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ABSTRACT 

 

In the present society, video surveillance systems are rapidly evolving with 

intelligent video analytics to improve public safety. With the increasing 

installation of surveillance cameras in both public and private spaces, there is a 

growing reliance on continuous monitoring to ensure public safety. However, 

human-based monitoring is labour-intensive and inefficient. Video anomaly 

detection (VAD) plays a vital role in modern surveillance systems by 

automatically identifying unusual events in video streams. This study focuses 

on developing a lightweight and efficient VAD framework that supports both 

binary and multiclass detection. The proposed system, AnomLite  combines 

MobileNetV2, a lightweight Convolutional Neural Network (CNN) for spatial 

feature extraction, and Long Short-Term Memory (LSTM) for temporal 

modelling. By leveraging the strengths of MobileNetV2 in extracting efficient 

spatial features and LSTM in capturing temporal dependencies in video 

sequences, the model detects anomalous events across various classes. The 

system trains on two datasets: UCF-Crime, which contains real-world CCTV 

footage, and XD-Violence, which includes video content from movies and 

YouTube. Preprocessing steps are employed to ensure the model performs well 

under varying data conditions. The evaluation of the proposed model shows 

strong performance on the first dataset, achieving an ROC AUC of 0.99 and an 

average precision of 0.99 on UCF-Crime. The model demonstrates strong 

performance on another well-known dataset in video anomaly detection, 

achieving an ROC AUC of 0.98 and an average precision of 0.97 on XD-

Violence. The model also achieves high accuracy of 94% on UCF-Crime and 

93% on XD-Violence, with strong F1 scores across both datasets (F1-Micro 

0.93 on UCF-Crime, 0.89 on XD-Violence). The model achieves high per-class 

accuracy across the UCF-Crime dataset, with 10 out of 14 classes exceeding 

0.95 accuracy and several classes, such as Arson, Explosion, Fighting, Shooting, 

and Vandalism, reaching a perfect accuracy of 1.00, demonstrating the model’s 

strong and consistent performance in detecting diverse types of anomalies. 

Moreover, the model performs well on the XD-Violence dataset, with 

accuracies ranging from 0.79 to 0.95. It shows highest accuracy on Car 
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Accidents (0.95) and strong performance across other classes like Abuse, Riot, 

and Fighting, indicating its effectiveness in handling diverse anomalies. 

Additionally, the model is optimized for inference through quantization. With a 

reduction of around 70% in model size through model compression techniques 

such as quantization, the flexibility of the model is further improved, 

particularly for low-end devices. These results highlight how deep learning 

techniques, such as SMOTE, data augmentation, and advanced loss functions 

like cross-entropy loss, contribute to high accuracy and effective performance 

in automating surveillance tasks, even when dealing with highly imbalanced 

datasets. Data augmentation techniques that simulate real-world conditions 

enhance the efficiency of anomaly detection systems in practical applications. 

Keywords: Video anomaly detection, deep learning, edge computing, artificial 

intelligence, neural network 

 

Subject Area: TK7885-7895 Computer engineering. Computer hardware
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Crime remains a significant issue in society, despite the widespread presence of 

surveillance camera networks. Recently, surveillance cameras have been 

extensively used in both public and private areas. However, the monitoring of 

surveillance is typically carried out by humans, which is a laborious and time-

consuming process. 

Video anomaly detection (VAD) refers to the task of identifying unusual 

or suspicious activities in video footage, typically used in surveillance, security, 

and monitoring systems. With the rapid increase of surveillance cameras, 

effectively and efficiently monitoring numerous surveillance cameras with 

human intervention has become challenging, prompting the need for automating 

surveillance monitoring. The goal of VAD is to automatically identify unusual 

events that diverge from the typical patterns within a scene, such as theft, 

accidents, or violent behaviour. This field has gained attention with the growth 

of deep learning and computer vision technologies. 

Anomalous events can be categorized into two types, namely global and 

local anomalies. Global anomalies refer to events that deviate from the overall 

scene or context, such as a car driving in the wrong direction in traffic, while 

local anomalies refer to specific objects or individuals acting out of the ordinary, 

like a person running in a typically walking area. There are several approaches 

to VAD, including supervised learning, unsupervised learning, semi-supervised 

learning, and weakly–supervised learning. However, note that researchers in the 

field have not focused on supervised learning techniques due to the lack of 

frame-level annotations for large-scale real-world VAD datasets (Sertis, 2023). 

Thus, based on the learning method exploited, VAD methods can be separated 

into two primary categories, including one-class classification approaches and 

weakly-supervised learning approaches. 
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1.2 Importance of the Study 

To detect and locate abnormal events in videos, VAD has become an essential 

task in analyzing activities within unedited videos. Even with years of research 

in Video Anomaly Detection (VAD), developing a model that effectively 

identifies anomalies in videos is still challenging, as it must differentiate 

between normal and abnormal events, particularly since anomalies are rare and 

can vary significantly (Feng, Hong and Zheng, 2021).  

Gathering a large-scale dataset with precise temporal annotations of 

abnormal events is both labor-intensive and time-consuming, posing a challenge 

to the advancement of VAD. Throughout the years, unsupervised video anomaly 

detection (UVAD) has attracted significant interest because it can detect 

anomalies without needing extra annotations. However, these methods are 

trained solely on normal videos, limiting their ability to understand anomaly 

data. As a result, they often produce high false alarm rates for new, unseen 

normal events. 

In response to this, the study utilized a more realistic approach – weakly 

supervised anomaly detection (WVAD) as the first solution. It overcomes the 

issue of incorrect anomaly detection in videos within an unsupervised 

framework and strikes a more effective trade-off between detection accuracy 

and effort required for manual annotations compared to unsupervised method. 

1.3 Problem Statement 

In such a weakly supervised framework, existing methods for determining 

abnormality often depend on certain assumptions or opaque models, resulting 

in less dependable pseudo-temporal annotations. For example, the commonly 

used feature magnitude approach assumes that abnormal snippets will have a 

greater feature magnitude compared to normal ones (Zhou et al., 2024). 

However, simply focusing on large feature magnitudes does not always ensure 

effective differentiation of abnormal snippets. 

The second challenge arises from the constraints of the previous sample-

level selection method. The abnormality ratio refers to the proportion of 

abnormal snippets within each video. Previous approaches tend to identify the 

top-k potential abnormal snippets within each video without accounting for the 

varying abnormality ratios across different videos. By uniformly selecting 
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potential abnormal snippets, these methods might overlook significant 

abnormalities in videos with higher abnormality ratios, thereby missing valuable 

guidance for accurate anomaly detection (Zhou et al., 2024). 

In WVAD, errors in selecting abnormal snippets are unavoidable, which 

introduces noise into the pseudo-temporal labels. Although Multi-Instance 

Learning (MIL) methods are used, the anomaly classifier continues to be 

affected by this label noise, struggling with the challenge of distinguishing 

genuinely abnormal snippets from those that are incorrectly labelled.  

Moreover, most models only handle binary classification instead of 

distinguishing specific anomaly types, struggle to perform well on both binary 

and multiclass tasks, suffer from class imbalance due to the rarity of anomalies, 

and lack scalability for processing large volumes of video data efficiently. To 

address these challenges, there is a need for a model with improved criteria for 

abnormality and a more effective selection strategy. 

1.4 Aim and Objectives 

The main objectives of this study are as follows: 

1. To develop an AI model that detects abnormal events in video streams. 

2. To implement the developed AI model in a real-world scenario. 

3. To compare the performance of the developed model with conventional 

approach. 

1.5 Scope and Limitation of the Study 

This study focuses on Video Anomaly Detection (VAD), specifically targeting 

the identification of unusual or abnormal events in video sequences. It involves 

training and evaluating models using selected datasets, such as UCF-Crime or 

XD-Violence, and employing specific methodologies and performance metrics 

like Average Precision (AP) and Area Under the Curve (AUC). The study is 

geared toward applications in surveillance, security, and monitoring by 

leveraging particular video data and experimental setups to assess the 

effectiveness of VAD techniques (Sertis, 2023). 

1.6 Contribution of the Study 

This research contributes to the field of video-based anomaly detection by 

proposing several notable advancements. Firstly, it presents a deep learning 
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framework that effectively handles both binary anomaly detection and 

multiclass classification of violent events. Secondly, the model is trained and 

evaluated on two diverse benchmark datasets, which are UCF-Crime and XD-

Violence, demonstrating improved generalization and robustness across 

different video domains. Lastly, the study applies model optimization 

techniques, including quantization, to significantly reduce computational 

overhead, enabling real-time inference suitable for deployment on edge devices. 

These efforts collectively enhance both the accuracy and practicality of 

automated video anomaly detection systems. 

1.7 Outline of the Report 

The report covers 5 chapters, in which it first covers the introduction. This 

chapter provides an overview of the research project in video anomaly detection 

in surveillance videos, which includes an introduction, a problem statement, an 

aim, objectives, and the scope and limitations of the research. Chapter 2 covers 

the literature review of several papers related to the project, mainly on human 

action recognition and abnormal activity detection systems.  The research 

approach and methodology are presented in Chapter 3, which outlines the 

system implementation process, the criteria considered, and the timeline for 

conducting the study. Chapter 4 covers the results and discussions, which 

provide a comprehensive report of the findings, incorporating both qualitative 

and quantitative results, along with in-depth analysis and interpretation. Finally, 

Chapter 5 covers the conclusion and recommendations, which offer a summary 

of the overall study and propose suggestions for future enhancements. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Although the conventional methods of VAD have been widely investigated, the 

quick development of deep learning has introduced new possibilities for more 

efficient anomaly detection. Several methods, such as convolutional neural 

networks (CNNs) and vision transformers (ViTs), have been shown to be highly 

proficient at identifying complex data relationships in large datasets. These 

developments have significantly improved VAD performance, making anomaly 

detection in video streams more accurate and consistent.  

 

Figure 2.1: Video Anomaly Detection paradigm (Zhou et al., 2024) 

Figure 2.1 shows the typical video anomaly detection paradigm by Zhou 

et al. 2024, which can be categorized into as following: 

(A)  Development and selection of state-of-the-art datasets 

(B)  Extraction of spatial, temporal, spatio-temporal, and textual deep 

features 

(C)  Deep learning and supervision approaches 

(D)  Choice of loss functions 

(E)  Incorporation of regularization techniques within loss functions 

(F)  Calculation of anomaly scores 

(G)  Techniques for model evaluation 

This literature review explores the process, evolution of VAD systems, and the 

potential for enhancing the performance and addressing the limitations of 

existing VAD models. 
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2.2 Benchmarking Datasets 

Large-scale benchmarking datasets are essential for developing effective deep-

learning models. In the realm of VAD, several public datasets are available, 

typically offering video-level labels (normal or anomalous) for training. These 

datasets support weakly supervised learning. Frame-level annotations, however, 

are usually reserved for test sets to allow for detailed model evaluation. This 

section highlights key public datasets and evaluation metrics used in VAD. 

2.2.1 Shanghai Tech 

As shown in Figure 2.2, the ShanghaiTech dataset, as introduced by Luo et al. 

(2017), was gathered under complex lighting conditions and varying camera 

angles. It comprises 13 real-world scenes, each with several videos. It introduces 

anomalies resulting from abrupt movements, such as chasing and fighting. 

Initially created for one-class classification, the dataset includes 270,000 frames 

of normal videos for training and features 130 anomaly events with pixel-level 

annotations for testing. In a subsequent update, Zhong et al. (2019) revised the 

dataset's protocol by dividing it into 238 training videos (175 normal and 63 

anomalous) and 199 test videos (155 normal and 44 anomalous). 

 

Figure 2.2: Shanghai Tech Datasets (Luo, Liu and Gao, 2017) 

 

Figure 2.3: Reorganization of Shanghai Tech (Zhong et al., 2019) 
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2.2.2 UCF-Crime 

The UCF-Crime dataset, developed by Sultani et al. (2018), is a significant early 

dataset for video anomaly detection (VAD) that captures a variety of realistic 

anomalies. It features 13 distinct anomaly types, such as 'abuse', 'arrest', and 

'robbery ', among others. The dataset includes 1,900 untrimmed surveillance 

videos, with a total of 128 hours of footage, with an average of 7,247 frames per 

video. It is split into a training set with 1,610 videos (800 normal and 810 

anomalous) and a test set with 290 videos (150 normal and 140 anomalous). The 

training set is annotated with video-level labels, while the test set provides 

frame-level annotations. 

 

Figure 2.4: UCF-Crime Datasets (Sultani, Chen and Shah, 2018) 

2.2.3 XD-Violence 

Unlike other datasets, XD-Violence (Wu et al., 2020) offers a substantial 

collection of 4,754 untrimmed videos, complete with audio, enabling models to 

utilize multimodal data for detecting anomalies. Figure 2.5 shows the six types 

of physical violence featured in the datasets, such as abuse, car accident, and 

others, spanning a total of 217 hours. It is split into a training set of 3,954 videos 

(2,049 normal and 1,905 anomalous) with video-level annotations, and a test set 

of 800 videos (300 normal and 500 anomalous) with frame-level annotations. 

Each anomalous video includes 1 to 3 instances of abnormal events. 

 

Figure 2.5: Sample videos from the XD-Violence dataset (Wu et al., 2020) 
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2.3 Deep Feature Extractors 

Different feature extractors have been utilized by previous researchers, 

including convolutional neural networks (CNNs), autoencoders, generative 

adversarial Networks (GANs), and others. 

2.3.1 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a specialized type of deep learning 

model widely used for image recognition tasks. They come in various forms: 

one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). 

Among these, 2D CNNs are the most applied for image recognition (Raziyeh 

Pourdarbani et al., 2023). 1D CNNs are primarily used for analyzing text and 

sequential signals. In 2D CNNs, a convolutional filter moves across the input 

both vertically and horizontally to perform the convolution process, where the 

filter weights are applied to the input data, and a bias is added. On the other 

hand, 3D CNNs use three-dimensional filters and are suited for processing 3D 

data, such as MRI and CT scans, as well as hyperspectral images (HSIs), which 

have two spatial dimensions and one spectral dimension. Figure 2.6 shows an 

overview of CNN. 

 

Figure 2.6: An Overview of Convolutional Neural Network (Kalita, 2022) 
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2.3.2 2D Convolutional Neural Networks (2D CNNs) 

CNNs have transformed the processing of spatial features, allowing for in-depth 

analysis of scene structures. According to Mansour et al. (2021), Faster R-CNN, 

a CNN architecture, is highlighted for its precision and ability to perform both 

object classification and bounding box regression simultaneously. This dual 

function enables accurate object detection and classification within video 

frames, making it essential for identifying and locating anomalies. 

2.3.3 3D Convolutional Neural Networks (3D CNNs) 

These networks extend traditional CNNs by integrating temporal analysis, 

enhancing the assessment of spatiotemporal features in video data. Models like 

C3D and I3D have significantly boosted performance in cutting-edge systems. 

Numerous studies utilize 3D CNNs as core components, showcasing their 

exceptional capability in spatiotemporal feature extraction (Zhou et al., 2024). 

2.3.4 Comparison between 2D and 3D CNNs 

In summary, 2D CNNs are designed to handle two-dimensional inputs, which 

makes them ideal for applications such as image classification and object 

detection, but they lack the ability to capture temporal relationships. In contrast, 

3D CNNs handle spatiotemporal data by processing both spatial and temporal 

dimensions, making them ideal for video analysis and motion detection. While 

3D CNNs offer better performance in tasks requiring time-based analysis, they 

are more computationally intensive compared to 2D CNNs, which are faster and 

more efficient for simpler spatial tasks. Each model excels in its respective 

domain, depending on the complexity of the data. 

 

Figure 2.7: Architecture of CNN model. (a) 2D-CNN and (b) 3D-CNN (Kim 

et al., 2018) 
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2.3.5 Transformer 

Transformers are a strong model architecture mostly utilized in natural language 

processing (NLP). Figure 2.8 shows the model architecture of a Transformer. 

The attention mechanism, which allows the model to focus on various parts of 

the input sequence while producing output, is the core of transformers. This 

helps the model to determine how important each component of the input is in 

relation to the others, which is especially useful for understanding long-range 

dependencies. Transformers are known for their self-attention function, which 

aids the model in understanding the connections between various words in a 

sentence. For instance, self-attention enables the model to make the connection 

between "cat" and "mat," even if they are not contiguous, in the sentence "The 

cat sat on the mat." This process is essential for understanding meaning and 

context within sequences (Allard, 2020). 

 

Figure 2.8: Model Architecture of a Transformer (Vaswani et al., 2017) 

Transformers use an encoder-decoder design to process and generate 

sequences. The encoder creates representations from the input, which the 

decoder then uses to produce the output. They utilize multiple layers of 

feedforward neural networks and self-attention to recognize complex patterns. 

Multi-head attention improves performance by focusing on different aspects of 

the sequence simultaneously, while positional encoding helps the model 

understand the order of tokens. Transformers are scalable and efficient, enabling 
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parallel training and demonstrating strong capabilities in areas like machine 

translation and generating coherent text due to their strong contextual 

understanding (Allard, 2020).  

2.3.6 Graph Convolutional Networks (GCN) 

Graph Convolutional Networks (GCNs) extend the concept of CNNs 

to graph-structured data. Unlike images, which have a grid-like structure, graphs 

have nodes (points) connected by edges (lines), and their relationships are less 

regular. GCNs work by aggregating information from a node's neighbours to 

update the node's representation, allowing the model to learn from the graph's 

structure (Kwok, 2022). As shown in Figure 2.9, just like in a CNN for images, 

where a filter slides over each pixel and combines the values of neighbouring 

pixels to generate the next layer's output, a GCN operates similarly. Instead of 

pixels, a filter in a GCN moves across each node in a graph, aggregating the 

values of neighbouring nodes to produce the output for the next layer, as shown 

in Figure 2.10. This way, GCNs can handle data where relationships are 

complex and irregular, making them useful for tasks like social network analysis 

or molecular chemistry. 

 

Figure 2.9: Filter passing over each pixel in CNN (Matthew N. Bernstein, 

2023) 

 

Figure 2.10: Filter passing over each node in GCN (Matthew N. Bernstein, 

2023) 
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2.4 Overview of Current Approaches on Video Anomaly Detection 

While most deep learning – based VAD systems have traditionally relied on 

supervised learning models,  recent advancements in video anomaly detection 

(VAD) have shifted towards exploring weakly supervised, self-supervised, and 

unsupervised methods as alternatives to traditional supervised approaches. 

These methods address challenges like the need for fully annotated datasets and 

capturing complex patterns. 

2.4.1 Self-Supervised Approach 

Self-supervised approaches generate supervision from the input data, 

eliminating the need for human-labelled data, which is valuable for anomaly 

detection where labelled anomalies are rare. In one study, Georgescu et al. (2021) 

introduced a self-supervised method using multi-task learning at the object level 

was introduced. The model trains a 3D CNN on tasks such as predicting object 

movement direction, detecting motion irregularities, and reconstructing object 

appearances from adjacent frames. By learning normal object behavior from 

video data, the model becomes capable of identifying anomalies based on 

deviations from this learned behavior, even without explicit labels (Georgescu 

et al., 2021). 

2.4.2 Unsupervised Approach 

Early VAD methods often relied on one–class classification (OCCs, also known 

as unsupervised anomaly detection), where models were trained solely on 

normal video data. These models aimed to capture normal feature patterns using 

either hand-crafted features or deep autoencoder models. Once trained, the 

models could reconstruct normal input videos with minimal error. During 

testing, if the reconstruction error exceeded a certain threshold, the input was 

flagged as anomalous, as it likely differed significantly from the normal training 

data. However, these methods often failed to generalize well to test datasets 

because the models were never trained with anomalous examples (Sertis, 2023). 

2.4.3 Weakly - Supervised Approach 

Weakly supervised learning refers to a set of techniques in machine learning 

designed to develop predictive models using limited or imprecise supervision. 

It involves incorporating domain-specific knowledge and applying functions to 
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generate labels from imperfect or automatically derived training data (Kanjilal, 

2022). 

These methods become particularly useful when working with data that 

does not fully align with the model’s expected input format or structure. In 

practice, much of the data available is unstructured or poorly labelled, which 

makes traditional supervised learning less feasible (Kanjilal, 2022). Weak 

supervision offers a practical solution by enabling the use of such data for 

training purposes, even when the annotations are unreliable or incomplete. 

Weakly supervised learning enables model training from datasets that 

are labelled through indirect or noisy processes rather than manual annotation. 

It spans various strategies that rely on approximate, partial, or less accurate 

information, allowing for large-scale data utilization with significantly reduced 

labeling effort. 

While one-class classification-based VAD trains only on normal 

videos, weakly-supervised VAD uses both normal and anomalous videos, but 

without frame-level labels. Instead, video-level labels indicate if a video 

contains anomalies, without specifying when they occur. This requires methods 

to leverage these broader labels to detect anomalies at the frame level. Since 

video-level labels are easier to obtain, they enable the creation of large-scale 

datasets for weakly-supervised VAD. 

2.4.4 Overview of Current Approaches 

Table 2.1: Comparison of Different Supervision Approaches 

Aspect Self-Supervised Unsupervised Weakly Supervised 

Label 

Need 

No manual labels, 

supervision from 

the data itself 

Uses only normal 

data, no anomaly 

labels 

Needs video-level 

labels (anomalous or 

normal) 

Training 

Data 

Learns patterns via 

pretext tasks on 

video data 

Learns from 

normal videos 

only 

Uses both normal 

and anomalous 

videos without exact 

timing info 
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Detection 

Basis 

Detects deviation 

from learned 

normal behaviour 

Anomalies 

flagged by high 

reconstruction 

error 

Learns to detect 

anomalies at the 

frame level from 

video-level tags 

Methods 

Used 

Motion prediction, 

appearance 

reconstruction 

Autoencoders, 

one-class 

classification 

Multiple Instance 

Learning, score 

regression 

Pros No labelling cost, 

learns detailed 

features 

Easier setup, no 

anomaly data 

needed 

Easier labelling, 

scales to large 

datasets 

Cons Relies on task 

design, may miss 

subtle anomalies 

Poor 

generalization to 

unseen anomalies 

Needs smart 

methods to localize 

frame-level 

anomalies 

2.5 Previous Approaches on VAD 

2.5.1 Weakly Supervised Anomaly Detection with Multiple Instance 

Learning (MIL) Frameworks 

Sultani, Chen, and Shah (2018) introduced an innovative multiple instance 

learning (MIL) model, marking the first use of weakly labelled training videos. 

In this approach, normal videos are treated as negative bags, while anomalous 

ones are treated as positive bags, with video segments acting as instances within 

the MIL framework. These bags are processed through feature extractors to 

capture spatiotemporal features, which are then passed through a fully 

connected network to generate the final output. The anomaly score, ranging 

from 0 to 1, is optimized to increase for abnormal segments and decrease for 

normal ones. 

 

Figure 2.11: Flow Diagram of Weakly Supervised Anomaly Detection with 

MIL Frameworks (Sultani, Chen and Shah, 2018) 
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2.5.2 MIST: Multiple Instance Self-Training Framework for Video 

Anomaly Detection 

Feng, Hong and Zheng (2021) presented “MIST: Multiple Instance Self-

Training Framework for Video Anomaly Detection,” a novel WSVAD approach. 

Unlike conventional MIL methods, MIST employs a pseudo-label generator 

combined with a sparse continuous sampling strategy to improve the accuracy 

of clip-level pseudo labels. It also features a self-guided, attention-enhanced 

encoder designed to focus on anomalous regions within video frames (Zhou et 

al., 2024). 

 

Figure 2.12: Flow Diagram of MIST for VAD (Feng, Hong and Zheng, 2021) 

2.5.3 Graph Convolutional-based Label Noise Cleaner 

In contrast to the conventional MIL methodology, the authors proposed a new 

technique for weakly supervised anomaly detection, considering it as a 

supervised learning task with noisy labels. The noisy labels were cleaned up 

using a Graph Convolutional Network (GCN), which enhanced the training 

procedure and the effectiveness of fully supervised action classifiers in 

identifying anomalies.  

 

Figure 2.13: Graph Convolutional Label Noise Cleaner (Zhong et al., 2019) 
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2.5.4 BN-WVAD 

BN-WVAD is a framework specifically designed to detect anomalies in videos 

using only video-level labels (weakly-supervised), avoiding the need for 

detailed frame-level annotations and utilizing batch normalization. Figure 2.14 

shows the overall framework of the BN-WVAD model. The model is designed 

for weakly supervised learning. The datasets UCF-Crime and XD-Violence are 

chosen to match the weak supervision approach. In this model, the deep feature 

extraction is done by using 3D CNNs. The model utilizes an I3D network 

(Inflated 3D ConvNet), which is widely used to extract spatial and temporal 

features from video sequences.  

 

Figure 2.14: Overall Framework of BN-WVAD model (Zhou et al., 2024) 

The I3D model utilised in this model, or Two-Stream Inflated 3D 

ConvNet, extends 2D ConvNets into 3D by adding a temporal dimension to 

filters and pooling layers, enabling it to capture both spatial and temporal 

features. It reuses 2D filters from pretrained models like ImageNet and employs 

a two-stream setup: one stream processes RGB frames and the other handles 

optical flow for motion. The outputs are fused at the prediction stage to enhance 

understanding of video content (Carreira & Zisserman, 2017).  

 

Figure 2.15: Five types of architecture evaluated (Carreira and Zisserman, 

2017) 
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In addition, the extracted features are refined using a Global and Local 

Multi-Head Self-Attention (GL-MHSA) module, designed to capture both long-

range dependencies across the entire video and short-range temporal patterns. 

This module builds upon the standard Multi-Head Self-Attention (MHSA) 

mechanism by incorporating an additional encoder layer equipped with a 

temporal mask, allowing it to more effectively learn local temporal features.  

As illustrated in Figure 2.16, it uses a temporal mask to balance the 

influence of different time points, enhancing the model’s capability to capture 

both long-range and short-range dependencies effectively (Zhou, Yu and Yang, 

2023). The approach utilizes the transformer’s self-attention mechanism while 

adding a layer of complexity to enhance the comprehension and modeling of 

video sequence dynamics for anomaly detection. By learning the spatial and 

temporal features in combination, the model ensures robust feature extraction 

for identifying anomalies. 

 

Figure 2.16: GL-MHSA module (Zhou, Yu and Yang, 2023) 

Thus, it can be summarized that the backbone of the model is a 

combination of I3D for feature extraction and GL-MHSA for enhancing the 

learning of global and local temporal relationships. 

2.6 Model Optimization Techniques 

Model optimization in deep learning refers to a process designed to refine a 

neural network to boost its performance and efficiency of machine learning 

models. The process includes techniques that minimize the use of computational 

resources, such as memory and processing time, by refining the structure and 

functionality of the model, without compromising the model’s accuracy and 

overall effectiveness. Additionally, as deep learning models are deployed in web 

applications, mobile devices, and edge devices, it is crucial to compress these 
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models without compromising the quality and performance of the original 

models (VK, 2024). 

 Optimizing models can lead to a decrease in their size, which offers 

several benefits. These include reduced storage requirements, smaller download 

sizes, and lower memory consumption. Techniques like quantization can 

decrease the model's size in all of these areas, although there might be a slight 

trade-off in accuracy. Additionally, pruning and clustering methods can make 

models more compressible, which helps in reducing download sizes. 

 Latency refers to the time it takes for a model to make a prediction. 

Certain optimization techniques can reduce the amount of computation needed 

to perform inference, thereby decreasing latency. This also helps to reduce 

power consumption. Currently, quantization is a widely used method to reduce 

latency by simplifying the operations performed during inference, though it may 

result in a slight loss of accuracy. 

 

2.6.1 Quantization 

Quantization operates by lowering the precision of the numbers that represent a 

model’s parameters, which are typically from 32-bit floating point values to 16-

bit or 8-bit. This reduction in precision leads to a smaller model size and quicker 

computation, enhancing both memory efficiency and processing speed. Figure 

2.17 shows an example of quantization from 32-bit to 8-bit. 

 

Figure 2.17: Quantization Technique (VK, 2024) 

Quantization-Aware Training involves incorporating quantization into 

the training process. During QAT, the model is trained with simulated lower 

precision weights and activations, allowing the network to learn to compensate 

for the reduced precision (Ray, 2024). This method typically leads to better 

performance compared to PTQ since the model has been explicitly optimized 

for quantization. 
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On the other hand, Post-Training Quantization is applied after the 

model has already been trained. It involves quantizing the weights and 

activations of a pre-trained model without requiring additional training. PTQ is 

generally faster and easier to implement than QAT, but it may result in some 

performance degradation due to the lack of optimization for quantization during 

training (Ray, 2024). PTQ is useful when computational resources or time 

constraints limit the ability to retrain the model. 

2.6.2 Pruning 

Model pruning is a technique used to reduce the size of a model by eliminating 

unnecessary weights and parameters, thereby improving efficiency. In computer 

vision, particularly with deep neural networks, the presence of a vast number of 

parameters, such as weights and activations, which are the intermediate outputs 

that assist in producing the final result, can significantly increase both the 

complexity and computational requirements (Vina, 2024). Pruning addresses 

this by identifying and removing parameters that have little impact on the 

performance of the model, thus resulting in a more lightweight and efficient 

model. While pruned models maintain the same size on disk and exhibit the 

same runtime latency, they become more compressible. This makes pruning an 

effective technique for reducing the model’s download size. 

 

Figure 2.18: Pruning (VK, 2024) 

2.6.3 Knowledge Distillation 

Knowledge distillation is an optimization method where knowledge is 

transferred from a larger, more complex model (referred to as the “teacher”) to 

a smaller, more computationally efficient model (the “student”). The underlying 
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idea is that, while a large and intricate model may be necessary to understand 

complex patterns in data, a smaller model can learn and capture the same 

relationships, achieving similar performance levels in tasks with lower 

computational demand. This technique is commonly applied to classification 

models (both binary and multi-class) with a softmax activation in the output 

layer (Lamberti, 2024). 

 The core of knowledge distillation is based on two key principles: the 

teacher-student framework and distillation loss. In this setup, the teacher model 

is a high-capacity network that performs well on the task, while the smaller 

student model is more compact and optimized for efficiency. The student is 

trained to replicate the teacher’s predictions but also to match the output 

distributions produced by the teacher. This allows the student model to grasp 

the relationships between the data samples and their corresponding labels, 

especially in classification tasks where it learns to approximate the decision 

boundaries defined by the teacher model (Lamberti, 2024). 

 

Figure 2.19: Knowledge Distillation (Teki, 2022) 

2.6.4 OpenVINO 

One of the most effective optimization tools available is the OpenVINO 

optimization method. In many real-world applications, deep learning AI models 

need to be optimized to make better use of computational resources, ensuring 

they deliver faster performance. OpenVINO provides a range of tools that 

support this goal, including the Model Optimizer, Post-training Optimization 

Tool (POT), and the Neural Network Compression Framework (NNCF), all of 

which are designed to improve model efficiency and reduce memory usage. 
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Figure 2.20: OpenVINO Optimization Tool 

2.7 Inference 

During the inference phase, the model is tasked with identifying unusual actions 

or events within videos by analysing the anomaly scores it produces. However, 

during inference, videos often have different durations, leading to a variety of 

frames. There are two primary categories to handle this. 

2.7.1 Variable-Length Sequence Handling (Dynamic) 

In this approach, all sampled frames from a video are passed through the model. 

The model uses pack_padded_sequence in Pytorch to process sequences of 

different lengths efficiently. To process a batch, all sequences are padded to 

match the length of the longest sequence, as shown in Figure 2.21. This is 

suitable when the model was trained with variable-length sequences, ensuring 

consistency between training and efficiency. However, this might waste 

processing power to perform unnecessary padding while ensuring uniformity in 

sequence lengths by adding zeros to shorter sequences (GeeksforGeeks, 2024). 

 

Figure 2.21: Overview of the working of pack_padded_sequence 
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2.7.2 Fixed-Length Sequences 

In this approach, all video inputs are transformed into a fixed sequence length. 

There are two sub-strategies for this, which include padding and truncation, and 

the sliding window approach. 

2.7.2.1 Padding and Truncation 

In this method, all video sequences are standardized to a fixed length, with 

shorter sequences being padded with zeros or another neutral value, ensuring 

uniform input size for the model. Conversely, sequences longer than the target 

length are truncated to fit. This approach is straightforward and efficient, 

particularly when the average or median sequence length from the training data 

is known and representative of most samples. It ensures consistent input 

dimensions, which is especially helpful when using models that expect fixed-

size inputs. 

2.7.2.2 Sliding Window approach 

The sliding window technique breaks long videos into smaller, fixed-length 

segments, which are then processed individually. These windows can either 

overlap or remain distinct depending on how much temporal coverage is desired 

(Overload, 2022). This method is especially useful for analysing lengthy videos, 

where anomalies might occur at any point in time. By examining each segment 

in isolation, the model can effectively localize abnormal events without needing 

to process the entire video at once. 

 

Figure 2.22: Sliding Window Approach (Jaime-Rodrigo González-Rodríguez 

et al., 2024) 
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2.8 Summary 

This chapter provides an overview of recent advancements in Video Anomaly 

Detection (VAD), highlighting the impact of deep learning techniques. 

Traditional methods are increasingly being outperformed by models using 

Convolutional Neural Networks (CNNs), Transformers, and other architectures 

that effectively capture complex spatio-temporal features for more accurate 

anomaly detection in surveillance and other video streams. 

Benchmark datasets like ShanghaiTech, UCF-Crime, and XD-

Violence are discussed, each presenting unique challenges such as annotation 

levels, anomaly types, and input modalities. These datasets are critical for 

evaluating and comparing VAD methods, especially in supervised and weakly 

supervised learning settings. 

The chapter also reviews key feature extractors. While 2D CNNs 

handle spatial features well, 3D CNNs capture temporal dynamics across frames. 

Modern architectures like Transformers and Graph Convolutional Networks 

(GCNs) are also explored, offering strong sequence modelling and relational 

reasoning capabilities, respectively. 

Finally, the chapter outlines the current VAD approaches, focusing on 

the shift from fully supervised to self-supervised, weakly supervised, and 

unsupervised learning techniques. 

Additionally, model optimization techniques, including quantization, 

pruning, and knowledge distillation, are crucial for deploying VAD models on 

resource-limited devices. These techniques help maintain performance while 

reducing model size and latency. Inference strategies like dynamic sequence 

handling and sliding windows ensure consistent performance across videos of 

varying lengths, enabling real-time and practical deployment. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

The essential elements for creating a video anomaly detection system are 

covered in this chapter, with an emphasis on the XD-Violence and UCF-Crime 

datasets, which provide a variety of real-world scenarios. The model 

architecture is presented, integrating temporal analysis and feature extraction 

with deep learning techniques. In addition, methods for enhancing anomaly 

detection are covered, as well as the performance measures for the model, AUC 

and AP, which are utilized for evaluation. 

3.2 Experimental Setup 

3.2.1 Hardware 

Table 3.1: Experimental Platform Configuration 

Name Configuration 

Operating System Ubuntu 22.04.4 LTS (Jammy) 

CPU Model 12th Gen Intel(R) Core(TM) i5-12450H @ 2.50 

GHz 

RAM 16.0 GB 

GPU Model NVIDIA GeForce RTX 3050 

GPU Memory 4 GB 

NVIDIA Driver Version 535.183.01 

CUDA Version 12.2 

 

3.2.2 Software 

Throughout this project, multiple frameworks, platforms, and tools, including 

Python, Pytorch, Kaggle, Google Colab, OpenCV, and VLC, are utilized for 

multi-task model development and experimentation. 
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3.2.2.1 Google Colaboratory 

Google Colab is a cloud-based Jupyter notebook service that requires no 

installation or setup, enabling users to run computationally intensive tasks-such 

as machine learning training, directly in a browser. It provides free access to 

high-performance GPUs and TPUs, significantly accelerating model 

development. In this project, the majority of the training and testing procedures 

were conducted using the Google Colab platform, leveraging its high-

performance A100 GPU to accelerate deep learning computations, as shown in 

Table 3.2. The platform’s deep integration with Google Drive and streamlined 

sharing capabilities make it an ideal environment for collaborative development. 

Table 3.2 shows the computational resources mainly used in this project for 

training. 

 

Figure 3.1: Google Colaboratory logo 

Table 3.2: Computational Resources 

Graphics Processor Video Memory Memory Capacity 

A100 GPU 40 GB VRAM 83.5 GB RAM 

3.2.2.2 Kaggle 

In this project, the datasets after preprocessing steps are uploaded to Kaggle for 

further usage. Kaggle is a platform and online community for data scientists and 

machine learning practitioners, hosted by Google. Besides, Kaggle provides a 

vast library of public datasets for users to explore, analyze, and build models on. 

It supports both private and public dataset sharing, along with robust storage 

capabilities, allowing up to 200 GB per dataset. Particularly relevant for this 

project’s needs, which involve processing large volumes of video data, Kaggle’s 

generous storage allocation and computational resources make it perfectly 

suited for the requirements. Once published, these datasets can be 

programmatically accessed by third parties through Kaggle’s API, enabling 

seamless integration with external tools and workflows. 

 

Figure 3.2: Kaggle logo 
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3.2.2.3 Python 

Python, a high-level programming language with dynamic semantics, is the 

choice of programming language for this deep learning project. Although deep 

learning can be implemented in multiple programming languages such as C++, 

Java, and others, Python continues to be the preferred language for most 

developers. Leading open-source frameworks like TensorFlow and PyTorch 

offer intuitive Python APIs, making it easier for developers to design and train 

neural networks efficiently (Williamson, 2021). 

 

Figure 3.3: Python logo 

3.2.2.4 VLC Media Player 

In this project, VLC media player is commonly utilized for video-related 

operations, including frame-by-frame navigation and extraction. These 

functionalities are particularly useful for tasks such as verifying annotations, 

inspecting temporal boundaries of anomalous events, and ensuring the accuracy 

of ground truth labels. 

 

Figure 3.4: Icon of VLC media player 

3.2.2.5 Pytorch 

Pytorch is an open-source machine learning library developed by Facebook’s 

AI Research lab (FAIR). It provides a flexible, Pythonic interface for building 

deep learning models, and it is widely used in both research and production. 

Pytorch provides some key features such as strong GPU acceleration support, 

easy debugging and customization, and a rich ecosystem including torchvision, 

torchaudio, and more (NVIDIA, n.d.). It enables efficient model design, training, 

and evaluation in this anomaly detection project. 

 

Figure 3.5: Pytorch Icon 
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3.2.2.6 OpenCV 

OpenCV is a free and open-source software library for computer vision and 

machine learning. It is widely used for image and video processing. In this VAD 

(Video Anomaly Detection) project, OpenCV plays a key role in handling video 

input, frame extraction, and display of detection results. It supports both video 

inference and real-time inference, enabling frame-by-frame processing and 

visualization of anomalies (Kulhary, 2019). Its speed, Python compatibility, and 

strong community support make it ideal for real-time detection tasks. 

 

Figure 3.6: Icon of OpenCV 
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3.3 Work Plan 

Figure 3.7 shows the flowchart of the entire workflow, summarizing all the steps. 

 

Figure 3.7: Flowchart of Entire Workflow 

3.3.1 Dataset Selection 

In this study, two different datasets were used, which are UCF-Crime and XD-

Violence. 

3.3.1.1 XD-Violence 

The first datasets used are XD-Violence obtained from Wu et al. (2020). The 

dataset is selected for several reasons. It covers six distinct categories of 

physical violence, including Abuse, Car Accident, Explosion, Fighting, Riot, 

and Shooting. This diverse range of violence types provides a comprehensive 

representation of different violent events, making it a valuable resource for 

training VAD models. By including a variety of violence categories, the dataset 

ensures that the VAD model can generalize well across different types of 

anomalies. 
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Figure 3.8: Sample Videos from XD-Violence Datasets 

 Besides, the XD-Violence dataset is compiled from both movies and 

YouTube videos. This blend of sources enriches the dataset with a wide range 

of scenarios, from scripted and staged violence in movies to real-world, in-the-

wild scenes from YouTube. This variety helps the VAD model to learn from 

both controlled environments and more unpredictable, real-world situations, 

enhancing its robustness. 

 The XD-Violence dataset is particularly suitable for VAD models due 

to its precise frame-level annotations, which detail the start and end frames of 

violent events, ensuring accurate temporal information. With a substantial 

collection of 4,754 videos, including a diverse mix from movies and YouTube, 

the dataset offers a broad range of scenarios and violence types. The high-

quality annotations, derived from multiple annotators and averaged for precision, 

contribute to the dataset's reliability. Additionally, the inclusion of various 

temporal locations within the videos helps the VAD model recognize anomalies 

across different time frames, enhancing its overall robustness and generalization. 

3.3.1.2 UCF-Crime 

The UCF-Crime dataset's thorough and accurate depiction of abnormalities in 

actual surveillance film makes it an excellent option for use in VAD systems. It 

offers a comprehensive and diverse collection of 1,900 untrimmed movies, 

showcasing 13 different types of anomalies that can occur in real-world 

scenarios, such as stealing, abuse, fighting, and others, as shown in Figure 3.9. 

This contrasts with other datasets provided, which frequently involve 
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constrained scenarios or unrealistic anomalies. These anomalies are chosen due 

to their significant impact on public safety (Sultani, Chen, and Shah, 2018). 

Because of this diversity, VAD models trained on this dataset are exposed to a 

greater variety of scenarios, which enhances their capacity to generalize across 

various violent and abnormal event types. 

 

Figure 3.9: Datasets from UCF-Crime 

With 128 hours of footage total and an average of 7,247 frames per 

movie, the dataset's large scale provides a significant amount of data for training 

and testing VAD models. Detailed annotations offer precise temporal data 

regarding the onset and duration of anomalous events, featuring frame-level 

labels for testing and video-level labels for training. This degree of detail 

improves the model's high-accuracy detection and differentiation between 

normal and aberrant activity. 

In addition, strict guidelines for video selection and annotation were 

followed during the collection of the UCF-Crime dataset. To verify the accuracy 

of the anomalies, videos that were taken from actual surveillance scenarios were 

carefully reviewed to remove modified, prank, or non-CCTV material. The 

comprehensive methodology used for data gathering and annotation enhances 

the validity and significance of the dataset. 
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3.3.1.3 Overview of Datasets Used 

Table 3.3 shows the summary of the two datasets used in this research. 

Table 3.3: Comparison of the two datasets used 

Feature XD-Violence UCF-Crime 

Source of videos Movies and YouTube 

(mixed realism) 

Real-world CCTV 

surveillance footage 

Number of Video 

Clips 

4,754 1,900 (untrimmed) 

Violence videos 2405 950 

Non – violence 

videos 

2349 950 

Anomaly Types 6 violence categories 13 real-world categories 

Annotation • Video-level labels for training 

• Frame-level labels for testing 

 

3.3.2 Data Preprocessing 

Before training deep learning algorithms, the video data must undergo several 

preprocessing steps to ensure proper preparation. In this study, the UCF-Crime 

dataset is readily available at the frame level on Kaggle, as provided by other 

authors, allowing it to be used directly for further preprocessing. However, the 

XD-Violence dataset is only accessible at the video level, requiring additional 

preprocessing steps to extract frame-level data. Figure 3.10 shows the overview 

of the dataset preprocessing steps applied to the datasets used. 

 

Figure 3.10: Overview of Data Preprocessing Steps 
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3.3.2.1 UCF-Crime 

3.3.2.1.1    Reconstruction of the Dataset 

The UCF-Crime dataset utilised in this study comprises 1610 video sequences 

covering 14 distinct classes. As shown in Figure 3.11, the dataset exhibits 

significant class imbalances, with ‘Normal Videos’ representing the majority 

class, posing challenges for model training for multi-classification. The dataset 

consists of individual frames in small sizes rather than pre-arranged video 

sequences. The frames were then reconstructed into video sequences by sorting 

them based on their filenames. This involved sequentially ordering the frames 

and labelling them according to their corresponding classes (Zvereva, 

Kaprielova, and Andrey Grabovoy, 2025). The following steps are taken: 

1. Frame Grouping: Frame sequences were reconstructed by identifying 

and grouping related frames through filename pattern analysis. Each 

frame’s unique video identifier was extracted to ensure proper temporal 

grouping. 

2. Class Annotation: Each video was categorized based on its folder 

hierarchy, with labels corresponding to the particular anomaly type or 

indicating normal behavior. 

3. Analysis of Data Distribution: Analysis of the video lengths indicated 

that the shortest sequence comprised 11 frames, while the longest 

reached 97,651 frames. On average, sequences contained approximately 

786.5 frames, with a median length of 222.5 frames.   

 

Figure 3.11: Overview of Original Class Distribution in UCF-Crime 
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Figure 3.12: Distribution of Video Duration Under 10,000 Frames 

Table 3.4: Count and Proportion of Videos Exceeding 2,500 Frames 

Class Total Videos Percentage (%) 

Abuse 1 1.61 % 

Arrest 1 1.61 % 

Burglary 2 3.23 % 

Fighting 2 3.23 % 

Shoplifting 2 3.23 % 

Normal Videos 54 87.10 % 

 Figure 3.12 demonstrates the variation in video sequence lengths, with 

a noticeable occurrence of clips having a duration of up to 2,500 frames. To 

enhance dataset balance, sequences exceeding 2,500 frames were removed, as 

they were predominantly from the 'Normal' class. This step effectively reduced 

the imbalance between classes, producing a final dataset with 1,528 video 

sequences. 

3.3.2.2 XD-Violence 

XD-Violence dataset is only accessible at the video level, thus requiring 

additional preprocessing steps to extract frame-level data. Moreover, the XD-

Violence dataset has different structures compared to UCF-Crime, thus 

requiring unique handling. In the XD-Violence dataset, each video filename 

encodes a class label, the labels are shown in Table 3.5. 
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Table 3.5: Label Explanation 

Label Class 

B1 Fighting 

B2 Shooting 

B4 Riot 

B5 Abuse 

B6 Car accident 

G Explosion 

 

For example: “Black.Hawk.Down.2001__#01-13-59_01-14-49_label_B2-0-0” 

indicates there are shootings in the video ‘Black.Hawk.Down.2001__#01-13-

59_01-14-49’. 

3.3.2.2.1    Class Grouping 

Based on the pattern shown in Figure 3.11 and 3.12, the videos are first grouped 

according to their classes based on the label name in the video name, in order to 

facilitate further frame extraction. 

3.3.2.2.2    Frames Extraction 

 

Figure 3.13: Frames extracted 

The frames are then extracted from the video files of the XD-Violence dataset 

to produce a series of frames in which the sequence forms a single video sample, 

as shown in Figure 3.13. These frames capture the temporal changes in scenes 

and serve as the primary input for subsequent analysis. Every 10th frame is 

extracted from each full-length video. After extraction, all the frames are resized 

to standardized dimensions of 64 x 64 pixels to maintain consistency across all 

samples. This spatial normalization ensures uniform preprocessing while 
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preventing potential artifacts like distortion or blurring that could affect the 

neural network performance, while also improving the computational efficiency. 

3.3.2.2.3    Dataset Uploaded to Kaggle 

After frames are extracted, the frame-level dataset is then uploaded to Kaggle, 

so that it is further accessible through Kaggle API. Figure 3.14 shows the frame-

level dataset uploaded to Kaggle. 

 

Figure 3.14: Dataset Published on Kaggle 

3.3.2.2.4    Reconstruction of XD-Violence Dataset 

XD-Violence dataset utilised in this study comprises of 2460 video sequences 

covering 6 distinct classes. Similar to UCF-Crime, the frames are then grouped 

into video sequences by parsing filenames, and each video sequence is 

categorized according to its folder structure, which determines its label.  

 

Figure 3.15: Overview of Original Class Distribution in XD-Violence dataset 
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Figure 3.16: Video lengths in XD-Violence when limited to 10,000 frames 

Table 3.6: Count and Proportion of Videos Exceeding 2,500 Frames 

Class Total Videos Percentage (%) 

Explosion 1 3.33 % 

Riot 4 13.33 % 

Normal Videos 25 83.33 % 

Figure 3.15 shows the overview of original class distribution in XD-Violence 

dataset. Figure 3.16 illustrates the variation in video sequence lengths, with a 

noticeable occurrence of clips having a duration of up to 2,500 frames. To 

enhance dataset balance, sequences exceeding 2,500 frames were removed, as 

they were predominantly from the 'Normal' class (83.33%). This step effectively 

reduced the imbalance between classes, producing a final dataset with 2,423 

video sequences. 
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3.3.3 Data Augmentations 

 

Figure 3.17: Data augmentations on UCF-Crime 

 

 

Figure 3.18: Data augmentations on XD-Violence 

Similar to the data augmentations applied for UCF-Crime, a range of 

augmentations was also applied to the XD-Violence dataset to enhance the 

model's robustness and adaptability to practical conditions. Table 3.7 shows the 

data augmentations applied, whereas Figures 3.17 and 3.18 show 5 examples of 

augmented UCF-Crime and XD-Violence datasets, respectively. 

Table 3.7: Data Augmentations Parameter applied 

Augmentation type Parameters Probability Purpose 

Gaussian Blur Kernel size: 5 30% Imitate out-of-focus 

frames 

Gaussian Noise Mean: 0.0, Std Dev: 

1.0 

30% Simulate noise from 

sensors 

Color Jittering Brightness and 

Contrast variation: 

±30% 

30% Reflect lighting 

fluctuations 

Random Rotation Rotation angle: ±15% 20% Simulate camera 

angle variations 

 

3.3.4 Normalization 

Input normalization was carried out using the typical RGB mean and standard 

deviation values, as shown in Table 3.8, ensuring consistency in the input 

distribution and aligning with established preprocessing norms in deep learning. 
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Table 3.8: RGB Mean and Standard Deviation Values 

Color Channel Mean Standard Deviation 

Red (R) 0.485 0.229 

Green (G) 0.456 0.224 

Blue (B) 0.406 0.225 

3.3.5 Data Splitting 

As part of the data splitting process, the dataset is segmented into training, 

validation, and testing sets. Initially, video frame sequences from the training 

directory are grouped by class and split into training and validation sets using a 

stratified sampling approach, ensuring balanced class distribution. Specifically, 

70% of the data is allocated for training, while the remaining 30% is reserved 

for validation. This division improves model training and allows for evaluation 

of generalization during the training process. Separately, an independent test set 

is loaded from a designated test directory to assess the model’s final 

performance. This structured splitting strategy ensures reliable model training, 

validation, and performance evaluation. 

3.3.6 Model Architecture  

In MIL-based techniques, most of the VAD models consist of at least two 

modules, which include the prediction head and backbone for video processing 

(Sertis, 2023). In this research, the AnomLite model is a lightweight, yet 

powerful architecture designed for video anomaly detection, combining spatial 

feature extraction (using MobileNetV2) with temporal modeling (via LSTM).  

The input videos are processed in combined batches, containing either 

normal behaviours or abnormal events, as shown in Figure 3.19. These batches 

are then passed through the AnomLite  model. The model consists of three main 

components: a spatial feature extractor, followed by a temporal modeling unit, 

and then a fully connected layer. Using the processed video data, the model 

produces a prediction that identifies whether the video shows normal activity or 

contains any of 13 distinct anomaly types, including actions like fighting, arrest, 

or other uncommon behaviors. 
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Figure 3.19: Spatio-temporal features from video batches processed by the 

model (Zvereva, Kaprielova, and Grabovoy, 2025) 

 

Figure 3.20: Overview of AnomLite Model Structure (Zvereva, Kaprielova 

and Andrey Grabovoy, 2025) 

The model architecture begins with an input layer that takes a 5D tensor 

of shape [batch_size, sequence_length, 3, 64, 64], representing batches of video 

sequences with RGB frames resized to 64×64 pixels (Zvereva, Kaprielova, and 

Andrey Grabovoy, 2025), as shown in Figure 3.20. Spatial feature extraction is 

performed using only the first four layers of MobileNetV2, a lightweight 

convolutional backbone optimized for efficiency. These layers consist of an 

initial convolutional block followed by three InvertedResidual blocks, which 

gradually refine the input with depthwise separable convolutions (Zvereva, 

Kaprielova and Andrey Grabovoy, 2025). 

Once the data passes through the MobileNetV2 layers, a max-pooling 

operation is performed to decrease the spatial size of the feature maps. These 

resulting features are then flattened to set them up for temporal analysis. 

An LSTM model is used to capture temporal dependencies across 

frames, processing input sequences of shape [8, 2500, 1176], which is the batch 

size of 8, sequence length of 2500, and feature size of 1176. The model uses 
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only the final hidden state, producing a summary representation of shape [8, 

1176]. 

Finally, a fully connected layer maps this representation to an output 

tensor of shape [8,14], corresponding to 13 anomaly classes and 1 normal class 

(Zvereva, Kaprielova, and Andrey Grabovoy, 2025).  

3.3.7 Model Training 

The model training process for the AnomLite architecture is designed to handle 

video anomaly classification by leveraging both spatial and temporal features. 

The model combines MobileNetV2, a lightweight convolutional neural network 

pretrained on ImageNet, with an LSTM (Long Short-Term Memory) layer to 

capture temporal dynamics across frames (Zvereva, Kaprielova and Andrey 

Grabovoy, 2025). During training, only the first few convolutional layers from 

MobileNetV2 are used for feature extraction to maintain computational 

efficiency. Initially, these convolutional layers are frozen to retain their 

pretrained weights but are later unfrozen after the second epoch to allow fine-

tuning based on the target task. 

In each training epoch, the model processes video clips represented as 

sequences of image frames. The spatial features are extracted by MobileNetV2, 

and then a MaxPool2d operation is used to reduce their spatial resolution. These 

features are then flattened and passed through the LSTM, which models the 

sequence information across frames. The final hidden state of the LSTM is 

passed through a dropout layer and batch normalization, before being classified 

by a fully connected layer (Zvereva, Kaprielova and Andrey Grabovoy, 2025). 

Training uses a Cross Entropy loss function with class weights to 

handle class imbalance, and Adam optimizer with an initial learning rate of 

0.0002. Among all configurations, a learning rate of 0.0002 yielded the most 

consistent and superior performance, with higher ROC AUC, AP, and weighted 

F1-score results. In contrast, lower rates like 0.0005 led to slower training and 

significantly lower accuracy. Higher learning rates, on the other hand, 

introduced training stability, establishing 0.0002 as the ideal compromise 

between rapid convergence and model stability. Additionally, SMOTE has been 

used to further alleviate class imbalance by oversampling minority classes. 

Figure 3.21 shows a comparison of the dataset with and without the application 
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of SMOTE. An early stopping mechanism is employed to terminate the training 

process if the validation loss fails to improve over five consecutive epochs, 

thereby mitigating the risk of overfitting. Throughout training, performance is 

tracked using both micro and macro F1-scores, providing a robust evaluation 

across both balanced and imbalanced datasets. Model checkpoints are saved 

whenever a new best validation loss is achieved (Zvereva, Kaprielova, and 

Andrey Grabovoy, 2025). 

 

Figure 3.21: Comparison of Dataset Before and After Applying SMOTE 

(Zvereva, Kaprielova, and Andrey Grabovoy, 2025) 

3.3.8 Loss Functions 

In this model, the loss functions are vital in addressing the class imbalance issue 

and improving the model's performance in detecting anomalies in video 

sequences. Two primary loss functions were utilised: Weighted Cross-Entropy 

Loss and Focal Loss. 

The Weighted Cross-Entropy Loss is utilised to address the issue of class 

imbalance by assigning higher weights to the underrepresented classes. This is 

especially important in datasets where the "Normal" class dominates the data, 

making it harder for the model to detect anomalies. The formula for this loss is: 

𝐿 =  − ∑ 𝜔𝑖 ∙

𝐶

𝑖=1

𝑦𝑖 ∙ log(𝑝𝑖) 

Where 𝜔𝑖 is the weight assigned to class 𝑖, 𝑦𝑖 is the true label of class 𝑖 (either 

0 or 1), and 𝑝𝑖  is the predicted probability for class 𝑖 . The weight 𝜔𝑖 is 

calculated inversely proportional to the frequency of the class, meaning that 

(3.1) 
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classes with fewer examples will have higher weights. This ensures that the 

model pays more attention to the underrepresented anomaly classes, thus 

mitigating the bias toward the normal class. The compute_class_weight function 

from scikit-learn is used to calculate these weights, which are then incorporated 

into the loss function during training. 

 Focal Loss was implemented to emphasize difficult-to-classify 

samples and enhance the model's responsiveness to minority classes. Focal Loss 

is designed to improve model performance on challenging samples by reducing 

the influence of easily classified examples. It achieves this through down-

weighting, which shifts the model's focus toward harder instances and their 

associated errors, rather than relying solely on prediction confidence. The 

formula of this loss is: 

𝐿 =  −(1 − 𝑝𝑡)𝛾 log(𝑝𝑡) 

The parameter γ, also known as the focusing or relaxation parameter, is adjusted 

through cross-validation and determines how strongly the model concentrates 

on difficult, misclassified samples during training. Higher values of γ place 

greater emphasis on these challenging cases, whereas lower values maintain a 

more even focus between easy and hard examples. Despite this intent, it resulted 

in a lower ROC AUC and accuracy, indicating suboptimal performance for this 

task. Consequently, CrossEntropyLoss remained the preferred loss function for 

the model. 

3.3.9 Evaluation Metric 

Performance evaluation is essential for understanding how well a model 

differentiates between normal and abnormal events in video anomaly detection. 

Area Under the ROC Curve (AUC) and Average Precision (AP) are the two 

main evaluation metrics that are covered in this context. This is a thorough 

discussion of these measurements along with the necessary calculations. 

A common metric to evaluate a binary classifier's performance (normal 

vs. aberrant) is the AUC. Plotting the Receiver Operating Characteristic (ROC) 

curve, which contrasts the True Positive Rate (TPR) with the False Positive Rate 

(FPR) at different threshold values, provides a summary of the model's 

(3.2) 
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performance. The Receiver Operating Characteristic (ROC) curve shows the 

performance of a classification model, and the Area Under the Curve (AUC) 

reflects its capability to separate different categories. (Narkhede, 2018). True 

Positive Rate (TPR), often referred to as recall or sensitivity, represents the 

percentage of real positive instances, such as abnormal video frames, that are 

accurately classified by the model: 

 
𝑇𝑃𝑅 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(3.3) 

False Positive Rate (FPR) measures the proportion of negatives (normal frames) 

that were incorrectly classified as positives (abnormal): 

 
𝐹𝑃𝑅 =  

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(3.4) 

 The second evaluation metric is the average precision (AP), which 

summarises the precision–recall trade-off of the model. It is useful for 

imbalanced datasets, like anomaly detection, where there are fewer 

positive(abnormal) examples. 

Precision measures the proportion of positive identifications that are 

correct: 

 
𝑃 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(3.5) 

Recall evaluates the fraction of true positives that are accurately identified. AP 

is calculated by integrating the Precision-Recall (PR) curve, which visualizes 

precision versus recall across various threshold values. The actual area under 

the curve can be defined as: 

 
𝐴𝑃 =  ∫ 𝑝(𝑟)𝑑𝑟

1

0

 
(3.6) 

where 𝑝(𝑟) is the precision at recall 𝑟. 

 In this model, various metrics were used to evaluate performance, 

particularly for multiclass classification, where the task involves identifying 

anomalies across multiple classes. These metrics include F1-Micro, F1-Macro, 
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and Accuracy, each offering a unique viewpoint on how effectively the model 

distinguishes between different classes. 

The F1-Macro score refers to the unweighted average of the F1-scores 

across all types of classes. It is calculated by: 

 

𝐹1 − 𝑀𝑎𝑐𝑟𝑜 =  
1

𝐶
 ∑ 𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑖

𝐶

𝑖=1

 

(3.7) 

Where 𝐶 is the number of classes, and 𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑖 is the F1 score for class 𝑖. 

This metric gives an equal weight to all classes, regardless of their frequency, 

making it particularly useful when there is class imbalance, as it does not favor 

the majority class. The F1-Micro score combines the TPs, FPs, and FNs from 

all classes into a single metric, offering an overall assessment of the model’s 

precision and recall across all decision thresholds. It is calculated as: 

 
𝐹1 − 𝑀𝑖𝑐𝑟𝑜 =  

2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(3.8) 

This approach is useful for situations where all classes need to be 

treated equally, regardless of their individual sizes. The F1-Micro score tends to 

be higher when the model performs well on the majority class, but it can mask 

poor performance on minority classes. 

 Accuracy quantifies the overall correctness of the model by computing 

the ratio of correctly predicted instances to the total number of predictions made 

across all classes. It is calculated by: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(3.9) 

3.3.10 Model Optimization 

In this study, dynamic quantization was employed to optimize the AnomLite 

model for efficient inference, particularly on resource-constrained devices such 

as edge processors or CPUs. Quantization is a model compression technique 

that reduces the precision of the weights and, in some cases, activations from 

FP32 to a lower bit-width format, INT8. Specifically, dynamic quantization was 

chosen due to its simplicity and effectiveness for models with recurrent 
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components like LSTMs, which are central to AnomLite ’s architecture for 

processing temporal video data. 

 

Figure 3.22: Layers Selected for Quantization 

As shown in Figure 3.22, dynamic quantization is a post-training 

quantization (PTQ) that quantizes the weights of selected layers, which are the 

LSTM and Linear layers, at runtime while keeping the activations in floating 

point. This contrasts with quantization-aware training (QAT), which simulates 

quantization effects during the training process and typically yields higher 

accuracy but requires retraining with added complexity. These layers were 

selectively quantized to 8-bit integers (torch.qint8), while the convolutional 

layers and activation functions were preserved in their original floating-point 

32-bit precision (FP32). This selective quantization approach allows the model 

to benefit from reduced memory and computational costs while maintaining the 

integrity of key components crucial for performance. This process involving 

PTQ did not require changes to the training pipeline or loss of model 

compatibility. 

After quantization, the model exhibited reduced memory usage and 

inference time, while maintaining performance within acceptable limits. The 

use of dynamic quantization allowed for faster execution on CPU-based systems.  

3.3.11 Inference Implementation 

The sliding window approach is particularly advantageous for video anomaly 

detection models, such as the one used in this inference pipeline, because it 

allows the model to maintain temporal context while processing video in smaller, 

more manageable chunks. In anomaly detection, detecting abnormal events 

often relies on the model's ability to understand the progression of normal and 
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abnormal behaviors over time. The sliding window approach ensures that the 

model evaluates a consistent sequence of frames, which is essential for 

capturing the temporal patterns of normal and anomalous events. 

Moreover, this method helps balance computational efficiency with 

accuracy. Instead of processing the entire video at once, which would be 

computationally expensive and slow, the sliding window allows for real-time 

processing by analyzing only a subset of frames at any given time. This not only 

reduces memory and processing time but also allows for continuous, 

incremental predictions as the video progresses. For anomaly detection, where 

subtle variations in behavior may appear over time, this approach is ideal as it 

ensures that the model can continuously learn from the evolving sequence of 

frames, making it more responsive to dynamic changes in the video stream 

3.4 Gantt Chart 

This section presents the Gantt charts for both semesters, with Figure 3.23 

showing the chart for Semester 1 and Figure 3.24 for Semester 2. 

 

Figure 3.23: Gantt Chart for FYP1 

 

Figure 3.24: Gantt Chart for FYP2 
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3.5 Summary  

This chapter details the comprehensive methodology used to develop the video 

anomaly detection system, encompassing dataset selection, preprocessing steps, 

model architecture design, training strategies, and the evaluation protocol. The 

study utilized two well-known benchmark datasets, including UCF-Crime, 

which contains real-world CCTV footage with 13 anomaly classes, and XD-

Violence, composed of violence-related video clips from movies and YouTube 

featuring 6 categories. To ensure consistency and effectiveness, several key 

preprocessing steps were implemented. This included frame extraction using a 

1-in-10 sampling rate for XD-Violence, sequence reconstruction by organizing 

frames in temporal order, and class balancing strategies such as trimming 

lengthy normal videos and applying SMOTE for oversampling 

underrepresented classes. To enhance the model's performance, a range of data 

augmentation methods were employed, such as adding Gaussian noise and blur, 

adjusting color through jittering, and rotating images. 

The proposed framework, AnomLite, integrates MobileNetV2 and 

LSTM in a lightweight yet effective design. Specifically, the first four layers of 

MobileNetV2 were used for spatial feature extraction, reducing computational 

load while preserving visual features. The extracted features, represented as 

1176-dimensional vectors, were input into an LSTM module to capture 

temporal dependencies. This was followed by a fully connected classification 

head that mapped the sequences into 14 separate classes. To address class 

imbalance and enhance the model's ability to generalize, the training process 

incorporated a combination of weighted cross-entropy loss. Additional 

regularization methods included dropout with a probability of 0.3, batch 

normalization, and early stopping based on validation performance. The model 

was trained using Google Colab's A100 GPU with 40GB of VRAM to ensure 

efficient computation and faster convergence. 

For performance evaluation, the protocol included a mix of binary and 

multiclass metrics to fully assess the model’s effectiveness. This covered 

common evaluation standards such as AUC-ROC and Average Precision for 

detecting anomalies, as well as F1-Micro and F1-Macro scores for analyzing 

multiclass classification accuracy.
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter outlines the training and testing processes for the video anomaly 

detection and classification model, their performance on two datasets, 

performance during inference, model optimization, and further model 

comparison. The model's effectiveness is demonstrated through metrics like AP, 

AUC, accuracy, and other performance metrics. The evaluation reflects the 

model’s accuracy in detecting normal and abnormal video segments. 

 

4.2 Performance Evaluation on UCF-Crime 

The AnomLite model is assessed using a range of critical performance metrics, 

evaluating different scenarios, binary and multi-class classification. These 

evaluation measures offer a thorough insight into the model's effectiveness in 

distinguishing between non-violence and violence video segments, even in the 

presence of class imbalance. The corresponding metric outcomes are presented 

below. 

Table 4.1: Performance Metrics of AnomLite on UCF-Crime 

Key metrics Value 

AP 0.99 

AUC 0.99 

Accuracy 0.94 

F1-Macro 0.93 

F1-Micro 0.93 

F1-Weighted Avg 0.94 

Recall (Macro Avg)  0.94 

Precision (Macro Avg) 0.95 
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4.2.1 Confusion Matrix of AnomLite on UCF-Crime 

 

Figure 4.1: Confusion Matrix of AnomLite on UCF-Crime 

Figure 4.1 shows the confusion matrix of the model on UCF-Crime, whereas 

the first rows refer to the normal class and the second row refers to the anomaly 

class. It is seen that the model correctly identified 487 normal videos (True 

positives), demonstrating strong specificity in recognizing non-anomalous 

events. The model also classified 592 actual instances of anomalies (True 

negatives). The low false positive rates, showing only 6 normal videos were 

misclassified as anomalous, and the low false negative rates, showing 63 

anomalous videos were incorrectly flagged as normal. 

4.2.2 ROC AUC of AnomLite on UCF-Crime 

 

Figure 4.2: ROC AUC on UCF-Crime 
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Figure 4.2 illustrates the result of AnomLite on the UCF-Crime dataset, the 

ROC curve, which serves as a visual tool for evaluating the performance of a 

binary classification model across various threshold settings. The graph trends 

toward the upper left region, signifying that the model achieves a strong true 

positive rate alongside a low false positive rate across different thresholds. 

Additionally, the area under the ROC curve (AUC) is nearly 1, reflecting the 

model’s strong ability to differentiate between normal and abnormal instances, 

and indicating reliable and consistent performance, while maintaining system 

robustness. 

4.2.3 PR Curve of AnomLite on UCF-Crime 

 

Figure 4.3: PR Curve on UCF-Crime 

Figure 4.3 shows the PR Curve. It can be observed that a strong upward trend is 

curved towards the top-right corner, indicating that the model can distinguish 

anomalies from normal events well. Moreover, the area under the PR Curve (AP) 

provides a comprehensive summary of the model’s effectiveness across the full 

range of recall values. An average precision of 0.99 indicates that the model 

maintains high precision while simultaneously detecting true anomalies, even 

under inherent class imbalance of video anomaly datasets. 
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4.2.4 F1 Scores and Loss 

 

Figure 4.4: F1 Scores and Loss 

Figure 4.4 shows the F1 Scores and loss over time. It can be observed that during 

training, both Training F1-micro and Validation F1-micro scores steadily 

increase, indicating that the model became more effective at correctly 

identifying both normal and anomalous events across all samples, regardless of 

class imbalance. Similarly, the growth in Training F1-macro and Validation F1-

macro scores reflects improved performance across each class equally, 

suggesting that the model not only learned to detect dominant classes but also 

performed better on minority classes. Meanwhile, the gradual decrease in both 

training and validation loss demonstrates that the model continuously 

minimized prediction errors and improved its confidence over time. 
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4.2.5 Per-Class Accuracy 

 

Figure 4.5: Per-Class Accuracy on 14 Classes in UCF-Crime Dataset 

Table 4.2: Per-Class Accuracy on 14 Classes in UCF-Crime Dataset 

Class Accuracy 

0 (Abuse) 0.97 

1 (Arrest) 0.94 

2 (Arson) 1.00 

3 (Assault) 0.89 

4 (Burglary) 0.98 

5 (Explosion) 1.00 

6 (Fighting) 1.00 

7 (Road Accidents) 0.98 

8 (Robbery) 0.88 

9 (Shooting) 1.00 

10 (Shoplifting) 0.95 

11 (Stealing) 0.99 

12 (Vandalism) 1.00 

13 (Normal Videos) 0.90 
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Figure 4.5 and Table 4.2 present the per-class accuracy for 14 classes in the 

UCF-Crime dataset. The high per-class accuracy demonstrates that the model is 

effective at distinguishing between different categories of video anomalies. 

4.3 Performance Evaluation on XD-Violence 

This section demonstrates the model’s performance on the XD-Violence dataset, 

which comprises a wide variety of video scenes collected from sources like 

YouTube, movies, and online platforms. Different from UCF-Crime dataset, 

which primarily consists of real-world CCTV surveillance footage, XD-

Violence focuses on a wide range of environments, camera angles, and scene 

dynamics. The performance evaluation of the model AnomLite offers a 

thorough insight into the model's effectiveness. The results of these metrics are 

as follows: 

Table 4.3: Performance Metrics of AnomLite on XD-Violence 

Key metrics Value 

AP 0.97 

ROC AUC 0.98 

Accuracy 0.93 

F1-Macro 0.87 

F1-Micro 0.89 

F1-Weighted Avg 0.93 

Recall (Macro Avg)  0.91 

Precision (Macro Avg) 0.94 
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4.3.1 Confusion Matrix of AnomLite on XD-Violence 

 

Figure 4.6: Confusion Matrix of AnomLite on XD-Violence 

Figure 4.6 shows the confusion matrix of the model on the second dataset, XD-

Violence, in which 332 normal videos are correctly identified (True Positives) 

and 831 anomalous videos were correctly flagged as anomalies (True 

Negatives). The low false positive of 17 indicates 17 normal videos were 

wrongly labelled as anomalous, and false negative of 67 indicates 67 anomalous 

videos were incorrectly flagged as normal. 

4.3.2 ROC AUC of AnomLite on XD-Violence 

 

Figure 4.7: ROC AUC Curve of AnomLite on XD-Violence 

Figure 4.7 displays the ROC curve, where the line bends toward the top-left 

corner. This shows that the model achieves a high true positive rate and a low 

false positive rate across different threshold values. In addition, the area under 
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the ROC curve (AUC) is 0.98, which indicates the model performs well in 

telling apart normal and abnormal events, while staying consistent and reliable. 

 

4.3.3 Average Precision (AP) of AnomLite on XD-Violence 

 

Figure 4.8: PR Curve on XD-Violence dataset 

Figure 4.8 illustrates the Precision-Recall (PR) Curve for the XD-Violence 

dataset. A noticeable upward curvature towards the top-right corner reflects the 

model's strong capability in differentiating anomalous events from normal ones. 

Additionally, the area under the PR Curve, represented by the Average Precision 

(AP), captures the model's performance across varying recall thresholds. With 

an AP of 0.97, the model demonstrates high precision while effectively 

identifying true anomalies, even in the presence of the class imbalance typical 

of video anomaly detection datasets. 
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4.3.4 F1 Scores and Losses 

 

Figure 4.9: F1 scores and losses on XD-Violence dataset 

Figure 4.9 shows the F1 Scores and loss trend during training on the XD-

Violence dataset. Both Training and Validation F1-micro steadily increased and 

demonstrated the model’s improved ability to identify normal and anomalous 

events overall. The improvement in F1-macro scores indicates better 

performance across all classes, including less frequent ones. In the meantime, 

the steady drop in loss points to fewer errors in predictions and increasing model 

confidence. 

4.3.5 Per-Class Accuracy 

 

Figure 4.10: Per-Class Accuracy on XD-Violence Dataset 
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Table 4.4: Per-Class Accuracy on XD-Violence  

Class Accuracy 

Class 0 (Abuse) 0.94 

Class 1 (Car Accidents) 0.95 

Class 2 (Explosion) 0.85 

Class 3 (Fighting) 0.90 

Class 4 (Normal Videos) 0.86 

Class 5 (Riot) 0.91 

Class 6 (Shooting) 0.79 

Figure 4.10 and Table 4.4 present the per-class accuracy for 6 classes in the XD-

Violence dataset. The high per-class accuracy demonstrates that the model is 

effective at distinguishing between 6 different categories of video anomalies. 
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4.4 Performance of AnomLite model (Inference) 

This section presents the outcome of the model’s prediction on previously 

unseen real-world videos, alongside its performance during real-time inference. 

4.4.1 Prerecorded video 

 
Figure 4.11: A Detected Frame classified as 'Fighting' on Unseen Data 
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Figure 4.12: Prediction of the model on ‘Fighting’ frames by frames on a 

video sequence 

Figure 4.11 shows an example of a detected frame classified as 'Fighting', 

whereas Figure 4.12 illustrates the frame-by-frame prediction of the model on a 

video sequence depicting a ‘Fighting’ event. Each frame’s classification output 

indicates how the model detects and localizes the anomalous event activity over 

time. This visualization helps assess the model’s temporal consistency and 

sensitivity in identifying suspicious behaviour as it unfolds within a continuous 

video stream. 
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Table 4.5: Model predictions on unseen real-world videos, multiclass labelled 

Arson 

   
Abuse 

   
Arrest 

   
Burglary 

   

Explosion 

   
Fighting 

   
Road 

Accidents 
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Robbery 

   

Stealing 

   

Vandalism 

   

The model's predictions on unseen real-world videos are shown in Table 4.5, 

along with multiclass labels for different anomalous events. Each row represents 

a distinct class of event, such as 'Arson,' 'Abuse,' 'Arrest,' and others, showing 

how effectively the model identifies different types of incidents. The table 

demonstrates how the model can generalize to a variety of situations, correctly 

categorizing films that are not included in the training set. This evaluation is 

critical to understanding the model's robustness and its potential for real-world 

deployment in surveillance systems. 

  



62 

4.4.2 Real-Time Streaming 

This section demonstrates the model’s detection results for the ‘Fighting’ event 

captured from various angles in the campus library, as illustrated in Figures 4.13, 

4.14, 4.15, and 4.16. 

 

Figure 4.13: Fighting detection from bottom view 

  

Figure 4.14: Detection of Fighting at the corner 

 

Figure 4.15: Detection of Fighting from another side view 
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Figure 4.16: Detection of Fighting from another higher view 

This section demonstrates the model’s performance in detecting 

‘Fighting’ events from multiple perspectives within a campus library 

environment, as shown in Figures 4.13 to 4.16. The model accurately identifies 

the event from different camera angles, including bottom, corner, side, and 

higher vantage points, thus illustrating its robustness across varying 

environmental conditions. 

4.4.3 Summary of Inference 

In short, two testing strategies were used in this study to evaluate the model's 

inference abilities in real-world situations. In the first method, pre-recorded 

videos were uploaded, especially for unusual occurrences like arson, explosions, 

or armed robberies that are dangerous or difficult to reproduce in real life. These 

videos, often sourced from public datasets or online platforms, ensured the 

inclusion of rare and complex events during evaluation. The second strategy 

focused on incidents that are comparatively simpler and safer to mimic, 

including fighting, and used real-time video capture via a webcam. This real-

time testing made it possible to evaluate the model's flexibility and reactivity in 

dynamic, real-time environments. The results of this approach are shown in 

Section 4.4.2, which shows that fighting incidents that were captured from 

different perspectives inside the campus library setting were successfully 

detected. 
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4.5 Model Optimization 

4.5.1 Results of Model Optimization 

 

Figure 4.17: Quantization Verification 

 

Figure 4.18: Parts of Quantized Model Architecture 

 

Figure 4.19: Quantized Layer Details 

Figures 4.17, 4.18, and 4.19 show that dynamic post-training quantization 

approach has been successfully applied to the model. The model’s architecture 

mainly consists of LSTM (RNN) layers and fully connected (FC) layers. As 

shown in Figures 4.18 and 4.19, these layers were selectively quantized to 8-bit 

integers (torch.qint8), while the convolutional layers and activation functions 

were preserved in their original floating-point 32-bit precision (FP32). This 

selective quantization approach allows the model to benefit from reduced 

memory and computational costs while maintaining the integrity of key 

components crucial for performance. 

 The quantized layers demonstrated a significant reduction in memory 

usage, resulting in an approximately 4× decrease in overall model size. This 
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optimization significantly enhances the model’s deployability on edge devices 

with limited storage capacity. Table 4.6 shows the comparative analysis of the 

original and quantized models. 

Table 4.6: Comparative Analysis of Original vs. Quantized Model 

Feature Original Model Quantized Model 

LSTM Type LSTM DynamicQuantizedLSTM 

Linear Layer (FC) FP32 torch.qint8 

Weight Storage 32-bit 8-bit 

Activation Precision FP32 Dynamic FP32 converted 

to int8 on-the-fly 
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4.5.2 Performance of Quantized Model 

Table 4.7: Comparison of performance of both models on the same video 

frames 

Original Model  Quantized Model 

Confidence: Fighting (0.84) 

 

Confidence: Fighting (0.83) 

 

Confidence: Fighting (0.84) 

 

Confidence: Fighting (0.83) 

 

Confidence: Fighting (0.98) 

 

Confidence: Fighting (0.97) 

 

Confidence: Arson (0.74) Confidence: Arson (0.73) 
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To compare the performance between the original model and the quantized 

model, random frames were selected. Table 4.7 shows the results of 

performance results of both models on the same video frames. It is observed that 

there is only a minimal impact on the model’s output confidence scores. When 

evaluated on identical input frames, the quantized model demonstrated an 

average confidence reduction of only 0.01 relative to the original full precision 

(FP32) model, as illustrated in Figure 4.20. 

 

Figure 4.20: Comparison of Model Confidence for Both Models 

 Importantly, the quantized model retained the ability to detect 

anomalous events with almost identical certainty, ensuring consistent prediction 

quality. Thus, the selective dynamic quantization, especially for LSTM and 

fully connected layers, retained the performance and enables substantial 

efficiency gains without compromising model accuracy. 
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4.6 Performance Evaluation of Original and Optimized Model 

Quantization not only reduces the precision of model weights and activations 

but also significantly enhances the model’s computational efficiency and 

deployability. As shown in Table 4.8, the original full-precision model occupies 

approximately 42.4 MB, whereas the quantized model is reduced to just 10.7 

MB, resulting in a compression ratio of nearly 4×. This substantial reduction in 

memory footprint is critical for deployment on resource-constrained devices, 

particularly those without dedicated GPUs. 

Table 4.8: Comparison of Computational Resources before and after 

Quantization 

Aspect Before After 

Model Size 42.4 MB 10.7 MB 

Hardware Requirement A100 GPU (40GB VRAM) CPU Only 

Moreover, the quantized model no longer depends on high-end 

hardware. The original model required an NVIDIA A100 GPU with 40GB 

VRAM for inference, whereas the quantized version operates efficiently on a 

CPU-only environment, significantly expanding its potential for real-time 

applications in edge computing and embedded systems. 

Table 4.9 further highlights the runtime performance, particularly the 

frames per second (FPS) throughput for both the original and quantized models. 

When evaluated on two video sources, the original FP32 model, executed on a 

high-end GPU (A100 GPU), achieved 44.67 FPS and 39.17 FPS, respectively. 

In contrast, the quantized model running on CPU achieved 15.16 FPS and 9.21 

FPS, which, while lower than the GPU version, remains viable for near real-

time processing. Given the absence of GPU dependency, this performance 

represents a favourable trade-off between speed and resource efficiency. 

Table 4.9: Comparison of FPS on Both Models 

Source FPS (on GPU) FPS (on CPU) 

Video 1 44.67 15.16 

Video 2  39.17 9.21 

Together, these results emphasize the practical benefits of quantization 

in terms of model size reduction, hardware flexibility, and computational 

efficiency, all while maintaining acceptable real-time processing speeds and 
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detection accuracy. This makes the quantized model a compelling choice for 

low-power deployments such as surveillance cameras, mobile devices, or 

embedded systems. 
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4.7 Performance Comparison with BN-WVAD 

This section presents the comparative analysis between the AnomLite model 

and BN-WVAD, one of the top-performing methods with a high ranking on 

Papers with Code. BN-WVAD incorporates batch normalization to enhance 

training stability and has demonstrated strong performance in the weakly 

supervised video anomaly detection task. Therefore, the model is implemented 

to facilitate a comparison with the previous approach. The performance of the 

BN-WVAD model is shown on WandB, an AI developer platform used to track 

machine learning work. 

4.7.1 Performance on XD-Violence  

 

Figure 4.21: Charts of Performance on Wandb (XD-Violence) 

Table 4.10: Performance Metrics of BN-WVAD on XD-Violence 

Metrics Result 

AP 78.78 

AUC 93.18 

best_AP 83.97 

best_AUC 94.50 

Figures 4.21 and Table 4.10 present the results of BN-WVAD on the XD-

Violence dataset. While the performance is quite good, achieving a high AUC 

of 94.50 and AP of 83.97, it does not surpass the results achieved by AnomLite, 

indicating there is still room for improvement in capturing certain types of 

anomalies. 
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4.7.2 Performance on UCF-Crime 

 

Figure 4.22: Charts of Performance on Wandb (UCF-Crime) 

Table 4.11: Performance Metrics of BN-WVAD on UCF-Crime 

Metrics Result 

AP 36.26 

AUC 87.24 

best_AP 38.13 

best_AUC 87.24 

Figure 4.22 and Table 4.11 present the performance of BN-WVAD on the UCF-

Crime dataset. The model achieves a good AUC of 87.24, indicating strong 

discrimination capability. However, the AP of 36.26 is relatively low, 

suggesting that while the model can distinguish between normal and anomalous 

events, it struggles with the precise localization of anomalies. Compared to 

AnomLite, the performance is not as strong, particularly in terms of AP, 

highlighting areas where further improvement is needed. 
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4.7.3 Overview of Comparison 

Table 4.12: Comparison of Performance Metrics of Both Models 

Dataset Metrics BN-WVAD MobileNetV2-LSTM 

UCF-Crime AP 0.36 0.99 
 

AUC 0.87 0.99  

XD-Violence AP 0.79 0.97 
 

AUC 0.93 0.98  

This comparison highlights that AnomLite outperforms BN-WVAD on both the 

UCF-Crime and XD-Violence datasets concerning Average Precision (AP) and 

Area Under Curve (AUC). For UCF-Crime dataset, AnomLite achieves a high 

AP and AUC of 0.99, while BN-WVAD lags with a much lower AP of 0.36 and 

AUC of 0.87. For XD-Violence dataset, AnomLite maintains strong 

performance, AP of 0.97 and AUC of 0.98, still ahead of BN-WVAD, which 

has an AP of 0.79 and AUC of 0.93. Although BN-WVAD introduces a unique 

methodology, it showed lower performance in addressing imbalanced datasets 

in comparison to AnomLite, which utilizes a weighted cross-entropy loss. 

 

4.8 Summary 

Chapter 4 provides an in-depth assessment of video anomaly detection through 

the AnomLite architecture. The results are organized to compare baseline 

performance from the baseline model and enhancements introduced in this work. 

Section 4.2 reports the performance of the baseline model on the UCF-Crime 

dataset. Evaluation includes the confusion matrix, ROC AUC, precision-recall 

(PR) curves, F1 scores, and per-class accuracy. These results serve as a 

benchmark for subsequent comparisons. 

Starting from Section 4.3, the chapter transitions to this work’s 

contributions, applying the AnomLite model to the XD-Violence dataset, which 

is one of the well-known datasets in video anomaly detection. This section 

mirrors the evaluation methodology used earlier, presenting the confusion 

matrix, ROC AUC, average precision (AP), F1 scores, and per-class accuracy, 

thereby demonstrating the model’s effectiveness on a more complex, 

multimodal dataset. 



73 

Section 4.4 evaluates the inference capabilities of the trained model on 

both prerecorded and real-time video streams, highlighting its potential for real-

world deployment. A summary of inference behavior is provided. 

Section 4.5 introduces model optimization techniques, particularly 

quantization, to reduce computational overhead. Experimental results show that 

these optimizations preserve performance while improving efficiency, enabling 

the model to perform effectively in resource-constrained settings, optimizing 

the model for accessibility on lower-end GPUs, even CPUs, making it more 

user-friendly. In Section 4.6, the optimized model’s inference performance is 

further analyzed to ensure its robustness under real-time constraints.  

Finally, Section 4.7 offers a detailed performance comparison between 

this AnomLite model and the BN-WVAD model. The evaluation across both 

XD-Violence and UCF-Crime datasets provides a comprehensive overview of 

the improvements achieved, emphasizing gains in accuracy, inference, and 

deployment viability. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In conclusion, this research presents an optimized deep learning framework for 

video anomaly detection, addressing key challenges in computational efficiency 

and class imbalance across diverse surveillance scenarios. The lightweight 

AnomLite architecture, with only 11 million parameters, achieved good 

performance on both of the datasets, UCF-Crime and XD-Violence, with ROC 

AUC of 0.99 and average precision of 0.99 on UCF-Crime and a ROC AUC of 

0.98 and average precision of 0.97 on XD-Violence. The model also achieves 

high accuracy of 94% on UCF-Crime and 93% on XD-Violence, with strong F1 

scores across both datasets (F1-Micro 0.93 on UCF-Crime, 0.89 on XD-

Violence. Moreover, inference on prerecorded videos and real-time capturing 

of different angles successfully captured and identified the correct anomalous 

events that happened. Moreover, further optimizations achieved remarkable 

efficiency gains. Memory optimization has been successfully implemented, 

resulting in a 70% reduction in model size, from 42.4MB to 10.7MB, through 

strategic quantization. This approach balances accuracy and inference speed, 

making it well-suited for deployment on low-resource edge devices using only 

CPU. 

 Despite the challenges, such as imbalanced dataset, memory hardware 

requirement, cross cross-entropy loss function with SMOTE was applied to deal 

with the imbalanced dataset problem. With further data augmentations such as 

Gaussian noise, blur, and colour jitter augmentations, this enhances the 

robustness of the model. 

This research contributes to advancing the anomaly detection field by 

balancing efficiency and effectiveness, particularly in the challenging domain 

of multi-class anomaly recognition.  
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5.2 Recommendations for future work 

In future work, the model can be further optimized by expanding dataset 

coverage, that is, collecting additional video samples of visually similar but 

distinct anomaly classes (e.g., burglary vs. robbery, shoplifting vs. stealing) to 

refine the model’s ability to differentiate subtle behavioral differences. Besides, 

future work should focus on developing its capability to detect and classify 

multiple anomalous events within the same video frame. This enhancement 

would involve developing a more comprehensive dataset containing complex 

scenarios where multiple anomalies co-occur, such as a robbery taking place 

while a fight erupts nearby, or shoplifting occurring simultaneously with 

property vandalism. Moreover, future work could explore deploying the model 

using Intel OpenVINO to further improve real-time inference performance, 

particularly on Intel-based edge devices. Building on the current use of dynamic 

quantization, the model can be further optimized through techniques like layer 

fusion and hardware-aware acceleration. 
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