 2025 (Year 1, Trimester 3)

Prepared On:
Revised On:
Day Bam-9am 9am-10am 10am-11am |11am—12prn 12pm-ipm |1pm-2pm \2pm-3pm 3pm-4pm 4pm-5pm \Sprn-apm 6pm-7pm 7pm-8pm
UCCD1024 (F5) UCCD1024 (P4)
NODEE: UCCM1383 (T3) NOOBA
UCCM1363 (T2} N106
Ni0E UCCM1353 (T2)
UCCM1 353 (T5) UCCD2003 {T1) NOO5 UCCD2003 (L)
HOD3 D4 UCCM1353 (T1) LDK5
UCCD1203 (P8) UCCD2003 (T2) HOOS.
HO09 NOO4 UCCM1363 (T1)
UCCD1203 (FT) N10E
Monday HOD3
UCCM1353 (L) UGCM1363 (L) UCCD2003 (L)
IDKT IDKT LDKS
Tuesday
UCCDI024 (F8)
NiDE UCCM1353 (T4)
UCCD1024 (PT) NOO2
N108
UCCD2003 (T4) | UCCM1353 (T3) UCCD1024 (L) UCCMi383 iL) | UCCMI353 iL)
N10& NOO2 LDK1 IDKT DKT7
UCCD1203 {P1) UCCD2003 (T3)
NO0S Ni06
UCCDI203 (F2)
Wednesday NODE
UCCD1024 (P1)
MPUZH52 (L) NOOBE
UCCD1024 (L) LDK1 UCCD2003 (T5) | UCCM1383 (T5) | UCCMI363 (T4)
LDKA1 NiOT N10T Ni07
MPU3182 (L) UCCD1208 (P3)
Thursday HA07 NO10B
UCCD1024 (F2)
'NODBA
UCCD1024 (P3)
‘N0OBB
UCCD1203 (L) UGCD2003 (TE)
oKa FRIDAY PRAYER oy
UCCD1203 (P4)
NO0D
UCCD1203 (P5)
Friday NOD9
Figure 3.2.1 Timetable for February 2025 CS Y1T3 Students
UCCD1024  DATA STRUCTURE AND ALGORITHMIC PROBLEM SOLVING 3L+2P Ts Dr Goh Chuan Meng L+P
Ts Lai Siew Cheng P
UCCD1203 DATABASE DEVELOPMENT AND APPLICATIONS 2L+2P Cik Norazira Binti A Jalil L+P
Cik Ana Nabilah Binti Sa'uadi P
Dr Altahir Abdalla Altahir Mohammed P
Puan Lyana lzzati Binti Mohd Asri P
Ts Saravanan a/l Subbiah P
Dr Zurida Binti Ishak P
UCCD2003  OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN 3T Ts Dr Ku Chin Soon L+T
Ts Dr Mogana a/'p Vadiveloo L+T
Dr Tahayna Bashar M. A. T
Cik Puteri Nursyawati Binti Azzuri T
UCCM1353 BASIC ALGEBRA LT Ms Lim Shun Jinn L+T
UCCM1363 DISCRETE MATHEMATICS LT Dr Nur Amalina Binti Mat Jan L+T
Ms Song Poh Choo L+T
MPU31X2 (Choose One)
MPL3152 PENGHAYATAN ETIKA DAN PERADABAN (FOR LOCAL STUDENTS) 2L Puan Sarah Binti Shamshul Anwar L
MPLU3192 PHILOSOPHY AND CURRENT ISSUES (FOR INTERNATIONAL STUDENTS) 2L Ms Yuvashini a/p Salvamani L

Figure 3.2.2 Programme Structure for February 2025 CS Y1T3 Students

35

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



Chapter 3 System Methodology

Figures 3.2.1 and 3.2.2 present the official timetables and programme structures for

February 2025 Computer Science (CS) year one, trimester three (Y 1T3) students at Universiti

Tunku Abdul Rahman (UTAR). These records are downloaded from the university’s Faculty

of Information and Communication Technology (FICT) website. By studying these data, it is

found that each timetable specifies the daily allocation of classes, the assigned room, and its

building. A clear pattern emerges, as rooms in building L host lectures, whereas rooms in

building N host tutorials and practical sessions. Furthermore, the timetable spans Monday to

Friday and reserves a period each Friday for Muslim prayer. Besides, the accompanying

programme structure lists the course code, course name, offered class type, duration, and

lecturer for every course. Together, these data provide the baseline for a partial mock dataset

used in this project.

33 System Constraint
3.3.1 Hard Constraints
No. Hard Constraint
1 | A student must attend at most one class per time slot.
2 | A student must enrol in every course required for the semester.
3 | A lecturer must teach at most one class per time slot.
4 | A room must host at most one class per time slot.
5 | A class must enrol at least one student.
6 | A class must have exactly one lecturer.
7 | A class must be assigned a room once and only once.
8 | A lecture class must be held in a lecture hall.
9 | A tutorial class must be held in a tutorial room.
10 | A practical class must be held in a computer lab.
11 | A class must not enrol more students than the room’s capacity.
12 | A class must be scheduled on weekdays only.
13 | A class must be scheduled between 08:00 and 18:00.
” A class must not be scheduled on Friday between 12:00 and 14:00 (Muslim prayer
time).

15 | A class must not span across multiple days.
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Table 3.3.1 Hard Constraints for Project

3.3.2 Soft Constraints

No. Soft Constraint

1 | A student should study no more than four consecutive hours.

A lecturer should teach no more than four consecutive hours.

A student’s consecutive classes should be held in the same building.

alow| o

A lecturer should receive at least one teaching hour.

Table 3.3.2 Soft Constraints for Project

3.4  System Requirements
3.4.1 Hardware

The hardware involved in this project is a laptop, which is used to develop the university

timetabling system.

Description Specification
Model MSI GF65 Thin 10UE
Processor Intel(R) Core(TM) 15-10200H CPU @ 2.40GHz
Operating System Windows 11 Home Single Language 64-bit
Graphic NVIDIA GeForce RTX 3060 Laptop GPU
Memory 16GB DDR4 RAM
Storage 512GB SSD

Table 3.4.1 Specifications of Laptop

3.4.2 Software

The software involved in this project is an integrated development environment (IDE),
which is associated with a programming language and a database engine to develop the
university timetabling system.
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Descriptions

Specifications

IDE

Visual Studio Code (VS Code) version 1.99

Programming Language

Java OpenJDK version 21.0.5

Database Engine

MySQL version 8.0.40

Database Driver

MySQL Connector/J version 9.4.0

Table 3.4.2 Specifications of Software

3.5 Verification Plans

3.5.1 Hard Constraint Tests

No. Hard Constraint Verification

A student must attend at most | Scan each student timetable; every slot must
! one class per time slot. contain no more than one class.

A student must enrol in every | Scan each student timetable; every compulsory
2 | course required for the | course must appear.

semester.

A lecturer must teach at most | Scan each lecturer timetable; every slot must
. one class per time slot. contain no more than one class.

A room must host at most one | Scan each room timetable; every slot must contain
: class per time slot. no more than one class.

A class must enrol at least one | Count student timetable entries per class and
: student. confirm the total is at least one.

A class must have exactly one | Scan each course timetable; every class must
¢ lecturer. contain no more than one lecturer.

A class must be assigned a | Scan each course timetable; every class must be
7 room once and only once. assigned a room once and only once.

A lecture class must be held in | For each lecture in the courses timetable, verify its
5 a lecture hall. room in the rooms timetable is typed “lecture”.

A tutorial class must be held in | For each tutorial in the courses timetable, verify its
? a tutorial room. room in the rooms timetable is typed “tutorial”.
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10 | in a computer lab.

A practical class must be held

For each practical in the courses timetable, verify
its room in the rooms timetable is typed

“practical”.

capacity.

A class must not enrol more

11 | students than the room’s

Count student timetable entries per class and

confirm the total is no more than room capacity.

12
weekdays only.

A class must be scheduled on

This constraint is initially satisfied. Every class day

should be Monday to Friday.

13
between 08:00 and 18:00.

A class must be scheduled

This constraint is initially satisfied. Every class

should start after 08:00 and end before 18:00.

A class must not be scheduled
14 | on Friday between 12:00 and
14:00 (Muslim prayer time).

Verify no class overlaps the Friday 12:00 to 14:00

time slots.

15
multiple days.

A class must not span across

Scan each course timetable; every class must not

span across multiple days..

Table 3.5.1 Tests for Hard Constraints

3.5.2 Soft Constraint Tests

No. Soft Constraint

Verification

hours.

A student should study no

1 | more than four consecutive

For each student timetable, locate every contiguous
block of occupied hours; the length of every block

must be no more than four.

hours.

A lecturer should teach no

2 | more than four consecutive

For each lecturer timetable, locate every contiguous
block of occupied hours; the length of every block

must be no more than four.

A student’s

same building.

consecutive

3 | classes should be held in the

For each student, examine every pair of back-to-back
classes; use the rooms timetable to confirm both

classes share the same building.

least one teaching hour.

A lecturer should receive at

This constraint is initially satisfied. Every lecturer

should have at least one teaching hour.

Bachelor of Computer Science (Honours)
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Table 3.5.2 Tests for Soft Constraints

3.5.3 Resource Utilisation Tests

No. | Resource Utilisation Percentage Verification
1 30% Generate timetables with zero penalty cost.
2 60% Generate timetables with zero penalty cost.
3 90% Generate timetables with zero penalty cost.

Table 3.5.3 Tests for Resource Utilisation
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4.1 System Architecture Design

University Course o e )
Timetabling System [ JDBC «—>» MySQL Driver
Java Application MySQL Database

Figure 4.1.1 University Course Timetabling System Architecture

The system adopts a two-tier client-server model with a three-layer data-access design.
The Java-based university course timetabling system (client) issues Structured Query
Language (SQL) operations through the Java Database Connectivity (JDBC) application
programming interface (API), which provides a standard interface for creating connections,
preparing statements, and handling results. The MySQL JDBC driver implements that
interface, translating JDBC calls into the MySQL wire protocol and managing details such as
authentication, transaction control, and data type mapping. At the back end, the MySQL
database (server) stores the schema and data, and enforces integrity via keys, constraints, and
triggers. Communication is bidirectional along the chain between application, JDBC API,
MySQL driver, and MySQL database. This ensures the results, errors, and metadata flow back
to the application while keeping database specifics encapsulated behind JDBC.

4.2 Input Design

The collected data described in Section 3.2 provides the foundation for the partial mock
dataset used in this project. To reduce complexity, only local students are considered.
Consequently, courses intended exclusively for international students are omitted. For
example, the course Philosophy and Current Issues is excluded, while Penghayatan Etika dan
Peradaban remains. This yields a more uniform programme structure and avoids handling
multiple parallel scenarios. The adjustment preserves essential relationships among courses,
rooms and lecturers while keeping the dataset compact and easier to manipulate during

development. Figure 4.2.1 shows the tailored subset of the collected data.
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Course Code Name Class (Hour) Year | Trimester Lecturer
Lecture | Tutorial | Practical
1 UCCD1024 DATA STRUCTURE AND ALGORITHMIC 3 i 2 1 3 Ts Dr Goh Chuan Meng
PROBLEM SOLVING Ts Lai Siew Cheng
Cik Morazira Binti A Jalil
Cik Ana Nabilah Binti Sa'uadi
2 UCCD1203 DATABASE DEVELOPMENT AND 2 i 2 1 3 Dr Altahir Abdalla Altahir Mohammed
APPLICATIONS Puan Lyana lzzati Binti Mohd Asri
Ts Saravanan a/l Subbiah
Dr Zurida Binti Ishak
Ts Dr Ku Chin Soon
3 UCCD2003 OBJECT-ORIENTED SYSTEMS ANALYSIS 3 1 i 1 3 Ts Dr Mogana a/p Vadiveloo
AND DESIGN Dr Tahayna Bashar M. A,
Cik Puteri Nursyawati Binti Azzuri
4 UCCM1353 BASIC ALGEBRA 3 1 - 1 3 Ms Lim Shun Jinn
5 | uccM1363 DISCRETE MATHEMATICS 3 1 i 1 3 |DrNurAmalina Binti Mat Jan
Ms Song Poh Choo
6 MPU3152 PENGHAYATAN ETIKA DAN PERADABAN 2 - - 1 3 Puan Sarah Binti Shamshul Anwar

Figure 4.2.1 Tailored Collected Data

This information is used to generate mocked rooms data. Other than that, 150 students
and 15 student groups are generated programmatically. Figure 4.2.1 shows the courses,

lecturers, course-to-lecturer assignments data while Figure 4.2.2 shows the mocked rooms data.

Based on this subset, the system initialises courses, lecturers, course-to-lecturer
assignments, and per-course classes. Course, lecturer, and assignment data are generated from
the available information. Besides, room conventions are defined, where building L hosts
lectures, while building N hosts tutorials and practicals. These conventions inform the
generation of the mock rooms dataset. In addition, 150 students and 15 student groups are
created programmatically. Figure 4.2.1 shows the courses, lecturers, and course-to-lecturer

assignments; Figure 4.2.2 shows the mock rooms data.

lecture hall

tutorial room

tutorial room
practical lab
practical lab

Figure 4.2.2 Mock Rooms Data

For each course, the system then generates the set of classes. It first estimates the
number of parallel classes required by dividing the number of students by the capacity of the
appropriate room type and taking the ceiling. For instance, 150 students enrol in course

UCCD1024, which has 3 hours of lectures and 2 hours of practicals. Lectures are held in lecture
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halls (capacity 300), so only 1 lecture class is required. On the other hand, practicals are held
in practical labs (capacity 20), so 8 practical classes are needed (| 150/20]). In total, the course
requires 9 classes (1 lecture plus 8 practicals). Each class is then assigned a lecturer chosen
from those linked to the course, prioritising the lecturer with the fewest current teaching hours.

Figure 4.2.3 shows an example of class generation.

heneraflng classes.
ass (ID 1) for course UCCD1024, duration: 3 hours, lecturer: Ts Dr Goh Chuan Meng
5s (ID: 2) for course U duration: 2 hours, lecturer: Ts Lai Siew Cheng
s (ID: for course U duration:
s (ID: for course U

2 hours, lecturer: Ts Lai Siew Cheng
2 hours, lecturer: Ts Dr Goh Chuan Meng
(ID: for cot u 2 hou lecturer: Ts Lai Siew Cheng
s (ID: for course U duration: 2 hours, lecturer: Ts Dr Goh Chuan Meng
ss (ID: for course U duration: 2 hours, lecturer: Ts Lai Siew Cheng
(ID: 8) for course U 2 hours, lecturer: Ts Dr Goh Chuan Meng
pr rlaq: (ID: for course U u 2 hours, lecturer: Ts Lai Siew Cheng
lerfure class (ID: 10) for course ULLDLZGB duraflon 2 hours, lecturer: Cik Norazira Binti A Jalil

Figure 4.2.3 Output of Class Generation

After all classes are created, student groups are allocated to classes by academic year
and trimester. Allocation is randomised but load-balancing, where each new group is placed
into the currently least-loaded suitable class to maintain a balanced distribution. Room-capacity
violations are prevented by a database trigger (see Section 4.5.3) that blocks any over-

enrolment at insert time. Figure 4.2.4 shows an example of group-to-class assignment.

heneraflng group class as 51gnmenfq...
group
group °
group
Assigned group
Assigned group
Assigned group
group
group
group
group
group °
group
group
group
group
group

[

(uccD1203 .
class 11 (UCCD1203 practlral)
class 1 (HCCD2993 lecture)
class : tutorial)
class : lecture)
tutorial)
lecture)
(UCCM1363 tutorial)
g (MPU3152 lec
class 1 (UCCD1024 lec
class 3 (UCCD1@24 practical)
class 1@ (UCCD1203 lecture)
class 1: CCD1203 practical)
class 19 (UCCD20@3 lecture)

NNNNNRRRRRRRRR R

Figure 4.2.4 Output of Group-to-Class Assignment

Together, these inputs form a coherent, valid dataset for the university course

timetabling system.

4.3 Output Design
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The output of the university course timetabling system comprises several structured,

well-organised components designed for analysis and usability.

For each run, genetic algorithm (GA) experiment statistics, such as the number of
generations required to reach zero penalty cost, the time taken (seconds), and the fitness value
per generation, are written to a text file. These metrics characterise the optimisation process

and support subsequent analysis. Figure 4.3.1 shows an example of GA run statistics.

Population Size: 100
Number of Generations: 19993

Crossover Rate: ©.70
Mutation Rate: 0.40
Total Time (seconds): 3.84

Final Best Fitness: @

Best Fitness per Generation:
Generation 1: 240960
Generation 2: 240960
Generation 3: 240960
Generation 4: 240960
Generation 5: 240960

Figure 4.3.1 Statistics of GA Experiment

Other than that, multiple timetables are also generated as comma-separated values
(CSV) files for each run due to the format’s simplicity and broad tool support. Course, lecturer,
student, and room timetables are produced. In course timetables (Figure 4.3.2), each class entry
shows the class type, lecturer name, room, and enrolled student groups. In lecturer timetables
(Figure 4.3.3), each class entry shows the course code, class type, room, and enrolled student
groups. In student timetables (Figure 4.3.4), each class entry shows the course code, class type,
lecturer name, and room. In room timetables (Figure 4.3.5), each class entry shows the course
code, class type, and lecturer name. An overall timetable (Figure 4.3.6) that consolidates
courses, lecturers, students, and rooms is also generated. There are some conventions adopted
by the generated timetables: subsequent slots of a multi-hour class are marked “cont.”; empty

slots are marked ““----”"; on Fridays, slots 5 and 6 (12:00-14:00) are marked “Prayer”.
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Course: UCCD1024 - DATA STRUCTURE AND ALGORITHMIC PROBLEM SOLVING

Day 08:00-09:00 09:00-10:00] 10:00-11:00 ] 11:00-12:00 12:00-13:00 13:00-14:00[14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00
PRACTICAL - Ts Lai Siew Cheng at PRACTICAL - Ts Lai Siew ChengatNg | | TACTICAL- Ts DrGoh Chuan Meng at
Monday cont. at N N3 (Groups: 7:15) cont. atN3
N4 (Groups: 4;12) (Groups: 8)
cont. at Nd
PRACTICAL- Ts Dr Goh Chuan Meng at
Tuesday N5 (Group: 311) cont. atN3
Wednesday| PRACTICAL-Ts LaiSiew Cheng athd |
{Groups: 1,9)
LECTURE - Ts Dr Goh Chuan Meng at L1
Thursd u u
ursday (Groups: 1:2;3:4:5:6:7:8:9:10;11;12;13,14;15) cont. at cont. at
PRACTICAL- Ts Dr Goh Chuan Meng at
I N3 (Groups: 5;13) cont. at N3 PRACTICAL - Ts Lai Siew Cheng atN4
Frid P P . athd
M98y | BRACTICAL-Ts Lai Siew Cheng atN4 | cont. atNé rever rayer (Groups: 6:14) cont.at
(Groups: 2;10)
Lecturer: Ts Dr Goh Chuan Meng
Day 08:00-09:00 09:00-10:0010:00-11:00 (11:00-12:00 | 12:00-13:00 | 13:00-14:00 | 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00
Monda UCCD1024 (PRACTICAL) at cont
W N3 (Groups: 7;15) :
Tuesd UCCD1024 (PRACTICAL) at ¢
uesdar cont.
u N3 [Groups: 3;11)
Wednesday
Thursda UCCD1024 (LECTURE) at L1 {Groups: cont cont
Y 1,2,3:4;,5,6,7,8;9;10;11;12;13;14;15) ’
Frid UCCD1024 (PRACTICAL) at " P P
rida cont. rayer rayer
U N3 [Groups: 5:13) Y Y
Student: Student_087 (Group: )
Day : :( 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00
ond MPU3L52 (LECTURE) - Puan Sarah .
R Binti Shamshul Anwar at L1 con
Tveaday | UCCD2003 (LECTURE) - Ts Dr Ku Chin . N UCCD1203 (PRACTICAL) - Cik Ana | UCCHL363 (TUTORIAL) -Dr Nor
e Soonatl1 con con Nabilah Binti Sa'uadi at N4 con Amalina Binti Mat Jan at N2
Wedneaday | UCCDLO2A (PRACTICAL) -Ts Lai Siew . UCCD1203 (LECTURE) - Cik . UCCM1353 {LECTURE) - Ms . .
i Cheng at N3 con Norazira Binti A Jalil at L1 con Lim Shun Jinn at L1 con con
uraday | UCCMIZ53 (TUTORIAL) - Ms Lim Stun UCCML363 (LECTURE) - Dr Nur . . UCCD1024 (LECTURE) - Ts Dr Goh . )
i Jinn atNz Amalina Binti Mat Jan at L1 con con Chuan Meng at L1 con con
e UCCDZ003 (TUTORIAL -TsDr | .
i Mogana a/p Vadiveloo at N2 rayer rayer
Day 08:00-09:00 09:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00
Monda UCCDL203 (PRACTICAL) - Cik | UCCDI203 (PRACTICAL)-Dr | ™ | UCCD1024 (PRACTICAL)-TsDr |
v Ana Nabilah Binti Sa'uadi - Zurida Binti Ishak Goh Chuan Meng
Teosda UCCD1203 (PRACTICAL -Ts | | UGCDI1Z03 (PRACTICAL)-Cik | | UCCD1024 (PRAGTICAL) -TsDr |
v Saravanan a/l Subbiah " Norazira Binti A Jalil i Goh Chuan Meng i
UCCD1024 (PRACTICAL) -
Wednesday| 1. | ai Siew Cheng cont.
Thursday
Frd UCCD1024 (PRACTICAL) - . UCCD1203 (PRACTICAL) - Dr Altahir . . . UCCD1203 (PRACTICAL) - Puan .
"9 | TsproohchuanMeng | <™ Abdalla Altahir Mohammed cent rayer rayer Lyana lzzati Binti Mohd Asri cont
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Figure 4.3.6 Overall Timetable

For each operator combination, after 10 experiments, a summary table is created

showing the per-run statistics and their averages. A new metric proposed in this project, fitness

improvement per generation, is also reported. It is calculated by dividing the initial penalty cost
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by the number of generations taken to achieve zero penalty cost. This provides a fairer basis
for comparison because the GA initialises chromosomes randomly, leading to different initial
fitness values. The metric mitigates this bias by emphasising per-generation progress rather
than absolute fitness across an entire run. Figure 4.3.7 shows the statistics from 10 GA

experiments for a single combination.

Experiment | Mumber of Generations |Total Time |Initial Fitness |Fitness Improvement per Generation
54485 10.56 270450 496
6127 121 220870 36.05
5616 1.06 190480 33.74
3768 0.72 250540 66.49
3742 0.75 260640 69.65
3334 0.89 230720 69.2
6258 1159 260350 4174
2311 097 250560 108.42
154993 3.84 240960 12.05
2818 0.66 240350 B5.29
Average 10846.6 219 241586 52.76

W= |ln|ds|afpa ]| =

=
=

Figure 4.3.7 Statistics of 10 GA Experiments Per Combination

After all experiments (64 x 10) are completed, the results are summarised for
comparison across combinations. The combinations with the lowest and highest average fitness
improvement per generation are identified as the worst and best, respectively. Figure 4.3.8
presents the detailed statistics for each combination; Figure 4.3.9 shows the overall summary;

Figure 4.3.10 highlights the worst-performing combination.

GAD1 GAO2 GAO3
Experiment [Number of Generations | Total Time|niial Fitness [Fitness Generation Experiment [Number o Generations | Total Time] ntil Fitness | Ftness improvernent per Generation | Experiment [Number o Generations | Total Time| nitil Fitness | Ftness Improvement per Generation |
1 e a5y as0so0] a1 1 To|  ass| 1s0eao) 243 1 o] sl o] 1035
2 [ osi asean 91 2 sss| 08 sosuo) s 2 sseon| 8| 2i0s0 |
3 o3 300 3 7| asiases0) 3579 3 Zmm] a2 200600 95
| s0a] 0wl awm) 5o | | 127w 5733 3 seos| s ool
5 8634] 17| 221020| 25.6| 5 6612 16| 281030| 425 5 3675) 0.84] 240760 65.51)
o sus| e 10sa0) 52 o o S T 5539 o seesa] 3007] zsar] 21
7 5o omi] asom] 281 7 Tarse] 525]  aw00m] 178 7 To36|_ 236] 2s0460] s2g)
s Soa[os|azomo) 58 s o2ss[a2a] o000 147 s agoo] 102l a0 2543
5 o[ ass[  awos) 2a1 5 sasa| s asoo0 5534 s Toss| 2] ool s
10 See2| 23] a6 B 10 04| 06| a00120) w13 1 700|157 2s07e0) 5279
G507 x| = ) Y T a3 = Trrsse] 35| wies 351
Ghos Gaos

EIN

vent [Number of Generations |Total Time]Inital Fitness | Fitness Improvement per Generation Experiment [Number of Generations Total Time|Initia Fitness | Fitness Improvement per Generation | Experiment [Number of Generations |Total Time| initial Fitness | Fitness Improvement per Generation_|

t i n
1 1 20060 572 200370| 1 ﬂ 1 7405 77| 200620 08|

7] 7] G7e9]  1a1]  200770) 3557 3] 5122] 1] 250550) o

3 3 a212) 1 270630) ZE 3 54z, 18] 230820 39|
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5 5 5568] 15| 220510] 2.6] 5 10961 23 76|
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Figure 4.3.8 Statistical Details of Each GA Combination
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GA Model | Average Number of Generations |Average Total Time |Average Initial Fitness |Average Fitness Improvement per Generation
GADL B5B0.7 1.39 220632 39.36
GAD2 6559 1.45 241503 445
GAD3 177586 3.55 229763 2B.13
GADS 13101.2 2.48 237658 36.66
GADS 10096.3 197 231686 30.38
GADE 7462 6 153 234650 36.67
GADT 15458 3.09 251580 289
GADE 135206 247 242607 43.01
GADS 1458759 2.84 233615 25.02
GALD 0412 1.89 252567 354
GAll 29065 5.59 237574 29.66
GAl12 8062.2 1.82 246624 5284
GAl13 24122 1.65 238654 35.79
GAl4 BE36.1 1.74 242700 33.44
GA1S 225288 4.39 245656 50.8
GAlG 44258 0.97 222666 5595
GAL7 10176.6 1594 23B656 2778
GA18 180152 3.54 23?5?0—
GA19 B&93.7 1.75 234674 30.34

Figure 4.3.9 Statistical Summary of All GA Combinations

GA15

223288
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245656,
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GALY

10176.6

1.94]

238656

GAlE

18915.2

3.54]

27.78

237670 | 66|
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| Crossover

Mutation |

R
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| Single-point ‘ Swap

| Binary Tournament

Figure 4.3.10 Worst GA Combination

Operator-level comparison tables are also produced to enable like-for-like comparisons

without confounding from other operators. For example, Figure 4.3.11 compares replacement

operators.

Replacement

Selection Crossover | Weak Parent | Binary Tournament | Linear Ranking | Weak Chromosome
Single-point 39.36 44.5 28.13 36.66
Roulette Two-point 30.38 36.67 28.9 43.01
Wheel Uniform 25.02 35.4 29.66 52.94
Shuffle 35.79 33.44 30.8 35.95
. single-point | 27.75 | [NSO0GI 3034 4151
§ Random Two-point 29.9 33.6 24.91 49.93
H Uniform 30.45 26.87 27.5 40.61
2 Shuffle 32.32 25.5 32.09 33.84
H Single-point 41.26 29.29 30.61 45.04
B Binary Two-point 45.81 28.99 55.46 61.59
% Tournament Uniform 39.71 38.85 47.6 67.99
» Shuffle 48.5 36.12 51.74 39.58
Single-point 34.19 22.13 40.75 63.97
Linear Two-point 39.18 38.84 31.68 39.56
Ranking Uniform 37.2 25.27 54.19 55.58
Shuffle 45.5 52.09 34.01 52.76

Average 36.40 34.85 37.40 48.79

Figure 4.3.11 Comparison Table for Replacement Operator
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4.4 Genetic Algorithm Design

Initialise population
Evaluate fitness

A chromosome reaches
optimum fitness
No

Selection ‘

Generated random value
= Crossover rate
Yes

‘ Crossover ‘

Generated random value
< Mutation rate
Yes

Generate statislics

Retum solution

Mutation

4| Replacement |17

Figure 4.4.1 Flowchart of GA for University Course Timetabling System

Figure 4.4.1 outlines the genetic algorithm (GA) used by the university course
timetabling system in this project. After setting key parameters (population size, crossover rate,
and mutation rates), the algorithm creates a random population and immediately repairs each
chromosome to remove duplicate or missing classes and illegal placements (cross-day
segments and protected Friday prayer slots). A penalty-based fitness function then scores every
timetable by counting hard and soft constraint violations; this includes the proposed soft
constraint that penalises consecutive classes for a student that occur in different buildings to
discourage inter-building moves. If a chromosome reaches the target fitness (zero cost), the run
ends, experiment statistics are written, and the best timetable is returned. Otherwise, two

parents are chosen, crossover and mutation are applied according to their probabilities, and
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each offspring is repaired before evaluation. A replacement policy then inserts the offspring
into the population, typically displacing weaker chromosomes, and the loop repeats from

fitness evaluation until the stopping condition is met.

4.4.1 Chromosome Encoding

Each chromosome encodes a complete weekly timetable as a fixed-length integer array
of 250 genes (5 rooms % 5 days x 10 slots), with a small header that stores the current penalty
score. Gene values are class IDs (see Section 4.2): a value greater than 0 refer to specific
lecture, tutorial, or practical instance, while 0 denotes an empty time slot. Multi-hour classes
are represented by repeating the same class ID across consecutive slots equal to the class
duration. For example, a three-hour class with ID 7 appears as [7, 7, 7]. Physically, the array is
laid out in room-major order, then day-major within each room: the 50 daily slots of Room 1
(5 days x 10 slots) are followed by the 50 slots of Room 2, and so on to Room 5 (Figure 4.4.2);
within each room, the 10 slots for Monday come before the 10 for Tuesday through to Friday.
This layout supports constant-time edits per slot, fast checks for empty segments and
contiguous blocks, and a clear, reproducible mapping between timetable semantics and array
indices. Figure 4.4.3 illustrates the gene-level view of a room within the chromosome,

including a three-hour class with ID 7 and empty slots.

Fitness value

Room 1 Room 2 Room 3 Room 4 Room 5

Figure 4.4.2 Overview of A Chromosome

8-9am 9-10am 10-11am 11-12pm 12-1pm 1-2pm 2-3pm 3-4pm 4-5pm 5-Gpm
Monday ‘ 0 ‘ 1] ‘ 0 ‘ 1] ‘ 0 ‘ 1] ‘ 0 ‘ 1] ‘ 0 ‘ 1] ‘
Tuesday 0 T i T 0 ‘ i} ‘ 0 ‘ i} ‘ 0 ‘ i} ‘
Wednesday ‘ 0 ‘ 1] ‘ 0 ‘ 1] ‘ 0 ‘ 1] ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘
Thursday ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘
Friday ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘

Figure 4.4.3 Gene-Level View of A Room in A Chromosome
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4.4.2 Population Initialisation

The initial population is generated with a greedy-random strategy to avoid early
infeasibility and reduce timetable fragmentation. For each chromosome, an empty 250-gene
array is created, and its header initialised. Classes are then ordered by its difficulty to place,
with longer-duration classes treated as higher difficulty because they require more consecutive
slots. The algorithm scans compatible rooms and days in index order to find a contiguous block
long enough for the current class, then writes the class ID across those slots. This longest-first
placement prevents classic fragmentation (for instance, two isolated one-slot gaps blocking a
two-hour class) and leaves well-shaped space for later items. After longer classes are placed,
shorter classes fill the remaining gaps. To maintain diversity, randomisation is injected at
several points: when multiple feasible placements exist, one is chosen at random, and the room
is randomly selected from the compatible set. Finally, each chromosome undergoes the
standard repair process to address any residual overlaps or missing segments before fitness

evaluation.

4.4.3 Fitness Evaluation

The fitness of a chromosome is indicated by its total penalty cost, where lower values
signal better timetables. Penalties are accumulated per violation using fixed weights: hard-
constraint breaches incur 10000 each, standard soft-constraint breaches incur 10, and the
building-continuity constraint is weighted 20 to emphasise its importance in this project. Hard
checks include clashes for students and lecturers, room-type compatibility, room capacity,
protection of Friday prayer periods, missing or duplicated classes, and cross-day segment
violations. Soft checks include excessive consecutive hours for students and lecturers, plus the
building-continuity rule. Many of these errors are minimised by the chromosome encoding,

greedy initialisation, and repair routines in the GA loop.

4.4.4 Repair

After each chromosome is built, crossed over, or mutated, a dedicated repair process

restores feasibility and compacts the timetable so that later operators do not accumulate errors.
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The repair process consists of three steps. First, it scans all 250 genes to count how
many slots each class currently occupies. It then compares these counts with the required
durations. If the count is not equals to the duration, this indicates that the class has missing,
overfilled, or duplicated segments. All occurrences of the class are cleared, and the class is
queued for correct placement. This guarantees that every multi-hour class appears as one

contiguous block of its exact length and that no cross-day fragments slip in.

Second, for each queued class, the repair tries to place it using only compatible rooms
and currently contiguous free slots. Friday’s protected period is treated specially, where the
slots 5 and 6 are unavailable. An effective checking on capacity per day caps Friday at six
hours, which prevents pathological cases such as two 3-hour and one 2-hour classes appearing

capacity-feasible but actually unplaceable across the two segments on Friday.

Third, if a class still unable to fit, the operator escalates through increasingly flexible,
local repacking moves that behave like bounded backtracking. It starts with “same room, same
day” relocation that clears that day in the room, then re-inserts all classes for that day tightly,
block by block, to open a contiguous window for the target class. If unsuccessful, it practices
“same room, across days” relocation that repeats the compact-and-reinsert process on another
day of the same room until successful or there is no day left. If this approach failed as well, the
process leverages “rooms of the same type, across days” strategy as a last resort, which clears
and tightly repacks days across multiple rooms of the required type, subject to each day’s
capacity. Each repack writes classes back-to-back without gaps inside the allowed segments,

ensuring the day layout is maximally compact before the next attempt.

Once all queued classes are placed, the chromosome contains no missing or duplicate

segments, respects room-type compatibility and protected periods.

In short, the repair operator combines strict consistency checks with constrained
backtracking and compact re-packing: if a class cannot fit as-is, it shifts earlier placements
locally to make space, limits Friday’s effective capacity to six hours to avoid impossible
layouts, and packs contiguously so that future operations have the largest feasible blocks to

work with.

4.4.5 Selection
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4.4.5.1 Roulette Wheel Selection

In the roulette-wheel scheme, the implementation first finds the worst (maximum) penalty in
the population and converts each chromosome’s penalty into a non-negative weight by using the
formula: worst fitness minus own fitness plus one, so that lower penalties yield larger weights. The
weights are summed, a random draw is taken in between 0 and the total weight, and the operator scans
cumulatively across the population to pick the first chromosome whose running total exceeds the
random value. Repeating this procedure twice to return two parents. Because probabilities are
proportional to the inverted penalty, every chromosome retains a chance while better timetables are
favoured. Figure 4.4.4 shows that the lower the penalty cost, the higher the fitness, and thus there is

higher probability of getting chosen as the parent because it spans across more space.

Higher fitness,
Higher probability

Chromeosome

Figure 4.4.4 Roulette Wheel Selection in University Course Timetabling System

4.4.5.2 Random Selection

The random selector ignores fitness entirely. Each parent is drawn uniformly at random
from the population, returning two independent picks per mating event. This maximises
exploration and genetic diversity, providing a useful baseline and a way to inject variability

without changing any other part of the pipeline.

4.4.5.3 Binary Tournament Selection

Binary tournament selection samples two distinct candidates uniformly at random and
returns the one with the lower penalty; ties are effectively broken by the sampling order. This
process is run twice to obtain two parents. The approach is simple, fast, and scale-free, where

moderate selective pressure emerges naturally because mid-ranking individuals can still win
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when paired against weaker ones. Figure 4.4.5 shows the higher fitness chromosome wins the

tournament and getting chosen as the parent.

Population
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l Higher fitness wins
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Figure 4.4.5 Binary Tournament Selection in University Course Timetabling System

4.4.5.4 Linear Ranking Selection

Linear ranking selection begins by sorting a copy of the population in ascending order
of penalty (best first). The operator assigns a linear rank weight to index i as (N — 1), so the best
individual has weight N, the next N—1, and so on, with total weight equal to N(N+1)/2, where
N represents the population size. To pick a parent, a random draw is taken over this total and a
cumulative scan over the sorted list identifies the selected rank; repeating yields the second
parent. Because probabilities depend on rank rather than raw penalty gaps like roulette wheel
selection, selective pressure is controlled and premature takeover by a single outlier is reduced.
Figure 4.4.6 shows the process of linear ranking selection which assigns weight according to

rank rather than fitness.
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Higher rank,
Higher probability

Chromosome

Figure 4.4.5 Linear Ranking Selection in University Course Timetabling System

4.4.6 Crossover

All crossover techniques in this system are room-based. Rooms are not interchangeable
because capacity and room type (lecture hall, tutorial room, practical lab) are tied to the room
itself, so cutting mid-room can easily produce invalid schedules (for example, a lecture class
landing in a lab). Multi-hour classes also span consecutive slots, making it difficult to align
identical cut points inside both parents without splitting a class. To avoid these issues, the
algorithm performs crossover room by room: for each room, the offspring inherits the entire
weekly schedule from one of the parents. This design preserves room-type and capacity

semantics by construction and greatly reduces post-crossover repair.

4.4.6.1 Single-Point Crossover

A single classroom index is sampled as the crossover point in the room list (room-major
layout). For each child, all classrooms before the point are copied wholesale from Parent 1, and
all classrooms from the point onward are copied from Parent 2. The second child uses the
complementary assignment. Because each classroom is transferred as a complete unit, no class
is fragmented, and room constraints remain intact. Figure 4.4.6 shows the process of single-

point crossover in this project.
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Parent 1 Room 1 Room 2 Room 3 Room 4 Room 5

Parent 2 Room 1 Room 2 Room 3 Room 4 Room 5

Crossover room = Room 3

Offspring 1 Room 1 Room 2 Room 3 Room 4 Room 5

Offspring 2 Room 1 Room 2 Room 3 Room 4 Room 5

Figure 4.4.6 Single-Point Crossover in University Course Timetabling System

4.4.6.2 Two-Point Crossover

Two room indices are sampled. For each child, the middle block of rooms (from first
room index (inclusive) to second room index (exclusive)) is copied from Parent 2, while the
outer blocks come from Parent 1. The second child receives the complementary composition.
This increases mixing compared with single-point crossover while still respecting classroom
boundaries, ensuring that every inherited room timetable remains coherent. Figure 4.4.7 shows

the process of two-point crossover in this project.

Parent 1 Room 1 Room 2 Room 3 Room 4 Room 5

Parent 2 Room 1 Room 2 Room 3 Room 4 Room 5
Crossover room 1 = Room 2 Crossover room 2 = Room 4

Offspring 1 Room 1 Room 2 Room 3 Room 4 Room 5

Offspring 2 Room 1 Room 2 Room 3 Room 4 Room 5

Figure 4.4.7 Two-Point Crossover in University Course Timetabling System
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4.4.6.3 Uniform Crossover

Each classroom is treated independently with a Bernoulli draw, in which the possibility
of each outcome is 0.5. If the generated random value is 0, the child takes the entire schedule
of that classroom from Parent 1; otherwise from Parent 2. This produces fine-grained
recombination at the level of rooms, encouraging diversity without risking mid-class splits or

room-type mismatches. Figure 4.4.8 shows the process of uniform crossover in this project.

Parent 1 Room 1 Room 2 Room 3 Room 4 Room 5
Parent 2 Room 1 Room 2 Room 3 Room 4 Room 5
Random value: 0 or 1 0 1 1 0 1
Offspring 1 Room 1 Room 2 Room 3 Room 4 Room 5
Offspring 2 Room 1 Room 2 Room 3 Room 4 Room 5

Figure 4.4.8 Uniform Crossover in University Course Timetabling System

4.4.6.4 Shuffle Crossover

Before applying room crossover, the algorithm generates a random permutation of
room indices and applies single-point crossover to the list of shuffled indexes. The rooms to be
crossed over is then determined from the room indices after the crossover point. Shuffling
breaks positional bias among adjacent rooms and promotes better mixing of room clusters,
while maintaining the room-by-room guarantee that preserves capacity and type semantics.

Figure 4.4.9 shows the process of shuffle crossover in this project.

56

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



Chapter 4 System Design

Room indexes | 1 | 2 | 3 | 4 | 5 |

Shufiled | 2 | 4 | 3 | 1 | 5 |

Crossover index: 2

Crossover rooms | 3 | 1 | 5 |

Parent 1 Room 1 Room 2 Room 3 Room 4 Room 5
Farent 2 Room 1 Room 2 Room 3 Room 4 Room 5
Offspring 1 Room 1 Room 2 Room 3 Room 4 Room 5
Offspring 2 Room 1 Room 2 Room 3 Room 4 Room 5

Figure 4.4.9 Shuffle Crossover in University Course Timetabling System

4.4.7 Mutation

After crossover, each offspring is subjected to mutation with a fixed probability. The
implementation uses a contiguity-aware swap that moves classes without breaking multi-hour

blocks or violating room-type semantics.

The operator first picks a random source index in the chromosome and maps it to (room,
day, slot) using the room-major layout. It then restricts potential destinations to rooms of the
same type as the source room, ensuring any move cannot place a lecture into a tutorial room or
practical lab, or exceed capacity semantics tied to room type. For example, if the chosen gene
is at lecture hall, the target gene must be selected from lecture halls only. A random destination
index is drawn uniformly over all days and slots across these compatible rooms, which
encourages broad exploration. As a result, the class may remain in place, move within the same

room, or jump to a different but compatible room at the end of this operation.

If both positions are empty, a trivial swap has no effect. Otherwise, the operator
performs a contiguous-block swap: it detects whether either index lies inside a multi-hour class,
locates that class’s full block, and swaps whole blocks rather than single genes. This preserves
class contiguity by construction. The operator also guards against illegal shapes: swaps do not
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cross day boundaries, and Friday’s protected period (slots 5 and 6) is treated as a hard split, so
no block is allowed to straddle it. If a clean block-for-block exchange is not possible (for
instance, destination area is partially occupied or the blocks differ in length), the routine
performs the safest available partial move by checking slots before and after both contiguous
class blocks, hoping to find sufficient spaces to utilise those empty slots for block-to-block
exchange. If unsuccessful, it finds the empty blocks in the room without limitation to before

and after target class blocks. If no empty block is found, no swap is performed.

Two design choices make this mutation both safe and effective. First, room-type
filtering means every mutated placement remains in a capacity- and usage-compatible room
family, avoiding a large class of invalid schedules. Second, contiguity awareness means multi-
hour classes are never torn apart; mutations explore alternative placements of entire classes
instead of introducing fragmentation. After mutation, the repair operator runs to clear up any
side effects (duplicates, missing segments, or cross-day violations), and the individual is re-

evaluated for fitness.

4.4.8 Replacement
4.4.8.1 Weak Parent Replacement

After producing two offspring from a mating pair, the algorithm builds a candidate pool
consisting of both parents and both offspring. It then sorts the candidates according to their
fitness. The two best chromosomes out of the four candidates replace the two parents. This
approach ensures the child replaces the parent only if the child’s penalty is strictly lower. If
both children outperform both parents, both parents are replaced; if neither child improves on
its mapped parent, the parents are retained, and the offspring are discarded. This keeps
population size constant, preserves strong parental building blocks, and prevents regressions
caused by inferior children. Figure 4.2.10 shows that Parent 1 and Offspring 2 (highlighted in
green) is the two best chromosomes among the two parent and two offspring, therefore

replacing Parent 1 and Parent 2 (highlighted in red) in the population.
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Parent 1 Parent 2 Offspring 1 Offspring 2

Sort by fitness Parent 1 Offspring 2 Parent 2 Offspring 1

Higher fitness (Lower penalty cost)

Figure 4.4.10 Weak Parent Replacement in University Course Timetabling System

4.4.8.1 Binary Tournament Replacement

For each offspring, two distinct candidates are sampled uniformly at random from the
current population. The candidate with the higher penalty cost, that is the weaker one, is
selected as the replacement target. This operation applies the opposite logic as the binary
tournament selection, as selection aims to select good chromosomes while replacement aims
to replace bad chromosomes. Figure 4.4.11 shows the process of choosing a replacement target

from the population in binary tournament replacement.

Population

®@ v O

l Lower fitness wins

Figure 4.4.11 Replacement Target Selection Process in Binary Tournament Replacement

4.4.8.1 Linear Ranking Replacement
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This is a proposed replacement technique inspired by the linear ranking selection
strategy. The population is copied and sorted by penalty in descending order (worst first). A
linear rank weight is assigned to index i as (N — 1), so lower-ranked (worse) chromosomes are
more likely to be chosen as replacement targets, while top individuals have the smallest
removal probability. For each offspring, a target is drawn according to these rank weights; this
decouples replacement from raw penalty gaps, protects elites probabilistically, and avoids
premature loss of diversity. This operation applies the opposite logic as the linear ranking
selection, as selection aims to select good chromosomes while replacement aims to replace bad
chromosomes. Figure 4.4.12 shows the process of choosing a replacement target from the

population in linear ranking replacement.

Lower fitness,
Higher rank,
Higher probability

Chromosome

Figure 4.4.12 Replacement Target Selection Process in Liner Ranking Replacement

4.4.8.1 Weak Chromosome Replacement

This is a proposed replacement technique inspired by the weak parent replacement
strategy. For each offspring, the algorithm identifies two global worst chromosomes in the
population (maximum penalty) and adds it to a candidate pool consisting of both offspring.
The candidates are then sorted according to their fitness. The best two chromosomes replace
the positions of both parents in the population This policy injects a stronger selective pressure
than the weak parent replacement toward continuous improvement while guaranteeing that the
current best solutions are never overwritten by weaker individuals. Figure 4.3.13 shows that
Worst 1 and Offspring 2 (highlighted in green) is the two best chromosomes among the two
worst chromosomes and two offspring, therefore replacing Worst 1 and Worst 2 (highlighted

in red) in the population.
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Chromosome 1

Chromosome 2

Chromosome 50

Find 2 chromosomes with

highest penalty cost WVor=t 1 Morsd]
Waorst 1 Worst 2 Offspring 1 Offspring 2
Sort by fitness Worst 1 Offspring 2 Offspring 1 Worst 2

Higher fitness (Lower penalty cost)

Figure 4.4.13 Weak Chromosome Replacement in University Course Timetabling System

4.4.9 Parameter Settings
No. Parameter Value
1 Population Size 100
2 Crossover Probability 0.7
3 Mutation Probability 0.4

Table 4.4.1 Parameter Settings of GA in University Course Timetabling System

The crossover and mutation rate are determined by performing grid search across
various parameter combinations. Experiments using combinations of 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
crossover rate and 0.01, 0.1, 0.2, 0.3, 0.4, 0.5 mutation rate are run to identify the best
probabilities. The GA combination involved is using roulette wheel selection, single-point
crossover, swap mutation, and weak parent replacement. Each parameter variation is run 10
times using the specified GA model. The results are then evaluated using the proposed metric

(see Section 4.3).

Figure 4.4.14 shows the experiment results of the parameter testing. It is found that
crossover rate at 0.7 and mutation rate at 0.4 performs the best. It can be clearly seen that the
performance of GA increases as the mutation rate increases and reaches its peak at 0.4 and
slowly falls at 0.5. On the other hand, the performance of GA model reaches its peak when

crossover rate is set at 0.7.
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Average Fitness Improvement per Generation

Mutation Rate
0.01 0.1 0.2 0.3 0.4 0.5
0.5 2.22 | 11.58 | 19.47 | 29.46 | 3B.97 | 31.29
0.6 | 2.37 | 12.34 | 21.27 | 28.43 | 42.27 | 32.57
0.7 272 | 1799 | 2758 | 35.72 | 48.19 | 27.28
0.8 | 2.23 | 19.56 | 15.34 | 31.06 | 30.68 | 30.62
0.9 1.88 | 13.97 | 18.74 | 33.89 | 35.15 | 33.52

Crossover Rate

Figure 4.4.14 Experiment Results of Crossover and Mutation Variations

4.4.10 Operator Combinations

Selection Crossover Mutation Replacement
Roulette Wheel Single-Point Swap Weak Parent
Random Two-Point - Binary Tournament
Binary Tournament Uniform - Linear Ranking
Linear Ranking Shuffle - Weak Chromosome

Table 4.4.2 GA Operator Techniques for Project

Table 4.4.2 shows the operator techniques applied in this project, which are 4 selection,
4 crossover, 1 mutation, and 4 replacement techniques. These components allow for the

formation of 64 different genetic algorithm (GA) combinations as shown in Figure 4.4.15.
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GA Mod Selection Crossover Mutation Replacement
Foulette Wheel | Random | Binary Tournament | Linear Ranking | Single-point | Two-point | Uniform Shuffle Swap ‘weak Parent | Binary Tournament | Linear Ranking | ‘Weak Chromosome
401 [vd o L4 L4
GA0z v v v )
403 [vd o [ o
A4 v v v v
A0E -~ - [ ~
A0E L L » »
407 L L » »
2 L L » »
2 L » » »
2 L L » »
A L L » »
2 L L » »
2 L » » »
3 - - - ~
2 L » » »
2 L L » »
2 L L » »
413 L L L L
413 L L » »
L L L » »
L L L » »
L L L » »
A v v v v
. GA o o o v
425 L L » »
A2E L L » »
82T L L L L
L L L » »
L L » » »
L L » » »
L L » » »
A v v v v
L L L » »
L L L » »
L L L » »
L (o (o [ [
L L L » »
L L L » »
L L L » »
L L L » »
X v I [ v
L L L » »
L L L » »
L L L » »
L (o [ [ [
L L » » »
L L L » »
A48 L L L »
_ GAs3 v v v v
450 L4 L4 L4 L4
| GAR Ll Ll Ll L
| GAR2 Ll Ll Ll L
k] [ o L4 o
| GAG4 o o o o
_GASE v v v v
A5E [ o o o
GAET v v ) v
GAsE v v v v
453 [ L4 L4 »
AED [ o [ o
AET [vd o L4 o
GhEz v v v v
463 v v v L%
AE4 [ [ [ o

Figure 4.4.15 GA Combinations

4.5  Data Storage Design

In this project, MySQL serves as the persistent data storage for the university course
timetabling system. It is an open-source, production-grade, client-server relational database
management system (RDBMS) that supports standard SQL and ACID (atomicity, consistency,
isolation, durability) transactions. Its native features such as auto-increment columns, foreign
keys, and triggers allow integrity rules to be enforced close to the data, reducing application-
side complexity. Furthermore, the database integration with Java, the development
programming language for this project, is straightforward using the JDBC API and the MySQL
Connector/J database driver. In summary, MySQL combines relational rigour and transactional
reliability with a simple Java integration path, making it a solid foundation for research-based

projects.
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4.5.1 Database Structure

student_groups groups_classes classes
PK | group_id PK | group_id. class_id PK  class_id
student_count H—enrols in——< FK | group_id —is attended by—HH type
year FK | class_id duration
frimester FK | course_id, lecturer_id
belongs to ie delivered under
students courses courses_lecturers
PK | student id PK | course id PK | course id, lecturer id
name code Ht—is taught by— FK | course_id
FK | group_id name FK | lecturer_id
year
teaches
rooms trimester
PK | room_id lecturers
name PK | lecturer_id
building name
type assigned_class_hours
capacity

Figure 4.5.1 ERD for University Course Timetabling System

Figure 4.5.1 shows the entity relationship diagram (ERD) for the university timetabling
system, comprising 6 core entities, which are Students, Student Groups, Courses, Lecturers,
Classes, and Rooms, and the relationships that connect them. Each Student belongs to exactly
one Student Group. Student Groups and Classes form a many-to-many relationship via an
associative table, where students inherit class enrolments through their group rather than each
student being linked to classes individually. Each Course generates one or more Classes,
capturing the idea of parallel or repeat offerings. Every Class is taught by exactly one Lecturer,
while a Lecturer may teach multiple Classes, creating a one-to-many association. Rooms are
modelled independently. This is because class-to-room assignments are produced dynamically
by the genetic algorithm (GA) during each run. Each chromosome represents a candidate
timetable, therefore persisting these assignments in the database would create excessive,
redundant writes and degrade performance. Keeping Rooms as a reference list ensures a

consistent, controlled set of available spaces across experiments. Together, these relationships
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yield a normalised, searchable schema that supports conflict-free allocation of lecturers,

students, courses, and rooms.

4.5.3 Table Structure

Students table
Attribute Data Type Constraint Description
' Unique identifier of
ID INT Primary key
student
Name VARCHAR(100) | Not NULL Student name
' Reference to student
Group ID INT Not NULL; Foreign key
group
Table 4.5.1 Students Table Structure
Student Groups table
Attribute Data Type Constraint Description
' Unique identifier of
ID INT Primary key
student group
Student Not NULL; Check if value | Number of students in
TINYINT
count is between 1 and 10 group
Not NULL; Check if value
Year TINYINT . Current academic year
is more than or equals to 1
Check if value is between
Trimester TINYINT L and 3 Current trimester
an

Courses table

Table 4.5.2 Student Groups Table Structure

Attribute Data Type Constraint Description
' Unique identifier of
ID INT Primary key
course
Code VARCHAR(20) | Not NULL; Unique Course code
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Name VARCHAR(200) | Not NULL Course name
Not NULL; Check if value
Year TINYINT . Academic year
is more than or equals to 1
Check if value is between
Trimester TINYINT L and 3 Academic trimester
an

Lecturers table

Table 4.5.3 Courses Table Structure

Attribute Data Type Constraint Description
Unique identifier of
ID INT Primary key
lecturer
Name VARCHAR(100) | Not NULL Full name of lecturer
Default is 0; Check if
Assigned Class hours assigned to
SMALLINT value is more than or
class hours lecturer
equals to 0

Rooms table

Table 4.5.4 Lecturers Table Structure

Attribute Data Type Constraint Description
ID INT Primary key Unique identifier of room
Name VARCHAR(50) | Not NULL Room name

o Not NULL; Check if value o
Building CHAR(1) Building identifier
is between ‘A’ and ‘Z’
ENUM(‘lecture
hall’, ‘tutorial
Type ) Not NULL Room type
room’, ‘practical
lab”)
_ Not NULL; Check if value '
Capacity SMALLINT Room capacity
is more than 0

Classes table

Bachelor of Computer Science (Honours)

Table 4.5.5 Rooms Table Structure
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Attribute Data Type Constraint Description
ID INT Primary key Unique identifier of class
ENUM(‘lecture’,
Type ‘tutorial’, Not NULL Class type
‘practical’)
. Not NULL; Check if value .
Duration TINYINT Class duration (hours)
is between 1 and 10
Course ID | INT ) Reference to course-to-
Not NULL; Foreign key )
Lecturer ID | INT lecturer assignment

Table 4.5.6 Classes Table Structure

Courses-Lecturers table

Attribute Data Type Constraint Description
Course ID | INT Primary key; Foreign key | Reference to course
Lecturer ID | INT Primary key; Foreign key | Reference to lecturer

Table 4.5.7 Courses-Lecturers Table Structure

Groups-Classes table

Attribute Data Type Constraint Description
. . Reference to student
Group ID INT Primary key; Foreign key
group
Class ID INT Primary key; Foreign key | Reference to class

Table 4.5.8 Groups-Classes Table Structure

4.5.3 Database Trigger
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Get current number
of students in class

l

Get number of
new students

l

Compute fotal
number of students

l

Get class type

l

Get room capacity
from class type

total students =
room capacity

h h J

/ Print error message / / fnsatl gr.oup—to—class /
assignment

Figure 4.5.2 Flowchart of Trigger

In this project, the university course timetabling system defines a trigger that runs
before inserting every group-to-class assignment into database to enforce enrolment limits at
the database layer. The workflow of this trigger is shown in Figure 4.5.2. When the database
attempts to insert a new group-to-class link, the trigger first calculates the projected total
number of students in that class by summing the number of students of all already-linked
groups and adding the incoming group’s size. Then, it looks up the class type and determines
the applicable capacity threshold. For example, a lecture class is held in a lecture hall that has
a capacity of 300 students. Lastly, it compares the projected total number of students against
the limit. If the insert operation would exceed the allowed capacity, the database aborts the

operation with a clear error message. By validating capacity close to the data, the trigger
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guarantees data consistency, prevents over-enrolment even under concurrent writes, and keeps

constraint logic centralised and auditable.
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Chapter 5
System Testing

5.1 Experiments on Constraints

The verification on constraints is conducted by observing the timetable in CSV format
and making sure that all constraints are satisfied by the output. All output timetables are
manually checked one-by-one to ensure the correctness since there is no one static, exact output

due to the stochastic property of genetic algorithm (GA).

Figure 5.2.1 Overall Timetable for Result Verification

Figure 5.2.1 shows the overall timetable used for result verification for one experiment.
This timetable consists of information from courses, lecturers, students, and rooms timetables,
compiling all their data into one overview. Therefore, this summary timetable is used to verify
the constraints in the timetable due to its simplicity without needing to check for other

timetables.

No. Hard Constraint Observation Status

1 | A student must attend at most one class | There is no repeating student group | Pass

per time slot. in each time slot.

2 | A student must enrol in every course | Each course has the enrolment of | Pass

required for the semester. each student group.

A lecturer must teach at most one class | There is no repeating lecturer in | Pass
. per time slot. each time slot.

A room must host at most one class per | There is no repeating room in each | Pass
! time slot. time slot.
5 A class must enrol at least one student. | There is no class with no student | Pass

group enrolment.
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A class must have exactly one lecturer. | There is only one lecturer for each | Pass
° class.
A class must be assigned a room once | There is only one lecturer for each | Pass
7 and only once. class.
A lecture class must be held in a lecture | All classes in room L1 (lecture | Pass
8 hall. hall) are lecture classes.
A tutorial class must be held in a | All classes in rooms N1 and N2 | Pass
? tutorial room. (tutorial rooms) are tutorial classes.
A practical class must be held in a | All classes in rooms N3 and N4 | Pass
10 | computer lab. (practical labs) are practical
classes.
A class must not enrol more students | The number of students (number of | Pass
than the room’s capacity. student groups x 10) does not
11 exceed room capacity (300 for L1,
30 for N1 and N2, 20 for N3 and
N4) for each class.
. A class must be scheduled on | Satisfied by system design. Pass
weekdays only.
A class must be scheduled between | Satisfied by system design. Pass
b 08:00 and 18:00.
A class must not be scheduled on | There is no class at the slot 5 and 6 | Pass
14 | Friday between 12:00 and 14:00 | of Friday.
(Muslim prayer time).
A class must not span across multiple | Every class at the last slot of a day | Pass
15 | days. is different from the classes at the
first slot of next day.
Table 5.1.1 Hard Constraint Verifications
No. Soft Constraint Observation Status
A student should study no more than | There is no student group spanning | Pass
1 | four consecutive hours. across time slot more than four
consecutive hours.
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A lecturer should teach no more than | There is no lecturer spanning | Pass
2 | four consecutive hours. across time slot more than four

consecutive hours.

A student’s consecutive classes should | Consecutive classes for each | Pass
3 | be held in the same building. student group are in the same

building.

A lecturer should receive at least one | Every lecturer has at least one class | Pass

teaching hour. assignment.

Table 5.1.2 Soft Constraint Verifications

5.2  Experiments on GA Models

In these experiments, the input data design and output data format are specified in
Section 4.2 and 4.3 respectively. The main performance comparison metric is the one proposed

in this project, fitness improvement per generation.

The experiments on each GA combination (10 runs) generate a result as shown in

Figure 5.2.1.

GAD1

Experiment | Number of Generations |Total Time | Initial Fitness | Fitness Improvement per Generation
1 6334 152 260560 41.14
2 2913 0.57 230410 79.1
3 7663 156 230380 30.06
4 4304 0.89 200720 46.64
5 2634 17 221020 25.6
& 8115 149 190840 2352
7 4256 0.97 190700 4481
8 3953 0.93 220710 55.83
9 9973 1495 240340 241
10 8662 2.3 220640 22.84
Average 6580.7 139 220632 39.36

Figure 5.2.1 Experiment Result of GAO1 Model

The results of all the 64 GA combinations (see Section 4.4.10) are summarised into a

table as shown in Figure 5.2.2.
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GA Model | Average Number of Generations | Average Total Time | Average Initial Fitness | Average Fitness Improvement per Generation
Gan E580.7 139 220632 3936
Gaoz E553 145 241503 445
GAOd 177656 355 ZE8TE3 2813
Gaod 13101.2 248 237658 3666
GAOS 10096.3 147 231686 3038
GAOE T462.6 153 234650 3EET
Gaay 15453 304 2616380 284
Ga0s 136206 247 242607 4301
Ga0a 14657.9 284 233615 2602
Gaid 6412 188 262667 364
Gan 29065 o] 237674 2968
Galz a062.2 182 24B624 6244
Gats 2422 165 238654 2674
Gatd 28361 174 242700 234
Gals 2zazes 1.39 246656 a0.8
GAlE 44268 047 22Z2EEE 55.95
Gatr 10176.6 194 238656 2778
Gatg 18916.2 254 237ETD 20.08
Gatg 26937 175 234674 2034
Gaz T005.1 142 2459596 4151
Gaz 2336 166 2EVEST 2494
Gazz N7ES 216 243599 336
Gaz2d 298418 5.55 238691 2491
Gaz2d E2741 137 242668 4599
GAzh 9601.3 185 218644 2045
GAZE 177312 a2 234515 2687
GazY 208343 A6 244529 Z7.5
GAZE E461 14 231601 406
GAza 53423 14 243644 Jorlic
GAs0 13314 ] 230654 z5.5
Gad 57234 183 241706 3208
GAs2 52054 16 242670 3384
GA3E 94732 182 233821 41.28
Gasd 28TA5.8 L%:] 233694 28.248
GA3E E386.3 127 248624 GLE1
GA3E 86525 167 244641 45.04
GASY 84675 166 238708 45.81
GA3SE 134531 354 217892 2898
GAE 51647 i1 239615 G5.4E
GA40 E27E 135 246653 E1.53
Gad EA0ZE 144 236674 240
GA42 120147 233 237631 2885
GAdd E0EY7.3 159 Z2BE45 17k
Gadd 41741 043 2407E7 E7.95
GAdh E1390.3 164 242628 485
GA4E 108333 251 ZREV2E 3612
GadT E9E6.9 187 246620 A1.74
Gads Tagd 196 231609 2958
Gadd 10526.3 242 Z22BE52 4.1
GAAD 10893 24 230518 5213
Gas 147215 247 249631 40.75
GAG2 2069.7 203 246587 E3.47
GAG: 15284.8 38 ZETEZE 918
GAG4 13326.8 274 242671 a5.84
GAGS 17547.9 4.01 243527 3168
GAGE 14376.1 315 234626 33.56
GAST 77T 1.7 231648 3tz
GAGE 21207.3 4.2 234631 2827
GAGA 1344.3 241 2459604 54.19
GARD 208222 k] 221693 66.68
Gagi 7476.4 14 24E72 455
GAE2 0831 164 2EVEEZ 5208
GARS 141831 318 228662 340
GAR4 108466 218 241536 6278

Figure 5.2.2 Summary of Experiment Results of All GA Combinations

From the summary table, it is clear that the GA18 is the worst model, which is formed
by random selection, single-point crossover, swap mutation, and binary tournament
replacement. On the other hand, the GA44 is the best model, which comprises of binary

tournament selection, uniform crossover, swap mutation, and weak chromosome replacement.

5.2.1 Comparison among Operator Techniques
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Several operator-level comparison tables are constructed to enable easier comparison

with each other without interference of other operators.

5.2.1.1 Selection

Selection

Crossover Replacement Roulette Wheel | Random | Binary Tournament | Linear Ranking
Weak Parent 39.36 27.78 41.26 34.19
single- | Binary Tournament a5 | 2006 | 29.29 52.13
point Linear Ranking 28.13 30.34 50.61 40.75
Weak Chromosome 36.66 41.51 45.04 63.97
E Weak Parent 30.38 29.9 45.81 39.18
E ) Binary Tournament 36.67 33.6 28.99 38.84

& | Two-point = =

Ln"_ Linear Ranking 28.9 24.91 55.46 31.68
= Weak Chromosome 43.01 45.99 61.59 39.56
o Weak Parent 23.02 30.45 33.71 37.2
g Uniform Binary Tournament 35.4 26.87 38.85 25.27
E Linear Ranking 29.66 27.5 47.6 54.19
S Weak Chromosome 52.94 40.61 67.99 55.58
Weak Parent 35.79 32.32 48.5 45.5
Shuffle Binary Tournament 33.44 25.5 36.12 52.09
Linear Ranking 30.8 32.09 51.74 34.01
Weak Chromosome 55.95 33.84 39.58 52.78

Average 36.66 3170 45.51 43.56

Figure 5.2.3 Selection Operator Comparison Table

Overall, the selection operator makes a clear difference. Averaged across all crossover-
replacement pairings, Binary Tournament delivers the highest fitness improvement per
generation (45.51), closely followed by Linear Ranking (43.56). Roulette Wheel lags behind
(36.66), and Random is the weakest on average (31.70). In short, Binary Tournament is better
than Linear Ranking, followed by Roulette Wheel and Random.

Binary Tournament also contains the single best cell in the grid (67.99 with Uniform
crossover and Weak Chromosome replacement, highlighted in green). This is consistent with
the theory, where small-k (k represents tournament size) tournaments impose steady selection
pressure that quickly amplifies fitter individuals while still allowing diversity from occasional
upsets. When coupled with an aggressive replacement like Weak Chromosome, exploitation is
intensified, and the generation count to reach zero-cost drops, hence resulting in a larger

improvement per generation value.

Linear Ranking is a close second on average and shows several strong combinations
(for example, Single-point crossover with Weak Chromosome replacement at 63.97 and
Single-Point crossover with Binary Tournament replacement at 52.13). Rank-based selection

is insensitive to the absolute scaling of the penalty-based fitness used, so it avoids Roulette
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Wheel’s tendency to over- or under-select when the population’s costs are tightly clustered or
highly skewed. The result is consistent progress across many crossover and replacement

settings.

Roulette Wheel’s middling average and lack of top-end cells reflect that sensitivity to
fitness scaling. With penalty sums that shrink as the population improves, proportional
selection can become noisy, where tiny absolute differences in cost translate to near-uniform
sampling, diluting selection pressure. It does produce respectable outcomes in some rows (for
instance, Two-point crossover with Weak Chromosome replacement at 43.01), but it is less

robust overall than tournament or ranking.

Random selection performs worst and contains the global minimum (20.06 with Single-
Point crossover and Binary Tournament replacement, highlighted in blue). With essentially no
selection pressure, progress depends almost entirely on the crossover-replacement pair to
stumble into improvements. It can look adequate only when paired with very strong
replacement (for example, Two-point crossover with Weak Chromosome replacement reaches
approximately 50), which underlines that the gains come from replacement rather than

selection.

Taken together, the data supports using Binary Tournament as the main selector for the

UCTP, with Linear Ranking as a solid alternative.

5.2.1.2 Crossover

Crossover
Selection Replacement Single-point | Two-point | Uniform Shuffle
Weak Parent 39.36 30.38 25.02 35.79
Roulette Binary Tournament 44.5 36.67 35.4 33.44
Wheel Linear Ranking 28.13 28.9 29.66 30.8
Weak Chromosome 36.66 43.01 52.94 55.95
E Weak Parent 27.78 29.9 30.45 32.32
E| Random | Binary Tournament e 26.87 25.5
= Linear Ranking 30.34 24.91 27.5 32.09
E Weak Chromosome 41.51 459.99 40.61 33.84
o Weak Parent 41.26 45.81 39.71 48.5
.E Binary Bimary Tournament 29.29 28.99 38.85 36.12
E Tournament Linear Ranking 50.61 55.46 47.6 51.74
= ‘Weak Chromosome 45.04 61.59 67.99 39.58
Weak Parent 34.19 39.18 37.2 45.5
Linear Binary Tournament 52.13 38.84 25.27 52.09
Ranking Linear Ranking 40.75 31.68 54.19 34.01
Weak Chromosome 63.97 39.56 55.58 52.76
Average 39.10 38.65 39.68 40.00
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Figure 5.2.4 Crossover Operator Comparison Table

Looking column-wise, the four crossover types are quite close on average, with Shuffle
narrowly best (40.00), followed by Uniform (39.68), Single-point (39.10) and Two-point at
last (38.65). The spread across column means is small (1.35). Therefore, it is concluded that,
on this dataset and encoding, crossover choice affects progress per generation less than
selection and replacement do. Still, there are meaningful differences in robustness and

extremes.

Uniform crossover is consistently strong and delivers the overall best cell (67.99) with
Binary Tournament selection and Weak Chromosome replacement. It also posts high values
across other selections when paired with Weak Chromosome replacement (for example, 52.94
with Roulette Wheel selection, 55.58 with Linear Ranking selection). Room-wise mixing
across the entire timetable injects diversity without relying on any particular cut position, so
good room patterns discovered in one parent can permeate the other more reliably, especially

under high selection pressure.

On average, Shuffle edges out the rest (40.00) and is notably robust: 55.95 with Roulette
Wheel selection and Weak Chromosome replacement, 52.76 with Linear Ranking and Weak
Chromosome replacement, and 51.74 with Binary Tournament selection and Linear Ranking
replacement. By randomising the order of rooms before exchanging a segment (and unshuftling
after), it reduces positional bias in the room-level representation. The effect is similar to
uniform, broad recombination within the room, but with slightly steadier returns across the

board because it does not depend on lucky crossover points.

The performance of Single-Point is highly pairing-sensitive. It reaches an excellent
63.97 with Linear Ranking selection and Weak Chromosome replacement, and 52.13 with
Linear Ranking selection and Binary Tournament replacement but drops to the table’s worst
(20.06) under Random selection and Binar Tournament replacement. Because only one
contiguous segment of timetable is exchanged, the operator tends to be exploitative: when
parents are already strong (from stronger selection), it propagates useful structures; when
parents are mediocre (such as Random selection), it lacks diversity and stalls, hence the

volatility.

Despite a few high spots (61.59 with Binary Tournament and Weak Chromosome;
55.46 with Binary Tournament and Linear Ranking replacement), its average is the lowest.
76

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



Chapter 5 System Testing

Swapping two segments room-by-room preserves a lot of parental layouts while adding just
enough disruption to require more repairs, which often yields less net gain per generation than
more diversified mixing. In other words, it can improve quickly when coupled with very strong

selection and replacement but otherwise under-explores.

5.2.1.3 Replacement
Replacement

Selection Crossover | Weak Parent | Binary Tournament | Linear Ranking | Weak Chromosome
Single-point 39.36 44.5 28.13 36.66
Roulette Two-point 30.38 36.67 28.9 43.01
Wheel Uniform 25.02 35.4 29.66 52.94
Shuffle 35.79 33.44 30.8 55.95
. single-point | 2775|200 3034 4151
E Random Two-point 29.9 33.6 24.91 49.99
H Uniform 30.45 26.87 27.5 40.61
g Shuffle 32.32 25.5 32.09 33.84
£ Single-point 41.26 29.29 50.61 45.04
B Binary Two-point 45.81 28.99 55.46 61.59
% Tournament Uniform 39.71 38.85 47.6 67.99
w Shuffle 48.5 36.12 51.74 39.58
Single-point 34.19 52.13 40.75 63.97
Linear Two-point 39.18 38.84 31.68 39.56
Ranking Uniform 37.2 25.27 54.19 55.58
Shuffle 45.5 52.09 34.01 52.76

Average 36.40 34.85 37.40 48.79

Figure 5.2.5 Replacement Operator Comparison Table

Reading by columns, Weak Chromosome clearly dominates. It posts the highest
column-average (48.79) by a large margin over Linear Ranking (37.40), Weak Parent (36.40),
and Binary Tournament replacement (34.85). It also contains the global best cell, 67.99 with
Binary Tournament selection and Uniform crossover (highlighted in green). This pattern fits
intuition: always ejecting the worst individual each iteration maximises exploitation pressure
and guarantees the population floor rises, so the fitness improvement per generation metric

benefits directly.

Linear Ranking is the next most reliable. Its column has few weak outliers and several
strong pairings (e.g., Binary Tournament selection and Two-Point crossover at 55.46; Linear
Ranking selection with Single-Point crossover at 40.75 and Uniform crossover at 54.19). Rank-
based survivor choice is scale-invariant and tempers stochasticity, so it preserves steady

progress even when fitness values get tightly clustered, hence the solid average.

Weak Parent sits close to Linear Ranking on average but is more sensitive to the quality

of the two parents that produced the offspring. When one parent is already strong, replacing
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the weaker of the pair is sensible. However, if both parents are middling, the operator can
recycle mediocrity, which caps the per-generation gains. Nonetheless, there are still good rows
when upstream selection is strong (for example, Binary Tournament selection and Shuffle

crossover at 48.5), but it is less consistently high than Weak Chromosome.

Binary Tournament replacement performs worst on average and includes the global
minimum of 20.06 with Random selection and Single-point crossover (highlighted in blue). A
small tournament to decide who leaves the population adds randomness at the survivor stage;
without strong selection pressure, it can evict decent individuals and keep weaker ones, eroding
building blocks assembled by crossover. That hurts measured improvement per generation

unless counterbalanced by a very strong selector and an aggressive crossover.

5.2.2 Comparison with Past Research

In this experiment, the result of the past research [8] is used for comparison. [8] adopted
a GA combination that consists of 5-tournament selection, single-point crossover, and random
mutation with Simple Search Neighbourhood (SSN) and Swap Search Neighbourhood (SWN)
strategies. In its experiment, [8] achieves a fitness improvement for both datasets tested by it,
which reduced the penalty cost from approximately 24000 to 1400 in 5 minutes. However, no

optimum value was achieved.

With that said, the university course timetabling system developed in this project is
theoretically better than the system of [8] in terms of performance since it is able to generate a
perfect timetable. Nonetheless, the datasets applied in both research are different. Therefore,

this conclusion still needs to be validated in the future study.

53 Experiments on Resource Utilisation

This section focuses on determining the maximum performance of the developed
university timetabling system by testing it with different class-to-resource ratios. In these
experiments, the inputs are the mostly the same as what described in section 4.2, except the
number of students and the classes for each course. The number of students is manipulated in
the experiments to control the resource utilisation percentage. On the other hand, the duration

of some classes is adjusted, so that the class-to-resource ratio of all three types of classes
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(lecture, tutorial, practical) can achieve the same percentage, making the experiments easier

and fairer. Figure 5.3.1 shows the adjusted classes data for each course. Furthermore, these

experiments only run the GA once instead of 10 times like others because the primary objective

of this experiment is to determine the feasibility of the system. The GA combination applied

in these experiments is the best combination found from previous experiments, which is GA44

that comprises of binary tournament selection, uniform crossover, swap mutation, and weak

chromosome replacement.

Course Code Name Class (Hour) Year | Trimester Lecturer
Lecture | Tuteorial | Practical
1 UCCD1024 DATA STRUCTURE AND ALGORITHMIC 2 1 1 3 Ts Dr Goh Chuan Meng
PROBLEM SOLVING Ts Lai Siew Cheng
Cik Morazira Binti A Jalil
Cik Ana Nabilah Binti Sa'uadi
2 UCCD1203 DATABASE DEVELOPMENT AND 5 1 1 3 Dr Altahir Abdalla Altahir Mohammed
APPLICATIONS Puan Lyana lzzati Binti Mohd Asri
Ts Saravanan a/l Subbiah
Dr Zurida Binti Ishak
Ts Dr Ku Chin Soon
3 UCCD2003 OBJECT-ORIENTED SYSTEMS ANALYSIS 3 1 1 3 Ts Dr Mogana a/p Vadiveloo
AND DESIGN Dr Tahayna Bashar M. A.
Cik Puteri Nursyawati Binti Azzuri
4 UCCM1353 BASIC ALGEBRA 3 1 1 3 Ms Lim Shun Jinn
5 | uccM13s3 DISCRETE MATHEMATICS 3 1 1 3 [DrNurAmalina Binti MatJan
Ms Song Poh Choo
6 MPU3152 PENGHAYATAN ETIKA DAN PERADABAN 2 1 3 Puan Sarah Binti Shamshul Anwar

Figure 5.3.1 Adjusted Class Information

When the number of students is 300, the resource utilisation is 30%. The system

performs well by reaching optimum in 1.37 seconds while using only 3366 generations.

300 students

Class Type Class-to-resource Ratio |Percentage

Lecture 15/50 30

Tuterial 30,100 30

Practical 30,100 30

Total 75/250 30

Mumber of Generations |Total Time Initial Fitness | Fitness Improvement per Generation
3366 1.37 320710 95.28

Figure 5.4.2 Experiment Result of 30% Resource Utilisation

When the number of students is 600, the resource utilisation is 60%. The system

successfully generates a feasible timetable in 6.75 seconds by using 9290 generations.
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600 students

Class Type Class-to-resource Ratio |Percentage

Lecture 30/50 Gl

Tutorial G0,/100 G0

Practical G0/100 Gl

Total 150,250 G0

Number of Generations |Total Time Initial Fitness |Fitness Improvement per Generation
92580 6.75 830660 89.41

Figure 5.4.3 Experiment Result of 60% Utilisation Testing

However, when the number of students is 900, and the resource utilisation is 90%, the

system fails to generate a feasible solution. This might be because the experiments increase the

number of students without adding lecturers,

which raises the risk of breaching lecturer-related

soft constraints, which is excessively long consecutive teaching hours.

900 students

Class Type Class-to-resource Ratio |Percentage

Lecture 45/50 a0

Tutorial S0V 100 a0

Practical S0/100 a0

Total 225/250 a0

Number of Generations |Tﬂ-talTime | Initial Fitness | Fitness Improvement per Generation
Failed

Figure 5.4.4 Experiment Result of 90% Ultilisation Testing
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Chapter 6

Discussion

6.1 Objective Evaluation

Overall, this project meets all three stated objectives within the defined scope of a

partial mock dataset and a GA-based solution pipeline.

First, the objective to formalise a comprehensive set of hard and soft constraints for the
UCTP is achieved. Hard constraints such as capacity and resource non-overlap are explicitly
modelled. On the other hand, soft constraints, including the new “same building for consecutive
classes” rule, are incorporated into the fitness function as quantitative penalties, so their impact
could be measured across experiments. As documented in this report, the same-building rule is
implemented as a binary penalty rather than a distance-weighted cost. Nonetheless, this
simplification still enables controlled, interpretable analysis of the constraint’s effect and

satisfies the objective’s requirement to formalise and measure it.

Second, the project successfully designs and implements a flexible GA framework with
exchangeable operators. Four selection methods, four crossover methods, one mutation, and
four replacement methods (including two newly proposed replacement strategies) are
composed into 64 distinct operator combinations without changes to the core engine. An
immediate repair step after both crossover and mutation ensures chromosomes remains
schedulable under the modelled constraints. This modularity and the use of room-based
crossover are consistent with the design intent and demonstrate that the “plug-and-play”

operator goal was achieved in practice.

Third, the evaluation objective is achieved: every GA combination is assessed on the
partial mock dataset through multiple independent trials. For each run, the number of
generations to reach feasibility (zero penalty), execution time, and initial penalty cost are
recorded. The aggregated statistics are also computed to allow fair, comparative analysis across
combinations. The resulting summaries are used to identify both the overall best combination
and technique-specific strengths and weaknesses, fulfilling the objective’s requirement for

systematic, statistically informed evaluation.
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6.2 System Novelties

This project introduces a student-centred soft constraint, building continuity, that
encourages consecutive classes for the same student to be scheduled within the same building.
By penalising inter-building moves between back-to-back sessions, the system explicitly

targets reduced walking time and less lost learning, without over-constraining the search space.

A second novelty is a modular GA framework in which selection, crossover, mutation,
and replacement operators are fully interchangeable. This design enables a like-for-like
evaluation of 64 operator combinations on a controlled dataset, yielding the first systematic
comparison of these techniques focused on the university course timetabling problem (UCTP).
The resulting evidence helps researchers choose effective operator stacks and design more

rigorous experiments.

The study also proposes two novel replacement techniques, which are linear ranking
replacement and weak chromosome replacement, highlighting the often-overlooked impact of
the replacement phase on GA performance. Notably, one of these techniques, weak
chromosome replacement, forms part of the best-performing genetic algorithm (GA) model
discovered in the experiments, underscoring that replacement can be as decisive as selection or

crossover in guiding convergence.

Beyond operator design, the system conducts a targeted grid search over crossover and
mutation probabilities and adopts the best-found settings in the final runs. This closes the loop
between architecture and tuning, ensuring that reported gains come from principled parameter
choices rather than ad-hoc defaults, and giving the community reproducible baselines for future

comparisons.

Finally, the project introduces a fairness-oriented performance metric, which is fitness
improvement per generation, computed as initial penalty cost divided by the number of
generations. Because runs terminate upon reaching a perfect (zero-penalty) timetable, final
fitness cannot discriminate performance; raw generation counts are also biased by differing
initial costs. The new metric normalises progress across runs, offering a clearer view of how

efficiently each operator combination reduces violations.
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Operationally, every crossover and mutation are followed by an immediate repair step
that restores feasibility before the next evaluation. In GA-based UCTP studies, positioning
repair as an always-on, post-operator mechanism is novel. It preserves the freedom of
aggressive search operators while maintaining valid timetables at each generation, improving

stability and speeding convergence.

6.3 System Limitations

At high resource utilisation (approximately 90%), the system can fail to produce a
feasible timetable. This pressure might be induced primarily due to the experiments increase
the number of students without adding lecturers, which raises the risk of breaching lecturer-

related soft constraints, which is excessively long consecutive teaching hours.

Besides, the evaluation is confined to a single, partial mock dataset. While this enables
controlled comparisons, it limits external validity: real institutions vary in room typologies,
building layouts, lecturer availability patterns, class durations, and group structures. In
particular, the same-building soft constraint is operationalised as a binary penalty rather than a
campus-graph distance; this simplification ignores heterogeneity in inter-building travel, for

instance, adjacent buildings versus distant ones.

Algorithmically, this project benchmarks only genetic algorithms; no comparisons are
made against other optimisation paradigms such as integer or constraint programming, large
neighbourhood search, tabu search, simulated annealing, or hyper-heuristics. As a result, the
work cannot claim algorithmic superiority since there is only relative performance within GA
variants. Even within GA, tuning focuses on crossover and mutation probabilities; other
influential knobs such as population size and alternative stopping criteria (fixed time or

evaluation budgets) are not systematically explored.

Other than that, the always-on post-operator repair improves feasibility but adds
computational overhead and may bias search dynamics by regularly pulling individuals
towards the same feasible basins, potentially reducing population diversity. Likewise, the
room-by-room crossover safeguards room-type and capacity validity but constrains
recombination granularity; inter-room exchanges that could yield better global timetables are

inhibited, which may slow exploration or entrench substructures.
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6.4  Future Enhancement/Improvement

To strengthen external validity, the future research can evaluate the system on diverse,
real-world datasets (different faculties, multiple campuses, variable slot lengths, mixed class
durations). This should include public UCTP benchmarks and institution-specific corpora with
richer heterogeneity (room typologies, lecturer availabilities, group structures). Alongside the
current same-building constraint, researchers can model campus travel using a weighted graph
(distances/elevators/stairs), so that penalties reflect true movement cost rather than a binary

building match.

Besides, the future research can broaden the optimisation method beyond GA and
compare against integer or constraint programming, large neighbourhood search (LNS), tabu
search, simulated annealing, and hyper-heuristics. Such cross-paradigm baselines will provide

invaluable insights into the UCTP domain.
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Chapter 7

Conclusion

This project set out to address a practical and recurrent challenge in higher education:
building conflict-free, student-friendly university course timetables under diverse institutional
constraints. It contributes three things in tandem: a richer formulation of the UCTP that
explicitly penalises inter-building moves between consecutive classes, a modular genetic-
algorithm (GA) framework whose operators are fully interchangeable, and an empirical study
that systematically benchmarks 64 operator combinations under a controlled, partially realistic

dataset.

Methodologically, the work shows that a carefully engineered GA, implemented in
Java, backed by MySQL, and reinforced by an immediate repair step, can accommodate an
extensive constraint set (15 hard constraint and 4 soft constraint) while still exploring the search
space effectively. Decoupling selection, crossover, mutation, and replacement allows like-for-
like comparisons and clearer attribution of performance differences to operator design rather
than to confounded implementation details. The grid-searched crossover and mutation
probabilities, together with the proposed “fitness improvement per generation” metric aligned
to a zero-penalty stopping rule, provide fairer, more interpretable comparisons when initial

penalty costs vary across runs.

Empirically, the study demonstrates that operator choice matters materially. Different
selection, crossover, and replacement techniques meaningfully shift convergence speed and
computational effort, and the two proposed replacement strategies broaden the perspective on
how survivor selection influences progress. Crucially, integrating the same-building soft
constraint proves tractable: the framework can find feasible, penalty-free timetables for the
mock setting without collapsing under the added spatial preference, indicating that student-
centric travel considerations can be folded into automated timetabling at modest additional

cost.

Practically, the system produces complete, auditable artefacts, which are course,
lecturer, student, and room timetables, and enforces key data-side invariants (class capacity)
close to the database. This strengthens reproducibility and operational trust: results, errors, and
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metadata flow cleanly through a standardised JDBC-MySQL stack, while the dataset mirrors

key aspects of a real CS programme timetable to keep experiments realistic yet controllable.

Like any focused study, this work has boundaries. Feasibility can degrade at very high
resource utilisation; the dataset is a single, partial mock that cannot capture the heterogeneity
of real campuses; and the algorithmic scope is intentionally limited to GA variants. These are
honest constraints, not flaws, and they point directly to next steps: scaling to multi-cohort and
multi-campus settings, modelling travel on a campus graph rather than with a binary penalty,
and comparing against other optimisation paradigms. Beyond that, richer objectives, fairness
across student groups, lecturer workload smoothness, and resilience to late changes, invite

multi-objective or rescheduling extensions.

In summary, the project closes two gaps at once: it operationalises a neglected but
student-meaningful spatial preference, and it offers the first systematic comparison of 64 GA
operator combinations for UCTP within a unified codebase. The resulting insights and
artefacts, which are constraint set, dataset, framework, operators, and metrics, form a solid,
reusable foundation. They help timetable practitioners pick effective operator configurations
with greater confidence and give researchers a clear runway for deeper studies that push from

feasibility toward equity, realism, and robustness in automated university course timetabling.

86

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



REFERENCES

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[&]

S. Abdipoor, Razali Yaakob, Say Leng Goh, and S. Abdullah, “Meta-heuristic
approaches for the University Course Timetabling Problem,” Intelligent Systems with
Applications, vol. 19, pp- 200253-200253, Sep. 2023, doi:
https://doi.org/10.1016/j.1swa.2023.200253.

H. Babaei, J. Karimpour, and A. Hadidi, “A survey of approaches for university course
timetabling problem,” Computers & Industrial Engineering, vol. 86, pp. 43-59, Aug.
2015, doi: https://doi.org/10.1016/j.cie.2014.11.010.

T. Guilmeau, E. Chouzenoux, and V. Elvira, “Simulated Annealing: a Review and a
New Scheme,” 2021 IEEFE Statistical Signal Processing Workshop (SSP), pp. 101-105,
Jul. 2021, doi: https://doi.org/10.1109/SSP49050.2021.9513782.

Hatice Erdogan Akbulut, Feristah Ozgelik, and Tugba Sarag, “A simulated annealing
algorithm for the faculty-level university course timetabling problem,” Pamukkale

Universitesi Miihendislik Bilimleri Dergisi, vol. 30, no. 1, pp. 17-34, Feb. 2024.

F. H. Awad, A. Al-kubaisi, and M. Mahmood, “Large-scale timetabling problems with
adaptive tabu search,” Journal of Intelligent Systems, vol. 31, no. 1, pp. 168—176, Jan.
2022, doi: https://doi.org/10.1515/jisys-2022-0003.

V. K. Prajapati, M. Jain, and L. Chouhan, “Tabu Search Algorithm (TSA): A
Comprehensive Survey,” 2020 3rd International Conference on FEmerging
Technologies in Computer Engineering: Machine Learning and Internet of Things
(ICETCE), pp- 1-8, Feb. 2020, doi:
https://doi.org/10.1109/ICETCE48199.2020.9091743.

C. H. Wong, S. L. Goh, and J. Likoh, “A Genetic Algorithm for the Real-world
University Course Timetabling Problem,” 2022 IEEE 18th International Colloquium
on Signal Processing & Applications (CSPA), pp. 46-50, May 2022, doi:
https://doi.org/10.1109/cspa55076.2022.9781907.

K. Y. Junn, J. H. Obit, and R. Alfred, “The Study of Genetic Algorithm Approach to

Solving University Course Timetabling Problem,” Computational Science and

87

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



REFERENCES

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Technology. ICCST 2017., pp. 454—463, Feb. 2018, doi: https://doi.org/10.1007/978-
981-10-8276-4 43.

Sk. I. Hossain, M. A. H. Akhand, M. I. R. Shuvo, N. Siddique, and H. Adeli,
“Optimization of University Course Scheduling Problem using Particle Swarm
Optimization with Selective Search,” Expert Systems with Applications, vol. 127, pp.
9-24, Aug. 2019, doi: https://doi.org/10.1016/j.eswa.2019.02.026.

A. G. Gad, “Particle Swarm Optimization Algorithm and Its Applications: A
Systematic Review,” Archives of Computational Methods in Engineering, vol. 29, no.

5, pp.- 2531-2561, Apr. 2022, doi: https://doi.org/10.1007/s11831-021-09694-4.

A. Mahmud, “Highly Constrained University Class Scheduling using Ant Colony
Optimization,” International Journal of Computer Science & Information Technology

(ILJCSIT) , vol. 13, no. 1, Feb. 2021, Available: https://ssrn.com/abstract=3801441

M. C. Chen, S. N. Sze, S. L. Goh, N. R. Sabar, and G. Kendall, “A Survey of University
Course Timetabling Problem: Perspectives, Trends and Opportunities,” IEEE Access,
vol. 9, pp- 106515-106529, Jul. 2021, doi:
https://doi.org/10.1109/access.2021.3100613.

W. Deng, J. Xu, and H. Zhao, “An Improved Ant Colony Optimization Algorithm
Based on Hybrid Strategies for Scheduling Problem,” IEEE Access, vol. 7, pp. 20281—
20292, Feb. 2019, doi: https://doi.org/10.1109/access.2019.2897580.

H. Zheng, Y. Peng, J. Guo, and Y.-C. Chen, “Course scheduling algorithm based on
improved binary cuckoo search,” The Journal of Supercomputing, vol. 78, no. 9, pp.

11895-11920, Feb. 2022, doi: https://doi.org/10.1007/s11227-022-04341-6.

M. A. Jebur and H. S. Abdullah, “Timetabling problem solving based on best-nests

cuckoo search,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 6, pp.

3333-3340, Dec. 2021, doi: https://doi.org/10.11591/eei.v1016.3206.

J. Wahid and M. H. Naimah, “Hybrid harmony search with great deluge for UUM CAS
curriculum based course timetabling,” Journal of Telecommunication, Electronic and

Computer Engineering (JTEC), vol. 9, no. 1-2, pp. 33-38, Apr. 2017.

88

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



REFERENCES

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

F. Qin, A. M. Zain, and K.-Q. Zhou, “Harmony search algorithm and related variants:
A systematic review,” Swarm and Evolutionary Computation, vol. 74, p. 101126, Oct.

2022, doi: https://doi.org/10.1016/j.swevo.2022.101126.

S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present,
and future,” Multimedia Tools and Applications, vol. 80, no. 5, Oct. 2020, doi:
https://doi.org/10.1007/s11042-020-10139-6.

Seng Poh Lim and H. Haron, “Performance of Different Techniques Applied in Genetic
Algorithm towards Benchmark Functions,” Lecture notes in computer science, pp.

255-264, Jan. 2013, doi: https://doi.org/10.1007/978-3-642-36546-1 27.

S. P. Lim, H. Hoon, and C. H. Ong, “Performance Comparison of Different Operation
Techniques in Genetic Algorithm towards Benchmark Functions,” 2018 8th IEEE
International Conference on Control System, Computing and Engineering (ICCSCE),
pp- 59-64, Nov. 2018, doi: https://doi.org/10.1109/iccsce.2018.8684990.

A. Shukla, H. M. Pandey, and D. Mehrotra, “Comparative review of selection
techniques in genetic algorithm,” 2015 International Conference on Futuristic Trends
on Computational Analysis and Knowledge Management (ABLAZE), pp. 515-519, Feb.
2015, doi: https://doi.org/10.1109/ablaze.2015.7154916.

S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008. doi: https://doi.org/10.1007/978-3-540-
73190-0.

S. Karakati¢ and V. Podgorelec, “A survey of genetic algorithms for solving multi depot
vehicle routing problem,” Applied Soft Computing, vol. 27, pp. 519-532, Feb. 2015,
doi: https://doi.org/10.1016/j.as0c.2014.11.005.

S. Mirjalili, “Genetic Algorithm,” Studies in Computational Intelligence, vol. 780, pp.
43-55, Jun. 2018, doi: https://doi.org/10.1007/978-3-319-93025-1 4.

H. M. Pandey, “Performance Evaluation of Selection Methods of Genetic Algorithm
and Network Security Concerns,” Procedia Computer Science, vol. 78, pp. 13—18,

2016, doi: https://doi.org/10.1016/j.procs.2016.02.004.

89

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



REFERENCES

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M. Lozano, F. Herrera, and J. R. Cano, “Replacement strategies to preserve useful
diversity in steady-state genetic algorithms,” Information Sciences, vol. 178, no. 23, pp.

4421-4433, Dec. 2008, doi: https://doi.org/10.1016/j.ins.2008.07.03 1.

L. Manzoni, L. Mariot, and E. Tuba, “Balanced crossover operators in Genetic
Algorithms,” Swarm and Evolutionary Computation, vol. 54, p. 100646, May 2020,
doi: https://doi.org/10.1016/j.swevo0.2020.100646.

S. M. Lim, A. B. Md. Sultan, Md. N. Sulaiman, A. Mustapha, and K. Y. Leong,
“Crossover and Mutation Operators of Genetic Algorithms,” International Journal of
Machine Learning and Computing, vol. 7, no. 1, pp. 9-12, Feb. 2017, doi:
https://doi.org/10.18178/ijmlc.2017.7.1.611.

U. A.J. and S. P.D., “CROSSOVER OPERATORS IN GENETIC ALGORITHMS: A
REVIEW,” ICTACT Journal on Soft Computing, vol. 06, no. 01, pp. 1083—1092, Oct.
2015, doi: https://doi.org/10.21917/1js¢.2015.0150.

Y. Jaradat, M. Masoud, I. Jannoud, A. Manasrah, and A. Zerek, “Comparison of
Genetic Algorithm Crossover Operators on WSN Lifetime,” 2022 [EEE 2nd
International Maghreb Meeting of the Conference on Sciences and Techniques of
Automatic Control and Computer Engineering (MI-STA), pp. 356-360, May 2022, doi:
https://doi.org/10.1109/MI-STA54861.2022.9837587.

N. Indrianti, R. A. C. Leuveano, S. H. Abdul-Rashid, and M. I. Ridho, “Green Vehicle
Routing Problem Optimization for LPG Distribution: Genetic Algorithms for Complex
Constraints and Emission Reduction,” Sustainability, vol. 17, no. 3, pp. 1144-1144,
Jan. 2025, doi: https://doi.org/10.3390/sul7031144.

R. L. Kadri and F. F. Boctor, “An efficient genetic algorithm to solve the resource-
constrained project scheduling problem with transfer times: The single mode case,”
European Journal of Operational Research, vol. 265, no. 2, pp. 454—462, Mar. 2018,
doi: https://doi.org/10.1016/j.ejor.2017.07.027.

N. Rikatsih and W. F. Mahmudy, “Adaptive Genetic Algorithm Based on Crossover
and Mutation Method for Optimization of Poultry Feed Composition,” 2018

International Conference on Sustainable Information Engineering and Technology

(SIET), pp. 110114, Nov. 2018, doi: https://doi.org/10.1109/siet.2018.8693167.

90

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



REFERENCES

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

S. Mirjalili, J. Song Dong, A. S. Sadiq, and H. Faris, “Genetic Algorithm: Theory,
Literature Review, and Application in Image Reconstruction,” Nature-Inspired

Optimizers, pp. 69-85, Feb. 2019, doi: https://doi.org/10.1007/978-3-030-12127-3 5.

M. Abdel-Basset, R. Mohamed, M. Abouhawwash, V. Chang, and S. Askar, “A Local
Search-Based Generalized Normal Distribution Algorithm for Permutation Flow Shop
Scheduling,” Applied Sciences, vol. 11, no. 11, p. 4837, May 2021, doi:
https://doi.org/10.3390/app11114837.

N. Soni and T. Kumar, “Study of Various Mutation Operators in Genetic Algorithms,”
International Journal of Computer Science and Information Technologies (IJCSIT),
vol. 5, no. 3, pp. 45194521, 2014.

S. P. Lim and H. Haron, “Performance comparison of Genetic Algorithm, Differential
Evolution and Particle Swarm Optimization towards benchmark functions,” 2013 IEEE
Conference on Open Systems (1COS), Dec. 2013, doi:
https://doi.org/10.1109/ic0s.2013.6735045.

H. Alghamdi, T. Alsubait, H. Alhakami, and A. Baz, “A Review of Optimization
Algorithms for University Timetable Scheduling,” Engineering, Technology & Applied
Science Research, vol. 10, no. 6, pp. 64106417, Dec. 2020, doi:
https://doi.org/10.48084/etasr.3832.

P. Kora and P. Yadlapalli, "Crossover Operators in Genetic Algorithms: A Review,"
International Journal of Computer Applications, vol. 162, no. 10, pp. 34-36, Mar. 2017,
doi: 10.5120/ijca2017913370.

I. H. Khan, “Assessing Different Crossover Operators for Travelling Salesman
Problem,” International Journal of Intelligent Systems and Applications, vol. 7, no. 11,

pp. 19-25, Oct. 2015, doi: 10.5815/ijisa.2015.11.03.

S. Picek and M. Golub, “Comparison of a crossover operator in binary-coded genetic
algorithms,” WSEAS Transactions on Computers, vol. 9, Sep. 2010, doi:
https://doi.org/10.5555/1865335.1865350.

F. J. Burkowski, "Shuffle crossover and mutual information," Proceedings of the 1999
Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington,
DC, USA, 1999, pp. 1574-1580 Vol. 2, doi: 10.1109/CEC.1999.782671.

91

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



REFERENCES

[43] P. Kora and P. Yadlapalli, "Crossover Operators in Genetic Algorithms: A Review,"
International Journal of Computer Applications, vol. 162, no. 10, pp. 1-6, Mar. 2017,
doi: 10.5120/1jca2017913370.

92

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



APPENDIX

APPENDIX

Poster

:) Evaluate The Performance of University
UT-R Timetabling Problem with Different

FACULTY OF INFORMATION AND

COMMUNICATION TECHNOLOGY Combina.rions Of GeneTiC Algor‘iThm

® @] University timetabling problem is one of the scheduling problems in which it
Introduction requires courses to be assigned to the limited time slots, classrooms, and
instructors, while adhering to a set of predefined constraints.

F_/‘»{/\efhodolfgy _ {,.5@6

Discussion
4] q

(51;.1 Selection Crossover Mutation Replacement
Roulette Wheel Single-Point Swap Weak Parent

| Random Two-Point - Binary Tournament
Binary Tournament Uniform - Linear Ranking

Linear Ranking Shuffle = Weak Chromosome

A chromosome reaches
optmum fitness.

New soft constraint

Generate stabstcs

Consecutive classes should be
scheduled in the same building.

\
'
-
’
T Q
Cmm-

Return solution

LConclusioni]

* Develop a flexible genetic algorithm
framework that allows interchangeable
operator combinations
o 64 operation techniques
© Evaluated on proposed metric:-

fitness improvement per generation

* Propose a new soft constraint that
[ 'h provides new research direction
e e e SrAIATA]ATAIdJi[AT8214141E

Developer: Foo Yao Heng
Supervisor: Ts Dr Ku Chin Soon

Ve

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR






	COPYRIGHT STATEMENT

