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ABSTRACT

DEEP LEARNING BASED IMAGE SEGMENTATION FOR
EXPANSIVE SOIL DESICCATION CRACK RECOGNITION AND
QUANTIFICATION

Ling Hui Yean

Expansive soils undergo significant volume changes due to moisture
fluctuations, which lead to desiccation cracks formation that affect soil
properties and engineering performance, compromising the safety of geo-
structures. The analysis of these cracks was essential for mitigating their
impact; however, traditional quantification methods were labour-intensive and
imprecise, highlighting the need for more robust and automated techniques.
This study investigated the feasibility and effectiveness of image-based
techniques using advanced deep learning algorithms to quantify desiccation
cracks in expansive soils. The objectives of the study included designing soil
desiccation experiment setup for desiccation crack image acquisition,
evaluating crack imaging analysis based on deep learning algorithms, and
quantifying desiccation cracks through image processing techniques.
Laboratory experiments were conducted using a custom-built image
acquisition tool to capture crack images under simulated soil desiccation
conditions. Crack images obtained were processed and annotated to produce a
dataset of 820 images for the training and testing of deep learning models.
Deep learning models, including U-Net, Res-UNet, and DeepLabv3+ with pre-

trained backbones such as MobileNetV2, ResNet-18, ResNet-50, and

i



Xception, were trained and evaluated alongside a traditional Otsu’s
thresholding method as the baseline for crack detection and segmentation. The
evaluation considered segmentation performance using evaluation metrics
(precision, recall, F1 score, IoU), computational efficiency, and crack
geometrical parameters quantification (surface crack ratio, crack width, crack
length, and crack segment). Results demonstrated that DeepLabv3+ variants
consistently outperformed other methods, with MobileNetV2 backbone
offering the best balance of computational efficiency, segmentation accuracy,
and robustness across case-wise performance conditions. Compared to
traditional approaches, deep learning models, particularly with DeepLabv3+
variants, produced more reliable crack segmentation masks, thus enabling
more accurate quantification of crack geometrical parameters, as demonstrated
by lower error rates. This study validates the effectiveness of deep learning-
based segmentation methods for automated soil crack recognition and
quantification, contributing to engineering applications with improved

methodologies for analysing desiccation behaviour in expansive soils.

Keywords: Civil engineering, Photographic processing, Quantitative

methods, Automation, Deep Learning
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

Expansive soils are generally characterised by the presence of clay
materials, which exhibit substantial volume changes in response to variations in
moisture content (Jones and Jefferson, 2012). When these soils lose moisture,
significant shrinkage occurs, resulting in the development of desiccation cracks
that form as the soil dries (Nahlawi and Kodikara, 2006). The formation of
extensive desiccation crack networks is attributed to tensile stresses generated
during evaporation exceeding the tensile strength of the soil, particularly when
volumetric shrinkage during drying is restricted (Kodikara and Costa, 2013).
This phenomenon poses a significant challenge in various engineering domains,

especially in geotechnical and geoenvironmental engineering.

In the last few decades, desiccation cracking has been widely studied
to investigate the underlying mechanism, influencing factors, and the effect of
this phenomenon (Corte and Higashi, 1964; Albrecht and Benson, 2001; Costa,
Kodikara and Shannon, 2013; Tang et al., 2021). It has been established that
desiccation cracking significantly affects the hydraulic and mechanical
properties of soils, such as increased soil permeability and water infiltration
capacity, and lower tensile strength after cracking (Morris, Graham and

Williams, 1992; Rayhani, Yanful and Fakher, 2008; Cheng et al., 2021). These



combined effects essentially lead to deteriorated performance of expansive soil
applications, including failures in slope, dam, foundation, clay liner, and

agricultural production (Tang et al., 2021).

With escalating climate change bringing more extreme weather
conditions, the destructive effects of desiccation cracking can be significantly
amplified, making desiccation cracking analysis increasingly important (Zeng
et al., 2019b). Early attempts in quantifying soil desiccation cracks involved
manual measurements, which were intrusive and laborious methods that yielded
inaccurate results (Dasog and Shashidhara, 1993). The turn of the century with
its advancements in computer technology transformed the analysis method to
non-intrusive image analysis techniques. In the image analysis approach, image
segmentation through image processing algorithms was extensively applied to
produce segmented masks with crack networks (Vogel, Hoffmann and Roth,
2005; Tang et al., 2008; Liu et al., 2013; Shit, Bhunia and Maiti, 2015; Lu et al.,
2016; Singh, Rout and Tiwari, 2018; Yang et al., 2022). However, the use of
image processing techniques often requires heavy customisation of the
processing pipeline on a case-by-case basis to produce a satisfactory segmented
crack mask. This limited the practical usage of the method in large-scale
projects with larger image datasets. Therefore, the integration of artificial
intelligence for soil crack quantification, particularly deep learning algorithms,
is an emerging trend that offers a more accurate and automated analysing system

(Han et al., 2022; Xu et al., 2022b; Pham, Ha and Kim, 2023).



In this study, laboratory experiments mimicking natural weathering
conditions were conducted on expansive soils. The desiccation crack networks
formed were collected using image acquisition methods. The collected images
were processed and prepared as datasets for training deep learning-based
segmentation models. Additionally, a series of image processing techniques was
designed and employed on segmented masks to quantify crack geometrical
parameters. The detection performance of various segmentation methods was
evaluated through evaluation metrics scoring systems and error rate

computations.

1.2 Importance of the Study

The study of desiccation cracking in expansive soils is crucial due to
its widespread impact on various engineering and environmental applications.
Desiccation cracks can lead to severe damage in infrastructure, including
buildings, roads, and embankments, due to differential settlement in soils and
structural fatigue (Cheng et al., 2020; Tang et al., 2021). The cyclic swelling
and shrinking of expansive soils worsen the impacts, posing severe safety risks
and maintenance costs to these infrastructures. Moreover, desiccation cracks
alter the soil’s hydraulic properties, which may lead to soil erosion and water
infiltration problems that can turn into serious environmental issues such as
contamination by nutrients and leachates leaching (Bronswijk, 1991; Albrecht

and Benson, 2001; Cheng et al., 2020).



As expansive soils are omnipresence, the development and
implementation of advanced monitoring technologies on desiccation cracking
are essential. Image-based techniques and deep learning algorithms offer a
promising solution for accurate and efficient quantification of desiccation
cracks from small to large scales scenarios. By providing detailed quantification
of crack patterns, the information obtained can enhance understanding of
cracking mechanisms and aid in design and maintenance practices in the

engineering field.

1.3 Problem Statement

Due to the loss of water through evaporation, expansive soils contract
and form desiccation cracks on their surfaces as they dry. In the field of
engineering, desiccation cracking significantly alters soil properties and
compromises structural integrity. The presence of cracks in near-surface soils
degrades their hydraulic and mechanical properties, posing safety issues to
many geo-related structures (Morris, Graham and Williams, 1992; Rayhani,

Yanful and Fakher, 2008; Wang et al., 2018; Cheng et al., 2020).

Numerous experimental techniques have been employed to observe
and describe the soil desiccation cracking process. Various parameters have
been defined to measure and quantify the geometrical characteristics of crack
morphology. Combining these approaches, cracking process could be analysed
both qualitatively and quantitatively (Tang et al., 2021). However, there is still

no standard technique or procedure for soil desiccation testing, making it



difficult to conduct a comparative study or validate certain findings. In addition,
majority of the quantitative studies of concern employed traditional image
processing techniques for crack image analysis, which required extensive
human intervention and effort to quantify the crack network with limited
accuracy (Vogel, Hoffmann and Roth, 2005; Tang et al., 2008; Lu et al., 2016;
Singh, Rout and Tiwari, 2018; Al-Jeznawi, Sanchez and Al-Taie, 2021). The
traditional crack analysing system prompted the need for a more innovative and

automated process for soil desiccation cracking study.

14 Research Questions

In response to the challenges identified in existing methods for
desiccation cracking quantification and analysis, this study aims to address the
following questions:

1. How can a standardised experimental setup be effectively designed to
capture expansive soil crack images for desiccation crack analysis?

2. Can deep learning based segmentation methods accurately and
efficiently recognise desiccation cracks using soil crack images?

3. Can the geometrical characteristics of crack morphology be effectively

quantified through image processing techniques?

1.5 Aim and Objectives

The aim of this research is to explore the feasibility and effectiveness

of image-based techniques in quantifying desiccation cracking behaviour of



expansive soil. The research objectives designated to be fulfilled are outlined
below:
i. To design the experimental setup for desiccation crack image
acquisition.
ii.  To evaluate crack imaging analysis based on deep learning algorithm.

iii.  To quantify desiccation cracking through image processing techniques.

1.6 Scope and Limitation of the Study

This study focused on the application of image-based techniques and
crack imaging analysis, particularly with deep learning algorithms, to quantify
desiccation cracking in expansive soils. The scope includes conducting
laboratory experiments to capture crack patterns, developing, and validating
deep learning models for crack detection and segmentation, applying image
processing techniques for crack geometrical characteristics quantification, and
assessing the accuracy and reliability of these methods. However, the study was
limited to kaolinite clay and controlled laboratory conditions. Simulation of
field conditions and applications, variations in soil types, and real-world
environmental factors imitation were beyond the scope of this research due to
practical constraints. Additionally, the size of the training data and its quality
obtained through the experiments performed constrained and influenced the

effectiveness of the deep learning models in this study.



1.7 Contribution of the Study

This study contributed to the field of engineering, especially
geotechnical and geoenvironmental, by introducing innovative image-based
techniques based on deep learning algorithms for the quantification of
desiccation cracking in expansive soils. The research provided a comprehensive
framework for capturing and analysing crack patterns, offering a more accurate
and efficient method compared to traditional approaches, which are typically
labour-intensive and highly sensitive to noise and lighting variations.

Unlike conventional methods, deep learning algorithms learn to
recognise cracks directly from raw image data, enabling robust detection of
complex crack geometries with minimal human intervention. This breakthrough
addresses the limitations of traditional crack analysis approaches by providing
automated and adaptive solution for soil crack quantification and recognition.

The findings can enhance understanding of desiccation cracking
mechanisms by introducing the use of automated crack analysis process that
potentially leads to the development of standardised techniques for crack
quantification with high accuracy. Besides, the use of deep learning models for
segmenting crack networks with image processing techniques which quantify
important crack parameters such as surface crack ratio and crack width, can be
utilised to develop on-site crack recognition system. This kind of system can aid
in slope analysis to investigate the effect of desiccation cracks on slope collapse
during the rainy season. The integration of deep learning algorithms with image

processing techniques also represented a significant advancement in the



application of artificial intelligence in geo-related research as it provides a

highly automated segmentation pipeline.

1.8 Outline of the Report

The study of deep learning-based image segmentation for expansive
soil desiccation crack recognition and quantification is presented in 5 chapters.
Chapter 1 provided a general introduction to the study, outlined the importance
of the research, the existing problem on the issue, and detailed the aim and
objectives of the research. The scope and limitations, including the contribution
of the study are also highlighted in this chapter. Chapter 2 reviewed existing
literature on expansive soils, desiccation cracking, traditional methods of crack
analysis, and recent advancements in image-based techniques and deep learning
algorithms for soil crack segmentation and detection. Chapter 3 presented the
methodology used for the study, detailing the experimental setup, data
collection methods, segmentation methods used (traditional and deep learning
methods), implementation of the segmentation methods, and image processing
techniques for crack analysis. Chapter 4 presented the findings from the
experiments and analysis. The effectiveness of the traditional and deep learning
models on crack segmentation was discussed under various scenarios. Lastly,
Chapter 5 summarises the key findings with highlights on their implications to
the engineering field. Recommendations for future research and practical

applications are also provided in the last chapter.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Expansive soils present major challenges in geotechnical engineering
due to desiccation cracks that compromise structural integrity. This literature
review presents an overview of the phenomenon of expansive soil desiccation
cracking, including general mechanisms of crack generation, the connection
between expansive soils and crack generation, and the consequences of this
phenomenon. Additionally, key factors influencing cracking behaviour are
examined. The focus of this review is on the quantification studies of soil
desiccation cracks. Traditional image processing methods for detecting soil
cracks are investigated, followed by a review of the integration of machine
learning and deep learning techniques in automated soil desiccation crack

recognition and segmentation.

2.2 Expansive Soil Desiccation Cracking

Expansive soil desiccation cracking is a critical phenomenon with
significant implications for various geotechnical applications, particularly
concerning the stability and integrity of structures constructed on such soil. A
comprehensive understanding of the mechanisms underlying desiccation crack

formation, the relationship between expansive soils and cracking behaviour, the



factors influencing crack development, and the consequences of such a
phenomenon is essential for developing effective soil management and

mitigation strategies.

2.2.1 Soil Desiccation Crack Generation

Desiccation cracking in soil is generated through a series of
interconnected processes, including evaporation, volumetric shrinkage, stress
accumulation, and crack formation (Tang et al., 2021). As water evaporates
from the soil, negative pore pressure develops, creating an attractive force
between soil particles that increases the tensile stresses within the drying soil
matrix. These tensile stresses drive the volumetric shrinkage of soil (Kodikara
and Costa, 2013). Desiccation cracks begin to form when the accumulated
tensile stresses exceed the soil’s tensile strength, as illustrated in Figure 2.1
(Tang et al., 2021). The process begins with the initiation of micro-cracks,
which subsequently propagate and coalesce into larger, visible cracks as drying

progresses (Wang et al., 2018).

s

Figure 2.1: Tensile failure leading to crack initiation (Tang et al., 2021).
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2.2.2  Link Between Expansive Soil and Crack Generation

Expansive soils exhibit substantial volume changes as a result of
changes in moisture levels. These soils swell when water is absorbed and shrink
during drying, with this behaviour primarily driven by the presence of clayey
materials. Clay materials consist of fine-grained particles with a high plasticity
index and a low shrinkage limit. These characteristics cause them to undergo
excessive volume changes with varying water content (Jones and Jefferson,
2012). The volumetric shrinkage of clay materials contributes to the
development of desiccation cracks in expansive soils, as the associated volume
changes induce tensile stresses that lead to crack initiation and propagation

(Morris, Graham and Williams, 1992; Tang et al., 2008; Tang et al., 2011Db).

2.23 Consequences of Desiccation Cracking

The consequences of desiccation cracking in expansive soils are
manifold, impacting the engineering properties of soils, environmental stability,
and the integrity of structures built on or using them. Desiccation cracks
significantly alter the hydraulic properties of soils, increasing their hydraulic
conductivity by several magnitudes, which can lead to issues such as soil
erosion and differential settlement (Albrecht and Benson, 2001; Rayhani,
Yanful and Fakher, 2008). Besides, Cheng et al. (2021) demonstrated that
desiccation cracks enhance water infiltration into the soil, resulting in rapid
moisture loss and increased shrinkage rates during the drying process. This

exacerbates the formation and propagation of cracks, further compromising soil

11



structure and integrity. Additionally, cracking reduces the mechanical strength
and stability of soils, rendering them more vulnerable to deformation and failure

under loads (Morris, Graham and Williams, 1992).

From an environmental perspective, desiccation cracks facilitate water
infiltration and significantly increase hydraulic conductivity, allowing irrigation
water containing nutrients to flow out of the root zone rapidly (Bronswijk, 1991).
This process not only deprives crops of essential nutrients but also increases the
risk of eutrophication in downstream water bodies, such as lakes, due to nutrient
leaching. Additionally, desiccation cracking in clay structures, such as landfill
barriers, creates preferential flow paths for hazardous leachates to escape,

thereby contaminating the surrounding environment (Cheng et al., 2020).

In the engineering field, desiccation cracks pose severe risks to
buildings and infrastructures. The cyclic swelling and shrinking of expansive
soils can lead to differential settlement and structural fatigue, resulting in the
formation of cracks in foundations, structural elements, and pavements (Cheng
et al., 2021). In addition, the increased water retention capacity on slopes due to
the presence of surface cracks promotes soil erosion and reduces soil cohesion.
This combination of detrimental effects compromises slope stability and can

ultimately result in slope failures (Wang et al., 2018).

12



2.3 Factors Influencing Cracking Behaviour

The desiccation cracking behaviour of expansive soils is closely related
to and dependent on the surrounding conditions to which the soil is exposed.
Factors such as temperature, drying and wetting cycles, soil composition and
structure, and boundary conditions significantly influence the initiation and

propagation of cracks.

2.3.1 Temperature

Temperature plays a vital role in the desiccation cracking behaviour of
expansive soils. Tang et al. (2010) investigated the temperature-dependent
behaviour of expansive soils by subjecting clay specimens with an initial water
content of 170 % to drying temperatures of 22 °C, 60 °C, and 105 °C. The main
findings, summarised in Table 2.1, demonstrated that higher temperatures
accelerate the evaporation rate of soil moisture, leading to more extensive
cracking, as indicated by the increased surface crack ratio. Additionally, the
study revealed that cracking begins at higher soil water content when the soil is
exposed to elevated temperatures. Several studies further indicate that the
tensile and structural strength of clayey soils decreases with rising temperature
(Gu et al., 2014; Salimi et al., 2021). This reduction in strength at higher
temperatures reduces the soil’s resistance to tensile stresses, resulting in earlier

crack initiation at higher moisture levels.
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Table 2.1: Desiccation tests under different drying temperatures (Tang et

al., 2010).
Specimen Temperature Initial Surface Cracking
(°O) evaporation  crack ratio  water content

rate (g/min) (%) (%)
S1 22 0.021 13.9 35.7
S2 22 0.022 13.8 40.1
S3 22 0.022 14.2 38.2
S4 60 0.252 17.3 79.1
S5 60 0.255 16.9 74.8
S6 60 0.250 16.9 72.3
S7 105 0.507 23.1 96.1
S8 105 0.501 21.5 87.1
S9 105 0.499 223 89.5

2.3.2  Drying and Wetting Cycles

The cyclical nature of drying and wetting significantly influences crack
formation and behaviour in expansive soils. During drying periods, soils
experience volumetric shrinkage, which leads to crack development. When
wetting occurs, these cracks typically close; however, repeated drying and
wetting cycles often exacerbate crack development. Several studies have

demonstrated that this weathering process intensifies the formation of cracks
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over time (Yesiller et al., 2000; Tang et al., 2011a; Al-Jeznawi, Sanchez and Al-

Taie, 2020).

Yesiller et al. (2000) measured the crack extent using the crack
intensity factor (CIF), which represents the proportion of the crack area relative
to the total soil surface area. Their findings revealed that CIF increased with the
number of drying and wetting cycles, indicating that the crack severity
intensified as the soil underwent repeated cycles. Similarly, in their
investigation of clay soil cracking under drying and wetting cycles, Tang et al.
(2011a) observed that the surface crack ratio (another term for CIF) also
increased with the number of cycles, reaching equilibrium after approximately
three cycles, as shown in Figure 2.2. Additionally, they observed that crack
pattern stabilised after a few drying and wetting cycles, with most cracks

forming in the same locations as in the previous cycles.

Al-Jeznawi, Sanchez and Al-Taie (2020) reported similar stabilisation
of crack patterns, suggesting that desiccation cracks formed during drying
cycles created weak planes in the soil structure. Although wetting cycles may
close these cracks, the weakened bonds at these sites facilitated easier crack
initiation, increased horizontal shrinkage, and promoted the formation of more

microcracks and a higher surface crack ratio.
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Figure 2.2: Surface crack ratio versus number of drying and wetting cycles

(Tang et al., 2011a).

2.3.3  Soil Composition and Structure

The composition and structure of the soil significantly affect its
susceptibility to desiccation cracking. The shrink-swell properties of expansive
soils are strongly influenced by their clay content and mineral composition.
Different types of clay minerals exhibit different water-retention capacities and
expansiveness due to their distinct mineral structures. For instance,
montmorillonite, which is held together by weaker van der Waals forces,
contrasts with kaolinite, where the layers are bonded by stronger hydrogen
bonds. As a result, montmorillonite has a higher water retention capacity and
greater shrink-swell potential, owing to the ease with which its bonds can

separate (Budhu, 2010).

Several studies have demonstrated the effect of soil composition on the

desiccation behaviour of expansive soils (Albrecht and Benson, 2001; Tang et
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al., 2008; Al-Jeznawi, Sanchez and Al-Taie, 2020; Shepidchenko et al., 2020).
Albrecht and Benson (2001) reported higher volumetric shrinkage in specimens
with a higher smectite content, which can be attributed to smectite’s primary
composition of montmorillonite. Tang et al. (2008) made a similar observation
in their study of shrinkage cracks in clayey soils, noting increased CIF and crack
width with a higher plasticity index. In a comparative study, Al-Jeznawi,
Sanchez and Al-Taie (2020) examined kaolinite and bentonite mixtures and
found that mixtures with a higher plasticity index required more wetting and
drying cycles to reach an equilibrium state during desiccation tests compared to
a lower plasticity pure kaolinite mixture. This finding suggests that soils with
higher swelling clay content exhibit greater instability. Similarly, Shepidchenko
et al. (2020) recently investigated the factors controlling desiccation cracks
using montmorillonite, illite, and kaolinite. They observed increased crack
width and earlier crack initiation in samples with higher montmorillonite
content, which possesses the highest shrink-swell potential among the three

minerals.

Aside from soil mineral composition, the initial structural
configuration of the soil particles can significantly influence -cracking
behaviours during the desiccation process. Several studies have demonstrated
that soil samples prepared using slurry and compaction methods exhibit distinct
desiccation cracking behaviours (Corte and Higashi, 1964; Albrecht and Benson,
2001; Cheng et al., 2020). Early experimental investigations by Corte and
Higashi (1964) suggested that compaction densifies the soil structure, reducing

the evaporation rate, resulting in slower crack initiation and propagation in
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compacted soil samples. Similarly, Albrecht and Benson (2001) found that
increased compaction effort decreased volumetric shrinkage strain, indicating
that compaction minimises soil deformation during the desiccation process. In
a more recent study, Cheng et al. (2020) used soils compacted at different water
contents, including on the dry side and wet side of optimum water content,
respectively. They reported that dry-compacted soils exhibited simultaneous
crack initiation across the soil surface, with more uniformly distributed cracks.
In contrast, wet-compacted soils initially developed a primary crack, followed
by secondary cracks much later in the drying process. These findings underscore
the significant role of soil’s initial configuration in determining its desiccation

cracking behaviour.

2.3.4 Boundary Conditions

Boundary conditions, such as geometry, bottom interface, and the
presence of vegetation, significantly influence crack formation. Several studies
have investigated the impact of sample geometry by varying sample area and
thickness (Prat, Ledesma and Lakshmikantha, 2006; Nahlawi and Kodikara,
2006; Tang et al., 2008). Prat, Ledesma and Lakshmikantha (2006) examined
the effect of sample size and found that mean crack width and soil clod area
decreased as the sample area increased. For the effect of soil thickness, Nahlawi
and Kodikara (2006) observed that mean crack width and mean soil clod area
increased with greater sample thickness. They also reported that thicker soil

layers exhibited slower desiccation rates due to the increased distance moisture
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travelled to the surface. Similarly, Tang et al. (2008) reported analogous

observations in their experiments with clay specimens of various thicknesses.

Soils constantly interact with various materials in nature, and these
interactions can significantly influence their desiccation cracking behaviour.
Laboratory experiments have provided evidence of this phenomenon by
introducing different interface frictions through boundary manipulations (El
Hajjar et al., 2019; Zeng et al., 2019a; Al-Jeznawi, Sanchez and Al-Taie, 2021).
El Hajjar et al. (2019) found that kaolinite clays developed cracks under all
interface conditions, ranging from smooth to rough. Zeng et al. (2019a)
observed that cracks propagated faster with increasing interface roughness when
soil thickness remained constant, and the amplitude of this effect decreased with
greater soil thickness. They also reported that increased interface roughness or
reduced soil thickness led to more severe crack formation. Similarly, Al-
Jeznawi, Sanchez and Al-Taie (2021) recorded higher CIF values with greater

bottom interface friction.

In addition to bottom constraints, expansive field soils are often
covered by vegetation, which can act as a boundary constraint. Gao, Zeng and
Shi (2021) explored the effects of vegetation on the stability of red clay slopes
with desiccation cracking during rainfall infiltration. Their findings indicated
that vegetation, particularly with deep tap root system, significantly improved
slope stability by restricting desiccation crack development. On the other hand,
Cheng et al. (2023) studied how soil desiccation cracking behaviour is affected

by varying vegetation densities. They found that vegetated soils exhibited a
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smaller final surface crack ratio and narrower average crack width compared to
non-vegetated soils. Additionally, higher planting densities were associated
with more simultaneous crack initiation, but with finer and thinner crack lines.
This suggests that desiccation cracking can be mitigated to a certain extent by

optimising vegetation density.

2.4 Quantification Studies of Soil Desiccation Crack

Expansive soil desiccation crack analysis has become an increasingly
important area in numerous engineering fields due to its implications on
infrastructures and geotechnical structural safety. This has driven the
development of quantitative approaches for analysing desiccation cracks. Such
analyses use fractal geometry to characterise cracks, providing insights into the
process of fracture formation and its extent. Early manual soil characterisation
methods included wire probes, cement slurry, and dye (El Abedine and
Robinson, 1971; Li et al., 2019; Zhao and Koseki, 2020). Although these
approaches were cost-effective and easily accessible, they often disrupted the
crack pattern and subsequently reduced the accuracy of quantitative

measurements (Liu et al., 2013).

The evolution of computer science and image digitisation in the
twentieth century introduced the field of computer vision, encompassing
subfields such as image analysis and image processing. As this field matured,
many soil crack quantitative studies shifted to non-intrusive image analysis and

image processing techniques (Liu et al., 2013; Shit, Bhunia and Maiti, 2015;
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Singh, Rout and Tiwari, 2017; EI Hajjar et al., 2019; Al-Jeznawi, Sanchez and
Al-Taie, 2020). Image analysis involves extracting information from digital
images through a series of processes, including image acquisition, image
processing, and feature extraction, and then ensembles the information to
perform object recognition (Gonzalez and Woods, 2008). In soil desiccation
crack recognition and quantification, image analysis separates the crack as the
subject of interest, commonly referred to as the foreground, from the non-crack
area, known as the background. This separation facilitated accurate quantitative

characterisation of cracks.

Over the years, researchers have defined various geometrical
parameters to describe the soil crack morphology. The concept of using CIF as
an indicator of the extent of soil surface cracking was first introduced by Miller,
Mi and Yesiller (1998). CIF is defined as the time-variable ratios of the total
crack area at a given time to the soil’s total surface area at initial time (time
zero). To enhance clarity, Tang et al. (2010) proposed an alternative name for
the parameter CIF as surface crack ratio (Rsc). Both CIF and Rsc have since
been widely used in soil crack studies as they help researchers in determining
the correlation between crack intensity and the various factors influencing soil
cracking behaviour (Tang et al., 2010; Tang et al., 2008; Shit, Bhunia and Maiti,
2015; Lu et al., 2016; Bamgbopa, 2016; Singh, Rout and Tiwari, 2018; Zeng et
al., 2019b; Al-Jeznawi, Sanchez and Al-Taie, 2021; Cheng et al., 2021; Yang et

al., 2022).
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In addition to crack extension, other geometry parameters, such as
average crack width, crack length, and clod properties, have been defined to
further describe soil desiccation cracking behaviour. Liu et al. (2013) developed
a software tool called “CIAS”, which stands for Crack Image Analysis System.
The software automatically characterises soil cracks through a pipeline of
operations, including image segmentation, crack recognition, and geometric
parameter measurement. For the software to generate accurate results, input soil
crack images must be captured under well-controlled lighting and angles. CIAS
was specifically designed for soil desiccation crack detection. However, many
related studies still rely heavily on general-purpose image processing programs,
such as ImagelJ, making the quantification analysis tedious, inconsistent, and
lacking automation (Tang et al., 2021). To address these limitations, machine
learning methods are increasingly applied in image segmentation tasks to ensure
better performance and robustness in crack detection (Xu et al., 2022b; Han et

al., 2022; Pham, Ha and Kim, 2023).

2.4.1 Image Acquisition

To perform image analysis, digitised images must first be obtained.
Several acquisition methods and tools have been employed in research to
capture representations of desiccation cracking networks. Commonly used
techniques include digital image correlation (DIC), particle image velocimetry
(PIV), laser instruments, X-ray computed tomography (CT), scanning electron

microscopy (SEM), and cameras (Tang et al., 2021).
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Digital Image Correlation (DIC) is a useful technique for measuring
surface displacement and strain fields. It generates contour maps of
displacement and strain by capturing and calculating pixel deformations
between an initial image (before displacement) and a subsequent image (after
displacement) (Wei et al., 2016). Using DIC, Wei et al. (2016) demonstrated
that expansive soil cracking typically follows three distinct modes, including
opening, sliding, and tearing. The opening mode is the most prevalent, often
occurring alone or in combination with sliding or tearing modes. They also
observed that cracks generally propagate perpendicularly to the direction of
tension, although the presence of shear strains can alter the propagation
direction (Wei et al., 2016). In a comparative study on desiccation cracking
behaviour of kaolinite and montmorillonite clay, El Hajjar et al. (2019) used
DIC to monitor the local strain evolution. Their findings revealed that
montmorillonite exhibited a deformation threshold twice that of kaolinite before
cracking occurred, highlighting the material’s greater resistance to strain-

induced cracking.

Li et al. (2019) introduced tracer particles into fluids and adopted the
particle image velocimetry (PIV) method to track and measure continuous
velocity fields within the fluid. Costa, Kodikara and Shannon (2013) utilised
PIV analysis to study factors affecting clay desiccation cracking, observing the
evolution of tensile strain during shrinkage-induced cracking. Additionally, PIV
has been coupled with DIC for tensile strain analysis on clayey soil,
demonstrating that tensile stress distribution can be used to predict crack

location and propagation in real time (Li et al., 2019). Figure 2.3 shows an
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example of the soil tensile failure process in three stages (rising stress, failure
developing, post-failure stage) and their relative DIC and PIV images at specific
points on the tensile deformation curve (Figure 2.4) to highlight their correlation.
These visualisations help to bridge the relationship between deformation
mechanism and cracking behaviour. While DIC and PIV are highly effective for
deformation analysis, offering precise displacement and strain data, they are less
practical for applications focused on efficiently quantifying crack geometry.
Both methods require high-resolution imaging equipment and consistent
imaging conditions to ensure accuracy. Moreover, DIC and PIV rely on
specialised software for results interpretation, making them computationally

intensive and time-consuming, limiting their feasibility for real-time monitoring

applications.
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Figure 2.3: Soil tensile deformation curve (Li et al., 2019).
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Figure 2.4: DIC and PIV images for different tensile stages at ROI (Li et

al., 2019).

To examine subsurface cracks in soil, researchers have employed
advanced methods like laser technology and X-ray computed tomography (CT).
These non-destructive imaging techniques enable three-dimensional
measurements of crack networks beneath the soil surface. X-ray CT, in
particular, has proven effective in visualising the geometric and volumetric
properties of buried crack networks (Tang et al., 2021). Although these
techniques offer valuable insights for 3D quantitative analysis of crack networks,
they require expensive equipment and involve extensive post-data analysis
efforts. In addition, their reliance on specialised instruments limits their

application primarily to laboratory-scale studies. Consequently, there has been
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a growing trend toward adopting image-based acquisition methods that involve
capturing images of soil crack networks and analysing them for fast and cost-

effective way (Mohan and Poobal, 2018; Munawar et al., 2021).

Among the characterisation methods, a setup involving a digital
camera, a supporting frame, and a light source has emerged as a cost-effective
and efficient solution for image acquisition setup (Wang et al., 2018). The speed
of post-processing is proportional to the resolution of the captured images, with
higher resolution requiring greater computational resources. Traditionally, the
captured images are analysed using image processing techniques, which involve
steps like pre-processing and segmentation to extract crack-related information.
However, in recent years, the rapid advancements in artificial intelligence and
computer vision have led to the increased use of machine learning and deep
learning methods for the recognition and quantification of soil desiccation
cracks. A detailed discussion of traditional image processing techniques and

novel deep learning approaches will follow in the subsequent sections.

2.5 Crack Detection with Traditional Image Processing Technique

Conventionally, image processing plays two major roles in the image
analysis pipeline: image enhancement and image segmentation, which precede
feature extraction and characterisation (Hadjiiski, Samala and Chan, 2021).
Traditional image processing techniques have successfully fulfilled these roles
by performing low-level operations such as noise reduction and contrast

enhancement to optimise image quality, as well as mid-level processes such as
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segmentation, which separates regions of interest from the background
(Gonzalez and Woods, 2008). Inspired by its successful application in medical
imaging analysis, researchers have applied these techniques to crack detection

in soils.

Early examples of soil crack detection using traditional image
processing techniques relied heavily on manual intervention during
characterisation (Vogel, Hoffmann and Roth, 2005; Peng et al., 2006). Vogel,
Hoffmann and Roth (2005), for instance, utilised a variable thresholding method
to segment grey-scale images. Grey-scale images are monochromatic,
consisting solely of light intensity values ranging from black to white, as shown
in Figure 2.5 (Gonzalez and Woods, 2008). In their study, Vogel, Hoffmann and
Roth (2005) set the segmentation threshold value at each location in the image
to 65% of the mean intensity value within a surrounding bounding box of 20 x
20 pixels. Thresholding works by dividing the intensity values of an image into
two distinct groups using a predefined threshold value, effectively separating
the image into a binary format. In a binary image, pixel intensity is represented
as 0 for the background and 1 for the object of interest (Gonzalez and Woods,
2008). However, this approach faced significant limitations. The selection of
the threshold value was subjective and lacked generalisation, resulting in

inconsistent outcomes and limited applicability.
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Figure 2.5: RGB image (left) and intensity image (right) (Gonzalez and

Woods, 2008).

Peng et al. (2006) used Adobe Photoshop’s "Magic Wand” function to
segment crack images and measured the surface crack area using an open-source
software called Scion Imaging. The “Magic Wand” tool selects image areas
based on colour similarity, but this approach often generates noise (pseudo-
cracks) that require manual elimination. As a result, their characterisation
method was highly impractical for larger datasets due to the substantial human

effort involved.

CIAS is a soil quantification system using image processing techniques
by Tang et al. (2008). The system produced binary segmented crack images with
calculated geometrical parameters, including the number of intersections, crack
segments, crack width, crack length, clod area, and surface crack ratio. In their
paper, Tang et al. (2008) conducted tests on low-plasticity clay to explore the
relationships between drying temperature, soil thickness, wet-dry cycles, and
their effects on desiccation cracking behaviour. Building on this foundation

work, the same research group later carried out more detailed investigations into
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individual factors influencing desiccation cracking (Tang et al., 2010; Tang et

al., 2011a; Tang et al., 2011Db).

The image processing techniques used in CIAS and its workflow were
later detailed by Liu et al. (2013). As mentioned previously, CIAS consists of
three primary procedures: image segmentation, crack identification, and
parameter measurement. An iterative clustering-based method was employed to
automatically determine the global threshold value, T, for each image during the
segmentation step. The process begins by selecting an initial threshold value, 7,
which is set to the average grey level of the image. The image is then segmented
into two groups of pixels: white and black. Pixels with grey intensity values
exceeding T are classified as white, whereas those with values below T are
labelled as black. Next, the mean grey intensity values of each group are
calculated, and a new threshold 7 is computed as the average of these two mean
values. This process is repeated iteratively, updating 7 in each iteration until the
difference between consecutive 7 values becomes negligible. The final T
represents the optimal threshold value for the given image. This method, as
described by Gonzalez and Woods (2008), is a standard global thresholding
approach. However, they noted that this technique performs effectively only
when the histogram of the image exhibits a distinct valley between the crest
corresponding to the object and the background. After segmentation, the
resulting image typically contains noise (black spots) and discontinuous crack
lines with white dots as shown in Figure 2.6 (¢). To address these issues, Liu et
al. (2013) proposed the use of closing operation to eliminate the white dots and

using the seed-filling algorithm for black spot removal. Closing is a
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morphological operation that smoothens contours by removing small holes,
filling gaps, and connecting small breaks (Gonzalez and Woods, 2008). Figure
2.6 shows the original colour crack image, after segmentation, and spot removal.
Seed filling algorithm identifies individual regions of interest by starting with a
seed pixel and iteratively adding neighbouring pixels that meet predefined
connectivity or intensity criteria (Yu, He and Xi, 2010). By setting a threshold
value for the area of black spots and white dots, the algorithm identifies and
removes regions that satisfy this condition, resulting in a cleaner image, as

demonstrated in Figure 2.7 (Tang et al., 2008).
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and closing operation for spots removal (Liu et al., 2013).
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Figure 2.7: Spot and noise removal. (a) Original segmented image, and (b)

after seed-filling spot removal method (Tang et al., 2008).

Recent studies have explored the applicability of CIAS quantification
system. Cheng et al. (2020) investigated the effect of compacted soil
microstructure on its cracking behaviour under varying optimum water content.
CIAS was employed to measure crack density (defined as the number of crack
segments per unit area) and surface crack ratio. These parameters revealed that
changes in compaction water content during sample preparation significantly
alter the soil’s microstructural state. Furthermore, the trajectories of surface
crack ratio and crack density increments varied depending on those states. The
same group of researchers conducted another study on the effect of drying and
wetting cycles on soil infiltration capacity (Cheng et al., 2021). They utilised
CIAS to calculate the surface crack ratio and determined that a threshold of 4%
marked the point at which the surface crack ratio begins to drastically affect the
infiltration capacity. Similarly, in an investigation of the dependency of soil
cracking behaviour on relative humidity (RH), Zeng et al. (2022) reported that

crack width increased with higher RH, while total crack length increased with
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lower RH. These findings underscore the utility of CIAS in quantitatively
analysing soil cracking behaviour across various environmental and preparatory

conditions.

Despite its advantages, the CIAS quantification system is not without
limitations. The effectiveness of its global thresholding method heavily relies
on the quality of input images. However, the major downside of this system is
that the input images are highly quality-restricted. For instance, uneven
illumination and noise can result in poorly defined crest-and-valley structures
in the image histogram, rendering the thresholding process ineffective. As a
result, achieving accurate results often requires well-controlled imaging

conditions, which can limit its practical applicability in certain scenarios.

The aforementioned CIAS was mostly automatic in the sense that when
an image was fed to the system, an output was generated through the processing
pipeline with minimal user intervention. Aside from CIAS, most of the existing
quantitative studies relied on open-source image processing software such as
ImagelJ for image segmentation, while others used MATLAB for subsequent
analysis. Image segmentation typically consisted of converting RGB images
into grey-scaled images, then performing segmentation with various
thresholding methods to obtain the binary result (Shit, Bhunia and Maiti, 2015;
Luetal., 2016; Bamgbopa, 2016; Singh, Rout and Tiwari, 2018; El Hajjar et al.,
2019; Al-Jeznawi, Sanchez and Al-Taie, 2021; Yang et al., 2022). In some
instances, image enhancement or post-processing steps were included to

achieve better segmentation of soil cracks, thereby enabling finer geometrical
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parameter measurements (Singh, Rout and Tiwari, 2018; Al-Jeznawi, Sanchez

and Al-Taie, 2021; Yang et al., 2022).

In a demonstration of the use of image processing techniques in image
segmentation, Lu et al. (2016) determined the optimal global threshold value
for each image by using Otsu’s method, implemented in MATLAB via the
"graythresh" function. Otsu’s method identifies the ideal threshold by
maximising the variance between two classes of pixels that represent
foreground and background pixels, respectively (Gonzalez and Woods, 2008).
Among the studies that utilise image processing techniques, only Lu et al. (2016)
specified their binarisation method. This showed the lack of a standardised
thresholding technique, and the choice of binarisation procedure largely
depends on the attributes of the specific image under investigation and the

image processing application or software available.

On the other hand, several studies demonstrated the use of image
processing techniques in pre- or post-processing of binary images to improve
segmentation outcomes. Al-Jeznawi, Sanchez and Al-Taie (2021) applied
rolling ball background subtraction on grey-scaled images to mitigate the effect
of background intensity variations during binarisation. In this case, the rolling-
ball algorithm estimates the background intensity of an image and subtracts it
from the grey-scaled image, resulting in a more uniform background. After
binarisation, the researchers used the “Outline” option in ImageJ to obtain the
crack boundaries by selecting the crack areas as regions of interest. Figure 2.8

shows the image analysis procedures performed with Imagel software.
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Similarly, Yang et al. (2022) adopted homomorphic and Gaussian filter
(smoothing filter) as pre-processing steps prior to binarisation. Homomorphic
filtering adjusts the illumination and reflectance components in an image to
enhance the visibility of lower intensities and sharpened edges (Gonzalez and

Woods, 2008). The Gaussian filter was used for denoising which further

improved the image quality for subsequent processing.

(d)
Figure 2.8: Main analysis processes. (a) Grey-scaled image, (b) after
background subtraction, (¢) binarisation, and (d) outlining

boundaries (Al-Jeznawi, Sanchez and Al-Taie, 2021).

In a study investigating the effects of soil initial properties on its
desiccation behaviour, Singh, Rout and Tiwari (2018) performed grey scaling
and segmentation with ImagelJ software and subsequent crack quantification in
MATLAB. To enhance the quality of the binary image, they applied a closing
operator and median filtering to remove noises that are similar to those
described in CIAS. Median filtering is particularly effective in reducing speckle
noise by substituting the intensity of a pixel with the median intensity value of
its neighbouring pixels (Gonzalez and Woods, 2008). Quantification analysis,
such as the determination of CIF and crack width, was then performed on

MATLAB. Prior to quantification analysis, freehand selection operator was
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used to manually select the cracks within the container to determine the crack

area.

Overall, these studies illustrated the role of image processing
techniques in soil crack detection. However, many of the procedures lack
sufficient specificity, with limited details provided on the methods used.
Moreover, these studies rely heavily on human intervention, requiring
individual processing of images which introduces potential inconsistencies and

subjectivity in the analysis.

2.6 Machine Learning

Machine Learning (ML), as a subfield of Artificial Intelligence (Al),
employs computational algorithms to solve statistical problems by making
predictions based on input data (Issam and Murphy, 2015). Unlike traditional
programming, a machine learning algorithm does not require explicit
instructions to perform a task; instead, it configures its architecture
automatically through iterative analysis of patterns and inferences from data.
This process, often referred to as training, enables the algorithm to make
predictions or decisions with minimal human intervention. The widely
recognised definition of machine learning, attributed to Arthur Samuel,
described it as “a field of study that gives computers the ability to learn without

being explicitly programmed” (Issam and Murphy, 2015; Xin et al., 2018).
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Typically, machine learning is categorised by its approaches during
learning, and the three broad categories are supervised, unsupervised, and
reinforcement learning (Janiesch, Zschech and Heinrich, 2021). Supervised
learning uses a labelled dataset for algorithm training, where the dataset consists
of input data paired with their corresponding output labels (Issam and Murphy,
2015). Whereas unsupervised learning uses unlabelled data and allows the
algorithm to independently identify patterns and correlations within the inputs
(Issam and Murphy, 2015). Unlike these approaches, reinforcement learning
trains the algorithm by enabling it to interact with a given environment and
receive feedback through rewards or penalties. The aim is to optimise
cumulative rewards to achieve a predefined objective. Reinforcement learning
is commonly applied in areas such as gaming, robotic control, and autonomous
systems, where sequential decision-making is essential (Janiesch, Zschech and

Heinrich, 2021).

Due to its remarkable ability to address classification and regression
problems, machine learning has been increasingly utilised in numerous fields,
including image and speech recognition, financial scenario analysis, natural
language processing, and medical diagnosis (Issam and Murphy, 2015; Janiesch,
Zschech and Heinrich, 2021; Xin et al., 2018). Some widely recognised machine
learning algorithms, including linear regression, K-nearest neighbours (KNN),
and support vector machine (SVM), were created to analyse data and make
reasonable predictions (Han et al., 2022). In a surface crack monitoring study,
Zhang et al. (2021) proposed the use of support vector machine (SVM) in

conjunction with F-score feature selection to detect and extract surface cracks
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from unmanned air vehicle (UAV) images. SVM is a powerful machine learning
algorithm and classifier that looks for an optimal hyperplane that divides
observations of different classes from one another by leveraging patterns of
information called features (Pisner and Schnyer, 2020). F-score calculates the
significance of different features and helps in the selection of the most relevant
features that enable more efficient predictions and classifications between
classes (Tao et al., 2013). Zhang et al. (2021) proved their model’s ability to
detect the presence of cracks in the UAV images with an overall accuracy rate
of 89.5%. However, the use of machine learning was restricted to the crack's
existence detection, and the method of segmentation or extraction of cracks was
not described. The advantages of implementing machine learning in this case

are limited as it only classifies images as crack or non-crack images.

Traditional machine learning methods face challenges when
processing raw natural data due to their inability to identify patterns without a
feature extractor. Designing a machine learning system capable of recognising
patterns requires significant domain expertise to create a feature extractor that
pre-processes raw data into formats suitable for the learning subsystem to
analyse and identify the patterns (LeCun, Bengio and Hinton, 2015; Janiesch,
Zschech and Heinrich, 2021). To reduce the dependence on domain expertise,
deep learning was developed, inspired by the functioning of human neurons.
Deep learning employs multiple artificial neural networks to perform
computations on vast amounts of data, enabling automated pattern recognition
without extensive manual feature engineering (LeCun, Bengio and Hinton,

2015).

37



2.7 Deep Learning

Subsequent research into Al technologies led to the emergence of deep
learning (DL), a specialised subset of machine learning. DL is a form of
representation learning that uses artificial neural networks (ANNs) to address
high-dimensional problems through multiple levels of abstraction. The term
“deep” refers to the multi-layered structure of the artificial neural network (Xin
et al., 2018). Mimicking human biological neural networks, ANNs consist of
artificial neurons organised into layers, where each neuron in one layer is
interconnected with every neuron in the next layer through weighted
connections, forming a deep neural network. In representation learning, the
system automatically identifies relevant features from input data for detection
or classification tasks without requiring a manually designed feature extractor.
To achieve multiple levels of abstraction, non-linear modules (layers) are
combined, with each module responsible for transforming the current data

representation into a more abstract level (LeCun, Bengio and Hinton, 2015).

Consider an image with pixel values as an example, the first layer of a
deep learning system may learn to recognise edges at specific positions within
the image. This information is then passed to the second layer, which might
detect patterns formed by these edges, even if their positions are slightly altered.
As the process continues, deeper layers learn to combine these patterns into
larger, more complex structures, representing parts of recognisable objects.
Eventually, the system can detect entire objects based on these hierarchical

combinations (LeCun, Bengio and Hinton, 2015). In deep learning, the system
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identifies patterns from extracted features using a general-purpose learning
technique. By automating the identification of hierarchical representations, deep
learning enables the machine to understand complex patterns in the input
without requiring manually designed feature layers. Among DL, Convolutional
neural networks (CNNs) have emerged as one of the most successful algorithms,
excelling in the recognition and segmentation of objects and regions within

images (LeCun, Bengio and Hinton, 2015; Han et al., 2022).

A comparative analysis of traditional machine learning models, such
as SVM, and deep learning models, such as CNN, demonstrated that deep
learning models have better recognition accuracy in image classification,
particularly when applied to large-scale datasets (Wang, Fan and Wang, 2021).
CNNs are a type of feedforward neural network capable of extracting features
directly from raw data through their convolution structures. These structures
consist of multiple arrays of convolutional layers, making CNNs well-suited for
processing both 2D data, such as images, and 3D data, like videos (LeCun,

Bengio and Hinton, 2015).

In general, CNN architecture comprises three types of layers: a
convolutional layer, followed by a pooling layer, and finally a fully connected
layer (O’Shea and Nash, 2015). The convolutional layer performs feature
extraction from input data using learnable filters and a non-linear activation
function is often used after this. Rectified linear unit (ReLU) is an example of
this activation which introduces non-linearity into the output. Subsequently,

pooling layers are employed to down-sample the spatial dimensions of the input,
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preventing overfitting and computational complexity. After multiple stacks of
convolutional layers, activation units, and pooling operations, the fully
connected layer is positioned at the last layer in a CNN architecture. This layer
maps the output of the preceding layer to an output label (Munawar et al., 2021;
O’Shea and Nash, 2015). An illustration of the combination of these layers to

form a CNN architecture is shown in Figure 2.9.
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Figure 2.9: A simple five-layer CNN classification model (O’Shea and Nash,

2015).

Another example of a convolutional network is illustrated in Figure
2.10, where an image of a Samoyed dog is fed into the network. Each horizontal
rectangle in the row represents a feature map (LeCun, Bengio and Hinton, 2015).
Feature maps are the outputs of convolutional layers, with each map
corresponding to a specific learned feature. These maps are generated by
applying convolutional operations with filters (or kernels). The output indicates

that the class Samoyed has the highest class score based on the detected features,
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allowing the network to classify or predict the image as belonging to the

Samoyed class.
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Figure 2.10: Bottom up following how a CNN classify an image (LeCun,

Bengio and Hinton, 2015).

2.7.1  Soil Crack Detection Using Deep Learning

Recent studies on soil crack detection using deep learning and CNNs
have demonstrated significant success, achieving high efficiency and accuracy
(Xu et al., 2022b; Han et al., 2022; Andrushia et al., 2022; Pham, Ha and Kim,
2023; Xu et al., 2022a; Xu et al., 2024). The application of deep learning on soil
crack recognition was first introduced by Xu et al. (2022a), who utilised a U-
Net convolutional neural network for detecting soil desiccation cracks in
laboratory-acquired images. The proposed U-Net architecture is shown in

Figure 2.11.
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As per its name, U-Net architecture features a symmetrical U-shaped
design, comprising an encoder and a decoder. The encoder, located on the left,
captures features while progressively reducing the spatial dimension of the input
image. The decoder, on the right, restores the image's spatial dimensions and
generates the final segmentation mask, which in this case is a binary mask. The
“Copy” operation shown in Figure 2.11 represents skip connections that transfer
feature maps directly from each encoder layer to its corresponding decoder layer.
These skip connections enhance object localisation by combining the encoder’s

low-level spatial features with the decoder’s high-level information.

The performance of the model was evaluated through comparison of
precision, recall, and Dice scores between U-Net model and traditional
thresholding methods. When assessed against the ground truth, the U-Net model
achieved precision, recall, and Dice scores of 94.38%, 74.43%, 81.13%,
compared to 81.74%, 66.56%, 68.48% for the thresholding method. These
results conclusively demonstrated that deep learning using U-Net significantly

improves the segmentation process in soil crack detection.
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Figure 2.11: U-Net architecture for semantic segmentation of soil

desiccation crack image (Xu et al., 2022a).

Despite the promising performance of the U-Net model, the same
group of researchers identified that the model lacks robustness in handling
images captured under uneven illumination conditions (Xu et al., 2022b). To
address this limitation, Xu et al. (2022b) developed a new soil crack recognition
system called Attention Res-UNet for semantic segmentation of crack networks.
The structure of the Attention Res-UNet incorporates deep Res-UNet
architecture enhanced with attention gates, as shown in Figure 2.12. Deep Res-
UNet shares a structural similarity with conventional U-Net but differs in its
integration of residual connections. The term ‘Res’ in Res-UNet refers to the
residual connection, which allows input information to bypass intermediate
layers and connect directly to their outputs. This design facilitates the effective
training of deeper networks by mitigating the vanishing gradient problem. To
counter the effects of uneven illumination, the researchers introduced an
attention gate in the model. The attention gate selectively emphasises critical

information in the image while filtering out irrelevant responses, thereby
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enhancing segmentation accuracy. This improvement makes Attention Res-
UNet a more robust and effective tool for crack detection under varying

illumination conditions.
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Figure 2.12: Structure of Attention Res-UNet (Xu et al., 2022b).
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The performance of the proposed Attention Res-UNet model was
evaluated against seven other deep learning models designed for semantic
segmentation tasks (Xu et al., 2022b). The segmentation results of all models
are illustrated in Figure 2.13. It is evident that Res-UNet and Attention Res-
UNet produced the most satisfying outcomes based on visual assessment. The
evaluation metrics used to quantitatively evaluate the performance of different
models were precision, recall, and the Jaccard index (or Intersection over Union,
IoU). The Jaccard evaluates the similarity between the predicted positive and
true positive by dividing their intersection by their union. The higher values
indicate better segmentation performance, as they reflect a higher proportion of
correctly identified instances located accurately. From Table 2.2, the Attention
Res-UNet achieved the highest scores in precision and Jaccard index,

outperforming other deep learning models and traditional segmentation
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methods. However, while the inclusion of attention gates improved
segmentation accuracy as illustrated in Figure 2.13 (i) and (k), Table 2.2
suggests that the improvement was minimal. The Res-UNet alone was effective
in mitigating the effects of uneven illumination, indicating that the primary

contribution of the attention gate was relatively subtle in these scenarios.

(a)

Eute

(c) Traditional meth

(d) FCN-8s (e) SegNet (f) U-Net (g) DeepCrack
-|.§ Hnial

(h) Res34-UNet (i) Res-UNet (j) Attention U-Net (k) Attention Res-UNet

Figure 2.13: Final segmentation map of different models (Xu et al., 2022b).
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Table 2.2: Performance of different models under different evaluation

metrics (Xu et al., 2022b).

Models Precision (%) Recall (%) Jaccard (%)
Traditional Method 13.27 47.1 11.51
FCN-8s 56.56 93.44 53.99
SegNet 71.88 79.16 60.32
U-Net 64.19 88.23 58.46
DeepCrack 28.18 83.73 26.61
Res34-UNet 59.53 90.32 55.45
Res-UNet 80.4 77.84 65.6
Attention U-Net 79.16 74 61.73
Attention Res-UNet 81.28 78.15 66.68

In the same year, Han et al. (2022) published a crack detection and
localisation system based on Mask R-CNN. By leveraging transfer learning, a
dataset consisting of 1200 annotated crack images was used to train the model.
Mask R-CNN is a cutting-edge deep learning algorithm designed for both image
segmentation and object detection. Unlike U-Net which generates a semantic
segmentation map where all pixels belonging to the same class are assigned a
class label, Mask R-CNN performs instance segmentation that assigns unique
labels to individual instances within the same class, in addition to the general
class label. The flow structure of the Mask R-CNN model is illustrated in Figure
2.14. In Stage 1, feature maps were extracted from the input images using the
ResNet-50 CNN backbone. A region proposal network (RPN) then scanned the

feature maps to identify rectangular boxes of Regions of Interest (ROIs) that
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potentially contain cracks. The ROIs were then aligned with the feature maps in
the align layer to eliminate spatial misalignments. In Stage 2, the aligned feature
maps were passed through a fully convolutional network (FCN) that
simultaneously generated a segmentation mask and a class label with its

bounding box which indicates the crack location.
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Figure 2.14: Architecture of Mask R-CNN model (Han et al., 2022).

The performance of the proposed Mask R-CNN algorithm was
evaluated by using common DL evaluation metrics which are precision, recall,
and F1 score, achieving 73.3%, 82.8%, and 77.7%, respectively. Additionally,
the authors compared the performance of Mask R-CNN with U-Net under
varying degrees of soil background complexity. An example of detection and
segmentation results for both models is illustrated in Figure 2.15. Under all
tested conditions, Mask R-CNN outperformed U-Net in crack detection,
localisation and segmentation. The authors tested the performance of Mask R-

CNN on solid soil backgrounds (least complex), impure backgrounds
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(containing scratches with slightly uneven soil surface), and complex crack
scenarios (high-density crack networks). It was reported that although the
algorithm provided satisfactory detection in all cases, its accuracy declined as
background complexity increased. Despite this, Mask R-CNN consistently
demonstrated superior performance compared to U-Net in handling complex
crack images. This study highlights the potential of Mask R-CNN as an effective
instance segmentation deep learning algorithm for automated soil desiccation
crack recognition. Its ability to detect and segment individual crack instances in

complex scenarios makes it a robust candidate for soil cracking analysis.

Original Image Mask R-CNN U-Net

]

Figure 2.15: Crack detection results from different models (Han et al.,

(b)

2022).
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In another study, Andrushia et al. (2022) introduced a deep-learning
framework for detecting expansive soil shrinkage cracks by comparing two
customised CNN networks against pre-trained VGG-19 and ResNet-50. Their
dataset consisted of 5,200 field soil crack images and they employed five-fold
cross-validation technique to demonstrate that their customised CNN model
featuring 5 convolutional layers, coupled with 3 ReLUs and 2 fully connected
layers, was able to outperform deeper pre-trained networks like VGG-19 and
ResNet-50 at a precision of 0.957 and recall of 0.980. They also demonstrated
that their best-performing customised CNN model was superior in terms of
precision and recall when compared to traditional methods like the Canny edge
detector and more advanced approaches, including SVM, DCNN, and U-Net.
However, the robustness of the models in this study to variable illumination
remained untested as their images were captured under relatively uniform
lighting. Furthermore, by resizing the dataset to just 64 x 64 pixels, the
experiments may oversimplify crack structures which might cause the
evaluation metrics to not reflect the actual generalisation ability of the models

in real-world scenarios.

Pham, Ha and Kim (2023) conducted a comparative study to evaluate
the efficacy of ground crack detection systems between convolutional neural
networks and image processing techniques. This study evaluated several
popular CNN algorithms, including U-Net, DeepLabv3, LinkNet, and Feature
Pyramid Network (FPN), against Otsu’s segmentation method. The dataset used
for CNN training is composed of images from slope experiments conducted in

laboratory and field crack images from sites of high landslide occurrence. Field
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images are generally complicated due to uncontrollable image acquisition and
uneven surfaces when compared to laboratory-generated images. Results
showed that CNN models significantly outperformed Otsu’s segmentation
method across all evaluation metrics: with higher precision (0.88 — 0.90), recall
(0.87 — 0.92), and F1 score (0.88 — 0.90), while Otsu’s method achieved 0.71,
0.70, and 0.65, respectively. The segmentation maps generated by each
technique are demonstrated in Figure 2.16, which highlights the superior crack
detection capabilities of CNNs, particularly in handling clear test datasets.
Despite their high performance on the test dataset, deep learning models faced
challenges when applied to images with complex backgrounds caused by
shadows. These conditions sometimes led to reduced detection of precision. The
study suggested that further research and optimisation could enhance the
performance of DL models in such scenarios. On the downside, the images used
in the study were mostly captured at oblique angles which distort geometric
relationships, complicating subsequent crack width measurement. This
necessitated field calibration for each image to obtain accurate crack dimensions,

making the process impractical for large datasets.

Original image True crack Otsu’s method

Figure 2.16: Segmentation results from Otsu’s method and CNN models

(Pham, Ha and Kim, 2023).



Xu et al. (2024) introduced U-CrackNet, the first unsupervised
segmentation pipeline for soil-desiccation cracks that fuses simple threshold-
based masks (weak knowledge) with outputs from Meta AI’s Segment Anything
Model (strong knowledge) to automatically generate pseudo-labels for training
a lightweight U-Net (Lite-UNet). They proposed a Multi-Head Perception
(MHP) module which consisted of dilated convolutions at several scales, and a
Multi-Head Perception Attention (MHPA) module to blend low- and high-level
features alongside the pseudo-masks to reap the benefits from both sides. Upon
testing with 12 images at 1000 x 1000 pixel resolution, U-CrackNet delivered a
Jaccard index 24 % higher than a traditional thresholding method and 5 %
higher than Attention Res-UNet, while reducing quantification errors in surface
crack ratio, total crack length, and crack segment count by roughly a factor of
three. Its key strengths lie in the elimination of manual labelling and lightweight
architectures for real-time deployment on resource-limited devices. Despite
eliminating manual annotation, U-CrackNet’s reliance on SAM for pseudo-
label generation incurs substantial GPU memory and runtime overhead, which
might contradict the original intention for lightweight deployment. Moreover,
the model’s performance on more diverse crack morphologies and lighting
conditions remained untested as their dataset was captured under fairly uniform

lighting.

2.8 Summary

Quantifying soil cracks is essential for understanding desiccation

behaviour, as it enables the identification of influencing factors by correlating
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cracking geometrical parameters. Besides understanding the cracking
mechanism, insights into desiccation behaviour are crucial for several
applications. In geotechnical engineering, crack quantification helps in
assessing the stability of slopes, foundations, and embankments, which can be
impacted by soil shrinkage behaviour. Understanding desiccation behaviour can
be practical in agriculture as cracks affect water retention capacity and irrigation
efficiency in soil. In addition, the study of desiccation behaviour is essential in
environmental engineering, such as the use of landfill liners and clay barriers,
where cracks can lead to hazardous leakage. Traditional quantification methods,
such as image processing techniques, have demonstrated limitations in accuracy
and efficiency, particularly when applied to complex datasets. These challenges
emphasise the growing need for advanced crack detection systems. Recent
advancements in deep learning methods have shown significant potential to
address these limitations, offering enhanced precision and efficiency for soil
crack quantification and analysis. A comparison of traditional image processing
and deep learning-based approaches is presented in Table 2.3 to summarise their

respective strengths and limitations in the context of soil crack detection.
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Table 2.3: Critical comparison of traditional vs. deep learning approaches

in soil crack detection.

Aspect Traditional image Deep learning-based
processing approaches
Feature Rely on manual feature Automatically learns
extraction engineering hierarchical features from data
Adaptability Limited and required High adaptability across
fine-tuning for different varying image conditions if
scenarios given sufficient training data
Accuracy Highly sensitive to High segmentation accuracy
image condition (e.g. despite varying conditions
performance drops in
noisy or complex
backgrounds)
Computational  Generally lightweight Required more computational
requirements resources (e.g. GPUs and
datasets for effective training)
Data Limited dependency as High dependency as
dependency features are manually performance improves with
extracted larger (but diversified) datasets
Scalability Limited scalability for Highly scalable once trained

field deployment due to
manual feature

extraction

and can be applied to
automated large-scale crack

detection
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CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter presented the methods and techniques employed to
investigate the feasibility of image-based techniques for quantifying desiccation
cracking behaviour of clayey soil. The objectives were to conduct a soil
desiccation experiment using image-based techniques, to perform image
analysis with deep learning algorithms, and to quantify cracks using image
processing techniques. To fulfil the aim and objectives, the methodology and
workflow were designed as shown in Figure 3.1 and Figure 3.2, and presented

accordingly.

The first two components of the methodology involved materials and
sample preparation, and image acquisition tool setup, which describe the
laboratory experiment setup designed for soil crack measurements. The
subsequent section on data preparation and preprocessing described the
preparation of image datasets for algorithm training and evaluation. The
algorithms used for crack segmentation are outlined in two sections which are
traditional segmentation methods and deep learning segmentation methods. The
procedures and setups for fine-tuning the deep learning models are depicted in

the model training and validation section. The last section presents the
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evaluation of segmentation results and techniques for quantifying crack

geometrical parameters.

( Start )
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| Image acquisition tool setup I

v
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Evaluation and result analysis |

v
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Figure 3.1: Project workflow.
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Figure 3.2: Subprocess for crack detection and segmentation.

3.2 Materials and Sample Preparation

The expansive soil used for the study was kaolin clay in powder form.
Its chemical compositions and properties are presented in Table 3.1. The slurry
state samples used in soil desiccation tests were prepared by mixing the kaolin
clay powder with distilled water. The slurry was prepared at two water content
levels which are 100% and 120%. The 100% water content corresponds to 1.5
times the liquid limit based on previous studies (Tang et al., 2011a; Tang et al.,
2011b). In addition, the 120% water content was introduced to increase
variability in crack morphology. To ensure a homogenous distribution of
moisture, the mixture was allowed to sit for 24 hours before being transferred
to the moulds (Costa, Kodikara and Shannon, 2013). The mould used for the
desiccation tests was glass Petri dishes with a diameter and height of 120 mm

and 20 mm. A total of 14 specimens were prepared with final settled thicknesses
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of 5 mm, 10 mm, and 15 mm. This variation was intended to provide a range of
crack patterns for the crack image dataset used in model training (Nahlawi and
Kodikara, 2006; Tang et al., 2008). An example of a 10 mm thick specimen is

shown in Figure 3.3.

Table 3.1: Kaolin clay chemical compositions and properties.

Chemical Analysis

Aluminum (Al,O3) 32.0-38.0 %
Silica (Si0O2) 47.0-53.0%

Loss on Ignition @ 1025 °C 11.0-14.0 %

Soil Properties

Particle size 2.0 pm — 3.0 pm
Liquid Limit (LL) 66.0 %

Plastic Limit (PL) 36.9 %

Plasticity Index (PI) 29.1%

BSCS Classification MH (highly plastic silt)

57



Figure 3.3: 10 mm thick soil specimen.

33 Image Acquisition Tool Setup

To evaluate the desiccation cracking behaviour of clayey soil, an image
acquisition tool was designed for soil crack measurements during desiccation
tests. The tool setup is illustrated in Figure 3.4, which consists of a humidity
chamber, oven bulbs (Tungsram 300 °C oven bulb 25W El14), a weighing
machine (Weighing GF-10K Industrial Balance IP65 / NEMA4, 10.1 kg x 0.01
g), a humidity and temperature data logger (Multicomp Pro MP780621,+ 0.3 °C
/£3 % RH accuracy, 0.1 °C/0.1 % RH resolution), and a camera (SONY DSC-
WX500). A humidity chamber is a thick glass chamber that restricts the
fluctuation of temperature and humidity inside the chamber by limiting airflow.
The schematic drawing of the chamber is shown in Figure 3.5. Soil desiccation
tests were then carried out using the setup to acquire crack images throughout

the desiccation process.
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Figure 3.4: Schematic drawing for image acquisition tool setup.
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Figure 3.5: Schematic drawing for humidity chamber detailing.
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34 Data Preparation and Preprocessing

Image dataset is a crucial component for the successful development
of deep learning image segmentation model. The dataset used in this project
comprised 255 crack images obtained from laboratory soil desiccation tests that
simulated various field conditions on kaolinite soils using the image acquisition
tool setup in Section 3.3. The original crack images were captured using a 12
MP digital camera under various photographic conditions, including variations

in lighting and locations, which introduced diversity to the dataset.

In the first preparation step, the images were cropped into square
pictures, excluding the mould and circumferential cracks. These square images
were then resized to a uniform resolution of 960 x 960 pixels, as illustrated in
Figure 3.6. From this dataset, 20 pieces at a resolution of 960 x 960 pixels were
selected and designated as the test dataset for evaluating the deep learning

models.

The remaining cropped images were divided into four quadrants, each
with a resolution of 480 x 480 pixels, resulting in a total of 940 image patches.
These patches were then manually inspected and those without cracks were
discarded, as only images containing cracks are useful for the model training
process. An example is demonstrated in Figure 3.7. After filtering, the final
image dataset for deep learning algorithm calibration contained 800 crack

images, each at a resolution of 480 x 480 pixels. Training and validation datasets
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were created by randomly splitting the 800 images at an 80:20 ratio, respectively

(Han et al., 2022).

960 pixels

spoxid 096

Figure 3.6: Original captured image and after cropping and resizing.

’4— 480 pixels ﬂ

’—— 480 pixels ﬂ

Figure 3.7: Divided image patches with non-crack patches discarded.

In this study, supervised learning was employed, where datasets are

associated with their corresponding output labels. For the binary image
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segmentation problem, the labelling of dataset typically involves pixel-wise
classification of image pixels into foreground and background labels,

represented by values of 1 (true) and 0 (false) respectively.

The images were manually annotated using Image Segmenter in
MATLAB. Within the Image Segmenter, flood fill and fill holes operations
were utilised to select and fill the crack regions. Binary masks were then
generated, with crack pixels labelled as 1 (white) and non-crack pixels labelled

as 0 (black). An example of a generated binary mask is shown in Figure 3.8.

During the subsequent preparation of datasets, the binary masks were
converted to ground truth masks by mapping the relevant image pixel values to
their designated class names, in this case foreground and background

respectively.

480 pixels 480 pixels

J
s

480 pixels

)

Figure 3.8: Original image patch (left) and binary mask generated by

Image Segmenter (right).
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The training of deep convolutional neural networks often encounters
the challenge of overfitting, where the network memorises the training dataset
instead of learning to capture the feature representations from the input data
(Shorten and Khoshgoftaar, 2019). This issue results in inferior performance on
new and unseen data. A common cause of overfitting is the lack of a sufficiently
large training dataset. One effective strategy to mitigate this issue is the use of
data augmentation techniques. Data augmentation enhances the dataset by
applying image transformation techniques to create artificial samples from the
original images, thereby promoting dataset diversification (Shorten and

Khoshgoftaar, 2019).

In this study, data augmentation techniques included hue, saturation,
and value (HSV) colour jittering and random 2-D transformation such as scaling,
rotating, reflecting, and translating. Hue is the attribute of colour that
differentiates between colours; saturation represents the purity of the colour,
with higher saturation indicating less white light is mixed with the pure colour;
and value is the brightness of the colour (Solomon and Breckon, 2011). The
HSV colour jittering operation randomly alters the RGB image’s colour by
adjusting saturation, brightness, and contrast, as illustrated in Figure 3.9 (b).
Additionally, 2-D transformations, such as scaling, rotating, vertical and
horizontal flipping, and translating, were applied randomly to the jittered
images. During each training cycle, the model was exposed to images with
different augmentations applied, which helps to prevent overfitting. Examples

of data augmentation are demonstrated in Figure 3.9.
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Figure 3.9: Data augmentation operations. (a) Original image; (b) HSV

colour jittering; (c) Rotation; (d) Vertical flipping

3.5 Traditional Segmentation Method (Otsu’s Method)

The Otsu’s algorithm is a widely used segmentation method that
separates foreground and background pixels in a grey-scale image by
determining an optimal global threshold based on the maximisation of between-
class variance (Gonzalez and Woods, 2008). The computation steps to obtain

the optimal threshold value in Otsu’s algorithm are as follows:

1. Compute the histogram of pixel intensities for the input image.

2. Consider all intensity values from 0 to the maximum value in the
histogram as potential threshold values and iterate through them. Each
threshold separates the pixels into foreground (intensity values greater
than the threshold) and background (intensity values less than or equal
to the threshold) pixels.

3. Compute the variances for the two classes of pixels at each threshold
iteration.

4. Select the optimal threshold value as the one that maximises the
between-class variance.
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To obtain Otsu’s segmented masks, the RGB crack images were first
converted to grey-scale images using MATLAB's ‘im2gray’ function. Next, a
built-in function ‘graythresh’, calculates a global threshold value using Otsu’s
algorithm. The binary mask was then generated by applying global thresholding
on the grey-scale image with the computed threshold value using ‘imbinarize’

function.

3.6 Deep Learning Segmentation Models

The deep learning models used for the segmentation and recognition
of expansive soil desiccation cracks in this study included U-Net, Res-UNet,
and DeepLabv3+. DeepLabv3+ was implemented in four variations based on
different backbone networks. The backbone networks utilised were pre-trained
MobileNetV2, ResNet-18, ResNet-50, and Xception. The architectures for each

model are explained thoroughly in the following sections.

3.6.1 U-Net

The convolutional network U-Net was created specifically for image
segmentation tasks and was first presented by Ronneberger, Fischer and Brox
(2015). Its name derives from its distinctive U-shaped architecture, which
comprises an encoder, a decoder, and a bridge connecting them. The

architecture of U-Net used in this study is illustrated in Figure 3.10.
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The basic building block of U-Net comprises two 3 % 3 convolutional
layers, with each layer followed by a ReLU activation function (Ronneberger,
Fischer and Brox, 2015). This neural unit can be repeated multiple times within
the encoder and decoder, depending on the desired network depth. Typically,
each repetition of the basic unit contributes to one level of depth, with the
encoder and decoder generally having the same levels of depth, resulting in a

symmetrical structure.
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Figure 3.10: U-Net architecture. Height and width of feature map are
denoted on the left of each level, with number of channels on top

of each feature map box.

The encoder, on the left side, functions as a contracting path that
extracts features from the input in a hierarchical manner. At the end of each
encoding level, a 2 x 2 max pooling layer with a stride of 2 is used to reduce the
spatial dimensions of the feature maps by half (downsampling). Concurrently,

the depth of the feature maps is doubled, enabling the network to capture richer
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representations and encode more information. Following the encoding process,
a bridge unit is used to connect the encoder to the decoder. The bridge retains
the encoded information and transfers it to the decoder, which is crucial for

maintaining information flow across the network.

Conversely, the decoder on the right side serves as an expanding path
that reconstructs spatial information to produce the final segmentation output.
Spatial information reconstruction is achieved through upsampling operations
at each decoding level. During upsampling, a 2 x 2 transposed convolution is
used to double the spatial dimensions of the feature maps at each level, while
halving the number of channels. The transposed feature maps are then
concatenated with low-resolution feature maps from the corresponding encoder
level. This concatenation allows the decoder to utilise information from both
paths, facilitating accurate segmentation. The concatenated feature maps are
then processed through the neural unit. This process is repeated until the final
decoding level. In this study, zero-padding was applied to avoid cropping of
feature maps during concatenation to prevent the loss of border pixels during

convolutions in the encoder.

After the final basic block, a 1 X 1 convolution layer with two output
channels is used to reduce the number of channels to match the number of
classes for the binary segmentation task. Finally, a softmax activation function
converts the output into a probability map, indicating the likelihood of each

pixel belonging to the output classes.
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3.6.2 Res-UNet

Res-UNet, also known as Deep Residual U-Net, is a powerful semantic
segmentation model that incorporates residual connections into the U-Net
architecture as proposed by Zhang, Liu and Wang (2018). While it retains the
encoder-bridge-decoder structure of U-Net, it employs different basic building
blocks. Instead of the plain unit used in U-Net, Res-UNet utilises pre-activated
residual units. A typical residual unit contains the same layers as in a plain U-
Net neural unit, but adds an identity mapping operation as shown in Figure 3.11.
This identity mapping helps mitigate the vanishing gradient problem by offering
a direct route for information flow through the network (He et al., 2016a).
Specifically, a residual unit processes input x, produces F(x) through weighted
layers, and generates output of F(x) + x, where the addition of the input x to the
feature maps F(x) constitutes the identity mapping (often referred to as a

residual connection).

weight layer

F(x)

X

weight layer identity

Fix) 4

Figure 3.11: A residual unit (He et al., 2016a).

In addition to identity mappings, Res-UNet employs fully pre-activated
residual units, which have been shown to enhance model performance (He et al.,

2016b). These units incorporate batch normalisation (BN) and ReLU activation
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layers before convolution, a setup that pre-activates the convolution. Batch
normalisation normalises the inputs to each layer, which can improve training
stability and accelerate convergence (Goodfellow, Bengio and Courville, 2016).
He et al. (2016b) demonstrated that this arrangement facilitates optimisation and
results in lower classification errors. Moreover, batch normalisation in pre-
activation also helps to regularise the models. An illustration of a full pre-

activation residual unit is shown in Figure 3.12.

addition

Xpiy

Figure 3.12: Full pre-activation residual unit (He et al., 2016b).

The architecture of Res-UNet used in this study is shown in Figure 3.13.
Like U-Net, Res-UNet features three neural units in both the encoder and
decoder connected by a bridge. However, in Res-UNet, downsampling is
achieved by setting the stride to 2 in the first convolutional layer of each residual
unit in the encoder, rather than using max-pooling as in U-Net. The processes
of upsampling, concatenation, and segmentation output generation follow the

same procedure as in the U-Net architecture.
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3.6.3 DeepLabv3+

First introduced by Chen et al. (2018), DeepLabv3+ is a cutting-edge
semantic segmentation model that leverages the combined strengths of spatial
pyramid pooling and an encoder-decoder structure within deep neural networks.
DeepLabv3+ encodes rich semantic information through its encoder, which
includes a backbone network responsible for feature extraction and pooling
operations, followed by the Atrous Spatial Pyramid Pooling (ASPP) module.
To produce output, a simple decoder path is subsequently employed for
reconstructing detailed object boundaries. The architecture of DeepLabv3+ is

illustrated in Figure 3.14.

The backbone network typically comprises a deep convolutional neural
network designed to extract high-level features for input into the ASPP module.
It also transmits low-level features directly to the decoder path, facilitating their
concatenation with the encoder’s output to obtain more comprehensive
representations. The training and performance of DeepLabv3+ benefit from the
use of pre-trained backbone networks (Das et al., 2021). In this study,
DeepLabv3+ models with four pre-trained CNN backbones, i.e., MobileNetV2,
ResNet-18, ResNet-50, and Xception were evaluated for the task of soil
desiccation crack segmentation. Descriptions of the backbones are provided in

the subsections.
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Figure 3.14: DeepLabv3+ model with an encoder-decoder structure.

The Atrous Spatial Pyramid Pooling (ASPP) module employs a series
of parallel atrous convolutions and pooling operations to capture image
information at multiple scales (Chen et al., 2017). In DeepLabv3+, ASPP
integrates several key components, including atrous convolution, depthwise
separable convolution, and spatial pyramid pooling (Chen et al., 2018). Atrous
convolution is a variant of convolution that increases the receptive field without
significantly raising the computational cost by using a dilated kernel. The kernel

size is adjusted by dilation rate, which determines the spacing between kernel
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weights. The concept of atrous convolution is illustrated in Figure 3.15. The
dilation rate can be interpreted as the stride taken from one weight to another.
For instance, with the rate of 1, the 3 x 3 kernel functions as a standard
convolution. When the rate is increased to 2, the kernel weights are spaced apart,
forming a 5 x 5 kernel with gaps, enabling the convolution to encode denser

contextual information without extra computational effort.

Conv Conv Conv
kernel: 3x3 kernel: 3x3 kernel: 3x3
rate: | rate: 2 rate: 3
Feature map Feature map Feature map

Figure 3.15: Atrous convolution at various atrous rates (Das et al., 2021).

Chen et al. (2018) advanced atrous convolution by combining it with
depthwise separable convolution to create atrous separable convolution.
Depthwise separable convolution significantly reduces the computational cost
of convolutional operations without degrading the model performance. It
achieves this by decomposing the standard convolution into two components:
depthwise convolution and pointwise convolution. Among them, depthwise
convolution processes each input channel separately by applying individual
filters, followed by pointwise convolution with 1 x 1 kernel to combine the
outputs from the depthwise convolution. The number of output channels is

adjusted by increasing the channels in pointwise convolution. Atrous separable
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convolution incorporates atrous convolution kernels within the depthwise

separable convolution framework, as depicted in Figure 3.16.

(2
= L

(a) Depthwise conv. (b) Pointwise conv.

Figure 3.16: Demonstration of atrous separable convolution with a dilation

rate of 2 (Chen et al., 2018).

Spatial Pyramid Pooling (SPP) involves dividing an image into regions
at various scales, performing pooling operations on each region, and
concatenating the results into a fixed-length output, irrespective of the input
image size (Grauman and Darrell, 2005; Lazebnik, Schmid and Ponce, 2006;
He et al., 2015b). ASPP in DeepLabv3+ adopts the SPP concept by using atrous
convolutions with different dilation rates, thereby enabling the network to

capture multi-scale and rich contextual information from larger receptive fields.

In this study, the ASPP module comprised one 1 x 1 convolution, along
with three 3 x 3 parallel convolutions with atrous rates of 6, 12, and 18 with a
downsampling factor of 16. All convolutions featured 256 channels, followed
by a BN layer and a ReLU layer. The image pooling branch as described by
Chen et al. (2018) was omitted because the features extracted by the backbone
networks already encapsulate image-level information. Although atrous

separable convolutions were employed in ASPP, DeepLabv3+ with ResNet
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backbones utilised standard atrous convolution without depthwise separation.
This choice was made to leverage the ResNets’ ability to learn richer feature
representations without compromising efficiency. The results from the four
parallel branches were concatenated to produce the ASPP output with 1024
filters. A subsequent 1 x 1 convolution reduced the number of filters to 256,
followed by batch normalisation and ReLU activation to generate high-level

feature output.

In the decoder path, the spatial dimensions of the encoded feature maps
were initially upsampled by a factor of 4, followed by concatenation with low-
level features from the backbone network, which had been passed through a 1
x 1 convolution for dimensionality reduction. The concatenated features were
then refined through two 3 x 3 convolutional operations and a 1 % 1 convolution
for final channel reduction. Eventually, the spatial dimensions were fully
reconstructed through upsampling with a factor of 4, then finally a softmax

activation was used to produce the final segmentation map.

3.6.3.1 MobileNetV2

MobileNetV2 is a computationally efficient, lightweight neural
network that utilises depthwise separable convolutions. Its primary innovation
lies in the integration of inverted residual blocks with a linear bottleneck
structure as its fundamental building blocks (Sandler et al., 2018). A typical
residual unit features a skip connection at both the input and output of the block,

with a high number of channels at the skip connection compared to the
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convolutional layers in between. Specifically, the number of channels is wide at
the beginning of the block, narrow in the middle, and widens again at the end.
In contrast, inverted residual blocks start with narrow input channels and end
with narrow output channels. This configuration significantly reduces the
number of parameters in the model, thereby enhancing the computational

efficiency.

However, the reduced number of channels resulting from the skip
connections can potentially impair the network performance. To address this
issue, Sandler et al. (2018) introduced the concept of the linear bottleneck which
employs a linear output from the final convolution in the building blocks. The
structure of the basic building block is detailed in Table 3.2 and illustrated in
Figure 3.17. Each block processes an input of size height x width x channel (4
x w x k). Initially, a 1 x 1 convolution with a number of channels determined
by the expansion factor (¢) is applied to expand the channel dimensions to ¢ x k.
This is followed by a 3 x 3 depthwise separable convolution with a stride of s
for feature extraction. ReLU®6 is used to introduce bounded non-linearity with
an upper limit of 6. This capping improves training stability for low-precision
arithmetic, which is often used in resource-constrained devices (Sandler et al.,
2018). Eventually, a 1 x 1 convolution with &’ output channels is applied to
generate the block’s output, which serves as input to the subsequent block.
When the depthwise convolution has a stride of one, the input is combined with

the output of the block through a skip connection.
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Table 3.2: Linear bottleneck residual block structure (Sandler et al., 2018).

Input Operator Output

hxwxk 1 x 1 conv2d, BN, ReLU6 h xw x (tk)
h xw xtk 3 x 3 Depthwise s=s, BN, ReLU6  A/s X w/s x (tk)

h/s X w/s x tk 1 x 1 conv2d, BN Ws xw/s x k’

Add conv 1x1, Linear
\ conv 1x1, Linear ‘ T

f Dwise 3x3,
stride=2, Relu6

Dwise 3x3, Relu6 T

\

Conv 1x1, Relu6

Conv 1x1, Relu6

1
(_-_m%u_;)/ T

Stride=1 block Stride=2 block

Figure 3.17: MobileNetV2 basic building block (Sandler et al., 2018).

The architecture of MobileNetV2 backbone for DeepLabv3+ is
outlined in Table 3.3. As the encoder of DeepLabv3+, MobileNetV2 processes
images with spatial resolution that adheres to a downsampling factor of 16
during feature extraction. The input image was initially processed with a
standard 3 x 3 convolution with a stride of 2 to produce a reduced feature map
with 32 filters. This is followed by a series of building blocks, referred to as
bottleneck operators in the table. The table details the structure in sequence,

where n indicates that the same operator with the same number of output
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channels is repeated by » times. The building block configuration is determined
based on the number of strides, as illustrated in Figure 3.17. Each sequence has
a stride of s for the first block and a stride of 1 for all the subsequent blocks in
the sequence. For example, at the input size of 240% x 16, the first bottleneck
block follows a stride 2 configuration (without skip connection), and the second
block is a stride 1 configuration with input from the first block. Both blocks
have the same output channels of 24. Conversely, in sequences with dimensions
307 x 64 and 302 x 96, although the first bottleneck block has a stride of 1, these
blocks do not include skip connections. As shown in Table 3.3, the
MobileNetV2 backbone produces a 307 x 320 output tensor, which serves as the

input for the ASPP module.

Table 3.3: MobileNetV2 architecture as DeepL.abv3+ backbone.

Input Operator  Expansion Number of Module Stride,
factor, ¢ output repetitions, s
channels, ¢ n

480*x3  Conv2d - 32 1 2
240 x 32 bottleneck 1 16 1 1
240 x 16  bottleneck 6 24 2 2
1202 x 24 bottleneck 6 32 3 2
60% x 32 bottleneck 6 64 4 2
30 x 64  bottleneck 6 96 3 1
302 x 96  bottleneck 6 160 3 1
302 x 160 bottleneck 6 320 1 1
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3.6.3.2 ResNet-18 and ResNet-50

ResNet, or Residual Network, is a groundbreaking neural network
architecture that enabled the training of extremely deep networks without facing
the vanishing gradient problem (He et al., 2016a). This architecture introduced
residual connections, a form of skip connection that bypasses certain layers and
performs identity mapping, as exemplified in the Res-UNet architecture.
ResNet-18 and ResNet-50 are variants of the ResNet architecture, with the
numbers 18 and 50 representing the respective number of layers. Both ResNet-
18 and ResNet-50 have 1 fully connected layer, with ResNet-18 having 17
convolutional layers and ResNet-50 having 49 convolutional layers. When used
as backbones for DeepLabv3+, the fully connected layer is omitted, and the last

convolutional layer is connected to the ASPP module.

The architectures of the residual networks employed are detailed in
Table 3.4. According to the table, the building blocks of ResNet-18 consist of
two 3 x 3 convolutions with specified channels, each followed by a BN and
ReLU activation, with the number of blocks stacked indicated. The residual
connections are implemented as illustrated in Figure 3.11. The ReLU activation
is applied after the identity mapping and addition operation in the last
convolution. ResNet-50 adheres to the same underlying concept but features a
different building block and architecture configuration, as listed in the table.
Notably, the first convolutional layers in conv3 x and conv4 x stages use a

stride of two to achieve downsampling.
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Table 3.4: Architecture of ResNet backbones.

Layer Name  Output size 18-layer 50-layer
convl 240%240 7x7, 64, stride 2
120x120 33 max pool, stride 2
conv2 x 120%x120 3x3,64 5 1x1,64 |
X
3x3,64 3x3,64 (x3
1x1,256 |
conv3_x 60%60 3x3,128 5 1x1,128 ]
X
3x3,128 3x3,128 |x4
1x1,512 |
conv4 x 30%30 3x3,256 [1x1,256
X
3x3,256 3%x3,256 |x6
| 1x1,1024
conv5 x 30x30 3x3,512 5 [1x1,512
X
3%x3,512 3%x3,512 [x3
| 1x1,2048

3.6.3.3 Xception

Extreme Inception, or Xception, is a CNN architecture that enhances
the Inception model by substituting standard convolutions with depthwise
separable convolutions (Chollet, 2017). While the Inception model is known for
its effective use of separate convolutions to capture cross-channel and spatial
correlations independently before concatenating the results, Chollet (2017)
enhanced this approach by employing depthwise separable convolution. This
modification not only aligns with the extreme version of the Inception V3 but

is also significantly easier to model.
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The Xception backbone architecture used in this study is illustrated in
Figure 3.18. The backbone consists of 36 convolutional layers organised into
14 units, with the first and last units lacking residual connections. Each
‘SeparableConv’ layer comprises a 3 X 3 depthwise convolution operation,
followed by a 1 x 1 pointwise convolution operation, with a channel expansion
factor of 1. Batch normalisation is applied after each convolutional layer, as
depicted in the figure. The input image undergoes initial processing through the
entry flow, which uses a downsampling factor of 16. This is followed by eight
middle modules for high-level feature extraction and concludes with the end

flow, which provides the input to the ASPP module.

Entry flow Middle flow End flow
[ 480x480x3input | 30x30x728 30x30x728
feature maps feature maps
| 3x3 Conv,s=2,c=32 |
[ ReLU |
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[ 3x3Conv,s=1,c=64 | SeparableConv, c = 728 1x1 Conv, SeparableConv, c =728
[ ReLU | ReLU s=1, Rell
SeparableConv, ¢ = 728 c=1024 SeparableConv, ¢ = 1024
SeparableConv, c = 128 ReLU [ 33m : li =1 |
Ls . SeparableConv, ¢ = 728 k2 MaXPooiing:s =
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c=128 _ SeparableConv, ¢ = 1536
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feature maps

Figure 3.18: Architecture of Xception backbone. s and ¢ stand for stride

and number of output channels.
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3.7 Model Training and Validation

Training deep neural networks involves a sequence of interconnected
processes aimed at optimising the model’s generalisation ability. The training
process involved the repetition of weights and biases tuning in the network by
passing the training images to it. This section outlines the methodology
employed to train the deep learning algorithms. The MATLAB Deep Learning
Toolbox was used to implement all the deep learning models. Training was

conducted on an Nvidia RTX 3060 GPU with 12 GB of memory.

3.71  Weights and Biases

In a convolutional neural network (CNN), weights and biases are the
fundamental parameters that the network learns during training. Weights are the
parameters associated with the connections between different layers’ neurons
(Goodfellow, Bengio and Courville, 2016). In the context of CNNs, weights are
the filters (also known as kernels) that are applied to the input data. Each filter
moves across the input image, performing a convolution operation to produce
feature maps. These feature maps emphasise different aspects of the input, such
as edges, textures, and other patterns. The values of the weights determine the
strength and orientation of these features, essentially acting as pattern detectors

within the image.

Biases are additional parameters in the neural network that allow the

model to have greater flexibility and to fit the training data more accurately
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(Goodfellow, Bengio and Courville, 2016). Each neuron is associated with a
bias value, which is added to the weighted sum of its inputs prior to the ensuing
activation function. The purpose of the bias is to shift the activation function,
which helps the model to better capture the relationship between input and

output.

In a CNN, the convolution operation involves sliding the filter (weights)
across the input image and calculating the dot product between the filter and its
covered sections of the input. This process is repeated across the entire image,
generating a feature map that represents the specific features detected by the
current filter. The bias is then added to the result of the convolution before

passing it through an activation function, such as ReL U, for nonlinear output.

3.7.2 Initialisation

The training of neural networks aims to optimise the weights and biases
in its layers through iterative processes that converge to an optimal solution.
These parameters critically influence the network’s ability to generalise to new
and unseen data. Proper selection of initial values for weights and biases before
optimisation is crucial, as it enhances convergence speed and stability in
network performance. This practice is known as parameter initialisation

(Goodfellow, Bengio and Courville, 2016).

For the trainable layers in Res-UNet and DeepLabv3+ architectures,

Glorot (also known as Xavier) initialiser was employed for weight initialisation.
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The Glorot initialiser initialises weights from a uniform distribution with a range
where the variance of the weights is inversely proportional to the sum of the
number of input and output units (Glorot and Bengio, 2010). Although
originally designed for a linear activation function, the Glorot initialiser is
effective with ReLU (non-linear activation function) when batch normalisation
is applied (Goodfellow, Bengio and Courville, 2016). Batch normalisation helps
to mitigate issues such as exploding or vanishing gradients, thereby reducing
the impact of the initialisation strategy. Since U-Net architecture lacks a batch
normalisation layer, the He initialiser was used instead (He et al., 2015a). The
He initialiser adjusts the initial weights based on the number of inputs, which is

suitable for ReLU activation.

In this study, transfer learning strategy was employed exclusively for
DeepLabv3+ models, as MATLAB provides pre-trained network packages for
the backbones used in constructing these models. Transfer learning involves
using pre-trained weights, typically trained on large datasets, to initialise the
current network. This approach reduces training effort and improves
performance by leveraging knowledge gained from a larger dataset (Han et al.,
2022). The trainable weights in MobileNetV2, ResNet-18, ResNet-50, and
Xception backbones for DeepLabv3+ were initialised with pre-trained weights
trained on over a million images containing 1000 object categories from
ImageNet. In contrast, biases were initialised to zero to avoid introducing any

bias towards specific output.
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3.7.3 Forward Propagation

As training begins, the input data is propagated through the network in
a feedforward manner. Various operations are applied to the data as it traverses
through convolutional, activation functions, batch normalisation layers,
concatenation operations, pooling layers, and fully connected layers. At each
stage, features and representations are extracted from the input data, capturing
different levels of detail and spatial information. Ultimately, the network learns
to assemble these patterns, enabling it to make predictions based on the learned

representation.

3.74 Loss Function

Loss function is a critical component in the training process, as it
measures the discrepancy between the network’s predictions and ground truth
labels during forward passes (Goodfellow, Bengio and Courville, 2016). Deep
learning algorithms aim to optimise the model by minimising the loss function.
This is achieved by iteratively adjusting the network’s parameters during
training to converge on optimal values that minimise loss. By minimising the
loss function, the network improves its ability to make predictions with minimal

error, thereby enhancing performance and accuracy.

In this study, the focal loss function was used to train all the CNN
algorithms. The selection of this loss function addresses the issue of class

imbalance, which is prevalent in crack detection tasks. In crack image datasets,
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background pixels typically outnumber crack pixels, resulting in a model that is
biased towards the majority class during training (Fu et al., 2022). The focal
loss function modifies the traditional cross-entropy loss function in order to
mitigate class imbalance. It introduces a modulating factor that increases the
emphasis on difficult-to-classify examples, thereby enabling the model to focus
more on learning challenging instances (Lin et al., 2018). The focal loss function

is defined in Equation (1).

FL(p,)=—ec,(1-p,) log(p,) (1)

where p; is the predicted probability, FL(p;) is the focal loss for a given p;, o, is
the balancing weight ranging from 0 to 1, and y is the focusing parameter. A
typical value for y is 2, as it provides an effective focusing factor; however,
values in the range of 0 to 5 can be adaptable based on experimentation (Lin et
al., 2018). In this study, a; and y were set to 0.8 and 2, respectively. This
configuration allows a; to give more weight to the minority class when its value
is greater than 0.5, and y to enhance the down-weighting of majority class

samples.

3.7.5 Backpropagation

The process of calculating the gradient of the loss function in relation
to the network’s parameters is known as backpropagation (Goodfellow, Bengio
and Courville, 2016). During backpropagation, the chain rule of calculus is

applied to propagate errors backwards through the network. Subsequently, an
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optimiser uses these gradients to update the parameters, facilitating the

optimisation of the algorithm.

3.7.6  Parameter Update

Due to the inherently sparse gradient in semantic segmentation task,
the loss function often exhibits non-convex behaviour. In non-convex functions,
the presence of obscure local minima and plateaus can challenge the
convergence of neural networks (Hadinata et al., 2021). To address these
challenges, Kingma and Ba (2015) proposed the Adam (adaptive moment
estimation) optimiser. Adam optimiser works by computing adaptive learning
rates for each parameter separately, enabling the network to effectively navigate
through these obstacles. The formulas for parameter updates using Adam

optimiser are outlined below in their execution order.

g =VFL(6) ©)
mz:ﬂl'mt—l-i_(l_ﬂl)'gz (3)
vo=Bv+(1-5,)- g 4)

mt
e l_ﬂlt (5)
v = 1—[ ; (6)
01+1 = er - Am[ ™)
\e
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where g; denotes the gradient vector at time step ¢, computed as the partial
derivative of the loss function with respect to parameter 6;. m; and v, represent
the updates for first and second moment estimates, with 1 (exponential decay
rate for m;) and £ (exponential decay rate for v;) typically set to 0.9 and 0.999,
respectively. The updates for moment estimates are initially biased and must be
corrected, resulting in bias-corrected moment estimates denoted by 7, and ¥,.
Finally, the parameters are updated as 6,+;, where o is the step size (with a
suggested value of 0.001), and ¢ is a small constant (set to 10®) to prevent
division by zero (Kingma and Ba, 2015; Goodfellow, Bengio and Courville,

2016).

An initial learning rate of 0.0001 was used with the Adam optimiser,
along with a decay factor of 0.1 that was applied at every 15 epochs to reduce
the learning rate throughout the training process. Additionally, L2 regularisation
was employed to mitigate overfitting. L2 regularisation (or ridge regression)
reduces overfitting by adding a penalty to the coefficients (weights) in the loss

function (Murphy, 2012). The L2 regularisation can be written as:

L2 Regularisation = /12 (W) (®)

Loss = Loss + L2 Regularisation &)

L2 regularised original

where 4 is the regularisation factor controlling the strength of the regularisation,

and w; represents the coefficient. This regularisation term is then added to the

original loss function, yielding the regularised loss function shown in Equation
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(9). The regularisation factor was set to 0.0005 based on parameter

experimentation.

3.7.7 Iteration

Considering computational resources, the image batch size was set to
8 per iteration, and all models were trained for a total of 50 epochs. An epoch
equals a complete pass across the entire training dataset. To further mitigate
overfitting, the training data was shuffled at the beginning of each epoch.
Validation was conducted at every 40 iterations using validation dataset to

facilitate hyperparameter tuning and performance monitoring.

3.8 Model Evaluation

This study employed various standards to assess the performance of
deep learning models in the context of expansive soil desiccation crack
segmentation. The evaluation encompasses several categories, including
computational efforts, metric evaluation for a specific CNN, and geometrical

parameters that describe crack networks.

3.8.1 Computational Performance

The evaluation of computational performance was conducted to assess
the efficiency of the segmentation models. The measured aspects included

training time, inference time, frames per second (FPS), and the number of
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parameters. Training time refers to the total duration required to train the deep
learning models using the training dataset; a longer training time indicates
greater usage of computational resources. Inference time denotes the duration
each model takes to process an image and produce a prediction or segmented
mask, calculated by dividing the total inference time by the number of images
processed. FPS measures how many frames per second the model is able to
process during inference, with higher FPS indicating faster processing speed.
The number of parameters represents the total amount of learnable weights and
biases in a model, reflecting its complexity; a higher parameter count typically
requires more computational resources. For real-time applications, lower
inference times and higher FPS are preferred, as they signify faster processing

speed.

3.8.2 Evaluation Metrics

All segmentation methods and models were evaluated using standard
deep learning model evaluation metrics commonly employed in image
segmentation tasks, such as precision, recall, F1 score, and IoU. The pixel-wise
prediction results from the models were categorised into four groups: true
positive (TP), which indicates crack pixels correctly identified; false positive
(FP), where background pixels were incorrectly predicted as crack; true
negative (TN) for correct background predictions; and false negative (FN),
where crack pixels were incorrectly classified. Using these categorised
prediction results, the metrics were computed according to the following

equations:
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TP

Precision = ———— (10)
TP+ FP
Recall = _1r (11
TP+ FN
F1 score = 2% pi’e'Cl.SlO}’l xrecall (12)
precision xrecall
TP
IoU= ———— (13)
TP+ FP+FN

Precision and recall both measure the accuracy of positive predictions.
Precision is defined as the proportion of correct positive predictions out of all
positive predictions made, while recall measures the ratio of correct positive
predictions to all actual positives (Pham, Ha and Kim, 2023). F1 score provides
a single numerical value that summarises the model’s overall performance by
computing the harmonic mean of precision and recall. Lastly, loU quantifies the
overlapping regions between predicted and ground truth masks that assess the

algorithm’s ability to accurately localise the object.

In the context of image segmentation, loU is often regarded as the most
significant metric since it directly reflects how well the generated segmentation
aligns with the true crack network. Precision reflects the model’s ability to avoid
false crack detection while recall demonstrates how sensitive the model is in
ensuring all actual cracks are captured. F1 score balances precision and recall
into a single measure. Altogether, these metrics provided a comprehensive

evaluation of crack segmentation accuracy.
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3.83

Geometrical Parameters

Geometrical parameters are crucial for quantitative analysis of

desiccation cracks, as they support the study of cracking mechanisms,

propagation, and engineering properties (Xu et al., 2022b). In this study, the

accuracy of segmentation models was assessed using key parameters in crack

network analysis. The geometric features were quantified from the

segmentation masks using image processing techniques implemented through

MATLAB’s Image Processing Toolbox. The parameters considered, along with

their algorithmic execution are described below:

1)

2)

Surface crack ratio, Rsc: This parameter measures the ratio of the total
crack area at a given time to the soil’s total surface area at time zero.
Algorithm Execution: The total number of crack pixels (white pixels
representing cracks) along with the total number of pixels in the soil
image were counted. Rsc was computed by dividing the number of crack
pixels by the total number of pixels.

Average crack width, wayg: This parameter represents the mean width of
cracks measured around the medial axis (skeleton) of the crack network.
Algorithm Execution: (a) The Euclidean distance image was obtained by
computing the Euclidean distance transform of the binary image. (b) The
distance image was multiplied by the skeletonised binary image and two
to obtain an image where pixel values represent crack diameters. (c)
Crack widths were extracted by identifying non-zero pixels. (d) Mean

crack width was computed by taking the mean value of the crack widths.
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3)

4)

5)

6)

Maximum crack width, wmax: This parameter denotes the width of the
widest crack measured around the medial axis of cracks. Algorithm
Execution: This process is similar to that for the average crack width,
but instead of calculating the mean, the maximum value of crack widths
was determined.

Number of intersections, Nin:: This parameter counts the number of
points where cracks intersect each other. Algorithm Execution: (a) The
skeletonised image was computed, and mini-branches were pruned with
threshold specified as wmax. (b) The skeleton pixels were iterated by
tracking 8-neighbours in a clockwise direction. Each black-to-white
pixel change was counted as one transition (Liu et al., 2013). (c)
Intersection points were recorded at the pixel point where the number of
transitions is equal to 3.

Number of nodes, Ny: This parameter is the sum of the points where
cracks intersect (intersections) and where cracks terminate (end nodes).
Algorithm Execution: (a) Generate a binary image with only end notes
using MATLAB built-in morphological operation to identify endpoints
on the skeleton. (b) Count the number of end nodes and calculate N, by
adding the end nodes to Nixt.

Number of segments, Nseg: This parameter counts the distinct crack
segments, each running from one node to meet another. The number of
crack segments is the count of distinct crack segments where each
segment runs from one node to meet another one. Algorithm Execution:
(a) MATLAB’s ‘bwlabel’ function was used to identify and assign

different labels to each connected component (segment) in the
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skeletonised image. (b) Nse; was calculated by taking the absolute value
of the subtraction of Ny from the total number of connected components.
7) Total crack length, Lem: This parameter represents the cumulative
length of all individual cracks detected. Algorithm Execution: Compute
Lsum by counting all non-zero elements in the skeletonised binary image.
8) Average crack length, Layg: This parameter denotes the mean length of
all individual cracks detected. Algorithm Execution: Compute Lay by

dividing the Lsum by Ngeg.

After quantifying the geometrical features of the crack network from the
binary masks, the error rates for each parameter between the ground truth and

model predictions were computed by Equation (14).

B |Predicti0n —Ground Truth‘

x100% (14)
Ground Truth

3.84 Recognition Accuracy and Stability
With different methods excelling in different evaluation standards, the
mean and standard deviation are utilised as indicators of accuracy and stability

to determine the best performer across all methods. The formulas for each are

expressed as:

(%) = =5 (15)
n
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(16)

where X represents the mean value, calculated as the sum of terms, x, divided by
number of terms, n, and o denotes the standard deviation. The mean and
standard deviation for each method were computed across all evaluation metrics.
For geometrical parameters, only Rsc, Wavg, Wmax, Nseg, and Lgum are included in
the mean and standard deviation computations. A higher mean in evaluation
metrics indicates better performance, while a lower mean value in geometrical
parameters indicates better performance. A lower standard deviation value

signifies a more stable performance across all standards.

3.9 Summary

In summary, to achieve the stated objectives, laboratory tests were
designed and conducted. Several state-of-the-art deep learning semantic
segmentation models were employed for soil crack segmentation. The
segmentation accuracy of each model was evaluated using standard metrics.
Geometrical parameters that described the crack network were computed

through quantification using image processing techniques.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, a detailed analysis of various crack detection and
segmentation methods applied to soil crack images is presented. The primary
focus is to evaluate the performance of these methods in terms of computational
efficiency, segmentation accuracy, and error rates in the quantification of crack
geometrical characteristics. All the metrics, standards, and parameters used for

the evaluation are defined and explained in Section 3.8.

Section 4.2 presents the image-based soil desiccation tests conducted
with the developed image acquisition tool setup for soil crack measurements.
Section 4.3 consists of computational efficiency analysis for each crack
segmentation method. Section 4.4 examines the overall detection and
segmentation performance on the test dataset for each model using evaluation
metrics. Section 4.5 presents an in-depth analysis of the model’s accuracy in
quantifying geometrical parameters of crack across the test dataset. Section 4.6
delves into the stability of the recognition and quantification performance by
evaluating the models’ performance across all standards. Section 4.7
investigates the case-wise segmentation performance of each model under

various photographic conditions, showcasing the robustness and adaptability of
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the methods. This section provides a comprehension of the strengths and

limitations of each method in handling diverse real-world conditions.

4.2 Image-based Soil Desiccation Test

To obtain a diverse crack image dataset for the training of deep learning
models, the prepared specimens were subjected to soil desiccation tests under
various experimental conditions. A detailed breakdown of the experiment
conditions simulated is provided in Table 4.1. For example, row 2 of the table
indicates that two specimens, each 5 mm thick, were subjected to desiccation
test consisting of three W-D cycles. The test conditions included a temperature

of 45 £ 2 °C and relative humidity (RH) of 60 £ 5 %.

Table 4.1: Test conditions for different specimens.

Number of Final settled Test conditions
specimens thickness  Temperature = Humidity = W-D cycle,
(nos.) (mm) *2°0C) E5%) D (nos)
1 5 45 40 4
2 5 45 60 3
1 10 45 40 4
2 10 45 60 3
2 10 55 40 3
2 10 105 0 3
2 10 105 0 4
2 15 45 60 3
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The experiment was conducted with the setup shown in Figure 4.1. The
setup provided two different experimental conditions, i.e. 45 = 2 °C and 55 +
2 °C. Each setup included a humidity chamber, two or four oven bulbs, a
humidity and temperature data logger, and a camera. The humidity chamber is
a thick glass enclosure with restricted airflow to minimise fluctuations in
temperature and humidity inside the chamber. The oven bulbs regulated the
testing temperatures, with two bulbs maintaining a temperature of 45 + 2 °C
while four bulbs achieved 55 + 2 °C. The camera captured images of the soil
surface crack networks throughout the test, providing the dataset for CNN
algorithm training. The humidity and temperature data logger monitored the
testing conditions throughout the process. The variations in relative humidity
were controlled by placing the chamber in environments with different air
circulation patterns. In rooms with fan airflow or open-air conditions, the
relative humidity (RH) in the chamber remained 40 + 5 %, whereas it was 60 +
5 % in an air-conditioned room or an environment with enclosed air circulation.
For the highest testing temperature of a constant 105 °C, oven drying procedures

were used.

Figure 4.1: Experiment set-up for soil desiccation tests.
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The simulation of desiccating temperatures of 45 £ 2 °C to 55 + °C was
based on several considerations from the literature on Malaysia’s weather. On
top of this is the fact that the highest temperature ever recorded in Malaysia was
40.1 °C in 1998 (Tan et al., 2021). They also found that Malaysia has
experienced a significant warming trend, particularly across Peninsular
Malaysia, indicating an upward shift in average temperatures. Driven by global
warming, recent reports highlighted that heatwaves had led to higher peak
temperatures recorded across the region, sometimes pushing temperatures
beyond 40 °C (Koons, 2024). This evidence justified the use of 45 °C to

simulate real soil desiccation conditions in Malaysia.

The 55 + °C desiccating temperature is chosen to simulate even more
extreme drying conditions that may become more frequent as climate change
progresses. Global warming, coupled with regional phenomena like El Nifio that
bring extreme heatwaves across Southeast Asia, has caused temperatures to
reach hazardous levels (The Star, 2023; Benjamin, 2024). As part of the region,
Malaysia has experienced these extreme heat conditions, which are predicted to
become more frequent due to the accelerating warming trend. The increasing
intensity of heat patterns is likely to impact soil desiccation and cracking in
Malaysia. Thus, the simulation of a higher desiccation temperature of 55 + °C
allows for a more comprehensive understanding of soil cracking behaviour

under projected future conditions.
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In natural environmental cyclic weathering conditions, expansive soils
are subjected to repeated wetting and drying due to precipitation and
evaporation, respectively (Al-Jeznawi, Sanchez and Al-Taie, 2020). To
simulate these effects on expansive soil desiccation cracks, wetting-drying (W-
D) cycles were introduced to the specimens, incorporating repeated wetting and
drying phases throughout the experiment. The preparation of the slurry state
specimen was considered the first wetting phase, while the subsequent
desiccation process constituted the first drying phase. After each drying phase,
the moisture lost during desiccation, measured as the specimen mass loss, was
restored by adding an equivalent mass of distilled water (Tang et al., 2011a).
Rehydrated specimens were allowed to sit for 24 hours during wetting paths.

The drying phases were then conducted using the rehydrated specimens.

4.3 Computational Efficiency Analysis

Computational efficiency is a critical aspect in evaluating
segmentation methods, as it provides insights into selecting the optimal method
based on available resources and application constraints (Alom et al., 2019).
The computational performance of various deep learning models and Otsu’s
method was analysed in terms of the model’s number of parameters, training
time, inference time, and frames per second (FPS). The first two parameters
were not applicable to Otsu’s segmentation method. A test dataset containing
20 images was used to measure the inference time and FPS for each method.

The results are presented in Table 4.2.
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Table 4.2: Computational performance for each segmentation method.

Method Number of Training Total Inference ~ Frames
parameters time (hr) inference time per per

(x10°) time (s) image(s) second

(FPS)

Otsu’s - - 0.33 0.017 60.75
U-Net 7.69 1.67 4.25 0.212 4.71
Res-UNet 8.91 8.34 7.54 0.377 2.65
DeepLabv3+ 6.78 0.88 2.99 0.150 6.68

(MobileNetV2)

DeepLabv3+ 20.61 0.75 2.63 0.132 7.60

(ResNet-18)
DeepLabv3+ 43.98 1.28 4.25 0.213 4.70
(ResNet-50)
DeepLabv3+ 27.64 1.26 4.14 0.207 4.83

(Xception)

In terms of training resources, DeepLabv3+ with ResNet-50 had the
highest number of parameters, exceeding the lowest count from DeepLabv3+
with MobileNetV2 by a factor of 6.5. On the other hand, Res-UNet and
DeepLabv3+ with ResNet-18 exhibited the longest and shortest training times,
at 8.34 hours and 0.75 hours respectively. The number of parameters in a model
generally has a positive correlation with the model’s ability to make accurate
predictions but comes at the expense of increased memory consumption and

operational cost (Alom et al., 2019). The high parameter count in DeepLabv3+
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with ResNet-50 was primarily due to the numerous high-dimensional
convolutional layers and skip connections in its backbone. In contrast, the use
of depthwise separable convolution in DeepLabv3+ with MobileNetV2
backbone resulted in fewer parameters due to the reduced multiplication

operations.

More parameters generally require more memory to store and may
increase computational complexity during training, which potentially leads to
longer training time. However, as shown in Table 4.2, DeepLabv3+ models
(even those with a higher parameter count) all exhibited shorter training times
compared to U-Net and Res-UNet. This is mainly due to the use of pre-trained
backbones, which provided effective weight initialisation and training
regularisation, resulting in faster convergence and improved generalisation
(Gayakwad et al., 2021). Notably, Res-UNet took significantly longer to train
compared to U-Net, despite sharing similar encoder-decoder depth. This
discrepancy is likely attributed to the architectural differences that result in
higher training complexity. In Res-UNet, residual connections and the 1 x 1
convolutions used at the residual branches, while alleviating vanishing gradient
problems, also contribute to additional computational requirements. Each
building block in Res-UNet, equipped with these features, necessitates greater
forward pass and backward gradient computation efforts. Furthermore, unlike
U-Net, Res-UNet employs batch normalisation layers to stabilise activation for
each convolutional layer. Although this improves training stability and
facilitates regularisation, BN layers impose additional memory overhead and

can be computationally costly (Civitelli et al., 2023).
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For inference time analysis, the total inference time to process 20 test
images was recorded, and the inference time per image was calculated by
dividing the total time by 20. It was unsurprising that Otsu’s method had the
shortest inference time, with a substantial discrepancy compared to the deep
learning methods. This is because deep learning models involve complex neural
network architectures with multiple operations, such as convolutions and skip
connections, which require more computational effort for inference compared
to the relatively straightforward computation in Otsu’s algorithm. Res-UNet
exhibited the longest inference time and the lowest FPS among all methods,
which correlates with its high computational complexity during training,

extending to the inference process.

A closer examination of Table 4.1 reveals a consistent trend among the
Deeplabv3+ models: lighter backbones (MobileNetV2 and ResNet-18)
achieved faster inference times and higher FPS, while deeper backbones
(ResNet-50 and Xception) demonstrate moderate inference times and lower
FPS. This suggests that among DeeplLabv3+ models, deeper backbone
architectures tend to perform worse, likely due to their increased computational
complexity. Conversely, despite its lighter architecture, U-Net exhibited
inference time and FPS values comparable to those of the DeepLabv3+ models
with deeper backbones. These results suggest that U-Net did not benefit from
its architecture and model size in terms of inference performance. Overall,

DeepLabv3+ with lighter backbones, including MobileNetV2 and ResNet-18

103



achieved the best inference performance among all the deep learning models,

with ResNet-18 obtaining the fastest inference time and highest FPS.

4.4 Crack Detection and Segmentation Performance

In this section, the crack detection performance for each segmentation
method was analysed using evaluation criteria such as precision, recall, F1
Score, and IoU. The reported metrics are the average values computed over 20
images from the test dataset, thus representing the overall performance of each
model in percentages. The IoU scores pertain specifically to foreground pixels
(cracks) and do not include the mean IoU of both classes. This approach was
chosen because, in binary segmentation tasks such as crack segmentations, the
background pixels often dominate, leading to excessively high classification
accuracy due to their abundance. Therefore, the mean IoU may not accurately

reflect the actual segmentation performance in this context.

Table 4.3 summarises the performance of the different segmentation
methods on these evaluation metrics. The comparison includes the traditional
thresholding method (Otsu’s method) and several deep learning methods (U-
Net, Res-UNet, DeepLabv3+ with various backbone networks). The results
indicate that the traditional thresholding method was significantly outperformed
by deep learning approaches in all metrics except recall, where it exhibited only
minor drawbacks. Res-UNet achieved the highest precision (91.75 %) while
DeepLabv3+ with ResNet-50 excelled in the other metrics, with a recall of

92.30 %, F1 score 0f 91.47 %, and IoU of 84.29 %. These results suggested that
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Res-UNet had the lowest false positive rate, making fewer mistakes when
predicting pixels as cracks. However, DeepLabv3+ with ResNet-50
demonstrated greater sensitivity in detecting cracks, effectively identifying
most actual cracks and achieving an excellent balance between precision and
recall, as shown by its high F1 score. The highest loU from DeepLabv3+ with
ResNet-50 further underscores its reliability in accurately identifying crack

regions, with strong overlap between predicted and actual crack regions.

Table 4.3: Segmentation performance on evaluation metrics.

Method Precision (%) Recall (%)  F1 score (%) IoU (%)

Otsu’s 13.31 83.11 22.94 12.96
U-Net 60.59 84.07 70.43 54.36
Res-UNet 91.75 86.94 89.28 80.64
DeepLabv3+ 91.05 90.93 90.99 83.47
(MobileNetV2)
DeepLabv3+ 91.21 91.37 91.29 83.97

(ResNet-18)
DeepLabv3+ 90.66 92.30 91.47 84.29
(ResNet-50)
DeepLabv3+ 90.49 91.09 90.78 83.13

(Xception)

To provide a clearer overview of the performances, a visual
comparison of the metrics for the segmentation methods is illustrated in Figure

4.2. The chart illustrates that, in terms of precision, F1 score, and IoU, Otsu’s
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method exhibits notably poorer performance compared to all deep learning
approaches, with 47 % lower in precision and F1 score than U-Net, and 41 %
lower in IoU than U-Net. In contrast, all methods achieved satisfactory results
for recall, with an increasing trend from Otsu’s method (83.11 %) to U-Net

(84.07 %), Res-UNet (86.94 %), and DeepLabv3+ models (all exceeding 90 %).
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Figure 4.2: Metrics performance across different segmentation methods.

Otsu’s method demonstrated a high recall of 83.11 %, indicating its
ability to detect a significant portion of actual cracks. However, this high recall
was accompanied by low precision (13.31 %) and low IoU (12.96 %). These
metrics suggested that Otsu’s method tended to overly identify pixels as cracks,
resulting in a high false positive rate compared to actual crack instances. The

method’s tendency to make substantial positive inferences increased the
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likelihood of true positive predictions and reduced the number of false negatives
(cracks identified as background), thus leading to a high recall value. However,
this approach diminished segmentation accuracy, as evidenced by the lower

precision and IoU due to the increased number of false positives.

A closer examination of the metrics presented in Table 4.3 and Figure
4.2 reveals that among the deep learning methods, U-Net demonstrated
moderate performance relative to the other models. U-Net achieved a precision
0f60.59 % and an IoU of 54.36%, indicating its capability to recognise the crack
detection tasks. Figure 4.3 provides an example of a segmentation mask
generated by U-Net. It shows that while U-Net is effective at outlining the
general crack network, it struggles to generalise effectively when the soil

background has a slightly rougher texture, resulting in increased noise.

960 pixels 960 pixels

960 pixels

Figure 4.3: Original image (left) and U-Net segmentation mask (right).

The inclusion of residual connections and batch normalisation in Res-
UNet led to significant improvements over U-Net model, with enhancements in
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precision (31.16 % higher), F1 score (18.85 % higher), and ToU (26.28 %
higher). However, as shown in section 4.3, these additional connections and
batch normalisation layers considerably increased the computational
complexity. In terms of precision, DeeplLabv3+ models performed similarly to
Res-UNet, with Res-UNet exceeding DeepLabv3+ by just 0.54 % to 1.26 %.
For recall, the DeepLabv3+ models, with MobileNetV2 backbone achieving
90.93% and ResNet-50 backbone achieving 92.30%, outperformed Res-UNet
(86.94%) by 3.99% and 5.36% respectively. Additionally, DeepLabv3+ models
achieved IoU scores with percentage increases ranging from 2.49 % to 3.65 %
over Res-UNet. Thus, it can be concluded that the overall performance of
DeepLabv3+ models, irrespective of the chosen backbone networks, is superior

among the segmentation methods evaluated.

Among the DeepLabv3+ models, it is observed that lighter backbones
produced predictions with slightly better precision, with ResNet-18 (91.21 %)
outperforming MobileNetV2 (91.05 %). All models demonstrated similar
performance in terms of recall, with ResNet-50 leading, followed closely by
ResNet-18, Xception, and MobileNetV2. Regarding loU, ResNet-50 surpassed
ResNet-18 by 0.32 %, MobileNetV2 by 0.82 %, and Xception by 1.16 %
indicating its superior performance over lighter backbones. This suggests that
deeper and more complex architectures can capture finer details in crack

segmentation tasks.

Besides, it is evident that models equipped with standard convolutions,

such as ResNet-18 and ResNet-50, outperformed those with depthwise
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separable convolutions, including MobileNetV2 and Xception, in soil crack
segmentation. Between MobileNetV2 and Xception, it is obvious that using
depthwise separable convolution in the inverted residual building block with the
linear bottleneck in MobileNetV2 is preferable to the approach used in
Xception’s residual blocks. MobileNetV2 demonstrated a significantly lower
number of parameters and higher computational efficiency, while still achieving

satisfactory overall segmentation performance.

In summary, DeepLabv3+ with ResNet-50 achieved the best
segmentation accuracy according to its performance across evaluation metrics,
though it required substantial computational resources. Among the lighter
backbones, MobileNetV2 proved to be an excellent choice for applications with
limited computing capacity, whereas ResNet-18 offered marginal

improvements in segmentation accuracy with greater resources.

4.5 Crack Geometrical Characteristics Quantification Analysis

The quantification of geometrical features of the crack networks was
conducted using the parameters defined in Section 3.8.3. The predicted masks
generated through various segmentation methods were analysed, and the error
rates against ground truth masks were computed. The average error percentages
over 20 test images for each geometrical parameter and each method are

presented in Table 4.4.
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From the table, it is evident that traditional Otsu’s segmentation
method exhibited the highest error rates across all parameters, except for
parameters like Nint, Ny, and Ngeg. For Nint, Ny, and Nseg, U-Net performed the
poorest, with errors of 50,023.13 %, 10,155.59 %, and 15,326.07 % respectively.
The second-highest error rates were associated with Otsu’s method with
23,474.74 %, 5,713.71 %, and 10,084.64 % error rates respectively. Among the
deep learning methods, U-Net showed moderate performance across all
parameters compared to the other methods, with particularly high errors in Njns,
Ni, and Nseg. The integration of residual connections in Res-UNet led to a
significant improvement in performance compared to U-Net, with substantially
lower errors across all parameters. Notable improvements were observed in the
accuracy of the number of intersections (approximately 14.2 times better),
nodes (15.5 times better), crack segments (16.3 times better), and total crack

length (12.7 times better) compared to U-Net.

The table indicates that all DeepLabv3+ variants exhibited
significantly lower error rates in all parameters compared to Otsu’s method and
U-Net. The DeepLabv3+ variants also showed marked improvements in Nix,
N, Nseg, and Lsum. Among the DeepLabv3+ models, the MobileNetV2 variant
achieved the highest performance, with improvements of 66.4 times in Nin, 15.3
times in Ny, 29.3 times in Ngeg, and 3.7 times in Lgm compared to Res-UNet.
Conversely, DeepLabv3+ with ResNet-18 demonstrated the best performance
in terms of surface crack ratio (7.04 %), average crack ratio (8.07 %), and
maximum crack width (9.93 %). Other DeepLabv3+ variants also performed

closely on these parameters, with ResNet-50 variant coming in second, followed
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by MobileNetV2 and Xception. A closer inspection revealed that Xception
variant had slightly higher error rates than the other DeepLabv3+ variants across

all parameters, but still outperformed Otsu’s, U-Net, and Res-UNet methods.

The results indicate that traditional methods, such as Otsu’s global
thresholding segmentation method, are inadequate for the segmentation of soil
crack networks due to their high error rates in geometrical parameter
quantification. In contrast, deep learning methods, especially DeepLabv3+
models, demonstrated superior performance in handling complex soil crack
segmentation tasks, with significantly lower error rates compared to traditional

methods.

Despite having substantially lower error rates in surface crack ratio and
crack width computation compared to traditional methods, U-Net still showed
considerable errors in detecting crack segments, as shown by its high error of
15,326.07 % in Nseg. This may be attributed largely to the noise present in its
segmentation results, as illustrated in Figure 4.3. Conversely, the residual
connections and batch normalisation in Res-UNet successfully enhanced the
accuracy of the model close to a competitive level with DeepLabv3+ models,
though its performance was limited to surface crack ratio (9.93 %) and crack
width detection (around 14 % for wayg and wmax). The high error rates in the
number of intersections (3,300.71 %), nodes (614.84 %), and crack segments
(886.16 %) suggest that Res-UNet is less effective in preserving the
connectivity of the crack networks compared to DeepLabv3+ with error rates

lower than 100 % in Nieg.
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Among the deep learning methods, DeepLabv3+ with MobileNetV2
can be considered the most accurate due to its consistently low error rates across
all parameters. Coupled with its computational efficiency, the model is well-
suited for real-time and resource-constrained applications, providing
satisfactory segmentation performance. The ResNet-18 variant offers another
reliable option for soil crack segmentation tasks, with strong performance in

surface crack ratio and crack width quantifications.
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4.6 Accuracy and Stability of Recognition Performance

The accuracy and stability of recognition and quantification
performance for different segmentation methods were evaluated using mean
values (¥) and standard deviations (o) for evaluation metrics and geometrical

parameter errors. The results are presented in Table 4.5.

Table 4.5: Accuracy and stability of each method across various standards.

Methods Evaluation Metrics Geometrical Parameters
X (%) c (%) X (%) c (%)

Otsu’s 33.08 29.16 2493.42 3806.28

U-Net 67.36 11.22 3129.27 6098.76
Res-UNet 87.15 4.13 187.77 349.20

DeepLabv3+ 89.11 3.26 12.01 8.95
(MobileNetV2)

DeepLabv3+ 89.46 3.17 16.25 18.30

(ResNet-18)
DeepLabv3+ 89.68 3.17 15.55 16.20
(ResNet-50)
DeepLabv3+ 88.87 3.32 20.55 25.15

(Xception)

The evaluation metrics, which include precision, recall, F1 score, and
IoU, reflect the accuracy of detection and segmentation. The traditional Otsu’s

segmentation method exhibited the lowest mean value (33.08%) and the highest
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standard deviation (29.16%) in this category, indicating poor performance and
high variability in crack detection. U-Net achieved a mean value of 67.36% with
a standard deviation of 11.22%, representing a significant improvement over
Otsu’s method but still lacking behind other deep learning methods.
DeepLabv3+ with ResNet-50 had the highest mean value at 89.68%, closely
followed by ResNet-18 variant at 89.46%, both achieving the lowest standard
deviation of 3.17%. This suggests the most excellent and consistent
performance among all methods. DeepLabv3+ with MobileNetV2 and Xception
also demonstrated comparable performance at both metrics against the ResNets

variants, indicating consistently high performance among DeepLabv3+ models.

Regarding the quantification of crack geometrical parameters, U-Net
was the poorest performer, with an exceptionally high mean value of 3,129.27%
and a standard deviation of 6,098.76%, indicating significant inaccuracies and
variability in geometrical quantification. Otsu’s method was the second poorest
performer, with a similarly high mean value and standard deviation for
quantification errors. In contrast, Res-UNet, with its more advanced architecture,
demonstrated significant improvement, with mean value and standard deviation
reduced to 187.77% and 349.20%, respectively. The results indicate that
DeepLabv3+ variants outperformed the other methods, showing superior
performance in both mean value and standard deviation compared to Res-UNet,
where DeepLabv3+ achieved 11 times and 20 times lower mean and standard
deviation respectively. Among the DeepLabv3+ models, MobileNetV2

backbone achieved the lowest mean error of 12.01% and standard deviation of

115



8.95%, which were considerably lower than those of other variants, indicating

exceptional accuracy and stability in crack network quantification.

The analysis of mean values and standard deviations underscores the
superiority of deep learning-based models, particularly the DeepLabv3+
variants, over traditional segmentation methods in crack recognition and
quantification. DeepLabv3+ models demonstrated remarkable stability and
reliability in both recognition and quantification tasks, with higher accuracy and
lower variability across various standards. Overall, DeepLabv3+ with
MobileNetV2 is suggested as the best model due to its superior performance in
geometrical parameter quantification and sufficiently high accuracy in

evaluation metrics.

4.7 Case-wise Segmentation Performance

To further investigate the effectiveness and accuracy of the
segmentation methods, the detection performance on images under various
conditions was examined. The segmentation performances for each condition
are presented in the following subsections, with the segmented masks generated
by different methods illustrated. Cases A to H represent eight distinct crack
image conditions, characterised by variations in the clarity of crack networks

and edges, illuminations, image exposures, and other factors.
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4.7.1 Case A: Standard Crack Network with Clear Definition

Case A represents a simple condition where the image features a crack
network with distinct lines and edges under standard illumination and exposure
settings. Figure 4.4 illustrates the image along with the corresponding masks
generated by various segmentation methods, and their segmentation
performance is summarised in Table 4.6. Visual observation of the segmented
masks in Figure 4.4 indicates that all methods performed well under these
conditions as the detected crack networks were sufficiently close to the ground
truth. However, some noises, in the form of white speckles, are visible in the
masks generated by U-Net and Otsu’s method, with U-Net exhibiting a higher
number of noises. The masks generated by Res-UNet and DeepLabv3+ variants
closely match the ground truth, suggesting better segmentation capability under

standard conditions.

From the top half of Table 4.6 it is evident that DeepLabv3+ with
ResNet-18 achieved the highest precision (96.84 %), followed closely by Res-
UNet (95.34 %) and DeepLabv3+ with MobileNetV2 (95.55 %). In terms of the
ability to identify all relevant instances, DeepLabv3+ with ResNet-50 achieved
the highest recall (97.02 %). Res-UNet and the DeepLabv3+ variants
demonstrated a good balance between precision and recall, as indicated by their
high F1 scores. Among the deep learning methods, IoU was the highest for Res-
UNet (92.45 %), with DeepLabv3+ variants also performing well, all exceeding
91 %, reflecting a good overlap with the ground truth. Notably, Otsu’s method

exhibited superior performance by achieving the highest F1 score and IoU
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among all methods. Its performance metrics surpassed U-Net by 16.5 % in
precision, 11 % in F1 score, and 18.6 % in IoU. U-Net is the poorest performer

across all evaluation metrics.

Image

" (960 x 960 pixels) Ground Truth v Otsu’s

Res-UNet o DLv3+ (MobileNetV2 .

I | b |
DLv3+ (ResNet-18 DLv3+ (ResNet-50 DLv3+ (Xception
rg}w '51‘ 751‘
, pd | /| pd

Figure 4.4: Segmentation visualisation for Case A.

The bottom half of the table presents the geometrical parameter error
rates for the case. DeepLabv3+ with MobileNetV2 exhibited the lowest error in
surface crack ratio detection (0.23 %), followed closely by the other methods.

Conversely, Otsu’s method and DeepLabv3+ with ResNet-18 led in wayg, with
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the latter having a 0.5 % higher error than the former. The remaining methods
also showed low errors in wavg, ranging from 2.78 % to 3.79 %. U-Net was the
worst performer in Rsc (16.08 %) and wayg (32.71 %) with considerably higher
errors compared to the other methods. For maximum crack width (Wmax), all
methods performed excellently, with the highest error capped at 3.61 %.
Notably, U-Net and DeepLabv3+ with ResNet-50 achieved zero errors.
DeepLabv3+ variants excelled in detecting the Niy, Nn, and Ngeg, with zero
errors, indicating precise detection of connectivity in the crack network. Res-
UNet came second with errors ranging from 6 % to 20 % errors, followed by
Otsu’s at 36 % to 80 %, and U-Net with soaring errors ranging from 3,500 % to
15,000 %. For crack length, Otsu’s method had the lowest error in identifying
total crack length, while DeepLabv3+ with ResNet-50 showed the lowest error
in average crack length. All deep learning models performed well with low
errors in both Lsum and Layvg except for U-Net, which exhibited nearly 100 %

CITOrS.

The results from Case A illustrate that deep learning methods,
particularly those based on DeepLabv3+ architecture, outperformed traditional
methods and simpler CNN like U-Net in segmenting crack networks under
standard conditions. Despite having relatively low error rates across parameters
such as Rsc, Wavg, Wmax, and Lsum, Otsu’s segmentation method is unsuitable for
precise crack network recognition due to poor performance in identifying crack
segments. Accurate identification of crack segments is important as it reflects
the stage of soil disintegration; a higher number of crack segments usually

indicates a more weathered and fragmented soil structure with reduced stability
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(Tang et al., 2008). For this reason, Res-UNet is less effective compared to the
DeepLabv3+ variants, which correctly identified the number of crack segments.
The significant errors exhibited by U-Net may be attributed to extensive noise
in its segmented mask, highlighting its limitation for complex segmentation
tasks such as soil crack network recognition. DeepLabv3+ models, especially
those with ResNet-18 and MobileNetV2 backbones, proved to be the most
effective segmentation method for Case A, demonstrating high accuracy across
all measured standards and low error rates in geometrical parameter
computation, underscoring their robustness in handling the soil crack

segmentation task.
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4.7.2  Case B: Overexposure with Excessive Illumination

This case exemplifies a scenario involving overexposure issues,
specifically excessive illumination on the soil surface. Figure 4.5 illustrates the
image of Case B along with the segmentation masks generated by various
methods. Visual inspection of these masks reveals that traditional method
performs adequately in recognising the general crack network, albeit with some
noise (present as white speckles). It can be concluded that overexposure did not
significantly impact the performance of the simple Otsu’s global thresholding
segmentation. Conversely, while all the deep learning methods effectively
generalise the crack network with minimal noise, U-Net model exhibited a
notable increase in noise under overexposure conditions compared to the

standard condition observed in Case A.

Res-UNet model, which incorporates residual connections and batch
normalisation, substantially moderated the noise issue but did not perform as
well as the DeepLabv3+ variants, which contained some non-crack speckles in
the central region. Among the DeepLabv3+ models, those with ResNet-18 and
ResNet-50 backbones showed superior alignment with the ground truth, with
ResNet-50 performing the best. The crack network generated by DeepLabv3+
with ResNet-50 backbone exhibited improved connectivity and more effective

preservation of the connections and intersections between crack lines.

122



Image
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Figure 4.5: Segmentation visualisation for Case B.

Table 4.7 summarises the segmentation performance of various
methods under the Case B condition. The results, as depicted in the table, are
consistent with the visual observations previously described, with DeepLabv3+
variants outperforming other methods and U-Net ranking lowest. Specifically,
DeepLabv3+ with Xception achieved the highest precision at 93.75 %, followed
closely by other DeepLabv3+ variants, demonstrating the architecture’s
superior capability in identifying relevant crack pixels despite overexposure. In

terms of recall, DeepLabv3+ with ResNet-50 led with 93.60 %, while other
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methods fell behind, with percentage differences ranging from 3.2 % (ResNet-
18) to 6.63 % (U-Net). The performance in the F1 score was similar to recall
results, with DeepLabv3+ with ResNet-50 leading with a score of 93.25 %,
while U-Net was the poorest performer with a score of 74.96 %. Additionally,
DeepLabv3+ with ResNet-50 demonstrated the best overlap with ground truth
under overexposure conditions, achieving an IoU of 87.36 %. All the other
methods achieved IoU values above 81 %, except for U-Net, which had an loU
of 59.95 %. Compared to the evaluation metrics from Case A, there was a
general decline in performance under overexposure conditions. Nonetheless,

most methods still produce a satisfactory representation of the crack network.

In the quantification of soil crack geometric characteristics,
DeepLabv3+ with ResNet-50 ranked highest in Rsc with the lowest error rate
of 0.73 %, followed by Res-UNet (1.09 %) and DeepLabv3+ with ResNet-18
(3.33 %). U-Net had a significantly higher error rate of 32.03 % which was
nearly 27 % higher than the second-lowest performer, DeepLabv3+ with
MobileNetV2. All DeepLabv3+ models outperformed the other methods in wayg
with MobileNetV2 backbone leading at 0.8 % error. Errors were higher across
all methods for wmax, with Otsu’s and DeepLabv3+ with ResNet-50 showing
the lowest errors (20.20 % and 26.91 % respectively). Moreover, DeepLabv3+
variants, particularly ResNet-18 and ResNet-50, excelled in Lsum computation
with marginal error rates of 0.45 % and 0.58 % respectively. Despite having
competitive performance in Rsc, Res-UNet lagged in Lgum and Layg with error
rates of 25.60 % and 92.78 %, respectively. DeepLabv3+ models performed

better in Lavg, with error rates ranging between 31.17 % (ResNet-50) and 40.51 %

124



(Xception). For Nint, Ny, and Nseg, errors were significantly higher in traditional
method, Res-UNet, and U-Net compared to DeepLabv3+ models, with
DeepLabv3+ with MobileNetV2 showing the lowest errors in these parameters
(57.14 % for Nint, 45.45 % for Ny, 38.89 % for Nyeg), followed by ResNet-50

and ResNet-18 backbones.

The analysis of results from Case B underscores the effectiveness of
advanced segmentation methods in addressing the challenges posed by
overexposure. DeepLabv3+ with ResNet-50 emerged as the top performer with
its high precision, recall, F1 score, and IoU values. It also demonstrated low
errors in geometrical parameter estimation, indicating its robustness under the
condition. All DeepLabv3+ variants, particularly those with MobileNetV2 and
ResNets, maintained high accuracy in crack detection despite overexposure as
shown by their high values across evaluation metrics and lower error rates in
geometrical parameters quantification. While Res-UNet performed adequately
in evaluation metrics, it exhibited higher errors in geometrical parameters
computation compared to DeepLabv3+ models, highlighting its limitations in
precise crack network reconstruction under such conditions. U-Net was notably
less effective in crack segmentation, as evidenced by its high errors across all
standards, reinforcing the need for more sophisticated architectures like

DeepLabv3+ for accurate segmentation of soil cracks.
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4.7.3  Case C: Blurry Image with Low Exposure

The image in Case C depicted a scenario characterised by slight
blurriness accompanied by low exposure. The segmented masks are visualised
in Figure 4.6. From these figures, it is evident that the segmentation masks
produced by DeepLabv3+ models were more consistent with the ground truth,
followed by Res-UNet. Otsu’s method struggled to accurately generalise the
crack lines due to its inability to incorporate spatial correlation information,
which is crucial for handling blurry edges. In contrast, U-Net exhibited a
significant reduction in noise compared to Case B. Coupled with the results
from Case A, these observations suggest that U-Net performs better with low-

exposure images, as indicated by the reduced noise issue in the figure.

The segmentation performance of various methods under Case C
conditions is presented in Table 4.8. Otsu’s method exhibited the highest
precision at 98.27 %, while the deep learning methods achieved high precision
scores ranging from 94.57 % (DeepLabv3+ with Xception) to 95.81 %
(DeepLabv3+ with ResNet-18), with U-Net lagging significantly behind at
76.59 %. In terms of recall, DeepLabv3+ with Xception and ResNet-50 were
the top performers, with only a 0.02 % difference between them. Otsu’s method
ranked lowest with a recall of 80.33 %. The high precision coupled with the
relatively lower recall of Otsu’s method suggests that it tends to produce
incomplete segmentation, covering only a small, highly confident portion of the
object while missing true positives. This is corroborated by the observation of

fragmentary cracks in Otsu’s mask shown in Figure 4.6.
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Flgure 4.6: Segmentatlon visualisation for Case C.

For balanced performance, Res-UNet and DeepLabv3+ variants
achieved relatively high F1 scores, with the DeepLabv3+ models featuring
ResNet backbones leading with an F1 score of 95.41 %. DeepLabv3+ with
ResNet-50 had the highest IoU at 91.23 %, followed by ResNet-18 with 91.22 %
and the other DeepLabv3+ models. Despite a higher recall than Otsu’s method,
U-Net obtained a 10 % lower IoU (69.96 %) compared to Otsu’s method

(79.21 %) due to a higher incidence of false positives (noises).
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In the analysis of geometrical parameters, DeepLabv3+ models
excelled in Rsc and wave detection. ResNet-18 led in Rsc detection with a
minimal error of 0.83 %, while Xception led in wayg detection with an error of
0.59 %. DeepLabv3+ with ResNet-50 and Otsu’s method both achieved zero
error in Wmax detection, followed by DeeplLabv3+ with ResNet-18 and Xception.
For crack intersections and segment detection, DeepLabv3+ models,
particularly those with MobileNetV2, demonstrated significantly lower errors
(50 % for Nint, 16.67 % for Np, 25 % for Nseg) compared to traditional methods
(750 % for Ning, 216.67 % for Ny, 237.50 % for Nseg), Res-UNet (3000 % for
Nint, 483.33 % for Ny, 712.50 % for Niseg), and U-Net (45700 % for Nint, 7766.67 %
for Ni, 11475 % for Nseg), indicating their superior ability to reconstruct crack
networks under challenging conditions. All DeepLabv3+ models and Otsu’s
method exhibited marginal error rates in Lsum, with DeepLabv3+ with
MobileNetV2 ranking first with an error of 0.16 % error. Although Otsu’s
method measured crack length with satisfactory accuracy, its performance in
measuring average crack length was limited by its inability to compute Ngeg
accurately, resulting in a 70.93 % error in Lavg. DeepLabv3+ variants achieved
moderate error rates in Layg, with MobileNetV2 leading at 19.87 % and ResNet-
18 closing at 41.78 %. Despite these moderate errors, DeepLabv3+ models still
outperformed other methods due to their superior capability in detecting crack

segments.

Combining visual observations with parameter interpretations,
DeepLabv3+ architecture demonstrated its effectiveness in handling complex

conditions, significantly outperforming other methods. It was able to
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reconstruct the crack network with higher accuracy while preserving important
geometric characteristics relevant to soil cracking studies as demonstrated by its
lowest error in crack segment quantification. DeepLabv3+ with ResNet-50 and
ResNet-18 emerged as the top performers in this case, achieving high scores in
evaluation metrics and generally low errors across geometrical parameters.
DeepLabv3+ with MobileNetV2 also performed well under limited
computational resources, offering similar performance to ResNets-based
models and presenting an excellent choice for practical applications. Res-UNet,
while performing well in evaluation metrics, struggled in the accurate
quantification of geometrical parameters (much higher error rates compared to
DeepLabv3+), highlighting its limitations in precise crack network recognition.
Otsu’s method further exposed its limitations in handling blurry edges and low-
exposure scenarios, emphasising the advantages of deep learning models that

can interpret image context more broadly.
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4.74  Case D: Complex and Intersecting Crack Network

Case D presented a scenario involving a complex crack network
characterised by numerous crack segments and intersections, as well as zigzag
and fine cracks. Figure 4.7 illustrates the image and its corresponding binary
masks generated by different methods. The traditional segmentation method
effectively categorised pixels into their respective classes, though it suffered
from some false negatives. This method has significant limitations, as it requires
uniform illumination and a well-defined crack network with clear differentiation
from background pixels. Figure 4.8 highlights these limitations by showing

Otsu’s method struggles with uneven illumination scenarios.

U-Net has also faced challenges with persistent noise, as evidenced in
Figure 4.7. When comparing Res-UNet and DeepLabv3+ models, Res-UNet
displayed a slight advantage in better matching the crack network to the ground
truth. However, DeepLabv3+ models produced cleaner masks with minimal
noise. Among the DeepLabv3+ variants, MobileNetV2 and ResNet-18
backbones demonstrated superior alignments with the ground truth and better

crack connectivity, followed by ResNet-50 and Xception backbones.
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Flgure 4.7: Segmentatlon Vlsuallsatlon for Case D
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Figure 4.8: Otsu’s mask on image with similar crack configuration as Case

D but with uneven illumination.

Table 4.9 presents the segmentation performance by various methods
for Case D, according to their respective standards. As indicated in the first part
of the table, Otsu’s method achieved the highest precision (91.96 %), while Res-
UNet ranked first in recall (91.19 %), F1 score (89.59 %), and IoU (81.14 %).
U-Net recorded the lowest values in precision (54.68 %), F1 score (66.86 %),
and IoU (50.21 %), while DeepLabv3+ with Xception finished last with a recall
of 82.62 %. Despite achieving a relatively high recall of 86.02 %, U-Net was
categorised as the worst performer due to significant drawbacks in precision and
IoU. The low precision and IoU values indicate U-Net’s poor ability to produce
a segmentation mask with satisfactory overlap with the ground truth, and its
tendency to classify background pixels as cracks (high false positives).
Although Otsu’s method and Res-UNet led in performance, DeepLabv3+
variants demonstrated competitive performance across all evaluation metrics,
with marginal differences from the leaders, showcasing their stability and

reliability in handling various scenarios. Among them, DeepLabv3+ with
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ResNet-18 achieved the highest precision (90.08 %), while DeepLabv3+ with
MobileNetV2 achieved the highest recall (88.86 %), F1 score (87.59 %), and

IoU (77.92 %).

Turning to the errors on geometrical parameters, as shown in the
second part of the table, DeepLabv3+ with MobileNetV2 exhibited the lowest
error in Rsc (2.91 %), closely followed by Res-UNet (3.59 %) and the remaining
methods, except for U-Net, which had a significant error of 57.33 %. Regarding
average crack width, Res-UNet performed exceptionally well with the lowest
error of 0.67 %, while DeepLabv3+ variants ranged from 6.37 % (DeepLabv3+
with ResNet-18) to 13.99 % (DeepLabv3+ with MobileNetV2). Since the crack
network displayed a relatively uniform crack width, all models performed well
in Wmax With some achieving zero error (Otsu’s, Res-UNet, DeepLabv3+ with
ResNet-18). Otsu’s method recorded the lowest error rate in computing the
number of intersections (38.71 %), closely followed by all DeepLabv3+ variants.
For N, and N, DeepLabv3+ models achieved the lowest error rates, with
ResNet-18 variant exhibiting zero error in Ny and 14.29 % error in Nseg. Despite
the low errors in Rsc and crack width computations, Res-UNet struggled with
accurate segmentation of individual crack segments and their intersections, with
high error rates of 150 % in Nseg and 490.32 % in Nin. U-Net again faced
challenges in crack segment recognition (error rates of 1981.63 %) due to
persistent noise issues. Conversely, Res-UNet achieved the lowest error in Lsum
(2.15 %), while DeepLabv3+ with Xception and ResNet-18 had the lowest

errors in Lavg (around 3.10 %). The ability of Res-UNet to accurately measure
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the average length of crack segments was hindered by its limitations in correctly

identifying the number of segments, resulting in a higher error of Lavg (59.14 %).

The results for Case D demonstrate the ability of advanced
segmentation methods to handle intricate crack networks effectively.
DeepLabv3+ with MobileNetV2 and ResNet-18 showed exceptional
performance in most evaluation metrics and geometrical parameters, providing
better representations of the crack networks with higher accuracy in crack
geometries. The robustness of DeepLabv3+ variants in recognising fine and
zigzag cracks was evident from their relatively lower errors in parameters such
as Nint, Nn, and Nseg. Conversely, Res-UNet exhibited strong recall and IoU
values, indicating its proficiency in identifying large portions of actual cracks
with accurate overlap. It also accurately quantified crack shapes and sizes, as
indicated by the low errors in surface crack ratio and crack width computations.
However, it was inadequate in recognising the connectivity of the crack
segments, as evidenced by high errors in parameters such as Nin, Np, and Nieg.
U-Net revealed its limitations under the complexity of this case, with relatively
low values across evaluation metrics and high errors in crack geometrical
parameter measurements. Otsu’s methods performed significantly better in
geometrical parameters analysis with lower errors compared to cases B and C,
but this performance was influenced by illumination constraints, as

demonstrated in Figure 4.8.
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4.7.5 Case E: Low Exposure with Ill-defined Crack Edges

The scenario in Case E was characterised by a crack network with ill-
defined crack edges and lines, along with low exposure conditions. The masks
segmented through various methods are visualised in Figure 4.9. It is evident
from the figure that traditional methods (such as Otsu’s) and U-Net were
inadequate in handling crack networks with indistinct edges. U-Net consistently
struggled with noise issues, while Otsu’s method failed to accurately segment
the crack edges, resulting in a crack network with ambiguous shapes. More
sophisticated models, including Res-UNet and DeeplLabv3+ variants, provided
segmentations that more closely resembled the ground truth. Among these,
DeepLabv3+ variants demonstrated superior performance by producing
segmentation with fewer holes (black pixels enclosed by crack pixels). This
improvement is attributed to their ability to identify pixel relationships through

enlarged receptive fields, which helped to preserve spatial information.
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Figure 4.9: Segmentation visualisation for Case E.

Table 4.10 presents the segmentation performance for Case E. In terms
of standard metrics, Otsu’s method achieved the highest precision of 93.17 %,
followed by Res-UNet at 90.36 %, and DeepLabv3+ models ranging from
82.35 % (ResNet-50) to 86.38 % (MobileNetV2). These methods effectively
identified crack pixels under conditions of poor edge definition, as indicated by
their high precision values and minimal false positives. DeepLabv3+ models,
particularly with ResNet-18 and ResNet-50, achieved the highest recall values

0f96.28 % and 95.87 %, respectively. In contrast, Otsu’s method and Res-UNet,
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which excelled in precision, had lower recall values of 70.37 % and 83.38 %,
respectively. This discrepancy highlights that DeepLabv3+ models were more
effective in capturing most of the actual cracks present in the image, while
Otsu’s method and Res-UNet missed more crack pixels, resulting in a
combination of high precision and low recall. Consequently, Otsu’s method and
Res-UNet had slightly lower F1 scores compared to DeepLabv3+ models.
DeepLabv3+ models achieved high F1 scores, ranging from 88.60 % (ResNet-
50) to 89.68 9% (Xception), effectively balancing precision and recall.
DeepLabv3+ with Xception achieved the highest IoU (81.29 %), followed
closely by other Deeplabv3+ variants. This signifies the superior performance
of DeepLabv3+ models in generating segmentation outputs that closely match

the ground truth.

In the second part of Table 4.10, Res-UNet and DeepLabv3+ with
MobileNetV2 exhibited the lowest errors in Rsc at 7.72 % and 7.84 %,
respectively. Otsu’s method had the highest error in Rsc (24.47 %), due to a
higher number of false negative predictions. DeepLabv3+ models showed
significantly lower error rates in both average and maximum crack width
measurements compared to other methods. DeepLabv3+ with Xception had the
lowest error in wayg, at a marginal value of 0.56 %, followed by ResNet-18,
ResNet-50, and MobileNetV2 variants. These models also achieved minimal
errors in wmax, ranging from 4.52 % (Xception backbone) and 9.22 %
(MobileNetV2 backbone). The number of intersections and nodes can
significantly affect the measurement of crack segments. In this case,

DeepLabv3+ demonstrated superior capability in segmenting the crack network

140



with accurate connectivity between crack lines. It achieved substantially lower
error rates across Nint, Nn, and Nseg compared to other methods. The lowest error
in Ninx was recorded by ResNet-50 variant at 50 %, while U-Net had an
exceptionally high error of 57525 %. DeepLabv3+ with ResNet-50 and
MobileNetV2 showed the lowest error of 10 % in N, parameter. Combined with
their lower errors in Niy, they achieved the lowest error in Ngeg at 7.14 % and
14.29 %, respectively. Among the DeepLabv3+ models, ResNet-18 and
Xception backbones exhibited higher errors in Niy and Ny, resulting in higher
errors in the final computation of Nseg. DeepLabv3+ with ResNet-50 ranked first
in both Lsum and Lavg, with marginal errors of 2.46 % and 4.37 % respectively,

significantly outperforming Otsu’s method, U-Net, and Res-UNet.

The results from Case E highlight the strengths and weaknesses of each
method under the challenging condition of ill-defined crack edges. U-Net
consistently faced issues with noise, leading to low accuracy in terms of
evaluation metrics and high errors in geometrical parameter measurements.
Although Otsu’s method performed well in terms of precision and Lgum, it was
inadequate under this scenario due to its low IoU and higher errors in other
geometrical parameters. Res-UNet demonstrated strong performance in
evaluation metrics with comparatively high IoU and precision, and geometrical
parameters in terms of Rsc but struggled with elevated errors in Nyt and Ngeg,
which are crucial for describing crack characteristics. DeepLabv3+ with
Xception stood out in evaluation metrics analysis with the highest scores in F1
score and IoU. It achieved the lowest errors in Wayg and Wmax measurements but

fell short in Nin;, Nn, Nseg, Lsum, and Lavg compared to ResNet-50 variant. In
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summary, DeepLabv3+ with ResNet-50 and Xception emerged as the most
reliable methods for crack segmentation in images with ill-defined crack edges

and low exposure.
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4.7.6  Case F: Shadowed Soil Surface (Uneven Illumination)

Case F involved an image with uneven illumination on a smooth soil
surface, including distinct shadows cast over one side of the image. Figure 4.10
shows the original image, its ground truth, and segmentation masks produced
by various methods. From the figure, it is evident that Otsu’s method and U-Net
encountered difficulties in handling images with varying illumination
conditions. Both methods struggled to differentiate between shadows and cracks,
as these regions often exhibited similarly low-intensity values. Otsu’s method,
due to its threshold selection process, erroneously classified nearly the entire
shadowed region as crack pixels. The shadowy areas, which had intensity values

similar to the soil cracks, were inaccurately identified as cracks.

U-Net, while an improvement over traditional methods, still had
limitations in distinguishing shadow edges from cracks due to its relatively
simple feature extraction process. Despite significant advancements, U-Net
occasionally misclassified the edges of shadow regions as crack pixels. In
contrast, Res-UNet and DeepLabv3+ models performed excellently under
varying illumination conditions, as demonstrated by their accurate crack
segmentations in Figure 4.10. These models exhibited superior capabilities in

identifying crack networks precisely, even in the shadowed regions of the image.
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Figure 4.10: Segmentation visualisation for Case F.

The quantitative analysis of segmentation performance by various
methods is shown in Table 4.11. For evaluation metrics, Res-UNet and
DeepLabv3+ variants performed exceptionally well in precision, all scoring
over 93 % and DeepLabv3+ with ResNet-18 leading at 95.85 %. The
significantly reduced precision by Otsu’s method (15.43 %) correlates with the
visual observation described earlier, where most shadowed regions were
incorrectly classified as cracks, resulting in high false positives. All methods

achieved high recall values, well over 93 %, with Otsu’s method ranking first
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at 99.04 %, followed by DeepLabv3+ with ResNet-50 at 98.21 %. It is important
to highlight that the high recall in Otsu’s method does not necessarily reflect its
effectiveness in capturing actual crack instances but rather results from
classifying most shadow regions as crack pixels. Since some cracks overlapped
with the shadow regions, this tendency greatly reduced the number of false
negatives, resulting in a high recall for Otsu’s method. DeepLabv3+ with
ResNet-18 achieved the highest F1 score (96.08 %), closely followed by other
DeepLabv3+ variants and Res-UNet, indicating the effectiveness of deep
learning methods in balancing precision and recall. Res-UNet and DeepLabv3+
models performed similarly in IoU, with DeepLabv3+ with ResNet-18 leading
at 92.45 %, while other models scored above 91 %. These high scores reflect

the models’ superior matching with the ground truth crack networks.

In the geometrical parameters analysis, DeepLabv3+ with ResNet-18
and Xception achieved a minimal error of 0.48 % and 0.82 % respectively for
Rsc, suggesting accurate quantification of crack shapes and sizes. For average
crack width, DeepLabv3+ with Xception recorded the lowest error of 1.72 %,
followed closely by Res-UNet and DeepLabv3+ with ResNet-18. All deep
learning models performed well with marginal errors in Wmax, with Res-UNet
and DeepLabv3+ with ResNet-18 achieving zero error rates. Otsu’s method had
the highest error across these parameters (541.80 % in Rsc, 119.57 % in wayg,
530.41 % in wmax), largely due to its misclassification of shadow regions.
Regarding crack line connectivity, DeepLabv3+ models outperformed others,
particularly MobileNetV2 and Xception backbones, which achieved zero errors

in Nint, Nn, and Nseg. Res-UNet retained a competitive edge in Lsum with a low
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error of 1.26% but fell behind in Lavg (81.59 %) due to higher errors in crack
segment measurements. Among the DeepLabv3+ variants, both ResNet
backbones achieved lower error rates in Lsum (0.11 % for ResNet-18 and 0.23 %
for ResNet-50) compared to their counterparts, while MobileNetV2 and
Xception backbones excelled in Lave (2.29 % and 1.72 % respectively) due to

their higher accuracy in Nieg.

The ability to handle uneven illumination conditions is crucial for
segmentation methods due to the ubiquitous presence of shadows. The results
show that Otsu’s method and U-Net were not well-suited for such challenging
conditions, as evidenced by their inaccurate segmented masks and higher errors
across most metrics. Traditional segmentation methods using global
thresholding algorithms like Otsu’s demonstrated a lack of flexibility in
complex image conditions. More sophisticated architecture such as Res-UNet,
significantly improves accuracy with their capability to generate masks that
more closely align with the ground truth. Res-UNet also performed strongly in
geometrical parameters, including Rsc, Wavg, Wmax, and Lsum, showcasing its
proficiency in identifying crack shapes and sizes. However, it struggled with
connectivity issues, as indicated by higher errors in Nin, Npn, and Nieg.
DeepLabv3+ models excelled in both evaluation metrics and geometrical
parameters, emerging as the most reliable methods for soil crack segmentation
under uneven illumination. Among these, ResNet-18 and ResNet-50 were
slightly better choices if loU and precision were primary concerns. However,

MobileNetV2 and Xception backbones also performed well, showing minimal
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errors in crack intersections and segment identification, even in the presence of

shadows.
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4.7.7 Case G: Uneven Illumination with Fissure Cracks and Surface

Aggregation

Case G involved an image with uneven illumination, featuring surface
fissure cracks and small soil aggregates around the crack lines on the soil surface.
Figure 4.11 illustrates the image and the corresponding segmented masks for

the case.

Image
(960 x 960 pixels) v Ground Truth Otsu’s

W \
A\

A /

Res-UNet

Figure 4.11: Segmentation visualisation for Case G.
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Regarding uneven illumination, Otsu’s method once again struggled to
differentiate shadow from actual cracks due to the shadows’ higher intensity
values. Additionally, Otsu’s method misclassified small aggregates and fissure
cracks on the soil surface, which also had darker colours, as crack pixels. U-Net
performed similarly to its performance in Case F, where it segmented only the
shadow’s edge as the foreground while exhibiting persistent noise problems. In
contrast, Res-UNet and DeepLabv3+ variants significantly outperformed the
previous methods, providing a closer representation of the actual crack network.
A closer inspection reveals that DeepLabv3+ had a slight edge over Res-UNet,

with better connectivity in crack lines and more precise crack edge definitions.

Table 4.12 presents the segmentation performance for Case G across
various evaluation standards. From evaluation metrics analysis, DeepLabv3+
with ResNet-50 achieved the highest precision of 97.76 %, indicating its ability
to correctly identify crack pixels with minimal false positives. Other
DeepLabv3+ variants and Res-UNet also performed excellently, with precision
values well over 96 %. Otsu’s method displayed similar behaviour to Case F,
characterised by low precision and high recall, due to a high rate of falsely
classified background pixels that reduced false negatives. Among the remaining
methods, DeepLabv3+ with ResNet-18 achieved the highest recall (88.68 %),
followed closely by DeepLabv3+ with MobileNetV2 at 88.11 %. This indicates
the effectiveness of these DeepLabv3+ models in capturing most of the actual
cracks in the image. All DeepLabv3+ models obtained high F1 scores, with the
ResNet-18 backbone leading at a value of 92.52 %, demonstrating a strong

balance between precision and recall. In terms of crack network overlap,
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DeepLabv3+ models achieved top performances, with ResNet-18 variant
leading with an IoU of 86.09 %, indicating its satisfactory alignment with the

ground truth crack segments.

In the quantifications of geometrical parameters, DeepLabv3+ with
MobileNetV2 and ResNet-18 showed the lowest errors of 8.22 % and 8.31 %
respectively in Rsc, showcasing their ability to quantify crack intensity with
minimal errors in complex scenarios. Additionally, DeepLabv3+ with ResNet-
18 achieved the lowest errors in both average and maximum crack width
measurements at 8.73 % and 5.66 % respectively, with MobileNetV2 variant
coming second with slightly higher error rates at 10.69 % and 7.70 %
respectively. Otsu’s method again demonstrated excessive error rates across
these parameters (421.45 % for Rsc, 129.98 % for Wavg, 705.29 % for wmax) due
to its inability to differentiate shadowy regions from actual cracks. U-Net
performed the worst among deep learning methods in these parameters due to
its noise issue, with error rates of 46.49 %, 53.80 %, and 20 % for Rsc, Wave,
and wmax respectively. Although Res-UNet performed well, it generally showed

higher error rates compared to DeepLabv3+ variants.

For Nint, Nin, and Nseg, which represent the connectivity of crack lines,
DeepLabv3+ with MobileNetV2 had zero error in Niy and significantly lower
error rates for Ni (50 %) and Niseg (40 %) than the other methods, demonstrating
robustness in detecting intersections and individual crack segments despite
complex surface features. The other DeepLabv3+ variants also demonstrated

superior performance with substantially lower errors across these parameters
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compared to Res-UNet, Otsu’s method, and U-Net, where U-Net see the highest
errors of 109700 % in Nin, 14487.50 % in Ny, and 21680 % in Nsee. In crack
length analysis, DeepLabv3+ with ResNet-18 excelled in Lsum With zero error,
followed closely by DeepLabv3+ with MobileNetV2 with a marginal error of
0.48 %. Due to its better performance in Nseg, DeepLabv3+ with MobileNetV?2
outperformed ResNet-18 variant in Laye analysis at 28.92 % despite having

slightly higher error in Lsum.

Compared to Case F, Case G presented a more challenging scenario
with the presence of soil clods and surface fissures in addition to uneven
illumination. The results indicated that Otsu’s method was consistently troubled
by uneven illumination and U-Net by noise issues, making both unsuitable for
segmentation tasks under challenging conditions. Res-UNet showed
significantly stronger performance in both evaluation metrics and geometrical
parameters analysis compared to the previous two methods, reflecting its higher
accuracy in quantifying crack shapes and sizes. However, it struggled with
parameters related to crack network connectivity (Nin, Nn, and Naeg),
undermining its reliability in soil crack segmentation. DeepLabv3+ variants
demonstrated the strongest performances across all evaluation criteria.
Considering both evaluation metrics and crack geometrical characteristics,
DeepLabv3+ with ResNet-18 and MobileNetV2 emerged as the most reliable
methods for segmenting soil cracks in images with uneven illumination and
surface fissures. Their high performance across these standards suggests their

robustness and applicability in challenging conditions.
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4.7.8 Case H: Defective Soil Surface with Shadows and Holes

Case H involved an image with shadows and small holes on the soil
surface caused by bubbly defects. Figure 4.12 illustrates the image and the
masks generated by various segmentation methods. The figure clearly shows
that traditional segmentation methods, such as Otsu’s algorithm, are inferior in
handling unevenly illuminated images. Otsu’s method classified almost the
entire shadowy region as foreground. In contrast, deep learning methods, even
the simplest U-Net network, demonstrated exceptional capability in handling
images with uneven illumination, as evidenced by their segmented masks.
Although U-Net was consistently plagued with noise speckles, it did not mistake
the shadow’s edge as crack lines, unlike in Cases F and G. This is likely due to
U-Net’s focus on capturing edge-like features, which helped it to differentiate
between shadows and actual cracks when the shadow did not have a clearly
defined border. Both Res-UNet and DeepLabv3+ variants produced masks with
a high resemblance to the ground truth, indicating their robustness in
generalising complex soil crack networks. A closer examination of the figure
reveals that DeepLabv3+ models provided better representations of the ground
truth crack network, while the Res-UNet mask contained more minor noise

speckles.
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Figure 4.12: Segmentation visualisation for Case H.

The quantitative analysis of the segmentation performance across
models is summarised in Table 4.13. In terms of evaluation metrics, Res-UNet
achieved a superior precision of 99.06 %, followed closely by all the
DeepLabv3+ variants. Otsu’s method obtained the highest recall; however, this
was due to a high number of false positive instances, as previously noted.
Among the deep learning methods, DeepLabv3+ with ResNet-50 had the
highest recall at 82.84 %, while Res-UNet had the lowest recall at 75.91 %. This

indicates the effectiveness of DeepLabv3+ models, particularly with ResNet-50
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backbone, in capturing the majority of the actual cracks despite the presence of
shadows and holes. DeepLabv3+ with ResNet-50 also achieved the highest F1
score of 89.66 %, balancing precision and recall effectively. Furthermore, the
ResNet-50 variant achieved the highest IoU at 81.25 9%, followed by
MobileNetV2 variant at 78.86 %, demonstrating better alignment with ground
truth compared to other models. The generally lower IoU range in this case,
compared to previous cases, is primarily due to the fewer crack pixels in the

image, which exaggerated the errors.

In terms of geometrical parameters, U-Net showed the lowest error
(14.93 %) in Rsc, followed by DeepLabv3+ with ResNet-50 (15.21 %). The
other DeepLabv3+ variants also performed well, with error rates around 18 %.
Res-UNet had the highest Rsc error at 23.37 % among the deep learning
methods. For average crack width, DeepLabv3+ with ResNet-50 obtained the
lowest error at 15.56 %, while other DeepLabv3+ variants performed similarly,
with a 2 — 3 % difference in error rates. DeepLabv3+ models outperformed
others in wmax measurement with consistent errors of 16.70 %. In terms of crack
line connectivity, DeepLabv3+ models excelled in crack intersection detection
with zero error. For N and Nseg, DeepLabv3+ with Xception had the lowest
error rates at 33.33 % and 25 % respectively, followed by other variants. Res-
UNet and DeepLabv3+ models demonstrated superior capability in total crack
length measurements with minimal error rates, led by DeepLabv3+ with
ResNet-18 (0.31 %) and MobileNetV2 (0.56 %). For similar error rates,
DeepLabv3+ with Xception ranked highest in Lave computation due to its

superior accuracy in individual crack segment segmentation.
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The results underscore the limitations of traditional segmentation
methods in handling images with varying conditions, which are common in real-
life scenarios. Advanced deep learning methods demonstrated significant
improvements in segmenting images with shadows. However, simple
architectures like U-Net still struggled to generate accurate representations of
crack networks as demonstrated by its lower IoU value. Res-UNet showed
strong performance in precision but only obtained moderate results in other
metrics and geometrical parameters. DeepLabv3+ with ResNet-50 excelled in
evaluation metrics, indicating its robust ability to accurately identify and capture
crack pixels under challenging conditions. It also performed well in quantifying
surface crack ratio and crack width but struggled slightly with individual crack
segment detection. Overall, DeepLabv3+ with ResNet-50 provided the best
segmentation performance in this case, with high accuracy across metrics like
IoU and precision. For scenarios where computational resources are a concern,
DeepLabv3+ with MobileNetV2 offers an excellent segmentation solution,

providing comparable performance at a significantly lower computational cost.
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4.7.9 Case-wise Segmentation Performance Summary

DeepLabv3+ with MobileNetV2 was suggested as the best
segmentation model according to accuracy and stability indicators in section 4.6.
Therefore, a summary of its performance across evaluation metrics and error
rates on geometrical parameters quantification on various case studies is
presented in Table 4.14, and its accuracy and stability indexes across various

evaluation standards are presented in Table 4.15.

The model achieved its best performance in Case A, which involved a
standard crack network with a clear boundary definition. This case recorded the
highest F1 Score of 95.66 % and IoU of 91.69 %, along with the highest mean
across evaluation metrics (94.67 %) and the lowest mean in error rates for
geometrical parameters quantification analysis (1.93 %). It showcased the

model’s ability to perform optimally under ideal imaging conditions.

In contrast, performance declined in Cases D, E, and H, which involved
images with complex intersecting crack networks, low exposure with ill-defined
crack edges, and defective soil surface with shadows and holes respectively.
These cases showed about a 10 % drop in loU values (77.92 %, 81.22 %, and
78.86 %) compared to Case A. The mean error rates across selected geometrical
parameters for these cases also increased to 14.91 %, 12.60 %, and 25.90 %
respectively, suggesting that the model struggles with intricate geometries and

poor contrast.
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The model resulted in acceptable segmentation performance in Case B
(overexposure) but exhibited exaggerated crack width and crack connectivity
predictions, as shown by their error rates of 33.82 % for wmax and 38.89 % for
Nieg respectively. This might be pointing to the model’s sensitivity to excessive
illumination which affects crack boundaries recognition. In contrast, Case C,
which features low exposure, produced reliable results, with a high mean score
of 94.13 % across evaluation metrics and a low mean score of 7.99 % across
geometrical parameters quantification error. This suggested that the model

could generalise well under low exposure conditions.

On the other hand, regarding Case F with shadowed and unevenly
illuminated surface, the model maintained relatively strong F1 Score (95.31 %)
and ToU (91.04 %) values, suggesting that the model can handle images with
the presence of shadows. This robustness is also demonstrated in Case G, albeit
the performance was slightly hindered due to surface aggregation and fissure-
like textures. In terms of geometrical parameters quantification, the model
confirmed its ability in handling shadowy conditions with relatively low error

rates across parameters, with Case F achieving 4.89 % mean error rates.

Overall, while DeepLabv3+ with MobileNetV2 demonstrated high
segmentation accuracy under standard and moderately distorted conditions,
performance declined when faced with complex crack geometries, surface

anomalies, and excessive illumination.
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Table 4.15: Accuracy and stability of the best performing model across

various standards.

Case Evaluation Metrics Geometrical Parameters

x (%) c (%) X (%) 6 (%)
A 94.67 1.72 1.93 1.39
B 88.97 3.73 21.06 18.60
C 94.13 1.93 7.99 10.67
D 85.18 4.28 14.91 9.57
E 87.60 4.39 12.60 3.91
F 94.27 2.38 4.89 3.12
G 90.25 4.12 16.77 15.79
H 86.33 7.86 25.90 18.89

4.8 Summary

The analysis of computational efficiency evaluated each method based
on both training effort and prediction generation efficiency. The results
indicated that the use of pre-trained networks as backbones in the DeepLabv3+
variants significantly reduced training time. Traditional Otsu’s segmentation
method required minimal computational effort for inference due to its
straightforward algorithm. Among the deep learning models, DeepLabv3+ with
ResNet-18 and MobileNetV2 backbones demonstrated the best inference
performance, with the shortest inference times and highest FPS. In terms of
overall crack segmentation accuracy, advanced deep learning models such as

Res-UNet and DeepLabv3+ variants consistently achieved high precision, recall,
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F1 Score, and IoU, reflecting their superior capability in crack detection and
segmentation. DeepLabv3+ variants emerged as the most effective architectures
as evidenced by their higher IoU values. The case-wise segmentation
performance analysis provided valuable insights into the robustness and
adaptability of the models under challenging conditions. Overall, Res-UNet and
DeepLabv3+ variants exhibited their effectiveness in handling segmentation
tasks under various conditions, with DeepLabv3+ models outperforming Res-
UNet in accurately reconstructing crack network representations. In summary,
this chapter highlights the importance of selecting the appropriate model based
on specific requirements and constraints, such as computational resources and

the characteristics of crack images.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The present study was designed to evaluate the feasibility and
effectiveness of image-based techniques for quantifying desiccation cracking
behaviour in expansive soils. To achieve this, three research objectives were

pursued, and their outcomes are summarised below.

As per objective one, which is to design the experimental setup for
desiccation crack image acquisition, an experimental setup was successfully
developed using a humidity chamber and glass Petri dish specimens. The setup
was used for desiccation tests that enabled systematic generation of soil
desiccation cracks. Expansive soil desiccation crack images were acquired
using the setup. The images produced a diverse dataset that was used for deep
learning model training. This confirmed the practicality of image-based

experimental acquisition in soil desiccation cracks study.

Objective two is to evaluate crack imaging analysis based on deep
learning algorithms. Crack imaging analysis based on deep learning algorithms
was evaluated in two categories, including computational efficiency and
segmentation performance. The computational efficiency analysis revealed that

DeepLabv3+ variants required significantly less training effort due to the
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utilisation of transfer learning. Among these, MobileNetV2 variant, with its
minimal parameter count and short training time, emerged as the most efficient
model considering computational resources. Traditional Otsu’s method, due to
its simple computation algorithm, exhibited a major advantage in inference
speed. Among deep learning models, DeepLabv3+ with ResNet-18 and
MobileNetV2 demonstrated the best computational efficiency, characterised by

the shortest inference time.

In terms of segmentation performance, this study demonstrated that
advanced deep learning models, such as Res-UNet and Deeplabv3+ variants,
excelled in the accurate detection and segmentation of soil cracks. These models
consistently achieved high precision, recall, F1 score, and IoU, outperforming
traditional segmentation methods like Otsu’s algorithm and the simpler U-Net
network. Notably, DeepLabv3+ variants emerged as the top performers with the

highest IoU values.

Furthermore, the advanced deep learning models exhibited a notable
ability to produce accurate representations of crack networks, enabling the
precise quantification of crack geometrical parameters through image
processing techniques. This capability provided valuable insights into soil
desiccation cracking behaviour. In contrast, segmentation methods like Otsu’s
algorithm and U-Net demonstrated limited performance in quantifying crack
geometrical characteristics, as evidenced by their high error rates across all
parameters. Although Res-UNet showed significantly lower error rates

compared to these methods, it was less effective in reconstructing crack network
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connectivity, thus limiting its predictive accuracy. DeepLabv3+ models,
however, achieved the highest accuracy in quantifying geometrical parameters,
indicating their ability to generate segmentation masks with high resemblance

to ground truth.

The stability analysis highlighted that traditional methods, such as
Otsu’s were highly variable and unreliable, particularly under varying image
conditions, as demonstrated in case-wise detection analysis. DeepLabv3+
variants with ResNet-50 and ResNet-18 exhibited the most consistent
performance across evaluation metrics, with MobileNetV2 variant followed
closely behind. In terms of geometrical parameters quantification, DeepLabv3+
with MobileNetV2 emerged as the top performer with the best scores in both

accuracy and stability indicators.

The case-wise segmentation performance analysis further illustrated
that DeepLabv3+ models were robust and adaptable under various challenging
conditions, such as uneven illumination and the presence of soil clods or
shadows. The analysis clearly indicated that traditional segmentation methods,

such as Otsu’s, were limited in handling complex real-world scenarios.

Overall, objective two confirmed the feasibility and effectiveness of
deep learning-based image segmentation models for soil crack recognition and
quantification. The findings suggested that DeepLabv3+ variants, particularly
those with MobileNetV2 and ResNet-18 backbones, offer the best performance,

achieving an optimal balance of computational efficiency, segmentation
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accuracy, and stability. The study also provided valuable insights into the
integration and implementation of deep learning models in soil crack

quantification systems.

Objective three is to quantify desiccation cracking through image
processing techniques. In this study, image processing techniques were used to
effectively measure crack geometrical parameters, which were crucial for
cracking analysis. Parameters such as surface crack ratio, crack widths, number
of intersections, number of crack segments, and crack lengths were defined and
quantified. This effectively proved the feasibility of using image processing

techniques in desiccation cracking quantification.

The findings confirmed that deep learning provides a breakthrough in
soil crack analysis. By automating segmentation and quantification, this study
demonstrated the feasibility of creating a reproducible and scalable image-based
processing pipeline for expansive soil research. For civil engineering practice,
the accurate quantification of crack geometry enhances the understanding of
desiccation mechanisms, which directly affect the study of slope stability,
foundation performance, and any other expansive soil applications. From an Al
perspective, the successful application of deep learning models demonstrated in
this study highlights the value of deep learning integration into the geotechnical
field. In addition, it also paved the way for future field-based crack recognition

systems that can operate in real-time.
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In summary, this study has achieved all objectives and contributed a
validated workflow for using deep learning-based segmentation and image

processing techniques in soil desiccation crack recognition and quantification.

5.2 Recommendations for Future Work

Based on the limitations and results of this study, suggestions for future
research are proposed. First, further refinement of the deep learning models is
essential. This includes exploring different deep learning frameworks and
integrating advanced techniques to enhance recognition accuracy. Further
research should also address image variability issues by employing techniques
such as data augmentation and synthetic data generation. These approaches
could help in training more resilient models with improved generalisation
capabilities. To broaden the applicability of the models, further studies should
consider incorporating additional labels, such as different soil types and
environmental conditions, into the image dataset. This expansion may
contribute to the development of more robust crack detection models capable of

performing well across diverse soil types.

For practical implementations, it is crucial to apply these segmentation
models in real-world field conditions to validate their practicality. The
development of user-friendly interfaces or mobile applications for on-site crack
detection and analysis systems is recommended to enhance system accessibility.
Additionally, optimising models for real-time processing and integrating them

with automated systems, such as unmanned aerial vehicles, could significantly
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advance soil monitoring systems. Exploring and comparing more lightweight
model architectures that strike a balance between accuracy and computational

demands will also be beneficial in developing efficient real-time applications.
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Appendix B

Soil Desiccation Original Images from The Experiment

This appendix contains examples of the original, unprocessed crack images
from the experiment. Each image caption includes the test condition and
specimen thickness. Only images captured at the end of the final wetting and

drying cycle for each test condition are shown.

(a) W-D Cycle 1

196



(b) W-D Cycle 2

(c) W-D Cycle 3
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(d) W-D Cycle 4

Figure B.1: Smm specimen with test condition 45 + 2°C, 40 + 5% RH

(a) W-D Cycle 1
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(b) W-D Cycle 2

(c) W-D Cycle 3

Figure B.2: Smm specimen A with test condition 45 + 2°C, 60 + 5% RH
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(a) W-D Cycle 1

(b) W-D Cycle 2
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(c) W-D Cycle 3

Figure B.3: 5mm specimen B with test condition 45 + 2°C, 60 + 5% RH

(a) W-D Cycle 1
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(b) W-D Cycle 2

(c) W-D Cycle 3
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(d) W-D Cycle 4

Figure B.4: 10mm specimen with test condition 45 + 2°C, 40 + 5% RH

(a) W-D Cycle 1
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(b) W-D Cycle 2

(c) W-D Cycle 3

Figure B.5: 10mm specimen A with test condition 45 + 2°C, 60 + 5% RH
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(a) W-D Cycle 1

(b) W-D Cycle 2
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(c) W-D Cycle 3

Figure B.6: 10mm specimen B with test condition 45 = 2°C, 60 £+ 5% RH

(a) W-D Cycle 1
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(b) W-D Cycle 2

(c) W-D Cycle 3

Figure B.7: 10mm specimen A with test condition 55 + 2°C, 40 = 5% RH
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(a) W-D Cycle 1

(b) W-D Cycle 2
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(c) W-D Cycle 3

Figure B.8: 10mm specimen B with test condition 55 = 2°C, 40 £ 5% RH

(a) W-D Cycle 1

209



(b) W-D Cycle 2

(c) W-D Cycle 3

Figure B.9: 10mm specimen A with test condition 105°C, 0 % RH
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(a) W-D Cycle 1

(b) W-D Cycle 2
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(c) W-D Cycle 3

Figure B.10: 10mm specimen B with test condition 105°C, 0 % RH

(a) W-D Cycle 1
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(b) W-D Cycle 2

(c) W-D Cycle 3

213



(d) W-D Cycle 4

Figure B.11: 10mm specimen C with test condition 105°C, 0 % RH

(a) W-D Cycle 1
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(c) W-D Cycle 3
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(d) W-D Cycle 4

Figure B.12: 10mm specimen D with test condition 105°C, 0 % RH

(a) W-D Cycle 1
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(b) W-D Cycle 2

(c) W-D Cycle 3

Figure B.13: 15mm specimen A with test condition 45 + 2°C, 60 + 5% RH
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(a) W-D Cycle 1

(b) W-D Cycle 2
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(c) W-D Cycle 3

Figure B.14: 15mm specimen B with test condition 45 + 2°C, 60 + 5% RH
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