

3D CHARACTER RECONSTRUCTION FROM 2D ORTHOGONAL IMAGES

BY

KOK YUNG THOW

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2025

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

COPYRIGHT STATEMENT

© 2025 Kok Yung Thow. All rights reserved.

This Final Year Project proposal is submitted in partial fulfilment of the requirements for the

degree of Bachelor of Computer Science (Honours) at Universiti Tunku Abdul Rahman

(UTAR). This Final Year Project proposal represents the work of the author, except where due

acknowledgment has been made in the text. No part of this Final Year Project proposal may be

reproduced, stored, or transmitted in any form or by any means, whether electronic,

mechanical, photocopying, recording, or otherwise, without the prior written permission of the

author or UTAR, in accordance with UTAR's Intellectual Property Policy.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Ts Dr Saw Seow

Hui who has given me this bright opportunity to engage in an 3D reconstruction research

project. It is my first step to establish a career in Computer Science field. A million thanks to

you.

To a very special person in my life, Tan Pei Shi, for her patience, unconditional support, and

love, and for standing by my side during hard times. Finally, I must say thanks to my family

for their love, support, and continuous encouragement throughout the course

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

ABSTRACT

The demand for 3D content in games and films has driven the need for more efficient character

modelling workflows. Traditionally, 3D character creation from concept art requires time-

consuming manual modelling and sculpting, followed by retopology, texturing, and rigging.

These processes may need weeks to complete for a single character. While recent AI-based 3D

generation models offer faster alternatives, but lack of fine control over the output and are often

requires extensive post processing to ensure the quality of the mesh.

This research is motivated by the need to support artists in traditional 3D character modelling

workflow that refine the details of mesh from primitive shapes. Instead of fully automating the

modelling process, this project aims to introduce an algorithm that reconstruct primitive cubes

of stylized 3D character from front, left, back and right orthogonal views images by integrating

interactive image segmentation and blender scripting method. This enables a rapid starting

point for geometry detail adjustment using box modelling or digital sculpting techniques.

The project objectives are to: (1) review the existing state-of-arts for solving 3D generation

and reconstruction, (2) design an algorithm capable of reconstructing primitive shapes of 3D

characters from four orthogonal images, optimized for limited computational resources.

This research contributes a flexible and artist-friendly reconstruction algorithm that capable of

generating part-level primitive shapes, which is efficient for generating high-fidelity mesh

using box modelling and digital sculpting techniques. The algorithm can generate primitive

shape from at least two orthogonal view images. The proposed algorithm is organized into

modular stages, allowing artists and developers to further improving the pipeline by integrating

computer vision, AI models and 3D modelling and scripting techniques. Finally, the model’s

performance will be evaluated based on topology quality, editability, and usability. This work

not only improves the character modelling pipeline, but also supports future studies in 3D

reconstruction and digital content creation,

Area of Study: 3D Reconstruction, 3D Digital Modelling

Keywords: Multiview 3D Reconstruction, Artificial Intelligent, Blender Scripting, Orthogonal

View Input, Computer Vision

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

TABLE OF CONTENTS

TITLE PAGE i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES vii

LIST OF SYMBOLS ix

LIST OF ABBREVIATIONS x

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 1

1.3 Project Scope and Direction 1

1.4 Contributions 2

1.5 Report Organization 2

CHAPTER 2 LITERATURE REVIEW 4

2.1 Manual Digital Modelling 4

2.2 3D Reconstruction 4

2.3 Generative AI 6

2.4 Other approaches 9

2.5 Mind map of 3D Reconstruction Technologies 10

2.6 Review of Related Work for Designing Algorithm OV-CV-BPY 11

2.6.1 Segmentation 11

2.6.2 Blender Scripting 11

CHAPTER 3 ALGORITHM 12

3.1 Overview 12

3.1.1 OV-CV-BPY 13

3.1.2 2D Mesh Polygon Mask Segmentation 14

3.1.3 3D Feature Reconstruction 15

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

3.1.4 BPY 3D Mesh Generation 23

CHAPTER 4 EXPERIMENT AND IMPLEMENTATION 24

 4.1 Input Preprocessing 25

 4.2 Polygon Mask Segmentation 27

 4.3 3D Feature Reconstruction 29

4.3.1 Mask Annotations Preprocessing 29

4.3.2 Coordinates Normalization 30

4.3.3 3D Feature Reconstruction 31

 4.4 Mesh Cubes Generation 31

CHAPTER 5 RESULTS AND DISCUSSION 32

5.1 Experimental Results

32

5.1.1 Coordinates Normalization 32

5.1.2 3D AABB Reconstruction 35

5.1.2 3D Primitive Cubes Generation 39

5.2 Comparative Results 42

CHAPTER 6 CONCLUSION 45

6.1 Summary of Work 45

6.2 Challenges 45

6.3 Future Work 45

REFERENCES 46

POSTER 50

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 Showing the option of testing huyuan3D 2.5 7

Figure 2.2 Showing the result of huyuan3D 2.5 Shape before

retopology

7

Figure 2.3 Showing the option of testing huyuan3D 2.5 Shape after

quad retopology

8

Figure 2.4 Showing the option of testing huyuan3D 3.0 Shape after

quad retopology from 500k faces

8

Figure 2.5 Research Mind Map part 1 10

Figure 2.6 Research Mind Map part 2 10

Figure 3.1 Highlighted Head Mesh of Doraemon 12

Figure 3.2 3D Reconstruction System with MV-CV-BPY Algorithm

Overview Block Diagram

13

Figure 3.3 Illustration of Input, Process and Output for Polygon Mask

Segmentation

14

Figure 3.4 3D Features Reconstruction Block 15

Figure 3.5 Illustration of Front View Image Coordinate Normalization 16

Figure 3.6 Illustration of Left View Image Coordinate Normalization 17

Figure 3.7 Illustration of Back View Image Coordinate Normalization 17

Figure 3.8 Illustration of Right View Image Coordinate Normalization 18

Figure 3.9 Illustration of minimum and maximum points 21

Figure 3.10 BPY Mesh Generation Block 23

Figure 4.1 Doraemon Orthogonal View Image Reference by Ashutosh

Kadam

24

Figure 4.2 OV-CV-BPY Algorithm Pseudocode 24

Figure 4.3 Screenshot of editing image 25

Figure 4.4 Four Orthogonal Views of Doraemon 25

Figure 4.5 Illustration of Viewing Resized Image 26

Figure 4.6 Screenshot of Segmenting Polygon Mask of Meshes 27

Figure 4.7 Screenshot of Exporting Annotations 28

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

Figure 4.8 Screenshot of Viewing Annotations JSON file 28

Figure 4.9 Screenshot of Annotations List in JSON file 28

Figure 4.10 Illustration of Annotations List Format 28

Figure 4.11 Pseudocode of Annotations Preprocessing 29

Figure 4.12 Pseudocode of Coordinates Normalization 30

Figure 4.13 Pseudocode of 3D Feature Reconstruction 31

Figure 4.14 Pseudocode of Mesh Cubes Generation 31

Figure 5.1 Front view of Doraemon plot from normalized pixel

coordinates of segmentation

32

Figure 5.2 Left view of Doraemon plot from normalized pixel

coordinates of segmentation

33

Figure 5.3 Back view of Doraemon plot from normalized pixel

coordinates of segmentation

33

Figure 5.4 Right view of Doraemon plot from normalized pixel

coordinates of segmentation

34

Figure 5.5 Front view of Doraemon Plot to Illustrate Bounding Boxes 35

Figure 5.6 Left view of Doraemon Plot to Illustrate Bounding Boxes 36

Figure 5.7 Back view of Doraemon Plot to Illustrate Bounding Boxes 37

Figure 5.8 Right view of Doraemon Plot to Illustrate Bounding Boxes 38

Figure 5.9 Comparing Front Original, Wireframe and Shading of

Doraemon Meshes

39

Figure 5.10 Comparing Left Original, Wireframe and Shading of

Doraemon Meshes

39

Figure 5.11 Comparing Back Original, Wireframe and Shading of

Doraemon Meshes

40

Figure 5.12 Comparing Right Original, Wireframe and Shading of

Doraemon Meshes

40

Figure 5.13 Comparing Mesh Generation Results Part 1 42

Figure 5.14 Comparing Mesh Generation Results Part 2 43,44

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF SYMBOLS

𝐶 Character

m Mesh

x x axis point

y y axis point

z Z axis point

𝐻𝑐𝑎𝑟𝑡 horizontal component in Cartesian coordinate system

𝑉𝑐𝑎𝑟𝑡 vertical component in Cartesian coordinate system

W width or height or a square image

𝑓 front view image

𝑙 left view image

𝑏 back view image

𝑟 right view image

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF ABBREVIATIONS

3D Three dimensional

2D Two dimensional

AI Artificial Intelligent

CNN Convolutional Neural Network

OV-CV-BPY Orthogonal View – Computer Vision – Blender Python

API Application Programming Interface

AABB Axis-Aligned Bounding Box

NDC Normalized Device Coordinates

SAM Segment Anything Model

min Minimum

max Maximum

pixel Image Coordinates

Cart Cartesian Coordinates

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1: Introduction

This chapter provides project’s problem statement and motivation, objectives, scope,

contributions and the organization of the report.

1.1 Problem Statement and Motivation

This section presents the core challenges addressed in the project and the motivation behind

them:

• Traditional 3D modeling techniques remains essential for character modeling,

especially in real time rendering and animation workflows, which requires manual

detail refinement on primitive shapes is often more efficient than working with high

polygon meshes generated by AI models.

• The existing 3D shape generation models can reconstruct 3D characters from few

images but requires intensive post adjustment manually on the topology from

professionals to ensure the further usability of the output.

• The existing generative AI models can solve 3D object reconstruction on static for 3D

printing objects well but lack focus on characters for 3D animation which requires clean

topology and UV texture mapping.

1.2 Objectives

The aim of this project is to provide a review on current 3D shape generation methods and

explore the integration of computer vision and script-based digital modeling techniques to

contribute on interactive 3D reconstruction approach that improve manual 3D character

modeling workflows.

The specific objectives are:

• To review the existing state-of-arts for solving 3D generation and reconstruction.

• To design an algorithm capable of reconstructing primitive shapes of 3D characters

from four orthogonal images, optimized for limited computational resources.

1.3 Project Scope

• The term “3D character” mentioned in this project refers to stylish characters, not

photorealistic human characters.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

• This thesis covers a review of related work on solving 3D object reconstruction or

generation from synthesis data like images and text. While the focus is on stylized

characters and general 3D shapes.

• An interactive OV-CV-BPY algorithm is introduced to reconstructs part-level primitive

cubes of stylized characters from front, left, back and right 2D orthogonal view images

without relying on pre-trained 3D models.

1.4 Contributions

Automation in 3D digital modeling has long been a goal for developers and artists. Current

advances in 3D diffusion transformer AI models can generate high detailed shapes and textures

from minimal input, such as single or descriptive text prompts. These models inherit the 2D

generative AI models that can learn 3D representations from point clouds, meshes, and other

explicit formats by encoding them into implicit 3D structures. This research presents a review

of these state-of-arts methods.

When a diffusion model received a prompt, it iteratively denoises and synthesizes novel object

views, decoding them into a final 3D shape. However, this process is computationally intensive

and often produce outputs that require post-processing like topology cleanup and polygon

counts reduction before they are usable in animation process.

This research demonstrates the feasibility of assisting 2D and 3D artiest in converting

orthogonal-view concept art into low-fidelity primitive 3D shapes using an interactive

segmentation-based approach. These reconstructions serve as quick starting point for manual

refinement, improving the traditional stylized character modeling process by adjust the scale

of character’s parts in the modeling process. This project contributes a lightweight,

performance-balanced method for 3D reconstruction tasks.

1.5 Report Organization

Chapter 2 provides reviews on current state-of-arts in 3D object reconstruction and generation,

and review on related work when exploring the possibility of lightweight and performance

trade off solution. Chapter 3 introduces the designed algorithm that reconstruct primitive

shapes from orthogonal view images. Chapter 4 reports the high-level design of algorithm

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

implementation. Chapter 5 reports the experimental results, and the validity and generality

justification on the designed solution.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

Chapter 2: Literature Review

This section introduces the review of technologies in solving 3D shape generation and

reconstruction and the review of related work on designing OV-CV-BPY algorithm.

2.1 Manual Digital Modelling

There are two main handcraft approaches in 3D character modeling using software in current

3A game’s industry standard, including polygonal or box modeling, and 3D sculpting.

Polygonal Modelling

Polygonal Modelling refers to a method of modeling a character or object by manually

adjusting the vertices, edges, faces of the geometry shape or polygons using 3D software like

Blender and ZBrush. This method provides full control of creating 3D character surface,

defined by mesh, a collection of vertices, edges, and faces. It enables artists to create good

topology mesh, and the format of the mesh such as glb. can be supported across 3D software

like 3Ds Max, and Maya, and it is flexible for rigging and animation in producing animation

films and 3D games. However, the speed of modeling depends on an artist’s skills. It is time-

consuming to model a complex shape such as realistic human characters or any irregular

organic shapes.

3D Sculpting Modelling [3]

Sculpting modeling is a method that is similar to sculpting real clay. 3D artists use brushes to

push, pull, and smooth the digital mesh instead of working with polygon faces. This method is

a common way to model 3D characters in 3A games and films. It allows 3D artists to create

high-detail shapes and irregular organic shapes with a natural workflow. However, since

sculpting modeling deals with high-resolution mesh, retopology needs to be performed by

artists before importing them into real-time applications to ensure rendering optimization.

Sculpting modeling requires highly skilled 3D artists, and it is time-consuming when modeling

very high-resolution characters, such as monsters, and non-human characters.

2.2 3D Reconstruction

3D reconstruction is an automatic task that reconstructs structures of an object or a scene from

real-world captured data. Traditionally, this task mainly solving reconstructing objects from

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

images captured by cameras or sensors. As generative AI become popular recently, 3D

reconstruction techniques like structure from motion is adapted in innovative trained systems

that reconstruct or generate 3D objects from fewer images. Most of the 3D reconstruction

systems are usually used to reconstruct complex objects such as statues, buildings, or a large-

scale environment from calibrated images, which are commonly used in 3A video games and

movies.

Photogrammetry [11, 12, 14]

Photogrammetry refers to an image based contactless 3D reconstruction method that

reconstructs 3D models by analyzing multiple 2D photographs or images taken from different

angles and then reconstructing the depth and the surface structure. Photogrammetry can

reconstruct 3D models with very high details and realistic textures. Additionally, compared to

polygonal modeling and sculpting modeling, it is more accessible since only standard cameras

or smartphones are needed. However, photogrammetry is computationally expensive in terms

of CPU computation and processing time and requires many good coverage images to

reconstruct high-accuracy models. Lastly, it is sensitive to lighting, such that the capturing

environment needs to be controlled when reconstructing models from real humans, else there

will be many noisy results that may need to be cleaned in 3D software. There are some common

applications available for photogrammetry are Polycam, Meshroom, COLMAP [11, 12],

RealityCapture and 3D scanning devices.

Implicit Representations

Nerf [4, 5, 6, 14] and 3D Gaussian Splatting [7, 8, 14] are new methods that solve the

limitations of photogrammetry, such as time-consuming processing time and the need for

intensive images as input, and lighting sensitivity problems. Both of the methods can

reconstruct 3D models with few images, and the result is very realistic very fast, and can

reconstruct class, water, and reflections which photogrammetry cannot. This can be achieved

by combining the implicit representations of 3D objects with deep learning and generative AI.

However, Nerf and 3D Gaussian Splatting need to be trained before they can reconstruct

objects from images.

Nerf is the first 3D reconstruction that adapted deep learning in reconstructing objects from a

few images after being trained with multi-view images of an object. It reconstructs the object

as a neural field, not in the form of point clouds or meshes, thus artists cannot edit the shape of

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

the reconstructed object, and due to its limitation in real-time rendering, 3D Gaussian Splatting

overcomes this issue.

In the 3D Gaussian Splatting reconstruction pipeline, the point clouds reconstructed are

represented in 3D Gaussian, and cannot be edited directly, the visual output is rendered using

rasterization, which is much faster than Nerf that using ray tracing rendering. In conclusion,

3D Gaussian splatting can support real-time rendering. However, these new representation-

based methods do not support the post-refinement of the reconstructed object.

Although there are methods to convert this implicit representation into glb. mesh format, the

post-manual refinement of the model by the artist using sculpting, and retopology is inevitable.

2.3 Generative AI

Automatic 3D Shape Generation Model

The rise of diffusion models, transformers and GANs accelerated the development of 3D shape

generation tasks, including creating 3D characters or objects. For example, open-sourced 3D

shape generation models such as Unique3D [18] and Hunyuan3D [19] can generate 3D mesh

from a single image, and the quality is very high with less time required compared to 3D

reconstruction methods. These models often utilize a multi-view synthesis diffusion model

from a single image. Recently, [hunyuan3D studio] presents a platform that provides end-to-

end pipelines in 3D assets generation such as automates part-level 3D shape generation, mesh

polygon generation and semantic UV that is ready for production.

However, the final result cannot be controlled, and the quality will drop dramatically when

reconstructing complex objects such as full-body characters. This may be due to the limited

trained dataset. Besides, the size of a full-body character will be reduced when the mesh is

reconstructed. The reconstructed mesh often has poor details in terms of soft edges and hard

edges when reconstructing complex details character. This motivated the proposed method,

which integrates segmentation when reconstructing the character, such that the artist can

perform preprocessing in controlling the final output of the 3D model.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

The figures (Figure 2.1 to 2.4) below show the review of closed model of hunyuan3D [31],

which are Hunyuan3D 2.5 and Hunyuan 3D 3.0.

Figure 2.1: Showing the option of testing huyuan3D 2.5

Figure 2.2: Showing the result of huyuan3D 2.5 Shape before retopology

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

Figure 2.3: Showing the option of testing huyuan3D 2.5 Shape after quad retopology

Figure 2.4: Showing the option of testing huyuan3D 3.0 Shape after quad retopology from

500k faces

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

2.4 Other approaches

Interactive system in 3D modeling

[14] propose a method that allows artists to manually annotate the orthogonal view image when

modeling the characters with generative shapes. This can improve the workflow of modeling

characters.

Automated single view reconstruction with computer vision approach

[15] proposed a method to reconstruct a character from a single view image into the textured

mesh. It adapts skeletonization [17] to reconstruct the skeleton of the character from the image

input outline, and mesh is generated based on the skeleton, finally using a texturing algorithm

to generate the final output. This method skips the need for a training model, but it performs

badly when reconstructing characters with poses, covered by clothes, and with equipment.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

2.5 Mind map of 3D Reconstruction Technologies

Figure 2.5: Research Mind Map part 1

Figure 2.6: Research Mind Map part 2

Figures 2.5 and 2.6 show the 3D reconstruction techniques mind map.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

2.6 Review of Related Work for Designing Algorithm OV-CV-BPY

This section presents a review of relevant literature that informed the design of the OV-CV-

BPY algorithm, which addresses the challenge of 3D character reconstruction from orthogonal-

view images. A detailed overview of the algorithm is provided in Chapter 3.1.

2.6.1 Segmentation

SAM 2 [25] is employed for interactive image segmentation. This pre-trained model plays a

key role in the segmentation phase of the OV-CV-BPY pipeline, enabling precise region

extraction from orthogonal views with minimal user input.

2.6.2 Blender Scripting

Blender’s scripting capabilities [26] allow for the procedural generation of 3D shapes with

clean topology using its Python API [27]. Built-in operations and modifiers support detailed

geometry refinement, which is essential for skilled artists working on stylized character

models. The Python API also empowers developers to contribute to the Blender ecosystem by

creating add-ons and automation tools, helping the community evolve through continuous

updates and enhancements.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

Chapter 3: Algorithm

This chapter discuss the problem formulation of the research question/problem. Next, OV-CV-

BPY algorithm is introduced to reconstruct character’s primitive shapes from four orthogonal

view images.

3.1 Overview

This section introduces how the 3D character reconstruction from orthogonal images problem

is formulated.

1. Let Character c is composition of “mesh” shapes: m1, m2, …, mn.

2. Hence, 𝑚𝑒𝑠ℎ = {(𝑥𝑛, 𝑦𝑛, 𝑧𝑛) | 𝑛 =

 1, 2, . . . , 𝑁} 𝑤ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

The Figure 3.1 below is the illustration of a Doraemon character composited by meshes and

the highlighted head mesh with naming m8.

Figure 3.1: Highlighted Head Mesh of Doraemon

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

3.1.1 OV-CV-BPY

This section provides an overview of the OV-CV-BPY algorithm, which is designed to

reconstruct part-level 3D primitive cubes from four orthogonal-view images: front, left, back,

and right. These input images are assumed to have a 1:1 width-to-height ratio.

The algorithm targets the reconstruction of stylized character shapes using primitive geometry,

serving as a foundation for box modeling workflows commonly used in character design. It is

composed of four main stages: Image Preprocessing, 2D Mesh Polygon Mask

Segmentation, 3D Feature Reconstruction, BPY 3D Mesh Generation.

The input to the algorithm is a set of four orthogonal-view images. The final output is a Blender

file containing the reconstructed character meshes, ready for further refinement and detailing.

The Figure 3.2 below shows the block diagram of the OV-CV-BPY algorithm.

Figure 3.2: 3D Reconstruction System with MV-CV-BPY Algorithm Overview Block

Diagram

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

3.1.2 2D Mesh Polygon Mask Segmentation

This section describes how the mesh 2D polygon mask segmentation step of the OV-CV-BPY

algorithm being implemented via CVAT [28] tool to solve the question. The Figure 3.3 below

shows the required input of the step and the output of the step implementation.

Figure 3.3: Illustration of Input, Process and Output for Polygon Mask Segmentation

After the input images are resized, the next step in the pipeline is segmentation. There are three

common approaches to segmentation: automatic, manual, and semi-automatic. This project

adopts a semi-automatic, interactive method known as Interactive Shape Segmentation, which

leverages the AI-powered segmentation tool in CVAT using the SAM 2 model [25].

The goal of this step is to segment and annotate the individual parts of the character from each

orthogonal view. The output is a COCO-format annotation JSON file containing structured

data for each character part. These parts—referred to as “objects” in segmentation

terminology—are labeled with the class name mesh, as introduced in Section 3.1. This labeling

enables consistent mapping of mesh objects across orthogonal views, as discussed in Section

3.2.3. The implementation details are provided in Section 4.2.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

3.1.3 3D Feature Reconstruction

This section introduces the 3D Feature Reconstruction block, which comprises a set of

procedures that transform mesh object annotations—obtained from the 2D Mesh Polygon

Mask Segmentation step (Section 3.2.2)—into 3D axis-aligned bounding boxes (AABBs).

Each AABB encodes the spatial dimensions and position of a character’s part mesh, serving as

a geometric approximation of its volume.

The result of this object mapping process is a structured collection of mesh data, which acts as

the input for generating primitive subdivided cubes in the Blender scripting block. The Figure

3.4 below illustrates the object mapping workflow within the overall algorithm architecture

Figure 3.4: 3D Features Reconstruction Block

The output of this block is the mesh 3D features. It stores a pair of minimum 3D coordinate

and maximum 3D coordinate. The data serves as the input of BPY 3D Mesh Generation (Sec.

3.2.4) block.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

Numbered list below is the breakdown of 3D shape feature reconstruction block:

1. Preprocess and groups polygon mask annotations of mesh parts

2. Normalize mesh parts coordinates

3. Reconstructs 3D AABB

Polygon mask annotations preprocessing

This step organizes the polygon masks of character mesh parts by grouping annotations with

the same name across different orthogonal views. For each mesh object, the segmentation

coordinates from all available views are collected and stored. For example, if a mesh named

“head” is segmented in the front, left, back, and right views, the system will associate four

distinct segmentations with the “head” mesh object.

Coordinates Normalization

Following annotation preprocessing, the next step is to normalize the image coordinates within

each segmentation. This involves mapping pixel-based image coordinates to a normalized

Cartesian coordinate system specific to each orthogonal view. Figures 3.5 to 3.8 below

illustrates how pixel coordinates are transformed into orthogonal view-aligned Cartesian

coordinates, enabling consistent spatial interpretation across views.

Front View:

Figure 3.5: Illustration of Front View Image Coordinate Normalization

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

Left View:

Figure 3.6: Illustration of Left View Image Coordinate Normalization

Back View

Figure 3.7: Illustration of Back View Image Coordinate Normalization

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

Right View

Figure 3.8: Illustration of Right View Image Coordinate Normalization

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

Formula 2 defines the method for normalizing image coordinates into Cartesian coordinates

aligned with orthogonal views. This transformation converts the pixel-based segmentation

coordinates of mesh parts into a consistent spatial representation across the front, left, back,

and right views. The normalization assumes that all input images share equal width and height

dimensions.

To achieve this, Formula 2 adapts the OpenGL viewport transformation (originally presented

in Formula 1 [29]), which is commonly used to convert vertex positions from normalized

device coordinates (NDC) to window space. By repurposing this transformation, the algorithm

ensures that image coordinates are accurately mapped into orthogonal Cartesian space for

further 3D reconstruction.

Formula 1:

𝑥𝑤 =
𝑤𝑖𝑑𝑡ℎ

2
∗ 𝑥𝑛𝑑𝑐 + 𝑥 +

𝑤𝑖𝑑𝑡ℎ

2
 Formula 1

Where 𝑥𝑤 is 𝑥 in window space, 𝑥𝑛𝑑𝑐 is 𝑥 vertex in NDC space. Since the width and height of

source images are in 1:1 ration in this algorithm (Sec. 3.1) The section below describes the

adaption of Formula 1 in formulating equation 2 and 3.

Defining Formula 2 - 5:

For front and back views,

Let:

𝑥𝑛𝑑𝑐 = 𝑦𝑐𝑎𝑟𝑡, the first number of a coordinate of a mesh in 𝑦𝑧 Cartesian coordinate system.

𝑥𝑤 = 𝑦𝑝𝑖𝑥𝑒𝑙, the first value of an image coordinate of a mesh segmentation mask in image.

𝑥𝑛𝑑𝑐 = 𝑧𝑐𝑎𝑟𝑡, the second number of a coordinate of a mesh in 𝑦𝑧 Cartesian coordinate

system.

𝑥𝑤 = 𝑧𝑝𝑖𝑥𝑒𝑙 the second value of an image coordinate of a mesh segmentation mask in

image.

𝑝𝑖𝑥𝑒𝑙𝑦𝑧 = Segmentation of a mesh in front and back view is a list of number with N size

𝑐𝑎𝑟𝑡𝑦𝑧 = yz coordinates of a mesh in front and back view is a list of number with N size.

Subject to:

𝑝𝑖𝑥𝑒𝑙𝑦𝑧 = {(𝑦𝑝𝑖𝑥𝑒𝑙 𝑖 , 𝑧𝑝𝑖𝑥𝑒𝑙 𝑖) | 𝑖 = 1, 2, . . . , 𝑁} Formula 2

𝑐𝑎𝑟𝑡𝑦𝑧 = {(𝑦𝑐𝑎𝑟𝑡 𝑖 , 𝑧𝑐𝑎𝑟𝑡 𝑖) | 𝑖 = 1, 2, . . . , 𝑁} Formula 3

For left and right view,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

Let:

𝑥𝑛𝑑𝑐 = 𝑥𝑐𝑎𝑟𝑡, the first number of a coordinate of a mesh in 𝑥𝑧 Cartesian coordinate system.

𝑥𝑤 = 𝑥𝑝𝑖𝑥𝑒𝑙, the first value of an image coordinate of a mesh segmentation mask in image.

𝑥𝑛𝑑𝑐 = 𝑧𝑐𝑎𝑟𝑡, the second number of a coordinate of a mesh in 𝑥𝑧 Cartesian coordinate

system.

𝑥𝑤 = 𝑧𝑝𝑖𝑥𝑒𝑙 the second value of an image coordinate of a mesh segmentation mask in

image.

𝑝𝑖𝑥𝑒𝑙𝑥𝑧 = Segmentation of a mesh in front and back view is a list of number with N size

𝑐𝑎𝑟𝑡𝑥𝑧 = xz coordinates of a mesh in front and back view is a list of number with N size.

Subject to:

𝑝𝑖𝑥𝑒𝑙𝑥𝑧 = {(𝑥𝑝𝑖𝑥𝑒𝑙 𝑖 , 𝑧𝑝𝑖𝑥𝑒𝑙 𝑖) | 𝑖 = 1, 2, . . . , 𝑁} Formula 4

𝑐𝑎𝑟𝑡𝑥𝑧 = {(𝑥𝑐𝑎𝑟𝑡 𝑖 , 𝑧𝑐𝑎𝑟𝑡 𝑖) | 𝑖 = 1, 2, . . . , 𝑁} Formula 5

Hence,

For Formula 6 and 7

Let:

 𝐻𝑐𝑎𝑟𝑡 = horizontal component in Cartesian coordinate system

 𝑉𝑐𝑎𝑟𝑡 = vertical component in Cartesian coordinate system

 W = width or height or a square image

 𝑓 = front view image

 𝑙 = left view image

 𝑏 = back view image

 𝑟 = right view image

Subject to:

 𝐻𝑐𝑎𝑟𝑡 = {

2 𝐻𝑝𝑖𝑥𝑒𝑙

𝑊
 − 1, 𝑤ℎ𝑒𝑛 𝐻𝑝𝑖𝑥𝑒𝑙 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑓 𝑜𝑟 𝑙, 𝑤𝑖𝑡ℎ {

𝐻 = 𝑦 𝑓𝑜𝑟 𝑓
𝐻 = 𝑥 𝑓𝑜𝑟 𝑙

(
2 𝐻𝑝𝑖𝑥𝑒𝑙

𝑊
 − 1) ∗ −1, 𝑤ℎ𝑒𝑛 𝐻𝑝𝑖𝑥𝑒𝑙 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑓 𝑜𝑟 𝑙, 𝑤𝑖𝑡ℎ {

𝐻 = 𝑦 𝑓𝑜𝑟 𝑏
𝐻 = 𝑥 𝑓𝑜𝑟 𝑟

Formula 6

𝑉𝑐𝑎𝑟𝑡 = 1 −
2 𝑉𝑝𝑖𝑥𝑒𝑙

𝑊
 , 𝑤ℎ𝑒𝑛 𝑉𝑝𝑖𝑥𝑒𝑙 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑓, 𝑙, 𝑏, 𝑟 Formula 7

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

3D AABB Reconstruction

This step focuses on reconstructing the 3D axis-aligned bounding boxes (AABBs) of character

mesh objects using their Cartesian coordinates extracted from orthogonal views. An AABB

defines the spatial extent of a 3D mesh by encapsulating it within a box aligned to the

coordinate axes. This geometric feature is essential for generating primitive cubes that

represent individual character parts.

The reconstruction process relies on identifying a pair of 3D points: the minimum and

maximum coordinates along each axis. These two points define the bounds of the mesh object.

The equations for this reconstruction are presented in this section. The Figure 3.9 below

illustrates the bounding box defined by these two points, highlighted with blue annotations.

Figure 3.9: Illustration of minimum and maximum points

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

Formula 8 to 14,

Let:

 𝑁 = total numbers of 2D orthogonal view cartesian coordinates of a mesh

mesh = a set of 3D coordinates or vertices of a character’s part.

𝑥𝑚𝑖𝑛 = smallest 𝑥𝑛 in set of 𝑁 𝑥 coordinates

𝑥𝑚𝑎𝑥 = largest 𝑥𝑛 in set of 𝑁 𝑥 coordinates

𝑦𝑚𝑖𝑛 = smallest 𝑦𝑛 in set of 𝑁 𝑦 coordinates

𝑦𝑚𝑎𝑥 = largest 𝑦𝑛 in set of 𝑁 𝑦 coordinates

𝑧𝑚𝑖𝑛 = smallest 𝑧𝑛 in set of 𝑁 𝑧 coordinates

𝑧𝑚𝑎𝑥 = largest 𝑧𝑛 in set of 𝑁 𝑧 coordinates

𝐴𝐴𝐵𝐵𝑚𝑒𝑠ℎ = represented by a pair of minimum and maximum 3D coordinates of a mesh

Subject to:

𝑥𝑚𝑖𝑛 =
𝑚𝑖𝑛

1 ≤ 𝑛 ≤ 𝑁
(𝑥𝑛) Formula 8

 𝑥𝑚𝑎𝑥 =
𝑚𝑎𝑥

1 ≤ 𝑛 ≤ 𝑁
(𝑥𝑛) Formula 9

𝑦𝑚𝑖𝑛 =
𝑚𝑖𝑛

1 ≤ 𝑛 ≤ 𝑁
(𝑦𝑛) Formula 10

 𝑦𝑚𝑎𝑥 =
𝑚𝑎𝑥

1 ≤ 𝑛 ≤ 𝑁
(𝑦𝑛) Formula 11

𝑧𝑚𝑖𝑛 =
𝑚𝑖𝑛

1 ≤ 𝑛 ≤ 𝑁
(𝑧𝑛) Formula 12

 𝑧𝑚𝑎𝑥 =
𝑚𝑎𝑥

1 ≤ 𝑧 ≤ 𝑁
(𝑧𝑛) Formula 13

𝐴𝐴𝐵𝐵𝑚𝑒𝑠ℎ = {(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛), (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥)} Formula 14

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

3.1.4 BPY 3D Mesh Generation

This section outlines the formulation for generating primitive cubes for each mesh object, based

on the minimum and maximum 3D coordinates obtained through reconstruction (see Formula

14). These coordinates define the axis-aligned bounding box (AABB) for each mesh part,

which serves as the geometric basis for cube generation.

Figure 3.10: BPY Mesh Generation Block

Figure 3.10 illustrates the BPY 3D Mesh Generation block, which is the final stage of the OV-

CV-BPY algorithm. In this stage, the reconstructed 3D features are translated into primitive

cubes using Blender’s Python scripting interface. The implementation details of this process

are discussed in Chapter 4.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

Chapter 4: Experiment and Implementation

This section presents the implementation details of the algorithm described in Section 3.2,

demonstrated through an example of reconstructing a 3D mesh of the character Doraemon

using orthogonal-view images. The orthogonal concept art used in this demonstration was

created by artist Ashutosh Kadam and sourced from his published artwork [25], as shown in

Figure 4.1.

Figure 4.1: Doraemon Orthogonal View Image Reference by Ashutosh Kadam

The Figure 4.2 below illustrates the input and output of OV-CV-BPY modules to reconstructs

Doraemon in pseudocode.

Algorithm 1 3D_Reconstruction using OV_CV_BPY Overview

Requires: Orthogonal images of target character

 Step 1: Orthogonal Images Input Processing (Chapter 4.1)

 - output: 608*608 size images

 Step 2: 2D Mesh Polygon Mask Segmentation (Chapter 4.2)

 - output: Json file contains annotations of Polygon Mask

 Step 3: 3D feature Reconstruction (Chapter 4.3):

 - output: Json file contains 3D AABB points of meshes

 Step 4: BPY 3D Mesh Generation (Chapter 4.4):

 - output: Blender file contains character primitive cubes of meshes

Return: Blender file contains target character meshes

Figure 4.2: OV-CV-BPY Algorithm Pseudocode

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

4.1 Input Preprocessing

The orthogonal-view image of Doraemon was cropped into four separate images—one for each

view (front, left, back, and right)—with the background removed. This preprocessing was

performed using the online photo editor Photopea, which supports layer-based editing and

transparent backgrounds. A sample screenshot of the editing process is shown in Figure 4.3.

Figure 4.3: Screenshot of editing image

Figure 4.4: Four Orthogonal Views of Doraemon

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

A simple Streamlit application [30] was developed to provide a graphical user interface (GUI)

for uploading and resizing orthogonal-view images. This tool streamlines the preprocessing

step by allowing users to interactively adjust image dimensions before segmentation. Figure

4.4 displays a screenshot of the resized Doraemon images across the four orthogonal views.

Figure 4.5 presents the resized front view image (front view.png) of Doraemon.

Figure 4.5: Illustration of Viewing Resized Image

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

4.2 Polygon Mask Segmentation

This section demonstrates the process of segmenting parts of Doraemon using CVAT. Only

one label class named “mesh” with attributes “name” and “view” used when implementing

interactive 2D polygon masks segmentation with CVAT. Figure 4.6 shows a screenshot of the

segmentation interface in the CVAT workspace, highlighting the annotated front view of

Doraemon.

Figure 4.6: Screenshot of Segmenting Polygon Mask of Meshes

Figure 4.6 shows a highlighted polygon region—formally referred to as an object—assigned

the label class "mesh" with an ID of 18. The associated attributes, “name” and “view” are used

to track the shape of Doraemon across orthogonal perspectives. These attributes play a crucial

role in constructing the final annotation JSON file, which serves as input to the 3D feature

reconstruction module (see Section 3.1.3).

In this example, Figure 4.6 illustrates the object labelled with name = "head" and view =

"front". Figure 4.7 also shows the CVAT workspace during the export process, where the

annotated dataset is saved in COCO 1.0 format under the filename demo_doraemon.zip. After

downloading and extracting the dataset, Figure 4.8 presents the file explorer view of the

exported JSON file. Finally, Figure 4.10 demonstrate how an individual object from the JSON

file in Figure 4.9 can be visualized by uploading it to ChatGPT for inspection

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

Figure 4.7: Screenshot of Exporting Annotations

Figure 4.8: Screenshot of Viewing Annotations JSON file

Figure 4.9: Screenshot of Annotations List in JSON file

Figure 4.10: Illustration of Annotations List Format

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

4.3 3D Feature Reconstruction

4.3.1 Mask Annotations Preprocessing

The Figure 4.11 below shows the pseudocode for preprocess annotations to track unique

mesh objects from views and store the corresponding segmentations:

Annotations Preprocessing

Requires: 2D polygon mask of mesh annotation json file

 Initialize a mesh dictionary such that for each mesh name, store:

 A set of unique views

 A dictionary of segmentations per view

 A placeholder for AABB (min/max coordinates)

 Load JSON data from the given path

 Extract list of annotations from the JSON

 For each annotation entry:

 Extract mesh name, view label, and segmentation data

 IF mesh name is missing: Skip this entry

 IF view already exists for this mesh: Skip to avoid duplicates

 ELSE:

 Add view to mesh_dictionary[name]["views"]

 Append segmentation data to mesh_dict[name]["segmentations"][view]

Return the populated mesh_dictionary

Figure 4.11: Pseudocode of Annotations Preprocessing

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

4.3.2 Coordinates Normalization

The Figure 4.12 below shows the pseudocode of preprocess segmentations’ function: map

pixel coordinates of segmentation to cartesian coordinates:

 Preprocess Segmentations

Requires: mesh_dict, img_width:

 1. Define a mapping of view labels to transformation functions:

 - "front" and "left" → use front-left mapping function

 - "back" and "right" → use back-right mapping function

 - Each function receives img_width as a parameter

 2. FOR each mesh in mesh_dict:

 a. FOR each view and its segmentations:

 i. IF view has a corresponding transformation function:

 - Apply the transformation to the segmentations

 - Update mesh_dict with transformed segmentations

 ii. ELSE:

 - Print warning that no mapping function exists for this view

 Returns: updated mesh_dict

Figure 4.12: Pseudocode of Coordinates Normalization

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

4.3.3 3D Feature Reconstruction

Figure 4.13 below shows the pseudocode that reconstructs 3D feature of mesh from Cartesian

coordinates of mesh.

Reconstructs 𝑨𝑨𝑩𝑩𝒎𝒆𝒔𝒉

Requires: mesh dictionary

Strat:

For each mesh in mesh dictionary:

 Identify the total number of orthogonal view coordinates set of a mesh

 Group y components of first index of front and back views coordinates set

 Group x components of first index of left and right views coordinates set

 Group z components of second index of all views coordinate set

 Compute 𝐴𝐴𝐵𝐵𝑚𝑒𝑠ℎ = (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛), (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥)

Returns: 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥

Figure 4.13: Pseudocode of 3D Feature Reconstruction

4.4 Mesh Cubes Generation

Figure 4.14 below shows the pseudocode that generate primitive cubes for mesh AABB data.

Generates 𝑴𝒆𝒔𝒉 𝑪𝒖𝒃𝒆𝒔

Requires: JSON file with AABB data of meshes

Start:

Load AABB data from JSON file

Clean all objects in Blender workspace

For each of the mesh:

Extract - 𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥

Calculate center point of AABB

Calculate size of AABB

Add a cube at origin

Rename cube using mesh name

Scale cube to match AABB size

Move cube to AABB center

Return: Save blend file that contains the meshes

Figure 4.14: Pseudocode of Mesh Cubes Generation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

Chapter 5: Results and Discussion

5.1 Experimental Results

5.1.1 Coordinates Normalization

Figures 5.1 to 5.4 below show the Doraemon plots from each orthogonal view.

Front view:

Figure 5.1: Front view of Doraemon plot from normalized pixel coordinates of segmentation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

Left View:

Figure 5.2: Left view of Doraemon plot from normalized pixel coordinates of segmentation

Back View:

Figure 5.3 Back view of Doraemon plot from normalized pixel coordinates of segmentation

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

Right View

Figure 5.4: Right view of Doraemon plot from normalized pixel coordinates of segmentation

The plots shown in Figures 5.1 to 5.4 demonstrate the effectiveness of the coordinate

normalization process, which successfully converts image-based segmentation coordinates into

their corresponding Cartesian coordinates for each orthogonal view.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

5.1.2 3D AABB Reconstruction

Figures 5.5 to 5.8 show the experimental results of reconstructing AABB of the meshes

Front view

Figure 5.5: Front view of Doraemon Plot to Illustrate Bounding Boxes

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

Left view

Figure 5.6: Left view of Doraemon Plot to Illustrate Bounding Boxes

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

Back view

Figure 5.7: Back view of Doraemon Plot to Illustrate Bounding Boxes

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

Right View

Figure 5.8: Right view of Doraemon Plot to Illustrate Bounding Boxes

These results demonstrate that the AABBs for Doraemon's mesh parts have been successfully

reconstructed from the 2D coordinates extracted from orthogonal view coordinate systems.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

5.1.3 3D Primitive Cubes Generation

Figures 5.9 to 5.12 show the primitive cubes had been successfully generated.

Front view:

Figure 5.9: Comparing Front Original, Wireframe and Shading of Doraemon Meshes

Left view

Figure 5.10: Comparing Left Original, Wireframe and Shading of Doraemon Meshes

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

Back view:

Figure 5.11: Comparing Back Original, Wireframe and Shading of Doraemon Meshes

Right view:

Figure 5.12: Comparing Right Original, Wireframe and Shading of Doraemon Meshes

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

Figures 5.9 to 5.12 above present the final output of the 3D Doraemon reconstruction generated

from orthogonal-view images using the proposed algorithm. Each figure in this section is

organized into three columns: the first column displays the original Doraemon image, the

second column shows the reconstructed primitive cubes in Blender’s wireframe viewport, and

the third column presents the shading viewport after mesh positions have been adjusted for

visibility.

From these results, we observe that AABB data alone is sufficient for generating basic

primitive shapes such as cubes and cylinders. However, to capture more detailed 3D features

and improve reconstruction fidelity, additional enhancements are recommended. These include

incorporating top-view images, analyzing vertex distribution, generating supplementary views,

and extracting semantic features from the input images. Such improvements would enable more

accurate reconstruction of local object bounding boxes and finer mesh details

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

5.2 Comparative Results

The Figures 5.13 and 5.14 below present a comparative analysis of 3D reconstruction outputs

generated using three different methods: ChatGPT prompt Blender Script with sphere

primitives (Fig. 5.13, a), OV-CV-BPY without manual post processing (Fig. 5.13.b) and

Hunyuan3D 2.5 model with 500k faces Multiview option (Fig. 5.13.c) [31]. The Multiview

option aligns to orthogonal view images.

(a)

(shading viewport)

(wireframe viewport)

(b)

(shading viewport)

(wireframe viewport)

(c)

(shading viewport)

(wireframe viewport)

Statistics

Time required

Within 5 seconds with

network latency

Less than 1 second Within 2 minutes with network

latency

Figure 5.13: Comparing Mesh Generation Results Part 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

The Multiview option aligns to orthogonal view images. The figures below show the

comparison of the results of output using OV-CV-BPY with manual post processing using

subdivision modifier and grouped symmetry objects (Fig. 5.14.a), and Hunyuan3D 2.5 model

with 50k faces Multiview option and quad retopology (Fig. 5.14.b) and Hunyuan 3D 3.0 500k

Multiview option and quad retopology (Fig. 5.14.c) [31].

(a)Chagpt

(shading viewport)

(wireframe viewport)

(zoom in)

(b)

(shading viewport)

(wireframe viewport)

(zoom in)

(c)

(shading viewport)

(wireframe viewport)

(zoom in)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

Statistics

Time required

Within 10 minutes, subjected

to changed for different skill

levels

Within 5 minutes with

network latency

Within 5 minutes with

network latency

Figure 5.14: Comparing Mesh Generation Results Part 2

The reconstructed Doraemon mesh aligns well with the problem statement and motivation

regarding AI-generated meshes. While the geometric details are nearly perfectly reconstructed,

the mesh lacks part-level segmentation. However, post-processing of the reconstructed mesh

using the OV-CV-BPY algorithm demonstrates that geometric adjustments can be made with

ease, indicating strong generalization capability of the algorithm.

As the part-level mesh generation feature offered by Hunyuan3D Studio [31] is not yet publicly

available for testing, a direct comparison of part-level segmentation results cannot be

conducted at this time.

Based on the experimental results presented in Sections 5.1.1 to 5.1.3, the primitive cubes

representing Doraemon have been successfully generated, validating the effectiveness of the

proposed algorithm. Furthermore, the manual post-processing results in Section 5.2 show that

the algorithm significantly assists artists by automating the initial placement of primitive

cubes—traditionally done manually at the world origin—allowing them to focus directly on

refining geometric details through box modeling techniques.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

Chapter 6: Conclusion

6.1 Summary of Work

This thesis presents a comprehensive review of state-of-the-art 3D generative AI models and

3D reconstruction techniques, as discussed in Chapters 2 and 5. Chapters 3, 4, and 5 detail the

problem formulation for 3D character reconstruction and introduce the OV-CV-BPY

algorithm, along with its implementation and evaluation. The proposed algorithm can serve as

a good starting in building high fidelity geometry from primitive shapes.

6.2 Challenges

The primary challenge encountered during this project was the limited GPU computational

power available on the local machine. This constraint made it infeasible to fine-tune open-

source 3D shape generation models without subscribing to cloud-based computing services,

which introduces cost and accessibility barriers.

6.3 Future Work

Future extensions of the algorithm can benefit significantly from advanced 3D modeling

expertise. As proficiency in digital modeling increases, users will find it easier to leverage

scripting techniques to automate modeling tasks. This opens the door to developing

personalized automation tools or community-driven add-ons that enhance productivity and

streamline creative workflows

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

REFERENCES

[1] L. Zhou, G. Wu, Y. Zuo, X. Chen, and H. Hu, “A Comprehensive Review of Vision-Based

3D Reconstruction Methods,” Apr. 01, 2024, Multidisciplinary Digital Publishing Institute

(MDPI). doi: 10.3390/s24072314.

[2] Ikura_AI, 3D Reconstruction Technique (1): What Is Reconstruction? Why Do We Need

It?. (Oct. 17, 2023). Accessed: Apr. 30, 2025. [Online Video].

https://youtu.be/LLSLSRgoIjY?si=zbQg0o5k4nzgreI1

[3] A. Durrant. “Translating a 2D concept into real-time 3D art.” Marmoset.co.

https://marmoset.co/posts/translating-a-2d-concept-into-real-time-3d-art/ (accessed

[4] Ikura_AI, 3D Reconstruction Technique (2): NeRF, AI Technology Innovation –

“Memorising” The Scene Using Neural Network! (Oct. 26, 2023). Accessed: Apr. 30, 2025.

[Online Video].

Available: https://youtu.be/KPO8BpzY0LA?si=S7GCLleVlwueUgsA

[5] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, R. Ng. (2020).

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. [Online].

Available: https://arxiv.org/pdf/2003.08934

[6] Mediastorm. Reconstructing a Mountain in Just 10 Minutes? How to Use the Amazing

NeRF Technology!. (Feb. 1, 2024). Accessed: Apr. 29, 2025. [Online Video].

Available: https://youtu.be/Vm1W0HNEOWM?si=uXn1dJ6w8WnOfJmV

[7] Ikura_AI. 3D Reconstruction Technique (3): 3D Gaussian Splatting, let 3D Reconstruction

Moved From Academic To Practical Application! Use Colorful Elliptical Balls To Represent

Scenes!. (Nov. 9, 2023). Accessed: Apr. 29, 2025. [Online Video].

Available: https://youtu.be/UxP1ruyFOAQ?si=L-np7xTTAwk0-mzk

[8] B. Kerbl, G. Kopanas, T. Leimkuhler, G. Drettakis. “3D Gaussian Splatting for Real-Time

Radiance Field Renderingm,” ACM Trans. Graph, vol.42, no.4, Aug, 2023.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

[Online].https://repo-sam.inria.fr/fungraph/3d-gaussian

splatting/3d_gaussian_splatting_low.pdf

[9] Ikura_AI. How does generative 3D affect the 3D industry? How does AI help with 3D

creation?. (Jun. 4, 2023). Accessed: Apr. 30, 2025. [Online Video].

 https://youtu.be/ilL9nZCXMI4?si=z7Gn-VG5Oz2DFLO6

[10] L. Cerkezi, P. Favaro. (2024). Sparse 3D Reconstruction via Object-Centric Ray

Sampling. [Online]. Available: https://arxiv.org/pdf/2309.03008v2

[11] J. L. Schonberger, J. Frahm. (2016). Structure-from-Motion Revisited. [Online].

Available:

https://openaccess.thecvf.com/content_cvpr_2016/papers/Schonberger_Structure-From-

Motion_Revisited_CVPR_2016_paper.pdf

[12] J. L. Schonberger, E. Zheng, M. Pollefeys, J. Frahm. (2016). Pixelwise View Selection for

Unstructured Multi-View Stereo.

[Online]. Available: https://demuc.de/papers/schoenberger2016mvs.pdf

[13] Fast Photogrammetry. FREE COLMAP A beginner tutorial, introduction to

photogrammetry [fix GPU timeout]. (Nov. 9, 2019). Accessed: Apr. 29, 2025. [Online Video].

https://youtu.be/mUDzWCuopBo?si=3rFmGP6-JQB82qdV

[14] Mattthew Brennan. Photogrammetry / NeRF / Gaussian Splatting comparison. (Oct. 1,

2023). Accessed: Apr. 29, 2025. [Online Video].

https://youtu.be/KFOy354zf9E?si=AyEJAPAuiTbLZgxZ

[15] Z. Huang, H. Xie, T. Fukusato. (2022). Interactive 3D Character Modeling from 2D

Orthogonal Drawings with Annotations.

[Online]. Available: https://arxiv.org/pdf/2201.11284

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

[16] P. Buchanan, R. Mukundan, M. Doggett. (2013). Automatic Single-View Character Model

Reconstruction.

[Online].

Available:https://fileadmin.cs.lth.se/cs/Personal/Michael_Doggett/pubs/buchanan13-ACMR-

SBIM.pdf

[17] C. G. Willcocks, F. W.B. Li. (2012). Feature-varying skeletonization.

[Online]. Available: https://frederickli.webspace.durham.ac.uk/wp-

content/uploads/sites/103/2021/04/cgi12-FeatureVaryingSkeletonization.pdf

[18] K. Wu, F. Liu, Z. Cai, R. Yan, H. Wang, Y. Hu, et al. (2024). Unique3D: High-Quality

and Efficient 3D Mesh Generation from a Single Image. [Online]. Available:

https://arxiv.org/pdf/2405.20343

[19] Z. Zhao, Z. Lai, Q. Lin, Y. Zhao, H. Liu, S. Yang, et al. (2025). Hunyuan3D 2.0: Scaling

Diffusion Models for High Resolution Textured 3D Assets Generation. [Online]. Available:

https://arxiv.org/pdf/2501.12202

[20] AI Tool Designer-Jason. The most powerful AI-3D model is here! Tencent open source

Hunyuan3D-2 review vs Microsoft Trellis!. (Jan. 22, 2025). Accessed: Apr. 30, 2025. [Online

Video].

https://youtu.be/g-ThznwPxJ8?si=0jKvdNv3iDwJnOPV

[21] SVG PRO. How to Install Locally Hunyuan 3D-2 AI Image to 3D Object. (Jan. 29, 2025).

Accessed: Apr. 30, 2025. [Online Video].

https://youtu.be/VTvS325hgV0?si=-CaeAKywoWtIF8Zl

[22] SVG PRO. Hunyuan 3D-2 Installing Build Tools & Model Security Patch. Accessed: Apr.

30, 2025. [Online Video].

https://youtu.be/8jOp6JZfGE8?si=EAnb5ZgmXyhWnkuT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

[23] J. L. Schoenberger. “COLMAP 3.12.0.dev0 documentation.” Colmap.github.io

https://colmap.github.io/

[24] A. Kadam. “Doraemon toys.” ArtStation.

https://nopstack.artstation.com/projects/DxzPlR

[25] N. Ravi, V. Gabeur, Y. Hu, R. Hu, C. Ryali, T. Ma, et al. (2024) SAM 2: Segment

Anything in Images and Videos.

[Online]. Available: https://arxiv.org/pdf/2408.00714

[26] Blender. Getting Started with Scripting in Python. (Oct. 28, 2023). Accessed: Sept. 20,

2025. [Online Video].

https://youtu.be/wWTAQP7-ZUQ?si=H0TzPRg0s3Coq9TZ

[27] Blender. “Blender Python API.” blender.org.

https://docs.blender.org/api/current/info_overview.html

[28] cvat. “Leading Data Annotation Platform.” cvat.ai.

https://www.cvat.ai/

[29] OpenGL. “Vertex Post-Processing.” khronos.org.

https://www.khronos.org/opengl/wiki/Vertex_Post-Processing

[30] Streamlit. “A faster way to build and share data apps.” streamlit.io.

https://streamlit.io/

[31] Tencent Hunyuan3D. Hunyuan3D Studio: End-to-End AI Pipeline for Game-Ready 3D

Asset Generation.

[Online]. Available. https://arxiv.org/pdf/2509.12815

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

POSTER

