

ANOMALY DETECTION IN SURVEILLANCE

VIDEOS

FOO JIA QI

UNIVERSITI TUNKU ABDUL RAHMAN

ANOMALY DETECTION IN SURVEILLANCE VIDEOS

FOO JIA QI

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Electrical and Electronic

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2025

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Name : Foo Jia Qi

ID No. : 2003619

Date : 05/06/2025

ii

COPYRIGHT STATEMENT

© 2025, Foo Jia Qi. All right reserved.

This final year project report is submitted in partial fulfilment of the

requirements for the degree of Electrical and Electronic Engineering with

Honours at Universiti Tunku Abdul Rahman (UTAR). This final year project

report represents the work of the author, except where due acknowledgement

has been made in the text. No part of this final year project report may be

reproduced, stored, or transmitted in any form or by any means, whether

electronic, mechanical, photocopying, recording, or otherwise, without the prior

written permission of the author or UTAR, in accordance with UTAR’s

Intellectual Property Policy.

iii

ACKNOWLEDGEMENTS

I would like to thank everyone who contributed to the successful completion of

this project. I would like to express my deepest gratitude to my research

supervisor, Ir. Ts. Dr. Tham Mau Luen, for his invaluable advice, guidance and

immense patience throughout the development of the research. His expertise

and insights were essential in shaping the direction of my work and ensuring its

quality.

 I am also grateful to my moderator, Ir. Ts. Dr. Chua Sing Yee, for her

insightful feedback and suggestions, which greatly improved my thesis.

In addition, I would like to express my appreciation to my loving

parents and friends for their encouragement, motivation, and unwavering

support during the course of this project..

iv

ABSTRACT

In the present society, video surveillance systems are rapidly evolving with

intelligent video analytics to improve public safety. With the increasing

installation of surveillance cameras in both public and private spaces, there is a

growing reliance on continuous monitoring to ensure public safety. However,

human-based monitoring is labour-intensive and inefficient. Video anomaly

detection (VAD) plays a vital role in modern surveillance systems by

automatically identifying unusual events in video streams. This study focuses

on developing a lightweight and efficient VAD framework that supports both

binary and multiclass detection. The proposed system, AnomLite combines

MobileNetV2, a lightweight Convolutional Neural Network (CNN) for spatial

feature extraction, and Long Short-Term Memory (LSTM) for temporal

modelling. By leveraging the strengths of MobileNetV2 in extracting efficient

spatial features and LSTM in capturing temporal dependencies in video

sequences, the model detects anomalous events across various classes. The

system trains on two datasets: UCF-Crime, which contains real-world CCTV

footage, and XD-Violence, which includes video content from movies and

YouTube. Preprocessing steps are employed to ensure the model performs well

under varying data conditions. The evaluation of the proposed model shows

strong performance on the first dataset, achieving an ROC AUC of 0.99 and an

average precision of 0.99 on UCF-Crime. The model demonstrates strong

performance on another well-known dataset in video anomaly detection,

achieving an ROC AUC of 0.98 and an average precision of 0.97 on XD-

Violence. The model also achieves high accuracy of 94% on UCF-Crime and

93% on XD-Violence, with strong F1 scores across both datasets (F1-Micro

0.93 on UCF-Crime, 0.89 on XD-Violence). The model achieves high per-class

accuracy across the UCF-Crime dataset, with 10 out of 14 classes exceeding

0.95 accuracy and several classes, such as Arson, Explosion, Fighting, Shooting,

and Vandalism, reaching a perfect accuracy of 1.00, demonstrating the model’s

strong and consistent performance in detecting diverse types of anomalies.

Moreover, the model performs well on the XD-Violence dataset, with

accuracies ranging from 0.79 to 0.95. It shows highest accuracy on Car

v

Accidents (0.95) and strong performance across other classes like Abuse, Riot,

and Fighting, indicating its effectiveness in handling diverse anomalies.

Additionally, the model is optimized for inference through quantization. With a

reduction of around 70% in model size through model compression techniques

such as quantization, the flexibility of the model is further improved,

particularly for low-end devices. These results highlight how deep learning

techniques, such as SMOTE, data augmentation, and advanced loss functions

like cross-entropy loss, contribute to high accuracy and effective performance

in automating surveillance tasks, even when dealing with highly imbalanced

datasets. Data augmentation techniques that simulate real-world conditions

enhance the efficiency of anomaly detection systems in practical applications.

Keywords: Video anomaly detection, deep learning, edge computing, artificial

intelligence, neural network

Subject Area: TK7885-7895 Computer engineering. Computer hardware

v

TABLE OF CONTENTS

DECLARATION i

COPYRIGHT STATEMENT ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xiii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 2

1.4 Aim and Objectives 3

1.5 Scope and Limitation of the Study 3

1.6 Contribution of the Study 3

1.7 Outline of the Report 4

2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Benchmarking Datasets 6

2.2.1 Shanghai Tech 6

2.2.2 UCF-Crime 7

2.2.3 XD-Violence 7

2.3 Deep Feature Extractors 8

2.3.1 Convolutional Neural Networks 8

2.3.2 2D Convolutional Neural Networks (2D

CNNs) 9

vi

2.3.3 3D Convolutional Neural Networks (3D

CNNs) 9

2.3.4 Comparison between 2D and 3D CNNs 9

2.3.5 Transformer 10

2.3.6 Graph Convolutional Networks (GCN) 11

2.4 Overview of Current Approaches on Video

Anomaly Detection 12

2.4.1 Self-Supervised Approach 12

2.4.2 Unsupervised Approach 12

2.4.3 Weakly - Supervised Approach 12

2.4.4 Overview of Current Approaches 13

2.5 Previous Approaches on VAD 14

2.5.1 Weakly Supervised Anomaly Detection

with Multiple Instance Learning (MIL)

Frameworks 14

2.5.2 MIST: Multiple Instance Self-Training

Framework for Video Anomaly Detection 15

2.5.3 Graph Convolutional-based Label Noise

Cleaner 15

2.5.4 BN-WVAD 16

2.6 Model Optimization Techniques 17

2.6.1 Quantization 18

2.6.2 Pruning 19

2.6.3 Knowledge Distillation 19

2.6.4 OpenVINO 20

2.7 Inference 21

2.7.1 Variable-Length Sequence Handling

(Dynamic) 21

2.7.2 Fixed-Length Sequences 22

2.8 Summary 23

3 METHODOLOGY AND WORK PLAN 24

3.1 Introduction 24

3.2 Experimental Setup 24

3.2.1 Hardware 24

vii

3.2.2 Software 24

3.3 Work Plan 28

3.3.1 Dataset Selection 28

3.3.2 Data Preprocessing 31

3.3.3 Data Augmentations 37

3.3.4 Normalization 37

3.3.5 Data Splitting 38

3.3.6 Model Architecture 38

3.3.7 Model Training 40

3.3.8 Loss Functions 41

3.3.9 Evaluation Metric 42

3.3.10 Model Optimization 44

3.3.11 Inference Implementation 45

3.4 Gantt Chart 46

3.5 Summary 47

4 RESULTS AND DISCUSSION 48

4.1 Introduction 48

4.2 Performance Evaluation on UCF-Crime 48

4.2.1 Confusion Matrix of AnomLite on UCF-

Crime 49

4.2.2 ROC AUC of AnomLite on UCF-Crime 49

4.2.3 PR Curve of AnomLite on UCF-Crime 50

4.2.4 F1 Scores and Loss 51

4.2.5 Per-Class Accuracy 52

4.3 Performance Evaluation on XD-Violence 53

4.3.1 Confusion Matrix of AnomLite on XD-

Violence 54

4.3.2 ROC AUC of AnomLite on XD-Violence 54

4.3.3 Average Precision (AP) of AnomLite on

XD-Violence 55

4.3.4 F1 Scores and Losses 56

4.3.5 Per-Class Accuracy 56

4.4 Performance of AnomLite model (Inference) 58

4.4.1 Prerecorded video 58

viii

4.4.2 Real-Time Streaming 62

4.4.3 Summary of Inference 63

4.5 Model Optimization 64

4.5.1 Results of Model Optimization 64

4.5.2 Performance of Quantized Model 66

4.6 Performance Evaluation of Original and

Optimized Model 68

4.7 Performance Comparison with BN-WVAD 70

4.7.1 Performance on XD-Violence 70

4.7.2 Performance on UCF-Crime 71

4.7.3 Overview of Comparison 72

4.8 Summary 72

5 CONCLUSIONS AND RECOMMENDATIONS 74

5.1 Conclusions 74

5.2 Recommendations for future work 75

REFERENCES 76

ix

LIST OF TABLES

Table 2.1: Comparison of Different Supervision Approaches 13

Table 3.1: Experimental Platform Configuration 24

Table 3.2: Computational Resources 25

Table 3.3: Comparison of the two datasets used 31

Table 3.4: Count and Proportion of Videos Exceeding 2,500 Frames 33

Table 3.5: Label Explanation 34

Table 3.6: Count and Proportion of Videos Exceeding 2,500 Frames 36

Table 3.7: Data Augmentations Parameter applied 37

Table 3.8: RGB Mean and Standard Deviation Values 38

Table 4.1: Performance Metrics of AnomLite on UCF-Crime 48

Table 4.2: Per-Class Accuracy on 14 Classes in UCF-Crime Dataset 52

Table 4.3: Performance Metrics of AnomLite on XD-Violence 53

Table 4.4: Per-Class Accuracy on XD-Violence 57

Table 4.5: Model predictions on unseen real-world videos, multiclass

labelled 60

Table 4.6: Comparative Analysis of Original vs. Quantized Model 65

Table 4.7: Comparison of performance of both models on the same video

frames 66

Table 4.8: Comparison of Computational Resources before and after

Quantization 68

Table 4.9: Comparison of FPS on Both Models 68

Table 4.10: Performance Metrics of BN-WVAD on XD-Violence 70

Table 4.11: Performance Metrics of BN-WVAD on UCF-Crime 71

Table 4.12: Comparison of Performance Metrics of Both Models 72

x

LIST OF FIGURES

Figure 2.1: Video Anomaly Detection paradigm 5

Figure 2.2: Shanghai Tech Datasets 6

Figure 2.3: Reorganization of Shanghai Tech 6

Figure 2.4: UCF-Crime Datasets 7

Figure 2.5: Sample videos from the XD-Violence dataset 7

Figure 2.6: An Overview of Convolutional Neural Network 8

Figure 2.7: Architecture of CNN model. (a) 2D-CNN and (b) 3D-CNN 9

Figure 2.8: Model Architecture of a Transformer 10

Figure 2.9: Filter passing over each pixel in CNN 11

Figure 2.10: Filter passing over each node in GCN 11

Figure 2.11: Flow Diagram of Weakly Supervised Anomaly Detection

with MIL Frameworks 14

Figure 2.12: Flow Diagram of MIST for VAD 15

Figure 2.13: Graph Convolutional Label Noise Cleaner 15

Figure 2.14: Overall Framework of BN-WVAD model 16

Figure 2.15: Five types of architecture evaluated 16

Figure 2.16: GL-MHSA module 17

Figure 2.17: Quantization Technique 18

Figure 2.18: Pruning 19

Figure 2.19: Knowledge Distillation 20

Figure 2.20: OpenVINO Optimization Tool 21

Figure 2.21: Overview of the working of pack_padded_sequence 21

Figure 3.1: Google Colaboratory logo 25

Figure 3.2: Kaggle logo 25

xi

Figure 3.3: Python logo 26

Figure 3.4: Icon of VLC media player 26

Figure 3.5: Pytorch Icon 26

Figure 3.6: Icon of OpenCV 27

Figure 3.7: Flowchart of Entire Workflow 28

Figure 3.8: Sample Videos from XD-Violence Datasets 29

Figure 3.9: Datasets from UCF-Crime 30

Figure 3.10: Overview of Data Preprocessing Steps 31

Figure 3.11: Overview of Original Class Distribution in UCF-Crime 32

Figure 3.12: Distribution of Video Duration Under 10,000 Frames 33

Figure 3.13: Frames extracted 34

Figure 3.14: Dataset Published on Kaggle 35

Figure 3.15: Overview of Original Class Distribution in XD-Violence

dataset 35

Figure 3.16: Video lengths in XD-Violence when limited to 10,000

frames 36

Figure 3.17: Data augmentations on UCF-Crime 37

Figure 3.18: Data augmentations on XD-Violence 37

Figure 3.19: Spatio-temporal features from video batches processed by

the model 39

Figure 3.20: Overview of AnomLite Model Structure 39

Figure 3.21: Comparison of Dataset Before and After Applying SMOT 41

Figure 3.22: Layers Selected for Quantization 45

Figure 3.23: Gantt Chart for FYP1 46

Figure 3.24: Gantt Chart for FYP2 46

Figure 4.1: Confusion Matrix of AnomLite on UCF-Crime 49

Figure 4.2: ROC AUC on UCF-Crime 49

xii

Figure 4.3: PR Curve on UCF-Crime 50

Figure 4.4: F1 Scores and Loss 51

Figure 4.5: Per-Class Accuracy on 14 Classes in UCF-Crime Dataset 52

Figure 4.6: Confusion Matrix of AnomLite on XD-Violence 54

Figure 4.7: ROC AUC Curve of AnomLite on XD-Violence 54

Figure 4.8: PR Curve on XD-Violence dataset 55

Figure 4.9: F1 scores and losses on XD-Violence dataset 56

Figure 4.10: Per-Class Accuracy on XD-Violence Dataset 56

Figure 4.11: A Detected Frame classified as 'Fighting' on Unseen Data 58

Figure 4.12: Prediction of the model on ‘Fighting’ frames by frames on

a video sequence 59

Figure 4.13: Fighting detection from bottom view 62

Figure 4.14: Detection of Fighting at the corner 62

Figure 4.15: Detection of Fighting from another side view 62

Figure 4.16: Detection of Fighting from another higher view 63

Figure 4.17: Quantization Verification 64

Figure 4.18: Parts of Quantized Model Architecture 64

Figure 4.19: Quantized Layer Details 64

Figure 4.20: Comparison of Model Confidence for Both Models 67

Figure 4.21: Charts of Performance on Wandb (XD-Violence) 70

xiii

LIST OF SYMBOLS / ABBREVIATIONS

𝜇 mean vector

AP Average Precision

AUC Area Under the Curve

BLS Batch-level Selection

BN Batch Normalization

CNN Convolutional neural networks

CLT Central Limit Theorem

DFM Divergence from mean

FP False Positive

FPR False Positive Rate

FN False Negative

FPS Frame Per Second

GCN Graph convolutional networks

GAN Generative Adversarial Networks

GL-MHSA Global and Local Multi-Head Self-Attention

I3D Inflated 3D

LSTM Long Short-Term Memory

MHSA Multi-Head Self-Attention

MIL Multi-Instance Learning

MIST Multiple Instance Self-Training

MPP Mean-based Pull-Push

NLP Natural language processing

OCC One-class classification

PR Precision-Recall

R Recall

ROC Receiver Operating Characteristics

SBS Sample-Batch Selection

SLS Sample-level Selection

TP True Positive

TPR True Positive Rate

TN True Negative

UVAD Unsupervised Video Anomaly Detection

xiv

VAD Video Anomaly Detection

ViTs Vision transformers

WVAD Weakly Supervised Video Anomaly Detection

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Crime remains a significant issue in society, despite the widespread presence of

surveillance camera networks. Recently, surveillance cameras have been

extensively used in both public and private areas. However, the monitoring of

surveillance is typically carried out by humans, which is a laborious and time-

consuming process.

Video anomaly detection (VAD) refers to the task of identifying unusual

or suspicious activities in video footage, typically used in surveillance, security,

and monitoring systems. With the rapid increase of surveillance cameras,

effectively and efficiently monitoring numerous surveillance cameras with

human intervention has become challenging, prompting the need for automating

surveillance monitoring. The goal of VAD is to automatically identify unusual

events that diverge from the typical patterns within a scene, such as theft,

accidents, or violent behaviour. This field has gained attention with the growth

of deep learning and computer vision technologies.

Anomalous events can be categorized into two types, namely global and

local anomalies. Global anomalies refer to events that deviate from the overall

scene or context, such as a car driving in the wrong direction in traffic, while

local anomalies refer to specific objects or individuals acting out of the ordinary,

like a person running in a typically walking area. There are several approaches

to VAD, including supervised learning, unsupervised learning, semi-supervised

learning, and weakly–supervised learning. However, note that researchers in the

field have not focused on supervised learning techniques due to the lack of

frame-level annotations for large-scale real-world VAD datasets (Sertis, 2023).

Thus, based on the learning method exploited, VAD methods can be separated

into two primary categories, including one-class classification approaches and

weakly-supervised learning approaches.

2

1.2 Importance of the Study

To detect and locate abnormal events in videos, VAD has become an essential

task in analyzing activities within unedited videos. Even with years of research

in Video Anomaly Detection (VAD), developing a model that effectively

identifies anomalies in videos is still challenging, as it must differentiate

between normal and abnormal events, particularly since anomalies are rare and

can vary significantly (Feng, Hong and Zheng, 2021).

Gathering a large-scale dataset with precise temporal annotations of

abnormal events is both labor-intensive and time-consuming, posing a challenge

to the advancement of VAD. Throughout the years, unsupervised video anomaly

detection (UVAD) has attracted significant interest because it can detect

anomalies without needing extra annotations. However, these methods are

trained solely on normal videos, limiting their ability to understand anomaly

data. As a result, they often produce high false alarm rates for new, unseen

normal events.

In response to this, the study utilized a more realistic approach – weakly

supervised anomaly detection (WVAD) as the first solution. It overcomes the

issue of incorrect anomaly detection in videos within an unsupervised

framework and strikes a more effective trade-off between detection accuracy

and effort required for manual annotations compared to unsupervised method.

1.3 Problem Statement

In such a weakly supervised framework, existing methods for determining

abnormality often depend on certain assumptions or opaque models, resulting

in less dependable pseudo-temporal annotations. For example, the commonly

used feature magnitude approach assumes that abnormal snippets will have a

greater feature magnitude compared to normal ones (Zhou et al., 2024).

However, simply focusing on large feature magnitudes does not always ensure

effective differentiation of abnormal snippets.

The second challenge arises from the constraints of the previous sample-

level selection method. The abnormality ratio refers to the proportion of

abnormal snippets within each video. Previous approaches tend to identify the

top-k potential abnormal snippets within each video without accounting for the

varying abnormality ratios across different videos. By uniformly selecting

3

potential abnormal snippets, these methods might overlook significant

abnormalities in videos with higher abnormality ratios, thereby missing valuable

guidance for accurate anomaly detection (Zhou et al., 2024).

In WVAD, errors in selecting abnormal snippets are unavoidable, which

introduces noise into the pseudo-temporal labels. Although Multi-Instance

Learning (MIL) methods are used, the anomaly classifier continues to be

affected by this label noise, struggling with the challenge of distinguishing

genuinely abnormal snippets from those that are incorrectly labelled.

Moreover, most models only handle binary classification instead of

distinguishing specific anomaly types, struggle to perform well on both binary

and multiclass tasks, suffer from class imbalance due to the rarity of anomalies,

and lack scalability for processing large volumes of video data efficiently. To

address these challenges, there is a need for a model with improved criteria for

abnormality and a more effective selection strategy.

1.4 Aim and Objectives

The main objectives of this study are as follows:

1. To develop an AI model that detects abnormal events in video streams.

2. To implement the developed AI model in a real-world scenario.

3. To compare the performance of the developed model with conventional

approach.

1.5 Scope and Limitation of the Study

This study focuses on Video Anomaly Detection (VAD), specifically targeting

the identification of unusual or abnormal events in video sequences. It involves

training and evaluating models using selected datasets, such as UCF-Crime or

XD-Violence, and employing specific methodologies and performance metrics

like Average Precision (AP) and Area Under the Curve (AUC). The study is

geared toward applications in surveillance, security, and monitoring by

leveraging particular video data and experimental setups to assess the

effectiveness of VAD techniques (Sertis, 2023).

1.6 Contribution of the Study

This research contributes to the field of video-based anomaly detection by

proposing several notable advancements. Firstly, it presents a deep learning

4

framework that effectively handles both binary anomaly detection and

multiclass classification of violent events. Secondly, the model is trained and

evaluated on two diverse benchmark datasets, which are UCF-Crime and XD-

Violence, demonstrating improved generalization and robustness across

different video domains. Lastly, the study applies model optimization

techniques, including quantization, to significantly reduce computational

overhead, enabling real-time inference suitable for deployment on edge devices.

These efforts collectively enhance both the accuracy and practicality of

automated video anomaly detection systems.

1.7 Outline of the Report

The report covers 5 chapters, in which it first covers the introduction. This

chapter provides an overview of the research project in video anomaly detection

in surveillance videos, which includes an introduction, a problem statement, an

aim, objectives, and the scope and limitations of the research. Chapter 2 covers

the literature review of several papers related to the project, mainly on human

action recognition and abnormal activity detection systems. The research

approach and methodology are presented in Chapter 3, which outlines the

system implementation process, the criteria considered, and the timeline for

conducting the study. Chapter 4 covers the results and discussions, which

provide a comprehensive report of the findings, incorporating both qualitative

and quantitative results, along with in-depth analysis and interpretation. Finally,

Chapter 5 covers the conclusion and recommendations, which offer a summary

of the overall study and propose suggestions for future enhancements.

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

Although the conventional methods of VAD have been widely investigated, the

quick development of deep learning has introduced new possibilities for more

efficient anomaly detection. Several methods, such as convolutional neural

networks (CNNs) and vision transformers (ViTs), have been shown to be highly

proficient at identifying complex data relationships in large datasets. These

developments have significantly improved VAD performance, making anomaly

detection in video streams more accurate and consistent.

Figure 2.1: Video Anomaly Detection paradigm (Zhou et al., 2024)

Figure 2.1 shows the typical video anomaly detection paradigm by Zhou

et al. 2024, which can be categorized into as following:

(A) Development and selection of state-of-the-art datasets

(B) Extraction of spatial, temporal, spatio-temporal, and textual deep

features

(C) Deep learning and supervision approaches

(D) Choice of loss functions

(E) Incorporation of regularization techniques within loss functions

(F) Calculation of anomaly scores

(G) Techniques for model evaluation

This literature review explores the process, evolution of VAD systems, and the

potential for enhancing the performance and addressing the limitations of

existing VAD models.

6

2.2 Benchmarking Datasets

Large-scale benchmarking datasets are essential for developing effective deep-

learning models. In the realm of VAD, several public datasets are available,

typically offering video-level labels (normal or anomalous) for training. These

datasets support weakly supervised learning. Frame-level annotations, however,

are usually reserved for test sets to allow for detailed model evaluation. This

section highlights key public datasets and evaluation metrics used in VAD.

2.2.1 Shanghai Tech

As shown in Figure 2.2, the ShanghaiTech dataset, as introduced by Luo et al.

(2017), was gathered under complex lighting conditions and varying camera

angles. It comprises 13 real-world scenes, each with several videos. It introduces

anomalies resulting from abrupt movements, such as chasing and fighting.

Initially created for one-class classification, the dataset includes 270,000 frames

of normal videos for training and features 130 anomaly events with pixel-level

annotations for testing. In a subsequent update, Zhong et al. (2019) revised the

dataset's protocol by dividing it into 238 training videos (175 normal and 63

anomalous) and 199 test videos (155 normal and 44 anomalous).

Figure 2.2: Shanghai Tech Datasets (Luo, Liu and Gao, 2017)

Figure 2.3: Reorganization of Shanghai Tech (Zhong et al., 2019)

7

2.2.2 UCF-Crime

The UCF-Crime dataset, developed by Sultani et al. (2018), is a significant early

dataset for video anomaly detection (VAD) that captures a variety of realistic

anomalies. It features 13 distinct anomaly types, such as 'abuse', 'arrest', and

'robbery ', among others. The dataset includes 1,900 untrimmed surveillance

videos, with a total of 128 hours of footage, with an average of 7,247 frames per

video. It is split into a training set with 1,610 videos (800 normal and 810

anomalous) and a test set with 290 videos (150 normal and 140 anomalous). The

training set is annotated with video-level labels, while the test set provides

frame-level annotations.

Figure 2.4: UCF-Crime Datasets (Sultani, Chen and Shah, 2018)

2.2.3 XD-Violence

Unlike other datasets, XD-Violence (Wu et al., 2020) offers a substantial

collection of 4,754 untrimmed videos, complete with audio, enabling models to

utilize multimodal data for detecting anomalies. Figure 2.5 shows the six types

of physical violence featured in the datasets, such as abuse, car accident, and

others, spanning a total of 217 hours. It is split into a training set of 3,954 videos

(2,049 normal and 1,905 anomalous) with video-level annotations, and a test set

of 800 videos (300 normal and 500 anomalous) with frame-level annotations.

Each anomalous video includes 1 to 3 instances of abnormal events.

Figure 2.5: Sample videos from the XD-Violence dataset (Wu et al., 2020)

8

2.3 Deep Feature Extractors

Different feature extractors have been utilized by previous researchers,

including convolutional neural networks (CNNs), autoencoders, generative

adversarial Networks (GANs), and others.

2.3.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specialized type of deep learning

model widely used for image recognition tasks. They come in various forms:

one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D).

Among these, 2D CNNs are the most applied for image recognition (Raziyeh

Pourdarbani et al., 2023). 1D CNNs are primarily used for analyzing text and

sequential signals. In 2D CNNs, a convolutional filter moves across the input

both vertically and horizontally to perform the convolution process, where the

filter weights are applied to the input data, and a bias is added. On the other

hand, 3D CNNs use three-dimensional filters and are suited for processing 3D

data, such as MRI and CT scans, as well as hyperspectral images (HSIs), which

have two spatial dimensions and one spectral dimension. Figure 2.6 shows an

overview of CNN.

Figure 2.6: An Overview of Convolutional Neural Network (Kalita, 2022)

9

2.3.2 2D Convolutional Neural Networks (2D CNNs)

CNNs have transformed the processing of spatial features, allowing for in-depth

analysis of scene structures. According to Mansour et al. (2021), Faster R-CNN,

a CNN architecture, is highlighted for its precision and ability to perform both

object classification and bounding box regression simultaneously. This dual

function enables accurate object detection and classification within video

frames, making it essential for identifying and locating anomalies.

2.3.3 3D Convolutional Neural Networks (3D CNNs)

These networks extend traditional CNNs by integrating temporal analysis,

enhancing the assessment of spatiotemporal features in video data. Models like

C3D and I3D have significantly boosted performance in cutting-edge systems.

Numerous studies utilize 3D CNNs as core components, showcasing their

exceptional capability in spatiotemporal feature extraction (Zhou et al., 2024).

2.3.4 Comparison between 2D and 3D CNNs

In summary, 2D CNNs are designed to handle two-dimensional inputs, which

makes them ideal for applications such as image classification and object

detection, but they lack the ability to capture temporal relationships. In contrast,

3D CNNs handle spatiotemporal data by processing both spatial and temporal

dimensions, making them ideal for video analysis and motion detection. While

3D CNNs offer better performance in tasks requiring time-based analysis, they

are more computationally intensive compared to 2D CNNs, which are faster and

more efficient for simpler spatial tasks. Each model excels in its respective

domain, depending on the complexity of the data.

Figure 2.7: Architecture of CNN model. (a) 2D-CNN and (b) 3D-CNN (Kim

et al., 2018)

10

2.3.5 Transformer

Transformers are a strong model architecture mostly utilized in natural language

processing (NLP). Figure 2.8 shows the model architecture of a Transformer.

The attention mechanism, which allows the model to focus on various parts of

the input sequence while producing output, is the core of transformers. This

helps the model to determine how important each component of the input is in

relation to the others, which is especially useful for understanding long-range

dependencies. Transformers are known for their self-attention function, which

aids the model in understanding the connections between various words in a

sentence. For instance, self-attention enables the model to make the connection

between "cat" and "mat," even if they are not contiguous, in the sentence "The

cat sat on the mat." This process is essential for understanding meaning and

context within sequences (Allard, 2020).

Figure 2.8: Model Architecture of a Transformer (Vaswani et al., 2017)

Transformers use an encoder-decoder design to process and generate

sequences. The encoder creates representations from the input, which the

decoder then uses to produce the output. They utilize multiple layers of

feedforward neural networks and self-attention to recognize complex patterns.

Multi-head attention improves performance by focusing on different aspects of

the sequence simultaneously, while positional encoding helps the model

understand the order of tokens. Transformers are scalable and efficient, enabling

11

parallel training and demonstrating strong capabilities in areas like machine

translation and generating coherent text due to their strong contextual

understanding (Allard, 2020).

2.3.6 Graph Convolutional Networks (GCN)

Graph Convolutional Networks (GCNs) extend the concept of CNNs

to graph-structured data. Unlike images, which have a grid-like structure, graphs

have nodes (points) connected by edges (lines), and their relationships are less

regular. GCNs work by aggregating information from a node's neighbours to

update the node's representation, allowing the model to learn from the graph's

structure (Kwok, 2022). As shown in Figure 2.9, just like in a CNN for images,

where a filter slides over each pixel and combines the values of neighbouring

pixels to generate the next layer's output, a GCN operates similarly. Instead of

pixels, a filter in a GCN moves across each node in a graph, aggregating the

values of neighbouring nodes to produce the output for the next layer, as shown

in Figure 2.10. This way, GCNs can handle data where relationships are

complex and irregular, making them useful for tasks like social network analysis

or molecular chemistry.

Figure 2.9: Filter passing over each pixel in CNN (Matthew N. Bernstein,

2023)

Figure 2.10: Filter passing over each node in GCN (Matthew N. Bernstein,

2023)

12

2.4 Overview of Current Approaches on Video Anomaly Detection

While most deep learning – based VAD systems have traditionally relied on

supervised learning models, recent advancements in video anomaly detection

(VAD) have shifted towards exploring weakly supervised, self-supervised, and

unsupervised methods as alternatives to traditional supervised approaches.

These methods address challenges like the need for fully annotated datasets and

capturing complex patterns.

2.4.1 Self-Supervised Approach

Self-supervised approaches generate supervision from the input data,

eliminating the need for human-labelled data, which is valuable for anomaly

detection where labelled anomalies are rare. In one study, Georgescu et al. (2021)

introduced a self-supervised method using multi-task learning at the object level

was introduced. The model trains a 3D CNN on tasks such as predicting object

movement direction, detecting motion irregularities, and reconstructing object

appearances from adjacent frames. By learning normal object behavior from

video data, the model becomes capable of identifying anomalies based on

deviations from this learned behavior, even without explicit labels (Georgescu

et al., 2021).

2.4.2 Unsupervised Approach

Early VAD methods often relied on one–class classification (OCCs, also known

as unsupervised anomaly detection), where models were trained solely on

normal video data. These models aimed to capture normal feature patterns using

either hand-crafted features or deep autoencoder models. Once trained, the

models could reconstruct normal input videos with minimal error. During

testing, if the reconstruction error exceeded a certain threshold, the input was

flagged as anomalous, as it likely differed significantly from the normal training

data. However, these methods often failed to generalize well to test datasets

because the models were never trained with anomalous examples (Sertis, 2023).

2.4.3 Weakly - Supervised Approach

Weakly supervised learning refers to a set of techniques in machine learning

designed to develop predictive models using limited or imprecise supervision.

It involves incorporating domain-specific knowledge and applying functions to

13

generate labels from imperfect or automatically derived training data (Kanjilal,

2022).

These methods become particularly useful when working with data that

does not fully align with the model’s expected input format or structure. In

practice, much of the data available is unstructured or poorly labelled, which

makes traditional supervised learning less feasible (Kanjilal, 2022). Weak

supervision offers a practical solution by enabling the use of such data for

training purposes, even when the annotations are unreliable or incomplete.

Weakly supervised learning enables model training from datasets that

are labelled through indirect or noisy processes rather than manual annotation.

It spans various strategies that rely on approximate, partial, or less accurate

information, allowing for large-scale data utilization with significantly reduced

labeling effort.

While one-class classification-based VAD trains only on normal

videos, weakly-supervised VAD uses both normal and anomalous videos, but

without frame-level labels. Instead, video-level labels indicate if a video

contains anomalies, without specifying when they occur. This requires methods

to leverage these broader labels to detect anomalies at the frame level. Since

video-level labels are easier to obtain, they enable the creation of large-scale

datasets for weakly-supervised VAD.

2.4.4 Overview of Current Approaches

Table 2.1: Comparison of Different Supervision Approaches

Aspect Self-Supervised Unsupervised Weakly Supervised

Label

Need

No manual labels,

supervision from

the data itself

Uses only normal

data, no anomaly

labels

Needs video-level

labels (anomalous or

normal)

Training

Data

Learns patterns via

pretext tasks on

video data

Learns from

normal videos

only

Uses both normal

and anomalous

videos without exact

timing info

14

Detection

Basis

Detects deviation

from learned

normal behaviour

Anomalies

flagged by high

reconstruction

error

Learns to detect

anomalies at the

frame level from

video-level tags

Methods

Used

Motion prediction,

appearance

reconstruction

Autoencoders,

one-class

classification

Multiple Instance

Learning, score

regression

Pros No labelling cost,

learns detailed

features

Easier setup, no

anomaly data

needed

Easier labelling,

scales to large

datasets

Cons Relies on task

design, may miss

subtle anomalies

Poor

generalization to

unseen anomalies

Needs smart

methods to localize

frame-level

anomalies

2.5 Previous Approaches on VAD

2.5.1 Weakly Supervised Anomaly Detection with Multiple Instance

Learning (MIL) Frameworks

Sultani, Chen, and Shah (2018) introduced an innovative multiple instance

learning (MIL) model, marking the first use of weakly labelled training videos.

In this approach, normal videos are treated as negative bags, while anomalous

ones are treated as positive bags, with video segments acting as instances within

the MIL framework. These bags are processed through feature extractors to

capture spatiotemporal features, which are then passed through a fully

connected network to generate the final output. The anomaly score, ranging

from 0 to 1, is optimized to increase for abnormal segments and decrease for

normal ones.

Figure 2.11: Flow Diagram of Weakly Supervised Anomaly Detection with

MIL Frameworks (Sultani, Chen and Shah, 2018)

15

2.5.2 MIST: Multiple Instance Self-Training Framework for Video

Anomaly Detection

Feng, Hong and Zheng (2021) presented “MIST: Multiple Instance Self-

Training Framework for Video Anomaly Detection,” a novel WSVAD approach.

Unlike conventional MIL methods, MIST employs a pseudo-label generator

combined with a sparse continuous sampling strategy to improve the accuracy

of clip-level pseudo labels. It also features a self-guided, attention-enhanced

encoder designed to focus on anomalous regions within video frames (Zhou et

al., 2024).

Figure 2.12: Flow Diagram of MIST for VAD (Feng, Hong and Zheng, 2021)

2.5.3 Graph Convolutional-based Label Noise Cleaner

In contrast to the conventional MIL methodology, the authors proposed a new

technique for weakly supervised anomaly detection, considering it as a

supervised learning task with noisy labels. The noisy labels were cleaned up

using a Graph Convolutional Network (GCN), which enhanced the training

procedure and the effectiveness of fully supervised action classifiers in

identifying anomalies.

Figure 2.13: Graph Convolutional Label Noise Cleaner (Zhong et al., 2019)

16

2.5.4 BN-WVAD

BN-WVAD is a framework specifically designed to detect anomalies in videos

using only video-level labels (weakly-supervised), avoiding the need for

detailed frame-level annotations and utilizing batch normalization. Figure 2.14

shows the overall framework of the BN-WVAD model. The model is designed

for weakly supervised learning. The datasets UCF-Crime and XD-Violence are

chosen to match the weak supervision approach. In this model, the deep feature

extraction is done by using 3D CNNs. The model utilizes an I3D network

(Inflated 3D ConvNet), which is widely used to extract spatial and temporal

features from video sequences.

Figure 2.14: Overall Framework of BN-WVAD model (Zhou et al., 2024)

The I3D model utilised in this model, or Two-Stream Inflated 3D

ConvNet, extends 2D ConvNets into 3D by adding a temporal dimension to

filters and pooling layers, enabling it to capture both spatial and temporal

features. It reuses 2D filters from pretrained models like ImageNet and employs

a two-stream setup: one stream processes RGB frames and the other handles

optical flow for motion. The outputs are fused at the prediction stage to enhance

understanding of video content (Carreira & Zisserman, 2017).

Figure 2.15: Five types of architecture evaluated (Carreira and Zisserman,

2017)

17

In addition, the extracted features are refined using a Global and Local

Multi-Head Self-Attention (GL-MHSA) module, designed to capture both long-

range dependencies across the entire video and short-range temporal patterns.

This module builds upon the standard Multi-Head Self-Attention (MHSA)

mechanism by incorporating an additional encoder layer equipped with a

temporal mask, allowing it to more effectively learn local temporal features.

As illustrated in Figure 2.16, it uses a temporal mask to balance the

influence of different time points, enhancing the model’s capability to capture

both long-range and short-range dependencies effectively (Zhou, Yu and Yang,

2023). The approach utilizes the transformer’s self-attention mechanism while

adding a layer of complexity to enhance the comprehension and modeling of

video sequence dynamics for anomaly detection. By learning the spatial and

temporal features in combination, the model ensures robust feature extraction

for identifying anomalies.

Figure 2.16: GL-MHSA module (Zhou, Yu and Yang, 2023)

Thus, it can be summarized that the backbone of the model is a

combination of I3D for feature extraction and GL-MHSA for enhancing the

learning of global and local temporal relationships.

2.6 Model Optimization Techniques

Model optimization in deep learning refers to a process designed to refine a

neural network to boost its performance and efficiency of machine learning

models. The process includes techniques that minimize the use of computational

resources, such as memory and processing time, by refining the structure and

functionality of the model, without compromising the model’s accuracy and

overall effectiveness. Additionally, as deep learning models are deployed in web

applications, mobile devices, and edge devices, it is crucial to compress these

18

models without compromising the quality and performance of the original

models (VK, 2024).

 Optimizing models can lead to a decrease in their size, which offers

several benefits. These include reduced storage requirements, smaller download

sizes, and lower memory consumption. Techniques like quantization can

decrease the model's size in all of these areas, although there might be a slight

trade-off in accuracy. Additionally, pruning and clustering methods can make

models more compressible, which helps in reducing download sizes.

 Latency refers to the time it takes for a model to make a prediction.

Certain optimization techniques can reduce the amount of computation needed

to perform inference, thereby decreasing latency. This also helps to reduce

power consumption. Currently, quantization is a widely used method to reduce

latency by simplifying the operations performed during inference, though it may

result in a slight loss of accuracy.

2.6.1 Quantization

Quantization operates by lowering the precision of the numbers that represent a

model’s parameters, which are typically from 32-bit floating point values to 16-

bit or 8-bit. This reduction in precision leads to a smaller model size and quicker

computation, enhancing both memory efficiency and processing speed. Figure

2.17 shows an example of quantization from 32-bit to 8-bit.

Figure 2.17: Quantization Technique (VK, 2024)

Quantization-Aware Training involves incorporating quantization into

the training process. During QAT, the model is trained with simulated lower

precision weights and activations, allowing the network to learn to compensate

for the reduced precision (Ray, 2024). This method typically leads to better

performance compared to PTQ since the model has been explicitly optimized

for quantization.

19

On the other hand, Post-Training Quantization is applied after the

model has already been trained. It involves quantizing the weights and

activations of a pre-trained model without requiring additional training. PTQ is

generally faster and easier to implement than QAT, but it may result in some

performance degradation due to the lack of optimization for quantization during

training (Ray, 2024). PTQ is useful when computational resources or time

constraints limit the ability to retrain the model.

2.6.2 Pruning

Model pruning is a technique used to reduce the size of a model by eliminating

unnecessary weights and parameters, thereby improving efficiency. In computer

vision, particularly with deep neural networks, the presence of a vast number of

parameters, such as weights and activations, which are the intermediate outputs

that assist in producing the final result, can significantly increase both the

complexity and computational requirements (Vina, 2024). Pruning addresses

this by identifying and removing parameters that have little impact on the

performance of the model, thus resulting in a more lightweight and efficient

model. While pruned models maintain the same size on disk and exhibit the

same runtime latency, they become more compressible. This makes pruning an

effective technique for reducing the model’s download size.

Figure 2.18: Pruning (VK, 2024)

2.6.3 Knowledge Distillation

Knowledge distillation is an optimization method where knowledge is

transferred from a larger, more complex model (referred to as the “teacher”) to

a smaller, more computationally efficient model (the “student”). The underlying

20

idea is that, while a large and intricate model may be necessary to understand

complex patterns in data, a smaller model can learn and capture the same

relationships, achieving similar performance levels in tasks with lower

computational demand. This technique is commonly applied to classification

models (both binary and multi-class) with a softmax activation in the output

layer (Lamberti, 2024).

 The core of knowledge distillation is based on two key principles: the

teacher-student framework and distillation loss. In this setup, the teacher model

is a high-capacity network that performs well on the task, while the smaller

student model is more compact and optimized for efficiency. The student is

trained to replicate the teacher’s predictions but also to match the output

distributions produced by the teacher. This allows the student model to grasp

the relationships between the data samples and their corresponding labels,

especially in classification tasks where it learns to approximate the decision

boundaries defined by the teacher model (Lamberti, 2024).

Figure 2.19: Knowledge Distillation (Teki, 2022)

2.6.4 OpenVINO

One of the most effective optimization tools available is the OpenVINO

optimization method. In many real-world applications, deep learning AI models

need to be optimized to make better use of computational resources, ensuring

they deliver faster performance. OpenVINO provides a range of tools that

support this goal, including the Model Optimizer, Post-training Optimization

Tool (POT), and the Neural Network Compression Framework (NNCF), all of

which are designed to improve model efficiency and reduce memory usage.

21

Figure 2.20: OpenVINO Optimization Tool

2.7 Inference

During the inference phase, the model is tasked with identifying unusual actions

or events within videos by analysing the anomaly scores it produces. However,

during inference, videos often have different durations, leading to a variety of

frames. There are two primary categories to handle this.

2.7.1 Variable-Length Sequence Handling (Dynamic)

In this approach, all sampled frames from a video are passed through the model.

The model uses pack_padded_sequence in Pytorch to process sequences of

different lengths efficiently. To process a batch, all sequences are padded to

match the length of the longest sequence, as shown in Figure 2.21. This is

suitable when the model was trained with variable-length sequences, ensuring

consistency between training and efficiency. However, this might waste

processing power to perform unnecessary padding while ensuring uniformity in

sequence lengths by adding zeros to shorter sequences (GeeksforGeeks, 2024).

Figure 2.21: Overview of the working of pack_padded_sequence

22

2.7.2 Fixed-Length Sequences

In this approach, all video inputs are transformed into a fixed sequence length.

There are two sub-strategies for this, which include padding and truncation, and

the sliding window approach.

2.7.2.1 Padding and Truncation

In this method, all video sequences are standardized to a fixed length, with

shorter sequences being padded with zeros or another neutral value, ensuring

uniform input size for the model. Conversely, sequences longer than the target

length are truncated to fit. This approach is straightforward and efficient,

particularly when the average or median sequence length from the training data

is known and representative of most samples. It ensures consistent input

dimensions, which is especially helpful when using models that expect fixed-

size inputs.

2.7.2.2 Sliding Window approach

The sliding window technique breaks long videos into smaller, fixed-length

segments, which are then processed individually. These windows can either

overlap or remain distinct depending on how much temporal coverage is desired

(Overload, 2022). This method is especially useful for analysing lengthy videos,

where anomalies might occur at any point in time. By examining each segment

in isolation, the model can effectively localize abnormal events without needing

to process the entire video at once.

Figure 2.22: Sliding Window Approach (Jaime-Rodrigo González-Rodríguez

et al., 2024)

23

2.8 Summary

This chapter provides an overview of recent advancements in Video Anomaly

Detection (VAD), highlighting the impact of deep learning techniques.

Traditional methods are increasingly being outperformed by models using

Convolutional Neural Networks (CNNs), Transformers, and other architectures

that effectively capture complex spatio-temporal features for more accurate

anomaly detection in surveillance and other video streams.

Benchmark datasets like ShanghaiTech, UCF-Crime, and XD-

Violence are discussed, each presenting unique challenges such as annotation

levels, anomaly types, and input modalities. These datasets are critical for

evaluating and comparing VAD methods, especially in supervised and weakly

supervised learning settings.

The chapter also reviews key feature extractors. While 2D CNNs

handle spatial features well, 3D CNNs capture temporal dynamics across frames.

Modern architectures like Transformers and Graph Convolutional Networks

(GCNs) are also explored, offering strong sequence modelling and relational

reasoning capabilities, respectively.

Finally, the chapter outlines the current VAD approaches, focusing on

the shift from fully supervised to self-supervised, weakly supervised, and

unsupervised learning techniques.

Additionally, model optimization techniques, including quantization,

pruning, and knowledge distillation, are crucial for deploying VAD models on

resource-limited devices. These techniques help maintain performance while

reducing model size and latency. Inference strategies like dynamic sequence

handling and sliding windows ensure consistent performance across videos of

varying lengths, enabling real-time and practical deployment.

24

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

The essential elements for creating a video anomaly detection system are

covered in this chapter, with an emphasis on the XD-Violence and UCF-Crime

datasets, which provide a variety of real-world scenarios. The model

architecture is presented, integrating temporal analysis and feature extraction

with deep learning techniques. In addition, methods for enhancing anomaly

detection are covered, as well as the performance measures for the model, AUC

and AP, which are utilized for evaluation.

3.2 Experimental Setup

3.2.1 Hardware

Table 3.1: Experimental Platform Configuration

Name Configuration

Operating System Ubuntu 22.04.4 LTS (Jammy)

CPU Model 12th Gen Intel(R) Core(TM) i5-12450H @ 2.50

GHz

RAM 16.0 GB

GPU Model NVIDIA GeForce RTX 3050

GPU Memory 4 GB

NVIDIA Driver Version 535.183.01

CUDA Version 12.2

3.2.2 Software

Throughout this project, multiple frameworks, platforms, and tools, including

Python, Pytorch, Kaggle, Google Colab, OpenCV, and VLC, are utilized for

multi-task model development and experimentation.

25

3.2.2.1 Google Colaboratory

Google Colab is a cloud-based Jupyter notebook service that requires no

installation or setup, enabling users to run computationally intensive tasks-such

as machine learning training, directly in a browser. It provides free access to

high-performance GPUs and TPUs, significantly accelerating model

development. In this project, the majority of the training and testing procedures

were conducted using the Google Colab platform, leveraging its high-

performance A100 GPU to accelerate deep learning computations, as shown in

Table 3.2. The platform’s deep integration with Google Drive and streamlined

sharing capabilities make it an ideal environment for collaborative development.

Table 3.2 shows the computational resources mainly used in this project for

training.

Figure 3.1: Google Colaboratory logo

Table 3.2: Computational Resources

Graphics Processor Video Memory Memory Capacity

A100 GPU 40 GB VRAM 83.5 GB RAM

3.2.2.2 Kaggle

In this project, the datasets after preprocessing steps are uploaded to Kaggle for

further usage. Kaggle is a platform and online community for data scientists and

machine learning practitioners, hosted by Google. Besides, Kaggle provides a

vast library of public datasets for users to explore, analyze, and build models on.

It supports both private and public dataset sharing, along with robust storage

capabilities, allowing up to 200 GB per dataset. Particularly relevant for this

project’s needs, which involve processing large volumes of video data, Kaggle’s

generous storage allocation and computational resources make it perfectly

suited for the requirements. Once published, these datasets can be

programmatically accessed by third parties through Kaggle’s API, enabling

seamless integration with external tools and workflows.

Figure 3.2: Kaggle logo

26

3.2.2.3 Python

Python, a high-level programming language with dynamic semantics, is the

choice of programming language for this deep learning project. Although deep

learning can be implemented in multiple programming languages such as C++,

Java, and others, Python continues to be the preferred language for most

developers. Leading open-source frameworks like TensorFlow and PyTorch

offer intuitive Python APIs, making it easier for developers to design and train

neural networks efficiently (Williamson, 2021).

Figure 3.3: Python logo

3.2.2.4 VLC Media Player

In this project, VLC media player is commonly utilized for video-related

operations, including frame-by-frame navigation and extraction. These

functionalities are particularly useful for tasks such as verifying annotations,

inspecting temporal boundaries of anomalous events, and ensuring the accuracy

of ground truth labels.

Figure 3.4: Icon of VLC media player

3.2.2.5 Pytorch

Pytorch is an open-source machine learning library developed by Facebook’s

AI Research lab (FAIR). It provides a flexible, Pythonic interface for building

deep learning models, and it is widely used in both research and production.

Pytorch provides some key features such as strong GPU acceleration support,

easy debugging and customization, and a rich ecosystem including torchvision,

torchaudio, and more (NVIDIA, n.d.). It enables efficient model design, training,

and evaluation in this anomaly detection project.

Figure 3.5: Pytorch Icon

27

3.2.2.6 OpenCV

OpenCV is a free and open-source software library for computer vision and

machine learning. It is widely used for image and video processing. In this VAD

(Video Anomaly Detection) project, OpenCV plays a key role in handling video

input, frame extraction, and display of detection results. It supports both video

inference and real-time inference, enabling frame-by-frame processing and

visualization of anomalies (Kulhary, 2019). Its speed, Python compatibility, and

strong community support make it ideal for real-time detection tasks.

Figure 3.6: Icon of OpenCV

28

3.3 Work Plan

Figure 3.7 shows the flowchart of the entire workflow, summarizing all the steps.

Figure 3.7: Flowchart of Entire Workflow

3.3.1 Dataset Selection

In this study, two different datasets were used, which are UCF-Crime and XD-

Violence.

3.3.1.1 XD-Violence

The first datasets used are XD-Violence obtained from Wu et al. (2020). The

dataset is selected for several reasons. It covers six distinct categories of

physical violence, including Abuse, Car Accident, Explosion, Fighting, Riot,

and Shooting. This diverse range of violence types provides a comprehensive

representation of different violent events, making it a valuable resource for

training VAD models. By including a variety of violence categories, the dataset

ensures that the VAD model can generalize well across different types of

anomalies.

29

Figure 3.8: Sample Videos from XD-Violence Datasets

 Besides, the XD-Violence dataset is compiled from both movies and

YouTube videos. This blend of sources enriches the dataset with a wide range

of scenarios, from scripted and staged violence in movies to real-world, in-the-

wild scenes from YouTube. This variety helps the VAD model to learn from

both controlled environments and more unpredictable, real-world situations,

enhancing its robustness.

 The XD-Violence dataset is particularly suitable for VAD models due

to its precise frame-level annotations, which detail the start and end frames of

violent events, ensuring accurate temporal information. With a substantial

collection of 4,754 videos, including a diverse mix from movies and YouTube,

the dataset offers a broad range of scenarios and violence types. The high-

quality annotations, derived from multiple annotators and averaged for precision,

contribute to the dataset's reliability. Additionally, the inclusion of various

temporal locations within the videos helps the VAD model recognize anomalies

across different time frames, enhancing its overall robustness and generalization.

3.3.1.2 UCF-Crime

The UCF-Crime dataset's thorough and accurate depiction of abnormalities in

actual surveillance film makes it an excellent option for use in VAD systems. It

offers a comprehensive and diverse collection of 1,900 untrimmed movies,

showcasing 13 different types of anomalies that can occur in real-world

scenarios, such as stealing, abuse, fighting, and others, as shown in Figure 3.9.

This contrasts with other datasets provided, which frequently involve

30

constrained scenarios or unrealistic anomalies. These anomalies are chosen due

to their significant impact on public safety (Sultani, Chen, and Shah, 2018).

Because of this diversity, VAD models trained on this dataset are exposed to a

greater variety of scenarios, which enhances their capacity to generalize across

various violent and abnormal event types.

Figure 3.9: Datasets from UCF-Crime

With 128 hours of footage total and an average of 7,247 frames per

movie, the dataset's large scale provides a significant amount of data for training

and testing VAD models. Detailed annotations offer precise temporal data

regarding the onset and duration of anomalous events, featuring frame-level

labels for testing and video-level labels for training. This degree of detail

improves the model's high-accuracy detection and differentiation between

normal and aberrant activity.

In addition, strict guidelines for video selection and annotation were

followed during the collection of the UCF-Crime dataset. To verify the accuracy

of the anomalies, videos that were taken from actual surveillance scenarios were

carefully reviewed to remove modified, prank, or non-CCTV material. The

comprehensive methodology used for data gathering and annotation enhances

the validity and significance of the dataset.

31

3.3.1.3 Overview of Datasets Used

Table 3.3 shows the summary of the two datasets used in this research.

Table 3.3: Comparison of the two datasets used

Feature XD-Violence UCF-Crime

Source of videos Movies and YouTube

(mixed realism)

Real-world CCTV

surveillance footage

Number of Video

Clips

4,754 1,900 (untrimmed)

Violence videos 2405 950

Non – violence

videos

2349 950

Anomaly Types 6 violence categories 13 real-world categories

Annotation • Video-level labels for training

• Frame-level labels for testing

3.3.2 Data Preprocessing

Before training deep learning algorithms, the video data must undergo several

preprocessing steps to ensure proper preparation. In this study, the UCF-Crime

dataset is readily available at the frame level on Kaggle, as provided by other

authors, allowing it to be used directly for further preprocessing. However, the

XD-Violence dataset is only accessible at the video level, requiring additional

preprocessing steps to extract frame-level data. Figure 3.10 shows the overview

of the dataset preprocessing steps applied to the datasets used.

Figure 3.10: Overview of Data Preprocessing Steps

32

3.3.2.1 UCF-Crime

3.3.2.1.1 Reconstruction of the Dataset

The UCF-Crime dataset utilised in this study comprises 1610 video sequences

covering 14 distinct classes. As shown in Figure 3.11, the dataset exhibits

significant class imbalances, with ‘Normal Videos’ representing the majority

class, posing challenges for model training for multi-classification. The dataset

consists of individual frames in small sizes rather than pre-arranged video

sequences. The frames were then reconstructed into video sequences by sorting

them based on their filenames. This involved sequentially ordering the frames

and labelling them according to their corresponding classes (Zvereva,

Kaprielova, and Andrey Grabovoy, 2025). The following steps are taken:

1. Frame Grouping: Frame sequences were reconstructed by identifying

and grouping related frames through filename pattern analysis. Each

frame’s unique video identifier was extracted to ensure proper temporal

grouping.

2. Class Annotation: Each video was categorized based on its folder

hierarchy, with labels corresponding to the particular anomaly type or

indicating normal behavior.

3. Analysis of Data Distribution: Analysis of the video lengths indicated

that the shortest sequence comprised 11 frames, while the longest

reached 97,651 frames. On average, sequences contained approximately

786.5 frames, with a median length of 222.5 frames.

Figure 3.11: Overview of Original Class Distribution in UCF-Crime

33

Figure 3.12: Distribution of Video Duration Under 10,000 Frames

Table 3.4: Count and Proportion of Videos Exceeding 2,500 Frames

Class Total Videos Percentage (%)

Abuse 1 1.61 %

Arrest 1 1.61 %

Burglary 2 3.23 %

Fighting 2 3.23 %

Shoplifting 2 3.23 %

Normal Videos 54 87.10 %

 Figure 3.12 demonstrates the variation in video sequence lengths, with

a noticeable occurrence of clips having a duration of up to 2,500 frames. To

enhance dataset balance, sequences exceeding 2,500 frames were removed, as

they were predominantly from the 'Normal' class. This step effectively reduced

the imbalance between classes, producing a final dataset with 1,528 video

sequences.

3.3.2.2 XD-Violence

XD-Violence dataset is only accessible at the video level, thus requiring

additional preprocessing steps to extract frame-level data. Moreover, the XD-

Violence dataset has different structures compared to UCF-Crime, thus

requiring unique handling. In the XD-Violence dataset, each video filename

encodes a class label, the labels are shown in Table 3.5.

34

Table 3.5: Label Explanation

Label Class

B1 Fighting

B2 Shooting

B4 Riot

B5 Abuse

B6 Car accident

G Explosion

For example: “Black.Hawk.Down.2001__#01-13-59_01-14-49_label_B2-0-0”

indicates there are shootings in the video ‘Black.Hawk.Down.2001__#01-13-

59_01-14-49’.

3.3.2.2.1 Class Grouping

Based on the pattern shown in Figure 3.11 and 3.12, the videos are first grouped

according to their classes based on the label name in the video name, in order to

facilitate further frame extraction.

3.3.2.2.2 Frames Extraction

Figure 3.13: Frames extracted

The frames are then extracted from the video files of the XD-Violence dataset

to produce a series of frames in which the sequence forms a single video sample,

as shown in Figure 3.13. These frames capture the temporal changes in scenes

and serve as the primary input for subsequent analysis. Every 10th frame is

extracted from each full-length video. After extraction, all the frames are resized

to standardized dimensions of 64 x 64 pixels to maintain consistency across all

samples. This spatial normalization ensures uniform preprocessing while

35

preventing potential artifacts like distortion or blurring that could affect the

neural network performance, while also improving the computational efficiency.

3.3.2.2.3 Dataset Uploaded to Kaggle

After frames are extracted, the frame-level dataset is then uploaded to Kaggle,

so that it is further accessible through Kaggle API. Figure 3.14 shows the frame-

level dataset uploaded to Kaggle.

Figure 3.14: Dataset Published on Kaggle

3.3.2.2.4 Reconstruction of XD-Violence Dataset

XD-Violence dataset utilised in this study comprises of 2460 video sequences

covering 6 distinct classes. Similar to UCF-Crime, the frames are then grouped

into video sequences by parsing filenames, and each video sequence is

categorized according to its folder structure, which determines its label.

Figure 3.15: Overview of Original Class Distribution in XD-Violence dataset

36

Figure 3.16: Video lengths in XD-Violence when limited to 10,000 frames

Table 3.6: Count and Proportion of Videos Exceeding 2,500 Frames

Class Total Videos Percentage (%)

Explosion 1 3.33 %

Riot 4 13.33 %

Normal Videos 25 83.33 %

Figure 3.15 shows the overview of original class distribution in XD-Violence

dataset. Figure 3.16 illustrates the variation in video sequence lengths, with a

noticeable occurrence of clips having a duration of up to 2,500 frames. To

enhance dataset balance, sequences exceeding 2,500 frames were removed, as

they were predominantly from the 'Normal' class (83.33%). This step effectively

reduced the imbalance between classes, producing a final dataset with 2,423

video sequences.

37

3.3.3 Data Augmentations

Figure 3.17: Data augmentations on UCF-Crime

Figure 3.18: Data augmentations on XD-Violence

Similar to the data augmentations applied for UCF-Crime, a range of

augmentations was also applied to the XD-Violence dataset to enhance the

model's robustness and adaptability to practical conditions. Table 3.7 shows the

data augmentations applied, whereas Figures 3.17 and 3.18 show 5 examples of

augmented UCF-Crime and XD-Violence datasets, respectively.

Table 3.7: Data Augmentations Parameter applied

Augmentation type Parameters Probability Purpose

Gaussian Blur Kernel size: 5 30% Imitate out-of-focus

frames

Gaussian Noise Mean: 0.0, Std Dev:

1.0

30% Simulate noise from

sensors

Color Jittering Brightness and

Contrast variation:

±30%

30% Reflect lighting

fluctuations

Random Rotation Rotation angle: ±15% 20% Simulate camera

angle variations

3.3.4 Normalization

Input normalization was carried out using the typical RGB mean and standard

deviation values, as shown in Table 3.8, ensuring consistency in the input

distribution and aligning with established preprocessing norms in deep learning.

38

Table 3.8: RGB Mean and Standard Deviation Values

Color Channel Mean Standard Deviation

Red (R) 0.485 0.229

Green (G) 0.456 0.224

Blue (B) 0.406 0.225

3.3.5 Data Splitting

As part of the data splitting process, the dataset is segmented into training,

validation, and testing sets. Initially, video frame sequences from the training

directory are grouped by class and split into training and validation sets using a

stratified sampling approach, ensuring balanced class distribution. Specifically,

70% of the data is allocated for training, while the remaining 30% is reserved

for validation. This division improves model training and allows for evaluation

of generalization during the training process. Separately, an independent test set

is loaded from a designated test directory to assess the model’s final

performance. This structured splitting strategy ensures reliable model training,

validation, and performance evaluation.

3.3.6 Model Architecture

In MIL-based techniques, most of the VAD models consist of at least two

modules, which include the prediction head and backbone for video processing

(Sertis, 2023). In this research, the AnomLite model is a lightweight, yet

powerful architecture designed for video anomaly detection, combining spatial

feature extraction (using MobileNetV2) with temporal modeling (via LSTM).

The input videos are processed in combined batches, containing either

normal behaviours or abnormal events, as shown in Figure 3.19. These batches

are then passed through the AnomLite model. The model consists of three main

components: a spatial feature extractor, followed by a temporal modeling unit,

and then a fully connected layer. Using the processed video data, the model

produces a prediction that identifies whether the video shows normal activity or

contains any of 13 distinct anomaly types, including actions like fighting, arrest,

or other uncommon behaviors.

39

Figure 3.19: Spatio-temporal features from video batches processed by the

model (Zvereva, Kaprielova, and Grabovoy, 2025)

Figure 3.20: Overview of AnomLite Model Structure (Zvereva, Kaprielova

and Andrey Grabovoy, 2025)

The model architecture begins with an input layer that takes a 5D tensor

of shape [batch_size, sequence_length, 3, 64, 64], representing batches of video

sequences with RGB frames resized to 64×64 pixels (Zvereva, Kaprielova, and

Andrey Grabovoy, 2025), as shown in Figure 3.20. Spatial feature extraction is

performed using only the first four layers of MobileNetV2, a lightweight

convolutional backbone optimized for efficiency. These layers consist of an

initial convolutional block followed by three InvertedResidual blocks, which

gradually refine the input with depthwise separable convolutions (Zvereva,

Kaprielova and Andrey Grabovoy, 2025).

Once the data passes through the MobileNetV2 layers, a max-pooling

operation is performed to decrease the spatial size of the feature maps. These

resulting features are then flattened to set them up for temporal analysis.

An LSTM model is used to capture temporal dependencies across

frames, processing input sequences of shape [8, 2500, 1176], which is the batch

size of 8, sequence length of 2500, and feature size of 1176. The model uses

40

only the final hidden state, producing a summary representation of shape [8,

1176].

Finally, a fully connected layer maps this representation to an output

tensor of shape [8,14], corresponding to 13 anomaly classes and 1 normal class

(Zvereva, Kaprielova, and Andrey Grabovoy, 2025).

3.3.7 Model Training

The model training process for the AnomLite architecture is designed to handle

video anomaly classification by leveraging both spatial and temporal features.

The model combines MobileNetV2, a lightweight convolutional neural network

pretrained on ImageNet, with an LSTM (Long Short-Term Memory) layer to

capture temporal dynamics across frames (Zvereva, Kaprielova and Andrey

Grabovoy, 2025). During training, only the first few convolutional layers from

MobileNetV2 are used for feature extraction to maintain computational

efficiency. Initially, these convolutional layers are frozen to retain their

pretrained weights but are later unfrozen after the second epoch to allow fine-

tuning based on the target task.

In each training epoch, the model processes video clips represented as

sequences of image frames. The spatial features are extracted by MobileNetV2,

and then a MaxPool2d operation is used to reduce their spatial resolution. These

features are then flattened and passed through the LSTM, which models the

sequence information across frames. The final hidden state of the LSTM is

passed through a dropout layer and batch normalization, before being classified

by a fully connected layer (Zvereva, Kaprielova and Andrey Grabovoy, 2025).

Training uses a Cross Entropy loss function with class weights to

handle class imbalance, and Adam optimizer with an initial learning rate of

0.0002. Among all configurations, a learning rate of 0.0002 yielded the most

consistent and superior performance, with higher ROC AUC, AP, and weighted

F1-score results. In contrast, lower rates like 0.0005 led to slower training and

significantly lower accuracy. Higher learning rates, on the other hand,

introduced training stability, establishing 0.0002 as the ideal compromise

between rapid convergence and model stability. Additionally, SMOTE has been

used to further alleviate class imbalance by oversampling minority classes.

Figure 3.21 shows a comparison of the dataset with and without the application

41

of SMOTE. An early stopping mechanism is employed to terminate the training

process if the validation loss fails to improve over five consecutive epochs,

thereby mitigating the risk of overfitting. Throughout training, performance is

tracked using both micro and macro F1-scores, providing a robust evaluation

across both balanced and imbalanced datasets. Model checkpoints are saved

whenever a new best validation loss is achieved (Zvereva, Kaprielova, and

Andrey Grabovoy, 2025).

Figure 3.21: Comparison of Dataset Before and After Applying SMOTE

(Zvereva, Kaprielova, and Andrey Grabovoy, 2025)

3.3.8 Loss Functions

In this model, the loss functions are vital in addressing the class imbalance issue

and improving the model's performance in detecting anomalies in video

sequences. Two primary loss functions were utilised: Weighted Cross-Entropy

Loss and Focal Loss.

The Weighted Cross-Entropy Loss is utilised to address the issue of class

imbalance by assigning higher weights to the underrepresented classes. This is

especially important in datasets where the "Normal" class dominates the data,

making it harder for the model to detect anomalies. The formula for this loss is:

𝐿 = − ∑ 𝜔𝑖 ∙

𝐶

𝑖=1

𝑦𝑖 ∙ log(𝑝𝑖)

Where 𝜔𝑖 is the weight assigned to class 𝑖, 𝑦𝑖 is the true label of class 𝑖 (either

0 or 1), and 𝑝𝑖 is the predicted probability for class 𝑖 . The weight 𝜔𝑖 is

calculated inversely proportional to the frequency of the class, meaning that

(3.1)

42

classes with fewer examples will have higher weights. This ensures that the

model pays more attention to the underrepresented anomaly classes, thus

mitigating the bias toward the normal class. The compute_class_weight function

from scikit-learn is used to calculate these weights, which are then incorporated

into the loss function during training.

 Focal Loss was implemented to emphasize difficult-to-classify

samples and enhance the model's responsiveness to minority classes. Focal Loss

is designed to improve model performance on challenging samples by reducing

the influence of easily classified examples. It achieves this through down-

weighting, which shifts the model's focus toward harder instances and their

associated errors, rather than relying solely on prediction confidence. The

formula of this loss is:

𝐿 = −(1 − 𝑝𝑡)𝛾 log(𝑝𝑡)

The parameter γ, also known as the focusing or relaxation parameter, is adjusted

through cross-validation and determines how strongly the model concentrates

on difficult, misclassified samples during training. Higher values of γ place

greater emphasis on these challenging cases, whereas lower values maintain a

more even focus between easy and hard examples. Despite this intent, it resulted

in a lower ROC AUC and accuracy, indicating suboptimal performance for this

task. Consequently, CrossEntropyLoss remained the preferred loss function for

the model.

3.3.9 Evaluation Metric

Performance evaluation is essential for understanding how well a model

differentiates between normal and abnormal events in video anomaly detection.

Area Under the ROC Curve (AUC) and Average Precision (AP) are the two

main evaluation metrics that are covered in this context. This is a thorough

discussion of these measurements along with the necessary calculations.

A common metric to evaluate a binary classifier's performance (normal

vs. aberrant) is the AUC. Plotting the Receiver Operating Characteristic (ROC)

curve, which contrasts the True Positive Rate (TPR) with the False Positive Rate

(FPR) at different threshold values, provides a summary of the model's

(3.2)

43

performance. The Receiver Operating Characteristic (ROC) curve shows the

performance of a classification model, and the Area Under the Curve (AUC)

reflects its capability to separate different categories. (Narkhede, 2018). True

Positive Rate (TPR), often referred to as recall or sensitivity, represents the

percentage of real positive instances, such as abnormal video frames, that are

accurately classified by the model:

𝑇𝑃𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(3.3)

False Positive Rate (FPR) measures the proportion of negatives (normal frames)

that were incorrectly classified as positives (abnormal):

𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁

(3.4)

 The second evaluation metric is the average precision (AP), which

summarises the precision–recall trade-off of the model. It is useful for

imbalanced datasets, like anomaly detection, where there are fewer

positive(abnormal) examples.

Precision measures the proportion of positive identifications that are

correct:

𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(3.5)

Recall evaluates the fraction of true positives that are accurately identified. AP

is calculated by integrating the Precision-Recall (PR) curve, which visualizes

precision versus recall across various threshold values. The actual area under

the curve can be defined as:

𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟

1

0

(3.6)

where 𝑝(𝑟) is the precision at recall 𝑟.

 In this model, various metrics were used to evaluate performance,

particularly for multiclass classification, where the task involves identifying

anomalies across multiple classes. These metrics include F1-Micro, F1-Macro,

44

and Accuracy, each offering a unique viewpoint on how effectively the model

distinguishes between different classes.

The F1-Macro score refers to the unweighted average of the F1-scores

across all types of classes. It is calculated by:

𝐹1 − 𝑀𝑎𝑐𝑟𝑜 =
1

𝐶
 ∑ 𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑖

𝐶

𝑖=1

(3.7)

Where 𝐶 is the number of classes, and 𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑖 is the F1 score for class 𝑖.

This metric gives an equal weight to all classes, regardless of their frequency,

making it particularly useful when there is class imbalance, as it does not favor

the majority class. The F1-Micro score combines the TPs, FPs, and FNs from

all classes into a single metric, offering an overall assessment of the model’s

precision and recall across all decision thresholds. It is calculated as:

𝐹1 − 𝑀𝑖𝑐𝑟𝑜 =

2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(3.8)

This approach is useful for situations where all classes need to be

treated equally, regardless of their individual sizes. The F1-Micro score tends to

be higher when the model performs well on the majority class, but it can mask

poor performance on minority classes.

 Accuracy quantifies the overall correctness of the model by computing

the ratio of correctly predicted instances to the total number of predictions made

across all classes. It is calculated by:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(3.9)

3.3.10 Model Optimization

In this study, dynamic quantization was employed to optimize the AnomLite

model for efficient inference, particularly on resource-constrained devices such

as edge processors or CPUs. Quantization is a model compression technique

that reduces the precision of the weights and, in some cases, activations from

FP32 to a lower bit-width format, INT8. Specifically, dynamic quantization was

chosen due to its simplicity and effectiveness for models with recurrent

45

components like LSTMs, which are central to AnomLite ’s architecture for

processing temporal video data.

Figure 3.22: Layers Selected for Quantization

As shown in Figure 3.22, dynamic quantization is a post-training

quantization (PTQ) that quantizes the weights of selected layers, which are the

LSTM and Linear layers, at runtime while keeping the activations in floating

point. This contrasts with quantization-aware training (QAT), which simulates

quantization effects during the training process and typically yields higher

accuracy but requires retraining with added complexity. These layers were

selectively quantized to 8-bit integers (torch.qint8), while the convolutional

layers and activation functions were preserved in their original floating-point

32-bit precision (FP32). This selective quantization approach allows the model

to benefit from reduced memory and computational costs while maintaining the

integrity of key components crucial for performance. This process involving

PTQ did not require changes to the training pipeline or loss of model

compatibility.

After quantization, the model exhibited reduced memory usage and

inference time, while maintaining performance within acceptable limits. The

use of dynamic quantization allowed for faster execution on CPU-based systems.

3.3.11 Inference Implementation

The sliding window approach is particularly advantageous for video anomaly

detection models, such as the one used in this inference pipeline, because it

allows the model to maintain temporal context while processing video in smaller,

more manageable chunks. In anomaly detection, detecting abnormal events

often relies on the model's ability to understand the progression of normal and

46

abnormal behaviors over time. The sliding window approach ensures that the

model evaluates a consistent sequence of frames, which is essential for

capturing the temporal patterns of normal and anomalous events.

Moreover, this method helps balance computational efficiency with

accuracy. Instead of processing the entire video at once, which would be

computationally expensive and slow, the sliding window allows for real-time

processing by analyzing only a subset of frames at any given time. This not only

reduces memory and processing time but also allows for continuous,

incremental predictions as the video progresses. For anomaly detection, where

subtle variations in behavior may appear over time, this approach is ideal as it

ensures that the model can continuously learn from the evolving sequence of

frames, making it more responsive to dynamic changes in the video stream

3.4 Gantt Chart

This section presents the Gantt charts for both semesters, with Figure 3.23

showing the chart for Semester 1 and Figure 3.24 for Semester 2.

Figure 3.23: Gantt Chart for FYP1

Figure 3.24: Gantt Chart for FYP2

47

3.5 Summary

This chapter details the comprehensive methodology used to develop the video

anomaly detection system, encompassing dataset selection, preprocessing steps,

model architecture design, training strategies, and the evaluation protocol. The

study utilized two well-known benchmark datasets, including UCF-Crime,

which contains real-world CCTV footage with 13 anomaly classes, and XD-

Violence, composed of violence-related video clips from movies and YouTube

featuring 6 categories. To ensure consistency and effectiveness, several key

preprocessing steps were implemented. This included frame extraction using a

1-in-10 sampling rate for XD-Violence, sequence reconstruction by organizing

frames in temporal order, and class balancing strategies such as trimming

lengthy normal videos and applying SMOTE for oversampling

underrepresented classes. To enhance the model's performance, a range of data

augmentation methods were employed, such as adding Gaussian noise and blur,

adjusting color through jittering, and rotating images.

The proposed framework, AnomLite, integrates MobileNetV2 and

LSTM in a lightweight yet effective design. Specifically, the first four layers of

MobileNetV2 were used for spatial feature extraction, reducing computational

load while preserving visual features. The extracted features, represented as

1176-dimensional vectors, were input into an LSTM module to capture

temporal dependencies. This was followed by a fully connected classification

head that mapped the sequences into 14 separate classes. To address class

imbalance and enhance the model's ability to generalize, the training process

incorporated a combination of weighted cross-entropy loss. Additional

regularization methods included dropout with a probability of 0.3, batch

normalization, and early stopping based on validation performance. The model

was trained using Google Colab's A100 GPU with 40GB of VRAM to ensure

efficient computation and faster convergence.

For performance evaluation, the protocol included a mix of binary and

multiclass metrics to fully assess the model’s effectiveness. This covered

common evaluation standards such as AUC-ROC and Average Precision for

detecting anomalies, as well as F1-Micro and F1-Macro scores for analyzing

multiclass classification accuracy.

48

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

This chapter outlines the training and testing processes for the video anomaly

detection and classification model, their performance on two datasets,

performance during inference, model optimization, and further model

comparison. The model's effectiveness is demonstrated through metrics like AP,

AUC, accuracy, and other performance metrics. The evaluation reflects the

model’s accuracy in detecting normal and abnormal video segments.

4.2 Performance Evaluation on UCF-Crime

The AnomLite model is assessed using a range of critical performance metrics,

evaluating different scenarios, binary and multi-class classification. These

evaluation measures offer a thorough insight into the model's effectiveness in

distinguishing between non-violence and violence video segments, even in the

presence of class imbalance. The corresponding metric outcomes are presented

below.

Table 4.1: Performance Metrics of AnomLite on UCF-Crime

Key metrics Value

AP 0.99

AUC 0.99

Accuracy 0.94

F1-Macro 0.93

F1-Micro 0.93

F1-Weighted Avg 0.94

Recall (Macro Avg) 0.94

Precision (Macro Avg) 0.95

49

4.2.1 Confusion Matrix of AnomLite on UCF-Crime

Figure 4.1: Confusion Matrix of AnomLite on UCF-Crime

Figure 4.1 shows the confusion matrix of the model on UCF-Crime, whereas

the first rows refer to the normal class and the second row refers to the anomaly

class. It is seen that the model correctly identified 487 normal videos (True

positives), demonstrating strong specificity in recognizing non-anomalous

events. The model also classified 592 actual instances of anomalies (True

negatives). The low false positive rates, showing only 6 normal videos were

misclassified as anomalous, and the low false negative rates, showing 63

anomalous videos were incorrectly flagged as normal.

4.2.2 ROC AUC of AnomLite on UCF-Crime

Figure 4.2: ROC AUC on UCF-Crime

50

Figure 4.2 illustrates the result of AnomLite on the UCF-Crime dataset, the

ROC curve, which serves as a visual tool for evaluating the performance of a

binary classification model across various threshold settings. The graph trends

toward the upper left region, signifying that the model achieves a strong true

positive rate alongside a low false positive rate across different thresholds.

Additionally, the area under the ROC curve (AUC) is nearly 1, reflecting the

model’s strong ability to differentiate between normal and abnormal instances,

and indicating reliable and consistent performance, while maintaining system

robustness.

4.2.3 PR Curve of AnomLite on UCF-Crime

Figure 4.3: PR Curve on UCF-Crime

Figure 4.3 shows the PR Curve. It can be observed that a strong upward trend is

curved towards the top-right corner, indicating that the model can distinguish

anomalies from normal events well. Moreover, the area under the PR Curve (AP)

provides a comprehensive summary of the model’s effectiveness across the full

range of recall values. An average precision of 0.99 indicates that the model

maintains high precision while simultaneously detecting true anomalies, even

under inherent class imbalance of video anomaly datasets.

51

4.2.4 F1 Scores and Loss

Figure 4.4: F1 Scores and Loss

Figure 4.4 shows the F1 Scores and loss over time. It can be observed that during

training, both Training F1-micro and Validation F1-micro scores steadily

increase, indicating that the model became more effective at correctly

identifying both normal and anomalous events across all samples, regardless of

class imbalance. Similarly, the growth in Training F1-macro and Validation F1-

macro scores reflects improved performance across each class equally,

suggesting that the model not only learned to detect dominant classes but also

performed better on minority classes. Meanwhile, the gradual decrease in both

training and validation loss demonstrates that the model continuously

minimized prediction errors and improved its confidence over time.

52

4.2.5 Per-Class Accuracy

Figure 4.5: Per-Class Accuracy on 14 Classes in UCF-Crime Dataset

Table 4.2: Per-Class Accuracy on 14 Classes in UCF-Crime Dataset

Class Accuracy

0 (Abuse) 0.97

1 (Arrest) 0.94

2 (Arson) 1.00

3 (Assault) 0.89

4 (Burglary) 0.98

5 (Explosion) 1.00

6 (Fighting) 1.00

7 (Road Accidents) 0.98

8 (Robbery) 0.88

9 (Shooting) 1.00

10 (Shoplifting) 0.95

11 (Stealing) 0.99

12 (Vandalism) 1.00

13 (Normal Videos) 0.90

53

Figure 4.5 and Table 4.2 present the per-class accuracy for 14 classes in the

UCF-Crime dataset. The high per-class accuracy demonstrates that the model is

effective at distinguishing between different categories of video anomalies.

4.3 Performance Evaluation on XD-Violence

This section demonstrates the model’s performance on the XD-Violence dataset,

which comprises a wide variety of video scenes collected from sources like

YouTube, movies, and online platforms. Different from UCF-Crime dataset,

which primarily consists of real-world CCTV surveillance footage, XD-

Violence focuses on a wide range of environments, camera angles, and scene

dynamics. The performance evaluation of the model AnomLite offers a

thorough insight into the model's effectiveness. The results of these metrics are

as follows:

Table 4.3: Performance Metrics of AnomLite on XD-Violence

Key metrics Value

AP 0.97

ROC AUC 0.98

Accuracy 0.93

F1-Macro 0.87

F1-Micro 0.89

F1-Weighted Avg 0.93

Recall (Macro Avg) 0.91

Precision (Macro Avg) 0.94

54

4.3.1 Confusion Matrix of AnomLite on XD-Violence

Figure 4.6: Confusion Matrix of AnomLite on XD-Violence

Figure 4.6 shows the confusion matrix of the model on the second dataset, XD-

Violence, in which 332 normal videos are correctly identified (True Positives)

and 831 anomalous videos were correctly flagged as anomalies (True

Negatives). The low false positive of 17 indicates 17 normal videos were

wrongly labelled as anomalous, and false negative of 67 indicates 67 anomalous

videos were incorrectly flagged as normal.

4.3.2 ROC AUC of AnomLite on XD-Violence

Figure 4.7: ROC AUC Curve of AnomLite on XD-Violence

Figure 4.7 displays the ROC curve, where the line bends toward the top-left

corner. This shows that the model achieves a high true positive rate and a low

false positive rate across different threshold values. In addition, the area under

55

the ROC curve (AUC) is 0.98, which indicates the model performs well in

telling apart normal and abnormal events, while staying consistent and reliable.

4.3.3 Average Precision (AP) of AnomLite on XD-Violence

Figure 4.8: PR Curve on XD-Violence dataset

Figure 4.8 illustrates the Precision-Recall (PR) Curve for the XD-Violence

dataset. A noticeable upward curvature towards the top-right corner reflects the

model's strong capability in differentiating anomalous events from normal ones.

Additionally, the area under the PR Curve, represented by the Average Precision

(AP), captures the model's performance across varying recall thresholds. With

an AP of 0.97, the model demonstrates high precision while effectively

identifying true anomalies, even in the presence of the class imbalance typical

of video anomaly detection datasets.

56

4.3.4 F1 Scores and Losses

Figure 4.9: F1 scores and losses on XD-Violence dataset

Figure 4.9 shows the F1 Scores and loss trend during training on the XD-

Violence dataset. Both Training and Validation F1-micro steadily increased and

demonstrated the model’s improved ability to identify normal and anomalous

events overall. The improvement in F1-macro scores indicates better

performance across all classes, including less frequent ones. In the meantime,

the steady drop in loss points to fewer errors in predictions and increasing model

confidence.

4.3.5 Per-Class Accuracy

Figure 4.10: Per-Class Accuracy on XD-Violence Dataset

57

Table 4.4: Per-Class Accuracy on XD-Violence

Class Accuracy

Class 0 (Abuse) 0.94

Class 1 (Car Accidents) 0.95

Class 2 (Explosion) 0.85

Class 3 (Fighting) 0.90

Class 4 (Normal Videos) 0.86

Class 5 (Riot) 0.91

Class 6 (Shooting) 0.79

Figure 4.10 and Table 4.4 present the per-class accuracy for 6 classes in the XD-

Violence dataset. The high per-class accuracy demonstrates that the model is

effective at distinguishing between 6 different categories of video anomalies.

58

4.4 Performance of AnomLite model (Inference)

This section presents the outcome of the model’s prediction on previously

unseen real-world videos, alongside its performance during real-time inference.

4.4.1 Prerecorded video

Figure 4.11: A Detected Frame classified as 'Fighting' on Unseen Data

59

Figure 4.12: Prediction of the model on ‘Fighting’ frames by frames on a

video sequence

Figure 4.11 shows an example of a detected frame classified as 'Fighting',

whereas Figure 4.12 illustrates the frame-by-frame prediction of the model on a

video sequence depicting a ‘Fighting’ event. Each frame’s classification output

indicates how the model detects and localizes the anomalous event activity over

time. This visualization helps assess the model’s temporal consistency and

sensitivity in identifying suspicious behaviour as it unfolds within a continuous

video stream.

60

Table 4.5: Model predictions on unseen real-world videos, multiclass labelled

Arson

Abuse

Arrest

Burglary

Explosion

Fighting

Road

Accidents

61

Robbery

Stealing

Vandalism

The model's predictions on unseen real-world videos are shown in Table 4.5,

along with multiclass labels for different anomalous events. Each row represents

a distinct class of event, such as 'Arson,' 'Abuse,' 'Arrest,' and others, showing

how effectively the model identifies different types of incidents. The table

demonstrates how the model can generalize to a variety of situations, correctly

categorizing films that are not included in the training set. This evaluation is

critical to understanding the model's robustness and its potential for real-world

deployment in surveillance systems.

62

4.4.2 Real-Time Streaming

This section demonstrates the model’s detection results for the ‘Fighting’ event

captured from various angles in the campus library, as illustrated in Figures 4.13,

4.14, 4.15, and 4.16.

Figure 4.13: Fighting detection from bottom view

Figure 4.14: Detection of Fighting at the corner

Figure 4.15: Detection of Fighting from another side view

63

Figure 4.16: Detection of Fighting from another higher view

This section demonstrates the model’s performance in detecting

‘Fighting’ events from multiple perspectives within a campus library

environment, as shown in Figures 4.13 to 4.16. The model accurately identifies

the event from different camera angles, including bottom, corner, side, and

higher vantage points, thus illustrating its robustness across varying

environmental conditions.

4.4.3 Summary of Inference

In short, two testing strategies were used in this study to evaluate the model's

inference abilities in real-world situations. In the first method, pre-recorded

videos were uploaded, especially for unusual occurrences like arson, explosions,

or armed robberies that are dangerous or difficult to reproduce in real life. These

videos, often sourced from public datasets or online platforms, ensured the

inclusion of rare and complex events during evaluation. The second strategy

focused on incidents that are comparatively simpler and safer to mimic,

including fighting, and used real-time video capture via a webcam. This real-

time testing made it possible to evaluate the model's flexibility and reactivity in

dynamic, real-time environments. The results of this approach are shown in

Section 4.4.2, which shows that fighting incidents that were captured from

different perspectives inside the campus library setting were successfully

detected.

64

4.5 Model Optimization

4.5.1 Results of Model Optimization

Figure 4.17: Quantization Verification

Figure 4.18: Parts of Quantized Model Architecture

Figure 4.19: Quantized Layer Details

Figures 4.17, 4.18, and 4.19 show that dynamic post-training quantization

approach has been successfully applied to the model. The model’s architecture

mainly consists of LSTM (RNN) layers and fully connected (FC) layers. As

shown in Figures 4.18 and 4.19, these layers were selectively quantized to 8-bit

integers (torch.qint8), while the convolutional layers and activation functions

were preserved in their original floating-point 32-bit precision (FP32). This

selective quantization approach allows the model to benefit from reduced

memory and computational costs while maintaining the integrity of key

components crucial for performance.

 The quantized layers demonstrated a significant reduction in memory

usage, resulting in an approximately 4× decrease in overall model size. This

65

optimization significantly enhances the model’s deployability on edge devices

with limited storage capacity. Table 4.6 shows the comparative analysis of the

original and quantized models.

Table 4.6: Comparative Analysis of Original vs. Quantized Model

Feature Original Model Quantized Model

LSTM Type LSTM DynamicQuantizedLSTM

Linear Layer (FC) FP32 torch.qint8

Weight Storage 32-bit 8-bit

Activation Precision FP32 Dynamic FP32 converted

to int8 on-the-fly

66

4.5.2 Performance of Quantized Model

Table 4.7: Comparison of performance of both models on the same video

frames

Original Model Quantized Model

Confidence: Fighting (0.84)

Confidence: Fighting (0.83)

Confidence: Fighting (0.84)

Confidence: Fighting (0.83)

Confidence: Fighting (0.98)

Confidence: Fighting (0.97)

Confidence: Arson (0.74) Confidence: Arson (0.73)

67

To compare the performance between the original model and the quantized

model, random frames were selected. Table 4.7 shows the results of

performance results of both models on the same video frames. It is observed that

there is only a minimal impact on the model’s output confidence scores. When

evaluated on identical input frames, the quantized model demonstrated an

average confidence reduction of only 0.01 relative to the original full precision

(FP32) model, as illustrated in Figure 4.20.

Figure 4.20: Comparison of Model Confidence for Both Models

 Importantly, the quantized model retained the ability to detect

anomalous events with almost identical certainty, ensuring consistent prediction

quality. Thus, the selective dynamic quantization, especially for LSTM and

fully connected layers, retained the performance and enables substantial

efficiency gains without compromising model accuracy.

68

4.6 Performance Evaluation of Original and Optimized Model

Quantization not only reduces the precision of model weights and activations

but also significantly enhances the model’s computational efficiency and

deployability. As shown in Table 4.8, the original full-precision model occupies

approximately 42.4 MB, whereas the quantized model is reduced to just 10.7

MB, resulting in a compression ratio of nearly 4×. This substantial reduction in

memory footprint is critical for deployment on resource-constrained devices,

particularly those without dedicated GPUs.

Table 4.8: Comparison of Computational Resources before and after

Quantization

Aspect Before After

Model Size 42.4 MB 10.7 MB

Hardware Requirement A100 GPU (40GB VRAM) CPU Only

Moreover, the quantized model no longer depends on high-end

hardware. The original model required an NVIDIA A100 GPU with 40GB

VRAM for inference, whereas the quantized version operates efficiently on a

CPU-only environment, significantly expanding its potential for real-time

applications in edge computing and embedded systems.

Table 4.9 further highlights the runtime performance, particularly the

frames per second (FPS) throughput for both the original and quantized models.

When evaluated on two video sources, the original FP32 model, executed on a

high-end GPU (A100 GPU), achieved 44.67 FPS and 39.17 FPS, respectively.

In contrast, the quantized model running on CPU achieved 15.16 FPS and 9.21

FPS, which, while lower than the GPU version, remains viable for near real-

time processing. Given the absence of GPU dependency, this performance

represents a favourable trade-off between speed and resource efficiency.

Table 4.9: Comparison of FPS on Both Models

Source FPS (on GPU) FPS (on CPU)

Video 1 44.67 15.16

Video 2 39.17 9.21

Together, these results emphasize the practical benefits of quantization

in terms of model size reduction, hardware flexibility, and computational

efficiency, all while maintaining acceptable real-time processing speeds and

69

detection accuracy. This makes the quantized model a compelling choice for

low-power deployments such as surveillance cameras, mobile devices, or

embedded systems.

70

4.7 Performance Comparison with BN-WVAD

This section presents the comparative analysis between the AnomLite model

and BN-WVAD, one of the top-performing methods with a high ranking on

Papers with Code. BN-WVAD incorporates batch normalization to enhance

training stability and has demonstrated strong performance in the weakly

supervised video anomaly detection task. Therefore, the model is implemented

to facilitate a comparison with the previous approach. The performance of the

BN-WVAD model is shown on WandB, an AI developer platform used to track

machine learning work.

4.7.1 Performance on XD-Violence

Figure 4.21: Charts of Performance on Wandb (XD-Violence)

Table 4.10: Performance Metrics of BN-WVAD on XD-Violence

Metrics Result

AP 78.78

AUC 93.18

best_AP 83.97

best_AUC 94.50

Figures 4.21 and Table 4.10 present the results of BN-WVAD on the XD-

Violence dataset. While the performance is quite good, achieving a high AUC

of 94.50 and AP of 83.97, it does not surpass the results achieved by AnomLite,

indicating there is still room for improvement in capturing certain types of

anomalies.

71

4.7.2 Performance on UCF-Crime

Figure 4.22: Charts of Performance on Wandb (UCF-Crime)

Table 4.11: Performance Metrics of BN-WVAD on UCF-Crime

Metrics Result

AP 36.26

AUC 87.24

best_AP 38.13

best_AUC 87.24

Figure 4.22 and Table 4.11 present the performance of BN-WVAD on the UCF-

Crime dataset. The model achieves a good AUC of 87.24, indicating strong

discrimination capability. However, the AP of 36.26 is relatively low,

suggesting that while the model can distinguish between normal and anomalous

events, it struggles with the precise localization of anomalies. Compared to

AnomLite, the performance is not as strong, particularly in terms of AP,

highlighting areas where further improvement is needed.

72

4.7.3 Overview of Comparison

Table 4.12: Comparison of Performance Metrics of Both Models

Dataset Metrics BN-WVAD MobileNetV2-LSTM

UCF-Crime AP 0.36 0.99

AUC 0.87 0.99

XD-Violence AP 0.79 0.97

AUC 0.93 0.98

This comparison highlights that AnomLite outperforms BN-WVAD on both the

UCF-Crime and XD-Violence datasets concerning Average Precision (AP) and

Area Under Curve (AUC). For UCF-Crime dataset, AnomLite achieves a high

AP and AUC of 0.99, while BN-WVAD lags with a much lower AP of 0.36 and

AUC of 0.87. For XD-Violence dataset, AnomLite maintains strong

performance, AP of 0.97 and AUC of 0.98, still ahead of BN-WVAD, which

has an AP of 0.79 and AUC of 0.93. Although BN-WVAD introduces a unique

methodology, it showed lower performance in addressing imbalanced datasets

in comparison to AnomLite, which utilizes a weighted cross-entropy loss.

4.8 Summary

Chapter 4 provides an in-depth assessment of video anomaly detection through

the AnomLite architecture. The results are organized to compare baseline

performance from the baseline model and enhancements introduced in this work.

Section 4.2 reports the performance of the baseline model on the UCF-Crime

dataset. Evaluation includes the confusion matrix, ROC AUC, precision-recall

(PR) curves, F1 scores, and per-class accuracy. These results serve as a

benchmark for subsequent comparisons.

Starting from Section 4.3, the chapter transitions to this work’s

contributions, applying the AnomLite model to the XD-Violence dataset, which

is one of the well-known datasets in video anomaly detection. This section

mirrors the evaluation methodology used earlier, presenting the confusion

matrix, ROC AUC, average precision (AP), F1 scores, and per-class accuracy,

thereby demonstrating the model’s effectiveness on a more complex,

multimodal dataset.

73

Section 4.4 evaluates the inference capabilities of the trained model on

both prerecorded and real-time video streams, highlighting its potential for real-

world deployment. A summary of inference behavior is provided.

Section 4.5 introduces model optimization techniques, particularly

quantization, to reduce computational overhead. Experimental results show that

these optimizations preserve performance while improving efficiency, enabling

the model to perform effectively in resource-constrained settings, optimizing

the model for accessibility on lower-end GPUs, even CPUs, making it more

user-friendly. In Section 4.6, the optimized model’s inference performance is

further analyzed to ensure its robustness under real-time constraints.

Finally, Section 4.7 offers a detailed performance comparison between

this AnomLite model and the BN-WVAD model. The evaluation across both

XD-Violence and UCF-Crime datasets provides a comprehensive overview of

the improvements achieved, emphasizing gains in accuracy, inference, and

deployment viability.

74

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In conclusion, this research presents an optimized deep learning framework for

video anomaly detection, addressing key challenges in computational efficiency

and class imbalance across diverse surveillance scenarios. The lightweight

AnomLite architecture, with only 11 million parameters, achieved good

performance on both of the datasets, UCF-Crime and XD-Violence, with ROC

AUC of 0.99 and average precision of 0.99 on UCF-Crime and a ROC AUC of

0.98 and average precision of 0.97 on XD-Violence. The model also achieves

high accuracy of 94% on UCF-Crime and 93% on XD-Violence, with strong F1

scores across both datasets (F1-Micro 0.93 on UCF-Crime, 0.89 on XD-

Violence. Moreover, inference on prerecorded videos and real-time capturing

of different angles successfully captured and identified the correct anomalous

events that happened. Moreover, further optimizations achieved remarkable

efficiency gains. Memory optimization has been successfully implemented,

resulting in a 70% reduction in model size, from 42.4MB to 10.7MB, through

strategic quantization. This approach balances accuracy and inference speed,

making it well-suited for deployment on low-resource edge devices using only

CPU.

 Despite the challenges, such as imbalanced dataset, memory hardware

requirement, cross cross-entropy loss function with SMOTE was applied to deal

with the imbalanced dataset problem. With further data augmentations such as

Gaussian noise, blur, and colour jitter augmentations, this enhances the

robustness of the model.

This research contributes to advancing the anomaly detection field by

balancing efficiency and effectiveness, particularly in the challenging domain

of multi-class anomaly recognition.

75

5.2 Recommendations for future work

In future work, the model can be further optimized by expanding dataset

coverage, that is, collecting additional video samples of visually similar but

distinct anomaly classes (e.g., burglary vs. robbery, shoplifting vs. stealing) to

refine the model’s ability to differentiate subtle behavioral differences. Besides,

future work should focus on developing its capability to detect and classify

multiple anomalous events within the same video frame. This enhancement

would involve developing a more comprehensive dataset containing complex

scenarios where multiple anomalies co-occur, such as a robbery taking place

while a fight erupts nearby, or shoplifting occurring simultaneously with

property vandalism. Moreover, future work could explore deploying the model

using Intel OpenVINO to further improve real-time inference performance,

particularly on Intel-based edge devices. Building on the current use of dynamic

quantization, the model can be further optimized through techniques like layer

fusion and hardware-aware acceleration.

76

REFERENCES

Allard, M. (2020). What is a Transformer? [online] Medium. Available at:

https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04.

Carreira, J. and Zisserman, A. (2017). Quo Vadis, Action Recognition? A New

Model and the Kinetics Dataset. 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). doi:https://doi.org/10.1109/cvpr.2017.502.

Feng, J.-C., Hong, F.-T. and Zheng, W.-S. (2021). MIST: Multiple Instance

Self-Training Framework for Video Anomaly Detection. arXiv (Cornell

University). doi:https://doi.org/10.1109/cvpr46437.2021.01379.

Georgescu, M.-I., Barbalau, A., Radu Tudor Ionescu, Fahad Shahbaz Khan,

Popescu, M. and Shah, M. (2021). Anomaly Detection in Video via Self-

Supervised and Multi-Task Learning. Computer Vision and Pattern

Recognition. doi:https://doi.org/10.1109/cvpr46437.2021.01255.

 Jaime-Rodrigo González-Rodríguez, Diana-Margarita Córdova-Esparza,

Terven, J. and Julio-Alejandro Romero-González (2024). Towards a

Bidirectional Mexican Sign Language–Spanish Translation System: A Deep

Learning Approach. Technologies (Basel), 12(1), pp.7–7.

doi:https://doi.org/10.3390/technologies12010007.

Kalita, D. (2022). Basics of CNN in Deep Learning. [online] Analytics Vidhya.

Available at: https://www.analyticsvidhya.com/blog/2022/03/basics-of-cnn-in-

deep-learning/.

Kanjilal, J. (2022) An introduction to weakly supervised

learning. https://blog.paperspace.com/an-introduction-to-weakly-supervised-

learning/.

Kim, Y., Kwak, G.-H., Lee, K.-D., Na, S.-I., Park, C.-W. and Park, N.-W.

(2018). Performance Evaluation of Machine Learning and Deep Learning

Algorithms in Crop Classification: Impact of Hyperparameters and Training

Sample Size. Korean Journal of Remote Sensing, [online] 34(5), pp.811–827.

doi:https://doi.org/10.7780/kjrs.2018.34.5.9.

Kolena.com. (2024). Average Precision - Testing with Kolena. [online]

Available at: https://docs.kolena.com/metrics/average-

precision/#:~:text=Average%20precision%20(AP)%20summarizes%20a

[Accessed 15 Sep. 2024].

Kulhary, R. (2019). OpenCV - Overview. [online] GeeksforGeeks. Available at:

https://www.geeksforgeeks.org/opencv-overview/.

Kwok, R. (2022). GNN notes series — Explain Graph Convolutional Networks

(GCN) with knowledge in CNN. [online] Medium. Available at:

https://medium.com/@rmwkwok/gnn-notes-series-explain-graph-

convolutional-networks-gcn-with-knowledge-in-cnn-b827be1c872b [Accessed

16 Sep. 2024].

77

Luo, W., Liu, W. and Gao, S. (2017). A Revisit of Sparse Coding Based

Anomaly Detection in Stacked RNN Framework. 2017 IEEE International

Conference on Computer Vision (ICCV).

doi:https://doi.org/10.1109/iccv.2017.45.

Mansour, R.F., Escorcia-Gutierrez, J., Gamarra, M., Villanueva, J.A. and Leal,

N. (2021). Intelligent video anomaly detection and classification using faster

RCNN with deep reinforcement learning model. Image and Vision Computing,

112, p.104229. doi:https://doi.org/10.1016/j.imavis.2021.104229.

Matthew N. Bernstein. (2023). Graph convolutional neural networks. [online]

Available at: https://mbernste.github.io/posts/gcn/.

Narkhede, S. (2018). Understanding AUC - ROC Curve. [online] Medium.

Available at: https://towardsdatascience.com/understanding-auc-roc-curve-

68b2303cc9c5.

 NVIDIA (n.d.). What is PyTorch? [online] NVIDIA Data Science Glossary.

Available at: https://www.nvidia.com/en-us/glossary/pytorch/.

Overload, D. (2022). Sliding Window Technique — reduce the complexity of

your algorithm. [online] Medium. Available at: https://medium.com/@data-

overload/sliding-window-technique-reduce-the-complexity-of-your-algorithm-

5badb2cf432f.

Pytorch.org. (2024). Dynamic Quantization — PyTorch Tutorials 2.7.0+cu126

documentation. [online] Available at:

https://docs.pytorch.org/tutorials/recipes/recipes/dynamic_quantization.html.

Ray, J. (2024). Quantization Aware Training (QAT) vs. Post-Training

Quantization (PTQ). [online] Medium. Available at:

https://medium.com/better-ml/quantization-aware-training-qat-vs-post-

training-quantization-ptq-cd3244f43d9a.

Raziyeh Pourdarbani, Sajad Sabzi, Reihaneh Zohrabi, Ginés García‐Mateos,

Fernandez‐Beltran, R., José Miguel Molina‐Martínez and Rohban, M.H. (2023).

Comparison of 2D and 3D convolutional neural networks in hyperspectral

image analysis of fruits applied to orange bruise detection. Journal of food

science, 88(12), pp.5149–5163. doi:https://doi.org/10.1111/1750-3841.16801.

Sertis (2023). Video Anomaly Detection: An Introduction - Sertis - Medium.

[online] Medium. Available at: https://sertiscorp.medium.com/video-anomaly-

detection-an-introduction-232bf48c9a8d.

Shah, D. (2022). Mean Average Precision (mAP) Explained: Everything You

Need to Know. [online] www.v7labs.com. Available at:

https://www.v7labs.com/blog/mean-average-precision.

Steen, D. (2020). Precision-Recall Curves. [online] Medium. Available at:

https://medium.com/@douglaspsteen/precision-recall-curves-d32e5b290248.

78

Sultani, W., Chen, C. and Shah, M. (2018). Real-World Anomaly Detection in

Surveillance Videos. 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition. doi:https://doi.org/10.1109/cvpr.2018.00678.

Teki, S. (2022). Knowledge Distillation: Principles, Algorithms, Applications.

[online] neptune.ai. Available at: https://neptune.ai/blog/knowledge-

distillation.

Tian, Y., Pang, G., Chen, Y., Singh, R., Johan Verjans and Carneiro, G. (2021).

Weakly-supervised Video Anomaly Detection with Robust Temporal Feature

Magnitude Learning. 2021 IEEE/CVF International Conference on Computer

Vision (ICCV). doi:https://doi.org/10.1109/iccv48922.2021.00493.

 Transactions on Circuits and Systems for Video Technology, pp.1–1.

doi:https://doi.org/10.1109/tcsvt.2024.3450734.

Vaswani, A., Brain, G., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A., Kaiser, Ł. and Polosukhin, I. (2017). Attention Is All You Need. [online]

Available at: https://arxiv.org/pdf/1706.03762.

Vina, A. (2024). What is Model Optimization? A Quick Guide. [online]

Ultralytics.com. Available at: https://www.ultralytics.com/blog/what-is-model-

optimization-a-quick-guide.

VK (2024). Model Optimization Techniques (Pruning, Quantization,

Knowledge Distillation, Sparsity, OpenVino Toolkit). [online] Medium.

Available at: https://medium.com/@VK_Venkatkumar/model-optimization-

techniques-pruning-quantization-knowledge-distillation-sparsity-

2d95aa34ea05.

Williamson, B. (2021). What Is Deep Learning With Python? [online] Flatiron

School. Available at: https://flatironschool.com/blog/what-is-deep-learning-

with-python/.

Wu, P., Liu, J., Shi, Y., Sun, Y., Shao, F., Wu, Z. and Yang, Z. (2020). Not only

Look, but also Listen: Learning Multimodal Violence Detection under Weak

Supervision. [online] Available at: https://arxiv.org/pdf/2007.04687 [Accessed

14 Sep. 2024].

Zhong, J.-X., Li, N., Kong, W., Liu, S., Li, T.H. and Li, G. (2019). Graph

Convolutional Label Noise Cleaner: Train a Plug-And-Play Action Classifier

for Anomaly Detection. doi:https://doi.org/10.1109/cvpr.2019.00133.

Zhou, H., Liu, H., and Wu, X., 2024. Video Anomaly Detection in 10 Years: A

Survey and Outlook. [online] Available at: https://arxiv.org/abs/2405.19387v1

[Accessed 14 September 2024].

Zhou, H., Yu, J. and Yang, W. (2023). Dual Memory Units with Uncertainty

Regulation for Weakly Supervised Video Anomaly Detection. Proceedings of

the ... AAAI Conference on Artificial Intelligence, 37(3), pp.3769–3777.

doi:https://doi.org/10.1609/aaai.v37i3.25489.

79

 Zvereva, A.K., Kaprielova, M. and Andrey Grabovoy (2025). AnomLite :

Efficient Binary and Multiclass Video Anomaly Detection. Results in

Engineering, pp.104162–104162.

doi:https://doi.org/10.1016/j.rineng.2025.104162.

Zhou, Y., Qu, Y., Xu, X., Shen, F., Song, J. and Heng Tao Shen (2024).

BatchNorm-based Weakly Supervised Video Anomaly Detection. IEEE

