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ABSTRACT 

 

The demand for 3D content in games and films has driven the need for more efficient character 

modelling workflows. Traditionally, 3D character creation from concept art requires time-

consuming manual modelling and sculpting, followed by retopology, texturing, and rigging. 

These processes may need weeks to complete for a single character. While recent AI-based 3D 

generation models offer faster alternatives, but lack of fine control over the output and are often 

requires extensive post processing to ensure the quality of the mesh. 

 

This research is motivated by the need to support artists in traditional 3D character modelling 

workflow that refine the details of mesh from primitive shapes. Instead of fully automating the 

modelling process, this project aims to introduce an algorithm that reconstruct primitive cubes 

of stylized 3D character from front, left, back and right orthogonal views images by integrating 

interactive image segmentation and blender scripting method. This enables a rapid starting 

point for geometry detail adjustment using box modelling or digital sculpting techniques. 

 

The project objectives are to: (1) review the existing state-of-arts for solving 3D generation 

and reconstruction, (2) design an algorithm capable of reconstructing primitive shapes of 3D 

characters from four orthogonal images, optimized for limited computational resources.  

 

This research contributes a flexible and artist-friendly reconstruction algorithm that capable of 

generating part-level primitive shapes, which is efficient for generating high-fidelity mesh 

using box modelling and digital sculpting techniques. The algorithm can generate primitive 

shape from at least two orthogonal view images. The proposed algorithm is organized into 

modular stages, allowing artists and developers to further improving the pipeline by integrating 

computer vision, AI models and 3D modelling and scripting techniques. Finally, the model’s 

performance will be evaluated based on topology quality, editability, and usability. This work 

not only improves the character modelling pipeline, but also supports future studies in 3D 

reconstruction and digital content creation, 

 

Area of Study: 3D Reconstruction, 3D Digital Modelling 

Keywords: Multiview 3D Reconstruction, Artificial Intelligent, Blender Scripting, Orthogonal 

View Input, Computer Vision  
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Chapter 1: Introduction 

This chapter provides project’s problem statement and motivation, objectives, scope, 

contributions and the organization of the report. 

1.1  Problem Statement and Motivation 

This section presents the core challenges addressed in the project and the motivation behind 

them: 

• Traditional 3D modeling techniques remains essential for character modeling, 

especially in real time rendering and animation workflows, which requires manual 

detail refinement on primitive shapes is often more efficient than working with high 

polygon meshes generated by AI models.  

• The existing 3D shape generation models can reconstruct 3D characters from few 

images but requires intensive post adjustment manually on the topology from 

professionals to ensure the further usability of the output.  

• The existing generative AI models can solve 3D object reconstruction on static for 3D 

printing objects well but lack focus on characters for 3D animation which requires clean 

topology and UV texture mapping.  

1.2  Objectives 

The aim of this project is to provide a review on current 3D shape generation methods and 

explore the integration of computer vision and script-based digital modeling techniques to 

contribute on interactive 3D reconstruction approach that improve manual 3D character 

modeling workflows. 

The specific objectives are: 

• To review the existing state-of-arts for solving 3D generation and reconstruction. 

• To design an algorithm capable of reconstructing primitive shapes of 3D characters 

from four orthogonal images, optimized for limited computational resources. 

1.3  Project Scope  

• The term “3D character” mentioned in this project refers to stylish characters, not 

photorealistic human characters.  
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• This thesis covers a review of related work on solving 3D object reconstruction or 

generation from synthesis data like images and text. While the focus is on stylized 

characters and general 3D shapes. 

• An interactive OV-CV-BPY algorithm is introduced to reconstructs part-level primitive 

cubes of stylized characters from front, left, back and right 2D orthogonal view images 

without relying on pre-trained 3D models.  

1.4  Contributions 

Automation in 3D digital modeling has long been a goal for developers and artists. Current 

advances in 3D diffusion transformer AI models can generate high detailed shapes and textures 

from minimal input, such as single or descriptive text prompts. These models inherit the 2D 

generative AI models that can learn 3D representations from point clouds, meshes, and other 

explicit formats by encoding them into implicit 3D structures. This research presents a review 

of these state-of-arts methods. 

 

When a diffusion model received a prompt, it iteratively denoises and synthesizes novel object 

views, decoding them into a final 3D shape. However, this process is computationally intensive 

and often produce outputs that require post-processing like topology cleanup and polygon 

counts reduction before they are usable in animation process. 

 

This research demonstrates the feasibility of assisting 2D and 3D artiest in converting 

orthogonal-view concept art into low-fidelity primitive 3D shapes using an interactive 

segmentation-based approach. These reconstructions serve as quick starting point for manual 

refinement, improving the traditional stylized character modeling process by adjust the scale 

of character’s parts in the modeling process. This project contributes a lightweight, 

performance-balanced method for 3D reconstruction tasks.  

1.5  Report Organization 

 

Chapter 2 provides reviews on current state-of-arts in 3D object reconstruction and generation, 

and review on related work when exploring the possibility of lightweight and performance 

trade off solution. Chapter 3 introduces the designed algorithm that reconstruct primitive 

shapes from orthogonal view images. Chapter 4 reports the high-level design of algorithm 
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implementation. Chapter 5 reports the experimental results, and the validity and generality 

justification on the designed solution.  
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Chapter 2: Literature Review 

 

This section introduces the review of technologies in solving 3D shape generation and 

reconstruction and the review of related work on designing OV-CV-BPY algorithm. 

 

2.1 Manual Digital Modelling 

There are two main handcraft approaches in 3D character modeling using software in current 

3A game’s industry standard, including polygonal or box modeling, and 3D sculpting.  

 

Polygonal Modelling 

Polygonal Modelling refers to a method of modeling a character or object by manually 

adjusting the vertices, edges, faces of the geometry shape or polygons using 3D software like 

Blender and ZBrush. This method provides full control of creating 3D character surface, 

defined by mesh, a collection of vertices, edges, and faces. It enables artists to create good 

topology mesh, and the format of the mesh such as glb. can be supported across 3D software 

like 3Ds Max, and Maya, and it is flexible for rigging and animation in producing animation 

films and 3D games. However, the speed of modeling depends on an artist’s skills. It is time-

consuming to model a complex shape such as realistic human characters or any irregular 

organic shapes.  

 

3D Sculpting Modelling [3] 

Sculpting modeling is a method that is similar to sculpting real clay. 3D artists use brushes to 

push, pull, and smooth the digital mesh instead of working with polygon faces. This method is 

a common way to model 3D characters in 3A games and films. It allows 3D artists to create 

high-detail shapes and irregular organic shapes with a natural workflow. However, since 

sculpting modeling deals with high-resolution mesh, retopology needs to be performed by 

artists before importing them into real-time applications to ensure rendering optimization. 

Sculpting modeling requires highly skilled 3D artists, and it is time-consuming when modeling 

very high-resolution characters, such as monsters, and non-human characters. 

2.2 3D Reconstruction 

3D reconstruction is an automatic task that reconstructs structures of an object or a scene from 

real-world captured data. Traditionally, this task mainly solving reconstructing objects from 
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images captured by cameras or sensors. As generative AI become popular recently, 3D 

reconstruction techniques like structure from motion is adapted in innovative trained systems 

that reconstruct or generate 3D objects from fewer images. Most of the 3D reconstruction 

systems are usually used to reconstruct complex objects such as statues, buildings, or a large-

scale environment from calibrated images, which are commonly used in 3A video games and 

movies. 

 

Photogrammetry [11, 12, 14] 

Photogrammetry refers to an image based contactless 3D reconstruction method that 

reconstructs 3D models by analyzing multiple 2D photographs or images taken from different 

angles and then reconstructing the depth and the surface structure. Photogrammetry can 

reconstruct 3D models with very high details and realistic textures. Additionally, compared to 

polygonal modeling and sculpting modeling, it is more accessible since only standard cameras 

or smartphones are needed. However, photogrammetry is computationally expensive in terms 

of CPU computation and processing time and requires many good coverage images to 

reconstruct high-accuracy models. Lastly, it is sensitive to lighting, such that the capturing 

environment needs to be controlled when reconstructing models from real humans, else there 

will be many noisy results that may need to be cleaned in 3D software. There are some common 

applications available for photogrammetry are Polycam, Meshroom, COLMAP [11, 12], 

RealityCapture and 3D scanning devices. 

 

Implicit Representations  

Nerf [4, 5, 6, 14] and 3D Gaussian Splatting [7, 8, 14] are new methods that solve the 

limitations of photogrammetry, such as time-consuming processing time and the need for 

intensive images as input, and lighting sensitivity problems. Both of the methods can 

reconstruct 3D models with few images, and the result is very realistic very fast, and can 

reconstruct class, water, and reflections which photogrammetry cannot.  This can be achieved 

by combining the implicit representations of 3D objects with deep learning and generative AI. 

However, Nerf and 3D Gaussian Splatting need to be trained before they can reconstruct 

objects from images. 

Nerf is the first 3D reconstruction that adapted deep learning in reconstructing objects from a 

few images after being trained with multi-view images of an object. It reconstructs the object 

as a neural field, not in the form of point clouds or meshes, thus artists cannot edit the shape of 
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the reconstructed object, and due to its limitation in real-time rendering, 3D Gaussian Splatting 

overcomes this issue.  

In the 3D Gaussian Splatting reconstruction pipeline, the point clouds reconstructed are 

represented in 3D Gaussian, and cannot be edited directly, the visual output is rendered using 

rasterization, which is much faster than Nerf that using ray tracing rendering. In conclusion, 

3D Gaussian splatting can support real-time rendering. However, these new representation-

based methods do not support the post-refinement of the reconstructed object.  

 

Although there are methods to convert this implicit representation into glb. mesh format, the 

post-manual refinement of the model by the artist using sculpting, and retopology is inevitable.  

 

2.3 Generative AI 

Automatic 3D Shape Generation Model 

The rise of diffusion models, transformers and GANs accelerated the development of 3D shape 

generation tasks, including creating 3D characters or objects. For example, open-sourced 3D 

shape generation models such as Unique3D [18] and Hunyuan3D [19] can generate 3D mesh 

from a single image, and the quality is very high with less time required compared to 3D 

reconstruction methods. These models often utilize a multi-view synthesis diffusion model 

from a single image. Recently, [hunyuan3D studio] presents a platform that provides end-to-

end pipelines in 3D assets generation such as automates part-level 3D shape generation, mesh 

polygon generation and semantic UV that is ready for production. 

 

However, the final result cannot be controlled, and the quality will drop dramatically when 

reconstructing complex objects such as full-body characters. This may be due to the limited 

trained dataset. Besides, the size of a full-body character will be reduced when the mesh is 

reconstructed. The reconstructed mesh often has poor details in terms of soft edges and hard 

edges when reconstructing complex details character. This motivated the proposed method, 

which integrates segmentation when reconstructing the character, such that the artist can 

perform preprocessing in controlling the final output of the 3D model. 

 

 

 

 

 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    7 
 

The figures (Figure 2.1 to 2.4) below show the review of closed model of hunyuan3D [31], 

which are Hunyuan3D 2.5 and Hunyuan 3D 3.0. 

 
Figure 2.1: Showing the option of testing huyuan3D 2.5 

 

 
Figure 2.2: Showing the result of huyuan3D 2.5 Shape before retopology 
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Figure 2.3: Showing the option of testing huyuan3D 2.5 Shape after quad retopology 

 

 
Figure 2.4: Showing the option of testing huyuan3D 3.0 Shape after quad retopology from 

500k faces 
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2.4 Other approaches 

Interactive system in 3D modeling 

[14] propose a method that allows artists to manually annotate the orthogonal view image when 

modeling the characters with generative shapes. This can improve the workflow of modeling 

characters.  

 

Automated single view reconstruction with computer vision approach 

[15] proposed a method to reconstruct a character from a single view image into the textured 

mesh. It adapts skeletonization [17] to reconstruct the skeleton of the character from the image 

input outline, and mesh is generated based on the skeleton, finally using a texturing algorithm 

to generate the final output. This method skips the need for a training model, but it performs 

badly when reconstructing characters with poses, covered by clothes, and with equipment. 
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2.5 Mind map of 3D Reconstruction Technologies 

 

Figure 2.5: Research Mind Map part 1 

 

Figure 2.6: Research Mind Map part 2 

Figures 2.5 and 2.6 show the 3D reconstruction techniques mind map. 
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2.6 Review of Related Work for Designing Algorithm OV-CV-BPY 

This section presents a review of relevant literature that informed the design of the OV-CV-

BPY algorithm, which addresses the challenge of 3D character reconstruction from orthogonal-

view images. A detailed overview of the algorithm is provided in Chapter 3.1. 

 

2.6.1 Segmentation 

SAM 2 [25] is employed for interactive image segmentation. This pre-trained model plays a 

key role in the segmentation phase of the OV-CV-BPY pipeline, enabling precise region 

extraction from orthogonal views with minimal user input. 

 

2.6.2 Blender Scripting  

Blender’s scripting capabilities [26] allow for the procedural generation of 3D shapes with 

clean topology using its Python API [27]. Built-in operations and modifiers support detailed 

geometry refinement, which is essential for skilled artists working on stylized character 

models. The Python API also empowers developers to contribute to the Blender ecosystem by 

creating add-ons and automation tools, helping the community evolve through continuous 

updates and enhancements.  
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Chapter 3: Algorithm 

This chapter discuss the problem formulation of the research question/problem. Next, OV-CV-

BPY algorithm is introduced to reconstruct character’s primitive shapes from four orthogonal 

view images. 

3.1 Overview  

 

This section introduces how the 3D character reconstruction from orthogonal images problem 

is formulated.  

 

1. Let Character c is composition of “mesh” shapes: m1, m2, …, mn.  

2. Hence, 𝑚𝑒𝑠ℎ =  {(𝑥𝑛, 𝑦𝑛, 𝑧𝑛) | 𝑛 =

 1, 2, . . . , 𝑁} 𝑤ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠  

 

The Figure 3.1 below is the illustration of a Doraemon character composited by meshes and 

the highlighted head mesh with naming m8. 

 

 

Figure 3.1: Highlighted Head Mesh of Doraemon 
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3.1.1 OV-CV-BPY 

 

This section provides an overview of the OV-CV-BPY algorithm, which is designed to 

reconstruct part-level 3D primitive cubes from four orthogonal-view images: front, left, back, 

and right. These input images are assumed to have a 1:1 width-to-height ratio. 

 

The algorithm targets the reconstruction of stylized character shapes using primitive geometry, 

serving as a foundation for box modeling workflows commonly used in character design. It is 

composed of four main stages: Image Preprocessing, 2D Mesh Polygon Mask 

Segmentation, 3D Feature Reconstruction, BPY 3D Mesh Generation. 

 

The input to the algorithm is a set of four orthogonal-view images. The final output is a Blender 

file containing the reconstructed character meshes, ready for further refinement and detailing. 

 

The Figure 3.2 below shows the block diagram of the OV-CV-BPY algorithm. 

 

 

Figure 3.2: 3D Reconstruction System with MV-CV-BPY Algorithm Overview Block 

Diagram  
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3.1.2 2D Mesh Polygon Mask Segmentation 

 

This section describes how the mesh 2D polygon mask segmentation step of the OV-CV-BPY 

algorithm being implemented via CVAT [28] tool to solve the question. The Figure 3.3 below 

shows the required input of the step and the output of the step implementation.  

 

 

Figure 3.3: Illustration of Input, Process and Output for Polygon Mask Segmentation 

 

After the input images are resized, the next step in the pipeline is segmentation. There are three 

common approaches to segmentation: automatic, manual, and semi-automatic. This project 

adopts a semi-automatic, interactive method known as Interactive Shape Segmentation, which 

leverages the AI-powered segmentation tool in CVAT using the SAM 2 model [25]. 

 

The goal of this step is to segment and annotate the individual parts of the character from each 

orthogonal view. The output is a COCO-format annotation JSON file containing structured 

data for each character part. These parts—referred to as “objects” in segmentation 

terminology—are labeled with the class name mesh, as introduced in Section 3.1. This labeling 

enables consistent mapping of mesh objects across orthogonal views, as discussed in Section 

3.2.3. The implementation details are provided in Section 4.2. 

  



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    15 
 

3.1.3 3D Feature Reconstruction 

 

This section introduces the 3D Feature Reconstruction block, which comprises a set of 

procedures that transform mesh object annotations—obtained from the 2D Mesh Polygon 

Mask Segmentation step (Section 3.2.2)—into 3D axis-aligned bounding boxes (AABBs). 

Each AABB encodes the spatial dimensions and position of a character’s part mesh, serving as 

a geometric approximation of its volume. 

 

The result of this object mapping process is a structured collection of mesh data, which acts as 

the input for generating primitive subdivided cubes in the Blender scripting block. The Figure 

3.4 below illustrates the object mapping workflow within the overall algorithm architecture 

 

Figure 3.4: 3D Features Reconstruction Block 

  

The output of this block is the mesh 3D features. It stores a pair of minimum 3D coordinate 

and maximum 3D coordinate. The data serves as the input of BPY 3D Mesh Generation (Sec. 

3.2.4) block. 
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Numbered list below is the breakdown of 3D shape feature reconstruction block: 

1. Preprocess and groups polygon mask annotations of mesh parts 

2. Normalize mesh parts coordinates 

3. Reconstructs 3D AABB  

 

Polygon mask annotations preprocessing 

This step organizes the polygon masks of character mesh parts by grouping annotations with 

the same name across different orthogonal views. For each mesh object, the segmentation 

coordinates from all available views are collected and stored. For example, if a mesh named 

“head” is segmented in the front, left, back, and right views, the system will associate four 

distinct segmentations with the “head” mesh object. 

Coordinates Normalization 

Following annotation preprocessing, the next step is to normalize the image coordinates within 

each segmentation. This involves mapping pixel-based image coordinates to a normalized 

Cartesian coordinate system specific to each orthogonal view. Figures 3.5 to 3.8 below 

illustrates how pixel coordinates are transformed into orthogonal view-aligned Cartesian 

coordinates, enabling consistent spatial interpretation across views. 

 

Front View: 

 

Figure 3.5: Illustration of Front View Image Coordinate Normalization 
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Left View: 

 

Figure 3.6: Illustration of Left View Image Coordinate Normalization 

 

 

Back View 

 

Figure 3.7: Illustration of Back View Image Coordinate Normalization 

 

  



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    18 
 

Right View 

 

Figure 3.8: Illustration of Right View Image Coordinate Normalization 
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Formula 2 defines the method for normalizing image coordinates into Cartesian coordinates 

aligned with orthogonal views. This transformation converts the pixel-based segmentation 

coordinates of mesh parts into a consistent spatial representation across the front, left, back, 

and right views. The normalization assumes that all input images share equal width and height 

dimensions.  

To achieve this, Formula 2 adapts the OpenGL viewport transformation (originally presented 

in Formula 1 [29]), which is commonly used to convert vertex positions from normalized 

device coordinates (NDC) to window space. By repurposing this transformation, the algorithm 

ensures that image coordinates are accurately mapped into orthogonal Cartesian space for 

further 3D reconstruction. 

Formula 1: 

𝑥𝑤  =  
𝑤𝑖𝑑𝑡ℎ

2
∗ 𝑥𝑛𝑑𝑐  +  𝑥 + 

𝑤𝑖𝑑𝑡ℎ

2
 Formula 1 

 

Where 𝑥𝑤 is 𝑥 in window space, 𝑥𝑛𝑑𝑐 is 𝑥 vertex in NDC space. Since the width and height of 

source images are in 1:1 ration in this algorithm (Sec. 3.1) The section below describes the 

adaption of Formula 1 in formulating equation 2 and 3. 

 

Defining Formula 2 - 5: 

For front and back views, 

Let:  

𝑥𝑛𝑑𝑐 = 𝑦𝑐𝑎𝑟𝑡, the first number of a coordinate of a mesh in 𝑦𝑧 Cartesian coordinate system. 

𝑥𝑤 =  𝑦𝑝𝑖𝑥𝑒𝑙, the first value of an image coordinate of a mesh segmentation mask in image.  

𝑥𝑛𝑑𝑐 =  𝑧𝑐𝑎𝑟𝑡, the second number of a coordinate of a mesh in 𝑦𝑧 Cartesian coordinate 

system. 

𝑥𝑤  =  𝑧𝑝𝑖𝑥𝑒𝑙 the second value of an image coordinate of a mesh segmentation mask in 

image. 

𝑝𝑖𝑥𝑒𝑙𝑦𝑧  = Segmentation of a mesh in front and back view is a list of number with N size 

𝑐𝑎𝑟𝑡𝑦𝑧  = yz coordinates of a mesh in front and back view is a list of number with N size. 

Subject to:  

𝑝𝑖𝑥𝑒𝑙𝑦𝑧  =  {(𝑦𝑝𝑖𝑥𝑒𝑙 𝑖 , 𝑧𝑝𝑖𝑥𝑒𝑙 𝑖 ) | 𝑖 =  1, 2, . . . , 𝑁}   Formula 2 

𝑐𝑎𝑟𝑡𝑦𝑧  =  {(𝑦𝑐𝑎𝑟𝑡 𝑖 , 𝑧𝑐𝑎𝑟𝑡 𝑖 ) | 𝑖 =  1, 2, . . . , 𝑁}   Formula 3 

For left and right view, 
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Let:  

𝑥𝑛𝑑𝑐 = 𝑥𝑐𝑎𝑟𝑡, the first number of a coordinate of a mesh in 𝑥𝑧 Cartesian coordinate system. 

𝑥𝑤 =  𝑥𝑝𝑖𝑥𝑒𝑙, the first value of an image coordinate of a mesh segmentation mask in image.  

𝑥𝑛𝑑𝑐 =  𝑧𝑐𝑎𝑟𝑡, the second number of a coordinate of a mesh in 𝑥𝑧 Cartesian coordinate 

system. 

𝑥𝑤  =  𝑧𝑝𝑖𝑥𝑒𝑙 the second value of an image coordinate of a mesh segmentation mask in 

image. 

𝑝𝑖𝑥𝑒𝑙𝑥𝑧  = Segmentation of a mesh in front and back view is a list of number with N size 

𝑐𝑎𝑟𝑡𝑥𝑧  = xz coordinates of a mesh in front and back view is a list of number with N size. 

 

Subject to:  

𝑝𝑖𝑥𝑒𝑙𝑥𝑧  =  {(𝑥𝑝𝑖𝑥𝑒𝑙 𝑖 , 𝑧𝑝𝑖𝑥𝑒𝑙 𝑖 ) | 𝑖 =  1, 2, . . . , 𝑁}   Formula 4 

𝑐𝑎𝑟𝑡𝑥𝑧  =  {(𝑥𝑐𝑎𝑟𝑡 𝑖 , 𝑧𝑐𝑎𝑟𝑡 𝑖 ) | 𝑖 =  1, 2, . . . , 𝑁}   Formula 5 

 

Hence,  

For Formula 6 and 7 

Let: 

 𝐻𝑐𝑎𝑟𝑡 = horizontal component in Cartesian coordinate system  

 𝑉𝑐𝑎𝑟𝑡 = vertical component in Cartesian coordinate system  

 W = width or height or a square image 

 𝑓  = front view image 

 𝑙  = left view image 

 𝑏  = back view image 

 𝑟  = right view image 

Subject to:  

 𝐻𝑐𝑎𝑟𝑡  =  {

2 𝐻𝑝𝑖𝑥𝑒𝑙

𝑊
 −  1, 𝑤ℎ𝑒𝑛 𝐻𝑝𝑖𝑥𝑒𝑙 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑓 𝑜𝑟 𝑙, 𝑤𝑖𝑡ℎ {

𝐻 =  𝑦 𝑓𝑜𝑟 𝑓
𝐻 =  𝑥 𝑓𝑜𝑟 𝑙 

(
2 𝐻𝑝𝑖𝑥𝑒𝑙

𝑊
 −  1) ∗  −1, 𝑤ℎ𝑒𝑛 𝐻𝑝𝑖𝑥𝑒𝑙 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑓 𝑜𝑟 𝑙, 𝑤𝑖𝑡ℎ {

𝐻 =  𝑦 𝑓𝑜𝑟 𝑏
𝐻 =  𝑥 𝑓𝑜𝑟 𝑟 

 
   

Formula 6 

 

𝑉𝑐𝑎𝑟𝑡 =  1 −
2 𝑉𝑝𝑖𝑥𝑒𝑙

𝑊
 , 𝑤ℎ𝑒𝑛 𝑉𝑝𝑖𝑥𝑒𝑙 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑓, 𝑙, 𝑏, 𝑟  Formula 7 
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3D AABB Reconstruction 

 

This step focuses on reconstructing the 3D axis-aligned bounding boxes (AABBs) of character 

mesh objects using their Cartesian coordinates extracted from orthogonal views. An AABB 

defines the spatial extent of a 3D mesh by encapsulating it within a box aligned to the 

coordinate axes. This geometric feature is essential for generating primitive cubes that 

represent individual character parts. 

The reconstruction process relies on identifying a pair of 3D points: the minimum and 

maximum coordinates along each axis. These two points define the bounds of the mesh object. 

The equations for this reconstruction are presented in this section. The Figure 3.9 below 

illustrates the bounding box defined by these two points, highlighted with blue annotations. 

 

 

Figure 3.9: Illustration of minimum and maximum points 
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Formula 8 to 14, 

Let: 

 𝑁 = total numbers of 2D orthogonal view cartesian coordinates of a mesh  

mesh = a set of 3D coordinates or vertices of a character’s part.  

𝑥𝑚𝑖𝑛 = smallest 𝑥𝑛 in set of 𝑁 𝑥 coordinates 

𝑥𝑚𝑎𝑥 = largest 𝑥𝑛 in set of 𝑁 𝑥 coordinates 

𝑦𝑚𝑖𝑛 = smallest 𝑦𝑛 in set of 𝑁 𝑦 coordinates 

𝑦𝑚𝑎𝑥 = largest 𝑦𝑛 in set of 𝑁 𝑦 coordinates 

𝑧𝑚𝑖𝑛 = smallest 𝑧𝑛 in set of 𝑁 𝑧 coordinates 

𝑧𝑚𝑎𝑥 = largest 𝑧𝑛 in set of 𝑁 𝑧 coordinates 

𝐴𝐴𝐵𝐵𝑚𝑒𝑠ℎ = represented by a pair of minimum and maximum 3D coordinates of a mesh 

 

Subject to: 

𝑥𝑚𝑖𝑛 =
𝑚𝑖𝑛

1 ≤  𝑛 ≤ 𝑁
(𝑥𝑛)  Formula 8 

 

  𝑥𝑚𝑎𝑥  =  
𝑚𝑎𝑥

1 ≤  𝑛 ≤ 𝑁
(𝑥𝑛) Formula 9 

 

𝑦𝑚𝑖𝑛 =
𝑚𝑖𝑛

1 ≤  𝑛 ≤ 𝑁
(𝑦𝑛)  Formula 10 

 

 𝑦𝑚𝑎𝑥  =  
𝑚𝑎𝑥

1 ≤  𝑛 ≤ 𝑁
(𝑦𝑛)   Formula 11 

 

𝑧𝑚𝑖𝑛 =
𝑚𝑖𝑛

1 ≤  𝑛 ≤ 𝑁
(𝑧𝑛)  Formula 12 

 

 𝑧𝑚𝑎𝑥  =  
𝑚𝑎𝑥

1 ≤  𝑧 ≤ 𝑁
(𝑧𝑛)   Formula 13 

 

𝐴𝐴𝐵𝐵𝑚𝑒𝑠ℎ  =  {(𝑥𝑚𝑖𝑛,  𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛), (𝑥𝑚𝑎𝑥 ,  𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥)}    Formula 14 
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3.1.4 BPY 3D Mesh Generation 

 

This section outlines the formulation for generating primitive cubes for each mesh object, based 

on the minimum and maximum 3D coordinates obtained through reconstruction (see Formula 

14). These coordinates define the axis-aligned bounding box (AABB) for each mesh part, 

which serves as the geometric basis for cube generation. 

 

Figure 3.10: BPY Mesh Generation Block 

 

Figure 3.10 illustrates the BPY 3D Mesh Generation block, which is the final stage of the OV-

CV-BPY algorithm. In this stage, the reconstructed 3D features are translated into primitive 

cubes using Blender’s Python scripting interface. The implementation details of this process 

are discussed in Chapter 4.  
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Chapter 4: Experiment and Implementation 

 

This section presents the implementation details of the algorithm described in Section 3.2, 

demonstrated through an example of reconstructing a 3D mesh of the character Doraemon 

using orthogonal-view images. The orthogonal concept art used in this demonstration was 

created by artist Ashutosh Kadam and sourced from his published artwork [25], as shown in 

Figure 4.1. 

 

Figure 4.1: Doraemon Orthogonal View Image Reference by Ashutosh Kadam 

 

The Figure 4.2 below illustrates the input and output of OV-CV-BPY modules to reconstructs 

Doraemon in pseudocode.   

Algorithm 1 3D_Reconstruction using OV_CV_BPY Overview 

Requires: Orthogonal images of target character 

 

  Step 1: Orthogonal Images Input Processing (Chapter 4.1) 

    - output: 608*608 size images 

 

  Step 2: 2D Mesh Polygon Mask Segmentation (Chapter 4.2) 

    - output: Json file contains annotations of Polygon Mask 

 

  Step 3: 3D feature Reconstruction (Chapter 4.3): 

    - output: Json file contains 3D AABB points of meshes 

 

  Step 4: BPY 3D Mesh Generation (Chapter 4.4): 

    - output: Blender file contains character primitive cubes of meshes 

Return: Blender file contains target character meshes 

Figure 4.2: OV-CV-BPY Algorithm Pseudocode 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    25 
 

4.1 Input Preprocessing 

 

The orthogonal-view image of Doraemon was cropped into four separate images—one for each 

view (front, left, back, and right)—with the background removed. This preprocessing was 

performed using the online photo editor Photopea, which supports layer-based editing and 

transparent backgrounds. A sample screenshot of the editing process is shown in Figure 4.3. 

 

 

Figure 4.3: Screenshot of editing image 

 

Figure 4.4: Four Orthogonal Views of Doraemon 
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A simple Streamlit application [30] was developed to provide a graphical user interface (GUI) 

for uploading and resizing orthogonal-view images. This tool streamlines the preprocessing 

step by allowing users to interactively adjust image dimensions before segmentation. Figure 

4.4 displays a screenshot of the resized Doraemon images across the four orthogonal views. 

Figure 4.5 presents the resized front view image (front view.png) of Doraemon. 

 

 

Figure 4.5: Illustration of Viewing Resized Image 
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4.2 Polygon Mask Segmentation 

 

This section demonstrates the process of segmenting parts of Doraemon using CVAT. Only 

one label class named “mesh” with attributes “name” and “view” used when implementing 

interactive 2D polygon masks segmentation with CVAT. Figure 4.6 shows a screenshot of the 

segmentation interface in the CVAT workspace, highlighting the annotated front view of 

Doraemon. 

 

 

Figure 4.6: Screenshot of Segmenting Polygon Mask of Meshes 

 

Figure 4.6 shows a highlighted polygon region—formally referred to as an object—assigned 

the label class "mesh" with an ID of 18. The associated attributes, “name” and “view” are used 

to track the shape of Doraemon across orthogonal perspectives. These attributes play a crucial 

role in constructing the final annotation JSON file, which serves as input to the 3D feature 

reconstruction module (see Section 3.1.3). 

 

In this example, Figure 4.6 illustrates the object labelled with name = "head" and view = 

"front". Figure 4.7 also shows the CVAT workspace during the export process, where the 

annotated dataset is saved in COCO 1.0 format under the filename demo_doraemon.zip. After 

downloading and extracting the dataset, Figure 4.8 presents the file explorer view of the 

exported JSON file. Finally, Figure 4.10 demonstrate how an individual object from the JSON 

file in Figure 4.9 can be visualized by uploading it to ChatGPT for inspection 
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Figure 4.7: Screenshot of Exporting Annotations 

 

Figure 4.8: Screenshot of Viewing Annotations JSON file 

 

Figure 4.9: Screenshot of Annotations List in JSON file 

 

Figure 4.10: Illustration of Annotations List Format  
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4.3 3D Feature Reconstruction 

 

4.3.1 Mask Annotations Preprocessing 

 

The Figure 4.11 below shows the pseudocode for preprocess annotations to track unique 

mesh objects from views and store the corresponding segmentations: 

Annotations Preprocessing 

Requires: 2D polygon mask of mesh annotation json file 

       Initialize a mesh dictionary such that for each mesh name, store: 

          A set of unique views 

          A dictionary of segmentations per view 

          A placeholder for AABB (min/max coordinates) 

       Load JSON data from the given path 

       Extract list of annotations from the JSON 

       For each annotation entry: 

          Extract mesh name, view label, and segmentation data 

          IF mesh name is missing: Skip this entry 

          IF view already exists for this mesh: Skip to avoid duplicates 

          ELSE: 

              Add view to mesh_dictionary[name]["views"] 

              Append segmentation data to mesh_dict[name]["segmentations"][view] 

Return the populated mesh_dictionary 

 

Figure 4.11: Pseudocode of Annotations Preprocessing 
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4.3.2 Coordinates Normalization 

 

The Figure 4.12 below shows the pseudocode of preprocess segmentations’ function: map 

pixel coordinates of segmentation to cartesian coordinates: 

 Preprocess Segmentations 

Requires: mesh_dict, img_width: 

    1. Define a mapping of view labels to transformation functions: 

       - "front" and "left" → use front-left mapping function 

       - "back" and "right" → use back-right mapping function 

       - Each function receives img_width as a parameter 

    2. FOR each mesh in mesh_dict: 

        a. FOR each view and its segmentations: 

            i. IF view has a corresponding transformation function: 

                - Apply the transformation to the segmentations 

                - Update mesh_dict with transformed segmentations 

            ii. ELSE: 

                - Print warning that no mapping function exists for this view 

    Returns: updated mesh_dict 

Figure 4.12: Pseudocode of Coordinates Normalization 
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4.3.3 3D Feature Reconstruction 

 

Figure 4.13 below shows the pseudocode that reconstructs 3D feature of mesh from Cartesian 

coordinates of mesh. 

Reconstructs  𝑨𝑨𝑩𝑩𝒎𝒆𝒔𝒉 

Requires: mesh dictionary 

Strat: 

For each mesh in mesh dictionary:  

    Identify the total number of orthogonal view coordinates set of a mesh 

          Group y components of first index of front and back views coordinates set 

          Group x components of first index of left and right views coordinates set 

          Group z components of second index of all views coordinate set 

          Compute 𝐴𝐴𝐵𝐵𝑚𝑒𝑠ℎ = (𝑥𝑚𝑖𝑛,  𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛), (𝑥𝑚𝑎𝑥,  𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥) 

Returns: 𝑥𝑚𝑖𝑛,  𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥,  𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥 

Figure 4.13: Pseudocode of 3D Feature Reconstruction 

 

4.4 Mesh Cubes Generation 

 

Figure 4.14 below shows the pseudocode that generate primitive cubes for mesh AABB data. 

Generates  𝑴𝒆𝒔𝒉 𝑪𝒖𝒃𝒆𝒔 

Requires: JSON file with AABB data of meshes 

Start: 

Load AABB data from JSON file 

Clean all objects in Blender workspace 

For each of the mesh: 

Extract -  𝑥𝑚𝑖𝑛 ,  𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥,  𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥 

Calculate center point of AABB 

Calculate size of AABB 

Add a cube at origin 

Rename cube using mesh name 

Scale cube to match AABB size 

Move cube to AABB center 

 

Return: Save blend file that contains the meshes 

Figure 4.14: Pseudocode of Mesh Cubes Generation 
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Chapter 5: Results and Discussion 

 

5.1 Experimental Results 

5.1.1 Coordinates Normalization 

Figures 5.1 to 5.4 below show the Doraemon plots from each orthogonal view. 

Front view: 

 

Figure 5.1: Front view of Doraemon plot from normalized pixel coordinates of segmentation 
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Left View: 

 

Figure 5.2: Left view of Doraemon plot from normalized pixel coordinates of segmentation 

 

Back View: 

 

Figure 5.3 Back view of Doraemon plot from normalized pixel coordinates of segmentation 
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Right View 

 

Figure 5.4: Right view of Doraemon plot from normalized pixel coordinates of segmentation 

 

The plots shown in Figures 5.1 to 5.4 demonstrate the effectiveness of the coordinate 

normalization process, which successfully converts image-based segmentation coordinates into 

their corresponding Cartesian coordinates for each orthogonal view. 
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5.1.2 3D AABB Reconstruction 

 

Figures 5.5 to 5.8 show the experimental results of reconstructing AABB of the meshes 

Front view 

 

Figure 5.5: Front view of Doraemon Plot to Illustrate Bounding Boxes 

 

 

  



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    36 
 

 

Left view 

 

Figure 5.6: Left view of Doraemon Plot to Illustrate Bounding Boxes 
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Back view 

 

Figure 5.7: Back view of Doraemon Plot to Illustrate Bounding Boxes 
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Right View 

 

Figure 5.8: Right view of Doraemon Plot to Illustrate Bounding Boxes 

 

These results demonstrate that the AABBs for Doraemon's mesh parts have been successfully 

reconstructed from the 2D coordinates extracted from orthogonal view coordinate systems. 
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5.1.3 3D Primitive Cubes Generation 

 

Figures 5.9 to 5.12 show the primitive cubes had been successfully generated. 

Front view: 

 

 

  

Figure 5.9: Comparing Front Original, Wireframe and Shading of Doraemon Meshes  

 

Left view 

 

 

 

 

Figure 5.10: Comparing Left Original, Wireframe and Shading of Doraemon Meshes   



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    40 
 

Back view: 

 

  

Figure 5.11: Comparing Back Original, Wireframe and Shading of Doraemon Meshes  

 

Right view: 

 

 

 

Figure 5.12: Comparing Right Original, Wireframe and Shading of Doraemon Meshes  
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Figures 5.9 to 5.12 above present the final output of the 3D Doraemon reconstruction generated 

from orthogonal-view images using the proposed algorithm. Each figure in this section is 

organized into three columns: the first column displays the original Doraemon image, the 

second column shows the reconstructed primitive cubes in Blender’s wireframe viewport, and 

the third column presents the shading viewport after mesh positions have been adjusted for 

visibility. 

 

From these results, we observe that AABB data alone is sufficient for generating basic 

primitive shapes such as cubes and cylinders. However, to capture more detailed 3D features 

and improve reconstruction fidelity, additional enhancements are recommended. These include 

incorporating top-view images, analyzing vertex distribution, generating supplementary views, 

and extracting semantic features from the input images. Such improvements would enable more 

accurate reconstruction of local object bounding boxes and finer mesh details 
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5.2 Comparative Results 

The Figures 5.13 and 5.14 below present a comparative analysis of 3D reconstruction outputs 

generated using three different methods: ChatGPT prompt Blender Script with sphere 

primitives (Fig. 5.13, a), OV-CV-BPY without manual post processing (Fig. 5.13.b) and 

Hunyuan3D 2.5 model with 500k faces Multiview option (Fig. 5.13.c) [31]. The Multiview 

option aligns to orthogonal view images. 

 

(a) 

 
(shading viewport) 

 

 
(wireframe viewport) 

(b) 

 
(shading viewport) 

 

 
(wireframe viewport) 

(c) 

 
(shading viewport) 

 

 
(wireframe viewport) 

Statistics 

  
 

Time required 

Within 5 seconds with 

network latency 

Less than 1 second Within 2 minutes with network 

latency 

Figure 5.13: Comparing Mesh Generation Results Part 1 

 

 

 



Bachelor of Computer Science (Honours)  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    43 
 

The Multiview option aligns to orthogonal view images. The figures below show the 

comparison of the results of output using OV-CV-BPY with manual post processing using 

subdivision modifier and grouped symmetry objects (Fig. 5.14.a), and Hunyuan3D 2.5 model 

with 50k faces Multiview option and quad retopology (Fig. 5.14.b) and Hunyuan 3D 3.0 500k 

Multiview option and quad retopology (Fig. 5.14.c) [31]. 

 

(a)Chagpt  

 
(shading viewport) 

 

 
(wireframe viewport) 

 

 
(zoom in) 

(b) 

 
(shading viewport) 

 

 
(wireframe viewport) 

 

 
(zoom in) 

(c) 

 
(shading viewport) 

 

 
(wireframe viewport) 

 

 
(zoom in) 
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Statistics 

   
Time required 

Within 10 minutes, subjected 

to changed for different skill 

levels 
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Figure 5.14: Comparing Mesh Generation Results Part 2 

 

The reconstructed Doraemon mesh aligns well with the problem statement and motivation 

regarding AI-generated meshes. While the geometric details are nearly perfectly reconstructed, 

the mesh lacks part-level segmentation. However, post-processing of the reconstructed mesh 

using the OV-CV-BPY algorithm demonstrates that geometric adjustments can be made with 

ease, indicating strong generalization capability of the algorithm. 

 

As the part-level mesh generation feature offered by Hunyuan3D Studio [31] is not yet publicly 

available for testing, a direct comparison of part-level segmentation results cannot be 

conducted at this time. 

 

Based on the experimental results presented in Sections 5.1.1 to 5.1.3, the primitive cubes 

representing Doraemon have been successfully generated, validating the effectiveness of the 

proposed algorithm. Furthermore, the manual post-processing results in Section 5.2 show that 

the algorithm significantly assists artists by automating the initial placement of primitive 

cubes—traditionally done manually at the world origin—allowing them to focus directly on 

refining geometric details through box modeling techniques. 
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Chapter 6: Conclusion  

 

6.1 Summary of Work 

This thesis presents a comprehensive review of state-of-the-art 3D generative AI models and 

3D reconstruction techniques, as discussed in Chapters 2 and 5. Chapters 3, 4, and 5 detail the 

problem formulation for 3D character reconstruction and introduce the OV-CV-BPY 

algorithm, along with its implementation and evaluation. The proposed algorithm can serve as 

a good starting in building high fidelity geometry from primitive shapes. 

6.2 Challenges 

The primary challenge encountered during this project was the limited GPU computational 

power available on the local machine. This constraint made it infeasible to fine-tune open-

source 3D shape generation models without subscribing to cloud-based computing services, 

which introduces cost and accessibility barriers. 

6.3 Future Work 

Future extensions of the algorithm can benefit significantly from advanced 3D modeling 

expertise. As proficiency in digital modeling increases, users will find it easier to leverage 

scripting techniques to automate modeling tasks. This opens the door to developing 

personalized automation tools or community-driven add-ons that enhance productivity and 

streamline creative workflows  
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