

EVALUATE THE PERFORMANCE OF UNIVERSITY

COURSE TIMETABLING PROBLEM WITH DIFFERENT

COMBINATIONS OF GENETIC ALGORITHM

BY

FOO YAO HENG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

ii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

COPYRIGHT STATEMENT

© 2025 Foo Yao Heng. All rights reserved.

This Final Year Project report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Computer Science (Honours) at Universiti Tunku

Abdul Rahman (UTAR). This Final Year Project report represents the work of the

author, except where due acknowledgment has been made in the text. No part of this

Final Year Project report may be reproduced, stored, or transmitted in any form or

by any means, whether electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author or UTAR, in

accordance with UTAR's Intellectual Property Policy.

iii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Ts Dr Ku Chin

Soon, who has given me a precious opportunity to involve in a timetable scheduling project.

Besides, he has provided me a lot of guidance to complete this project. When I was facing

problems, his advice always assists me in overcoming the challenges. Again, a million thanks

to my supervisor.

Finally, I must say thank you to my family and friends for their love, support, and continuous

encouragement throughout the project.

iv
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

University course timetabling problem (UCTP) is a scheduling problem that requires courses

to be assigned to the limited time slots, classrooms, and lecturers, while adhering to a set of

predefined constraints. Due to the effectiveness of genetic algorithm (GA) in optimisation

problems, it has been widely discussed in numerous research to address UCTP. Nonetheless,

the performance of GA in terms of operation techniques has not been studied enough, as the

researchers have often focused on using a single GA combination or hybrid approaches to solve

UCTP case studies. Therefore, this project aims to analyse the performance of different

combinations of GA operation techniques and identify the best GA model. A flexible GA

framework is developed, which allows alternative techniques to be integrated and executed

easily. 64 combinations, involving 4 selection, 4 crossover, 1 mutation, and 4 replacement

techniques, are evaluated on a partial mock dataset. In addition, this project proposes a new

soft constraint, which requires consecutive classes for a student to be held in the same building.

This constraint targets to reduce students’ travel distance, thus producing a more student-

friendly timetable. Experimental results shows that GA44 model which comprises of binary

tournament selection, uniform crossover, swap mutation, and weak chromosome replacement

is the best GA combination. In conclusion, the proposed constraint demonstrates clear benefits

to student experience on campus and offers a fresh idea for future research with alternative

approaches.

Area of Study: Scheduling Problem

Keywords: Optimisation, Combinatorial Optimisation Problem, University Course

Timetabling Problem, Course Scheduling, Metaheuristics, Genetic Algorithm

v
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE i

ACKNOWLEDGEMENTS ii

COPYRIGHT STATEMENT iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES Ix

LIST OF SYMBOLS x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Project Inspiration 1

1.2 Problem Statements 3

1.3 Project Objectives 3

1.4 Project Scope 4

1.5 Project Impact and Contribution 5

1.6 Chapter Summary 6

CHAPTER 2 LITERATURE REVIEW 7

2.1 University Timetabling Techniques

2.1.1 Single-Solution-Based Metaheuristics

 2.1.1.1 Simulated Annealing

 2.1.1.2 Tabu Search

2.1.2 Population-Based Metaheuristics

 2.1.2.1 Genetic Algorithm

 2.1.2.2 Particle Swarm Optimisation

 2.1.2.3 Ant Colony Optimisation

7

8

8

9

10

10

12

13

 2.1.2.4 Cuckoo Search 14

 2.1.2.5 Harmony Search 15

vi
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Genetic Algorithm

2.2.1 Selection

 2.2.1.1 Roulette Wheel Selection

 2.2.1.2 Random Selection

 2.2.1.3 Tournament Selection

 2.2.1.4 Linear Ranking Selection

2.2.2 Crossover

 2.2.2.1 Single-Point Crossover

 2.2.2.2 Two-Point Crossover

 2.2.2.3 Uniform Crossover

 2.2.2.4 Shuffle Crossover

2.2.3 Mutation

 2.2.3.1 Swap Mutation

2.2.4 Replacement

 2.2.4.1 Weak Parent Replacement

 2.2.4.2 Tournament Replacement

16

19

19

20

21

22

23

24

24

25

26

26

27

28

28

29

2.3 Constraints

2.3.1 Hard Constraints

2.3.2 Soft Constraints

30

30

30

2.4 Critical Remarks of Previous Work 31

CHAPTER 3 SYSTEM METHODOLOGY 33

3.1 Project Development 33

3.2 Data Collection 35

3.3 System Constraint

 3.3.1 Hard Constraint

 3.3.2 Soft Constraint

36

36

37

 3.4 System Requirements

 3.4.1 Hardware

 3.4.2 Software

37

37

37

 3.5 Verification Plans

 3.5.1 Hard Constraint Tests

 3.5.2 Soft Constraint Tests

38

38

39

vii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

 3.5.3 Resource Utilisation Tests 40

CHAPTER 4 SYSTEM DESIGN 41

4.1 System Architecture Design

4.2 Input Design

41

41

4.3 Output Design 43

4.4 Genetic Algorithm Design

 4.4.1 Chromosome Encoding

 4.4.2 Population Initialisation

 4.4.3 Fitness Evaluation

 4.4.4 Repair

 4.4.5 Selection

 4.4.5.1 Roulette Wheel Selection

 4.4.5.2 Random Selection

 4.4.5.3 Binary Tournament Selection

 4.4.5.4 Linear Ranking Selection

 4.4.6 Crossover

 4.4.6.1 Single-Point Crossover

 4.4.6.2 Two-Point Crossover

 4.4.6.3 Uniform Crossover

 4.4.6.4 Shuffle Crossover

 4.4.7 Mutation

 4.4.8 Replacement

 4.4.8.1 Weak Parent Replacement

 4.4.8.2 Binary Tournament Replacement

 4.4.8.3 Linear Ranking Replacement

 4.4.8.4 Weak Chromosome Replacement

 4.4.9 Parameter Settings

 4.4.10 Operator Combinations

48

49

50

50

50

51

52

52

52

53

54

54

55

56

56

57

58

58

59

59

60

61

62

4.5 Data Storage Design

 4.5.1 Database Structure

 4.5.2 Table Structure

 4.5.3 Database Trigger

63

64

65

67

viii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 SYSTEM TESTING 70

5.1 Experiment on Constraints 70

5.2 Experiment on GA Models

 5.2.1 Comparison among Operator Techniques

 5.2.1.1 Selection

 5.2.1.2 Crossover

 5.2.1.3 Replacement

 5.2.2 Comparison with Past Research

72

73

74

75

77

78

5.3 Experiment on Resource Utilisation 78

CHAPTER 6 DISCUSSION 81

 6.1 Objective Evaluation

 6.2 System Novelties

 6.3 System Limitations

 6.4 Future Enhancement/Improvement

81

82

83

84

CHAPTER 7 CONCLUSION 85

REFERENCES 87

APPENDIX A

A.1 Poster A-1

ix
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1 Metaheuristics in UCTPs 7

Figure 2.2.1 Genes, Chromosomes, and Population in GA. 17

Figure 2.2.2 Flowchart of GA [23]. 17

Figure 2.2.3 RW Selection [21] 20

Figure 2.2.4 Process of Tournament Selection [21] 21

Figure 2.2.5 Selection Probabilities Based on Fitness and Ranking 23

Figure 2.2.6 Process of Two-Point Crossover [30] 25

Figure 2.2.7 Process of Uniform Crossover [30] 26

Figure 2.2.8 Swap Mutation [35] 27

Figure 3.1.1 Gantt Chart for Project Development 33

Figure 3.2.1 Timetable for February 2025 CS Y1T3 Students 35

Figure 3.2.2 Programme Structure for February 2025 CS Y1T3

Students

35

Figure 4.1.1 University Course Timetabling System Architecture 41

Figure 4.2.1 Tailored Collected Data 42

Figure 4.2.2 Mock Rooms Data 42

Figure 4.2.3 Output of Class Generation 43

Figure 4.2.4 Output of Group-to-Class Assignment 43

Figure 4.3.1 Statistics of GA Experiment 44

Figure 4.3.2 Timetable of Course UCCD1024 45

Figure 4.3.3 Timetable of Lecturer Ts Dr Goh Chuan Meng 45

Figure 4.3.4 Timetable of Student Student_087 from Group 9 45

Figure 4.3.5 Timetable of Room N3 45

Figure 4.3.6 Overall Timetable 45

Figure 4.3.7 Statistics of 10 GA Experiments Per Combination 46

Figure 4.3.8 Statistical Details of Each GA Combination 46

Figure 4.3.9 Statistical Summary of All GA Combinations 47

Figure 4.3.10 Worst GA Combination 47

x
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.11 Comparison Table for Replacement Operator 47

Figure 4.4.1 Flowchart of GA for University Course Timetabling

System

48

 Overview of A Chromosome 49

 Gene-Level View of A Room in A Chromosome 49

xi
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 2.3.1 Hard Constraints of Previous Work 30

Table 2.3.2 Soft Constraints of Previous Work 30

Table 3.3.1 Hard Constraints for Project 36

Table 3.3.2 Soft Constraints for Project 37

Table 3.4.1 Specifications of Laptop 37

Table 3.4.2 Specifications of Software 38

Table 3.5.1 Tests for Hard Constraints 38

Table 3.5.2 Tests for Soft Constraints 39

Table 3.5.3 Tests for Resource Utilisation 40

LIST OF SYMBOLS

bw pitch bandwidth

xii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

UCTP University Course Timetabling Problem

GA Genetic Algorithm

NP-HARD Non-Deterministic Polynomial Hard

OR Operational Research

EA Evolutionary Algorithm

MDVRP Multi Depot Vehicle Routing Problem

TSP Travelling Salesman Problem

IDE Integrated Development Environment

SA Simulated Annealing

TS Tabu Search

UCTP University Course Timetabling Problem

GP Goal Programming

ATS Adaptive Tabu Search

PSO Partial Swarm Optimisation

ACO Ant Colony Optimisation

CS Cuckoo Search

HS Harmony Search

PE-CTT Post-Enrolment Course Timetabling

TSPP Tabu Search with Sampling and Perturbation

RW Roulette Wheel

CP Constraint Programming

GD Great Deluge

ANOVA Analysis of Variance

UCSP University Course Scheduling Problem

PSOSS Partial Swarm Optimisation with Selective Search

PSM Producer-Scrounger Method

ACOSP Ant Colony Optimisation with Selective Probability

SI Swarm Intelligence

LF Lévy Flight

BNCS Best-Nests Cuckoo Search

xiii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

HM Harmony Memory

HMS Harmony Memory Size

MC Memory Consideration

PA Pitch Adjustment

RC Random Consideration

HCMR Harmony Memory Consideration Rate

PAR Pitch Adjustment Rate

MI Maximum Number of Improvisations

CBCTT Curriculum-Based Course Timetabling

NP-COMPLETE Non-Deterministic Polynomial Complete

GVRP Green Vehicle Routing Problem

RCPSPTT Resource-Constrained Project Scheduling Problem with Transfer

Times

SQL Structured Query Language

JDBC Java Database Connectivity

API Application Programming Interface

RDBMS Relational Database Management System

ACID Atomicity, Consistency, Isolation, Durability

ERD Entity Relationship Diagram

CSV Comma-Separated Value

SSN Simple Search Neighbourhood

SWN Swap Search Neighbourhood

LNS Large Neighbourhood Search

Chapter 1 Introduction

1
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1

Introduction

1.1 Project Inspiration

A timetable is a tabulation that shows multiple events and their schedules [38].

Timetable scheduling problem is an optimisation problem where events are allocated to the

limited resources such as space and time, while adhering to a set of predefined constraints

[9,12]. It is a well-known problem across various fields, including education, hospitalisation,

and transportation [12]. This is because a timetable plays an important role in smoothening the

operations of multiple parties and facilitating the cooperations between them. Therefore,

timetable scheduling problem has been and is still an important subject in a wide range of

research areas [7].

The university course timetabling problem (UCTP) is one of the scheduling problems

in which it requires courses to fit well into the limited time slots, classrooms, and lecturers with

no conflicts [2,12]. This problem is significant because it resurfaces each semester as

universities plan their course offerings [1]. Traditionally, university course timetables are

manually created by university’s administration staff. This manual process is not only time-

consuming but also prone to errors, especially when accommodating large numbers of students

and faculty with varying preferences and requirements [38].

In the context of UCTP, the constraints are typically modelled around courses, classes,

lecturers, students, and classrooms. These constraints are not fixed, but instead they are highly

specific and vary from institution to institution [2,38]. Furthermore, the different roles of

timetable practitioners, such as students and lecturers, may lead to shifting priorities over time,

further increasing the number of constraints. Together, these constraints define the feasibility

of a timetable, where a high-quality timetable is one that satisfies all constraints.

Generally, there are two types of constraints in UCTP, which are hard and soft

constraints. Hard constraints are requirements that cannot be violated in order to produce a

feasible timetable [2,38]. For example, hard constraints include ensuring that no student is

assigned to more than one class at a time, that the classroom capacity is not exceeded, and that

lecturers are not double-booked [38]. On the other hand, soft constraints are preferences that

Chapter 1 Introduction

2
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

are not strictly necessary for timetable feasibility [2,38]. It aims to improve the quality of the

timetable by considering factors such as minimising the number of consecutive hours for

lecturers and students and ensuring a balanced distribution of courses throughout the week

[2,12].

With these complexities in UCTP, this problem is considered a non-deterministic

polynomial hard (NP-hard) problem [1,8,9,38]. This implies that there is no conventional

algorithm that is able to find an optimal solution in the polynomial time as the problem size

such as number of students and constraints grows exponentially [3,8,38]. In addition, there is

no particular solution that satisfies every UCTP due to the unique requirements of each

university, let alone solving it manually [38]. Therefore, various optimisation algorithms are

applied to tackle this problem, including metaheuristics, hyper-heuristics, multi-objective,

operational research (OR), and hybrid approaches [1].

Among these feasible approaches, this project focuses on metaheuristics, particularly

the genetic algorithm (GA). GA is first introduced by John Holland in 1975. It is an

evolutionary algorithm (EA) [2] inspired by the principle of “survival of the fittest” proposed

by Charles Darwin, which emphasises on natural selection and genetics [22]. GA is widely

used to solve complex optimisation problems such as UCTP [2,8,12,38], multi depot vehicle

routing problem (MDVRP) [23], and travelling salesman problem (TSP) [25]. This is because

of its ability to explore large search spaces and find nearly optimal solutions in a reasonable

amount of time. The algorithm begins with an initial population of candidate solutions, which

is also known as chromosomes. These chromosomes then iteratively evolve over generations

using genetic operators that mimics the biological processes such as selection, crossover,

mutation, and replacement, and finally come up with a good-enough solution [22].

This project aims to study the absence of a significant constraint related to students’

comfort, which is the distance between classrooms for consecutive classes. Besides, this project

seeks to investigate how effectively GA can handle both hard and soft constraints in the UCTP,

particularly with the newly introduced constraints. There is a lack of research on GA

applications in UCTP, especially involving different operator combinations. Therefore, this

project focuses on providing perspectives on this unexplored area by applying various GA

combinations.

Chapter 1 Introduction

3
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.2 Problem Statements

The primary goal of university course timetabling problems (UCTPs) is to produce

schedules that satisfy institutional requirements while supporting students’ learning

experience. However, many schedules generated by existing timetabling systems place

consecutive classes for the same student groups in different buildings. This forces them to

spend valuable minutes walking between blocks and often arrive unprepared or miss the

opening of the next lesson. It is obvious that such avoidable travel erodes attention and reduces

effective studying time.

Genetic algorithm (GA) is frequently adopted to solve UCTPs because it is a type of

metaheuristics, which can explore large search spaces more quickly than exact mathematical

techniques [4]. Nonetheless, most GA implementations in UCTPs embed only the common

constraints and rely on a single combination of operators. Timetable quality can shift

significantly when alternative selection, crossover, mutation, and replacement techniques are

combined, either amplify or dampen the performance [37]. Therefore, comprehensive testing

across operator combinations is essential, yet many authors choose to settle on one default

configuration. This might be due to limited research time and incomplete familiarity with GA

design.

Consequently, existing work neither enforces the building-continuity constraint nor

identifies which GA combination performs best when that constraint is present. This project

closes both gaps by incorporating the same-building requirement into the problem model and

by systematically benchmarking diverse combinations of genetic operators to discover a

configuration that produces high-quality, student-friendly timetables.

1.3 Project Objectives

First, this project aims to formalise a comprehensive set of hard and soft constraints for

the university course timetabling problem (UCTP). The new soft constraint requires a student’s

consecutive classes to be held in the same building. A quantitative penalty is applied whenever

a timetable forces an inter-building move in between consecutive classes, allowing the effect

of the constraint to be measured across experiments.

Chapter 1 Introduction

4
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Second, it targets to design and develop a flexible genetic algorithm (GA) framework

whose operators can be exchanged without modifying the core code. This project evaluates 64

unique operator combinations formed from four selection, four crossover, one mutation, and

four replacement techniques, including two newly proposed replacement methods. There is

also an immediate repair operator after crossover and mutation operations to ensure that the

timetable represented by the chromosome satisfies the imposed constraints.

Third, it seeks to assess the performance of every GA combination on a partial mock

dataset. Each combination is executed in several independent trials, and the number of

generations, execution time, and initial penalty cost are recorded. Statistical analysis of the

repeated runs highlights the strengths and weaknesses of the individual techniques and

pinpoints the best overall combination.

1.4 Project Scope

This project delivers a flexible genetic algorithm (GA) framework built in Java

associated with the MySQL database engine. The framework aims to solve university course

timetabling problem (UCTP) only. It respects 15 hard constraints and 4 soft constraints,

including the proposed same-building requirement for consecutive classes. Other than that, it

focuses on four selection, four crossover, one mutation, and four replacement techniques,

which are combined to form 64 GA combinations. A repair operator is also adopted to further

enforce the applied constraints.

Besides, a partial mock dataset is constructed, which mirrors the real timetables of

Computer Science (CS) programme at Universiti Tunku Abdul Rahman (UTAR). It reproduces

room types and locations, weekly slot structure, offered courses and assigned lecturers, while

student and class records are generated programmatically to complete the input. This dataset

exercises every constraint and supports verification.

The experiments run each combination with a population size of 100, chromosome

length of 250, crossover probability of 0.7, and mutation probability of 0.4, on the partial mock

dataset. The crossover and mutation probabilities are determined using grid search across

parameter combinations of 0.5, 0.6, 0.7, 0.8, 0.9 crossover rate and 0.01, 0.2, 0.3, 0.4, 0.5

mutation rate. A run only stops when it achieves a penalty cost of zero, which is the optimum.

The number of generations, execution time, and initial penalty cost are recorded for

Chapter 1 Introduction

5
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

performance analysis A new metric, fitness improvement per generation, is also proposed to

coordinate with the termination criterion. It is defined as the initial penalty cost divided by the

number of generations. This offers a fairer comparison by mitigating bias arising from differing

initial penalty cost. Besides, each run generates feasible timetables, including course, lecturer,

student, and room timetables. Every combination is executed 10 times, and the averages of the

metrics are computed for performance comparison.

All coding work and experiments are conducted on a laptop equipped with an Intel i5-

10200H processor, 16 GB of memory, and an RTX 3060 laptop GPU. Visual Studio Code (VS

Code) serves as the integrated development environment (IDE).

To clarify, the study focuses exclusively on GA and does not investigate alternative

optimisation algorithms. It also avoids both a fully real-world dataset and a fully synthetic

dataset, opting instead for the balanced mock dataset described above.

1.5 Project Impact and Contribution

The project introduces the same-building soft constraint, producing timetables that

minimise student travel between consecutive classes and therefore reduce lost learning time.

Besides, it delivers a modular genetic algorithm (GA) framework in which the genetic

operators are fully interchangeable. By benchmarking 64 operator combinations on a partial

mock dataset, the study supplies the first systematic comparison of these techniques in the

context of university course timetabling. Moreover, the crossover and mutation probabilities

applied in the project are the best parameter combination found by performing grid search. The

resulting insights help researchers select more effective operator combinations and parameter

settings as well as design more rigorous experiments in the university course timetabling

problem (UCTP) domain.

Other than that, two replacement techniques are proposed in this project, which

introduces different perspectives on the importance of replacement techniques.

This project also proposes a new performance metric that introduces a fairer

comparison on combination performance, which is the fitness improvement per generation,

computed by dividing the initial penalty cost with the number of generations. This metric aims

to mitigate the bias in performance comparison due to the differences in initial penalty cost. It

Chapter 1 Introduction

6
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

also suits the stopping condition adopted in this project, where GA models are let to run until

a perfect timetable is generated, which has no penalty cost. Therefore, the final fitness value

cannot be used as the performance metric, as they are all the same. On the other hand, the

number of generations is not fair enough to measure the performance as the initial penalty cost

is random for each experiment and higher penalty cost often requires higher number of

generations.

Furthermore, this project provides a foundation for future work in UTPs. Researchers

can make further studies by extending the constraint set, integrating alternative optimisation

approaches, or measuring new performance indicators.

1.6 Chapter Summary

The details of this research are shown in the following chapters. Chapter 2 reviews prior

work on university timetabling, beginning with single-solution metaheuristics such as

simulated annealing and tabu search, then moving to population-based techniques that include

genetic algorithms, particle swarm optimisation, and other nature-inspired methods. This

chapter also highlights common hard and soft constraints and critiques gaps in earlier research.

Chapter 3 explains the methodology adopted in this project, detailing data collection, the

complete constraint model, particularly to the newly introduced soft constraint that requires a

student’s consecutive classes to remain in the same building, system requirements, and

verification plans. Chapter 4 gives particular attention to input and output design, data storage

design, and genetic algorithm design, including the chromosome encoding, fitness evaluation,

repair mechanisms, operator combinations and verification plans that ensure rigorous testing.

Chapter 5 presents system testing, such as experiments on constraints, GA models, and

comparison among operation techniques, as well as experiment on resource utilisation. Chapter

6 focuses on discussion of objective evaluation, system novelties, system limitations, future

enhancement and improvement. Lastly, Chapter 7 consolidates the conclusion.

Chapter 2 Literature Review

7
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2

Literature Review

2.1 University Timetabling Techniques

There are various optimisation algorithms applied to tackle the university course

timetabling problems (UCTPs), including metaheuristics, hyper-heuristics, multi-objective

approaches, operational research (OR) techniques and hybrid methods [1]. This project focuses

on genetic algorithm (GA), which is a well-known metaheuristic. Therefore, studying this class

of methods provides insights that are directly aligned with the goals of this project. Figure 2.1.1

illustrates the hierarchy of metaheuristics for UCTPs that are studied in this project.

Figure 2.1.1 Metaheuristics in UCTPs

Metaheuristics are iterative processes that guide underlying heuristics so that they can

explore and exploit the search space efficiently and locate near-optimal solutions at a

reasonable computational cost. By operating at a higher level than heuristics (but lower than

Chapter 2 Literature Review

8
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

hyper-heuristics), they make few assumptions about the problem, cope well with incomplete

information and limited resources, and can handle a wide variety of optimisation tasks by

searching large solution spaces effectively [1].

2.1.1 Single-Solution-Based Metaheuristics

Single-solution-based metaheuristics focus on iteratively refining one candidate

solution. These methods, often labelled as local search algorithms, start from a single solution

that is chosen based on specific criteria. The solution then explores its neighbourhood to

uncover improvements through repeated manipulation and relocation until a stopping condition

is satisfied [2,12]. This family includes the techniques such as simulated annealing (SA) and

tabu search (TS).

2.1.1.1 Simulated Annealing

Simulated annealing (SA) is a stochastic local search algorithm inspired by the

annealing process, wherein a heated solid is slowly cooled to achieve a more stable state [1,3].

The algorithm begins with a randomly generated solution and iteratively replaces it with a

neighbouring solution based on an acceptance probability criterion until a specified termination

condition is met [1,2,3]. A temperature parameter guides the exploration of the search space.

A high temperature in the early stages promotes exploration and helps the algorithm escape

local optima. As the temperature is gradually decreased, the tendency for exploration reduces,

encouraging convergence towards a global optimum [2,3]. SA is widely recognised for its ease

of implementation and effective local search capability, although it is often limited by a slow

convergence rate [1,3,4].

The research [4] applies the SA to address a faculty-level university course timetabling

problem (UCTP). This research aims to ensure that students enrolled in double major and minor

programmes can attend all necessary classes without time conflicts in an environment where

classrooms are shared across faculties. This highlights its novelty, as it is the first to

simultaneously take these constraints into consideration. The authors first formulate the

problem as a goal programming (GP) model and then design an SA algorithm to overcome the

GP model’s scalability issues. Both proposed methods are tested with a sample dataset (2

Chapter 2 Literature Review

9
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

departments with 35 courses and 4 student groups), two randomly generated datasets (3

departments with 57 courses and 4 departments with 77 courses), and a real-life engineering

faculty dataset from a private university (5 departments with 107 courses, 53 lecturers, and 31

classrooms). The results show that GP reaches the optimum only for the sample dataset; it fails

to find a feasible solution within the specified time limit of 3600 seconds for the other datasets.

On the other hand, SA outperforms GP on the sample dataset, obtaining a feasible solution with

16 times less computational time. It also successfully generates solutions for the randomly

generated datasets and improves the real-world dataset by 83 % in under 3 minutes.

2.1.1.2 Tabu Search

Tabu search (TS) is a memory-based metaheuristic built on local search [1,6]. The

algorithm starts from an initial solution and iteratively explores the neighbourhood of the

current solution until a termination criterion is satisfied [2]. It employs a short-term storage

called a tabu list, which stores recently executed movements to prevent the search from cycling

back to previously visited solutions. Nonetheless, this restriction can be overridden by an

aspiration criterion when a movement leads to a solution better than any found so far,

maintaining search flexibility. Furthermore, this storage is associated with a parameter known

as tabu tenure, which defines how long a movement remains in the list [2,6]. By allowing non-

improving movements while blocking revisits, this short-term memory helps the search avoid

trapping in the local optima [1,2,6]. In addition, TS adopts intermediate and long-term

memories that drive intensification and diversification, which offers a balance between

exploitation and exploration as the search progresses [1,6].

Awad et al. [5] introduce an adaptive tabu search (ATS) framework to resolve the

university course timetabling problem (UCTP) in large-scale scenarios. The approach is

divided into two stages. First, the authors construct a feasible solution by employing a least

saturation degree algorithm, supported by two neighbourhood structures. This construction

stage focuses on satisfying all hard constraints without considering the soft constraints. Next,

the approach enters the improvement stage. Two additional neighbourhood operators are

applied within the ATS algorithm to minimise soft-constraint violations in the early solution.

Specifically, the adaptiveness of the proposed TS is shown on the tabu list, where its length

can be dynamically reduced. If the total penalty cost fails to decrease after 1000 iterations, the

list length is shortened by 2, subject to a lower bound of 2; otherwise, it remains unchanged.

Chapter 2 Literature Review

10
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

This mechanism allows the algorithm to counteract search stagnation. The method is evaluated

on 11 benchmark datasets from Socha et al., which are categorised into 5 small, 5 medium, and

1 large instance. Its performance is assessed by comparing total penalty scores with those of

14 published approaches, where 7 of them are TS-based and 7 of them are not. The proposed

ATS approach ranks second on the medium and the large datasets, surpassed only by a

simulated annealing (SA) approach. This demonstrates its adaptability and effectiveness.

Nevertheless, this research comes with a limitation, where the numerical results for the small

datasets are not provided. The authors merely report that there is a minor performance slippage

in those cases. Overall, the research shows that adaptive control of the tabu list can enhance TS

performance on large-scale UCTP datasets.

2.1.2 Population-Based Metaheuristics

Population-based metaheuristics work on a collection of solutions that co-evolve

through repeated cycles of selection, variation and replacement. In each iteration, the methods

select high-quality individuals from the current population, apply problem-specific operators

to produce improved variants, and substitute weaker members with these offspring until a

termination criterion is met, typically an acceptable result is reached [2,12]. This family

includes the techniques such as genetic algorithm (GA), partial swarm optimisation (PSO), ant

colony optimisation (ACO), cuckoo search (CS), and harmony search (HS).

2.1.2.1 Genetic Algorithm

Genetic algorithm (GA) is an evolutionary algorithm inspired by Darwin’s theory of

natural selection, in which fitter individuals have a higher chance of survival [1,2,8]. Typically,

a GA proceeds through 5 stages, including initialisation, selection, crossover, mutation, and

replacement. First, it generates an initial population of candidate solutions and evaluates their

fitness. Based on those fitness values, the algorithm chooses parent solutions. A crossover

operator then combines selected parents to produce offspring, which are subsequently mutated

to maintain diversity. During replacement, the offspring substitute an equal number of

individuals in the current population, thus forming the next generation. These steps, excluding

the initialisation, repeat until a termination criterion is satisfied [2]. GA is highly customisable

through parameters such as population size and mutation probability. For instance, a moderate

Chapter 2 Literature Review

11
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

mutation probability introduces randomness that prevents the search from getting trapped in

local optima, while an excessively high value can cause the algorithm to degenerate into

random search [7]. GA is widely favoured for tackling large-scale, non-linear optimisation

problems due to its genetic operators offering a balance in exploration and exploitation [1,8].

The study [7] aims to automate the post-enrolment course timetabling (PE-CTT)

process at University of Malaysia Sabah Labuan International Campus (UMSLIC). The authors

propose a hybrid metaheuristic approach in which a tabu search with sampling and perturbation

(TSPP) first builds a pool of feasible timetables, after which a GA repeatedly improves the

solution quality. Particularly, the study focuses on GA. This is demonstrated by the conducted

experiments, where the best parameter values for the GA under limited computational time are

identified. The performance of two GA selection techniques, which are steady-state selection

and roulette wheel (RW) selection, is also tested in a common environment with swap-transfer

mutation and weak parent replacement. These experiments are run on a real-world dataset,

which is the session 2018/2019 semester 1 student registration dataset that consists of 1993

students, 144 courses, 35 time slots, and 24 rooms. Performance is evaluated based on hard-

and soft-constraint violations, comparing the best timetables generated by the proposed

approach with those scheduled by the university’s administrative staff. The former cuts the

soft-constraint violations by 54 % relative to the latter. Moreover, the automated timetables

have no hard-constraint violations, while the crafted timetables have 37 clashes that violate 2

hard constraints.

Another study [8] also focuses on tackling the university course timetabling problem

(UCTP) for USMLIC using GA. The GA model employed in this study is configured as

follows. First, a population of feasible solutions that satisfy all hard constraints is generated

using constraint programming (CP). Then, the algorithm iteratively applies quinary tournament

selection, one-point crossover, and random mutation to the population until 100,000

generations are reached or a 300-second cut-off time is met. Two experiments are conducted,

in which the authors first assess the GA’s capability to generate feasible timetables. Next, they

compare the GA’s performance with two other metaheuristics, which are great deluge (GD)

and simulated annealing (SA). Both experiments use two real-world datasets from UMSLIC,

which are the session 14/15 semester 2 instance (2248 students, 112 courses, 35 time slots, and

18 rooms) and the session 2015/16 semester 1 instance (2248 students, 112 courses, 35 time

slots, and 18 rooms). Solution quality is evaluated according to the sum of penalties from hard-

Chapter 2 Literature Review

12
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

and soft-constraint violations. Over 50 runs per dataset, GA lowers the average penalty cost of

the initial solution by approximately 36 % for both datasets. On the other hand, GD improves

the average quality of the initial solution by around 25 %, while SA achieves only an

improvement of roughly 23 %. A one-way analysis of variance (ANOVA) confirms that these

performance differences are statistically significant. The results indicate that GA outperforms

both GD and SA, highlighting its effectiveness in the timetable scheduling domain.

2.1.2.2 Particle Swarm Optimisation

Particle swarm optimisation (PSO) is a stochastic optimisation technique that draws

inspiration from the social behaviour of swarms, such as bird flocks and fish schools,

particularly their coordinated movements [1,8,10]. The algorithm begins by initialising a

swarm of particles, each representing a potential solution to the problem at hand [8]. Each

particle is randomly placed in the search space and assigned an initial position and velocity

[1,8]. Next, the algorithm enters an iterative cycle. During each iteration, a particle first updates

its velocity based on three factors, which are its current velocity, the best position it has

personally discovered, and the best position found by the entire swarm. Using this revised

velocity, the particle then moves to a new position [1,8]. The personal best and global best

values are refreshed whenever a particle or the swarm finds an improved solution, respectively.

This cycle continues until a termination condition is met, at which point the global best position

is returned as the final solution [8]. PSO is popular among researchers because it is simple to

implement and requires only a few parameters to configure. However, in multi-dimensional or

complex search spaces, the particles can easily stagnate, thus converging at a low speed and

eventually affecting the solution quality. This stagnation occurs due to the swarm's liability to

get trapped in local optima and the instabilities in particle velocities [10].

Hossain et al. [9] address the university course scheduling problem (UCSP) with a

modified particle-swarm framework called PSO with selective search (PSOSS). They

transform standard PSO operations by computing particle velocity with swap operators and

swap sequences. On top of this, they propose two novel mechanisms. First, a forceful swap

operator, combined with a repair technique, guarantees that every particle makes a feasible

move. Second, a selective search operator retains the best intermediate timetable after each

update. These innovations significantly enhance the algorithm's adaptability to the hard and

soft constraints in UCSP. Experiments use a real-world dataset from the Computer Science and

Chapter 2 Literature Review

13
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Engineering (CSE) department of Khulna University of Engineering and Technology (KUET),

comprising 38 courses, 27 lecturers, 5 student batches, and 13 rooms. In the experiments,

PSOSS is compared against multiple metaheuristics, which are genetic algorithm (GA),

traditional PSO, harmony search (HS), and producer-scrounger method (PSM). Performance

evaluation proceeds in two stages, in which population size and iteration studies identify

suitable parameters, after which solution quality is measured by a composite fitness score,

calculated as the sum of lecturer-preference values minus consecutive-class penalties, and

average lecturer-satisfaction percentage. On this benchmark, PSOSS achieves a best fitness of

471 and an 83 % average satisfaction, outperforming other approaches. Particularly, it

outscores the nearest rival GA by approximately 10 % on both metrics. Furthermore, it

converges to its optimum in 155 iterations, slower than HS that takes only 60 iterations, but

significantly faster than GA, PSO, and PSM, which each require over 400 iterations. Together,

these results demonstrate that PSOSS is able to deliver higher quality timetables with better

efficiency than the competing metaheuristics.

2.1.2.3 Ant Colony Optimisation

Ant colony optimisation (ACO) is a swarm intelligence (SI) method inspired by how

the ants communicate and interact with each other during foraging [1,2,11,12]. When searching

for foods, the ants seek the shortest route between a food source and their nest to transport food

efficiently [2,12]. They start by moving randomly and leave a pheromone trail along their paths

[1,2,12]. When other ants encounter a trail, they are drawn to it and follow the same route. If

they find the food, they return to the nest and lay an additional pheromone trail next to the

original one. This makes the trail more attractive [2]. Since pheromones are volatile, the

stronger trails, which correspond to the shorter routes, are continually amplified by many ants

[11]. In contrast, the weaker trails gradually evaporate and disappear [2,11]. Eventually, only

the best route remains [11]. When ACO is applied to optimisation problems, the artificial ants

first construct individual solutions [11,12]. They then pass the information about the quality of

these solutions to each other, guiding subsequent searches [11,12]. Through iterative

reinforcement, the solution set converges towards the global optimum [11,13]. ACO excels at

combinatorial optimisation thanks to its decentralised search and frequent feedback, but it can

converge slowly or become trapped in local optima on complex, large-scale problems [13].

Chapter 2 Literature Review

14
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

The research [11] seeks to tackle the university class scheduling problem (UCSP) for

the Computer Science and Engineering (CSE) department of Khulna University of Engineering

and Technology (KUET). The author focuses on two metaheuristics, which are a standard ACO

and a proposed ACO with selective probability (ACOSP). Experiments are conducted in two

different settings, which are a simple environment that uses a small dataset (10 courses, 8

lecturers, and 2 student batches) and a highly constrained environment that uses a larger dataset

(37 courses, 35 lecturers, and 4 student batches). Both ACO-based approaches are tested in the

two environments, whereas a genetic algorithm (GA) is evaluated only in the simple

environment. Solution quality is measured with a fitness function that sums lecturer-preference

scores, averaged over 10 trials, while the population size (or ant count) and the number of

iterations are varied. The results show that both ACO variants outperform the GA in the simple

setting and that ACOSP consistently achieves the highest fitness in both datasets. According

to the author, this superiority arises because the ACO variants compute probabilities for every

unassigned time slot during course assignment, whereas the GA does not. Moreover, ACOSP

restricts each choice to a shortlist of promising time slots and considers only their probabilities,

hence reducing search effort and enabling faster convergence.

2.1.2.4 Cuckoo Search

Cuckoo search (CS) is another swarm intelligence (SI) optimisation algorithm that

employs a Lévy flight (LF) search mechanism to locate high quality solutions within large and

complex search spaces [14]. It draws inspiration from the aggressive brood parasitic behaviour

of certain cuckoo species, which discreetly lay their eggs in the nests of other birds [1,14].

Mimicking this strategy, CS treats each candidate solution as an egg placed in a host nest, while

a fraction of nests is periodically abandoned or replaced to simulate the host bird’s discovery

and rejection of foreign eggs [15]. New solutions are then generated by LFs, a type of random

walk featuring heavy-tailed step-length distributions. This mechanism enables the algorithm to

balance extensive exploration with intensive exploitation of promising regions [14]. CS is

widely applied to optimisation problems because it relies on only a few control parameters,

offers a straightforward iteration that is easy to code, and yet maintains a strong random search

capability [14].

Jebur and Abdullah [15] tackle the university course timetabling problem (UCTP) by

proposing a best-nests CS (BNCS) variant designed to accelerate convergence and improve

Chapter 2 Literature Review

15
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

timetable quality relative to the traditional CS. Their workflow first ranks a population of

candidate timetables and splits them into “best” and “normal” sub-groups. It then generates a

new solution solely from the elite subset and compares it against a randomly chosen member

of the inferior subset, where the better solution replaces the worse one. Both sub-groups are

subsequently aggregated, after which a ratio of the worst solutions from the combined

population is discarded. These steps repeat until a stopping criterion is reached. Key

parameters, such as population size, LF λ value, and best-nest ratio, are tuned experimentally.

Evaluation uses four datasets from KTH Royal Institute of Technology, which are labelled as

small, medium, large, and extra-large size, varying from 70 to 293 class events and 160 to 540

time slots. Performance is measured as average fitness based on hard-constraint violations and

compared with the traditional CS. The number of iterations scales with dataset size, ranging

from 9500 to 57000. Across all datasets, BNCS converges faster and reaches higher fitness

than CS, using a configuration that includes a population of 40, a λ of 1, and a best-nest ratio

of 0.25. The newly introduced selection scheme clearly shows its capability in enhancing

traditional CS, which helps accelerate exploitation without sacrificing exploration.

2.1.2.5 Harmony Search

Harmony search (HS) is an optimisation algorithm that frames each candidate solution

as a musical harmony and seeks the best composition through iterative improvisation [9,16].

Inspired by how performers refine their instruments’ pitches to achieve an aesthetically

pleasing sound, HS stores a population of solutions in a harmony memory (HM), whose size is

termed the harmony memory size (HMS) [9,17]. It generates new harmonies through three

operators, namely memory consideration (MC), pitch adjustment (PA) and random

consideration (RC). These operators are regulated respectively by the harmony memory

consideration rate (HMCR), pitch adjustment rate (PAR), and pitch bandwidth (bw). After

setting these parameters and randomly filling the HM, the algorithm repeatedly improvises a

new harmony, compares it with the current worst member of the HM, and replaces that worst

harmony when an improvement is found. HM is thus continually updated until the maximum

number of improvisations (MI) is reached, at which point the best harmony is returned [9,16].

Researchers have widely applied HS to real-world optimisation tasks due to its simple concept,

limited tuneable parameters, and easy implementation, alongside its ability to balance

Chapter 2 Literature Review

16
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

exploration and exploitation. Nevertheless, HS can still exhibit low optimisation accuracy and

suffer from premature convergence [17].

The study [16] aims to improve timetable quality for the College of Arts and Sciences

(CAS) at Universiti Utara Malaysia (UUM) by eliminating hard-constraint clashes and cutting

soft-constraint penalties. Therefore, the authors propose a hybrid HS algorithm combined with

the great deluge (GD) heuristic. The algorithm begins by constructing 10 feasible timetables to

populate the HM and then iteratively improvises new solutions using various operators. MC

and PA operators refine the lectures stored in the HM, while moves generated by the RC

operator are filtered through a GD acceptance test whose water level, representing solution

quality, is reset to the current best solution at the start of every improvisation cycle. The search

terminates and returns the best solution after the MI is reached. Experiments use the UUM

CAS session 13/14 semester 1 undergraduate dataset, which consists of 247 courses, 850

lectures, 32 rooms, 350 lectures, and 20000 students. They tune the HMCR parameter of the

proposed algorithm while comparing its output with the official timetable produced by

commercial timetabling software. Timetable quality is evaluated using a curriculum-based

course timetabling (CBCTT) validator algorithm that computes hard- and soft-constraint costs.

The hybrid HS-GD approach achieves its best result when HMCR is set to 0.8, yielding a total

cost of 708 with zero hard-constraint violations. It outperforms the university’s software, which

produces a timetable with a total penalty score of 1230 spanning both hard and soft constraints.

2.2 Genetic Algorithm

Genetic algorithm (GA), introduced by John Holland in 1975, is grounded in the

concepts of genetics and natural evolution [22]. This metaheuristic searches for good solutions

through the iterative application of selection, crossover and mutation operators. As these

operators rely on random choices, the approach is fundamentally stochastic [8]. This indicates

that the algorithm may produce varying best solutions across multiple runs for the same

problem due to the different search behaviours of the operators in each execution [19].

Chapter 2 Literature Review

17
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.1 Genes, Chromosomes, and Population in GA

In the context of GA, a gene represents a single decision variable or attribute, a

chromosome is an ordered collection of genes that encodes one candidate solution, and a

population is the set of chromosomes that are evaluated together in the same generation [22].

Figure 2.2 illustrates these basic building blocks and their hierarchy within the algorithm.

Figure 2.2.2 Flowchart of GA [23]

Figure 2.3 presents the flowchart of GA that guides this part of discussion. The

algorithm starts with a setup phase in which parameters such as population size, number of

generations, mutation rate and crossover probability are defined. An initial population of

Chapter 2 Literature Review

18
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

chromosomes is created at random, and each chromosome is evaluated with a problem-specific

fitness function so that better solutions receive higher scores. If a termination criterion such as

a maximum generation count, a time limit or satisfaction of a target fitness is met, the search

stops, and the best chromosome is returned. Otherwise, two chromosomes are selected

according to their fitness, typically favouring the stronger yet still giving weaker individuals a

chance in order to preserve diversity. Those parents may undergo crossover which combines

parts of both chromosomes, and the resulting offspring may then experience mutation which

randomly alters one or more genes. Whether crossover or mutation occurs is governed by

predefined probabilities, which allow offspring to be copied unchanged from one parent when

crossover is skipped and to remain unmodified when the mutation probability test fails. After

reproduction, the replacement strategy inserts the offspring into the population, the new

generation is evaluated and the loop repeats until the stopping condition is satisfied.

GA is widely favoured for tackling large scale and combinatorial optimisation tasks,

including the multi depot vehicle routing problem (MDVRP) [23], the travelling salesman

problem (TSP) [25], and the university course timetabling problem (UCTP) [7,8]. Its popularity

in these domains stems from its capacity to explore vast search spaces efficiently, while

retaining the flexibility to incorporate domain specific constraints and objectives [22].

An important strength of GA lies in the number of tuneable parameters and operator

variants that can be combined to suit different problems. For instance, several techniques are

available for each stage of the algorithm process and their selection directly affects

performance [37]. Besides, the population size in particular has a measurable impact on

exploration because larger populations tend to provide greater coverage of the search space and

thus a higher probability of reaching near optimal solutions. In addition, mutation helps the

algorithm avoid premature convergence to local optima, though an excessive rate can cause the

search to resemble random sampling [7].

Despite these advantages, GA also faces limitations. Crafting an appropriate

representation and designing a meaningful fitness function can be challenging, and the

practitioner must decide various parameter settings such as population size and operator

probabilities. Moreover, even with careful tuning, the algorithm offers no guarantee of finding

the global optimum, especially on problems with rugged or deceptive fitness landscapes [22].

Chapter 2 Literature Review

19
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2.1 Selection

The selection operator in genetic algorithm (GA) describes the process of selecting two

chromosomes from the current population to act as parents. These two parents are responsible

for breeding and producing offspring [18]. The main purpose of the selection operator is to

ensure that the better genes are passed on to the next generation and progressively distributed

among the population, thus increasing the overall fitness of the population [20]. Therefore, the

selection of parents is based on the fitness values of the chromosomes, where fitter

chromosomes have a higher probability of getting chosen [19].

However, favouring fitter chromosomes does not guarantee finding the global optimum.

When the selection operator entirely depends on the best chromosome, there is a lack of variety

in the mating pool. This results in the production of similar chromosomes in every generation,

thereby reducing population diversity [21,22]. Consequently, the population prematurely

converges and falls into the local optimum [20,21,22]. On the other hand, selecting unfit

chromosomes slows down the convergence rate, resulting in a longer time to search for the

global optimum. Hence, a good selection technique needs to maintain a balance between

favouring fitter chromosomes and preserving population diversity to allow the solutions to

converge to the global optimum within a reasonable time frame [21,22].

This section discusses two common selection techniques, which are roulette wheel (RW)

selection, random selection, tournament selection, and linear ranking selection.

2.2.1.1 Roulette Wheel Selection

Roulette wheel (RW) selection is a selection technique in which all chromosomes in

the population are distributed on a wheel proportionally based on their fitness [18,20]. The

proportion assigned to each chromosome represents its chance of being selected as a parent.

Hence, a fitter chromosome occupies a larger sector on the wheel and therefore has a higher

chance of being chosen for the mating pool [20]. The wheel is then spun randomly. When the

wheel stops, the chromosome occupying the sector pointed to by the pointer is selected as the

parent [18,21]. Figure 2.2.3 shows that the “a2” chromosome, indicated by the pointer, is

chosen as the parent.

Chapter 2 Literature Review

20
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.3 RW Selection [21]

Since better chromosomes are more likely to be chosen as parents, there is a risk of

premature convergence [18]. Nevertheless, there is still a probability of selecting poorer

chromosomes, which helps to avoid the solution being trapped in a local optimum [22,24].

Moreover, RW selection is widely used because it is easy to implement [18]. For instance, RW

selection is used for optimising multi depot vehicle routing problem (MDVRP) with capacities

and fixed endpoints in [23]. Besides, RW selection is applied in [25] to optimise travelling

salesman problem (TSP), which is evaluated according to the minimum distance required to

visit each city at least once and return to the starting city. This indicates that RW selection

plays an important role in a genetic algorithm (GA) model for optimising non-deterministic

polynomial complete (NP-complete) problems and combinatorial optimisation problems such

as MDVRP and TSP.

2.2.1.2 Random Selection

Random selection is a selection technique in which all chromosomes in the population

are sampled with equal probability, independent of fitness. Two parents are selected randomly

from the population without any restriction.

Because no fitness-based weighting is required, random selection is straightforward to

implement and computationally inexpensive, making it a common baseline or a diversity-

preserving component in GA schemes. Furthermore, its unbiased sampling helps to maintain

genetic diversity and reduces the risk of premature convergence, especially in noisy or

deceptive fitness landscapes. However, the absence of selection pressure means that highly fit

Chapter 2 Literature Review

21
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

chromosomes are not preferentially propagated, which can slow convergence and increase the

number of evaluations needed to reach a good solution. This has been proven by past research

which compares the performance of different selection techniques against benchmark functions.

In the experiment, random selection performs the worst among roulette wheel selection and

tournament selection [20].

2.2.1.3 Tournament Selection

In tournament selection, several chromosomes are randomly selected to compete

against each other [19,21] for a position as a parent. The winner of each tournament is evaluated

by comparing the fitness of the participating chromosomes [23]. Hence, the fittest chromosome

in the tournament is going to win and getting selected as the parent [19,21].

The number of chromosomes involved in each tournament is defined as the tournament

size [21]. The larger the tournament size, the higher the chance that the best chromosome is

selected and wins the tournament [19,23]. This increases the probability of losing diversity in

the population [18,21]. Therefore, the tournament size needs to be carefully set to avoid

premature convergence. The most commonly used variant is tournament selection with a

tournament size of two, also known as binary tournament selection [21]. Figure 2.2.4

demonstrates the process of tournament selection with a tournament size of three.

Figure 2.2.4 Process of Tournament Selection [21]

Chapter 2 Literature Review

22
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Tournament selection is the most popular selection technique in genetic algorithm (GA)

due to several advantages [21,23,25]. One of the advantages is its high efficiency compared to

other techniques. This is because it does not require a ranking process and therefore has low

time complexity [21,25]. Furthermore, tournament selection is able to maintain population

diversity with small or moderate tournament sizes. Yet, the population starts to lose its diversity

when the tournament size is too large [18,21]. The high efficiency of tournament selection is

supported by various research studies utilising it for optimisation problems. For example,

tournament selection was applied in solving the multi depot vehicle routing problem (MDVRP)

[19] and the travelling salesman problem (TSP) [25], as described in section 2.2.1.1.

2.2.1.4 Linear Ranking Selection

In Section 2.2.1.1, the disadvantage of Roulette Wheel Selection (RWS) is highlighted,

where better chromosomes occupy disproportionately larger sectors on the selection wheel [23].

This provides them with higher selection chances while limiting opportunities for weaker

chromosomes [22]. To address this imbalance, Ranking Selection, a method that applies the

concept of normalisation to selection probabilities, has been introduced [23], with Linear

Ranking Selection being one of its variations [18,23].

Linear Ranking Selection is essentially a modified version of RWS [18]. This technique

involves four steps. First, the chromosomes are sorted based on their fitness, from best to worst.

Second, they are ranked according to their order [21]. The best chromosome is assigned rank

“1”, whereas the worst chromosome receives rank “N”, where “N” represents the population

size [8]. Third, the chromosomes are distributed on a selection wheel depending on their ranks.

The size of the sectors, which corresponds to the selection probability, increases linearly and

uniformly from the lowest to the highest rank [23]. Lastly, the wheel is spun to select a

chromosome as the parent.

By utilising ranking instead of fitness, the worst chromosome is able to maintain a

relatively high selection probability [18]. This is illustrated in Figure 2.2.5, where

chromosomes are more evenly distributed on the wheel when selection probabilities are

assigned to them based on ranking rather than fitness. This approach preserves population

diversity [22,23] and reduces the risk of premature convergence [18,23]. As a result, the

Chapter 2 Literature Review

23
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

likelihood of finding the global optimum is increased. However, this technique has several

limitations. First, it is not efficient in terms of computational performance due to the necessity

of sorting and ranking [18]. Second, the low tendency to favour the best chromosome results

in a slow convergence rate [18,22,23].

Despite these drawbacks, the advantages of Linear Ranking Selection make it a

balanced technique, favoured by researchers for optimisation problems. For instance, this

technique was applied in tackling the Multi Depot Vehicle Routing Problem (MDVRP) [23]

and the Travelling Salesman Problem (TSP) [25], which are described in Section 2.2.1.1. In

these two experiments, Linear Ranking Selection outperformed other techniques, including

RWS and Tournament Selection with a tournament size of five. This shows that this selection

technique is a promising method for finding optimal solutions to optimisation problems.

Figure 2.2.5 Selection Probabilities Based on Fitness and Ranking

2.2.2 Crossover

The crossover operator in genetic algorithm (GA) controls how two parent

chromosomes are combined to create offspring. By exchanging segments of genetic material

between selected parents, the operator introduces new gene combinations into the population

and increases the chance that offspring inherit advantageous traits that improve overall fitness.

This is supported by an experimental observation, which confirms that highly fit individuals

often share specific genetic patterns that can be propagated to the next generation through

crossover [27].

Chapter 2 Literature Review

24
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

During crossover operation, giving too much emphasis to exploitation or exploration

can hinder the search. Excessive exploitation, where parents are combined in very similar ways,

limits diversity and increases the risk of premature convergence. On the other hand, excessive

exploration, where chromosome segments are exchanged too randomly, slows down

convergence and extends the searching time for the global optimum. Nonetheless, self-adaptive

crossover rates can balance these tendencies by dynamically adjusting how aggressively

genetic material is mixed, preserving diversity while still promoting fitter solutions [28].

This section discusses four common crossover technique, which are single-point

crossover, two-point crossover, uniform crossover, and shuffle crossover.

2.2.2.1 Single-Point Crossover

Single-point crossover is a recombination operator where two parent chromosomes

exchange genetic material at a single cut position to produce offspring [20,23]. After randomly

choosing one crossover point along the genome, the first segment (from the start to the cut) is

copied from first parent and the remaining segment (from the cut to the end) from second parent

(and vice versa for the second child).

 It is simple and fast, which can help propagate useful schemata and speed early

progress. However, it assumes meaningful adjacency. If gene order does not reflect interacting

features, the operator may disrupt dependencies or create invalid solutions and can reduce

diversity if the cut often falls in similar places. Nonetheless, its simplicity makes it only offers

low exploration compared to other crossover techniques [20], causing it infeasible [23].

2.2.2.2 Two-Point Crossover

Two-point crossover is a technique that selects two crossover positions at random on

each parent chromosome, partitions the parents at those positions, and exchanges the genes that

lie between the two points to create new offspring [29]. Because exactly two breakpoints are

chosen, the procedure always produces two children whose middle segments come from

opposite parents. Figure 2.2.6 depicts this process, showing the two randomly chosen cut points

on both parents and the swapped middle segments that generate the resulting offspring.

Chapter 2 Literature Review

25
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2.6 Process of Two-Point Crossover [30]

This operation technique is straightforward to code because it only requires picking two

random indices and swapping the intervening genes. However, this simplicity also limits

diversity. This is because the genes outside the selected segment remain unchanged, therefore

the search may converge prematurely [18]. Despite these limitations, two-point crossover has

yielded strong performance on several combinatorial optimisation problems. It has been

incorporated into genetic algorithm (GA) solutions for the green vehicle routing problem

(GVRP), where it helps generate high quality routes [31]. Besides, the GA applying two-point

crossover outperforms several previously published methods such as tabu search (TS) and

multi-pass in the resource-constrained project scheduling problem with transfer times

(RCPSPTT) [32]. These successes demonstrate that two-point crossover can be an effective

component of GA frameworks that tackle non-deterministic polynomial complete (NP-

complete) tasks.

2.2.2.3 Uniform Crossover

Uniform crossover selects each gene independently from either parent with equal

probability. Instead of cutting chromosomes into segments, it swaps individual bits by

generating a random mask of 0s and 1s and copying genes accordingly: a mask bit of 1 takes

the gene from the first parent, while 0 takes it from the second [29,39]. This produces two

offspring whose genes are chosen uniformly from both parents. Because the mask is random,

the effective number and location of crossover points are not predetermined, and inheritance is

independent of position.

Its strengths include unbiased exploration, suitability for large gene subsets, and strong

recombination capability. By examining every gene position, it can probe a wider solution

space. The main drawback is a typically slower convergence rate, since many genes may be

swapped at once, dampening exploitation. In practice, uniform crossover has been used for the

Chapter 2 Literature Review

26
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

travelling salesman problem (TSP), where it helps maintain genetic diversity and can improve

the algorithm’s speed in reaching optimal or near-optimal solutions [40].

Figure 2.2.7 Process of Uniform Crossover [30

2.2.2.4 Shuffle Crossover

Shuffle crossover aims to eliminate positional bias so that offspring do not depend on

where the crossover cut happens [42,43]. The method selects two parents and a random cut

point, then first applies the same random permutation to both parents’ genes. With the genes

shuffled, the parents undergo a standard single-point crossover at the chosen position to create

two children [43]. Finally, the inverse permutation unshuffles the offspring back to the original

indexing.

In spirit it resembles uniform crossover, but the crucial difference is that shuffle

crossover exchanges contiguous segments rather than individual bits. Because a fresh random

shuffling is used for each crossover, the original gene positions have far less influence on

recombination and on the resulting offspring’s quality [41].

2.2.3 Mutation

The mutation operator in genetic algorithm (GA) introduces small random changes into

the chromosomes in order to preserve genetic diversity and broaden the search space. It

typically alters one or two genes and is applied with a very low probability [23,33]. By injecting

fresh variability after selection and crossover, the operator reduces the chance of premature

convergence and helps the population escape local optima [28].

Chapter 2 Literature Review

27
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

When tuning the mutation probability, it requires high awareness. If the rate is set too

low, exploration is limited, promising genes may never be tested, and the search can stick in

local optima. If the rate is set too high, offspring differ so greatly from their parents that the

algorithm struggles to learn from past generations, which slows down convergence [33]. An

effective setting must balance diversity and refinement, so that the search progresses toward

the global optimum within a reasonable time [28,34].

This section discusses a common mutation technique, which is swap mutation.

2.2.3.1 Swap Mutation

Swap mutation is an operation technique that selects two genes within a chromosome

and exchanges their positions [36]. Figure 2.2.8 shows an example in which the genes “2” and

“6” are swapped. Because only two positions change, most neighbouring genes stay together.

Therefore, population diversity is maintained, where successful gene combinations are not

drastically disrupted.

Figure 2.2.8 Swap Mutation [35]

Although this technique preserves much of the original adjacency information, it

inevitably breaks some links, which can be problematic in sequence‐sensitive problems such

as the travelling salesman problem (TSP), where the order of cities forms a path [36]. Even so,

swap mutation is valued for its simplicity and its ability to inject diversity that helps the search

escape local optima. These qualities explain its adoption in combinatorial optimisation tasks

such as the multi-depot vehicle routing problem (MDVRP) [23] and the university course

Chapter 2 Literature Review

28
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

timetabling problem (UCTP) [7], where maintaining feasibility while exploring alternative

arrangements is essential.

2.2.4 Replacement

The replacement operator in genetic algorithm (GA) determines which chromosomes

leave the population and which new offspring join the population [22]. Since the population

size must be kept constant, space must be created for the new offspring to join the population

[26]. There are two types of replacement techniques, which are steady state updates and

generational updates [22,26].

Generational update techniques replace the entire population with newly produced

offspring [22,26]. This restricts chromosomes to mating only with those from the same

generation [22]. On the other hand, steady state update techniques allow new offspring to join

the population immediately after each reproductive process [22,26]. This involves the

replacement of existing chromosomes. Typically, a tournament method is used to decide which

chromosome to replace. Sometimes, the worst or oldest chromosomes are replaced by the

offspring to accelerate population convergence [22].

According to [20] and [26], steady state update techniques generally perform better than

generational update techniques. This is because the nature of the latter, which replaces the

entire population, prevents the best chromosome from the previous generation from being

carried over and inherited in future generations. Therefore, this section mainly discusses steady

state update techniques, specifically two of them, which are weak parent replacement and

tournament replacement.

2.2.4.1 Weak Parent Replacement

Weak parent replacement is a technique where parents and offspring compete for a spot

in the population. In this technique, the two fittest chromosomes out of the four (two parents

and two offspring) are retained in the population [22,26]. This allows the weaker parents to be

replaced by the stronger offspring, thus gradually increasing the overall fitness of the

population [20,22]. This technique performs best when the selection operator includes both fit

Chapter 2 Literature Review

29
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

and unfit chromosomes as parents. Nevertheless, if the selection operator consistently chooses

only fitter chromosomes as the parents, the improvement in population fitness is limited [22].

Weak parent replacement was utilised in minimisation experiments on a test suite

consisting of 6 benchmark functions and 3 real-world problems [26]. Besides, [20] used weak

parent replacement in an experiment evaluating various combinations of operation techniques

in GA with benchmark functions. The application of weak parent replacement in these research

studies demonstrates its capability of maintaining population diversity, allowing the population

to efficiently converge to the global optimum.

2.2.4.2 Tournament Replacement

Tournament replacement is a technique that replaces weaker chromosomes in the

population with newly generated offspring. Unlike weak parent replacement and both parent

replacement, which focus only on the parents and offspring for replacement decisions,

tournament replacement selects chromosomes for replacement from the entire population.

The selection process in tournament replacement resembles tournament selection,

which is discussed in Section 2.2.1.3, except that the worst chromosome in the tournament is

chosen, rather than the best [22]. In this process, the size of the tournament, representing the

number of participating chromosomes, needs to be carefully determined [21]. A larger

tournament size has a higher probability of selecting the worst chromosome from the

population each time to win the tournament, which can lead to premature convergence [19,23].

Following this setup, the process begins by randomly selecting several chromosomes for a

tournament. During the contest, these chromosomes compete against each other based on their

fitness. The worst among the chosen chromosomes wins the tournament and is selected to be

replaced by the offspring [19,21].

Although this technique consistently targets weaker chromosomes, it does not

guarantee an improvement in the population’s overall fitness over successive generations. This

is because the selected chromosomes are replaced with the newly generated offspring,

regardless of their fitness. Consequently, there may be ineffective replacements if the offspring

are not fitter than the chromosomes they replace. This results in a regression in the population’s

overall fitness, thus slowing down the convergence rate.

Chapter 2 Literature Review

30
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Despite these limitations, tournament replacement remains a valuable technique.

However, the discussion and application of this technique in both academic research and

practical scenarios are notably insufficient, highlighting a domain that has yet to be explored.

2.3 Constraints

2.3.1 Hard Constraints

No. Hard Constraints Previous Work

1
A student must attend at most one class per time slot. [1], [2], [4], [5], [7], [8], [9],

[12], [15], [38]

2
A lecturer must teach at most one class per time slot. [1], [2], [4], [7], [9], [12],

[15], [16], [38]

3
A room must host at most one class per time slot. [1], [2], [4], [5], [7], [8], [12],

[15], [16], [38]

4 A class must have exactly one lecturer. [2]

5 A class must be assigned a room. [2], [4], [38]

6
A class must use a room whose features meet its

requirements.

[1], [5], [9], [12], [15]

7
A class must not enrol more students than the room’s

capacity.

[1], [2], [4], [5], [7], [8], [12],

[15], [16], [38]

8 A class must be scheduled on weekdays only. [7]

9
A class must be scheduled within the allowed daily

time window.

[2], [38]

Table 2.3.1 Hard Constraints of Previous Work

2.3.2 Soft Constraints

No. Soft Constraints Previous Work

1
A student should not exceed the daily study-hours

limit.

[4]

Chapter 2 Literature Review

31
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2
A student should not study beyond the consecutive-

hours limit.

[1], [2], [7], [8], [12]

3
A student should attend more than one class when

present on a day.

[1], [2], [7], [12]

4
A student’s courses should be concentrated into as

few days as possible.

[4]

5 A student’s timetable should minimise idle gaps. [4]

6
A lecturer should not exceed the daily teaching-hours

limit.

[4]

7
A lecturer should not teach beyond the consecutive-

hours limit.

[2], [9], [38]

8
A lecturer’s courses should be concentrated into as

few days as possible.

[4]

9 A lecturer’s timetable should minimise idle gaps. [2], [4]

10
A lecturer’s preferred time slots should be honoured

where feasible.

[2], [4], [9]

11 A class should not occupy a lunch-break slot. [2], [4], [9], [12]

12
A class should use a room whose capacity closely

matches its size.

[8]

13
A departmental course should be held in its own

department’s building.

[4]

14
A course’s classes should follow any required

sequence.

[1], [12]

15
A course’s classes should span at least the specified

minimum number of days.

[1], [12], [16]

Table 2.3.2 Soft Constraints of Previous Work

2.4 Critical Remarks of Previous Work

Existing studies on university course timetabling problems (UCTPs) demonstrate that

a wide range of metaheuristics can deliver feasible and high-quality schedules. The research

[4] applies goal programming (GP) with simulated annealing (SA) and performs well on a real

Chapter 2 Literature Review

32
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

institutional dataset. Besides, the study [5] introduces adaptive tabu search (ATS) and validates

its competitiveness against 14 published approaches. Particle swarm optimisation (PSO) with

selective search (PSOSS) in the research [9] and ant colony optimisation (ACO) with selective

probability (ACOSP) in the research [11] both reports best-in-class solutions for their

respective experiments. Other than that, Harmony search (HS) enhanced by great deluge (GD)

in the paper [16] and the best-nests (BS) variant of cuckoo search (CS) in the research [15]

further illustrate how hybrid metaheuristics can unlock performance gains in UCTPs with real-

world datasets.

Despite these contributions, three recurring limitations emerge. First, comparative

approaches are either absent or narrow. The study [4] does not contrast its results with other

metaheuristics, while the study [11] measures performance against only one genetic algorithm

(GA) implementation. Second, several studies operate under settings that may hide additional

improvements. The research [8] enforces a short runtime limit and filters crossover operations

for feasibility, which constrains exploration, whereas the research [15] models only hard

constraints. Third, most evaluations overlook everyday travelling challenges on university

campus, particularly the proximity of classrooms for consecutive classes.

Within the subgroup of GA papers, methodological diversity remains limited. The

research [7] employs roulette wheel (RW) or steady-state selection with swap mutation and

replaces the weakest individual with the fittest offspring yet omits crossover entirely. Other

than that, the research [8] combines quinary tournament selection, one-point crossover, random

mutation and conditional replacement, but does not investigate alternative operator

combinations. Consequently, these studies vary parameters inside a narrow envelope rather

than exploring how different combinations of selection, crossover, mutation and replacement

interact.

Furthermore, no work reviewed models the constraint that consecutive classes for the

same student should be held in the same building, even though this requirement directly affects

student well-being and campus logistics. In addition, the small set of GA operator combinations

examined so far is insufficient to establish which arrangements truly balance exploration and

exploitation when both hard and soft constraints are present. These gaps motivate this project,

which introduces the building continuity constraint and systematically benchmarks a broader

set of selection, crossover, mutation, and replacement techniques to identify a configuration

that delivers high-quality timetables while reducing student travel.

Chapter 3 System Methodology

33
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3

System Methodology

3.1 Project Development

Figure 3..11 Gantt Chart for Project Development

Figure 3.1.1 illustrates the project development workplan in a Gantt chart, consisting

of 2 phases (FYP1 and FYP2) and 5 stages, which include planning, analysis, design,

implementation, and testing.

The project begins with a planning stage. Previous work on timetabling including

variants, constraints, and approaches, is reviewed, followed by genetic algorithm (GA), in

which various techniques of multiple GA operators are studied, to understand established

optimisation strategies that best fit scheduling problems, specifically university timetabling

course problems (UCTPs). Insights from these studies shape concise problem statements,

particularly based on the shortcomings found in them. Besides, clear project scopes, such as

datasets and constraints, are constructed. A set of achievable objectives are also defined to

guide all subsequent work.

Next, attention shifts to analysis. Real timetable data are gathered and cleansed for

consistency. Data such as programme structures and lecturer information are studied to

strengthen dataset understanding. Partial mock data is created using the data collected to serve

as the dataset used in the project. In parallel, GA operation techniques are compared in terms

Chapter 3 System Methodology

34
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

of their concepts, implementations, strengths, and weaknesses, in order to choose those worth-

testing techniques. The programming languages, code libraries, and development tools are also

analysed to select the most suitable combinations for rapid experimentation.

With requirements clarified, design tasks formalise how the system will operate. New

constraints are enumerated to reflect fundamental focuses of the system. A high-level workflow

is drafted to show how data flow from input to timetable generation and schedule validation in

GA. Details such as chromosome encodings and operator designs are mentioned as well.

Besides, a relational schema and data storage technology is designed to hold data used by the

system, including courses, rooms, lecturers, and students. An entity relationship diagram

(ERD) is drawn to show a clear structure. Lastly, verification plans specifying metrics and test

scenarios that will later confirm whether generated timetables satisfy every constraint, are

designed.

The implementation stage then delivers a working prototype on the Visual Studio Code

(VS Code) development platform, as previously decided, using the selected Java programming

language and MySQL database technology. Core programme structures are coded, laying out

the chromosome representation and the genetic techniques for selection, crossover, mutation,

and replacement operators. Constraint-checking modules are integrated to penalise infeasible

timetables, and persistent data storage is set up to save datasets. However, no graphical user

interface (GUI) is developed, and output format is yet to be finalised.

An interim report wraps up the first phase by documenting achievements, design

decisions, and any limitations discovered along the way.

The second phase opens with a brief design refinement that focuses on output format.

The presentation method of the final timetables is determined so that these results can be easily

interpreted.

The stage is followed by the full-scale implementation. All remaining features such as

GA operation techniques, are completed, including an experiment automation function. The

system is expected to support end-to-end timetable generation and experimental result storage

without manual intervention.

Continue with the testing stage, system tests verify end-to-end workflows under

realistic workloads. Experiments are conducted to measure timetable quality and runtime

Chapter 3 System Methodology

35
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

efficiency against varying dataset sizes. Results are collected and analysed to report findings

of this research.

Lastly, a detailed report is produced that captures the completed system, experimental

results, and recommendations for future enhancements, marking the formal conclusion of the

project.

3.2 Data Collection

Figure 3.2.1 Timetable for February 2025 CS Y1T3 Students

Figure 3.2.2 Programme Structure for February 2025 CS Y1T3 Students

Chapter 3 System Methodology

36
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figures 3.2.1 and 3.2.2 present the official timetables and programme structures for

February 2025 Computer Science (CS) year one, trimester three (Y1T3) students at Universiti

Tunku Abdul Rahman (UTAR). These records are downloaded from the university’s Faculty

of Information and Communication Technology (FICT) website. By studying these data, it is

found that each timetable specifies the daily allocation of classes, the assigned room, and its

building. A clear pattern emerges, as rooms in building L host lectures, whereas rooms in

building N host tutorials and practical sessions. Furthermore, the timetable spans Monday to

Friday and reserves a period each Friday for Muslim prayer. Besides, the accompanying

programme structure lists the course code, course name, offered class type, duration, and

lecturer for every course. Together, these data provide the baseline for a partial mock dataset

used in this project.

3.3 System Constraint

3.3.1 Hard Constraints

No. Hard Constraint

1 A student must attend at most one class per time slot.

2 A student must enrol in every course required for the semester.

3 A lecturer must teach at most one class per time slot.

4 A room must host at most one class per time slot.

5 A class must enrol at least one student.

6 A class must have exactly one lecturer.

7 A class must be assigned a room once and only once.

8 A lecture class must be held in a lecture hall.

9 A tutorial class must be held in a tutorial room.

10 A practical class must be held in a computer lab.

11 A class must not enrol more students than the room’s capacity.

12 A class must be scheduled on weekdays only.

13 A class must be scheduled between 08:00 and 18:00.

14
A class must not be scheduled on Friday between 12:00 and 14:00 (Muslim prayer

time).

15 A class must not span across multiple days.

Chapter 3 System Methodology

37
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 3.3.1 Hard Constraints for Project

3.3.2 Soft Constraints

No. Soft Constraint

1 A student should study no more than four consecutive hours.

2 A lecturer should teach no more than four consecutive hours.

3 A student’s consecutive classes should be held in the same building.

4 A lecturer should receive at least one teaching hour.

Table 3.3.2 Soft Constraints for Project

3.4 System Requirements

3.4.1 Hardware

The hardware involved in this project is a laptop, which is used to develop the university

timetabling system.

Description Specification

Model MSI GF65 Thin 10UE

Processor Intel(R) Core(TM) i5-10200H CPU @ 2.40GHz

Operating System Windows 11 Home Single Language 64-bit

Graphic NVIDIA GeForce RTX 3060 Laptop GPU

Memory 16GB DDR4 RAM

Storage 512GB SSD

Table 3.4.1 Specifications of Laptop

3.4.2 Software

The software involved in this project is an integrated development environment (IDE),

which is associated with a programming language and a database engine to develop the

university timetabling system.

Chapter 3 System Methodology

38
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Descriptions Specifications

IDE Visual Studio Code (VS Code) version 1.99

Programming Language Java OpenJDK version 21.0.5

Database Engine MySQL version 8.0.40

Database Driver MySQL Connector/J version 9.4.0

Table 3.4.2 Specifications of Software

3.5 Verification Plans

3.5.1 Hard Constraint Tests

No. Hard Constraint Verification

1
A student must attend at most

one class per time slot.

Scan each student timetable; every slot must

contain no more than one class.

2

A student must enrol in every

course required for the

semester.

Scan each student timetable; every compulsory

course must appear.

3
A lecturer must teach at most

one class per time slot.

Scan each lecturer timetable; every slot must

contain no more than one class.

4
A room must host at most one

class per time slot.

Scan each room timetable; every slot must contain

no more than one class.

5
A class must enrol at least one

student.

Count student timetable entries per class and

confirm the total is at least one.

6
A class must have exactly one

lecturer.

Scan each course timetable; every class must

contain no more than one lecturer.

7
A class must be assigned a

room once and only once.

Scan each course timetable; every class must be

assigned a room once and only once.

8
A lecture class must be held in

a lecture hall.

For each lecture in the courses timetable, verify its

room in the rooms timetable is typed “lecture”.

9
A tutorial class must be held in

a tutorial room.

For each tutorial in the courses timetable, verify its

room in the rooms timetable is typed “tutorial”.

Chapter 3 System Methodology

39
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

10

A practical class must be held

in a computer lab.

For each practical in the courses timetable, verify

its room in the rooms timetable is typed

“practical”.

11

A class must not enrol more

students than the room’s

capacity.

Count student timetable entries per class and

confirm the total is no more than room capacity.

12
A class must be scheduled on

weekdays only.

This constraint is initially satisfied. Every class day

should be Monday to Friday.

13
A class must be scheduled

between 08:00 and 18:00.

This constraint is initially satisfied. Every class

should start after 08:00 and end before 18:00.

14

A class must not be scheduled

on Friday between 12:00 and

14:00 (Muslim prayer time).

Verify no class overlaps the Friday 12:00 to 14:00

time slots.

15
A class must not span across

multiple days.

Scan each course timetable; every class must not

span across multiple days..

Table 3.5.1 Tests for Hard Constraints

3.5.2 Soft Constraint Tests

No. Soft Constraint Verification

1

A student should study no

more than four consecutive

hours.

For each student timetable, locate every contiguous

block of occupied hours; the length of every block

must be no more than four.

2

A lecturer should teach no

more than four consecutive

hours.

For each lecturer timetable, locate every contiguous

block of occupied hours; the length of every block

must be no more than four.

3

A student’s consecutive

classes should be held in the

same building.

For each student, examine every pair of back-to-back

classes; use the rooms timetable to confirm both

classes share the same building.

4
A lecturer should receive at

least one teaching hour.

This constraint is initially satisfied. Every lecturer

should have at least one teaching hour.

Chapter 3 System Methodology

40
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 3.5.2 Tests for Soft Constraints

3.5.3 Resource Utilisation Tests

No. Resource Utilisation Percentage Verification

1 30% Generate timetables with zero penalty cost.

2 60% Generate timetables with zero penalty cost.

3 90% Generate timetables with zero penalty cost.

Table 3.5.3 Tests for Resource Utilisation

Chapter 4 System Design

41
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4

System Design

4.1 System Architecture Design

Figure 4.1.1 University Course Timetabling System Architecture

The system adopts a two-tier client-server model with a three-layer data-access design.

The Java-based university course timetabling system (client) issues Structured Query

Language (SQL) operations through the Java Database Connectivity (JDBC) application

programming interface (API), which provides a standard interface for creating connections,

preparing statements, and handling results. The MySQL JDBC driver implements that

interface, translating JDBC calls into the MySQL wire protocol and managing details such as

authentication, transaction control, and data type mapping. At the back end, the MySQL

database (server) stores the schema and data, and enforces integrity via keys, constraints, and

triggers. Communication is bidirectional along the chain between application, JDBC API,

MySQL driver, and MySQL database. This ensures the results, errors, and metadata flow back

to the application while keeping database specifics encapsulated behind JDBC.

4.2 Input Design

The collected data described in Section 3.2 provides the foundation for the partial mock

dataset used in this project. To reduce complexity, only local students are considered.

Consequently, courses intended exclusively for international students are omitted. For

example, the course Philosophy and Current Issues is excluded, while Penghayatan Etika dan

Peradaban remains. This yields a more uniform programme structure and avoids handling

multiple parallel scenarios. The adjustment preserves essential relationships among courses,

rooms and lecturers while keeping the dataset compact and easier to manipulate during

development. Figure 4.2.1 shows the tailored subset of the collected data.

Chapter 4 System Design

42
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.1 Tailored Collected Data

This information is used to generate mocked rooms data. Other than that, 150 students

and 15 student groups are generated programmatically. Figure 4.2.1 shows the courses,

lecturers, course-to-lecturer assignments data while Figure 4.2.2 shows the mocked rooms data.

Based on this subset, the system initialises courses, lecturers, course-to-lecturer

assignments, and per-course classes. Course, lecturer, and assignment data are generated from

the available information. Besides, room conventions are defined, where building L hosts

lectures, while building N hosts tutorials and practicals. These conventions inform the

generation of the mock rooms dataset. In addition, 150 students and 15 student groups are

created programmatically. Figure 4.2.1 shows the courses, lecturers, and course-to-lecturer

assignments; Figure 4.2.2 shows the mock rooms data.

Figure 4.2.2 Mock Rooms Data

For each course, the system then generates the set of classes. It first estimates the

number of parallel classes required by dividing the number of students by the capacity of the

appropriate room type and taking the ceiling. For instance, 150 students enrol in course

UCCD1024, which has 3 hours of lectures and 2 hours of practicals. Lectures are held in lecture

Chapter 4 System Design

43
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

halls (capacity 300), so only 1 lecture class is required. On the other hand, practicals are held

in practical labs (capacity 20), so 8 practical classes are needed (⌈150/20⌉). In total, the course

requires 9 classes (1 lecture plus 8 practicals). Each class is then assigned a lecturer chosen

from those linked to the course, prioritising the lecturer with the fewest current teaching hours.

Figure 4.2.3 shows an example of class generation.

Figure 4.2.3 Output of Class Generation

After all classes are created, student groups are allocated to classes by academic year

and trimester. Allocation is randomised but load-balancing, where each new group is placed

into the currently least-loaded suitable class to maintain a balanced distribution. Room-capacity

violations are prevented by a database trigger (see Section 4.5.3) that blocks any over-

enrolment at insert time. Figure 4.2.4 shows an example of group-to-class assignment.

Figure 4.2.4 Output of Group-to-Class Assignment

Together, these inputs form a coherent, valid dataset for the university course

timetabling system.

4.3 Output Design

Chapter 4 System Design

44
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

The output of the university course timetabling system comprises several structured,

well-organised components designed for analysis and usability.

For each run, genetic algorithm (GA) experiment statistics, such as the number of

generations required to reach zero penalty cost, the time taken (seconds), and the fitness value

per generation, are written to a text file. These metrics characterise the optimisation process

and support subsequent analysis. Figure 4.3.1 shows an example of GA run statistics.

Figure 4.3.1 Statistics of GA Experiment

Other than that, multiple timetables are also generated as comma-separated values

(CSV) files for each run due to the format’s simplicity and broad tool support. Course, lecturer,

student, and room timetables are produced. In course timetables (Figure 4.3.2), each class entry

shows the class type, lecturer name, room, and enrolled student groups. In lecturer timetables

(Figure 4.3.3), each class entry shows the course code, class type, room, and enrolled student

groups. In student timetables (Figure 4.3.4), each class entry shows the course code, class type,

lecturer name, and room. In room timetables (Figure 4.3.5), each class entry shows the course

code, class type, and lecturer name. An overall timetable (Figure 4.3.6) that consolidates

courses, lecturers, students, and rooms is also generated. There are some conventions adopted

by the generated timetables: subsequent slots of a multi-hour class are marked “cont.”; empty

slots are marked “----”; on Fridays, slots 5 and 6 (12:00-14:00) are marked “Prayer”.

Chapter 4 System Design

45
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.2 Timetable of Course UCCD1024

Figure 4.3.3 Timetable of Lecturer Ts Dr Goh Chuan Meng

Figure 4.3.4 Timetable of Student Student_087 from Group 9

Figure 4.3.5 Timetable of Room N3

Figure 4.3.6 Overall Timetable

For each operator combination, after 10 experiments, a summary table is created

showing the per-run statistics and their averages. A new metric proposed in this project, fitness

improvement per generation, is also reported. It is calculated by dividing the initial penalty cost

Chapter 4 System Design

46
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

by the number of generations taken to achieve zero penalty cost. This provides a fairer basis

for comparison because the GA initialises chromosomes randomly, leading to different initial

fitness values. The metric mitigates this bias by emphasising per-generation progress rather

than absolute fitness across an entire run. Figure 4.3.7 shows the statistics from 10 GA

experiments for a single combination.

Figure 4.3.7 Statistics of 10 GA Experiments Per Combination

After all experiments (64 × 10) are completed, the results are summarised for

comparison across combinations. The combinations with the lowest and highest average fitness

improvement per generation are identified as the worst and best, respectively. Figure 4.3.8

presents the detailed statistics for each combination; Figure 4.3.9 shows the overall summary;

Figure 4.3.10 highlights the worst-performing combination.

Figure 4.3.8 Statistical Details of Each GA Combination

Chapter 4 System Design

47
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.9 Statistical Summary of All GA Combinations

Figure 4.3.10 Worst GA Combination

Operator-level comparison tables are also produced to enable like-for-like comparisons

without confounding from other operators. For example, Figure 4.3.11 compares replacement

operators.

Figure 4.3.11 Comparison Table for Replacement Operator

Chapter 4 System Design

48
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4 Genetic Algorithm Design

Figure 4.4.1 Flowchart of GA for University Course Timetabling System

Figure 4.4.1 outlines the genetic algorithm (GA) used by the university course

timetabling system in this project. After setting key parameters (population size, crossover rate,

and mutation rates), the algorithm creates a random population and immediately repairs each

chromosome to remove duplicate or missing classes and illegal placements (cross-day

segments and protected Friday prayer slots). A penalty-based fitness function then scores every

timetable by counting hard and soft constraint violations; this includes the proposed soft

constraint that penalises consecutive classes for a student that occur in different buildings to

discourage inter-building moves. If a chromosome reaches the target fitness (zero cost), the run

ends, experiment statistics are written, and the best timetable is returned. Otherwise, two

parents are chosen, crossover and mutation are applied according to their probabilities, and

Chapter 4 System Design

49
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

each offspring is repaired before evaluation. A replacement policy then inserts the offspring

into the population, typically displacing weaker chromosomes, and the loop repeats from

fitness evaluation until the stopping condition is met.

4.4.1 Chromosome Encoding

Each chromosome encodes a complete weekly timetable as a fixed-length integer array

of 250 genes (5 rooms × 5 days × 10 slots), with a small header that stores the current penalty

score. Gene values are class IDs (see Section 4.2): a value greater than 0 refer to specific

lecture, tutorial, or practical instance, while 0 denotes an empty time slot. Multi-hour classes

are represented by repeating the same class ID across consecutive slots equal to the class

duration. For example, a three-hour class with ID 7 appears as [7, 7, 7]. Physically, the array is

laid out in room-major order, then day-major within each room: the 50 daily slots of Room 1

(5 days × 10 slots) are followed by the 50 slots of Room 2, and so on to Room 5 (Figure 4.4.2);

within each room, the 10 slots for Monday come before the 10 for Tuesday through to Friday.

This layout supports constant-time edits per slot, fast checks for empty segments and

contiguous blocks, and a clear, reproducible mapping between timetable semantics and array

indices. Figure 4.4.3 illustrates the gene-level view of a room within the chromosome,

including a three-hour class with ID 7 and empty slots.

Figure 4.4.2 Overview of A Chromosome

Figure 4.4.3 Gene-Level View of A Room in A Chromosome

Chapter 4 System Design

50
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4.2 Population Initialisation

The initial population is generated with a greedy-random strategy to avoid early

infeasibility and reduce timetable fragmentation. For each chromosome, an empty 250-gene

array is created, and its header initialised. Classes are then ordered by its difficulty to place,

with longer-duration classes treated as higher difficulty because they require more consecutive

slots. The algorithm scans compatible rooms and days in index order to find a contiguous block

long enough for the current class, then writes the class ID across those slots. This longest-first

placement prevents classic fragmentation (for instance, two isolated one-slot gaps blocking a

two-hour class) and leaves well-shaped space for later items. After longer classes are placed,

shorter classes fill the remaining gaps. To maintain diversity, randomisation is injected at

several points: when multiple feasible placements exist, one is chosen at random, and the room

is randomly selected from the compatible set. Finally, each chromosome undergoes the

standard repair process to address any residual overlaps or missing segments before fitness

evaluation.

4.4.3 Fitness Evaluation

The fitness of a chromosome is indicated by its total penalty cost, where lower values

signal better timetables. Penalties are accumulated per violation using fixed weights: hard-

constraint breaches incur 10000 each, standard soft-constraint breaches incur 10, and the

building-continuity constraint is weighted 20 to emphasise its importance in this project. Hard

checks include clashes for students and lecturers, room-type compatibility, room capacity,

protection of Friday prayer periods, missing or duplicated classes, and cross-day segment

violations. Soft checks include excessive consecutive hours for students and lecturers, plus the

building-continuity rule. Many of these errors are minimised by the chromosome encoding,

greedy initialisation, and repair routines in the GA loop.

4.4.4 Repair

After each chromosome is built, crossed over, or mutated, a dedicated repair process

restores feasibility and compacts the timetable so that later operators do not accumulate errors.

Chapter 4 System Design

51
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

The repair process consists of three steps. First, it scans all 250 genes to count how

many slots each class currently occupies. It then compares these counts with the required

durations. If the count is not equals to the duration, this indicates that the class has missing,

overfilled, or duplicated segments. All occurrences of the class are cleared, and the class is

queued for correct placement. This guarantees that every multi-hour class appears as one

contiguous block of its exact length and that no cross-day fragments slip in.

Second, for each queued class, the repair tries to place it using only compatible rooms

and currently contiguous free slots. Friday’s protected period is treated specially, where the

slots 5 and 6 are unavailable. An effective checking on capacity per day caps Friday at six

hours, which prevents pathological cases such as two 3-hour and one 2-hour classes appearing

capacity-feasible but actually unplaceable across the two segments on Friday.

Third, if a class still unable to fit, the operator escalates through increasingly flexible,

local repacking moves that behave like bounded backtracking. It starts with “same room, same

day” relocation that clears that day in the room, then re-inserts all classes for that day tightly,

block by block, to open a contiguous window for the target class. If unsuccessful, it practices

“same room, across days” relocation that repeats the compact-and-reinsert process on another

day of the same room until successful or there is no day left. If this approach failed as well, the

process leverages “rooms of the same type, across days” strategy as a last resort, which clears

and tightly repacks days across multiple rooms of the required type, subject to each day’s

capacity. Each repack writes classes back-to-back without gaps inside the allowed segments,

ensuring the day layout is maximally compact before the next attempt.

Once all queued classes are placed, the chromosome contains no missing or duplicate

segments, respects room-type compatibility and protected periods.

In short, the repair operator combines strict consistency checks with constrained

backtracking and compact re-packing: if a class cannot fit as-is, it shifts earlier placements

locally to make space, limits Friday’s effective capacity to six hours to avoid impossible

layouts, and packs contiguously so that future operations have the largest feasible blocks to

work with.

4.4.5 Selection

Chapter 4 System Design

52
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4.5.1 Roulette Wheel Selection

In the roulette-wheel scheme, the implementation first finds the worst (maximum) penalty in

the population and converts each chromosome’s penalty into a non-negative weight by using the

formula: worst fitness minus own fitness plus one, so that lower penalties yield larger weights. The

weights are summed, a random draw is taken in between 0 and the total weight, and the operator scans

cumulatively across the population to pick the first chromosome whose running total exceeds the

random value. Repeating this procedure twice to return two parents. Because probabilities are

proportional to the inverted penalty, every chromosome retains a chance while better timetables are

favoured. Figure 4.4.4 shows that the lower the penalty cost, the higher the fitness, and thus there is

higher probability of getting chosen as the parent because it spans across more space.

Figure 4.4.4 Roulette Wheel Selection in University Course Timetabling System

4.4.5.2 Random Selection

The random selector ignores fitness entirely. Each parent is drawn uniformly at random

from the population, returning two independent picks per mating event. This maximises

exploration and genetic diversity, providing a useful baseline and a way to inject variability

without changing any other part of the pipeline.

4.4.5.3 Binary Tournament Selection

Binary tournament selection samples two distinct candidates uniformly at random and

returns the one with the lower penalty; ties are effectively broken by the sampling order. This

process is run twice to obtain two parents. The approach is simple, fast, and scale-free, where

moderate selective pressure emerges naturally because mid-ranking individuals can still win

Chapter 4 System Design

53
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

when paired against weaker ones. Figure 4.4.5 shows the higher fitness chromosome wins the

tournament and getting chosen as the parent.

Figure 4.4.5 Binary Tournament Selection in University Course Timetabling System

4.4.5.4 Linear Ranking Selection

Linear ranking selection begins by sorting a copy of the population in ascending order

of penalty (best first). The operator assigns a linear rank weight to index i as (N − i), so the best

individual has weight N, the next N−1, and so on, with total weight equal to N(N+1)/2, where

N represents the population size. To pick a parent, a random draw is taken over this total and a

cumulative scan over the sorted list identifies the selected rank; repeating yields the second

parent. Because probabilities depend on rank rather than raw penalty gaps like roulette wheel

selection, selective pressure is controlled and premature takeover by a single outlier is reduced.

Figure 4.4.6 shows the process of linear ranking selection which assigns weight according to

rank rather than fitness.

Chapter 4 System Design

54
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.4.5 Linear Ranking Selection in University Course Timetabling System

4.4.6 Crossover

All crossover techniques in this system are room-based. Rooms are not interchangeable

because capacity and room type (lecture hall, tutorial room, practical lab) are tied to the room

itself, so cutting mid-room can easily produce invalid schedules (for example, a lecture class

landing in a lab). Multi-hour classes also span consecutive slots, making it difficult to align

identical cut points inside both parents without splitting a class. To avoid these issues, the

algorithm performs crossover room by room: for each room, the offspring inherits the entire

weekly schedule from one of the parents. This design preserves room-type and capacity

semantics by construction and greatly reduces post-crossover repair.

4.4.6.1 Single-Point Crossover

A single classroom index is sampled as the crossover point in the room list (room-major

layout). For each child, all classrooms before the point are copied wholesale from Parent 1, and

all classrooms from the point onward are copied from Parent 2. The second child uses the

complementary assignment. Because each classroom is transferred as a complete unit, no class

is fragmented, and room constraints remain intact. Figure 4.4.6 shows the process of single-

point crossover in this project.

Chapter 4 System Design

55
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.4.6 Single-Point Crossover in University Course Timetabling System

4.4.6.2 Two-Point Crossover

Two room indices are sampled. For each child, the middle block of rooms (from first

room index (inclusive) to second room index (exclusive)) is copied from Parent 2, while the

outer blocks come from Parent 1. The second child receives the complementary composition.

This increases mixing compared with single-point crossover while still respecting classroom

boundaries, ensuring that every inherited room timetable remains coherent. Figure 4.4.7 shows

the process of two-point crossover in this project.

Figure 4.4.7 Two-Point Crossover in University Course Timetabling System

Chapter 4 System Design

56
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4.6.3 Uniform Crossover

Each classroom is treated independently with a Bernoulli draw, in which the possibility

of each outcome is 0.5. If the generated random value is 0, the child takes the entire schedule

of that classroom from Parent 1; otherwise from Parent 2. This produces fine-grained

recombination at the level of rooms, encouraging diversity without risking mid-class splits or

room-type mismatches. Figure 4.4.8 shows the process of uniform crossover in this project.

Figure 4.4.8 Uniform Crossover in University Course Timetabling System

4.4.6.4 Shuffle Crossover

Before applying room crossover, the algorithm generates a random permutation of

room indices and applies single-point crossover to the list of shuffled indexes. The rooms to be

crossed over is then determined from the room indices after the crossover point. Shuffling

breaks positional bias among adjacent rooms and promotes better mixing of room clusters,

while maintaining the room-by-room guarantee that preserves capacity and type semantics.

Figure 4.4.9 shows the process of shuffle crossover in this project.

Chapter 4 System Design

57
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.4.9 Shuffle Crossover in University Course Timetabling System

4.4.7 Mutation

After crossover, each offspring is subjected to mutation with a fixed probability. The

implementation uses a contiguity-aware swap that moves classes without breaking multi-hour

blocks or violating room-type semantics.

The operator first picks a random source index in the chromosome and maps it to (room,

day, slot) using the room-major layout. It then restricts potential destinations to rooms of the

same type as the source room, ensuring any move cannot place a lecture into a tutorial room or

practical lab, or exceed capacity semantics tied to room type. For example, if the chosen gene

is at lecture hall, the target gene must be selected from lecture halls only. A random destination

index is drawn uniformly over all days and slots across these compatible rooms, which

encourages broad exploration. As a result, the class may remain in place, move within the same

room, or jump to a different but compatible room at the end of this operation.

If both positions are empty, a trivial swap has no effect. Otherwise, the operator

performs a contiguous-block swap: it detects whether either index lies inside a multi-hour class,

locates that class’s full block, and swaps whole blocks rather than single genes. This preserves

class contiguity by construction. The operator also guards against illegal shapes: swaps do not

Chapter 4 System Design

58
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

cross day boundaries, and Friday’s protected period (slots 5 and 6) is treated as a hard split, so

no block is allowed to straddle it. If a clean block-for-block exchange is not possible (for

instance, destination area is partially occupied or the blocks differ in length), the routine

performs the safest available partial move by checking slots before and after both contiguous

class blocks, hoping to find sufficient spaces to utilise those empty slots for block-to-block

exchange. If unsuccessful, it finds the empty blocks in the room without limitation to before

and after target class blocks. If no empty block is found, no swap is performed.

Two design choices make this mutation both safe and effective. First, room-type

filtering means every mutated placement remains in a capacity- and usage-compatible room

family, avoiding a large class of invalid schedules. Second, contiguity awareness means multi-

hour classes are never torn apart; mutations explore alternative placements of entire classes

instead of introducing fragmentation. After mutation, the repair operator runs to clear up any

side effects (duplicates, missing segments, or cross-day violations), and the individual is re-

evaluated for fitness.

4.4.8 Replacement

4.4.8.1 Weak Parent Replacement

After producing two offspring from a mating pair, the algorithm builds a candidate pool

consisting of both parents and both offspring. It then sorts the candidates according to their

fitness. The two best chromosomes out of the four candidates replace the two parents. This

approach ensures the child replaces the parent only if the child’s penalty is strictly lower. If

both children outperform both parents, both parents are replaced; if neither child improves on

its mapped parent, the parents are retained, and the offspring are discarded. This keeps

population size constant, preserves strong parental building blocks, and prevents regressions

caused by inferior children. Figure 4.2.10 shows that Parent 1 and Offspring 2 (highlighted in

green) is the two best chromosomes among the two parent and two offspring, therefore

replacing Parent 1 and Parent 2 (highlighted in red) in the population.

Chapter 4 System Design

59
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.4.10 Weak Parent Replacement in University Course Timetabling System

4.4.8.1 Binary Tournament Replacement

For each offspring, two distinct candidates are sampled uniformly at random from the

current population. The candidate with the higher penalty cost, that is the weaker one, is

selected as the replacement target. This operation applies the opposite logic as the binary

tournament selection, as selection aims to select good chromosomes while replacement aims

to replace bad chromosomes. Figure 4.4.11 shows the process of choosing a replacement target

from the population in binary tournament replacement.

Figure 4.4.11 Replacement Target Selection Process in Binary Tournament Replacement

4.4.8.1 Linear Ranking Replacement

Chapter 4 System Design

60
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

This is a proposed replacement technique inspired by the linear ranking selection

strategy. The population is copied and sorted by penalty in descending order (worst first). A

linear rank weight is assigned to index i as (N − i), so lower-ranked (worse) chromosomes are

more likely to be chosen as replacement targets, while top individuals have the smallest

removal probability. For each offspring, a target is drawn according to these rank weights; this

decouples replacement from raw penalty gaps, protects elites probabilistically, and avoids

premature loss of diversity. This operation applies the opposite logic as the linear ranking

selection, as selection aims to select good chromosomes while replacement aims to replace bad

chromosomes. Figure 4.4.12 shows the process of choosing a replacement target from the

population in linear ranking replacement.

Figure 4.4.12 Replacement Target Selection Process in Liner Ranking Replacement

4.4.8.1 Weak Chromosome Replacement

This is a proposed replacement technique inspired by the weak parent replacement

strategy. For each offspring, the algorithm identifies two global worst chromosomes in the

population (maximum penalty) and adds it to a candidate pool consisting of both offspring.

The candidates are then sorted according to their fitness. The best two chromosomes replace

the positions of both parents in the population This policy injects a stronger selective pressure

than the weak parent replacement toward continuous improvement while guaranteeing that the

current best solutions are never overwritten by weaker individuals. Figure 4.3.13 shows that

Worst 1 and Offspring 2 (highlighted in green) is the two best chromosomes among the two

worst chromosomes and two offspring, therefore replacing Worst 1 and Worst 2 (highlighted

in red) in the population.

Chapter 4 System Design

61
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.4.13 Weak Chromosome Replacement in University Course Timetabling System

4.4.9 Parameter Settings

No. Parameter Value

1 Population Size 100

2 Crossover Probability 0.7

3 Mutation Probability 0.4

Table 4.4.1 Parameter Settings of GA in University Course Timetabling System

The crossover and mutation rate are determined by performing grid search across

various parameter combinations. Experiments using combinations of 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

crossover rate and 0.01, 0.1, 0.2, 0.3, 0.4, 0.5 mutation rate are run to identify the best

probabilities. The GA combination involved is using roulette wheel selection, single-point

crossover, swap mutation, and weak parent replacement. Each parameter variation is run 10

times using the specified GA model. The results are then evaluated using the proposed metric

(see Section 4.3).

Figure 4.4.14 shows the experiment results of the parameter testing. It is found that

crossover rate at 0.7 and mutation rate at 0.4 performs the best. It can be clearly seen that the

performance of GA increases as the mutation rate increases and reaches its peak at 0.4 and

slowly falls at 0.5. On the other hand, the performance of GA model reaches its peak when

crossover rate is set at 0.7.

Chapter 4 System Design

62
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.4.14 Experiment Results of Crossover and Mutation Variations

4.4.10 Operator Combinations

Selection Crossover Mutation Replacement

Roulette Wheel Single-Point Swap Weak Parent

Random Two-Point - Binary Tournament

Binary Tournament Uniform - Linear Ranking

Linear Ranking Shuffle - Weak Chromosome

Table 4.4.2 GA Operator Techniques for Project

Table 4.4.2 shows the operator techniques applied in this project, which are 4 selection,

4 crossover, 1 mutation, and 4 replacement techniques. These components allow for the

formation of 64 different genetic algorithm (GA) combinations as shown in Figure 4.4.15.

Chapter 4 System Design

63
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.4.15 GA Combinations

4.5 Data Storage Design

In this project, MySQL serves as the persistent data storage for the university course

timetabling system. It is an open-source, production-grade, client-server relational database

management system (RDBMS) that supports standard SQL and ACID (atomicity, consistency,

isolation, durability) transactions. Its native features such as auto-increment columns, foreign

keys, and triggers allow integrity rules to be enforced close to the data, reducing application-

side complexity. Furthermore, the database integration with Java, the development

programming language for this project, is straightforward using the JDBC API and the MySQL

Connector/J database driver. In summary, MySQL combines relational rigour and transactional

reliability with a simple Java integration path, making it a solid foundation for research-based

projects.

Chapter 4 System Design

64
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.5.1 Database Structure

Figure 4.5.1 ERD for University Course Timetabling System

Figure 4.5.1 shows the entity relationship diagram (ERD) for the university timetabling

system, comprising 6 core entities, which are Students, Student Groups, Courses, Lecturers,

Classes, and Rooms, and the relationships that connect them. Each Student belongs to exactly

one Student Group. Student Groups and Classes form a many-to-many relationship via an

associative table, where students inherit class enrolments through their group rather than each

student being linked to classes individually. Each Course generates one or more Classes,

capturing the idea of parallel or repeat offerings. Every Class is taught by exactly one Lecturer,

while a Lecturer may teach multiple Classes, creating a one-to-many association. Rooms are

modelled independently. This is because class-to-room assignments are produced dynamically

by the genetic algorithm (GA) during each run. Each chromosome represents a candidate

timetable, therefore persisting these assignments in the database would create excessive,

redundant writes and degrade performance. Keeping Rooms as a reference list ensures a

consistent, controlled set of available spaces across experiments. Together, these relationships

Chapter 4 System Design

65
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

yield a normalised, searchable schema that supports conflict-free allocation of lecturers,

students, courses, and rooms.

4.5.3 Table Structure

Students table

Attribute Data Type Constraint Description

ID INT Primary key
Unique identifier of

student

Name VARCHAR(100) Not NULL Student name

Group ID INT Not NULL; Foreign key
Reference to student

group

Table 4.5.1 Students Table Structure

Student Groups table

Attribute Data Type Constraint Description

ID INT Primary key
Unique identifier of

student group

Student

count
TINYINT

Not NULL; Check if value

is between 1 and 10

Number of students in

group

Year TINYINT
Not NULL; Check if value

is more than or equals to 1
Current academic year

Trimester TINYINT
Check if value is between

1 and 3
Current trimester

Table 4.5.2 Student Groups Table Structure

Courses table

Attribute Data Type Constraint Description

ID INT Primary key
Unique identifier of

course

Code VARCHAR(20) Not NULL; Unique Course code

Chapter 4 System Design

66
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Name VARCHAR(200) Not NULL Course name

Year TINYINT
Not NULL; Check if value

is more than or equals to 1
Academic year

Trimester TINYINT
Check if value is between

1 and 3
Academic trimester

Table 4.5.3 Courses Table Structure

Lecturers table

Attribute Data Type Constraint Description

ID INT Primary key
Unique identifier of

lecturer

Name VARCHAR(100) Not NULL Full name of lecturer

Assigned

class hours
SMALLINT

Default is 0; Check if

value is more than or

equals to 0

Class hours assigned to

lecturer

Table 4.5.4 Lecturers Table Structure

Rooms table

Attribute Data Type Constraint Description

ID INT Primary key Unique identifier of room

Name VARCHAR(50) Not NULL Room name

Building CHAR(1)
Not NULL; Check if value

is between ‘A’ and ‘Z’
Building identifier

Type

ENUM(‘lecture

hall’, ‘tutorial

room’, ‘practical

lab’)

Not NULL Room type

Capacity SMALLINT
Not NULL; Check if value

is more than 0
Room capacity

Table 4.5.5 Rooms Table Structure

Classes table

Chapter 4 System Design

67
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Attribute Data Type Constraint Description

ID INT Primary key Unique identifier of class

Type

ENUM(‘lecture’,

‘tutorial’,

‘practical’)

Not NULL Class type

Duration TINYINT
Not NULL; Check if value

is between 1 and 10
Class duration (hours)

Course ID INT
Not NULL; Foreign key

Reference to course-to-

lecturer assignment Lecturer ID INT

Table 4.5.6 Classes Table Structure

Courses-Lecturers table

Attribute Data Type Constraint Description

Course ID INT Primary key; Foreign key Reference to course

Lecturer ID INT Primary key; Foreign key Reference to lecturer

Table 4.5.7 Courses-Lecturers Table Structure

Groups-Classes table

Attribute Data Type Constraint Description

Group ID INT Primary key; Foreign key
Reference to student

group

Class ID INT Primary key; Foreign key Reference to class

Table 4.5.8 Groups-Classes Table Structure

4.5.3 Database Trigger

Chapter 4 System Design

68
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.5.2 Flowchart of Trigger

In this project, the university course timetabling system defines a trigger that runs

before inserting every group-to-class assignment into database to enforce enrolment limits at

the database layer. The workflow of this trigger is shown in Figure 4.5.2. When the database

attempts to insert a new group-to-class link, the trigger first calculates the projected total

number of students in that class by summing the number of students of all already-linked

groups and adding the incoming group’s size. Then, it looks up the class type and determines

the applicable capacity threshold. For example, a lecture class is held in a lecture hall that has

a capacity of 300 students. Lastly, it compares the projected total number of students against

the limit. If the insert operation would exceed the allowed capacity, the database aborts the

operation with a clear error message. By validating capacity close to the data, the trigger

Chapter 4 System Design

69
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

guarantees data consistency, prevents over-enrolment even under concurrent writes, and keeps

constraint logic centralised and auditable.

Chapter 5 System Testing

70
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5

System Testing

5.1 Experiments on Constraints

The verification on constraints is conducted by observing the timetable in CSV format

and making sure that all constraints are satisfied by the output. All output timetables are

manually checked one-by-one to ensure the correctness since there is no one static, exact output

due to the stochastic property of genetic algorithm (GA).

Figure 5.2.1 Overall Timetable for Result Verification

Figure 5.2.1 shows the overall timetable used for result verification for one experiment.

This timetable consists of information from courses, lecturers, students, and rooms timetables,

compiling all their data into one overview. Therefore, this summary timetable is used to verify

the constraints in the timetable due to its simplicity without needing to check for other

timetables.

No. Hard Constraint Observation Status

1 A student must attend at most one class

per time slot.

There is no repeating student group

in each time slot.

Pass

2 A student must enrol in every course

required for the semester.

Each course has the enrolment of

each student group.

Pass

3
A lecturer must teach at most one class

per time slot.

There is no repeating lecturer in

each time slot.

Pass

4
A room must host at most one class per

time slot.

There is no repeating room in each

time slot.

Pass

5
A class must enrol at least one student. There is no class with no student

group enrolment.

Pass

Chapter 5 System Testing

71
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6
A class must have exactly one lecturer. There is only one lecturer for each

class.

Pass

7
A class must be assigned a room once

and only once.

There is only one lecturer for each

class.

Pass

8
A lecture class must be held in a lecture

hall.

All classes in room L1 (lecture

hall) are lecture classes.

Pass

9
A tutorial class must be held in a

tutorial room.

All classes in rooms N1 and N2

(tutorial rooms) are tutorial classes.

Pass

10

A practical class must be held in a

computer lab.

All classes in rooms N3 and N4

(practical labs) are practical

classes.

Pass

11

A class must not enrol more students

than the room’s capacity.

The number of students (number of

student groups × 10) does not

exceed room capacity (300 for L1,

30 for N1 and N2, 20 for N3 and

N4) for each class.

Pass

12
A class must be scheduled on

weekdays only.

Satisfied by system design. Pass

13
A class must be scheduled between

08:00 and 18:00.

Satisfied by system design. Pass

14

A class must not be scheduled on

Friday between 12:00 and 14:00

(Muslim prayer time).

There is no class at the slot 5 and 6

of Friday.

Pass

15

A class must not span across multiple

days.

Every class at the last slot of a day

is different from the classes at the

first slot of next day.

Pass

Table 5.1.1 Hard Constraint Verifications

No. Soft Constraint Observation Status

1

A student should study no more than

four consecutive hours.

There is no student group spanning

across time slot more than four

consecutive hours.

Pass

Chapter 5 System Testing

72
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2

A lecturer should teach no more than

four consecutive hours.

There is no lecturer spanning

across time slot more than four

consecutive hours.

Pass

3

A student’s consecutive classes should

be held in the same building.

Consecutive classes for each

student group are in the same

building.

Pass

4
A lecturer should receive at least one

teaching hour.

Every lecturer has at least one class

assignment.

Pass

Table 5.1.2 Soft Constraint Verifications

5.2 Experiments on GA Models

In these experiments, the input data design and output data format are specified in

Section 4.2 and 4.3 respectively. The main performance comparison metric is the one proposed

in this project, fitness improvement per generation.

The experiments on each GA combination (10 runs) generate a result as shown in

Figure 5.2.1.

Figure 5.2.1 Experiment Result of GA01 Model

The results of all the 64 GA combinations (see Section 4.4.10) are summarised into a

table as shown in Figure 5.2.2.

Chapter 5 System Testing

73
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.2 Summary of Experiment Results of All GA Combinations

From the summary table, it is clear that the GA18 is the worst model, which is formed

by random selection, single-point crossover, swap mutation, and binary tournament

replacement. On the other hand, the GA44 is the best model, which comprises of binary

tournament selection, uniform crossover, swap mutation, and weak chromosome replacement.

5.2.1 Comparison among Operator Techniques

Chapter 5 System Testing

74
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Several operator-level comparison tables are constructed to enable easier comparison

with each other without interference of other operators.

5.2.1.1 Selection

Figure 5.2.3 Selection Operator Comparison Table

Overall, the selection operator makes a clear difference. Averaged across all crossover-

replacement pairings, Binary Tournament delivers the highest fitness improvement per

generation (45.51), closely followed by Linear Ranking (43.56). Roulette Wheel lags behind

(36.66), and Random is the weakest on average (31.70). In short, Binary Tournament is better

than Linear Ranking, followed by Roulette Wheel and Random.

Binary Tournament also contains the single best cell in the grid (67.99 with Uniform

crossover and Weak Chromosome replacement, highlighted in green). This is consistent with

the theory, where small-k (k represents tournament size) tournaments impose steady selection

pressure that quickly amplifies fitter individuals while still allowing diversity from occasional

upsets. When coupled with an aggressive replacement like Weak Chromosome, exploitation is

intensified, and the generation count to reach zero-cost drops, hence resulting in a larger

improvement per generation value.

Linear Ranking is a close second on average and shows several strong combinations

(for example, Single-point crossover with Weak Chromosome replacement at 63.97 and

Single-Point crossover with Binary Tournament replacement at 52.13). Rank-based selection

is insensitive to the absolute scaling of the penalty-based fitness used, so it avoids Roulette

Chapter 5 System Testing

75
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Wheel’s tendency to over- or under-select when the population’s costs are tightly clustered or

highly skewed. The result is consistent progress across many crossover and replacement

settings.

Roulette Wheel’s middling average and lack of top-end cells reflect that sensitivity to

fitness scaling. With penalty sums that shrink as the population improves, proportional

selection can become noisy, where tiny absolute differences in cost translate to near-uniform

sampling, diluting selection pressure. It does produce respectable outcomes in some rows (for

instance, Two-point crossover with Weak Chromosome replacement at 43.01), but it is less

robust overall than tournament or ranking.

Random selection performs worst and contains the global minimum (20.06 with Single-

Point crossover and Binary Tournament replacement, highlighted in blue). With essentially no

selection pressure, progress depends almost entirely on the crossover-replacement pair to

stumble into improvements. It can look adequate only when paired with very strong

replacement (for example, Two-point crossover with Weak Chromosome replacement reaches

approximately 50), which underlines that the gains come from replacement rather than

selection.

Taken together, the data supports using Binary Tournament as the main selector for the

UCTP, with Linear Ranking as a solid alternative.

5.2.1.2 Crossover

Chapter 5 System Testing

76
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.4 Crossover Operator Comparison Table

Looking column-wise, the four crossover types are quite close on average, with Shuffle

narrowly best (40.00), followed by Uniform (39.68), Single-point (39.10) and Two-point at

last (38.65). The spread across column means is small (1.35). Therefore, it is concluded that,

on this dataset and encoding, crossover choice affects progress per generation less than

selection and replacement do. Still, there are meaningful differences in robustness and

extremes.

Uniform crossover is consistently strong and delivers the overall best cell (67.99) with

Binary Tournament selection and Weak Chromosome replacement. It also posts high values

across other selections when paired with Weak Chromosome replacement (for example, 52.94

with Roulette Wheel selection, 55.58 with Linear Ranking selection). Room-wise mixing

across the entire timetable injects diversity without relying on any particular cut position, so

good room patterns discovered in one parent can permeate the other more reliably, especially

under high selection pressure.

On average, Shuffle edges out the rest (40.00) and is notably robust: 55.95 with Roulette

Wheel selection and Weak Chromosome replacement, 52.76 with Linear Ranking and Weak

Chromosome replacement, and 51.74 with Binary Tournament selection and Linear Ranking

replacement. By randomising the order of rooms before exchanging a segment (and unshuffling

after), it reduces positional bias in the room-level representation. The effect is similar to

uniform, broad recombination within the room, but with slightly steadier returns across the

board because it does not depend on lucky crossover points.

The performance of Single-Point is highly pairing-sensitive. It reaches an excellent

63.97 with Linear Ranking selection and Weak Chromosome replacement, and 52.13 with

Linear Ranking selection and Binary Tournament replacement but drops to the table’s worst

(20.06) under Random selection and Binar Tournament replacement. Because only one

contiguous segment of timetable is exchanged, the operator tends to be exploitative: when

parents are already strong (from stronger selection), it propagates useful structures; when

parents are mediocre (such as Random selection), it lacks diversity and stalls, hence the

volatility.

Despite a few high spots (61.59 with Binary Tournament and Weak Chromosome;

55.46 with Binary Tournament and Linear Ranking replacement), its average is the lowest.

Chapter 5 System Testing

77
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Swapping two segments room-by-room preserves a lot of parental layouts while adding just

enough disruption to require more repairs, which often yields less net gain per generation than

more diversified mixing. In other words, it can improve quickly when coupled with very strong

selection and replacement but otherwise under-explores.

5.2.1.3 Replacement

Figure 5.2.5 Replacement Operator Comparison Table

Reading by columns, Weak Chromosome clearly dominates. It posts the highest

column-average (48.79) by a large margin over Linear Ranking (37.40), Weak Parent (36.40),

and Binary Tournament replacement (34.85). It also contains the global best cell, 67.99 with

Binary Tournament selection and Uniform crossover (highlighted in green). This pattern fits

intuition: always ejecting the worst individual each iteration maximises exploitation pressure

and guarantees the population floor rises, so the fitness improvement per generation metric

benefits directly.

Linear Ranking is the next most reliable. Its column has few weak outliers and several

strong pairings (e.g., Binary Tournament selection and Two-Point crossover at 55.46; Linear

Ranking selection with Single-Point crossover at 40.75 and Uniform crossover at 54.19). Rank-

based survivor choice is scale-invariant and tempers stochasticity, so it preserves steady

progress even when fitness values get tightly clustered, hence the solid average.

Weak Parent sits close to Linear Ranking on average but is more sensitive to the quality

of the two parents that produced the offspring. When one parent is already strong, replacing

Chapter 5 System Testing

78
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

the weaker of the pair is sensible. However, if both parents are middling, the operator can

recycle mediocrity, which caps the per-generation gains. Nonetheless, there are still good rows

when upstream selection is strong (for example, Binary Tournament selection and Shuffle

crossover at 48.5), but it is less consistently high than Weak Chromosome.

Binary Tournament replacement performs worst on average and includes the global

minimum of 20.06 with Random selection and Single-point crossover (highlighted in blue). A

small tournament to decide who leaves the population adds randomness at the survivor stage;

without strong selection pressure, it can evict decent individuals and keep weaker ones, eroding

building blocks assembled by crossover. That hurts measured improvement per generation

unless counterbalanced by a very strong selector and an aggressive crossover.

5.2.2 Comparison with Past Research

In this experiment, the result of the past research [8] is used for comparison. [8] adopted

a GA combination that consists of 5-tournament selection, single-point crossover, and random

mutation with Simple Search Neighbourhood (SSN) and Swap Search Neighbourhood (SWN)

strategies. In its experiment, [8] achieves a fitness improvement for both datasets tested by it,

which reduced the penalty cost from approximately 24000 to 1400 in 5 minutes. However, no

optimum value was achieved.

With that said, the university course timetabling system developed in this project is

theoretically better than the system of [8] in terms of performance since it is able to generate a

perfect timetable. Nonetheless, the datasets applied in both research are different. Therefore,

this conclusion still needs to be validated in the future study.

5.3 Experiments on Resource Utilisation

This section focuses on determining the maximum performance of the developed

university timetabling system by testing it with different class-to-resource ratios. In these

experiments, the inputs are the mostly the same as what described in section 4.2, except the

number of students and the classes for each course. The number of students is manipulated in

the experiments to control the resource utilisation percentage. On the other hand, the duration

of some classes is adjusted, so that the class-to-resource ratio of all three types of classes

Chapter 5 System Testing

79
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

(lecture, tutorial, practical) can achieve the same percentage, making the experiments easier

and fairer. Figure 5.3.1 shows the adjusted classes data for each course. Furthermore, these

experiments only run the GA once instead of 10 times like others because the primary objective

of this experiment is to determine the feasibility of the system. The GA combination applied

in these experiments is the best combination found from previous experiments, which is GA44

that comprises of binary tournament selection, uniform crossover, swap mutation, and weak

chromosome replacement.

Figure 5.3.1 Adjusted Class Information

When the number of students is 300, the resource utilisation is 30%. The system

performs well by reaching optimum in 1.37 seconds while using only 3366 generations.

Figure 5.4.2 Experiment Result of 30% Resource Utilisation

When the number of students is 600, the resource utilisation is 60%. The system

successfully generates a feasible timetable in 6.75 seconds by using 9290 generations.

Chapter 5 System Testing

80
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.3 Experiment Result of 60% Utilisation Testing

However, when the number of students is 900, and the resource utilisation is 90%, the

system fails to generate a feasible solution. This might be because the experiments increase the

number of students without adding lecturers, which raises the risk of breaching lecturer-related

soft constraints, which is excessively long consecutive teaching hours.

Figure 5.4.4 Experiment Result of 90% Utilisation Testing

Chapter 6 Discussion

81
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6

Discussion

6.1 Objective Evaluation

Overall, this project meets all three stated objectives within the defined scope of a

partial mock dataset and a GA-based solution pipeline.

First, the objective to formalise a comprehensive set of hard and soft constraints for the

UCTP is achieved. Hard constraints such as capacity and resource non-overlap are explicitly

modelled. On the other hand, soft constraints, including the new “same building for consecutive

classes” rule, are incorporated into the fitness function as quantitative penalties, so their impact

could be measured across experiments. As documented in this report, the same-building rule is

implemented as a binary penalty rather than a distance-weighted cost. Nonetheless, this

simplification still enables controlled, interpretable analysis of the constraint’s effect and

satisfies the objective’s requirement to formalise and measure it.

Second, the project successfully designs and implements a flexible GA framework with

exchangeable operators. Four selection methods, four crossover methods, one mutation, and

four replacement methods (including two newly proposed replacement strategies) are

composed into 64 distinct operator combinations without changes to the core engine. An

immediate repair step after both crossover and mutation ensures chromosomes remains

schedulable under the modelled constraints. This modularity and the use of room-based

crossover are consistent with the design intent and demonstrate that the “plug-and-play”

operator goal was achieved in practice.

Third, the evaluation objective is achieved: every GA combination is assessed on the

partial mock dataset through multiple independent trials. For each run, the number of

generations to reach feasibility (zero penalty), execution time, and initial penalty cost are

recorded. The aggregated statistics are also computed to allow fair, comparative analysis across

combinations. The resulting summaries are used to identify both the overall best combination

and technique-specific strengths and weaknesses, fulfilling the objective’s requirement for

systematic, statistically informed evaluation.

Chapter 6 Discussion

82
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2 System Novelties

This project introduces a student-centred soft constraint, building continuity, that

encourages consecutive classes for the same student to be scheduled within the same building.

By penalising inter-building moves between back-to-back sessions, the system explicitly

targets reduced walking time and less lost learning, without over-constraining the search space.

A second novelty is a modular GA framework in which selection, crossover, mutation,

and replacement operators are fully interchangeable. This design enables a like-for-like

evaluation of 64 operator combinations on a controlled dataset, yielding the first systematic

comparison of these techniques focused on the university course timetabling problem (UCTP).

The resulting evidence helps researchers choose effective operator stacks and design more

rigorous experiments.

The study also proposes two novel replacement techniques, which are linear ranking

replacement and weak chromosome replacement, highlighting the often-overlooked impact of

the replacement phase on GA performance. Notably, one of these techniques, weak

chromosome replacement, forms part of the best-performing genetic algorithm (GA) model

discovered in the experiments, underscoring that replacement can be as decisive as selection or

crossover in guiding convergence.

Beyond operator design, the system conducts a targeted grid search over crossover and

mutation probabilities and adopts the best-found settings in the final runs. This closes the loop

between architecture and tuning, ensuring that reported gains come from principled parameter

choices rather than ad-hoc defaults, and giving the community reproducible baselines for future

comparisons.

Finally, the project introduces a fairness-oriented performance metric, which is fitness

improvement per generation, computed as initial penalty cost divided by the number of

generations. Because runs terminate upon reaching a perfect (zero-penalty) timetable, final

fitness cannot discriminate performance; raw generation counts are also biased by differing

initial costs. The new metric normalises progress across runs, offering a clearer view of how

efficiently each operator combination reduces violations.

Chapter 6 Discussion

83
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Operationally, every crossover and mutation are followed by an immediate repair step

that restores feasibility before the next evaluation. In GA-based UCTP studies, positioning

repair as an always-on, post-operator mechanism is novel. It preserves the freedom of

aggressive search operators while maintaining valid timetables at each generation, improving

stability and speeding convergence.

6.3 System Limitations

At high resource utilisation (approximately 90%), the system can fail to produce a

feasible timetable. This pressure might be induced primarily due to the experiments increase

the number of students without adding lecturers, which raises the risk of breaching lecturer-

related soft constraints, which is excessively long consecutive teaching hours.

Besides, the evaluation is confined to a single, partial mock dataset. While this enables

controlled comparisons, it limits external validity: real institutions vary in room typologies,

building layouts, lecturer availability patterns, class durations, and group structures. In

particular, the same-building soft constraint is operationalised as a binary penalty rather than a

campus-graph distance; this simplification ignores heterogeneity in inter-building travel, for

instance, adjacent buildings versus distant ones.

Algorithmically, this project benchmarks only genetic algorithms; no comparisons are

made against other optimisation paradigms such as integer or constraint programming, large

neighbourhood search, tabu search, simulated annealing, or hyper-heuristics. As a result, the

work cannot claim algorithmic superiority since there is only relative performance within GA

variants. Even within GA, tuning focuses on crossover and mutation probabilities; other

influential knobs such as population size and alternative stopping criteria (fixed time or

evaluation budgets) are not systematically explored.

Other than that, the always-on post-operator repair improves feasibility but adds

computational overhead and may bias search dynamics by regularly pulling individuals

towards the same feasible basins, potentially reducing population diversity. Likewise, the

room-by-room crossover safeguards room-type and capacity validity but constrains

recombination granularity; inter-room exchanges that could yield better global timetables are

inhibited, which may slow exploration or entrench substructures.

Chapter 6 Discussion

84
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.4 Future Enhancement/Improvement

To strengthen external validity, the future research can evaluate the system on diverse,

real-world datasets (different faculties, multiple campuses, variable slot lengths, mixed class

durations). This should include public UCTP benchmarks and institution-specific corpora with

richer heterogeneity (room typologies, lecturer availabilities, group structures). Alongside the

current same-building constraint, researchers can model campus travel using a weighted graph

(distances/elevators/stairs), so that penalties reflect true movement cost rather than a binary

building match.

Besides, the future research can broaden the optimisation method beyond GA and

compare against integer or constraint programming, large neighbourhood search (LNS), tabu

search, simulated annealing, and hyper-heuristics. Such cross-paradigm baselines will provide

invaluable insights into the UCTP domain.

Chapter 7 Conclusion

85
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 7

Conclusion

This project set out to address a practical and recurrent challenge in higher education:

building conflict-free, student-friendly university course timetables under diverse institutional

constraints. It contributes three things in tandem: a richer formulation of the UCTP that

explicitly penalises inter-building moves between consecutive classes, a modular genetic-

algorithm (GA) framework whose operators are fully interchangeable, and an empirical study

that systematically benchmarks 64 operator combinations under a controlled, partially realistic

dataset.

Methodologically, the work shows that a carefully engineered GA, implemented in

Java, backed by MySQL, and reinforced by an immediate repair step, can accommodate an

extensive constraint set (15 hard constraint and 4 soft constraint) while still exploring the search

space effectively. Decoupling selection, crossover, mutation, and replacement allows like-for-

like comparisons and clearer attribution of performance differences to operator design rather

than to confounded implementation details. The grid-searched crossover and mutation

probabilities, together with the proposed “fitness improvement per generation” metric aligned

to a zero-penalty stopping rule, provide fairer, more interpretable comparisons when initial

penalty costs vary across runs.

Empirically, the study demonstrates that operator choice matters materially. Different

selection, crossover, and replacement techniques meaningfully shift convergence speed and

computational effort, and the two proposed replacement strategies broaden the perspective on

how survivor selection influences progress. Crucially, integrating the same-building soft

constraint proves tractable: the framework can find feasible, penalty-free timetables for the

mock setting without collapsing under the added spatial preference, indicating that student-

centric travel considerations can be folded into automated timetabling at modest additional

cost.

Practically, the system produces complete, auditable artefacts, which are course,

lecturer, student, and room timetables, and enforces key data-side invariants (class capacity)

close to the database. This strengthens reproducibility and operational trust: results, errors, and

Chapter 7 Conclusion

86
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

metadata flow cleanly through a standardised JDBC-MySQL stack, while the dataset mirrors

key aspects of a real CS programme timetable to keep experiments realistic yet controllable.

Like any focused study, this work has boundaries. Feasibility can degrade at very high

resource utilisation; the dataset is a single, partial mock that cannot capture the heterogeneity

of real campuses; and the algorithmic scope is intentionally limited to GA variants. These are

honest constraints, not flaws, and they point directly to next steps: scaling to multi-cohort and

multi-campus settings, modelling travel on a campus graph rather than with a binary penalty,

and comparing against other optimisation paradigms. Beyond that, richer objectives, fairness

across student groups, lecturer workload smoothness, and resilience to late changes, invite

multi-objective or rescheduling extensions.

In summary, the project closes two gaps at once: it operationalises a neglected but

student-meaningful spatial preference, and it offers the first systematic comparison of 64 GA

operator combinations for UCTP within a unified codebase. The resulting insights and

artefacts, which are constraint set, dataset, framework, operators, and metrics, form a solid,

reusable foundation. They help timetable practitioners pick effective operator configurations

with greater confidence and give researchers a clear runway for deeper studies that push from

feasibility toward equity, realism, and robustness in automated university course timetabling.

REFERENCES

87
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] S. Abdipoor, Razali Yaakob, Say Leng Goh, and S. Abdullah, “Meta-heuristic

approaches for the University Course Timetabling Problem,” Intelligent Systems with

Applications, vol. 19, pp. 200253–200253, Sep. 2023, doi:

https://doi.org/10.1016/j.iswa.2023.200253.

[2] H. Babaei, J. Karimpour, and A. Hadidi, “A survey of approaches for university course

timetabling problem,” Computers & Industrial Engineering, vol. 86, pp. 43–59, Aug.

2015, doi: https://doi.org/10.1016/j.cie.2014.11.010.

[3] T. Guilmeau, E. Chouzenoux, and V. Elvira, “Simulated Annealing: a Review and a

New Scheme,” 2021 IEEE Statistical Signal Processing Workshop (SSP), pp. 101–105,

Jul. 2021, doi: https://doi.org/10.1109/SSP49050.2021.9513782.

[4] Hatice Erdoğan Akbulut, Feriştah Özçelik, and Tuğba Saraç, “A simulated annealing

algorithm for the faculty-level university course timetabling problem,” Pamukkale

Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 1, pp. 17–34, Feb. 2024.

[5] F. H. Awad, A. Al-kubaisi, and M. Mahmood, “Large-scale timetabling problems with

adaptive tabu search,” Journal of Intelligent Systems, vol. 31, no. 1, pp. 168–176, Jan.

2022, doi: https://doi.org/10.1515/jisys-2022-0003.

[6] V. K. Prajapati, M. Jain, and L. Chouhan, “Tabu Search Algorithm (TSA): A

Comprehensive Survey,” 2020 3rd International Conference on Emerging

Technologies in Computer Engineering: Machine Learning and Internet of Things

(ICETCE), pp. 1–8, Feb. 2020, doi:

https://doi.org/10.1109/ICETCE48199.2020.9091743.

[7] C. H. Wong, S. L. Goh, and J. Likoh, “A Genetic Algorithm for the Real-world

University Course Timetabling Problem,” 2022 IEEE 18th International Colloquium

on Signal Processing & Applications (CSPA), pp. 46–50, May 2022, doi:

https://doi.org/10.1109/cspa55076.2022.9781907.

[8] K. Y. Junn, J. H. Obit, and R. Alfred, “The Study of Genetic Algorithm Approach to

Solving University Course Timetabling Problem,” Computational Science and

REFERENCES

88
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Technology. ICCST 2017., pp. 454–463, Feb. 2018, doi: https://doi.org/10.1007/978-

981-10-8276-4_43.

[9] Sk. I. Hossain, M. A. H. Akhand, M. I. R. Shuvo, N. Siddique, and H. Adeli,

“Optimization of University Course Scheduling Problem using Particle Swarm

Optimization with Selective Search,” Expert Systems with Applications, vol. 127, pp.

9–24, Aug. 2019, doi: https://doi.org/10.1016/j.eswa.2019.02.026.

[10] A. G. Gad, “Particle Swarm Optimization Algorithm and Its Applications: A

Systematic Review,” Archives of Computational Methods in Engineering, vol. 29, no.

5, pp. 2531–2561, Apr. 2022, doi: https://doi.org/10.1007/s11831-021-09694-4.

[11] A. Mahmud, “Highly Constrained University Class Scheduling using Ant Colony

Optimization,” International Journal of Computer Science & Information Technology

(IJCSIT) , vol. 13, no. 1, Feb. 2021, Available: https://ssrn.com/abstract=3801441

[12] M. C. Chen, S. N. Sze, S. L. Goh, N. R. Sabar, and G. Kendall, “A Survey of University

Course Timetabling Problem: Perspectives, Trends and Opportunities,” IEEE Access,

vol. 9, pp. 106515–106529, Jul. 2021, doi:

https://doi.org/10.1109/access.2021.3100613.

[13] W. Deng, J. Xu, and H. Zhao, “An Improved Ant Colony Optimization Algorithm

Based on Hybrid Strategies for Scheduling Problem,” IEEE Access, vol. 7, pp. 20281–

20292, Feb. 2019, doi: https://doi.org/10.1109/access.2019.2897580.

[14] H. Zheng, Y. Peng, J. Guo, and Y.-C. Chen, “Course scheduling algorithm based on

improved binary cuckoo search,” The Journal of Supercomputing, vol. 78, no. 9, pp.

11895–11920, Feb. 2022, doi: https://doi.org/10.1007/s11227-022-04341-6.

[15] M. A. Jebur and H. S. Abdullah, “Timetabling problem solving based on best-nests

cuckoo search,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 6, pp.

3333–3340, Dec. 2021, doi: https://doi.org/10.11591/eei.v10i6.3206.

[16] J. Wahid and M. H. Naimah, “Hybrid harmony search with great deluge for UUM CAS

curriculum based course timetabling,” Journal of Telecommunication, Electronic and

Computer Engineering (JTEC), vol. 9, no. 1–2, pp. 33–38, Apr. 2017.

REFERENCES

89
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[17] F. Qin, A. M. Zain, and K.-Q. Zhou, “Harmony search algorithm and related variants:

A systematic review,” Swarm and Evolutionary Computation, vol. 74, p. 101126, Oct.

2022, doi: https://doi.org/10.1016/j.swevo.2022.101126.

[18] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present,

and future,” Multimedia Tools and Applications, vol. 80, no. 5, Oct. 2020, doi:

https://doi.org/10.1007/s11042-020-10139-6.

[19] Seng Poh Lim and H. Haron, “Performance of Different Techniques Applied in Genetic

Algorithm towards Benchmark Functions,” Lecture notes in computer science, pp.

255–264, Jan. 2013, doi: https://doi.org/10.1007/978-3-642-36546-1_27.

[20] S. P. Lim, H. Hoon, and C. H. Ong, “Performance Comparison of Different Operation

Techniques in Genetic Algorithm towards Benchmark Functions,” 2018 8th IEEE

International Conference on Control System, Computing and Engineering (ICCSCE),

pp. 59–64, Nov. 2018, doi: https://doi.org/10.1109/iccsce.2018.8684990.

[21] A. Shukla, H. M. Pandey, and D. Mehrotra, “Comparative review of selection

techniques in genetic algorithm,” 2015 International Conference on Futuristic Trends

on Computational Analysis and Knowledge Management (ABLAZE), pp. 515–519, Feb.

2015, doi: https://doi.org/10.1109/ablaze.2015.7154916.

[22] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2008. doi: https://doi.org/10.1007/978-3-540-

73190-0.

[23] S. Karakatič and V. Podgorelec, “A survey of genetic algorithms for solving multi depot

vehicle routing problem,” Applied Soft Computing, vol. 27, pp. 519–532, Feb. 2015,

doi: https://doi.org/10.1016/j.asoc.2014.11.005.

[24] S. Mirjalili, “Genetic Algorithm,” Studies in Computational Intelligence, vol. 780, pp.

43–55, Jun. 2018, doi: https://doi.org/10.1007/978-3-319-93025-1_4.

[25] H. M. Pandey, “Performance Evaluation of Selection Methods of Genetic Algorithm

and Network Security Concerns,” Procedia Computer Science, vol. 78, pp. 13–18,

2016, doi: https://doi.org/10.1016/j.procs.2016.02.004.

REFERENCES

90
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[26] M. Lozano, F. Herrera, and J. R. Cano, “Replacement strategies to preserve useful

diversity in steady-state genetic algorithms,” Information Sciences, vol. 178, no. 23, pp.

4421–4433, Dec. 2008, doi: https://doi.org/10.1016/j.ins.2008.07.031.

[27] L. Manzoni, L. Mariot, and E. Tuba, “Balanced crossover operators in Genetic

Algorithms,” Swarm and Evolutionary Computation, vol. 54, p. 100646, May 2020,

doi: https://doi.org/10.1016/j.swevo.2020.100646.

[28] S. M. Lim, A. B. Md. Sultan, Md. N. Sulaiman, A. Mustapha, and K. Y. Leong,

“Crossover and Mutation Operators of Genetic Algorithms,” International Journal of

Machine Learning and Computing, vol. 7, no. 1, pp. 9–12, Feb. 2017, doi:

https://doi.org/10.18178/ijmlc.2017.7.1.611.

[29] U. A.J. and S. P.D., “CROSSOVER OPERATORS IN GENETIC ALGORITHMS: A

REVIEW,” ICTACT Journal on Soft Computing, vol. 06, no. 01, pp. 1083–1092, Oct.

2015, doi: https://doi.org/10.21917/ijsc.2015.0150.

[30] Y. Jaradat, M. Masoud, I. Jannoud, A. Manasrah, and A. Zerek, “Comparison of

Genetic Algorithm Crossover Operators on WSN Lifetime,” 2022 IEEE 2nd

International Maghreb Meeting of the Conference on Sciences and Techniques of

Automatic Control and Computer Engineering (MI-STA), pp. 356–360, May 2022, doi:

https://doi.org/10.1109/MI-STA54861.2022.9837587.

[31] N. Indrianti, R. A. C. Leuveano, S. H. Abdul-Rashid, and M. I. Ridho, “Green Vehicle

Routing Problem Optimization for LPG Distribution: Genetic Algorithms for Complex

Constraints and Emission Reduction,” Sustainability, vol. 17, no. 3, pp. 1144–1144,

Jan. 2025, doi: https://doi.org/10.3390/su17031144.

[32] R. L. Kadri and F. F. Boctor, “An efficient genetic algorithm to solve the resource-

constrained project scheduling problem with transfer times: The single mode case,”

European Journal of Operational Research, vol. 265, no. 2, pp. 454–462, Mar. 2018,

doi: https://doi.org/10.1016/j.ejor.2017.07.027.

[33] N. Rikatsih and W. F. Mahmudy, “Adaptive Genetic Algorithm Based on Crossover

and Mutation Method for Optimization of Poultry Feed Composition,” 2018

International Conference on Sustainable Information Engineering and Technology

(SIET), pp. 110–114, Nov. 2018, doi: https://doi.org/10.1109/siet.2018.8693167.

REFERENCES

91
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[34] S. Mirjalili, J. Song Dong, A. S. Sadiq, and H. Faris, “Genetic Algorithm: Theory,

Literature Review, and Application in Image Reconstruction,” Nature-Inspired

Optimizers, pp. 69–85, Feb. 2019, doi: https://doi.org/10.1007/978-3-030-12127-3_5.

[35] M. Abdel-Basset, R. Mohamed, M. Abouhawwash, V. Chang, and S. Askar, “A Local

Search-Based Generalized Normal Distribution Algorithm for Permutation Flow Shop

Scheduling,” Applied Sciences, vol. 11, no. 11, p. 4837, May 2021, doi:

https://doi.org/10.3390/app11114837.

[36] N. Soni and T. Kumar, “Study of Various Mutation Operators in Genetic Algorithms,”

International Journal of Computer Science and Information Technologies (IJCSIT),

vol. 5, no. 3, pp. 4519–4521, 2014.

[37] S. P. Lim and H. Haron, “Performance comparison of Genetic Algorithm, Differential

Evolution and Particle Swarm Optimization towards benchmark functions,” 2013 IEEE

Conference on Open Systems (ICOS), Dec. 2013, doi:

https://doi.org/10.1109/icos.2013.6735045.

[38] H. Alghamdi, T. Alsubait, H. Alhakami, and A. Baz, “A Review of Optimization

Algorithms for University Timetable Scheduling,” Engineering, Technology & Applied

Science Research, vol. 10, no. 6, pp. 6410–6417, Dec. 2020, doi:

https://doi.org/10.48084/etasr.3832.

[39] P. Kora and P. Yadlapalli, "Crossover Operators in Genetic Algorithms: A Review,"

International Journal of Computer Applications, vol. 162, no. 10, pp. 34-36, Mar. 2017,

doi: 10.5120/ijca2017913370.

[40] I. H. Khan, “Assessing Different Crossover Operators for Travelling Salesman

Problem,” International Journal of Intelligent Systems and Applications, vol. 7, no. 11,

pp. 19–25, Oct. 2015, doi: 10.5815/ijisa.2015.11.03.

[41] S. Picek and M. Golub, “Comparison of a crossover operator in binary-coded genetic

algorithms,” WSEAS Transactions on Computers, vol. 9, Sep. 2010, doi:

https://doi.org/10.5555/1865335.1865350.

[42] F. J. Burkowski, "Shuffle crossover and mutual information," Proceedings of the 1999

Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington,

DC, USA, 1999, pp. 1574-1580 Vol. 2, doi: 10.1109/CEC.1999.782671.

REFERENCES

92
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

[43] P. Kora and P. Yadlapalli, "Crossover Operators in Genetic Algorithms: A Review,"

International Journal of Computer Applications, vol. 162, no. 10, pp. 1-6, Mar. 2017,

doi: 10.5120/ijca2017913370.

APPENDIX

A-1
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

Poster

	COPYRIGHT STATEMENT

