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ABSTRACT 
 
 

INNOVATIVE ADAPTIVE THRESHOLD-BASED BATTERY ENERGY 
STORAGE SYSTEM CONTROLLER USING DEEP LEARNING 

FORECAST FOR PEAK DEMAND REDUCTIONS 
 
 
 

Md Mahmudul Hasan 
 

Battery-based energy storage system (BESS) can reduce daily peak demands 

when it is managed by an effective controller or a control strategy. However, 

most existing BESS controllers are implemented in simulation platforms, with 

limited experimental validations under real operating conditions. Even when 

implemented experimentally, they are often tested on limited case studies or 

evaluated without any evaluation metrics. Additionally, majority of the 

controllers are developed using paid proprietary platforms, and do not 

incorporate any advanced load forecasting model. Therefore, this research aims 

to address these gaps by developing an innovative adaptive threshold-based 

BESS controller using free, open-source platforms Node-RED and Python, 

integrating an advanced deep learning-based one-dimensional convolution 

neural network (1D-CNN) model for load forecasting. The proposed controller 

is initially evaluated through simulation using six-months of data, with its 

performance benchmarked against four different controllers using two different 

evaluation metrics: daily peak reduction factor ( ), and monthly failure rate 

( ). Subsequently, the controller is deployed on a 200 kW/200 kWh BESS 

setup at a university campus in Malaysia to evaluate its practical performance 

over 21 days under real operating conditions. In simulation, the proposed 

controller performs better than that of those benchmark controllers, achieving an 
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average  of 41.62% and  of 16.55%. When tested on the actual 

BESS setup, the controller shows improved performance, with an average  

of 49.45% and  of just 4.76%. These findings highlight the potential of 

the proposed adaptive threshold-based controller enhanced with advanced load 

forecasting model for real-world grid applications and can provide significant 

benefits to both utilities and end customers. 

Keywords: Battery energy storage system (BESS), bess controller, peak 

demand reduction, load forecasting, deep learning, 1D-CNN 
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CHAPTER 1

INTRODUCTION

1.1 Research Background

As developing countries experience rapid economic growth, maximum 

demand (MD) is likely to increase in coming years. Along with economic growth, 

factors like population growth, urbanization, increased use of electrical and 

electronic devices are also driving this surge in MD (Shabalov et al., 2021). As 

an emerging economy in Southeast Asia, Malaysia has also experienced 

substantial increase of MD. Following a yearly growth rate of 2.3%, the MD in 

Malaysia climbed to 18,808 MW in 2020, as shown in Fig. 1.1 (Suruhanjaya 

Tenaga Malaysia, 2020). The projection also shows that the MD in Malaysia is 

expected to increase steadily, reaching 22,815 MW by 2030, with an estimated 

growth rate of 1.3% per year.

  

Figure 1.1: Peak demand trend in Malaysia
(Suruhanjaya Tenaga Malaysia, 2020)
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To meet the rising MD, utility companies must take necessary initiatives 

including the investments on the expansion of their generation and network 

infrastructures. Investments on the peaking power plants, which are normally 

run for short durations to meet the high peak demands, are often required. 

However, such investments can be substantially costly due to their high 

operational and maintenance expenses (IRENA, 2019). These high expenses can 

be attributed to low efficiency, reliance on expensive fuels, frequent start-stop 

cycling, and high standby costs (GAO, 2024). Consequently, customers are 

subject to extra charges in addition to their regular electricity bills, as utility 

companies try to recoup their investments. (Borenstein, 2016). In Malaysia, 

utility companies impose additional demand charges specially on commercial 

and industrial customers, alongside their standard electricity bills (Tenaga 

Nasional Berhad, no date). For some customers, these added demand charges 

may comprise up to 70% of their total monthly electricity bill, placing a 

significant financial burden for them (Dieziger, 2000; Zhang and Augenbroe, 

2018a) . 

 

Beyond its financial burden, MD also poses substantial environmental 

challenges. Addressing high MD often requires utility companies to activate 

additional generation capacity, most of which rely on fossil fuels due to their fast 

ramp-up capabilities and consistent availability. This intensified operation 

causes a notable rise in greenhouse gas emissions, along with other air pollutants 

(Di Gianfrancesco, 2017a). In Malaysia, the energy sector accounts almost 80% 

of their total greenhouse gas emission (Latif et al., 2021). Therefore, lowering 
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MD is crucial, as it can bring both cost savings and positive environmental 

impacts. 

 

Customers can focus on reducing their daily peak demands throughout a 

billing cycle to reduce their overall monthly MD. Among the many methods 

introduced for peak demand reduction, Demand Side Management (DSM) is 

being widely implemented approaches across different sectors. (Williams et al., 

2023). This approach includes a range of actions, which lead to change the 

patterns (Panda et al., 2022a). Another 

popular approach for peak demand reduction is Demand Response (DR), which 

is mainly a specific method within the broader DSM framework (Darwazeh et 

al., 2022). This method aims to motivate consumers to adjust their electricity 

consumption patterns instantly, often triggered by incentives or signals offered 

by utilities (Jordehi, 2019).  

 

Both DSM and DR approaches are implemented through different programs 

with the participation of the customers. The key difference between these two 

approaches is that DSM focuses on promoting long-term energy-efficient habits, 

whereas DR targets immediate, short-term shifts in consumptions in response to 

fluctuating prices or grid demands (Panda et al., 2022b). Both approaches 

significantly rely on the active participation of the customers to effectively 

reduce peak demands (Iqbal et al., 2021a). However, motivating consumers to 

adjust their energy usage habits can be a challenging task in practice. A major 

obstacle is the fear of discomfort, especially when consumers are asked to shift 
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their energy consumptions to less convenient times. For example, reducing 

electricity usage during peak hours, such as turning off air conditioning on hot 

afternoons, can be uncomfortable for many. In addition, the success of DSM 

programs in reducing peak demands relies on collaboration among various 

parties such as utility companies, regulatory agencies, and technology providers, 

which often leads to potential complexities in policy and governance (Nebey, 

2024a). 

To address high Battery-

based Energy Storage System (BESS) provide a reliable and effective solution

compared to the other alternatives (Martinez-Bolanos et al., 2020; Sahoo and 

Timmann, 2023). A BESS unit, placed downstream of the utility meter, as shown 

in Fig. 1.2., can help to reduce peak demands without changing

regular energy usage patterns.

Figure 1.2: Strategic placement of BESS after the utility meter for peak 
demand reductions.
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During off-peak hours, when system loads are comparatively low, BESS 

operates in charging mood, absorbing energy from the grid. As load increases 

during peak hours, BESS switches to its discharging mode, supplying stored 

energy to reduce peak demands and maintain grid power to a certain level during 

peak hours, as presented in Fig. 1.3.

Figure 1.3: BESS functionality illustrating energy storage during off-peak 
hours and discharge during peak periods to reduce demand

BESS offers a promising solution for peak demand reductions; however, its 

full potential can only be achieved with an effective control strategy or controller.

The performance of the BESS is significantly influenced by the ability of the 

controller to set an effective threshold level, discharging the batteries to meet 

demand when it surpasses this level, and recharging them when demand drops 

below the threshold level (Yang et al., 2023).
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The best threshold, often referred to as the optimal threshold, is defined as the 

lowest point on the load profile such that the energy above this level equals the 

total energy the BESS can deliver (Ng et al., 2022a). For any specific load profile, 

this threshold marks the highest level to which the BESS can effectively limit 

the load, based on its available energy capacity. However, identifying this 

optimal threshold requires full knowledge of the entire load profile in advance. 

 

Since no load forecasting method can provide 100% accuracy in load 

predictions, identifying the optimal threshold is a major challenge for controllers 

in real operating conditions (Ng et al., 2022a). Setting the threshold too low may 

cause the BESS to discharge energy too early or too often, depleting its capacity 

before the peak demand is met, potentially resulting in no reduction at all. In 

contrast, a threshold set too high can cause the BESS to discharge less energy 

than required, causing the system to underperform during peak demand periods. 

Therefore, it is crucial to have a controller that can effectively set the thresholds 

and guide the BESS to charge and discharge at the appropriate time for 

maximum peak demand reductions. 

 

A number of BESS controllers have therefore been introduced to effectively 

charge and discharge the batteries, aiming to reduce peak demands. The 

fundamental strategies of the controllers include predicting load demands in 

advance using various load forecasting techniques, defining a threshold, and 

controlling the charge-discharge operations of the batteries in line with the 

threshold. Existing literature provides numerous examples of these approaches 
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(Zheng et al., 2015; Pholboon et al., 2016; Barchi et al., 2019), where fixed 

thresholds are used without any real-time threshold adjustments to guide battery 

charge-discharge actions to achieve peak demand reductions. However, if the 

peak demand is unexpectedly high or lasts longer than expected, the controllers 

that rely on fixed thresholds may struggle to manage it effectively (Chua et al., 

2017). Therefore, advanced controllers that can optimize battery usage 

dynamically are essential to effectively prevent peak reduction failures and 

enhance overall peak demand reductions. 

 

The existing literature also features several state-of-the-art controllers with 

different optimization techniques for maximum peak demand reductions. For 

example, Oudalov et al. introduced an advanced BESS controller that applies 

dynamic programming to effectively manage battery operations, targeting peak 

demand reduction for end users (Oudalov et al., 2008). In addition, Mishra et al. 

proposed another advanced BESS controller that uses a linear programming 

method for optimizing the power dispatch of the batteries to achieve maximum 

peak demand reductions (Mishra et al., 2012). Apart from the dynamic and linear 

programming techniques, a particle swarm optimisation (PSO) is also introduced 

in a BESS controller to optimize the power output of the batteries for peak 

demand reductions (Mquqwana and Krishnamurthy, 2024). 

 

Though numerous BESS controllers use optimization strategies to schedule 

BESS power output for peak load reductions, many of the controllers still rely 

on conventional load forecasting methods. Only in few of the BESS controllers, 
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advanced load forecasting techniques that involve machine learning or deep 

neural networks, are adopted. This shortcoming may often result in poor 

forecasting performance that limit the overall effectiveness of the BESS 

controller. 

 

In addition, most of the existing controllers are developed on paid commercial 

platforms. These platforms may offer comprehensive toolsets and structured 

environments for rapid development; they also present several challenges. The 

commercial paid development platforms often come with substantial 

subscription fees, restrictive licensing policies, limited customization 

capabilities, and potential compatibility issues with other systems.  

 

Moreover, many existing controllers assess their performance solely based on 

the observed reduction in peak demand, without employing standardized 

evaluation metrics. This practice limits the ability to comprehensively assess 

controller effectiveness or to conduct fair performance comparisons across 

different control strategies. For instance, a controller with a large BESS capacity 

can effectively reduce the peak demand in a load profile that has a sharp and 

short-duration peak. However, the same controller may struggle to effectively 

reduce the peak demands in cases where the peak is more prolonged or when the 

available storage capacity is comparatively limited. Hence, selecting suitable 

evaluation metrics is essential to effectively measure the performance of 

controllers under varying load profiles and operating conditions. 
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Apart from the aforementioned limitations, majority of the controllers are 

tested only in simulations with limited case studies, real-time testing at an actual 

experimental site under real operating conditions is yet to be explored. 

Performance evaluation based on a limited case studies may not adequately 

reflect the robustness of the controller. A controller that performs well in 

reducing peak demand on a specific day may fail under different load profiles 

encountered on subsequent days. Therefore, it is important to evaluate the 

performance of a controller to consistently reduce daily peak demands over an 

extended period, ensuring reliability across diverse and dynamic load conditions. 

 

1.2 Problem Statement  

Battery Energy Storage Systems (BESS) have gained significant attention as 

a potential solution for peak demand reductions. The existing literature presents 

both the conventional fixed threshold-based and state-of-the-art BESS 

controllers that can adjust the thresholds in real-time for peak demand reductions. 

Different load forecasting techniques are used in these controllers to predict the 

load demands. However, limited focus is placed on using advanced load 

forecasting techniques to accurately predict the load demands. Additionally, 

most of the controllers are developed on paid proprietary platforms that increase 

the overall controller development costs as well as limits the accessibility, 

customization, and system compatibility. Moreover, many studies evaluate 

controller performance solely based on peak demand reduction and are often 

limited to a small number of case studies. The use of comprehensive evaluation 
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metrics and benchmarking against alternative control strategies remains 

insufficiently explored. Apart from these, the majority of existing controllers are 

tested exclusively through simulation, with experimental validation under real-

world operating conditions still largely underexplored. 

 

1.3 Research Objectives 

The purpose of this research can be summarized in the following objectives:  

1. To develop an innovative adaptive threshold-based BESS controller 

using free, open-source platforms Node RED and Python to achieve daily 

peak demand reductions, integrating an advanced deep learning-based 

one-dimensional convolutional neural network (1D-CNN) model for 

day-ahead load forecasting.  

2. To assess the performance of the BESS controller using two distinct 

evaluation metrics, daily peak reduction factor   and monthly 

peak reduction failure rate ( and benchmark the results with four 

different controllers in an extensive simulation study conducted using six 

months of data.   

3. To integrate the controller into an actual BESS setup within a university 

building to evaluate its practical performance over an extended period 

under real operating conditions. 
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1.4 Significance of the Research 

This research introduces an innovative BESS controller using deep learning 

forecast to reduce daily peak demands for customers. The significances of this 

research are listed below.  

1. A simple yet effective adaptive threshold-based BESS controller is 

developed for peak demand reduction using free, open-source 

platform Node-RED and Python. Node-RED is used to design the 

control algorithm of the BESS, while the Python is used to develop 

the load forecasting model that is integrated with the control algorithm. 

Using these free platforms substantially reduce the controller 

development expenses compared to using commercial platforms. 

2. In comparison with other existing controllers that forecast the load 

demands without using any specialised load forecasting model, the 

proposed adaptive threshold-based controller forecasts the load 

demands in advance using an advanced deep learning-based 1D-CNN 

model for peak demand reductions. 

3. In contrast to other existing controllers which are evaluated solely 

based on the actual peak demand reductions, the performance of the 

proposed adaptive threshold-based controller is evaluated through 

a daily peak demand reduction factor , along with a monthly 

peak reduction failure rate ( . Through the evaluation metric 

, 

controller. In addition, the evaluation metric  presents the 
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consistency of a controller in daily peak demand reduction within a 

billing cycle. 

4. In comparison to the other existing controllers that are usually not 

benchmarked against other alternative solutions, the proposed 

adaptive threshold-based controller is benchmarked against four 

different controllers, namely the forecasted threshold-based controller, 

historical threshold-based controller, active controller, and fuzzy 

controller in simulation using six months of data collected from a 

university building in Malaysia.  

5. Unlike other existing controllers that are only tested in simulations, 

the proposed adaptive threshold-based controller is integrated into an 

actual 200 kW/200 kWh BESS setup, and the performance of the 

controller is also evaluated over 21 working days under real operating 

conditions. 

 

1.5 Research Process and Stages 

This entire research is carried out in total six phases, which are outlined as 

follows:  

1. Phase 1: In the early phase of this research, an extensive review of 

existing literature is undertaken to get familiarised with the 

fundamental concepts and latest developments related to the peak 

demand reductions. This step helps to identify the gaps in the existing 

research. 
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2. Phase 2: A data acquisition system (DAQs) is set up at the 

experimental site in this phase of the research. Data collected from the 

DAQs is used to train the load forecasting model as well as to conduct 

the simulation study. 

3. Phase 3: A deep-learning-based 1D-CNN load forecasting model is 

developed in this phase of the research. An extensive literature on 

other load forecasting models is also carried out before developing 

the 1D-CNN model.  

4. Phase 4: A fully operational 200 kW/200 kWh BESS setup is 

installed at the experimental site in this phase of the research. A set 

of lithium iron phosphate (LiFePO4) batteries, a bi-directional 

inverter, a battery monitoring system (BMS) and other essential 

components are set up following the standards and safety 

regulations. A communication network among the devices in BESS 

setup is also established in this phase of the research. 

5. Phase 5: In the fifth phase of this research, the adaptive threshold-

based controller is developed using Python programming language to 

evaluate its effectiveness in the simulation platform. As part of this 

phase of the research, the proposed controller's performance is 

compared with four other controllers implemented through the same 

simulation environment. 

6. Phase 6: In the final phase of this study, the adaptive threshold-

based controller is designed in Node-RED platform and deployed 

to the actual 200 kW/200 kWh BESS setup to evaluate its practical 

performance under real operating conditions.  
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1.6 Structure of the Dissertation 

 

The structure of the dissertation is organised as follows: 

1. Chapter 1: This chapter presents an in-depth overview of the 

research background, highlighting the challenges associated with 

high peak demands from different perspectives. The research aims 

are clearly outlined, and the relevance of the study is emphasized. 

Additionally, the chapter presents the research methodology, 

illustrating how the research is conducted. 

2. Chapter 2: This chapter mainly focuses on the existing approaches 

for peak demand reductions. It starts with a clear definition of peak 

demand, followed by the importance of peak demand reductions 

both from commercial and environmental perspectives. The chapter 

then delves into various strategies employed to tackle this issue, 

offering a detailed analysis of the approaches. It further investigates 

various control strategies to manage the charging and discharging 

operations of the BESS for peak demand reductions. 

3. Chapter 3: This chapter outlines the overall system architecture of the 

experimental site. It begins with a brief description of the hardware 

configuration of the data acquisition systems (DAQs) installed on-site, 

followed by details of the battery energy storage system (BESS) and 

the battery monitoring system (BMS). The chapter concludes by 

highlighting the communication network architecture connecting the 

devices involved in the experimental setup for peak demand reduction. 
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4. Chapter 4: This chapter mainly presents the BESS control algorithms 

for peak demand reductions. The control algorithm of the proposed 

adaptive threshold-based controller is explained at the beginning of 

the chapter. Following that the control algorithms of the other four 

controllers that are benchmarked against the proposed adaptive 

threshold-based controller is also explained. The implementation of 

the control algorithms both in simulation and experimental studies is 

then highlighted in this chapter. Lastly, the architecture of the 

proposed 1D-CNN load forecasting model that is used to perform day-

ahead load forecasting is detailed. 

5. Chapter 5: This chapter presents the finding of this research. At the 

beginning of this chapter, findings from the simulation study are 

outlined. The performance of the 1D-CNN model throughout the 

simulation period is first presented, followed by the performance 

comparison of the controllers is explained comprehensively. At the 

last part of this chapter, the experimental results of the proposed 

adaptive threshold-based controller are presented thoroughly.  

6. Chapter 6: In the concluding chapter, the key findings of the research 

are summarized, along with recommendations for further studies. 
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Position: 2nd Author 
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CHAPTER 2  

 

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter outlines a detailed overview of the strategies currently 

implemented to address high peak demand. It initiates with introducing the 

concept of peak demand, outlining the challenges it presents. The importance of 

peak demand reductions is then highlighted, emphasizing its financial and 

environmental impacts. Following this, the chapter delves into an extensive 

review of established solutions for reducing peak demand, such as DSM, DR, 

and ESS. BESS, a specific form of ESS, is chosen as the primary focus of this 

research, considering its advantages compared to other existing solutions. 

Therefore, several BESS controllers, that aim to achieve peak demand reductions, 

are thoroughly examined in the latter section of this chapter. 

 

2.2 Peak Demand 

Peak demand is the highest level of electricity consumption recorded over a 

specific time frame, often measured in short intervals like 30 minutes within a 

24-hour period. To maintain a stable and reliable power supply across the 

electrical network, it is essential that the generated power consistently matches 

the demand at all times (Benetti et al., 2016). To achieve this, utility companies 
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must adjust their generation levels in real-time, responding to fluctuations in load 

demands. To ensure a stable match between power generation and consumption, 

utility providers generally rely on three types of power stations: baseload, 

intermediate-load, and peaking units (Leonard et al., 2018). The base-load power 

plants are usually designed to operate continuously at a constant output to meet 

the minimum power demand (Di Gianfrancesco, 2017b). In contrast, 

intermediate-load power plants are designed to cope with daily variations in 

power consumption (Diewvilai and Audomvongseree, 2024). These types of 

power plants usually adjust their power outputs according to the fluctuation of 

the load demands. Lastly, the peaking power plants, which are operate solely 

during peak hours to deliver the surplus power necessary for supporting grid 

reliability (Di Gianfrancesco, 2017b). 

 

Since the peaking power plants are designed to operate during peak demand 

periods, their runtime is limited to short durations, resulting in a comparatively 

lower contribution to the overall energy supply than baseload or intermediate 

load power plants. However, the costs associated with these peaking power 

plants, are relatively high due to their lower efficiency, reliance on expensive 

fuels, frequent start-stop cycling, and higher standby costs (GAO, 2024b) . To 

recover the substantial investments and operational expenditures, the electricity 

they produce is often sold at high rates (Hu et al., 2013). As a result, utility 

providers implement various billing structures to pass these costs on to the end 

customers. 
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Apart from standard electricity usage charges, commercial and industrial 

customers in Malaysia are also liable for MD charges, which can considerably 

elevate their total electricity bill (Tenaga Nasional Berhad (TNB), no date). The 

standard electricity usage charges are usually measured in kWh and are applied 

to all categories of consumers including residential, commercial, and industrial 

customers based on their energy usages. However, for commercial and industrial 

customers, additional MD charges are added to the electricity bills. These 

charges, measured in kW, are based on the peak electrical demand recorded 

during the billing cycle, usually within a 30-minute window. Typically, MD 

 monthly electricity bill, but this 

proportion can increase up to 70% for some customers (Dieziger, 2000; Zhang 

and Augenbroe, 2018b; Ayyappan et al., 2019).  

 

Table 2.1 presents the various MD rates imposed under different tariff 

categories set by Tenaga Nasional Berhad (TNB) in Malaysia. Tariff categories 

B and D, which fall under low voltage, are exempt from MD charges. However, 

other tariff categories are subject to different MD rates. For instance, a customer 

under C2 tariff category who records MD of 200 kW in a given month will incur 

MD charges calculated at RM45.10 per kW. This results in a total MD charge of 

RM 9,020, calculated as follows:     

 

                                    = 200 kW × 45.10 RM 

                                    = 9020 RM 
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Table 2.1: Maximum demand rates for different tariffs by TNB 

Tariff Plan Charge (RM/kW) 

Low-voltage commercial tariff (Plan B) - 

Medium-voltage standard commercial tariff (Plan C1) 30.30 

Medium-voltage peak/off-peak commercial tariff (Plan C2) 45.10 

Low-voltage industrial tariff (Plan D) - 

Medium-voltage standard industrial tariff (Plan E1) 29.60 

Medium-voltage peak/off peak industrial tariff (Plan E2) 37.00 

High voltage peak/off peak industrial tariff (Plan E3) 35.50 

 

 

In addition to imposing a considerable financial burden on consumers, high 

peak demand also creates significant environmental issues. To address high peak 

demands, fossil fuel-powered peaking power plants are frequently required to 

function at their maximum capacity for extended periods. Unlike other power 

plants that run more efficiently, peaking power plants are less efficient and emit 

disproportionately higher levels of CO2 and other harmful pollutants (Ang et al., 

2022). These emissions substantially pollute the environment and contribute to 

the acceleration of global warming. Moreover, the increased pollutions degrade 

the air quality, adversely affecting both public health and the natural 

environment (Perera, 2018).  
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2.3 Importance of Peak Demand Reductions 

Peak demand reduction is important due to its significant economic and 

environmental benefits. From an economic perspective, reducing peak demand 

enables utility companies to avoid major capital expenditures associated with 

constructing new peaking power plants and reinforcing existing electrical 

infrastructure (Nebey, 2024b). By reducing peak demands, utility companies can 

ensure the best use of their existing infrastructure and can minimize the costly 

investments for network upgrades (Wallberg et al., 2024). These allow them to 

offer electricity at significantly lower rates compared to when large sums were 

spent to accommodate high peak demands. Customers can also enjoy low 

electricity tariff rates from the utility companies. Moreover, reducing peak 

demands help customers to save on their MD charges, which would otherwise 

be significantly higher if the peak demand reductions are not carried out (Gohary 

et al., 2023).  

 

Apart from the financial benefits, reducing peak demands also provide 

significant environmental benefits. Peaking power plants, which are activated 

for short durations to manage the peak demands, usually run on fossil fuels. The 

highest level of greenhouse gas emissions and the most severe impacts on 

ecosystems are caused by fossil fuels (Mubarak et al., 2024). Reducing peak 

demands can decrease the reliance on these non-environmentally friendly fossil 

fuel-based peaking power plants, leading to lower CO2 emissions and improve 

air quality (Hoa et al., 2024). 
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In addition to the aforementioned benefits, reducing peak demands allow 

utilities to operate more efficiently by lowering the power supply during high 

peak demand periods (Kalkhambkar et al., 2016). It also helps to maintain the 

balance between supply and demand and improves overall power quality (Silva 

et al., 2020). For these reasons, peak demand reduction has become a key area 

of attention, and numerous strategies are actively being introduced to address 

this issue. The following section provides a comprehensive overview of the 

existing solutions for peak demand reductions.   

 

2.4 Existing Strategies for Peak Demand Reductions 

Numerous strategies for reducing peak demands are discussed in literature, 

with DSM, DR, and ESS being especially prominent and extensively 

implemented in different countries. Different ESS technologies are widely used 

to reduce peak demands, yet BESS offers a more adaptable and reliable option 

than other ESS types (Chatzigeorgiou et al., 2024). The subsequent sections 

explain the DSM and DR strategies implemented for peak demand reductions, 

followed by their limitations. The various ESS technologies are also explained 

at the end of these sub-sections, along with an explanation of why BESS is the 

more suitable for peak demand reductions compared to the other alternatives.  
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2.4.1 Demand Side Management (DSM) 

DSM is a long-term strategy focused on promoting lasting changes in 

customers' energy consumption patterns, especially during peak demand periods 

(Nebey, 2024b). It helps to reduce peak demands by encouraging customers to 

adopt energy-efficient devices or install dynamic load management tools at their 

locations to control and schedule their energy usage. Customers are encouraged 

to use different energy-efficient devices such as LED lighting, smart thermostats, 

high-efficiency appliances, and variable speed HVAC systems in DSM strategy 

(Iqbal et al., 2021b). These energy-efficient devices allow the customers to lower 

their overall energy usage, helping to reduce demands during peak hours. 

 

Along with implementing energy-saving equipment, DSM strategies utilize 

various real-time load management tools, including smart meters, controllable 

loads, and programmable switching devices at the user end (Panda et al., 2022a). 

Smart meters allow both customers and utilities to monitor real-time data on 

energy consumption, thus helping to take necessary actions to reduce the loads 

during peak demand periods.  Load controllers and programmable switches 

usually adjust or shift the energy use of the customers during peak demand 

periods, ensuring that power demand remains balanced and avoids overloading 

the grid (Iqbal et al., 2021b). DSM strategy mainly involves different load 

management techniques, as illustrated in Fig. 2.1, for peak demand reductions 

(Panda et al., 2022a). The overview of the load management techniques used in 

DSM strategy are outlines below- 
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1. Peak clipping: This technique reduces the peak demands by remotely 

controlling the  offering incentives to customers.  

2. Valley filling: This technique reduces the peak demands by 

encouraging the customers to increase their electricity usage during 

off-peak hours, helping to balance the overall load demands 

throughout the day. 

3. Load shifting: This technique reduces the peak demands by shifting 

the load consumptions from peak demand periods to non-peak 

demand periods through incentives or smart scheduling of the 

appliances.  

4. Strategic conservation: This technique strategically reduces the 

overall electricity consumption during peak demand periods through 

behavioural changes or energy-saving practices.  

5. Flexible load shape: This technique reduces the peak demands by 

dynamically adjusting the electricity usage in real-time based on the 

grid conditions. 

6. Strategic load growth: This technique strategically reduces the peak 

demands by adding new electricity use, such as EV charging, in a 

planned way, ensuring that the load growth happens during off-peak 

hours when overall load demands is lower.  In this technique, adding 

new loads may increase overall load demands, but the new loads are 

added in a planned way, preventing them from contributing to 

increase the actual peak demand during peak hours.  
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Figure 2.1: Load management techniques in DSM for peak demand 
reductions.

2.4.2 Demand Response (DR)

Unlike DSM, DR is a short-term strategy designed to enable consumers to 

adjust their electricity usage during peak demand periods in response to market 

conditions (Paterakis et al., 2017). The DR is usually implemented through 

various customer programs for peak demand reductions. These programs can be 

categorized into two main categories: incentive-based programs (IBP), and 

price-based programs (PBP) (Nebey, 2024b).

In IBP, utility companies encourage their customers to reduce or shift their 

electricity usage during peak demand periods to non-peak demand periods in 

exchange for financial incentives. Direct load control, curtailable load programs, 

capacity market programs, emergency DR programs, and demand bidding are 

the common examples of IBP for peak demand reductions (Albadi and El-

Saadany, 2008). Utility companies directly control the loads of the customers 
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during peak demand periods in direct load control program, whereas in 

curtailable load programs, customers agree to reduce their consumption during 

peak demand periods in return for financial incentives for peak demand 

reductions. Additionally, customers are committed to reduce their consumptions 

during high peak demand periods in exchange for upfront payments in capacity 

market programs (Bogdanova et al., 2023a). In these programs, the commitments 

between the customers and utility companies are usually made in advance, and 

customers are expected to be available to curtail their loads when called upon. 

Moreover, customers are incentivised to reduce or shift their energy usage during 

critical periods, such as extreme weather events or grid emergencies in 

emergency demand response programs for peak demand reductions (Siano, 

2014). These programs are only initiated during emergency conditions and 

typically involve immediate load reduction actions from the participants. Lastly, 

in demand bidding programs, customers typically submit bids specifying the 

amount of loads they are willing to reduce and the price at which they are willing 

to do so for peak demand reductions (Huang, Li and Zhang, 2025). These bids 

are then evaluated by the system operator, and accepted bids result in load 

reductions during specified periods. 

 

On the other hand, In PBP, customers are incentivized to alter their regular 

energy usage patterns, particularly by shifting their consumptions from peak 

demand periods to off-peak demand periods, through the provision of adjusted 

electricity prices. Under PBP, various dynamic pricing mechanisms such as 

Time of Use (TOE), Real-time Pricing (RTP), Critical Peak Pricing (CPP), 

Extreme Day Pricing (EDP), and Variable Peak Pricing (VPP) are introduced to 
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motivate the customers to alter their regular energy usage patterns 

(Kanakadhurga and Prabaharan, 2022). The details of these pricing mechanisms 

are outlined below   

1. Time of use (TOU): A pricing mechanism where electricity rates vary 

depending on the time of day, with higher rates during peak demand 

periods and lower rates during off-peak periods. 

2. Real-time pricing (RTP): A pricing mechanism where electricity rates 

fluctuate dynamically based on the actual wholesale market price of 

electricity in real time, typically changes on an hourly basis. 

3. Critical peak pricing (CPP): A pricing mechanism where electricity 

rates are set significantly high during a particular period of extreme 

demands to encourage reduced consumption. 

4. Extreme day pricing (EDP): Same as CPP structure but applied 

throughout the entire 24-hour period on days of extreme demand. 

5. Variable peak pricing (VPP): A pricing mechanism where electricity 

rates vary during peak hours based on the level of electricity demand, 

with prices typically increasing as demand rises. 

 

 

2.4.3 Limitations of DSM and DR Strategies 

Both DSM and DR strategies are widely used for peak demand reductions. 

However, both strategies have limitations that affect their overall effectiveness 

in reducing peak demands for customers. The DSM strategy primarily focuses 

on the long-term results, and it takes more time to achieve the results compared 
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to the other short-term solutions (Panda et al., 2022a). Therefore, DSM may not 

be the most effective solution in addressing immediate peak demand challenges. 

Additionally, the high upfront costs of energy-efficient technologies and 

potential consumer reluctance to adopt behaviour changes can limit the 

effectiveness of DSM in reducing peak demands (Strbac, 2008). 

 

On the other hand, DR strategies offer more immediate solution for peak 

demand reductions compared to DSM strategies (Silva et al., 2020). However, 

implementing DR programs in real-world may face significant challenges. 

Designing and managing DR programs can be complicated and resource-

intensive (Bogdanova et al., 2023a). Utilities must coordinate the delivery of 

incentives and ensure that all participants satisfy the eligibility criteria. Often, 

customers are unaware of the potential benefits associated with DR programs 

(Bogdanova et al., 2023). Hence, they are often not motivated to participate the 

programs for peak demand reductions. Even those who do understand the 

benefits of the programs, they may not adjust their routines and sacrifice comfort 

. In addition to other issues, the collection and 

exchange of consumer energy data may lead to privacy and security risks, 

highlighting the importance of strong data protections to minimize threats and 

enhance trust in DR programs (Bogdanova et al., 2023a). Additionally, 

technology-based demand response solutions often demand technical skills and 

training for proper deployment and operation. This complexity can pose 

challenges for smaller utilities or consumers lacking sufficient technical 

expertise. 
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2.4.4 Energy Storage Systems (ESS)

Unlike DSM and DR strategies, Energy Storage Systems (ESS) offer fast, 

flexible and adaptable solutions for reducing peak demands without disrupting 

the daily activities of the customers (Hannan et al., 2021; Lee et al., 2023). 

Customers can enjoy the benefits of peak demand reductions while maintaining 

their comfort and convenience. Energy stored by the ESS from the grid in off-

peak hours is released during peak hours to assist in reducing customer peak 

demand. Different ESS technologies have been broadly used to store energy in 

diverse forms such as thermal, potential, kinetic, electromagnetic, and 

electrochemical over time. (Amir et al., 2023). Fig. 2.2 presents the general 

classification of the ESS technology in the form of thermal, mechanical, 

electrical, chemical, and electrochemical energy storage.

Figure 2.2: Energy storage technologies for peak demand reductions.
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Each of the ESS technologies comes with its own advantages and 

disadvantages. Thermal ESS, which usually have slower response times 

compared to other storage systems, making them less effective to reduce the 

sudden spike of the load demands (Das et al., 2018). In contrast, Mechanical 

ESS usually have higher response time compared to the thermal ESS, making 

them a better choice for peak demand reductions. However, one major drawback 

of the mechanical ESS is their geographical limitations (Chakraborty et al., 

2022). Mechanical ESS, such as pumped hydro systems, are heavily rely on 

specific geographical features, like the availability of natural water sources and 

elevation differences, which are essential to set up the systems. These special 

locations may not be accessible everywhere which limits the widespread 

implementation of such ESS technologies for peak demand reductions. In 

addition, both pumped hydro and flywheels storage system require substantial 

infrastructure and significant capital investments, making them less cost-

effective solutions (Li and Palazzolo, 2022; Nikolaos et al., 2023). The space 

requirements for these storage systems, especially for large-scale flywheels and 

pumped hydro, can also be significant. Therefore, reducing peak demands using 

the mechanical ESS may not be the most effective solution.  

 

Other types of ESS, such as electrical and chemical storage technologies, also 

face specific limitations when applied to peak demand reduction in practical, 

real-world scenarios. Electrical ESS such as capacitors and supercapacitors have 

low energy density (Naseri et al., 2022). In addition, the energy discharge 

duration is also relatively short compared to the other ESS technologies, 

restricting them for effective peak demand reductions when the peak demands 
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occur for long duration. Similarly, chemical ESS technologies, including 

hydrogen storage and electrolysers, present challenges in real-world 

implementation. Complex infrastructure is essential for their storage and 

conversion purposes, which increases capital costs and maintenance 

requirements (Kandari et al., 2023). Additionally, the process of converting 

electricity into hydrogen through electrolysis and then using it to generate power 

when required is relatively slow (Hossain Bhuiyan and Siddique, 2025). 

Consequently, electrical ESS technologies are not ideal for managing sudden or 

prolonged peak demand events. 

 

In contrast, electrochemical energy storage systems, especially BESS, is 

better suited for efficiently reducing peak demand than other ESS technologies 

(Hannan et al., 2021). Unlike other ESS technologies, BESS offers faster 

response time and can discharge the stored energy almost instantly, which is 

ideal for handling sudden spikes in load demands. In addition, BESS provide 

high round-trip efficiency, typically around 90%, allowing them to utilize the 

stored energy effectively for peak demand reductions (Kwon et al., 2024). 

Furthermore, BESS are scalable and compact in size, making them suitable to 

deploy in any location without requiring significant infrastructure or 

geographical constraints (Saldarini et al., 2023). In contrast to mechanical or 

thermal storage systems, BESS are easier to operate and maintain, with less 

complex infrastructure and lower operational costs. These features ensure quick 

and reliable response to fluctuations in power demands, making them ideal for 

effective peak demand reductions. 
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In practice, BESS can reduce peak power needs for customers when installed 

after the meter, delivering energy during peak periods.  A controller is however 

essential for BESS to reduce the peak demands efficiently. The controller mainly 

guides the BESS when to charge and discharge the batteries to achieve maximum 

peak reduction. 

 

2.5 BESS Controllers for Peak Demand Reductions 

Over the years, various BESS controllers have been developed to manage 

demand. These controllers generally fall into two categories, each with its own 

pros and cons. The first category is known as fixed threshold-based controllers. 

These controllers operate based on a predetermined threshold value, typically 

derived from a specific load forecasting technique (Ng et al., 2022b). The BESS 

charging and discharging processes are managed by this fixed threshold. 

Throughout the day when peak reduction is targeted, the threshold does not 

change and regulates battery discharge to manage the actual peak of the day. The 

conventional fixed threshold-based controllers are usually simple in design, and 

comparatively easy to implement compared to more advanced controllers. 

Additionally, they tend to be more cost-effective, as they do not require frequent 

threshold adjustment using multiple operational parameters (Rowe et al., 2014).  

 

Conversely, the second category of the BESS controller is known as the 

adjusting threshold-based controller. These controllers set an initial threshold at 
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the beginning of the day of peak reductions, and then subsequently adjusts the 

threshold to optimize the battery operations for peak demand reductions (Ng et 

al., 2022b). These advanced controllers are more complex in design because they 

consider several parameters when adjusting the threshold (Prakash et al., 2022). 

However, they offer better peak demand reduction capabilities compared to the 

conventional fixed threshold-based controller by dynamically updating the 

threshold in response to real-time load conditions. 

 

2.5.1 Literature on the Conventional Fixed Threshold-based BESS 
Controllers 

Over the years, several fixed threshold-based controllers are developed and 

implemented to reduce the peak demands for customers. These controllers are 

relatively easy to design and require less computational resources to operate. 

Therefore, these controllers are widely adopted for peak demand reductions. 

Table 2.2 presents a comprehensive overview of the existing conventional fixed 

threshold-based controllers used for peak demand reductions. 

 

Table 2.2: Overview of the existing conventional fixed threshold-based 
BESS controllers for peak demand reductions. 

Reference 
Method of 
Evaluation 

Control Strategy for Peak 
Demand Reduction 

Performance of the 
Controller 

(Salis et al., 

2014) 
Simulation 

 

demands are forecasted in 

 Data from four 

distinct buildings, 

labelled A through 
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advance using historical 

data.  

 On the day of peak 

reduction, a threshold-like 

control limit is set by 

adding a safety margin to 

the forecasted loads to 

guide the BESS power 

dispatch for peak demand 

reductions. 

D, over 1 year are 

used for simulation 

studies.  

 Each building uses a 

fixed but different-

sized BESS, and the 

reduces monthly 

peak demand by an 

average of 33.7%. 

(Shin et al., 

2016) 
Simulation 

 Load demands are 

forecasted in advance to 

schedule the power dispatch 

of the BESS. 

 Exact method of load 

forecasting, however, is not 

disclosed. 

 A single case study is 

presented. 

 With a 300 kWh 

BESS, the controller 

effectively reduces 

the peak demand 

from 180.9 kW to 

133 kW, achieving a 

peak reduction of 

26.5%. 

(Pholboon et 

al., 2016b) 
Simulation 

 Load demands are 

forecasted in advance using 

data from the same day of 

the previous week. 

 Based on forecasted the 

loads and price rates, a 

threshold is established to 

manage how the BESS 

dispatches power. 

 Simulation studies 

are carried out using 

1 year of data. 

 With a 350 kWh 

BESS and 114 kWp 

PV setup, the 

controller manages 

to reduce the average 

annual peak demands 

of 32%. 
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(Chua et al., 

2017b) 
Experimental 

 Load demands are 

forecasted in advance using 

historical data rather than 

relying on any specialised 

models. 

 Based on the forecasted 

load demands, two 

thresholds are defined on 

the day of peak reduction to 

dispatch the BESS power. 

 Two case studies are 

presented. 

 With a 15 kVA/64 

kWh of BESS, the 

controller reduces 

peak demand from 

78.4 kW to 70.9 kW, 

achieving a 9.57% 

reduction, the 

highest between the 

two case studies. 

(Hau et al., 

2017) 
Experimental 

 Load demands are 

forecasted in advance by 

calculating the mean of the 

envelope of the historical 

load demands. 

 On the day of peak 

reduction, a threshold is set 

based on the forecasted 

load demands to dispatch 

the BESS power. 

 The controller is 

tested experimentally 

over 31 days. 

 With an 18 kW / 64 

kWh BESS, the 

controller achieves a 

maximum reduction 

of kW 9.28 kW. 

(Barchi et 

al., 2019b) 
Simulation 

 Load demands are predicted 

ahead of time using a 

persistence approach, 

assuming that the load 

profile for the upcoming day 

will be the same as the 

previous days. 

 The power dispatch of the 

BESS is determined by a 

 Simulation studies 

are carried out using 

1 year of data. 

 With a 500 kWh 

BESS coupled with 

1000 kWp PV setup, 

the controller 

achieves an annual 
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threshold, which is 

calculated through a 

specialized optimization 

technique. 

energy reduction of 

1236 MWh. 

(Bereczki et 

al., 2019) 
Simulation 

 Two thresholds are set based 

on the historical load 

demands. 

 On the day of peak demand 

reduction, the power 

dispatch of the BESS is 

controlled by the thresholds.  

 Simulation studies 

are carried out using 

1 year of data. 

 The BESS is not 

specified. 

 The controller 

reduces the annual 

peak load from 48.49 

kW to 41.59 kW, 

resulting a 14.23% 

reduction. 

 

 

(Danish et 

al., 2020) 

Simulation 

 Two thresholds are set in 

advance based on the 

generic daily load demand 

profiles. 

 The BESS power output on 

the peak reduction day is 

regulated by the set 

thresholds and battery SOC. 

 Two case studies are 

presented. 

 With a 3.61 MWh 

BESS, the controller 

reduces peak demand 

from 10.13 MW to 9 

MW, achieving a 

11.15% reduction, 

the highest between 

the two case studies. 

(Kim et al., 

2025) 
Experimental 

 Load demands are 

forecasted in advance using 

a multi-cluster LSTM model 

that integrates k-means 

 The controller is 

tested experimentally 

over 5 days. 
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2.5.2 Literature on the State-of-the-art Adjusting Threshold-based BESS 
Controllers 

Apart from the conventional fixed threshold-based controllers, several state-

of-the-art adjusting threshold-based controllers are also introduced over the 

years for peak demand reductions. These types of controllers usually forecast the 

load demands in advance, set an initial threshold and dynamically adjusts the 

threshold throughout the day for peak demand reductions using different 

optimization techniques. The BESS charging and discharging schedules are 

managed based on these adjusted thresholds. Although the state-of-the-art 

adjusting threshold-based controllers are more complex in design due to the use 

of advanced optimization methods, these controllers offer clear advantages. 

Unlike fixed threshold-based controllers, they can adapt thresholds in real-time 

using forecasts or real-time data, allowing more precise and efficient responses 

to peak demand events (Ng et al., 2022b). Table 2.3 presents an overview of the 

existing state-of-the-art BESS controllers for peak demand reductions. 

 

clustering with LSTM 

networks. 

 During the peak reduction 

day, the BESS power 

dispatch is governed by a 

threshold determined from 

the forecasted load demands. 

 With a 100 kW/ 150 

kWh BESS, the 

controller achieves a 

21.3% reduction in 

total energy usage. 
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Table 2.3: Overview of the existing state-of-the-art adjusting threshold-
based BESS controllers for peak demand reductions. 

Reference 
Method of 
Evaluation 

Control Strategy for 
Peak Demand 

Reduction 

Performance of the 
Controller 

(Reihani et 

al., 2016) 
Simulation 

 A complex value neural 

network (CVNN) is 

employed in a series-

parallel forecasting model 

to estimate load demands 

in advance. 

 Based on the forecasted 

load, an initial SOC profile 

for the BESS is established 

and later optimized with a 

simple control method. 

 The power scheduling of 

the BESS on peak 

reduction days is directed 

by the optimized SOC 

trajectory. 

 Simulation studies are 

carried out based on 

108 days of data. 

 With a 1 MW/ 1100 

kWh BESS, the 

controller proves 

effective in reducing 

peak demands, though 

the specific amount of 

reduction remains 

unspecified.  

(Yun et al., 

2016) 
Experimental 

 Load demands are 

forecasted in advance by 

averaging the historical 

load demands. 

 Based on the forecasted 

load demands, an initial 

threshold is established 

and then fine-tuned using 

battery SOC and TOU 

 A single case study is 

presented. 

 With a 500 kWh of 

BESS, the controller 

successfully reduces the 

peak demand from 

82.44 kW to 43.12 kW, 

achieving a reduction of 

47.69%. 
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rates to manage the 

BESS's power dispatch 

during peak demand 

periods. 

(Yunusov et 

al., 2017) 
Simulation 

 Load demands are 

forecasted in advance 

using five different 

forecasting models. 

 On the day of peak 

reduction, a model 

predictive control (MPC) 

algorithm is used to 

optimize the power 

dispatch of the BESS for 

peak demand reductions.  

 Simulation studies are 

carried out using 14 

days of data. 

 Size of the BESS is not 

disclosed. 

 Using the Snt 

forecasting method, the 

MPC controller 

achieves up to 11.4% 

peak demand reduction 

over 14 days. 

(Kim et 

al., 2017) 
Simulation 

 Load demands are 

forecasted in advance 

using a double seasonal 

Holt-Winters method. 

 On the day of peak 

reduction, the power 

dispatch of the BESS is 

optimized using a robust 

control algorithm.  

 Simulation studies are 

carried out using 24 

months of data. 

 By using a 200 MW/ 

400 MWh BESS setup, 

peak demand for the 

customer is reduced by 

49.9%. 

(Hau et al., 

2017b) 
Experimental 

 Load demands are 

forecasted in advance by 

calculating the mean of 

the envelope of the 

historical load demands. 

 The controller is 

experimentally tested 

over 31 days. 

 With an 18 kW/64 kWh 

BESS, the controller 
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 On the day of peak 

reduction, an initial 

threshold is set based on 

the forecasted load 

demands, which is 

subsequently adjusted 

based on a meta-heuristic 

method to manage the 

power dispatch of the 

BESS.  

achieves a highest 

reduction of 10.02 kW, 

lowering peak demand 

from 79.96 kW to 69.94 

kW, a reduction of 

12.53%.  

(Chua et al., 

2017) 
Experimental 

 Load demands are 

forecasted in advance 

based on historical data to 

set an initial threshold. 

 On the day of peak 

reduction, the initial 

threshold is dynamically 

adjusted through a fuzzy 

control logic to manage 

the BESS power output. 

 Five different case 

studies are presented in 

the study. 

 With a 64 kWh of 

BESS, the controller 

achieves a maximum 

reduction of 12.04%, 

lowering peak demand 

from 100.5 kW to 88.4 

kW. 

(Agamah 

and 

Ekonomou, 

2017) 

Simulation 

 An initial charge-

discharge schedule of the 

BESS is determined based 

on a simple combinatorial 

optimization heuristic 

method. 

 On the day of peak 

reduction, a genetic 

algorithm (GA) is used to 

 A single case study is 

presented. 

 With a 6 MW/ 10 MWh 

BESS, the GA 

optimized controller 

achieves a peak 

reduction of 15.69%. 



41 
 

optimize the charge-

discharge scheduling. 

(Taylor et 

al., 2019) 
Experimental 

 Load demands are 

forecasted in advance 

using an auto-regressive 

moving average model to 

set an initial charge-

discharge scheduling of 

the BESS. 

 On the day of peak 

reduction, a stochastic 

optimization method 

optimizes the charge-

discharge scheduling of 

the BESS. 

 3 days of experimental 

results are provided. 

 With a 200 kW/ 1 MWh 

BESS, the controller 

manages to achieve a 

maximum 97 kW of 

peak reduction.  

(Lange et 

al., 2020) 
Simulation 

 The controller operates 

without relying on the 

forecasting results. 

 Instead, it uses a battery 

dimensioning method to 

manage the BESS charge-

discharge operations for 

peak demand reduction. 

 Four case studies are 

presented. 

 With a 66 kW/ 60 kWh 

BESS, the controller 

achieves a maximum 

peak reduction of 

8.13%, lowering peak 

demands from 619 kW 

to 568.7 kW. 

(Engels et 

al., 2020) 
Simulation 

 A novel control 

framework is introduced 

to manage the BESS 

power dispatch to jointly 

 A single case study is 

presented. 

 With a 1 MW/ 1 MWh 

BESS, the controller 

manages to reduce the 
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perform peak reduction 

and frequency regulation. 

 On the day of peak 

reduction, a stochastic 

optimization technique is 

used to optimize the BESS 

power dispatch. 

peak demand from 1.91 

MW to 1.35 MW, 

achieving a reduction of 

29.32%. 

(Efkarpidis 

et al., 2023) 
Simulation 

 Load demands are 

forecasted in advance 

using a hybrid GRU-RNN 

model to set an initial 

threshold for managing 

BESS power output. 

 A rule-based optimization 

technique optimizes the 

BESS power output on the 

day of peak reduction. 

 Simulation studies are 

carried out using 4 

years of data.  

 With a 1.25 MW/ 1.35 

MWh BESS, the 

controller manages to 

reduce significant 

monthly peak demands. 

(Ebrahimi 

and 

Hamzeiyan, 

2023) 

Simulation 

 Load demands are 

forecasted in advance 

using an artificial neural 

network (ANN) model to 

set an initial threshold to 

control the power dispatch 

of the BESS. 

 On the day of peak 

reduction, the power 

dispatch of the BESS is 

optimized through a 

complex control 

algorithm. 

 Simulation studies are 

carried out using four 

different load profiles. 

 The size of the BESS is 

not specified. 

 The controller achieves 

a maximum reduction 

of 28.12% among the 

four load profiles. 



43 
 

(Ghafoori et 

al., 2023) 
Simulation 

 Load demands are 

forecasted in advance 

using LSTM model. 

 On the day of peak 

reduction, a demand 

management optimization 

model based on linear 

programming is used to 

optimally charge and 

discharge the EVs for 

peak demand reductions. 

 Simulation results for a 

three-month period are 

provided. 

 With a 10 kW/82 kWh 

BESS, two electric 

vehicles (EV) each 

having 15 kW/62 kWh, 

and a 40-kW 

photovoltaic (PV) 

setup, the controller 

reduces peak demand 

by up to 36%. 

(Rafayal et 

al., 2024) 
Simulation 

 Load demands are 

forecasted in advance 

using a probabilistic time-

series forecasting method. 

 On the day of peak 

reduction, the charge-

discharge schedule of the 

BESS is controlled by a 

two-stage stochastic 

programming model. 

 Simulation studies are 

carried out using 30 

days of data. 

 With a 15 kW/60 kWh 

BESS, the controller 

reduces the daily energy 

peaks by up to 26%.  

(Mary and 

Dessaint, 

2025) 

Experimental 

 Load demands are 

forecasted in advance 

using a two-stage neural 

network-based 

forecasting model to set a 

threshold-like setpoint to 

control the charge-

 Two case studies are 

presented. 

 With a 

BESS, the controller 

successfully reduces 

peak demands in both 

case studies, with the 
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2.5.3 Research Gaps in the Existing Conventional and State-of-the-art 
BESS Controllers 

The current literature highlights various conventional fixed threshold-based 

and state-of-the-art adjusting threshold-based controllers for peak demand 

reductions. Some of the controllers forecast the load demands using either the 

previous day's load profile or the profile from the same weekday of the previous 

week (Pholboon et al., 2016b; Barchi et al, 2019b). In addition, many of the 

controllers forecast their load demands by averaging the historical data rather 

than using any specific load forecasting models (Salis et al., 2014; Yun et al., 

2016; Hau et al., 2017a; Chua et al., 2017). These forecasting approaches are 

easy to implement and rely on the assumption that load patterns stay consistent 

over time. However, in real-world scenarios, load demands vary from day to day, 

and this variability is especially pronounced in commercial sites where 

fluctuations are often significant and do not follow a clear trend. Using a 

discharge scheduling of 

the BESS. 

 On the day of peak 

reduction, a robust model 

predictive control (MPC) 

strategy optimizes the 

charge-discharge 

scheduling of the BESS. 

less than the optimal in 

the first case and 

optimal in the second. 
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specialized load forecasting model can provide greater accuracy than simpler 

methods such as relying on the previous day's data, the same day from the 

previous week, or averaging historical load profiles. 

 

Many of the existing BESS controllers are developed on paid commercial 

platforms like MATLAB and LABVIEW (De Salis et al., 2014; Pholboon, 

Sumner and Kounnos, 2016b; Reihani et al., 2016; Hau et al., 2017b, 2017a; 

Chua et al., 2017; Efkarpidis et al., 2023). Dependency on proprietary paid 

platforms can lead to considerable challenges. One major concern is the high 

licensing cost, which can significantly increase the overall expense of controller 

development. In addition, these commercial platforms often have restricted 

flexibility in terms of customization and integration with other systems, 

potentially limiting the ability to adapt solutions to specific requirements. 

Furthermore, reliance on such platforms can create vendor lock-in, where users 

are tied to a specific provider for future updates or support, limiting long-term 

scalability. 

 

Moreover, most of the existing BESS controllers assess their performance 

based on the actual peak demand reduction, rather than using any evaluation 

metric (Yun et al., 2016; Yunusov et al., 2017; Taylor et al., 2019; Engels et al., 

2020; Lange et al., 2020; Ghafoori et al., 2023). 

performance using appropriate metrics is important to gain a comprehensive 

understanding of its effectiveness under varying operational conditions. An 

appropriate metric not only evaluates how effectively a controller reduces peak 
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demands but also facilitate fair, consistent benchmarking against alternative 

control approaches. For example, a controller with a larger BESS capacity may 

perform exceptionally well in scenarios where the load profile features sharp, 

short-duration peaks, as it can respond quickly and discharge sufficient energy 

to reduce those peaks. However, the same BESS controller may underperform 

in situations where the daily peak is more prolonged or where the BESS has 

limited storage or power capacity. Therefore, it is crucial to as

performance through appropriate evaluation metrics. 

  

Apart from these, majority of the controllers are tested only in simulations with 

limited case studies (Shin et al., 2016; Agamah and Ekonomou, 2017; Yunusov 

et al., 2017; Danish et al., 2020; Engels et al., 2020; Lange et al., 2020; Ebrahimi 

and Hamzeiyan, 2023)

under a controlled environment may not fully represent the complexities and 

uncertainties present in real-world environments. Real-time validation at an 

actual experimental site, under dynamic and unpredictable operating conditions, 

is yet to be explored. Additionally, assessing 

limited case studies may not fully capture its effectiveness and consistency. For 

instance, a controller may appear effective in reducing peak demand on a 

particular day, yet it could underperform the very next day if the load profile 

changes significantly

reducing daily peak demands over an extended period is crucial. 
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2.6 Summary 

 

In summary, this chapter provides a thorough review of the relevant literature 

that forms the foundation of this study. It begins by introducing the concept of 

peak electricity demand and the various challenges associated with high peak 

demand. The significance of reducing peak demand is subsequently emphasized. 

Following that, existing strategies for reducing peak demand are discussed, 

including DSM, DR, and ESS. Among these, BESS is selected as the focus of 

this research due to its flexibility, scalability, and ability to respond rapidly to 

demand fluctuations. Several conventional fixed threshold-based and state-of-

the-art adjusting threshold-based BESS controllers are also extensively reviewed 

in this chapter. Each type of controller is critically analysed to understand its 

strengths, limitations. Finally, the chapter highlights significant research gaps 

within the existing conventional and state-of-the-art BESS controllers for peak 

demand reductions. These identified gaps serve as the foundation for defining 

the research objectives and emphasize the necessity for developing a new 

innovative BESS controller using deep learning forecast for peak demand 

reductions. 
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CHAPTER 3  

 

SYSTEM ARCHITECTURE 

 

3.1 Introduction 

This chapter presents the overall system architecture implemented for the 

experimental study aimed at reducing peak demands. The experimental study is 

carried out at UTAR KA block, an academic building of Universiti Tunku Abdul 

Rahman (UTAR), Sungai Long, Malaysia campus, as shown in Fig. 3.1. The 

chapter begins with the hardware setup of the data acquisition system (DAQs), 

which primarily includes the setup of two digital power meters, labelled MSB1 

and MSB2, along with a utility grid meter referred to as the TNB meter, all used 

to measure key electrical parameters at the experimental site. Following the 

DAQs, the chapter proceeds with a detailed description of the hardware setup 

for the entire BESS including its key components and operational configuration. 

Finally, the chapter outlines the communication network architecture that 

facilitates seamless data exchange among the hardware components, enabling 

efficient control and monitoring throughout the experimental study.  
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Figure 3.1: UTAR KA block, the experimental site for this study. 

 

3.2  Hardware Architecture of the Data Acquisition System (DAQs) 

A real-time DAQs is installed at the UTAR KA block to collect and monitor 

the load demand data at the experimental site. Two power meters, MSB1 and 

MSB2, are positioned downstream of the site's electrical busbar to capture 

instantaneous load demand data at one-minute intervals. This real-time data is 

compiled into a comprehensive dataset, which serves both for training the load 

forecasting model and for carrying out the simulation study. Additionally, the 

real-time load demands help to set the BESS power output in real-time for peak 

demand reductions. Apart from the MSB1 and MSB2 power meters, a grid 

power meter, labelled as the TNB meter, is installed upstream of the busbar to 

record the total energy drawn from the grid. Data from this meter is essential for 
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assessing the peak demand reductions achieved by the controller through the 

operation of the BESS.

3.2.1 Hardware Setup of the MSB1 and MSB2 Power Meters

Two units of SPM33 digital power meters, labelled MSB1 and MSB2 as shown 

in Fig. 3.2, are installed at the site to measure the instantaneous load demands of 

the entire UTAR KA block. This block is mainly a multi storied academic 

building which consists of several classrooms, laboratories, faculty office rooms 

as well as cafeteria. The multifunctional MSB1 and MSB2 power meters 

measure various electrical parameters of the building including voltage (V), 

current (A), active power (kW), reactive power (kVAR), apparent power (kVA), 

power factor (PF), frequency (Hz), and active energy (kWh). These parameters 

are shown in real-time on the LCD screen positioned on the meter front panels, 

enabling on-site personnel to quickly verify the readings. Technical 

specifications of the MSB1 and MSB2 power meters are outlined in Table 3.1.

Figure 3.2: SPM33 digital power meters (MSB1 and MSB2) installed at 
UTAR KA Block for load monitoring.
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Table 3.1:Specification of the SPM33 digital power meters. 

Parameters Ratings 

Rated power supply AC 85 ~ 265 V, DC 100 ~ 300 V 

Rated input voltage 220/380 V, 35 Hz ~ 65 Hz 

Rated input current 5A or 1A 

Power loss < 5VA 

Power frequency withstand voltage 2000 VAC 

Insulation resistance  100 M  

Impulse voltage 6000 V 

Standards IEC 62053-21, IEC 62053-23 

 

3.2.2 Hardware Setup of the TNB Meter 

SL7000 grid meter by Itron labelled as the TNB meter, shown in Fig. 3.3, is 

installed at the point of common coupling at the experimental site. This meter is 

installed at the point of common coupling, which serves as the interface between 

total power drawn from the grid can be easily achieved from this meter. Unlike 

MSB1 and MSB2 power meters that provide instantaneous load demands data 

with 1-minute intervals, the TNB meter provides total energy consumptions in 

kWh at 30-minute intervals. Technical specifications of the SL7000 TNB meter 

is outlined in Table 3.2. 
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Figure 3.3: SL7000 TNB meter installed at UTAR KA block. 

 

Table 3.2: Technical specifications of Sl7000 TNB power meter. 

Parameters Ratings 

Rated power supply AC 48 V ~ 288 V, DC 60 ~ 340 V 

Rated input voltage 3*63.5/110V ~ 3*230/400V, 50 Hz 

CT connection 150/5A 

VT connection 11,000/110 V 

Active energy pulse output rate 10,000 imp/kWh, Cl. 0.5S 

Reactive energy pulse output rate 10,000 imp/kVArh, Cl 2 

Standards IEC 62052, IEC 62053 
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3.3 Hardware Architecture of the 200 kW/200 kWh Battery-based Energy 

Storage System (BESS) 

A three-phase BESS is installed in a cabin, as shown in Fig. 3.4, located near 

the UTAR KA block. The system comprises 223 lithium iron phosphate 

(LiFePO4) batteries, each operating within a voltage range of 2.8V to 3.6V. 

LiFePO4 batteries are selected for this study because of their superior safety, 

longer lifespan, excellent thermal stability, and enhanced efficiency.  

 

Figure 3.4: Cabin at UTAR campus to set the BESS setup. 

 

Fig. 3.5 presents the overall BESS setup at the experimental site. A 200 kW/200 

kWh BESS is connected to the main electrical busbar of the UTAR KA block. 

The electrical busbar serves as the main distribution point for supplying 

electrical power to various loads within the building, such as lighting, HVAC 

systems, air conditioners, laboratory equipment, and other electrical devices. In 

charging mode, the BESS sources its power supply from the grid through busbar. 

The grid supplies electricity to the busbar, and then the BESS draws power from 

there with the help of a bi-directional inverter to charge its batteries. On the other 

hand, when the BESS switches to its discharging mode, it delivers power back 
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into the busbar, supporting the building loads to reduce the peak demand of the 

building. A battery monitoring system (BMS) is installed on-site to continuously 

observe and record battery data. The control algorithm responsible for managing 

the BESS charging and discharging processes aimed at peak demand reduction 

is implemented within a central control unit. This unit comprises a computing 

device linked to the entire BESS infrastructure, ensuring efficient coordination 

and execution of control functions.

Figure 3.5: Experimental setup of 200kW/200 kWh of BESS at UTAR 
campus for peak demand reduction.

The installed battery bank has a total rated energy capacity of 200 kWh, which 

defines the maximum amount of energy the system can theoretically store and 

deliver. However, using the entire BESS capacity in practical applications is not 

recommended. Overusing the battery through frequent deep discharges can lead 

to faster battery degradation and shorten its life cycle. Therefore, consistent with 
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industry standards and manufacturer recommendations, the depth of discharge 

(DOD) is limited to around 60 70% to maintain a balance between maximizing 

usable energy and ensuring battery durability. In this study, the SOC range is 

restricted to 20% to 80%, resulting in a DOD of 60%.  

 

Additionally, the bi-directional inverter is rated to deliver a maximum 

discharge power of 200 kW. However, empirical analysis of historical load 

demands data indicates that reducing peak demand at this specific site seldom 

requires discharge levels greater than 100 kW. Based on this observation, the 

maximum usable power output of the inverter is conservatively limited to 100 

kW for this study. This helps to minimize the operational stress on the inverter 

and supports the longevity of the equipment. Further technical specifications of 

the installed BESS are detailed in Table 3.3. 

 

Table 3.3: Technical Specifications of the installed BESS at UTAR 
campus. 
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3.4 Hardware Architecture of the Battery Monitoring System (BMS) 

An advanced battery monitoring system (BMS) by Batrium is installed at the 

experimental site to monitor battery performance and ensure safety. The BMS 

plays a crucial role in optimizing the performance and lifespan of the batteries 

by continuously tracking the key parameters such as SoC, battery cell voltage, 

shunt voltage, shunt current, and temperature. Monitoring battery SoC helps to 

prevent overcharging and deep discharging, both of which can harm the battery 

cells and reduce their overall lifespan. Additionally, monitoring cell voltage 

helps identify imbalances or faults in individual cells, ensuring consistent 

performance throughout the battery pack and triggering balancing processes 

when necessary. The shunt voltage and current measurements are also essential 

for calculating real-time power flow into and out of the battery, enabling precise 

energy tracking. Moreover, continuous temperature tracking across the battery 

cells is crucial as it ensures that the cells operate within safe thermal limit. 

 

Fig. 3.6 presents the hardware setup of the installed BMS at the experimental 

site. The BMS is connected to the LiFePO4 battery bank through individual 

CellMate-K9 module. The CellMate-K9 module is mainly an advanced cell 

monitoring unit designed to connect with 3 to 16 individual cells arranged in 

series. A total of 14 CellMate-K9 modules are installed at the site, each 

connected to 16 individual LiFePO4 cells, enabling the monitoring of all 223 

cells in the BESS. Each unit of CellMate-K9 module collects the data from the 

individual cells and transmits it to the WatchMon Core, which acts as the central 

supervisory unit in the overall BMS setup. 
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Figure 3.6: Battery monitoring system (BMS) setup at the experimental 
site.

3.5 Communication Network Architecture

This section outlines a comprehensive overview of the communication 

network architecture implemented at the experimental site. A central control unit 

(PC) acts as the main communication hub of the entire experimental setup and it 

is strategically installed in a cabin room located near the UTAR KA block. The 

central control unit also hosts the BESS control algorithm developed for peak 

demand reductions, thereby it plays a dual role in both coordination and real-

time decision-making. The communication network is structured into two 

primary layers: communication with the data acquisition system (DAQs) and 

communication with the bi-directional inverter and BMS. The following sub-

sections provide a detailed explanation of each of these communication layers.
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3.5.1 Communication with the Data Acquisition System (DAQs) 

Fig. 3.7 illustrates the communication configuration of the overall DAQs 

deployed at the experimental site. In this setup, the MSB1 and MSB2 power 

meters, dedicated to capturing instantaneous load demands at 1-minute intervals, 

are connected to the central control unit using the Modbus RTU communication 

protocol. An RS-485 to USB converter, which functions as the physical interface 

for enabling serial data transmission between the meters and the central control 

unit, is installed to facilitate reliable communication and ensure seamless data 

acquisition from the power meters. 

 

On the other hand, an energy monitoring toolkit is installed with the assistance 

from TNB to capture the data from the TNB meter. As the meter is owned and 

protected by TNB, unauthorized access could breach security, regulatory, and 

legal standards. Theref

attached to the meter to detect its LCD pulse signals. Each pulse signal represents 

a certain amount of energy used and by counting these pulses, the total energy 

usage in kWh is accurately calculated. The calculated energy data is transmitted 

meter. The portal provides secure access to monitor energy consumption data 

recorded at half-hour intervals. 
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Figure 3.7: Communication setup with the data acquisition system (DAQs) 
at the experimental site.

A free, open- -

control unit with the MSB1 and MSB2 power meters. Node-RED is a 

development environment built by IBM that uses a flow-based approach to 

connect hardware, APIs, and cloud services with ease. It is widely used in 

various DAQs due to its simplicity, reliability and flexibility in handling multiple 

communication protocols. Apart from these, Node-RED platform offers its own 

dashboard feature that allows the users to monitor and visualize real-time data 

without relying on additional dashboard platforms.

Once the power meters are installed at the site, a communication cable is used 

to physically connect them to the central control unit. An RS-485 converter is 

used to establish serial communication between the power meters and the central 

control unit, with data transmission managed by the Modbus RTU protocol. Both 

the MSB1 and MSB2 power meters act as slave devices, while the central control 

unit serves as the master, continuously polling the meters for real-time data. 
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Table 3.4 outlines the Modbus RTU communication settings for the MSB1 and 

MSB2 power meters at the experimental site. 

 

Table 3.4: Modbus RTU settings in Node-RED for MSB meters. 

  

  

  

  

  

  

  

  

 

 

MSB1 and MSB2 power meters store the measurement data in predefined 

registers, each assigned to a specific parameter. These registers serve as fixed 

memory locations that hold either instantaneous readings or cumulative values. 

The Node-RED flow sends a read request via the Modbus Getter node to access 

the data at specific register addresses. The meters, functioning as slave devices, 

respond to the master device with the requested data. Once received, the data is 

processed through function nodes within the Node-RED platform, saved as CSV 

files on the central unit, and displayed on dashboard for real-time monitoring 

and visualization. Fig. 3.8 presents the Node-RED flow designed in the Node-

RED platform to collect and monitor the data from the meters. Additionally, Fig. 

3.9 and 3.10 present the dashboard interfaces developed within the same Node-



61 
 

RED platform for visualizing data from MSB1 and MSB2 power meters, 

respectively. 

 

Figure 3.8: Node-RED flow to collect and monitor data from the MSB1 
and MSB2 power meters. 

 

 

Figure 3.9: Real-time monitoring dashboard for MSB1 power meter. 

 

 

Figure 3.10: Real-time monitoring dashboard for MSB2 power meter. 
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3.5.2 Communication with the Bi-directional Inverter and Battery 
Monitoring System (BMS)

Fig. 3.11 shows the communication setup of the bi-directional inverter and the 

battery monitoring syestem (BMS) at the experimental site. The bi-directional 

inverter is electrically linked to the LiFePO4 battery bank and the grid to 

facilitate two-way power flow, allowing the batteries to be charged from the grid 

or to discharge energy back to the grid when required. Hence, maintaining a 

stable communication link with the bi-directional inverter is essential. The 

inverter is connected to the central control unit via a LAN cable. The BMS, on 

the other hand, is wirelessly connected to the central control unit via a Wi-Fi 

network. 

Figure 3.11: Communication setup with the bi-directional inverter and the 
BMS at the experimental site.

As shown in Fig. 3.12, a dedicated Node-RED flow is developed to interface 

the bi-directional inverter with the central control unit. Modbus TCP/IP 

communication protocol is used to transfer the data between the inverter and the 

control unit. A Modbus Getter node in Node-RED platform initiates requests to 
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the inverter by specifying the appropriate register addresses and data types. The 

inverter responds by sending the requested data back through the TCP/IP 

protocol. Additionally, a Modbus Write node is used to control the inverter for 

charging and discharging operations of the batteries. The Write node sends a 

request to specific registers within the inverter and the inverter executes the 

charging or discharging commands based on the Node-

dashboard to monitor and control the inverter is shown in Fig. 3.13.  

 

Figure 3.12: Node-RED flow for monitoring and controlling the bi-
directional inverter. 

 

 

Figure 3.13: Real-time monitoring and controlling dashboard for the bi-
directional inverter. 
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The communication between the BMS and the central control unit is also 

established using the same free, open-source Node-RED platform. A dedicated 

Node-RED flow, as presented in Fig. 3.14, is developed to interface the BMS 

with the central control unit. User Datagram Protocol (UDP) is used to retrieve 

the data from the BMS. Unlike Modbus RTU and TCP/IP communication 

protocols, which follow a request-response model where a master polls specific 

registers from a slave device, UDP functions as a one-way communication 

protocol, transmitting data without the need for prior coordination from the 

receiver. The dashboard for monitoring the real-time BMS data is illustrated in 

Fig. 3.15. 

 

 

Figure 3.14: Node-RED flow to retrieve the data from the BMS. 
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Figure 3.15: Real-time monitoring dashboard for the BMS. 

 

3.6 Summary 

This chapter outlines the overall system architecture of the experimental site at 

the UTAR campus. It presents the hardware configuration of the Data 

Acquisition Systems (DAQs), including the placement of power meters for real-

(BESS), which serves as the core of the study, is described along with its 

operational role within the system. The Battery Monitoring System (BMS) is 

also covered in this chapter, highlighting its function in ensuring safe and 

efficient battery operation. In addition to the hardware setup, the communication 

network architecture among the hardware setup at the experimental site is 

detailed, describing the flow of data between key system components to support 

coordinated control and monitoring.  
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CHAPTER 4  

 

DESIGN AND IMPLEMENTATION OF BESS CONTROL 

ALGORITHMS FOR PEAK DEMAND REDUCTIONS 

 

4.1 Introduction 

The proposed adaptive threshold-based BESS controller is initially 

implemented within a simulation environment using Python programming 

language. To evaluate and compare its performance, two conventional fixed 

threshold-based and two state-of-the-art adjusting threshold-based controllers, 

are also implemented in simulation. The two conventional controllers that 

operate using fixed thresholds are identified as the forecasted threshold-based 

controller and the historical threshold-based controller. These two controllers are 

not directly adopted from existing literature but instead developed based on the 

fundamental principles of fixed threshold control. In contrast, two advanced 

controllers capable of adjusting thresholds in real-time, are referred to as the 

active controller and fuzzy logic controller. These controllers are developed 

based on the methodologies presented in references ( Hau, Lim and Chua, 2017b) 

and (Kein Huat Chua, Lim and Morris, 2017). Following the simulation study, 

the proposed adaptive threshold-based controller is deployed at the experimental 

site at UTAR campus to assess its practical effectiveness under real-world 

operating conditions.  
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This chapter begins by presenting the control strategies of the proposed 

adaptive threshold-based controller designed for peak demand reductions. It also 

includes comprehensive overview of the additional control strategies used to 

benchmark the performances. An advanced deep learning-based load forecasting 

model is used in the proposed adaptive threshold-based controller as well as the 

two fixed threshold-based controllers. As a results, the chapter also provides a 

detailed explanation of the architecture of the load forecasting model. 

 

4.2 Design of the proposed Adaptive Threshold-based BESS Controller 

4.2.1 Control Strategy Overview 

An innovative adaptive threshold-based BESS controller is implemented in 

both simulation and experimental setups to effectively reduce peak demands. 

The controller incorporates an advanced deep learning-based 1D-CNN model to 

forecast the load demands in advance. An initial threshold is determined using 

the forecasted load demands and is subsequently adjusted in real-time based on 

three different parameters  actual load demands, forecasted load demands, and 

observed grid demands.  

 

 The proposed adaptive threshold-based BESS controller operates in three 

distinct modes: charging, discharging, and idle. However, in the simulation 

environment, it is assumed that the BESS begins each day fully charged to its 

usable capacity. As a result, the simulation study primarily focuses on the 
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discharging mode of the controller to demonstrate its capability to manage and 

lower peak demands using the available BESS energy. In contrast, during 

practical implementation at the experimental site, the charging, discharging and 

idle modes are actively managed. 

 

4.2.2 Algorithm Design 

Fig. 4.1 shows the operational flow chart of the proposed adaptive threshold-

based controller designed to reduce peak demands. The process starts with a day-

ahead load forecasting task. At 00:00, a deep learning-based 1D-CNN model 

forecasts the load demands in advance for the upcoming day. Based on the 

forecasted load demands, the controller sets an initial threshold 
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Figure 4.1: Control algorithm flow chart of the proposed adaptive 
threshold-based BESS controller to achieve daily peak reduction. 
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4.3 Design of the Fixed Threshold-based BESS Controllers 

Two conventional fixed threshold-based controllers are implemented in this 

simulation study. The first controller is identified as the forecasted threshold-

based controller, whereas the second one is referred to as the historical threshold-

based controller. In simulation, both of the controllers are implemented using 

Python programming language. The 1D-CNN model that is integrated with the 

proposed adaptive threshold-based controller, is also incorporated with these two 

controllers. The following subsections outlines the overview of these 

conventional fixed threshold-based controllers.  

 

4.3.1 Control Algorithm of the Forecasted Threshold-based Controller 

The forecasted threshold-based BESS controller mainly functions in 5 different 

steps for peak demand reductions. The detailed step-by-step processes of this 

controller are explained below  
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Step 1: Forecast the load demands in advance using the 1D-CNN load 

forecasting model.  

Step 2: Determine a forecast-based threshold based on the 

forecasted load demands and available BESS capacity. 

  

Step 3: Starting from 8:00, the controller retrieves the instantaneous load 

demands and delivers BESS power  at 1-minute intervals 

according to  

 

  

 

Step 4: At the end of the day, compute the instantaneous grid profile based 

on the  

  

 

Step 5: Measure the effective reduction in peak demand  (  for the given 

day by subtracting the maximum average grid demand,  over 

a 30-minute period from the maximum average load demand,   

within any 30-minute interval of the day.    
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4.3.2 Control Algorithm of the Historical Threshold-based Controller 

The other conventional historical threshold-based controller is also 

implemented using Python programming language. The control strategies of this 

controller closely resemble that of the forecasted threshold-based controller, 

with the primary difference lying in step 2 as outlined in Section 4.3.1. Therefore, 

the steps explained in section 4.3.1 is also applicable for this controller except 

the process of determining the threshold that manages the power dispatch of the 

BESS.  

 

Unlike forecasted threshold-based controller that directly use the forecasted 

threshold  to manage the power dispatch of the BESS, the historical 

threshold-based controller incorporates an additional reference threshold 

 derived from the historical data before it sets the operational threshold 

 that manages the power dispatch of the BESS in historical threshold-

based controller for peak demand reductions.  

 

The  in historical threshold-based controller is determined through 2 

steps, which are explained below - 
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Step 1: Compute the reference threshold 

 achieved from the actual historical load demands as 

follows - 

  

Here,  

            = Reference threshold on day d 

 = Optimal threshold on day i, calculated from           

actual historical data. 

 = Day index within the month 

 

Step 2: Determine the operational threshold 

 

  

 

Once the 
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4.4 Design of the State-of-the-art Adjusting Threshold-based BESS 
Controllers 

Two state-of-the-art adjusting threshold-based BESS controllers are 

implemented in this simulation study. The first controller is known as active 

controller, whereas the second controller is known as the fuzzy logic controller. 

The control algorithms for both controllers are designed using Python 

programming language. The details of the control algorithms are explained in 

the following subsections- 

4.4.1 Control Algorithm of the Active Controller 

The operational flow chart of the active controller is presented in Fig 4.2. The 

process begins with a load demand forecasting step, where the controller uses 

historical load consumption data to predict future demand patterns.  Once the 

forecasted load demands are determined, a threshold is established by 

evaluating the remaining energy capacity of the BESS alongside its power rating.  

The calculated 
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Figure 4.2: Operational flow chart of the active BESS controller to achieve 
daily peak demand reductions. 
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4.4.2 Control Algorithm of the Fuzzy Logic Controller 

The operational flow chart of the fuzzy logic controller to achieve daily peak 

demand reduction is presented in Fig. 4.3. The controller forecasts the future 

load demands by utilizing the average of historical load data. During the peak 

reduction period, an upper threshold  is set to guide the discharging 

activity of the BESS. At the beginning of the day,  is set to the maximum 

demand of the forecasted load . Simultaneously, the initial battery 

SOC  is set to its maximum value of 95%. The power output of the 

BESS  is set to as follows- 

  

 

Initially,  is set to zero because the  is equal to . As time 

progresses, the fuzzy controller continuously monitors the battery SOC and, if it 

remains above 50%, it incrementally lowers the  by 0.1 kW. This iterative 

process continues and the   is updated until the SOC drops to 50% or below. 

A detailed overview of the fuzzy control algorithm for peak demand reduction 

can be found in the literature (Chua Kein Huat, 2016) . 
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Figure 4.3: Detailed flow chart of the fuzzy logic BESS controller for peak 
demand reductions. 

 

 

4.5 Design of the Load Forecasting Model 

The proposed adaptive threshold-based controller, along with the two fixed 

threshold-based controllers used for benchmarking in the simulation study, all 

employ a deep learning-based one-dimensional convolution neural network (1D-

CNN) for day-ahead load forecasting aimed at reducing peak demands. The 

following subsection first presents the justification for selecting the 1D-CNN 

model, followed by a description of the dataset used for model training. Finally, 
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the architecture of the 1D-CNN model used in this study and the associated 

training parameters are presented in detail. 

 

4.5.1 Overview of the Load Forecasting Approach 

Convolution neural networks (CNNs), first introduced in 1960s, have emerged 

as a powerful architecture in deep learning (Purwono et al., 2022). They are 

widely used across various domains including image processing, video 

processing, speech recognition, natural language processing, and time-series 

forecasting. There are different types of CNNs architectures available, each 

designed to handle different types of data based on its shape and structure. For 

instance, 1D-CNNs are usually well suited for time-series or sequential data, 

where the input data is arranged in a single dimensional array over time (Ige and 

Sibiya, 2024). 2D-CNNs, on the other hand, are commonly used for image data 

that has both the height and weight dimensions(Syed M. Hur Rizvi, 2022).  For 

more complex data such as videos or volumetric medical images, 3D-CNNs are 

used because they can capture patterns across width, height, and depth (Zhao et 

al., 2024). 

 

Load consumption data is one-dimensional (1D), as it consists of values 

recorded sequentially over time. Consequently, 1D-CNNs are well-suited for 

forecasting such data. One major benefit of the 1D-CNNs is that they can 

automatically detect the useful features from the data and extract them for further 

processing (Syed M. Hur Rizvi, 2022). This special capability makes the 1D-
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CNNs well suited for load demand forecasting. In comparison with the other 

powerful forecasting models such as GRU, LSTM, and Transformer, which are 

heavily focused on long-term dependencies in time-series sequential data, the 

1D-CNNs are highly effective at identifying local patterns and short-term 

dependencies through their convolutional filters (Su et al., 2023; Wang, Liu and 

Bai, 2024).  

 

Additionally, the 1D-CNNs offer greater computational efficiency compared 

to the other state-of-the-art forecasting models especially when dealing with 

time-series sequential data (Saif-Ul-Allah et al., 2022; Wibawa et al., 2022). 

This is largely because of their parallel processing capabilities and simpler 

architecture. Moreover, the 1D-CNNs require significantly less training time 

compared to the other complex deep learning-based models such as RNN, GRU 

and LSTM (Wibawa et al., 2022). Apart from the aforementioned advantages, 

the 1D-CNNs demonstrate strong forecasting performance even with limited 

data, which makes them a reliable and efficient choice for applications where 

large volumes of historical data are not available (Cordeiro et al., 2021). 

Considering the size of the dataset used in this study along with the advantages 

of 1D-CNN model over other load forecasting techniques, the 1D-CNN model 

is selected to forecast the load demands in the BESS control algorithms for peak 

demand reductions. 

 



82 
 

4.5.2 Dataset Preparation 

      The DAQs installed at the experimental site recorded a full year of load 

consumption data from Mar 2023 to Mar 2024. The load forecasting model is 

trained using data from the first seven months, while the data from the 

subsequent months is set aside for the simulation study. The raw dataset directly 

collected from the DAQs exhibited several quality issues such as non-numeric 

entries, missing values, and duplicate entries, as presented in Fig 4.4. It is 

essential to address all these issues before using the dataset to train the load 

forecasting model, as they can significantly impact the performance of the load 

forecasting model. 

 

 

Figure 4.4: Sample of data anomalies detected in the raw dataset, 
including non-numeric, missing and duplicate entries. 

 

A python script is developed to pre-process the raw dataset before it is used for 

training the load forecasting model. The Python script first identifies and 
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categorizes these anomalies, applying targeted correction strategies to each. For 

instance, the non-numeric entries are replaced with the data from the preceding 

minute to maintain the continuity of the dataset. A similar strategy is used for 

the missing entries, where the data from the preceding minute serves as the 

replacement.  However, in situations involving extensive data loss, for example 

when the DAQs was offline and a full day's records are unavailable, the Python 

script replaces the missing entries using data from the same time on the same 

weekday from the previous week. These steps ensure the dataset remained 

accurate, continuous, and reflective of the building's natural weekly load patterns. 

Fig. 4.5 presents the pre-processed dataset that is used to train the load 

forecasting model in this study. 

 

 

Figure 4.5: Pre-processed dataset used to train the load forecasting model. 
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4.5.3 Model Architecture of the proposed 1D-CNN model 

Fig. 4.6 presents the architecture of the proposed 1D-CNN model used for load 

forecasting in this study. The model has two input layers, each dedicated to 

process different types of input data independently. The first input layer is 

specifically designed to process the sequential time-series data. The input of the 

first input layer comprises a continuous sequence of 5 days of load consumption 

data recorded at the experimental site. Although the load consumption data at 

the site is recorded at 1-minute intervals, the data is resembled to 15-minute 

intervals prior to being fed into the model to reduce the computational 

complexity as well as to capture broader temporal trends of the data. With 15-

minute sampling, each day contributes 96 data points, and thus, a 5-day sequence 

yields a total of 480-time steps. Consequently, the final input shape of the first 

input layer is defined as (480,1), where 480 represents the time dimension and 1 

denotes the number of features per time step. The load consumption values 

measured in kW is used as the feature of the input data. 

 

On the other hand, the second input layer of the proposed 1D-CNN model is 

designed to process categorical data derived from the academic calendar of the 

experimental site. Since the experiments are carried out an in an academic 

building at the UTAR campus, load consumption varies depending on the type 

of the day. For instance, weekdays generally have higher load consumptions 

compared to weekends, while public holidays often see a significant drop in 

usage. To capture these variations, categorical input indicating whether a day is 

a weekday, weekend, or public holiday is provided in the form of a 24-hour 
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sequence in the second input layer. Consequently, the input to this layer is 

structured with a shape of (24,1).

Figure 4.6: Architecture of the proposed 1D-CNN model for load 
forecasting.

After the sequential load consumption data is fed into the first input layer of 

the 1D-CNN model, it passes through three Conv1D layers with 64 filters, kernel 

size 3, and ReLU activation. These Conv1D layers help to extract meaningful 

patterns from the sequential time-series load consumption data. Different 

dropout rates of 0.5, 0.3, and 0.3 are used in between the Convo1D layers, as 

presented in Fig. 4.6., to prevent the overfitting during the training process. The 

output from these Convo1D layers is reshaped into a one-dimensional vector, 

allowing it to be used by the subsequent layers. Additionally, the output from 

the input layer 2 is fed into a dense layer with 24 neurons and ReLU activation, 

allowing the model to better capture the relationship between the type of day and 

load consumptions.
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The sequential load consumption data, which is passed through Convo1D and 

flatten layers, and the categorical day-type data, which is processed through a 

dense layer, are concatenated into a single vector. This resulting feature vector 

is then passed through a fully connected layer with 64 units, allowing the 1D-

CNN model to learn the temporal patterns of the load data with the day-type 

information to generate the forecast for the following day. Finally, the output 

layer, consisting of 96 units and using a linear activation function, provides the 

final load forecast for the entire day. 

 

4.5.4 Training Configurations of the proposed 1D-CNN model 

The proposed 1D-CNN load forecasting model is developed using Python and 

the Keras framework, with TensorFlow serving as the backend. Libraries like 

Pandas, NumPy, and Matplotlib, are used for data handling, numerical 

computations, and data visualization throughout the design and training phase of 

the model. The proposed 1D-CNN model is trained on a computer running the 

Windows operating system, equipped with an Intel Iris X integrated GPU, a 12th 

Gen Intel Core i5-12500H CPU, and 16 GB of RAM. The training process takes 

about two hours using the selected dataset collected from the experimental site. 

In this study, the 1D-CNN model is trained for 200 epochs with a batch size of 

16, a learning rate of 0.001, and the AdamW optimizer. These parameters are 

fine-tuned through several rounds of trials to maximize the model performance.  
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After training, the 1D-CNN load forecasting model is saved for use in both 

simulation and experimental studies. During the simulation study, the saved 

model is stored in a specific location on the computer, where it accesses load 

demand profiles from another directory on the same system to generate forecasts 

for peak demand reduction. In the experimental study, the saved model is 

integrated into the system for inference, where it processes new load demand 

profiles collected by the on-site DAQ system to generate daily forecasts. In both 

the simulation and experimental studies, the trained 1D-CNN model forecasts 

load demands in less than a minute, using the aforementioned computer setup. 

This demonstrates its computational efficiency and suitability for real-time 

deployment, even on a machine with average processing power, memory, and 

storage compared to more advanced systems. 

 

 

4.6  Implementation of the BESS Controllers in Simulation and 
Experimental Studies 

Before proceeding to the experimental deployment, it is essential to validate 

the performance of the controller in a controlled simulation environment. The 

simulation phase allows a comprehensive performance evaluation of the BESS 

control algorithms under various operating conditions, without posing any risk 

to physical hardware setup. Therefore, the proposed adaptive threshold-based 

controller is first implemented in simulation environment using the Python 

programming language. For comparative benchmarking, the other two 

conventional fixed threshold-based controllers, the forecasted and historical 

threshold-based controllers, along with the two state-of-the-art adjusting 
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threshold-based controllers, active and fuzzy controllers are also implemented 

in Python-based simulation study. 

 

Python version 3.10 is used for implementing the BESS control algorithms, 

with Jupyter Notebook serving as the primary development platform. Python 

version 3.10 is selected due to its broader compatibility with numerous advanced 

libraries, which facilitates a smoother and more efficient design process. 

developed separately to ensure modularity and ease of testing. Fig. 4.7 presents 

a segment of the implementation code for the adaptive threshold-based BESS 

controller, developed in Jupyter Notebook using the Python programming 

language. Similarly, the other benchmarking controllers are also implemented 

separately on the same platform to ensure consistency in the development 

process. 

 

 

Figure 4.7: Segment of Python code illustrating the adaptive threshold-
based BESS controller, implemented in Jupyter Notebook. 

 



89 
 

The proposed adaptive threshold-based controller, on the other hand, is 

implemented in the actual experimental site using the free, open-source 

platforms Node-RED and Python. A Python script is developed to run the 1D-

CNN load forecasting model, which forecasts the load demands for peak demand 

reduction. Figure 4.8 displays a segment of the Python script that generates daily 

load forecasts throughout the experimental period and saves them to a specified 

location within the control unit installed at the experimental site. 

 

 

Figure 4.8: Segment of Python script performing inference with the 1D-
CNN model to generate daily load forecasts. 

 

Once the Python script generates the load forecast, a separate Python script, 

shown in Figure 4.9, is used to retrieve the daily forecast and determine the initial 

threshold for the corresponding day. 
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Figure 4.9: Segment of Python script used to determine the initial 
threshold based on the forecasted load demands. 

 

The initial threshold, determined by the Python script, is retrieved by the 

Node-RED platform, which is also deployed on the same central control unit at 

the experimental site. The real-time load demand, together with the forecasted 

load profiles, is retrieved through the central control unit using the Node-RED 

platform. Both sets of data are employed to dynamically adjusts the initial 

threshold in real time during the entire peak demand reduction period. 

 

The control of the bi-directional inverter for battery charging and discharging 

is also executed through the Node-RED platform. Dedicated nodes within Node-

RED platform are employed to carry out specific control tasks. For instance, a 

Modbus Getter node, as illustrated in Fig. 4.10, is used to establish 

communication with the inverter, enabling the platform to transmit charge and 

discharge commands. Moreover, a custom Function Node is used to implement 
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the conditional logic for updating the initial threshold and managing other 

control tasks. Fig. 4.11 presents a segment of the Node-RED graphical 

programming interface developed for implementing the adaptive threshold-

based BESS controller for peak demand reduction at the experimental site. 

 

 

Figure 4.10: Node-RED interface segment showing communication with 
the inverter using the Modbus Getter node. 

 

 

 

Figure 4.11: Node-RED interface segment showing the adaptive threshold-
based BESS controller for peak demand reductions. 
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4.7  Summary 

In summary, this chapter presents a comprehensive overview of the proposed 

adaptive threshold-based controller for peak demand reductions. Other 

controllers that are also implemented in simulation studies for benchmarking the 

results are also explained in detail. The proposed 1D-CNN load forecasting 

model, including its detailed architecture and training settings, which is 

integrated into the control algorithms of the adaptive threshold-based controller, 

is also explained in this chapter. Lastly, the implementation of the adaptive 

threshold-based controller both in simulation and experimental setup using the 

free, open-source platform Node-RED and Python highlighted at the end of this 

chapter.  
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CHAPTER 5  

 

RESULTS AND DISCUSSIONS  

5.1 Introduction 

This chapter presents the results and in-depth discussions based on the findings 

of this research. It begins by describing the performance evaluation metrics used 

in the study, with distinct sections covering the evaluation of the 1D-CNN load 

forecasting model and the effectiveness of the proposed adaptive threshold-

based BESS controller in managing daily peak demands. The chapter then 

thoroughly details the findings of the simulation study, highlighting the daily 

peak demand reductions achieved by the proposed controller, alongside results 

from other benchmark controllers. Finally, the chapter ends with an analysis of 

the experimental study, in which the proposed controller is evaluated over a 21-

day period under real-world operating conditions to assess its effectiveness in 

reducing peak demands. 

 

5.2 Performance evaluation metrics 

In this study, five different metrics are employed. Three of them are used to 

assess the accuracy of the proposed 1D-CNN load forecasting model, while the 

remaining two evaluate how effectively the controller reduces daily peak 

demands. The following subsections provide further details on each metric. 
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5.2.1 Evaluation metrics for load forecasting accuracy 

The forecasting performance of the 1D-CNN model is evaluated using three 

distinct quantitative evaluation metrics: the mean absolute error (MAE), root 

mean squared error (RMSE), coefficient of determination (R2). Among these, 

MAE reflects the average prediction errors by computing the mean of absolute 

differences between the actual and forecasted load demands, as shown in 

Equation (5.1). RMSE, on the other hand, evaluates the forecasting performance 

by calculating the square root of the mean of squared errors, as presented in 

Equation (5.2). Lastly, R² reflects the degree to which the forecasting model 

captures variance in the actual data and is calculated using Equation (5.3). For 

both MAE and RMSE, lower values indicate greater forecasting accuracy. In 

contrast, R2 scores closer to 1 represent stronger alignment between the 

forecasted and actual load demands.  

 

  

  

  

 

Here,  denotes the actual load demand in kW at time step ,  

            denotes the forecasted load demand at time step , and  

           denotes the total number of time steps. 
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5.2.2 Evaluation metrics for assessing the performance of the proposed 
controller 

 

The performance of the proposed adaptive threshold-based controller is 

assessed using two different metrics, namely the daily peak reduction factor 

, and the monthly peak reduction failure rate . From the 

literature, it is found that the performance of the most BESS controllers is 

assessed solely based on their actual reductions in kW. Such approach may not 

fully capture the true capability of a controller in reducing peak demands because 

it does not consider the other essential factors including the size of the BESS and 

shape of the load profiles (Hau and Lim, 2022). For instance, a controller with a 

fixed BESS capacity may achieve significant peak reduction in cases where the 

load profile is narrow and exhibits a single sharp peak. However, the same 

controller with the same BESS size may fail to achieve any peak reduction if the 

load profile is broader and contains multiple peaks, as compared to the earlier 

scenario.  

 

Therefore, a daily peak reduction factor,  is used in this study to assess 

the performance of the controllers in reducing daily peak demands.  is 

calculated by comparing the actual peak reduction achieved by the controller in 

each day  to the ideal reduction that would be possible if the full load 

profile were known in advance on that day , as defined in Equation (5.4) 

(XC Miow et al., 2025).   allows a fairer comparison across controllers by 

evaluating their performance in relation to their ideal potential. A higher   

indicates better performance of a controller in reducing daily peak demands. 
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Additionally, it is essential not only to assess how well a controller reduces 

peak demand in a given day but also how consistently it reduces daily peak 

demands within a billing cycle. A BESS controller can achieve significant peak 

reduction on a given day but may fail to achieve any reductions on subsequent 

days. A controller that can consistently reduce the daily peak demands within 

the billing cycle is more reliable than those of that evaluated solely on individual 

days. 

 

Consequently, this study uses a metric called monthly peak reduction failure 

rate  to assess the consistency of a BESS controller in reducing daily 

peak demands throughout the billing cycle. For a particular month,  is 

computed by dividing the number of individual days with no peak reduction at 

all by the total number of working days in that month , with 

the result presented as a percentage, as defined in Equation (5.5). A lower  

indicates that the controller performs more consistently in reducing daily peak 

demands throughout a billing cycle. 

 (5.5) 
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5.3 Performance evaluation in simulation study 

A comprehensive simulation study is carried out using six months of data, 

collected from the experimental site during the period between Oct 23 to Mar 24, 

to assess the performance of the proposed adaptive threshold-based controller. 

The simulation study also includes the implementation of two conventional fixed 

threshold-based controllers, which are the forecasted threshold controller and the 

historical threshold controller, as well as two advanced adaptive controllers 

known as the active controller and the fuzzy logic controller. They are 

implemented to benchmark the proposed controller. The following subsections 

present the outcomes of the simulation study. Initially, the accuracy of the 1D-

CNN load forecasting model is reviewed, and then the effectiveness of each 

controller in reducing peak demand is examined using two specific performance 

metrics,   and . 

 

5.3.1 Performance assessment of the 1D-CNN load forecasting model 

Fig. 5.1 presents an example of the forecasting performance of the proposed 

1D-CNN model on 4th working day in Dec 23, as observed in the simulation 

study. The blue line represents the actual power in kW, whereas the brown line 

indicates the forecasted power in kW. As seen in the figure, the forecasted power 

closely matches the pattern of the actual power, except for minor discrepancies. 

This clearly indicates that the model can capture the patterns and trends of the 

load profile. On this day, the 1D-CNN model successfully forecasts the load 

demands with an MAE of 17.01 kW, RMSE of 22.31 kW, and R2 value of 0.996. 
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Not only on this particular day, the 1D-CNN model maintains strong and 

consistent performance throughout in Dec 23, showing its reliability and 

consistency over a billing cycle. The performance of the proposed 1D-CNN load 

forecasting model within the billing cycle of Dec 23 is presented in Fig 5.2. 

Except for a few days, the 1D-CNN model successfully forecasts the load 

demands that closely align with the actual values. On this month, the model 

achieves an average MAE of 26.674 kW, RMSE of 35.337 kW, and R2 of 0.988. 

 

 

Figure 5.1: Forecast accuracy of the 1D-CNN model on the 4th working 
day in Dec 23. 

 

 

Figure 5.2: Forecast accuracy of the 1D-CNN model in Dec 23. 
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In other months of the simulation study, the proposed 1D-CNN model forecasts 

the load demands with differing levels of accuracy. Table 5.1 outlines the 

average of the evaluation metrics achieved by the 1D-CNN model in each month 

of the simulation study. The performance of the forecasting model fluctuates 

monthly, with the evaluation metrics differing accordingly. In Oct 23, the model 

achieves its lowest accuracy with the monthly average MAE of 62.751 kW, 

RMSE of 82.213 kW, and R2 of 0.920. Although these average metrics indicate 

significant errors, the model relatively performs well throughout the month, 

aside from a few specific days with exceptionally high errors. These anomalous 

days significantly impact the overall monthly metrics, making Oct 23 the month 

with the least accurate forecasting performance. 

 

On the other hand, the 1D-CNN model achieves its highest accuracy in Dec 23, 

yielding a monthly average MAE of 26.674 kW, RMSE of 35.337 kW, and R2 

of 0.988. In other months of the simulation study, the 1D-CNN model performs 

moderately well compared to Oct 23, as indicated by the evaluation metrics in 

Table 5.1. In Nov 23, the model achieves a monthly average MAE of 40.795 kW, 

RMSE of 53.720 kW, and R2 of 0.968. In Jan 24, the model shows slightly lower 

accuracy compared to Nov 23, with the evaluation metrics showing a monthly 

average MAE of 48.824 kW, RMSE of 60.217 kW, and R2 of 0.965. In the 

subsequent month, the model achieves results comparable to those of Jan 24, 

with a monthly average MAE of 49.621 kW, RMSE of 64.817 kW, and R2 of 

0.971. In Mar 24, the last month of the simulation study, 1D-CNN model 
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achieves better performance compared to the previous month, with a monthly 

average MAE of 42.906 kW, RMSE of 56.843 kW, and R2 of 0.979. 

 

Table 5.1: Forecasting accuracy in simulation study. 

 
Months 

 
 

Evaluation Metrics 

MAE (kW) RMSE (kW) R2 

Oct 2023 62.751 82.213 0.920 

Nov 2023 40.795 53.720 0.968 

Dec 2023 26.674 35.337 0.988 

Jan 2024 48.824 60.217 0.965 

Feb 2024 49.621 64.817 0.971 

Mar 2024 42.906 56.843 0.979 

 

 

The aforementioned sections detail the monthly average error metrics achieved 

in each month of the simulation study. However, these monthly averages might 

not completely capture the actual capability of the 1D-CNN model in assisting 

the controllers to reduce daily peak demands. For instance, In Oct 23, the 1D-

CNN model records the highest average monthly error metrics across the 

simulation study.  However, the model forecasts the load demands with better 

accuracies in most of the days in this month. Fig. 5.3 shows the error metrics 

achieved by the 1D-CNN model in each individual days of Oct 23. The model 

performs well with relatively low errors across the month, except on individual 

days like 16th, 17th,18th, and 19th, where substantial over-forecasting occurs. The 

high forecasting errors on these specific days inflate the overall monthly average 
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values, which could have been considerably lower if those specific individual 

days had less severe errors.  

 

Figure 5.3: Forecasting error metrics across individual days in Oct 23. 

 

From the analysis, it is clearly seen that the monthly average error metrics 

provide a general overview of the forecasting model's performance across 

different months. However, they may not adequately reflect the performance of 

the model on individual days. Consequently, it is crucial to assess the forecasting 

errors on individual days to achieve a more detailed performance evaluation of 

the proposed 1D-CNN load forecasting model. Fig 5.4 to Fig. 5.8 outlines the 

forecasting errors on individual days for the remaining month of the simulation 

study to better assess the performance of the 1D-CNN model. 
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Figure 5.4: Forecasting error metrics across individual days in Nov 23. 

 

 

Figure 5.5: Forecasting error metrics across individual days in Dec 23. 

 

 

Figure 5.6: Forecasting error metrics across individual days in Jan 24. 
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Figure 5.7: Forecasting error metrics across individual days in Feb 24. 

 

Figure 5.8: Forecasting error metrics across individual days in Mar 24. 

 

5.3.2 Performance assessment of the proposed adaptive threshold-based 
controller using daily peak reduction factor,  

The operational results of the proposed adaptive threshold-based controller, 

achieved on the 8th working day of Oct 23, is presented in Fig. 5.9. On this 

particular day, the actual peak demand of 922.92 kW is recorded during the 

period between 15:00 to 15:30. To successfully reduce the actual peak of the 

day, the controller must guide the BESS to deliver its power to the load during 

this interval. First, a load demand profile for the entire day is forecasted in 

advance by the proposed 1D-CNN model. The load demand profile, consisting 



104 
 

of 96 data points at 15-minutes interval, is stored on a dedicated computing unit 

where the simulation study is conducted. Based on the forecasted load demands 

along with the available BESS capacity, an initial threshold  of 977.21 

kW is determined for the day to guide the power dispatch of the BESS for peak 

demand reduction.  

 

Starting at 8:00, the adaptive threshold-based controller determines the 

threshold adjustment factor  on every 15-minute interval, considering both 

the real-time and forecasted load demands. This factor helps set up the updated 

threshold , and the final threshold   that mainly controls the 

power dispatch of the BESS throughout the day of peak reduction. The preceding 

peak of the grid  is also considered when  is set to guide 

the BESS power output for peak demand reduction. 

 

The controller retrieves the instantaneous load demands  at every 1-

minute interval starting from 8:00. Whenever  exceeds the , the 

controller commands the BESS to discharge its power   equal to the 

difference between  and  of that moment to reduce the peak of the 

day.  is dynamically adjusted throughout the day, and   is set 

based on the latest  and  to reduce the actual peak of the day. On 

this day, the controller successfully set  to reserve BESS to discharge 

during the period between 15:00 to 15:30, reducing the actual peak of the day. 
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On this day, the adaptive threshold-based controller manages to reduce the 

actual peak demand from 922.92 kW to 894.95 kW, achieving a daily actual 

peak reduction of 27.97 kW. At the end of the day, the ideal reduction 

for that load profile is calculated to be 30.97 kW. As a result, the 

controller achieves a of 90.31% for this day. 

 

Figure 5.9: Daily peak demand reduction achieved by the adaptive 
threshold-based controller on the 8th operational day in Oct 23. 

 

 achieved by the proposed adaptive threshold-based controller for each 

individual day in Oct 23 is shown in Fig. 5.10. The controller manages to reduce 

peak demands on every single day of the month, without any failures. Although 

the 1D-CNN load forecasting model records the highest average monthly errors 

in this month, the controller manages to reduce all the daily peak demands of 

this month. As discussed earlier, the high average monthly errors occur in this 

month due to the factor that some days exhibits very high over-forecasting 

results. On other remaining days, the forecasting performances are relatively 

well. On those specific over-forecasted days, the controller effectively reduces 

the thresholds using the actual real-time load demands. Although  values 

achieved on those specific over-forecasted days are lower compared to days with 
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more accurate forecasts, the proposed adaptive threshold-based controller 

manages to reduce the peak demands and achieve  to some extent. The 

adaptive threshold-based controller records an average monthly  of 51.18% 

in Oct 23, demonstrating its effectiveness and reliability in reducing daily peak 

demands within a billing cycle. 

 

Figure 5.10: Daily peak demand reduction achieved by the adaptive 
threshold-based controller in Oct 23. 

 

Conversely, the two fixed threshold-based controllers face difficulties in 

reducing daily peak demands in Oct 23. The forecasted threshold-based 

controller, as shown in Fig. 5.11, only manages to reduce peak demands on 

certain individual days. On days when the load demands are under-forecasted, 

the BESS often runs out of energy before the actual daily peak occurs, as the 

controller lacks the ability to adjust thresholds in real time. This leads to the 

controller being unsuccessful in reducing daily peak demands on most days, with 

no  recorded on those days. The controller records a monthly average  

of just 16.52% on Oct 23.  
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Like forecasted threshold-based controller, the historical threshold-based 

controller also faces challenges in reducing daily peak demands on many 

occasions throughout Oct 23, as shown in Fig. 5.12.  Although this controller 

sets the threshold differently to avoid peak reduction failures due to under-

forecasting issues, the lack of real-time threshold adjustment limits its ability to 

deliver significant improved performance in reducing daily peak demands 

throughout this month. This controller records an average monthly  of just 

13.86% in Oct 23. 

 

 

Figure 5.11: Daily peak demand reduction achieved by the forecasted 
threshold-based controller in Oct 23. 

 

 

Figure 5.12: Daily peak demand reduction achieved by the historical 
threshold-based controller in Oct 23. 
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In comparison to the fixed threshold-based controllers, the state-of-the-art 

adjusting threshold-based active and fuzzy logic controllers perform 

comparatively well in Oct 23. The active controller adjusts the threshold 

throughout the day and manages to effectively reduce daily peak demands on 

several days in this month. As presented in Fig. 5.13, the active controller 

achieves high  in many individual days in this month. However, on 

multiple days, the controller cannot reduce peak demands and does not record 

any . On these days, the thresholds are set comparatively low, therefore the 

BESS runs out of its stored energy even before the actual peak occurs. In Oct 23, 

the state-of-the-art active controller records an average monthly  of 

18.03%, slightly better than those of the fixed threshold-based controllers.  

 

On the other hand, the other state-of-the-art fuzzy logic controller shows strong 

performance on Oct 23. This controller sets the threshold and manages the power 

dispatch of the BESS more effectively than the active controller this month. As 

shown in Fig. 5.14, the fuzzy logic controller effectively reduces daily peak 

demands in most individual days of the month and achieves very high  

compared to the active controller. In Oct 23, the fuzzy controller records an 

average monthly  of 36.60%, which is higher than that of active controller. 

However, it still underperforms compared to the proposed adaptive threshold-

based controller, which achieves an average monthly  of 51.18% in this 

month. 
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Figure 5.13: Daily peak demand reduction achieved by the active 
controller in Oct 23. 

 

Figure 5.14: Daily peak demand reduction achieved by the fuzzy logic 
controller in Oct 23. 

 

The average monthly  achieved by the proposed adaptive threshold-based 

controller, along with the other benchmark controllers in simulation study, are 

summarized in Table 5.2. In Dec 23, the proposed adaptive threshold-based 

controller records its best result, with an average monthly  of 58.71%. The 

1D-CNN forecasting model forecasts the load demands more accurately in Dec 

23 compared to the other months. Consequently, it helps the proposed adaptive 

threshold-based controller to set the thresholds that facilitate effective BESS 

power dispatch for peak demand reductions. Both fixed threshold-based 

controllers perform well in this month, as their performance heavily relies on the 
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forecasting performance of the 1D-CNN model. The forecasted threshold-based 

controller achieves an average monthly  of 45.44% in Dec 23, whereas the 

historical threshold-based controller records an average monthly  of 

36.07%. In comparison, the state-of-the-art active controller comparatively 

performs less effectively this month compared to the other controllers. The 

thresholds are poorly set on most of the days of this month in this controller. 

Consequently, the controller experiences peak reduction failures on several 

individual days in this month and achieves an average monthly  of 24.21%. 

Conversely, the fuzzy logic controller performs significantly well compared to 

the active controller this month. It records an average monthly  of 41.27%, 

yet it does not surpass the performance of the proposed adaptive threshold-based 

controller. 

 

The proposed adaptive threshold-based controller shows strong performance in 

reducing daily peak demands with high average monthly  in the simulation 

study, outperforming other benchmark controllers in all months except Feb 24 

and Mar 24. The performance of the adaptive threshold-based controller declines 

in these months due to high forecasting errors achieved from the 1D-CNN load 

forecasting model. On most of the days in these months, the demands are under-

forecasted. Consequently, the thresholds are set relatively low, leading the BESS 

to deplete its energy prematurely before the actual peak occurs. Although the 

controller makes efforts to adjust the thresholds to overcome the forecasting 

errors, it faces challenges in reducing the actual peak on days when the peak 

occurs toward the end of the day. 
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Over the six-month simulation study, the proposed adaptive threshold-based 

controller consistently performs well in reducing daily peak demands. On 

average, the proposed controller records an average monthly  of 41.62% in 

the simulation study. In comparison, the other two fixed threshold-based 

controllers show significantly lower performance. On average, the forecasted 

threshold-based controller achieves an average monthly  of 20.21% in this 

simulation study, whereas the historical threshold-based controller records an 

average monthly  of 24.43%.  

 

Meanwhile, the state-of-the-art adjusting threshold-based controllers show 

strong capability in minimizing daily peak demand in the simulation study. The 

state-of-the-art active controller achieves an average monthly  of 21.65% 

over the six-month simulation study, whereas the other state-of-the-art fuzzy 

logic controller records an average monthly  of 38.47%. Among the four 

benchmark controllers, the fuzzy logic controller shows performance 

comparatively close to the proposed adaptive threshold-based controller. 

However, the proposed adaptive threshold-based controller demonstrates 

superior effectiveness, attaining the highest average monthly  for daily 

peak demand reductions in this simulation study. 
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Table 5.2: Performance of the proposed and benchmark controllers in the 
simulation study based on average monthly . 

 

 

 

5.3.3 Performance assessment of the proposed adaptive threshold-based 
controller using monthly failure rate,  

The monthly peak reduction failure rate (  achieved by the proposed 

adaptive threshold-based controller and the other benchmark controllers in the 

simulation study is presented in Fig. 5.15. Over the six-month simulation study, 

the proposed adaptive threshold-based controller achieves its best result in Oct 

23. In this particular month, the controller effectively manages the power 

dispatch of the BESS and successfully reduces all the daily peak demands of the 

billing cycle. With no failures across the 22 working days in this month, the 

proposed controller records the lowest  of 0% in this month. 

 

Month 

Average KPDR (%) 

Forecasted 
threshold-

based 
controller 

Historical 
threshold-

based 
controller 

Active 
controller 

Fuzzy logic 
controller 

Adaptive 
threshold-

based 
controller 

Oct 23 16.52 13.86 18.03 36.60 51.18 

Nov 23 28.40 42.63 23.46 45.99 50.06 

Dec 23 45.44 36.07 24.21 41.27 58.71 

Jan 24 12.84 9.20 13.42 41.00 45.11 

Feb 24 6.28 16.43 24.57 29.75 16.46 

Mar 24 11.75 28.37 26.19 36.19 28.19 

Average 20.21 24.43 21.65 38.47 41.62 
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In comparison, both the fixed threshold-based controllers achieve high  

in Oct 23. The forecasted threshold-based controller fails to achieve any peak 

reduction in 14 working days in this month. Consequently, it records an  

of 63.64% in Oct 23. Likewise, the historical threshold-based controller does not 

manage to reduce daily peak demands on 12 working days during this month. 

Therefore, it records an  of 54.55% in Oct 23. 

 

The state-of-the-art active controller also shows relatively low performance in 

terms of  in Oct 23. Out of 22 working days, the active controller manages 

to reduce daily peak demands on only 9 days, failing on the remaining 13. As a 

result, it records an  of 59.09% in this month. The other state-of-the-art 

fuzzy logic controller shows better consistency compared to the active controller 

in Oct 23. It manages to reduce peak demand on 14 days, with failures occurring 

on the remaining 8 days. Therefore, it achieves an  of 36.36% in Oct 23. 

 

Over the six-month simulation study, the proposed adaptive threshold-based 

controller consistently reduces daily peak demands and maintains a lower 

 than the other benchmark controllers, with the exception of Feb 24. In 

this particular month, the controller experiences high , mainly due to the 

forecasting accuracies. On most days of this month, the 1D-CNN load 

forecasting model forecasts the load demands with under-forecast tendency. 

Although the average monthly forecasting errors in Feb 24 are not the highest 

observed in the study, the consistent under-forecasting performance of the 1D-

CNN model significantly contributes to peak reduction failures, even when the 
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absolute error values are relatively low. In Feb 24, the adaptive threshold-based 

controller does not achieve any peak demand reductions on 10 working days, 

leading to achieve an  of 50% in this month. Similarly, the fixed threshold 

controllers struggle in Feb 24 because the under-forecasting performance by the 

1D-CNN model severely impairs their effectiveness in lowering daily peak 

demands. The forecasted threshold and historical threshold-based controller fails 

to reduce daily peak demands on 17 and 14 working days respectively in Feb 24, 

resulting in an   of 85% and 70%. In Feb 24, both the state-of-the-art 

controllers comparatively perform well and achieve lower  compared to 

the other controllers. The active and fuzzy logic controllers each fail to reduce 

peak demand on only 6 working days during the month, resulting in an  

of 30% for both controllers. 

 

Over the six-month simulation study, the proposed adaptive threshold-based 

controller demonstrates the most reliable performance, achieving the lowest 

average  of just 16.55%. This clearly indicates its consistency in reducing 

daily peak demands over an extended period. In contrast, both the fixed 

threshold-based controllers exhibit poor and inconsistent performance, with the 

forecasted threshold and historical threshold-based controllers achieving high 

average   of 58.24% and 46.97%, respectively. Meanwhile, the state-of-

the-art BESS controllers show comparatively better consistency compared to the 

fixed threshold-based controllers in the simulation study. The active controller 

achieves an average  of 43.70% in the simulation study, while the fuzzy 

logic controller performs more favourably with an average  of 28.30%. 

Although both controllers show improved consistency in reducing daily peak 
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demands compared to the fixed threshold-based controllers, their performance 

still falls short of the proposed adaptive threshold-based controller in this 

simulation study. 

 

 

Figure 5.15: Failure rates achieved by the BESS controllers across the 
simulation study. 

 

5.4 Performance evaluation in experimental study 

After conducting the simulation study, the proposed adaptive threshold-based 

BESS controller is implemented to BESS at UTAR campus to assess its practical 

effectiveness under real operating conditions. The controller is deployed and 

tested at the site over a period of 21 working days, during which the performance 

of the controller is closely assessed using the two different metrics  and 

. The following subsection presents a comprehensive analysis of 

experimental results achieved by the proposed adaptive threshold-based 

controller. Before that, the performance of the 1D-CNN load forecasting model 

during the experimental period is first presented to provide essential context for 
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5.4.1 Performance assessment of the 1D-CNN load forecasting model 

Fig. 5.16 illustrates an example of the forecasting performance of the proposed 

1D-CNN model on 17th working day in the experimental study. As presented in 

the figure, the forecasted load demands closely align with the pattern of the 

actual power demands, demonstrating the ability of the 1D-CNN model to 

capture the patterns and trends in the data. Although there are some minor 

discrepancies between the forecasted and actual load demands, especially 

outside peak demand periods, they do not significantly impa

overall performance. On this experimental day, the 1D-CNN load forecasting 

model forecasts the load demands with an MAE of 32.72 kW, RMSE of 41.78 

kW, and R2 value of 0.99.  

 

 

Figure 5.16: Forecast accuracy of the 1D-CNN model on the 17th working 
day in the experimental study. 

 

The performance of the proposed 1D-CNN load forecasting model within the 

21 days of experimental study is presented in Fig 5.17. The model performs 

relatively well except for a few days. During this experimental period, the 1D-

CNN load forecasting model records an average MAE of 35.496 kW, RMSE of 
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48.621 kW, and R2 of 0.986. To better analyse the performance of the model, 

the errors metrics achieved by the 1D-CNN model in each day of the 

experimental study is provided in Fig. 5.18.  

 

Figure 5.17: Forecast accuracy of the 1D-CNN model during the 
experimental study. 

 

 

Figure 5.18: Forecasting error metrics across individual days in the 
experimental study. 

 

5.4.2 Performance assessment of the proposed adaptive threshold-based 
controller using daily peak reduction factor,  and monthly failure rate,

 

Fig. 5.16 shows the experimental results of the proposed adaptive threshold-

based controller on the 17th working day of the study. On this particular 
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experimental day, the actual peak demand hits to 1081.90 kW, and it occurs 

during the period between 15:30 to 16:00. The controllers need to supply power 

during this period to reduce the actual peak of the day. During the nighttime 

charging phase, the BESS absorbs energy from the grid through the bi-

directional inverter at the experimental site. Once the battery SOC reaches to 

80%, the controller stops its charging operation and activates idle mode until the 

discharging mode is initiated.  

 

Before the discharging mode initiates at 8:00, the 1D-CNN forecasts the load 

demands for the entire day and an initial threshold  of 1023.429 kW 

is set based on the forecasted load demands. Once the discharging mode is 

activated at 8:00, the adaptive threshold threshold-based controller starts 

calculating the adjusting threshold factor , that helps to set the final threshold 

 to manage power dispatch of the BESS throughout the day. The 

controller continuously monitors the instantaneous load demands   and 

dynamically adjusts  based on the forecasted and actual load demands 

along with the preceding peak of the grid profile. The power dispatch of the 

BESS in every 1-minute is managed based on the latest  and . 

Once  exceeds , the controller starts supplying BESS power  

 to the load. As shown in Fig. 5.16, the controller dynamically adjusts the 

 and supplies  whenever required. On this day, the controller 

successfully sets the  in such way that  is effectively supplied to 

the load during the period between 15:30 to 16:00. 
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The adaptive threshold-based controller manages to reduce the actual peak of 

the day to 1051.20 kW, achieving an actual peak reduction  of 30.70 kW 

for this day. The ideal peak reduction  of this day is calculated to be 

32.02 kW. Therefore, the proposed adaptive threshold-based controller records 

a  of 95.88% in this specific experimental day. 

 

Figure 5.19: Daily peak demand reduction achieved by the adaptive 
threshold-based controller on the 17th operational day in experimental 

study. 

Not only on this specific experimental day, but throughout the entire 

experimental period, the proposed adaptive threshold-based controller 

consistently shows its effectiveness in reducing daily peak demands. The 

performance of the proposed controller, evaluated in terms of , is presented 

in Fig. 5.20. As shown in the figure, the controller manages to reduce daily peak 

demands and achieve notable  in most of the experimental days. An 

exception is observed on the 15th working day, when the proposed controller 

cannot achieve any . On this particular day, the peak occurs at the very last 

moment of the discharging phase, and the BESS runs out its energy just before 

the peak occurs. Apart from this single day of failure, the proposed adaptive 

threshold-based controller significantly shows its effectiveness in reducing daily 

peak demands under the real operating conditions at the experimental site.  
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Since the controller is unable to lower daily peak demands on only one day out 

of 21 working days in this experimental study, the proposed adaptive threshold-

based controller records a significant low   of just 4.76%. This clearly 

demonstrates its strong consistency in reducing daily peak demands even under 

real operating conditions.  

 

Overall, the proposed adaptive threshold-based BESS controller records an 

average  of 49.45%, highlighting its strong effectiveness in reducing daily 

peak demands. These experimental results confirm the real-world effectiveness 

of the developed controller in lowering daily peak loads under actual operating 

conditions. 

 

Figure 5.20: Daily peak demand reduction achieved by the adaptive 
threshold-based controller during experimental study. 
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5.5 Summary 

The findings of this research are comprehensively presented in this chapter. 

Both the simulation and experimental results are presented in detail. The 

proposed adaptive threshold-based BESS controller outperforms the other 

benchmark controllers in simulation study, achieving an average  of 

41.62% and  of 16.55%. Not only in simulation, but the proposed 

controller also maintains a strong performance in reducing daily peak demands 

in the real experimental setup. Over 21 days of experimental study, the controller 

records an average  of 49.45% and  of 4.76%, demonstrating even 

better performance than in the simulation results. 
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CHAPTER 6  
 

CONCLUSIONS AND FUTURE WORKS  
 

 

6.1 Conclusion 

Peak demand reduction is important as it can yield significant financial savings 

by minimizing additional maximum demand charges. Additionally, it can also 

bring substantial environmental benefits by avoiding the fossil fuel-based 

peaking power plants. Several approaches are widely used to reduce the peak 

demands for end customers. However, Battery-based energy storage system 

(BESS) has gained more popularity due to its fast response capability, high 

efficiency, and ability to store excess energy for use during peak demand periods. 

BESS is charged during the periods when the consumptions are comparatively 

low, and discharged its stored energy when consumptions are relatively high. To 

achieve peak demand reduction using BESS, a controller is required that can 

effectively charge and discharge the batteries at the appropriate time.  

 

Various BESS controllers exist in the literature aimed to achieve peak demand 

reductions. Most of them are tested only in simulation, experimental testing 

under real operating conditions is yet to be fully explored. Although some of the 

controllers are tested experimentally, many of them are tested only on limited 

case studies without using any evaluation metrics. Additionally, most of the 

existing controllers are developed using paid commercial platforms, which 

typically increases the overall controller development costs. Apart from these, 
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advanced load forecasting techniques are not incorporated in most of the existing 

controllers, which significantly impacts the performance of the controllers.  

 

To address these gaps, this study proposed an innovative adaptive threshold-

based controller for BESS using an advanced deep learning-based 1D-CNN load 

forecasting model to reduce the daily peak demands for end customers. The 

proposed controller employs a 1D-CNN model to forecast load demands ahead 

of time and establishes an initial threshold that is dynamically adjusted during 

the peak reduction day using both forecasted and actual load demands, as well 

as the previous peak in the grid profile, to optimize BESS power scheduling for 

peak reductions. The controller is first implemented in simulation using Python 

programming and benchmarked against four different controllers through two 

different evaluation metrics,   and , based on six months on-site data. 

Following the simulation study, the proposed controller is deployed on a real 

200 kW/200 kWh BESS setup installed in a university building in Malaysia, 

using the open-source Node-RED platform to assess its practical performance 

under real operating conditions. 

 

In the simulation study, the proposed adaptive threshold-based controllers 

performs better than that of other four benchmark controllers, with an average 

 of 41.62% and  of 16.55%. Compared to the proposed controller, 

two fixed threshold-based controllers, the forecasted threshold and historical 

threshold-based controllers, demonstrates significantly lower effectiveness. The 

average  achieved by the forecasted and historical threshold-based 
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controllers in the simulation study is 20.21% and 24.43%, respectively, whereas 

their corresponding average  values are 58.24% and 46.97%. The 

performance of the other two state-of-the-art benchmark controllers, namely the 

active and fuzzy logic controllers also fall short compared to the proposed 

adaptive threshold-based controller. In this simulation study, the active 

controller achieves an average   of 21.65% and  of 43.70%, whereas 

the fuzzy logic controller records a higher average   of 38.47% and a lower 

 of 28.30%. The proposed adaptive threshold-based controller also shows 

its strong effectiveness in 21 days of experimental study under real operating 

conditions, achieving an average  of 49.45% and  of just 4.76%. 

 

The implications of this study are significant. By leveraging an open-source 

Node-RED platform and integrating advanced deep learning-based 1D- CNN 

load forecasting model, the proposed controller offers a cost-effective, scalable, 

and efficient solution for peak demand reductions. This makes it highly suitable 

for commercial, institutional, and industrial facilities, especially those with 

budget constraints or limited access to proprietary software. Moreover, its 

success in both simulation and real-world deployment validates its practical 

viability and positions it as a promising tool in the development of smart grid 

systems. This work also contributes to broader energy sustainability goals by 

supporting more intelligent energy use, reducing peak grid loads, and lowering 

dependence on fossil-fuel-based peaking plants. It provides a practical pathway 

for utilities, energy managers, and policymakers to enhance demand-side 

management and transition towards cleaner and more efficient energy 

infrastructures. 
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6.2 Limitations and future works 

 

The proposed innovative adaptive threshold-based controller is primarily 

designed to reduce the daily peak demands by effectively managing the charge-

discharge schedule of the LiFePO4 batteries. This controller along with the 

existing experimental setup is able to successfully reduce the peak demands at 

an academic building of UTAR, Sungai Long campus. However, there is a 

potential to enhance the overall benefits of the system by integrating renewable 

energy sources, such as solar PV panels. By incorporating the solar PV with the 

existing setup, the system can generate renewable energy that can be used to 

further reduce the peak demands. Therefore, as a future recommendation, 

integrating a solar PV system with the existing setup is suggested to further 

enhance the peak demand reduction performance of the proposed controller. 
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