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ABSTRACT 
 

Prawn farming, a vital sector of the global aquaculture industry, faces challenges with 

traditional monitoring methods that are labor-intensive, error-prone, and lack real-time 

capabilities, leading to inefficiencies in feeding and harvest planning, particularly for 

small- and medium-scale farmers. This project aims to address these issues by 

developing a computer vision-based system for automated density and growth 

estimation of Cherax quadricarinatus prawns, enhancing operational efficiency and 

sustainability. Utilizing the lightweight YOLO11n neural network, a Raspberry Pi 5, 

and a PiCamera (Night Vision), the system automates prawn monitoring, improves 

accuracy through machine learning, and ensures affordability at $60-$80 per unit. A 

Cron Job feature enables continuous data collection, building a farm-specific dataset to 

overcome the lack of standardized prawn data. Deployed in a controlled pond 

environment, the system captured 2000 images under varying conditions, achieving 

real-time detection at 5 FPS, though initial tests revealed accuracy issues requiring 

further data and fine-tuning. By mitigating challenges like environmental variability, 

high costs, and technical complexity identified in prior studies, this solution offers a 

scalable, user-friendly tool that empowers smaller farms to optimize resource use and 

enhance productivity in precision aquaculture. 

 

Area of Study: Internet of Things, Computer Vision 

 

Keywords: Data Collection, Computer Vision, YOLOV11n, Raspberry Pi, Cherax 

quadricarinatus 
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CHAPTER 1 Introduction 
 
In this chapter, we present the background and motivation of our research, our 

contributions to the field, and the outline of the thesis. Prawn farming is a significant 

component of the global aquaculture industry, contributing to the supply of seafood 

worldwide [1]. The global shrimp industry has experienced substantial growth, with 

major production increases in countries like Ecuador, China, and Vietnam, driven by 

rising demand in key markets such as the US. Ecuador saw a remarkable compound 

annual growth rate (CAGR) of 25% between 2020 and mid-2023. However, some 

regions, including India, are now experiencing reduced exports due to market 

oversupply, highlighting the dynamic and fluctuating nature of the global shrimp 

market [1]. As the industry grows, there is an increasing need for precision aquaculture 

techniques to enhance productivity and sustainability [2]. Precision aquaculture 

employs advanced technologies to optimise farming practices, reducing waste and 

improving resource management [2]. 

1.1 Problem Statement and Motivation 

1. Traditional methods for monitoring prawn density and growth are labour-

intensive, time-consuming, and prone to human error, leading to inefficiencies in 

prawn farming operations: 

 Traditional methods for monitoring prawn density and growth are labour-

intensive, time-consuming, and prone to human error, leading to inefficiencies in prawn 

farming operations [3]. This inefficiency can lead to overfeeding or underfeeding, 

resulting in wasted resources and potential harm to prawn health and farm productivity 

[2]. Automating these processes through advanced technologies like computer vision 

or machine learning algorithms can significantly enhance operational efficiency [2]. 

 

2. There is a lack of real-time monitoring tools in prawn cultivation, resulting in 

imprecise feeding and harvest planning, which can negatively impact the 

productivity and sustainability of aquaculture systems: 

 The absence of real-time monitoring tools in prawn farming makes it difficult 

to accurately track the growth of prawns and manage feeding schedules [3],[4],[5]. 
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Feeding is often based on estimated population sizes rather than actual real-time data, 

leading to either overfeeding, which wastes resources and contributes to water pollution, 

or underfeeding, which hinders prawn growth [2]. Additionally, without continuous 

data on growth and density, farmers cannot optimally plan harvesting, which may lead 

to premature or delayed harvests, further affecting the economic sustainability of the 

farm [2], [5]. Real-time tools such as sensors, automated feeders, and computer vision 

systems are essential to address these inefficiencies by providing farmers with accurate, 

timely data [2]. 

 

3. Small- and medium-scale prawn farmers face challenges in adopting advanced 

technologies due to the high costs and complexity of implementation, limiting their 

ability to optimize cultivation practices: 

 For small- and medium-scale prawn farmers, the adoption of advanced 

technologies such as automated monitoring systems, machine learning algorithms, and 

IoT devices can be financially prohibitive [2]. High upfront costs for equipment and 

ongoing expenses for maintenance and upgrades create barriers to technology adoption. 

Additionally, the technical complexity of setting up and maintaining these systems can 

deter smaller operations that may not have access to skilled labor or technical expertise 

[2]. These challenges limit smaller farms' ability to optimize their cultivation practices, 

resulting in lower productivity and competitiveness compared to larger, tech-enabled 

operations [2]. 

 

The motivation for proposing the automated prawn cultivation system stems from the 

need to modernize traditional, labour-intensive practices that are inefficient and prone 

to human error. Current methods lack real-time monitoring, leading to inaccurate 

feeding and harvest planning, which reduces productivity. The system leverages 

advanced technologies like computer vision to provide real-time data, improving 

decision-making, resource management, and overall efficiency. Additionally, it aims to 

make precision aquaculture accessible to small- and medium-scale farmers by offering 

a cost-effective and scalable solution, ultimately promoting sustainability and 

supporting the growth of the prawn farming industry. 

1.2  Project Objectives 
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1. Develop a computer vision-based system using lightweight neural networks like 

YOLO11n to automate the estimation of prawn density and growth, reducing 

reliance on manual methods: 

 This objective aims to replace traditional manual methods of monitoring prawn 

density and growth with an automated system powered by computer vision and deep 

learning. Lightweight neural networks, particularly MobileNetV2, are chosen due to 

their efficiency and ability to operate on resource-constrained devices, making them 

ideal for real-time monitoring in aquaculture settings. By training the system to 

recognize prawns and estimate their size and count from visual inputs such as camera 

feeds, the system can provide continuous, accurate data on prawn growth and 

population. This will significantly reduce the labor-intensive processes currently 

employed, cutting down human error, improving consistency, and allowing for more 

frequent data collection, leading to better decision-making in feeding schedules, health 

checks, and harvest planning. 

2. Enhance the accuracy and efficiency of prawn population monitoring through 

the integration of machine learning algorithms: 

 This objective focuses on improving the precision of prawn population tracking 

by leveraging machine learning algorithms to handle complex visual data. By 

incorporating techniques such as transfer learning, deep learning, and pattern 

recognition, the system will be able to analyse various features such as prawn 

movement, size variation, and density in diverse conditions. This will lead to more 

reliable and accurate estimations of prawn population metrics compared to traditional 

observation methods. The integration of advanced algorithms will also optimize the 

system's performance, making it capable of processing data quickly and efficiently, 

even in low-resource environments. This improvement in accuracy and efficiency will 

enable farmers to make more informed decisions regarding feeding, pond maintenance, 

and prawn health management. 

3. Design a cost-effective and scalable solution that can be readily adopted by 

small- and medium-scale prawn farmers for improved aquaculture management. 

 This objective targets the creation of an affordable and scalable solution tailored 

to the needs of small- and medium-scale prawn farmers. By keeping hardware 

requirements minimal and leveraging lightweight neural networks like MobileNetV2, 



CHAPTER 1 

4 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

the system can be implemented using cost-effective equipment such as simple cameras 

and standard computing devices. The focus on scalability ensures that the solution can 

be easily adapted to different farm sizes and infrastructure without the need for 

expensive modifications. Additionally, the system will be designed with a user-friendly 

interface to ensure ease of use, even for farmers with limited technical expertise. By 

providing real-time monitoring and data-driven insights at a low cost, this solution will 

empower farmers to optimize their production processes, reduce waste, and increase 

profitability, making advanced aquaculture management accessible to a broader 

audience. 

1.3  Project Scope and Direction  

The project scope directly supports all three objectives specific to prawn cultivation, 

focusing on Cherax quadricarinatus. Firstly, it focuses on developing a computer 

vision-based system using lightweight neural networks such as YOLO11n, which will 

automate the detection and estimation of prawn density and growth. This reduces the 

need for labour-intensive, manual monitoring methods traditionally used in prawn 

farming. Secondly, by incorporating machine learning algorithms, the system will 

improve the accuracy and efficiency of monitoring prawn populations, allowing for 

precise tracking of prawn growth and population density. This ensures more effective 

management of feeding schedules and harvesting times, optimizing productivity. Lastly, 

the scope highlights designing a cost-effective and scalable solution tailored 

specifically for small- and medium-scale prawn farmers, ensuring that they can adopt 

these advanced technologies without prohibitive costs. The system will enable these 

farmers to improve aquaculture practices, boosting sustainability and operational 

efficiency in prawn farming. 

1.4 Contributions 

The proposed automated prawn cultivation system significantly contributes to the 

prawn farming industry by enhancing efficiency, accuracy, and sustainability. By 

automating monitoring processes through advanced technologies such as computer 

vision and machine learning, the system reduces the reliance on labour-intensive, error-

prone methods, leading to improved operational efficiency and more precise data on 

prawn density and growth. This real-time data enables better management of feeding 
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and harvesting schedules, preventing issues like overfeeding, underfeeding, and 

suboptimal harvest timing, which in turn optimizes resource use and minimizes 

environmental impact. Furthermore, the system addresses the challenges faced by 

small- and medium-scale farmers by offering a cost-effective and user-friendly solution, 

thus making advanced technology more accessible and helping to level the playing field. 

Ultimately, this approach supports the sustainability of prawn farming and fosters 

industry growth by improving productivity and resource management across various 

farm sizes. 

1.5  Report Organization 

This report is structured into five chapters, each detailing a specific aspect of the project 

on utilizing computer vision techniques for automated density and growth estimation 

in precision aquaculture systems for prawn cultivation. The first chapter introduces the 

project, discussing the background of the global shrimp industry, the problem statement, 

motivation, objectives, project scope, and contributions. The second chapter reviews 

existing literature on automated monitoring technologies in aquaculture, focusing on 

systems like smart headsets, computer vision-based counting methods, and AI-driven 

image processing for prawn farming, while analyzing their strengths and weaknesses 

to contextualize this project’s approach. The third chapter presents the proposed method, 

detailing the system requirements, architecture diagram, workflow, growth stage 

equations, and project timeline. The fourth chapter covers preliminary work, including 

the setup of software tools, data collection and annotation processes, YOLO11n model 

training and deployment, automated data collection via Cron Job, and a device 

comparison for cost-effectiveness and scalability. Finally, the fifth chapter concludes 

the report by summarizing the project’s findings, contributions, and implications for 

prawn farming, emphasizing how the proposed solution addresses the identified 

challenges and its potential impact on the aquaculture industry. 
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CHAPTER 2 Literature Reviews 

2.1  Smart headset, computer vision and machine learning for efficient prawn 

farm management [3]  

2.1.1  Review  

 The field of aquaculture has increasingly adopted automated monitoring 

technologies to improve the efficiency of operations, particularly in prawn cultivation. 

Traditional methods for estimating prawn density and growth, such as the cast-net 

approach, are labour-intensive and error-prone. These methods often result in 

suboptimal data collection frequencies and inaccuracies, which can negatively impact 

farm productivity. Recent advancements in computer vision (CV) and machine learning 

(ML) have provided a more scalable and efficient solution for prawn growth monitoring. 

This study developed a smart headset integrated with a depth camera and CV techniques, 

which enabled real-time prawn size estimation during routine feed tray inspections. The 

study highlighted the need for high-frequency data collection to better understand 

prawn growth and optimize feeding and harvesting strategies. This solution 

demonstrated superior performance in terms of time efficiency compared to traditional 

methods, which require manual labour and invasive procedures that stress the animals. 

Other studies have explored the use of convolutional neural networks (CNNs) to detect 

and segment prawns for size estimation. This study [4] employed CNN models to 

estimate shrimp population density and size, providing real-time insights into shrimp 

growth trends. Their approach used a similar vision-based system, but with a focus on 

stationary camera setups rather than the wearable smart. The transition to wearable 

technology marks a significant advancement, offering greater flexibility and mobility 

for prawn farmers. Despite the promising outcomes, challenges remain in ensuring data 

quality in outdoor environments. External factors such as lighting and water reflections 

can introduce noise in the depth maps generated by the CV systems. This study 

addressed these challenges through advanced filtering and smoothing techniques to 

improve the accuracy of prawn length estimation. However, they also identified 

limitations, such as the need for further refinement of depth camera capabilities in 

uncontrolled field conditions. 
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 In conclusion, the integration of computer vision and machine learning in prawn 

cultivation has the potential to revolutionize the industry. By automating the data 

collection process and providing real-time insights into prawn growth, these 

technologies can significantly reduce labour costs and improve farm productivity. 

2.1.2 Strengths and Weakness 

The study presents several strengths in its approach to prawn farm management using 

a smart headset integrated with computer vision and machine learning technologies. 

One of the key advantages is the automation of prawn size estimation, which 

significantly reduces the reliance on traditional, labour-intensive methods like cast-net 

sampling. By enabling real-time and non-invasive data collection during routine 

feeding activities, the solution enhances operational efficiency and minimizes stress on 

the animals. The use of wearable technology also introduces greater flexibility and 

mobility for farmers compared to previous systems that relied on stationary cameras. 

Additionally, the incorporation of advanced filtering and smoothing techniques helps 

to mitigate the impact of environmental challenges such as lighting variations and water 

reflections, thereby improving data accuracy. 

However, the study also highlights several weaknesses. Despite efforts to improve data 

quality, the system's performance can still be hindered by external factors in outdoor 

environments, such as inconsistent lighting and reflective water surfaces. The current 

capabilities of depth cameras remain limited under such uncontrolled conditions, 

pointing to the need for further hardware refinement. Moreover, the implementation of 

such high-tech solutions may present a barrier for small-scale farmers due to the initial 

cost, technical complexity, and ongoing maintenance requirements. While the study 

shows promising results, its findings may be limited if the system has not yet been 

extensively tested in diverse or large-scale field conditions. 

The proposed solution with a Raspberry Pi module it can reducing the barrier for small-

scale farmer, where Raspberry Pi has a very competitive price. 

 

2.2 Automatic counting methods in aquaculture: A review [7] 
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2.2.1 Review 

 Accurate monitoring of prawn density and growth is critical for the effective 

management of aquaculture systems. Traditional manual methods are labour-intensive 

and prone to human error, making them unsuitable for large-scale operations. 

Consequently, automated solutions involving computer vision (CV) and machine 

learning (ML) techniques have gained traction in aquaculture, particularly in prawn 

farming. 

 Sensor-Based Counting Technologies: Early attempts at automation in 

aquaculture utilized sensor-based methods, such as infrared and resistivity counters, 

which detect fish or prawns as they pass through channels. These systems offer 

simplicity but are affected by environmental factors like water turbidity and 

overlapping fish or prawns, leading to inaccurate counts. Studies have shown that these 

methods underperform when applied in complex environments.  

 Computer Vision in Aquaculture: With the advent of computer vision 

technologies, aquaculture operations have shifted toward more accurate, non-invasive 

methods for monitoring fish and prawn populations. This study demonstrated the 

application of Fast R-CNN, a deep learning model, in underwater environments to 

detect fish with higher accuracy compared to traditional sensor methods. In prawn 

farming, computer vision systems have been adapted to estimate both density and 

individual growth rates by analysing visual data from camera feeds. Mask R-CNN and 

Cascade Mask R-CNN have been particularly successful in detecting and segmenting 

aquatic animals, enabling more accurate growth monitoring. 

 Machine Learning for Growth Estimation: Machine learning algorithms, 

lightweight models have been implemented to provide real-time monitoring solutions 

in aquaculture. These models analyse images to estimate prawn size and population 

density efficiently, making them suitable for small- and medium-scale farms. This 

study [4] emphasized the benefits of combining computer vision with machine learning 

to automate prawn size estimation and optimize feeding schedules. 

 Challenges in Automating Aquaculture: While computer vision and machine 

learning technologies have proven effective, there are challenges related to 

environmental noise, such as poor lighting and water clarity, which can affect the 

accuracy of these systems. Future research aims to improve the robustness of CV and 

ML models in these conditions, making them more reliable for use in aquaculture 
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settings. Additionally, the cost and complexity of these systems remain barriers to 

adoption for small- and medium-scale farmers. 

Table 2.2.1: A comparison of different methods used for object counting in aquaculture

 

2.2.2 Strengths and Weakness 

Automatic counting methods in aquaculture, such as sensor-based technologies, 

computer vision, and machine learning, offer substantial improvements over traditional 

manual approaches, particularly for prawn farming. Their strengths, higher accuracy, 

non-invasive monitoring, real-time capabilities, detailed insights, and adaptability—

make them powerful tools for enhancing efficiency and sustainability. However, 

weaknesses like environmental sensitivity, high costs, technical complexity, data 

requirements, and computational demands highlight the need for ongoing research and 

development. Addressing these challenges could make these technologies more 

accessible and reliable, especially for small- and medium-scale farmers, revolutionizing 

prawn farming and aquaculture management. 

With proposed solution the system simplifies operation with a pre-trained model and 

straightforward deployment on Raspberry Pi, reducing the need for specialized 

knowledge. YOLO11n’s lightweight architecture runs efficiently on the Raspberry Pi 

(achieving 5 FPS with prawn images), minimizing computational demands. 

2.3 Computer Vision Based Estimation of Shrimp Population Density and Size [4] 
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2.3.1 Review 

 Computer vision (CV) techniques have been applied extensively in the field of 

shrimp farming to automate the process of estimating shrimp population density and 

size. Shrimp is a significant aquaculture product, and continuous monitoring of shrimp 

population and growth is crucial for optimal farm management. Traditional methods of 

manual counting and measuring shrimp are labor-intensive and prone to errors. 

Therefore, automated methods using computer vision and deep learning techniques 

have been explored as efficient alternatives. 

 In this study, it implemented a CV-based system to monitor shrimp farms. The 

system utilizes U-Net segmentation combined with marker-controlled watershed 

segmentation and thresholding to count shrimps and estimate their lengths. The U-Net 

model, originally designed for biomedical image segmentation, is fully convolutional 

and able to assign class labels to each pixel in an image, making it highly effective in 

segmenting shrimp from their surroundings. The model consists of 23 convolutional 

layers organized into contracting and expansive paths, with the ability to function well 

even with small datasets. 

 The segmentation is followed by marker-controlled watershed segmentation 

to handle cases where shrimps are touching or overlapping each other. This technique 

allows for better separation of overlapping objects by computing watershed lines along 

object boundaries. The accuracy of this approach was tested on images of shrimp from 

a laboratory environment, yielding a mean absolute error of 0.093 in shrimp counting 

and a root mean square (RMS) error of 0.293 cm in shrimp length estimation when 

the shrimps were separately located. 

 However, the study also noted limitations in the method's ability to accurately 

count shrimps when they are overlapping or touching, where the mean absolute error 

increased to 0.298. Despite these challenges, the system proved robust in its ability to 

segment even small parts of shrimp, such as tails. 

 In addition to the CV and segmentation techniques, the system includes a web-

based monitoring platform using Heroku, which allows shrimp farmers to easily 

access shrimp population density and length data through a web interface. This cloud-

based solution is particularly useful for non-experts, providing a user-friendly interface 

for real-time farm monitoring. 
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2.3.2 Strengths and Weakness 

The computer vision-based system for shrimp population and size estimation 

revolutionizes aquaculture by automating labor-intensive tasks and delivering high 

accuracy in controlled environments, with counting errors as low as 0.093 and size 

estimation errors around 0.293 cm. It employs advanced segmentation techniques, such 

as U-Net and marker-controlled watershed, to tackle complex scenarios and provides 

an intuitive web interface for seamless data access. However, its performance drops 

significantly when shrimp overlap, with counting errors rising to 0.298, and it struggles 

in murky or poorly lit conditions due to its dependence on high-quality imaging. The 

system also demands substantial computational resources and lacks extensive real-

world field validation, making its high implementation and scalability costs a potential 

barrier, particularly for smaller farms, limiting widespread adoption to well-resourced 

operations. 

With proposed solution it provides Cost-Effective and Scalable. At $60-$80 per unit, 

the Raspberry Pi setup is affordable and easily replicable across multiple ponds, 

enhancing scalability for small farmers. Besides that, it provides flexible imaging. The 

PiCamera (Night Vision) captures usable images in low-light and turbid conditions, 

reducing dependency on pristine imaging environments. 

2.4 AI-image processing and image recognition for intelligent prawn farming [5] 

2.4.1 Review 

 The application of Artificial Intelligence (AI) and image processing in 

aquaculture has gained significant traction over the past few years, especially for tasks 

such as prawn growth stage detection and population estimation. The need for 

automation in prawn farming arises due to the labor-intensive and error-prone nature of 

manual methods. These technologies aim to enhance farming efficiency, ensure 

sustainability, and optimize resource utilization in prawn cultivation. 

 Convolutional Neural Networks (CNNs) have been widely adopted in 

aquaculture for image recognition and classification tasks. CNNs are particularly 

suitable for processing spatial data such as images, making them an ideal choice for 

prawn detection and growth monitoring. In prawn farming, CNNs can be used to 

classify prawns into different growth stages—Juvenile, Premature, and Mature—based 
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on their biometric traits. For example, ShrimpNet, an architecture developed for 

shrimp detection, has shown significant improvements in classification accuracy. 

 The You Only Look Once (YOLO) model has emerged as a popular choice 

for real-time object detection due to its high processing speed and accuracy. In prawn 

farming, YOLO can rapidly detect and classify prawns in different environments, such 

as underwater or in controlled ponds. YOLO's ability to handle high-speed processing 

makes it suitable for applications where large volumes of image data need to be 

processed in real-time. 

 Faster Region-based Convolutional Neural Network (R-CNN) is another 

deep learning model used for object detection in prawn farming. By leveraging the 

ResNet backbone, Faster R-CNN improves the accuracy of prawn detection by 

focusing on region proposals and bounding boxes for prawn images. The combination 

of ResNet with Faster R-CNN allows for deeper networks that reduce the risk of 

overfitting, a common challenge in deep learning applications. 

 Additionally, models like SSD (Single Shot Detector) and CenterNet 

Hourglass 104 have been explored for prawn detection and classification. SSD is 

known for its balance between speed and accuracy, while CenterNet excels in keypoint 

detection and object localization tasks. These models provide alternatives depending 

on the specific requirements of the farming environment and computational resources 

available. 

 While these models have shown promising results, challenges remain in 

applying these techniques to prawn farming. For instance, the lack of available datasets 

for prawn growth stages necessitates the creation of custom datasets. In this project, the 

researcher manually collected and labeled prawn images to train the deep learning 

models. Moreover, the variation in environmental conditions, such as water clarity and 

lighting, can affect the accuracy of these models. 

 The success of AI-based systems in prawn farming hinges on selecting the right 

model and optimizing it for the given conditions. In this research, a combination of 

CNNs, YOLO, Faster R-CNN, and CenterNet is evaluated to determine the most 

suitable model for prawn growth stage detection and population estimation. The 

performance of these models is measured using metrics such as mean Average 

Precision (mAP), Average Recall (AR), and loss, ensuring that the model provides 

accurate and reliable results under various conditions. 
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2.4.2 Strengths and Weakness 

AI-based image processing and recognition systems, leveraging models like CNNs, 

YOLO, and Faster R-CNN, offer transformative strengths for intelligent prawn farming. 

They automate tasks such as prawn counting and growth stage classification, replacing 

labor-intensive manual methods with high accuracy—often achieving over 90% 

precision in controlled settings. Real-time processing, especially with YOLO, enables 

continuous monitoring for timely interventions, while adaptability across models 

allows customization to diverse farming environments. These systems also optimize 

resource management by providing precise data for feeding and harvesting, reducing 

waste and costs. However, significant weaknesses persist. The lack of standardized 

datasets forces farms to invest heavily in custom data collection, delaying deployment. 

Environmental variability, such as water clarity and lighting, can degrade model 

performance, requiring costly preprocessing. Computational demands for training and 

running models are high, often necessitating expensive hardware or cloud services. 

Additionally, the risk of overfitting limits model generalizability, and the technical 

expertise needed for setup and maintenance creates barriers, particularly for small-scale 

farmers. Addressing these challenges is essential to unlock the full potential of AI in 

prawn farming. 

With proposed solution, automated Dataset Creation, the Cron Job feature collects 

prawn images continuously, building a custom dataset tailored to my farm’s conditions, 

bypassing the need for standardized datasets. Other than that, simplified Operation. The 

system’s design prioritizes ease of use, with automated processes and a web-based 

interface (planned), minimizing technical expertise requirements. 

2.5 Fish Species Detection and Recognition Using MobileNet v2 Architecture: 

A Transfer Learning Approach [8] 

2.5.1 Review 

 Fish species detection and recognition is a crucial aspect of biodiversity 

conservation and fisheries management, where traditional methods of manual 

identification are often inefficient and error prone. Automated detection systems, 

powered by deep learning models like MobileNetV2, have emerged as solutions to 

these challenges. MobileNetV2, designed for resource-constrained devices, is 
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particularly suited for applications in marine environments due to its efficiency and 

ability to perform well on mobile or embedded systems. 

 MobileNetV2's architecture is built on inverted residuals and linear bottlenecks, 

which help reduce computational costs while retaining high accuracy. This makes it 

ideal for fish species classification, where real-time processing and minimal hardware 

requirements are essential. The model has been effectively used in various studies 

involving fish species detection, often combined with transfer learning techniques. By 

leveraging pre-trained weights from large datasets like ImageNet, MobileNetV2 adapts 

well to domain-specific tasks, achieving high accuracy in classifying fish species based 

on subtle visual differences such as color, shape, and texture. 

 Performance metrics like accuracy, precision, recall, and F1-score demonstrate 

MobileNetV2’s robustness in detecting fish species with minimal errors. Studies have 

shown that the model can achieve near-perfect accuracy in fish species classification, 

making it a valuable tool for ecological monitoring. However, challenges such as 

variability in underwater environments and class imbalance still pose difficulties. Some 

studies have addressed these issues by employing class-aware loss functions to improve 

model performance in datasets with underrepresented species. 

 Overall, MobileNetV2 has proven to be a powerful tool for fish species 

detection, offering high accuracy and computational efficiency. Its application extends 

to ecological research, fisheries management, and conservation efforts, where accurate 

species identification is vital. Despite some challenges, MobileNetV2’s flexibility and 

adaptability through transfer learning make it a promising solution for real-time 

monitoring and automated species recognition in aquatic environments. 

2.5.2 Strengths and Weakness 

MobileNetV2 is highly effective for fish species detection due to its computational 

efficiency, making it ideal for resource-constrained devices in marine environments. Its 

high accuracy, achieved through transfer learning, enables it to distinguish subtle visual 

differences in fish species, while real-time processing supports critical applications like 

ecological monitoring and fisheries management. The model’s robust performance 

metrics minimize errors, and its flexibility allows adaptation to various underwater 

conditions. However, it is sensitive to environmental variability, such as changes in 

lighting or water clarity, which can reduce accuracy. Class imbalance in datasets can 
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lead to biased predictions, and its reliance on pre-trained data quality risks performance 

issues if underwater imagery is not well-aligned. In complex scenarios, like cluttered 

environments, misclassifications may occur, and hardware constraints in extreme 

conditions can limit deployment in remote or harsh marine settings. While 

MobileNetV2 offers significant advantages in efficiency, accuracy, and adaptability, 

these environmental and technical challenges require careful consideration for optimal 

use in aquatic environments. 

With proposed solution, it achieved optimized hardware. The Raspberry Pi 5, paired 

with YOLO11n and NCNN optimization, performs reliably in farm conditions, 

overcoming hardware constraints. Environmental Robustness. YOLO11n outperforms 

MobileNet v2 in diverse conditions, as shown in my training with varied prawn pond 

images, addressing sensitivity issues.
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CHAPTER 3 Proposed Method/Approach 
 
The processes of the project were categorized into different phases in the development, 

which were project pre-development, data pre-processing, model training architecture 

building and data training, and prediction on test dataset. 

    

3.1  System Architecture Diagram 

 
Figure 3.1.1 System Architecture Diagram of This Project 
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Figure 3.1.2 Workflow of this project. 

 

 
Figure 3.1.3: Main part of Computer Vision and Automated Density and Growth 

Estimation Module. 

The overall system developed consists of three parts: hardware, software and Cloud. 

The hardware used in this system will be raspberry pi and the IoT sensor. Raspberry pi 

kick starts the PiCamera to collecting data and process data by pre-trained YOLO11n 

model, pH value and temperature are collected regardless the network connection. The 

sensors data are store in local storage, a relational database regardless the network 

connection. Data process by Raspberry Pi will be sent into AWS Lambda for estimation 

of growth and density. This report will only be focusing on Computer Vision, density 

and growth estimation. 

3.2 Flowchart  
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Figure 3.2.1: Flowchart of the Automated Density and Growth Estimation Module 

The workflow for the Utilising Computer Vision Techniques for Automated 

Density and Growth Estimation in Precision Aquaculture Systems for Prawn 

Cultivation is structured into several key stages, each contributing to the efficiency and 

accuracy of the overall process. The system begins with data collection, where high-

resolution cameras are installed in the prawn ponds to capture continuous images of the 

prawns in their natural environment. In some cases, sensors may also be deployed to 

monitor environmental factors such as water quality, temperature, and pH levels. Once 

the images are collected, the data annotation phase involves manually labelling each 

prawn within the images by drawing bounding boxes around them. The annotated 

dataset is crucial for training the machine learning model, where prawns are detected 

and localized accurately. 
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Following data annotation, the model development and training stage takes 

place. In this step, YOLO11n, is used for detection. The model is trained using the 

annotated data and fine-tuned to ensure accuracy and prevent issues like overfitting. 

After the model is properly trained, it is deployed on the Raspberry Pi for real-time 

monitoring. The system continuously processes live images from the cameras, allowing 

it to detect and count prawns in real-time. Where all the data will be stored at the local 

database. Once the Raspberry Pi is connected to the Internet, it will send the data 

through Federated Learning Client. Data will be sent to the Federated Learning Server 

to do learning.  

 The next stage, density and growth estimation, is where the system uses the pre-

trained model to count the number of prawns and collect the data. The data will send to 

AWS Lambda to do with density and growth estimation within a given pond area. In 

AWS Lambda, there be a YOLO model that will only detect the shrimp body only, and 

it will further predict the growth stages of the prawns by analyzing their size. This data 

is used to optimize operations such as feeding schedules and harvest planning. 

 

3.3 Growth Stage Classification 

Growth stage classification assigns each prawn to a category (Hatchling, Juvenile, 

Adult) based on total length, estimated from YOLOv11n’s bounding box width in top-

down images. Total length includes the full body length, approximated by: 

1. Total Length Estimation: 
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Figure 3.3.1: Code for Measure the Length of Shrimp 

The length calculation system uses computer vision and calibration to measure real-

world shrimp dimensions from camera images. When the YOLO model detects a 

shrimp, it draws a bounding box around the object in pixel coordinates. The system 

then converts these pixel measurements to real-world centimetres using a calibration 

process based on a predefined measurement box. First, it calculates how many pixels 

represent one centimetre by dividing the total frame dimensions by your box 

dimensions (e.g., 640 ÷ 40 cm = 16 pixels per cm horizontally). Then, it converts the 

bounding box width and height from pixels to centimetres using these conversion ratios. 

Finally, it takes the longer dimension of the bounding box as the shrimp's length, 

since shrimp are typically longer than they are wide. This approach ensures accurate 

measurements regardless of camera resolution or distance, as long as the camera is 

viewing the calibrated 40cm × 30cm area. 

 

2. Stage Classification: 

Table 3.3.1: Growth Phase [9], [10] 

Growth Phase Approx. Weight Range (g) 

Hatchling <1g 

Juvenile 1-50g 
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Adult >50g 

 

The system can then use measured length to calculate weight using the Weight-length 

relationship W = 0.018 × L^3.06, providing comprehensive size analysis [11].  

 
3. Average Total length and Weight: 

 
Figure 3.3.2 Equation for Average Total Length and Weight 

4. Density: 

 
Figure 3.3.3 Code for Density 

Table 3.3.2 Shrimp Density Category and Definition [12]  
 

Density Category Definition 
Low density 1-4 shrimp/m2 
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5. YOLO models detect shrimp body part: 

 
Figure 3.3.4: Detection Result of Shrimp body  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moderate density 5-15 shrimp/m2 
High density >15 shrimp/m2 
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CHAPTER 4 Preliminary Work 
 

Preliminary Research is research on a topic that helps you get a better understanding on 

what types of sources are available and what is being said about a topic. This type of 

research helps solidify a topic by broadening or narrowing it down. This research can 

also help you when choosing Search Terms. 

4.1 Data Sources 

4.1.1 Data Collection 

Prawn images were collected from a controlled prawn pond environment simulating the 

conditions of a small- to medium-scale farm. The PiCamera attached to the Raspberry 

Pi 5 was used to capture images of Cherax quadricarinatus prawns under various 

conditions, including different lighting (daylight and artificial light) and water clarity 

levels (clear and slightly turbid). Approximately 2000 images were collected initially, 

with plans to expand the dataset during later phases. Images were captured at different 

times of the day to account for lighting variations. Prawns of varying sizes (juvenile, 

premature, and mature) were included to support growth stage classification.  The 

images were stored in JPG format. 

 

Figure 4.1.1: Prawn Image Captured 
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Figure 4.1.2 Prawn Image Captured in Dark Condition 

 
Figure 4.1.3 Class and Coordinates of Bounding Box 

4.1.2  Images Annotation 

Label Studio was used to annotate the collected images. The annotation process 

involved: 

1. Bounding Box Creation: For each prawn in an image, a bounding box was 

drawn to enclose the entire prawn, including its body and claws. The bounding 

box coordinates were saved in YOLO format, which includes the class label 

(e.g., "prawn"), normalized center coordinates (x, y), and normalized width and 

height. 
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2. Class Labeling: Initially, a single class ("prawn") was used for detection. In 

future iterations, additional classes for growth stages (juvenile, premature, 

mature) may be introduced based on size estimation. 

The dataset was split into training (90%), and test (10%) sets to support model 

development. 

4.2 Device Comparison for Cost-Effectiveness and Scalability 

This section compares the Raspberry Pi 5, used in the project for automated prawn 

density and growth estimation, with other devices to assess their suitability for small- 

and medium-scale prawn farmers. The comparison focuses on cost, performance, ease 

of use, and scalability, aligning with Objective 3: designing a cost-effective and 

scalable solution. 

Devices Compared 

We evaluated the following devices, selected for their potential in computer vision tasks 

for aquaculture: 

• Raspberry Pi 5: The baseline device, with 4x Cortex-A76 CPU @ 2.4 GHz, 

4/8 GB RAM, VideoCore VII GPU, and dual MIPI-CSI camera ports, priced at 

$60-$80. 

• NVIDIA Jetson Nano: 4x Cortex-A57 CPU @ 1.43 GHz, 4 GB RAM, 128-

core Maxwell GPU, priced at $99. 

• Rock Pi 4 B: 2x Cortex-A72 @ 1.8 GHz + 4x Cortex-A53 @ 1.4 GHz, 1/2/4 

GB RAM, 4x Mali-860 GPU, priced at €68-€100. 

• Odroid XU4: 4x Cortex-A15 @ 2.0 GHz + 4x Cortex-A7 @ 1.4 GHz, 2 GB 

RAM, 6x Mali-628 GPU, priced at €75. 

Comparison Criteria 

• Cost: Essential for affordability, given the target audience of small- and 

medium-scale farmers. 

• Performance: Ability to run YOLO11n in real-time for prawn detection. 
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• Ease of Use: Community support and availability of resources for setup and 

maintenance. 

• Suitability for Aquaculture: Integration with cameras and deployment in farm 

environments. 

• Scalability: Ease of deploying multiple units for larger farms. 

Detailed Comparison 

Table 4.2.1: Comparison of Devices [13], [14], [15], [16] 

Device 
Cost 

(USD/EUR) 
CPU/GPU 

RAM 

(GB) 

Camera 

Interface 

Performance 

for 

YOLO11n 

Ease of 

Use 

Suitability 

for 

Farmers 

Raspberry 

Pi 5 
$60-$80 

4x Cortex-

A76 @ 2.4 

GHz, 

VideoCore 

VII 

4/8 x2 MIPI-CSI 
High, real-

time capable 

Excellent, 

large 

community 

High, 

affordable, 

easy 

integration 

NVIDIA 

Jetson 

Nano 

$99 

4x Cortex-

A57 @ 

1.43 GHz, 

128-core 

Maxwell 

4 
Supported, 

details vary 

High, GPU 

acceleration 

Good, AI-

focused 

community 

Moderate, 

higher 

cost, better 

AI 

Rock Pi 4 

B 
€68-€100 

2x Cortex-

A72 + 4x 

Cortex-

A53, 4x 

Mali-860 

1/2/4 Not specified 

Moderate, 

may need 

optimization 

Fair, 

smaller 

community 

Moderate, 

cost 

varies, 

camera 

unclear 

Odroid 

XU4 
€75 

4x Cortex-

A15 + 4x 

Cortex-

2 
None 

(USB/Ethernet) 

Moderate, no 

camera slot 

Fair, 

limited 

support 

Low, lacks 

camera 

integration 
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Device 
Cost 

(USD/EUR) 
CPU/GPU 

RAM 

(GB) 

Camera 

Interface 

Performance 

for 

YOLO11n 

Ease of 

Use 

Suitability 

for 

Farmers 

A7, 6x 

Mali-628 

 

Analysis 

• Cost: Raspberry Pi 5 is the most affordable at $60 for 4 GB RAM, making it 

accessible for small-scale farmers. Jetson Nano at $99 is more expensive, while 

Rock Pi 4 B and Odroid XU4 are similarly priced but may require additional 

costs for camera setups. 

• Performance: Raspberry Pi 5's CPU is sufficient for YOLO11n, as 

demonstrated in the project. Jetson Nano offers GPU acceleration, which could 

handle more complex models, but its CPU is less powerful. Rock Pi 4 B and 

Odroid XU4 may struggle with real-time performance without optimizations. 

• Ease of Use: Raspberry Pi's large community ensures extensive resources, ideal 

for farmers with limited technical expertise. Jetson Nano has good AI support 

but a smaller community. Rock Pi 4 B and Odroid XU4 have less support, 

potentially complicating deployment. 

• Suitability for Aquaculture: Raspberry Pi 5's dual camera ports integrate 

seamlessly with PiCamera (Night Vision), crucial for prawn monitoring. Jetson 

Nano supports cameras but at a higher cost. Rock Pi 4 B's camera interface is 

unclear, and Odroid XU4 lacks a built-in slot, adding complexity. 

• Scalability: Raspberry Pi 5 is widely available and easy to deploy in multiple 

units, aligning with scalability needs. Jetson Nano is scalable but costlier per 

unit. Other devices may face availability or compatibility issues. 

Conclusion 
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Research suggests Raspberry Pi 5 is the best fit for Objective 3, offering a cost-effective 

($60-$80), scalable, and user-friendly solution for prawn farmers. While NVIDIA 

Jetson Nano provides better AI capabilities, its higher cost ($99) may not be justified 

for current needs. Other devices like Rock Pi 4 B and Odroid XU4 are less suitable due 

to camera integration challenges and limited community support. Thus, Raspberry Pi 5 

aligns with the project's goal of providing an affordable, practical solution for small- 

and medium-scale farmer. 
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CHAPTER 5 System Implementation 
 

5.1  Hardware Setup 

The hardware involved in this project is computer, Raspberry Pi 5, PiCamera (Night 

Vision). A computer issued for the process of training for YOLO11n model. A 

Raspberry Pi 5 and PiCamera (Night Vision) is used for testing model and collecting 

data at the prawn farm. 

 

Table 5.1.1 Specifications of laptop 

Description Specifications 

Model Asus TUF F15 

Processor Intel Core i5-10300H CPU @ 2.50GHz   2.50 GHz 

Operating System Windows 10 

Graphic NVIDIA GeForce GTX 1650 

Memory 8GB RAM 

Storage 512GB SSD 

 

Table 5.1.2 Specifications of Raspberry Pi 

Description Specifications 

Model Raspberry Pi 5 

Processor Broadcom BCM2712 2.4GHz quad-core 64-bit Arm Cortex-

A76 CPU 

Graphic VideoCore VII GPU 

Memory SDRAM 4GB 

Storage SanDisk Ultra 64GB 

 

 

5.2  Software Setup 

Before starting to train the YOLO11n model, there are five software needed to be 

installed and downloaded in the laptop: 
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1. Visual Studio Code (VS Code): Used as the primary code editor for writing and 

debugging scripts related to data preprocessing, model training, and deployment. VS 

Code's support for Python extensions and integrated terminal facilitated efficient 

development workflows.  

2. Label Studio: Employed for annotating prawn images to create a labeled dataset for 

training the YOLO11n model. Label Studio allowed for the creation of bounding boxes 

around prawns in images, which were exported in YOLO format for compatibility with 

the training pipeline.  

3. Google Colab: Utilized for training the YOLO11n model due to its access to free 

GPU resources, which significantly reduced training time compared to local hardware. 

Colab notebooks were used to execute Python scripts for model training, validation, 

and testing. 

4. WinSCP: WinSCP (Windows Secure Copy) is a free, open-source file transfer client 

for Windows that supports protocols like SFTP, SCP, FTP, WebDAV, and Amazon S3. 

It’s widely used for securely transferring files between a local computer (e.g., a 

Windows PC) and a remote device (e.g., a Raspberry Pi). 

5. RealVNC Viewer: RealVNC Viewer is a remote desktop software application that 

allows you to view and control another computer remotely over a network using the 

VNC (Virtual Network Computing) protocol. In this project, it will be used to connect 

to the Raspberry Pi. 

 

5.3 YOLO11n Model training  

5.3.1 Model selection  

The YOLO11n model was selected for its lightweight architecture, making it suitable 

for deployment on resource-constrained devices like the Raspberry Pi 5. The selection 

of YOLO11n was driven by its optimal balance of speed, accuracy, and efficiency, 

which are critical for real-time monitoring on resource-constrained devices like the 

Raspberry Pi. A comparative analysis of YOLO models (YOLO11n, YOLOv8n, and 

YOLOv5) was conducted using a benchmark dataset of coins (pennies, nickels, dimes, 
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and quarters), as shown in Figure 5.3.1. The results demonstrated YOLO11n's superior 

performance in detecting objects accurately while maintaining high speed. 

 
Figure 5.3.1: Benchmark Results of YOLO Models [17] 

 
Figure 5.3.2: Benchmark Results from Ultralytics [18] 

 
The benchmark results align with the project's requirements for prawn detection, where 

accurate identification of prawns (analogous to quarters and nickels in the coin dataset) 

is crucial for density and growth estimation. YOLO11n's ability to detect objects with 

higher accuracy, particularly in distinguishing similar-sized objects, made it the optimal 

choice for this application. Additionally, its FPS of 6.89 on the benchmark dataset 

supports its feasibility for real-time inference on the Raspberry Pi, where an FPS of 5 

was achieved with prawn images. 
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5.3.2 Model training process and deployment 

Model training in Google Colab. All the training and deployment will be done in 

Google Colab.  

1. Upload data in zip file format 

 
Figure 5.3.3 Ways to Upload Datasets to Google Colab 

2. Unzip and split the images into train and validation folders 
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Figure 5.3.4 Code Snippet to Unzip and Split the Images into Train and Validated 

Folders 

 

3. Install Ultralytics 

 
Figure 5.3.5 Code Snippet to Install Ultralytics Library in the Google Colab Instance 

4. Configure Training 
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Figure 5.3.6: Creation of YAML File 

Figure 4.3.5 shows the creation of a configuration file in YAML format. This file should 

include the dataset paths for training and validation, as well as the number of classes 

and their corresponding names. 

5. Train Model 
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Figure 5.3.7 Log Information of Model Training  

The dataset contains over 200 images. Training the model for 40 epochs with an input 

resolution of 640×640 is suitable to ensure efficient performance and faster processing. 

6. Test Model 

 
Figure 5.3.8: Logs Information of Testing the Model 

 
Figure 5.3.9: Code Snippet to Load and Display Predicted Images 
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Figure 5.3.10 Object Detection Results of Model with Bounding Boxes Drawn 

5.3.3    Model deployment 

1. Download the Trained Model 

 
Figure 5.3.11: Code Snippet to Zip and Download the Trained Model 

2. Deploy on Raspberry Pi 
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Figure 5.3.12: Command to Create a New Virtual Environment 

This command creates a new virtual environment named venv in the ~/yolo directory, 

allowing access to system-wide packages while providing an isolated space for project-

specific dependencies. And the second command use to confirms that the virtual 

environment has been successfully activated, and the terminal session is now using the 

isolated Python environment for subsequent commands. 

3. Install Ultralytics and ncnn 

 
Figure 5.3.13: Command to Install Ultralytics and ncnn Packages 

The command pip install ultralytics ncnn installs two critical packages in the virtual 

environment on the Raspberry Pi: 

• Ultralytics: Provides the YOLO11n model and associated tools for object 

detection, which is central to your project's goal of automated prawn density 

and growth estimation. 

• NCNN: Enhances the deployment of the YOLO11n model by optimizing 

neural network inference for the Raspberry Pi, ensuring efficient real-time 

performance. 

This step is a key part of setting up the Raspberry Pi for running the YOLO11n 

model, aligning with the project's objective of creating a cost-effective, real-time 

monitoring solution for prawn farming. 

4. WinSCP to transfer model and python script 

 
Figure 5.3.14: WinSCP to Transfer the Collected Data to Raspberry PI 
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Figure 5.3.15: Python File to be Transferred to Raspberry PI 

5. Export model into ncnn format 

 
Figure 5.3.16: Command to Export the Trained Model to ncnn format 

 
Figure 5.3.17: Converted YOLO11n Model in ncnn format 

The file will convert into yolo11n_ncnn_model 

6. Run Inference 

 
Figure 5.3.18: Command to Run Inference in Raspberry PI 

This command in Figure 4.3.17 runs the model in Raspberry Pi, by using the PiCamera 

with an input resolution of 640x640 for optimal speed and compatibility. 

7. Result 

 
Figure 5.3.19 Detection Results in Raspberry PI 
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Figure 4.3.18 illustrates the FPS and the number of objects detected. However, the 

presence of two prawns in the frame indicates potential duplication or misdetection, 

which may compromise the accuracy of the data. 

5.3.4 Cron Job to Collect Data Through Pi-Camera 

Due to the limited amount of available data for training an accurate model, a Cron Job 

was configured on the Raspberry Pi to automate data collection via the PiCamera. This 

method provides a convenient and consistent way to gather additional images over time. 

 

 
 Figure 5.3.20: Content of the Cron_job Folder 

 
Figure 5.3.21: Shell Script to Take Photo 

 
Figure 5.3.22: Command to Open Crontab Configuration File 
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Figure 5.3.23: Crontab Configuration 

A new folder named Cron_job was created on the Raspberry Pi to manage scheduled 

data collection tasks. Within this folder, a shell script (take_photo.sh) was written, as 

shown in Figure 4.3.20. This script captures an image using the PiCamera and saves it 

to the photos directory located inside the Cron_job folder. Figure 4.3.21 illustrates the 

command used to open the crontab configuration file. As shown in Figure 4.3.22, the 

crontab entry */5 * * * * /home/pi/Desktop/Cron_job/take_photo.sh schedules the 

take_photo.sh script to execute every 5 minutes, enabling automated and periodic image 

capture. 
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CHAPTER 6 System Evaluation and Discussion 

6.1 Performance Metrics 

6.1.1 mAP50-95 

 
Figure 6.1.1: mAP50-95 

 
One common statistic used to assess the accuracy of object detectors such as YOLO is 

the mean average precision, or mAP. IoU 0.5-0.95 provides the mAP values. One may 

see that from the figure. 

  

After about five epochs, the mAP@0.5-0.95 rapidly improves from its low starting 

point during the first epochs (<0.2). In the last epochs, the curve stabilises between 0.85 

and 0.88, displaying a consistent rising tendency. This suggests that as the model is 

trained, its detection accuracy increases dramatically and eventually converges to a high 

degree of performance. 

  

All things considered, the high final mAP@0.5-0.95 values show that the model has 

mastered the ability to accurately forecast bounding boxes over a variety of IoU 

thresholds. At later epochs, the curve gradually flattens, indicating that the model has 

achieved a high degree of convergence. 
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6.1.2 F1 Curve 

 
Figure 6.1.2: F1-Confidence Curve 

 
The F1–Confidence curve shows how the F1 score changes as the confidence level rises 

or falls. The F1 score offers a fair way to assess detection performance since it is the 

harmonic means of precision and recall. The highest F1 score, at a confidence level of 

0.536, is 0.98 for all classes. The F1 curve for the "shrimp" class shows consistent 

detection accuracy, closely following the overall performance. Over a broad range of 

confidence levels (about 0.2 to 0.85), the F1 score stays high (>0.95), indicating that 

the model is accurate and resilient to varying threshold choices. The high peak F1 score 

indicates a superb memory and precision balance. The curve's flat plateau further 

suggests stability, indicating that the model is not unduly affected by the confidence 

threshold selection. In reality, this is preferable since it permits flexibility in 

determining deployment thresholds without significantly compromising accuracy. 
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6.1.3 Recall-Confidence Curve 

 
Figure 6.1.3: Recall-Confidence Curve 

 
According to the graph, at specific confidence levels, the model seems to have a high 

recall for every class. This indicates that a significant percentage of the actual prawns 

in the dataset can be accurately identified by the model. The model performs well 

overall, as evidenced by the recall for all classes combined reaching 0.99. 
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6.1.4 Precision Curve 

 
Figure 6.1.4: Precision-Confidence Curve 

 
The model has great precision across confidence levels, according to the graph. 

Predictions for the Shrimp class are extremely accurate since precision rapidly 

stabilizes around 1.0. Overall, at a confidence level of about 0.5, the model achieves 

perfect precision (1.00), demonstrating strong reliability. 

 

6.2 Testing Setup and Results 

The Raspberry Pi must be configured for the project in order to perform computer 

vision training by taking pictures for local data. Refer to chapter 4.3.4 for the location 

where the Cron-job will be run to gather the data. We'll train and use the local model. 

To test the outcome, a local density and growth estimation will be conducted. The 

Raspberry Pi's height will be 42 cm, and the region that the pi camera can detect will 

be 30 cm by 40 cm. Local data should also be used to define the weight-length 

relationship. Using the YOLO11n model, the training procedure will be the same as in 

chapter 4.3.2. However, the shrimp's body and carapace will be the exclusive focus of 

this training. 
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Figure 6.2.1 Area detected by Pi-Camera 

 

 
Figure 6.2.2 Weight-length Relationship Calculation 

 

 
Figure 6.2.3 Image captured by Pi-Camera 
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Table 6.2.1: Test Cases and Results 
 

No Test Case Remark 
1 

 

A bounding box is used to 
detect the prawn body. 
 

2 

 

The shrimps are 
identified, their density is 
measured, and they are 
appropriately categorized. 
 

3 

 

 

When compared to their 
real length, the prawns are 
discovered and measured 
with an inaccuracy of -0.9 
cm. To calculate the 
weight, however, the 
length must be known. 
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4 

 

Although there are just 
two prawns in this 
instance, they are 
detected. The background 
was identified by the 
model as FP, or a prawn. 
 

5 

 

A bounding box is used to 
accurately detect every 
prawn. 

6 

 

In this instance, prawns 
have been found. The 
detected prawn is not 
properly bounded, though. 
 

 

6.3 Project Challenges 

Lack of data is one of the project's biggest problems. In computer vision, training 

requires a large amount of data and might take many months. In addition to the typical 

environment, night vision must be incorporated to increase reliability. The time and 

personnel expenses are high. Data labelling necessitates manual labelling, which is 

expensive. The choice of model is the next obstacle. It is needed to ensure that the 

data can be continuously incorporated into the model in order to overcome these 

obstacles and improve the model's accuracy. By using cloud-based training and 

pushing the most recent model to edge devices, federated learning can overcome these 
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problems. To ensure smooth operation on edge devices, the model to be used should 

be lightweight. YOLO11n will be utilised to solve this problem because it is 

straightforward to train and small enough to run the detection. 

 

6.4 Objectives Evaluation 

The project effectively put into practice a computer vision system that uses bounding 

boxes to identify prawn bodies. The model's capacity to detect and assess shrimp 

presence in aquaculture environments was demonstrated by the accurate measurement 

and classification of shrimp density. In order to provide more reliable population 

statistics and lessen dependency on manual monitoring, this automation is a 

significant step. 

Additionally, the method demonstrated dependable measuring accuracy, with a mean 

error of -0.9 cm between real measurements and prawn length estimation. Although 

this margin is suitable for first testing, it identifies locations where boundary precision 

needs to be increased to improve growth monitoring even more. Density estimation 

performed as predicted in test situations, correctly identifying and classifying two 

shrimps. Limitations still exist, though, as the model occasionally misidentified 

background objects as shrimp and occasionally generated bounding boxes that were 

not in proper alignment with shrimp bodies, which affected weight estimation and 

measurement accuracy. 

Cost-effectiveness and accessibility are two other accomplishments of the project. All 

of the software tools utilised were open-source, and the system can be set up with 

reasonably priced hardware, including a Raspberry Pi and Pi-Camera, which should 

cost between $60 and $80. Due to its affordability, the solution is especially appealing 

to small and medium-sized farms as a less expensive substitute for pricey commercial 

equipment. Additionally, by using federated learning, the model may ensure long-

term adaptability and scalability by continuously improving over time as additional 

data is gathered. 

In conclusion, the project has shown that inexpensive, lightweight computer vision 

models may be used for prawn detection, density estimation, and growth monitoring. 

The accomplishment of these goals establishes groundwork for a scalable, reasonably 
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priced, and constantly evolving system that can greatly assist prawn producers, even 

though enhancements are required to solve bounding inaccuracies and false positives. 
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CHAPTER 7 Conclusion and Recommendation 

7.1 Conclusion 

This project, titled "Utilising Computer Vision Techniques for Automated Density and 

Growth Estimation in Precision Aquaculture Systems for Prawn Cultivation," 

successfully tackles significant challenges in the prawn farming industry by developing 

an innovative, automated monitoring system. The global shrimp industry has 

experienced substantial growth, with countries like Ecuador achieving a compound 

annual growth rate (CAGR) of 25% between 2020 and mid-2023, driven by rising 

demand in markets such as the US. However, traditional methods for monitoring prawn 

density and growth, such as cast-net sampling, are labour-intensive, time-consuming, 

and prone to human error, leading to inefficiencies like overfeeding, underfeeding, and 

suboptimal harvest timing. These inefficiencies contribute to wasted resources, 

environmental degradation, and reduced farm productivity. Additionally, the lack of 

real-time monitoring tools hinders precise feeding and harvest planning, while small- 

and medium-scale farmers face barriers in adopting advanced technologies due to high 

costs and technical complexity. Motivated by these issues, the project aimed to enhance 

productivity and sustainability in prawn farming by automating monitoring processes, 

improving accuracy, and designing a cost-effective solution accessible to smaller 

operations. 

The proposed solution leverages computer vision and machine learning to address these 

challenges, focusing on three key objectives: automating prawn density and growth 

estimation, enhancing monitoring accuracy and efficiency, and ensuring affordability 

and scalability. A lightweight YOLO11n neural network was implemented to automate 

the estimation process, achieving a real-time inference speed of 5 FPS on a Raspberry 

Pi 5. Machine learning algorithms were integrated to improve the precision of prawn 

population tracking by analysing visual data from camera feeds, enabling accurate 

monitoring of growth and density across diverse conditions. To ensure accessibility, 

the system uses affordable hardware, including the Raspberry Pi 5 ($60-$80) and 

PiCamera (Night Vision), making it viable for small- and medium-scale farmers. The 

system was deployed in a controlled prawn pond environment, capturing 2000 images 

of Cherax quadricarinatus prawns under varying lighting and water clarity conditions 

to ensure robustness. 
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The literature review revealed several weaknesses in existing systems, such as 

environmental sensitivity, high costs, technical complexity, data scarcity, and limited 

field validation, which this solution mitigates. For instance, a prior smart headset 

system struggled with inconsistent lighting and depth camera limitations, while this 

system uses YOLO11n, trained on diverse images, to handle such variability. Similarly, 

automatic counting methods faced high computational demands, which the lightweight 

YOLO11n model on Raspberry Pi addresses efficiently. The system also simplifies 

operation through automated data collection via a Cron Job, capturing images every 5 

minutes to build a farm-specific dataset, overcoming the data scarcity issue noted in 

AI-based prawn farming studies. Additionally, the use of affordable hardware reduces 

financial barriers highlighted across all reviewed studies, ensuring scalability for 

smaller farms. 

A novel idea derived from this project is the integration of automated data collection 

via a Cron Job on the Raspberry Pi to continuously build a tailored dataset for prawn 

monitoring. Unlike prior studies that relied on manual data collection or pre-existing 

datasets, this approach ensures a steady stream of farm-specific images, capturing 

prawns across growth stages and environmental conditions without additional labor. 

This automation not only addresses the lack of standardized datasets but also supports 

ongoing model improvement, enhancing long-term accuracy and adaptability. 

Furthermore, the use of YOLO11n on a Raspberry Pi, optimized with NCNN for real-

time performance, provides a practical balance of efficiency and affordability, a 

combination less emphasized in previous works that often prioritized high-end 

hardware. 

Preliminary results demonstrate the system’s feasibility, though challenges remain. The 

YOLO11n model successfully detected prawns in real-time, but initial tests showed 

inaccuracies, such as detecting only one of two prawns in an image, underscoring the 

need for more data and fine-tuning. The Cron Job feature mitigates this by expanding 

the dataset over time, while the device comparison confirmed the Raspberry Pi 5 as the 

optimal choice for small-scale farmers due to its affordability, ease of use, and camera 

integration. Overall, this project contributes to the aquaculture industry by providing a 

practical, data-driven tool that enhances operational efficiency, reduces resource waste, 

and promotes sustainability, particularly for small- and medium-scale prawn farmers, 

aligning with the project's original goal. 
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7.2 Recommendation 

A number of enhancements are suggested to improve the prawn detecting method even 

more. First, by using data augmentation and fine-tuning annotations, the training dataset 

can be expanded and diversified to include images of prawns orientated in various 

lighting and water conditions, hence increasing the precision of bounding boxes. 

Equally crucial is lowering false positives, which can be accomplished by using 

background filtering, modifying the confidence threshold, and adding negative samples 

during training. Furthermore, broadening the dataset will improve the model's 

generalisation across various settings and phases of prawn development. Since length 

is currently used to estimate weight, a local weight-length connection needs to be 

established in the appropriate setting.Adopting federated learning would also guarantee 

that, without sacrificing scalability or privacy, the system keeps getting better as more 

farms contribute data. Practically speaking, the system should have an intuitive user 

interface for farmers that offers visual dashboards, real-time information, and 

automated warnings to aid in decision-making. Last but not least, extensive field testing 

in various aquaculture settings is necessary to evaluate the system's resilience, validate 

its cost-effectiveness, and show how valuable it is for raising farm output. 
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