ANOMALY DETECTION IN SURVEILLANCE
VIDEQOS

FOO JIA QI

UNIVERSITI TUNKU ABDUL RAHMAN

ANOMALY DETECTION IN SURVEILLANCE VIDEQOS

FOO JIA Ql

A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Electrical and Electronic

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science
Universiti Tunku Abdul Rahman

May 2025

DECLARATION

| hereby declare that this project report is based on my original work except for
citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Name . Foo Jia Qi

ID No. 2003619

Date . 05/06/2025

COPYRIGHT STATEMENT

© 2025, Foo Jia Qi. All right reserved.

This final year project report is submitted in partial fulfilment of the
requirements for the degree of Electrical and Electronic Engineering with
Honours at Universiti Tunku Abdul Rahman (UTAR). This final year project
report represents the work of the author, except where due acknowledgement
has been made in the text. No part of this final year project report may be
reproduced, stored, or transmitted in any form or by any means, whether
electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the author or UTAR, in accordance with UTAR’s

Intellectual Property Policy.

ACKNOWLEDGEMENTS

I would like to thank everyone who contributed to the successful completion of
this project. 1 would like to express my deepest gratitude to my research
supervisor, Ir. Ts. Dr. Tham Mau Luen, for his invaluable advice, guidance and
immense patience throughout the development of the research. His expertise
and insights were essential in shaping the direction of my work and ensuring its
quality.

| am also grateful to my moderator, Ir. Ts. Dr. Chua Sing Yee, for her
insightful feedback and suggestions, which greatly improved my thesis.

In addition, | would like to express my appreciation to my loving
parents and friends for their encouragement, motivation, and unwavering

support during the course of this project..

ABSTRACT

In the present society, video surveillance systems are rapidly evolving with
intelligent video analytics to improve public safety. With the increasing
installation of surveillance cameras in both public and private spaces, there is a
growing reliance on continuous monitoring to ensure public safety. However,
human-based monitoring is labour-intensive and inefficient. Video anomaly
detection (VAD) plays a vital role in modern surveillance systems by
automatically identifying unusual events in video streams. This study focuses
on developing a lightweight and efficient VAD framework that supports both
binary and multiclass detection. The proposed system, AnomLite combines
MobileNetV2, a lightweight Convolutional Neural Network (CNN) for spatial
feature extraction, and Long Short-Term Memory (LSTM) for temporal
modelling. By leveraging the strengths of MobileNetV2 in extracting efficient
spatial features and LSTM in capturing temporal dependencies in video
sequences, the model detects anomalous events across various classes. The
system trains on two datasets: UCF-Crime, which contains real-world CCTV
footage, and XD-Violence, which includes video content from movies and
YouTube. Preprocessing steps are employed to ensure the model performs well
under varying data conditions. The evaluation of the proposed model shows
strong performance on the first dataset, achieving an ROC AUC of 0.99 and an
average precision of 0.99 on UCF-Crime. The model demonstrates strong
performance on another well-known dataset in video anomaly detection,
achieving an ROC AUC of 0.98 and an average precision of 0.97 on XD-
Violence. The model also achieves high accuracy of 94% on UCF-Crime and
93% on XD-Violence, with strong F1 scores across both datasets (F1-Micro
0.93 on UCF-Crime, 0.89 on XD-Violence). The model achieves high per-class
accuracy across the UCF-Crime dataset, with 10 out of 14 classes exceeding
0.95 accuracy and several classes, such as Arson, Explosion, Fighting, Shooting,
and Vandalism, reaching a perfect accuracy of 1.00, demonstrating the model’s
strong and consistent performance in detecting diverse types of anomalies.
Moreover, the model performs well on the XD-Violence dataset, with

accuracies ranging from 0.79 to 0.95. It shows highest accuracy on Car

Accidents (0.95) and strong performance across other classes like Abuse, Riot,
and Fighting, indicating its effectiveness in handling diverse anomalies.
Additionally, the model is optimized for inference through quantization. With a
reduction of around 70% in model size through model compression techniques
such as quantization, the flexibility of the model is further improved,
particularly for low-end devices. These results highlight how deep learning
techniques, such as SMOTE, data augmentation, and advanced loss functions
like cross-entropy loss, contribute to high accuracy and effective performance
in automating surveillance tasks, even when dealing with highly imbalanced
datasets. Data augmentation techniques that simulate real-world conditions

enhance the efficiency of anomaly detection systems in practical applications.

Keywords: Video anomaly detection, deep learning, edge computing, artificial

intelligence, neural network

Subject Area: TK7885-7895 Computer engineering. Computer hardware

DECLARATION

TABLE OF CONTENTS

COPYRIGHT STATEMENT
ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES

LIST OF SYMBOLS / ABBREVIATIONS

CHAPTER
1 INTRODUCTION
1.1 General Introduction
1.2 Importance of the Study
1.3 Problem Statement
1.4 Aim and Objectives
1.5 Scope and Limitation of the Study
1.6 Contribution of the Study
1.7 Outline of the Report
2 LITERATURE REVIEW
2.1 Introduction
2.2 Benchmarking Datasets
2.2.1 Shanghai Tech
2.2.2 UCF-Crime
2.2.3 XD-Violence
2.3 Deep Feature Extractors

2.3.1 Convolutional Neural Networks
2.3.2 2D Convolutional Neural Networks (2D

CNNs)

0 00 N N oo o o1 o BAAWwoOwWwow NN

24

2.5

2.6

2.7

2.8

2.3.3 3D Convolutional Neural Networks (3D
CNNs)

2.3.4 Comparison between 2D and 3D CNNs

2.3.5 Transformer

2.3.6 Graph Convolutional Networks (GCN)

Overview of Current Approaches on Video

Anomaly Detection

2.4.1 Self-Supervised Approach

2.4.2 Unsupervised Approach

2.4.3 Weakly - Supervised Approach

2.4.4 Overview of Current Approaches

Previous Approaches on VAD

2.5.1 Weakly Supervised Anomaly Detection
with Multiple Instance Learning (MIL)
Frameworks

2.5.2 MIST: Multiple Instance Self-Training
Framework for Video Anomaly Detection

2.5.3 Graph Convolutional-based Label Noise
Cleaner

2.5.4 BN-WVAD

Model Optimization Techniques

2.6.1 Quantization

2.6.2 Pruning

2.6.3 Knowledge Distillation

2.6.4 OpenVINO

Inference

2.7.1 Variable-Length Sequence Handling
(Dynamic)

2.7.2 Fixed-Length Sequences

Summary

METHODOLOGY AND WORK PLAN

3.1
3.2

Introduction
Experimental Setup
3.2.1 Hardware

Vi

10
11

12
12
12
12
13
14

14

15

15
16
17
18
19
19
20
21

21
22
23
24
24
24
24

3.3

3.4
3.5

3.2.2 Software

Work Plan

3.3.1 Dataset Selection
3.3.2 Data Preprocessing
3.3.3 Data Augmentations
3.3.4 Normalization
3.3.5 Data Splitting

3.3.6 Model Architecture
3.3.7 Model Training
3.3.8 Loss Functions
3.3.9 Evaluation Metric
3.3.10Model Optimization
3.3.11Inference Implementation
Gantt Chart

Summary

RESULTS AND DISCUSSION

4.1
4.2

4.3

4.4

Introduction

Performance Evaluation on UCF-Crime

4.2.1 Confusion Matrix of AnomLite on UCF-
Crime

4.2.2 ROC AUC of AnomL.ite on UCF-Crime

4.2.3 PR Curve of AnomLite on UCF-Crime

4.2.4 F1 Scores and Loss

4.2.5 Per-Class Accuracy

Performance Evaluation on XD-Violence

4.3.1 Confusion Matrix of AnomLite on XD-
Violence

4.3.2 ROC AUC of AnomL.ite on XD-Violence

4.3.3 Average Precision (AP) of AnomLite on
XD-Violence

4.3.4 F1 Scores and Losses

4.3.5 Per-Class Accuracy

Performance of AnomLite model (Inference)

4.4.1 Prerecorded video

vii

24
28
28
31
37
37
38
38
40
41
42
44
45
46
47
48
48
48

49
49
50
51
52
53

54
54

55
56
56
58
58

45 Model Optimization
4.5.1 Results of Model Optimization
4.5.2 Performance of Quantized Model
4.6 Performance Evaluation of Original
Optimized Model
4.7 Performance Comparison with BN-WVAD
4.7.1 Performance on XD-Violence
4.7.2 Performance on UCF-Crime
4.7.3 Overview of Comparison
4.8 Summary
5 CONCLUSIONS AND RECOMMENDATIONS
51 Conclusions
5.2 Recommendations for future work
REFERENCES

4.4.2 Real-Time Streaming
4.4.3 Summary of Inference

and

viii

62
63
64
64
66

68

70
71
72
72

74
75
76

Table 2.1;

Table 3.1:

Table 3.2:

Table 3.3:

Table 3.4:

Table 3.5:

Table 3.6:

Table 3.7:

Table 3.8:

Table 4.1;

Table 4.2;

Table 4.3:

Table 4.4:

Table 4.5: Model predictions on unseen real-world videos, multiclass

Table 4.6:

Table 4.7: Comparison of performance of both models on the same video

Table 4.8: Comparison of Computational Resources before and after

Table 4.9:

LIST OF TABLES

Comparison of Different Supervision Approaches
Experimental Platform Configuration

Computational Resources

Comparison of the two datasets used

Count and Proportion of Videos Exceeding 2,500 Frames
Label Explanation

Count and Proportion of Videos Exceeding 2,500 Frames
Data Augmentations Parameter applied

RGB Mean and Standard Deviation Values

Performance Metrics of AnomLite on UCF-Crime
Per-Class Accuracy on 14 Classes in UCF-Crime Dataset
Performance Metrics of AnomL.ite on XD-Violence

Per-Class Accuracy on XD-Violence

labelled

Comparative Analysis of Original vs. Quantized Model

frames

Quantization

Comparison of FPS on Both Models

Table 4.10: Performance Metrics of BN-WVAD on XD-Violence

Table 4.11: Performance Metrics of BN-WVAD on UCF-Crime

Table 4.12: Comparison of Performance Metrics of Both Models

13

24

25

31

33

34

36

37

38

48

52

53

57

60

66

68

68

70

71

72

LIST OF FIGURES

Figure 2.1: Video Anomaly Detection paradigm 5
Figure 2.2: Shanghai Tech Datasets 6
Figure 2.3: Reorganization of Shanghai Tech 6
Figure 2.4: UCF-Crime Datasets 7
Figure 2.5: Sample videos from the XD-Violence dataset 7
Figure 2.6: An Overview of Convolutional Neural Network 8

Figure 2.7: Architecture of CNN model. (a) 2D-CNN and (b) 3D-CNN 9

Figure 2.8: Model Architecture of a Transformer 10
Figure 2.9: Filter passing over each pixel in CNN 11
Figure 2.10: Filter passing over each node in GCN 11
Figure 2.11: Flow Diagram of Weakly Supervised Anomaly Detection

with MIL Frameworks 14
Figure 2.12: Flow Diagram of MIST for VAD 15
Figure 2.13: Graph Convolutional Label Noise Cleaner 15
Figure 2.14: Overall Framework of BN-WVAD model 16
Figure 2.15: Five types of architecture evaluated 16
Figure 2.16: GL-MHSA module 17
Figure 2.17: Quantization Technique 18
Figure 2.18: Pruning 19
Figure 2.19: Knowledge Distillation 20
Figure 2.20: OpenVINO Optimization Tool 21
Figure 2.21: Overview of the working of pack_padded_sequence 21
Figure 3.1: Google Colaboratory logo 25

Figure 3.2: Kaggle logo 25

Figure 3.3: Python logo

Figure 3.4: Icon of VLC media player

Figure 3.5: Pytorch Icon

Figure 3.6: Icon of OpenCV

Figure 3.7: Flowchart of Entire Workflow

Figure 3.8: Sample Videos from XD-Violence Datasets

Figure 3.9: Datasets from UCF-Crime

Figure 3.10: Overview of Data Preprocessing Steps

Figure 3.11: Overview of Original Class Distribution in UCF-Crime
Figure 3.12: Distribution of Video Duration Under 10,000 Frames
Figure 3.13: Frames extracted

Figure 3.14: Dataset Published on Kaggle

Figure 3.15: Overview of Original Class Distribution in XD-Violence
dataset

Figure 3.16: Video lengths in XD-Violence when limited to 10,000
frames

Figure 3.17: Data augmentations on UCF-Crime
Figure 3.18: Data augmentations on XD-Violence

Figure 3.19: Spatio-temporal features from video batches processed by
the model

Figure 3.20: Overview of AnomLite Model Structure

Figure 3.21: Comparison of Dataset Before and After Applying SMOT
Figure 3.22: Layers Selected for Quantization

Figure 3.23: Gantt Chart for FYP1

Figure 3.24: Gantt Chart for FYP2

Figure 4.1: Confusion Matrix of AnomLite on UCF-Crime

Figure 4.2: ROC AUC on UCF-Crime

Xi

26

26

26

27

28

29

30

31

32

33

34

35

35

36

37

37

39

39

41

45

46

46

49

49

Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:
Figure 4.10

Figure 4.11

Figure 4.12:

Figure 4.13:
Figure 4.14:
Figure 4.15:
Figure 4.16:
Figure 4.17:
Figure 4.18:
Figure 4.19:
Figure 4.20:

Figure 4.21:

PR Curve on UCF-Crime

F1 Scores and Loss

Per-Class Accuracy on 14 Classes in UCF-Crime Dataset
Confusion Matrix of AnomLite on XD-Violence

ROC AUC Curve of AnomL.ite on XD-Violence

PR Curve on XD-Violence dataset

F1 scores and losses on XD-Violence dataset

: Per-Class Accuracy on XD-Violence Dataset

: A Detected Frame classified as 'Fighting' on Unseen Data

Prediction of the model on ‘Fighting’ frames by frames on
a video sequence

Fighting detection from bottom view

Detection of Fighting at the corner

Detection of Fighting from another side view
Detection of Fighting from another higher view
Quantization Verification

Parts of Quantized Model Architecture

Quantized Layer Details

Comparison of Model Confidence for Both Models

Charts of Performance on Wandb (XD-Violence)

Xii

50

o1

52

54

54

55

56

56

58

59

62

62

62

63

64

64

64

67

70

AP
AUC
BLS
BN
CNN
CLT
DFM
FP
FPR
FN
FPS
GCN
GAN
GL-MHSA
13D
LSTM
MHSA
MIL
MIST
MPP
NLP
occ
PR

R
ROC
SBS
SLS
TP
TPR
N
UVAD

LIST OF SYMBOLS / ABBREVIATIONS

mean vector

Average Precision

Area Under the Curve
Batch-level Selection

Batch Normalization
Convolutional neural networks
Central Limit Theorem
Divergence from mean

False Positive

False Positive Rate

False Negative

Frame Per Second

Graph convolutional networks
Generative Adversarial Networks
Global and Local Multi-Head Self-Attention
Inflated 3D

Long Short-Term Memory
Multi-Head Self-Attention
Multi-Instance Learning
Multiple Instance Self-Training
Mean-based Pull-Push

Natural language processing
One-class classification
Precision-Recall

Recall

Receiver Operating Characteristics
Sample-Batch Selection
Sample-level Selection

True Positive

True Positive Rate

True Negative

Unsupervised Video Anomaly Detection

Xiii

Xiv

VAD Video Anomaly Detection
ViTs Vision transformers
WVAD Weakly Supervised Video Anomaly Detection

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Crime remains a significant issue in society, despite the widespread presence of
surveillance camera networks. Recently, surveillance cameras have been
extensively used in both public and private areas. However, the monitoring of
surveillance is typically carried out by humans, which is a laborious and time-
consuming process.

Video anomaly detection (VAD) refers to the task of identifying unusual
or suspicious activities in video footage, typically used in surveillance, security,
and monitoring systems. With the rapid increase of surveillance cameras,
effectively and efficiently monitoring numerous surveillance cameras with
human intervention has become challenging, prompting the need for automating
surveillance monitoring. The goal of VAD is to automatically identify unusual
events that diverge from the typical patterns within a scene, such as theft,
accidents, or violent behaviour. This field has gained attention with the growth
of deep learning and computer vision technologies.

Anomalous events can be categorized into two types, namely global and
local anomalies. Global anomalies refer to events that deviate from the overall
scene or context, such as a car driving in the wrong direction in traffic, while
local anomalies refer to specific objects or individuals acting out of the ordinary,
like a person running in a typically walking area. There are several approaches
to VAD, including supervised learning, unsupervised learning, semi-supervised
learning, and weakly—supervised learning. However, note that researchers in the
field have not focused on supervised learning techniques due to the lack of
frame-level annotations for large-scale real-world VAD datasets (Sertis, 2023).
Thus, based on the learning method exploited, VAD methods can be separated
into two primary categories, including one-class classification approaches and

weakly-supervised learning approaches.

1.2 Importance of the Study

To detect and locate abnormal events in videos, VAD has become an essential
task in analyzing activities within unedited videos. Even with years of research
in Video Anomaly Detection (VAD), developing a model that effectively
identifies anomalies in videos is still challenging, as it must differentiate
between normal and abnormal events, particularly since anomalies are rare and
can vary significantly (Feng, Hong and Zheng, 2021).

Gathering a large-scale dataset with precise temporal annotations of
abnormal events is both labor-intensive and time-consuming, posing a challenge
to the advancement of VAD. Throughout the years, unsupervised video anomaly
detection (UVAD) has attracted significant interest because it can detect
anomalies without needing extra annotations. However, these methods are
trained solely on normal videos, limiting their ability to understand anomaly
data. As a result, they often produce high false alarm rates for new, unseen
normal events.

In response to this, the study utilized a more realistic approach — weakly
supervised anomaly detection (WVAD) as the first solution. It overcomes the
issue of incorrect anomaly detection in videos within an unsupervised
framework and strikes a more effective trade-off between detection accuracy

and effort required for manual annotations compared to unsupervised method.

1.3 Problem Statement

In such a weakly supervised framework, existing methods for determining
abnormality often depend on certain assumptions or opaque models, resulting
in less dependable pseudo-temporal annotations. For example, the commonly
used feature magnitude approach assumes that abnormal snippets will have a
greater feature magnitude compared to normal ones (Zhou et al., 2024).
However, simply focusing on large feature magnitudes does not always ensure
effective differentiation of abnormal snippets.

The second challenge arises from the constraints of the previous sample-
level selection method. The abnormality ratio refers to the proportion of
abnormal snippets within each video. Previous approaches tend to identify the
top-k potential abnormal snippets within each video without accounting for the
varying abnormality ratios across different videos. By uniformly selecting

potential abnormal snippets, these methods might overlook significant
abnormalities in videos with higher abnormality ratios, thereby missing valuable
guidance for accurate anomaly detection (Zhou et al., 2024).

In WVAD, errors in selecting abnormal snippets are unavoidable, which
introduces noise into the pseudo-temporal labels. Although Multi-Instance
Learning (MIL) methods are used, the anomaly classifier continues to be
affected by this label noise, struggling with the challenge of distinguishing
genuinely abnormal snippets from those that are incorrectly labelled.

Moreover, most models only handle binary classification instead of
distinguishing specific anomaly types, struggle to perform well on both binary
and multiclass tasks, suffer from class imbalance due to the rarity of anomalies,
and lack scalability for processing large volumes of video data efficiently. To
address these challenges, there is a need for a model with improved criteria for
abnormality and a more effective selection strategy.

1.4 Aim and Objectives

The main objectives of this study are as follows:
1. To develop an Al model that detects abnormal events in video streams.
2. To implement the developed Al model in a real-world scenario.
3. To compare the performance of the developed model with conventional

approach.

15 Scope and Limitation of the Study

This study focuses on Video Anomaly Detection (VAD), specifically targeting
the identification of unusual or abnormal events in video sequences. It involves
training and evaluating models using selected datasets, such as UCF-Crime or
XD-Violence, and employing specific methodologies and performance metrics
like Average Precision (AP) and Area Under the Curve (AUC). The study is
geared toward applications in surveillance, security, and monitoring by
leveraging particular video data and experimental setups to assess the
effectiveness of VAD techniques (Sertis, 2023).

1.6 Contribution of the Study
This research contributes to the field of video-based anomaly detection by

proposing several notable advancements. Firstly, it presents a deep learning

framework that effectively handles both binary anomaly detection and
multiclass classification of violent events. Secondly, the model is trained and
evaluated on two diverse benchmark datasets, which are UCF-Crime and XD-
Violence, demonstrating improved generalization and robustness across
different video domains. Lastly, the study applies model optimization
techniques, including quantization, to significantly reduce computational
overhead, enabling real-time inference suitable for deployment on edge devices.
These efforts collectively enhance both the accuracy and practicality of

automated video anomaly detection systems.

1.7 Outline of the Report

The report covers 5 chapters, in which it first covers the introduction. This
chapter provides an overview of the research project in video anomaly detection
in surveillance videos, which includes an introduction, a problem statement, an
aim, objectives, and the scope and limitations of the research. Chapter 2 covers
the literature review of several papers related to the project, mainly on human
action recognition and abnormal activity detection systems. The research
approach and methodology are presented in Chapter 3, which outlines the
system implementation process, the criteria considered, and the timeline for
conducting the study. Chapter 4 covers the results and discussions, which
provide a comprehensive report of the findings, incorporating both qualitative
and quantitative results, along with in-depth analysis and interpretation. Finally,
Chapter 5 covers the conclusion and recommendations, which offer a summary

of the overall study and propose suggestions for future enhancements.

CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

Although the conventional methods of VAD have been widely investigated, the
quick development of deep learning has introduced new possibilities for more
efficient anomaly detection. Several methods, such as convolutional neural
networks (CNNs) and vision transformers (ViTs), have been shown to be highly
proficient at identifying complex data relationships in large datasets. These
developments have significantly improved VAD performance, making anomaly

detection in video streams more accurate and consistent.
Learning

— Methods "
I (C) (Section V-C) y
Feature | 17.‘ T
v

(V2)€ [0,1] | Model

i Tig ! 5
. i L, Y) Anomaly | — Evaluation
I Loss function Score I (G) (Section VI-B)
| (D) (Section V-D) |
Spatial/ Temporal/ ! Wi "
Labeled videos Frames S etotmparal | Regularization ! (F) (section V-F)
Y: = {0,1} Vi Textual (E) (Section V-E)
(A) Dataset (Section V-A) (B)(Section V-B) Model overview

Figure 2.1: Video Anomaly Detection paradigm (Zhou et al., 2024)
Figure 2.1 shows the typical video anomaly detection paradigm by Zhou
et al. 2024, which can be categorized into as following:
(A) Development and selection of state-of-the-art datasets
(B) Extraction of spatial, temporal, spatio-temporal, and textual deep
features
(C) Deep learning and supervision approaches
(D) Choice of loss functions
(E) Incorporation of regularization techniques within loss functions
(F) Calculation of anomaly scores
(G) Techniques for model evaluation
This literature review explores the process, evolution of VAD systems, and the
potential for enhancing the performance and addressing the limitations of

existing VAD models.

2.2 Benchmarking Datasets

Large-scale benchmarking datasets are essential for developing effective deep-
learning models. In the realm of VAD, several public datasets are available,
typically offering video-level labels (normal or anomalous) for training. These
datasets support weakly supervised learning. Frame-level annotations, however,
are usually reserved for test sets to allow for detailed model evaluation. This

section highlights key public datasets and evaluation metrics used in VAD.

2.2.1 Shanghai Tech

As shown in Figure 2.2, the ShanghaiTech dataset, as introduced by Luo et al.
(2017), was gathered under complex lighting conditions and varying camera
angles. It comprises 13 real-world scenes, each with several videos. It introduces
anomalies resulting from abrupt movements, such as chasing and fighting.
Initially created for one-class classification, the dataset includes 270,000 frames
of normal videos for training and features 130 anomaly events with pixel-level
annotations for testing. In a subsequent update, Zhong et al. (2019) revised the
dataset's protocol by dividing it into 238 training videos (175 normal and 63
anomalous) and 199 test videos (155 normal and 44 anomalous).

-
.’ 4
K, £

Figure 2.2: Shanghai Tech Datasets (Luo, Liu and Gao, 2017)

| Training Set Test Set | Total

Normal Videos || 175 155 330
Anomaly Videos || 63 44 107
Total || 238 199 437

Figure 2.3: Reorganization of Shanghai Tech (Zhong et al., 2019)

2.2.2 UCF-Crime

The UCF-Crime dataset, developed by Sultani et al. (2018), is a significant early
dataset for video anomaly detection (VAD) that captures a variety of realistic
anomalies. It features 13 distinct anomaly types, such as 'abuse’, ‘arrest’, and
'robbery ', among others. The dataset includes 1,900 untrimmed surveillance
videos, with a total of 128 hours of footage, with an average of 7,247 frames per
video. It is split into a training set with 1,610 videos (800 normal and 810
anomalous) and a test set with 290 videos (150 normal and 140 anomalous). The
training set is annotated with video-level labels, while the test set provides

frame-level annotations.

m

Figure 2.4: UCF-Crime Datasets (Sultani, Chen and Shah, 2018)

2.2.3 XD-Violence

Unlike other datasets, XD-Violence (Wu et al., 2020) offers a substantial
collection of 4,754 untrimmed videos, complete with audio, enabling models to
utilize multimodal data for detecting anomalies. Figure 2.5 shows the six types
of physical violence featured in the datasets, such as abuse, car accident, and
others, spanning a total of 217 hours. It is split into a training set of 3,954 videos
(2,049 normal and 1,905 anomalous) with video-level annotations, and a test set
of 800 videos (300 normal and 500 anomalous) with frame-level annotations.

Each anomalous video includes 1 to 3 instances of abnormal events.

L)
@
2 accident K

Figure 2.5: Sample videos from the XD-Violence dataset (Wu et al., 2020)

2.3 Deep Feature Extractors

Different feature extractors have been utilized by previous researchers,
including convolutional neural networks (CNNSs), autoencoders, generative
adversarial Networks (GANSs), and others.

2.3.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specialized type of deep learning
model widely used for image recognition tasks. They come in various forms:
one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D).
Among these, 2D CNNs are the most applied for image recognition (Raziyeh
Pourdarbani et al., 2023). 1D CNNs are primarily used for analyzing text and
sequential signals. In 2D CNNs, a convolutional filter moves across the input
both vertically and horizontally to perform the convolution process, where the
filter weights are applied to the input data, and a bias is added. On the other
hand, 3D CNNs use three-dimensional filters and are suited for processing 3D
data, such as MRI and CT scans, as well as hyperspectral images (HSIs), which
have two spatial dimensions and one spectral dimension. Figure 2.6 shows an

overview of CNN.

Convolution Neural Network (CNN)

Input

Output
Pooling Pooling Pooling

/ N
S A N

Convolution Convolution Convolution

Kernel ReLU ReLU RelLU Flatten\ 4/
Layer)

SoftMax
Activation
Function

Fully

= Feature Maps ——————————————» COC:yeecrted

Probabilistic

Feature Extraction Classification (AL
Distribution

Figure 2.6: An Overview of Convolutional Neural Network (Kalita, 2022)

2.3.2 2D Convolutional Neural Networks (2D CNNs)

CNNSs have transformed the processing of spatial features, allowing for in-depth
analysis of scene structures. According to Mansour et al. (2021), Faster R-CNN,
a CNN architecture, is highlighted for its precision and ability to perform both
object classification and bounding box regression simultaneously. This dual
function enables accurate object detection and classification within video

frames, making it essential for identifying and locating anomalies.

2.3.3 3D Convolutional Neural Networks (3D CNNs)

These networks extend traditional CNNs by integrating temporal analysis,
enhancing the assessment of spatiotemporal features in video data. Models like
C3D and 13D have significantly boosted performance in cutting-edge systems.
Numerous studies utilize 3D CNNs as core components, showcasing their

exceptional capability in spatiotemporal feature extraction (Zhou et al., 2024).

2.3.4 Comparison between 2D and 3D CNNs

In summary, 2D CNNs are designed to handle two-dimensional inputs, which
makes them ideal for applications such as image classification and object
detection, but they lack the ability to capture temporal relationships. In contrast,
3D CNNs handle spatiotemporal data by processing both spatial and temporal
dimensions, making them ideal for video analysis and motion detection. While
3D CNNs offer better performance in tasks requiring time-based analysis, they
are more computationally intensive compared to 2D CNNs, which are faster and
more efficient for simpler spatial tasks. Each model excels in its respective

domain, depending on the complexity of the data.

w4 Multi-temporal <
Pl 1

Patch-based i v
input data i %

(size: P x P) 5
==
+ Convolution filter
Convolution filter Patch-based (Niter size: k x k) F Feature
(filter size: k x k) input data

F Feature maps (size: P x P)

(a) (b)
Figure 2.7: Architecture of CNN model. (a) 2D-CNN and (b) 3D-CNN (Kim
etal., 2018)

10

2.3.5 Transformer

Transformers are a strong model architecture mostly utilized in natural language
processing (NLP). Figure 2.8 shows the model architecture of a Transformer.
The attention mechanism, which allows the model to focus on various parts of
the input sequence while producing output, is the core of transformers. This
helps the model to determine how important each component of the input is in
relation to the others, which is especially useful for understanding long-range
dependencies. Transformers are known for their self-attention function, which
aids the model in understanding the connections between various words in a
sentence. For instance, self-attention enables the model to make the connection
between "cat" and "mat," even if they are not contiguous, in the sentence "The
cat sat on the mat." This process is essential for understanding meaning and
context within sequences (Allard, 2020).

Output
Probabilities
Add & Norm
Feed
Forward
J

[}
1 (Add & Norm J=~,

Add & Norm

Feed
Forward

Multi-Head
Attention

Add & Norm

Nx
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
A g A,)

\ J \ —)
Positional A q Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 2.8: Model Architecture of a Transformer (Vaswani et al., 2017)

Transformers use an encoder-decoder design to process and generate
sequences. The encoder creates representations from the input, which the
decoder then uses to produce the output. They utilize multiple layers of
feedforward neural networks and self-attention to recognize complex patterns.
Multi-head attention improves performance by focusing on different aspects of
the sequence simultaneously, while positional encoding helps the model
understand the order of tokens. Transformers are scalable and efficient, enabling

11

parallel training and demonstrating strong capabilities in areas like machine
translation and generating coherent text due to their strong contextual
understanding (Allard, 2020).

2.3.6 Graph Convolutional Networks (GCN)

Graph Convolutional Networks (GCNs) extend the concept of CNNs
to graph-structured data. Unlike images, which have a grid-like structure, graphs
have nodes (points) connected by edges (lines), and their relationships are less
regular. GCNs work by aggregating information from a node's neighbours to
update the node's representation, allowing the model to learn from the graph's
structure (Kwok, 2022). As shown in Figure 2.9, just like in a CNN for images,
where a filter slides over each pixel and combines the values of neighbouring
pixels to generate the next layer's output, a GCN operates similarly. Instead of
pixels, a filter in a GCN moves across each node in a graph, aggregating the
values of neighbouring nodes to produce the output for the next layer, as shown
in Figure 2.10. This way, GCNs can handle data where relationships are
complex and irregular, making them useful for tasks like social network analysis

or molecular chemistry.

Figure 2.9: Filter passing over each pixel in CNN (Matthew N. Bernstein,
2023)

KX EG &

DY ‘ﬂngﬁvr &

(N R RS
K&

o
Figure 2.10: Filter passing over each node in GCN (Matthew N. Bernstein,

2023)

12

2.4 Overview of Current Approaches on Video Anomaly Detection

While most deep learning — based VAD systems have traditionally relied on
supervised learning models, recent advancements in video anomaly detection
(VAD) have shifted towards exploring weakly supervised, self-supervised, and
unsupervised methods as alternatives to traditional supervised approaches.
These methods address challenges like the need for fully annotated datasets and

capturing complex patterns.

2.4.1 Self-Supervised Approach

Self-supervised approaches generate supervision from the input data,
eliminating the need for human-labelled data, which is valuable for anomaly
detection where labelled anomalies are rare. In one study, Georgescu et al. (2021)
introduced a self-supervised method using multi-task learning at the object level
was introduced. The model trains a 3D CNN on tasks such as predicting object
movement direction, detecting motion irregularities, and reconstructing object
appearances from adjacent frames. By learning normal object behavior from
video data, the model becomes capable of identifying anomalies based on
deviations from this learned behavior, even without explicit labels (Georgescu
etal., 2021).

2.4.2 Unsupervised Approach

Early VAD methods often relied on one—class classification (OCCs, also known
as unsupervised anomaly detection), where models were trained solely on
normal video data. These models aimed to capture normal feature patterns using
either hand-crafted features or deep autoencoder models. Once trained, the
models could reconstruct normal input videos with minimal error. During
testing, if the reconstruction error exceeded a certain threshold, the input was
flagged as anomalous, as it likely differed significantly from the normal training
data. However, these methods often failed to generalize well to test datasets

because the models were never trained with anomalous examples (Sertis, 2023).

2.4.3 Weakly - Supervised Approach
Weakly supervised learning refers to a set of techniques in machine learning
designed to develop predictive models using limited or imprecise supervision.

It involves incorporating domain-specific knowledge and applying functions to

13

generate labels from imperfect or automatically derived training data (Kanjilal,
2022).

These methods become particularly useful when working with data that
does not fully align with the model’s expected input format or structure. In
practice, much of the data available is unstructured or poorly labelled, which
makes traditional supervised learning less feasible (Kanjilal, 2022). Weak
supervision offers a practical solution by enabling the use of such data for
training purposes, even when the annotations are unreliable or incomplete.

Weakly supervised learning enables model training from datasets that
are labelled through indirect or noisy processes rather than manual annotation.
It spans various strategies that rely on approximate, partial, or less accurate
information, allowing for large-scale data utilization with significantly reduced
labeling effort.

While one-class classification-based VAD trains only on normal
videos, weakly-supervised VAD uses both normal and anomalous videos, but
without frame-level labels. Instead, video-level labels indicate if a video
contains anomalies, without specifying when they occur. This requires methods
to leverage these broader labels to detect anomalies at the frame level. Since
video-level labels are easier to obtain, they enable the creation of large-scale

datasets for weakly-supervised VAD.
2.4.4 Overview of Current Approaches

Table 2.1: Comparison of Different Supervision Approaches

Aspect Self-Supervised Unsupervised Weakly Supervised

Label No manual labels, | Uses only normal | Needs video-level

Need supervision from | data, no anomaly | labels (anomalous or
the data itself labels normal)

Training Learns patterns via | Learns from | Uses both normal

Data pretext tasks on | normal videos | and anomalous
video data only videos without exact

timing info

14

Detection | Detects deviation | Anomalies Learns to detect
Basis from learned | flagged by high | anomalies at the
normal behaviour reconstruction frame level from
error video-level tags
Methods Motion prediction, | Autoencoders, Multiple Instance
Used appearance one-class Learning, score
reconstruction classification regression
Pros No labelling cost, | Easier setup, no | Easier labelling,
learns detailed | anomaly data | scales to large
features needed datasets
Cons Relies on task | Poor Needs smart
design, may miss | generalization to | methods to localize
subtle anomalies unseen anomalies | frame-level
anomalies

2.5 Previous Approaches on VAD
251 Weakly Supervised Anomaly Detection with Multiple Instance
Learning (MIL) Frameworks
Sultani, Chen, and Shah (2018) introduced an innovative multiple instance
learning (MIL) model, marking the first use of weakly labelled training videos.
In this approach, normal videos are treated as negative bags, while anomalous
ones are treated as positive bags, with video segments acting as instances within
the MIL framework. These bags are processed through feature extractors to
capture spatiotemporal features, which are then passed through a fully
connected network to generate the final output. The anomaly score, ranging
from O to 1, is optimized to increase for abnormal segments and decrease for

normal ones.

Anomaly video instance (video segment)

arsity

onstraints

€3D feature extraction
for each video segment

32 temporal segments
e s . [a
32 temporal segments =

pre-trained 3D ConvNet

MIL Ranking Loss with sp

and smoothness ct

AAAAAF A
G ik

Normal video

Negative bag

Figure 2.11: Flow Diagram of Weakly Supervised Anomaly Detection with
MIL Frameworks (Sultani, Chen and Shah, 2018)

15

2.5.2 MIST: Multiple Instance Self-Training Framework for Video
Anomaly Detection

Feng, Hong and Zheng (2021) presented “MIST: Multiple Instance Self-
Training Framework for Video Anomaly Detection,” anovel WSVAD approach.
Unlike conventional MIL methods, MIST employs a pseudo-label generator
combined with a sparse continuous sampling strategy to improve the accuracy
of clip-level pseudo labels. It also features a self-guided, attention-enhanced
encoder designed to focus on anomalous regions within video frames (Zhou et
al., 2024).

ymm———— a3 g ym =4 03 bk
B 4 ’ | Esca
004

|
0o —
198\ =
oo -

| | i
! . ee— w —o| (@
[EN [[
| } ‘ - |
| U | r——t YR Self-Guided [
p f looh Jri) S ernce i L I ga
4 M o7l 5 e Module | =

v Stage 1. Pscudo Labels Generation Stage II. Feature Encoder Finetuning

Figure 2.12: Flow Diagram of MIST for VAD (Feng, Hong and Zheng, 2021)

2.5.3 Graph Convolutional-based Label Noise Cleaner

In contrast to the conventional MIL methodology, the authors proposed a new
technique for weakly supervised anomaly detection, considering it as a
supervised learning task with noisy labels. The noisy labels were cleaned up
using a Graph Convolutional Network (GCN), which enhanced the training
procedure and the effectiveness of fully supervised action classifiers in

identifying anomalies.

Classification Stage Cleaning Stage

High-confidence Labels

Select

Snippet-level Anomaly Labels
(Noisy)

Action Classifier

Stept=2
Video Video-level Snippet-level Anomaly Labels
Snippets Label (Less noise)

Figure 2.13: Graph Convolutional Label Noise Cleaner (Zhong et al., 2019)

16

254 BN-WVAD

BN-WVAD is a framework specifically designed to detect anomalies in videos
using only video-level labels (weakly-supervised), avoiding the need for
detailed frame-level annotations and utilizing batch normalization. Figure 2.14
shows the overall framework of the BN-WVAD model. The model is designed
for weakly supervised learning. The datasets UCF-Crime and XD-Violence are
chosen to match the weak supervision approach. In this model, the deep feature
extraction is done by using 3D CNNs. The model utilizes an 13D network
(Inflated 3D ConvNet), which is widely used to extract spatial and temporal

features from video sequences.

> f " Sample-level ! Anomaly Score Calculation
1 , Selection (SLS) |
|

Anomaly

h
DEM(X',B, Scores

o -
1\ Sample-Batch

Feature Selection (SBS) '

Enhancer

I3D

L"OT(D)

Anomaly
Classifier C(-)

WIONYIEE
N1y

© Mean vector of BatchNorm (Anchor) oY ;‘D Features of normal videos
O Selected abnormal features (Negatives) 9 X EI:I Selected normal Features
© Sclected normal features (Positeives) E [Features of abnormal videos '
Paried Input Videos Mean-based Pull-Push (MPP) Loss ? 1 [Selected potential abnormal features |

Figure 2.14: Overall Framework of BN-WVAD model (Zhou et al., 2024)
The 13D model utilised in this model, or Two-Stream Inflated 3D
ConvNet, extends 2D ConvNets into 3D by adding a temporal dimension to
filters and pooling layers, enabling it to capture both spatial and temporal
features. It reuses 2D filters from pretrained models like ImageNet and employs
a two-stream setup: one stream processes RGB frames and the other handles
optical flow for motion. The outputs are fused at the prediction stage to enhance

understanding of video content (Carreira & Zisserman, 2017).

a) LST™M b) 3D-ConvNet ¢) Two-Stream d) 3D-Fused e) Two-Stream
Two-Stream 3D-ConvNet
Action
Action Action Action (! Action

1 i t 3D ConvNet t
[LSTM |- o0 — LSTM %) ; t . SO
—— \emmmre/ 3D ConvNet \ - \

) J ConvNet ‘ConvNet A\ 3D ConvNet || 3D ConvNet

Camiiitz Ry Cemi] [“ T : l - ConvNet | | ConvNet m H

¥ / G . N) ; .

Images I e
Image 1 | oo | Image K Tt0K Image 1 Optical - Images Optical
Flow 1 to N ||| Image 1||_Optica 10K ||| Flow 1 to K |||

— time Flow 1to N [

time time fme fime

Figure 2.15: Five types of architecture evaluated (Carreira and Zisserman,
2017)

17

In addition, the extracted features are refined using a Global and Local
Multi-Head Self-Attention (GL-MHSA) module, designed to capture both long-
range dependencies across the entire video and short-range temporal patterns.
This module builds upon the standard Multi-Head Self-Attention (MHSA)
mechanism Dby incorporating an additional encoder layer equipped with a
temporal mask, allowing it to more effectively learn local temporal features.

As illustrated in Figure 2.16, it uses a temporal mask to balance the
influence of different time points, enhancing the model’s capability to capture
both long-range and short-range dependencies effectively (Zhou, Yu and Yang,
2023). The approach utilizes the transformer’s self-attention mechanism while
adding a layer of complexity to enhance the comprehension and modeling of
video sequence dynamics for anomaly detection. By learning the spatial and
temporal features in combination, the model ensures robust feature extraction

for identifying anomalies.

‘ q I k ‘ ‘Yg ’ ' I

T-Mask

Global Self Local Self
(e

Attention Attention
Output

Figure 2.16: GL-MHSA module (Zhou, Yu and Yang, 2023)

Thus, it can be summarized that the backbone of the model is a

combination of 13D for feature extraction and GL-MHSA for enhancing the

learning of global and local temporal relationships.

2.6 Model Optimization Techniques

Model optimization in deep learning refers to a process designed to refine a
neural network to boost its performance and efficiency of machine learning
models. The process includes techniques that minimize the use of computational
resources, such as memory and processing time, by refining the structure and
functionality of the model, without compromising the model’s accuracy and
overall effectiveness. Additionally, as deep learning models are deployed in web

applications, mobile devices, and edge devices, it is crucial to compress these

18

models without compromising the quality and performance of the original
models (VK, 2024).

Optimizing models can lead to a decrease in their size, which offers
several benefits. These include reduced storage requirements, smaller download
sizes, and lower memory consumption. Techniques like quantization can
decrease the model's size in all of these areas, although there might be a slight
trade-off in accuracy. Additionally, pruning and clustering methods can make
models more compressible, which helps in reducing download sizes.

Latency refers to the time it takes for a model to make a prediction.
Certain optimization techniques can reduce the amount of computation needed
to perform inference, thereby decreasing latency. This also helps to reduce
power consumption. Currently, quantization is a widely used method to reduce
latency by simplifying the operations performed during inference, though it may
result in a slight loss of accuracy.

2.6.1 Quantization

Quantization operates by lowering the precision of the numbers that represent a
model’s parameters, which are typically from 32-bit floating point values to 16-
bit or 8-bit. This reduction in precision leads to a smaller model size and quicker
computation, enhancing both memory efficiency and processing speed. Figure

2.17 shows an example of quantization from 32-bit to 8-bit.

0.34 3.75 5.64 64 134 217
Quantization
1.12 2.7 0.9 > 76 119 21
47 | 068 | 143 3 81 99
FP32 INT8

Figure 2.17: Quantization Technique (VK, 2024)
Quantization-Aware Training involves incorporating quantization into
the training process. During QAT, the model is trained with simulated lower
precision weights and activations, allowing the network to learn to compensate
for the reduced precision (Ray, 2024). This method typically leads to better
performance compared to PTQ since the model has been explicitly optimized

for quantization.

19

On the other hand, Post-Training Quantization is applied after the
model has already been trained. It involves quantizing the weights and
activations of a pre-trained model without requiring additional training. PTQ is
generally faster and easier to implement than QAT, but it may result in some
performance degradation due to the lack of optimization for quantization during
training (Ray, 2024). PTQ is useful when computational resources or time

constraints limit the ability to retrain the model.

2.6.2 Pruning

Model pruning is a technique used to reduce the size of a model by eliminating
unnecessary weights and parameters, thereby improving efficiency. In computer
vision, particularly with deep neural networks, the presence of a vast number of
parameters, such as weights and activations, which are the intermediate outputs
that assist in producing the final result, can significantly increase both the
complexity and computational requirements (Vina, 2024). Pruning addresses
this by identifying and removing parameters that have little impact on the
performance of the model, thus resulting in a more lightweight and efficient
model. While pruned models maintain the same size on disk and exhibit the
same runtime latency, they become more compressible. This makes pruning an

effective technique for reducing the model’s download size.

before pruning after pruning

pruning
synapses

pruning
neurons

Figure 2.18: Pruning (VK, 2024)

2.6.3 Knowledge Distillation
Knowledge distillation is an optimization method where knowledge is
transferred from a larger, more complex model (referred to as the “teacher”) to

a smaller, more computationally efficient model (the “student”). The underlying

20

idea is that, while a large and intricate model may be necessary to understand
complex patterns in data, a smaller model can learn and capture the same
relationships, achieving similar performance levels in tasks with lower
computational demand. This technique is commonly applied to classification
models (both binary and multi-class) with a softmax activation in the output
layer (Lamberti, 2024).

The core of knowledge distillation is based on two key principles: the
teacher-student framework and distillation loss. In this setup, the teacher model
is a high-capacity network that performs well on the task, while the smaller
student model is more compact and optimized for efficiency. The student is
trained to replicate the teacher’s predictions but also to match the output
distributions produced by the teacher. This allows the student model to grasp
the relationships between the data samples and their corresponding labels,
especially in classification tasks where it learns to approximate the decision
boundaries defined by the teacher model (Lamberti, 2024).

Teacher Model

Figure 2.19: Knowledge Distillation (Teki, 2022)

2.6.4 OpenVINO

One of the most effective optimization tools available is the OpenVINO
optimization method. In many real-world applications, deep learning Al models
need to be optimized to make better use of computational resources, ensuring
they deliver faster performance. OpenVINO provides a range of tools that
support this goal, including the Model Optimizer, Post-training Optimization
Tool (POT), and the Neural Network Compression Framework (NNCF), all of

which are designed to improve model efficiency and reduce memory usage.

21

Caffe g e S-';"!
4 Keras / % % 1 B Windows
r @ © OpenVIN® @ Linux
TensorFlow ‘ ﬁ o , - A

R -

O PyTorch]

ONNX

Figure 2.20: OpenVINO Optimization Tool

2.7 Inference

During the inference phase, the model is tasked with identifying unusual actions
or events within videos by analysing the anomaly scores it produces. However,
during inference, videos often have different durations, leading to a variety of

frames. There are two primary categories to handle this.

2.7.1 Variable-Length Sequence Handling (Dynamic)

In this approach, all sampled frames from a video are passed through the model.
The model uses pack padded_sequence in Pytorch to process sequences of
different lengths efficiently. To process a batch, all sequences are padded to
match the length of the longest sequence, as shown in Figure 2.21. This is
suitable when the model was trained with variable-length sequences, ensuring
consistency between training and efficiency. However, this might waste
processing power to perform unnecessary padding while ensuring uniformity in

sequence lengths by adding zeros to shorter sequences (GeeksforGeeks, 2024).

Padded sequences sorted by decreasing lengths

batch size 6

batch size 6

pods batch size 5

batch size 4

batch size 3

batch size 3

Packed sequences
pack_padded_sequence() flattens sorted sequences by timestep, batch size 2
keeping track of the effective batch size at each timestep hoitivizes

batch size 1

Figure 2.21: Overview of the working of pack_padded_sequence

22

2.7.2 Fixed-Length Sequences
In this approach, all video inputs are transformed into a fixed sequence length.
There are two sub-strategies for this, which include padding and truncation, and

the sliding window approach.

2.7.2.1 Padding and Truncation

In this method, all video sequences are standardized to a fixed length, with
shorter sequences being padded with zeros or another neutral value, ensuring
uniform input size for the model. Conversely, sequences longer than the target
length are truncated to fit. This approach is straightforward and efficient,
particularly when the average or median sequence length from the training data
is known and representative of most samples. It ensures consistent input
dimensions, which is especially helpful when using models that expect fixed-

size inputs.

2.7.2.2 Sliding Window approach

The sliding window technique breaks long videos into smaller, fixed-length
segments, which are then processed individually. These windows can either
overlap or remain distinct depending on how much temporal coverage is desired
(Overload, 2022). This method is especially useful for analysing lengthy videos,
where anomalies might occur at any point in time. By examining each segment
in isolation, the model can effectively localize abnormal events without needing

to process the entire video at once.

Processing window
A

Step 1

Processing window

Step 2

Processing window
A

Stepn

e
Frames stream

Figure 2.22: Sliding Window Approach (Jaime-Rodrigo Gonzalez-Rodriguez
et al., 2024)

23

2.8 Summary

This chapter provides an overview of recent advancements in Video Anomaly
Detection (VAD), highlighting the impact of deep learning techniques.
Traditional methods are increasingly being outperformed by models using
Convolutional Neural Networks (CNNs), Transformers, and other architectures
that effectively capture complex spatio-temporal features for more accurate
anomaly detection in surveillance and other video streams.

Benchmark datasets like ShanghaiTech, UCF-Crime, and XD-
Violence are discussed, each presenting unique challenges such as annotation
levels, anomaly types, and input modalities. These datasets are critical for
evaluating and comparing VAD methods, especially in supervised and weakly
supervised learning settings.

The chapter also reviews key feature extractors. While 2D CNNs
handle spatial features well, 3D CNNs capture temporal dynamics across frames.
Modern architectures like Transformers and Graph Convolutional Networks
(GCNs) are also explored, offering strong sequence modelling and relational
reasoning capabilities, respectively.

Finally, the chapter outlines the current VAD approaches, focusing on
the shift from fully supervised to self-supervised, weakly supervised, and
unsupervised learning techniques.

Additionally, model optimization techniques, including quantization,
pruning, and knowledge distillation, are crucial for deploying VAD models on
resource-limited devices. These techniques help maintain performance while
reducing model size and latency. Inference strategies like dynamic sequence
handling and sliding windows ensure consistent performance across videos of

varying lengths, enabling real-time and practical deployment.

24

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

The essential elements for creating a video anomaly detection system are
covered in this chapter, with an emphasis on the XD-Violence and UCF-Crime
datasets, which provide a variety of real-world scenarios. The model
architecture is presented, integrating temporal analysis and feature extraction
with deep learning techniques. In addition, methods for enhancing anomaly
detection are covered, as well as the performance measures for the model, AUC

and AP, which are utilized for evaluation.
3.2 Experimental Setup

3.2.1 Hardware

Table 3.1: Experimental Platform Configuration

Name Configuration

Operating System Ubuntu 22.04.4 LTS (Jammy)

CPU Model 12th Gen Intel(R) Core(TM) i5-12450H @ 2.50
GHz

RAM 16.0 GB

GPU Model NVIDIA GeForce RTX 3050

GPU Memory 4GB

NVIDIA Driver Version | 535.183.01

CUDA Version 12.2

3.2.2 Software
Throughout this project, multiple frameworks, platforms, and tools, including
Python, Pytorch, Kaggle, Google Colab, OpenCV, and VLC, are utilized for

multi-task model development and experimentation.

25

3.2.2.1 Google Colaboratory

Google Colab is a cloud-based Jupyter notebook service that requires no
installation or setup, enabling users to run computationally intensive tasks-such
as machine learning training, directly in a browser. It provides free access to
high-performance GPUs and TPUs, significantly accelerating model
development. In this project, the majority of the training and testing procedures
were conducted using the Google Colab platform, leveraging its high-
performance A100 GPU to accelerate deep learning computations, as shown in
Table 3.2. The platform’s deep integration with Google Drive and streamlined
sharing capabilities make it an ideal environment for collaborative development.

Table 3.2 shows the computational resources mainly used in this project for

training.
Figure 3.1: Google Colaboratory logo
Table 3.2: Computational Resources
Graphics Processor Video Memory Memory Capacity
A100 GPU 40 GB VRAM 83.5 GB RAM
3.2.2.2 Kaggle

In this project, the datasets after preprocessing steps are uploaded to Kaggle for
further usage. Kaggle is a platform and online community for data scientists and
machine learning practitioners, hosted by Google. Besides, Kaggle provides a
vast library of public datasets for users to explore, analyze, and build models on.
It supports both private and public dataset sharing, along with robust storage
capabilities, allowing up to 200 GB per dataset. Particularly relevant for this
project’s needs, which involve processing large volumes of video data, Kaggle’s
generous storage allocation and computational resources make it perfectly
suited for the requirements. Once published, these datasets can be
programmatically accessed by third parties through Kaggle’s API, enabling

seamless integration with external tools and workflows.

Figure 3.2: Kaggle logo

26

3.2.2.3 Python

Python, a high-level programming language with dynamic semantics, is the
choice of programming language for this deep learning project. Although deep
learning can be implemented in multiple programming languages such as C++,
Java, and others, Python continues to be the preferred language for most
developers. Leading open-source frameworks like TensorFlow and PyTorch
offer intuitive Python APIs, making it easier for developers to design and train

neural networks efficiently (Williamson, 2021).
@ python

Figure 3.3: Python logo

3.2.2.4 VLC Media Player

In this project, VLC media player is commonly utilized for video-related
operations, including frame-by-frame navigation and extraction. These
functionalities are particularly useful for tasks such as verifying annotations,
inspecting temporal boundaries of anomalous events, and ensuring the accuracy

of ground truth labels.
A
[
fys
Figure 3.4: Icon of VLC media player

3.2.2.5 Pytorch

Pytorch is an open-source machine learning library developed by Facebook’s
Al Research lab (FAIR). It provides a flexible, Pythonic interface for building
deep learning models, and it is widely used in both research and production.
Pytorch provides some key features such as strong GPU acceleration support,
easy debugging and customization, and a rich ecosystem including torchvision,
torchaudio, and more (NVIDIA, n.d.). It enables efficient model design, training,

and evaluation in this anomaly detection project.

O PyTorch

Figure 3.5: Pytorch Icon

27

3.2.2.6 OpenCV

OpenCV is a free and open-source software library for computer vision and
machine learning. It is widely used for image and video processing. In this VAD
(Video Anomaly Detection) project, OpenCV plays a key role in handling video
input, frame extraction, and display of detection results. It supports both video
inference and real-time inference, enabling frame-by-frame processing and
visualization of anomalies (Kulhary, 2019). Its speed, Python compatibility, and

strong community support make it ideal for real-time detection tasks.
noopenCV

Figure 3.6: Icon of OpenCV

28

3.3 Work Plan

Figure 3.7 shows the flowchart of the entire workflow, summarizing all the steps.

- ™ e N e a
. Data Preprocessing
Data Selection . .) ..
UCF-Crime, XD-Violence > (Frames ﬁxfractvion,ll)ata > Data Splitting
Augmentations)
. S . ¢ S
- ~ - ~ -~ ~
Model Evaluation < Model Training [Bulld"fg Model
Architecture
- / - / . J
4 ¢ 4 N
. N Model Optimization .| Transfer from Google
Model Testing 4 (Quantization) 4 Colab to Local
- >y . vy . ¢ S/
s ~ 4 - N
Comparison with other Implementation for
P Inference
model X 1. Prerecorded Videos
Implementation of BN-WVAD ' .
: 2. Real-Time
N J . Y.

Figure 3.7: Flowchart of Entire Workflow

3.3.1 Dataset Selection

In this study, two different datasets were used, which are UCF-Crime and XD-
Violence.

3.3.1.1 XD-Violence

The first datasets used are XD-Violence obtained from Wu et al. (2020). The
dataset is selected for several reasons. It covers six distinct categories of
physical violence, including Abuse, Car Accident, Explosion, Fighting, Riot,
and Shooting. This diverse range of violence types provides a comprehensive
representation of different violent events, making it a valuable resource for
training VAD models. By including a variety of violence categories, the dataset
ensures that the VAD model can generalize well across different types of

anomalies.

29

......-.. Riot
alllll il
Fa ¥ otivg
”"mo.;n;e
Figure 3.8: Sample Videos from XD-Violence Datasets

Besides, the XD-Violence dataset is compiled from both movies and
YouTube videos. This blend of sources enriches the dataset with a wide range
of scenarios, from scripted and staged violence in movies to real-world, in-the-
wild scenes from YouTube. This variety helps the VAD model to learn from
both controlled environments and more unpredictable, real-world situations,
enhancing its robustness.

The XD-Violence dataset is particularly suitable for VAD models due
to its precise frame-level annotations, which detail the start and end frames of
violent events, ensuring accurate temporal information. With a substantial
collection of 4,754 videos, including a diverse mix from movies and YouTube,
the dataset offers a broad range of scenarios and violence types. The high-
quality annotations, derived from multiple annotators and averaged for precision,
contribute to the dataset's reliability. Additionally, the inclusion of various
temporal locations within the videos helps the VAD model recognize anomalies

across different time frames, enhancing its overall robustness and generalization.

3.3.1.2 UCF-Crime

The UCF-Crime dataset's thorough and accurate depiction of abnormalities in
actual surveillance film makes it an excellent option for use in VAD systems. It
offers a comprehensive and diverse collection of 1,900 untrimmed movies,
showcasing 13 different types of anomalies that can occur in real-world
scenarios, such as stealing, abuse, fighting, and others, as shown in Figure 3.9.

This contrasts with other datasets provided, which frequently involve

30

constrained scenarios or unrealistic anomalies. These anomalies are chosen due
to their significant impact on public safety (Sultani, Chen, and Shah, 2018).
Because of this diversity, VAD models trained on this dataset are exposed to a
greater variety of scenarios, which enhances their capacity to generalize across

various violent and abnormal event types.

Accident

Explosion

w0
=
£
i3
s
=
&

Vandalism
Normal

Figure 3.9: Datasets from UCF-Crime

With 128 hours of footage total and an average of 7,247 frames per
movie, the dataset's large scale provides a significant amount of data for training
and testing VAD models. Detailed annotations offer precise temporal data
regarding the onset and duration of anomalous events, featuring frame-level
labels for testing and video-level labels for training. This degree of detail
improves the model's high-accuracy detection and differentiation between
normal and aberrant activity.

In addition, strict guidelines for video selection and annotation were
followed during the collection of the UCF-Crime dataset. To verify the accuracy
of the anomalies, videos that were taken from actual surveillance scenarios were
carefully reviewed to remove modified, prank, or non-CCTV material. The
comprehensive methodology used for data gathering and annotation enhances

the validity and significance of the dataset.

3.3.1.3 Overview of Datasets Used

31

Table 3.3 shows the summary of the two datasets used in this research.

Table 3.3: Comparison of the two datasets used

Feature

XD-Violence

UCF-Crime

Source of videos

and YouTube

(mixed realism)

Movies

Real-world CCTV

surveillance footage

Number of Video | 4,754 1,900 (untrimmed)
Clips
Violence videos | 2405 950
Non — violence | 2349 950
videos
Anomaly Types | 6 violence categories 13 real-world categories
Annotation e Video-level labels for training
e Frame-level labels for testing
3.3.2 Data Preprocessing

Before training deep learning algorithms, the video data must undergo several

preprocessing steps to ensure proper preparation. In this study, the UCF-Crime

dataset is readily available at the frame level on Kaggle, as provided by other

authors, allowing it to be used directly for further preprocessing. However, the

XD-Violence dataset is only accessible at the video level, requiring additional

preprocessing steps to extract frame-level data. Figure 3.10 shows the overview

of the dataset preprocessing steps applied to the datasets used.

Split Video

Mode| G

[batch_size, sequence_length, 3, 64, 64]

T % B W
i T T B

Batch Formation

Extract Frames

Resize to (64 64)

By 2

Frame Stacking
[sequence_length, 3, 64, 64]

Data Augmentations

Figure 3.10: Overview of Data Preprocessing Steps

32

3.3.2.1 UCF-Crime
3.3.2.1.1 Reconstruction of the Dataset

The UCF-Crime dataset utilised in this study comprises 1610 video sequences
covering 14 distinct classes. As shown in Figure 3.11, the dataset exhibits
significant class imbalances, with ‘Normal Videos’ representing the majority
class, posing challenges for model training for multi-classification. The dataset
consists of individual frames in small sizes rather than pre-arranged video
sequences. The frames were then reconstructed into video sequences by sorting
them based on their filenames. This involved sequentially ordering the frames
and labelling them according to their corresponding classes (Zvereva,
Kaprielova, and Andrey Grabovoy, 2025). The following steps are taken:

1. Frame Grouping: Frame sequences were reconstructed by identifying
and grouping related frames through filename pattern analysis. Each
frame’s unique video identifier was extracted to ensure proper temporal
grouping.

2. Class Annotation: Each video was categorized based on its folder
hierarchy, with labels corresponding to the particular anomaly type or
indicating normal behavior.

3. Analysis of Data Distribution: Analysis of the video lengths indicated
that the shortest sequence comprised 11 frames, while the longest
reached 97,651 frames. On average, sequences contained approximately

786.5 frames, with a median length of 222.5 frames.

Number of videos in each class

700

500

400

Number of videos

300

200

100

Vandalism

Class

Figure 3.11: Overview of Original Class Distribution in UCF-Crime

33

Video length distribution

700 1

600 1

500

Number of videos
a
S
5]
|

w
<3
e

| M
o -

o} 2000 4000 6000 8000
Video length (number of frames)

Minimum video length: 11
Maximum video length: 9488
Average video length: 516.39
Median lsngth video: 219.8

Figure 3.12: Distribution of Video Duration Under 10,000 Frames

Table 3.4: Count and Proportion of Videos Exceeding 2,500 Frames

Class Total Videos Percentage (%)
Abuse 1 1.61 %

Arrest 1 1.61 %
Burglary 2 3.23%
Fighting 2 3.23%
Shoplifting 2 3.23%

Normal Videos 54 87.10 %

Figure 3.12 demonstrates the variation in video sequence lengths, with
a noticeable occurrence of clips having a duration of up to 2,500 frames. To
enhance dataset balance, sequences exceeding 2,500 frames were removed, as
they were predominantly from the 'Normal' class. This step effectively reduced
the imbalance between classes, producing a final dataset with 1,528 video

sequences.

3.3.2.2 XD-Violence

XD-Violence dataset is only accessible at the video level, thus requiring
additional preprocessing steps to extract frame-level data. Moreover, the XD-
Violence dataset has different structures compared to UCF-Crime, thus
requiring unique handling. In the XD-Violence dataset, each video filename

encodes a class label, the labels are shown in Table 3.5.

34

Table 3.5: Label Explanation
Label Class
Bl Fighting
B2 Shooting
B4 Riot
B5 Abuse
B6 Car accident

G Explosion

For example: “Black.Hawk.Down.2001__ #01-13-59 01-14-49 label_B2-0-0”
indicates there are shootings in the video ‘Black.Hawk.Down.2001__#01-13-
59 01-14-49°.

3.3.2.2.1 Class Grouping

Based on the pattern shown in Figure 3.11 and 3.12, the videos are first grouped
according to their classes based on the label name in the video name, in order to

facilitate further frame extraction.

3.3.2.2.2 Frames Extraction

badboys-011155

oys01

badboys01 badboys01 badboys01 badboys01 badboyso1 uy o1 b cboy 01 ba au boys o badboyso1 b adboys01 badboys01 badboyso1 oys01 badl
115500911, 115500912, xssooevs 115500914, 115500915, 5500917, 115! 115500919, 115500920, 115500921 ssmmz ‘ ssomz; 115500924, ‘ ssowzs ussao 26, ussoovzr 15500023
png Py png pm ng n 9 png png png png png png ng

badboysd? badboysot badboysD! badbaysot badbosDi badboysot badbosdi badboyiot badboysdi badboyiot badhosdi badboysot badbosdl badboysot badbopsd! badboysot _ badboysdt badboyson
115500929, 115500930, 115500931, 115500932. 115500933 115500934. 115500935, 00936, 115500937 115500938, 115500939, 115500940 115500941, 115500942. 115500943, 115500944, 115500945, 115500946.
png png)) png png png o] png png png png png png prg prg png g

badboys01 badboys0l badboys0t badboys0l badboysOt badboys01 badboys01 badboyso1 badboysol badboys01 badboyso1 badboyso1 badboyso1 badboyso1 badboys01 badboyso1 badboys01 badboysot
115500947, 115500948, 115500949, 115500950. 115500951, 115500952 115500953. 115500954. 115500955. 115500956. 115500957. 115500956. 115500959, 115500960. 115500961, 115500962 115500963. 115500964
png prg o9 oy ong png png png png png png png png png png g png png

badboys01 badboys0! badboys01 badboysO1 badboys0l badboys0! badboys01 badboyso1 badboys0l badboys01 badboys01 badboys0l badboys01 badboys01 badboys01 badboys01 badboys01 badboysot
115500965, 115500966, 115500967. 115500968. 115500969 115500970. 115500971. 115500972 115500973 115500974. 115500975. 115500976 115500077. 115500978. 115500979, 115500980. 115500981. 115500982
png png png))) png png png png png png png png pog png png png

badboys01 badboys01 badboys01 badboys0! badboysO1 badboys01 badboys0l badboys01 badboys01 badboys01 badboys01 badboys01 badboys01 badboys01 badboys01 badboys0l badboys0l badboysot
115500984, 115500985, 115500986, 115500987 115500988. 115500989. 115500990. 115500991, 115500992 115500993 115500994, 115500995, 115500996 115500997, 115500998, 115500999, 115501000,
png png Py png png png png png png png png png png png png png png png

Figure 3.13: Frames extracted
The frames are then extracted from the video files of the XD-Violence dataset
to produce a series of frames in which the sequence forms a single video sample,
as shown in Figure 3.13. These frames capture the temporal changes in scenes
and serve as the primary input for subsequent analysis. Every 10" frame is
extracted from each full-length video. After extraction, all the frames are resized
to standardized dimensions of 64 x 64 pixels to maintain consistency across all

samples. This spatial normalization ensures uniform preprocessing while

35

preventing potential artifacts like distortion or blurring that could affect the

neural network performance, while also improving the computational efficiency.

3.3.2.2.3 Dataset Uploaded to Kaggle

After frames are extracted, the frame-level dataset is then uploaded to Kaggle,

so that it is further accessible through Kaggle API. Figure 3.14 shows the frame-

level dataset uploaded to Kaggle.

3.3.2.24

Q sea

XDViolence alo) (o cose E

DataCard Code (0) Discussion (0) Suggestions (0) Settings

About Dataset 2 Edn Usability
xtracted frames from th XD-Violence Dataset Licenes:
Content

Expected update frequency
Not specified Ed

Tags

XD-Violence (2 directories) S

About this directory

eeeeeeeeeee

Figure 3.14: Dataset Published on Kaggle

Reconstruction of XD-Violence Dataset

XD-Violence dataset utilised in this study comprises of 2460 video sequences

covering 6 distinct classes. Similar to UCF-Crime, the frames are then grouped

into video sequences by parsing filenames, and each video sequence is

categorized according to its folder structure, which determines its label.

Number of videos in each class

shooting

Figure 3.15: Overview of Original Class Distribution in XD-Violence dataset

36

Video length distribution

800 1

-
=
(=

S
o
=]

Number of videos

200

|1

0 2000 4000 6000 8000
Video length {(number of frames)

0

Minimum video length: 4
Maximum video length: 8747
Average video length: 378.33
Median length video: 245.9

Figure 3.16: Video lengths in XD-Violence when limited to 10,000 frames

Table 3.6: Count and Proportion of Videos Exceeding 2,500 Frames

Class Total Videos Percentage (%)
Explosion 1 3.33%

Riot 4 13.33 %
Normal Videos 25 83.33 %

Figure 3.15 shows the overview of original class distribution in XD-Violence
dataset. Figure 3.16 illustrates the variation in video sequence lengths, with a
noticeable occurrence of clips having a duration of up to 2,500 frames. To
enhance dataset balance, sequences exceeding 2,500 frames were removed, as
they were predominantly from the 'Normal' class (83.33%). This step effectively
reduced the imbalance between classes, producing a final dataset with 2,423

video sequences.

3.3.3

Data Augmentations

37

Figure 3.18: Data augmentations on XD-Violence

Similar to the data augmentations applied for UCF-Crime, a range of

augmentations was also applied to the XD-Violence dataset to enhance the

model's robustness and adaptability to practical conditions. Table 3.7 shows the

data augmentations applied, whereas Figures 3.17 and 3.18 show 5 examples of

augmented UCF-Crime and XD-Violence datasets, respectively.

Table 3.7: Data Augmentations Parameter applied

Augmentation type | Parameters Probability | Purpose
Gaussian Blur Kernel size: 5 30% Imitate out-of-focus
frames

Gaussian Noise Mean: 0.0, Std Dev: | 30% Simulate noise from
1.0 sensors

Color Jittering Brightness and | 30% Reflect lighting
Contrast variation: fluctuations
+30%

Random Rotation | Rotation angle: £15% | 20% Simulate camera

angle variations

3.34

Normalization

Input normalization was carried out using the typical RGB mean and standard

deviation values, as shown in Table 3.8, ensuring consistency in the input

distribution and aligning with established preprocessing norms in deep learning.

38

Table 3.8: RGB Mean and Standard Deviation Values

Color Channel Mean Standard Deviation
Red (R) 0.485 0.229
Green (G) 0.456 0.224
Blue (B) 0.406 0.225

3.3.5 Data Splitting

As part of the data splitting process, the dataset is segmented into training,
validation, and testing sets. Initially, video frame sequences from the training
directory are grouped by class and split into training and validation sets using a
stratified sampling approach, ensuring balanced class distribution. Specifically,
70% of the data is allocated for training, while the remaining 30% is reserved
for validation. This division improves model training and allows for evaluation
of generalization during the training process. Separately, an independent test set
is loaded from a designated test directory to assess the model’s final
performance. This structured splitting strategy ensures reliable model training,

validation, and performance evaluation.

3.3.6 Model Architecture
In MIL-based techniques, most of the VAD models consist of at least two
modules, which include the prediction head and backbone for video processing
(Sertis, 2023). In this research, the AnomLite model is a lightweight, yet
powerful architecture designed for video anomaly detection, combining spatial
feature extraction (using MobileNetV2) with temporal modeling (via LSTM).
The input videos are processed in combined batches, containing either
normal behaviours or abnormal events, as shown in Figure 3.19. These batches
are then passed through the AnomLite model. The model consists of three main
components: a spatial feature extractor, followed by a temporal modeling unit,
and then a fully connected layer. Using the processed video data, the model
produces a prediction that identifies whether the video shows normal activity or
contains any of 13 distinct anomaly types, including actions like fighting, arrest,

or other uncommon behaviors.

39

' I (Normal Video

* Input Video Dm AnomLite
Yxlei i
B)
Ed 5
mﬂ Lo - Anomaly Video

Figure 3.19: Spatio-temporal features from video batches processed by the

model (Zvereva, Kaprielova, and Grabovoy, 2025)

INPUT VIDEOS (20000, 3, 64, 64)

Features [B, 2500, 3, 64, 64)
MobileNetV2 - only first four layers Normal Event
m— —— —— - o p— - 261 r 1
— Initial Convolutional Layer with ReLU and (8, 2500, 1176) (8, 1176) (s, 14]
¢ ¢ t tch Normalization
Fully Connected
r

g g g Ba
L L B ‘

Inverted Residual Block

—» LSTM (last hidden state)
>

‘ 14 classes

~san tesian (one of 13 types)
Inverted Residual Block

Inverted Residual Block

(20000, |24, 16, 16)

Figure 3.20: Overview of AnomLite Model Structure (Zvereva, Kaprielova
and Andrey Grabovoy, 2025)

The model architecture begins with an input layer that takes a 5D tensor
of shape [batch_size, sequence_length, 3, 64, 64], representing batches of video
sequences with RGB frames resized to 64x64 pixels (Zvereva, Kaprielova, and
Andrey Grabovoy, 2025), as shown in Figure 3.20. Spatial feature extraction is
performed using only the first four layers of MobileNetV2, a lightweight
convolutional backbone optimized for efficiency. These layers consist of an
initial convolutional block followed by three InvertedResidual blocks, which
gradually refine the input with depthwise separable convolutions (Zvereva,
Kaprielova and Andrey Grabovoy, 2025).

Once the data passes through the MobileNetV2 layers, a max-pooling
operation is performed to decrease the spatial size of the feature maps. These
resulting features are then flattened to set them up for temporal analysis.

An LSTM model is used to capture temporal dependencies across
frames, processing input sequences of shape [8, 2500, 1176], which is the batch

size of 8, sequence length of 2500, and feature size of 1176. The model uses

40

only the final hidden state, producing a summary representation of shape [8,
1176].

Finally, a fully connected layer maps this representation to an output
tensor of shape [8,14], corresponding to 13 anomaly classes and 1 normal class

(Zvereva, Kaprielova, and Andrey Grabovoy, 2025).

3.3.7 Model Training

The model training process for the AnomL.ite architecture is designed to handle
video anomaly classification by leveraging both spatial and temporal features.
The model combines MobileNetV2, a lightweight convolutional neural network
pretrained on ImageNet, with an LSTM (Long Short-Term Memory) layer to
capture temporal dynamics across frames (Zvereva, Kaprielova and Andrey
Grabovoy, 2025). During training, only the first few convolutional layers from
MobileNetVV2 are used for feature extraction to maintain computational
efficiency. Initially, these convolutional layers are frozen to retain their
pretrained weights but are later unfrozen after the second epoch to allow fine-
tuning based on the target task.

In each training epoch, the model processes video clips represented as
sequences of image frames. The spatial features are extracted by MobileNetV2,
and then a MaxPool2d operation is used to reduce their spatial resolution. These
features are then flattened and passed through the LSTM, which models the
sequence information across frames. The final hidden state of the LSTM is
passed through a dropout layer and batch normalization, before being classified
by a fully connected layer (Zvereva, Kaprielova and Andrey Grabovoy, 2025).

Training uses a Cross Entropy loss function with class weights to
handle class imbalance, and Adam optimizer with an initial learning rate of
0.0002. Among all configurations, a learning rate of 0.0002 yielded the most
consistent and superior performance, with higher ROC AUC, AP, and weighted
F1-score results. In contrast, lower rates like 0.0005 led to slower training and
significantly lower accuracy. Higher learning rates, on the other hand,
introduced training stability, establishing 0.0002 as the ideal compromise
between rapid convergence and model stability. Additionally, SMOTE has been
used to further alleviate class imbalance by oversampling minority classes.
Figure 3.21 shows a comparison of the dataset with and without the application

41

of SMOTE. An early stopping mechanism is employed to terminate the training
process if the validation loss fails to improve over five consecutive epochs,
thereby mitigating the risk of overfitting. Throughout training, performance is
tracked using both micro and macro F1-scores, providing a robust evaluation
across both balanced and imbalanced datasets. Model checkpoints are saved
whenever a new best validation loss is achieved (Zvereva, Kaprielova, and
Andrey Grabovoy, 2025).

Class Distribution Before and After SMOTE

R Original Dataset
B SMOTE Dataset

]

Number of Samples.

Figure 3.21: Comparison of Dataset Before and After Applying SMOTE
(Zvereva, Kaprielova, and Andrey Grabovoy, 2025)

3.3.8 Loss Functions

In this model, the loss functions are vital in addressing the class imbalance issue
and improving the model's performance in detecting anomalies in video
sequences. Two primary loss functions were utilised: Weighted Cross-Entropy

Loss and Focal Loss.

The Weighted Cross-Entropy Loss is utilised to address the issue of class
imbalance by assigning higher weights to the underrepresented classes. This is
especially important in datasets where the "Normal” class dominates the data,

making it harder for the model to detect anomalies. The formula for this loss is:

C
L= = > i logp) (31)
i=1

Where w; is the weight assigned to class i, y; is the true label of class i (either
0 or 1), and p; is the predicted probability for class i. The weight w; is

calculated inversely proportional to the frequency of the class, meaning that

42

classes with fewer examples will have higher weights. This ensures that the
model pays more attention to the underrepresented anomaly classes, thus
mitigating the bias toward the normal class. The compute_class_weight function
from scikit-learn is used to calculate these weights, which are then incorporated

into the loss function during training.

Focal Loss was implemented to emphasize difficult-to-classify
samples and enhance the model's responsiveness to minority classes. Focal Loss
is designed to improve model performance on challenging samples by reducing
the influence of easily classified examples. It achieves this through down-
weighting, which shifts the model's focus toward harder instances and their
associated errors, rather than relying solely on prediction confidence. The

formula of this loss is:
L= —(1—p)"log(p,) (3.2)

The parameter vy, also known as the focusing or relaxation parameter, is adjusted
through cross-validation and determines how strongly the model concentrates
on difficult, misclassified samples during training. Higher values of y place
greater emphasis on these challenging cases, whereas lower values maintain a
more even focus between easy and hard examples. Despite this intent, it resulted
in a lower ROC AUC and accuracy, indicating suboptimal performance for this
task. Consequently, CrossEntropyLoss remained the preferred loss function for

the model.

3.3.9 Evaluation Metric

Performance evaluation is essential for understanding how well a model
differentiates between normal and abnormal events in video anomaly detection.
Area Under the ROC Curve (AUC) and Average Precision (AP) are the two
main evaluation metrics that are covered in this context. This is a thorough

discussion of these measurements along with the necessary calculations.

A common metric to evaluate a binary classifier's performance (normal
vs. aberrant) is the AUC. Plotting the Receiver Operating Characteristic (ROC)
curve, which contrasts the True Positive Rate (TPR) with the False Positive Rate

(FPR) at different threshold values, provides a summary of the model's

43

performance. The Receiver Operating Characteristic (ROC) curve shows the
performance of a classification model, and the Area Under the Curve (AUC)
reflects its capability to separate different categories. (Narkhede, 2018). True
Positive Rate (TPR), often referred to as recall or sensitivity, represents the
percentage of real positive instances, such as abnormal video frames, that are
accurately classified by the model:

TP (3.3)

TPR = Tp ¥ FpP

False Positive Rate (FPR) measures the proportion of negatives (normal frames)
that were incorrectly classified as positives (abnormal):
(34)

FPR= o5 77N

The second evaluation metric is the average precision (AP), which
summarises the precision—recall trade-off of the model. It is useful for
imbalanced datasets, like anomaly detection, where there are fewer

positive(abnormal) examples.

Precision measures the proportion of positive identifications that are
correct:

p_ TP (3.5)
~ TP +FP

Recall evaluates the fraction of true positives that are accurately identified. AP
is calculated by integrating the Precision-Recall (PR) curve, which visualizes
precision versus recall across various threshold values. The actual area under

the curve can be defined as:

AP = flp(r)dr (3.6)
0

where p(r) is the precision at recall r.
In this model, various metrics were used to evaluate performance,

particularly for multiclass classification, where the task involves identifying

anomalies across multiple classes. These metrics include F1-Micro, F1-Macro,

44

and Accuracy, each offering a unique viewpoint on how effectively the model
distinguishes between different classes.

The F1-Macro score refers to the unweighted average of the F1-scores

across all types of classes. It is calculated by:

1 ¢ (3.7)
F1— Macro = C ZFl — Score;
i=1

Where C is the number of classes, and F1 — Score; is the F1 score for class i.
This metric gives an equal weight to all classes, regardless of their frequency,
making it particularly useful when there is class imbalance, as it does not favor
the majority class. The F1-Micro score combines the TPs, FPs, and FNs from
all classes into a single metric, offering an overall assessment of the model’s

precision and recall across all decision thresholds. It is calculated as:

2 - Precision - Recall (3.8)

F1 — Mi =
tero Precision + Recall

This approach is useful for situations where all classes need to be
treated equally, regardless of their individual sizes. The F1-Micro score tends to
be higher when the model performs well on the majority class, but it can mask
poor performance on minority classes.

Accuracy quantifies the overall correctness of the model by computing
the ratio of correctly predicted instances to the total number of predictions made

across all classes. It is calculated by:

TP + TN (3.9)
TP + TN + FP + FN

Accuracy =

3.3.10 Model Optimization

In this study, dynamic quantization was employed to optimize the AnomL.ite
model for efficient inference, particularly on resource-constrained devices such
as edge processors or CPUs. Quantization is a model compression technique
that reduces the precision of the weights and, in some cases, activations from
FP32 to a lower bit-width format, INT8. Specifically, dynamic quantization was

chosen due to its simplicity and effectiveness for models with recurrent

45

components like LSTMs, which are central to AnomLite ’s architecture for
processing temporal video data.

a)

Fully Connected
|, LSTM (last hidden state) i Layer
14 classes

_/

Figure 3.22: Layers Selected for Quantization

As shown in Figure 3.22, dynamic quantization is a post-training
quantization (PTQ) that quantizes the weights of selected layers, which are the
LSTM and Linear layers, at runtime while keeping the activations in floating
point. This contrasts with quantization-aware training (QAT), which simulates
quantization effects during the training process and typically yields higher
accuracy but requires retraining with added complexity. These layers were
selectively quantized to 8-bit integers (torch.qint8), while the convolutional
layers and activation functions were preserved in their original floating-point
32-bit precision (FP32). This selective quantization approach allows the model
to benefit from reduced memory and computational costs while maintaining the
integrity of key components crucial for performance. This process involving
PTQ did not require changes to the training pipeline or loss of model
compatibility.

After quantization, the model exhibited reduced memory usage and
inference time, while maintaining performance within acceptable limits. The

use of dynamic quantization allowed for faster execution on CPU-based systems.

3.3.11 Inference Implementation

The sliding window approach is particularly advantageous for video anomaly
detection models, such as the one used in this inference pipeline, because it
allows the model to maintain temporal context while processing video in smaller,
more manageable chunks. In anomaly detection, detecting abnormal events

often relies on the model's ability to understand the progression of normal and

46

abnormal behaviors over time. The sliding window approach ensures that the
model evaluates a consistent sequence of frames, which is essential for
capturing the temporal patterns of normal and anomalous events.

Moreover, this method helps balance computational efficiency with
accuracy. Instead of processing the entire video at once, which would be
computationally expensive and slow, the sliding window allows for real-time
processing by analyzing only a subset of frames at any given time. This not only
reduces memory and processing time but also allows for continuous,
incremental predictions as the video progresses. For anomaly detection, where
subtle variations in behavior may appear over time, this approach is ideal as it
ensures that the model can continuously learn from the evolving sequence of

frames, making it more responsive to dynamic changes in the video stream

3.4 Gantt Chart
This section presents the Gantt charts for both semesters, with Figure 3.23

showing the chart for Semester 1 and Figure 3.24 for Semester 2.

Gantt Chart
Planned

Completion
No. Project Activities Date W1 W2 W3 w4 W5 We W7 Wwe W W10 W11 W12 W13 W14 W15 Wi W17

1 Title registration, confirmation and 2024-06-18
meeting with supervisor to understand the
overview of the project

2 Study the previous projects, online articles ~ 2024-07-05
and reading materials sent by supervisor

3 Set up development environment and 2024-07-12
required software
4 Preliminary Testing/Investigation 2024-08-30 .-.-..--
5. Report Writing and Presentation 2024-09-20 ----

Figure 3.23: Gantt Chart for FYP1

Gantt Chart

Planned
Completion
No. ProjectActivities Date W1 w2 w3 W4 W5 We W7 WB W3 W10 W11 W12 W13 W14 W15 WI1e W17

1 Literature review and dataset selection 2025-02-21 ll

2 Initial system design and framework 2025-03-14
setup

3 Datasets training 2025-03-28

4 Improvements on the model 2025-04-11

5 Performance evaluation 2025-04-18

6. Report Writing 2025-05-09

7 FYP poster and presentation 2025-05-16
preparation

8 FYP Report final submission 2025-06-06

Figure 3.24: Gantt Chart for FYP2

47

3.5 Summary

This chapter details the comprehensive methodology used to develop the video
anomaly detection system, encompassing dataset selection, preprocessing steps,
model architecture design, training strategies, and the evaluation protocol. The
study utilized two well-known benchmark datasets, including UCF-Crime,
which contains real-world CCTV footage with 13 anomaly classes, and XD-
Violence, composed of violence-related video clips from movies and YouTube
featuring 6 categories. To ensure consistency and effectiveness, several key
preprocessing steps were implemented. This included frame extraction using a
1-in-10 sampling rate for XD-Violence, sequence reconstruction by organizing
frames in temporal order, and class balancing strategies such as trimming
lengthy normal videos and applying SMOTE for oversampling
underrepresented classes. To enhance the model's performance, a range of data
augmentation methods were employed, such as adding Gaussian noise and blur,
adjusting color through jittering, and rotating images.

The proposed framework, AnomLite, integrates MobileNetV2 and
LSTM in a lightweight yet effective design. Specifically, the first four layers of
MobileNetV2 were used for spatial feature extraction, reducing computational
load while preserving visual features. The extracted features, represented as
1176-dimensional vectors, were input into an LSTM module to capture
temporal dependencies. This was followed by a fully connected classification
head that mapped the sequences into 14 separate classes. To address class
imbalance and enhance the model's ability to generalize, the training process
incorporated a combination of weighted cross-entropy loss. Additional
regularization methods included dropout with a probability of 0.3, batch
normalization, and early stopping based on validation performance. The model
was trained using Google Colab's A100 GPU with 40GB of VRAM to ensure
efficient computation and faster convergence.

For performance evaluation, the protocol included a mix of binary and
multiclass metrics to fully assess the model’s effectiveness. This covered
common evaluation standards such as AUC-ROC and Average Precision for
detecting anomalies, as well as F1-Micro and F1-Macro scores for analyzing

multiclass classification accuracy.

48

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter outlines the training and testing processes for the video anomaly
detection and classification model, their performance on two datasets,
performance during inference, model optimization, and further model
comparison. The model's effectiveness is demonstrated through metrics like AP,
AUC, accuracy, and other performance metrics. The evaluation reflects the

model’s accuracy in detecting normal and abnormal video segments.

4.2 Performance Evaluation on UCF-Crime

The AnomL.ite model is assessed using a range of critical performance metrics,
evaluating different scenarios, binary and multi-class classification. These
evaluation measures offer a thorough insight into the model's effectiveness in
distinguishing between non-violence and violence video segments, even in the

presence of class imbalance. The corresponding metric outcomes are presented

below.
Table 4.1: Performance Metrics of AnomLite on UCF-Crime
Key metrics Value
AP 0.99
AUC 0.99
Accuracy 0.94
F1-Macro 0.93
F1-Micro 0.93
F1-Weighted Avg 0.94
Recall (Macro Avg) 0.94
Precision (Macro Avg) 0.95

421

Figure 4.1 shows the confusion matrix of the model on UCF-Crime, whereas
the first rows refer to the normal class and the second row refers to the anomaly
class. It is seen that the model correctly identified 487 normal videos (True
positives), demonstrating strong specificity in recognizing non-anomalous
events. The model also classified 592 actual instances of anomalies (True
negatives). The low false positive rates, showing only 6 normal videos were

misclassified as anomalous, and the low false negative rates, showing 63

Confusion Matrix of AnomLite on UCF-Crime

True Labels

Figure 4.1: Confusion Matrix of AnomLite on UCF-Crime

NormalVideos

Other Classes (Anomalies)

Confusion Matrix

Other Classes (Anomalies)
Predicted Labels

NormaiVideos

anomalous videos were incorrectly flagged as normal.

4.2.2

ROC AUC of AnomLite on UCF-Crime

True Positive Rate

ROC for "NormalVideos" vs Other Classes

0.8 1

0.6

0.4 1

0.2 1

-, ROC curve (area = 0.99)

0.0

T T T T
0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4.2: ROC AUC on UCF-Crime

500

400

- 300

- 200

-100

49

50

Figure 4.2 illustrates the result of AnomLite on the UCF-Crime dataset, the
ROC curve, which serves as a visual tool for evaluating the performance of a
binary classification model across various threshold settings. The graph trends
toward the upper left region, signifying that the model achieves a strong true
positive rate alongside a low false positive rate across different thresholds.
Additionally, the area under the ROC curve (AUC) is nearly 1, reflecting the
model’s strong ability to differentiate between normal and abnormal instances,
and indicating reliable and consistent performance, while maintaining system

robustness.

4.2.3 PR Curve of AnomLite on UCF-Crime

Precision-Recall Curve for "NormalVideos" vs Other Classes

1.0 4

0.9 -

0.8

Precision

0.6 4

0.5
= PR curve (AP = 0.99)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 4.3: PR Curve on UCF-Crime
Figure 4.3 shows the PR Curve. It can be observed that a strong upward trend is
curved towards the top-right corner, indicating that the model can distinguish
anomalies from normal events well. Moreover, the area under the PR Curve (AP)
provides a comprehensive summary of the model’s effectiveness across the full
range of recall values. An average precision of 0.99 indicates that the model
maintains high precision while simultaneously detecting true anomalies, even

under inherent class imbalance of video anomaly datasets.

51

424 F1 Scores and Loss

Loss Over Time F1 Micro Over Time
—— Train Loss 0od — Train F1 Micro
2.5+ Validation Loss validation F1 Micro
0.8
2.0 0.7
© 06
?1s 2
05
s
104 0.4
- 0.3
<N
0.5 “_\V 0.2
T T 014 T T
0.0 2.5 5.0 75 10.0 12.5 15.0 17.5 0.0 2.5 5.0 75 10.0 125 15.0 17.5
Epochs Epochs
F1 Macro Over Time
—— Train F1 Macro
Validation F1 Macro
0.8
v 0.6
S
o
&
I
0.4 4
0.2
0.0 25 5.0 75 10.0 125 15.0 17.5

Figure 4.4: F1 Scores and Loss
Figure 4.4 shows the F1 Scores and loss over time. It can be observed that during
training, both Training F1-micro and Validation F1-micro scores steadily
increase, indicating that the model became more effective at correctly
identifying both normal and anomalous events across all samples, regardless of
class imbalance. Similarly, the growth in Training F1-macro and Validation F1-
macro scores reflects improved performance across each class equally,
suggesting that the model not only learned to detect dominant classes but also
performed better on minority classes. Meanwhile, the gradual decrease in both
training and validation loss demonstrates that the model continuously

minimized prediction errors and improved its confidence over time.

52

Per-Class Accuracy

Per-Class Accuracy

1.0 4

0.8 4

Accuracy

0.4 4

0.2 1

0.0

T T T T
o
& & & N \,as“s ,-0\0‘\ ,-\\i\‘:" o‘fg@d @‘q_qé“)"\\(‘q '\\e@ _6@0"
i& v o \\:\‘)} Q\O "(‘&\ obeéo o Q\\ P ,\\6@ S
T Sf‘t' T @0 & 2
& <

Classes

Figure 4.5: Per-Class Accuracy on 14 Classes in UCF-Crime Dataset

Table 4.2: Per-Class Accuracy on 14 Classes in UCF-Crime Dataset

Class Accuracy
0 (Abuse) 0.97
1 (Arrest) 0.94
2 (Arson) 1.00
3 (Assault) 0.89
4 (Burglary) 0.98
5 (Explosion) 1.00
6 (Fighting) 1.00
7 (Road Accidents) 0.98
8 (Robbery) 0.88
9 (Shooting) 1.00
10 (Shoplifting) 0.95
11 (Stealing) 0.99
12 (Vandalism) 1.00
13 (Normal Videos) 0.90

53

Figure 4.5 and Table 4.2 present the per-class accuracy for 14 classes in the
UCF-Crime dataset. The high per-class accuracy demonstrates that the model is

effective at distinguishing between different categories of video anomalies.

4.3 Performance Evaluation on XD-Violence

This section demonstrates the model’s performance on the XD-Violence dataset,
which comprises a wide variety of video scenes collected from sources like
YouTube, movies, and online platforms. Different from UCF-Crime dataset,
which primarily consists of real-world CCTV surveillance footage, XD-
Violence focuses on a wide range of environments, camera angles, and scene
dynamics. The performance evaluation of the model AnomLite offers a
thorough insight into the model's effectiveness. The results of these metrics are
as follows:

Table 4.3: Performance Metrics of AnomLite on XD-Violence

Key metrics Value
AP 0.97
ROC AUC 0.98
Accuracy 0.93
F1-Macro 0.87
F1-Micro 0.89
F1-Weighted Avg 0.93
Recall (Macro Avg) 0.91
Precision (Macro Avg) 0.94

54

4.3.1 Confusion Matrix of AnomLite on XD-Violence
Confusion Matrix

800

g
@ 700
R
% 1 332 17
600
£
—
2
u 500
[
o
C —
0
g 2 - 400
(1]
FE
(=] |
c 300
<
w - 67
g - 200
wn
o
[w]
- - 100
[«
=
bt
o - .
NormalVideos Other Classes (Anomalies)

Predicted Labels

Figure 4.6: Confusion Matrix of AnomLite on XD-Violence

Figure 4.6 shows the confusion matrix of the model on the second dataset, XD-
Violence, in which 332 normal videos are correctly identified (True Positives)
and 831 anomalous videos were correctly flagged as anomalies (True
Negatives). The low false positive of 17 indicates 17 normal videos were
wrongly labelled as anomalous, and false negative of 67 indicates 67 anomalous

videos were incorrectly flagged as normal.

43.2 ROC AUC of AnomLite on XD-Violence

ROC for "NormalVideos" vs Other Classes

1.0 4 1
”
”
-~
”
-~
>~
0.8 P
//
] e
] ”
* 0.6 1 Ple
E 7
=} -
[}
g et
S 0.4 e
= »”
,
”
rd
”
PR
0.2 1 P
”
-’
PRy
e ROC curve (area = 0.98)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 4.7: ROC AUC Curve of AnomL.ite on XD-Violence
Figure 4.7 displays the ROC curve, where the line bends toward the top-left
corner. This shows that the model achieves a high true positive rate and a low
false positive rate across different threshold values. In addition, the area under

55
the ROC curve (AUC) is 0.98, which indicates the model performs well in

telling apart normal and abnormal events, while staying consistent and reliable.

4.3.3 Average Precision (AP) of AnomL.ite on XD-Violence

Precision-Recall Curve for "NormalVideos" vs Other Classes

1.0+

0.9 1

Precision
o o
(=] ~
1 il

0.4 1

= PR curve (AP = 0.97)

0.3

T T T T T T
0.0 0.2 0.4 0.6 0.8 10
Recall

Figure 4.8: PR Curve on XD-Violence dataset
Figure 4.8 illustrates the Precision-Recall (PR) Curve for the XD-Violence
dataset. A noticeable upward curvature towards the top-right corner reflects the
model's strong capability in differentiating anomalous events from normal ones.
Additionally, the area under the PR Curve, represented by the Average Precision
(AP), captures the model's performance across varying recall thresholds. With
an AP of 0.97, the model demonstrates high precision while effectively
identifying true anomalies, even in the presence of the class imbalance typical

of video anomaly detection datasets.

4.3.4

Loss

F1 Score

0.9

0.8

074

0.6

0.5

0.4

0.3+

F1 Scores and Losses

Loss Over Time

—— Train Loss
Vvalidation Loss

F1 Micro Over Time

0.9 1 — Train F1 Micro
Validation F1 Micro

S
r/_//_

0.0 25 5.0 75 10.0 125 15.0
Epachs

F1 Macro Over Time

0.0 25 50 15 10.0 12.5 15.0
Epochs

17.5

0.0 25 5.0 75 100 125 15.0 175
Epochs

Figure 4.9: F1 scores and losses on XD-Violence dataset

56

Figure 4.9 shows the F1 Scores and loss trend during training on the XD-

Violence dataset. Both Training and Validation F1-micro steadily increased and
demonstrated the model’s improved ability to identify normal and anomalous

events overall. The improvement in Fl-macro scores indicates better

performance across all classes, including less frequent ones. In the meantime,

the steady drop in loss points to fewer errors in predictions and increasing model

confidence.

435

Per-Class Accuracy

Per-Class Accuracy

0.8 1
0.6
-
o
c
=
< 0.4+
0.2 -
0.0 T T T T T T
e o
S & & & S «°
& & © F 4% &
& Q s) o
& &
<

Classes

Figure 4.10: Per-Class Accuracy on XD-Violence Dataset

Table 4.4: Per-Class Accuracy on XD-Violence

57

Class Accuracy
Class 0 (Abuse) 0.94
Class 1 (Car Accidents) 0.95
Class 2 (Explosion) 0.85
Class 3 (Fighting) 0.90
Class 4 (Normal Videos) 0.86
Class 5 (Riot) 0.91
Class 6 (Shooting) 0.79

Figure 4.10 and Table 4.4 present the per-class accuracy for 6 classes in the XD-

Violence dataset. The high per-class accuracy demonstrates that the model is

effective at distinguishing between 6 different categories of video anomalies.

58

4.4 Performance of AnomL.ite model (Inference)
This section presents the outcome of the model’s prediction on previously

unseen real-world videos, alongside its performance during real-time inference.

441 Prerecorded video

Figure 4.11: A Detected Frame classified as 'Fighting' on Unseen Data

59

Figure 4.12: Prediction of the model on ‘Fighting’ frames by frames on a

video sequence
Figure 4.11 shows an example of a detected frame classified as 'Fighting’,
whereas Figure 4.12 illustrates the frame-by-frame prediction of the model on a
video sequence depicting a ‘Fighting’ event. Each frame’s classification output
indicates how the model detects and localizes the anomalous event activity over
time. This visualization helps assess the model’s temporal consistency and
sensitivity in identifying suspicious behaviour as it unfolds within a continuous

video stream.

60

Table 4.5: Model predictions on unseen real-world videos, multiclass labelled

Arson
: N w Lmtnsonsusps?:fs;\c%:)mmvl
Abuse , = = T :-3; = “ ;-:"-:-
Arrest | /fArrest (0.83) g% | /Arrest (0.98)
Burglary
Explosion
Fighting
Road cadAccidents (0.77)
Accidents -

61

Robbery

Stealing

Vandalism

The model's predictions on unseen real-world videos are shown in Table 4.5,
along with multiclass labels for different anomalous events. Each row represents
a distinct class of event, such as 'Arson,' 'Abuse,’ 'Arrest," and others, showing
how effectively the model identifies different types of incidents. The table
demonstrates how the model can generalize to a variety of situations, correctly
categorizing films that are not included in the training set. This evaluation is
critical to understanding the model's robustness and its potential for real-world

deployment in surveillance systems.

62

44.2 Real-Time Streaming

This section demonstrates the model’s detection results for the ‘Fighting’ event
captured from various angles in the campus library, as illustrated in Figures 4.13,
4.14, 4.15, and 4.16.

Figure 4.15: Detection of Fighting from another side view

63

Figure 4.16: Detection of Fighting from another higher view

This section demonstrates the model’s performance in detecting
‘Fighting” events from multiple perspectives within a campus library
environment, as shown in Figures 4.13 to 4.16. The model accurately identifies
the event from different camera angles, including bottom, corner, side, and
higher vantage points, thus illustrating its robustness across varying

environmental conditions.

443 Summary of Inference

In short, two testing strategies were used in this study to evaluate the model's
inference abilities in real-world situations. In the first method, pre-recorded
videos were uploaded, especially for unusual occurrences like arson, explosions,
or armed robberies that are dangerous or difficult to reproduce in real life. These
videos, often sourced from public datasets or online platforms, ensured the
inclusion of rare and complex events during evaluation. The second strategy
focused on incidents that are comparatively simpler and safer to mimic,
including fighting, and used real-time video capture via a webcam. This real-
time testing made it possible to evaluate the model's flexibility and reactivity in
dynamic, real-time environments. The results of this approach are shown in
Section 4.4.2, which shows that fighting incidents that were captured from
different perspectives inside the campus library setting were successfully
detected.

64

4.5 Model Optimization
45.1 Results of Model Optimization

Is rnn guantized? True
Is fc layer quantized? True
FC layer dtype: torch.gint8

Figure 4.17: Quantization Verification

(3): InvertedResidual(
(conv): Sequentialf
(e): Conv2dNormActivation(
(8): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(144, eps=1e-85, momentum=@.1, affine=True, track running stats=True)
(2): RelLUs(inplace=True)
)
(1): Conv2dNormActivation(
(8): Conv2d(144, 144, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=144, bias=False)
(1): BatchNorm2d(144, eps=le-85, momentum=@.1, affine=True, track_running_stats=True)
(2): RelLUs(inplace=True)

(2): Conv2d(144, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): BatchNorm2d(24, eps=1e-85, momentum=@.1, affine=True, track_running_stats=True)
)
)

)
(maxpool): MaxPool2d(kernel size=3, stride=2, padding=8, dilation=1, ceil_mode=False)
(rnn): DynamicQuantizedLSTM(1176, 1176, batch_first=True)
(dropout): Dropout(p=0.3, inplace=False)
(batch_norm): BatchNormld(1176, eps=1e-@5, momentum=8.1, affine=True, track_running_stats=True)
(fc): DynamicQuantizedlLinear({in_features=1176, out_features=14, dtype=torch.qint8, gscheme=torch.per tensor_affine)

Figure 4.18: Parts of Quantized Model Architecture

Quantized Layer Details:

ran: <class 'torch.ac.nn.quantized.dynamic.modules.rnn.L5TM >
- Input size: 1176
- Hidden size: 1176

- All quantization parameters are calculated dynamically during inference

fc: <class "torch.ao.nn.quantized.dynamic.modules.linear.Linear'>
- Dtype: torch.gint8

Figure 4.19: Quantized Layer Details

Figures 4.17, 4.18, and 4.19 show that dynamic post-training quantization
approach has been successfully applied to the model. The model’s architecture
mainly consists of LSTM (RNN) layers and fully connected (FC) layers. As
shown in Figures 4.18 and 4.19, these layers were selectively quantized to 8-bit
integers (torch.qint8), while the convolutional layers and activation functions
were preserved in their original floating-point 32-bit precision (FP32). This
selective quantization approach allows the model to benefit from reduced
memory and computational costs while maintaining the integrity of key
components crucial for performance.

The quantized layers demonstrated a significant reduction in memory

usage, resulting in an approximately 4x decrease in overall model size. This

65

optimization significantly enhances the model’s deployability on edge devices

with limited storage capacity. Table 4.6 shows the comparative analysis of the

original and quantized models.

Table 4.6: Comparative Analysis of Original vs. Quantized Model

Feature Original Model Quantized Model

LSTM Type LSTM DynamicQuantizedLSTM
Linear Layer (FC) FP32 torch.qint8

Weight Storage 32-bit 8-bit

Activation Precision FP32 Dynamic FP32 converted

to int8 on-the-fly

66

45.2 Performance of Quantized Model

Table 4.7: Comparison of performance of both models on the same video

frames
Original Model Quantized Model
Confidence: Fighting (0.84) Confidence: Fighting (0.83)

Confidence: Fighting (0.84) Confidence: Fighting (0.83)

Confidence: Fighting (0.98) Confidence: Fighting (0.97)

nh

Confidence: Arson (0.74) Confidence: Arson (0.73)

67

N .;
* [ZZ80] ARSON SUSPECTS ACCIDENTALLY SET THEMSELVES ON FIRE 800 ARSON SUSPECTS ACCIDENTALLY SET THEMSELVES ON FIRE
3 5:.46 5:46

To compare the performance between the original model and the quantized
model, random frames were selected. Table 4.7 shows the results of
performance results of both models on the same video frames. It is observed that
there is only a minimal impact on the model’s output confidence scores. When
evaluated on identical input frames, the quantized model demonstrated an
average confidence reduction of only 0.01 relative to the original full precision
(FP32) model, as illustrated in Figure 4.20.

Lo Confidence Scores: Orlglnalo\ﬁ Q%gptlzed Model
Original

B Quantized

0.84 0.83 0.84 0.83
0.8+
0.74 0.73
) [
0.0

Fighting #1 Fighting #2 Fighting #3 Arson

o
o

Confidence Score
o
=

N

Figure 4.20: Comparison of Model Confidence for Both Models
Importantly, the quantized model retained the ability to detect
anomalous events with almost identical certainty, ensuring consistent prediction
quality. Thus, the selective dynamic quantization, especially for LSTM and
fully connected layers, retained the performance and enables substantial

efficiency gains without compromising model accuracy.

68

4.6 Performance Evaluation of Original and Optimized Model
Quantization not only reduces the precision of model weights and activations
but also significantly enhances the model’s computational efficiency and
deployability. As shown in Table 4.8, the original full-precision model occupies
approximately 42.4 MB, whereas the quantized model is reduced to just 10.7
MB, resulting in a compression ratio of nearly 4x. This substantial reduction in
memory footprint is critical for deployment on resource-constrained devices,
particularly those without dedicated GPUs.
Table 4.8: Comparison of Computational Resources before and after

Quantization

Aspect Before After
Model Size 42.4 MB 10.7 MB
Hardware Requirement | A100 GPU (40GB VRAM) | CPU Only

Moreover, the quantized model no longer depends on high-end
hardware. The original model required an NVIDIA A100 GPU with 40GB
VRAM for inference, whereas the quantized version operates efficiently on a
CPU-only environment, significantly expanding its potential for real-time
applications in edge computing and embedded systems.

Table 4.9 further highlights the runtime performance, particularly the
frames per second (FPS) throughput for both the original and quantized models.
When evaluated on two video sources, the original FP32 model, executed on a
high-end GPU (A100 GPU), achieved 44.67 FPS and 39.17 FPS, respectively.
In contrast, the quantized model running on CPU achieved 15.16 FPS and 9.21
FPS, which, while lower than the GPU version, remains viable for near real-
time processing. Given the absence of GPU dependency, this performance
represents a favourable trade-off between speed and resource efficiency.

Table 4.9: Comparison of FPS on Both Models

Source FPS (on GPU) FPS (on CPU)
Video 1 44.67 15.16
Video 2 39.17 9.21

Together, these results emphasize the practical benefits of quantization
in terms of model size reduction, hardware flexibility, and computational

efficiency, all while maintaining acceptable real-time processing speeds and

69

detection accuracy. This makes the quantized model a compelling choice for
low-power deployments such as surveillance cameras, mobile devices, or

embedded systems.

70

4.7 Performance Comparison with BN-WVAD

This section presents the comparative analysis between the AnomLite model
and BN-WVAD, one of the top-performing methods with a high ranking on
Papers with Code. BN-WVAD incorporates batch normalization to enhance
training stability and has demonstrated strong performance in the weakly
supervised video anomaly detection task. Therefore, the model is implemented
to facilitate a comparison with the previous approach. The performance of the
BN-WVAD model is shown on WandB, an Al developer platform used to track
machine learning work.

4.7.1 Performance on XD-Violence

s et sttt L5 MM L " L asten,

Figure 4.21: Charts of Performance on Wandb (XD-Violence)

Table 4.10: Performance Metrics of BN-WVAD on XD-Violence

Metrics Result
AP 78.78
AUC 93.18
best_AP 83.97
best AUC 94.50

Figures 4.21 and Table 4.10 present the results of BN-WVAD on the XD-
Violence dataset. While the performance is quite good, achieving a high AUC
of 94.50 and AP of 83.97, it does not surpass the results achieved by AnomL.ite,
indicating there is still room for improvement in capturing certain types of

anomalies.

71

4.7.2 Performance on UCF-Crime

Figure 4.22: Charts of Performance on Wandb (UCF-Crime)

Table 4.11: Performance Metrics of BN-WVAD on UCF-Crime

Metrics Result
AP 36.26
AUC 87.24
best_ AP 38.13
best. AUC 87.24

Figure 4.22 and Table 4.11 present the performance of BN-WVAD on the UCF-
Crime dataset. The model achieves a good AUC of 87.24, indicating strong
discrimination capability. However, the AP of 36.26 is relatively low,
suggesting that while the model can distinguish between normal and anomalous
events, it struggles with the precise localization of anomalies. Compared to
AnomL.ite, the performance is not as strong, particularly in terms of AP,

highlighting areas where further improvement is needed.

72

4.7.3 Overview of Comparison
Table 4.12: Comparison of Performance Metrics of Both Models

Dataset Metrics | BN-WVAD | MobileNetV2-LSTM
UCF-Crime | AP 0.36 0.99

AUC |0.87 0.99
XD-Violence | AP 0.79 0.97

AUC]0.93 0.98

This comparison highlights that AnomL.ite outperforms BN-WVAD on both the
UCF-Crime and XD-Violence datasets concerning Average Precision (AP) and
Area Under Curve (AUC). For UCF-Crime dataset, AnomL.ite achieves a high
AP and AUC of 0.99, while BN-WVAD lags with a much lower AP of 0.36 and
AUC of 0.87. For XD-Violence dataset, AnomLite maintains strong
performance, AP of 0.97 and AUC of 0.98, still ahead of BN-WVAD, which
has an AP of 0.79 and AUC of 0.93. Although BN-WVAD introduces a unique
methodology, it showed lower performance in addressing imbalanced datasets
in comparison to AnomL.ite, which utilizes a weighted cross-entropy loss.

4.8 Summary

Chapter 4 provides an in-depth assessment of video anomaly detection through
the AnomLite architecture. The results are organized to compare baseline
performance from the baseline model and enhancements introduced in this work.
Section 4.2 reports the performance of the baseline model on the UCF-Crime
dataset. Evaluation includes the confusion matrix, ROC AUC, precision-recall
(PR) curves, F1 scores, and per-class accuracy. These results serve as a
benchmark for subsequent comparisons.

Starting from Section 4.3, the chapter transitions to this work’s
contributions, applying the AnomL.ite model to the XD-Violence dataset, which
is one of the well-known datasets in video anomaly detection. This section
mirrors the evaluation methodology used earlier, presenting the confusion
matrix, ROC AUC, average precision (AP), F1 scores, and per-class accuracy,
thereby demonstrating the model’s effectiveness on a more compleX,

multimodal dataset.

73

Section 4.4 evaluates the inference capabilities of the trained model on
both prerecorded and real-time video streams, highlighting its potential for real-
world deployment. A summary of inference behavior is provided.

Section 4.5 introduces model optimization techniques, particularly
quantization, to reduce computational overhead. Experimental results show that
these optimizations preserve performance while improving efficiency, enabling
the model to perform effectively in resource-constrained settings, optimizing
the model for accessibility on lower-end GPUs, even CPUs, making it more
user-friendly. In Section 4.6, the optimized model’s inference performance is
further analyzed to ensure its robustness under real-time constraints.

Finally, Section 4.7 offers a detailed performance comparison between
this AnomLite model and the BN-WVAD model. The evaluation across both
XD-Violence and UCF-Crime datasets provides a comprehensive overview of
the improvements achieved, emphasizing gains in accuracy, inference, and

deployment viability.

74

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In conclusion, this research presents an optimized deep learning framework for
video anomaly detection, addressing key challenges in computational efficiency
and class imbalance across diverse surveillance scenarios. The lightweight
AnomLite architecture, with only 11 million parameters, achieved good
performance on both of the datasets, UCF-Crime and XD-Violence, with ROC
AUC of 0.99 and average precision of 0.99 on UCF-Crime and a ROC AUC of
0.98 and average precision of 0.97 on XD-Violence. The model also achieves
high accuracy of 94% on UCF-Crime and 93% on XD-Violence, with strong F1
scores across both datasets (F1-Micro 0.93 on UCF-Crime, 0.89 on XD-
Violence. Moreover, inference on prerecorded videos and real-time capturing
of different angles successfully captured and identified the correct anomalous
events that happened. Moreover, further optimizations achieved remarkable
efficiency gains. Memory optimization has been successfully implemented,
resulting in a 70% reduction in model size, from 42.4MB to 10.7MB, through
strategic quantization. This approach balances accuracy and inference speed,
making it well-suited for deployment on low-resource edge devices using only
CPU.

Despite the challenges, such as imbalanced dataset, memory hardware
requirement, cross cross-entropy loss function with SMOTE was applied to deal
with the imbalanced dataset problem. With further data augmentations such as
Gaussian noise, blur, and colour jitter augmentations, this enhances the
robustness of the model.

This research contributes to advancing the anomaly detection field by
balancing efficiency and effectiveness, particularly in the challenging domain

of multi-class anomaly recognition.

75

5.2 Recommendations for future work

In future work, the model can be further optimized by expanding dataset
coverage, that is, collecting additional video samples of visually similar but
distinct anomaly classes (e.g., burglary vs. robbery, shoplifting vs. stealing) to
refine the model’s ability to differentiate subtle behavioral differences. Besides,
future work should focus on developing its capability to detect and classify
multiple anomalous events within the same video frame. This enhancement
would involve developing a more comprehensive dataset containing complex
scenarios where multiple anomalies co-occur, such as a robbery taking place
while a fight erupts nearby, or shoplifting occurring simultaneously with
property vandalism. Moreover, future work could explore deploying the model
using Intel OpenVINO to further improve real-time inference performance,
particularly on Intel-based edge devices. Building on the current use of dynamic
quantization, the model can be further optimized through techniques like layer

fusion and hardware-aware acceleration.

76

REFERENCES

Allard, M. (2020). What is a Transformer? [online] Medium. Available at:
https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04.

Carreira, J. and Zisserman, A. (2017). Quo Vadis, Action Recognition? A New
Model and the Kinetics Dataset. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). doi:https://doi.org/10.1109/cvpr.2017.502.

Feng, J.-C., Hong, F.-T. and Zheng, W.-S. (2021). MIST: Multiple Instance
Self-Training Framework for Video Anomaly Detection. arXiv (Cornell
University). doi:https://doi.org/10.1109/cvpr46437.2021.01379.

Georgescu, M.-1., Barbalau, A., Radu Tudor lonescu, Fahad Shahbaz Khan,
Popescu, M. and Shah, M. (2021). Anomaly Detection in Video via Self-
Supervised and Multi-Task Learning. Computer Vision and Pattern
Recognition. doi:https://doi.org/10.1109/cvpr46437.2021.01255.

Jaime-Rodrigo Gonzélez-Rodriguez, Diana-Margarita Cordova-Esparza,
Terven, J. and Julio-Alejandro Romero-Gonzalez (2024). Towards a
Bidirectional Mexican Sign Language—Spanish Translation System: A Deep
Learning Approach. Technologies (Basel), 12(1), pp.7-7.
doi:https://doi.org/10.3390/technologies12010007.

Kalita, D. (2022). Basics of CNN in Deep Learning. [online] Analytics Vidhya.
Available at: https://www.analyticsvidhya.com/blog/2022/03/basics-of-cnn-in-
deep-learning/.

Kanjilal, J. (2022) An introduction to weakly supervised
learning. https://blog.paperspace.com/an-introduction-to-weakly-supervised-
learning/.

Kim, Y., Kwak, G.-H., Lee, K.-D., Na, S.-l., Park, C.-W. and Park, N.-W.
(2018). Performance Evaluation of Machine Learning and Deep Learning
Algorithms in Crop Classification: Impact of Hyperparameters and Training
Sample Size. Korean Journal of Remote Sensing, [online] 34(5), pp.811-827.
doi:https://doi.org/10.7780/kjrs.2018.34.5.9.

Kolena.com. (2024). Average Precision - Testing with Kolena. [online]
Available at: https://docs.kolena.com/metrics/average-
precision/#:~:text=Average%20precision%20(AP)%20summarizes%20a
[Accessed 15 Sep. 2024].

Kulhary, R. (2019). OpenCV - Overview. [online] GeeksforGeeks. Available at:
https://www.geeksforgeeks.org/opencv-overview/.

Kwok, R. (2022). GNN notes series — Explain Graph Convolutional Networks
(GCN) with knowledge in CNN. [online] Medium. Available at:
https://medium.com/@rmwkwok/gnn-notes-series-explain-graph-
convolutional-networks-gcn-with-knowledge-in-cnn-b827belc872b [Accessed
16 Sep. 2024].

77

Luo, W., Liu, W. and Gao, S. (2017). A Revisit of Sparse Coding Based
Anomaly Detection in Stacked RNN Framework. 2017 IEEE International
Conference on Computer Vision (ICCV).
doi:https://doi.org/10.1109/iccv.2017.45.

Mansour, R.F., Escorcia-Gutierrez, J., Gamarra, M., Villanueva, J.A. and Leal,
N. (2021). Intelligent video anomaly detection and classification using faster
RCNN with deep reinforcement learning model. Image and Vision Computing,
112, p.104229. doi:https://doi.org/10.1016/j.imavis.2021.104229.

Matthew N. Bernstein. (2023). Graph convolutional neural networks. [online]
Available at: https://mbernste.github.io/posts/gcn/.

Narkhede, S. (2018). Understanding AUC - ROC Curve. [online] Medium.
Available at: https://towardsdatascience.com/understanding-auc-roc-curve-
68b2303cc9cb.

NVIDIA (n.d.). What is PyTorch? [online] NVIDIA Data Science Glossary.
Available at: https://www.nvidia.com/en-us/glossary/pytorch/.

Overload, D. (2022). Sliding Window Technique — reduce the complexity of
your algorithm. [online] Medium. Available at: https://medium.com/@data-
overload/sliding-window-technique-reduce-the-complexity-of-your-algorithm-
5badb2cf432f.

Pytorch.org. (2024). Dynamic Quantization — PyTorch Tutorials 2.7.0+cul26
documentation. [online] Available at:
https://docs.pytorch.org/tutorials/recipes/recipes/dynamic_quantization.html.

Ray, J. (2024). Quantization Aware Training (QAT) vs. Post-Training
Quantization (PTQ). [online] Medium. Available at:
https://medium.com/better-ml/quantization-aware-training-gat-vs-post-
training-quantization-ptq-cd3244f43d9a.

Raziyeh Pourdarbani, Sajad Sabzi, Reihaneh Zohrabi, Ginés Garcia-Mateos,
Fernandez-Beltran, R., José Miguel Molina-Martinez and Rohban, M.H. (2023).
Comparison of 2D and 3D convolutional neural networks in hyperspectral
image analysis of fruits applied to orange bruise detection. Journal of food
science, 88(12), pp.5149-5163. doi:https://doi.org/10.1111/1750-3841.16801.

Sertis (2023). Video Anomaly Detection: An Introduction - Sertis - Medium.
[online] Medium. Available at: https://sertiscorp.medium.com/video-anomaly-
detection-an-introduction-232bf48c9a8d.

Shah, D. (2022). Mean Average Precision (mAP) Explained: Everything You
Need to Know. [online] www.v7labs.com. Available at:
https://www.v7labs.com/blog/mean-average-precision.

Steen, D. (2020). Precision-Recall Curves. [online] Medium. Available at:
https://medium.com/@douglaspsteen/precision-recall-curves-d32e5b290248.

78

Sultani, W., Chen, C. and Shah, M. (2018). Real-World Anomaly Detection in
Surveillance Videos. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. doi:https://doi.org/10.1109/cvpr.2018.00678.

Teki, S. (2022). Knowledge Distillation: Principles, Algorithms, Applications.
[online] neptune.ai. Available at: https://neptune.ai/blog/knowledge-
distillation.

Tian, Y., Pang, G., Chen, Y., Singh, R., Johan Verjans and Carneiro, G. (2021).
Weakly-supervised Video Anomaly Detection with Robust Temporal Feature
Magnitude Learning. 2021 IEEE/CVF International Conference on Computer
Vision (ICCV). doi:https://doi.org/10.1109/iccv48922.2021.00493.

Transactions on Circuits and Systems for Video Technology, pp.1-1.
doi:https://doi.org/10.1109/tcsvt.2024.3450734.

Vaswani, A., Brain, G., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A., Kaiser, L. and Polosukhin, 1. (2017). Attention Is All You Need. [online]
Available at: https://arxiv.org/pdf/1706.03762.

Vina, A. (2024). What is Model Optimization? A Quick Guide. [online]
Ultralytics.com. Available at: https://www.ultralytics.com/blog/what-is-model-
optimization-a-quick-guide.

VK (2024). Model Optimization Techniques (Pruning, Quantization,
Knowledge Distillation, Sparsity, OpenVino Toolkit). [online] Medium.
Available at: https://medium.com/@VK _Venkatkumar/model-optimization-
techniques-pruning-quantization-knowledge-distillation-sparsity-
2d95aa34eal5.

Williamson, B. (2021). What Is Deep Learning With Python? [online] Flatiron
School. Available at: https://flatironschool.com/blog/what-is-deep-learning-
with-python/.

Wu, P., Liu, J., Shi, Y., Sun, Y., Shao, F., Wu, Z. and Yang, Z. (2020). Not only
Look, but also Listen: Learning Multimodal Violence Detection under Weak
Supervision. [online] Available at: https://arxiv.org/pdf/2007.04687 [Accessed
14 Sep. 2024].

Zhong, J.-X., Li, N., Kong, W., Liu, S., Li, T.H. and Li, G. (2019). Graph
Convolutional Label Noise Cleaner: Train a Plug-And-Play Action Classifier
for Anomaly Detection. doi:https://doi.org/10.1109/cvpr.2019.00133.

Zhou, H., Liu, H., and Wu, X., 2024. Video Anomaly Detection in 10 Years: A
Survey and Outlook. [online] Available at: https://arxiv.org/abs/2405.19387v1
[Accessed 14 September 2024].

Zhou, H., Yu, J. and Yang, W. (2023). Dual Memory Units with Uncertainty
Regulation for Weakly Supervised Video Anomaly Detection. Proceedings of
the ... AAAI Conference on Artificial Intelligence, 37(3), pp.3769-3777.
doi:https://doi.org/10.1609/aaai.v37i3.25489.

79

Zvereva, A.K., Kaprielova, M. and Andrey Grabovoy (2025). AnomLite :
Efficient Binary and Multiclass Video Anomaly Detection. Results in
Engineering, pp.104162-104162.
doi:https://doi.org/10.1016/j.rineng.2025.104162.

Zhou, Y., Qu, Y., Xu, X., Shen, F., Song, J. and Heng Tao Shen (2024).
BatchNorm-based Weakly Supervised Video Anomaly Detection. IEEE

