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ABSTRACT

Prawn farming, a vital sector of the global aquaculture industry, faces challenges with
traditional monitoring methods that are labor-intensive, error-prone, and lack real-time
capabilities, leading to inefficiencies in feeding and harvest planning, particularly for
small- and medium-scale farmers. This project aims to address these issues by
developing a computer vision-based system for automated density and growth
estimation of Cherax quadricarinatus prawns, enhancing operational efficiency and
sustainability. Utilizing the lightweight YOLO1 1n neural network, a Raspberry Pi 5,
and a PiCamera (Night Vision), the system automates prawn monitoring, improves
accuracy through machine learning, and ensures affordability at $60-$80 per unit. A
Cron Job feature enables continuous data collection, building a farm-specific dataset to
overcome the lack of standardized prawn data. Deployed in a controlled pond
environment, the system captured 2000 images under varying conditions, achieving
real-time detection at 5 FPS, though initial tests revealed accuracy issues requiring
further data and fine-tuning. By mitigating challenges like environmental variability,
high costs, and technical complexity identified in prior studies, this solution offers a
scalable, user-friendly tool that empowers smaller farms to optimize resource use and

enhance productivity in precision aquaculture.

Area of Study: Internet of Things, Computer Vision

Keywords: Data Collection, Computer Vision, YOLOV11n, Raspberry Pi, Cherax

quadricarinatus
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CHAPTER 1

CHAPTER 1 Introduction

In this chapter, we present the background and motivation of our research, our
contributions to the field, and the outline of the thesis. Prawn farming is a significant
component of the global aquaculture industry, contributing to the supply of seafood
worldwide [1]. The global shrimp industry has experienced substantial growth, with
major production increases in countries like Ecuador, China, and Vietnam, driven by
rising demand in key markets such as the US. Ecuador saw a remarkable compound
annual growth rate (CAGR) of 25% between 2020 and mid-2023. However, some
regions, including India, are now experiencing reduced exports due to market
oversupply, highlighting the dynamic and fluctuating nature of the global shrimp
market [1]. As the industry grows, there is an increasing need for precision aquaculture
techniques to enhance productivity and sustainability [2]. Precision aquaculture
employs advanced technologies to optimise farming practices, reducing waste and

improving resource management [2].
1.1 Problem Statement and Motivation

1. Traditional methods for monitoring prawn density and growth are labour-
intensive, time-consuming, and prone to human error, leading to inefficiencies in

prawn farming operations:

Traditional methods for monitoring prawn density and growth are labour-
intensive, time-consuming, and prone to human error, leading to inefficiencies in prawn
farming operations [3]. This inefficiency can lead to overfeeding or underfeeding,
resulting in wasted resources and potential harm to prawn health and farm productivity
[2]. Automating these processes through advanced technologies like computer vision

or machine learning algorithms can significantly enhance operational efficiency [2].

2. There is a lack of real-time monitoring tools in prawn cultivation, resulting in
imprecise feeding and harvest planning, which can negatively impact the
productivity and sustainability of aquaculture systems:

The absence of real-time monitoring tools in prawn farming makes it difficult

to accurately track the growth of prawns and manage feeding schedules [3],[4],[5].

1
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Feeding is often based on estimated population sizes rather than actual real-time data,
leading to either overfeeding, which wastes resources and contributes to water pollution,
or underfeeding, which hinders prawn growth [2]. Additionally, without continuous
data on growth and density, farmers cannot optimally plan harvesting, which may lead
to premature or delayed harvests, further affecting the economic sustainability of the
farm [2], [5]. Real-time tools such as sensors, automated feeders, and computer vision
systems are essential to address these inefficiencies by providing farmers with accurate,

timely data [2].

3. Small- and medium-scale prawn farmers face challenges in adopting advanced
technologies due to the high costs and complexity of implementation, limiting their
ability to optimize cultivation practices:

For small- and medium-scale prawn farmers, the adoption of advanced
technologies such as automated monitoring systems, machine learning algorithms, and
IoT devices can be financially prohibitive [2]. High upfront costs for equipment and
ongoing expenses for maintenance and upgrades create barriers to technology adoption.
Additionally, the technical complexity of setting up and maintaining these systems can
deter smaller operations that may not have access to skilled labor or technical expertise
[2]. These challenges limit smaller farms' ability to optimize their cultivation practices,
resulting in lower productivity and competitiveness compared to larger, tech-enabled

operations [2].

The motivation for proposing the automated prawn cultivation system stems from the
need to modernize traditional, labour-intensive practices that are inefficient and prone
to human error. Current methods lack real-time monitoring, leading to inaccurate
feeding and harvest planning, which reduces productivity. The system leverages
advanced technologies like computer vision to provide real-time data, improving
decision-making, resource management, and overall efficiency. Additionally, it aims to
make precision aquaculture accessible to small- and medium-scale farmers by offering
a cost-effective and scalable solution, ultimately promoting sustainability and

supporting the growth of the prawn farming industry.

1.2 Project Objectives
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1. Develop a computer vision-based system using lightweight neural networks like
YOLO11n to automate the estimation of prawn density and growth, reducing

reliance on manual methods:

This objective aims to replace traditional manual methods of monitoring prawn
density and growth with an automated system powered by computer vision and deep
learning. Lightweight neural networks, particularly MobileNetV2, are chosen due to
their efficiency and ability to operate on resource-constrained devices, making them
ideal for real-time monitoring in aquaculture settings. By training the system to
recognize prawns and estimate their size and count from visual inputs such as camera
feeds, the system can provide continuous, accurate data on prawn growth and
population. This will significantly reduce the labor-intensive processes currently
employed, cutting down human error, improving consistency, and allowing for more
frequent data collection, leading to better decision-making in feeding schedules, health

checks, and harvest planning.

2. Enhance the accuracy and efficiency of prawn population monitoring through

the integration of machine learning algorithms:

This objective focuses on improving the precision of prawn population tracking
by leveraging machine learning algorithms to handle complex visual data. By
incorporating techniques such as transfer learning, deep learning, and pattern
recognition, the system will be able to analyse various features such as prawn
movement, size variation, and density in diverse conditions. This will lead to more
reliable and accurate estimations of prawn population metrics compared to traditional
observation methods. The integration of advanced algorithms will also optimize the
system's performance, making it capable of processing data quickly and efficiently,
even in low-resource environments. This improvement in accuracy and efficiency will
enable farmers to make more informed decisions regarding feeding, pond maintenance,

and prawn health management.

3. Design a cost-effective and scalable solution that can be readily adopted by

small- and medium-scale prawn farmers for improved aquaculture management.

This objective targets the creation of an affordable and scalable solution tailored
to the needs of small- and medium-scale prawn farmers. By keeping hardware

requirements minimal and leveraging lightweight neural networks like MobileNetV2,
3
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the system can be implemented using cost-effective equipment such as simple cameras
and standard computing devices. The focus on scalability ensures that the solution can
be easily adapted to different farm sizes and infrastructure without the need for
expensive modifications. Additionally, the system will be designed with a user-friendly
interface to ensure ease of use, even for farmers with limited technical expertise. By
providing real-time monitoring and data-driven insights at a low cost, this solution will
empower farmers to optimize their production processes, reduce waste, and increase
profitability, making advanced aquaculture management accessible to a broader

audience.
1.3 Project Scope and Direction

The project scope directly supports all three objectives specific to prawn cultivation,
focusing on Cherax quadricarinatus. Firstly, it focuses on developing a computer
vision-based system using lightweight neural networks such as YOLO1 1n, which will
automate the detection and estimation of prawn density and growth. This reduces the
need for labour-intensive, manual monitoring methods traditionally used in prawn
farming. Secondly, by incorporating machine learning algorithms, the system will
improve the accuracy and efficiency of monitoring prawn populations, allowing for
precise tracking of prawn growth and population density. This ensures more effective
management of feeding schedules and harvesting times, optimizing productivity. Lastly,
the scope highlights designing a cost-effective and scalable solution tailored
specifically for small- and medium-scale prawn farmers, ensuring that they can adopt
these advanced technologies without prohibitive costs. The system will enable these
farmers to improve aquaculture practices, boosting sustainability and operational

efficiency in prawn farming.
1.4  Contributions

The proposed automated prawn cultivation system significantly contributes to the
prawn farming industry by enhancing efficiency, accuracy, and sustainability. By
automating monitoring processes through advanced technologies such as computer
vision and machine learning, the system reduces the reliance on labour-intensive, error-
prone methods, leading to improved operational efficiency and more precise data on
prawn density and growth. This real-time data enables better management of feeding

4
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and harvesting schedules, preventing issues like overfeeding, underfeeding, and
suboptimal harvest timing, which in turn optimizes resource use and minimizes
environmental impact. Furthermore, the system addresses the challenges faced by
small- and medium-scale farmers by offering a cost-effective and user-friendly solution,
thus making advanced technology more accessible and helping to level the playing field.
Ultimately, this approach supports the sustainability of prawn farming and fosters
industry growth by improving productivity and resource management across various

farm sizes.
1.5 Report Organization

This report is structured into five chapters, each detailing a specific aspect of the project
on utilizing computer vision techniques for automated density and growth estimation
in precision aquaculture systems for prawn cultivation. The first chapter introduces the
project, discussing the background of the global shrimp industry, the problem statement,
motivation, objectives, project scope, and contributions. The second chapter reviews
existing literature on automated monitoring technologies in aquaculture, focusing on
systems like smart headsets, computer vision-based counting methods, and Al-driven
image processing for prawn farming, while analyzing their strengths and weaknesses
to contextualize this project’s approach. The third chapter presents the proposed method,
detailing the system requirements, architecture diagram, workflow, growth stage
equations, and project timeline. The fourth chapter covers preliminary work, including
the setup of software tools, data collection and annotation processes, YOLO11n model
training and deployment, automated data collection via Cron Job, and a device
comparison for cost-effectiveness and scalability. Finally, the fifth chapter concludes
the report by summarizing the project’s findings, contributions, and implications for
prawn farming, emphasizing how the proposed solution addresses the identified

challenges and its potential impact on the aquaculture industry.
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CHAPTER 2 Literature Reviews

2.1 Smart headset, computer vision and machine learning for efficient prawn

farm management [3]

2.1.1 Review

The field of aquaculture has increasingly adopted automated monitoring
technologies to improve the efficiency of operations, particularly in prawn cultivation.
Traditional methods for estimating prawn density and growth, such as the cast-net
approach, are labour-intensive and error-prone. These methods often result in
suboptimal data collection frequencies and inaccuracies, which can negatively impact
farm productivity. Recent advancements in computer vision (CV) and machine learning
(ML) have provided a more scalable and efficient solution for prawn growth monitoring.
This study developed a smart headset integrated with a depth camera and CV techniques,
which enabled real-time prawn size estimation during routine feed tray inspections. The
study highlighted the need for high-frequency data collection to better understand
prawn growth and optimize feeding and harvesting strategies. This solution
demonstrated superior performance in terms of time efficiency compared to traditional
methods, which require manual labour and invasive procedures that stress the animals.
Other studies have explored the use of convolutional neural networks (CNNs) to detect
and segment prawns for size estimation. This study [4] employed CNN models to
estimate shrimp population density and size, providing real-time insights into shrimp
growth trends. Their approach used a similar vision-based system, but with a focus on
stationary camera setups rather than the wearable smart. The transition to wearable
technology marks a significant advancement, offering greater flexibility and mobility
for prawn farmers. Despite the promising outcomes, challenges remain in ensuring data
quality in outdoor environments. External factors such as lighting and water reflections
can introduce noise in the depth maps generated by the CV systems. This study
addressed these challenges through advanced filtering and smoothing techniques to
improve the accuracy of prawn length estimation. However, they also identified
limitations, such as the need for further refinement of depth camera capabilities in

uncontrolled field conditions.
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In conclusion, the integration of computer vision and machine learning in prawn
cultivation has the potential to revolutionize the industry. By automating the data
collection process and providing real-time insights into prawn growth, these

technologies can significantly reduce labour costs and improve farm productivity.

2.1.2 Strengths and Weakness

The study presents several strengths in its approach to prawn farm management using
a smart headset integrated with computer vision and machine learning technologies.
One of the key advantages is the automation of prawn size estimation, which
significantly reduces the reliance on traditional, labour-intensive methods like cast-net
sampling. By enabling real-time and non-invasive data collection during routine
feeding activities, the solution enhances operational efficiency and minimizes stress on
the animals. The use of wearable technology also introduces greater flexibility and
mobility for farmers compared to previous systems that relied on stationary cameras.
Additionally, the incorporation of advanced filtering and smoothing techniques helps
to mitigate the impact of environmental challenges such as lighting variations and water

reflections, thereby improving data accuracy.

However, the study also highlights several weaknesses. Despite efforts to improve data
quality, the system's performance can still be hindered by external factors in outdoor
environments, such as inconsistent lighting and reflective water surfaces. The current
capabilities of depth cameras remain limited under such uncontrolled conditions,
pointing to the need for further hardware refinement. Moreover, the implementation of
such high-tech solutions may present a barrier for small-scale farmers due to the initial
cost, technical complexity, and ongoing maintenance requirements. While the study
shows promising results, its findings may be limited if the system has not yet been

extensively tested in diverse or large-scale field conditions.

The proposed solution with a Raspberry Pi module it can reducing the barrier for small-

scale farmer, where Raspberry Pi has a very competitive price.

2.2 Automatic counting methods in aquaculture: A review [7]
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2.2.1 Review

Accurate monitoring of prawn density and growth is critical for the effective
management of aquaculture systems. Traditional manual methods are labour-intensive
and prone to human error, making them unsuitable for large-scale operations.
Consequently, automated solutions involving computer vision (CV) and machine
learning (ML) techniques have gained traction in aquaculture, particularly in prawn
farming.

Sensor-Based Counting Technologies: Early attempts at automation in
aquaculture utilized sensor-based methods, such as infrared and resistivity counters,
which detect fish or prawns as they pass through channels. These systems offer
simplicity but are affected by environmental factors like water turbidity and
overlapping fish or prawns, leading to inaccurate counts. Studies have shown that these
methods underperform when applied in complex environments.

Computer Vision in Aquaculture: With the advent of computer vision
technologies, aquaculture operations have shifted toward more accurate, non-invasive
methods for monitoring fish and prawn populations. This study demonstrated the
application of Fast R-CNN, a deep learning model, in underwater environments to
detect fish with higher accuracy compared to traditional sensor methods. In prawn
farming, computer vision systems have been adapted to estimate both density and
individual growth rates by analysing visual data from camera feeds. Mask R-CNN and
Cascade Mask R-CNN have been particularly successful in detecting and segmenting
aquatic animals, enabling more accurate growth monitoring.

Machine Learning for Growth Estimation: Machine learning algorithms,
lightweight models have been implemented to provide real-time monitoring solutions
in aquaculture. These models analyse images to estimate prawn size and population
density efficiently, making them suitable for small- and medium-scale farms. This
study [4] emphasized the benefits of combining computer vision with machine learning
to automate prawn size estimation and optimize feeding schedules.

Challenges in Automating Aquaculture: While computer vision and machine
learning technologies have proven effective, there are challenges related to
environmental noise, such as poor lighting and water clarity, which can affect the
accuracy of these systems. Future research aims to improve the robustness of CV and

ML models in these conditions, making them more reliable for use in aquaculture
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settings. Additionally, the cost and complexity of these systems remain barriers to

adoption for small- and medium-scale farmers.

Table 2.2.1: A comparison of different methods used for object counting in aquaculture

Counting methods Advantages Disadvantages Application
Sensors based Fast response, easy  Required equipment to Integrated into the
to implement restrict the fish movement  counting device for
and damage to fish; prone fry counting or
to underestimated for ornamental fish
overlapping fish count
Computer vision Image processing Non-invasive, better Computing power of the Population or
based accuracy with hardware required, light abundance
better algorithm attenuation underwater, estimation of animal
architecture and unable to continuous in underwater
optimization counting images by ROV
Video analysis Real-time, efficient
Acoustic based Hydroacoustic methods Fast and efficient, not Difficult to recognize small  Fish population
affected by water and overlapping fish. estimation in waters
turbidity and light such as lakes or
Acoustic imaging Able to obtain images rivers.

close to the video
images in dim
murky water

2.2.2 Strengths and Weakness

Automatic counting methods in aquaculture, such as sensor-based technologies,
computer vision, and machine learning, offer substantial improvements over traditional
manual approaches, particularly for prawn farming. Their strengths, higher accuracy,
non-invasive monitoring, real-time capabilities, detailed insights, and adaptability—
make them powerful tools for enhancing efficiency and sustainability. However,
weaknesses like environmental sensitivity, high costs, technical complexity, data
requirements, and computational demands highlight the need for ongoing research and
development. Addressing these challenges could make these technologies more
accessible and reliable, especially for small- and medium-scale farmers, revolutionizing
prawn farming and aquaculture management.

With proposed solution the system simplifies operation with a pre-trained model and
straightforward deployment on Raspberry Pi, reducing the need for specialized
knowledge. YOLO11n’s lightweight architecture runs efficiently on the Raspberry Pi

(achieving 5 FPS with prawn images), minimizing computational demands.

2.3 Computer Vision Based Estimation of Shrimp Population Density and Size [4]
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2.3.1 Review

Computer vision (CV) techniques have been applied extensively in the field of
shrimp farming to automate the process of estimating shrimp population density and
size. Shrimp is a significant aquaculture product, and continuous monitoring of shrimp
population and growth is crucial for optimal farm management. Traditional methods of
manual counting and measuring shrimp are labor-intensive and prone to errors.
Therefore, automated methods using computer vision and deep learning techniques
have been explored as efficient alternatives.

In this study, it implemented a CV-based system to monitor shrimp farms. The
system utilizes U-Net segmentation combined with marker-controlled watershed
segmentation and thresholding to count shrimps and estimate their lengths. The U-Net
model, originally designed for biomedical image segmentation, is fully convolutional
and able to assign class labels to each pixel in an image, making it highly effective in
segmenting shrimp from their surroundings. The model consists of 23 convolutional
layers organized into contracting and expansive paths, with the ability to function well
even with small datasets.

The segmentation is followed by marker-controlled watershed segmentation
to handle cases where shrimps are touching or overlapping each other. This technique
allows for better separation of overlapping objects by computing watershed lines along
object boundaries. The accuracy of this approach was tested on images of shrimp from
a laboratory environment, yielding a mean absolute error of 0.093 in shrimp counting
and a root mean square (RMS) error of 0.293 cm in shrimp length estimation when
the shrimps were separately located.

However, the study also noted limitations in the method's ability to accurately
count shrimps when they are overlapping or touching, where the mean absolute error
increased to 0.298. Despite these challenges, the system proved robust in its ability to
segment even small parts of shrimp, such as tails.

In addition to the CV and segmentation techniques, the system includes a web-
based monitoring platform using Heroku, which allows shrimp farmers to easily
access shrimp population density and length data through a web interface. This cloud-
based solution is particularly useful for non-experts, providing a user-friendly interface

for real-time farm monitoring.
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2.3.2 Strengths and Weakness

The computer vision-based system for shrimp population and size estimation
revolutionizes aquaculture by automating labor-intensive tasks and delivering high
accuracy in controlled environments, with counting errors as low as 0.093 and size
estimation errors around 0.293 cm. It employs advanced segmentation techniques, such
as U-Net and marker-controlled watershed, to tackle complex scenarios and provides
an intuitive web interface for seamless data access. However, its performance drops
significantly when shrimp overlap, with counting errors rising to 0.298, and it struggles
in murky or poorly lit conditions due to its dependence on high-quality imaging. The
system also demands substantial computational resources and lacks extensive real-
world field validation, making its high implementation and scalability costs a potential
barrier, particularly for smaller farms, limiting widespread adoption to well-resourced
operations.

With proposed solution it provides Cost-Effective and Scalable. At $60-$80 per unit,
the Raspberry Pi setup is affordable and easily replicable across multiple ponds,
enhancing scalability for small farmers. Besides that, it provides flexible imaging. The
PiCamera (Night Vision) captures usable images in low-light and turbid conditions,

reducing dependency on pristine imaging environments.
2.4 Al-image processing and image recognition for intelligent prawn farming [5]

2.4.1 Review

The application of Artificial Intelligence (AI) and image processing in
aquaculture has gained significant traction over the past few years, especially for tasks
such as prawn growth stage detection and population estimation. The need for
automation in prawn farming arises due to the labor-intensive and error-prone nature of
manual methods. These technologies aim to enhance farming efficiency, ensure
sustainability, and optimize resource utilization in prawn cultivation.

Convolutional Neural Networks (CNNs) have been widely adopted in
aquaculture for image recognition and classification tasks. CNNs are particularly
suitable for processing spatial data such as images, making them an ideal choice for
prawn detection and growth monitoring. In prawn farming, CNNs can be used to

classify prawns into different growth stages—Juvenile, Premature, and Mature—based
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on their biometric traits. For example, ShrimpNet, an architecture developed for
shrimp detection, has shown significant improvements in classification accuracy.

The You Only Look Once (YOLO) model has emerged as a popular choice
for real-time object detection due to its high processing speed and accuracy. In prawn
farming, YOLO can rapidly detect and classify prawns in different environments, such
as underwater or in controlled ponds. YOLO's ability to handle high-speed processing
makes it suitable for applications where large volumes of image data need to be
processed in real-time.

Faster Region-based Convolutional Neural Network (R-CNN) is another
deep learning model used for object detection in prawn farming. By leveraging the
ResNet backbone, Faster R-CNN improves the accuracy of prawn detection by
focusing on region proposals and bounding boxes for prawn images. The combination
of ResNet with Faster R-CNN allows for deeper networks that reduce the risk of
overfitting, a common challenge in deep learning applications.

Additionally, models like SSD (Single Shot Detector) and CenterNet
Hourglass 104 have been explored for prawn detection and classification. SSD is
known for its balance between speed and accuracy, while CenterNet excels in keypoint
detection and object localization tasks. These models provide alternatives depending
on the specific requirements of the farming environment and computational resources
available.

While these models have shown promising results, challenges remain in
applying these techniques to prawn farming. For instance, the lack of available datasets
for prawn growth stages necessitates the creation of custom datasets. In this project, the
researcher manually collected and labeled prawn images to train the deep learning
models. Moreover, the variation in environmental conditions, such as water clarity and
lighting, can affect the accuracy of these models.

The success of Al-based systems in prawn farming hinges on selecting the right
model and optimizing it for the given conditions. In this research, a combination of
CNNs, YOLO, Faster R-CNN, and CenterNet is evaluated to determine the most
suitable model for prawn growth stage detection and population estimation. The
performance of these models is measured using metrics such as mean Average
Precision (mAP), Average Recall (AR), and loss, ensuring that the model provides

accurate and reliable results under various conditions.
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2.4.2 Strengths and Weakness

Al-based image processing and recognition systems, leveraging models like CNNs,
YOLO, and Faster R-CNN, offer transformative strengths for intelligent prawn farming.
They automate tasks such as prawn counting and growth stage classification, replacing
labor-intensive manual methods with high accuracy—often achieving over 90%
precision in controlled settings. Real-time processing, especially with YOLO, enables
continuous monitoring for timely interventions, while adaptability across models
allows customization to diverse farming environments. These systems also optimize
resource management by providing precise data for feeding and harvesting, reducing
waste and costs. However, significant weaknesses persist. The lack of standardized
datasets forces farms to invest heavily in custom data collection, delaying deployment.
Environmental variability, such as water clarity and lighting, can degrade model
performance, requiring costly preprocessing. Computational demands for training and
running models are high, often necessitating expensive hardware or cloud services.
Additionally, the risk of overfitting limits model generalizability, and the technical
expertise needed for setup and maintenance creates barriers, particularly for small-scale
farmers. Addressing these challenges is essential to unlock the full potential of Al in
prawn farming.

With proposed solution, automated Dataset Creation, the Cron Job feature collects
prawn images continuously, building a custom dataset tailored to my farm’s conditions,
bypassing the need for standardized datasets. Other than that, simplified Operation. The
system’s design prioritizes ease of use, with automated processes and a web-based

interface (planned), minimizing technical expertise requirements.

2.5  Fish Species Detection and Recognition Using MobileNet v2 Architecture:
A Transfer Learning Approach [8]

2.5.1 Review

Fish species detection and recognition is a crucial aspect of biodiversity
conservation and fisheries management, where traditional methods of manual
identification are often inefficient and error prone. Automated detection systems,
powered by deep learning models like MobileNetV2, have emerged as solutions to

these challenges. MobileNetV2, designed for resource-constrained devices, is
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particularly suited for applications in marine environments due to its efficiency and
ability to perform well on mobile or embedded systems.

MobileNetV2's architecture is built on inverted residuals and linear bottlenecks,
which help reduce computational costs while retaining high accuracy. This makes it
ideal for fish species classification, where real-time processing and minimal hardware
requirements are essential. The model has been effectively used in various studies
involving fish species detection, often combined with transfer learning techniques. By
leveraging pre-trained weights from large datasets like ImageNet, MobileNetV2 adapts
well to domain-specific tasks, achieving high accuracy in classifying fish species based
on subtle visual differences such as color, shape, and texture.

Performance metrics like accuracy, precision, recall, and F1-score demonstrate
MobileNetV2’s robustness in detecting fish species with minimal errors. Studies have
shown that the model can achieve near-perfect accuracy in fish species classification,
making it a valuable tool for ecological monitoring. However, challenges such as
variability in underwater environments and class imbalance still pose difficulties. Some
studies have addressed these issues by employing class-aware loss functions to improve
model performance in datasets with underrepresented species.

Overall, MobileNetV2 has proven to be a powerful tool for fish species
detection, offering high accuracy and computational efficiency. Its application extends
to ecological research, fisheries management, and conservation efforts, where accurate
species identification is vital. Despite some challenges, MobileNetV2’s flexibility and
adaptability through transfer learning make it a promising solution for real-time

monitoring and automated species recognition in aquatic environments.

2.5.2 Strengths and Weakness

MobileNetV2 is highly effective for fish species detection due to its computational
efficiency, making it ideal for resource-constrained devices in marine environments. Its
high accuracy, achieved through transfer learning, enables it to distinguish subtle visual
differences in fish species, while real-time processing supports critical applications like
ecological monitoring and fisheries management. The model’s robust performance
metrics minimize errors, and its flexibility allows adaptation to various underwater
conditions. However, it is sensitive to environmental variability, such as changes in

lighting or water clarity, which can reduce accuracy. Class imbalance in datasets can
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lead to biased predictions, and its reliance on pre-trained data quality risks performance
issues if underwater imagery is not well-aligned. In complex scenarios, like cluttered
environments, misclassifications may occur, and hardware constraints in extreme
conditions can limit deployment in remote or harsh marine settings. While
MobileNetV2 offers significant advantages in efficiency, accuracy, and adaptability,
these environmental and technical challenges require careful consideration for optimal
use in aquatic environments.

With proposed solution, it achieved optimized hardware. The Raspberry Pi 5, paired
with YOLOI11In and NCNN optimization, performs reliably in farm conditions,
overcoming hardware constraints. Environmental Robustness. YOLO1 In outperforms
MobileNet v2 in diverse conditions, as shown in my training with varied prawn pond

images, addressing sensitivity issues.
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CHAPTER 3 Proposed Method/Approach

The processes of the project were categorized into different phases in the development,
which were project pre-development, data pre-processing, model training architecture

building and data training, and prediction on test dataset.

3.1 System Architecture Diagram
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Figure 3.1.1 System Architecture Diagram of This Project

= The raspberry pi kick start the sensors reading, capture and process data, pH value and temperature are collected every 10 seconds regardless the network connection
* The sensors data are store in local storage, a relational database regardless the network connection

If network present: periodically check the temporary storage to perform data syncing with DynamoDB

= While the sensors reading data, a rules-based condition will be evaluated

* If temperature or pH reading exceed acceptable threshold, an alert will be sound via email to user

Federated Learning

* Server initialize a global model weight and upload to S3
= Client download global model weight and perform local training using local data
+ Client upload trained local weight to S3
= Server perform model aggregation using weights from clients and upload aggregated weight as global model back to S3
* Data process by Raspberry Pi will send into AWS Lambda for estimation of growth and density
If network connection present: the sensor data will be store into DynamoDB located in cloud as a backup source, else data will be duplicate into a temporary storage

* Athena query data store in DynamoDB to serve as a data source for visualization

* A near real time interactive dashboard visualize data for farm monitoring

0000
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Figure 3.1.2 Workflow of this project.
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Figure 3.1.3: Main part of Computer Vision and Automated Density and Growth

Estimation Module.

The overall system developed consists of three parts: hardware, software and Cloud.

The hardware used in this system will be raspberry pi and the IoT sensor. Raspberry pi

kick starts the PiCamera to collecting data and process data by pre-trained YOLOI11n

model, pH value and temperature are collected regardless the network connection. The

sensors data are store in local storage, a relational database regardless the network

connection. Data process by Raspberry Pi will be sent into AWS Lambda for estimation

of growth and density. This report will only be focusing on Computer Vision, density

and growth estimation.

3.2

Flowchart
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Data Collection
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Figure 3.2.1: Flowchart of the Automated Density and Growth Estimation Module

The workflow for the Utilising Computer Vision Techniques for Automated
Density and Growth Estimation in Precision Aquaculture Systems for Prawn
Cultivation is structured into several key stages, each contributing to the efficiency and
accuracy of the overall process. The system begins with data collection, where high-
resolution cameras are installed in the prawn ponds to capture continuous images of the
prawns in their natural environment. In some cases, sensors may also be deployed to
monitor environmental factors such as water quality, temperature, and pH levels. Once
the images are collected, the data annotation phase involves manually labelling each
prawn within the images by drawing bounding boxes around them. The annotated
dataset is crucial for training the machine learning model, where prawns are detected

and localized accurately.
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Following data annotation, the model development and training stage takes
place. In this step, YOLOI11n, is used for detection. The model is trained using the
annotated data and fine-tuned to ensure accuracy and prevent issues like overfitting.
After the model is properly trained, it is deployed on the Raspberry Pi for real-time
monitoring. The system continuously processes live images from the cameras, allowing
it to detect and count prawns in real-time. Where all the data will be stored at the local
database. Once the Raspberry Pi is connected to the Internet, it will send the data
through Federated Learning Client. Data will be sent to the Federated Learning Server
to do learning.

The next stage, density and growth estimation, is where the system uses the pre-
trained model to count the number of prawns and collect the data. The data will send to
AWS Lambda to do with density and growth estimation within a given pond area. In
AWS Lambda, there be a YOLO model that will only detect the shrimp body only, and
it will further predict the growth stages of the prawns by analyzing their size. This data

is used to optimize operations such as feeding schedules and harvest planning.

33 Growth Stage Classification

Growth stage classification assigns each prawn to a category (Hatchling, Juvenile,
Adult) based on total length, estimated from YOLOv11n’s bounding box width in top-
down images. Total length includes the full body length, approximated by:

1. Total Length Estimation:
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def calculate shrimp length(bbox width px, bbox height px, frame width, frame height):

Calculate shrimp length in cm based on bounding box dimensions

Args:
bbox_width_px: Bounding box width in pixels
bbox_height px: Bounding box height in pixels
frame_width: Frame width in pixels
frame_height: Frame height in pixels

Returns:

Length in cm (using the longer dimension of the bounding box)

pixels per cm width = frame width / BOX WIDTH CM
pixels per cm height = frame height / BOX HEIGHT CM

width_cm = bbox width px / pixels_per_cm width
height cm = bbox_height px / pixels per cm_height

length_cm = max(width_cm, height cm)

return length cm

Figure 3.3.1: Code for Measure the Length of Shrimp

The length calculation system uses computer vision and calibration to measure real-
world shrimp dimensions from camera images. When the YOLO model detects a
shrimp, it draws a bounding box around the object in pixel coordinates. The system
then converts these pixel measurements to real-world centimetres using a calibration
process based on a predefined measurement box. First, it calculates how many pixels
represent one centimetre by dividing the total frame dimensions by your box
dimensions (e.g., 640 + 40 cm = 16 pixels per cm horizontally). Then, it converts the
bounding box width and height from pixels to centimetres using these conversion ratios.
Finally, it takes the longer dimension of the bounding box as the shrimp's length,
since shrimp are typically longer than they are wide. This approach ensures accurate
measurements regardless of camera resolution or distance, as long as the camera is

viewing the calibrated 40cm x 30cm area.

2. Stage Classification:
Table 3.3.1: Growth Phase [9], [10]

Growth Phase Approx. Weight Range (g)
Hatchling <lg
Juvenile 1-50g
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Adult >50g

The system can then use measured length to calculate weight using the Weight-length

relationship W = 0.018 x L.*3.06, providing comprehensive size analysis [11].

3. Average Total length and Weight:

if shrimp count > 0:
avg length = total length / shrimp count
min_length = min(shrimp lengths)
max_length = max(shrimp_lengths)

avg weight = total weight / shrimp count
min_weight = min(shrimp weights)
max_weight = max(shrimp weights)

Figure 3.3.2  Equation for Average Total Length and Weight

4. Density:

def calculate density category(shrimp count, area sqm):

wan

Calculate shrimp density category based on count per square meter

Args:
shrimp count: Number of shrimp detected
area_sgm: Area in square meters

Returns:

Density category string
1f area _sqm <= 0O:

return "Unknown™

density per sqm = shrimp count / area sqm

1f density per sgm < 5:

return "Low Density (<5/m2)"
elif density per sgm <= 15:

return "Moderate Density (5-15/m2)"
else:

return "High Density (>15/m2)"

Figure 3.3.3 Code for Density

Table 3.3.2 Shrimp Density Category and Definition [12]

Density Category Definition
Low density 1-4 shrimp/m?
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Moderate density 5-15 shrimp/m?
High density >15 shrimp/m?

5. YOLO models detect shrimp body part:

“Shrimp_body 0.75

Shrimp _body 0.28

Figure 3.3.4: Detection Result of Shrimp body
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CHAPTER 4 Preliminary Work

Preliminary Research is research on a topic that helps you get a better understanding on
what types of sources are available and what is being said about a topic. This type of
research helps solidify a topic by broadening or narrowing it down. This research can

also help you when choosing Search Terms.
4.1  Data Sources

4.1.1 Data Collection

Prawn images were collected from a controlled prawn pond environment simulating the
conditions of a small- to medium-scale farm. The PiCamera attached to the Raspberry
Pi 5 was used to capture images of Cherax quadricarinatus prawns under various
conditions, including different lighting (daylight and artificial light) and water clarity
levels (clear and slightly turbid). Approximately 2000 images were collected initially,
with plans to expand the dataset during later phases. Images were captured at different
times of the day to account for lighting variations. Prawns of varying sizes (juvenile,
premature, and mature) were included to support growth stage classification. The

images were stored in JPG format.

0710 Hon T2
4D DS-20E2MOAL-IE3A

Figure 4.1.1: Prawn Image Captured
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Figure 4.1.2 Prawn Image Captured in Dark Condition
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Figure 4.1.3 Class and Coordinates of Bounding Box

4.1.2 Images Annotation

Label Studio was used to annotate the collected images. The annotation process
involved:

1. Bounding Box Creation: For each prawn in an image, a bounding box was
drawn to enclose the entire prawn, including its body and claws. The bounding
box coordinates were saved in YOLO format, which includes the class label
(e.g., "prawn"), normalized center coordinates (X, y), and normalized width and

height.
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2. Class Labeling: Initially, a single class ("prawn") was used for detection. In
future iterations, additional classes for growth stages (juvenile, premature,

mature) may be introduced based on size estimation.

The dataset was split into training (90%), and test (10%) sets to support model

development.
4.2 Device Comparison for Cost-Effectiveness and Scalability

This section compares the Raspberry Pi 5, used in the project for automated prawn
density and growth estimation, with other devices to assess their suitability for small-
and medium-scale prawn farmers. The comparison focuses on cost, performance, ease
of use, and scalability, aligning with Objective 3: designing a cost-effective and

scalable solution.
Devices Compared

We evaluated the following devices, selected for their potential in computer vision tasks

for aquaculture:

o Raspberry Pi 5: The baseline device, with 4x Cortex-A76 CPU @ 2.4 GHz,
4/8 GB RAM, VideoCore VII GPU, and dual MIPI-CSI camera ports, priced at
$60-$80.

e NVIDIA Jetson Nano: 4x Cortex-A57 CPU @ 1.43 GHz, 4 GB RAM, 128-
core Maxwell GPU, priced at $99.

e Rock Pi 4 B: 2x Cortex-A72 @ 1.8 GHz + 4x Cortex-A53 @ 1.4 GHz, 1/2/4
GB RAM, 4x Mali-860 GPU, priced at €68-€100.

e Odroid XU4: 4x Cortex-Al5 @ 2.0 GHz + 4x Cortex-A7 @ 1.4 GHz, 2 GB
RAM, 6x Mali-628 GPU, priced at €75.

Comparison Criteria

o Cost: Essential for affordability, given the target audience of small- and

medium-scale farmers.

e Performance: Ability to run YOLOI 1n in real-time for prawn detection.
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Ease of Use: Community support and availability of resources for setup and

maintenance.

Suitability for Aquaculture: Integration with cameras and deployment in farm

environments.

Scalability: Ease of deploying multiple units for larger farms.

Detailed Comparison

Table 4.2.1: Comparison of Devices [13], [14], [15], [16]

Performance Suitability
Cost RAM|Camera Ease of
Device CPU/GPU for for
(USD/EUR) (GB) ||Interface Use
YOLOI11n Farmers
4x Cortex- ‘
High,
A76 @ 2.4 _ Excellent,
Raspberry High, real- affordable,
‘ $60-$80 | GHz, 4/8 |x2 MIPI-CSI | large
Pi5 _ time capable  |easy
VideoCore community|| '
Integration
VII
4x Cortex-
Moderate,
NVIDIA AST @ _ Good, AI- ||
Supported, High, GPU higher
Jetson $99 1.43 GHz, |4 focused
details vary acceleration _||cost, better
Nano 128-core community AT
Maxwell
2x Cortex- Moderate,
AT72 + 4x Moderate, Fair, cost
Rock Pi 4
B €68-€100 ||Cortex- 1/2/4 |Not specified |may need smaller varies,
AS53, 4x optimization |community|jcamera
Mali-860 unclear
4x Cortex- Fair, Low, lacks
Odroid None Moderate,no ||
€75 AlS5 +4x |2 limited camera
XU4 (USB/Ethernet)||camera slot ' _
Cortex- support Integration
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Performance Suitability
Cost RAM|/Camera Ease of
Device CPU/GPU for for
(USD/EUR) (GB) |Interface Use
YOLOI11n Farmers
A7, 6x
Mali-628
Analysis

Cost: Raspberry Pi 5 is the most affordable at $60 for 4 GB RAM, making it
accessible for small-scale farmers. Jetson Nano at $99 is more expensive, while
Rock Pi 4 B and Odroid XU4 are similarly priced but may require additional

costs for camera setups.

Performance: Raspberry Pi 5's CPU is sufficient for YOLOI1n, as
demonstrated in the project. Jetson Nano offers GPU acceleration, which could
handle more complex models, but its CPU is less powerful. Rock Pi 4 B and

Odroid XU4 may struggle with real-time performance without optimizations.

Ease of Use: Raspberry Pi's large community ensures extensive resources, ideal
for farmers with limited technical expertise. Jetson Nano has good Al support
but a smaller community. Rock Pi 4 B and Odroid XU4 have less support,

potentially complicating deployment.

Suitability for Aquaculture: Raspberry Pi 5's dual camera ports integrate
seamlessly with PiCamera (Night Vision), crucial for prawn monitoring. Jetson
Nano supports cameras but at a higher cost. Rock Pi 4 B's camera interface is

unclear, and Odroid XU4 lacks a built-in slot, adding complexity.

Scalability: Raspberry Pi 5 is widely available and easy to deploy in multiple
units, aligning with scalability needs. Jetson Nano is scalable but costlier per

unit. Other devices may face availability or compatibility issues.

Conclusion
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Research suggests Raspberry Pi 5 is the best fit for Objective 3, offering a cost-effective
($60-$80), scalable, and user-friendly solution for prawn farmers. While NVIDIA
Jetson Nano provides better Al capabilities, its higher cost ($99) may not be justified
for current needs. Other devices like Rock Pi4 B and Odroid XU4 are less suitable due
to camera integration challenges and limited community support. Thus, Raspberry Pi 5
aligns with the project's goal of providing an affordable, practical solution for small-

and medium-scale farmer.
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CHAPTER 5 System Implementation

5.1 Hardware Setup

The hardware involved in this project is computer, Raspberry Pi 5, PiCamera (Night
Vision). A computer issued for the process of training for YOLO11ln model. A
Raspberry Pi 5 and PiCamera (Night Vision) is used for testing model and collecting

data at the prawn farm.

Table 5.1.1 Specifications of laptop

Description Specifications
Model Asus TUF F15
Processor Intel Core 15-10300H CPU @ 2.50GHz 2.50 GHz
Operating System Windows 10
Graphic NVIDIA GeForce GTX 1650
Memory 8GB RAM
Storage 512GB SSD

Table 5.1.2 Specifications of Raspberry Pi

Description Specifications
Model Raspberry Pi 5
Processor Broadcom BCM2712 2.4GHz quad-core 64-bit Arm Cortex-
A76 CPU
Graphic VideoCore VII GPU
Memory SDRAM 4GB
Storage SanDisk Ultra 64GB

5.2 Software Setup

Before starting to train the YOLO11n model, there are five software needed to be

installed and downloaded in the laptop:
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1. Visual Studio Code (VS Code): Used as the primary code editor for writing and
debugging scripts related to data preprocessing, model training, and deployment. VS
Code's support for Python extensions and integrated terminal facilitated efficient

development workflows.

2. Label Studio: Employed for annotating prawn images to create a labeled dataset for
training the YOLO1 1n model. Label Studio allowed for the creation of bounding boxes
around prawns in images, which were exported in YOLO format for compatibility with

the training pipeline.

3. Google Colab: Utilized for training the YOLO11n model due to its access to free
GPU resources, which significantly reduced training time compared to local hardware.
Colab notebooks were used to execute Python scripts for model training, validation,

and testing.

4. WinSCP: WinSCP (Windows Secure Copy) is a free, open-source file transfer client
for Windows that supports protocols like SFTP, SCP, FTP, WebDAV, and Amazon S3.
It’s widely used for securely transferring files between a local computer (e.g., a

Windows PC) and a remote device (e.g., a Raspberry Pi).

5. Real VNC Viewer: Real VNC Viewer is a remote desktop software application that
allows you to view and control another computer remotely over a network using the
VNC (Virtual Network Computing) protocol. In this project, it will be used to connect
to the Raspberry Pi.

5.3  YOLOI11n Model training

5.3.1 Model selection

The YOLOI11n model was selected for its lightweight architecture, making it suitable
for deployment on resource-constrained devices like the Raspberry Pi 5. The selection
of YOLOI11n was driven by its optimal balance of speed, accuracy, and efficiency,
which are critical for real-time monitoring on resource-constrained devices like the
Raspberry Pi. A comparative analysis of YOLO models (YOLOI11n, YOLOvV8n, and

YOLOVS) was conducted using a benchmark dataset of coins (pennies, nickels, dimes,
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and quarters), as shown in Figure 5.3.1. The results demonstrated YOLO1 1n's superior

performance in detecting objects accurately while maintaining high speed.

Each model has similar speed (FPS) and
accuracy. They get most objects correct,
but struggle with quarters and nickels. }

| The YOLO11n model does best at
correctly identifying quarters and

nickels.
|

mﬁ':\bsegéf objects: 22 . YOLOv5Sn
¢ ® & @
o, ©
®

Figure 5.3.1: Benchmark Results of YOLO Models [17]
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Figure 5.3.2: Benchmark Results from Ultralytics [18]

COCO mAP 50-95
5

The benchmark results align with the project's requirements for prawn detection, where
accurate identification of prawns (analogous to quarters and nickels in the coin dataset)
is crucial for density and growth estimation. YOLO1 1n's ability to detect objects with
higher accuracy, particularly in distinguishing similar-sized objects, made it the optimal
choice for this application. Additionally, its FPS of 6.89 on the benchmark dataset
supports its feasibility for real-time inference on the Raspberry Pi, where an FPS of 5

was achieved with prawn images.
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5.3.2 Model training process and deployment

Model training in Google Colab. All the training and deployment will be done in
Google Colab.

1. Upload data in zip file format
v 2.1 Upload images

First, we need to upload the dataset to Colab. Here are a few options for moving the data.zip folder into this Colab instance.

Option 1. Upload through Google Colab

Upload the data.zip file to the Google Colab instance by clicking the “Files” icon on the left hand side of the browser, and then the “Upload to
session storage” icon. Select the zip folder to upload it.

File Edit View Insert Runtime Tools

= Files /= Upload data.zip folder (3 X

a[@lec &=
=

» [ sample_data

|o
\_i+ Code:_w ('+ Te
Option 2. Copy from Google Drive
You can also upload your images to your personal Google Drive, mount the drive on this Colab session, and copy them over to the Colab
filesystem. This option works well if you want to upload the images beforehand so you don't have to wait for them to upload each time you
restart this Colab. If you have more than 50MB worth of images, | recommend using this option.
First, upload the data.zip file to your Google Drive, and make note of the folder you uploaded them to. Replace Mydrive/path/to/data.zip
with the path to your zip file. (For example, | uploaded the zip file to folder called “candy-dataset1”, so | would use MyDrive/candy-
datasetl/data.zip for the path). Then, run the following block of code to mount your Google Drive to this Colab session and copy the folder
1o this filesystem.

[ 1 from google.colab import drive
drive.mount('/content/gdrive")

lcp */content/gdrive/MyDrive/Colab Notebooks/NVdata.zip' /content/ #/content/gdrive/MyDrive/Colab Notebooks/data.zip

0

Mounted at /content/gdrive

Figure 5.3.3 Ways to Upload Datasets to Google Colab

2. Unzip and split the images into train and validation folders
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v 2.2 Splitimages into train and validation folders

At this point, whether you used Option 1, 2, or 3, you should be able to click the folder icon on the left and see your data.zip file in the list of
files. Next, we'll unzip data.zip and create some folders to hold the images. Run the following code block to unzip the data.

[ 1 # Unzip images to a custom data folder
lunzip -q /content/NVdata.zip -d /content/custom data

Ultralytics requires a particular folder structure to store training data for models. Ultralytics requires a particular folder structure to store
training data for models. The root folder is named “data”. Inside, there are two main folders:

« Train: These are the actual images used to train the model. In one epoch of training, every image in the train set is passed into the
neural network. The training algorithm adjusts the network weights to fit the data in the images.

« Validation: These images are used to check the model's performance at the end of each training epoch.

In each of these folders is a “images” folder and a “labels” folder, which hold the image files and annotation files respectively.

1 wrote a Python script that will automatically create the required folder structure and randomly move 90% of dataset to the “train’ folder and
10% to the “validation” folder. Run the following code block to download and execute the scrpt.

[ ] !wget -0 /content/train_val split.py https://raw.githubusercontent.com/EdjeElectronics/Train-and-Deploy-YOLO-Models/refs/heads/main/utils/train_val_split.py

# T0 DO: Improve robustness of train_val split.py script so it can handle nested data folders, etc
!python train_val split.py --datapath="/content/custom data/train" --train_pct=0.9

©

--2025-04-28 18:20:40-- https://raw.github content.com/EdjeElectronics/Train-and-Deploy-YOLO-Models/refs/heads/main/utils/train_val split.py
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...

Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 3203 (3.1K) [text/plain]

Saving to: ‘/content/train_val_split.py’

/content/train_val_ 100%[=

3.13K --.-KB/s  in 0s
2025-04-28 18:20:40 (50.7 MB/s) - ‘/content/train_val_split.py’ saved [3203/3203]

Figure 5.3.4 Code Snippet to Unzip and Split the Images into Train and Validated
Folders

3. Install Ultralytics
v 3. Install Requirements (Ultralytics)
Next, we'll install the Ultralytics library in this Google Colab instance. This Python library will be used to train the YOLO model.

[ 1 !pip install ultralytics

A St WAt SNy SMao s et ¢ aaeavae e PRERCONRN s s ) e et b g M e s eras e L e e s mswaw saeas gy eae—g Y

Figure 5.3.5 Code Snippet to Install Ultralytics Library in the Google Colab Instance

4. Configure Training
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There's one last step before we can run training: we need to create the Ultralytics training configuration YAML file. This file specifies the
location of your train and validation data, and it also defines the model's classes. An example configuration file model is available here.

Run the code block below to automatically generate a data.yaml configuration file. Make sure you have a labelmap file located at
custom_data/classes.txt . If you used Label Studio or one of my pre-made datasets, it should already be present. If you assembled the
dataset another way, you may have to manually create the classes.txt file (see here for an example of how it's formatted).

[ 1 # python function to automatically create data.yaml config file
# 1. Reads “"classes.txt" file to get list of class names
# 2. Creates data dictionary with correct paths to folders, number of classes, and names of classes
# 3. Writes data in YAML format to data.yaml

import yaml
import os

def create_data_yaml(path_to_classes_txt, path_to_data_yaml):

# Read class.txt to get class names
if not os.path.exists(path_to_classes_txt):
print(f'classes.txt file not found! Please create a classes.txt labelmap and move it to {path_to_classes_txt}")
return
with open(path_to_classes_txt, 'r') as f:
classes = []
for 1line in f.readlines():
if len(line.strip()) == @: continue
classes.append(line.strip())
number_of_classes = len(classes)

# Create data dictionary

data = {
‘path': '/content/data’,
‘train’: 'train/images’,
‘val': ‘validation/images®,
‘nc': number_of_classes,
‘names’: classes

¥

# Write data to vamL file

with open(path_to_data_yaml, 'w') as f:
yaml.dump(data, f, sort_keys=False)

print(f'Created config file at {path_to_data_yaml}')

return
# Define path to classes.txt and run function

path_to_classes_txt = '/content/custom_data/classes.txt’
path_to_data_yaml = '/content/data.yaml’

create_data_yaml(path_to_classes_txt, path_to_data_yaml)

Figure 5.3.6: Creation of YAML File

Figure 4.3.5 shows the creation of a configuration file in Y AML format. This file should
include the dataset paths for training and validation, as well as the number of classes
and their corresponding names.

5. Train Model
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+ 5.2 Run Training!

Run the following code block to begin training. If you want to use a different model, number of epochs, or resolution, change model, epochs,
or imgsz

© !yolo detect train data=/content/data.yaml model=yolol1n.pt epochs=4o imgsz=540

5% ultralytics 8.3.119 & Python-3.11.12 torch-2.6.0+Cul24 CUDA:@ (Tesla T4, 15095Mis)
mod

engine/trainer: train, 1n.pt, dates .yanl, epochs=4e, time=none, patience-108, batch-1s, ingsz-64e, savesTrue, save_period=-1, cacheFalse
overriding model.yanl nc=8e with nce1
from n  params module arguments
[ 11 464 ultralytics.nn.modules. conv.conv 3, 15, 3, 2]
1 11 4672 ultralytics.nn.modules. conv.Conv [16, 32, 3, 2]
2 11 6640 ultralytics.nn.modules.block.C3k2 [32, €4, 1, False, 0.25]
3 -1 1 36952 ultralytics.nn.modules.conv.conv [64, 64, 3, 2]
4 -1 1 26680 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
H -1 1 147712 ultralytics.nn.modules. conv.Conv [128, 128, 3, 2]
s -1 1 87840 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
7 -1 1 295424 ultralytics.nn.modules. conv.conv [128, 256, 3, 2]
s -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
s -1 1 164ses ultralytics.nn.modules.block.SPPF [256, 26, 5]
10 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
1 11 @ torch.nn.modules.upsanpling.upsanple [None, 2, ‘nearest’]
12 -1, 6] 1 e ultralytics.nn.modules. conv.concat 1
13 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
14 -1 @ torch.nn.modules.upsanpling.Upsanple [None, 2, 'nearest']
15 1,4 1 @ ultralytics.nn.modules.conv.concat 11
16 -1 1 3296 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
17 -1 1 36992 ultralytics.nn.modules.conv.conv [64, 64, 3, 2]
18 -1, 13] 1 @ ultralytics.nn.modules.conv.concat 3]
13 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
20 -1 1 147712 ultralytics.nn.modules. conv.Conv [128, 128, 3, 2]
2 [-1, 10] 1 @ ultralytics.nn.modules.conv.concat 6]
2 -1 1 37888e ultralytics.nn.modules.block.C3k2 [384, 256, 1, True]
2 [16, 13, 22] 1 436867 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]]

YOLO11n summary: 181 layers, 2,599,835 parameters, 2,599,019 gradients, 6.4 GFLOPS
Transferred 448/499 items from pretrained weights

Freezing layer ‘model.23.df1.conv.weight'

AWP: running Automatic mixed Precision (AWP) checks...

anp: checks passed

train: fast imace access M (pine: 0.0:0.0 ms. read: 3391.6+543.4 MB/s. size: 1044.4 KB)

Figure 5.3.7 Log Information of Model Training

The dataset contains over 200 images. Training the model for 40 epochs with an input

resolution of 640x640 is suitable to ensure efficient performance and faster processing.
6. Test Model

v 6. Test Model

The model has been trained; now it's time to test it! The commands below run the model on the images in the validation folder and then

display the results for the first 10 images. This is a good way to confirm your model is working as expected. Click Play on the blocks below to
see how your model performs.

© !volo detect predict model-runs/detect/train/weights/best.pt source=data/validation/images save=True

5% Ultralytics 8.3.119 &' Python-3.11.12 torch-2.6.@+Cul24 CUDA:@ (Tesla T4, 15095MiB)
YOLO11n summary (fused): 10@ layers, 2,582,347 parameters, @ gradients, 6.3 GFLOPs

image 1/42 /content/data/validation/images/@29bb240-GWees_2025-04-19T12_3e_o1.43580400_e@_NoIRphoto.jpg: 48exe4@ (no detections), 42.2ms
image 2/42 /content/data/validation/images/@35aab36-Glees_2025-04-21Te4_85_e1.40344000_0@_Normphoto.jpg: 384x64@ (no detections), 43.7ms
image 3/42 /content/data/validation/images/@6867@b1-GWees_2025-04-22T01_45_02.25485000_e@_Normphoto.jpg: 384x64@ (no detections), 12.6ms
image 4/42 /content/data/validation/images/@bcefIbe-Giiees_2025-04-19T18_35_@1.39085800_0@_NoIRphoto.jpg: 480x64@ (no detections), 19.7ms
image 5/42 /content/data/validation/images/ec9eas3f-GWees_2025-04-21T18_Se_o1.83790500_ee_Normphoto.jpg: 384x64@ (no detections), 16.3ms
image 6/42 /content/data/validation/images/139a3cbe-GWees_2025-04-18Te4_le_o1.76e05400_ee_Normphoto.jpg: 48exe4e (no detections), 14.ems
image 7/42 /content/data/validation/images/1470e292-GlieeS_2025-84-19T19_35_@1.92941600_0@_NoIRphoto.jpg: 48ex64@ (no detections), 11.8ms
image 8/42 /content/data/validation/images/19650b5f-Giees_2025-84-21T22_45_01.74270900_ee_Normphoto.jpg: 384x64e (no detections), 9.4ms

image 9/42 /content/data/validation/images/27b19466-Ghees_2025-84-17T22_15_62.26427500_e_Normphoto.Jjpg: 48exe4e (no detections), 9.4ms

image 10/42 /content/data/validation/images/2b52fff5-GWe@s_2025-84-21T13_20_82.2157346@_ee_Normphoto.jpg: 384x64@ (no detections), 9.sms
image 11/42 /content/data/validation/images/2f1235b7-GWees_2625-04-20Te0_10_81.46555168_e@_NoIRphoto.jpg: 48ex64e (no detections), 9.3ms
image 12/42 /content/data/validation/images/36bc9eff-Ghees_2025-84-19T19_40_01.83973060_ee_NoIRphoto.jpg: 48ex64@ (no detections), 8.8ms
image 13/42 /content/data/validation/images/343b5111-GWees_2025-84-21T11_15_82.08775920@_ee_NoIRphoto. ] 430x64@ (no detections), 11.1ms

image 14/42 /content/data/validation/images/49Cb3418-Ghe@s_2025-84-22Te6_15_81.55513860_ee_Normphoto.jpg: 384x64@ (no detections), 9.2ms
image 15/42 /content/data/validation/images/4bfd395C-GWa@s_2025-84-21T62_50_01.69448360_e0_Normphoto.jpg: 384x64@ (no detections), 9.sms
image 16/42 /content/data/validation/images/56be@acc-Gwees_2025-84-22Te6_30_o1.47637360_ee_Normphoto.jpg: 384x64@ (no detections), 8.6ms
image 17/42 /content/data/validation/images/5152102a-GWe@S_2025-04-19Te0_10_44.67594060_0@_Normphoto.jpg: 384x64@ (no detections), 8.6ms
image 18/42 /content/data/validation/images/52fd1ade-GWe@s_2025-84-18T12_30_01.51483260_eo_NoIRphoto.jpg: 384x64@ (no detections), 8.9ms
image 19/42 /content/data/validation/images/533ef306-GWees_2025-04-18T13_6@_81.45533360_6@_NoIRphoto.jpg: 384x64@ (no detections), 8.9ms
image 20/42 /content/data/validation/images/6@8chc53-GWe@S_2025-84-21T64_6@_82.2795736@_ee_Normphoto.jpg: 384x64@ (no detections), 8.6ms
image 21/42 /content/data/validation/images/617d3bae-GWees_2025-04-22Te2_20_81.48056768_6e_Normphoto.jpg: 384x64@ (no detections), 8.6ms
image 22/42 /content/data/validation/images/673c4890-GWe@s_2025-84-19T19_20_82.16434560_e@_NoIRphoto.jpg: 486x64@ (no detections), 9.4ms

Figure 5.3.8: Logs Information of Testing the Model

[ 1 import glob
from IPython.display import Image, display
for image_path in glob.glob(f'/content/runs/detect/predict/*.jpg')[:10]:
display(Image(filename=image_path, height=400))
print(‘\n*)

Figure 5.3.9: Code Snippet to Load and Display Predicted Images
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Figure 5.3.10 Object Detection Results of Model with Bounding Boxes Drawn

5.3.3 Model deployment
1. Download the Trained Model

v 7.1 Download YOLO Model

First, zip and download the trained model by running the code blocks below.

The code creates a folder named my_model, moves the model weights into it, and renames them from best.pt to my_model.pt. It also adds
the training results in case you want to reference them later. It then zips the folder as my_model.zip.

[ 1 # Create "my_model" folder to store model weights and train results
Imkdir /content/my_model
Icp /content/runs/detect/train/weights/best.pt /content/my_model/my_medel.pt
tcp -r /content/runs/detect/train /content/my_model

# Zip into "my_model.zip"

%cd my_model

Izip /content/my_model.zip my_medel.pt
Izip -r /content/my_model.zip train
%cd /content

Figure 5.3.11: Code Snippet to Zip and Download the Trained Model

2. Deploy on Raspberry Pi

n@raspberrypi
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Figure 5.3.12: Command to Create a New Virtual Environment

This command creates a new virtual environment named venv in the ~/yolo directory,
allowing access to system-wide packages while providing an isolated space for project-
specific dependencies. And the second command use to confirms that the virtual
environment has been successfully activated, and the terminal session is now using the
isolated Python environment for subsequent commands.

3. Install Ultralytics and ncnn

env) evan@raspberrypi:

Figure 5.3.13: Command to Install Ultralytics and ncnn Packages

The command pip install ultralytics ncnn installs two critical packages in the virtual

environment on the Raspberry Pi:

o Ultralytics: Provides the YOLO11n model and associated tools for object
detection, which is central to your project's goal of automated prawn density

and growth estimation.

e NCNN: Enhances the deployment of the YOLO11n model by optimizing
neural network inference for the Raspberry Pi, ensuring efficient real-time
performance.

This step is a key part of setting up the Raspberry Pi for running the YOLO11n
model, aligning with the project's objective of creating a cost-effective, real-time

monitoring solution for prawn farming.

4. WinSCP to transfer model and python script

3 My documents ¥ |7~ [¥] ~ EEAS yolo Ty ie & [a ™ S | A FindFiles

51 Upload ~ X A Properties v New ~ :[+] [=] [Vl New~ - [+ V|
“\Users\Asus\Documents\shirmp data\ /home/pi/Desktop/yolo/
Name v Size Type Changed Name - Size Changed Rights Owner
. Parent directory 4/29/2025 1:23:09 AM il 5/2/2025 8:02:01 AM TWXT-XT-X pi
valid File folder 4/21/2025 10:47:32 PM E] yolo11n.pt 1KB 5/2/2025 8:02:18 AM W-r--r-- pi
train File folder 4/26/2025 12:02:41 AM
test File folder 4/15/2025 2:04:20 AM
Pri data File folder 4/29/2025 3:53:14 AM
Prawn Datasets-20250... File folder 4/28/2025 12:52:09 AM
night vision File folder 5/2/2025 6:47:27 AM
my_model File folder 4/30/2025 12:05:38 AM
dataset File folder 4/24/2025 6:46:00 PM
README.roboflow.txt 1KB Text Document 4/15/2025 2:04:20 AM
~| README.dataset.txt 1KB Text Document 4/15/2025 2:04:20 AM
i Prawn Datasets-20250.. 225,807 KB Compressed (zipp... ~ 4/28/2025 12:47:29 AM
# model_ncnn2.py 5KB Python File 4/27/2025 3:40:11 AM
& model_ncnn.py 1KB Python File 4/27/2025 2:42:51 AM
i data2.zip 198,289 KB Compressed (zipp... ~ 4/22/2025 2:47:27 AM
1\ data.yaml 1KB YAMLFile 4/15/2025 2:04:20 AM

Figure 5.3.14: WinSCP to Transfer the Collected Data to Raspberry Pl
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A yolo_detect.py: | 10KB Python File 4/26/2025 6:11:26 PM

AN Ana s ~ 1 s - 4 inF IAARAr AR AT AR AL

Figure 5.3.15: Python File to be Transferred to Raspberry PI

5. Export model into ncnn format

Figure 5.3.16: Command to Export the Trained Model to ncnn format

- yolollg.nenn.mode

Figure 5.3.17: Converted YOLOI In Model in ncnn format

The file will convert into yolo11n_ncnn_model

6. Run Inference

Figure 5.3.18: Command to Run Inference in Raspberry PI

This command in Figure 4.3.17 runs the model in Raspberry P1i, by using the PiCamera
with an input resolution of 640x640 for optimal speed and compatibility.

7. Result

Figure 5.3.19 Detection Results in Raspberry Pl
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Figure 4.3.18 illustrates the FPS and the number of objects detected. However, the
presence of two prawns in the frame indicates potential duplication or misdetection,

which may compromise the accuracy of the data.

5.3.4 Cron Job to Collect Data Through Pi-Camera

Due to the limited amount of available data for training an accurate model, a Cron Job
was configured on the Raspberry Pi to automate data collection via the PiCamera. This

method provides a convenient and consistent way to gather additional images over time.

ile Edit View Sort Go Tools

oo L /home/pi/Desktop/Cron_job

» Home Folder
2 Filesystem Root O_.

N ™ photos  take p-*o:u

sh

I3 poot

I3 dev

b atr

Figure 5.3.20: Content of the Cron_job Folder

File Edit Search View Document Help

F!/bin/bash
TIMESTAMP=$(date +%Y%m%d_%H%M%S)
libcamera-still -o /home/pi/Desktop/Cron_job/photos/photo_$TIMESTAMP. jf

Figure 5.3.21: Shell Script to Take Photo

1dprawnl

Figure 5.3.22: Command to Open Crontab Configuration File
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GNU nano 7.2 /tmp/crontab.J7Xdcs/crontab *

Figure 5.3.23: Crontab Configuration

A new folder named Cron_job was created on the Raspberry Pi to manage scheduled
data collection tasks. Within this folder, a shell script (take photo.sh) was written, as
shown in Figure 4.3.20. This script captures an image using the PiCamera and saves it
to the photos directory located inside the Cron_job folder. Figure 4.3.21 illustrates the
command used to open the crontab configuration file. As shown in Figure 4.3.22, the
crontab entry */5 * * * * /home/pi/Desktop/Cron_job/take photo.sh schedules the
take photo.sh script to execute every 5 minutes, enabling automated and periodic image

capture.
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CHAPTER 6 System Evaluation and Discussion

6.1 Performance Metrics

6.1.1 mAPS50-95

metrics/mAP50-95(B)

0.8 1

0.6 1

0.4 1

0.2 A1

!

T T T

0 20 40
Figure 6.1.1: mAP50-95

One common statistic used to assess the accuracy of object detectors such as YOLO is
the mean average precision, or mAP. IoU 0.5-0.95 provides the mAP values. One may

see that from the figure.

After about five epochs, the mAP@0.5-0.95 rapidly improves from its low starting
point during the first epochs (<0.2). In the last epochs, the curve stabilises between 0.85
and 0.88, displaying a consistent rising tendency. This suggests that as the model is
trained, its detection accuracy increases dramatically and eventually converges to a high

degree of performance.

All things considered, the high final mAP@0.5-0.95 values show that the model has
mastered the ability to accurately forecast bounding boxes over a variety of IoU
thresholds. At later epochs, the curve gradually flattens, indicating that the model has

achieved a high degree of convergence.
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6.1.2 F1 Curve

1o F1-Confidence Curve

—— Shirmp
= all classes 0.98 at 0.536

0.8 1

0.6 1

F1

0.4 A

0.2 1

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

Figure 6.1.2: F1-Confidence Curve

The F1—-Confidence curve shows how the F1 score changes as the confidence level rises
or falls. The F1 score offers a fair way to assess detection performance since it is the
harmonic means of precision and recall. The highest F1 score, at a confidence level of
0.536, 1s 0.98 for all classes. The F1 curve for the "shrimp" class shows consistent
detection accuracy, closely following the overall performance. Over a broad range of
confidence levels (about 0.2 to 0.85), the F1 score stays high (>0.95), indicating that
the model is accurate and resilient to varying threshold choices. The high peak F1 score
indicates a superb memory and precision balance. The curve's flat plateau further
suggests stability, indicating that the model is not unduly affected by the confidence
threshold selection. In reality, this is preferable since it permits flexibility in

determining deployment thresholds without significantly compromising accuracy.
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6.1.3 Recall-Confidence Curve

Recall-Confidence Curve

1.0

—— Shirmp
= all classes 0.99 at 0.000

0.8

0.6 -
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0.4 4

0.2 1
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0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Figure 6.1.3: Recall-Confidence Curve

According to the graph, at specific confidence levels, the model seems to have a high
recall for every class. This indicates that a significant percentage of the actual prawns
in the dataset can be accurately identified by the model. The model performs well

overall, as evidenced by the recall for all classes combined reaching 0.99.
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6.1.4 Precision Curve

1o Precision-Confidence Curve

—— Shirmp
= all classes 1.00 at 0.604

0.8 1

o
o
.
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o©
>
.
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Figure 6.1.4: Precision-Confidence Curve

The model has great precision across confidence levels, according to the graph.
Predictions for the Shrimp class are extremely accurate since precision rapidly
stabilizes around 1.0. Overall, at a confidence level of about 0.5, the model achieves

perfect precision (1.00), demonstrating strong reliability.

6.2 Testing Setup and Results

The Raspberry Pi must be configured for the project in order to perform computer
vision training by taking pictures for local data. Refer to chapter 4.3.4 for the location
where the Cron-job will be run to gather the data. We'll train and use the local model.
To test the outcome, a local density and growth estimation will be conducted. The
Raspberry Pi's height will be 42 cm, and the region that the pi camera can detect will
be 30 cm by 40 cm. Local data should also be used to define the weight-length
relationship. Using the YOLO11n model, the training procedure will be the same as in
chapter 4.3.2. However, the shrimp's body and carapace will be the exclusive focus of

this training.
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32

BOX_HETIGHT (M) / 10000.0

def calculate_shrimp_length(bbox width px, bbox height px, frame width, frame_height):

Calculate shrimp length in cm based on bounding box dimensions

x width in pixels
height in p

Returns:
Length in cm (using the longer dimension of the bounding bo

pixels_per_cm width = frame width / BOX_WIDTH_CM Review next file

F lgure 6.2.1 ra tected by Pi-Camera

lculate shrimp weight(length cm):

Calculate shrimp v pased on length using the formula

length_cm: Shrimp length in cm

Returns:
Weight in grams

weight grams = 0.018 * (length_cm ** 3.06)
return weight_grams

Figure 6.2.2 Weight-length Relationship Calculation

Figure 6.2.3 Ilhage capturéd by Pi-Camera
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Table 6.2.1: Test Cases and Results

No

Test Case

Remark

FPS: 5.90

Shrimpdetecteds 2

Longth — Avg: 11,7cm | Mins B.6cm | Moe 12.5cm
Weight — Avge 29.5g | Mint 18,59 | Mox: 40,89
Total Welght: 39.29

Denaity: 16.7 — High Density (318/m#%)

6L i e

—_—

FPS: 6.17-

Shrimp detected: 1
Length — Avg: 10.1cm | Min: 10.1cm | Max: 10.1cm
Weight — Avg: 21.1g | Min: 21.1g | Max: 21.19
Total Weight: 21.19

Density: 8.3 — Moderate Density (5—15/m?7?)

A bounding box is used to
detect the prawn body.

The shrimps are
identified, their density is
measured, and they are
appropriately categorized.

When compared to their
real length, the prawns are
discovered and measured
with an inaccuracy of -0.9
cm. To calculate the
weight, however, the
length must be known.
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FPS: 5.69 a7 .
4 Shrimp detected: 4 Although there are just
Langth — Avg: 10.0cm | Min: B.3cm | Mae 13.7cm

Weignt — mgr %1 | IR RRE . two prawns in this
oy instance, they are

Density: 33.3 — High Density (>15/m?7)

detected. The background
was identified by the
model as FP, or a prawn.

5 A bounding box is used to
accurately detect every
prawn.

6 In this instance, prawns

have been found. The
detected prawn is not
properly bounded, though.

6.3 Project Challenges

Lack of data is one of the project's biggest problems. In computer vision, training
requires a large amount of data and might take many months. In addition to the typical
environment, night vision must be incorporated to increase reliability. The time and
personnel expenses are high. Data labelling necessitates manual labelling, which is
expensive. The choice of model is the next obstacle. It is needed to ensure that the
data can be continuously incorporated into the model in order to overcome these
obstacles and improve the model's accuracy. By using cloud-based training and

pushing the most recent model to edge devices, federated learning can overcome these
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problems. To ensure smooth operation on edge devices, the model to be used should
be lightweight. YOLO11n will be utilised to solve this problem because it is

straightforward to train and small enough to run the detection.

6.4 Objectives Evaluation

The project effectively put into practice a computer vision system that uses bounding
boxes to identify prawn bodies. The model's capacity to detect and assess shrimp
presence in aquaculture environments was demonstrated by the accurate measurement
and classification of shrimp density. In order to provide more reliable population
statistics and lessen dependency on manual monitoring, this automation is a
significant step.

Additionally, the method demonstrated dependable measuring accuracy, with a mean
error of -0.9 cm between real measurements and prawn length estimation. Although
this margin is suitable for first testing, it identifies locations where boundary precision
needs to be increased to improve growth monitoring even more. Density estimation
performed as predicted in test situations, correctly identifying and classifying two
shrimps. Limitations still exist, though, as the model occasionally misidentified
background objects as shrimp and occasionally generated bounding boxes that were
not in proper alignment with shrimp bodies, which affected weight estimation and
measurement accuracy.

Cost-effectiveness and accessibility are two other accomplishments of the project. All
of the software tools utilised were open-source, and the system can be set up with
reasonably priced hardware, including a Raspberry Pi and Pi-Camera, which should
cost between $60 and $80. Due to its affordability, the solution is especially appealing
to small and medium-sized farms as a less expensive substitute for pricey commercial
equipment. Additionally, by using federated learning, the model may ensure long-
term adaptability and scalability by continuously improving over time as additional
data is gathered.

In conclusion, the project has shown that inexpensive, lightweight computer vision
models may be used for prawn detection, density estimation, and growth monitoring.

The accomplishment of these goals establishes groundwork for a scalable, reasonably
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priced, and constantly evolving system that can greatly assist prawn producers, even

though enhancements are required to solve bounding inaccuracies and false positives.

49

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR



CHAPTER 7

CHAPTER 7 Conclusion and Recommendation

7.1 Conclusion

This project, titled "Utilising Computer Vision Techniques for Automated Density and
Growth Estimation in Precision Aquaculture Systems for Prawn Cultivation,"
successfully tackles significant challenges in the prawn farming industry by developing
an innovative, automated monitoring system. The global shrimp industry has
experienced substantial growth, with countries like Ecuador achieving a compound
annual growth rate (CAGR) of 25% between 2020 and mid-2023, driven by rising
demand in markets such as the US. However, traditional methods for monitoring prawn
density and growth, such as cast-net sampling, are labour-intensive, time-consuming,
and prone to human error, leading to inefficiencies like overfeeding, underfeeding, and
suboptimal harvest timing. These inefficiencies contribute to wasted resources,
environmental degradation, and reduced farm productivity. Additionally, the lack of
real-time monitoring tools hinders precise feeding and harvest planning, while small-
and medium-scale farmers face barriers in adopting advanced technologies due to high
costs and technical complexity. Motivated by these issues, the project aimed to enhance
productivity and sustainability in prawn farming by automating monitoring processes,
improving accuracy, and designing a cost-effective solution accessible to smaller
operations.

The proposed solution leverages computer vision and machine learning to address these
challenges, focusing on three key objectives: automating prawn density and growth
estimation, enhancing monitoring accuracy and efficiency, and ensuring affordability
and scalability. A lightweight YOLO1 1n neural network was implemented to automate
the estimation process, achieving a real-time inference speed of 5 FPS on a Raspberry
Pi 5. Machine learning algorithms were integrated to improve the precision of prawn
population tracking by analysing visual data from camera feeds, enabling accurate
monitoring of growth and density across diverse conditions. To ensure accessibility,
the system uses affordable hardware, including the Raspberry Pi 5 ($60-$80) and
PiCamera (Night Vision), making it viable for small- and medium-scale farmers. The
system was deployed in a controlled prawn pond environment, capturing 2000 images
of Cherax quadricarinatus prawns under varying lighting and water clarity conditions

to ensure robustness.
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The literature review revealed several weaknesses in existing systems, such as
environmental sensitivity, high costs, technical complexity, data scarcity, and limited
field validation, which this solution mitigates. For instance, a prior smart headset
system struggled with inconsistent lighting and depth camera limitations, while this
system uses YOLO1 In, trained on diverse images, to handle such variability. Similarly,
automatic counting methods faced high computational demands, which the lightweight
YOLOI11n model on Raspberry Pi addresses efficiently. The system also simplifies
operation through automated data collection via a Cron Job, capturing images every 5
minutes to build a farm-specific dataset, overcoming the data scarcity issue noted in
Al-based prawn farming studies. Additionally, the use of affordable hardware reduces
financial barriers highlighted across all reviewed studies, ensuring scalability for
smaller farms.
A novel idea derived from this project is the integration of automated data collection
via a Cron Job on the Raspberry Pi to continuously build a tailored dataset for prawn
monitoring. Unlike prior studies that relied on manual data collection or pre-existing
datasets, this approach ensures a steady stream of farm-specific images, capturing
prawns across growth stages and environmental conditions without additional labor.
This automation not only addresses the lack of standardized datasets but also supports
ongoing model improvement, enhancing long-term accuracy and adaptability.
Furthermore, the use of YOLO11n on a Raspberry Pi, optimized with NCNN for real-
time performance, provides a practical balance of efficiency and affordability, a
combination less emphasized in previous works that often prioritized high-end
hardware.
Preliminary results demonstrate the system’s feasibility, though challenges remain. The
YOLOI11n model successfully detected prawns in real-time, but initial tests showed
inaccuracies, such as detecting only one of two prawns in an image, underscoring the
need for more data and fine-tuning. The Cron Job feature mitigates this by expanding
the dataset over time, while the device comparison confirmed the Raspberry Pi 5 as the
optimal choice for small-scale farmers due to its affordability, ease of use, and camera
integration. Overall, this project contributes to the aquaculture industry by providing a
practical, data-driven tool that enhances operational efficiency, reduces resource waste,
and promotes sustainability, particularly for small- and medium-scale prawn farmers,
aligning with the project's original goal.
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7.2 Recommendation

A number of enhancements are suggested to improve the prawn detecting method even
more. First, by using data augmentation and fine-tuning annotations, the training dataset
can be expanded and diversified to include images of prawns orientated in various
lighting and water conditions, hence increasing the precision of bounding boxes.
Equally crucial is lowering false positives, which can be accomplished by using
background filtering, modifying the confidence threshold, and adding negative samples
during training. Furthermore, broadening the dataset will improve the model's
generalisation across various settings and phases of prawn development. Since length
is currently used to estimate weight, a local weight-length connection needs to be
established in the appropriate setting. Adopting federated learning would also guarantee
that, without sacrificing scalability or privacy, the system keeps getting better as more
farms contribute data. Practically speaking, the system should have an intuitive user
interface for farmers that offers visual dashboards, real-time information, and
automated warnings to aid in decision-making. Last but not least, extensive field testing
in various aquaculture settings is necessary to evaluate the system's resilience, validate

its cost-effectiveness, and show how valuable it is for raising farm output.
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Al Poster

FACULTY OF INFORMATION AND Final Year Project by: Lean Jin Hao
COMMUNICATION TECHNOLOGY (FICT) Supervised by: Ts Dr Cheng Wai Khuen

TR
INTRODUCTION

Problem Statement
1. Traditional methods are time-consuming, error-prone, and inefficient feeding and growth tracking.
2.Without real-time monitoring, farmers struggle with accurate feeding and harvest planning, impacting productivity and sustainability.
3. High costs and complexity hinder small- and medium-scale farmers from adopting advanced tools for farm optimization.

Objectives
1.Develop a computer vision system using lightweight neural networks (e.g., YOLOV1in, MobileNetV2) to estimate prawn density and

growth, reducing manual effort and human error.

2.Integrate machine learning algorithms to enhance the precision and efficiency of prawn population tracking under diverse conditions.
3.Create a cost-effective, scalable solution tailored for small- and medium-scale farmers to support better aquaculture management.

METHODS DISCUSSIONS

Captured ~2000 prawn images using
PiCamera on Raspberry Pi 5.
Model: YOLOTIn (lightweight, accurate).
Split: 90% train, 10% test.
Trained on Google Colab (640x640, 40
FEo - . epochs)
e FPS: 5-6.89 on Raspberry Pi 5.
Converted to NCNN format for deployment.
Cron job captures image every 5 mins
(take_photo.sh)

o

Figure 1: Main part of Computer Vision and Automated Density and Growth Estimation
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Figure 2: Module Workflow
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