INNOVATIVE ADAPTIVE THRESHOLD-BASED
BATTERY ENERGY STORAGE SYSTEM CONTROLLER
USING DEEP LEARNING FORECAST FOR PEAK
DEMAND REDUCTIONS

MD MAHMUDUL HASAN

MASTER OF ENGINEERING SCIENCE

LEE KONG CHIAN FAULTY OF ENGINEERING AND
SCIENCE
UNIVERSITI TUNKU ABDUL RAHMAN
September 2025



INNOVATIVE ADAPTIVE THRESHOLD-BASED BATTERY ENERGY
STORAGE SYSTEM CONTROLLER USING DEEP LEARNING
FORECAST FOR PEAK DEMAND REDUCTIONS

By

MD MAHMUDUL HASAN

A dissertation submitted to the Department of Electrical and Electronic
Engineering,
Lee Kong Chian Faculty of Engineering and Science,
Universiti Tunku Abdul Rahman,
In partial fulfilment of the requirements for the degree of Master of
Engineering Science
September 2025

il



@2025 Md Mahmudul Hasan. All rights reserved.

This dissertation is submitted in partial fulfilment of the requirements for the
degree of Master of Engineering Science at Universiti Tunku Abdul Rahman
(UTAR). This dissertation represents the work of the author, except where due
acknowledgement has been made in the test. No part of this dissertation may be
reproduced, stored, or transmitted in any form or by any means, whether
electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the author or UTAR, in accordance with UTAR’s
Intellectual Property Policy.

il



ABSTRACT

INNOVATIVE ADAPTIVE THRESHOLD-BASED BATTERY ENERGY
STORAGE SYSTEM CONTROLLER USING DEEP LEARNING
FORECAST FOR PEAK DEMAND REDUCTIONS

Md Mahmudul Hasan

Battery-based energy storage system (BESS) can reduce daily peak demands
when it is managed by an effective controller or a control strategy. However,
most existing BESS controllers are implemented in simulation platforms, with
limited experimental validations under real operating conditions. Even when
implemented experimentally, they are often tested on limited case studies or
evaluated without any evaluation metrics. Additionally, majority of the
controllers are developed using paid proprietary platforms, and do not
incorporate any advanced load forecasting model. Therefore, this research aims
to address these gaps by developing an innovative adaptive threshold-based
BESS controller using free, open-source platforms Node-RED and Python,
integrating an advanced deep learning-based one-dimensional convolution
neural network (1D-CNN) model for load forecasting. The proposed controller
is initially evaluated through simulation using six-months of data, with its
performance benchmarked against four different controllers using two different
evaluation metrics: daily peak reduction factor (Kppgr), and monthly failure rate
(Mfailure)- Subsequently, the controller is deployed on a 200 kW/200 kWh BESS
setup at a university campus in Malaysia to evaluate its practical performance
over 21 days under real operating conditions. In simulation, the proposed
controller performs better than that of those benchmark controllers, achieving an

v



average Kppr of 41.62% and ngjure of 16.55%. When tested on the actual
BESS setup, the controller shows improved performance, with an average Kppr
of 49.45% and Najiure Of just 4.76%. These findings highlight the potential of
the proposed adaptive threshold-based controller enhanced with advanced load
forecasting model for real-world grid applications and can provide significant

benefits to both utilities and end customers.

Keywords: Battery energy storage system (BESS), bess controller, peak

demand reduction, load forecasting, deep learning, 1D-CNN
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CHAPTER 1

INTRODUCTION

1.1 Research Background

As developing countries experience rapid economic growth, maximum
demand (MD) is likely to increase in coming years. Along with economic growth,
factors like population growth, urbanization, increased use of electrical and
electronic devices are also driving this surge in MD (Shabalov et al., 2021). As
an emerging economy in Southeast Asia, Malaysia has also experienced
substantial increase of MD. Following a yearly growth rate of 2.3%, the MD in
Malaysia climbed to 18,808 MW in 2020, as shown in Fig. 1.1 (Suruhanjaya
Tenaga Malaysia, 2020). The projection also shows that the MD in Malaysia is
expected to increase steadily, reaching 22,815 MW by 2030, with an estimated

growth rate of 1.3% per year.
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Figure 1.1: Peak demand trend in Malaysia based on TNB’s projection.
(Suruhanjaya Tenaga Malaysia, 2020)



To meet the rising MD, utility companies must take necessary initiatives
including the investments on the expansion of their generation and network
infrastructures. Investments on the peaking power plants, which are normally
run for short durations to meet the high peak demands, are often required.
However, such investments can be substantially costly due to their high
operational and maintenance expenses (IRENA, 2019). These high expenses can
be attributed to low efficiency, reliance on expensive fuels, frequent start-stop
cycling, and high standby costs (GAO, 2024). Consequently, customers are
subject to extra charges in addition to their regular electricity bills, as utility
companies try to recoup their investments. (Borenstein, 2016). In Malaysia,
utility companies impose additional demand charges specially on commercial
and industrial customers, alongside their standard electricity bills (Tenaga
Nasional Berhad, no date). For some customers, these added demand charges
may comprise up to 70% of their total monthly electricity bill, placing a
significant financial burden for them (Dieziger, 2000; Zhang and Augenbroe,

2018a).

Beyond its financial burden, MD also poses substantial environmental
challenges. Addressing high MD often requires utility companies to activate
additional generation capacity, most of which rely on fossil fuels due to their fast
ramp-up capabilities and consistent availability. This intensified operation
causes a notable rise in greenhouse gas emissions, along with other air pollutants
(D1 Gianfrancesco, 2017a). In Malaysia, the energy sector accounts almost 80%

of their total greenhouse gas emission (Latif et al., 2021). Therefore, lowering



MD is crucial, as it can bring both cost savings and positive environmental

impacts.

Customers can focus on reducing their daily peak demands throughout a
billing cycle to reduce their overall monthly MD. Among the many methods
introduced for peak demand reduction, Demand Side Management (DSM) is
being widely implemented approaches across different sectors. (Williams et al.,
2023). This approach includes a range of actions, which lead to change the
consumers’ electricity consumption patterns (Panda et al., 2022a). Another
popular approach for peak demand reduction is Demand Response (DR), which
is mainly a specific method within the broader DSM framework (Darwazeh et
al., 2022). This method aims to motivate consumers to adjust their electricity
consumption patterns instantly, often triggered by incentives or signals offered

by utilities (Jordehi, 2019).

Both DSM and DR approaches are implemented through different programs
with the participation of the customers. The key difference between these two
approaches is that DSM focuses on promoting long-term energy-efficient habits,
whereas DR targets immediate, short-term shifts in consumptions in response to
fluctuating prices or grid demands (Panda et al., 2022b). Both approaches
significantly rely on the active participation of the customers to effectively
reduce peak demands (Igbal et al., 2021a). However, motivating consumers to
adjust their energy usage habits can be a challenging task in practice. A major

obstacle is the fear of discomfort, especially when consumers are asked to shift



their energy consumptions to less convenient times. For example, reducing
electricity usage during peak hours, such as turning off air conditioning on hot
afternoons, can be uncomfortable for many. In addition, the success of DSM
programs in reducing peak demands relies on collaboration among various
parties such as utility companies, regulatory agencies, and technology providers,
which often leads to potential complexities in policy and governance (Nebey,

2024a).

To address high peak demands without sacrificing users’ comforts, Battery-
based Energy Storage System (BESS) provide a reliable and effective solution
compared to the other alternatives (Martinez-Bolanos et al., 2020; Sahoo and
Timmann, 2023). A BESS unit, placed downstream of the utility meter, as shown
in Fig. 1.2., can help to reduce peak demands without changing customers’

regular energy usage patterns.
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Figure 1.2: Strategic placement of BESS after the utility meter for peak
demand reductions.



During off-peak hours, when system loads are comparatively low, BESS
operates in charging mood, absorbing energy from the grid. As load increases
during peak hours, BESS switches to its discharging mode, supplying stored
energy to reduce peak demands and maintain grid power to a certain level during

peak hours, as presented in Fig. 1.3.
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Figure 1.3: BESS functionality illustrating energy storage during off-peak
hours and discharge during peak periods to reduce demand

BESS offers a promising solution for peak demand reductions; however, its
full potential can only be achieved with an effective control strategy or controller.
The performance of the BESS is significantly influenced by the ability of the
controller to set an effective threshold level, discharging the batteries to meet
demand when it surpasses this level, and recharging them when demand drops

below the threshold level (Yang et al., 2023).



The best threshold, often referred to as the optimal threshold, is defined as the
lowest point on the load profile such that the energy above this level equals the
total energy the BESS can deliver (Ng et al., 2022a). For any specific load profile,
this threshold marks the highest level to which the BESS can effectively limit
the load, based on its available energy capacity. However, identifying this

optimal threshold requires full knowledge of the entire load profile in advance.

Since no load forecasting method can provide 100% accuracy in load
predictions, identifying the optimal threshold is a major challenge for controllers
in real operating conditions (Ng ef al., 2022a). Setting the threshold too low may
cause the BESS to discharge energy too early or too often, depleting its capacity
before the peak demand is met, potentially resulting in no reduction at all. In
contrast, a threshold set too high can cause the BESS to discharge less energy
than required, causing the system to underperform during peak demand periods.
Therefore, it is crucial to have a controller that can effectively set the thresholds
and guide the BESS to charge and discharge at the appropriate time for

maximum peak demand reductions.

A number of BESS controllers have therefore been introduced to effectively
charge and discharge the batteries, aiming to reduce peak demands. The
fundamental strategies of the controllers include predicting load demands in
advance using various load forecasting techniques, defining a threshold, and
controlling the charge-discharge operations of the batteries in line with the

threshold. Existing literature provides numerous examples of these approaches



(Zheng et al., 2015; Pholboon et al., 2016; Barchi et al., 2019), where fixed
thresholds are used without any real-time threshold adjustments to guide battery
charge-discharge actions to achieve peak demand reductions. However, if the
peak demand is unexpectedly high or lasts longer than expected, the controllers
that rely on fixed thresholds may struggle to manage it effectively (Chua et al.,
2017). Therefore, advanced controllers that can optimize battery usage
dynamically are essential to effectively prevent peak reduction failures and

enhance overall peak demand reductions.

The existing literature also features several state-of-the-art controllers with
different optimization techniques for maximum peak demand reductions. For
example, Oudalov et al. introduced an advanced BESS controller that applies
dynamic programming to effectively manage battery operations, targeting peak
demand reduction for end users (Oudalov et al., 2008). In addition, Mishra et al.
proposed another advanced BESS controller that uses a linear programming
method for optimizing the power dispatch of the batteries to achieve maximum
peak demand reductions (Mishra et al., 2012). Apart from the dynamic and linear
programming techniques, a particle swarm optimisation (PSO) is also introduced
in a BESS controller to optimize the power output of the batteries for peak

demand reductions (Mquqwana and Krishnamurthy, 2024).

Though numerous BESS controllers use optimization strategies to schedule
BESS power output for peak load reductions, many of the controllers still rely

on conventional load forecasting methods. Only in few of the BESS controllers,



advanced load forecasting techniques that involve machine learning or deep
neural networks, are adopted. This shortcoming may often result in poor
forecasting performance that limit the overall effectiveness of the BESS

controller.

In addition, most of the existing controllers are developed on paid commercial
platforms. These platforms may offer comprehensive toolsets and structured
environments for rapid development; they also present several challenges. The
commercial paid development platforms often come with substantial
subscription fees, restrictive licensing policies, limited customization

capabilities, and potential compatibility issues with other systems.

Moreover, many existing controllers assess their performance solely based on
the observed reduction in peak demand, without employing standardized
evaluation metrics. This practice limits the ability to comprehensively assess
controller effectiveness or to conduct fair performance comparisons across
different control strategies. For instance, a controller with a large BESS capacity
can effectively reduce the peak demand in a load profile that has a sharp and
short-duration peak. However, the same controller may struggle to effectively
reduce the peak demands in cases where the peak is more prolonged or when the
available storage capacity is comparatively limited. Hence, selecting suitable
evaluation metrics is essential to effectively measure the performance of

controllers under varying load profiles and operating conditions.



Apart from the aforementioned limitations, majority of the controllers are
tested only in simulations with limited case studies, real-time testing at an actual
experimental site under real operating conditions is yet to be explored.
Performance evaluation based on a limited case studies may not adequately
reflect the robustness of the controller. A controller that performs well in
reducing peak demand on a specific day may fail under different load profiles
encountered on subsequent days. Therefore, it is important to evaluate the
performance of a controller to consistently reduce daily peak demands over an

extended period, ensuring reliability across diverse and dynamic load conditions.

1.2 Problem Statement

Battery Energy Storage Systems (BESS) have gained significant attention as
a potential solution for peak demand reductions. The existing literature presents
both the conventional fixed threshold-based and state-of-the-art BESS
controllers that can adjust the thresholds in real-time for peak demand reductions.
Different load forecasting techniques are used in these controllers to predict the
load demands. However, limited focus is placed on using advanced load
forecasting techniques to accurately predict the load demands. Additionally,
most of the controllers are developed on paid proprietary platforms that increase
the overall controller development costs as well as limits the accessibility,
customization, and system compatibility. Moreover, many studies evaluate
controller performance solely based on peak demand reduction and are often

limited to a small number of case studies. The use of comprehensive evaluation



metrics and benchmarking against alternative control strategies remains

insufficiently explored. Apart from these, the majority of existing controllers are

tested exclusively through simulation, with experimental validation under real-

world operating conditions still largely underexplored.

1.3 Research Objectives

The purpose of this research can be summarized in the following objectives:

1.

To develop an innovative adaptive threshold-based BESS controller
using free, open-source platforms Node RED and Python to achieve daily
peak demand reductions, integrating an advanced deep learning-based
one-dimensional convolutional neural network (1D-CNN) model for
day-ahead load forecasting.

To assess the performance of the BESS controller using two distinct
evaluation metrics, daily peak reduction factor (Kppgr) and monthly
peak reduction failure rate (Nyj1ure ); and benchmark the results with four
different controllers in an extensive simulation study conducted using six
months of data.

To integrate the controller into an actual BESS setup within a university
building to evaluate its practical performance over an extended period

under real operating conditions.
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1.4 Significance of the Research

This research introduces an innovative BESS controller using deep learning

forecast to reduce daily peak demands for customers. The significances of this

research are listed below.

1.

A simple yet effective adaptive threshold-based BESS controller is
developed for peak demand reduction using free, open-source
platform Node-RED and Python. Node-RED is used to design the
control algorithm of the BESS, while the Python is used to develop
the load forecasting model that is integrated with the control algorithm.
Using these free platforms substantially reduce the controller
development expenses compared to using commercial platforms.

In comparison with other existing controllers that forecast the load
demands without using any specialised load forecasting model, the
proposed adaptive threshold-based controller forecasts the load
demands in advance using an advanced deep learning-based 1D-CNN
model for peak demand reductions.

In contrast to other existing controllers which are evaluated solely
based on the actual peak demand reductions, the performance of the
proposed adaptive threshold-based controller is evaluated through

a daily peak demand reduction factor (Kppr), along with a monthly
peak reduction failure rate (Ngjyre ). Through the evaluation metric
Kppr, one can assess the true peak demand reduction’s ability of a

controller. In addition, the evaluation metric Ng;jyre presents the

11



consistency of a controller in daily peak demand reduction within a
billing cycle.

In comparison to the other existing controllers that are usually not
benchmarked against other alternative solutions, the proposed
adaptive threshold-based controller is benchmarked against four
different controllers, namely the forecasted threshold-based controller,
historical threshold-based controller, active controller, and fuzzy
controller in simulation using six months of data collected from a
university building in Malaysia.

Unlike other existing controllers that are only tested in simulations,
the proposed adaptive threshold-based controller is integrated into an
actual 200 kW/200 kWh BESS setup, and the performance of the
controller is also evaluated over 21 working days under real operating

conditions.

1.5 Research Process and Stages

This entire research is carried out in total six phases, which are outlined as

follows:

I.

Phase 1: In the early phase of this research, an extensive review of
existing literature is undertaken to get familiarised with the
fundamental concepts and latest developments related to the peak
demand reductions. This step helps to identify the gaps in the existing

research.

12



. Phase 2: A data acquisition system (DAQs) is set up at the
experimental site in this phase of the research. Data collected from the
DAQs is used to train the load forecasting model as well as to conduct
the simulation study.

. Phase 3: A deep-learning-based 1D-CNN load forecasting model is
developed in this phase of the research. An extensive literature on
other load forecasting models is also carried out before developing
the 1D-CNN model.

. Phase 4: A fully operational 200 kW/200 kWh BESS setup is
installed at the experimental site in this phase of the research. A set
of lithium iron phosphate (LiFePO4) batteries, a bi-directional
inverter, a battery monitoring system (BMS) and other essential
components are set up following the standards and safety
regulations. A communication network among the devices in BESS
setup is also established in this phase of the research.

. Phase 5: In the fifth phase of this research, the adaptive threshold-
based controller is developed using Python programming language to
evaluate its effectiveness in the simulation platform. As part of this
phase of the research, the proposed controller's performance is
compared with four other controllers implemented through the same
simulation environment.

. Phase 6: In the final phase of this study, the adaptive threshold-
based controller is designed in Node-RED platform and deployed
to the actual 200 kW/200 kWh BESS setup to evaluate its practical

performance under real operating conditions.
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1.6 Structure of the Dissertation

The structure of the dissertation is organised as follows:

1. Chapter 1: This chapter presents an in-depth overview of the
research background, highlighting the challenges associated with
high peak demands from different perspectives. The research aims
are clearly outlined, and the relevance of the study is emphasized.
Additionally, the chapter presents the research methodology,
illustrating how the research is conducted.

2. Chapter 2: This chapter mainly focuses on the existing approaches
for peak demand reductions. It starts with a clear definition of peak
demand, followed by the importance of peak demand reductions
both from commercial and environmental perspectives. The chapter
then delves into various strategies employed to tackle this issue,
offering a detailed analysis of the approaches. It further investigates
various control strategies to manage the charging and discharging
operations of the BESS for peak demand reductions.

3. Chapter 3: This chapter outlines the overall system architecture of the
experimental site. It begins with a brief description of the hardware
configuration of the data acquisition systems (DAQs) installed on-site,
followed by details of the battery energy storage system (BESS) and
the battery monitoring system (BMS). The chapter concludes by
highlighting the communication network architecture connecting the

devices involved in the experimental setup for peak demand reduction.
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4. Chapter 4: This chapter mainly presents the BESS control algorithms
for peak demand reductions. The control algorithm of the proposed
adaptive threshold-based controller is explained at the beginning of
the chapter. Following that the control algorithms of the other four
controllers that are benchmarked against the proposed adaptive
threshold-based controller is also explained. The implementation of
the control algorithms both in simulation and experimental studies is
then highlighted in this chapter. Lastly, the architecture of the
proposed 1D-CNN load forecasting model that is used to perform day-
ahead load forecasting is detailed.

5. Chapter 5: This chapter presents the finding of this research. At the
beginning of this chapter, findings from the simulation study are
outlined. The performance of the 1D-CNN model throughout the
simulation period is first presented, followed by the performance
comparison of the controllers is explained comprehensively. At the
last part of this chapter, the experimental results of the proposed
adaptive threshold-based controller are presented thoroughly.

6. Chapter 6: In the concluding chapter, the key findings of the research

are summarized, along with recommendations for further studies.
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1.7 List of Publications

Table 1.1 lists the peer-reviewed journal and international conferences where

the results of this research have been published.

Table 1.1: Publications overview

No Title of the paper Publication Details of the paper
status
An Innovative Adaptive Journal (Q1)
Threshold-based BESS IEEE Access
1 | Controller  utilizing  Deep | Published Impact Factor: 3.4
Learning Forecast for Peak Position: 1% Author
Demand Reductions.
Short-Term Load Forecasting Conference
for Peak Demand Reduction ICSGCE 2023
2. Published
with Limited Historical Data. Index: Scopus
Position: 1% Author
Power Quality Analysis on Peak Conference
Demand Reductions using PEPSC 2025
3 Accepted

Battery Energy Storage System

Index: Scopus

Position: 2™ Author
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter outlines a detailed overview of the strategies currently
implemented to address high peak demand. It initiates with introducing the
concept of peak demand, outlining the challenges it presents. The importance of
peak demand reductions is then highlighted, emphasizing its financial and
environmental impacts. Following this, the chapter delves into an extensive
review of established solutions for reducing peak demand, such as DSM, DR,
and ESS. BESS, a specific form of ESS, is chosen as the primary focus of this
research, considering its advantages compared to other existing solutions.
Therefore, several BESS controllers, that aim to achieve peak demand reductions,

are thoroughly examined in the latter section of this chapter.

2.2 Peak Demand

Peak demand is the highest level of electricity consumption recorded over a
specific time frame, often measured in short intervals like 30 minutes within a
24-hour period. To maintain a stable and reliable power supply across the
electrical network, it is essential that the generated power consistently matches

the demand at all times (Benetti et al., 2016). To achieve this, utility companies

17



must adjust their generation levels in real-time, responding to fluctuations in load
demands. To ensure a stable match between power generation and consumption,
utility providers generally rely on three types of power stations: baseload,
intermediate-load, and peaking units (Leonard et al., 2018). The base-load power
plants are usually designed to operate continuously at a constant output to meet
the minimum power demand (Di Gianfrancesco, 2017b). In contrast,
intermediate-load power plants are designed to cope with daily variations in
power consumption (Diewvilai and Audomvongseree, 2024). These types of
power plants usually adjust their power outputs according to the fluctuation of
the load demands. Lastly, the peaking power plants, which are operate solely
during peak hours to deliver the surplus power necessary for supporting grid

reliability (Di Gianfrancesco, 2017b).

Since the peaking power plants are designed to operate during peak demand
periods, their runtime is limited to short durations, resulting in a comparatively
lower contribution to the overall energy supply than baseload or intermediate
load power plants. However, the costs associated with these peaking power
plants, are relatively high due to their lower efficiency, reliance on expensive
fuels, frequent start-stop cycling, and higher standby costs (GAO, 2024b) . To
recover the substantial investments and operational expenditures, the electricity
they produce is often sold at high rates (Hu et al., 2013). As a result, utility
providers implement various billing structures to pass these costs on to the end

customers.
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Apart from standard electricity usage charges, commercial and industrial
customers in Malaysia are also liable for MD charges, which can considerably
elevate their total electricity bill (Tenaga Nasional Berhad (TNB), no date). The
standard electricity usage charges are usually measured in kWh and are applied
to all categories of consumers including residential, commercial, and industrial
customers based on their energy usages. However, for commercial and industrial
customers, additional MD charges are added to the electricity bills. These
charges, measured in kW, are based on the peak electrical demand recorded
during the billing cycle, usually within a 30-minute window. Typically, MD
charges make up roughly 20% of a customer’s monthly electricity bill, but this
proportion can increase up to 70% for some customers (Dieziger, 2000; Zhang

and Augenbroe, 2018b; Ayyappan et al., 2019).

Table 2.1 presents the various MD rates imposed under different tariff
categories set by Tenaga Nasional Berhad (TNB) in Malaysia. Tariff categories
B and D, which fall under low voltage, are exempt from MD charges. However,
other tariff categories are subject to different MD rates. For instance, a customer
under C2 tariff category who records MD of 200 kW in a given month will incur
MD charges calculated at RM45.10 per kW. This results in a total MD charge of

RM 9,020, calculated as follows:

MD Charge = Maximum Demand X Rate per kW

=200 kW x 45.10 RM

=9020 RM
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Table 2.1: Maximum demand rates for different tariffs by TNB

Tariff Plan Charge (RM/kW)

Low-voltage commercial tariff (Plan B) -

Medium-voltage standard commercial tariff (Plan C1) 30.30

Medium-voltage peak/off-peak commercial tariff (Plan C2 45.10

Low-voltage industrial tariff (Plan D) -

Medium-voltage standard industrial tariff (Plan E1) 29.60
Medium-voltage peak/off peak industrial tariff (Plan E2) 37.00
High voltage peak/off peak industrial tariff (Plan E3) 35.50

In addition to imposing a considerable financial burden on consumers, high
peak demand also creates significant environmental issues. To address high peak
demands, fossil fuel-powered peaking power plants are frequently required to
function at their maximum capacity for extended periods. Unlike other power
plants that run more efficiently, peaking power plants are less efficient and emit
disproportionately higher levels of CO; and other harmful pollutants (Ang et al.,
2022). These emissions substantially pollute the environment and contribute to
the acceleration of global warming. Moreover, the increased pollutions degrade
the air quality, adversely affecting both public health and the natural

environment (Perera, 2018).
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2.3 Importance of Peak Demand Reductions

Peak demand reduction is important due to its significant economic and
environmental benefits. From an economic perspective, reducing peak demand
enables utility companies to avoid major capital expenditures associated with
constructing new peaking power plants and reinforcing existing electrical
infrastructure (Nebey, 2024b). By reducing peak demands, utility companies can
ensure the best use of their existing infrastructure and can minimize the costly
investments for network upgrades (Wallberg et al., 2024). These allow them to
offer electricity at significantly lower rates compared to when large sums were
spent to accommodate high peak demands. Customers can also enjoy low
electricity tariff rates from the utility companies. Moreover, reducing peak
demands help customers to save on their MD charges, which would otherwise
be significantly higher if the peak demand reductions are not carried out (Gohary

etal., 2023).

Apart from the financial benefits, reducing peak demands also provide
significant environmental benefits. Peaking power plants, which are activated
for short durations to manage the peak demands, usually run on fossil fuels. The
highest level of greenhouse gas emissions and the most severe impacts on
ecosystems are caused by fossil fuels (Mubarak et al., 2024). Reducing peak
demands can decrease the reliance on these non-environmentally friendly fossil
fuel-based peaking power plants, leading to lower CO2 emissions and improve

air quality (Hoa et al., 2024).
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In addition to the aforementioned benefits, reducing peak demands allow
utilities to operate more efficiently by lowering the power supply during high
peak demand periods (Kalkhambkar et al., 2016). It also helps to maintain the
balance between supply and demand and improves overall power quality (Silva
et al., 2020). For these reasons, peak demand reduction has become a key area
of attention, and numerous strategies are actively being introduced to address
this issue. The following section provides a comprehensive overview of the

existing solutions for peak demand reductions.

2.4 Existing Strategies for Peak Demand Reductions

Numerous strategies for reducing peak demands are discussed in literature,
with DSM, DR, and ESS being especially prominent and extensively
implemented in different countries. Different ESS technologies are widely used
to reduce peak demands, yet BESS offers a more adaptable and reliable option
than other ESS types (Chatzigeorgiou ef al., 2024). The subsequent sections
explain the DSM and DR strategies implemented for peak demand reductions,
followed by their limitations. The various ESS technologies are also explained
at the end of these sub-sections, along with an explanation of why BESS is the

more suitable for peak demand reductions compared to the other alternatives.
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2.4.1 Demand Side Management (DSM)

DSM is a long-term strategy focused on promoting lasting changes in
customers' energy consumption patterns, especially during peak demand periods
(Nebey, 2024b). It helps to reduce peak demands by encouraging customers to
adopt energy-efficient devices or install dynamic load management tools at their
locations to control and schedule their energy usage. Customers are encouraged
to use different energy-efficient devices such as LED lighting, smart thermostats,
high-efficiency appliances, and variable speed HVAC systems in DSM strategy
(Igbal et al., 2021Db). These energy-efficient devices allow the customers to lower

their overall energy usage, helping to reduce demands during peak hours.

Along with implementing energy-saving equipment, DSM strategies utilize
various real-time load management tools, including smart meters, controllable
loads, and programmable switching devices at the user end (Panda et al., 2022a).
Smart meters allow both customers and utilities to monitor real-time data on
energy consumption, thus helping to take necessary actions to reduce the loads
during peak demand periods. Load controllers and programmable switches
usually adjust or shift the energy use of the customers during peak demand
periods, ensuring that power demand remains balanced and avoids overloading
the grid (Igbal et al., 2021b). DSM strategy mainly involves different load
management techniques, as illustrated in Fig. 2.1, for peak demand reductions
(Panda et al., 2022a). The overview of the load management techniques used in

DSM strategy are outlines below-
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. Peak clipping: This technique reduces the peak demands by remotely
controlling the customers’ devices or offering incentives to customers.
. Valley filling: This technique reduces the peak demands by
encouraging the customers to increase their electricity usage during
off-peak hours, helping to balance the overall load demands
throughout the day.

. Load shifting: This technique reduces the peak demands by shifting
the load consumptions from peak demand periods to non-peak
demand periods through incentives or smart scheduling of the
appliances.

Strategic conservation: This technique strategically reduces the
overall electricity consumption during peak demand periods through
behavioural changes or energy-saving practices.

. Flexible load shape: This technique reduces the peak demands by
dynamically adjusting the electricity usage in real-time based on the
grid conditions.

Strategic load growth: This technique strategically reduces the peak
demands by adding new electricity use, such as EV charging, in a
planned way, ensuring that the load growth happens during off-peak
hours when overall load demands is lower. In this technique, adding
new loads may increase overall load demands, but the new loads are
added in a planned way, preventing them from contributing to

increase the actual peak demand during peak hours.

24



= = =

g | g g

£ £ £

= o L

a a T t 8

Peak Clipping 1 1m€ Valley Filling ~ Time Load Shifting  Time

= = -]

= = = T

: l : ! :
[=] ﬂ = /_\ a /_\

Conservation Time Flexible Load Shape Tine Load Growth Time

Figure 2.1: Load management techniques in DSM for peak demand
reductions.

2.4.2 Demand Response (DR)

Unlike DSM, DR is a short-term strategy designed to enable consumers to
adjust their electricity usage during peak demand periods in response to market
conditions (Paterakis et al., 2017). The DR is usually implemented through
various customer programs for peak demand reductions. These programs can be
categorized into two main categories: incentive-based programs (IBP), and

price-based programs (PBP) (Nebey, 2024b).

In IBP, utility companies encourage their customers to reduce or shift their
electricity usage during peak demand periods to non-peak demand periods in
exchange for financial incentives. Direct load control, curtailable load programs,
capacity market programs, emergency DR programs, and demand bidding are
the common examples of IBP for peak demand reductions (Albadi and El-

Saadany, 2008). Utility companies directly control the loads of the customers
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during peak demand periods in direct load control program, whereas in
curtailable load programs, customers agree to reduce their consumption during
peak demand periods in return for financial incentives for peak demand
reductions. Additionally, customers are committed to reduce their consumptions
during high peak demand periods in exchange for upfront payments in capacity
market programs (Bogdanova et al., 2023a). In these programs, the commitments
between the customers and utility companies are usually made in advance, and
customers are expected to be available to curtail their loads when called upon.
Moreover, customers are incentivised to reduce or shift their energy usage during
critical periods, such as extreme weather events or grid emergencies in
emergency demand response programs for peak demand reductions (Siano,
2014). These programs are only initiated during emergency conditions and
typically involve immediate load reduction actions from the participants. Lastly,
in demand bidding programs, customers typically submit bids specifying the
amount of loads they are willing to reduce and the price at which they are willing
to do so for peak demand reductions (Huang, Li and Zhang, 2025). These bids
are then evaluated by the system operator, and accepted bids result in load

reductions during specified periods.

On the other hand, In PBP, customers are incentivized to alter their regular
energy usage patterns, particularly by shifting their consumptions from peak
demand periods to off-peak demand periods, through the provision of adjusted
electricity prices. Under PBP, various dynamic pricing mechanisms such as
Time of Use (TOE), Real-time Pricing (RTP), Critical Peak Pricing (CPP),

Extreme Day Pricing (EDP), and Variable Peak Pricing (VPP) are introduced to
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motivate the customers to alter their regular energy usage patterns
(Kanakadhurga and Prabaharan, 2022). The details of these pricing mechanisms

are outlined below —

1. Time ofuse (TOU): A pricing mechanism where electricity rates vary
depending on the time of day, with higher rates during peak demand
periods and lower rates during off-peak periods.

2. Real-time pricing (RTP): A pricing mechanism where electricity rates
fluctuate dynamically based on the actual wholesale market price of
electricity in real time, typically changes on an hourly basis.

3. Critical peak pricing (CPP): A pricing mechanism where electricity
rates are set significantly high during a particular period of extreme
demands to encourage reduced consumption.

4. Extreme day pricing (EDP): Same as CPP structure but applied
throughout the entire 24-hour period on days of extreme demand.

5. Variable peak pricing (VPP): A pricing mechanism where electricity
rates vary during peak hours based on the level of electricity demand,

with prices typically increasing as demand rises.

2.4.3 Limitations of DSM and DR Strategies

Both DSM and DR strategies are widely used for peak demand reductions.
However, both strategies have limitations that affect their overall effectiveness
in reducing peak demands for customers. The DSM strategy primarily focuses

on the long-term results, and it takes more time to achieve the results compared
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to the other short-term solutions (Panda ef al., 2022a). Therefore, DSM may not
be the most effective solution in addressing immediate peak demand challenges.
Additionally, the high upfront costs of energy-efficient technologies and
potential consumer reluctance to adopt behaviour changes can limit the

effectiveness of DSM in reducing peak demands (Strbac, 2008).

On the other hand, DR strategies offer more immediate solution for peak
demand reductions compared to DSM strategies (Silva et al., 2020). However,
implementing DR programs in real-world may face significant challenges.
Designing and managing DR programs can be complicated and resource-
intensive (Bogdanova et al., 2023a). Utilities must coordinate the delivery of
incentives and ensure that all participants satisfy the eligibility criteria. Often,
customers are unaware of the potential benefits associated with DR programs
(Bogdanova et al., 2023). Hence, they are often not motivated to participate the
programs for peak demand reductions. Even those who do understand the
benefits of the programs, they may not adjust their routines and sacrifice comfort
(Nolan and O’Malley, 2015). In addition to other issues, the collection and
exchange of consumer energy data may lead to privacy and security risks,
highlighting the importance of strong data protections to minimize threats and
enhance trust in DR programs (Bogdanova et al., 2023a). Additionally,
technology-based demand response solutions often demand technical skills and
training for proper deployment and operation. This complexity can pose
challenges for smaller utilities or consumers lacking sufficient technical

expertise.
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2.4.4 Energy Storage Systems (ESS)

Unlike DSM and DR strategies, Energy Storage Systems (ESS) offer fast,
flexible and adaptable solutions for reducing peak demands without disrupting
the daily activities of the customers (Hannan et al., 2021; Lee et al., 2023).
Customers can enjoy the benefits of peak demand reductions while maintaining
their comfort and convenience. Energy stored by the ESS from the grid in oft-
peak hours is released during peak hours to assist in reducing customer peak
demand. Different ESS technologies have been broadly used to store energy in
diverse forms such as thermal, potential, kinetic, electromagnetic, and
electrochemical over time. (Amir et al., 2023). Fig. 2.2 presents the general
classification of the ESS technology in the form of thermal, mechanical,

electrical, chemical, and electrochemical energy storage.

Thermal

+ Sensible heat storage
* Latent heat storage

Mechanical
Electrochemical
*  Pumped hydro
* Batteries . Energy Storage + Compressed air
* Flow batteries *  Flywheel

Systems (ESS)

N N
Chemical Electrical
* Hydrogen * Capacitor .
*  Electrolyzer *  Supercapacitor
.

Figure 2.2: Energy storage technologies for peak demand reductions.
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Each of the ESS technologies comes with its own advantages and
disadvantages. Thermal ESS, which usually have slower response times
compared to other storage systems, making them less effective to reduce the
sudden spike of the load demands (Das et al., 2018). In contrast, Mechanical
ESS usually have higher response time compared to the thermal ESS, making
them a better choice for peak demand reductions. However, one major drawback
of the mechanical ESS is their geographical limitations (Chakraborty et al.,
2022). Mechanical ESS, such as pumped hydro systems, are heavily rely on
specific geographical features, like the availability of natural water sources and
elevation differences, which are essential to set up the systems. These special
locations may not be accessible everywhere which limits the widespread
implementation of such ESS technologies for peak demand reductions. In
addition, both pumped hydro and flywheels storage system require substantial
infrastructure and significant capital investments, making them less cost-
effective solutions (Li and Palazzolo, 2022; Nikolaos et al., 2023). The space
requirements for these storage systems, especially for large-scale flywheels and
pumped hydro, can also be significant. Therefore, reducing peak demands using

the mechanical ESS may not be the most effective solution.

Other types of ESS, such as electrical and chemical storage technologies, also
face specific limitations when applied to peak demand reduction in practical,
real-world scenarios. Electrical ESS such as capacitors and supercapacitors have
low energy density (Naseri et al., 2022). In addition, the energy discharge
duration is also relatively short compared to the other ESS technologies,

restricting them for effective peak demand reductions when the peak demands
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occur for long duration. Similarly, chemical ESS technologies, including
hydrogen storage and electrolysers, present challenges in real-world
implementation. Complex infrastructure is essential for their storage and
conversion purposes, which increases capital costs and maintenance
requirements (Kandari et al., 2023). Additionally, the process of converting
electricity into hydrogen through electrolysis and then using it to generate power
when required is relatively slow (Hossain Bhuiyan and Siddique, 2025).
Consequently, electrical ESS technologies are not ideal for managing sudden or

prolonged peak demand events.

In contrast, electrochemical energy storage systems, especially BESS, is
better suited for efficiently reducing peak demand than other ESS technologies
(Hannan et al., 2021). Unlike other ESS technologies, BESS offers faster
response time and can discharge the stored energy almost instantly, which is
ideal for handling sudden spikes in load demands. In addition, BESS provide
high round-trip efficiency, typically around 90%, allowing them to utilize the
stored energy effectively for peak demand reductions (Kwon et al., 2024).
Furthermore, BESS are scalable and compact in size, making them suitable to
deploy in any location without requiring significant infrastructure or
geographical constraints (Saldarini et al., 2023). In contrast to mechanical or
thermal storage systems, BESS are easier to operate and maintain, with less
complex infrastructure and lower operational costs. These features ensure quick
and reliable response to fluctuations in power demands, making them ideal for

effective peak demand reductions.
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In practice, BESS can reduce peak power needs for customers when installed
after the meter, delivering energy during peak periods. A controller is however
essential for BESS to reduce the peak demands efficiently. The controller mainly
guides the BESS when to charge and discharge the batteries to achieve maximum

peak reduction.

2.5 BESS Controllers for Peak Demand Reductions

Over the years, various BESS controllers have been developed to manage
battery charging and discharging schedules, aiming to reduce customers’ peak
demand. These controllers generally fall into two categories, each with its own
pros and cons. The first category is known as fixed threshold-based controllers.
These controllers operate based on a predetermined threshold value, typically
derived from a specific load forecasting technique (Ng et al., 2022b). The BESS
charging and discharging processes are managed by this fixed threshold.
Throughout the day when peak reduction is targeted, the threshold does not
change and regulates battery discharge to manage the actual peak of the day. The
conventional fixed threshold-based controllers are usually simple in design, and
comparatively easy to implement compared to more advanced controllers.
Additionally, they tend to be more cost-effective, as they do not require frequent

threshold adjustment using multiple operational parameters (Rowe et al., 2014).

Conversely, the second category of the BESS controller is known as the

adjusting threshold-based controller. These controllers set an initial threshold at
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the beginning of the day of peak reductions, and then subsequently adjusts the
threshold to optimize the battery operations for peak demand reductions (Ng et
al., 2022b). These advanced controllers are more complex in design because they
consider several parameters when adjusting the threshold (Prakash et al., 2022).
However, they offer better peak demand reduction capabilities compared to the
conventional fixed threshold-based controller by dynamically updating the

threshold in response to real-time load conditions.

2.5.1 Literature on the Conventional Fixed Threshold-based BESS
Controllers

Over the years, several fixed threshold-based controllers are developed and
implemented to reduce the peak demands for customers. These controllers are
relatively easy to design and require less computational resources to operate.
Therefore, these controllers are widely adopted for peak demand reductions.
Table 2.2 presents a comprehensive overview of the existing conventional fixed

threshold-based controllers used for peak demand reductions.

Table 2.2: Overview of the existing conventional fixed threshold-based
BESS controllers for peak demand reductions.

Method of | Control Strategy for Peak | Performance of the

Refi
CIETenee | Evaluation Demand Reduction Controller

e In control strategy a, load | e Data from four
(Salis et al.,

Simulation demands are forecasted in distinct  buildings,
2014)
labelled A through
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advance using historical
data.

On the day of peak
reduction, a threshold-like
control limit is set by
adding a safety margin to
the forecasted loads to
guide the BESS power

dispatch for peak demand

reductions.

D, over 1 year are
used for simulation
studies.

Each building uses a
fixed but different-
sized BESS, and the
control strategy o
reduces monthly

peak demand by an

average of 33.7%.

e [Load

demands are
forecasted in advance to

schedule the power dispatch

A single case study is
presented.

With a 300 kWh

of the BESS. BESS, the controller
(Shin et al., e Exact method of load effectively reduces
Simulation
2016) forecasting, however, is not the peak demand
disclosed. from 180.9 kW to
133 kW, achieving a
peak reduction of
26.5%.

e Load demands are Simulation  studies
forecasted in advance using are carried out using
data from the same day of 1 year of data.
the previous week. With a 350 kWh

(Pholboon et e Based on forecasted the BESS and 114 kWp
Simulation

al., 2016b)

loads and price rates, a
threshold is established to
manage how the BESS

dispatches power.

PV setup, the
controller manages
to reduce the average

annual peak demands

of 32%.
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Load demands are
forecasted in advance using

historical data rather than

relying on any specialised

Two case studies are
presented.
With a 15 kVA/64

kWh of BESS, the

models. controller  reduces
(Chua et al.,
Experimental | ¢ Based on the forecasted peak demand from
2017b)
load demands, two 78.4 kW to 70.9 kW,
thresholds are defined on achieving a 9.57%
the day of peak reduction to reduction, the
dispatch the BESS power. highest between the
two case studies.

e Load demands are The controller is
forecasted in advance by tested experimentally
calculating the mean of the over 31 days.
envelope of the historical With an 18 kW / 64

(Hau et al., load demands. kWh BESS, the
Experimental
2017) e On the day of peak controller achieves a
reduction, a threshold is set maximum reduction
based on the forecasted of kW 9.28 kW.
load demands to dispatch
the BESS power.

e Load demands are predicted Simulation  studies
ahead of time using a are carried out using
persistence approach, 1 year of data.
assuming that the load With a 500 kWh

(Barchi et
Simulation profile for the upcoming day BESS coupled with
al., 2019b)

will be the same as the
previous days.
The power dispatch of the

BESS is determined by a

1000 kWp PV setup,
the controller

achieves an annual
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threshold, which is energy reduction of
calculated through a 1236 MWh.
specialized  optimization
technique.

e Two thresholds are set based Simulation  studies

on the historical load
demands.

On the day of peak demand

are carried out using
1 year of data.

The BESS is not

reduction, the power specified.
(Bereczki et
Simulation dispatch of the BESS is The controller
al., 2019)
controlled by the thresholds. reduces the annual
peak load from 48.49
kW to 41.59 kW,
resulting a 14.23%
reduction.
® Two thresholds are set in Two case studies are
advance based on the presented.
generic daily load demand With a 3.61 MWh
profiles. BESS, the controller
) ® The BESS power output on reduces peak demand
Simulation
(Danish et the peak reduction day is from 10.13 MW to 9
al., 2020) regulated by the set MW, achieving a
thresholds and battery SOC. 11.15%  reduction,
the highest between
the two case studies.
e Load demands are The controller is
(Kim et al., forecasted in advance using tested experimentally
Experimental
2025) a multi-cluster LSTM model over 5 days.

that integrates k-means
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clustering with LSTM | ¢ With a 100 kW/ 150
networks. kWh  BESS, the
e During the peak reduction controller achieves a
day, the BESS power 21.3% reduction in
dispatch is governed by a total energy usage.
threshold determined from

the forecasted load demands.

2.5.2 Literature on the State-of-the-art Adjusting Threshold-based BESS
Controllers

Apart from the conventional fixed threshold-based controllers, several state-
of-the-art adjusting threshold-based controllers are also introduced over the
years for peak demand reductions. These types of controllers usually forecast the
load demands in advance, set an initial threshold and dynamically adjusts the
threshold throughout the day for peak demand reductions using different
optimization techniques. The BESS charging and discharging schedules are
managed based on these adjusted thresholds. Although the state-of-the-art
adjusting threshold-based controllers are more complex in design due to the use
of advanced optimization methods, these controllers offer clear advantages.
Unlike fixed threshold-based controllers, they can adapt thresholds in real-time
using forecasts or real-time data, allowing more precise and efficient responses
to peak demand events (Ng et al., 2022b). Table 2.3 presents an overview of the

existing state-of-the-art BESS controllers for peak demand reductions.
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Table 2.3: Overview of the existing state-of-the-art adjusting threshold-
based BESS controllers for peak demand reductions.

Control Strategy for
Method of gy Performance of the
Reference R Peak Demand
Evaluation . Controller
Reduction
e A complex value neural | e Simulation studies are
network  (CVNN) s carried out based on
employed in a series- 108 days of data.
parallel forecasting model | ¢ With a 1 MW/ 1100
to estimate load demands kWh  BESS, the
in advance.
controller proves
e Based on the forecasted effective in reducing
(Reihani et . . load, an initial SOC profile peak demands, though
Simulation
al., 2016) for the BESS is established the specific amount of
and later optimized with a reduction remains
simple control method. unspecified.
e The power scheduling of
the BESS on peak
reduction days is directed
by the optimized SOC
trajectory.
e Load demands are | ® A single case study is
forecasted in advance by presented.
averaging the historical | ¢ With a 500 kWh of
load demands. BESS, the controller
(Yun et al.,
Experimental | ¢ Based on the forecasted successfully reduces the
2016)
load demands, an initial peak demand from
threshold is established 82.44 kW to 43.12 kW,
and then fine-tuned using achieving a reduction of
battery SOC and TOU 47.69%.
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rates to manage the

BESS's power dispatch

during peak  demand

periods.

Load  demands  are Simulation studies are
forecasted in advance carried out using 14
using five  different days of data.

forecasting models.

Size of the BESS is not

On the day of peak disclosed.
(Yunusov et .
Simulation reduction, a  model Using the Snt
al., 2017) o
predictive control (MPC) forecasting method, the
algorithm is wused to MPC controller
optimize  the  power achieves up to 11.4%
dispatch of the BESS for peak demand reduction
peak demand reductions. over 14 days
Load demands are Simulation studies are
forecasted in advance carried out using 24
using a double seasonal months of data.
. Holt-Winters method. By using a 200 MW/
(Kim et
Simulation On the day of peak 400 MWh BESS setup,
al., 2017)
reduction, the  power peak demand for the
dispatch of the BESS is customer is reduced by
optimized using a robust 49.9%
control algorithm.
Load demands are The  controller is
forecasted in advance by experimentally  tested
(Hau et al.,
Experimental calculating the mean of over 31 days.
2017b)

the envelope of the

historical load demands.

With an 18 kW/64 kWh

BESS, the controller
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On the day of peak

reduction, an initial

threshold is set based on

achieves a  highest
reduction of 10.02 kW,

lowering peak demand

the  forecasted  load from 79.96 kW to 69.94
demands, which is kW, a reduction of
subsequently adjusted 12.53%.

based on a meta-heuristic

method to manage the

power dispatch of the

BESS.

e Load demands are Five different case

forecasted in advance
based on historical data to

set an initial threshold.

studies are presented in
the study.

With a 64 kWh of

(Chua et al., e On the day of peak BESS, the controller
Experimental
2017) reduction, the initial achieves a maximum
threshold is dynamically reduction of 12.04%,
adjusted through a fuzzy lowering peak demand
control logic to manage from 100.5 kW to 88.4
the BESS power output. kW.
e An initial charge- A single case study is
discharge schedule of the presented.
BESS is determined based Witha 6 MW/ 10 MWh
(Agamah
on a simple combinatorial BESS, the GA
and
Simulation optimization heuristic optimized  controller
Ekonomou,
method. achieves a peak
2017)

On the day of peak
reduction, a  genetic

algorithm (GA) is used to

reduction of 15.69%.
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optimize the charge-

discharge scheduling.

Load demands are

forecasted in advance
using an auto-regressive
moving average model to
initial

set an charge-

discharge scheduling of

3 days of experimental
results are provided.

With a 200 kW/ 1 MWh
BESS, the controller

manages to achieve a

maximum 97 kW of

(Taylor et
Experimental the BESS. peak reduction.
al.,2019)
On the day of peak
reduction, a stochastic
optimization method
optimizes the charge-
discharge scheduling of
the BESS.
The controller operates | ® Four case studies are
without relying on the presented.
forecasting results. o With a 66 kW/ 60 kWh
Instead, it uses a battery BESS, the controller
(Lange et
al., 2020) Simulation dimensioning method to achieves a  maximum
manage the BESS charge- peak  reduction  of
discharge operations for 8.13%, lowering peak
peak demand reduction. demands from 619 kW
to 568.7 kW.
A novel control | @ A single case study is
framework is introduced presented.
(Engels et
Simulation to manage the BESS | ¢ Witha 1l MW/ 1 MWh
al., 2020)

power dispatch to jointly

BESS, the controller

manages to reduce the
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perform peak reduction
and frequency regulation.
On the day of peak
reduction, a stochastic
optimization technique is
used to optimize the BESS

power dispatch.

peak demand from 1.91
MW to 135 MW,
achieving a reduction of

29.32%.

(Efkarpidis

etal.,2023)

Simulation

Load demands are
forecasted in advance
using a hybrid GRU-RNN
model to set an initial
threshold for managing
BESS power output.

A rule-based optimization
technique optimizes the
BESS power output on the

day of peak reduction.

Simulation studies are
carried out using 4
years of data.

With a 1.25 MW/ 1.35
MWh  BESS, the
controller manages to
reduce significant

monthly peak demands.

(Ebrahimi
and

Hamzeiyan,

2023)

Simulation

Load  demands are
forecasted in advance
using an artificial neural
network (ANN) model to
set an initial threshold to
control the power dispatch
of the BESS.

On the day of peak
reduction, the power
dispatch of the BESS is
optimized  through a
complex control

algorithm.

Simulation studies are
carried out using four
different load profiles.
The size of the BESS is
not specified.

The controller achieves
a maximum reduction
of 28.12% among the

four load profiles.
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e Load demands are | e Simulation results for a
forecasted in advance three-month period are
using LSTM model. provided.

e On the day of peak | ¢ With a 10 kW/82 kWh
reduction, a demand BESS, two electric

(Ghafoori et management optimization vehicles (EV) each
Simulation
al., 2023) model based on linear having 15 kW/62 kWh,
programming is used to and a 40-kW
optimally charge and photovoltaic (PV)
discharge the EVs for setup, the controller
peak demand reductions. reduces peak demand
by up to 36%.

e Load demands are | o Simulation studies are
forecasted in advance carried out using 30
using a probabilistic time- days of data.
series forecasting method. | ¢ With a 15 kW/60 kWh

(Rafayal et e On the day of peak BESS, the controller
Simulation
al., 2024) reduction, the charge- reduces the daily energy
discharge schedule of the peaks by up to 26%.
BESS is controlled by a
two-stage stochastic
programming model.

e Load demands are | ® Two case studies are
forecasted in advance presented.
using a two-stage neural | e With a

(Mary and
network-based 500 kW/2200 kWh
Dessaint, Experimental
forecasting model to set a BESS, the controller
2025)

threshold-like setpoint to

control  the  charge-

successfully reduces
peak demands in both

case studies, with the
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discharge scheduling of reduction being 60 kW

the BESS. less than the optimal in
e On the day of peak the first case and
reduction, a robust model 3.5kW less than the
predictive control (MPC) optimal in the second.

strategy  optimizes the
charge-discharge

scheduling of the BESS.

2.5.3 Research Gaps in the Existing Conventional and State-of-the-art
BESS Controllers

The current literature highlights various conventional fixed threshold-based
and state-of-the-art adjusting threshold-based controllers for peak demand
reductions. Some of the controllers forecast the load demands using either the
previous day's load profile or the profile from the same weekday of the previous
week (Pholboon et al., 2016b; Barchi et al, 2019b). In addition, many of the
controllers forecast their load demands by averaging the historical data rather
than using any specific load forecasting models (Salis et al., 2014; Yun et al.,
2016; Hau et al., 2017a; Chua et al., 2017). These forecasting approaches are
easy to implement and rely on the assumption that load patterns stay consistent
over time. However, in real-world scenarios, load demands vary from day to day,
and this variability is especially pronounced in commercial sites where

fluctuations are often significant and do not follow a clear trend. Using a
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specialized load forecasting model can provide greater accuracy than simpler
methods such as relying on the previous day's data, the same day from the

previous week, or averaging historical load profiles.

Many of the existing BESS controllers are developed on paid commercial
platforms like MATLAB and LABVIEW (De Salis et al., 2014; Pholboon,
Sumner and Kounnos, 2016b; Reihani et al., 2016; Hau et al., 2017b, 2017a;
Chua et al., 2017; Efkarpidis et al., 2023). Dependency on proprietary paid
platforms can lead to considerable challenges. One major concern is the high
licensing cost, which can significantly increase the overall expense of controller
development. In addition, these commercial platforms often have restricted
flexibility in terms of customization and integration with other systems,
potentially limiting the ability to adapt solutions to specific requirements.
Furthermore, reliance on such platforms can create vendor lock-in, where users
are tied to a specific provider for future updates or support, limiting long-term

scalability.

Moreover, most of the existing BESS controllers assess their performance
based on the actual peak demand reduction, rather than using any evaluation
metric (Yun et al., 2016; Yunusov et al., 2017; Taylor et al., 2019; Engels et al.,
2020; Lange et al., 2020; Ghafoori et al., 2023). Assessing a controller’s
performance using appropriate metrics is important to gain a comprehensive
understanding of its effectiveness under varying operational conditions. An

appropriate metric not only evaluates how effectively a controller reduces peak
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demands but also facilitate fair, consistent benchmarking against alternative
control approaches. For example, a controller with a larger BESS capacity may
perform exceptionally well in scenarios where the load profile features sharp,
short-duration peaks, as it can respond quickly and discharge sufficient energy
to reduce those peaks. However, the same BESS controller may underperform
in situations where the daily peak is more prolonged or where the BESS has
limited storage or power capacity. Therefore, it is crucial to assess a controller’s

performance through appropriate evaluation metrics.

Apart from these, majority of the controllers are tested only in simulations with
limited case studies (Shin et al., 2016; Agamah and Ekonomou, 2017; Yunusov
et al., 2017; Danish et al., 2020; Engels et al., 2020; Lange et al., 2020; Ebrahimi
and Hamzeiyan, 2023). Testing a controller’s performance only in simulation
under a controlled environment may not fully represent the complexities and
uncertainties present in real-world environments. Real-time validation at an
actual experimental site, under dynamic and unpredictable operating conditions,
is yet to be explored. Additionally, assessing a controller’s performance on
limited case studies may not fully capture its effectiveness and consistency. For
instance, a controller may appear effective in reducing peak demand on a
particular day, yet it could underperform the very next day if the load profile
changes significantly. Therefore, assessing a controller’s ability to consistently

reducing daily peak demands over an extended period is crucial.
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2.6 Summary

In summary, this chapter provides a thorough review of the relevant literature
that forms the foundation of this study. It begins by introducing the concept of
peak electricity demand and the various challenges associated with high peak
demand. The significance of reducing peak demand is subsequently emphasized.
Following that, existing strategies for reducing peak demand are discussed,
including DSM, DR, and ESS. Among these, BESS is selected as the focus of
this research due to its flexibility, scalability, and ability to respond rapidly to
demand fluctuations. Several conventional fixed threshold-based and state-of-
the-art adjusting threshold-based BESS controllers are also extensively reviewed
in this chapter. Each type of controller is critically analysed to understand its
strengths, limitations. Finally, the chapter highlights significant research gaps
within the existing conventional and state-of-the-art BESS controllers for peak
demand reductions. These identified gaps serve as the foundation for defining
the research objectives and emphasize the necessity for developing a new
innovative BESS controller using deep learning forecast for peak demand

reductions.
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CHAPTER 3

SYSTEM ARCHITECTURE

3.1 Introduction

This chapter presents the overall system architecture implemented for the
experimental study aimed at reducing peak demands. The experimental study is
carried out at UTAR KA block, an academic building of Universiti Tunku Abdul
Rahman (UTAR), Sungai Long, Malaysia campus, as shown in Fig. 3.1. The
chapter begins with the hardware setup of the data acquisition system (DAQs),
which primarily includes the setup of two digital power meters, labelled MSB1
and MSB2, along with a utility grid meter referred to as the TNB meter, all used
to measure key electrical parameters at the experimental site. Following the
DAQs, the chapter proceeds with a detailed description of the hardware setup
for the entire BESS including its key components and operational configuration.
Finally, the chapter outlines the communication network architecture that
facilitates seamless data exchange among the hardware components, enabling

efficient control and monitoring throughout the experimental study.
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Figure 3.1: UTAR KA block, the experimental site for this study.

3.2 Hardware Architecture of the Data Acquisition System (DAQs)

A real-time DAQs is installed at the UTAR KA block to collect and monitor
the load demand data at the experimental site. Two power meters, MSB1 and
MSB?2, are positioned downstream of the site's electrical busbar to capture
instantaneous load demand data at one-minute intervals. This real-time data is
compiled into a comprehensive dataset, which serves both for training the load
forecasting model and for carrying out the simulation study. Additionally, the
real-time load demands help to set the BESS power output in real-time for peak
demand reductions. Apart from the MSB1 and MSB2 power meters, a grid
power meter, labelled as the TNB meter, is installed upstream of the busbar to

record the total energy drawn from the grid. Data from this meter is essential for
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assessing the peak demand reductions achieved by the controller through the

operation of the BESS.

3.2.1 Hardware Setup of the MSB1 and MSB2 Power Meters

Two units of SPM33 digital power meters, labelled MSB1 and MSB2 as shown
in Fig. 3.2, are installed at the site to measure the instantaneous load demands of
the entire UTAR KA block. This block is mainly a multi storied academic
building which consists of several classrooms, laboratories, faculty office rooms
as well as cafeteria. The multifunctional MSB1 and MSB2 power meters
measure various electrical parameters of the building including voltage (V),
current (A), active power (kW), reactive power (KVAR), apparent power (kVA),
power factor (PF), frequency (Hz), and active energy (kWh). These parameters
are shown in real-time on the LCD screen positioned on the meters’ front panels,
enabling on-site personnel to quickly verify the readings. Technical

specifications of the MSB1 and MSB2 power meters are outlined in Table 3.1.

Figure 3.2: SPM33 digital power meters (MSB1 and MSB2) installed at
UTAR KA Block for load monitoring.
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Table 3.1:Specification of the SPM33 digital power meters.

Parameters

Ratings

Rated power supply

AC85~265V,DC 100 ~300V

Rated input voltage

220/380 V, 35 Hz ~ 65 Hz

Rated input current 5A or 1A
Power loss <5VA
Power frequency withstand voltage 2000 VAC
Insulation resistance > 100 MQ
Impulse voltage 6000 V

Standards

IEC 62053-21, IEC 62053-23

3.2.2 Hardware Setup of the TNB Meter

With support from TNB Malaysia, the country’s main utility provider, an
SL7000 grid meter by Itron labelled as the TNB meter, shown in Fig. 3.3, is
installed at the point of common coupling at the experimental site. This meter is
installed at the point of common coupling, which serves as the interface between
the building’s electrical system and the utility grid. Accurate measurement of the
total power drawn from the grid can be easily achieved from this meter. Unlike
MSB1 and MSB2 power meters that provide instantaneous load demands data
with 1-minute intervals, the TNB meter provides total energy consumptions in

kWh at 30-minute intervals. Technical specifications of the SL7000 TNB meter

is outlined in Table 3.2.
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Figure 3.3: SL7000 TNB meter installed at UTAR KA block.

Table 3.2: Technical specifications of S17000 TNB power meter.

Parameters Ratings
Rated power supply AC48V ~2838V,DC60~340V
Rated input voltage 3*63.5/110V ~ 3*230/400V, 50 Hz

CT connection

150/5A

VT connection

11,000/110 V

Active energy pulse output rate

10,000 imp/kWh, CI. 0.5S

Reactive energy pulse output rate

10,000 imp/kVArh, C1 2

Standards

IEC 62052, IEC 62053
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3.3 Hardware Architecture of the 200 kW/200 kWh Battery-based Energy

Storage System (BESS)

A three-phase BESS is installed in a cabin, as shown in Fig. 3.4, located near
the UTAR KA block. The system comprises 223 lithium iron phosphate
(LiFePO4) batteries, each operating within a voltage range of 2.8V to 3.6V.
LiFePO4 batteries are selected for this study because of their superior safety,

longer lifespan, excellent thermal stability, and enhanced efficiency.

Figure 3.4: Cabin at UTAR campus to set the BESS setup.

Fig. 3.5 presents the overall BESS setup at the experimental site. A 200 kW/200
kWh BESS is connected to the main electrical busbar of the UTAR KA block.
The electrical busbar serves as the main distribution point for supplying
electrical power to various loads within the building, such as lighting, HVAC
systems, air conditioners, laboratory equipment, and other electrical devices. In
charging mode, the BESS sources its power supply from the grid through busbar.
The grid supplies electricity to the busbar, and then the BESS draws power from
there with the help of a bi-directional inverter to charge its batteries. On the other

hand, when the BESS switches to its discharging mode, it delivers power back
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into the busbar, supporting the building loads to reduce the peak demand of the

building. A battery monitoring system (BMS) is installed on-site to continuously

observe and record battery data. The control algorithm responsible for managing

the BESS charging and discharging processes aimed at peak demand reduction

is implemented within a central control unit. This unit comprises a computing

device linked to the entire BESS infrastructure, ensuring efficient coordination

and execution of control functions.
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Figure 3.5: Experimental setup of 200kW/200 kWh of BESS at UTAR
campus for peak demand reduction.

The installed battery bank has a total rated energy capacity of 200 kWh, which

defines the maximum amount of energy the system can theoretically store and

deliver. However, using the entire BESS capacity in practical applications is not

recommended. Overusing the battery through frequent deep discharges can lead

to faster battery degradation and shorten its life cycle. Therefore, consistent with
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industry standards and manufacturer recommendations, the depth of discharge
(DOD) is limited to around 60—70% to maintain a balance between maximizing
usable energy and ensuring battery durability. In this study, the SOC range is

restricted to 20% to 80%, resulting in a DOD of 60%.

Additionally, the bi-directional inverter is rated to deliver a maximum
discharge power of 200 kW. However, empirical analysis of historical load
demands data indicates that reducing peak demand at this specific site seldom
requires discharge levels greater than 100 kW. Based on this observation, the
maximum usable power output of the inverter is conservatively limited to 100
kW for this study. This helps to minimize the operational stress on the inverter
and supports the longevity of the equipment. Further technical specifications of

the installed BESS are detailed in Table 3.3.

Table 3.3: Technical Specifications of the installed BESS at UTAR

campus.
ESS Specification Rating
Battery Type LiFePO4
Battery cell capacity 280Ah
Voltage range per battery cell 2.8V-3.6V
Total capacity of the battery bank 200 kWh
Useable Energy 120 kWh
Depth-of-discharge (DOD) 60%
Size of the bi-directional inverter (Rated) 200 kW
Useable power rating of the inverter 100 kW
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3.4 Hardware Architecture of the Battery Monitoring System (BMS)

An advanced battery monitoring system (BMS) by Batrium is installed at the
experimental site to monitor battery performance and ensure safety. The BMS
plays a crucial role in optimizing the performance and lifespan of the batteries
by continuously tracking the key parameters such as SoC, battery cell voltage,
shunt voltage, shunt current, and temperature. Monitoring battery SoC helps to
prevent overcharging and deep discharging, both of which can harm the battery
cells and reduce their overall lifespan. Additionally, monitoring cell voltage
helps identify imbalances or faults in individual cells, ensuring consistent
performance throughout the battery pack and triggering balancing processes
when necessary. The shunt voltage and current measurements are also essential
for calculating real-time power flow into and out of the battery, enabling precise
energy tracking. Moreover, continuous temperature tracking across the battery

cells is crucial as it ensures that the cells operate within safe thermal limit.

Fig. 3.6 presents the hardware setup of the installed BMS at the experimental
site. The BMS is connected to the LiFePO4 battery bank through individual
CellMate-K9 module. The CellMate-K9 module is mainly an advanced cell
monitoring unit designed to connect with 3 to 16 individual cells arranged in
series. A total of 14 CellMate-K9 modules are installed at the site, each
connected to 16 individual LiFePO4 cells, enabling the monitoring of all 223
cells in the BESS. Each unit of CellMate-K9 module collects the data from the
individual cells and transmits it to the WatchMon Core, which acts as the central

supervisory unit in the overall BMS setup.
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Figure 3.6: Battery monitoring system (BMS) setup at the experimental
site.

3.5 Communication Network Architecture

This section outlines a comprehensive overview of the communication
network architecture implemented at the experimental site. A central control unit
(PC) acts as the main communication hub of the entire experimental setup and it
is strategically installed in a cabin room located near the UTAR KA block. The
central control unit also hosts the BESS control algorithm developed for peak
demand reductions, thereby it plays a dual role in both coordination and real-
time decision-making. The communication network is structured into two
primary layers: communication with the data acquisition system (DAQs) and
communication with the bi-directional inverter and BMS. The following sub-

sections provide a detailed explanation of each of these communication layers.
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3.5.1 Communication with the Data Acquisition System (DAQs)

Fig. 3.7 illustrates the communication configuration of the overall DAQs
deployed at the experimental site. In this setup, the MSB1 and MSB2 power
meters, dedicated to capturing instantaneous load demands at 1-minute intervals,
are connected to the central control unit using the Modbus RTU communication
protocol. An RS-485 to USB converter, which functions as the physical interface
for enabling serial data transmission between the meters and the central control
unit, is installed to facilitate reliable communication and ensure seamless data

acquisition from the power meters.

On the other hand, an energy monitoring toolkit is installed with the assistance
from TNB to capture the data from the TNB meter. As the meter is owned and
protected by TNB, unauthorized access could breach security, regulatory, and
legal standards. Therefore, with TNB’s authorization, an optical pulse sensor is
attached to the meter to detect its LCD pulse signals. Each pulse signal represents
a certain amount of energy used and by counting these pulses, the total energy
usage in kWh is accurately calculated. The calculated energy data is transmitted
to TNB’s dedicated portal via the energy monitoring toolkit designed for this
meter. The portal provides secure access to monitor energy consumption data

recorded at half-hour intervals.
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Figure 3.7: Communication setup with the data acquisition system (DAQs)
at the experimental site.

A free, open-source platform “Node-RED” is used to interface the central
control unit with the MSB1 and MSB2 power meters. Node-RED is a
development environment built by IBM that uses a flow-based approach to
connect hardware, APIs, and cloud services with ease. It is widely used in
various DAQs due to its simplicity, reliability and flexibility in handling multiple
communication protocols. Apart from these, Node-RED platform offers its own
dashboard feature that allows the users to monitor and visualize real-time data

without relying on additional dashboard platforms.

Once the power meters are installed at the site, a communication cable is used
to physically connect them to the central control unit. An RS-485 converter is
used to establish serial communication between the power meters and the central
control unit, with data transmission managed by the Modbus RTU protocol. Both
the MSB1 and MSB2 power meters act as slave devices, while the central control

unit serves as the master, continuously polling the meters for real-time data.
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Table 3.4 outlines the Modbus RTU communication settings for the MSB1 and

MSB2 power meters at the experimental site.

Table 3.4: Modbus RTU settings in Node-RED for MSB meters.

Parameter Value
Device ID (MSB1) 1
Device ID (MSB2) 2

Data bit 8 bits

Baud Rate 19200 bps

Parity bit none
Stop bit 1 bit
Timeout 1000 ms

MSB1 and MSB2 power meters store the measurement data in predefined
registers, each assigned to a specific parameter. These registers serve as fixed
memory locations that hold either instantaneous readings or cumulative values.
The Node-RED flow sends a read request via the Modbus Getter node to access
the data at specific register addresses. The meters, functioning as slave devices,
respond to the master device with the requested data. Once received, the data is
processed through function nodes within the Node-RED platform, saved as CSV
files on the central unit, and displayed on dashboard for real-time monitoring
and visualization. Fig. 3.8 presents the Node-RED flow designed in the Node-
RED platform to collect and monitor the data from the meters. Additionally, Fig.

3.9 and 3.10 present the dashboard interfaces developed within the same Node-
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RED platform for visualizing data from MSB1 and MSB2 power meters,

respectively.
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Figure 3.8: Node-RED flow to collect and monitor data from the MSB1
and MSB2 power meters.

Figure 3.9: Real-time monitoring dashboard for MSB1 power meter.
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Figure 3.10: Real-time monitoring dashboard for MSB2 power meter.
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3.5.2 Communication with the Bi-directional Inverter and Battery

Monitoring System (BMS)

Fig. 3.11 shows the communication setup of the bi-directional inverter and the
battery monitoring syestem (BMS) at the experimental site. The bi-directional
inverter is electrically linked to the LiFePO4 battery bank and the grid to
facilitate two-way power flow, allowing the batteries to be charged from the grid
or to discharge energy back to the grid when required. Hence, maintaining a
stable communication link with the bi-directional inverter is essential. The
inverter is connected to the central control unit via a LAN cable. The BMS, on

the other hand, is wirelessly connected to the central control unit via a Wi-Fi

network.
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Figure 3.11: Communication setup with the bi-directional inverter and the
BMS at the experimental site.

As shown in Fig. 3.12, a dedicated Node-RED flow is developed to interface
the bi-directional inverter with the central control unit. Modbus TCP/IP
communication protocol is used to transfer the data between the inverter and the

control unit. A Modbus Getter node in Node-RED platform initiates requests to
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the inverter by specifying the appropriate register addresses and data types. The
inverter responds by sending the requested data back through the TCP/IP
protocol. Additionally, a Modbus Write node is used to control the inverter for
charging and discharging operations of the batteries. The Write node sends a
request to specific registers within the inverter and the inverter executes the
charging or discharging commands based on the Node-RED’s request. The

dashboard to monitor and control the inverter is shown in Fig. 3.13.

Figure 3.12: Node-RED flow for monitoring and controlling the bi-
directional inverter.
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Figure 3.13: Real-time monitoring and controlling dashboard for the bi-
directional inverter.
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The communication between the BMS and the central control unit is also
established using the same free, open-source Node-RED platform. A dedicated
Node-RED flow, as presented in Fig. 3.14, is developed to interface the BMS
with the central control unit. User Datagram Protocol (UDP) is used to retrieve
the data from the BMS. Unlike Modbus RTU and TCP/IP communication
protocols, which follow a request-response model where a master polls specific
registers from a slave device, UDP functions as a one-way communication
protocol, transmitting data without the need for prior coordination from the
receiver. The dashboard for monitoring the real-time BMS data is illustrated in

Fig. 3.15.
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Figure 3.14: Node-RED flow to retrieve the data from the BMS.
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Figure 3.15: Real-time monitoring dashboard for the BMS.

3.6 Summary

This chapter outlines the overall system architecture of the experimental site at
the UTAR campus. It presents the hardware configuration of the Data
Acquisition Systems (DAQs), including the placement of power meters for real-
time load monitoring. The 200 kW/200 kWh Battery Energy Storage System
(BESS), which serves as the core of the study, is described along with its
operational role within the system. The Battery Monitoring System (BMS) is
also covered in this chapter, highlighting its function in ensuring safe and
efficient battery operation. In addition to the hardware setup, the communication
network architecture among the hardware setup at the experimental site is
detailed, describing the flow of data between key system components to support

coordinated control and monitoring.
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CHAPTER 4

DESIGN AND IMPLEMENTATION OF BESS CONTROL

ALGORITHMS FOR PEAK DEMAND REDUCTIONS

4.1 Introduction

The proposed adaptive threshold-based BESS controller is initially
implemented within a simulation environment using Python programming
language. To evaluate and compare its performance, two conventional fixed
threshold-based and two state-of-the-art adjusting threshold-based controllers,
are also implemented in simulation. The two conventional controllers that
operate using fixed thresholds are identified as the forecasted threshold-based
controller and the historical threshold-based controller. These two controllers are
not directly adopted from existing literature but instead developed based on the
fundamental principles of fixed threshold control. In contrast, two advanced
controllers capable of adjusting thresholds in real-time, are referred to as the
active controller and fuzzy logic controller. These controllers are developed
based on the methodologies presented in references ( Hau, Lim and Chua, 2017b)
and (Kein Huat Chua, Lim and Morris, 2017). Following the simulation study,
the proposed adaptive threshold-based controller is deployed at the experimental
site at UTAR campus to assess its practical effectiveness under real-world

operating conditions.
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This chapter begins by presenting the control strategies of the proposed
adaptive threshold-based controller designed for peak demand reductions. It also
includes comprehensive overview of the additional control strategies used to
benchmark the performances. An advanced deep learning-based load forecasting
model is used in the proposed adaptive threshold-based controller as well as the
two fixed threshold-based controllers. As a results, the chapter also provides a

detailed explanation of the architecture of the load forecasting model.

4.2 Design of the proposed Adaptive Threshold-based BESS Controller

4.2.1 Control Strategy Overview

An innovative adaptive threshold-based BESS controller is implemented in
both simulation and experimental setups to effectively reduce peak demands.
The controller incorporates an advanced deep learning-based 1D-CNN model to
forecast the load demands in advance. An initial threshold is determined using
the forecasted load demands and is subsequently adjusted in real-time based on
three different parameters — actual load demands, forecasted load demands, and

observed grid demands.

The proposed adaptive threshold-based BESS controller operates in three
distinct modes: charging, discharging, and idle. However, in the simulation
environment, it is assumed that the BESS begins each day fully charged to its

usable capacity. As a result, the simulation study primarily focuses on the
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discharging mode of the controller to demonstrate its capability to manage and
lower peak demands using the available BESS energy. In contrast, during
practical implementation at the experimental site, the charging, discharging and

idle modes are actively managed.

4.2.2 Algorithm Design

Fig. 4.1 shows the operational flow chart of the proposed adaptive threshold-
based controller designed to reduce peak demands. The process starts with a day-
ahead load forecasting task. At 00:00, a deep learning-based 1D-CNN model
forecasts the load demands in advance for the upcoming day. Based on the
forecasted load demands, the controller sets an initial threshold (P, initial) »
which serves as a reference to set the final thresholds (Py, fina)) that are used to
schedule the power dispatch of the BESS throughput the day of peak reduction.
The subsequent steps after determining Py, jpitia) are outlined in Fig. 4.1 under
Block A and Block B. The processes in Block A mainly illustrate how the
Pih_initial 1S updated to Py, fina1 in every 15-minute intervals. On the other hand,
the processes in Block B demonstrate how the BESS power is being supplied to
the load in every 1-minute intervals based on the Py, £, achieved from the steps

in Block A.
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Figure 4.1: Control algorithm flow chart of the proposed adaptive
threshold-based BESS controller to achieve daily peak reduction.

The discharging phase of the controller begins at 8:00, aligning with the classes
and official activities of the university building at the experimental site. As
classes and other official activities commence, electricity consumption begins to
rise. Consequently, this period is set as the starting point for the discharging
phase. At 8:00, the adaptive threshold-based controller retrieves the average real-
time load demands (Poaq avr) and the average power output of the BESS

(Ppess_avr) over the preceding 30-minute period. Since the discharging phase
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begins precisely at 08:00, no power is supplied by the BESS during this prior
interval, resulting in a Ppegs ayr of 0 at this time. However, in subsequent
intervals, Ppess ayr may increase depending on BESS discharge activity. The

average grid profile (Pgrig_avr) at 8:00 is then calculated as follows:

l:)grid_avr = l:)load_avr - Pbess_avr (3-1)

Afterward, the adaptive threshold-based controller retrieves the forecasted load
demand (Pgo in) at 8:00 and sets the threshold adjustment factor (k) using

Equation (3.2). To ensure a balanced adjustment, both real-time and forecasted

load demands are considered.

l)load avr
= 09:00 <t<18:00
K= Pfor_in (3-2)
1 otherwise

After determining k, the adaptive threshold-based controller computed the
updated threshold (Py,_ypq) using Equation (3.3). Py, ypq is used to determine

the final threshold (P, fina1), which primarily manages the power dispatch of the

batteries.

l:,th_upd = lDth_initial X K (3.3)

Once the Py, ypq is determined, the controller sets the final threshold (Pep_final)

based on Equation (3.4). To determine Py, fina1, the controller compares Py, pq
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with the preceding peak of the grid profile (Pgriq_ayr(max)) up to that time. If
Pih_upd 18 higher than (Pgrig_ayr(max)), Py ypq is set as Py, fina and the power
dispatch of the batteries are managed based on the latest Py, ing). Otherwise,
(Pgrid_avr(max)) is set to Py fina1 and discharge the batteries accordingly. The
(Pgrid_avr(max)) acts as a lower bound, ensuring the threshold does not drop

excessively during periods of declining real-time load demands.

P th_upt Pth_upd = (Pgridavr (max))

Peh_final = {Pgri d_avr(Max) otherwise (34)

After setting Py, fina), the controller measures the instantaneous load demands
at 8:00 and calculates the required BESS power Pyegs in to be supplied to the

load at that moment, according to Equation (3.5).

Pbess_in = lDload_in - Pth_final (3.3)

If the battery SOC is above 20%, indicating adequate available battery energy,
the controller enables the BESS to supply power to the load as described. The
BESS continues to deliver Pyegs iy in every minute by following the steps

outlined in Block B of Fig. 4.1 until the SOC drops to 20%.

At the end of the discharging phase, the proposed adaptive threshold-based
controller enters idle mode, during which the BESS neither supplies power to
the load nor draws energy from the grid. At the UTAR KA Block, electricity

demand significantly drops after 18:00, as the classes and other official activities
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typically conclude by that time. Therefore, the discharging phase is scheduled to
end at 18:00. The system remains idle until 22:00, when the charging phase
begins, taking advantage of low nighttime demand. Once the BESS is fully
charged, the controller returns to idle mode and stays in that state until the next

discharging cycle starts.

4.3 Design of the Fixed Threshold-based BESS Controllers

Two conventional fixed threshold-based controllers are implemented in this
simulation study. The first controller is identified as the forecasted threshold-
based controller, whereas the second one is referred to as the historical threshold-
based controller. In simulation, both of the controllers are implemented using
Python programming language. The 1D-CNN model that is integrated with the
proposed adaptive threshold-based controller, is also incorporated with these two
controllers. The following subsections outlines the overview of these

conventional fixed threshold-based controllers.

4.3.1 Control Algorithm of the Forecasted Threshold-based Controller

The forecasted threshold-based BESS controller mainly functions in 5 different
steps for peak demand reductions. The detailed step-by-step processes of this

controller are explained below —
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Step 1: Forecast the load demands in advance using the 1D-CNN load

forecasting model.

Step 2: Determine a forecast-based threshold (Py, for) based on the
forecasted load demands and available BESS capacity. Py, ¢, represents the
target peak demand limit for the entire forecasted profile, where the area

above the threshold corresponds to the total energy expected to be supplied

by the BESS.

Step 3: Starting from 8:00, the controller retrieves the instantaneous load
demands Pjy,4 iy and delivers BESS power Pyegs iy at 1-minute intervals
according to Py, for, continuing this process until the maximum usable BESS
capacity is depleted.

Pb = {Pload_in - Pth_for Pload_in > Pth_for (3.6)
ess-in 0 otherwise

Step 4: At the end of the day, compute the instantaneous grid profile based

on the Poaq_in and Ppegs in-

l:’grid_in = l:)load_in - l:)bess_in 3.7

Step 5: Measure the effective reduction in peak demand (PDR,) for the given
day by subtracting the maximum average grid demand, Max (Pgrid_avr) over
a 30-minute period from the maximum average load demand, Max (Pya4 avr)

within any 30-minute interval of the day.
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PDR, = Max (Pload_avr) — Max (Pgrid_avr) (3.8)

4.3.2 Control Algorithm of the Historical Threshold-based Controller

The other conventional historical threshold-based controller is also
implemented using Python programming language. The control strategies of this
controller closely resemble that of the forecasted threshold-based controller,
with the primary difference lying in step 2 as outlined in Section 4.3.1. Therefore,
the steps explained in section 4.3.1 is also applicable for this controller except
the process of determining the threshold that manages the power dispatch of the

BESS.

Unlike forecasted threshold-based controller that directly use the forecasted
threshold (Py, for) to manage the power dispatch of the BESS, the historical
threshold-based controller incorporates an additional reference threshold
(Pen_rer) derived from the historical data before it sets the operational threshold
(Pth_op) that manages the power dispatch of the BESS in historical threshold-

based controller for peak demand reductions.

The Py, op in historical threshold-based controller is determined through 2

steps, which are explained below -
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Step 1: Compute the reference threshold (Py, rer) based on the optimal
threshold (P, optimal) achieved from the actual historical load demands as

follows -

1000 d=1

I P (3.9)
Pt rer () {ﬂ E P optimal (i) otherwise
- i=1

Here,
Py, ref (d) = Reference threshold on day d

Pih_optimal (1) = Optimal threshold on day i, calculated from

actual historical data.

d = Day index within the month

Step 2: Determine the operational threshold (P, op) by comparing the Py, ref
and Py, ¢or as presented in Equation (3.10). This process selects the higher
value between Py, for and Py, rer to set Py, op, allowing the controller to

maintain the threshold at the highest possible level and thus prevent peak

reduction failures caused byunder-forecasting.

Phref  Pthref > Ptn_for (3.10)

Pih_op (d) = {Pth_for otherwise

Once the Py, op is determined, the historical threshold-based controller
supplied power to the load according to Py, o, for peak demand reductions.

Therefore, steps 3,4 and 5 described in 4.3.1 remain unchanged for this
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controller, except that this controller uses Py, o, instead of Py, g, to manage the

power dispatch of the BESS.

4.4 Design of the State-of-the-art Adjusting Threshold-based BESS
Controllers

Two state-of-the-art adjusting threshold-based BESS controllers are
implemented in this simulation study. The first controller is known as active
controller, whereas the second controller is known as the fuzzy logic controller.
The control algorithms for both controllers are designed using Python
programming language. The details of the control algorithms are explained in

the following subsections-

4.4.1 Control Algorithm of the Active Controller

The operational flow chart of the active controller is presented in Fig 4.2. The
process begins with a load demand forecasting step, where the controller uses
historical load consumption data to predict future demand patterns. Once the
forecasted load demands are determined, a threshold (Pry) is established by
evaluating the remaining energy capacity of the BESS alongside its power rating.
The calculated Pr, is subsequently updated throughout the day of peak
reduction, considering the differences between the actual real-time load and the
forecasted load demands. A more comprehensive description of the active
controller, along with all relevant equations is presented in the literature (Hau

Lee Cheun, 2017).
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Figure 4.2: Operational flow chart of the active BESS controller to achieve
daily peak demand reductions.
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4.4.2 Control Algorithm of the Fuzzy Logic Controller

The operational flow chart of the fuzzy logic controller to achieve daily peak
demand reduction is presented in Fig. 4.3. The controller forecasts the future
load demands by utilizing the average of historical load data. During the peak
reduction period, an upper threshold (Pyry,) is set to guide the discharging
activity of the BESS. At the beginning of the day, Pyry, is set to the maximum
demand of the forecasted load (Pload_max). Simultaneously, the initial battery
SOC (SOCyy;) is set to its maximum value of 95%. The power output of the

BESS (Pgs) is set to as follows-

Pgs = Pload_max — Pyth (3.11)

Initially, Pgg is set to zero because the Pyry, is equal to Pgaq max- As time
progresses, the fuzzy controller continuously monitors the battery SOC and, if it
remains above 50%, it incrementally lowers the Py, by 0.1 kW. This iterative
process continues and the Pgg is updated until the SOC drops to 50% or below.
A detailed overview of the fuzzy control algorithm for peak demand reduction

can be found in the literature (Chua Kein Huat, 2016) .
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Figure 4.3: Detailed flow chart of the fuzzy logic BESS controller for peak
demand reductions.

4.5 Design of the Load Forecasting Model

The proposed adaptive threshold-based controller, along with the two fixed
threshold-based controllers used for benchmarking in the simulation study, all
employ a deep learning-based one-dimensional convolution neural network (1D-
CNN) for day-ahead load forecasting aimed at reducing peak demands. The
following subsection first presents the justification for selecting the 1D-CNN

model, followed by a description of the dataset used for model training. Finally,
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the architecture of the 1D-CNN model used in this study and the associated

training parameters are presented in detail.

4.5.1 Overview of the Load Forecasting Approach

Convolution neural networks (CNNs), first introduced in 1960s, have emerged
as a powerful architecture in deep learning (Purwono et al., 2022). They are
widely used across various domains including image processing, video
processing, speech recognition, natural language processing, and time-series
forecasting. There are different types of CNNs architectures available, each
designed to handle different types of data based on its shape and structure. For
instance, 1D-CNNs are usually well suited for time-series or sequential data,
where the input data is arranged in a single dimensional array over time (Ige and
Sibiya, 2024). 2D-CNNs, on the other hand, are commonly used for image data
that has both the height and weight dimensions(Syed M. Hur Rizvi, 2022). For
more complex data such as videos or volumetric medical images, 3D-CNNs are
used because they can capture patterns across width, height, and depth (Zhao et

al., 2024).

Load consumption data is one-dimensional (1D), as it consists of values
recorded sequentially over time. Consequently, 1D-CNNs are well-suited for
forecasting such data. One major benefit of the 1D-CNNs is that they can
automatically detect the useful features from the data and extract them for further

processing (Syed M. Hur Rizvi, 2022). This special capability makes the 1D-
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CNNs well suited for load demand forecasting. In comparison with the other
powerful forecasting models such as GRU, LSTM, and Transformer, which are
heavily focused on long-term dependencies in time-series sequential data, the
ID-CNNs are highly effective at identifying local patterns and short-term
dependencies through their convolutional filters (Su et al., 2023; Wang, Liu and

Bai, 2024).

Additionally, the 1D-CNNs offer greater computational efficiency compared
to the other state-of-the-art forecasting models especially when dealing with
time-series sequential data (Saif-Ul-Allah et al., 2022; Wibawa et al., 2022).
This is largely because of their parallel processing capabilities and simpler
architecture. Moreover, the 1D-CNNs require significantly less training time
compared to the other complex deep learning-based models such as RNN, GRU
and LSTM (Wibawa et al., 2022). Apart from the aforementioned advantages,
the 1D-CNNs demonstrate strong forecasting performance even with limited
data, which makes them a reliable and efficient choice for applications where
large volumes of historical data are not available (Cordeiro et al., 2021).
Considering the size of the dataset used in this study along with the advantages
of 1D-CNN model over other load forecasting techniques, the 1D-CNN model
is selected to forecast the load demands in the BESS control algorithms for peak

demand reductions.
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4.5.2 Dataset Preparation

The DAQs installed at the experimental site recorded a full year of load
consumption data from Mar 2023 to Mar 2024. The load forecasting model is
trained using data from the first seven months, while the data from the
subsequent months is set aside for the simulation study. The raw dataset directly
collected from the DAQs exhibited several quality issues such as non-numeric
entries, missing values, and duplicate entries, as presented in Fig 4.4. It is
essential to address all these issues before using the dataset to train the load
forecasting model, as they can significantly impact the performance of the load

forecasting model.

Non-numeric Data Missing Data Duplicate Data
11:31:21 1058.75 Azndids L) 15:27:23 1019.8
11:32:21 1054.6 125420 1030 15:28:23 1021.95
11:33:21 1038.1 12:55:22 10325 15:29:23 1003.7
11:34:21 1041.85 12:56:22 1041565 15:30:23 1006.8
11:35:21 1051.85 (/.20 L 15:31:23 986.65
11:36:21 1038.2 12:58:22 20820 15:32:23 999.85

ot E PR e e R U T e
113822 1083.6 g 800k boor s 1027.8 1
11:39:22 1094 e B2 e ) |1 153423 1027.8 i
11:40:22 1073.15 13:02:22 1066.65 ---TS-:EEE’:'-------IO-OE.Z----
11:41:22 1051.65 13:03:22 IR 15:36:23 994.7
11:42:22 1087.4 13:08:22 1059.7 15:37:23 972
11:43:22 1075.15 13:05:22 1061.7 15:38:23 990.3
11:44:22 1080.5 13:00:2% 1043.6 15:39:23 976.5
11:45:22 1074.8 150722 = 15:40:23 986.55

Figure 4.4: Sample of data anomalies detected in the raw dataset,
including non-numeric, missing and duplicate entries.

A python script is developed to pre-process the raw dataset before it is used for

training the load forecasting model. The Python script first identifies and
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categorizes these anomalies, applying targeted correction strategies to each. For
instance, the non-numeric entries are replaced with the data from the preceding
minute to maintain the continuity of the dataset. A similar strategy is used for
the missing entries, where the data from the preceding minute serves as the
replacement. However, in situations involving extensive data loss, for example
when the DAQs was offline and a full day's records are unavailable, the Python
script replaces the missing entries using data from the same time on the same
weekday from the previous week. These steps ensure the dataset remained
accurate, continuous, and reflective of the building's natural weekly load patterns.
Fig. 4.5 presents the pre-processed dataset that is used to train the load

forecasting model in this study.

1200
~ 1000
5
= 800
E
o
A

600

400

6 Mar 16 Apr 28 May 9 Jul 19 Aug 30 Sep
Date

Figure 4.5: Pre-processed dataset used to train the load forecasting model.
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4.5.3 Model Architecture of the proposed 1D-CNN model

Fig. 4.6 presents the architecture of the proposed 1 D-CNN model used for load
forecasting in this study. The model has two input layers, each dedicated to
process different types of input data independently. The first input layer is
specifically designed to process the sequential time-series data. The input of the
first input layer comprises a continuous sequence of 5 days of load consumption
data recorded at the experimental site. Although the load consumption data at
the site is recorded at 1-minute intervals, the data is resembled to 15-minute
intervals prior to being fed into the model to reduce the computational
complexity as well as to capture broader temporal trends of the data. With 15-
minute sampling, each day contributes 96 data points, and thus, a 5-day sequence
yields a total of 480-time steps. Consequently, the final input shape of the first
input layer is defined as (480,1), where 480 represents the time dimension and 1
denotes the number of features per time step. The load consumption values

measured in kW is used as the feature of the input data.

On the other hand, the second input layer of the proposed 1D-CNN model is
designed to process categorical data derived from the academic calendar of the
experimental site. Since the experiments are carried out an in an academic
building at the UTAR campus, load consumption varies depending on the type
of the day. For instance, weekdays generally have higher load consumptions
compared to weekends, while public holidays often see a significant drop in
usage. To capture these variations, categorical input indicating whether a day is

a weekday, weekend, or public holiday is provided in the form of a 24-hour
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sequence in the second input layer. Consequently, the input to this layer is

structured with a shape of (24,1).
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Figure 4.6: Architecture of the proposed 1D-CNN model for load
forecasting.

After the sequential load consumption data is fed into the first input layer of
the 1D-CNN model, it passes through three Conv1D layers with 64 filters, kernel
size 3, and ReLU activation. These Conv1D layers help to extract meaningful
patterns from the sequential time-series load consumption data. Different
dropout rates of 0.5, 0.3, and 0.3 are used in between the ConvolD layers, as
presented in Fig. 4.6., to prevent the overfitting during the training process. The
output from these ConvolD layers is reshaped into a one-dimensional vector,
allowing it to be used by the subsequent layers. Additionally, the output from
the input layer 2 is fed into a dense layer with 24 neurons and ReLLU activation,
allowing the model to better capture the relationship between the type of day and

load consumptions.

85



The sequential load consumption data, which is passed through ConvolD and
flatten layers, and the categorical day-type data, which is processed through a
dense layer, are concatenated into a single vector. This resulting feature vector
is then passed through a fully connected layer with 64 units, allowing the 1D-
CNN model to learn the temporal patterns of the load data with the day-type
information to generate the forecast for the following day. Finally, the output
layer, consisting of 96 units and using a linear activation function, provides the

final load forecast for the entire day.

4.5.4 Training Configurations of the proposed 1D-CNN model

The proposed 1D-CNN load forecasting model is developed using Python and
the Keras framework, with TensorFlow serving as the backend. Libraries like
Pandas, NumPy, and Matplotlib, are used for data handling, numerical
computations, and data visualization throughout the design and training phase of
the model. The proposed 1D-CNN model is trained on a computer running the
Windows operating system, equipped with an Intel Iris X integrated GPU, a 12th
Gen Intel Core i15-12500H CPU, and 16 GB of RAM. The training process takes
about two hours using the selected dataset collected from the experimental site.
In this study, the 1D-CNN model is trained for 200 epochs with a batch size of
16, a learning rate of 0.001, and the AdamW optimizer. These parameters are

fine-tuned through several rounds of trials to maximize the model performance.
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After training, the 1D-CNN load forecasting model is saved for use in both
simulation and experimental studies. During the simulation study, the saved
model is stored in a specific location on the computer, where it accesses load
demand profiles from another directory on the same system to generate forecasts
for peak demand reduction. In the experimental study, the saved model is
integrated into the system for inference, where it processes new load demand
profiles collected by the on-site DAQ system to generate daily forecasts. In both
the simulation and experimental studies, the trained 1D-CNN model forecasts
load demands in less than a minute, using the aforementioned computer setup.
This demonstrates its computational efficiency and suitability for real-time
deployment, even on a machine with average processing power, memory, and

storage compared to more advanced systems.

4.6 Implementation of the BESS Controllers in Simulation and
Experimental Studies

Before proceeding to the experimental deployment, it is essential to validate
the performance of the controller in a controlled simulation environment. The
simulation phase allows a comprehensive performance evaluation of the BESS
control algorithms under various operating conditions, without posing any risk
to physical hardware setup. Therefore, the proposed adaptive threshold-based
controller is first implemented in simulation environment using the Python
programming language. For comparative benchmarking, the other two
conventional fixed threshold-based controllers, the forecasted and historical

threshold-based controllers, along with the two state-of-the-art adjusting
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threshold-based controllers, active and fuzzy controllers are also implemented

in Python-based simulation study.

Python version 3.10 is used for implementing the BESS control algorithms,
with Jupyter Notebook serving as the primary development platform. Python
version 3.10 is selected due to its broader compatibility with numerous advanced
libraries, which facilitates a smoother and more efficient design process.
developed separately to ensure modularity and ease of testing. Fig. 4.7 presents
a segment of the implementation code for the adaptive threshold-based BESS
controller, developed in Jupyter Notebook using the Python programming
language. Similarly, the other benchmarking controllers are also implemented
separately on the same platform to ensure consistency in the development

process.

I Adaptive Threshold-based Controller Las Checkpoint: 13 manths ag: 2

Function to calculate movPload, movPgrid, Preq_arr

¢ calculate_POR(Pload, threshold,forecast_path,actual_path

Figure 4.7: Segment of Python code illustrating the adaptive threshold-
based BESS controller, implemented in Jupyter Notebook.
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The proposed adaptive threshold-based controller, on the other hand, is
implemented in the actual experimental site using the free, open-source
platforms Node-RED and Python. A Python script is developed to run the 1D-
CNN load forecasting model, which forecasts the load demands for peak demand
reduction. Figure 4.8 displays a segment of the Python script that generates daily
load forecasts throughout the experimental period and saves them to a specified

location within the control unit installed at the experimental site.

n holidays]
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model input e(1, len(model input), 1)
current_date =

Figure 4.8: Segment of Python script performing inference with the 1D-
CNN model to generate daily load forecasts.

Once the Python script generates the load forecast, a separate Python script,
shown in Figure 4.9, is used to retrieve the daily forecast and determine the initial

threshold for the corresponding day.
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Figure 4.9: Segment of Python script used to determine the initial
threshold based on the forecasted load demands.

The initial threshold, determined by the Python script, is retrieved by the
Node-RED platform, which is also deployed on the same central control unit at
the experimental site. The real-time load demand, together with the forecasted
load profiles, is retrieved through the central control unit using the Node-RED
platform. Both sets of data are employed to dynamically adjusts the initial

threshold in real time during the entire peak demand reduction period.

The control of the bi-directional inverter for battery charging and discharging
is also executed through the Node-RED platform. Dedicated nodes within Node-
RED platform are employed to carry out specific control tasks. For instance, a
Modbus Getter node, as illustrated in Fig. 4.10, is used to establish
communication with the inverter, enabling the platform to transmit charge and

discharge commands. Moreover, a custom Function Node is used to implement
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the conditional logic for updating the initial threshold and managing other
control tasks. Fig. 4.11 presents a segment of the Node-RED graphical
programming interface developed for implementing the adaptive threshold-

based BESS controller for peak demand reduction at the experimental site.
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Figure 4.10: Node-RED interface segment showing communication with
the inverter using the Modbus Getter node.
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Figure 4.11: Node-RED interface segment showing the adaptive threshold-
based BESS controller for peak demand reductions.
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4.7 Summary

In summary, this chapter presents a comprehensive overview of the proposed
adaptive threshold-based controller for peak demand reductions. Other
controllers that are also implemented in simulation studies for benchmarking the
results are also explained in detail. The proposed 1D-CNN load forecasting
model, including its detailed architecture and training settings, which is
integrated into the control algorithms of the adaptive threshold-based controller,
is also explained in this chapter. Lastly, the implementation of the adaptive
threshold-based controller both in simulation and experimental setup using the
free, open-source platform Node-RED and Python highlighted at the end of this

chapter.
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CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 Introduction

This chapter presents the results and in-depth discussions based on the findings
of this research. It begins by describing the performance evaluation metrics used
in the study, with distinct sections covering the evaluation of the 1D-CNN load
forecasting model and the effectiveness of the proposed adaptive threshold-
based BESS controller in managing daily peak demands. The chapter then
thoroughly details the findings of the simulation study, highlighting the daily
peak demand reductions achieved by the proposed controller, alongside results
from other benchmark controllers. Finally, the chapter ends with an analysis of
the experimental study, in which the proposed controller is evaluated over a 21-
day period under real-world operating conditions to assess its effectiveness in

reducing peak demands.

5.2 Performance evaluation metrics

In this study, five different metrics are employed. Three of them are used to
assess the accuracy of the proposed 1D-CNN load forecasting model, while the
remaining two evaluate how effectively the controller reduces daily peak

demands. The following subsections provide further details on each metric.
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5.2.1 Evaluation metrics for load forecasting accuracy

The forecasting performance of the 1D-CNN model is evaluated using three
distinct quantitative evaluation metrics: the mean absolute error (MAE), root
mean squared error (RMSE), coefficient of determination (R?). Among these,
MAE reflects the average prediction errors by computing the mean of absolute
differences between the actual and forecasted load demands, as shown in
Equation (5.1). RMSE, on the other hand, evaluates the forecasting performance
by calculating the square root of the mean of squared errors, as presented in
Equation (5.2). Lastly, R? reflects the degree to which the forecasting model
captures variance in the actual data and is calculated using Equation (5.3). For
both MAE and RMSE, lower values indicate greater forecasting accuracy. In
contrast, R? scores closer to 1 represent stronger alignment between the

forecasted and actual load demands.

1 n
MAE= =" |y;—x;] 5.1)
n i=1
1 n
RMSE = —Z (7 = x;)? (5.2)
n i=1
RZ=1— Yica(yi — x)? (5.3)

L1 (y; — mean(y;))?

Here, y; denotes the actual load demand in kW at time step i,
x; denotes the forecasted load demand at time step i, and

n denotes the total number of time steps.
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5.2.2 Evaluation metrics for assessing the performance of the proposed
controller

The performance of the proposed adaptive threshold-based controller is
assessed using two different metrics, namely the daily peak reduction factor
(Kppr), and the monthly peak reduction failure rate (Mgjyre)- From the
literature, it is found that the performance of the most BESS controllers is
assessed solely based on their actual reductions in kW. Such approach may not
fully capture the true capability of a controller in reducing peak demands because
it does not consider the other essential factors including the size of the BESS and
shape of the load profiles (Hau and Lim, 2022). For instance, a controller with a
fixed BESS capacity may achieve significant peak reduction in cases where the
load profile is narrow and exhibits a single sharp peak. However, the same
controller with the same BESS size may fail to achieve any peak reduction if the
load profile is broader and contains multiple peaks, as compared to the earlier

scenario.

Therefore, a daily peak reduction factor, Kppg is used in this study to assess
the performance of the controllers in reducing daily peak demands. Kppg is
calculated by comparing the actual peak reduction achieved by the controller in
each day (PDR,) to the ideal reduction that would be possible if the full load
profile were known in advance on that day (PDRy), as defined in Equation (5.4)
(XC Miow et al., 2025). Kppr allows a fairer comparison across controllers by
evaluating their performance in relation to their ideal potential. A higher Kppg

indicates better performance of a controller in reducing daily peak demands.
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PDR,

(5.4)
K., =
PAr = PDR,

X 100 %

Additionally, it is essential not only to assess how well a controller reduces
peak demand in a given day but also how consistently it reduces daily peak
demands within a billing cycle. A BESS controller can achieve significant peak
reduction on a given day but may fail to achieve any reductions on subsequent
days. A controller that can consistently reduce the daily peak demands within
the billing cycle is more reliable than those of that evaluated solely on individual

days.

Consequently, this study uses a metric called monthly peak reduction failure
rate (Meajure) to assess the consistency of a BESS controller in reducing daily
peak demands throughout the billing cycle. For a particular month, Ngjjyre 18
computed by dividing the number of individual days with no peak reduction at
all (Ngziure) by the total number of working days in that month (Nygty), Wwith
the result presented as a percentage, as defined in Equation (5.5). A lower Ngijure
indicates that the controller performs more consistently in reducing daily peak

demands throughout a billing cycle.

_ N failure
Nfailure =

X 100 % (5.5)
Ntotal
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5.3 Performance evaluation in simulation study

A comprehensive simulation study is carried out using six months of data,
collected from the experimental site during the period between Oct 23 to Mar 24,
to assess the performance of the proposed adaptive threshold-based controller.
The simulation study also includes the implementation of two conventional fixed
threshold-based controllers, which are the forecasted threshold controller and the
historical threshold controller, as well as two advanced adaptive controllers
known as the active controller and the fuzzy logic controller. They are
implemented to benchmark the proposed controller. The following subsections
present the outcomes of the simulation study. Initially, the accuracy of the 1D-
CNN load forecasting model is reviewed, and then the effectiveness of each
controller in reducing peak demand is examined using two specific performance

metrics, Kppr and Neaijyre-

5.3.1 Performance assessment of the 1D-CNN load forecasting model

Fig. 5.1 presents an example of the forecasting performance of the proposed
1D-CNN model on 4" working day in Dec 23, as observed in the simulation
study. The blue line represents the actual power in kW, whereas the brown line
indicates the forecasted power in kW. As seen in the figure, the forecasted power
closely matches the pattern of the actual power, except for minor discrepancies.
This clearly indicates that the model can capture the patterns and trends of the
load profile. On this day, the ID-CNN model successfully forecasts the load

demands with an MAE of 17.01 kW, RMSE of 22.31 kW, and R? value of 0.996.
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Not only on this particular day, the 1D-CNN model maintains strong and
consistent performance throughout in Dec 23, showing its reliability and
consistency over a billing cycle. The performance of the proposed 1D-CNN load
forecasting model within the billing cycle of Dec 23 is presented in Fig 5.2.
Except for a few days, the 1D-CNN model successfully forecasts the load
demands that closely align with the actual values. On this month, the model

achieves an average MAE of 26.674 kW, RMSE of 35.337 kW, and R? of 0.988.
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Figure 5.1: Forecast accuracy of the 1D-CNN model on the 4th working

day in Dec 23.
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Figure 5.2: Forecast accuracy of the 1D-CNN model in Dec 23.
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In other months of the simulation study, the proposed 1D-CNN model forecasts
the load demands with differing levels of accuracy. Table 5.1 outlines the
average of the evaluation metrics achieved by the 1 D-CNN model in each month
of the simulation study. The performance of the forecasting model fluctuates
monthly, with the evaluation metrics differing accordingly. In Oct 23, the model
achieves its lowest accuracy with the monthly average MAE of 62.751 kW,
RMSE of 82.213 kW, and R? of 0.920. Although these average metrics indicate
significant errors, the model relatively performs well throughout the month,
aside from a few specific days with exceptionally high errors. These anomalous
days significantly impact the overall monthly metrics, making Oct 23 the month

with the least accurate forecasting performance.

On the other hand, the 1D-CNN model achieves its highest accuracy in Dec 23,
yielding a monthly average MAE of 26.674 kW, RMSE of 35.337 kW, and R?
of 0.988. In other months of the simulation study, the 1D-CNN model performs
moderately well compared to Oct 23, as indicated by the evaluation metrics in
Table 5.1. In Nov 23, the model achieves a monthly average MAE of 40.795 kW,
RMSE of 53.720 kW, and R? of 0.968. In Jan 24, the model shows slightly lower
accuracy compared to Nov 23, with the evaluation metrics showing a monthly
average MAE of 48.824 kW, RMSE of 60.217 kW, and R? of 0.965. In the
subsequent month, the model achieves results comparable to those of Jan 24,
with a monthly average MAE of 49.621 kW, RMSE of 64.817 kW, and R? of

0.971. In Mar 24, the last month of the simulation study, 1D-CNN model
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achieves better performance compared to the previous month, with a monthly

average MAE of 42.906 kW, RMSE of 56.843 kW, and R? of 0.979.

Table 5.1: Forecasting accuracy in simulation study.

Months Evaluation Metrics
MAE (kW) RMSE (kW) R?
Oct 2023 62.751 82.213 0.920
Nov 2023 40.795 53.720 0.968
Dec 2023 26.674 35.337 0.988
Jan 2024 48.824 60.217 0.965
Feb 2024 49.621 64.817 0.971
Mar 2024 42.906 56.843 0.979

The aforementioned sections detail the monthly average error metrics achieved
in each month of the simulation study. However, these monthly averages might
not completely capture the actual capability of the 1D-CNN model in assisting
the controllers to reduce daily peak demands. For instance, In Oct 23, the 1D-
CNN model records the highest average monthly error metrics across the
simulation study. However, the model forecasts the load demands with better
accuracies in most of the days in this month. Fig. 5.3 shows the error metrics
achieved by the 1D-CNN model in each individual days of Oct 23. The model
performs well with relatively low errors across the month, except on individual
days like 16, 17", 18" and 19™, where substantial over-forecasting occurs. The

high forecasting errors on these specific days inflate the overall monthly average
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values, which could have been considerably lower if those specific individual

days had less severe errors.
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Figure 5.3: Forecasting error metrics across individual days in Oct 23.

From the analysis, it is clearly seen that the monthly average error metrics
provide a general overview of the forecasting model's performance across
different months. However, they may not adequately reflect the performance of
the model on individual days. Consequently, it is crucial to assess the forecasting
errors on individual days to achieve a more detailed performance evaluation of
the proposed 1D-CNN load forecasting model. Fig 5.4 to Fig. 5.8 outlines the
forecasting errors on individual days for the remaining month of the simulation

study to better assess the performance of the 1D-CNN model.
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Figure 5.4: Forecasting error metrics across individual days in Nov 23.
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Figure 5.5: Forecasting error metrics across individual days in Dec 23.
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Figure 5.6: Forecasting error metrics across individual days in Jan 24.
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Figure 5.7: Forecasting error metrics across individual days in Feb 24.
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Figure 5.8: Forecasting error metrics across individual days in Mar 24.

5.3.2 Performance assessment of the proposed adaptive threshold-based
controller using daily peak reduction factor, Kppg

The operational results of the proposed adaptive threshold-based controller,
achieved on the 8" working day of Oct 23, is presented in Fig. 5.9. On this
particular day, the actual peak demand of 922.92 kW is recorded during the
period between 15:00 to 15:30. To successfully reduce the actual peak of the
day, the controller must guide the BESS to deliver its power to the load during
this interval. First, a load demand profile for the entire day is forecasted in

advance by the proposed 1D-CNN model. The load demand profile, consisting
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of 96 data points at 15-minutes interval, is stored on a dedicated computing unit
where the simulation study is conducted. Based on the forecasted load demands
along with the available BESS capacity, an initial threshold (P, injtia1) 0£977.21
kW is determined for the day to guide the power dispatch of the BESS for peak

demand reduction.

Starting at 8:00, the adaptive threshold-based controller determines the
threshold adjustment factor (k) on every 15-minute interval, considering both
the real-time and forecasted load demands. This factor helps set up the updated
threshold (Pyy_ypqa), and the final threshold (Py,_fina1) that mainly controls the
power dispatch of the BESS throughout the day of peak reduction. The preceding
peak of the grid (Pgrig_ayr(max)) is also considered when Py, £y, is set to guide

the BESS power output for peak demand reduction.

The controller retrieves the instantaneous load demands (Py,q4 i) at every 1-
minute interval starting from 8:00. Whenever Pjy,q iy €xceeds the Py, finq), the
controller commands the BESS to discharge its power (Ppess in) €qual to the
difference between Py, in and Py, fing) of that moment to reduce the peak of the
day. Py fina1 1s dynamically adjusted throughout the day, and Ppegs iy 1S set
based on the latest Po,q i, and Py, a1 to reduce the actual peak of the day. On
this day, the controller successfully set Py, fina) to reserve BESS to discharge

during the period between 15:00 to 15:30, reducing the actual peak of the day.
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On this day, the adaptive threshold-based controller manages to reduce the
actual peak demand from 922.92 kW to 894.95 kW, achieving a daily actual
peak reduction (PDR,) of 27.97 kW. At the end of the day, the ideal reduction
for that load profile (PDRy) is calculated to be 30.97 kW. As a result, the

controller achieves a Kppg of 90.31% for this day.
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Figure 5.9: Daily peak demand reduction achieved by the adaptive
threshold-based controller on the 8™ operational day in Oct 23.

Kppr achieved by the proposed adaptive threshold-based controller for each
individual day in Oct 23 is shown in Fig. 5.10. The controller manages to reduce
peak demands on every single day of the month, without any failures. Although
the 1D-CNN load forecasting model records the highest average monthly errors
in this month, the controller manages to reduce all the daily peak demands of
this month. As discussed earlier, the high average monthly errors occur in this
month due to the factor that some days exhibits very high over-forecasting
results. On other remaining days, the forecasting performances are relatively
well. On those specific over-forecasted days, the controller effectively reduces
the thresholds using the actual real-time load demands. Although Kppg values

achieved on those specific over-forecasted days are lower compared to days with
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more accurate forecasts, the proposed adaptive threshold-based controller
manages to reduce the peak demands and achieve Kppg to some extent. The
adaptive threshold-based controller records an average monthly Kppgr 0f51.18%
in Oct 23, demonstrating its effectiveness and reliability in reducing daily peak

demands within a billing cycle.
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Figure 5.10: Daily peak demand reduction achieved by the adaptive
threshold-based controller in Oct 23.

Conversely, the two fixed threshold-based controllers face difficulties in
reducing daily peak demands in Oct 23. The forecasted threshold-based
controller, as shown in Fig. 5.11, only manages to reduce peak demands on
certain individual days. On days when the load demands are under-forecasted,
the BESS often runs out of energy before the actual daily peak occurs, as the
controller lacks the ability to adjust thresholds in real time. This leads to the
controller being unsuccessful in reducing daily peak demands on most days, with
no Kppg recorded on those days. The controller records a monthly average Kppr

of just 16.52% on Oct 23.
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Like forecasted threshold-based controller, the historical threshold-based
controller also faces challenges in reducing daily peak demands on many
occasions throughout Oct 23, as shown in Fig. 5.12. Although this controller
sets the threshold differently to avoid peak reduction failures due to under-
forecasting issues, the lack of real-time threshold adjustment limits its ability to
deliver significant improved performance in reducing daily peak demands
throughout this month. This controller records an average monthly Kppg of just

13.86% in Oct 23.
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Figure 5.11: Daily peak demand reduction achieved by the forecasted
threshold-based controller in Oct 23.
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Figure 5.12: Daily peak demand reduction achieved by the historical
threshold-based controller in Oct 23.
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In comparison to the fixed threshold-based controllers, the state-of-the-art
adjusting threshold-based active and fuzzy logic controllers perform
comparatively well in Oct 23. The active controller adjusts the threshold
throughout the day and manages to effectively reduce daily peak demands on
several days in this month. As presented in Fig. 5.13, the active controller
achieves high Kppg in many individual days in this month. However, on
multiple days, the controller cannot reduce peak demands and does not record
any Kppr. On these days, the thresholds are set comparatively low, therefore the
BESS runs out of its stored energy even before the actual peak occurs. In Oct 23,
the state-of-the-art active controller records an average monthly Kppgr of

18.03%, slightly better than those of the fixed threshold-based controllers.

On the other hand, the other state-of-the-art fuzzy logic controller shows strong
performance on Oct 23. This controller sets the threshold and manages the power
dispatch of the BESS more effectively than the active controller this month. As
shown in Fig. 5.14, the fuzzy logic controller effectively reduces daily peak
demands in most individual days of the month and achieves very high Kppr
compared to the active controller. In Oct 23, the fuzzy controller records an
average monthly Kppr of 36.60%, which is higher than that of active controller.
However, it still underperforms compared to the proposed adaptive threshold-
based controller, which achieves an average monthly Kppg of 51.18% in this

month.
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Figure 5.13: Daily peak demand reduction achieved by the active
controller in Oct 23.
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Figure 5.14: Daily peak demand reduction achieved by the fuzzy logic
controller in Oct 23.

The average monthly Kppgr achieved by the proposed adaptive threshold-based
controller, along with the other benchmark controllers in simulation study, are
summarized in Table 5.2. In Dec 23, the proposed adaptive threshold-based
controller records its best result, with an average monthly Kppr of 58.71%. The
I1D-CNN forecasting model forecasts the load demands more accurately in Dec
23 compared to the other months. Consequently, it helps the proposed adaptive
threshold-based controller to set the thresholds that facilitate effective BESS
power dispatch for peak demand reductions. Both fixed threshold-based
controllers perform well in this month, as their performance heavily relies on the
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forecasting performance of the 1D-CNN model. The forecasted threshold-based
controller achieves an average monthly Kppg of 45.44% in Dec 23, whereas the
historical threshold-based controller records an average monthly Kppg of
36.07%. In comparison, the state-of-the-art active controller comparatively
performs less effectively this month compared to the other controllers. The
thresholds are poorly set on most of the days of this month in this controller.
Consequently, the controller experiences peak reduction failures on several
individual days in this month and achieves an average monthly Kppgr 0f 24.21%.
Conversely, the fuzzy logic controller performs significantly well compared to
the active controller this month. It records an average monthly Kppgr of 41.27%,
yet it does not surpass the performance of the proposed adaptive threshold-based

controller.

The proposed adaptive threshold-based controller shows strong performance in
reducing daily peak demands with high average monthly Kppg in the simulation
study, outperforming other benchmark controllers in all months except Feb 24
and Mar 24. The performance of the adaptive threshold-based controller declines
in these months due to high forecasting errors achieved from the 1D-CNN load
forecasting model. On most of the days in these months, the demands are under-
forecasted. Consequently, the thresholds are set relatively low, leading the BESS
to deplete its energy prematurely before the actual peak occurs. Although the
controller makes efforts to adjust the thresholds to overcome the forecasting
errors, it faces challenges in reducing the actual peak on days when the peak

occurs toward the end of the day.
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Over the six-month simulation study, the proposed adaptive threshold-based
controller consistently performs well in reducing daily peak demands. On
average, the proposed controller records an average monthly Kppgr 0f41.62% in
the simulation study. In comparison, the other two fixed threshold-based
controllers show significantly lower performance. On average, the forecasted
threshold-based controller achieves an average monthly Kppg 0f 20.21% in this
simulation study, whereas the historical threshold-based controller records an

average monthly Kppg of 24.43%.

Meanwhile, the state-of-the-art adjusting threshold-based controllers show
strong capability in minimizing daily peak demand in the simulation study. The
state-of-the-art active controller achieves an average monthly Kppg of 21.65%
over the six-month simulation study, whereas the other state-of-the-art fuzzy
logic controller records an average monthly Kppgr of 38.47%. Among the four
benchmark controllers, the fuzzy logic controller shows performance
comparatively close to the proposed adaptive threshold-based controller.
However, the proposed adaptive threshold-based controller demonstrates
superior effectiveness, attaining the highest average monthly Kppg for daily

peak demand reductions in this simulation study.
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Table 5.2: Performance of the proposed and benchmark controllers in the
simulation study based on average monthly Kpppg.

Average Kppr (%)
Month Forecasted Historical Adaptive
threshold- threshold- Active | Fuzzy logic | threshold-
based based controller | controller based
controller controller controller
Oct 23 16.52 13.86 18.03 36.60 51.18
Nov 23 28.40 42.63 23.46 45.99 50.06
Dec 23 45.44 36.07 24.21 41.27 58.71
Jan 24 12.84 9.20 13.42 41.00 45.11
Feb 24 6.28 16.43 24.57 29.75 16.46
Mar 24 11.75 28.37 26.19 36.19 28.19
Average 20.21 24.43 21.65 38.47 41.62

5.3.3 Performance assessment of the proposed adaptive threshold-based
controller using monthly failure rate, N,jure

The monthly peak reduction failure rate (ngjure) achieved by the proposed

adaptive threshold-based controller and the other benchmark controllers in the

simulation study is presented in Fig. 5.15. Over the six-month simulation study,

the proposed adaptive threshold-based controller achieves its best result in Oct

23. In this particular month, the controller effectively manages the power

dispatch of the BESS and successfully reduces all the daily peak demands of the

billing cycle. With no failures across the 22 working days in this month, the

proposed controller records the lowest N¢ajiure 0f 0% in this month.
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In comparison, both the fixed threshold-based controllers achieve high Ngijure
in Oct 23. The forecasted threshold-based controller fails to achieve any peak
reduction in 14 working days in this month. Consequently, it records an N¢jjure
0f 63.64% in Oct 23. Likewise, the historical threshold-based controller does not
manage to reduce daily peak demands on 12 working days during this month.

Therefore, it records an Ngyjyure 0f 54.55% in Oct 23.

The state-of-the-art active controller also shows relatively low performance in
terms of Neajiure 10 Oct 23. Out of 22 working days, the active controller manages
to reduce daily peak demands on only 9 days, failing on the remaining 13. As a
result, it records an Neajjure 0f 59.09% in this month. The other state-of-the-art
fuzzy logic controller shows better consistency compared to the active controller
in Oct 23. It manages to reduce peak demand on 14 days, with failures occurring

on the remaining 8 days. Therefore, it achieves an Ng;jyre 0f 36.36% in Oct 23.

Over the six-month simulation study, the proposed adaptive threshold-based
controller consistently reduces daily peak demands and maintains a lower
Nfailure than the other benchmark controllers, with the exception of Feb 24. In
this particular month, the controller experiences high Ng,jjyre, mainly due to the
forecasting accuracies. On most days of this month, the 1D-CNN load
forecasting model forecasts the load demands with under-forecast tendency.
Although the average monthly forecasting errors in Feb 24 are not the highest
observed in the study, the consistent under-forecasting performance of the 1D-

CNN model significantly contributes to peak reduction failures, even when the
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absolute error values are relatively low. In Feb 24, the adaptive threshold-based
controller does not achieve any peak demand reductions on 10 working days,
leading to achieve an Ng,jjyre 0f 50% in this month. Similarly, the fixed threshold
controllers struggle in Feb 24 because the under-forecasting performance by the
ID-CNN model severely impairs their effectiveness in lowering daily peak
demands. The forecasted threshold and historical threshold-based controller fails
to reduce daily peak demands on 17 and 14 working days respectively in Feb 24,
resulting in an Ngjure Of 85% and 70%. In Feb 24, both the state-of-the-art
controllers comparatively perform well and achieve lower 1gjyre cOmpared to
the other controllers. The active and fuzzy logic controllers each fail to reduce
peak demand on only 6 working days during the month, resulting in an Ngjjyre

of 30% for both controllers.

Over the six-month simulation study, the proposed adaptive threshold-based
controller demonstrates the most reliable performance, achieving the lowest
average Neailure 0f just 16.55%. This clearly indicates its consistency in reducing
daily peak demands over an extended period. In contrast, both the fixed
threshold-based controllers exhibit poor and inconsistent performance, with the
forecasted threshold and historical threshold-based controllers achieving high
average Ngajlure Of 58.24% and 46.97%, respectively. Meanwhile, the state-of-
the-art BESS controllers show comparatively better consistency compared to the
fixed threshold-based controllers in the simulation study. The active controller
achieves an average Neiiyre Of 43.70% in the simulation study, while the fuzzy
logic controller performs more favourably with an average Ngjjure 0f 28.30%.

Although both controllers show improved consistency in reducing daily peak
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demands compared to the fixed threshold-based controllers, their performance
still falls short of the proposed adaptive threshold-based controller in this

simulation study.

m [orcasted threhsold-based controller  ® Historical threshold-based controller Active controller

Fuzzy controller 8 Adaptive threshold-based coniroller

100.00
80.00
60.00
40.00
20.00

0.00

Failure Rate (%)

Oct -23 Nov -23 Dec -23 Jan -24 Feb -24 Mar -24 Average
Month

Figure 5.15: Failure rates achieved by the BESS controllers across the
simulation study.

5.4 Performance evaluation in experimental study

After conducting the simulation study, the proposed adaptive threshold-based
BESS controller is implemented to BESS at UTAR campus to assess its practical
effectiveness under real operating conditions. The controller is deployed and
tested at the site over a period of 21 working days, during which the performance
of the controller is closely assessed using the two different metrics Kppg and
Nfailure - The following subsection presents a comprehensive analysis of
experimental results achieved by the proposed adaptive threshold-based
controller. Before that, the performance of the 1D-CNN load forecasting model
during the experimental period is first presented to provide essential context for

evaluating the controller’s peak demand reduction capabilities.
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5.4.1 Performance assessment of the 1D-CNN load forecasting model

Fig. 5.16 illustrates an example of the forecasting performance of the proposed
1D-CNN model on 17" working day in the experimental study. As presented in
the figure, the forecasted load demands closely align with the pattern of the
actual power demands, demonstrating the ability of the 1D-CNN model to
capture the patterns and trends in the data. Although there are some minor
discrepancies between the forecasted and actual load demands, especially
outside peak demand periods, they do not significantly impact the controller’s
overall performance. On this experimental day, the 1D-CNN load forecasting
model forecasts the load demands with an MAE of 32.72 kW, RMSE of 41.78

kW, and R? value of 0.99.
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Figure 5.16: Forecast accuracy of the 1D-CNN model on the 17th working
day in the experimental study.

The performance of the proposed 1D-CNN load forecasting model within the
21 days of experimental study is presented in Fig 5.17. The model performs
relatively well except for a few days. During this experimental period, the 1D-

CNN load forecasting model records an average MAE of 35.496 kW, RMSE of

116



48.621 kW, and R? of 0.986. To better analyse the performance of the model,
the errors metrics achieved by the ID-CNN model in each day of the

experimental study is provided in Fig. 5.18.
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Figure 5.17: Forecast accuracy of the 1D-CNN model during the
experimental study.
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Figure 5.18: Forecasting error metrics across individual days in the
experimental study.

5.4.2 Performance assessment of the proposed adaptive threshold-based
controller using daily peak reduction factor, Kppg and monthly failure rate,

Ntailure

Fig. 5.16 shows the experimental results of the proposed adaptive threshold-

based controller on the 17" working day of the study. On this particular
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experimental day, the actual peak demand hits to 1081.90 kW, and it occurs
during the period between 15:30 to 16:00. The controllers need to supply power
during this period to reduce the actual peak of the day. During the nighttime
charging phase, the BESS absorbs energy from the grid through the bi-
directional inverter at the experimental site. Once the battery SOC reaches to
80%, the controller stops its charging operation and activates idle mode until the

discharging mode is initiated.

Before the discharging mode initiates at 8:00, the 1D-CNN forecasts the load
demands for the entire day and an initial threshold (Py, initia) of 1023.429 kW
is set based on the forecasted load demands. Once the discharging mode is
activated at 8:00, the adaptive threshold threshold-based controller starts
calculating the adjusting threshold factor (k), that helps to set the final threshold
(Pen_fina1) to manage power dispatch of the BESS throughout the day. The
controller continuously monitors the instantaneous load demands (Piyaq in) and
dynamically adjusts Py, i) based on the forecasted and actual load demands
along with the preceding peak of the grid profile. The power dispatch of the
BESS in every 1-minute is managed based on the latest Py, ing) and Pigaq in-
Once P4 in exceeds Py, fina1, the controller starts supplying BESS power
Pyess_in to the load. As shown in Fig. 5.16, the controller dynamically adjusts the
Pih final and supplies Pyegs in Whenever required. On this day, the controller
successfully sets the Py, fina) in such way that Py i 1s effectively supplied to

the load during the period between 15:30 to 16:00.
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The adaptive threshold-based controller manages to reduce the actual peak of
the day to 1051.20 kW, achieving an actual peak reduction PDR, of 30.70 kW
for this day. The ideal peak reduction (PDRy) of this day is calculated to be
32.02 kW. Therefore, the proposed adaptive threshold-based controller records

a Kppr of 95.88% in this specific experimental day.
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Figure 5.19: Daily peak demand reduction achieved by the adaptive

threshold-based controller on the 17" operational day in experimental
study.

Not only on this specific experimental day, but throughout the entire
experimental period, the proposed adaptive threshold-based controller
consistently shows its effectiveness in reducing daily peak demands. The
performance of the proposed controller, evaluated in terms of Kppp, is presented
in Fig. 5.20. As shown in the figure, the controller manages to reduce daily peak
demands and achieve notable Kppr in most of the experimental days. An
exception is observed on the 15" working day, when the proposed controller
cannot achieve any Kppg. On this particular day, the peak occurs at the very last
moment of the discharging phase, and the BESS runs out its energy just before
the peak occurs. Apart from this single day of failure, the proposed adaptive
threshold-based controller significantly shows its effectiveness in reducing daily

peak demands under the real operating conditions at the experimental site.
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Since the controller is unable to lower daily peak demands on only one day out
of 21 working days in this experimental study, the proposed adaptive threshold-
based controller records a significant low Ng,jyre Of just 4.76%. This clearly
demonstrates its strong consistency in reducing daily peak demands even under

real operating conditions.

Overall, the proposed adaptive threshold-based BESS controller records an
average Kppr of 49.45%, highlighting its strong effectiveness in reducing daily
peak demands. These experimental results confirm the real-world effectiveness

of the developed controller in lowering daily peak loads under actual operating

conditions.
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Figure 5.20: Daily peak demand reduction achieved by the adaptive
threshold-based controller during experimental study.
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5.5 Summary

The findings of this research are comprehensively presented in this chapter.
Both the simulation and experimental results are presented in detail. The
proposed adaptive threshold-based BESS controller outperforms the other
benchmark controllers in simulation study, achieving an average Kppr of
41.62% and Ngajjure 0f 16.55%. Not only in simulation, but the proposed
controller also maintains a strong performance in reducing daily peak demands
in the real experimental setup. Over 21 days of experimental study, the controller
records an average Kppr of 49.45% and ng,jjure Of 4.76%, demonstrating even

better performance than in the simulation results.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusion

Peak demand reduction is important as it can yield significant financial savings
by minimizing additional maximum demand charges. Additionally, it can also
bring substantial environmental benefits by avoiding the fossil fuel-based
peaking power plants. Several approaches are widely used to reduce the peak
demands for end customers. However, Battery-based energy storage system
(BESS) has gained more popularity due to its fast response capability, high
efficiency, and ability to store excess energy for use during peak demand periods.
BESS is charged during the periods when the consumptions are comparatively
low, and discharged its stored energy when consumptions are relatively high. To
achieve peak demand reduction using BESS, a controller is required that can

effectively charge and discharge the batteries at the appropriate time.

Various BESS controllers exist in the literature aimed to achieve peak demand
reductions. Most of them are tested only in simulation, experimental testing
under real operating conditions is yet to be fully explored. Although some of the
controllers are tested experimentally, many of them are tested only on limited
case studies without using any evaluation metrics. Additionally, most of the
existing controllers are developed using paid commercial platforms, which

typically increases the overall controller development costs. Apart from these,
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advanced load forecasting techniques are not incorporated in most of the existing

controllers, which significantly impacts the performance of the controllers.

To address these gaps, this study proposed an innovative adaptive threshold-
based controller for BESS using an advanced deep learning-based 1D-CNN load
forecasting model to reduce the daily peak demands for end customers. The
proposed controller employs a 1D-CNN model to forecast load demands ahead
of time and establishes an initial threshold that is dynamically adjusted during
the peak reduction day using both forecasted and actual load demands, as well
as the previous peak in the grid profile, to optimize BESS power scheduling for
peak reductions. The controller is first implemented in simulation using Python
programming and benchmarked against four different controllers through two
different evaluation metrics, Kppgr and ng,jjure, Pased on six months on-site data.
Following the simulation study, the proposed controller is deployed on a real
200 kW/200 kWh BESS setup installed in a university building in Malaysia,
using the open-source Node-RED platform to assess its practical performance

under real operating conditions.

In the simulation study, the proposed adaptive threshold-based controllers
performs better than that of other four benchmark controllers, with an average
Kppr of 41.62% and N¢yijure Of 16.55%. Compared to the proposed controller,
two fixed threshold-based controllers, the forecasted threshold and historical
threshold-based controllers, demonstrates significantly lower effectiveness. The

average Kppr achieved by the forecasted and historical threshold-based
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controllers in the simulation study is 20.21% and 24.43%, respectively, whereas
their corresponding average Nejure values are 58.24% and 46.97%. The
performance of the other two state-of-the-art benchmark controllers, namely the
active and fuzzy logic controllers also fall short compared to the proposed
adaptive threshold-based controller. In this simulation study, the active
controller achieves an average Kppr 0f21.65% and ngjjyre 0f 43.70%, whereas
the fuzzy logic controller records a higher average Kppgr of 38.47% and a lower
Neailure Of 28.30%. The proposed adaptive threshold-based controller also shows
its strong effectiveness in 21 days of experimental study under real operating

conditions, achieving an average Kppgr of 49.45% and n¢,jure Of just 4.76%.

The implications of this study are significant. By leveraging an open-source
Node-RED platform and integrating advanced deep learning-based 1D- CNN
load forecasting model, the proposed controller offers a cost-effective, scalable,
and efficient solution for peak demand reductions. This makes it highly suitable
for commercial, institutional, and industrial facilities, especially those with
budget constraints or limited access to proprietary software. Moreover, its
success in both simulation and real-world deployment validates its practical
viability and positions it as a promising tool in the development of smart grid
systems. This work also contributes to broader energy sustainability goals by
supporting more intelligent energy use, reducing peak grid loads, and lowering
dependence on fossil-fuel-based peaking plants. It provides a practical pathway
for utilities, energy managers, and policymakers to enhance demand-side
management and transition towards cleaner and more efficient energy

infrastructures.
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6.2 Limitations and future works

The proposed innovative adaptive threshold-based controller is primarily
designed to reduce the daily peak demands by effectively managing the charge-
discharge schedule of the LiFePO4 batteries. This controller along with the
existing experimental setup is able to successfully reduce the peak demands at
an academic building of UTAR, Sungai Long campus. However, there is a
potential to enhance the overall benefits of the system by integrating renewable
energy sources, such as solar PV panels. By incorporating the solar PV with the
existing setup, the system can generate renewable energy that can be used to
further reduce the peak demands. Therefore, as a future recommendation,
integrating a solar PV system with the existing setup is suggested to further

enhance the peak demand reduction performance of the proposed controller.
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