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ABSTRACT 
 
 

DEEP LEARNING BASED IMAGE SEGMENTATION FOR 
EXPANSIVE SOIL DESICCATION CRACK RECOGNITION AND 

QUANTIFICATION 
 
 

 Ling Hui Yean  
 
 
 
 
 
 

Expansive soils undergo significant volume changes due to moisture 

fluctuations, which lead to desiccation cracks formation that affect soil 

properties and engineering performance, compromising the safety of geo-

structures. The analysis of these cracks was essential for mitigating their 

impact; however, traditional quantification methods were labour-intensive and 

imprecise, highlighting the need for more robust and automated techniques. 

This study investigated the feasibility and effectiveness of image-based 

techniques using advanced deep learning algorithms to quantify desiccation 

cracks in expansive soils. The objectives of the study included designing soil 

desiccation experiment setup for desiccation crack image acquisition, 

evaluating crack imaging analysis based on deep learning algorithms, and 

quantifying desiccation cracks through image processing techniques. 

Laboratory experiments were conducted using a custom-built image 

acquisition tool to capture crack images under simulated soil desiccation 

conditions. Crack images obtained were processed and annotated to produce a 

dataset of 820 images for the training and testing of deep learning models. 

Deep learning models, including U-Net, Res-UNet, and DeepLabv3+ with pre-

trained backbones such as MobileNetV2, ResNet-18, ResNet-50, and 
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Xception

thresholding method as the baseline for crack detection and segmentation. The 

evaluation considered segmentation performance using evaluation metrics 

(precision, recall, F1 score, IoU), computational efficiency, and crack 

geometrical parameters quantification (surface crack ratio, crack width, crack 

length, and crack segment). Results demonstrated that DeepLabv3+ variants 

consistently outperformed other methods, with MobileNetV2 backbone 

offering the best balance of computational efficiency, segmentation accuracy, 

and robustness across case-wise performance conditions. Compared to 

traditional approaches, deep learning models, particularly with DeepLabv3+ 

variants, produced more reliable crack segmentation masks, thus enabling 

more accurate quantification of crack geometrical parameters, as demonstrated 

by lower error rates. This study validates the effectiveness of deep learning-

based segmentation methods for automated soil crack recognition and 

quantification, contributing to engineering applications with improved 

methodologies for analysing desiccation behaviour in expansive soils. 

Keywords: Civil engineering, Photographic processing, Quantitative 

methods, Automation, Deep Learning 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

 

Expansive soils are generally characterised by the presence of clay 

materials, which exhibit substantial volume changes in response to variations in 

moisture content (Jones and Jefferson, 2012). When these soils lose moisture, 

significant shrinkage occurs, resulting in the development of desiccation cracks 

that form as the soil dries (Nahlawi and Kodikara, 2006). The formation of 

extensive desiccation crack networks is attributed to tensile stresses generated 

during evaporation exceeding the tensile strength of the soil, particularly when 

volumetric shrinkage during drying is restricted (Kodikara and Costa, 2013). 

This phenomenon poses a significant challenge in various engineering domains, 

especially in geotechnical and geoenvironmental engineering. 

 

 In the last few decades, desiccation cracking has been widely studied 

to investigate the underlying mechanism, influencing factors, and the effect of 

this phenomenon (Corte and Higashi, 1964; Albrecht and Benson, 2001; Costa, 

Kodikara and Shannon, 2013; Tang et al., 2021). It has been established that 

desiccation cracking significantly affects the hydraulic and mechanical 

properties of soils, such as increased soil permeability and water infiltration 

capacity, and lower tensile strength after cracking (Morris, Graham and 

Williams, 1992; Rayhani, Yanful and Fakher, 2008; Cheng et al., 2021). These 
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combined effects essentially lead to deteriorated performance of expansive soil 

applications, including failures in slope, dam, foundation, clay liner, and 

agricultural production (Tang et al., 2021). 

 

 With escalating climate change bringing more extreme weather 

conditions, the destructive effects of desiccation cracking can be significantly 

amplified, making desiccation cracking analysis increasingly important (Zeng 

et al., 2019b). Early attempts in quantifying soil desiccation cracks involved 

manual measurements, which were intrusive and laborious methods that yielded 

inaccurate results (Dasog and Shashidhara, 1993). The turn of the century with 

its advancements in computer technology transformed the analysis method to 

non-intrusive image analysis techniques. In the image analysis approach, image 

segmentation through image processing algorithms was extensively applied to 

produce segmented masks with crack networks (Vogel, Hoffmann and Roth, 

2005; Tang et al., 2008; Liu et al., 2013; Shit, Bhunia and Maiti, 2015; Lu et al., 

2016; Singh, Rout and Tiwari, 2018; Yang et al., 2022). However, the use of 

image processing techniques often requires heavy customisation of the 

processing pipeline on a case-by-case basis to produce a satisfactory segmented 

crack mask. This limited the practical usage of the method in large-scale 

projects with larger image datasets. Therefore, the integration of artificial 

intelligence for soil crack quantification, particularly deep learning algorithms, 

is an emerging trend that offers a more accurate and automated analysing system 

(Han et al., 2022; Xu et al., 2022b; Pham, Ha and Kim, 2023).  

 



3 

 In this study, laboratory experiments mimicking natural weathering 

conditions were conducted on expansive soils. The desiccation crack networks 

formed were collected using image acquisition methods. The collected images 

were processed and prepared as datasets for training deep learning-based 

segmentation models. Additionally, a series of image processing techniques was 

designed and employed on segmented masks to quantify crack geometrical 

parameters. The detection performance of various segmentation methods was 

evaluated through evaluation metrics scoring systems and error rate 

computations. 

 

1.2 Importance of the Study 

 

The study of desiccation cracking in expansive soils is crucial due to 

its widespread impact on various engineering and environmental applications. 

Desiccation cracks can lead to severe damage in infrastructure, including 

buildings, roads, and embankments, due to differential settlement in soils and 

structural fatigue (Cheng et al., 2020; Tang et al., 2021). The cyclic swelling 

and shrinking of expansive soils worsen the impacts, posing severe safety risks 

and maintenance costs to these infrastructures. Moreover, desiccation cracks 

infiltration problems that can turn into serious environmental issues such as 

contamination by nutrients and leachates leaching (Bronswijk, 1991; Albrecht 

and Benson, 2001; Cheng et al., 2020). 
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As expansive soils are omnipresence, the development and 

implementation of advanced monitoring technologies on desiccation cracking 

are essential. Image-based techniques and deep learning algorithms offer a 

promising solution for accurate and efficient quantification of desiccation 

cracks from small to large scales scenarios. By providing detailed quantification 

of crack patterns, the information obtained can enhance understanding of 

cracking mechanisms and aid in design and maintenance practices in the 

engineering field.  

 

1.3 Problem Statement 

 

 Due to the loss of water through evaporation, expansive soils contract 

and form desiccation cracks on their surfaces as they dry. In the field of 

engineering, desiccation cracking significantly alters soil properties and 

compromises structural integrity. The presence of cracks in near-surface soils 

degrades their hydraulic and mechanical properties, posing safety issues to 

many geo-related structures (Morris, Graham and Williams, 1992; Rayhani, 

Yanful and Fakher, 2008; Wang et al., 2018; Cheng et al., 2020).  

 

 Numerous experimental techniques have been employed to observe 

and describe the soil desiccation cracking process. Various parameters have 

been defined to measure and quantify the geometrical characteristics of crack 

morphology. Combining these approaches, cracking process could be analysed 

both qualitatively and quantitatively (Tang et al., 2021). However, there is still 

no standard technique or procedure for soil desiccation testing, making it 
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difficult to conduct a comparative study or validate certain findings. In addition, 

majority of the quantitative studies of concern employed traditional image 

processing techniques for crack image analysis, which required extensive 

human intervention and effort to quantify the crack network with limited 

accuracy (Vogel, Hoffmann and Roth, 2005; Tang et al., 2008; Lu et al., 2016; 

Singh, Rout and Tiwari, 2018; Al-Jeznawi, Sanchez and Al-Taie, 2021). The 

traditional crack analysing system prompted the need for a more innovative and 

automated process for soil desiccation cracking study.  

 

1.4 Research Questions 

 

In response to the challenges identified in existing methods for 

desiccation cracking quantification and analysis, this study aims to address the 

following questions: 

1. How can a standardised experimental setup be effectively designed to 

capture expansive soil crack images for desiccation crack analysis? 

2. Can deep learning based segmentation methods accurately and 

efficiently recognise desiccation cracks using soil crack images? 

3. Can the geometrical characteristics of crack morphology be effectively 

quantified through image processing techniques? 

 

1.5 Aim and Objectives 

 

The aim of this research is to explore the feasibility and effectiveness 

of image-based techniques in quantifying desiccation cracking behaviour of 
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expansive soil. The research objectives designated to be fulfilled are outlined 

below:  

i. To design the experimental setup for desiccation crack image 

acquisition.  

ii. To evaluate crack imaging analysis based on deep learning algorithm. 

iii. To quantify desiccation cracking through image processing techniques. 

 

1.6 Scope and Limitation of the Study 

 

This study focused on the application of image-based techniques and 

crack imaging analysis, particularly with deep learning algorithms, to quantify 

desiccation cracking in expansive soils. The scope includes conducting 

laboratory experiments to capture crack patterns, developing, and validating 

deep learning models for crack detection and segmentation, applying image 

processing techniques for crack geometrical characteristics quantification, and 

assessing the accuracy and reliability of these methods. However, the study was 

limited to kaolinite clay and controlled laboratory conditions. Simulation of 

field conditions and applications, variations in soil types, and real-world 

environmental factors imitation were beyond the scope of this research due to 

practical constraints. Additionally, the size of the training data and its quality 

obtained through the experiments performed constrained and influenced the 

effectiveness of the deep learning models in this study.  

 

 



7 

1.7 Contribution of the Study 

 

This study contributed to the field of engineering, especially 

geotechnical and geoenvironmental, by introducing innovative image-based 

techniques based on deep learning algorithms for the quantification of 

desiccation cracking in expansive soils. The research provided a comprehensive 

framework for capturing and analysing crack patterns, offering a more accurate 

and efficient method compared to traditional approaches, which are typically 

labour-intensive and highly sensitive to noise and lighting variations. 

Unlike conventional methods, deep learning algorithms learn to 

recognise cracks directly from raw image data, enabling robust detection of 

complex crack geometries with minimal human intervention. This breakthrough 

addresses the limitations of traditional crack analysis approaches by providing 

automated and adaptive solution for soil crack quantification and recognition.  

The findings can enhance understanding of desiccation cracking 

mechanisms by introducing the use of automated crack analysis process that 

potentially leads to the development of standardised techniques for crack 

quantification with high accuracy. Besides, the use of deep learning models for 

segmenting crack networks with image processing techniques which quantify 

important crack parameters such as surface crack ratio and crack width, can be 

utilised to develop on-site crack recognition system. This kind of system can aid 

in slope analysis to investigate the effect of desiccation cracks on slope collapse 

during the rainy season. The integration of deep learning algorithms with image 

processing techniques also represented a significant advancement in the 
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application of artificial intelligence in geo-related research as it provides a 

highly automated segmentation pipeline.  

 

1.8 Outline of the Report 

 

The study of deep learning-based image segmentation for expansive 

soil desiccation crack recognition and quantification is presented in 5 chapters. 

Chapter 1 provided a general introduction to the study, outlined the importance 

of the research, the existing problem on the issue, and detailed the aim and 

objectives of the research. The scope and limitations, including the contribution 

of the study are also highlighted in this chapter. Chapter 2 reviewed existing 

literature on expansive soils, desiccation cracking, traditional methods of crack 

analysis, and recent advancements in image-based techniques and deep learning 

algorithms for soil crack segmentation and detection. Chapter 3 presented the 

methodology used for the study, detailing the experimental setup, data 

collection methods, segmentation methods used (traditional and deep learning 

methods), implementation of the segmentation methods, and image processing 

techniques for crack analysis. Chapter 4 presented the findings from the 

experiments and analysis. The effectiveness of the traditional and deep learning 

models on crack segmentation was discussed under various scenarios. Lastly, 

Chapter 5 summarises the key findings with highlights on their implications to 

the engineering field. Recommendations for future research and practical 

applications are also provided in the last chapter.     
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

 

Expansive soils present major challenges in geotechnical engineering 

due to desiccation cracks that compromise structural integrity. This literature 

review presents an overview of the phenomenon of expansive soil desiccation 

cracking, including general mechanisms of crack generation, the connection 

between expansive soils and crack generation, and the consequences of this 

phenomenon. Additionally, key factors influencing cracking behaviour are 

examined. The focus of this review is on the quantification studies of soil 

desiccation cracks. Traditional image processing methods for detecting soil 

cracks are investigated, followed by a review of the integration of machine 

learning and deep learning techniques in automated soil desiccation crack 

recognition and segmentation. 

 

2.2 Expansive Soil Desiccation Cracking 

 

Expansive soil desiccation cracking is a critical phenomenon with 

significant implications for various geotechnical applications, particularly 

concerning the stability and integrity of structures constructed on such soil. A 

comprehensive understanding of the mechanisms underlying desiccation crack 

formation, the relationship between expansive soils and cracking behaviour, the 
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factors influencing crack development, and the consequences of such a 

phenomenon is essential for developing effective soil management and 

mitigation strategies.  

 

2.2.1 Soil Desiccation Crack Generation 

 

Desiccation cracking in soil is generated through a series of 

interconnected processes, including evaporation, volumetric shrinkage, stress 

accumulation, and crack formation (Tang et al., 2021). As water evaporates 

from the soil, negative pore pressure develops, creating an attractive force 

between soil particles that increases the tensile stresses within the drying soil 

matrix. These tensile stresses drive the volumetric shrinkage of soil (Kodikara 

and Costa, 2013). Desiccation cracks begin to form when the accumulated 

, as illustrated in Figure 2.1 

(Tang et al., 2021). The process begins with the initiation of micro-cracks, 

which subsequently propagate and coalesce into larger, visible cracks as drying 

progresses (Wang et al., 2018). 

 

 

Figure 2.1: Tensile failure leading to crack initiation (Tang et al., 2021). 
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2.2.2 Link Between Expansive Soil and Crack Generation 

 

Expansive soils exhibit substantial volume changes as a result of 

changes in moisture levels. These soils swell when water is absorbed and shrink 

during drying, with this behaviour primarily driven by the presence of clayey 

materials. Clay materials consist of fine-grained particles with a high plasticity 

index and a low shrinkage limit. These characteristics cause them to undergo 

excessive volume changes with varying water content (Jones and Jefferson, 

2012). The volumetric shrinkage of clay materials contributes to the 

development of desiccation cracks in expansive soils, as the associated volume 

changes induce tensile stresses that lead to crack initiation and propagation 

(Morris, Graham and Williams, 1992; Tang et al., 2008; Tang et al., 2011b).  

 

2.2.3 Consequences of Desiccation Cracking 

 

The consequences of desiccation cracking in expansive soils are 

manifold, impacting the engineering properties of soils, environmental stability, 

and the integrity of structures built on or using them. Desiccation cracks 

significantly alter the hydraulic properties of soils, increasing their hydraulic 

conductivity by several magnitudes, which can lead to issues such as soil 

erosion and differential settlement (Albrecht and Benson, 2001; Rayhani, 

Yanful and Fakher, 2008). Besides, Cheng et al. (2021) demonstrated that 

desiccation cracks enhance water infiltration into the soil, resulting in rapid 

moisture loss and increased shrinkage rates during the drying process. This 

exacerbates the formation and propagation of cracks, further compromising soil 
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structure and integrity. Additionally, cracking reduces the mechanical strength 

and stability of soils, rendering them more vulnerable to deformation and failure 

under loads (Morris, Graham and Williams, 1992). 

 

From an environmental perspective, desiccation cracks facilitate water 

infiltration and significantly increase hydraulic conductivity, allowing irrigation 

water containing nutrients to flow out of the root zone rapidly (Bronswijk, 1991). 

This process not only deprives crops of essential nutrients but also increases the 

risk of eutrophication in downstream water bodies, such as lakes, due to nutrient 

leaching. Additionally, desiccation cracking in clay structures, such as landfill 

barriers, creates preferential flow paths for hazardous leachates to escape, 

thereby contaminating the surrounding environment (Cheng et al., 2020). 

  

In the engineering field, desiccation cracks pose severe risks to 

buildings and infrastructures. The cyclic swelling and shrinking of expansive 

soils can lead to differential settlement and structural fatigue, resulting in the 

formation of cracks in foundations, structural elements, and pavements (Cheng 

et al., 2021). In addition, the increased water retention capacity on slopes due to 

the presence of surface cracks promotes soil erosion and reduces soil cohesion. 

This combination of detrimental effects compromises slope stability and can 

ultimately result in slope failures (Wang et al., 2018). 
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2.3 Factors Influencing Cracking Behaviour 

 

The desiccation cracking behaviour of expansive soils is closely related 

to and dependent on the surrounding conditions to which the soil is exposed. 

Factors such as temperature, drying and wetting cycles, soil composition and 

structure, and boundary conditions significantly influence the initiation and 

propagation of cracks. 

 

2.3.1 Temperature 

 

Temperature plays a vital role in the desiccation cracking behaviour of 

expansive soils. Tang et al. (2010) investigated the temperature-dependent 

behaviour of expansive soils by subjecting clay specimens with an initial water 

content of 170 % to drying temperatures of 22 °C, 60 °C, and 105 °C. The main 

findings, summarised in Table 2.1, demonstrated that higher temperatures 

accelerate the evaporation rate of soil moisture, leading to more extensive 

cracking, as indicated by the increased surface crack ratio. Additionally, the 

study revealed that cracking begins at higher soil water content when the soil is 

exposed to elevated temperatures. Several studies further indicate that the 

tensile and structural strength of clayey soils decreases with rising temperature 

(Gu et al., 2014; Salimi et al., 2021). This reduction in strength at higher 

tensile stresses, resulting in earlier 

crack initiation at higher moisture levels.  

 

 



 

14 

Table 2.1: Desiccation tests under different drying temperatures (Tang et 

al., 2010). 

Specimen Temperature 

(°C) 

Initial 

evaporation 

rate (g/min) 

Surface 

crack ratio 

(%) 

Cracking 

water content 

(%) 

S1 22 0.021 13.9 35.7 

S2 22 0.022 13.8 40.1 

S3 22 0.022 14.2 38.2 

S4 60 0.252 17.3 79.1 

S5 60 0.255 16.9 74.8 

S6 60 0.250 16.9 72.3 

S7 105 0.507 23.1 96.1 

S8 105 0.501 21.5 87.1 

S9 105 0.499 22.3 89.5 

 

 

2.3.2 Drying and Wetting Cycles 

 

The cyclical nature of drying and wetting significantly influences crack 

formation and behaviour in expansive soils. During drying periods, soils 

experience volumetric shrinkage, which leads to crack development.  When 

wetting occurs, these cracks typically close; however, repeated drying and 

wetting cycles often exacerbate crack development. Several studies have 

demonstrated that this weathering process intensifies the formation of cracks 
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over time (Yesiller et al., 2000; Tang et al., 2011a; Al-Jeznawi, Sanchez and Al-

Taie, 2020).  

 

Yesiller et al. (2000) measured the crack extent using the crack 

intensity factor (CIF), which represents the proportion of the crack area relative 

to the total soil surface area. Their findings revealed that CIF increased with the 

number of drying and wetting cycles, indicating that the crack severity 

intensified as the soil underwent repeated cycles. Similarly, in their 

investigation of clay soil cracking under drying and wetting cycles, Tang et al. 

(2011a) observed that the surface crack ratio (another term for CIF) also 

increased with the number of cycles, reaching equilibrium after approximately 

three cycles, as shown in Figure 2.2. Additionally, they observed that crack 

pattern stabilised after a few drying and wetting cycles, with most cracks 

forming in the same locations as in the previous cycles.  

 

Al-Jeznawi, Sanchez and Al-Taie (2020) reported similar stabilisation 

of crack patterns, suggesting that desiccation cracks formed during drying 

cycles created weak planes in the soil structure. Although wetting cycles may 

close these cracks, the weakened bonds at these sites facilitated easier crack 

initiation, increased horizontal shrinkage, and promoted the formation of more 

microcracks and a higher surface crack ratio. 
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Figure 2.2: Surface crack ratio versus number of drying and wetting cycles 

(Tang et al., 2011a). 

 

2.3.3 Soil Composition and Structure 

 

The composition and structure of the soil significantly affect its 

susceptibility to desiccation cracking. The shrink-swell properties of expansive 

soils are strongly influenced by their clay content and mineral composition. 

Different types of clay minerals exhibit different water-retention capacities and 

expansiveness due to their distinct mineral structures. For instance, 

montmorillonite, which is held together by weaker van der Waals forces, 

contrasts with kaolinite, where the layers are bonded by stronger hydrogen 

bonds. As a result, montmorillonite has a higher water retention capacity and 

greater shrink-swell potential, owing to the ease with which its bonds can 

separate (Budhu, 2010).  

 

Several studies have demonstrated the effect of soil composition on the 

desiccation behaviour of expansive soils (Albrecht and Benson, 2001; Tang et 
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al., 2008; Al-Jeznawi, Sanchez and Al-Taie, 2020; Shepidchenko et al., 2020). 

Albrecht and Benson (2001) reported higher volumetric shrinkage in specimens 

with a higher smectite content, which primary 

composition of montmorillonite. Tang et al. (2008) made a similar observation 

in their study of shrinkage cracks in clayey soils, noting increased CIF and crack 

width with a higher plasticity index. In a comparative study, Al-Jeznawi, 

Sanchez and Al-Taie (2020) examined kaolinite and bentonite mixtures and 

found that mixtures with a higher plasticity index required more wetting and 

drying cycles to reach an equilibrium state during desiccation tests compared to 

a lower plasticity pure kaolinite mixture. This finding suggests that soils with 

higher swelling clay content exhibit greater instability. Similarly, Shepidchenko 

et al. (2020) recently investigated the factors controlling desiccation cracks 

using montmorillonite, illite, and kaolinite. They observed increased crack 

width and earlier crack initiation in samples with higher montmorillonite 

content, which possesses the highest shrink-swell potential among the three 

minerals. 

 

Aside from soil mineral composition, the initial structural 

configuration of the soil particles can significantly influence cracking 

behaviours during the desiccation process. Several studies have demonstrated 

that soil samples prepared using slurry and compaction methods exhibit distinct 

desiccation cracking behaviours (Corte and Higashi, 1964; Albrecht and Benson, 

2001; Cheng et al., 2020). Early experimental investigations by Corte and 

Higashi (1964) suggested that compaction densifies the soil structure, reducing 

the evaporation rate, resulting in slower crack initiation and propagation in 
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compacted soil samples. Similarly, Albrecht and Benson (2001) found that 

increased compaction effort decreased volumetric shrinkage strain, indicating 

that compaction minimises soil deformation during the desiccation process. In 

a more recent study, Cheng et al. (2020) used soils compacted at different water 

contents, including on the dry side and wet side of optimum water content, 

respectively. They reported that dry-compacted soils exhibited simultaneous 

crack initiation across the soil surface, with more uniformly distributed cracks. 

In contrast, wet-compacted soils initially developed a primary crack, followed 

by secondary cracks much later in the drying process. These findings underscore 

the significant role of soil  initial configuration in determining its desiccation 

cracking behaviour.  

 

2.3.4 Boundary Conditions 

 

Boundary conditions, such as geometry, bottom interface, and the 

presence of vegetation, significantly influence crack formation. Several studies 

have investigated the impact of sample geometry by varying sample area and 

thickness (Prat, Ledesma and Lakshmikantha, 2006; Nahlawi and Kodikara, 

2006; Tang et al., 2008). Prat, Ledesma and Lakshmikantha (2006) examined 

the effect of sample size and found that mean crack width and soil clod area 

decreased as the sample area increased. For the effect of soil thickness, Nahlawi 

and Kodikara (2006) observed that mean crack width and mean soil clod area 

increased with greater sample thickness. They also reported that thicker soil 

layers exhibited slower desiccation rates due to the increased distance moisture 
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travelled to the surface. Similarly, Tang et al. (2008) reported analogous 

observations in their experiments with clay specimens of various thicknesses.  

 

Soils constantly interact with various materials in nature, and these 

interactions can significantly influence their desiccation cracking behaviour. 

Laboratory experiments have provided evidence of this phenomenon by 

introducing different interface frictions through boundary manipulations (El 

Hajjar et al., 2019; Zeng et al., 2019a; Al-Jeznawi, Sanchez and Al-Taie, 2021). 

El Hajjar et al. (2019) found that kaolinite clays developed cracks under all 

interface conditions, ranging from smooth to rough. Zeng et al. (2019a) 

observed that cracks propagated faster with increasing interface roughness when 

soil thickness remained constant, and the amplitude of this effect decreased with 

greater soil thickness. They also reported that increased interface roughness or 

reduced soil thickness led to more severe crack formation. Similarly, Al-

Jeznawi, Sanchez and Al-Taie (2021) recorded higher CIF values with greater 

bottom interface friction.  

 

 In addition to bottom constraints, expansive field soils are often 

covered by vegetation, which can act as a boundary constraint. Gao, Zeng and 

Shi (2021) explored the effects of vegetation on the stability of red clay slopes 

with desiccation cracking during rainfall infiltration. Their findings indicated 

that vegetation, particularly with deep tap root system, significantly improved 

slope stability by restricting desiccation crack development. On the other hand, 

Cheng et al. (2023) studied how soil desiccation cracking behaviour is affected 

by varying vegetation densities. They found that vegetated soils exhibited a 
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smaller final surface crack ratio and narrower average crack width compared to 

non-vegetated soils. Additionally, higher planting densities were associated 

with more simultaneous crack initiation, but with finer and thinner crack lines. 

This suggests that desiccation cracking can be mitigated to a certain extent by 

optimising vegetation density.  

 

2.4 Quantification Studies of Soil Desiccation Crack 

 

Expansive soil desiccation crack analysis has become an increasingly 

important area in numerous engineering fields due to its implications on 

infrastructures and geotechnical structural safety. This has driven the 

development of quantitative approaches for analysing desiccation cracks. Such 

analyses use fractal geometry to characterise cracks, providing insights into the 

process of fracture formation and its extent. Early manual soil characterisation 

methods included wire probes, cement slurry, and dye (El Abedine and 

Robinson, 1971; Li et al., 2019; Zhao and Koseki, 2020). Although these 

approaches were cost-effective and easily accessible, they often disrupted the 

crack pattern and subsequently reduced the accuracy of quantitative 

measurements (Liu et al., 2013). 

 

The evolution of computer science and image digitisation in the 

twentieth century introduced the field of computer vision, encompassing 

subfields such as image analysis and image processing. As this field matured, 

many soil crack quantitative studies shifted to non-intrusive image analysis and 

image processing techniques (Liu et al., 2013; Shit, Bhunia and Maiti, 2015; 
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Singh, Rout and Tiwari, 2017; El Hajjar et al., 2019; Al-Jeznawi, Sanchez and 

Al-Taie, 2020). Image analysis involves extracting information from digital 

images through a series of processes, including image acquisition, image 

processing, and feature extraction, and then ensembles the information to 

perform object recognition (Gonzalez and Woods, 2008). In soil desiccation 

crack recognition and quantification, image analysis separates the crack as the 

subject of interest, commonly referred to as the foreground, from the non-crack 

area, known as the background. This separation facilitated accurate quantitative 

characterisation of cracks.  

 

Over the years, researchers have defined various geometrical 

parameters to describe the soil crack morphology. The concept of using CIF as 

an indicator of the extent of soil surface cracking was first introduced by Miller, 

Mi and Yesiller (1998). CIF is defined as the time-variable ratios of the total 

initial time (time 

zero). To enhance clarity, Tang et al. (2010) proposed an alternative name for 

the parameter CIF as surface crack ratio (RSC).  Both CIF and RSC have since 

been widely used in soil crack studies as they help researchers in determining 

the correlation between crack intensity and the various factors influencing soil 

cracking behaviour  (Tang et al., 2010; Tang et al., 2008; Shit, Bhunia and Maiti, 

2015; Lu et al., 2016; Bamgbopa, 2016; Singh, Rout and Tiwari, 2018; Zeng et 

al., 2019b; Al-Jeznawi, Sanchez and Al-Taie, 2021; Cheng et al., 2021; Yang et 

al., 2022).  
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 In addition to crack extension, other geometry parameters, such as 

average crack width, crack length, and clod properties, have been defined to 

further describe soil desiccation cracking behaviour. Liu et al. (2013) developed 

a software tool called , which stands for Crack Image Analysis System. 

The software automatically characterises soil cracks through a pipeline of 

operations, including image segmentation, crack recognition, and geometric 

parameter measurement. For the software to generate accurate results, input soil 

crack images must be captured under well-controlled lighting and angles.  CIAS 

was specifically designed for soil desiccation crack detection. However, many 

related studies still rely heavily on general-purpose image processing programs, 

such as ImageJ, making the quantification analysis tedious, inconsistent, and 

lacking automation (Tang et al., 2021). To address these limitations, machine 

learning methods are increasingly applied in image segmentation tasks to ensure 

better performance and robustness in crack detection (Xu et al., 2022b; Han et 

al., 2022; Pham, Ha and Kim, 2023). 

 

2.4.1 Image Acquisition 

 

To perform image analysis, digitised images must first be obtained. 

Several acquisition methods and tools have been employed in research to 

capture representations of desiccation cracking networks. Commonly used 

techniques include digital image correlation (DIC), particle image velocimetry 

(PIV), laser instruments, X-ray computed tomography (CT), scanning electron 

microscopy (SEM), and cameras (Tang et al., 2021).  
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Digital Image Correlation (DIC) is a useful technique for measuring 

surface displacement and strain fields. It generates contour maps of 

displacement and strain by capturing and calculating pixel deformations 

between an initial image (before displacement) and a subsequent image (after 

displacement) (Wei et al., 2016). Using DIC, Wei et al. (2016) demonstrated 

that expansive soil cracking typically follows three distinct modes, including 

opening, sliding, and tearing. The opening mode is the most prevalent, often 

occurring alone or in combination with sliding or tearing modes. They also 

observed that cracks generally propagate perpendicularly to the direction of 

tension, although the presence of shear strains can alter the propagation 

direction (Wei et al., 2016). In a comparative study on desiccation cracking 

behaviour of kaolinite and montmorillonite clay, El Hajjar et al. (2019) used 

DIC to monitor the local strain evolution. Their findings revealed that 

montmorillonite exhibited a deformation threshold twice that of kaolinite before 

cracking occurred -

induced cracking. 

 

Li et al. (2019) introduced tracer particles into fluids and adopted the 

particle image velocimetry (PIV) method to track and measure continuous 

velocity fields within the fluid. Costa, Kodikara and Shannon (2013) utilised 

PIV analysis to study factors affecting clay desiccation cracking, observing the 

evolution of tensile strain during shrinkage-induced cracking. Additionally, PIV 

has been coupled with DIC for tensile strain analysis on clayey soil, 

demonstrating that tensile stress distribution can be used to predict crack 

location and propagation in real time (Li et al., 2019). Figure 2.3 shows an 
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example of the soil tensile failure process in three stages (rising stress, failure 

developing, post-failure stage) and their relative DIC and PIV images at specific 

points on the tensile deformation curve (Figure 2.4) to highlight their correlation. 

These visualisations help to bridge the relationship between deformation 

mechanism and cracking behaviour. While DIC and PIV are highly effective for 

deformation analysis, offering precise displacement and strain data, they are less 

practical for applications focused on efficiently quantifying crack geometry. 

Both methods require high-resolution imaging equipment and consistent 

imaging conditions to ensure accuracy. Moreover, DIC and PIV rely on 

specialised software for results interpretation, making them computationally 

intensive and time-consuming, limiting their feasibility for real-time monitoring 

applications.  

 

 

Figure 2.3: Soil tensile deformation curve (Li et al., 2019). 
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Figure 2.4: DIC and PIV images for different tensile stages at ROI (Li et 

al., 2019). 

 

To examine subsurface cracks in soil, researchers have employed 

advanced methods like laser technology and X-ray computed tomography (CT). 

These non-destructive imaging techniques enable three-dimensional 

measurements of crack networks beneath the soil surface. X-ray CT, in 

particular, has proven effective in visualising the geometric and volumetric 

properties of buried crack networks (Tang et al., 2021). Although these 

techniques offer valuable insights for 3D quantitative analysis of crack networks, 

they require expensive equipment and involve extensive post-data analysis 

efforts. In addition, their reliance on specialised instruments limits their 

application primarily to laboratory-scale studies. Consequently, there has been 
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a growing trend toward adopting image-based acquisition methods that involve 

capturing images of soil crack networks and analysing them for fast and cost-

effective way (Mohan and Poobal, 2018; Munawar et al., 2021). 

 

Among the characterisation methods, a setup involving a digital 

camera, a supporting frame, and a light source has emerged as a cost-effective 

and efficient solution for image acquisition setup (Wang et al., 2018). The speed 

of post-processing is proportional to the resolution of the captured images, with 

higher resolution requiring greater computational resources. Traditionally, the 

captured images are analysed using image processing techniques, which involve 

steps like pre-processing and segmentation to extract crack-related information. 

However, in recent years, the rapid advancements in artificial intelligence and 

computer vision have led to the increased use of machine learning and deep 

learning methods for the recognition and quantification of soil desiccation 

cracks. A detailed discussion of traditional image processing techniques and 

novel deep learning approaches will follow in the subsequent sections.  

 

2.5 Crack Detection with Traditional Image Processing Technique 

 

Conventionally, image processing plays two major roles in the image 

analysis pipeline: image enhancement and image segmentation, which precede 

feature extraction and characterisation (Hadjiiski, Samala and Chan, 2021). 

Traditional image processing techniques have successfully fulfilled these roles 

by performing low-level operations such as noise reduction and contrast 

enhancement to optimise image quality, as well as mid-level processes such as 
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segmentation, which separates regions of interest from the background 

(Gonzalez and Woods, 2008). Inspired by its successful application in medical 

imaging analysis, researchers have applied these techniques to crack detection 

in soils.  

 

 Early examples of soil crack detection using traditional image 

processing techniques relied heavily on manual intervention during 

characterisation (Vogel, Hoffmann and Roth, 2005; Peng et al., 2006). Vogel, 

Hoffmann and Roth (2005), for instance, utilised a variable thresholding method 

to segment grey-scale images. Grey-scale images are monochromatic, 

consisting solely of light intensity values ranging from black to white, as shown 

in Figure 2.5 (Gonzalez and Woods, 2008). In their study, Vogel, Hoffmann and 

Roth (2005) set the segmentation threshold value at each location in the image 

to 65% of the mean intensity value within a surrounding bounding box of 20 × 

20 pixels. Thresholding works by dividing the intensity values of an image into 

two distinct groups using a predefined threshold value, effectively separating 

the image into a binary format. In a binary image, pixel intensity is represented 

as 0 for the background and 1 for the object of interest (Gonzalez and Woods, 

2008). However, this approach faced significant limitations. The selection of 

the threshold value was subjective and lacked generalisation, resulting in 

inconsistent outcomes and limited applicability. 
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Figure 2.5: RGB image (left) and intensity image (right) (Gonzalez and 

Woods, 2008). 

 

Peng et al. (2006) used Adobe   

segment crack images and measured the surface crack area using an open-source 

software called Scion Imaging. The selects image areas 

based on colour similarity, but this approach often generates noise (pseudo-

cracks) that require manual elimination. As a result, their characterisation 

method was highly impractical for larger datasets due to the substantial human 

effort involved.  

 

CIAS is a soil quantification system using image processing techniques 

by Tang et al. (2008). The system produced binary segmented crack images with 

calculated geometrical parameters, including the number of intersections, crack 

segments, crack width, crack length, clod area, and surface crack ratio. In their 

paper, Tang et al. (2008) conducted tests on low-plasticity clay to explore the 

relationships between drying temperature, soil thickness, wet-dry cycles, and 

their effects on desiccation cracking behaviour. Building on this foundation 

work, the same research group later carried out more detailed investigations into 
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individual factors influencing desiccation cracking (Tang et al., 2010; Tang et 

al., 2011a; Tang et al., 2011b).  

 

The image processing techniques used in CIAS and its workflow were 

later detailed by Liu et al. (2013). As mentioned previously, CIAS consists of 

three primary procedures: image segmentation, crack identification, and 

parameter measurement. An iterative clustering-based method was employed to 

automatically determine the global threshold value, T, for each image during the 

segmentation step. The process begins by selecting an initial threshold value, T, 

which is set to the average grey level of the image. The image is then segmented 

into two groups of pixels: white and black. Pixels with grey intensity values 

exceeding T are classified as white, whereas those with values below T are 

labelled as black. Next, the mean grey intensity values of each group are 

calculated, and a new threshold T is computed as the average of these two mean 

values. This process is repeated iteratively, updating T in each iteration until the 

difference between consecutive T values becomes negligible. The final T 

represents the optimal threshold value for the given image. This method, as 

described by Gonzalez and Woods (2008), is a standard global thresholding 

approach. However, they noted that this technique performs effectively only 

when the histogram of the image exhibits a distinct valley between the crest 

corresponding to the object and the background. After segmentation, the 

resulting image typically contains noise (black spots) and discontinuous crack 

lines with white dots as shown in Figure 2.6 (c). To address these issues, Liu et 

al. (2013) proposed the use of closing operation to eliminate the white dots and 

using the seed-filling algorithm for black spot removal. Closing is a 
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morphological operation that smoothens contours by removing small holes, 

filling gaps, and connecting small breaks (Gonzalez and Woods, 2008). Figure 

2.6 shows the original colour crack image, after segmentation, and spot removal. 

Seed filling algorithm identifies individual regions of interest by starting with a 

seed pixel and iteratively adding neighbouring pixels that meet predefined 

connectivity or intensity criteria (Yu, He and Xi, 2010). By setting a threshold 

value for the area of black spots and white dots, the algorithm identifies and 

removes regions that satisfy this condition, resulting in a cleaner image, as 

demonstrated in Figure 2.7 (Tang et al., 2008).  

 

 

Figure 2.6: Process from original image to segmentation with thresholding 

and closing operation for spots removal (Liu et al., 2013). 
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Figure 2.7: Spot and noise removal. (a) Original segmented image, and (b) 

after seed-filling spot removal method (Tang et al., 2008). 

 

Recent studies have explored the applicability of CIAS quantification 

system. Cheng et al. (2020) investigated the effect of compacted soil 

microstructure on its cracking behaviour under varying optimum water content. 

CIAS was employed to measure crack density (defined as the number of crack 

segments per unit area) and surface crack ratio. These parameters revealed that 

changes in compaction water content during sample preparation significantly 

alter . Furthermore, the trajectories of surface 

crack ratio and crack density increments varied depending on those states.  The 

same group of researchers conducted another study on the effect of drying and 

wetting cycles on soil infiltration capacity (Cheng et al., 2021). They utilised 

CIAS to calculate the surface crack ratio and determined that a threshold of 4% 

marked the point at which the surface crack ratio begins to drastically affect the 

infiltration capacity. Similarly, in an investigation of the dependency of soil 

cracking behaviour on relative humidity (RH), Zeng et al. (2022) reported that 

crack width increased with higher RH, while total crack length increased with 
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lower RH. These findings underscore the utility of CIAS in quantitatively 

analysing soil cracking behaviour across various environmental and preparatory 

conditions.  

 

Despite its advantages, the CIAS quantification system is not without 

limitations. The effectiveness of its global thresholding method heavily relies 

on the quality of input images. However, the major downside of this system is 

that the input images are highly quality-restricted. For instance, uneven 

illumination and noise can result in poorly defined crest-and-valley structures 

in the image histogram, rendering the thresholding process ineffective. As a 

result, achieving accurate results often requires well-controlled imaging 

conditions, which can limit its practical applicability in certain scenarios. 

 

The aforementioned CIAS was mostly automatic in the sense that when 

an image was fed to the system, an output was generated through the processing 

pipeline with minimal user intervention. Aside from CIAS, most of the existing 

quantitative studies relied on open-source image processing software such as 

ImageJ for image segmentation, while others used MATLAB for subsequent 

analysis. Image segmentation typically consisted of converting RGB images 

into grey-scaled images, then performing segmentation with various 

thresholding methods to obtain the binary result (Shit, Bhunia and Maiti, 2015; 

Lu et al., 2016; Bamgbopa, 2016; Singh, Rout and Tiwari, 2018; El Hajjar et al., 

2019; Al-Jeznawi, Sanchez and Al-Taie, 2021; Yang et al., 2022). In some 

instances, image enhancement or post-processing steps were included to 

achieve better segmentation of soil cracks, thereby enabling finer geometrical 
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parameter measurements (Singh, Rout and Tiwari, 2018; Al-Jeznawi, Sanchez 

and Al-Taie, 2021; Yang et al., 2022). 

 

In a demonstration of the use of image processing techniques in image 

segmentation, Lu et al. (2016) determined the optimal global threshold value 

for each image , implemented in MATLAB via the 

"graythresh" function. identifies the ideal threshold by 

maximising the variance between two classes of pixels that represent 

foreground and background pixels, respectively (Gonzalez and Woods, 2008). 

Among the studies that utilise image processing techniques, only Lu et al. (2016) 

specified their binarisation method. This showed the lack of a standardised 

thresholding technique, and the choice of binarisation procedure largely 

depends on the attributes of the specific image under investigation and the 

image processing application or software available.   

 

On the other hand, several studies demonstrated the use of image 

processing techniques in pre- or post-processing of binary images to improve 

segmentation outcomes. Al-Jeznawi, Sanchez and Al-Taie (2021) applied 

rolling ball background subtraction on grey-scaled images to mitigate the effect 

of background intensity variations during binarisation. In this case, the rolling-

ball algorithm estimates the background intensity of an image and subtracts it 

from the grey-scaled image, resulting in a more uniform background. After 

binarisation, the researchers used the  in ImageJ to obtain the 

crack boundaries by selecting the crack areas as regions of interest. Figure 2.8 

shows the image analysis procedures performed with ImageJ software. 
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Similarly, Yang et al. (2022) adopted homomorphic and Gaussian filter 

(smoothing filter) as pre-processing steps prior to binarisation. Homomorphic 

filtering adjusts the illumination and reflectance components in an image to 

enhance the visibility of lower intensities and sharpened edges (Gonzalez and 

Woods, 2008). The Gaussian filter was used for denoising which further 

improved the image quality for subsequent processing.  

 

 

Figure 2.8: Main analysis processes. (a) Grey-scaled image, (b) after 

background subtraction, (c) binarisation, and (d) outlining 

boundaries (Al-Jeznawi, Sanchez and Al-Taie, 2021). 

 

 In a study investigating the effects of soil initial properties on its 

desiccation behaviour, Singh, Rout and Tiwari (2018) performed grey scaling 

and segmentation with ImageJ software and subsequent crack quantification in 

MATLAB. To enhance the quality of the binary image, they applied a closing 

operator and median filtering to remove noises that are similar to those 

described in CIAS. Median filtering is particularly effective in reducing speckle 

noise by substituting the intensity of a pixel with the median intensity value of 

its neighbouring pixels (Gonzalez and Woods, 2008). Quantification analysis, 

such as the determination of CIF and crack width, was then performed on 

MATLAB. Prior to quantification analysis, freehand selection operator was 
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used to manually select the cracks within the container to determine the crack 

area.  

 

 Overall, these studies illustrated the role of image processing 

techniques in soil crack detection. However, many of the procedures lack 

sufficient specificity, with limited details provided on the methods used. 

Moreover, these studies rely heavily on human intervention, requiring 

individual processing of images which introduces potential inconsistencies and 

subjectivity in the analysis.  

 

2.6 Machine Learning 

 

Machine Learning (ML), as a subfield of Artificial Intelligence (AI), 

employs computational algorithms to solve statistical problems by making 

predictions based on input data (Issam and Murphy, 2015). Unlike traditional 

programming, a machine learning algorithm does not require explicit 

instructions to perform a task; instead, it configures its architecture 

automatically through iterative analysis of patterns and inferences from data. 

This process, often referred to as training, enables the algorithm to make 

predictions or decisions with minimal human intervention. The widely 

recognised definition of machine learning, attributed to Arthur Samuel, 

described  ability to learn without 

(Issam and Murphy, 2015; Xin et al., 2018). 
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 Typically, machine learning is categorised by its approaches during 

learning, and the three broad categories are supervised, unsupervised, and 

reinforcement learning (Janiesch, Zschech and Heinrich, 2021). Supervised 

learning uses a labelled dataset for algorithm training, where the dataset consists 

of input data paired with their corresponding output labels (Issam and Murphy, 

2015). Whereas unsupervised learning uses unlabelled data and allows the 

algorithm to independently identify patterns and correlations within the inputs 

(Issam and Murphy, 2015). Unlike these approaches, reinforcement learning 

trains the algorithm by enabling it to interact with a given environment and 

receive feedback through rewards or penalties. The aim is to optimise 

cumulative rewards to achieve a predefined objective. Reinforcement learning 

is commonly applied in areas such as gaming, robotic control, and autonomous 

systems, where sequential decision-making is essential (Janiesch, Zschech and 

Heinrich, 2021).  

 

 Due to its remarkable ability to address classification and regression 

problems, machine learning has been increasingly utilised in numerous fields, 

including image and speech recognition, financial scenario analysis, natural 

language processing, and medical diagnosis (Issam and Murphy, 2015; Janiesch, 

Zschech and Heinrich, 2021; Xin et al., 2018). Some widely recognised machine 

learning algorithms, including linear regression, K-nearest neighbours (KNN), 

and support vector machine (SVM), were created to analyse data and make 

reasonable predictions (Han et al., 2022). In a surface crack monitoring study, 

Zhang et al. (2021) proposed the use of support vector machine (SVM) in 

conjunction with F-score feature selection to detect and extract surface cracks 
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from unmanned air vehicle (UAV) images. SVM is a powerful machine learning 

algorithm and classifier that looks for an optimal hyperplane that divides 

observations of different classes from one another by leveraging patterns of 

information called features (Pisner and Schnyer, 2020). F-score calculates the 

significance of different features and helps in the selection of the most relevant 

features that enable more efficient predictions and classifications between 

classes (Tao et al., 2013). Zhang et al. (2021) 

detect the presence of cracks in the UAV images with an overall accuracy rate 

of 89.5%. However, the use of machine learning was restricted to the crack's 

existence detection, and the method of segmentation or extraction of cracks was 

not described. The advantages of implementing machine learning in this case 

are limited as it only classifies images as crack or non-crack images. 

 

 Traditional machine learning methods face challenges when 

processing raw natural data due to their inability to identify patterns without a 

feature extractor. Designing a machine learning system capable of recognising 

patterns requires significant domain expertise to create a feature extractor that 

pre-processes raw data into formats suitable for the learning subsystem to 

analyse and identify the patterns (LeCun, Bengio and Hinton, 2015; Janiesch, 

Zschech and Heinrich, 2021). To reduce the dependence on domain expertise, 

deep learning was developed, inspired by the functioning of human neurons. 

Deep learning employs multiple artificial neural networks to perform 

computations on vast amounts of data, enabling automated pattern recognition 

without extensive manual feature engineering (LeCun, Bengio and Hinton, 

2015). 
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2.7 Deep Learning 

 

Subsequent research into AI technologies led to the emergence of deep 

learning (DL), a specialised subset of machine learning. DL is a form of 

representation learning that uses artificial neural networks (ANNs) to address 

high-dimensional problems through multiple levels of abstraction. The term 

refers to the multi-layered structure of the artificial neural network (Xin 

et al., 2018). Mimicking human biological neural networks, ANNs consist of 

artificial neurons organised into layers, where each neuron in one layer is 

interconnected with every neuron in the next layer through weighted 

connections, forming a deep neural network. In representation learning, the 

system automatically identifies relevant features from input data for detection 

or classification tasks without requiring a manually designed feature extractor. 

To achieve multiple levels of abstraction, non-linear modules (layers) are 

combined, with each module responsible for transforming the current data 

representation into a more abstract level (LeCun, Bengio and Hinton, 2015).  

 

 Consider an image with pixel values as an example, the first layer of a 

deep learning system may learn to recognise edges at specific positions within 

the image. This information is then passed to the second layer, which might 

detect patterns formed by these edges, even if their positions are slightly altered. 

As the process continues, deeper layers learn to combine these patterns into 

larger, more complex structures, representing parts of recognisable objects. 

Eventually, the system can detect entire objects based on these hierarchical 

combinations (LeCun, Bengio and Hinton, 2015). In deep learning, the system 
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identifies patterns from extracted features using a general-purpose learning 

technique. By automating the identification of hierarchical representations, deep 

learning enables the machine to understand complex patterns in the input 

without requiring manually designed feature layers. Among DL, Convolutional 

neural networks (CNNs) have emerged as one of the most successful algorithms, 

excelling in the recognition and segmentation of objects and regions within 

images (LeCun, Bengio and Hinton, 2015; Han et al., 2022). 

 

A comparative analysis of traditional machine learning models, such 

as SVM, and deep learning models, such as CNN, demonstrated that deep 

learning models have better recognition accuracy in image classification, 

particularly when applied to large-scale datasets (Wang, Fan and Wang, 2021). 

CNNs are a type of feedforward neural network capable of extracting features 

directly from raw data through their convolution structures. These structures 

consist of multiple arrays of convolutional layers, making CNNs well-suited for 

processing both 2D data, such as images, and 3D data, like videos (LeCun, 

Bengio and Hinton, 2015).  

 

In general, CNN architecture comprises three types of layers: a 

convolutional layer, followed by a pooling layer, and finally a fully connected 

layer . The convolutional layer performs feature 

extraction from input data using learnable filters and a non-linear activation 

function is often used after this. Rectified linear unit (ReLU) is an example of 

this activation which introduces non-linearity into the output. Subsequently, 

pooling layers are employed to down-sample the spatial dimensions of the input, 
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preventing overfitting and computational complexity. After multiple stacks of 

convolutional layers, activation units, and pooling operations, the fully 

connected layer is positioned at the last layer in a CNN architecture. This layer 

maps the output of the preceding layer to an output label (Munawar et al., 2021; 

. An illustration of the combination of these layers to 

form a CNN architecture is shown in Figure 2.9.  

 

 

Figure 2.9: A simple five-layer CNN classification model 

2015).  

 

Another example of a convolutional network is illustrated in Figure 

2.10, where an image of a Samoyed dog is fed into the network. Each horizontal 

rectangle in the row represents a feature map (LeCun, Bengio and Hinton, 2015). 

Feature maps are the outputs of convolutional layers, with each map 

corresponding to a specific learned feature. These maps are generated by 

applying convolutional operations with filters (or kernels). The output indicates 

that the class Samoyed has the highest class score based on the detected features, 
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allowing the network to classify or predict the image as belonging to the 

Samoyed class. 

 

 

Figure 2.10: Bottom up following how a CNN classify an image (LeCun, 

Bengio and Hinton, 2015). 

 

2.7.1 Soil Crack Detection Using Deep Learning 

 

Recent studies on soil crack detection using deep learning and CNNs 

have demonstrated significant success, achieving high efficiency and accuracy 

(Xu et al., 2022b; Han et al., 2022; Andrushia et al., 2022; Pham, Ha and Kim, 

2023; Xu et al., 2022a; Xu et al., 2024). The application of deep learning on soil 

crack recognition was first introduced by Xu et al. (2022a), who utilised a U-

Net convolutional neural network for detecting soil desiccation cracks in 

laboratory-acquired images. The proposed U-Net architecture is shown in 

Figure 2.11.  
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As per its name, U-Net architecture features a symmetrical U-shaped 

design, comprising an encoder and a decoder. The encoder, located on the left, 

captures features while progressively reducing the spatial dimension of the input 

image. The decoder, on the right, restores the image's spatial dimensions and 

generates the final segmentation mask, which in this case is a binary mask. The 

operation shown in Figure 2.11 represents skip connections that transfer 

feature maps directly from each encoder layer to its corresponding decoder layer. 

These skip connections enhance object localisation by combining the 

low-level spatial features with the high-level information.  

 

The performance of the model was evaluated through comparison of 

precision, recall, and Dice scores between U-Net model and traditional 

thresholding methods. When assessed against the ground truth, the U-Net model 

achieved precision, recall, and Dice scores of 94.38%, 74.43%, 81.13%, 

compared to 81.74%, 66.56%, 68.48% for the thresholding method.  These 

results conclusively demonstrated that deep learning using U-Net significantly 

improves the segmentation process in soil crack detection.  
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Figure 2.11: U-Net architecture for semantic segmentation of soil 

desiccation crack image (Xu et al., 2022a). 

 

 Despite the promising performance of the U-Net model, the same 

group of researchers identified that the model lacks robustness in handling 

images captured under uneven illumination conditions (Xu et al., 2022b). To 

address this limitation, Xu et al. (2022b) developed a new soil crack recognition 

system called Attention Res-UNet for semantic segmentation of crack networks. 

The structure of the Attention Res-UNet incorporates deep Res-UNet 

architecture enhanced with attention gates, as shown in Figure 2.12. Deep Res-

UNet shares a structural similarity with conventional U-Net but differs in its 

integration of residual connections. The term -UNet refers to the 

residual connection, which allows input information to bypass intermediate 

layers and connect directly to their outputs. This design facilitates the effective 

training of deeper networks by mitigating the vanishing gradient problem. To 

counter the effects of uneven illumination, the researchers introduced an 

attention gate in the model. The attention gate selectively emphasises critical 

information in the image while filtering out irrelevant responses, thereby 
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enhancing segmentation accuracy. This improvement makes Attention Res-

UNet a more robust and effective tool for crack detection under varying 

illumination conditions.  

 

 

Figure 2.12: Structure of Attention Res-UNet (Xu et al., 2022b). 

  

 The performance of the proposed Attention Res-UNet model was 

evaluated against seven other deep learning models designed for semantic 

segmentation tasks (Xu et al., 2022b). The segmentation results of all models 

are illustrated in Figure 2.13. It is evident that Res-UNet and Attention Res-

UNet produced the most satisfying outcomes based on visual assessment. The 

evaluation metrics used to quantitatively evaluate the performance of different 

models were precision, recall, and the Jaccard index (or Intersection over Union, 

IoU). The Jaccard evaluates the similarity between the predicted positive and 

true positive by dividing their intersection by their union. The higher values 

indicate better segmentation performance, as they reflect a higher proportion of 

correctly identified instances located accurately. From Table 2.2, the Attention 

Res-UNet achieved the highest scores in precision and Jaccard index, 

outperforming other deep learning models and traditional segmentation 
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methods. However, while the inclusion of attention gates improved 

segmentation accuracy as illustrated in Figure 2.13 (i) and (k), Table 2.2 

suggests that the improvement was minimal. The Res-UNet alone was effective 

in mitigating the effects of uneven illumination, indicating that the primary 

contribution of the attention gate was relatively subtle in these scenarios.   

 

 

Figure 2.13: Final segmentation map of different models (Xu et al., 2022b). 
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Table 2.2: Performance of different models under different evaluation 

metrics (Xu et al., 2022b). 

Models Precision (%) Recall (%) Jaccard (%) 

Traditional Method 13.27 47.1 11.51 

FCN-8s 56.56 93.44 53.99 

SegNet 71.88 79.16 60.32 

U-Net 64.19 88.23 58.46 

DeepCrack 28.18 83.73 26.61 

Res34-UNet 59.53 90.32 55.45 

Res-UNet 80.4 77.84 65.6 

Attention U-Net 79.16 74 61.73 

Attention Res-UNet 81.28 78.15 66.68 

 

 In the same year, Han et al. (2022) published a crack detection and 

localisation system based on Mask R-CNN. By leveraging transfer learning, a 

dataset consisting of 1200 annotated crack images was used to train the model. 

Mask R-CNN is a cutting-edge deep learning algorithm designed for both image 

segmentation and object detection. Unlike U-Net which generates a semantic 

segmentation map where all pixels belonging to the same class are assigned a 

class label, Mask R-CNN performs instance segmentation that assigns unique 

labels to individual instances within the same class, in addition to the general 

class label. The flow structure of the Mask R-CNN model is illustrated in Figure 

2.14. In Stage 1, feature maps were extracted from the input images using the 

ResNet-50 CNN backbone. A region proposal network (RPN) then scanned the 

feature maps to identify rectangular boxes of Regions of Interest (ROIs) that 
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potentially contain cracks. The ROIs were then aligned with the feature maps in 

the align layer to eliminate spatial misalignments. In Stage 2, the aligned feature 

maps were passed through a fully convolutional network (FCN) that 

simultaneously generated a segmentation mask and a class label with its 

bounding box which indicates the crack location. 

 

 

Figure 2.14: Architecture of Mask R-CNN model (Han et al., 2022). 

 

 The performance of the proposed Mask R-CNN algorithm was 

evaluated by using common DL evaluation metrics which are precision, recall, 

and F1 score, achieving 73.3%, 82.8%, and 77.7%, respectively. Additionally, 

the authors compared the performance of Mask R-CNN with U-Net under 

varying degrees of soil background complexity. An example of detection and 

segmentation results for both models is illustrated in Figure 2.15. Under all 

tested conditions, Mask R-CNN outperformed U-Net in crack detection, 

localisation and segmentation. The authors tested the performance of Mask R-

CNN on solid soil backgrounds (least complex), impure backgrounds 
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(containing scratches with slightly uneven soil surface), and complex crack 

scenarios (high-density crack networks). It was reported that although the 

algorithm provided satisfactory detection in all cases, its accuracy declined as 

background complexity increased. Despite this, Mask R-CNN consistently 

demonstrated superior performance compared to U-Net in handling complex 

crack images. This study highlights the potential of Mask R-CNN as an effective 

instance segmentation deep learning algorithm for automated soil desiccation 

crack recognition. Its ability to detect and segment individual crack instances in 

complex scenarios makes it a robust candidate for soil cracking analysis.  

 

 

Figure 2.15: Crack detection results from different models (Han et al., 

2022). 
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 In another study, Andrushia et al. (2022) introduced a deep-learning 

framework for detecting expansive soil shrinkage cracks by comparing two 

customised CNN networks against pre-trained VGG-19 and ResNet-50. Their 

dataset consisted of 5,200 field soil crack images and they employed five-fold 

cross-validation technique to demonstrate that their customised CNN model 

featuring 5 convolutional layers, coupled with 3 ReLUs and 2 fully connected 

layers, was able to outperform deeper pre-trained networks like VGG-19 and 

ResNet-50 at a precision of 0.957 and recall of 0.980. They also demonstrated 

that their best-performing customised CNN model was superior in terms of 

precision and recall when compared to traditional methods like the Canny edge 

detector and more advanced approaches, including SVM, DCNN, and U-Net. 

However, the robustness of the models in this study to variable illumination 

remained untested as their images were captured under relatively uniform 

lighting. Furthermore, by resizing the dataset to just 64 × 64 pixels, the 

experiments may oversimplify crack structures which might cause the 

evaluation metrics to not reflect the actual generalisation ability of the models 

in real-world scenarios. 

 

Pham, Ha and Kim (2023) conducted a comparative study to evaluate 

the efficacy of ground crack detection systems between convolutional neural 

networks and image processing techniques. This study evaluated several 

popular CNN algorithms, including U-Net, DeepLabv3, LinkNet, and Feature 

Pyramid Network (FPN), against Otsu  segmentation method. The dataset used 

for CNN training is composed of images from slope experiments conducted in 

laboratory and field crack images from sites of high landslide occurrence. Field 
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images are generally complicated due to uncontrollable image acquisition and 

uneven surfaces when compared to laboratory-generated images. Results 

showed that CNN models significantly outperformed Otsu  segmentation 

method across all evaluation metrics: with higher precision (0.88  0.90), recall 

(0.87  0.92), and F1 score (0.88  0.90), while Otsu  method achieved 0.71, 

0.70, and 0.65, respectively. The segmentation maps generated by each 

technique are demonstrated in Figure 2.16, which highlights the superior crack 

detection capabilities of CNNs, particularly in handling clear test datasets. 

Despite their high performance on the test dataset, deep learning models faced 

challenges when applied to images with complex backgrounds caused by 

shadows. These conditions sometimes led to reduced detection of precision. The 

study suggested that further research and optimisation could enhance the 

performance of DL models in such scenarios. On the downside, the images used 

in the study were mostly captured at oblique angles which distort geometric 

relationships, complicating subsequent crack width measurement. This 

necessitated field calibration for each image to obtain accurate crack dimensions, 

making the process impractical for large datasets. 

 

 

Figure 2.16  

(Pham, Ha and Kim, 2023). 
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 Xu et al. (2024) introduced U-CrackNet, the first unsupervised 

segmentation pipeline for soil-desiccation cracks that fuses simple threshold-

Model (strong knowledge) to automatically generate pseudo-labels for training 

a lightweight U-Net (Lite-UNet). They proposed a Multi-Head Perception 

(MHP) module which consisted of dilated convolutions at several scales, and a 

Multi-Head Perception Attention (MHPA) module to blend low- and high-level 

features alongside the pseudo-masks to reap the benefits from both sides. Upon 

testing with 12 images at 1000 × 1000 pixel resolution, U-CrackNet delivered a 

Jaccard index 24 % higher than a traditional thresholding method and 5 % 

higher than Attention Res-UNet, while reducing quantification errors in surface 

crack ratio, total crack length, and crack segment count by roughly a factor of 

three. Its key strengths lie in the elimination of manual labelling and lightweight 

architectures for real-time deployment on resource-limited devices. Despite 

eliminating manual annotation, U- -

label generation incurs substantial GPU memory and runtime overhead, which 

might contradict the original intention for lightweight deployment. Moreover, 

conditions remained untested as their dataset was captured under fairly uniform 

lighting.  

 

2.8 Summary 

 

Quantifying soil cracks is essential for understanding desiccation 

behaviour, as it enables the identification of influencing factors by correlating 



 

52 

cracking geometrical parameters. Besides understanding the cracking 

mechanism, insights into desiccation behaviour are crucial for several 

applications. In geotechnical engineering, crack quantification helps in 

assessing the stability of slopes, foundations, and embankments, which can be 

impacted by soil shrinkage behaviour. Understanding desiccation behaviour can 

be practical in agriculture as cracks affect water retention capacity and irrigation 

efficiency in soil. In addition, the study of desiccation behaviour is essential in 

environmental engineering, such as the use of landfill liners and clay barriers, 

where cracks can lead to hazardous leakage. Traditional quantification methods, 

such as image processing techniques, have demonstrated limitations in accuracy 

and efficiency, particularly when applied to complex datasets. These challenges 

emphasise the growing need for advanced crack detection systems. Recent 

advancements in deep learning methods have shown significant potential to 

address these limitations, offering enhanced precision and efficiency for soil 

crack quantification and analysis. A comparison of traditional image processing 

and deep learning-based approaches is presented in Table 2.3 to summarise their 

respective strengths and limitations in the context of soil crack detection.  
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Table 2.3: Critical comparison of traditional vs. deep learning approaches 

in soil crack detection. 

Aspect Traditional image 

processing 

Deep learning-based 

approaches 

Feature 

extraction 

Rely on manual feature 

engineering 

Automatically learns 

hierarchical features from data 

Adaptability Limited and required 

fine-tuning for different 

scenarios 

High adaptability across 

varying image conditions if 

given sufficient training data 

Accuracy Highly sensitive to 

image condition (e.g. 

performance drops in 

noisy or complex 

backgrounds) 

High segmentation accuracy 

despite varying conditions 

Computational 

requirements 

Generally lightweight Required more computational 

resources (e.g. GPUs and 

datasets for effective training) 

Data 

dependency 

Limited dependency as 

features are manually 

extracted 

High dependency as 

performance improves with 

larger (but diversified) datasets 

Scalability Limited scalability for 

field deployment due to 

manual feature 

extraction 

Highly scalable once trained 

and can be applied to 

automated large-scale crack 

detection 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

 

This chapter presented the methods and techniques employed to 

investigate the feasibility of image-based techniques for quantifying desiccation 

cracking behaviour of clayey soil. The objectives were to conduct a soil 

desiccation experiment using image-based techniques, to perform image 

analysis with deep learning algorithms, and to quantify cracks using image 

processing techniques. To fulfil the aim and objectives, the methodology and 

workflow were designed as shown in Figure 3.1 and Figure 3.2, and presented 

accordingly.  

 

The first two components of the methodology involved materials and 

sample preparation, and image acquisition tool setup, which describe the 

laboratory experiment setup designed for soil crack measurements. The 

subsequent section on data preparation and preprocessing described the 

preparation of image datasets for algorithm training and evaluation. The 

algorithms used for crack segmentation are outlined in two sections which are 

traditional segmentation methods and deep learning segmentation methods. The 

procedures and setups for fine-tuning the deep learning models are depicted in 

the model training and validation section. The last section presents the 
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evaluation of segmentation results and techniques for quantifying crack 

geometrical parameters.  

  

 

Figure 3.1: Project workflow. 
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Figure 3.2: Subprocess for crack detection and segmentation. 

 

3.2 Materials and Sample Preparation 

 

The expansive soil used for the study was kaolin clay in powder form. 

Its chemical compositions and properties are presented in Table 3.1. The slurry 

state samples used in soil desiccation tests were prepared by mixing the kaolin 

clay powder with distilled water. The slurry was prepared at two water content 

levels which are 100% and 120%. The 100% water content corresponds to 1.5 

times the liquid limit based on previous studies (Tang et al., 2011a; Tang et al., 

2011b). In addition, the 120% water content was introduced to increase 

variability in crack morphology. To ensure a homogenous distribution of 

moisture, the mixture was allowed to sit for 24 hours before being transferred 

to the moulds (Costa, Kodikara and Shannon, 2013). The mould used for the 

desiccation tests was glass Petri dishes with a diameter and height of 120 mm 

and 20 mm. A total of 14 specimens were prepared with final settled thicknesses 
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of 5 mm, 10 mm, and 15 mm. This variation was intended to provide a range of 

crack patterns for the crack image dataset used in model training (Nahlawi and 

Kodikara, 2006; Tang et al., 2008). An example of a 10 mm thick specimen is 

shown in Figure 3.3. 

 

Table 3.1: Kaolin clay chemical compositions and properties. 

Chemical Analysis  

Aluminum (Al2O3) 32.0  38.0 % 

Silica (SiO2) 47.0  53.0 % 

Loss on Ignition @ 1025 °C 11.0  14.0 % 

Soil Properties  

Particle size   

Liquid Limit (LL) 66.0 % 

Plastic Limit (PL) 36.9 % 

Plasticity Index (PI) 29.1 % 

BSCS Classification MH (highly plastic silt) 
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Figure 3.3: 10 mm thick soil specimen. 

 

3.3 Image Acquisition Tool Setup 

 

To evaluate the desiccation cracking behaviour of clayey soil, an image 

acquisition tool was designed for soil crack measurements during desiccation 

tests. The tool setup is illustrated in Figure 3.4, which consists of a humidity 

chamber, oven bulbs (Tungsram 300 °C oven bulb 25W E14), a weighing 

machine (Weighing GF-10K Industrial Balance IP65 / NEMA4, 10.1 kg × 0.01 

g), a humidity and temperature data logger (Multicomp Pro MP780621, ± 0.3 °C 

/ ± 3 % RH accuracy, 0.1 °C / 0.1 % RH resolution), and a camera (SONY DSC-

WX500). A humidity chamber is a thick glass chamber that restricts the 

fluctuation of temperature and humidity inside the chamber by limiting airflow. 

The schematic drawing of the chamber is shown in Figure 3.5. Soil desiccation 

tests were then carried out using the setup to acquire crack images throughout 

the desiccation process. 
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Figure 3.4: Schematic drawing for image acquisition tool setup. 

 

 

Figure 3.5: Schematic drawing for humidity chamber detailing. 
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3.4 Data Preparation and Preprocessing 

 

Image dataset is a crucial component for the successful development 

of deep learning image segmentation model. The dataset used in this project 

comprised 255 crack images obtained from laboratory soil desiccation tests that 

simulated various field conditions on kaolinite soils using the image acquisition 

tool setup in Section 3.3. The original crack images were captured using a 12 

MP digital camera under various photographic conditions, including variations 

in lighting and locations, which introduced diversity to the dataset.  

 

In the first preparation step, the images were cropped into square 

pictures, excluding the mould and circumferential cracks. These square images 

were then resized to a uniform resolution of 960 × 960 pixels, as illustrated in 

Figure 3.6. From this dataset, 20 pieces at a resolution of 960 × 960 pixels were 

selected and designated as the test dataset for evaluating the deep learning 

models.  

 

The remaining cropped images were divided into four quadrants, each 

with a resolution of 480 × 480 pixels, resulting in a total of 940 image patches. 

These patches were then manually inspected and those without cracks were 

discarded, as only images containing cracks are useful for the model training 

process. An example is demonstrated in Figure 3.7. After filtering, the final 

image dataset for deep learning algorithm calibration contained 800 crack 

images, each at a resolution of 480 × 480 pixels. Training and validation datasets 
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were created by randomly splitting the 800 images at an 80:20 ratio, respectively 

(Han et al., 2022).  

 

 

Figure 3.6:  Original captured image and after cropping and resizing. 

 

 

Figure 3.7: Divided image patches with non-crack patches discarded. 

 

 In this study, supervised learning was employed, where datasets are 

associated with their corresponding output labels. For the binary image 



 

62 

segmentation problem, the labelling of dataset typically involves pixel-wise 

classification of image pixels into foreground and background labels, 

represented by values of 1 (true) and 0 (false) respectively.  

 

The images were manually annotated using Image Segmenter in 

MATLAB. Within the Image Segmenter, flood fill and fill holes operations 

were utilised to select and fill the crack regions. Binary masks were then 

generated, with crack pixels labelled as 1 (white) and non-crack pixels labelled 

as 0 (black). An example of a generated binary mask is shown in Figure 3.8.  

 

During the subsequent preparation of datasets, the binary masks were 

converted to ground truth masks by mapping the relevant image pixel values to 

their designated class names, in this case foreground and background 

respectively.  

 

 

Figure 3.8: Original image patch (left) and binary mask generated by 

Image Segmenter (right). 
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 The training of deep convolutional neural networks often encounters 

the challenge of overfitting, where the network memorises the training dataset 

instead of learning to capture the feature representations from the input data 

(Shorten and Khoshgoftaar, 2019). This issue results in inferior performance on 

new and unseen data. A common cause of overfitting is the lack of a sufficiently 

large training dataset. One effective strategy to mitigate this issue is the use of 

data augmentation techniques. Data augmentation enhances the dataset by 

applying image transformation techniques to create artificial samples from the 

original images, thereby promoting dataset diversification (Shorten and 

Khoshgoftaar, 2019).  

 

In this study, data augmentation techniques included hue, saturation, 

and value (HSV) colour jittering and random 2-D transformation such as scaling, 

rotating, reflecting, and translating. Hue is the attribute of colour that 

differentiates between colours; saturation represents the purity of the colour, 

with higher saturation indicating less white light is mixed with the pure colour; 

and value is the brightness of the colour (Solomon and Breckon, 2011). The 

HSV colour jittering operation randomly alters the by 

adjusting saturation, brightness, and contrast, as illustrated in Figure 3.9 (b). 

Additionally, 2-D transformations, such as scaling, rotating, vertical and 

horizontal flipping, and translating, were applied randomly to the jittered 

images. During each training cycle, the model was exposed to images with 

different augmentations applied, which helps to prevent overfitting. Examples 

of data augmentation are demonstrated in Figure 3.9. 
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Figure 3.9: Data augmentation operations. (a) Original image; (b) HSV 

colour jittering; (c) Rotation; (d) Vertical flipping 

 

3.5 Traditional Segmentation Method Method) 

 

The Otsu  algorithm is a widely used segmentation method that 

separates foreground and background pixels in a grey-scale image by 

determining an optimal global threshold based on the maximisation of between-

class variance (Gonzalez and Woods, 2008). The computation steps to obtain 

the optimal threshold value in Otsu  algorithm are as follows: 

 

1. Compute the histogram of pixel intensities for the input image. 

2. Consider all intensity values from 0 to the maximum value in the 

histogram as potential threshold values and iterate through them. Each 

threshold separates the pixels into foreground (intensity values greater 

than the threshold) and background (intensity values less than or equal 

to the threshold) pixels. 

3. Compute the variances for the two classes of pixels at each threshold 

iteration.  

4. Select the optimal threshold value as the one that maximises the 

between-class variance. 
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To obtain Otsu  segmented masks, the RGB crack images were first 

converted to grey-scale images using MATLAB's Next, a 

built- , calculates a global threshold value using Otsu  

algorithm. The binary mask was then generated by applying global thresholding 

on the grey-scale image with the computed 

function.  

 

3.6 Deep Learning Segmentation Models 

 

The deep learning models used for the segmentation and recognition 

of expansive soil desiccation cracks in this study included U-Net, Res-UNet, 

and DeepLabv3+. DeepLabv3+ was implemented in four variations based on 

different backbone networks. The backbone networks utilised were pre-trained 

MobileNetV2, ResNet-18, ResNet-50, and Xception. The architectures for each 

model are explained thoroughly in the following sections.  

  

3.6.1 U-Net 

 

The convolutional network U-Net was created specifically for image 

segmentation tasks and was first presented by Ronneberger, Fischer and Brox 

(2015). Its name derives from its distinctive U-shaped architecture, which 

comprises an encoder, a decoder, and a bridge connecting them. The 

architecture of U-Net used in this study is illustrated in Figure 3.10.  
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The basic building block of U-Net comprises two 3 × 3 convolutional 

layers, with each layer followed by a ReLU activation function (Ronneberger, 

Fischer and Brox, 2015). This neural unit can be repeated multiple times within 

the encoder and decoder, depending on the desired network depth. Typically, 

each repetition of the basic unit contributes to one level of depth, with the 

encoder and decoder generally having the same levels of depth, resulting in a 

symmetrical structure.  

 

 

 

Figure 3.10: U-Net architecture. Height and width of feature map are 

denoted on the left of each level, with number of channels on top 

of each feature map box. 

 

The encoder, on the left side, functions as a contracting path that 

extracts features from the input in a hierarchical manner. At the end of each 

encoding level, a 2 × 2 max pooling layer with a stride of 2 is used to reduce the 

spatial dimensions of the feature maps by half (downsampling). Concurrently, 

the depth of the feature maps is doubled, enabling the network to capture richer 
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representations and encode more information. Following the encoding process, 

a bridge unit is used to connect the encoder to the decoder. The bridge retains 

the encoded information and transfers it to the decoder, which is crucial for 

maintaining information flow across the network.  

 

Conversely, the decoder on the right side serves as an expanding path 

that reconstructs spatial information to produce the final segmentation output. 

Spatial information reconstruction is achieved through upsampling operations 

at each decoding level. During upsampling, a 2 × 2 transposed convolution is 

used to double the spatial dimensions of the feature maps at each level, while 

halving the number of channels. The transposed feature maps are then 

concatenated with low-resolution feature maps from the corresponding encoder 

level. This concatenation allows the decoder to utilise information from both 

paths, facilitating accurate segmentation. The concatenated feature maps are 

then processed through the neural unit. This process is repeated until the final 

decoding level. In this study, zero-padding was applied to avoid cropping of 

feature maps during concatenation to prevent the loss of border pixels during 

convolutions in the encoder. 

 

After the final basic block, a 1 × 1 convolution layer with two output 

channels is used to reduce the number of channels to match the number of 

classes for the binary segmentation task. Finally, a softmax activation function 

converts the output into a probability map, indicating the likelihood of each 

pixel belonging to the output classes. 
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3.6.2 Res-UNet 

 

Res-UNet, also known as Deep Residual U-Net, is a powerful semantic 

segmentation model that incorporates residual connections into the U-Net 

architecture as proposed by Zhang, Liu and Wang (2018). While it retains the 

encoder-bridge-decoder structure of U-Net, it employs different basic building 

blocks. Instead of the plain unit used in U-Net, Res-UNet utilises pre-activated 

residual units. A typical residual unit contains the same layers as in a plain U-

Net neural unit, but adds an identity mapping operation as shown in Figure 3.11. 

This identity mapping helps mitigate the vanishing gradient problem by offering 

a direct route for information flow through the network (He et al., 2016a). 

Specifically, a residual unit processes input x, produces F(x) through weighted 

layers, and generates output of F(x) + x, where the addition of the input x to the 

feature maps F(x) constitutes the identity mapping (often referred to as a 

residual connection).  

 

 

Figure 3.11: A residual unit (He et al., 2016a). 

 

 In addition to identity mappings, Res-UNet employs fully pre-activated 

residual units, which have been shown to enhance model performance (He et al., 

2016b). These units incorporate batch normalisation (BN) and ReLU activation 
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layers before convolution, a setup that pre-activates the convolution. Batch 

normalisation normalises the inputs to each layer, which can improve training 

stability and accelerate convergence (Goodfellow, Bengio and Courville, 2016). 

He et al. (2016b) demonstrated that this arrangement facilitates optimisation and 

results in lower classification errors. Moreover, batch normalisation in pre-

activation also helps to regularise the models. An illustration of a full pre-

activation residual unit is shown in Figure 3.12.  

 

 

Figure 3.12: Full pre-activation residual unit (He et al., 2016b). 

 

 The architecture of Res-UNet used in this study is shown in Figure 3.13. 

Like U-Net, Res-UNet features three neural units in both the encoder and 

decoder connected by a bridge. However, in Res-UNet, downsampling is 

achieved by setting the stride to 2 in the first convolutional layer of each residual 

unit in the encoder, rather than using max-pooling as in U-Net. The processes 

of upsampling, concatenation, and segmentation output generation follow the 

same procedure as in the U-Net architecture. 
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Figure 3.13: Res-UNet architecture. s represents stride. Output size of 

feature maps is annotated as height × width × number of 

channels. 
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3.6.3 DeepLabv3+ 

 

First introduced by Chen et al. (2018), DeepLabv3+ is a cutting-edge 

semantic segmentation model that leverages the combined strengths of spatial 

pyramid pooling and an encoder-decoder structure within deep neural networks. 

DeepLabv3+ encodes rich semantic information through its encoder, which 

includes a backbone network responsible for feature extraction and pooling 

operations, followed by the Atrous Spatial Pyramid Pooling (ASPP) module. 

To produce output, a simple decoder path is subsequently employed for 

reconstructing detailed object boundaries. The architecture of DeepLabv3+ is 

illustrated in Figure 3.14. 

 

The backbone network typically comprises a deep convolutional neural 

network designed to extract high-level features for input into the ASPP module. 

It also transmits low-level features directly to the decoder path, facilitating their 

concatenation with the 

representations. The training and performance of DeepLabv3+ benefit from the 

use of pre-trained backbone networks (Das et al., 2021). In this study, 

DeepLabv3+ models with four pre-trained CNN backbones, i.e., MobileNetV2, 

ResNet-18, ResNet-50, and Xception were evaluated for the task of soil 

desiccation crack segmentation. Descriptions of the backbones are provided in 

the subsections. 
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Figure 3.14: DeepLabv3+ model with an encoder-decoder structure. 

 

The Atrous Spatial Pyramid Pooling (ASPP) module employs a series 

of parallel atrous convolutions and pooling operations to capture image 

information at multiple scales (Chen et al., 2017). In DeepLabv3+, ASPP 

integrates several key components, including atrous convolution, depthwise 

separable convolution, and spatial pyramid pooling (Chen et al., 2018). Atrous 

convolution is a variant of convolution that increases the receptive field without 

significantly raising the computational cost by using a dilated kernel. The kernel 

size is adjusted by dilation rate, which determines the spacing between kernel 
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weights. The concept of atrous convolution is illustrated in Figure 3.15. The 

dilation rate can be interpreted as the stride taken from one weight to another. 

For instance, with the rate of 1, the 3 × 3 kernel functions as a standard 

convolution. When the rate is increased to 2, the kernel weights are spaced apart, 

forming a 5 × 5 kernel with gaps, enabling the convolution to encode denser 

contextual information without extra computational effort.  

 

 

Figure 3.15: Atrous convolution at various atrous rates (Das et al., 2021). 

 

 Chen et al. (2018) advanced atrous convolution by combining it with 

depthwise separable convolution to create atrous separable convolution. 

Depthwise separable convolution significantly reduces the computational cost 

of convolutional operations without degrading the model performance. It 

achieves this by decomposing the standard convolution into two components: 

depthwise convolution and pointwise convolution. Among them, depthwise 

convolution processes each input channel separately by applying individual 

filters, followed by pointwise convolution with 1 × 1 kernel to combine the 

outputs from the depthwise convolution. The number of output channels is 

adjusted by increasing the channels in pointwise convolution. Atrous separable 
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convolution incorporates atrous convolution kernels within the depthwise 

separable convolution framework, as depicted in Figure 3.16. 

 

 

Figure 3.16: Demonstration of atrous separable convolution with a dilation 

rate of 2 (Chen et al., 2018). 

 

Spatial Pyramid Pooling (SPP) involves dividing an image into regions 

at various scales, performing pooling operations on each region, and 

concatenating the results into a fixed-length output, irrespective of the input 

image size (Grauman and Darrell, 2005; Lazebnik, Schmid and Ponce, 2006; 

He et al., 2015b). ASPP in DeepLabv3+ adopts the SPP concept by using atrous 

convolutions with different dilation rates, thereby enabling the network to 

capture multi-scale and rich contextual information from larger receptive fields.  

 

In this study, the ASPP module comprised one 1 × 1 convolution, along 

with three 3 × 3 parallel convolutions with atrous rates of 6, 12, and 18 with a 

downsampling factor of 16. All convolutions featured 256 channels, followed 

by a BN layer and a ReLU layer. The image pooling branch as described by 

Chen et al. (2018) was omitted because the features extracted by the backbone 

networks already encapsulate image-level information. Although atrous 

separable convolutions were employed in ASPP, DeepLabv3+ with ResNet 
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backbones utilised standard atrous convolution without depthwise separation. 

representations without compromising efficiency. The results from the four 

parallel branches were concatenated to produce the ASPP output with 1024 

filters. A subsequent 1 × 1 convolution reduced the number of filters to 256, 

followed by batch normalisation and ReLU activation to generate high-level 

feature output.  

 

 In the decoder path, the spatial dimensions of the encoded feature maps 

were initially upsampled by a factor of 4, followed by concatenation with low-

level features from the backbone network, which had been passed through a 1 

× 1 convolution for dimensionality reduction. The concatenated features were 

then refined through two 3 × 3 convolutional operations and a 1 × 1 convolution 

for final channel reduction. Eventually, the spatial dimensions were fully 

reconstructed through upsampling with a factor of 4, then finally a softmax 

activation was used to produce the final segmentation map.  

 

3.6.3.1 MobileNetV2 

 

MobileNetV2 is a computationally efficient, lightweight neural 

network that utilises depthwise separable convolutions. Its primary innovation 

lies in the integration of inverted residual blocks with a linear bottleneck 

structure as its fundamental building blocks (Sandler et al., 2018). A typical 

residual unit features a skip connection at both the input and output of the block, 

with a high number of channels at the skip connection compared to the 
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convolutional layers in between. Specifically, the number of channels is wide at 

the beginning of the block, narrow in the middle, and widens again at the end. 

In contrast, inverted residual blocks start with narrow input channels and end 

with narrow output channels. This configuration significantly reduces the 

number of parameters in the model, thereby enhancing the computational 

efficiency. 

 

 However, the reduced number of channels resulting from the skip 

connections can potentially impair the network performance. To address this 

issue, Sandler et al. (2018) introduced the concept of the linear bottleneck which 

employs a linear output from the final convolution in the building blocks. The 

structure of the basic building block is detailed in Table 3.2 and illustrated in 

Figure 3.17. Each block processes an input of size height × width × channel (h 

× w × k). Initially, a 1 × 1 convolution with a number of channels determined 

by the expansion factor (t) is applied to expand the channel dimensions to t × k. 

This is followed by a 3 × 3 depthwise separable convolution with a stride of s 

for feature extraction. ReLU6 is used to introduce bounded non-linearity with 

an upper limit of 6. This capping improves training stability for low-precision 

arithmetic, which is often used in resource-constrained devices (Sandler et al., 

2018). Eventually, a 1 × 1 convolution with  output channels is applied to 

generate the output, which serves as input to the subsequent block. 

When the depthwise convolution has a stride of one, the input is combined with 

the output of the block through a skip connection.  
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Table 3.2: Linear bottleneck residual block structure (Sandler et al., 2018). 

Input Operator Output 

h × w × k 1 x 1 conv2d, BN, ReLU6 h × w × (tk) 

h × w × tk 3 x 3 Depthwise s=s, BN, ReLU6 h/s × w/s × (tk) 

h/s × w/s × tk 1 x 1 conv2d, BN  

  

 

 

Figure 3.17: MobileNetV2 basic building block (Sandler et al., 2018).  

 

 The architecture of MobileNetV2 backbone for DeepLabv3+ is 

outlined in Table 3.3. As the encoder of DeepLabv3+, MobileNetV2 processes 

images with spatial resolution that adheres to a downsampling factor of 16 

during feature extraction. The input image was initially processed with a 

standard 3 × 3 convolution with a stride of 2 to produce a reduced feature map 

with 32 filters. This is followed by a series of building blocks, referred to as 

bottleneck operators in the table. The table details the structure in sequence, 

where n indicates that the same operator with the same number of output 
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channels is repeated by n times. The building block configuration is determined 

based on the number of strides, as illustrated in Figure 3.17. Each sequence has 

a stride of s for the first block and a stride of 1 for all the subsequent blocks in 

the sequence. For example, at the input size of 2402 × 16, the first bottleneck 

block follows a stride 2 configuration (without skip connection), and the second 

block is a stride 1 configuration with input from the first block. Both blocks 

have the same output channels of 24. Conversely, in sequences with dimensions 

302 × 64 and 302 × 96, although the first bottleneck block has a stride of 1, these 

blocks do not include skip connections. As shown in Table 3.3, the 

MobileNetV2 backbone produces a 302 × 320 output tensor, which serves as the 

input for the ASPP module.  

 

Table 3.3: MobileNetV2 architecture as DeepLabv3+ backbone.  

Input Operator Expansion 

factor, t 

Number of 

output 

channels, c 

Module 

repetitions, 

n 

Stride, 

s 

4802 × 3 Conv2d - 32 1 2 

2402 × 32 bottleneck 1 16 1 1 

2402 × 16 bottleneck 6 24 2 2 

1202 × 24 bottleneck 6 32 3 2 

602 × 32 bottleneck 6 64 4 2 

302 × 64 bottleneck 6 96 3 1 

302 × 96 bottleneck 6 160 3 1 

302 × 160 bottleneck 6 320 1 1 
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3.6.3.2 ResNet-18 and ResNet-50 

 

ResNet, or Residual Network, is a groundbreaking neural network 

architecture that enabled the training of extremely deep networks without facing 

the vanishing gradient problem (He et al., 2016a). This architecture introduced 

residual connections, a form of skip connection that bypasses certain layers and 

performs identity mapping, as exemplified in the Res-UNet architecture. 

ResNet-18 and ResNet-50 are variants of the ResNet architecture, with the 

numbers 18 and 50 representing the respective number of layers. Both ResNet-

18 and ResNet-50 have 1 fully connected layer, with ResNet-18 having 17 

convolutional layers and ResNet-50 having 49 convolutional layers. When used 

as backbones for DeepLabv3+, the fully connected layer is omitted, and the last 

convolutional layer is connected to the ASPP module.  

 

The architectures of the residual networks employed are detailed in 

Table 3.4. According to the table, the building blocks of ResNet-18 consist of 

two 3 × 3 convolutions with specified channels, each followed by a BN and 

ReLU activation, with the number of blocks stacked indicated. The residual 

connections are implemented as illustrated in Figure 3.11. The ReLU activation 

is applied after the identity mapping and addition operation in the last 

convolution. ResNet-50 adheres to the same underlying concept but features a 

different building block and architecture configuration, as listed in the table. 

Notably, the first convolutional layers in conv3_x and conv4_x stages use a 

stride of two to achieve downsampling.  
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Table 3.4: Architecture of ResNet backbones.  

Layer Name Output size 18-layer 50-layer 

conv1 240×240 7×7, 64, stride 2 

 120×120 3×3 max pool, stride 2 

conv2_x 120×120 
 

 

conv3_x 60×60 
 

 

conv4_x 30×30 
 

 

conv5_x 30×30 
 

 

 

3.6.3.3 Xception 

 

Extreme Inception, or Xception, is a CNN architecture that enhances 

the Inception model by substituting standard convolutions with depthwise 

separable convolutions (Chollet, 2017). While the Inception model is known for 

its effective use of separate convolutions to capture cross-channel and spatial 

correlations independently before concatenating the results, Chollet (2017) 

enhanced this approach by employing depthwise separable convolution. This 

modification not only aligns with the extreme version of the Inception V3 but 

is also significantly easier to model.  
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The Xception backbone architecture used in this study is illustrated in 

Figure 3.18. The backbone consists of 36 convolutional layers organised into 

14 units, with the first and last units lacking residual connections. Each 

comprises a 3 × 3 depthwise convolution operation, 

followed by a 1 × 1 pointwise convolution operation, with a channel expansion 

factor of 1. Batch normalisation is applied after each convolutional layer, as 

depicted in the figure. The input image undergoes initial processing through the 

entry flow, which uses a downsampling factor of 16. This is followed by eight 

middle modules for high-level feature extraction and concludes with the end 

flow, which provides the input to the ASPP module. 

 

 

Figure 3.18: Architecture of Xception backbone. s and c stand for stride 

and number of output channels.  
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3.7 Model Training and Validation 

 

Training deep neural networks involves a sequence of interconnected 

processes aimed at optimising the generalisation ability. The training 

process involved the repetition of weights and biases tuning in the network by 

passing the training images to it. This section outlines the methodology 

employed to train the deep learning algorithms. The MATLAB Deep Learning 

Toolbox was used to implement all the deep learning models. Training was 

conducted on an Nvidia RTX 3060 GPU with 12 GB of memory. 

 

3.7.1 Weights and Biases 

 

In a convolutional neural network (CNN), weights and biases are the 

fundamental parameters that the network learns during training. Weights are the 

parameters associated with the connections between neurons 

(Goodfellow, Bengio and Courville, 2016). In the context of CNNs, weights are 

the filters (also known as kernels) that are applied to the input data. Each filter 

moves across the input image, performing a convolution operation to produce 

feature maps. These feature maps emphasise different aspects of the input, such 

as edges, textures, and other patterns. The values of the weights determine the 

strength and orientation of these features, essentially acting as pattern detectors 

within the image. 

 

Biases are additional parameters in the neural network that allow the 

model to have greater flexibility and to fit the training data more accurately 
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(Goodfellow, Bengio and Courville, 2016). Each neuron is associated with a 

bias value, which is added to the weighted sum of its inputs prior to the ensuing 

activation function. The purpose of the bias is to shift the activation function, 

which helps the model to better capture the relationship between input and 

output. 

 

In a CNN, the convolution operation involves sliding the filter (weights) 

across the input image and calculating the dot product between the filter and its 

covered sections of the input. This process is repeated across the entire image, 

generating a feature map that represents the specific features detected by the 

current filter. The bias is then added to the result of the convolution before 

passing it through an activation function, such as ReLU, for nonlinear output. 

 

3.7.2 Initialisation 

 

The training of neural networks aims to optimise the weights and biases 

in its layers through iterative processes that converge to an optimal solution. 

These parameters critically influence generalise to new 

and unseen data. Proper selection of initial values for weights and biases before 

optimisation is crucial, as it enhances convergence speed and stability in 

network performance. This practice is known as parameter initialisation 

(Goodfellow, Bengio and Courville, 2016).  

 

 For the trainable layers in Res-UNet and DeepLabv3+ architectures, 

Glorot (also known as Xavier) initialiser was employed for weight initialisation. 
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The Glorot initialiser initialises weights from a uniform distribution with a range 

where the variance of the weights is inversely proportional to the sum of the 

number of input and output units (Glorot and Bengio, 2010). Although 

originally designed for a linear activation function, the Glorot initialiser is 

effective with ReLU (non-linear activation function) when batch normalisation 

is applied (Goodfellow, Bengio and Courville, 2016). Batch normalisation helps 

to mitigate issues such as exploding or vanishing gradients, thereby reducing 

the impact of the initialisation strategy. Since U-Net architecture lacks a batch 

normalisation layer, the He initialiser was used instead (He et al., 2015a). The 

He initialiser adjusts the initial weights based on the number of inputs, which is 

suitable for ReLU activation.  

 

In this study, transfer learning strategy was employed exclusively for 

DeepLabv3+ models, as MATLAB provides pre-trained network packages for 

the backbones used in constructing these models. Transfer learning involves 

using pre-trained weights, typically trained on large datasets, to initialise the 

current network. This approach reduces training effort and improves 

performance by leveraging knowledge gained from a larger dataset (Han et al., 

2022). The trainable weights in MobileNetV2, ResNet-18, ResNet-50, and 

Xception backbones for DeepLabv3+ were initialised with pre-trained weights 

trained on over a million images containing 1000 object categories from 

ImageNet. In contrast, biases were initialised to zero to avoid introducing any 

bias towards specific output.  
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3.7.3 Forward Propagation 

 

As training begins, the input data is propagated through the network in 

a feedforward manner. Various operations are applied to the data as it traverses 

through convolutional, activation functions, batch normalisation layers, 

concatenation operations, pooling layers, and fully connected layers. At each 

stage, features and representations are extracted from the input data, capturing 

different levels of detail and spatial information. Ultimately, the network learns 

to assemble these patterns, enabling it to make predictions based on the learned 

representation.  

 

3.7.4 Loss Function 

 

Loss function is a critical component in the training process, as it 

measures the discrepancy between the predictions and ground truth 

labels during forward passes (Goodfellow, Bengio and Courville, 2016). Deep 

learning algorithms aim to optimise the model by minimising the loss function. 

training to converge on optimal values that minimise loss. By minimising the 

loss function, the network improves its ability to make predictions with minimal 

error, thereby enhancing performance and accuracy.  

 

 In this study, the focal loss function was used to train all the CNN 

algorithms. The selection of this loss function addresses the issue of class 

imbalance, which is prevalent in crack detection tasks. In crack image datasets, 
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background pixels typically outnumber crack pixels, resulting in a model that is 

biased towards the majority class during training (Fu et al., 2022). The focal 

loss function modifies the traditional cross-entropy loss function in order to 

mitigate class imbalance. It introduces a modulating factor that increases the 

emphasis on difficult-to-classify examples, thereby enabling the model to focus 

more on learning challenging instances (Lin et al., 2018). The focal loss function 

is defined in Equation (1). 

 

  (1) 

 

where pt is the predicted probability, FL(pt) is the focal loss for a given pt, t is 

the balancing weight ranging from 0 to 1, and  is the focusing parameter. A 

typical value for  is 2, as it provides an effective focusing factor; however, 

values in the range of 0 to 5 can be adaptable based on experimentation (Lin et 

al., 2018). In this study, t and  were set to 0.8 and 2, respectively. This 

configuration allows t to give more weight to the minority class when its value 

is greater than 0.5, and  to enhance the down-weighting of majority class 

samples.  

 

3.7.5 Backpropagation 

 

The process of calculating the gradient of the loss function in relation 

known as backpropagation (Goodfellow, Bengio 

and Courville, 2016). During backpropagation, the chain rule of calculus is 

applied to propagate errors backwards through the network. Subsequently, an 
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optimiser uses these gradients to update the parameters, facilitating the 

optimisation of the algorithm.

3.7.6 Parameter Update

Due to the inherently sparse gradient in semantic segmentation task, 

the loss function often exhibits non-convex behaviour. In non-convex functions, 

the presence of obscure local minima and plateaus can challenge the 

convergence of neural networks (Hadinata et al., 2021). To address these 

challenges, Kingma and Ba (2015) proposed the Adam (adaptive moment

estimation) optimiser. Adam optimiser works by computing adaptive learning 

rates for each parameter separately, enabling the network to effectively navigate 

through these obstacles. The formulas for parameter updates using Adam 

optimiser are outlined below in their execution order.

(2)

(3)

(4)

(5)

(6)

(7)
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where gt denotes the gradient vector at time step t, computed as the partial 

derivative of the loss function with respect to parameter t. mt and vt represent 

the updates for first and second moment estimates, 1 (exponential decay 

rate for mt) and 2 (exponential decay rate for vt) typically set to 0.9 and 0.999, 

respectively. The updates for moment estimates are initially biased and must be 

corrected, resulting in bias-corrected moment estimates denoted by  and . 

Finally, the parameters are updated as t+1 is the step size (with a 

suggested value of 0.001), and  is a small constant (set to 10-8) to prevent 

division by zero (Kingma and Ba, 2015; Goodfellow, Bengio and Courville, 

2016).  

 

An initial learning rate of 0.0001 was used with the Adam optimiser, 

along with a decay factor of 0.1 that was applied at every 15 epochs to reduce 

the learning rate throughout the training process. Additionally, L2 regularisation 

was employed to mitigate overfitting. L2 regularisation (or ridge regression) 

reduces overfitting by adding a penalty to the coefficients (weights) in the loss 

function (Murphy, 2012). The L2 regularisation can be written as: 

 

  (8) 

  (9) 

 

where  is the regularisation factor controlling the strength of the regularisation, 

and wi represents the coefficient. This regularisation term is then added to the 

original loss function, yielding the regularised loss function shown in Equation 
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(9). The regularisation factor was set to 0.0005 based on parameter 

experimentation. 

 

3.7.7 Iteration 

 

Considering computational resources, the image batch size was set to 

8 per iteration, and all models were trained for a total of 50 epochs. An epoch 

equals a complete pass across the entire training dataset. To further mitigate 

overfitting, the training data was shuffled at the beginning of each epoch. 

Validation was conducted at every 40 iterations using validation dataset to 

facilitate hyperparameter tuning and performance monitoring.  

 

3.8 Model Evaluation 

 

This study employed various standards to assess the performance of 

deep learning models in the context of expansive soil desiccation crack 

segmentation. The evaluation encompasses several categories, including 

computational efforts, metric evaluation for a specific CNN, and geometrical 

parameters that describe crack networks.  

 

3.8.1 Computational Performance 

 

The evaluation of computational performance was conducted to assess 

the efficiency of the segmentation models. The measured aspects included 

training time, inference time, frames per second (FPS), and the number of 
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parameters. Training time refers to the total duration required to train the deep 

learning models using the training dataset; a longer training time indicates 

greater usage of computational resources. Inference time denotes the duration 

each model takes to process an image and produce a prediction or segmented 

mask, calculated by dividing the total inference time by the number of images 

processed. FPS measures how many frames per second the model is able to 

process during inference, with higher FPS indicating faster processing speed. 

The number of parameters represents the total amount of learnable weights and 

biases in a model, reflecting its complexity; a higher parameter count typically 

requires more computational resources. For real-time applications, lower 

inference times and higher FPS are preferred, as they signify faster processing 

speed.  

 

3.8.2 Evaluation Metrics 

 

All segmentation methods and models were evaluated using standard 

deep learning model evaluation metrics commonly employed in image 

segmentation tasks, such as precision, recall, F1 score, and IoU. The pixel-wise 

prediction results from the models were categorised into four groups: true 

positive (TP), which indicates crack pixels correctly identified; false positive 

(FP), where background pixels were incorrectly predicted as crack; true 

negative (TN) for correct background predictions; and false negative (FN), 

where crack pixels were incorrectly classified. Using these categorised 

prediction results, the metrics were computed according to the following 

equations: 
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  (10) 

  (11) 

  (12) 

  (13) 

 

 Precision and recall both measure the accuracy of positive predictions. 

Precision is defined as the proportion of correct positive predictions out of all 

positive predictions made, while recall measures the ratio of correct positive 

predictions to all actual positives (Pham, Ha and Kim, 2023). F1 score provides 

a single numerical value that summarises the 

computing the harmonic mean of precision and recall. Lastly, IoU quantifies the 

overlapping regions between predicted and ground truth masks that assess the 

algorithm  localise the object. 

 

In the context of image segmentation, IoU is often regarded as the most 

significant metric since it directly reflects how well the generated segmentation 

false crack detection while recall demonstrates how sensitive the model is in 

ensuring all actual cracks are captured. F1 score balances precision and recall 

into a single measure. Altogether, these metrics provided a comprehensive 

evaluation of crack segmentation accuracy.   
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3.8.3 Geometrical Parameters  

 

Geometrical parameters are crucial for quantitative analysis of 

desiccation cracks, as they support the study of cracking mechanisms, 

propagation, and engineering properties (Xu et al., 2022b). In this study, the 

accuracy of segmentation models was assessed using key parameters in crack 

network analysis. The geometric features were quantified from the 

segmentation masks using image processing techniques implemented through 

. The parameters considered, along with 

their algorithmic execution are described below:  

 

1) Surface crack ratio, RSC: This parameter measures the ratio of the total 

Algorithm Execution: The total number of crack pixels (white pixels 

representing cracks) along with the total number of pixels in the soil 

image were counted. RSC was computed by dividing the number of crack 

pixels by the total number of pixels. 

2) Average crack width, wavg: This parameter represents the mean width of 

cracks measured around the medial axis (skeleton) of the crack network. 

Algorithm Execution: (a) The Euclidean distance image was obtained by 

computing the Euclidean distance transform of the binary image. (b) The 

distance image was multiplied by the skeletonised binary image and two 

to obtain an image where pixel values represent crack diameters. (c) 

Crack widths were extracted by identifying non-zero pixels. (d) Mean 

crack width was computed by taking the mean value of the crack widths. 
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3) Maximum crack width, wmax: This parameter denotes the width of the 

widest crack measured around the medial axis of cracks. Algorithm 

Execution: This process is similar to that for the average crack width, 

but instead of calculating the mean, the maximum value of crack widths 

was determined.  

4) Number of intersections, Nint: This parameter counts the number of 

points where cracks intersect each other. Algorithm Execution: (a) The 

skeletonised image was computed, and mini-branches were pruned with 

threshold specified as wmax. (b) The skeleton pixels were iterated by 

tracking 8-neighbours in a clockwise direction. Each black-to-white 

pixel change was counted as one transition (Liu et al., 2013). (c) 

Intersection points were recorded at the pixel point where the number of 

transitions is equal to 3.  

5) Number of nodes, Nn: This parameter is the sum of the points where 

cracks intersect (intersections) and where cracks terminate (end nodes). 

Algorithm Execution: (a) Generate a binary image with only end notes 

using MATLAB built-in morphological operation to identify endpoints 

on the skeleton. (b) Count the number of end nodes and calculate Nn by 

adding the end nodes to Nint. 

6) Number of segments, Nseg: This parameter counts the distinct crack 

segments, each running from one node to meet another. The number of 

crack segments is the count of distinct crack segments where each 

segment runs from one node to meet another one. Algorithm Execution: 

(a) MATLAB

different labels to each connected component (segment) in the 
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skeletonised image. (b) Nseg was calculated by taking the absolute value 

of the subtraction of Nn from the total number of connected components.  

7) Total crack length, Lsum: This parameter represents the cumulative 

length of all individual cracks detected. Algorithm Execution: Compute 

Lsum by counting all non-zero elements in the skeletonised binary image.  

8) Average crack length, Lavg: This parameter denotes the mean length of 

all individual cracks detected. Algorithm Execution: Compute Lavg by 

dividing the Lsum by Nseg. 

 

After quantifying the geometrical features of the crack network from the 

binary masks, the error rates for each parameter between the ground truth and 

model predictions were computed by Equation (14).  

 

  (14) 

 

3.8.4 Recognition Accuracy and Stability 

 

With different methods excelling in different evaluation standards, the 

mean and standard deviation are utilised as indicators of accuracy and stability 

to determine the best performer across all methods. The formulas for each are 

expressed as: 

 

  (15) 
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  (16) 

 

where  represents the mean value, calculated as the sum of terms, x, divided by 

number of terms, n, and  denotes the standard deviation. The mean and 

standard deviation for each method were computed across all evaluation metrics. 

For geometrical parameters, only RSC, wavg, wmax, Nseg, and Lsum are included in 

the mean and standard deviation computations. A higher mean in evaluation 

metrics indicates better performance, while a lower mean value in geometrical 

parameters indicates better performance. A lower standard deviation value 

signifies a more stable performance across all standards. 

 

3.9 Summary 

 

In summary, to achieve the stated objectives, laboratory tests were 

designed and conducted. Several state-of-the-art deep learning semantic 

segmentation models were employed for soil crack segmentation. The 

segmentation accuracy of each model was evaluated using standard metrics. 

Geometrical parameters that described the crack network were computed 

through quantification using image processing techniques.  
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

 

In this chapter, a detailed analysis of various crack detection and 

segmentation methods applied to soil crack images is presented. The primary 

focus is to evaluate the performance of these methods in terms of computational 

efficiency, segmentation accuracy, and error rates in the quantification of crack 

geometrical characteristics. All the metrics, standards, and parameters used for 

the evaluation are defined and explained in Section 3.8. 

 

Section 4.2 presents the image-based soil desiccation tests conducted 

with the developed image acquisition tool setup for soil crack measurements. 

Section 4.3 consists of computational efficiency analysis for each crack 

segmentation method. Section 4.4 examines the overall detection and 

segmentation performance on the test dataset for each model using evaluation 

metrics. Section 4.5 presents an in-depth analysis of the  accuracy in 

quantifying geometrical parameters of crack across the test dataset. Section 4.6 

delves into the stability of the recognition and quantification performance by 

performance across all standards. Section 4.7 

investigates the case-wise segmentation performance of each model under 

various photographic conditions, showcasing the robustness and adaptability of 
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the methods. This section provides a comprehension of the strengths and 

limitations of each method in handling diverse real-world conditions. 

 

4.2 Image-based Soil Desiccation Test 

 

To obtain a diverse crack image dataset for the training of deep learning 

models, the prepared specimens were subjected to soil desiccation tests under 

various experimental conditions. A detailed breakdown of the experiment 

conditions simulated is provided in Table 4.1. For example, row 2 of the table 

indicates that two specimens, each 5 mm thick, were subjected to desiccation 

test consisting of three W-D cycles. The test conditions included a temperature 

of 45 ± 2 °C and relative humidity (RH) of 60 ± 5 %.  

 

Table 4.1: Test conditions for different specimens. 

Number of 

specimens  

(nos.) 

Final settled 

thickness  

(mm) 

Test conditions 

Temperature 

(± 2 °C) 

Humidity  

(± 5 %) 

W-D cycle, 

D (nos) 

1 5 45 40 4 

2 5 45 60 3 

1 10 45 40 4 

2 10 45 60 3 

2 10 55 40 3 

2 10 105 0 3 

2 10 105 0 4 

2 15 45 60 3 
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The experiment was conducted with the setup shown in Figure 4.1. The 

setup provided two different experimental conditions, i.e. 45 ± 2 °C and 55 ± 

2 °C. Each setup included a humidity chamber, two or four oven bulbs, a 

humidity and temperature data logger, and a camera. The humidity chamber is 

a thick glass enclosure with restricted airflow to minimise fluctuations in 

temperature and humidity inside the chamber. The oven bulbs regulated the 

testing temperatures, with two bulbs maintaining a temperature of 45 ± 2 °C  

while four bulbs achieved 55 ± 2 °C. The camera captured images of the soil 

surface crack networks throughout the test, providing the dataset for CNN 

algorithm training. The humidity and temperature data logger monitored the 

testing conditions throughout the process. The variations in relative humidity 

were controlled by placing the chamber in environments with different air 

circulation patterns. In rooms with fan airflow or open-air conditions, the 

relative humidity (RH) in the chamber remained 40 ± 5 %, whereas it was 60 ± 

5 % in an air-conditioned room or an environment with enclosed air circulation. 

For the highest testing temperature of a constant 105 °C, oven drying procedures 

were used.  

 

 

Figure 4.1: Experiment set-up for soil desiccation tests.  
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 The simulation of desiccating temperatures of 45 ± 2 °C to 55 ± °C was 

On 

top of this is the fact that the highest temperature ever recorded in Malaysia was 

40.1 °C in 1998 (Tan et al., 2021). They also found that Malaysia has 

experienced a significant warming trend, particularly across Peninsular 

Malaysia, indicating an upward shift in average temperatures. Driven by global 

warming, recent reports highlighted that heatwaves had led to higher peak 

temperatures recorded across the region, sometimes pushing temperatures 

beyond 40 °C (Koons, 2024). This evidence justified the use of 45 °C to 

simulate real soil desiccation conditions in Malaysia. 

 

 The 55 ± °C desiccating temperature is chosen to simulate even more 

extreme drying conditions that may become more frequent as climate change 

progresses. Global warming, coupled with regional phenomena like El Niño that 

bring extreme heatwaves across Southeast Asia, has caused temperatures to 

reach hazardous levels (The Star, 2023; Benjamin, 2024). As part of the region, 

Malaysia has experienced these extreme heat conditions, which are predicted to 

become more frequent due to the accelerating warming trend. The increasing 

intensity of heat patterns is likely to impact soil desiccation and cracking in 

Malaysia. Thus, the simulation of a higher desiccation temperature of 55 ± °C 

allows for a more comprehensive understanding of soil cracking behaviour 

under projected future conditions. 
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 In natural environmental cyclic weathering conditions, expansive soils 

are subjected to repeated wetting and drying due to precipitation and 

evaporation, respectively (Al-Jeznawi, Sanchez and Al-Taie, 2020). To 

simulate these effects on expansive soil desiccation cracks, wetting-drying (W-

D) cycles were introduced to the specimens, incorporating repeated wetting and 

drying phases throughout the experiment. The preparation of the slurry state 

specimen was considered the first wetting phase, while the subsequent 

desiccation process constituted the first drying phase. After each drying phase, 

the moisture lost during desiccation, measured as the specimen mass loss, was 

restored by adding an equivalent mass of distilled water (Tang et al., 2011a). 

Rehydrated specimens were allowed to sit for 24 hours during wetting paths. 

The drying phases were then conducted using the rehydrated specimens. 

 

4.3 Computational Efficiency Analysis 

 

Computational efficiency is a critical aspect in evaluating 

segmentation methods, as it provides insights into selecting the optimal method 

based on available resources and application constraints (Alom et al., 2019). 

method was analysed in terms of the number of parameters, training 

time, inference time, and frames per second (FPS). The first two parameters 

were not applicable to A test dataset containing 

20 images was used to measure the inference time and FPS for each method. 

The results are presented in Table 4.2. 
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Table 4.2: Computational performance for each segmentation method. 

Method Number of 

parameters 

(×106) 

Training 

time (hr) 

Total 

inference 

time (s) 

Inference 

time per 

image (s) 

Frames 

per 

second 

(FPS) 

 - - 0.33 0.017 60.75 

U-Net 7.69 1.67 4.25 0.212 4.71 

Res-UNet 8.91 8.34 7.54 0.377 2.65 

DeepLabv3+ 

(MobileNetV2) 

6.78 0.88 2.99 0.150 6.68 

DeepLabv3+ 

(ResNet-18) 

20.61 0.75 2.63 0.132 7.60 

DeepLabv3+ 

(ResNet-50) 

43.98 1.28 4.25 0.213 4.70 

DeepLabv3+ 

(Xception) 

27.64 1.26 4.14 0.207 4.83 

 

 In terms of training resources, DeepLabv3+ with ResNet-50 had the 

highest number of parameters, exceeding the lowest count from DeepLabv3+ 

with MobileNetV2 by a factor of 6.5. On the other hand, Res-UNet and 

DeepLabv3+ with ResNet-18 exhibited the longest and shortest training times, 

at 8.34 hours and 0.75 hours respectively. The number of parameters in a model 

generally has a positive correlation to make accurate 

predictions but comes at the expense of increased memory consumption and 

operational cost (Alom et al., 2019). The high parameter count in DeepLabv3+ 
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with ResNet-50 was primarily due to the numerous high-dimensional 

convolutional layers and skip connections in its backbone. In contrast, the use 

of depthwise separable convolution in DeepLabv3+ with MobileNetV2 

backbone resulted in fewer parameters due to the reduced multiplication 

operations.  

 

More parameters generally require more memory to store and may 

increase computational complexity during training, which potentially leads to 

longer training time. However, as shown in Table 4.2, DeepLabv3+ models 

(even those with a higher parameter count) all exhibited shorter training times 

compared to U-Net and Res-UNet. This is mainly due to the use of pre-trained 

backbones, which provided effective weight initialisation and training 

regularisation, resulting in faster convergence and improved generalisation 

(Gayakwad et al., 2021). Notably, Res-UNet took significantly longer to train 

compared to U-Net, despite sharing similar encoder-decoder depth. This 

discrepancy is likely attributed to the architectural differences that result in 

higher training complexity. In Res-UNet, residual connections and the 1 × 1 

convolutions used at the residual branches, while alleviating vanishing gradient 

problems, also contribute to additional computational requirements. Each 

building block in Res-UNet, equipped with these features, necessitates greater 

forward pass and backward gradient computation efforts. Furthermore, unlike 

U-Net, Res-UNet employs batch normalisation layers to stabilise activation for 

each convolutional layer. Although this improves training stability and 

facilitates regularisation, BN layers impose additional memory overhead and 

can be computationally costly (Civitelli et al., 2023).  
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For inference time analysis, the total inference time to process 20 test 

images was recorded, and the inference time per image was calculated by 

dividing the total time by 20. It was unsurprising that had the 

shortest inference time, with a substantial discrepancy compared to the deep 

learning methods. This is because deep learning models involve complex neural 

network architectures with multiple operations, such as convolutions and skip 

connections, which require more computational effort for inference compared 

to the relatively Res-UNet 

exhibited the longest inference time and the lowest FPS among all methods, 

which correlates with its high computational complexity during training, 

extending to the inference process.  

 

A closer examination of Table 4.1 reveals a consistent trend among the 

Deeplabv3+ models: lighter backbones (MobileNetV2 and ResNet-18) 

achieved faster inference times and higher FPS, while deeper backbones 

(ResNet-50 and Xception) demonstrate moderate inference times and lower 

FPS. This suggests that among DeepLabv3+ models, deeper backbone 

architectures tend to perform worse, likely due to their increased computational 

complexity. Conversely, despite its lighter architecture, U-Net exhibited 

inference time and FPS values comparable to those of the DeepLabv3+ models 

with deeper backbones. These results suggest that U-Net did not benefit from 

its architecture and model size in terms of inference performance. Overall, 

DeepLabv3+ with lighter backbones, including MobileNetV2 and ResNet-18 
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achieved the best inference performance among all the deep learning models, 

with ResNet-18 obtaining the fastest inference time and highest FPS.  

 

4.4 Crack Detection and Segmentation Performance 

 

In this section, the crack detection performance for each segmentation 

method was analysed using evaluation criteria such as precision, recall, F1 

Score, and IoU. The reported metrics are the average values computed over 20 

images from the test dataset, thus representing the overall performance of each 

model in percentages. The IoU scores pertain specifically to foreground pixels 

(cracks) and do not include the mean IoU of both classes. This approach was 

chosen because, in binary segmentation tasks such as crack segmentations, the 

background pixels often dominate, leading to excessively high classification 

accuracy due to their abundance. Therefore, the mean IoU may not accurately 

reflect the actual segmentation performance in this context.  

 

 Table 4.3 summarises the performance of the different segmentation 

methods on these evaluation metrics. The comparison includes the traditional 

-

Net, Res-UNet, DeepLabv3+ with various backbone networks). The results 

indicate that the traditional thresholding method was significantly outperformed 

by deep learning approaches in all metrics except recall, where it exhibited only 

minor drawbacks. Res-UNet achieved the highest precision (91.75 %) while 

DeepLabv3+ with ResNet-50 excelled in the other metrics, with a recall of 

92.30 %, F1 score of 91.47 %, and IoU of 84.29 %. These results suggested that 
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Res-UNet had the lowest false positive rate, making fewer mistakes when 

predicting pixels as cracks. However, DeepLabv3+ with ResNet-50 

demonstrated greater sensitivity in detecting cracks, effectively identifying 

most actual cracks and achieving an excellent balance between precision and 

recall, as shown by its high F1 score. The highest IoU from DeepLabv3+ with 

ResNet-50 further underscores its reliability in accurately identifying crack 

regions, with strong overlap between predicted and actual crack regions. 

 

Table 4.3: Segmentation performance on evaluation metrics. 

Method Precision (%) Recall (%) F1 score (%) IoU (%) 

 13.31 83.11 22.94 12.96 

U-Net 60.59 84.07 70.43 54.36 

Res-UNet 91.75 86.94 89.28 80.64 

DeepLabv3+ 

(MobileNetV2) 

91.05 90.93 90.99 83.47 

DeepLabv3+ 

(ResNet-18) 

91.21 91.37 91.29 83.97 

DeepLabv3+ 

(ResNet-50) 

90.66 92.30 91.47 84.29 

DeepLabv3+ 

(Xception) 

90.49 91.09 90.78 83.13 

 

To provide a clearer overview of the performances, a visual 

comparison of the metrics for the segmentation methods is illustrated in Figure 

4.2. The chart illustrates that, in terms of 
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method exhibits notably poorer performance compared to all deep learning 

approaches, with 47 % lower in precision and F1 score than U-Net, and 41 % 

lower in IoU than U-Net. In contrast, all methods achieved satisfactory results

for recall, with an method (83.11 %) to U-Net

(84.07 %), Res-UNet (86.94 %), and DeepLabv3+ models (all exceeding 90 %). 

Figure 4.2: Metrics performance across different segmentation methods.

high recall of 83.11 %, indicating its 

ability to detect a significant portion of actual cracks. However, this high recall 

was accompanied by low precision (13.31 %) and low IoU (12.96 %). These 

metrics suggested

resulting in a high false positive rate compared to actual crack instances. The 
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likelihood of true positive predictions and reduced the number of false negatives 

(cracks identified as background), thus leading to a high recall value. However, 

this approach diminished segmentation accuracy, as evidenced by the lower 

precision and IoU due to the increased number of false positives. 

 

A closer examination of the metrics presented in Table 4.3 and Figure 

4.2 reveals that among the deep learning methods, U-Net demonstrated 

moderate performance relative to the other models. U-Net achieved a precision 

of 60.59 % and an IoU of 54.36%, indicating its capability to recognise the crack 

detection tasks. Figure 4.3 provides an example of a segmentation mask 

generated by U-Net. It shows that while U-Net is effective at outlining the 

general crack network, it struggles to generalise effectively when the soil 

background has a slightly rougher texture, resulting in increased noise.  

 

  

Figure 4.3: Original image (left) and U-Net segmentation mask (right). 

 

The inclusion of residual connections and batch normalisation in Res-

UNet led to significant improvements over U-Net model, with enhancements in 
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precision (31.16 % higher), F1 score (18.85 % higher), and IoU (26.28 % 

higher). However, as shown in section 4.3, these additional connections and 

batch normalisation layers considerably increased the computational 

complexity. In terms of precision, DeepLabv3+ models performed similarly to 

Res-UNet, with Res-UNet exceeding DeepLabv3+ by just 0.54 % to 1.26 %. 

For recall, the DeepLabv3+ models, with MobileNetV2 backbone achieving 

90.93% and ResNet-50 backbone achieving 92.30%, outperformed Res-UNet 

(86.94%) by 3.99% and 5.36% respectively. Additionally, DeepLabv3+ models 

achieved IoU scores with percentage increases ranging from 2.49 % to 3.65 % 

over Res-UNet. Thus, it can be concluded that the overall performance of 

DeepLabv3+ models, irrespective of the chosen backbone networks, is superior 

among the segmentation methods evaluated. 

 

Among the DeepLabv3+ models, it is observed that lighter backbones 

produced predictions with slightly better precision, with ResNet-18 (91.21 %) 

outperforming MobileNetV2 (91.05 %). All models demonstrated similar 

performance in terms of recall, with ResNet-50 leading, followed closely by 

ResNet-18, Xception, and MobileNetV2. Regarding IoU, ResNet-50 surpassed 

ResNet-18 by 0.32 %, MobileNetV2 by 0.82 %, and Xception by 1.16 % 

indicating its superior performance over lighter backbones. This suggests that 

deeper and more complex architectures can capture finer details in crack 

segmentation tasks.  

 

Besides, it is evident that models equipped with standard convolutions, 

such as ResNet-18 and ResNet-50, outperformed those with depthwise 
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separable convolutions, including MobileNetV2 and Xception, in soil crack 

segmentation. Between MobileNetV2 and Xception, it is obvious that using 

depthwise separable convolution in the inverted residual building block with the 

linear bottleneck in MobileNetV2 is preferable to the approach used in 

. MobileNetV2 demonstrated a significantly lower 

number of parameters and higher computational efficiency, while still achieving 

satisfactory overall segmentation performance.  

 

In summary, DeepLabv3+ with ResNet-50 achieved the best 

segmentation accuracy according to its performance across evaluation metrics, 

though it required substantial computational resources. Among the lighter 

backbones, MobileNetV2 proved to be an excellent choice for applications with 

limited computing capacity, whereas ResNet-18 offered marginal 

improvements in segmentation accuracy with greater resources.  

 

4.5 Crack Geometrical Characteristics Quantification Analysis 

 

The quantification of geometrical features of the crack networks was 

conducted using the parameters defined in Section 3.8.3. The predicted masks 

generated through various segmentation methods were analysed, and the error 

rates against ground truth masks were computed. The average error percentages 

over 20 test images for each geometrical parameter and each method are 

presented in Table 4.4.  
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 From the table, it is evident that 

method exhibited the highest error rates across all parameters, except for 

parameters like Nint, Nn, and Nseg. For Nint, Nn, and Nseg, U-Net performed the 

poorest, with errors of 50,023.13 %, 10,155.59 %, and 15,326.07 % respectively. 

The second-highest error rates were associated with  

23,474.74 %, 5,713.71 %, and 10,084.64 % error rates respectively. Among the 

deep learning methods, U-Net showed moderate performance across all 

parameters compared to the other methods, with particularly high errors in Nint, 

Nn, and Nseg. The integration of residual connections in Res-UNet led to a 

significant improvement in performance compared to U-Net, with substantially 

lower errors across all parameters. Notable improvements were observed in the 

accuracy of the number of intersections (approximately 14.2 times better), 

nodes (15.5 times better), crack segments (16.3 times better), and total crack 

length (12.7 times better) compared to U-Net.  

 

The table indicates that all DeepLabv3+ variants exhibited 

U-Net. The DeepLabv3+ variants also showed marked improvements in Nint, 

Nn, Nseg, and Lsum. Among the DeepLabv3+ models, the MobileNetV2 variant 

achieved the highest performance, with improvements of 66.4 times in Nint, 15.3 

times in Nn, 29.3 times in Nseg, and 3.7 times in Lsum compared to Res-UNet. 

Conversely, DeepLabv3+ with ResNet-18 demonstrated the best performance 

in terms of surface crack ratio (7.04 %), average crack ratio (8.07 %), and 

maximum crack width (9.93 %). Other DeepLabv3+ variants also performed 

closely on these parameters, with ResNet-50 variant coming in second, followed 
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by MobileNetV2 and Xception. A closer inspection revealed that Xception 

variant had slightly higher error rates than the other DeepLabv3+ variants across 

all parameters, -Net, and Res-UNet methods.  

 

The results indicate that traditional methods, such as 

thresholding segmentation method, are inadequate for the segmentation of soil 

crack networks due to their high error rates in geometrical parameter 

quantification. In contrast, deep learning methods, especially DeepLabv3+ 

models, demonstrated superior performance in handling complex soil crack 

segmentation tasks, with significantly lower error rates compared to traditional 

methods.  

 

Despite having substantially lower error rates in surface crack ratio and 

crack width computation compared to traditional methods, U-Net still showed 

considerable errors in detecting crack segments, as shown by its high error of 

15,326.07 % in Nseg. This may be attributed largely to the noise present in its 

segmentation results, as illustrated in Figure 4.3. Conversely, the residual 

connections and batch normalisation in Res-UNet successfully enhanced the 

accuracy of the model close to a competitive level with DeepLabv3+ models, 

though its performance was limited to surface crack ratio (9.93 %) and crack 

width detection (around 14 % for wavg and wmax). The high error rates in the 

number of intersections (3,300.71 %), nodes (614.84 %), and crack segments 

(886.16 %) suggest that Res-UNet is less effective in preserving the 

connectivity of the crack networks compared to DeepLabv3+ with error rates 

lower than 100 % in Nseg.  
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Among the deep learning methods, DeepLabv3+ with MobileNetV2 

can be considered the most accurate due to its consistently low error rates across 

all parameters. Coupled with its computational efficiency, the model is well-

suited for real-time and resource-constrained applications, providing 

satisfactory segmentation performance. The ResNet-18 variant offers another 

reliable option for soil crack segmentation tasks, with strong performance in 

surface crack ratio and crack width quantifications. 
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4.6 Accuracy and Stability of Recognition Performance 

 

The accuracy and stability of recognition and quantification 

performance for different segmentation methods were evaluated using mean 

values ( ) and standard deviations ( ) for evaluation metrics and geometrical 

parameter errors. The results are presented in Table 4.5.  

 

Table 4.5: Accuracy and stability of each method across various standards. 

Methods Evaluation Metrics Geometrical Parameters 

  (%)   (%)  

 33.08 29.16 2493.42 3806.28 

U-Net 67.36 11.22 3129.27 6098.76 

Res-UNet 87.15 4.13 187.77 349.20 

DeepLabv3+ 

(MobileNetV2) 

89.11 3.26 12.01 8.95 

DeepLabv3+ 

(ResNet-18) 

89.46 3.17 16.25 18.30 

DeepLabv3+ 

(ResNet-50) 

89.68 3.17 15.55 16.20 

DeepLabv3+ 

(Xception) 

88.87 3.32 20.55 25.15 

 

The evaluation metrics, which include precision, recall, F1 score, and 

IoU, reflect the accuracy of detection and segmentation. The t

segmentation method exhibited the lowest mean value (33.08%) and the highest 
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standard deviation (29.16%) in this category, indicating poor performance and 

high variability in crack detection. U-Net achieved a mean value of 67.36% with 

a standard deviation of 11.22%, representing a significant improvement over 

 method but still lacking behind other deep learning methods. 

DeepLabv3+ with ResNet-50 had the highest mean value at 89.68%, closely 

followed by ResNet-18 variant at 89.46%, both achieving the lowest standard 

deviation of 3.17%. This suggests the most excellent and consistent 

performance among all methods. DeepLabv3+ with MobileNetV2 and Xception 

also demonstrated comparable performance at both metrics against the ResNets 

variants, indicating consistently high performance among DeepLabv3+ models.  

 

Regarding the quantification of crack geometrical parameters, U-Net 

was the poorest performer, with an exceptionally high mean value of 3,129.27% 

and a standard deviation of 6,098.76%, indicating significant inaccuracies and 

variability in geometrical quantification. poorest 

performer, with a similarly high mean value and standard deviation for 

quantification errors. In contrast, Res-UNet, with its more advanced architecture, 

demonstrated significant improvement, with mean value and standard deviation 

reduced to 187.77% and 349.20%, respectively. The results indicate that 

DeepLabv3+ variants outperformed the other methods, showing superior 

performance in both mean value and standard deviation compared to Res-UNet, 

where DeepLabv3+ achieved 11 times and 20 times lower mean and standard 

deviation respectively. Among the DeepLabv3+ models, MobileNetV2 

backbone achieved the lowest mean error of 12.01% and standard deviation of 
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8.95%, which were considerably lower than those of other variants, indicating 

exceptional accuracy and stability in crack network quantification.  

 

The analysis of mean values and standard deviations underscores the 

superiority of deep learning-based models, particularly the DeepLabv3+ 

variants, over traditional segmentation methods in crack recognition and 

quantification. DeepLabv3+ models demonstrated remarkable stability and 

reliability in both recognition and quantification tasks, with higher accuracy and 

lower variability across various standards. Overall, DeepLabv3+ with 

MobileNetV2 is suggested as the best model due to its superior performance in 

geometrical parameter quantification and sufficiently high accuracy in 

evaluation metrics. 

 

4.7 Case-wise Segmentation Performance 

 

To further investigate the effectiveness and accuracy of the 

segmentation methods, the detection performance on images under various 

conditions was examined. The segmentation performances for each condition 

are presented in the following subsections, with the segmented masks generated 

by different methods illustrated. Cases A to H represent eight distinct crack 

image conditions, characterised by variations in the clarity of crack networks 

and edges, illuminations, image exposures, and other factors. 
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4.7.1 Case A: Standard Crack Network with Clear Definition 

 

Case A represents a simple condition where the image features a crack 

network with distinct lines and edges under standard illumination and exposure 

settings. Figure 4.4 illustrates the image along with the corresponding masks 

generated by various segmentation methods, and their segmentation 

performance is summarised in Table 4.6. Visual observation of the segmented 

masks in Figure 4.4 indicates that all methods performed well under these 

conditions as the detected crack networks were sufficiently close to the ground 

truth. However, some noises, in the form of white speckles, are visible in the 

masks generated by U- method, with U-Net exhibiting a higher 

number of noises. The masks generated by Res-UNet and DeepLabv3+ variants 

closely match the ground truth, suggesting better segmentation capability under 

standard conditions. 

 

From the top half of Table 4.6 it is evident that DeepLabv3+ with 

ResNet-18 achieved the highest precision (96.84 %), followed closely by Res-

UNet (95.34 %) and DeepLabv3+ with MobileNetV2 (95.55 %). In terms of the 

ability to identify all relevant instances, DeepLabv3+ with ResNet-50 achieved 

the highest recall (97.02 %). Res-UNet and the DeepLabv3+ variants 

demonstrated a good balance between precision and recall, as indicated by their 

high F1 scores. Among the deep learning methods, IoU was the highest for Res-

UNet (92.45 %), with DeepLabv3+ variants also performing well, all exceeding 

exhibited superior performance by achieving the highest F1 score and IoU 
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among all methods. Its performance metrics surpassed U-Net by 16.5 % in 

precision, 11 % in F1 score, and 18.6 % in IoU. U-Net is the poorest performer 

across all evaluation metrics. 

 

Image  
(960 × 960 pixels) 

 
Ground Truth 

 
 

U-Net Res-UNet DLv3+ (MobileNetV2) 

DLv3+ (ResNet-18) DLv3+ (ResNet-50) DLv3+ (Xception) 

Figure 4.4: Segmentation visualisation for Case A. 

 

 The bottom half of the table presents the geometrical parameter error 

rates for the case. DeepLabv3+ with MobileNetV2 exhibited the lowest error in 

surface crack ratio detection (0.23 %), followed closely by the other methods. 

Conversely -18 led in wavg, with 
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the latter having a 0.5 % higher error than the former. The remaining methods 

also showed low errors in wavg, ranging from 2.78 % to 3.79 %. U-Net was the 

worst performer in RSC (16.08 %) and wavg (32.71 %) with considerably higher 

errors compared to the other methods. For maximum crack width (wmax), all 

methods performed excellently, with the highest error capped at 3.61 %. 

Notably, U-Net and DeepLabv3+ with ResNet-50 achieved zero errors. 

DeepLabv3+ variants excelled in detecting the Nint, Nn, and Nseg, with zero 

errors, indicating precise detection of connectivity in the crack network. Res-

UNet came second with errors ranging from 6 % to 20 % errors, followed by 

and U-Net with soaring errors ranging from 3,500 % to 

15, method had the lowest error in identifying 

total crack length, while DeepLabv3+ with ResNet-50 showed the lowest error 

in average crack length. All deep learning models performed well with low 

errors in both Lsum and Lavg except for U-Net, which exhibited nearly 100 % 

errors.  

 

 The results from Case A illustrate that deep learning methods, 

particularly those based on DeepLabv3+ architecture, outperformed traditional 

methods and simpler CNN like U-Net in segmenting crack networks under 

standard conditions. Despite having relatively low error rates across parameters 

such as RSC, wavg, wmax, and Lsum

precise crack network recognition due to poor performance in identifying crack 

segments. Accurate identification of crack segments is important as it reflects 

the stage of soil disintegration; a higher number of crack segments usually 

indicates a more weathered and fragmented soil structure with reduced stability 
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(Tang et al., 2008). For this reason, Res-UNet is less effective compared to the 

DeepLabv3+ variants, which correctly identified the number of crack segments. 

The significant errors exhibited by U-Net may be attributed to extensive noise 

in its segmented mask, highlighting its limitation for complex segmentation 

tasks such as soil crack network recognition. DeepLabv3+ models, especially 

those with ResNet-18 and MobileNetV2 backbones, proved to be the most 

effective segmentation method for Case A, demonstrating high accuracy across 

all measured standards and low error rates in geometrical parameter 

computation, underscoring their robustness in handling the soil crack 

segmentation task.   
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4.7.2 Case B: Overexposure with Excessive Illumination 

 

This case exemplifies a scenario involving overexposure issues, 

specifically excessive illumination on the soil surface. Figure 4.5 illustrates the 

image of Case B along with the segmentation masks generated by various 

methods. Visual inspection of these masks reveals that traditional method 

performs adequately in recognising the general crack network, albeit with some 

noise (present as white speckles). It can be concluded that overexposure did not 

significantly impact the performance 

segmentation. Conversely, while all the deep learning methods effectively 

generalise the crack network with minimal noise, U-Net model exhibited a 

notable increase in noise under overexposure conditions compared to the 

standard condition observed in Case A.  

 

Res-UNet model, which incorporates residual connections and batch 

normalisation, substantially moderated the noise issue but did not perform as 

well as the DeepLabv3+ variants, which contained some non-crack speckles in 

the central region. Among the DeepLabv3+ models, those with ResNet-18 and 

ResNet-50 backbones showed superior alignment with the ground truth, with 

ResNet-50 performing the best. The crack network generated by DeepLabv3+ 

with ResNet-50 backbone exhibited improved connectivity and more effective 

preservation of the connections and intersections between crack lines.   
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Image 
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Figure 4.5: Segmentation visualisation for Case B. 

 

 Table 4.7 summarises the segmentation performance of various 

methods under the Case B condition. The results, as depicted in the table, are 

consistent with the visual observations previously described, with DeepLabv3+ 

variants outperforming other methods and U-Net ranking lowest. Specifically, 

DeepLabv3+ with Xception achieved the highest precision at 93.75 %, followed 

closely by other DeepLabv3+ variants, demonstrating 

superior capability in identifying relevant crack pixels despite overexposure. In 

terms of recall, DeepLabv3+ with ResNet-50 led with 93.60 %, while other 
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methods fell behind, with percentage differences ranging from 3.2 % (ResNet-

18) to 6.63 % (U-Net). The performance in the F1 score was similar to recall 

results, with DeepLabv3+ with ResNet-50 leading with a score of 93.25 %, 

while U-Net was the poorest performer with a score of 74.96 %. Additionally, 

DeepLabv3+ with ResNet-50 demonstrated the best overlap with ground truth 

under overexposure conditions, achieving an IoU of 87.36 %. All the other 

methods achieved IoU values above 81 %, except for U-Net, which had an IoU 

of 59.95 %. Compared to the evaluation metrics from Case A, there was a 

general decline in performance under overexposure conditions. Nonetheless, 

most methods still produce a satisfactory representation of the crack network. 

 

 In the quantification of soil crack geometric characteristics, 

DeepLabv3+ with ResNet-50 ranked highest in RSC with the lowest error rate 

of 0.73 %, followed by Res-UNet (1.09 %) and DeepLabv3+ with ResNet-18 

(3.33 %). U-Net had a significantly higher error rate of 32.03 % which was 

nearly 27 % higher than the second-lowest performer, DeepLabv3+ with 

MobileNetV2. All DeepLabv3+ models outperformed the other methods in wavg 

with MobileNetV2 backbone leading at 0.8 % error. Errors were higher across 

all methods for wmax DeepLabv3+ with ResNet-50 showing 

the lowest errors (20.20 % and 26.91 % respectively). Moreover, DeepLabv3+ 

variants, particularly ResNet-18 and ResNet-50, excelled in Lsum computation 

with marginal error rates of 0.45 % and 0.58 % respectively. Despite having 

competitive performance in RSC, Res-UNet lagged in Lsum and Lavg with error 

rates of 25.60 % and 92.78 %, respectively. DeepLabv3+ models performed 

better in Lavg, with error rates ranging between 31.17 % (ResNet-50) and 40.51 % 
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(Xception). For Nint, Nn, and Nseg, errors were significantly higher in traditional 

method, Res-UNet, and U-Net compared to DeepLabv3+ models, with 

DeepLabv3+ with MobileNetV2 showing the lowest errors in these parameters 

(57.14 % for Nint, 45.45 % for Nn, 38.89 % for Nseg), followed by ResNet-50 

and ResNet-18 backbones.  

 

 The analysis of results from Case B underscores the effectiveness of 

advanced segmentation methods in addressing the challenges posed by 

overexposure. DeepLabv3+ with ResNet-50 emerged as the top performer with 

its high precision, recall, F1 score, and IoU values. It also demonstrated low 

errors in geometrical parameter estimation, indicating its robustness under the 

condition. All DeepLabv3+ variants, particularly those with MobileNetV2 and 

ResNets, maintained high accuracy in crack detection despite overexposure as 

shown by their high values across evaluation metrics and lower error rates in 

geometrical parameters quantification. While Res-UNet performed adequately 

in evaluation metrics, it exhibited higher errors in geometrical parameters 

computation compared to DeepLabv3+ models, highlighting its limitations in 

precise crack network reconstruction under such conditions. U-Net was notably 

less effective in crack segmentation, as evidenced by its high errors across all 

standards, reinforcing the need for more sophisticated architectures like 

DeepLabv3+ for accurate segmentation of soil cracks.  
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4.7.3 Case C: Blurry Image with Low Exposure 

 

The image in Case C depicted a scenario characterised by slight 

blurriness accompanied by low exposure. The segmented masks are visualised 

in Figure 4.6. From these figures, it is evident that the segmentation masks 

produced by DeepLabv3+ models were more consistent with the ground truth, 

followed by Res- struggled to accurately generalise the 

crack lines due to its inability to incorporate spatial correlation information, 

which is crucial for handling blurry edges. In contrast, U-Net exhibited a 

significant reduction in noise compared to Case B. Coupled with the results 

from Case A, these observations suggest that U-Net performs better with low-

exposure images, as indicated by the reduced noise issue in the figure.  

 

The segmentation performance of various methods under Case C 

conditions is presented in Table 4.8

precision at 98.27 %, while the deep learning methods achieved high precision 

scores ranging from 94.57 % (DeepLabv3+ with Xception) to 95.81 % 

(DeepLabv3+ with ResNet-18), with U-Net lagging significantly behind at 

76.59 %. In terms of recall, DeepLabv3+ with Xception and ResNet-50 were 

the top performers, 

ranked lowest with a recall of 80.33 %. The high precision coupled with the 

incomplete segmentation, covering only a small, highly confident portion of the 

object while missing true positives. This is corroborated by the observation of 

Figure 4.6.  
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Figure 4.6:  Segmentation visualisation for Case C. 

 

For balanced performance, Res-UNet and DeepLabv3+ variants 

achieved relatively high F1 scores, with the DeepLabv3+ models featuring 

ResNet backbones leading with an F1 score of 95.41 %. DeepLabv3+ with 

ResNet-50 had the highest IoU at 91.23 %, followed by ResNet-18 with 91.22 % 

and the other DeepLabv3+ models. Despite a 

U-Net obtained a 10 % lower IoU (69.96 %) compared to 

(79.21 %) due to a higher incidence of false positives (noises). 
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   In the analysis of geometrical parameters, DeepLabv3+ models 

excelled in RSC and wavg detection. ResNet-18 led in RSC detection with a 

minimal error of 0.83 %, while Xception led in wavg detection with an error of 

0.59 %. DeepLabv3+ with ResNet- both achieved zero 

error in wmax detection, followed by DeepLabv3+ with ResNet-18 and Xception. 

For crack intersections and segment detection, DeepLabv3+ models, 

particularly those with MobileNetV2, demonstrated significantly lower errors 

(50 % for Nint, 16.67 % for Nn, 25 % for Nseg) compared to traditional methods 

(750 % for Nint, 216.67 % for Nn, 237.50 % for Nseg), Res-UNet (3000 % for 

Nint, 483.33 % for Nn, 712.50 % for Nseg), and U-Net (45700 % for Nint, 7766.67 % 

for Nn, 11475 % for Nseg), indicating their superior ability to reconstruct crack 

networks under challenging conditions. 

method exhibited marginal error rates in Lsum, with DeepLabv3+ with 

MobileNetV2 ranking first with an error of 

method measured crack length with satisfactory accuracy, its performance in 

measuring average crack length was limited by its inability to compute Nseg 

accurately, resulting in a 70.93 % error in Lavg. DeepLabv3+ variants achieved 

moderate error rates in Lavg, with MobileNetV2 leading at 19.87 % and ResNet-

18 closing at 41.78 %. Despite these moderate errors, DeepLabv3+ models still 

outperformed other methods due to their superior capability in detecting crack 

segments. 

 

 Combining visual observations with parameter interpretations, 

DeepLabv3+ architecture demonstrated its effectiveness in handling complex 

conditions, significantly outperforming other methods. It was able to 
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reconstruct the crack network with higher accuracy while preserving important 

geometric characteristics relevant to soil cracking studies as demonstrated by its 

lowest error in crack segment quantification. DeepLabv3+ with ResNet-50 and 

ResNet-18 emerged as the top performers in this case, achieving high scores in 

evaluation metrics and generally low errors across geometrical parameters. 

DeepLabv3+ with MobileNetV2 also performed well under limited 

computational resources, offering similar performance to ResNets-based 

models and presenting an excellent choice for practical applications. Res-UNet, 

while performing well in evaluation metrics, struggled in the accurate 

quantification of geometrical parameters (much higher error rates compared to 

DeepLabv3+), highlighting its limitations in precise crack network recognition. 

handling blurry edges and low-

exposure scenarios, emphasising the advantages of deep learning models that 

can interpret image context more broadly.  
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4.7.4 Case D: Complex and Intersecting Crack Network 

 

Case D presented a scenario involving a complex crack network 

characterised by numerous crack segments and intersections, as well as zigzag 

and fine cracks. Figure 4.7 illustrates the image and its corresponding binary 

masks generated by different methods. The traditional segmentation method 

effectively categorised pixels into their respective classes, though it suffered 

from some false negatives. This method has significant limitations, as it requires 

uniform illumination and a well-defined crack network with clear differentiation 

from background pixels. Figure 4.8 highlights these limitations by showing 

struggles with uneven illumination scenarios.  

 

U-Net has also faced challenges with persistent noise, as evidenced in 

Figure 4.7. When comparing Res-UNet and DeepLabv3+ models, Res-UNet 

displayed a slight advantage in better matching the crack network to the ground 

truth. However, DeepLabv3+ models produced cleaner masks with minimal 

noise. Among the DeepLabv3+ variants, MobileNetV2 and ResNet-18 

backbones demonstrated superior alignments with the ground truth and better 

crack connectivity, followed by ResNet-50 and Xception backbones.  
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Figure 4.7: Segmentation visualisation for Case D. 
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Figure 4.8: 

D but with uneven illumination.  

 

 Table 4.9 presents the segmentation performance by various methods 

for Case D, according to their respective standards. As indicated in the first part 

of the table, the highest precision (91.96 %), while Res-

UNet ranked first in recall (91.19 %), F1 score (89.59 %), and IoU (81.14 %). 

U-Net recorded the lowest values in precision (54.68 %), F1 score (66.86 %), 

and IoU (50.21 %), while DeepLabv3+ with Xception finished last with a recall 

of 82.62 %. Despite achieving a relatively high recall of 86.02 %, U-Net was 

categorised as the worst performer due to significant drawbacks in precision and 

IoU. The low precision and IoU values indicate U-

a segmentation mask with satisfactory overlap with the ground truth, and its 

tendency to classify background pixels as cracks (high false positives). 

-UNet led in performance, DeepLabv3+ 

variants demonstrated competitive performance across all evaluation metrics, 

with marginal differences from the leaders, showcasing their stability and 

reliability in handling various scenarios. Among them, DeepLabv3+ with 
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ResNet-18 achieved the highest precision (90.08 %), while DeepLabv3+ with 

MobileNetV2 achieved the highest recall (88.86 %), F1 score (87.59 %), and 

IoU (77.92 %).  

 

 Turning to the errors on geometrical parameters, as shown in the 

second part of the table, DeepLabv3+ with MobileNetV2 exhibited the lowest 

error in RSC (2.91 %), closely followed by Res-UNet (3.59 %) and the remaining 

methods, except for U-Net, which had a significant error of 57.33 %. Regarding 

average crack width, Res-UNet performed exceptionally well with the lowest 

error of 0.67 %, while DeepLabv3+ variants ranged from 6.37 % (DeepLabv3+ 

with ResNet-18) to 13.99 % (DeepLabv3+ with MobileNetV2). Since the crack 

network displayed a relatively uniform crack width, all models performed well 

in wmax -UNet, DeepLabv3+ with 

ResNet-18) recorded the lowest error rate in computing the 

number of intersections (38.71 %), closely followed by all DeepLabv3+ variants. 

For Nn and Nseg, DeepLabv3+ models achieved the lowest error rates, with 

ResNet-18 variant exhibiting zero error in Nn and 14.29 % error in Nseg. Despite 

the low errors in RSC and crack width computations, Res-UNet struggled with 

accurate segmentation of individual crack segments and their intersections, with 

high error rates of 150 % in Nseg and 490.32 % in Nint. U-Net again faced 

challenges in crack segment recognition (error rates of 1981.63 %) due to 

persistent noise issues. Conversely, Res-UNet achieved the lowest error in Lsum 

(2.15 %), while DeepLabv3+ with Xception and ResNet-18 had the lowest 

errors in Lavg
 (around 3.10 %). The ability of Res-UNet to accurately measure 
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the average length of crack segments was hindered by its limitations in correctly 

identifying the number of segments, resulting in a higher error of Lavg (59.14 %). 

 

 The results for Case D demonstrate the ability of advanced 

segmentation methods to handle intricate crack networks effectively. 

DeepLabv3+ with MobileNetV2 and ResNet-18 showed exceptional 

performance in most evaluation metrics and geometrical parameters, providing 

better representations of the crack networks with higher accuracy in crack 

geometries. The robustness of DeepLabv3+ variants in recognising fine and 

zigzag cracks was evident from their relatively lower errors in parameters such 

as Nint, Nn, and Nseg. Conversely, Res-UNet exhibited strong recall and IoU 

values, indicating its proficiency in identifying large portions of actual cracks 

with accurate overlap. It also accurately quantified crack shapes and sizes, as 

indicated by the low errors in surface crack ratio and crack width computations. 

However, it was inadequate in recognising the connectivity of the crack 

segments, as evidenced by high errors in parameters such as Nint, Nn, and Nseg. 

U-Net revealed its limitations under the complexity of this case, with relatively 

low values across evaluation metrics and high errors in crack geometrical 

parameter measurements. significantly better in 

geometrical parameters analysis with lower errors compared to cases B and C, 

but this performance was influenced by illumination constraints, as 

demonstrated in Figure 4.8. 
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4.7.5 Case E: Low Exposure with Ill-defined Crack Edges 

 

The scenario in Case E was characterised by a crack network with ill-

defined crack edges and lines, along with low exposure conditions. The masks 

segmented through various methods are visualised in Figure 4.9. It is evident 

from the figure that traditional methods (such as -Net were 

inadequate in handling crack networks with indistinct edges. U-Net consistently 

struggled with noise issues, while failed to accurately segment 

the crack edges, resulting in a crack network with ambiguous shapes. More 

sophisticated models, including Res-UNet and DeepLabv3+ variants, provided 

segmentations that more closely resembled the ground truth. Among these, 

DeepLabv3+ variants demonstrated superior performance by producing 

segmentation with fewer holes (black pixels enclosed by crack pixels). This 

improvement is attributed to their ability to identify pixel relationships through 

enlarged receptive fields, which helped to preserve spatial information.  
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Image 
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Figure 4.9: Segmentation visualisation for Case E. 

 

 Table 4.10 presents the segmentation performance for Case E. In terms 

of standard metrics, achieved the highest precision of 93.17 %, 

followed by Res-UNet at 90.36 %, and DeepLabv3+ models ranging from 

82.35 % (ResNet-50) to 86.38 % (MobileNetV2). These methods effectively 

identified crack pixels under conditions of poor edge definition, as indicated by 

their high precision values and minimal false positives. DeepLabv3+ models, 

particularly with ResNet-18 and ResNet-50, achieved the highest recall values 

of 96.28 % and 95.87 %, respectively. In contrast, method and Res-UNet, 
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which excelled in precision, had lower recall values of 70.37 % and 83.38 %, 

respectively. This discrepancy highlights that DeepLabv3+ models were more 

effective in capturing most of the actual cracks present in the image, while 

method and Res-UNet missed more crack pixels, resulting in a 

combination of high precision and low recall. Consequently, method and 

Res-UNet had slightly lower F1 scores compared to DeepLabv3+ models. 

DeepLabv3+ models achieved high F1 scores, ranging from 88.60 % (ResNet-

50) to 89.68 % (Xception), effectively balancing precision and recall. 

DeepLabv3+ with Xception achieved the highest IoU (81.29 %), followed 

closely by other Deeplabv3+ variants. This signifies the superior performance 

of DeepLabv3+ models in generating segmentation outputs that closely match 

the ground truth. 

 

 In the second part of Table 4.10, Res-UNet and DeepLabv3+ with 

MobileNetV2 exhibited the lowest errors in RSC at 7.72 % and 7.84 %, 

had the highest error in RSC (24.47 %), due to a 

higher number of false negative predictions. DeepLabv3+ models showed 

significantly lower error rates in both average and maximum crack width 

measurements compared to other methods. DeepLabv3+ with Xception had the 

lowest error in wavg, at a marginal value of 0.56 %, followed by ResNet-18, 

ResNet-50, and MobileNetV2 variants. These models also achieved minimal 

errors in wmax, ranging from 4.52 % (Xception backbone) and 9.22 % 

(MobileNetV2 backbone). The number of intersections and nodes can 

significantly affect the measurement of crack segments. In this case, 

DeepLabv3+ demonstrated superior capability in segmenting the crack network 
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with accurate connectivity between crack lines. It achieved substantially lower 

error rates across Nint, Nn, and Nseg compared to other methods. The lowest error 

in Nint was recorded by ResNet-50 variant at 50 %, while U-Net had an 

exceptionally high error of 57525 %. DeepLabv3+ with ResNet-50 and 

MobileNetV2 showed the lowest error of 10 % in Nn parameter. Combined with 

their lower errors in Nint, they achieved the lowest error in Nseg at 7.14 % and 

14.29 %, respectively. Among the DeepLabv3+ models, ResNet-18 and 

Xception backbones exhibited higher errors in Nint and Nn, resulting in higher 

errors in the final computation of Nseg. DeepLabv3+ with ResNet-50 ranked first 

in both Lsum and Lavg, with marginal errors of 2.46 % and 4.37 % respectively, 

-Net, and Res-UNet.  

 

 The results from Case E highlight the strengths and weaknesses of each 

method under the challenging condition of ill-defined crack edges. U-Net 

consistently faced issues with noise, leading to low accuracy in terms of 

evaluation metrics and high errors in geometrical parameter measurements. 

performed well in terms of precision and Lsum, it was 

inadequate under this scenario due to its low IoU and higher errors in other 

geometrical parameters. Res-UNet demonstrated strong performance in 

evaluation metrics with comparatively high IoU and precision, and geometrical 

parameters in terms of RSC but struggled with elevated errors in Nint and Nseg, 

which are crucial for describing crack characteristics. DeepLabv3+ with 

Xception stood out in evaluation metrics analysis with the highest scores in F1 

score and IoU. It achieved the lowest errors in wavg and wmax measurements but 

fell short in Nint, Nn, Nseg, Lsum, and Lavg compared to ResNet-50 variant. In 
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summary, DeepLabv3+ with ResNet-50 and Xception emerged as the most 

reliable methods for crack segmentation in images with ill-defined crack edges 

and low exposure.  
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4.7.6 Case F: Shadowed Soil Surface (Uneven Illumination) 

 

Case F involved an image with uneven illumination on a smooth soil 

surface, including distinct shadows cast over one side of the image. Figure 4.10 

shows the original image, its ground truth, and segmentation masks produced 

by various methods. From the figure, it is evident that -Net 

encountered difficulties in handling images with varying illumination 

conditions. Both methods struggled to differentiate between shadows and cracks, 

as these regions often exhibited similarly low-intensity values. , 

due to its threshold selection process, erroneously classified nearly the entire 

shadowed region as crack pixels. The shadowy areas, which had intensity values 

similar to the soil cracks, were inaccurately identified as cracks.  

 

U-Net, while an improvement over traditional methods, still had 

limitations in distinguishing shadow edges from cracks due to its relatively 

simple feature extraction process. Despite significant advancements, U-Net 

occasionally misclassified the edges of shadow regions as crack pixels. In 

contrast, Res-UNet and DeepLabv3+ models performed excellently under 

varying illumination conditions, as demonstrated by their accurate crack 

segmentations in Figure 4.10. These models exhibited superior capabilities in 

identifying crack networks precisely, even in the shadowed regions of the image. 

 

 

 

 



 

145 

Image 
(960 × 960 pixels) 

 
Ground Truth 

 
 

U-Net Res-UNet DLv3+ (MobileNetV2) 

DLv3+ (ResNet-18) DLv3+ (ResNet-50) DLv3+ (Xception) 

Figure 4.10: Segmentation visualisation for Case F. 

 

 The quantitative analysis of segmentation performance by various 

methods is shown in Table 4.11. For evaluation metrics, Res-UNet and 

DeepLabv3+ variants performed exceptionally well in precision, all scoring 

over 93 % and DeepLabv3+ with ResNet-18 leading at 95.85 %. The 

significantly reduced correlates with the 

visual observation described earlier, where most shadowed regions were 

incorrectly classified as cracks, resulting in high false positives. All methods 

achieved high recall values, ranking first 
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at 99.04 %, followed by DeepLabv3+ with ResNet-50 at 98.21 %. It is important 

to highlight does not necessarily reflect its 

effectiveness in capturing actual crack instances but rather results from 

classifying most shadow regions as crack pixels. Since some cracks overlapped 

with the shadow regions, this tendency greatly reduced the number of false 

negatives, resulting in a high recall for DeepLabv3+ with 

ResNet-18 achieved the highest F1 score (96.08 %), closely followed by other 

DeepLabv3+ variants and Res-UNet, indicating the effectiveness of deep 

learning methods in balancing precision and recall. Res-UNet and DeepLabv3+ 

models performed similarly in IoU, with DeepLabv3+ with ResNet-18 leading 

at 92.45 %, while other models scored above 91 %. These high scores reflect 

 

 

  In the geometrical parameters analysis, DeepLabv3+ with ResNet-18 

and Xception achieved a minimal error of 0.48 % and 0.82 % respectively for 

RSC, suggesting accurate quantification of crack shapes and sizes. For average 

crack width, DeepLabv3+ with Xception recorded the lowest error of 1.72 %, 

followed closely by Res-UNet and DeepLabv3+ with ResNet-18. All deep 

learning models performed well with marginal errors in wmax, with Res-UNet 

and DeepLabv3+ with ResNet-18 achieving d had 

the highest error across these parameters (541.80 % in RSC, 119.57 % in wavg, 

530.41 % in wmax), largely due to its misclassification of shadow regions. 

Regarding crack line connectivity, DeepLabv3+ models outperformed others, 

particularly MobileNetV2 and Xception backbones, which achieved zero errors 

in Nint, Nn, and Nseg. Res-UNet retained a competitive edge in Lsum with a low 
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error of 1.26% but fell behind in Lavg (81.59 %) due to higher errors in crack 

segment measurements. Among the DeepLabv3+ variants, both ResNet 

backbones achieved lower error rates in Lsum (0.11 % for ResNet-18 and 0.23 % 

for ResNet-50) compared to their counterparts, while MobileNetV2 and 

Xception backbones excelled in Lavg (2.29 % and 1.72 % respectively) due to 

their higher accuracy in Nseg.  

 

 The ability to handle uneven illumination conditions is crucial for 

segmentation methods due to the ubiquitous presence of shadows. The results 

show -Net were not well-suited for such challenging 

conditions, as evidenced by their inaccurate segmented masks and higher errors 

across most metrics. Traditional segmentation methods using global 

thresholding algorithms demonstrated a lack of flexibility in 

complex image conditions. More sophisticated architecture such as Res-UNet, 

significantly improves accuracy with their capability to generate masks that 

more closely align with the ground truth. Res-UNet also performed strongly in 

geometrical parameters, including RSC, wavg, wmax, and Lsum, showcasing its 

proficiency in identifying crack shapes and sizes. However, it struggled with 

connectivity issues, as indicated by higher errors in Nint, Nn, and Nseg. 

DeepLabv3+ models excelled in both evaluation metrics and geometrical 

parameters, emerging as the most reliable methods for soil crack segmentation 

under uneven illumination. Among these, ResNet-18 and ResNet-50 were 

slightly better choices if IoU and precision were primary concerns. However, 

MobileNetV2 and Xception backbones also performed well, showing minimal 
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errors in crack intersections and segment identification, even in the presence of 

shadows.  
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4.7.7 Case G: Uneven Illumination with Fissure Cracks and Surface 

Aggregation 

 

Case G involved an image with uneven illumination, featuring surface 

fissure cracks and small soil aggregates around the crack lines on the soil surface. 

Figure 4.11 illustrates the image and the corresponding segmented masks for 

the case.  
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Figure 4.11: Segmentation visualisation for Case G. 
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cracks on the soil surface, which also had darker colours, as crack pixels. U-Net 

performed similarly to its performance in Case F, where it segmented only the 

contrast, Res-UNet and DeepLabv3+ variants significantly outperformed the 

previous methods, providing a closer representation of the actual crack network. 

A closer inspection reveals that DeepLabv3+ had a slight edge over Res-UNet, 

with better connectivity in crack lines and more precise crack edge definitions.  

 

Table 4.12 presents the segmentation performance for Case G across 

various evaluation standards. From evaluation metrics analysis, DeepLabv3+ 

with ResNet-50 achieved the highest precision of 97.76 %, indicating its ability 

to correctly identify crack pixels with minimal false positives. Other 

DeepLabv3+ variants and Res-UNet also performed excellently, with precision 

values to Case F, 

characterised by low precision and high recall, due to a high rate of falsely 

classified background pixels that reduced false negatives. Among the remaining 

methods, DeepLabv3+ with ResNet-18 achieved the highest recall (88.68 %), 

followed closely by DeepLabv3+ with MobileNetV2 at 88.11 %. This indicates 

the effectiveness of these DeepLabv3+ models in capturing most of the actual 

cracks in the image. All DeepLabv3+ models obtained high F1 scores, with the 

ResNet-18 backbone leading at a value of 92.52 %, demonstrating a strong 

balance between precision and recall. In terms of crack network overlap, 
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DeepLabv3+ models achieved top performances, with ResNet-18 variant 

leading with an IoU of 86.09 %, indicating its satisfactory alignment with the 

ground truth crack segments. 

 

In the quantifications of geometrical parameters, DeepLabv3+ with 

MobileNetV2 and ResNet-18 showed the lowest errors of 8.22 % and 8.31 % 

respectively in RSC, showcasing their ability to quantify crack intensity with 

minimal errors in complex scenarios. Additionally, DeepLabv3+ with ResNet-

18 achieved the lowest errors in both average and maximum crack width 

measurements at 8.73 % and 5.66 % respectively, with MobileNetV2 variant 

coming second with slightly higher error rates at 10.69 % and 7.70 % 

respectively demonstrated excessive error rates across 

these parameters (421.45 % for RSC, 129.98 % for wavg, 705.29 % for wmax) due 

to its inability to differentiate shadowy regions from actual cracks. U-Net 

performed the worst among deep learning methods in these parameters due to 

its noise issue, with error rates of 46.49 %, 53.80 %, and 20 % for RSC, wavg, 

and wmax respectively. Although Res-UNet performed well, it generally showed 

higher error rates compared to DeepLabv3+ variants.  

 

For Nint, Nn, and Nseg, which represent the connectivity of crack lines, 

DeepLabv3+ with MobileNetV2 had zero error in Nint and significantly lower 

error rates for Nn (50 %) and Nseg (40 %) than the other methods, demonstrating 

robustness in detecting intersections and individual crack segments despite 

complex surface features. The other DeepLabv3+ variants also demonstrated 

superior performance with substantially lower errors across these parameters 
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compared to Res- -Net, where U-Net see the highest 

errors of 109700 % in Nint, 14487.50 % in Nn, and 21680 % in Nseg. In crack 

length analysis, DeepLabv3+ with ResNet-18 excelled in Lsum with zero error, 

followed closely by DeepLabv3+ with MobileNetV2 with a marginal error of 

0.48 %. Due to its better performance in Nseg, DeepLabv3+ with MobileNetV2 

outperformed ResNet-18 variant in Lavg analysis at 28.92 % despite having 

slightly higher error in Lsum.  

 

Compared to Case F, Case G presented a more challenging scenario 

with the presence of soil clods and surface fissures in addition to uneven 

illumination. The results indicated that 

by uneven illumination and U-Net by noise issues, making both unsuitable for 

segmentation tasks under challenging conditions. Res-UNet showed 

significantly stronger performance in both evaluation metrics and geometrical 

parameters analysis compared to the previous two methods, reflecting its higher 

accuracy in quantifying crack shapes and sizes. However, it struggled with 

parameters related to crack network connectivity (Nint, Nn, and Nseg), 

undermining its reliability in soil crack segmentation. DeepLabv3+ variants 

demonstrated the strongest performances across all evaluation criteria. 

Considering both evaluation metrics and crack geometrical characteristics, 

DeepLabv3+ with ResNet-18 and MobileNetV2 emerged as the most reliable 

methods for segmenting soil cracks in images with uneven illumination and 

surface fissures. Their high performance across these standards suggests their 

robustness and applicability in challenging conditions.   
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4.7.8 Case H: Defective Soil Surface with Shadows and Holes 

 

Case H involved an image with shadows and small holes on the soil 

surface caused by bubbly defects. Figure 4.12 illustrates the image and the 

masks generated by various segmentation methods. The figure clearly shows 

that traditional segmentation methods, such as , are inferior in 

handling unevenly illuminated image classified almost the 

entire shadowy region as foreground. In contrast, deep learning methods, even 

the simplest U-Net network, demonstrated exceptional capability in handling 

images with uneven illumination, as evidenced by their segmented masks. 

Although U-Net was consistently plagued with noise speckles, it did not mistake 

the ck lines, unlike in Cases F and G. This is likely due to 

U- focus on capturing edge-like features, which helped it to differentiate 

between shadows and actual cracks when the shadow did not have a clearly 

defined border. Both Res-UNet and DeepLabv3+ variants produced masks with 

a high resemblance to the ground truth, indicating their robustness in 

generalising complex soil crack networks. A closer examination of the figure 

reveals that DeepLabv3+ models provided better representations of the ground 

truth crack network, while the Res-UNet mask contained more minor noise 

speckles.   
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Image 
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Ground Truth 

 
 

U-Net Res-UNet DLv3+ (MobileNetV2) 

DLv3+ (ResNet-18) DLv3+ (ResNet-50) DLv3+ (Xception) 

Figure 4.12: Segmentation visualisation for Case H.  

 

 The quantitative analysis of the segmentation performance across 

models is summarised in Table 4.13. In terms of evaluation metrics, Res-UNet 

achieved a superior precision of 99.06 %, followed closely by all the 

; however, this 

was due to a high number of false positive instances, as previously noted. 

Among the deep learning methods, DeepLabv3+ with ResNet-50 had the 

highest recall at 82.84 %, while Res-UNet had the lowest recall at 75.91 %. This 

indicates the effectiveness of DeepLabv3+ models, particularly with ResNet-50 
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backbone, in capturing the majority of the actual cracks despite the presence of 

shadows and holes. DeepLabv3+ with ResNet-50 also achieved the highest F1 

score of 89.66 %, balancing precision and recall effectively. Furthermore, the 

ResNet-50 variant achieved the highest IoU at 81.25 %, followed by 

MobileNetV2 variant at 78.86 %, demonstrating better alignment with ground 

truth compared to other models. The generally lower IoU range in this case, 

compared to previous cases, is primarily due to the fewer crack pixels in the 

image, which exaggerated the errors.  

 

 In terms of geometrical parameters, U-Net showed the lowest error 

(14.93 %) in RSC, followed by DeepLabv3+ with ResNet-50 (15.21 %). The 

other DeepLabv3+ variants also performed well, with error rates around 18 %. 

Res-UNet had the highest RSC error at 23.37 % among the deep learning 

methods. For average crack width, DeepLabv3+ with ResNet-50 obtained the 

lowest error at 15.56 %, while other DeepLabv3+ variants performed similarly, 

with a 2  3 % difference in error rates. DeepLabv3+ models outperformed 

others in wmax measurement with consistent errors of 16.70 %. In terms of crack 

line connectivity, DeepLabv3+ models excelled in crack intersection detection 

with zero error. For Nn and Nseg, DeepLabv3+ with Xception had the lowest 

error rates at 33.33 % and 25 % respectively, followed by other variants. Res-

UNet and DeepLabv3+ models demonstrated superior capability in total crack 

length measurements with minimal error rates, led by DeepLabv3+ with 

ResNet-18 (0.31 %) and MobileNetV2 (0.56 %). For similar error rates, 

DeepLabv3+ with Xception ranked highest in Lavg computation due to its 

superior accuracy in individual crack segment segmentation. 
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 The results underscore the limitations of traditional segmentation 

methods in handling images with varying conditions, which are common in real-

life scenarios. Advanced deep learning methods demonstrated significant 

improvements in segmenting images with shadows. However, simple 

architectures like U-Net still struggled to generate accurate representations of 

crack networks as demonstrated by its lower IoU value. Res-UNet showed 

strong performance in precision but only obtained moderate results in other 

metrics and geometrical parameters. DeepLabv3+ with ResNet-50 excelled in 

evaluation metrics, indicating its robust ability to accurately identify and capture 

crack pixels under challenging conditions. It also performed well in quantifying 

surface crack ratio and crack width but struggled slightly with individual crack 

segment detection. Overall, DeepLabv3+ with ResNet-50 provided the best 

segmentation performance in this case, with high accuracy across metrics like 

IoU and precision. For scenarios where computational resources are a concern, 

DeepLabv3+ with MobileNetV2 offers an excellent segmentation solution, 

providing comparable performance at a significantly lower computational cost.  
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4.7.9 Case-wise Segmentation Performance Summary 

 

DeepLabv3+ with MobileNetV2 was suggested as the best 

segmentation model according to accuracy and stability indicators in section 4.6. 

Therefore, a summary of its performance across evaluation metrics and error 

rates on geometrical parameters quantification on various case studies is 

presented in Table 4.14, and its accuracy and stability indexes across various 

evaluation standards are presented in Table 4.15.  

 

The model achieved its best performance in Case A, which involved a 

standard crack network with a clear boundary definition. This case recorded the 

highest F1 Score of 95.66 % and IoU of 91.69 %, along with the highest mean 

across evaluation metrics (94.67 %) and the lowest mean in error rates for 

geometrical parameters quantification analysis (1.93 %). It showcased the 

 

 

In contrast, performance declined in Cases D, E, and H, which involved 

images with complex intersecting crack networks, low exposure with ill-defined 

crack edges, and defective soil surface with shadows and holes respectively. 

These cases showed about a 10 % drop in IoU values (77.92 %, 81.22 %, and 

78.86 %) compared to Case A. The mean error rates across selected geometrical 

parameters for these cases also increased to 14.91 %, 12.60 %, and 25.90 % 

respectively, suggesting that the model struggles with intricate geometries and 

poor contrast. 
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The model resulted in acceptable segmentation performance in Case B 

(overexposure) but exhibited exaggerated crack width and crack connectivity 

predictions, as shown by their error rates of 33.82 % for wmax and 38.89 % for 

Nseg 

illumination which affects crack boundaries recognition. In contrast, Case C, 

which features low exposure, produced reliable results, with a high mean score 

of 94.13 % across evaluation metrics and a low mean score of 7.99 % across 

geometrical parameters quantification error. This suggested that the model 

could generalise well under low exposure conditions.  

 

On the other hand, regarding Case F with shadowed and unevenly 

illuminated surface, the model maintained relatively strong F1 Score (95.31 %) 

and IoU (91.04 %) values, suggesting that the model can handle images with 

the presence of shadows. This robustness is also demonstrated in Case G, albeit 

the performance was slightly hindered due to surface aggregation and fissure-

like textures. In terms of geometrical parameters quantification, the model 

confirmed its ability in handling shadowy conditions with relatively low error 

rates across parameters, with Case F achieving 4.89 % mean error rates.   

 

Overall, while DeepLabv3+ with MobileNetV2 demonstrated high 

segmentation accuracy under standard and moderately distorted conditions, 

performance declined when faced with complex crack geometries, surface 

anomalies, and excessive illumination.  
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Table 4.15: Accuracy and stability of the best performing model across 

various standards. 

Case Evaluation Metrics Geometrical Parameters 

 (%)   (%)  

A 94.67 1.72 1.93 1.39 

B 88.97 3.73 21.06 18.60 

C 94.13 1.93 7.99 10.67 

D 85.18 4.28 14.91 9.57 

E 87.60 4.39 12.60 3.91 

F 94.27 2.38 4.89 3.12 

G 90.25 4.12 16.77 15.79 

H 86.33 7.86 25.90 18.89 

 

4.8 Summary 

 

The analysis of computational efficiency evaluated each method based 

on both training effort and prediction generation efficiency. The results 

indicated that the use of pre-trained networks as backbones in the DeepLabv3+ 

variants significantly reduced training time. 

method required minimal computational effort for inference due to its 

straightforward algorithm. Among the deep learning models, DeepLabv3+ with 

ResNet-18 and MobileNetV2 backbones demonstrated the best inference 

performance, with the shortest inference times and highest FPS. In terms of 

overall crack segmentation accuracy, advanced deep learning models such as 

Res-UNet and DeepLabv3+ variants consistently achieved high precision, recall, 
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F1 Score, and IoU, reflecting their superior capability in crack detection and 

segmentation. DeepLabv3+ variants emerged as the most effective architectures 

as evidenced by their higher IoU values. The case-wise segmentation 

performance analysis provided valuable insights into the robustness and 

adaptability of the models under challenging conditions. Overall, Res-UNet and 

DeepLabv3+ variants exhibited their effectiveness in handling segmentation 

tasks under various conditions, with DeepLabv3+ models outperforming Res-

UNet in accurately reconstructing crack network representations. In summary, 

this chapter highlights the importance of selecting the appropriate model based 

on specific requirements and constraints, such as computational resources and 

the characteristics of crack images. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

 

The present study was designed to evaluate the feasibility and 

effectiveness of image-based techniques for quantifying desiccation cracking 

behaviour in expansive soils. To achieve this, three research objectives were 

pursued, and their outcomes are summarised below. 

 

As per objective one, which is to design the experimental setup for 

desiccation crack image acquisition, an experimental setup was successfully 

developed using a humidity chamber and glass Petri dish specimens. The setup 

was used for desiccation tests that enabled systematic generation of soil 

desiccation cracks. Expansive soil desiccation crack images were acquired 

using the setup. The images produced a diverse dataset that was used for deep 

learning model training. This confirmed the practicality of image-based 

experimental acquisition in soil desiccation cracks study. 

 

Objective two is to evaluate crack imaging analysis based on deep 

learning algorithms. Crack imaging analysis based on deep learning algorithms 

was evaluated in two categories, including computational efficiency and 

segmentation performance. The computational efficiency analysis revealed that 

DeepLabv3+ variants required significantly less training effort due to the 
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utilisation of transfer learning. Among these, MobileNetV2 variant, with its 

minimal parameter count and short training time, emerged as the most efficient 

model considering computational resources. , due to 

its simple computation algorithm, exhibited a major advantage in inference 

speed. Among deep learning models, DeepLabv3+ with ResNet-18 and 

MobileNetV2 demonstrated the best computational efficiency, characterised by 

the shortest inference time. 

 

 In terms of segmentation performance, this study demonstrated that 

advanced deep learning models, such as Res-UNet and DeepLabv3+ variants, 

excelled in the accurate detection and segmentation of soil cracks. These models 

consistently achieved high precision, recall, F1 score, and IoU, outperforming 

traditional segmentation methods the simpler U-Net 

network. Notably, DeepLabv3+ variants emerged as the top performers with the 

highest IoU values. 

 

Furthermore, the advanced deep learning models exhibited a notable 

ability to produce accurate representations of crack networks, enabling the 

precise quantification of crack geometrical parameters through image 

processing techniques. This capability provided valuable insights into soil 

desiccation cracking behaviour. In contrast, s

algorithm and U-Net demonstrated limited performance in quantifying crack 

geometrical characteristics, as evidenced by their high error rates across all 

parameters. Although Res-UNet showed significantly lower error rates 

compared to these methods, it was less effective in reconstructing crack network 
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connectivity, thus limiting its predictive accuracy. DeepLabv3+ models, 

however, achieved the highest accuracy in quantifying geometrical parameters, 

indicating their ability to generate segmentation masks with high resemblance 

to ground truth.  

 

The stability analysis highlighted that traditional methods, such as 

particularly under varying image 

conditions, as demonstrated in case-wise detection analysis. DeepLabv3+ 

variants with ResNet-50 and ResNet-18 exhibited the most consistent 

performance across evaluation metrics, with MobileNetV2 variant followed 

closely behind. In terms of geometrical parameters quantification, DeepLabv3+ 

with MobileNetV2 emerged as the top performer with the best scores in both 

accuracy and stability indicators.  

 

The case-wise segmentation performance analysis further illustrated 

that DeepLabv3+ models were robust and adaptable under various challenging 

conditions, such as uneven illumination and the presence of soil clods or 

shadows. The analysis clearly indicated that traditional segmentation methods, 

were limited in handling complex real-world scenarios.  

 

Overall, objective two confirmed the feasibility and effectiveness of 

deep learning-based image segmentation models for soil crack recognition and 

quantification. The findings suggested that DeepLabv3+ variants, particularly 

those with MobileNetV2 and ResNet-18 backbones, offer the best performance, 

achieving an optimal balance of computational efficiency, segmentation 
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accuracy, and stability. The study also provided valuable insights into the 

integration and implementation of deep learning models in soil crack 

quantification systems. 

 

Objective three is to quantify desiccation cracking through image 

processing techniques. In this study, image processing techniques were used to 

effectively measure crack geometrical parameters, which were crucial for 

cracking analysis. Parameters such as surface crack ratio, crack widths, number 

of intersections, number of crack segments, and crack lengths were defined and 

quantified. This effectively proved the feasibility of using image processing 

techniques in desiccation cracking quantification. 

 

The findings confirmed that deep learning provides a breakthrough in 

soil crack analysis. By automating segmentation and quantification, this study 

demonstrated the feasibility of creating a reproducible and scalable image-based 

processing pipeline for expansive soil research. For civil engineering practice, 

the accurate quantification of crack geometry enhances the understanding of 

desiccation mechanisms, which directly affect the study of slope stability, 

foundation performance, and any other expansive soil applications. From an AI 

perspective, the successful application of deep learning models demonstrated in 

this study highlights the value of deep learning integration into the geotechnical 

field. In addition, it also paved the way for future field-based crack recognition 

systems that can operate in real-time.  
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In summary, this study has achieved all objectives and contributed a 

validated workflow for using deep learning-based segmentation and image 

processing techniques in soil desiccation crack recognition and quantification.  

 

5.2 Recommendations for Future Work 

 

 Based on the limitations and results of this study, suggestions for future 

research are proposed. First, further refinement of the deep learning models is 

essential. This includes exploring different deep learning frameworks and 

integrating advanced techniques to enhance recognition accuracy. Further 

research should also address image variability issues by employing techniques 

such as data augmentation and synthetic data generation. These approaches 

could help in training more resilient models with improved generalisation 

capabilities. To broaden the applicability of the models, further studies should 

consider incorporating additional labels, such as different soil types and 

environmental conditions, into the image dataset. This expansion may 

contribute to the development of more robust crack detection models capable of 

performing well across diverse soil types. 

 

For practical implementations, it is crucial to apply these segmentation 

models in real-world field conditions to validate their practicality. The 

development of user-friendly interfaces or mobile applications for on-site crack 

detection and analysis systems is recommended to enhance system accessibility. 

Additionally, optimising models for real-time processing and integrating them 

with automated systems, such as unmanned aerial vehicles, could significantly 
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advance soil monitoring systems. Exploring and comparing more lightweight 

model architectures that strike a balance between accuracy and computational 

demands will also be beneficial in developing efficient real-time applications.  
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1 Appendix B 

Soil Desiccation Original Images from The Experiment 

 

This appendix contains examples of the original, unprocessed crack images 

from the experiment. Each image caption includes the test condition and 

specimen thickness. Only images captured at the end of the final wetting and 

drying cycle for each test condition are shown. 

 

 

(a) W-D Cycle 1 
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(b) W-D Cycle 2 

 

(c) W-D Cycle 3 
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(d) W-D Cycle 4 

Figure B.1: 5mm specimen with test condition 45 ± 2°C, 40 ± 5% RH 

 

 

(a) W-D Cycle 1 
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(b) W-D Cycle 2 

 

(c) W-D Cycle 3 

Figure B.2: 5mm specimen A with test condition 45 ± 2°C, 60 ± 5% RH 
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(a) W-D Cycle 1 

 

(b) W-D Cycle 2 
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(c) W-D Cycle 3 

Figure B.3: 5mm specimen B with test condition 45 ± 2°C, 60 ± 5% RH 

 

 

(a) W-D Cycle 1 
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(b) W-D Cycle 2 

 

(c) W-D Cycle 3 
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(d) W-D Cycle 4 

Figure B.4: 10mm specimen with test condition 45 ± 2°C, 40 ± 5% RH 

 

 

(a) W-D Cycle 1 
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(b) W-D Cycle 2 

 

(c) W-D Cycle 3 

Figure B.5: 10mm specimen A with test condition 45 ± 2°C, 60 ± 5% RH 
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(a) W-D Cycle 1 

 

(b) W-D Cycle 2 
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(c) W-D Cycle 3 

Figure B.6: 10mm specimen B with test condition 45 ± 2°C, 60 ± 5% RH 

 

 

(a) W-D Cycle 1 
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(b) W-D Cycle 2 

 

(c) W-D Cycle 3 

Figure B.7: 10mm specimen A with test condition 55 ± 2°C, 40 ± 5% RH 
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(a) W-D Cycle 1 

 

(b) W-D Cycle 2 
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(c) W-D Cycle 3 

Figure B.8: 10mm specimen B with test condition 55 ± 2°C, 40 ± 5% RH 

 

 

(a) W-D Cycle 1 
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(b) W-D Cycle 2 

 

(c) W-D Cycle 3 

Figure B.9: 10mm specimen A with test condition 105°C, 0 % RH 
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(a) W-D Cycle 1 

 

(b) W-D Cycle 2 
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(c) W-D Cycle 3 

Figure B.10: 10mm specimen B with test condition 105°C, 0 % RH 

 

 

(a) W-D Cycle 1 
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(b) W-D Cycle 2 

 

(c) W-D Cycle 3 



 

 

214 

 

 

(d) W-D Cycle 4 

Figure B.11: 10mm specimen C with test condition 105°C, 0 % RH 

 

 

(a) W-D Cycle 1 
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(b) W-D Cycle 2 

 

(c) W-D Cycle 3 
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(d) W-D Cycle 4 

Figure B.12: 10mm specimen D with test condition 105°C, 0 % RH 

 

 

(a) W-D Cycle 1 
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(b) W-D Cycle 2 

 

(c) W-D Cycle 3 

Figure B.13: 15mm specimen A with test condition 45 ± 2°C, 60 ± 5% RH 
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(a) W-D Cycle 1 

 

(b) W-D Cycle 2 
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(c) W-D Cycle 3 

Figure B.14: 15mm specimen B with test condition 45 ± 2°C, 60 ± 5% RH 


