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ABSTRACT

GENERALISED LAMBERT W FUNCTION AND ITS APPLICATIONS

Chew Chun Yong

The Lambert 𝑊 function plays a pivotal role in solving exponential equations and

finds diverse applications across number theory, probability, statistics, and the phys-

ical sciences. Recent research has underscored its significance in simulating random

variables from Erlang and negative binomial distributions with a shape parameter

of two.

As we extended this work to simulate these distributions with a shape

parameter of three, we encountered the equation (𝑤2 − 𝑟)𝑒𝑤 = 𝑧, for which solu-

tions had not been thoroughly investigated. This impelled our exploration of the

generalized Lambert 𝑊 function.

The objectives of our theses are to scrutinize the application of the Lambert

𝑊 function in delay differential equations, investigate the solutions of (𝑤2−𝑟)𝑒𝑤 = 𝑧,

(𝑤3+ 𝑝𝑤 +𝑞)𝑒𝑤 = 𝑧, and a more comprehensive form, 𝑃𝑁 (𝑤)𝑒𝑤 = 𝑧, where 𝑃𝑁 (𝑤)

is a polynomial of degree 𝑁 . Following these investigations, we implement a

MATLAB function to compute solutions of 𝑃𝑁 (𝑤)𝑒𝑤 = 𝑧 across various branches

using Halley’s method.

The techniques we employ throughout our work encompass Lagrange’s

inversion method and Taylor series expansion. These methodologies enable us to

derive series solutions in different branches and determine suitable initial points for

numerical computation.

Within this thesis, we delved into the Lambert 𝑊 function, presenting an
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application in delay differential equations. Subsequently, we explored the branch

structures of the solutions to (𝑤2−𝑟)𝑒𝑤 = 𝑧. In doing so, we obtained series solutions

to (𝑤2 − 𝑟)𝑒𝑤 = 𝑧 across different branches. Additionally, we delved into more

comprehensive equations, like (𝑤3 + 𝑝𝑤 + 𝑞)𝑒𝑤 = 𝑧, and extended our exploration

to equations such as 𝑃𝑁 (𝑤)𝑒𝑤 = 𝑧. Our research made a pivotal contribution by

meticulously examining the intricate branch structures and solutions spread across

diverse branches, empowering us with effective methods for computing solutions.

While we have successfully accomplished our objectives, intriguing open

questions beckon further exploration in future research:

1. Determine the convergence radius of the series expansions of the𝑊 (𝑟) function.

2. Explore series expansions of the 𝑟-Lambert function capable of computing

solutions across various branches.

3. Investigate series solutions of the equation:

𝑃𝑁 (𝑤)
𝑄𝑀 (𝑤) 𝑒

𝑤 = 𝑧.

By achieving our objectives, we’ve not only enriched the field of mathe-

matics but also laid the groundwork for future research. While our thesis journey

concludes here, the exploration of the generalised Lambert 𝑊 function will persist

and thrive.
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CHAPTER 1

INTRODUCTION

The Lambert𝑊 function, named after Johann Heinrich Lambert, is a special math-

ematical function that emerges in various areas of mathematics and engineering. It

is defined as:

Definition 1.1. The Lambert𝑊 function is defined to be the inverse function of the

following transcendental equation:

𝑤𝑒𝑤 = 𝑧, (1.1)

where 𝑧 ∈ C and the solutions are denoted as 𝑤 = 𝑊𝑘 (𝑧) for 𝑘 ∈ Z. It is common

to denote the principal branch,𝑊0(𝑧) by just𝑊 (𝑧) when there is ambiguity.

The Lambert 𝑊 function holds significant applications in solving expo-

nential equations. It has demonstrated its importance in various fields of study. We

present some of its properties and an application of the Lambert𝑊 function in delay

differential equations (DDE).

In recent years, the Lambert𝑊 function has also garnered attention for its

role in probability and statistics. In their study, Jiménez and Jodrá (2009) showcased

how the quantile functions of both the Erlang and negative binomial distributions,

when the shape parameter is set to two, can be articulated using the Lambert 𝑊

function.
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The Erlang distribution is a continuous probability distribution commonly

used to model the waiting times between events in a Poisson process. It is charac-

terized by two parameters: the shape parameter 𝑘 and the rate parameter 𝜆. The

probability density function (PDF) of the Erlang distribution is given by:

𝑓 (𝑦; 𝑘 , 𝜆) = 𝜆
𝑘 𝑦𝑘−1𝑒−𝜆𝑦

(𝑘 − 1)!

where 𝑦 ≥ 0, 𝑘 is a positive integer, and 𝜆 > 0. The cumulative distribution function

(CDF) of the Erlang distribution is expressed as:

𝐹 (𝑦; 𝑘 , 𝜆) = 1 −
𝑘−1∑︁
𝑡=0

(𝜆𝑦)𝑡 𝑒−𝜆𝑦
𝑡!

. (1.2)

The Erlang distribution is often employed to model the time required for 𝑘 events to

occur in a system with an average event rate of 𝜆.

The negative binomial distribution is a discrete probability distribution

frequently used to model the number of successes in a sequence of independent and

identically distributed Bernoulli trials before a specified number of failures occur.

It is characterized by two parameters: the number of failures 𝑟 and the success

probability 𝑝. The probability mass function (PMF) of the negative binomial

distribution is given by:

𝑃(𝑁 = 𝑛; 𝑟, 𝑝) =
�
𝑛 + 𝑟 − 1

𝑛

�
𝑝𝑛 (1 − 𝑝)𝑟

where 𝑛 is a non-negative integer and 𝑝 ∈ (0, 1). The CDF of the negative binomial

distribution is expressed as:

𝐹 (𝑛; 𝑟, 𝑝) = 1 −
𝑟−1∑︁
𝑖=0

�
𝑟 + 𝑛
𝑡

�
(1 − 𝑝)𝑟+𝑛−𝑡 𝑝𝑡 . (1.3)
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The negative binomial distribution is often used to model count data with overdis-

persion, where the variance exceeds the mean. In solving the quantile function using

the inverse transform method for both distributions, one would need to solve the

inverse function of 𝑓 (𝑥) = (𝑥2 − 𝑟)𝑒𝑥 .
The research aims to explore and elucidate solutions derived from complex

equations, beginning with fundamental formulations like (𝑤2 − 𝑟)𝑒𝑤 = 𝑧. It extends

its investigation to more general equations, such as (𝑤3 + 𝑝𝑤 + 𝑞)𝑒𝑤 = 𝑧. Based

on these findings, we introduce an approach for numerically computing solutions of

𝑃𝑁 (𝑤)𝑒𝑤 = 𝑧, wherein 𝑃𝑁 (𝑤) denotes a polynomial with real coefficients of degree

𝑁 . Through these inquiries, this thesis seeks to achieve the following primary

objectives:

1. Examine the application of the Lambert 𝑊 function in delay differential

equations.

2. Explore the series solutions of (𝑤2−𝑟)𝑒𝑤 = 𝑧 in various branches, along with

its branch analysis.

3. Explore the solutions of the equation (𝑤3 + 𝑝𝑤 + 𝑞)𝑒𝑤 = 𝑧 across various

branches to analyse their behaviour and outcomes.

4. Compute the solutions of 𝑃𝑁 (𝑤)𝑒𝑤 = 𝑧 using Halley’s method.

In the subsequent chapter of this thesis, we carry out a literature review and

delve into the characteristics of the Lambert𝑊 function and its application in delay

differential equations (DDE) in Chapter 3. Following that, we explore solutions of

a more extensive equation:

(𝑤2 − 𝑟)𝑒𝑤 = 𝑧,

where 𝑟 ∈ R and𝑤, 𝑧 ∈ C. We conduct an in-depth analysis of branch characteristics

and series solutions for this equation, employing Lagrange inversion. Additionally,
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we investigate its Taylor series expansion around 𝑟 = 0, a technique akin to that pro-

posed by Scott, Fee and Grotendorst (2014). Notably, our contribution distinguishes

itself through the detailed branch analysis and the diversity of solutions across var-

ious branches, in contrast to the findings presented by Scott, Fee and Grotendorst

(2014).

In Chapter 5, we expand the scope of our investigation to include series

expansions of the solutions to (𝑤3 + 𝑝𝑤 + 𝑞)𝑒𝑤 = 𝑧, where 𝑝, 𝑞 ∈ R. Towards the

conclusion of Chapter 5, we delve into the feasibility of employing Halley’s method

for the computation of solutions to 𝑃𝑁 (𝑤)𝑒𝑤 = 𝑧.

For this thesis, the notation log 𝑥 will be used to represent the natural

logarithm, following the convention in the Lambert𝑊 function community.
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CHAPTER 2

LITERATURE REVIEW

2.1 Early developments

The Lambert𝑊 function’s origins trace back to 1758 when Lambert examined the

transcendental equation (Lambert, 1758):

𝑥 = 𝑞 + 𝑥𝑚 . (2.1)

Lambert’s studies led him to find a series solution for Equation (2.1),

expressed as

𝑥 =
𝑞

𝑝
− 𝑞𝑚

𝑝𝑚+1 + 𝑚𝑞
2𝑚−1

𝑝2𝑚+1 − 1
2
𝑚(3𝑚 − 2) 𝑞

3𝑚−2

𝑝3𝑚+1 + . . . .

This solution converges when (𝑚 − 1)𝑚−1𝑝𝑚 > 𝑚𝑚𝑞𝑚−1.

By change of variable 𝑥 → 𝑥−𝛽 and let 𝑞 = (𝛼 − 𝛽)𝜈 and 𝑚 = 𝛼/𝛽, Euler

(1783) made contributions by transforming Equation (2.1) into

𝑥𝛼 − 𝑥𝛽 = (𝛼 − 𝛽)𝜈𝑥𝛼+𝛽, (2.2)

Euler’s work paved the way for further exploration, leading to the formu-
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lation of the Lambert𝑊 function and its series solutions.

𝑥𝑛 = 1 + 𝑛𝜈 + 1
2
𝑛(𝑛 + 𝛼 + 𝛽)𝜈2

+ 1
6
𝑛(𝑛 + 𝛼 + 2𝛽) (𝑛 + 2𝛼 + 𝛽)𝜈3 + . . . .

(2.3)

Dividing both sides of Equation (2.2) by (𝛼 − 𝛽),

lim
𝛽→𝛼

𝑥𝛼 − 𝑥𝛽
𝛼 − 𝛽 = lim

𝛽→𝛼
𝜈𝑥𝛼+𝛽

log 𝑥 = 𝜈𝑥𝛼 (2.4)

Euler observed that by multiplying Equation (2.4) by 𝛼,

log 𝑥𝛼 = 𝛼𝜈𝑥𝛼

log 𝑧 = 𝑢𝑧,
(2.5)

where 𝑧 = 𝑥𝛼 and 𝑢 = 𝛼𝜈. This implies that if one can solve Equation (2.4) for

𝛼 = 1 then solutions for 𝛼 ≠ 0 can be obtained.

To solve this, Euler started with Equation (2.3) and let 𝛼 = 𝛽 = 1, that

leads to

𝑥𝑛 = 1 + 𝑛𝜈 + 1
2
𝑛(𝑛 + 2)𝜈2 + 1

6
𝑛(𝑛 + 3) (𝑛 + 3)𝜈3 + . . .

𝑥𝑛 − 1
𝑛

= 𝜈 + 1
2
(𝑛 + 2)𝜈2 + 1

6
(𝑛 + 3)2𝜈3 + . . .

lim
𝑛→0

𝑥𝑛 − 𝑥0

𝑛 − 0
= lim
𝑛→0

∞∑︁
𝑘=1

(𝑛 + 𝑘)𝑘−1

𝑘!
𝜈𝑘

log 𝑥 =
∞∑︁
𝑘=1

𝑘𝑘−1

𝑘!
𝜈𝑘 = 𝑇 (𝜈),

where 𝑇 (𝜈) is known as tree function (Flajolet and Sedgewick, 2009, p.127–128)

and converges when |𝜈 | < 1
𝑒 .

Since 𝑥 = 𝑒𝑇 (𝜈) is the solution of Equation (2.4) when 𝛼 = 1, it also
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fulfills the equation 𝑇 (𝜈) = 𝜈𝑒𝑇 (𝜈) . Comparing with Equation (1.1), we know that

𝑇 (𝜈) = −𝑊 (−𝜈), or

𝑊 (𝑧) = −𝑇 (−𝜈)

= −
∞∑︁
𝑛=1

𝑛𝑛−1

𝑛!
(−𝑧)𝑛

= 𝑧 − 𝑧2 + 3
2
𝑧3 − . . . .

More historical developments of the function have been included in (Corless et al.,

1996; Mező, 2022).

Besides tree function, the Lambert 𝑊 function is also introduced as a

rapidly convergent series in (Wright, 1959a,b; Siewert and Burniston, 1973).

If we apply logarithm on both sides of Equation (1.1), we have

𝑤 + log𝑤 = log 𝑧. (2.6)

Its multivalued nature was thoroughly studied by Corless et al. (1996) and Corless

and Jeffrey (1996), and its applications have since spanned across various disci-

plines, including delay differential equation (Asl and Ulsoy, 2003; Ohira and Ohira,

2023), gravitational motion equation (Valluri et al., 2000; Scott et al., 2006), cos-

mology (Saha and Bamba, 2019; Filali et al., 2024), statistical mechanics Caillol

(2003), predator-prey model (Davis, 1962), chemical engineering (Kesisoglou et al.,

2021), number theory (Visser, 2018) and probability and statistics (Jodrá, 2010).

Indeed, the Lambert𝑊 function’s significance has led to discussions about

its incorporation into educational curricula. This emphasizes its role in enhancing

students’ comprehension of mathematics. Corless et al. (1996) demonstrated how the

Lambert𝑊 function can be effectively introduced and taught in calculus and complex

analysis courses through pedagogical examples. Furthermore, its application in

theoretical physics education has also been explored by Kazakova and Pisanova

(2010), highlighting its relevance in advanced scientific disciplines.
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The proposal to include the Lambert 𝑊 function as a new elementary

function in senior secondary and introductory tertiary level mathematics curricula, as

suggested by Stewart (2005), reflects its increasing importance and potential impact

on mathematical education. By introducing students to this function, educators

can provide them with valuable insights into solving complex equations, as well

as fostering a deeper appreciation for the broader applications of mathematics in

various fields.

2.2 Generalisation of the Lambert𝑊 function

Generalisation of Equation (1.1) has also been of interest for a long time. For

example, Comtet (1970) studied a generalisation, 𝑦𝛼𝑒𝑦 = 𝑥, and showed that for

𝛼 ∈ R and 𝑥 being large, the equation

𝑦𝛼𝑒𝑦 = 𝑥

has a solution

Φ𝛼 (𝑥) = 𝐿1 − 𝛼𝐿2 + 𝛼
∞∑︁
𝑛=1

𝛼𝑛

𝐿𝑛1

𝑛∑︁
𝑚=1

(−1)𝑛+𝑚
�

𝑛

𝑛 − 𝑚 + 1

�
𝐿𝑚2
𝑚!

,

where 𝐿1 = log 𝑥 and 𝐿2 = log log 𝑥. In the English translation (Jeffrey et al., 1995),

the authors showed that if 𝛼 ≥ 1, this series is convergent when 𝑥 > (𝛼𝑒)𝛼; if 𝛼 < 1,

it is convergent when 𝑥 > 𝑒.

Siewert and Burniston (1974) studied the solutions of 𝑤𝑒𝑤 = 𝑎(𝑤 + 𝑏),
and other similar equations were also considered in Wright (1960) and Noonburg

(1969).

In their work, Cooke and van den Driessche (1986) investigated the equa-

tion:

𝑃𝑁 (𝑤) +𝑄𝑀 (𝑤)𝑒−𝑤 = 0, (2.7)
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Here, 𝑃𝑁 (𝑤) and 𝑄𝑀 (𝑤) represent polynomials of degree 𝑁 and 𝑀

respectively. The stability condition of the solutions is also derived. Similar

expressions are also observed in other problems such as molecular physics (Scott

et al., 1993), inverse Langevin function, and water waves (Mező and Keady, 2016).

Note that when 𝑁 = 1, 𝑀 = 0, and 𝑁 = 0, 𝑀 = 1, Equation (2.7) can be

solved in terms of the Lambert𝑊 function.

Example 2.1. Given 𝑁 = 1,𝑀 = 0, the equation takes the form (𝑎𝑤+𝑏) +𝑐𝑒−𝑤 = 0

where 𝑎 and 𝑐 are non-zero. Rewriting it leads to:

�
𝑤 + 𝑏

𝑎

�
𝑒𝑤+

𝑏
𝑎 = − 𝑐

𝑎
𝑒

𝑏
𝑎 ,

This representation reveals solutions in the form of 𝑤 = 𝑊𝑘

�
− 𝑐𝑎 𝑒

𝑏
𝑎

�
− 𝑏
𝑎 . A similar

approach can be applied to solve 𝑐 + (𝑎𝑤 + 𝑏)𝑒−𝑤 = 0, leading to solutions of

𝑤 = −𝑊𝑘

�
𝑐
𝑎 𝑒

− 𝑏
𝑎

�
− 𝑏
𝑎 .

The Lambert 𝑊 function finds its application in diverse mathematical

areas, notably in deriving asymptotic approximations for different sequences, in-

cluding Bell numbers. Lovász in his work (Lovász, 2007, Section 1.14, Problem

9) provided an asymptotic expression for Bell numbers in terms of the Lambert𝑊

function:

𝐵𝑛 ∼ 1√
𝑛

�
𝑛

𝑊 (𝑛)

�𝑛+ 1
2

𝑒
𝑛

𝑊 (𝑛)−𝑛−1 .

Corcino (Corcino and Corcino, 2013) highlighted the significance of solving the

equation

𝑥𝑒𝑥 + 𝑟𝑥 = 𝑛 (2.8)

to derive the asymptotic approximation for 𝑟-Bell numbers. These solutions, known

as 𝑟-Lambert𝑊 function (𝑊𝑟 (𝑛)), are essential in obtaining these approximations.

It was also shown in (Mező and Baricz, 2017) that Equation (2.8) can be
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transformed and written in a more generalized form:

𝑤 − 𝑡
𝑤 − 𝑠 𝑒

𝑤 = 𝑎. (2.9)

The multi-valued inverse function of Equation (2.9) is denoted as 𝑊 ( 𝑡𝑠 ; 𝑎). The

solution is also known as the (1, 1)-type Lambert𝑊 function (Mező, 2022). In their

study, they derived the solution in terms of the 𝑟-Lambert𝑊 function:

𝑊 ( 𝑡𝑠 ; 𝑎) = 𝑡 +𝑊−𝑎𝑒−𝑡

𝑎𝑒−𝑡𝑇

�
.

with detailed discussions on the branch structure provided in (Mező, 2017).

Equation (2.9) can be generalized to accommodate a higher degree, re-

sulting in the following expression:

(𝑤 − 𝑡1) (𝑤 − 𝑡2) . . . (𝑤 − 𝑡𝑁 )
(𝑤 − 𝑠1) (𝑤 − 𝑠2) . . . (𝑤 − 𝑠𝑀) 𝑒

𝑤 = 𝑎. (2.10)

This is also referred to as the 𝑁 upper 𝑀 lower parameters, and its solutions

are named (𝑁 ,𝑀)-type Lambert 𝑊 function, denoted as 𝑊
 𝑡1 𝑡2 ... 𝑡𝑁
𝑠1 𝑠2 ... 𝑠𝑀 ; 𝑎

�
. Mező

and Baricz (2017) and Mező (2022) have extensively discussed the case of having

(1, 1)-type Lambert𝑊 function.

Interestingly, similar expressions are useful in physical science as well. In

solving the gravitational motion equation, Scott et al. (2006) showed that

𝑒−2𝑤𝑅 = 𝑎0𝑏0(𝑤 − 𝑟1) (𝑤 − 𝑟2) (2.11)

has solutions that can be written as a product of two Lambert𝑊 functions:

𝑤 = − log
�
𝑎0𝑏0

𝑊 ((1 + 𝜖)𝑅𝑒−𝑟1 (1+𝜖)𝑅/𝑎0)𝑊 ((1 − 𝜖)𝑅𝑒−𝑟2 (1−𝜖)𝑅)/𝑏0)
(1 + 𝜖) (1 − 𝜖)𝑅2

�
,
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where 𝜖 satisfies

𝑟1 − 𝑟2 =
𝑊 ((1 − 𝜖)𝑅𝑒−𝑟2 (1−𝜖)𝑅)/𝑏0)

(1 − 𝜖)𝑅 − 𝑊 ((1 + 𝜖)𝑅𝑒−𝑟1 (1+𝜖)𝑅/𝑎0)
(1 + 𝜖)𝑅 .

This solution was pointed out by Mező and Baricz (2017) to be not satisfactory.

For real parameters 𝑟1, 𝑟2 and 𝑐, the equation

𝑒−𝑐𝑤 = 𝑎0(𝑤 − 𝑟1) (𝑤 − 𝑟2)

was studied by Scott, Fee and Grotendorst (2014), and they derived a series solution

presented below:

𝑤 = 𝑟𝑚 + 2
𝑊0
𝑐

+ 1
4

𝑐𝑟2
𝑑

𝑊0(𝑊0 + 1) +
1
64
𝑐3𝑟4

𝑑 (2𝑊2
0 − 1)

𝑊3
0 (𝑊0 + 1)3

+ 1
1536

𝑐5𝑟6
𝑑 (8𝑊4

0 − 4𝑊3
0 − 12𝑊2

0 + 3)
𝑊5

0 (𝑊0 + 1)5

+ 1
49152

𝑐7𝑟8
𝑑 (48𝑊6

0 − 64𝑊5
0 − 132𝑊4

0 + 40𝑊3
0 + 90𝑊2

0 − 15)
𝑊7

0 (𝑊0 + 1)7
+𝑂

�
𝑐9𝑟10

𝑑

�
,

where 𝑟𝑑 = 𝑟1−𝑟2
2 , 𝑟𝑚 = 𝑟1+𝑟2

2 , and𝑊0 = 𝑊0

�
±1

2

√︃
𝑐2

𝑎0
𝑒−𝑐𝑟𝑚/2

�
represents the Lambert

𝑊 function at the principal branch. It was proposed for the case when three real

solutions exist, that if two solutions calculated using Taylor series are positive and

the third solution is negative, then the third solution can be obtained by letting

𝑤 → −𝑤, 𝑐 → −𝑐, 𝑟𝑖 → −𝑟𝑖.
A common technique to obtain series representations of inverse functions

is by utilizing Lagrange inversion, which is stated below (Abramowitz and Stegun,

1992, Page 14):

Theorem 2.1. Let 𝑦 = 𝑓 (𝑥), 𝑦0 = 𝑓 (𝑥0). Suppose that 𝑓 ′(𝑥0) ≠ 0, the inverse
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function is given by

𝑥 = 𝑥0 +
∞∑︁
𝑘=1

(𝑦 − 𝑦0)𝑘
𝑘!

"
𝑑𝑘−1

𝑑𝑥𝑘−1

�
𝑥 − 𝑥0
𝑓 (𝑥) − 𝑦0

�𝑘 #
𝑥=𝑥0

.

This was utilised by Mugnaini (2014) to study the solutions of

(𝑥 − 𝑎) (𝑥 − 𝑏) = 𝑙𝑒𝑥 ,

where 𝑎, 𝑏 ∈ R. A series solution that can be written in terms of Bessel polynomials,

𝐵𝑛, is obtained:

𝑥 = 𝑎 +
∞∑︁
𝑛=1

1
𝑛!𝑛

�
𝑛𝑙𝑒𝑎

𝑎 − 𝑏

�𝑛
𝐵𝑛−1

� −2
𝑛(𝑎 − 𝑏)

�
.

One can obtain another solution by interchanging 𝑎 and 𝑏 in the series solution

above. However, computing solutions at other branches is not possible with this

approach.

Neither Scott et al. nor Mugnaini were able to obtain the radius of con-

vergence for their series solution. It was pointed out that the radius of convergence

for 𝑒−𝑐𝑤 = 𝑎0(𝑤 − 𝑎1) (𝑤 − 𝑎2) is provided by the magnitude of the critical radius,

𝑟𝑑crit (Scott, Fee and Grotendorst, 2014):

𝑟𝑑crit = ±1
𝑐

√︃
2𝑊 (−2𝑧20) +𝑊 (−2𝑧20)2, (2.12)

where 𝑧0 = 1
2
𝑐√
𝑎0
𝑒−𝑐

𝑟𝑚
2 and 𝑊 (𝑧) is the Lambert 𝑊 function. However, this is not

a necessary condition. Other applications of the (𝑁 ,𝑀)-type Lambert function in

biology, ecology, or probability have been discussed in Mező (2022).

There are also studies done on other types of generalisations, such as the

matrix Lambert function (Asl and Ulsoy, 2003; Yi et al., 2006; Yi and Ulsoy, 2006;
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Yi et al., 2007; Jarlebring and Damm, 2007; Cepeda-Gomez and Michiels, 2015),

Lambert–Tsallis 𝑊𝑞 function (da Silva and Ramos, 2019; da Silva et al., 2019;

Mendes et al., 2022), and the cubic Lambert 𝑊 function (Corcino and Corcino,

2020).
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CHAPTER 3

PROPERTIES AND APPLICATIONS OF THE LAMBERT𝑊 FUNCTION

In this chapter, we discuss some of the fundamental properties and series solutions

of the Lambert 𝑊 function. We also include an application of the Lambert 𝑊

function in eigenvalue assignment of a single delay differential equation in the last

section.

3.1 Equations Solvable Using the Lambert𝑊 Function

We discuss various types of equations that can be solved in terms of the Lambert

𝑊 function in this section. Since the equation 𝑝(𝑤)𝑒𝑞(𝑤) = 𝑎𝑥 + 𝑏 can always be

rewritten as 𝑝(𝑤)𝑒𝑞(𝑤) = 𝑥′, without loss of generality, we consider the right-hand

side of any Lambert-like equations to be 𝑥. Unless specified otherwise, we assume

𝑥 to be real, and we shall postpone the discussion of complex solutions or solutions

in other branches until we discuss the branch structure in Section 3.5.

3.1.1 (𝑝𝑤 + 𝑞)𝑒𝑤 = 𝑥

We are interested in solving the equation

(𝑝𝑤 + 𝑞)𝑒𝑤 = 𝑥. (3.1)

It can be checked that when 𝑝 = 0, we have the solution 𝑤 = log 𝑥. Thus, without

loss of generality, we consider the case 𝑝 ≠ 0 only.
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Since 𝑝 ≠ 0, we multiply the equation by 1
𝑝 𝑒

𝑞
𝑝 on both sides:

�
𝑤 + 𝑞

𝑝

�
𝑒𝑤+

𝑞
𝑝 =

𝑥

𝑝
𝑒

𝑞
𝑝 .

Making a substitution 𝑤′ = 𝑤 + 𝑞
𝑝 gives

𝑤′𝑒𝑤
′
=
𝑥

𝑝
𝑒

𝑞
𝑝 .

Using Definition (1.1), we know that the solution is

𝑤′ = 𝑊
�
𝑥

𝑝
𝑒

𝑞
𝑝

�
,

or

𝑤 = 𝑊

�
𝑥

𝑝
𝑒

𝑞
𝑝

�
− 𝑞
𝑝
. (3.2)

3.1.2 𝑤𝑒𝑟𝑤+𝑠 = 𝑥

Likewise, the equation

𝑤𝑒𝑟𝑤+𝑠 = 𝑥 (3.3)

can also be solved using the Lambert 𝑊 function. Solving the case where 𝑟 = 0 is

trivial, thus we consider the case where 𝑟 is nonzero.

By multiplying both sides of the equation by 𝑟𝑒−𝑠, we obtain

𝑟𝑤𝑒𝑟𝑤 = 𝑤′𝑒𝑤
′
= 𝑟𝑥𝑒−𝑠,

which implies that the solution is given by

𝑤 =
1
𝑟
𝑊 (𝑟𝑥𝑒−𝑠). (3.4)
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3.1.3 𝑤𝑏𝑤 = 𝑥

Consider a scenario where the base in Equation (1.1) is altered to an arbitrary value

𝑏 ≠ 1, resulting in the equation:

𝑤𝑏𝑤 = 𝑥. (3.5)

This equation can be solved using the Lambert𝑊 function by initially transforming

the base 𝑏 to 𝑒:

𝑤𝑒𝑤 log 𝑏 = 𝑥.

After multiplying both sides of the equation by log 𝑏:

𝑤 log 𝑏𝑒𝑤 log 𝑏 = 𝑥 log 𝑏,

it becomes apparent that the solution to the above equation is given by:

𝑤 =
1

log 𝑏
𝑊 (𝑥 log 𝑏). (3.6)

3.1.4 (𝑝𝑤 + 𝑞)𝑏𝑟𝑤+𝑠 = 𝑥

Utilising insights from previous sections, we can address a more general equation:

(𝑝𝑤 + 𝑞)𝑏𝑟𝑤+𝑠 = 𝑥. (3.7)

For cases where 𝑝 = 0, 𝑟 = 0, or 𝑏 = 1, the equation can be easily solved. Hence,

we need only consider the scenario where 𝑝 and 𝑟 are both non-zero, and 𝑏 is not

equal to 1.

To address Equation (3.7), we proceed by converting the base 𝑏 to 𝑒 and
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making a suitable substitution:

(𝑝𝑤 + 𝑞)𝑒(𝑟𝑤+𝑠) log 𝑏 = 𝑥.

Next, implementing another substitution, 𝑤′ = (𝑟𝑤 + 𝑠) log 𝑏, yields an

alternate form that enables further analysis:

�
𝑝𝑤′

𝑟 log 𝑏
− 𝑝𝑠

𝑟
+ 𝑝𝑞
𝑟

�
𝑒𝑤

′
= 𝑥.

Upon comparing the aforementioned equation with Equation (3.1), we

deduce the following expressions:

𝑤′ = 𝑊
�

𝑥

𝑝/(𝑟 log 𝑏) 𝑒
−𝑝𝑠/𝑟+𝑝𝑞/𝑟
𝑝/(𝑟 log 𝑏)

�
− −𝑝𝑠/𝑟 + 𝑝𝑞/𝑟

𝑝/(𝑟 log 𝑏)

Simplifying expression above leads to:

𝑤′ = 𝑊
�
𝑟 log 𝑏
𝑝

𝑥𝑒(𝑞−𝑠) log 𝑏
�
− (𝑞 − 𝑠) log 𝑏.

Thus, the solution to Equation (3.7) is given by:

𝑤 =
1

𝑟 log 𝑏
𝑊

�
𝑟 log 𝑏
𝑝

𝑥𝑒(𝑞−𝑠) log 𝑏
�
− 𝑞
𝑟
. (3.8)

3.1.5 𝑤𝑚𝑒𝑤
𝑛
= 𝑥

When considering all 𝑚 and 𝑛 values except zero, the equation

𝑤𝑚𝑒𝑤
𝑛
= 𝑥 (3.9)
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can be solved by an operation involving raising both sides to the power of 𝑛
𝑚 and a

constant multiplication of 𝑛
𝑚 . This results in:

𝑛

𝑚
𝑤𝑛𝑒

𝑛
𝑚𝑤

𝑛
=
𝑛

𝑚
𝑥

𝑛
𝑚 ,

leading to the derived solution:

𝑤 =
h𝑚
𝑛
𝑊

� 𝑛
𝑚
𝑥

𝑛
𝑚

�i 1
𝑛
. (3.10)

This solution presents a systematic method to resolve the equation, offering

a clear path to find the value of 𝑤 given specific values of 𝑚, 𝑛 and 𝑥.

3.1.6 𝑝𝑤 + 𝑏𝑟𝑤 = 𝑥

Utilising the result from Section 3.1.3, we could also solve the equation

𝑝𝑤 + 𝑏𝑟𝑤 = 𝑥, (3.11)

where 𝑝, 𝑟 ≠ 0 and 𝑏 ≠ 1.

Start by rescaling the initial term on the left-hand side of the equation to

𝑟𝑤, rewriting it as:

𝑏𝑟𝑤+
𝑟
𝑝 𝑏

𝑟𝑤

= 𝑏
𝑟
𝑝 𝑥 .

Then, by multiplying both sides by 𝑟
𝑝 and substituting𝑤 = 𝑟

𝑝 𝑏
𝑟𝑤, we arrive

at:

𝑤𝑏𝑤 =
𝑟

𝑝
𝑏

𝑟
𝑝 𝑥 .

Upon comparison with Equation (3.5), the solution can be expressed as:

𝑤 =
1
𝑟

log𝑏
�

𝑝

𝑟 log 𝑏
𝑊

�
𝑟

𝑝
𝑏

𝑟
𝑝 𝑥 log 𝑏

��
. (3.12)
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3.1.7 𝑝𝑤 + log𝑏 𝑟𝑤 = 𝑥

Another type of equation that can be solved using the Lambert𝑊 function is

𝑝𝑤 + log𝑏 𝑟𝑤 = 𝑥, (3.13)

where 𝑝, 𝑟 ≠ 0 and 𝑏 ≠ 1. Exponentiating both sides of the equation:

𝑏𝑝𝑤+log𝑏 𝑟𝑤 = 𝑟𝑤𝑏𝑝𝑤 = 𝑏𝑥 .

Rewriting this equation, we have

𝑝𝑤𝑏𝑝𝑤 =
𝑝

𝑟
𝑏𝑥 .

Using the result from Section 3.1.3, we know that the solution is:

𝑤 =
1

𝑝 log 𝑏
𝑊

� 𝑝
𝑟
𝑏𝑥 log 𝑏

�
. (3.14)

3.1.8 𝑝𝑤 log𝑏 𝑟𝑤 = 𝑥

We could also have the multiplicative type of Equation (3.13) to be solved using the

Lambert𝑊 function. Consider the equation

𝑝𝑤 log𝑏 (𝑟𝑤) = 𝑥, (3.15)

where 𝑝 and 𝑟 are non-zero values, and 𝑏 is not equal to 1.

Upon substituting 𝑟𝑤 = 𝑏𝑥 into the equation, the manipulation yields:

𝑝

𝑟
𝑏𝑥 log𝑏 𝑏𝑥 =

𝑝

𝑟
𝑥𝑏𝑥 = 𝑥.
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Referencing the methodology outlined in Section 3.1.3, the resulting solution

emerges as:

𝑤 =
1
𝑟
𝑏𝑥 =

1
𝑟
𝑏

1
log 𝑏𝑊

�
𝑟
𝑝 𝑥 log 𝑏

�
. (3.16)

Note that this implies the solution of the equation

(𝑟𝑤)𝑝𝑤 = 𝑥 (3.17)

as well. By taking the logarithm on both sides of the equation, we have

𝑝𝑤 log 𝑟𝑤 = log 𝑥 = 𝑥′.

This shows that the solution of Equation (3.17) is

𝑤 =
1
𝑟
𝑒𝑥 =

1
𝑟
𝑒
𝑊

�
𝑟
𝑝 log 𝑥

�
. (3.18)

This solution derived for Equation (3.17) through logarithmic transformation show-

cases the interrelation between exponential and the Lambert𝑊 function.

3.1.9 (𝑟𝑤) (𝑝𝑤)𝑠 = 𝑥

Following from the previous type of equation, we include a more general form:

(𝑟𝑤) (𝑝𝑤)𝑠 = 𝑥, (3.19)

where 𝑟, 𝑝, 𝑠 ≠ 0.

Applying logarithm on both sides of the equation:

(𝑝𝑤)𝑠 log 𝑟𝑤 = log 𝑥.
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We could also rewrite the equation above by multiplying 𝑠 𝑟𝑠𝑝𝑠 on both sides:

(𝑟𝑤)𝑠 log(𝑟𝑤)𝑠 = 𝑟𝑠

𝑝𝑠
log 𝑥𝑠 .

This allows us to utilise what we have developed in the previous section. Thus, the

solution of Equation (3.19) is:

𝑤 =
1
𝑟

�
𝑒
𝑊

�
log

h
𝑟𝑠

𝑝𝑠 log 𝑥𝑠
i � � 1

𝑠

. (3.20)

3.2 Basic properties of the Lambert𝑊 function

We will discuss some basic properties of the Lambert 𝑊 function in this section.

Some of the interesting values are:

1. 𝑊
�
−1
𝑒

�
= −1,

2. 𝑊 (0) = 0,

3. 𝑊 (1) = Ω, which is also known as the omega constant,

4. 𝑊 (𝑒) = 1,

5. 𝑊

𝑒𝑒+1� = 𝑒.
The omega constant, Ω, is defined as below:

Definition 3.1. The solution of 𝑤𝑒𝑤 = 1 is 𝑤 = 𝑊 (1) = 0.56714 . . . . This value is

also known as the omega constant, Ω. Thus,

Ω𝑒Ω = 1. (3.21)

From Definition 3.1, we know that the solution of 𝑤𝑒𝑤 = 1 is the omega

constant. However, if we consider complex solutions, we have infinitely many, such
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as −1.5339− 4.3752𝑖,−1.5339+ 4.3752𝑖,−2.4016+ 10.7763𝑖,−2.8536+ 17.1135𝑖,

which are solutions in branch 𝑘 = −1, 1, 2 and 3, respectively. While Ω is not the

only solution, it is the only real solution.

In most of the physical problems, one might be interested in the real

solutions when 𝑥 is real. It has been shown by Scott, Fee, Grotendorst and Zhang

(2014) that 𝑒𝑤 = 𝑃(𝑤), where 𝑃(𝑤) is a real coefficient polynomial of degree 𝑛,

has at most 𝑛 + 1 real roots. This implies that

1
𝑃(𝑤) 𝑒

𝑤 = 𝑥

has at most 𝑛 + 1 real roots. Using this result, we have the following lemma.

Lemma 3.1. Given 𝑃(𝑤) to be polynomial of degree 𝑛, the equation

𝑃(𝑤)𝑒𝑤 = 𝑥

where 𝑥 ≠ 0 has a maximum of 𝑛 + 1 real roots.

Proof. Since 𝑃(𝑤)𝑒−𝑤 = 𝑥′ = 1
𝑥 has at most 𝑛 + 1 real roots, we rewrite the

polynomial in terms of −𝑤:

𝑃(𝑤) = 𝑐0 + 𝑐1𝑤 + 𝑐2𝑤
2 + · · · + 𝑐𝑛𝑤𝑛

= 𝑐0 + (−𝑐1) (−𝑤) + 𝑐2(−𝑤)2 + · · · + (−1)𝑛𝑐𝑛 (−𝑤)𝑛.

Let 𝑑𝑛 = (−1)𝑛𝑐𝑛, we have

𝑃(𝑤) = 𝑑0 + 𝑑′1(−𝑤) + 𝑑′2(−𝑤)2 + · · · + 𝑑′𝑛 (−𝑤)𝑛.

Thus, 𝑃(𝑤)𝑒−𝑤 = 𝑄(−𝑤)𝑒−𝑤 = 𝑄(𝑤′)𝑒𝑤′
= 𝑥′ has at most 𝑛 + 1 roots. □

Specifically, for the Lambert 𝑊 function, the sufficient condition for two
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real solutions is that 𝑥 must be real and between −1
𝑒 and 0.

Example 3.1. Solutions of the equation 𝑤𝑒𝑤 = −0.3 are 𝑊 (−0.3) where 𝑘 =

0,±1,±2, . . . . Since −1
𝑒 < 𝑥 = −0.3 < 0, we know that this equation has exactly

two real solutions, which are𝑊0(−0.3) = −0.4894 and𝑊−1(−0.3) = −1.7813.

The values of 𝑊 (0.3) can be obtained from mathematical software such

as MATLAB, Python, or Maxima. Series solutions of 𝑊 (𝑥) will be discussed in a

later section.

3.2.1 The omega constant, Ω

The omega constant, Ω, is known to be an irrational number as well as a transcen-

dental number. In fact, for any 𝑥 ≠ 0 that is algebraic,𝑊 (𝑥) is transcendental. This

could be proven by the Lindemann–Weierstrass theorem:

Theorem 3.1 (Lindemann-Weierstrass theorem). If 𝛼1, . . . , 𝛼𝑛 are algebraic num-

bers that are linearly independent over the rational numbers Q, then 𝑒𝛼1 , . . . , 𝑒𝛼𝑛

are algebraically independent over Q.

Theorem 3.2. The omega constant, Ω, is a transcendental number.

Proof. Suppose that Ω is algebraic. From Theorem 3.1, 𝑒Ω is transcendental. Thus,

Ω𝑒Ω is transcendental, which contradicts the fact that Ω𝑒Ω = 1. □

In fact, it has also been proven by Bronstein et al. (2008) that for any

𝑥 ≠ 0 that is algebraic, 𝑊 (𝑥) is transcendental for all branches. A comparable

transcendental characteristic is also identified within the Lambert-Tsallis function,

as highlighted by (da Silva and Ramos, 2020). This function is defined as the

solution to the equation:

𝑊𝑞 (𝑥)𝑒𝑊𝑞 (𝑥)
𝑞 = 𝑥,

where 𝑒𝑞 is the 𝑞-exponential function.
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3.2.2 Linear combination of the Lambert𝑊 functions

The linear combination of two Lambert 𝑊 functions, 𝑎𝑊 (𝑥1) + 𝑏𝑊 (𝑥2), was dis-

cussed in Mező (2022, Chapter 1.2.3). Starting from the relationship 𝑒𝑊 (𝑥) = 𝑥
𝑊 (𝑥) ,

we derive the following equality:

𝑒𝑎𝑊 (𝑥1)𝑒𝑏𝑊 (𝑥2) =
�
𝑥1

𝑊 (𝑥1)

�𝑎 �
𝑥2

𝑊 (𝑥2)

�𝑏
,

which can be written as:

𝑒𝑎𝑊 (𝑥1)+𝑏𝑊 (𝑥2) =
�
𝑥1

𝑊 (𝑥1)

�𝑎 �
𝑥2

𝑊 (𝑥2)

�𝑏
.

By multiplying both sides of the equation by 𝑎𝑊 (𝑥1) + 𝑏𝑊 (𝑥2), we have:

[𝑎𝑊 (𝑥1) + 𝑏𝑊 (𝑥2)] 𝑒𝑎𝑊 (𝑥1)+𝑏𝑊 (𝑥2)

= [𝑎𝑊 (𝑥1) + 𝑏𝑊 (𝑥2)]
�
𝑥1

𝑊 (𝑥1)

�𝑎 �
𝑥2

𝑊 (𝑥2)

�𝑏
.

Utilising the Lambert𝑊 function yields the following expression:

𝑎𝑊 (𝑥1) + 𝑏𝑊 (𝑥2)

= 𝑊

 
[𝑎𝑊 (𝑥1) + 𝑏𝑊 (𝑥2)]

�
𝑥1

𝑊 (𝑥1)

�𝑎 �
𝑥2

𝑊 (𝑥2)

�𝑏!
.

(3.22)

We extend this result to the sum of 𝑛 terms.

Theorem 3.3.

𝑛∑︁
𝑡=1
𝑎𝑡𝑊 (𝑥𝑡) = 𝑊

 "
𝑛∑︁
𝑡=1
𝑎𝑡𝑊 (𝑥𝑡)

# "
𝑛Ö
𝑡=1

�
𝑥𝑡

𝑊 (𝑥𝑡)

�𝑎𝑡 #!
.
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Proof. Since:

𝑒
Í𝑛

𝑡=1 𝑎𝑡𝑊 (𝑥𝑡 ) =
𝑛Ö
𝑡=1

�
𝑒𝑊 (𝑥𝑡 )

�𝑎𝑡
=

𝑛Ö
𝑡=1

�
𝑥𝑡

𝑊 (𝑥𝑡)

�𝑎𝑡
,

we have that:

(
𝑛∑︁
𝑡=1
𝑎𝑡𝑊 (𝑥𝑡)

)
× 𝑒

Í𝑛
𝑡=1 𝑎𝑡𝑊 (𝑥𝑡 ) =

𝑛∑︁
𝑡=1
𝑎𝑡𝑊 (𝑥𝑡) ×

𝑛Ö
𝑡=1

�
𝑥𝑡

𝑊 (𝑥𝑡)

�𝑎𝑡
.

Thus, solutions to the equation above can be written in terms of the Lambert 𝑊

function:
𝑛∑︁
𝑡=1
𝑎𝑡𝑊 (𝑥𝑡) = 𝑊

 "
𝑛∑︁
𝑡=1
𝑎𝑡𝑊 (𝑥𝑡)

# "
𝑛Ö
𝑡=1

�
𝑥𝑡

𝑊 (𝑥𝑡)

�𝑎𝑡 #!
.

□

Using this result, we obtain an identity that involves Ω. Let 𝑎𝑡 = 𝑥𝑡 = 1

for all 𝑡 = 1, 2, . . . , 𝑛, we have:

𝑊
� 𝑛

Ω𝑛−1

�
= 𝑛Ω.

We end this section by providing a few interesting identities.

Theorem 3.4.
𝑊 (𝑥 log 𝑥) = log 𝑥

�
𝑥 ≥ 1

𝑒

�

𝑊

�
− log 𝑥

𝑥

�
= − log 𝑥 (0 ≤ 𝑥 ≤ 𝑒)

Proof. By substituting 𝑛 = 1, 𝑎1 = 1,𝑊 (𝑥1) = log 𝑥 into Equation (3.3) we have the

first identity. The second identity can be obtained by taking 𝑛 = 1, 𝑎1 = −1,𝑊 (𝑥1) =
log 𝑥.

Note that the range of 𝑥 in each identity is chosen such that the argument

of 𝑊 (𝑥) is always greater than or equal to −1
𝑒 . This is to assure the existence of

a real solution in the principal branch (Branches of the Lambert 𝑊 function in
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Section 3.5). □

3.3 Derivatives and integrals

3.3.1 Derivatives

To derive the first derivative of𝑊 (𝑥), we differentiate the equation 𝑤𝑒𝑤 = 𝑥. Since

𝑤 is a function of 𝑥, we will express the equation as 𝑊 (𝑥)𝑒𝑊 (𝑥) = 𝑥 to avoid any

potential confusion in this section.

By differentiating both sides of the equation with respect to 𝑥, we obtain

𝑑𝑊 (𝑥)
𝑑𝑥

𝑒𝑊 (𝑥) +𝑊 (𝑥)𝑒𝑊 (𝑥) 𝑑𝑊 (𝑥)
𝑑𝑥

= 1,

and we can solve for the first derivative:

𝑑𝑊 (𝑥)
𝑑𝑥

=
𝑒−𝑊 (𝑥)

𝑊 (𝑥) + 1
=

𝑊 (𝑥)
𝑥 [1 +𝑊 (𝑥)] . (3.23)

It is noteworthy that the Lambert 𝑊 function is not differentiable at 𝑊 (𝑥) = −1 or

𝑥 = −𝑒−1 and 𝑥 = 0. Higher derivatives can be derived through induction.

Theorem 3.5. For 𝑛 ≥ 1, the 𝑛-th derivative of the Lambert𝑊 function is

𝑑𝑛𝑊 (𝑥)
𝑑𝑥𝑛

=
𝑒−𝑛𝑊 (𝑥) 𝑝𝑛 (𝑊 (𝑥))
(1 +𝑊 (𝑥))2𝑛−1 , (3.24)

where 𝑝𝑛+1(𝑤) = −(𝑛𝑤 + 3𝑛 − 1)𝑝𝑛 (𝑤) + (1 + 𝑤)𝑝′𝑛 (𝑤) and 𝑝1(𝑤) = 1.

Proof. It can be checked easily that Equation (3.24) is true for the case 𝑛 = 1.

Next, assuming that Equation (3.24) holds for 𝑛 = 𝑠, we proceed to

26



differentiate the 𝑠-th derivative:

𝑑𝑠+1𝑊 (𝑥)
𝑑𝑥𝑠+1 =

𝑒−𝑠𝑊 (𝑥)𝑊′(𝑥) (1 +𝑊𝑠 (𝑥))2𝑠−2

(1 +𝑊 (𝑥))4𝑠−2

× �−(𝑠𝑊 (𝑥) + 3𝑠 − 1)𝑝𝑠 (𝑊 (𝑥)) + (1 +𝑊 (𝑥))𝑝′𝑠 (𝑊 (𝑥))� ,
where 𝑝′𝑠 (𝑊 (𝑥)) denotes the derivative of 𝑝𝑠 (𝑊 (𝑥)) with respect to 𝑥.

By employing the recurrence relation and𝑊′(𝑥) = 𝑒−𝑊 (𝑥 )
1+𝑊 (𝑥) , we find

𝑑𝑠+1𝑊 (𝑥)
𝑑𝑥𝑠+1 =

𝑒−(𝑠+1)𝑊 (𝑥) 𝑝𝑠+1(𝑊 (𝑥))
(1 +𝑊𝑠 (𝑥))2𝑠+1 .

This concludes the proof. □

Consider the equation

𝑊 (𝑒𝑥)𝑒𝑊 (𝑒𝑥) = 𝑒𝑥 . (3.25)

This equation, along with the analysis of its derivatives, presents an intriguing

comparison between the derivatives of𝑊 (𝑒𝑥) and𝑊 (𝑥).
Upon differentiating both sides of Equation (3.25), we have

𝑒𝑊 (𝑒𝑥) 𝑑𝑊 (𝑒𝑥)
𝑑𝑥

+𝑊 (𝑒𝑥)𝑒𝑊 (𝑒𝑥) 𝑑𝑊 (𝑒𝑥)
𝑑𝑥

= 𝑒𝑥 .

Solving for the first derivative yields:

𝑑𝑊 (𝑒𝑥)
𝑑𝑥

=
𝑒𝑥

𝑒𝑊 (𝑒𝑥) {1 +𝑊 (𝑒𝑥)} . (3.26)

As𝑊 (𝑒𝑥) = 𝑒𝑥

1+𝑒𝑊 (𝑒𝑥 ) , we have

𝑑𝑊 (𝑒𝑥)
𝑑𝑥

=
𝑊 (𝑒𝑥)

1 +𝑊 (𝑒𝑥) . (3.27)
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This derivative sheds light on the relationship between the Lambert𝑊 function and

its derivative, showing a simplified form that contrasts the derivatives of𝑊 (𝑥).
Higher derivatives are given in the following theorem:

Theorem 3.6. For 𝑛 ≥ 1, the 𝑛-th derivative of𝑊 (𝑒𝑥) can be expressed as follows:

𝑑𝑛𝑊 (𝑒𝑥)
𝑑𝑥𝑛

=
𝑞𝑛 (𝑊 (𝑒𝑥))

(1 +𝑊 (𝑒𝑥))2𝑛−1 , (3.28)

where the initial polynomial 𝑞1(𝑤) is 𝑤 and 𝑞𝑛+1(𝑤) is given by −(2𝑛−1)𝑤𝑞𝑛 (𝑤) +
𝑤(1 + 𝑤)𝑞′𝑛 (𝑤).

Proof. From the first derivative, we deduce that Equation (3.28) holds with 𝑞1(𝑤) =
𝑤.

Assuming that the expression for the 𝑛-th derivative and recurrence relation

for 𝑞𝑛 (𝑤) are true for all 𝑛 ≤ 𝑠, we have

𝑑𝑠𝑊 (𝑒𝑥)
𝑑𝑥𝑠

=
𝑞𝑠 (𝑊 (𝑒𝑥))

(1 +𝑊 (𝑒𝑥))2𝑠−1 .

Differentiating both sides of the equation with respect to 𝑥:

𝑑𝑠+1𝑊 (𝑒𝑥)
𝑑𝑥𝑠+1 =

𝑞′𝑠 (𝑊 (𝑒𝑥))𝑊 (𝑒𝑥) (1 +𝑊 (𝑒𝑥)) − (2𝑠 − 1)𝑊 (𝑒𝑥)𝑞𝑠 (𝑊 (𝑒𝑥))
(1 +𝑊 (𝑒𝑥))2𝑠+1 ,

where 𝑞𝑠+1(𝑤) = 𝑞′𝑠 (𝑊 (𝑒𝑥))𝑊 (𝑒𝑥) (1 +𝑊 (𝑒𝑥)) − (2𝑠 − 1)𝑊 (𝑒𝑥)𝑞𝑠 (𝑊 (𝑒𝑥)). □

3.3.2 Polynomials 𝑝𝑛 (𝑤) and 𝑞𝑛 (𝑤)

We discuss some properties of 𝑝𝑛 (𝑤) and 𝑞𝑛 (𝑤) in this section.

Proposition 3.1. The leading coefficient of 𝑝𝑛 (𝑤) is (−1)𝑛−1(𝑛 − 1)! for 𝑛 ≥ 1.

Proof. Starting from the initial condition where 𝑝1(𝑤) = 1 = (−1)0×0!, we confirm

the validity of the statement for 𝑛 = 1. Assuming the statement holds for all 𝑛 ≤ 𝑠,
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Referring to the recurrence relation, we recognize that the leading term of 𝑝𝑠+1(𝑤)
matches the leading term of

𝑓 (𝑤) = −𝑠𝑤𝑝𝑠 (𝑤).

Given that the leading term of 𝑝𝑠 (𝑤) is (−1)𝑠−1(𝑠 − 1)!, the leading term of 𝑓 (𝑤)
becomes −𝑠 × (−1)𝑠−1(𝑠 − 1)! = (−1)𝑠𝑠!, which aligns with the leading term of

𝑝𝑠+1(𝑤). This consistency confirms the validity of the statement for 𝑛 = 𝑠 + 1. □

In addition to the leading term, we are interested in the constant term

or the value of 𝑝𝑛 (0). This result is significant as it can be used in the Taylor

series expansion of the Lambert𝑊 function. Corless et al. (1996) stated this result

without providing an explicit proof. Mező (2022, Chapter 1.3.3) expanded on this

and presented a comprehensive formula for all coefficients of 𝑝𝑛 (𝑤). We can

summarise this result as follows:

Proposition 3.2. The polynomials 𝑝𝑛 (𝑤) = (−1)𝑛−1 Í𝑛−1
𝑘=0 𝛽𝑛,𝑘𝑥

𝑘 , where

𝛽𝑛,𝑘 =
𝑘∑︁
𝑚=0

1
𝑚!

�
2𝑛 − 1
𝑘 − 𝑚

� 𝑚∑︁
𝑞=0

�
𝑚

𝑞

�
(−1)𝑞 (𝑞 + 𝑛)𝑚+𝑛−1.

Using Proposition 3.2, it’s straightforward to derive the following result:

Proposition 3.3. For all 𝑛 ≥ 1, 𝑝𝑛 (0) = (−𝑛)𝑛−1.

Proof. As

𝑝𝑛 (𝑤) = (−1)𝑛−1
𝑛−1∑︁
𝑘=0

𝛽𝑛,𝑘𝑤
𝑘 ,

substituting 𝑤 = 0 into both sides of the equation, we have

𝑝𝑛 (0) = (−1)𝑛−1𝛽𝑛,0 = (−1)𝑛−1 × 𝑛𝑛−1 = (−𝑛)𝑛−1.

□
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The second-order Eulerian numbers, which were initially observed by

Gessel and Stanley (1978), have been found to have a connection with the Lambert

𝑊 function as well (Corless et al., 1996). It’s important to note that these second-

order Eulerian numbers satisfy the subsequent recurrence relation (Graham et al.,

1994, Chapter 6.3):

��
𝑛

𝑘

��
= (𝑘 + 1)

��
𝑛 − 1
𝑘

��
+ (2𝑛 − 1 − 𝑘)

��
𝑛 − 1
𝑘 − 1

��
, (3.29)

with an initial condition of ��
0
𝑚

��
= [𝑚 = 0] .

It’s worth mentioning that the expression [𝑚 = 0] is referred to as the Iverson

bracket, a generalization of the Kronecker delta. It takes on a value of 1 if the

statement enclosed within the bracket is true, and 0 otherwise.

Theorem 3.7. The polynomials 𝑞𝑛 are given by

𝑞𝑛 (𝑤) =
𝑛−1∑︁
𝑘=0

��
𝑛 − 1
𝑘

��
(−1)𝑘𝑤𝑘+1. (3.30)

Proof. This identity can also be proven through induction. It can be easily verified

that when 𝑛 = 1, the identity holds true.

Assume that Equation (3.30) holds true for 𝑛 = 𝑠. By utilizing the

recurrence relation for 𝑞𝑛 (𝑤), we obtain

𝑞𝑠+1(𝑤) = −(2𝑠 − 1)𝑤𝑞𝑠 (𝑤) + 𝑤(1 + 𝑤)𝑞′𝑠 (𝑤)

= −(2𝑠 − 1)
𝑠−1∑︁
𝑘=0

��
𝑠 − 1
𝑘

��
(−1)𝑘𝑤𝑘+2

+ (1 + 𝑤)
𝑠−1∑︁
𝑘=0

(𝑘 + 1)
��
𝑠 − 1
𝑘

��
(−1)𝑘𝑤𝑘+1.
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By expanding and changing the index, we arrive at

𝑞𝑠+1(𝑤) = (2𝑠 − 1)
𝑠∑︁
𝑘=1

��
𝑠 − 1
𝑘 − 1

��
(−1)𝑘𝑤𝑘+1

+
𝑠−1∑︁
𝑘=0

(𝑘 + 1)
��
𝑠 − 1
𝑘

��
(−1)𝑘𝑤𝑘+1 +

𝑠∑︁
𝑘=1

𝑘

��
𝑠 − 1
𝑘 − 1

��
(−1)𝑘−1𝑤𝑘+1

= (2𝑠 − 𝑘 − 1)
𝑠∑︁
𝑘=1

��
𝑠 − 1
𝑘 − 1

��
(−1)𝑘𝑤𝑘+1

+
𝑠−1∑︁
𝑘=0

(𝑘 + 1)
��
𝑠 − 1
𝑘

��
(−1)𝑘𝑤𝑘+1.

This can be further simplified by utilizing Equation (3.29) and the fact that

��
𝑠 − 1
𝑠 − 1

��
= 0.

Group the summations together and apply the recurrence relation for

second-order Eulerian numbers:

𝑞𝑠+1(𝑤) = 𝑤 +
𝑠−1∑︁
𝑘=1

�
(2𝑠 − 𝑘 − 1)

��
𝑠 − 1
𝑘 − 1

��
+ (𝑘 + 1)

��
𝑠 − 1
𝑘

���
(−1)𝑘𝑤𝑘+1

= 𝑤 +
𝑠−1∑︁
𝑘=1

��
𝑠

𝑘

��
(−1)𝑘𝑤𝑘+1

=
𝑠∑︁
𝑘=0

��
𝑠

𝑘

��
(−1)𝑘𝑤𝑘+1.

Thus, the expression for 𝑞𝑛 (𝑤) holds true for all 𝑛 ≥ 1. □

31



3.3.3 Integrals

The integral
∫
𝑊 (𝑥) 𝑑𝑥 can be easily evaluated using integration by parts twice:

∫
𝑊 (𝑥) 𝑑𝑥 = 𝑥𝑊 (𝑥) −

∫
𝑥
𝑑𝑊 (𝑥)
𝑑𝑥

𝑑𝑥 + 𝐶

= 𝑥𝑊 (𝑥) −
∫
𝑊 (𝑥)𝑒𝑊 (𝑥) 𝑑𝑊 (𝑥) + 𝐶

= 𝑥𝑊 (𝑥) −𝑊 (𝑥)𝑒𝑊 (𝑥) + 𝑒𝑊 (𝑥) + 𝐶

= 𝑥

�
𝑊 (𝑥) − 1 + 1

𝑊 (𝑥)

�
+ 𝐶 .

As the Lambert𝑊 function is defined as the inverse function of 𝑤𝑒𝑤 = 𝑥, one could

also utilize the technique of inverse function integration, which is also a result of

integration by parts.

Suppose that 𝑦 = 𝑓 (𝑥) and 𝑥 = 𝑓 −1(𝑦) are single-valued and continuously

differentiable. An extension of the technique mentioned above was presented by

Parker in 1955 (Parker, 1955), providing the expression:

∫
𝑓 𝑛 (𝑥) 𝑑𝑥 = 𝑥 𝑓 𝑛 (𝑥) − 𝑛

∫
𝑦𝑛−1 𝑓 −1(𝑦) 𝑑𝑦. (3.31)

This equation offers a broader perspective on integrating powers of a function 𝑓 (𝑥)
and its inverse 𝑓 −1(𝑦).

Example 3.2. Let 𝑦 = 𝑓 (𝑥) = 𝑊 (𝑥). We know that 𝑓 −1(𝑦) = 𝑥 = 𝑊 (𝑥)𝑒𝑊 (𝑥) . Thus,

∫
𝑊 (𝑥) 𝑑𝑥 = 𝑥𝑊 (𝑥) −

∫
𝑊 (𝑥)𝑒𝑊 (𝑥) 𝑑𝑊 (𝑥)

= 𝑥(ln 𝑥)2 − 2(𝑦𝑒𝑦 − 𝑒𝑦) + 𝐶

= 𝑥

�
𝑊 (𝑥) − 1 + 1

𝑊 (𝑥)

�
+ 𝐶 .
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We can also derive a more general identity using integration by parts:

∫
𝑥𝑛 𝑓 𝑚 (𝑥) 𝑑𝑥 = 𝑥

𝑛+1 𝑓 𝑚 (𝑥)
𝑛 + 1

− 𝑚

𝑛 + 1

∫ �
𝑓 −1(𝑦)�𝑛+1

𝑦𝑚−1𝑑𝑦, (3.32)

where 𝑛 ≥ 0 and 𝑚 ≥ 1. This identity can be used to evaluate integrals that contain

𝑊 (𝑥) easily.

Example 3.3. Using Equation (3.32), the integral
∫
𝑥𝑊 (𝑥) 𝑑𝑥 can be expressed as:

𝑥2𝑊 (𝑥)
2

− 1
2

∫
𝑊 (𝑥)2𝑒2𝑊 (𝑥) 𝑑𝑊 (𝑥),

where the second term can be evaluated using integration by parts:

∫
𝑥𝑊 (𝑥) 𝑑𝑥 = 𝑊 (𝑥)3𝑒2𝑊 (𝑥)

2
− �

2𝑊 (𝑥)2 − 2𝑊 (𝑥) + 1
� 𝑒2𝑊 (𝑥)

8
+ 𝐶

=
1
2

�
𝑊 (𝑥) − 1

2

� �
𝑊2(𝑥) + 1

2

�
𝑒2𝑊 (𝑥) + 𝐶 .

By applying integration by parts repeatedly, we obtain the following result:

Lemma 3.2. For all integers 𝑛,𝑚 where 𝑛 is greater than zero, 𝑚 is greater than 1,

∫
𝑥𝑛𝑒𝑚𝑥 𝑑𝑥 = 𝑒𝑚𝑥

𝑛∑︁
𝑠=0

(−1)𝑠𝑛!𝑥𝑛−𝑠
(𝑛 − 𝑠)!𝑚𝑠+1 + 𝐶 . (3.33)

We are now ready to present a more general form of the two examples

above.

Theorem 3.8. For 𝑛 ≥ 0,𝑚 ≥ 1,

∫
𝑥𝑛𝑊𝑚 (𝑥) 𝑑𝑥 = 𝑥𝑛+1𝑊𝑚 (𝑥)

"
1

𝑛 + 1
− 𝑚

𝑛 + 1

𝑛+𝑚∑︁
𝑠=0

(−1)𝑠 (𝑛 + 𝑚)!
(𝑛 + 𝑚 − 𝑠)!(𝑛 + 1)𝑠+1𝑊𝑠+1(𝑥)

#
+𝐶 .

(3.34)
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Proof. By using Equation (3.32), the left-hand side can be written as

∫
𝑥𝑛𝑊𝑚 (𝑥) 𝑑𝑥 = 𝑥

𝑛+1𝑊𝑚 (𝑥)
𝑛 + 1

− 𝑚

𝑛 + 1

∫ �
𝑊 (𝑥)𝑒𝑊 (𝑥)�𝑛+1

𝑊𝑚−1(𝑥)𝑑𝑊 (𝑥).

The integral on the right-hand side is equivalent to

∫
𝑊𝑛+𝑚 (𝑥)𝑒(𝑛+1)𝑊 (𝑥)𝑑𝑊 (𝑥),

and by Lemma 3.2 we have

∫
𝑥𝑛𝑊𝑚 (𝑥) 𝑑𝑥 = 𝑥

𝑛+1𝑊𝑚 (𝑥)
𝑛 + 1

− 𝑚𝑒
(𝑛+1)𝑊 (𝑥)

𝑛 + 1

𝑛+𝑚∑︁
𝑠=0

(−1)𝑠 (𝑛 + 𝑚)!𝑊𝑛+𝑚−𝑠 (𝑥)
(𝑛 + 𝑚 − 𝑠)!(𝑛 + 1)𝑠+1 + 𝐶 .

By noting that𝑊 (𝑥)𝑒𝑊 (𝑥) = 𝑥, the above can be simplified to the desired result. □

Theorem (3.8) allows us to obtain some results presented by other re-

searchers. For example, by taking 𝑛 = 𝑚 = 1, we recover the result by Corless et al.

(1996):

∫
𝑥𝑊 (𝑥) 𝑑𝑥 = 𝑥

2𝑊 (𝑥)
2

�
1 − 1

2𝑊 (𝑥) +
1

2𝑊2(𝑥) −
1

4𝑊3(𝑥)

�
+ 𝐶

=
1
2

�
𝑊 (𝑥) − 1

2

� �
𝑊2(𝑥) + 1

2

�
𝑒2𝑊 (𝑥) + 𝐶

Recall that incomplete Gamma function, Γ(𝑠, 𝑧), is defined as

Γ(𝑠, 𝑧) =
∫ ∞

𝑧
𝑡𝑠−1𝑒−𝑡 𝑑𝑡.

For 𝑠 = 1, 2, 3, . . . , the incomplete Gamma function can also be written as

Γ(𝑠, 𝑧) = (𝑠 − 1)!𝑒−𝑧
𝑠−1∑︁
𝑘=0

𝑧𝑘

𝑘!
.
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Thus, for 𝑚 = 1, the Equation (3.34) can be written

∫
𝑥𝑛𝑊 (𝑥) 𝑑𝑥 = 𝑥𝑛+1𝑊 (𝑥)

"
1

𝑛 + 1
− 1
𝑛 + 1

𝑛+1∑︁
𝑠=0

(−1)𝑠 (𝑛 + 1)!
(𝑛 − 𝑠 + 1)!(𝑛 + 1)𝑠+1𝑊𝑠+1(𝑥)

#
+ 𝐶

=
𝑥𝑛+1𝑊 (𝑥)
𝑛 + 1

+ 𝑛!𝑥𝑛+2𝑒−𝑊 (𝑥)
𝑛+1∑︁
𝑘=0

1
𝑘!(−𝑛 − 1)𝑛−𝑘+2𝑊𝑛−𝑘+2(𝑥) + 𝐶

=
𝑥𝑛+1𝑊 (𝑥)
𝑛 + 1

+ (−1)𝑛 (𝑛 + 1)!𝑒(𝑛+1)𝑊 (𝑥)

(𝑛 + 1)𝑛+3

𝑛+1∑︁
𝑘=0

[(−𝑛 − 1)𝑊 (𝑥)]𝑘
𝑘!

+ 𝐶

=
𝑥𝑛+1𝑊 (𝑥)
𝑛 + 1

+ (−1)𝑛
(𝑛 + 1)𝑛+3Γ(𝑛 + 2,−(𝑛 + 1)𝑊 (𝑥)) + 𝐶,

(3.35)

which matches the result presented in Mező (2022). It is important to note that the

result presented in (Mező, 2022) contains a minor typo in the second term of the

equation; it should be positive instead of alternating sign.

The Mellin transform of the Lambert𝑊 function has been derived in (Mező,

2022), and a nice result in terms of the Gamma function was obtained:

{M𝑊} (𝑠) = (−𝑠)−𝑠
𝑠

Γ(𝑠), for −1 < Re(𝑠) < 0. (3.36)

While the Mellin transformation can be interpreted as a multiplicative variant of

the two-sided Laplace transformation, there is no elegant expression for the Laplace

transform of the Lambert𝑊 function in terms of well-known functions.

3.4 Relationships with Riemann Zeta Function

In this section, we discuss the relationships between the Lambert𝑊 function and the

Riemann zeta function. The generalized poly-Bernoulli numbers, 𝐵(𝜇)
𝑛,≥𝑚, is defined

as
∞∑︁
𝑛=0

𝐵
(𝜇)
𝑛,≥𝑚

𝑡𝑛

𝑛!
=
𝐿𝑖𝜇


𝐸𝑚−1(−𝑡) − 𝑒−𝑡

�
𝐸𝑚−1(−𝑡) − 𝑒−𝑡 ,

where 𝐸𝑚 (𝑡) =
Í𝑚
𝑘=0

𝑡𝑘

𝑘! .
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It was proven by Komatsu et al. (2016) that for any 𝜇 ∈ C with Re(𝜇) > 1,

the Riemann zeta function can be expressed as

𝜁 (𝜇) =
∞∑︁
𝑛=0

𝐵
(𝜇)
𝑛,≥2

(𝑊𝑘 (−1))𝑛
𝑛!

, (3.37)

where 𝑘 = 0, 1.

Using the fact that 𝜁 (𝑠) satisfies the functional equation,

𝜁 (𝑠) = 2𝑠𝜋𝑠−1 sin
�𝜋𝑠

2

�
Γ(1 − 𝑠)𝜁 (1 − 𝑠), (3.38)

we obtained

2𝜇𝜋𝜇−1 sin
�𝜋𝜇

2

�
Γ(1 − 𝜇)𝜁 (1 − 𝜇) =

∞∑︁
𝑛=0

𝐵
(𝜇)
𝑛,≥2

(𝑊𝑘 (−1))𝑛
𝑛!

𝜁 (1 − 𝜇) =
Í∞
𝑛=0 𝐵

(𝜇)
𝑛,≥2

(𝑊𝑘 (−1))𝑛
𝑛!

2𝜇𝜋𝜇−1 sin
 𝜋𝜇

2
�
Γ(1 − 𝜇) ,

or

𝜁 (𝑠) = 2𝑠−1𝜋𝑠

sin
�
𝜋(1−𝑠)

2

�
Γ(𝑠)

∞∑︁
𝑛=0

𝐵(1−𝑠)
𝑛,≥2

(𝑊𝑘 (−1))𝑛
𝑛!

, (3.39)

for Re(𝑠) < 0.

3.5 Branches of the Lambert𝑊 function

As presented in Lemma 3.1, we know that the Lambert𝑊 function has a maximum

of two real roots. From the graph of𝑊 (𝑥), we can make the following observations:

1. There is no real solution when 𝑥 < −1
𝑒 ,

2. There is exactly one real solution when 𝑥 ≥ 0, and

3. There are two real solutions when −1
𝑒 < 𝑥 < 0.
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For −1
𝑒 < 𝑥 < 0, the two values of 𝑊 (𝑥) are defined as values in two different

branches, which we denote as 𝑊0(𝑥) and 𝑊−1(𝑥). The graph below illustrates the

𝑊0(𝑥) and𝑊−1(𝑥) branches.

Figure 3.1: Real branches of the𝑊𝑘 (𝑥) function when 𝑥 is real.

In fact, the Lambert𝑊 function has infinitely many branches, which can be

seen clearly from the fact that 𝑤 + log𝑤 = log 𝑧, where the logarithm has infinitely

many branches. This suggests that the logarithm could be used in the study of

branches of the Lambert 𝑊 function. Jeffrey et al. (1996) showed the following

relationship between the Lambert𝑊 function and the complex logarithm:

𝑊𝑘 (𝑧) + log𝑊𝑘 (𝑧) =



log 𝑧, for 𝑘 = −1 and 𝑧 ∈ [−1
𝑒 , 0),

log𝑘 𝑧, otherwise.
(3.40)

It is known that the complex logarithm, 𝑤 = log 𝑧, has a branch point at

𝑧 = 0, and its branch cut is defined to be the negative real axis. The figure below

shows the branch cut, where the solid line on the negative real axis indicates the

closure of the branch cut. This choice of branch cut follows the rule of counter-
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clockwise continuity.

Figure 3.2: 𝑧-plane of 𝑤 = log 𝑧.

The ranges (or 𝑤-plane) of 𝑤 = log 𝑧 are shown in Figure 3.3. The

principal branch is −𝜋 < Im(𝑤) ≤ 𝜋, and the vertical dashed line represents the

range of the dashed circle in Figure 3.2.

Figure 3.3: The ranges of 𝑤 = log 𝑧.

3.5.1 Branch points and branch cuts

Similar to log 𝑧, we need to determine all the branch points of𝑊𝑘 (𝑧) before we study

its branch structure.
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Note that 𝑓 (𝑤) = 𝑤𝑒𝑤 = 𝑧 and 𝑓 ′(𝑤) = (1 +𝑤)𝑒𝑤. Since 𝑓 ′(−1) = 0, we

know that 𝑤 = −1 or 𝑧 = −1
𝑒 is a branch point. In fact, it is a second-order branch

point due to 𝑓 ′′(−1) ≠ 0. Thus, 𝑧 = −1
𝑒 is also a branch point of𝑊−1(𝑧) and𝑊1(𝑧).

We can also observe that 𝑓 (𝑤) → 0 as 𝑤 → −∞. Therefore, 𝑧 = 0 is

another branch point. However, for 𝑧 = 0, possible values for 𝑤 are 0 and −∞.

From Figure 3.1, we can see that only the principal branch contains non-negative

real numbers. Thus, we have𝑊0(0) = 0 and𝑊𝑘 (0) = −∞ for all 𝑘 ≠ 0.

In summary, the branch points are as follows:

• Principal branch (𝑊0(𝑧)): Branch points at −∞ and 𝑧 = −1
𝑒 .

• Branches𝑊−1(𝑧) and𝑊1(𝑧): Branch points at −∞, 𝑧 = −1
𝑒 , and 𝑧 = 0.

• All other branches: Branch points at −∞ and 𝑧 = 0.

The choice of branch cuts is as follows:

• Principal branch:
�
𝑧 : −∞ < 𝑧 ≤ −1

𝑒

	
.

• Branch𝑊−1(𝑧) and𝑊1(𝑧):
�
𝑧 : −∞ < 𝑧 ≤ −1

𝑒

	
and {𝑧 : −∞ < 𝑧 ≤ 0}.

• All other branches: {𝑧 : −∞ < 𝑧 ≤ 0}.

All the branch cuts are closed on top to conform with counter-clockwise

continuity. Due to the double branch cuts in𝑊−1(𝑧) and𝑊1(𝑧), there is interesting

behaviour around the point 𝑧 = −1
𝑒 . This will be discussed further once we complete

the discussion of the branch structure in the next section.

3.5.2 Branch structure

To define the boundary curves that partition the 𝑤-plane of the Lambert𝑊 function,

let 𝑤 = 𝜉 + 𝑖𝜂 and 𝑧 = 𝑥 + 𝑖𝑦. Substituting this into Equation (1.1), we obtain:

𝑥 = 𝑒𝜉 (𝜉 cos 𝜂 − 𝜂 sin 𝜂) (3.41)
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and

𝑦 = 𝑒𝜉 (𝜂 cos 𝜂 + 𝜉 sin 𝜂). (3.42)

Since the branch cuts are defined to be similar to the complex logarithm,

which are on the negative real axis of the 𝑧-plane, we can solve Equation (3.42) by

setting 𝑦 = 0 and obtain:

𝜂 cos 𝜂 = −𝜉 sin 𝜂, (3.43)

which implies that 𝜂 = 0 or 𝜉 = −𝜂 cot 𝜂. Therefore

𝑤 = −𝜂 cot 𝜂 + 𝑖𝜂. (3.44)

Note that for the branch cuts to be on the negative real axis of the 𝑧-plane,

we must have 𝑥 < 0, or equivalently:

𝜉 cos 𝜂 < 𝜂 sin 𝜂. (3.45)

The equations (3.43) and (3.45) define the boundary curves that separate

the different branches, as indicated in Figure 3.4.
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Figure 3.4: Boundaries of branches𝑊𝑘 (𝑧).

Now let’s examine the behaviour when we traverse around the branch

points. In the subsequent figures, we use thick solid and thick dashed lines to

represent the boundaries of branches, where the thick solid lines indicate the closed

curves.

Figure 3.5 shows the paths around the branch points 𝑧 = −1
𝑒 and 𝑧 = 0

and their images in 𝑊−1(𝑧). Note that the branch 𝑘 = −1 has double branch cuts:�−∞ < 𝑧 ≤ −1
𝑒

	
and {−∞ < 𝑧 ≤ 0}.

Figure 3.5: Images of 𝐴𝐵, 𝐶𝐷, and 𝐸𝐹 in𝑊−1(𝑧).

For the principal branch, as it has only one branch cut from −∞ to −1
𝑒 ,

41



traversing a full circle from 𝐴𝐵𝐶𝐷 results in a continuous image in 𝑊0(𝑧). Also,

since the point 𝑧 = 0 is not a branch point, the image of circle 𝐸𝐹 forms a closed

curve.

Figure 3.6: Images of 𝐴𝐵, 𝐶𝐷, and 𝐸𝐹 in𝑊0(𝑧).

Similarly, for the branch 𝑘 = 1 with double branch cuts, the images of

semi-circles 𝐴𝐵, 𝐶𝐷, and circle 𝐸𝐹 are shown in Figure 3.7.

Figure 3.7: Images of 𝐴𝐵, 𝐶𝐷, and 𝐸𝐹 in𝑊1(𝑧).

As for the behaviour when a point traverses along the circle 𝑧 = 0.2𝑒𝑖𝜃 ,

the image is shown in Figure 3.8.
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Figure 3.8: Image of 𝑧 = 0.2𝑒𝑖𝜃 .

However, when the radius of the circle is increased to enclose both branch

points, we get a similar image as shown in Figure 3.9.

Figure 3.9: Image of 𝑧 = 2𝑒𝑖𝜃 .

Considering a path centered at the point 𝑧 = −1
𝑒 , the image of 𝑧 = 0.2𝑒𝑖𝜃− 1

𝑒

is illustrated in Figure 3.10.
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Figure 3.10: Image of 𝑧 = 0.2𝑒𝑖𝜃 − 1
𝑒 .

Increasing the radius to enclose both branch points yields an image similar

to Figure 3.9.

Figure 3.11: Image of 𝑧 = 2𝑒𝑖𝜃 − 1
𝑒 .

An important property of the Lambert𝑊 function is proved by (Shinozaki,

2008; Huang, 2017):
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Lemma 3.3. Let 𝑧 ∈ C. Then 𝑊𝑘 (𝑧) = 𝑊−𝑘 (𝑧) and max (Re𝑊𝑘 (𝑧)) = Re𝑊0(𝑧)
for 𝑘 = 0,±1,±2, . . . .

This result implies that the image of the Lambert𝑊 function is symmetric

about the real axis, and the rightmost eigenvalue lies in𝑊0(𝑧).

3.6 Series solutions

Consider 𝑧 = 𝑓 (𝑤) = 𝑤𝑒𝑤 and 𝑧0 = 0. From 𝑓 (𝑤0) = 𝑧0 = 0, we deduce that

𝑤0 = 0 in the principal branch. Calculating the first derivative, we find 𝑓 ′(𝑤0) = 1.

Hence, using Lagrange inversion (Theorem 2.1), we can derive the series expansion

of𝑊0(𝑧):
𝑊0(𝑧) =

∞∑︁
𝑛=1

𝑧𝑛

𝑛!

�
𝑑𝑛−1

𝑑𝑤𝑛−1

n 𝑤

𝑤𝑒𝑤

o𝑛�
𝑤=0

(3.46)

Recognizing that the (𝑛 − 1)-th derivative of
�
𝑤
𝑤𝑒𝑤

	𝑛 is (−𝑛)𝑛−1𝑒−𝑛𝑤, we further

simplify the above equation to:

𝑊0(𝑧) =
∞∑︁
𝑛=1

(−𝑛)𝑛−1

𝑛!
𝑧𝑛. (3.47)

From the previous section, we know that the principal branch has a branch

point at 𝑧 = −1
𝑒 . Therefore, the radius of convergence of Equation (3.47) is bounded

by 1
𝑒 . Applying the ratio test to this series, we find

lim
𝑛→∞

����𝑎𝑛+1
𝑎𝑛

���� = lim
𝑛→∞

�����
�
1 + 1

𝑛

�𝑛−1
𝑧

����� < 1 =⇒ |𝑧 | < 1
𝑒
.

The asymptotic expansion at 0 and infinity gives a series representation
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for𝑊𝑘 (𝑧) that is defined on all non-principal branches (Corless et al., 1996):

𝑊𝑘 (𝑧) = log 𝑧 + 2𝜋𝑖𝑘 − log(log 𝑧 + 2𝜋𝑖𝑘)

+
∞∑︁
𝑚=0

∞∑︁
𝑛=1
𝑐𝑚𝑛 log𝑛 (log 𝑧 + 2𝜋𝑖𝑘) (log 𝑧 + 2𝜋𝑖𝑘)−𝑚−𝑛,

(3.48)

where 𝑐𝑚𝑛 = 1
𝑛! (−1)𝑚 �𝑚+𝑛𝑚+1

�
and

�
𝑚+𝑛
𝑚+1

�
is a Stirling number of the first kind.

The convergence of this series was studied by Kalugin and Jeffrey (2012),

and the authors concluded that for 𝑧 ∈ R, the series converges when 𝑧 > 𝑒. For

𝑧 ∈ C, the series converges when

Re𝑊𝑚
�
− log 𝑧

𝑒

�
> −1,

where 𝑚 = −1 when −𝜋 < Arg 𝑧 ≤ 0 and 𝑚 = 1 when 0 < Arg 𝑧 ≤ 𝜋.

The series expansion around 𝑧 = −1
𝑒 has also been studied by Corless et al.

(1996). Since 𝑧 = −1
𝑒 is a branch point for𝑊0(𝑧),𝑊−1(𝑧), and𝑊1(𝑧), the study of

the series expansion focuses on these branches only.

It was shown that in these branches, with 𝑝+ = +
√︁

2(𝑒𝑧 + 1), the expansion

around 𝑧 = −1
𝑒 is

𝑊 (𝑧) = −1 + 𝑝+ − 1
3
𝑝2
+ +

11
72
𝑝3
+ + · · · =

∞∑︁
𝑙=0
𝜇𝑙 𝑝

𝑙
+, (3.49)

where

𝜇𝑘 =
𝑘 − 1
𝑘 + 1

� 𝜇𝑘−2
2

+ 𝛼𝑘−2
4

�
− 𝛼𝑘

2
− 𝜇𝑘−1
𝑘 + 1

and

𝛼𝑘 =
𝑘−1∑︁
𝑗=2
𝜇 𝑗 𝜇𝑘+1− 𝑗 , 𝛼0 = 2, 𝛼1 = −1.

The initial conditions are 𝜇0 = −1 and 𝜇1 = 1.

Corless et al. (1996) further commented that using 𝑝− = −
√︁

2(𝑒𝑧 + 1) in
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Equation (3.49) is useful in computing 𝑊−1(𝑧) when Im(𝑧) ≥ 0. The series with

𝑝− could be used to obtain𝑊1(𝑧) when Im(𝑧) < 0.

Example 3.4. Given 𝑧 = −1
𝑒 − 0.02𝑖. We could obtain the values of 𝑊𝑘 (𝑧) using

any modern software such as Python or MATLAB:

𝑊1(𝑧) = −1.2282 + 0.2731𝑖.

On the other hand, we have 𝑝− = −0.2332 + 0.2332𝑖. Hence, using the first four

terms of Equation (3.49), we obtain𝑊1(𝑧) ∼ −1.2293 + 0.2733𝑖.

Similarly, if 𝑧 = −1
𝑒 + 0.02𝑖. We have:

𝑊−1(𝑧) = −1.2282 − 0.2731𝑖.

Using 𝑝+ = −0.2332 − 0.2332𝑖, we obtain𝑊−1(𝑧) ∼ −1.2293 − 0.2733𝑖.

In practice, one could apply Halley’s method to obtain the values of all the

branches of𝑊𝑘 . Equation (3.48) could be used to obtain the initial guess for most of

the values of 𝑧. For the case where 𝑧 is around−1
𝑒 , the initial guess for𝑊−1(𝑧),𝑊0(𝑧),

and𝑊1(𝑧) can be obtained from Equation (3.49). Padé approximation could be used

to compute𝑊0(𝑧) when 𝑧 is near to 0. When 𝑧 is not too near to 0 or −1
𝑒 , we could

use a rational approximation.

Lastly, it’s worth noting that Mező (2022) has provided a detailed discus-

sion on the series expansion of the Lambert𝑊 function.
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3.7 Unwinding number

Recall that certain identities valid in the field of real numbers may not hold when

considering complex numbers. For example,

log 𝑧1𝑧2 ≠ log 𝑧1 + log 𝑧2, (3.50)

where 𝑧1, 𝑧2 ∈ C. For instance, take 𝑧1 = 𝑧2 = −𝑖, then the left-hand side becomes

log(−1) = 𝜋𝑖 and the right hand side is 2 log(−𝑖) = −𝜋𝑖.
The following example illustrates that not all identities in Section 3.1 are

valid for all complex numbers.

Example 3.5. Consider the equation 𝑤 + log𝑤 = 𝑧, where 𝑧 ∈ C. From Equa-

tion (3.14), we know that the solution is

𝑤 = 𝑊 (𝑒𝑧) .

When 𝑧 = 2𝑖, using the Lambert 𝑊 function in the principal branch, we

have 𝑤 = 𝑊

𝑒2𝑖 � = −2.7308 − 15.0998𝑖, which can be verified as a solution.

However, considering other branches such as 𝑘 = −2, we have 𝑤−2 = 𝑊−2

𝑒2𝑖 � =

−2.1996 − 8.7493𝑖, but

𝑤−2 + 𝑙𝑜𝑔(𝑤−2) = 0.0000 − 10.5664𝑖 ≠ 𝑧.

Thus, values in other branches may not be valid solution.

The main reason for the invalidity of solutions in Section 3.1 is the presence

of the logarithm or 𝑛-th root in the equations. Similarly, Equation (1.1) does not

imply 𝑤𝑘 + log𝑤𝑘 = log 𝑧, where 𝑤𝑘 = 𝑊𝑘 (𝑧). A correct identity for this is

Equation (3.40) that can be derived using the unwinding number, K(𝑧) (Jeffrey
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et al., 1996).

The unwinding number is defined by

log 𝑒𝑧 = 𝑧 + 2𝜋𝑖K(𝑧). (3.51)

With this definition, we obtain the “correct” version of Equation (3.50).

Proposition 3.4. For 𝑧1, 𝑧2 ∈ C, we have

log 𝑧1𝑧2 = log 𝑧1 + log 𝑧2 + 2𝜋𝑖K(log 𝑧1 + log 𝑧2). (3.52)

Proof. From Equation (3.51), we know that

log 𝑒log 𝑧1+log 𝑧2 = log 𝑧1 + log 𝑧2 + 2𝜋𝑖K(log 𝑧1 + log 𝑧2).

The left-hand side can be simplified using the fact that

𝑒log 𝑧1+log 𝑧2 = 𝑒log 𝑧1𝑒log 𝑧2 = 𝑧1𝑧2.

Thus, we have the desired identity. □

The unwinding number can also be expressed using the notation of the

floor function:

K(𝑧) =
�
𝜋 − Im 𝑧

2𝜋

�
. (3.53)

A useful property of the unwinding number is

K(𝑧 + 2𝜋𝑖𝑛) = K(𝑧) − 𝑛. (3.54)
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This can be proved using Equation (3.53):

K(𝑧 + 2𝜋𝑖𝑛) =
�
𝜋 − Im(𝑧 + 2𝜋𝑖𝑛)

2𝜋

�

=

�
𝜋 − Im 𝑧 − 2𝜋𝑛

2𝜋

�

=

�
𝜋 − Im 𝑧

2𝜋
− 𝑛

�

= K(𝑧) − 𝑛.

Considering all possible values of Im 𝑧, we have

K(𝑧) =




1, when −3𝜋 < Im 𝑧 ≤ −𝜋,

0, when −𝜋 < Im 𝑧 ≤ 𝜋,

−1, when 𝜋 < Im 𝑧 ≤ 3𝜋,

𝑛, when (2𝑛 − 1)𝜋 < Im 𝑧 ≤ (2𝑛 + 1)𝜋.

(3.55)

Before we derive Equation (3.40), we present the following result (Jeffrey

et al., 1996):

Lemma 3.4. For 𝑧 ≠ 𝑟𝑒𝑖𝜃 , we have

Arg𝑊𝑘 (𝑧) + Im𝑊𝑘 (𝑧) =


𝜃, for 𝑘 = −1 and −1

𝑒 ≤ 𝑧 < 0,

𝜃 + 2𝑘𝜋, otherwise.
(3.56)

Proof. Let𝑊𝑘 (𝑧) = 𝑊𝑘 = 𝜉 + 𝑖𝜂 and 𝑧 = 𝑟𝑒𝑖𝜃 . Substitute into 𝑤𝑒𝑤 = 𝑧, we have

(𝜉 + 𝑖𝜂)𝑒𝜉+𝑖𝜂 = 𝑟𝑒𝑖𝜃 .
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Equating the real and imaginary parts yields

𝑟 cos 𝜃 = 𝑒𝜉 (𝜉 cos 𝜂 − 𝜂 sin 𝜂)

𝑟 sin 𝜃 = 𝑒𝜉 (𝜂 cos 𝜂 + 𝜉 sin 𝜂).

Assume that 𝑊𝑘 is not real (which implies 𝜂 ≠ 0 and 𝜃 ≠ 0, 𝜋), we divide the first

equation by the second:

cot 𝜃 =
𝜉 cos 𝜂 − 𝜂 sin 𝜂
𝜂 cos 𝜂 + 𝜉 sin 𝜂

=

𝜉
𝜂 cot 𝜂 − 1
𝜉
𝜂 + cot 𝜂

=
cot Arg𝑊𝑘 cot 𝜂 − 1
cot Arg𝑊𝑘 + cot 𝜂

.

Using angle summation formula, the last equality can be further simplified to cot 𝜃 =

cot (Arg𝑊𝑘 + 𝜂) = cot(Arg𝑊𝑘 + Im𝑊𝑘 ), which implies

𝜃 + 2𝑛𝜋 = Arg𝑊𝑘 + Im𝑊𝑘 ,

where 𝑛 ∈ Z.

This relation holds for all values of 𝑟 and 𝜃 due to continuity. In order to

determine the value of 𝑛, we consider the limiting case |𝑟 | → ∞. From 𝑤𝑒𝑤 = 𝑧,

we know that as 𝑧 grows, 𝑒𝑤 is the dominant term, and hence 𝑤 is asymptotic to

log 𝑧. Thus,

lim
|𝑟 |→∞

(Arg𝑊𝑘 + Im𝑊𝑘 ) = lim
|𝑟 |→∞

Arg𝑊𝑘 + lim
|𝑟 |→∞

𝜂

= 0 + lim
|𝑟 |→∞

𝜂

= 𝜃 + 2𝑘𝜋

Thus, (2𝑘 − 1)𝜋 < Arg𝑊𝑘 + Im𝑊𝑘 ≤ (2𝑘 + 1)𝜋 holds for all𝑊𝑘 that is not real.
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When 𝑊𝑘 is real, 𝑧 must be real, this implies 𝑘 = 0 or 𝑘 = −1. We

know that 𝑊0 ≥ −1, and if 𝑊0 is positive, 𝑧 must be positive as well, and hence

Arg𝑊0 + Im𝑊0 = 0 = 𝜃 + 2× 0× 𝜋. If𝑊0 is negative, then −1
𝑒 ≤ 𝑧 < 0 (𝜃 = 𝜋) and

Arg𝑊0 + Im𝑊0 = 𝜋 = 𝜋 + 2 × 0 × 𝜋. Thus, Equation (3.56) is true for 𝑘 = 0.

For𝑊−1 to be real, 𝑧 must be real, and satisfy −1
𝑒 ≤ 𝑧 < 0 (𝜃 = 𝜋). Also,

𝑊−1 ≤ −1 when −1
𝑒 ≤ 𝑧 < 0, and hence Arg𝑊−1 + Im𝑊−1 = 𝜋 = 𝜃. □

Theorem 3.9.

𝑊𝑘 (𝑧) + log𝑊𝑘 (𝑧) =



log 𝑧, for 𝑘 = −1 and 𝑧 ∈ [−1
𝑒 , 0),

log𝑘 𝑧, otherwise.

Proof. The equation𝑊𝑘𝑒
𝑊𝑘 = 𝑧 can be reformulated as follows:

log
�
𝑊𝑘𝑒

𝑊𝑘

�
= log 𝑧.

Utilising Equation (3.52), the left-hand side can be expressed as log𝑊𝑘 + log 𝑒𝑊𝑘 +
2𝜋𝑖K

log𝑊𝑘 + log 𝑒𝑊𝑘
�
.

By applying Equation (3.52) and Equation (3.54), we obtain

log 𝑧 = log𝑊𝑘 +𝑊𝑘 + 2𝜋𝑖K(𝑊𝑘 ) + 2𝜋𝑖K (log𝑊𝑘 +𝑊𝑘 + 2𝜋𝑖K(𝑊𝑘 ))

= log𝑊𝑘 +𝑊𝑘 + 2𝜋𝑖K(𝜔),

where 𝜔 = log𝑊𝑘 +𝑊𝑘 .

Note that Im(𝜔) = Im(ln |𝑊𝑘 | + Arg(𝑊𝑘 )𝑖 +𝑊𝑘 ) = Arg(𝑊𝑘 ) + Im(𝑊𝑘 )
and from Lemma 3.4, we have

Im(𝜔) =


𝜃, for 𝑘 = −1 and −1

𝑒 ≤ 𝑧 < 0,

𝜃 + 2𝑘𝜋, otherwise.
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For the case 𝑘 = −1 and −1
𝑒 ≤ 𝑧 < 0, we know that −𝜋 < Im(𝜔) ≤ 𝜋.

From Equation (3.55), we have K(𝜔) = 0. For other cases, the following inequality

can be obtained:

(2𝑘 − 1)𝜋 < Im(𝜔) ≤ (2𝑘 + 1)𝜋,

which implies K(𝜔) = −𝑘 . □

3.8 Application in delay differential equation

In recent decades, the stabilisation and control of linear systems with delays have

been extensively studied. For example, the assignment of the spectrum (eigenvalues)

for linear delay systems was explored in 1978 (Olbrot, 1978). More recently, Asl and

Ulsoy (2003) proposed an approach for solving linear time-delay systems using the

Lambert 𝑊 function. As a result, robust stability and related topics for designing

feedback controllers have been well established (Yi et al., 2010b; Shinozaki and

Mori, 2006), along with references therein.

The assignment of eigenvalues for delay systems with a single delay

through the Lambert𝑊 function was initially developed by Yi et al. (2010a). This

method aims to assign the rightmost eigenvalue of the delay system to a predefined

(desired) location for stabilisation. Unfortunately, in the scalar case, only the real or

real part of the rightmost eigenvalue can be assigned. Alternatively, the assignment

of a complex eigenvalue to the largest eigenvalue of a scalar single-delay system

using a complex feedback gain is not realistic (Shinozaki, 2008). These studies

design the controller by providing feedback only on the current state, with no condi-

tions imposed on the value of the desired eigenvalue, ensuring the existence of the

feedback controller. On the other hand, although a more general time-delay system

can be analysed using the matrix Lambert 𝑊 function, the approach of computing

the rightmost eigenvalue that does not utilise the principal branch contradicts the
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main proposition of this method (Cepeda-Gomez and Michiels, 2015).

We begin by presenting some simple examples of delay differential equa-

tions and discussing the general approach for solving such systems. This chapter

will conclude with an exploration of scalar systems with a single delay.

The primary focus lies in deriving the conditions for the existence of a

feedback controller related to assigning the rightmost eigenvalue of the system to a

desired value. The formula for computing feedback gains for the current and delayed

states is then obtained.

3.8.1 Step function

For 𝑡 > 0, consider the following first-order homogeneous DDE with a single delay:

𝑥′(𝑡) = 𝑎𝑥(𝑡) + 𝑎𝑑𝑥(𝑡 − ℎ), (3.57)

with initial conditions 𝑥(0) = 𝑥0 and 𝑥(𝜏) = 𝜙(𝜏) for 𝜏 ∈ [−ℎ, 0).
Various tools can be employed to solve this system, including the step func-

tion and Laplace transform. The significance of the Lambert 𝑊 function becomes

apparent when we employ the Laplace transform to solve the system.

Given a delay of ℎ units of time, we define 𝑥𝑝 (𝑡) as the solution for

𝑡 ∈ [(𝑝 − 1)ℎ, 𝑝ℎ], where 𝑝 = 1, 2, 3, . . . . We then solve the DDE for the interval

𝑡 ∈ [0, ℎ]:

𝑥′1(𝑡) = 𝑎𝑥1(𝑡) + 𝑎𝑑𝑥1(𝑡 − ℎ)∫ 𝑡

0
𝑒−𝑎𝜏


𝑥′1(𝜏) − 𝑎𝑥1(𝜏)

�
𝑑𝜏 = 𝑎𝑑

∫ 𝑡

0
𝑒−𝑎𝜏𝑥1(𝜏 − ℎ) 𝑑𝜏

𝑥1(𝑡) = 𝑥0𝑒
𝑎𝑡 + 𝑎𝑑

∫ 𝑡

0
𝑒𝑎(𝑡−𝜏)𝜙(𝜏 − ℎ) 𝑑𝜏.

Utilising the fact that 𝑥2(ℎ) = 𝑥1(ℎ), we proceed to solve for 𝑥2(𝑡) through

the same process. Note that for 𝑡 ∈ [ℎ, 2ℎ], 𝑥(𝑡) = 𝑥2(𝑡) and 𝑥(𝑡 − ℎ) = 𝑥1(𝑡 − ℎ).
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Thus,

𝑥′2(𝑡) = 𝑎𝑥2(𝑡) + 𝑎𝑑𝑥1(𝑡 − ℎ), 𝑥2(ℎ) = 𝑥1(ℎ), 𝑡 ∈ [ℎ, 2ℎ]∫ 𝑡

ℎ
𝑒−𝑎𝜏

�
𝑥′2(𝜏) − 𝑎𝑥2(𝜏)

�
𝑑𝜏 =

∫ 𝑡

ℎ
𝑒−𝑎𝜏𝑎𝑑𝑥1(𝜏 − ℎ) 𝑑𝜏

𝑥2(𝑡) = 𝑥1(ℎ)𝑒𝑎(𝑡−ℎ) + 𝑎𝑑
∫ 𝑡

ℎ
𝑒𝑎(𝑡−𝜏)𝑥1(𝜏 − ℎ)𝑑𝜏,

where 𝑥1(ℎ) = 𝑥0𝑒
𝑎ℎ + 𝑎𝑑

∫ ℎ
0 𝑒𝑎(ℎ−𝜏)𝜙(𝜏 − ℎ) 𝑑𝜏.

This process can be repeated indefinitely to find 𝑥𝑝 (𝑡) for any positive

integer 𝑝, each valid for the corresponding time interval [(𝑝 − 1)ℎ, 𝑝ℎ].

3.8.2 Laplace transform

Another approach to solve 𝑥′(𝑡) = 𝑎𝑥(𝑡) + 𝑎𝑑𝑥(𝑡 − ℎ) involves using the Laplace

transform. Upon integrating both sides of this DDE, we get

∫ ∞

0
𝑥′(𝑡)𝑒−𝑠𝑡 𝑑𝑡 =

∫ ∞

0
(𝑎𝑥(𝑡) + 𝑎𝑑𝑥(𝑡 − ℎ)) 𝑒−𝑠𝑡 𝑑𝑡.

Evaluating the left-hand side of the equation using integration by parts,

we obtain: ∫ ∞

0
𝑥′(𝑡)𝑒−𝑠𝑡 𝑑𝑡 = 𝑥(𝑡)𝑒−𝑠𝑡

����
∞

𝑡=0
+ 𝑠

∫ ∞

0
𝑥(𝑡)𝑒−𝑠𝑡 𝑑𝑡.

Equation above can be rewritten by substituting 𝑋 (𝑠) =
∫ ∞
0 𝑥(𝑡)𝑒−𝑠𝑡 , 𝑑𝑡:

∫ ∞

0
𝑥′(𝑡)𝑒−𝑠𝑡 𝑑𝑡 = −𝑥(0) + 𝑠𝑋 (𝑠).
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For the right-hand side of the equation:

𝑎

∫ ∞

0
𝑥(𝑡)𝑒−𝑠𝑡 𝑑𝑡 + 𝑎𝑑

∫ ∞

0
𝑥(𝑡 − ℎ)𝑒−𝑠𝑡 𝑑𝑡

= 𝑎𝑋 (𝑠) + 𝑎𝑑𝑒−𝑠ℎ
∫ ∞

−ℎ
𝑥(𝑡)𝑒−𝑠𝑡 𝑑𝑡

= 𝑎𝑋 (𝑠) + 𝑎𝑑𝑒−𝑠ℎ𝑋 (𝑠) + 𝑎𝑑𝑒−𝑠ℎ
∫ 0

−ℎ
𝑥(𝑡)𝑒−𝑠𝑡 𝑑𝑡.

Let Φ(𝑠) =
∫ 0
−ℎ 𝑥(𝑡)𝑒−𝑠𝑡 𝑑𝑡 and equating both sides, we derive:

𝑋 (𝑠) = 𝑎𝑑𝑒
−𝑠ℎΦ(𝑠) + 𝑥(0)
𝑠 − 𝑎 − 𝑎𝑑𝑒−𝑠ℎ

.

Thus, the characteristic equation is given by

Δ(𝑠) = 𝑠 − 𝑎 − 𝑎𝑑𝑒−𝑠ℎ = 0,

and the eigenvalues are the solutions to this transcendental equation. This equation

possesses a solution in terms of the Lambert W function, namely

𝑠𝑘 = 𝑎 + 1
ℎ
𝑊𝑘 (𝑎𝑑ℎ𝑒−𝑎ℎ).

Consequently, we can rewrite 𝑋 (𝑠) as

𝑋 (𝑠) = 𝑥(0)Î∞
𝑘=−∞(𝑠 − 𝑠𝑘 )

+ 𝑎𝑑𝑒
−𝑠ℎΦ(𝑠)Î∞

𝑘=−∞(𝑠 − 𝑠𝑘 )

= 𝑥(0)
∞∑︁

𝑘=−∞

𝐶𝑘
𝑠 − 𝑠𝑘 + 𝑎𝑑𝑒

−𝑠ℎΦ(𝑠)
∞∑︁

𝑘=−∞

𝐶𝐼𝑘
𝑠 − 𝑠𝑘 .

Applying the inverse Laplace transform yields

𝑥(𝑡) =
∞∑︁

𝑘=−∞

�
𝐶𝑘𝑒

𝑠𝑘 𝑡𝑥(0) + 𝐶𝐼𝑘𝑒𝑠𝑘 𝑡
�
.
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3.8.3 Substitution of 𝑥(𝑡) = 𝐶𝑒𝑠𝑡

From the previous approach, we can observe that the solution takes the form 𝐶𝑒𝑠𝑡 .

In this section, we will directly assume the solution to the DDE is 𝑥(𝑡) = 𝐶𝑒𝑠𝑡 . This

leads to the following expression:

𝐶𝑠𝑒𝑠𝑡 = 𝐶𝑎𝑒𝑠𝑡 + 𝐶𝑎𝑑𝑒𝑠(𝑡−ℎ)

(𝑠ℎ − 𝑎ℎ)𝑒𝑠ℎ−𝑎ℎ = 𝑎𝑑ℎ𝑒−𝑎ℎ

𝑠𝑘 = 𝑎 + 1
ℎ
𝑊𝑘 (𝑎𝑑ℎ𝑒−𝑎ℎ).

Consequently, the solution is given by:

𝑥(𝑡) =
∞∑︁

𝑘=−∞
𝐶𝑘𝑒

𝑠𝑘 𝑡 .

3.8.4 DDE with exogenous input

In this subsection, we consider system with exogenous input from the environment:

𝑥′(𝑡) = 𝑎𝑥(𝑡) + 𝑎𝑑𝑥(𝑡 − ℎ) + 𝑏𝑢(𝑡), 𝑡 > 0,

𝑥(0) = 𝑥0, 𝑡 = 0,

𝑥(𝜏) = 𝜙(𝜏), 𝜏 ∈ [−ℎ, 0).

(3.58)

The term 𝑢(𝑡) represents the exogenous input, a proportional control that is proposed

to stabilise the system by providing feedback based on current and delayed states.

Let

𝑢(𝑡) = 𝑘𝑥(𝑡) + 𝑘𝑑𝑥(𝑡 − ℎ), (3.59)

where 𝑘 , 𝑘𝑑 ∈ R are parameters to be designed. This leads to the closed-loop

system:

𝑥′(𝑡) = (𝑎 + 𝑏𝑘)𝑥(𝑡) + (𝑎𝑑 + 𝑏𝑘𝑑)𝑥(𝑡 − ℎ) = 𝛼𝑥(𝑡) + 𝛽𝑥(𝑡 − ℎ), (3.60)
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where 𝛼 = 𝑎 + 𝑏𝑘 , 𝛽 = 𝑎𝑑 + 𝑏𝑘𝑑 . The characteristic equation becomes

𝑠 − 𝛼 − 𝛽𝑒−𝑠ℎ = 0 =⇒ 𝑠𝑘 = 𝛼 + 1
ℎ
𝑊𝑘

�
𝛽ℎ𝑒−𝛼ℎ

�
. (3.61)

For the case of a system with only input delay (ℎ > 0) described by:

𝑥′(𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑢(𝑡 − ℎ), (3.62)

where 𝑥(0) = 𝑥0, we apply the state feedback controller 𝑢(𝑡) = 𝑘𝑥(𝑡). The system

becomes 𝑥′(𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑘𝑥(𝑡 − ℎ), equivalent to Equation (3.60). Thus, our focus

remains on the system given by Equation (3.60).

The stability of a system requires that the real part of the rightmost eigen-

value is negative. As shown in Lemma 3.3, the rightmost eigenvalue is 𝑠0. Hence,

we aim to have 𝑠0 be negative and assign 𝑠0 to a desired location, 𝑆0,𝑑𝑒𝑠.

This can be achieved by adjusting the real parameters 𝑘 and 𝑘𝑑 . Define

𝑊𝛼
0 =

�
𝑆0,𝑑𝑒𝑠 − 1

ℎ𝑊0(𝑧) |𝑧 ∈ C
	

and choose 𝛼 from𝑊𝛼
0 ∩R. With 𝛼 determined, we

can compute 𝛽 as:

𝛽 =

𝑆0,𝑑𝑒𝑠 − 𝛼

�
𝑒𝑆0,𝑑𝑒𝑠ℎ.

We now analyse the conditions for parameter existence and the existence

of feedback gains and controllers.

Let 𝑠 = 𝑆0,𝑑𝑒𝑠 = 𝑢 + 𝑖𝑣 for 𝑣 > 0. From characteristic equation, we get

𝑢 + 𝑖𝑣 − 𝛼 = 𝛽𝑒−(𝑢+𝑖𝑣)ℎ.

Equating the real and imaginary parts yields

𝑢 − 𝛼 = 𝛽𝑒−𝑢ℎ cos(𝑣ℎ) and 𝑣 = −𝛽𝑒−𝑢ℎ sin(𝑣ℎ). (3.63)
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For 𝛽 ≠ 0 and sin 𝑣ℎ ≠ 0, we divide the first equation by the second:

𝑢 − 𝛼 = −𝑣 cot(𝑣ℎ),

which can be rewritten as

(𝑆0,𝑑𝑒𝑠 − 𝛼)ℎ = (𝑢 − 𝛼)ℎ + 𝑖𝜂 = −𝜂 cot 𝜂 + 𝑖𝜂,

where 𝜂 = 𝑣ℎ. Comparing this equation with Equation (3.44), we know that

(𝑆0,𝑑𝑒𝑠−𝛼)ℎ lies on the boundary between𝑊0 and𝑊1, i.e. (𝑆0,𝑑𝑒𝑠−𝛼)ℎ ∈ 𝑊0(𝐵𝐶).
Using Equation (3.63), we can solve for 𝛼 and 𝛽:

𝛽 = −𝑣𝑒𝑢ℎ csc 𝑣ℎ and 𝛼 = 𝑢 + 𝑣 cot 𝑣ℎ. (3.64)

Since 𝛼 = 𝑎 + 𝑏𝑘 and 𝛽 = 𝑎𝑑 + 𝑏𝑘𝑑 , we have:

𝑘 = (𝑢 + 𝑣 cot 𝑣ℎ − 𝑎)/𝑏,

𝑘𝑑 = −(𝑣𝑒𝑢ℎ csc 𝑣ℎ + 𝑎𝑑)/𝑏.
(3.65)

We discuss the case when 𝑘 = 0 and 𝑘𝑑 = 0 separately. These correspond

to situations where one of the states is not included in the feedback loop, as described

by Equation (3.59). From Equation (3.61), we know that

(𝑠𝑘 − 𝛼)ℎ𝑒(𝑠𝑘−𝛼)ℎ = 𝛽ℎ𝑒−𝛼ℎ,

and substituting this into the case 𝑘 = 0 (when the delay state is not used), we have:

𝑘𝑑 =
−𝑣𝑒𝑢ℎ csc 𝑣ℎ − 𝑎𝑑

𝑏
=
𝛽 − 𝑎𝑑
𝑏

=
(𝑆0,𝑑𝑒𝑠 − 𝛼)𝑒𝑆0,𝑑𝑒𝑠 − 𝑎𝑑

𝑏
, (3.66)

with the condition that (𝑆0,𝑑𝑒𝑠 − 𝛼)ℎ ∈ 𝑊0(𝐵𝐶). When 𝑘𝑑 = 0, 𝑆0,𝑑𝑒𝑠 must be
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chosen such that 𝑣𝑒𝑢ℎ csc 𝑣ℎ+ 𝑎𝑑 = 0 and the current state feedback gain is given by

𝑘 =
𝑆0,𝑑𝑒𝑠 − 𝛼 − 𝑎𝑑𝑒−𝑆0,𝑑𝑒𝑠ℎ

𝑏
. (3.67)

Suppose that 𝑆0,𝑑𝑒𝑠 is real. From Equation (3.61), we know that 𝛽ℎ𝑒−𝛼ℎ ≥
−1
𝑒 , implying 𝑆0,𝑑𝑒𝑠 ≥ 𝛼 − 1

ℎ . Solving for 𝛼 and 𝛽:

𝛼 ≤ 𝑆0,𝑑𝑒𝑠 + 1
ℎ

and 𝛽 = (𝑆0,𝑑𝑒𝑠 − 𝛼)𝑒𝑆0,𝑑𝑒𝑠ℎ.

Using 𝑘 = 𝛼−𝑎
𝑏 and 𝑘𝑑 = 𝛽−𝑎𝑑

𝑏 , we arrive at

𝑘 ≤ 𝑆0,𝑑𝑒𝑠 − 𝑎
𝑏

+ 1
𝑏ℎ

,

𝑘𝑑 =

�
𝑆0,𝑑𝑒𝑠 − (𝑎 + 𝑏𝑘)� 𝑒𝑆0,𝑑𝑒𝑠ℎ

𝑏
− 𝑎𝑑
𝑏
.

(3.68)

Similar to the case when 𝑆0,𝑑𝑒𝑠 is not real, we consider the situation when 𝑘 = 0

and 𝑘𝑑 = 0 separately. When 𝑘 = 0, the rightmost eigenvalue is assignable if

𝑆0,𝑑𝑒𝑠 ≥ 𝑎 − 1
ℎ , and the delay state feedback gain is still given by Equation (3.66).

On the other hand, for 𝑘𝑑 = 0, we have 𝑆0,𝑑𝑒𝑠 −𝑎𝑑𝑒−𝑆0,𝑑𝑒𝑠ℎ = 𝑎 + 𝑏𝑘 , which is always

achievable by the feedback gain from Equation (3.67).

The above derivation addresses the existence question on 𝑆0,𝑑𝑒𝑠 such that

eigenvalue assignment can be performed. We summarise the results in theorem

below:

Theorem 3.10. Suppose the system (3.58) is not an input-delay system, the following

statements hold:

1. For a given 𝑆0,𝑑𝑒𝑠 = 𝑢 + 𝑖𝑣, the rightmost eigenvalue of the system (3.60) can

be assigned to any desired location via the controller (3.59) with both current

and delay state feedback gains defined by Equation (3.65). Furthermore, if the

current or delay state is not included in the feedback loop, the must satisfy the
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condition or be such that the associated gain is described by Equation (3.66)

or (3.67), respectively.

2. For a given 𝑆0,𝑑𝑒𝑠 ∈ R, the rightmost eigenvalue of the system (3.60) can be

assignable to any desired location 𝑆0,𝑑𝑒𝑠 via the controller (3.59) with feedback

gains defined by Equation (3.68). Furthermore, if the current or delay state

is not included in the feedback loop, 𝑆0,𝑑𝑒𝑠 must satisfy the condition

𝑆0,𝑑𝑒𝑠 ≥ 𝑎 − 1
ℎ
,

or no constraint such that the associated gain is still described by Equa-

tion (3.66) or (3.67), respectively.

Based on this result, we present another two corollaries.

Corollary 3.1. Suppose the system (3.58) is not an input-delay system and 𝑆0,𝑑𝑒𝑠, 𝑆1,𝑑𝑒𝑠 ∈
R. The following statements hold:

1. If 𝑆0,𝑑𝑒𝑠 and 𝑆1,𝑑𝑒𝑠 < 𝑆0,𝑑𝑒𝑠 satisfy

𝑆1,𝑑𝑒𝑠ℎ𝑒
−𝑆0,𝑑𝑒𝑠ℎ − 𝑆0,𝑑𝑒𝑠ℎ𝑒

−𝑆1,𝑑𝑒𝑠ℎ

𝑒−𝑆0,𝑑𝑒𝑠ℎ − 𝑒−𝑆1,𝑑𝑒𝑠ℎ
> 1 + log

𝑆1,𝑑𝑒𝑠ℎ − 𝑆0,𝑑𝑒𝑠ℎ

𝑒−𝑆0,𝑑𝑒𝑠ℎ − 𝑒−𝑆1,𝑑𝑒𝑠ℎ
,

they are assignable to the rightmost eigenvalue and the eigenvalue in the range

of𝑊−1, respectively. The corresponding feedback gains are the described by

𝑘 =
(𝑆1,𝑑𝑒𝑠 − 𝑎)𝑒−𝑆0,𝑑𝑒𝑠ℎ − (𝑆0,𝑑𝑒𝑠 − 𝑎)𝑒−𝑆1,𝑑𝑒𝑠ℎ

𝑒−𝑆0,𝑑𝑒𝑠ℎ − 𝑒−𝑆1,𝑑𝑒𝑠ℎ
�
𝑏

,

𝑘𝑑 =
𝑆0,𝑑𝑒𝑠 − 𝑆1,𝑑𝑒𝑠

𝑒−𝑆0,𝑑𝑒𝑠ℎ − 𝑒−𝑆1,𝑑𝑒𝑠ℎ
�
𝑏
− 𝑎𝑑
𝑏
.

2. If the feedback gains:
𝑘 =

𝑆0,𝑑𝑒𝑠 − 𝑎
𝑏

+ 1
𝑏ℎ

,

𝑘𝑑 = − 1
𝑏ℎ
𝑒𝑆0,𝑑𝑒𝑠ℎ − 𝑎𝑑

𝑏
,
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is adopted, then the closed loop system (3.60) has 𝑆0,𝑑𝑒𝑠 to be its rightmost

eigenvalue with multiplicity 2.

3. If the feedback gains
𝑘 =

𝑆0,𝑑𝑒𝑠 − 𝑎
𝑏

,

𝑘𝑑 = −𝑎𝑑
𝑏

is adopted, the closed loop system has 𝑆0,𝑑𝑒𝑠 as its eigenvalue and this system

becomes delay free.

Proof. When the desired eigenvalue 𝑆0,𝑑𝑒𝑠 ∈ R, there are two free parameters 𝑘 and

𝑘𝑑 to be determined. Since only one Equation (3.61) needs to hold, hence one more

eigenvalue, say 𝑆1,𝑑𝑒𝑠 < 𝑆0,𝑑𝑒𝑠 ∈ R, can be assigned. Under this circumstance it

follows that
𝑆0,𝑑𝑒𝑠 − 𝛼 = 𝛽𝑒−𝑆0,𝑑𝑒𝑠ℎ,

𝑆1,𝑑𝑒𝑠 − 𝛼 = 𝛽𝑒−𝑆1,𝑑𝑒𝑠ℎ.

Suppose 𝑆0,𝑑𝑒𝑠 ≠ 𝑆1,𝑑𝑒𝑠, then one obtains

𝛼 =
𝑆1,𝑑𝑒𝑠𝑒

−𝑆0,𝑑𝑒𝑠ℎ − 𝑆0,𝑑𝑒𝑠𝑒
−𝑆1,𝑑𝑒𝑠ℎ

𝑒−𝑆0,𝑑𝑒𝑠ℎ − 𝑒−𝑆1,𝑑𝑒𝑠ℎ
,

𝛽 =
𝑆0,𝑑𝑒𝑠 − 𝑆1,𝑑𝑒𝑠

𝑒−𝑆0,𝑑𝑒𝑠ℎ − 𝑒−𝑆1,𝑑𝑒𝑠ℎ
.

Since 𝑆0,𝑑𝑒𝑠 must be assigned to the rightmost eigenvalue of the closed-

loop system and suppose that 𝑆1,𝑑𝑒𝑠 is located in the range of a certain branch, say

the 𝑘-th branch of the Lambert𝑊 function. Let 𝑧𝑤 = 𝛽ℎ𝑒−𝛼ℎ ∈ R, then it is obvious

that both 𝑊0(𝑧𝑤) and 𝑊𝑘 (𝑧𝑤) must be real, and hence −1
𝑒 < 𝑧𝑤 < 0 and 𝑘 = −1.

Thus,

𝑆0,𝑑𝑒𝑠 = 𝛼 + 1
ℎ
𝑊0

�
𝛽ℎ𝑒𝛼ℎ

�
and 𝑆1,𝑑𝑒𝑠 = 𝛼 + 1

ℎ
𝑊−1

�
𝛽ℎ𝑒𝛼ℎ

�
.

where −1
𝑒 < 𝛽ℎ𝑒𝛼ℎ < 0 or 𝛼ℎ > 1 + log(−𝛽ℎ). Substituting the expression for 𝛼
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and 𝛽:

𝑆1,𝑑𝑒𝑠ℎ𝑒
−𝑆0,𝑑𝑒𝑠ℎ − 𝑆0,𝑑𝑒𝑠ℎ𝑒

−𝑆1,𝑑𝑒𝑠ℎ

𝑒−𝑆0,𝑑𝑒𝑠ℎ − 𝑒−𝑆1,𝑑𝑒𝑠ℎ
> 1 + log

𝑆1,𝑑𝑒𝑠ℎ − 𝑆0,𝑑𝑒𝑠ℎ

𝑒−𝑆0,𝑑𝑒𝑠ℎ − 𝑒−𝑆1,𝑑𝑒𝑠ℎ
. (3.69)

Once this condition is satisfied, the feedback controller exists, and the associated

gains are described by

𝑘 =
(𝑆1,𝑑𝑒𝑠 − 𝑎)𝑒−𝑆0,𝑑𝑒𝑠ℎ − (𝑆0,𝑑𝑒𝑠 − 𝑎)𝑒−𝑆1,𝑑𝑒𝑠ℎ

𝑒−𝑆0,𝑑𝑒𝑠ℎ − 𝑒−𝑆1,𝑑𝑒𝑠ℎ
�
𝑏

,

𝑘𝑑 =
𝑆0,𝑑𝑒𝑠 − 𝑆1,𝑑𝑒𝑠

𝑒−𝑆0,𝑑𝑒𝑠ℎ − 𝑒−𝑆1,𝑑𝑒𝑠ℎ
�
𝑏
− 𝑎𝑑
𝑏
.

(3.70)

Alternatively we assign two eigenvalues into the same location, that is, 𝑆1,𝑑𝑒𝑠 =

𝑆0,𝑑𝑒𝑠. We take the limit 𝑆1,𝑑𝑒𝑠 → 𝑆0,𝑑𝑒𝑠 in Equation (3.70), we obtain

𝛼 = 𝑆0,𝑑𝑒𝑠 + 1
ℎ

and 𝛽 = −1
ℎ
𝑒𝑆0,𝑑𝑒𝑠ℎ.

and Equation (3.70) is simplified to

𝑘 =
𝑆0,𝑑𝑒𝑠 − 𝑎

𝑏
+ 1
𝑏ℎ

,

𝑘𝑑 = − 1
𝑏ℎ
𝑒𝑆0,𝑑𝑒𝑠ℎ − 𝑎𝑑

𝑏
,

(3.71)

with 𝛽ℎ𝑒−𝛼ℎ = −1
𝑒 .

When 𝑆0,𝑑𝑒𝑠 ∈ R, there is another possibility to design the controller by

selecting

𝑘 =
𝑆0,𝑑𝑒𝑠 − 𝑎

𝑏
,

𝑘𝑑 = −𝑎𝑑
𝑏
.

(3.72)

In this way, the closed loop system becomes

𝑥′(𝑡) = 𝑆0,𝑑𝑒𝑠𝑥(𝑡)
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whose solution is given by

𝑥(𝑡) = 𝑥0𝑒
𝑆0,𝑑𝑒𝑠𝑡 .

This approach can get rid of the delay state by using the feedback controller to

compensate for the delay effect. □

Corollary 3.2. For an input-delay system (3.62), if 𝑆0,𝑑𝑒𝑠 − 𝛼 belongs to the upper

boundary on the range of𝑊0 or [−1,∞), a real feedback gain 𝑘 through

𝑘 =
(𝑆0,𝑑𝑒𝑠 − 𝑎)𝑒𝑆0,𝑑𝑒𝑠ℎ

𝑏

is obtained.

Proof. An input-delay system (3.62) is assignable to any complex number 𝑆0,𝑑𝑒𝑠 if

(𝑆0,𝑑𝑒𝑠−𝑎)ℎ ∈ 𝑊0(𝐵𝐶), i.e. (𝑆0,𝑑𝑒𝑠−𝑎)ℎ𝑒𝑆0,𝑑𝑒𝑠ℎ = 𝑧, for some real number 𝑧 < −1
𝑒 .

Then the associated real feedback gain for the controller 𝑢(𝑡) = 𝑘𝑥(𝑡) is determined

by

𝑘 =
(𝑆0,𝑑𝑒𝑠 − 𝑎)𝑒𝑆0,𝑑𝑒𝑠ℎ

𝑏
. (3.73)

If 𝑆0,𝑑𝑒𝑠 is real, it must satisfy

𝑆0,𝑑𝑒𝑠 ≥ 𝛼 − 1
ℎ

and the feedback gain is still given by Equation (3.73) which is the same as the result

presented in (Shinozaki, 2008). □
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CHAPTER 4

THE𝑊 (𝑟) function

4.1 Introduction

Numerous studies have focused on solving the generalised Lambert 𝑊 function,

including the (2, 0)-type Lambert function. While these works have concentrated

on different types of equations, they all stem from variants of the equation:

(𝑤 − 𝑎1) (𝑤 − 𝑎2)𝑒𝑤 = 𝑧, (4.1)

where 𝑤 and 𝑧 are complex while 𝑎1, 𝑎2 are real parameters. This scenario is

referred to as the two upper parameters case, which can be shown to be equivalent

to (𝜔2 − 𝑟2)𝑒𝜔 = 𝑧. In this chapter, we investigate a more general equation:

(𝑤2 − 𝑟)𝑒𝑤 = 𝑧, (4.2)

where 𝑟 ∈ R and 𝑤, 𝑧 ∈ C.

Drawing inspiration from Scott, Fee and Grotendorst (2014), we present

a recursive formula for determining coefficients of the series solution, as well as

branch analysis. Throughout the following sections, the solution of Eq. (4.2) in the

𝑘-th branch is denoted as 𝑊 (𝑟)
𝑘 (𝑧). Similar to the Lambert 𝑊 function, 𝑊 (𝑟) (𝑧) is

employed to denote the principal branch when there is no ambiguity.

In the subsequent section, we introduce equations that can be solved using

65



the 𝑊 (𝑟) function. Following that, we discuss basic properties, derivatives, and

integrals. Additionally, we present some series representations of the𝑊 (𝑟) function

and conduct branch analysis.

4.2 Equations solvable using the𝑊 (𝑟) function

In this section, we present some of the equations that can be solved using the

𝑊 (𝑟) function. Unless otherwise specified, 𝑎, 𝑏, 𝑐, 𝑝 are real constants.

4.2.1 (𝑎𝑤2 + 𝑏𝑤 + 𝑐)𝑒𝑝𝑤 = 𝑥

One of the equations that can be solved using𝑊 (𝑟) function is

(𝑎𝑤2 + 𝑏𝑤 + 𝑐)𝑒𝑝𝑤 = 𝑥, (4.3)

with 𝑎 ≠ 0.

By completing the square, we are able to rewrite equation above as

(�
𝑝𝑤 + 𝑝𝑏

2𝑎

�2
− 𝑟

)
𝑒𝑝𝑤 =

𝑝2𝑥

𝑎
,

where 𝑟 =
�
𝑝𝑏
2𝑎

�2
− 𝑝2𝑐

𝑎 . Multiplying both sides with 𝑒
𝑝𝑏
2𝑎 , we obtain

(�
𝑝𝑤 + 𝑝𝑏

2𝑎

�2
− 𝑟

)
𝑒𝑝𝑤+

𝑝𝑏
2𝑎 =

𝑝2𝑥

𝑎
𝑒

𝑝𝑏
2𝑎 .

Thus, the solution is

𝑤 =
1
𝑝
𝑊 (𝑟)

�
𝑝2𝑥

𝑎
𝑒

𝑝𝑏
2𝑎

�
− 𝑏

2𝑎
. (4.4)

66



4.2.2 (𝑤 − 𝑎) (𝑤 − 𝑏)𝑒𝑤 = 𝑥

This is also known as the (2, 0)-type Lambert 𝑊 function (Mező, 2022), and the

solution is denoted as𝑊

𝑎 𝑏 ; 𝑥

�
. Rewriting (𝑤 − 𝑎) (𝑤 − 𝑏) = 𝑤2 + (−𝑎 − 𝑏)𝑤 + 𝑎𝑏

and using Equation (4.3), we find that the solution is

𝑊

𝑎 𝑏 ; 𝑥

�
= 𝑊 (𝑟)

�
𝑥𝑒−

𝑎+𝑏
2

�
+ 𝑎 + 𝑏

2
. (4.5)

4.2.3 (𝑤2 − 𝑟)𝑏𝑤 = 𝑥

Similar to the Lambert𝑊 function, the equation

(𝑤2 − 𝑟)𝑏𝑤 = 𝑥, (4.6)

where 𝑏 ≠ 0, 1, can be solved by rewriting 𝑏𝑤 as 𝑒𝑤 log 𝑏:

�(𝑤 log 𝑏)2 − 𝑟 (log 𝑏)2	 𝑒𝑤 log 𝑏 = 𝑥 (log 𝑏)2 .

Thus, we obtain the base change formula

𝑤 =
1

log 𝑏
𝑊 (𝑟 (log 𝑏)2)

�
𝑥 (log 𝑏)2

�
. (4.7)

4.3 Basic properties of the𝑊 (𝑟) function

When 𝑟 = 0, Equation (4.2) is reduced to

𝑤2𝑒𝑤 = 𝑥, (4.8)

which has solutions that can be expressed in terms of the Lambert𝑊 function:

𝑊 (0) (𝑥) = 2𝑊𝑘

�
±
√
𝑥

2

�
, (4.9)
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where 𝑘 ∈ Z. Since 𝑊0(𝑥) is real when 𝑥 ≥ −𝑒−1 and 𝑊−1(𝑥) ∈ R when −𝑒−1 ≤
𝑥 < 0, it is known that Equation (4.8) has at most three real roots. In fact, by Lemma

3.1, we know that Equation (4.2) has at most three real roots for all 𝑟 ∈ R.

4.3.1 Real branches

From Lemma 3.1, it is known that (𝑤2 − 𝑟)𝑒𝑤 = 𝑥 has at most three real solutions.

To determine the real branches, the branch points are first determined.

The first derivative of Eq. (4.2),

𝑑𝑤

𝑑𝑥
=

𝑤2 − 𝑟
𝑥(𝑤2 + 2𝑤 − 𝑟) , (4.10)

suggests that we have three branch points, 𝑥 = 0 and 𝑃𝑛 = (𝑤2
𝑛 − 𝑟)𝑒𝑤𝑛 for 𝑛 = 1, 2

with

𝑤2
𝑛 + 2𝑤𝑛 − 𝑟 = 0.

Solving for 𝑤𝑛, we obtain

𝑤𝑛 = −1 + (−1)𝑛
√

1 + 𝑟, (4.11)

and

𝑃𝑛 = (𝑤2
𝑛 − 𝑟)𝑒𝑤𝑛 = −2𝑤𝑛𝑒𝑤𝑛 . (4.12)

From Eq. (4.11), it can be concluded that 𝑃𝑛 are two distinct real points

if 𝑟 > −1, repeated real point if 𝑟 = −1 and two distinct complex points if 𝑟 < −1.

The figure below shows the real branches for different values of 𝑟.
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Figure 4.1: Real branches for 𝑟 = 3 and 𝑟 = 0.

These branch points separate the curve into three parts, which are labelled

as 𝑊 (𝑟)
0 ,𝑊 (𝑟)

1 and 𝑊 (𝑟)
−1 . These notations are used to indicate solutions in different

branches. A detailed discussion of branch structure will be included in the next

section.

For 𝑟 = −1, we know that 𝑃1 = 𝑃2 = 2𝑒−1. In this case, there are only

two real branches, 𝑊 (−1)
0 and 𝑊 (−1)

−1 . For 𝑟 < −1, it holds that 𝑃1, 𝑃2 ∈ C. As

the series solution that will be derived later is expressed in terms of 𝑊𝑘 (𝑧 𝑗 ) and

𝑧 𝑗 =
√
𝑥𝑒𝑖 𝜋 𝑗

2 = −𝑒−1 (for 𝑗 = 1, 2) is the branch point for𝑊0(𝑧 𝑗 ) and𝑊1(𝑧 𝑗 ). Thus,

the real branch is separated by the point 𝑥 = 4𝑒−2.

For both cases there is at most one real solution, however, the curve is

separated into two parts (branches) as illustrated in figures below.

Figure 4.2: Real branches for 𝑟 = −1 and 𝑟 = −2

Theorem 4.1. The equation (𝑤2 − 𝑟)𝑒𝑤 = 𝑥 has three real solutions when the

following conditions are met:
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• 𝑟 > −1, and

• 𝑃2 < 𝑥 < 𝑃1,

where 𝑃𝑛 = 2(1 + (−1)𝑛+1√1 + 𝑟)𝑒−1+(−1)𝑛
√

1+𝑟 for 𝑛 = 1, 2.

4.3.2 The omega-𝑟 constant, Ω𝑟

The omega-𝑟 constant, denoted as Ω𝑟 , is defined as the real solution of the equation

(𝑤2 − 𝑟)𝑒𝑤 = 1.

Theorem 4.2. For all 𝑟 ∈ R, (𝑤2 − 𝑟)𝑒𝑤 = 1 has one and only one real solution.

Proof. According to Theorem 4.1, this equation has at most one real solution when

𝑟 ≤ −1.

Since 2𝑥 < 𝑒𝑥 holds for all 𝑥 ∈ R, we conclude that for 𝑟 > −1,

2(1 +
√

1 + 𝑟) < 𝑒1+
√

1+𝑟 ,

which further implies

𝑃1 = 2(1 +
√

1 + 𝑟)𝑒−1−
√

1+𝑟 < 1.

Thus, there is at most one real solution for 𝑥 ≥ 1. □

Theorem 4.3. The omega-𝑟 constant, denoted as Ω𝑟 , is a transcendental number if

𝑟 is algebraic.

Proof. Suppose that Ω𝑟 is algebraic. According to Theorem 3.1, 𝑒Ω𝑟 is transcen-

dental. Consequently, (Ω2
𝑟 − 𝑟)𝑒Ω𝑟 would also be transcendental. However, this

contradicts the fact that (Ω2
𝑟 − 𝑟)𝑒Ω𝑟 = 1. □

It’s worth noting that the inverse of the theorem above is not universally

true. This can be demonstrated with the counter-example provided below.
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Example 4.1. The number Ω1−𝑒 is algebraic as (Ω2
1−𝑒 + 𝑒 − 1)𝑒Ω1−𝑒 = 1, which

implies Ω1−𝑒 = −1.

Using Equation (4.9), we can express Ω0 in terms of the Lambert 𝑊

function:

Ω0 = 2𝑊0

�
1
2

�
. (4.13)

The selection of the principal branch and the positive root here leads to the sole real

solution.

4.3.3 Linear combination of the𝑊 (𝑟) function

Similar to the Lambert 𝑊 function, it is possible to obtain a linear combination of

𝑊 (𝑟) (𝑥). Given that 𝑒𝑊 (𝑟 ) (𝑥) = 𝑥
𝑊 (𝑟 ) (𝑥)2−𝑟 , the following equality holds:

𝑒𝑎𝑊
(𝑟 ) (𝑥1)+𝑏𝑊 (𝑟 ) (𝑥2) =

�
𝑥1

𝑊 (𝑟) (𝑥1)2 − 𝑟

�𝑎 �
𝑥2

𝑊 (𝑟) (𝑥2)2 − 𝑟

�𝑏
,

by multiplying both sides of the equation by 𝑎𝑊 (𝑥1) + 𝑏𝑊 (𝑥2), we get

�
𝑎𝑊 (𝑟) (𝑥1) + 𝑏𝑊 (𝑟) (𝑥2)

�
𝑒𝑎𝑊

(𝑟 ) (𝑥1)+𝑏𝑊 (𝑟 ) (𝑥2)

=
�
𝑎𝑊 (𝑟) (𝑥1) + 𝑏𝑊 (𝑟) (𝑥2)

� � 𝑥1

𝑊 (𝑟) (𝑥1)2 − 𝑟

�𝑎 �
𝑥2

𝑊 (𝑟) (𝑥2)2 − 𝑟

�𝑏
,

which implies

𝑎𝑊 (𝑟) (𝑥1) + 𝑏𝑊 (𝑟) (𝑥2)

= 𝑊

 �
𝑎𝑊 (𝑟) (𝑥1) + 𝑏𝑊 (𝑟) (𝑥2)

� � 𝑥1

𝑊 (𝑟) (𝑥1)2 − 𝑟

�𝑎 �
𝑥2

𝑊 (𝑟) (𝑥2)2 − 𝑟

�𝑏!
.

Generalizing this to 𝑛 terms using the same technique, we have
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Theorem 4.4.

𝑛∑︁
𝑡=1
𝑎𝑡𝑊

(𝑟) (𝑥𝑡) = 𝑊
 "

𝑛∑︁
𝑡=1
𝑎𝑡𝑊

(𝑟) (𝑥𝑡)
# "

𝑛Ö
𝑡=1

�
𝑥𝑡

𝑊 (𝑟) (𝑥𝑡)2 − 𝑟

�𝑎𝑡 #!
. (4.14)

By taking 𝑎𝑡 = 𝑥𝑡 = 1 for 𝑡 = 1, 2, . . . , 𝑛 and 𝑟 = 0, we have

𝑊

 
𝑛

Ω2𝑛−1
0

!
= 𝑛Ω0.

Using Equation (4.13), we obtain another identity for the Lambert𝑊 function:

𝑊

�
𝑛

22𝑛−1𝑊 (0.5)2𝑛−1

�
= 2𝑛𝑊 (0.5) .

4.4 Derivatives and integrals

In this section, we discuss several properties relevant to derivatives and integrals of

the𝑊 (𝑟) function.

4.4.1 Derivatives

The first derivative is given by Equation (4.10) and can be expressed as

𝑑𝑊 (𝑟) (𝑥)
𝑑𝑥

=
𝑒−𝑊

(𝑟 ) (𝑥)

𝑊 (𝑟) (𝑥)2 + 2𝑊 (𝑟) (𝑥) − 𝑟 .

Suppose the 𝑘-th derivative can be written in the form of

𝑑𝑘𝑊 (𝑟) (𝑥)
𝑑𝑥𝑘

=
𝑝𝑘 (𝑊 (𝑟) (𝑥))𝑒−𝑘𝑊 (𝑟 ) (𝑥)

(𝑊 (𝑟) (𝑥)2 + 2𝑊 (𝑟) (𝑥) − 𝑟)2𝑘−1 ,

The 𝑛𝑡ℎ derivative of𝑊 (𝑟) function derived using induction, is presented below:

𝑑𝑛𝑊 (𝑟) (𝑥)
𝑑𝑥𝑛

=
𝑝𝑛 (𝑊 (𝑟) (𝑥))𝑒−𝑛𝑊 (𝑟 ) (𝑥)

(𝑊 (𝑟) (𝑥)2 + 2𝑊 (𝑟) (𝑥) − 𝑟)2𝑛−1 , for 𝑛 ≥ 1, (4.15)
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where 𝑝𝑛+1(𝑤) = −[𝑛(𝑤2+2𝑤−𝑟) + (2𝑛−1) (2𝑤+2)]𝑝𝑛 (𝑤) + (𝑤2+2𝑤−𝑟)𝑝′𝑛 (𝑤).
The initial polynomial 𝑝1(𝑤) = 1.

The polynomials 𝑝𝑛 appear to be unique and are not recognized in any

other context, much like the Lambert 𝑊 function. This prompts us to examine the

derivatives of𝑊 (𝑟) (𝑒𝑥).
Similarly, using induction, we demonstrate that the 𝑛𝑡ℎ derivative of

𝑊 (𝑟) (𝑒𝑥) with respect to 𝑥 is represented by

𝑑𝑛𝑊 (𝑟) (𝑒𝑥)
𝑑𝑥𝑛

=
𝑞𝑛 (𝑊 (𝑟) (𝑒𝑥))

(𝑊 (𝑟) (𝑒𝑥)2 + 2𝑊 (𝑟) (𝑒𝑥) − 𝑟)2𝑛−1 , for 𝑛 ≥ 1, (4.16)

where 𝑞𝑛+1(𝑤) = −(2𝑛 − 1) (2𝑤 + 2) (𝑤2 − 𝑟)𝑞𝑛 (𝑤) + (𝑤2 + 2𝑤 − 𝑟) (𝑤2 − 𝑟)𝑞′𝑛 (𝑤).
The initial polynomials is given by 𝑞1(𝑤) = 𝑤2 − 𝑟. Interestingly, the coefficients

of 𝑞𝑛 (𝑤) for general 𝑟 do not appear to be expressible using any known formula.

4.4.2 Integrals

Similar to the Lambert𝑊 function, the integral
∫
𝑊 (𝑟) (𝑥) 𝑑𝑥 can be obtained using

integration by parts:

∫
𝑊 (𝑟) (𝑥) 𝑑𝑥 = 𝑥𝑊 (𝑟) (𝑥) 𝑑𝑥 −

∫
𝑥
𝑑𝑊 (𝑟) (𝑥)
𝑑𝑥

𝑑𝑥 + 𝐶

= 𝑥𝑊 (𝑟) (𝑥) −
∫

(𝑊 (𝑟) (𝑥)2 − 𝑟)𝑒𝑊 (𝑟 ) (𝑥) 𝑑𝑊 (𝑟) (𝑥)

=
�
𝑊 (𝑟) (𝑥) − 1

� h
𝑥 + 2𝑒𝑊

(𝑟 ) (𝑥)
i
+ 𝐶 .

We use 𝑤 to denote 𝑊 (𝑟) (𝑥) in order to simplify the notation. A more
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general form can be obtained by using Equation (3.32):

∫
𝑥𝑛𝑤𝑚 𝑑𝑥 =

𝑥𝑛+1𝑤𝑚

𝑛 + 1
− 𝑚

𝑛 + 1

∫
𝑥𝑛+1𝑤𝑚−1 𝑑𝑤

=
𝑥𝑛+1𝑤𝑚

𝑛 + 1
− 𝑚

𝑛 + 1

∫
(𝑤2 − 𝑟)𝑛+1𝑒(𝑛+1)𝑤𝑤𝑚−1 𝑑𝑤

=
𝑥𝑛+1𝑤𝑚

𝑛 + 1
− 𝑚

𝑛 + 1

∫ 𝑛+1∑︁
𝑘=0

�
𝑛 + 1
𝑘

�
𝑤2𝑛+𝑚−2𝑘+1(−𝑟)𝑘𝑒(𝑛+1)𝑤

=
𝑥𝑛+1𝑤𝑚

𝑛 + 1
− 𝑚

𝑛 + 1

𝑛+1∑︁
𝑘=0

�
𝑛 + 1
𝑘

�
(−𝑟)𝑘

∫
𝑤2𝑛+𝑚−2𝑘+1𝑒(𝑛+1)𝑤 𝑑𝑤

The integral on right hand side of the equation can be evaluated using Lemma (3.2)

and we arrive at

∫
𝑥𝑛𝑤𝑚 𝑑𝑥 =

𝑥𝑛+1𝑤𝑚

𝑛 + 1

− 𝑚𝑒
(𝑛+1)𝑤

𝑛 + 1

𝑛+1∑︁
𝑘=0

(�
𝑛 + 1
𝑘

�
(−𝑟)𝑘

×
2𝑛+𝑚−2𝑘+1∑︁

𝑠=0

(−1)𝑠 (2𝑛 + 𝑚 − 2𝑘 + 1)!𝑤2𝑛+𝑚−2𝑘+1−𝑠

(2𝑛 + 𝑚 − 2𝑘 + 1 − 𝑠)!(𝑛 + 1)𝑠+1

)
+ 𝐶 .

4.5 Series solutions

In this section, we explore series solutions of the 𝑊 (𝑟) function. We derive these

series solutions using three distinct approaches: Taylor series expansion at 𝑟 = 0 as

proposed by Scott, Fee and Grotendorst (2014), Lagrange inversion, and asymptotic

expansions using logarithms and the Lambert𝑊 function.

4.5.1 Taylor series at 𝑟 = 0

When 𝑟 is small or 𝑧 is significantly larger than 𝑟, the term 𝑤2𝑒𝑤 dominates. As a

result,

𝑤 ∼ 2𝑊𝑘

�√
𝑧𝑒 𝑗𝜋𝑖

2

�
= 2𝑊𝑘 (𝑧′), (4.17)
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where 𝑗 = 0, 1. Here, 𝑖 =
√
−1, and

√
𝑧 represents the principal square root of 𝑧. As

different pairs of (𝑘 , 𝑗) yield distinct values for 𝑤, we use the notation𝑊 (𝑟)
2𝑘+ 𝑗 (𝑧) to

signify the (2𝑘 + 𝑗)-th branch of the solutions.

For 𝑟 = 0, the solutions to Eq. (4.2) are given by

𝑤 = 2𝑊𝑘

�
𝑧1/2

2

�
= 2𝑊𝑘

�√
𝑧𝑒 𝑗𝜋𝑖

2

�
= 𝑊 (0)

2𝑘+ 𝑗 (𝑧), (4.18)

where 𝑘 ∈ Z and 𝑗 = 0, 1.

By differentiating Eq. (4.2) with respect to 𝑟, we obtain

𝑑𝑤

𝑑𝑟
=

1
𝑤2 + 2𝑤 − 𝑟 .

Induction reveals that higher-order derivatives are expressed as

𝑑𝑛𝑤

𝑑𝑟𝑛
=

𝑝𝑛 (𝑤, 𝑟)
𝑤2 + 2𝑤 − 𝑟 �2𝑛−1 , (4.19)

where the polynomial 𝑝𝑛+1(𝑤, 𝑟) satisfies

𝑝𝑛+1(𝑤, 𝑟) = (𝑤2 + 2𝑤 − 𝑟)2𝑝′𝑛 (𝑤, 𝑟) + (2𝑛 − 1) (𝑤2 − 𝑟 − 2)𝑝𝑛 (𝑤, 𝑟) (4.20)

for 𝑛 ≥ 1. The initial polynomial 𝑝1(𝑤, 𝑟) = 1 and 𝑝′𝑛 (𝑤, 𝑟) are derivatives of

𝑝𝑛 (𝑤, 𝑟) with respect to 𝑟. Eq. (4.20) can also be written in a more compact form:

(𝑤2 + 2𝑤 − 𝑟)−2𝑛−1𝑝𝑛+1(𝑤, 𝑟) = 𝑑

𝑑𝑟

�(𝑤2 + 2𝑤 − 𝑟)−2𝑛+1𝑝𝑛 (𝑤, 𝑟)
�
. (4.21)

The derivatives and Eq. (4.18) lead to the following result:
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Theorem 4.5. The Taylor series of𝑊 (𝑟)
2𝑘+ 𝑗 (𝑧) at around 𝑟 = 0 is

𝑊 (𝑟)
2𝑘+ 𝑗 (𝑧) = 2𝑊𝑘 (𝑧 𝑗 ) +

∞∑︁
𝑛=1

𝑝𝑛 (2𝑊𝑘 (𝑧 𝑗 ), 0)�
4𝑊𝑘 (𝑧 𝑗 )2 + 4𝑊𝑘 (𝑧 𝑗 )

	2𝑛−1
𝑟𝑛

𝑛!
(4.22)

where 𝑘 ∈ Z and 𝑧 𝑗 =
√
𝑧𝑒 𝑗 𝜋𝑖

2 for 𝑗 = 0, 1. The polynomial 𝑝𝑛+1(𝑤, 𝑟) is given by the

following recurrence relation:

(𝑤2 + 2𝑤 − 𝑟)−2𝑛−1𝑝𝑛+1(𝑤, 𝑟) = 𝑑

𝑑𝑟

�(𝑤2 + 2𝑤 − 𝑟)−2𝑛+1𝑝𝑛 (𝑤, 𝑟)
�
.

for 𝑛 ≥ 1. The initial polynomial is 𝑝1(𝑤, 𝑟) = 1 and 𝑝′𝑛 (𝑤, 𝑟) are derivatives of

𝑝𝑛 (𝑤, 𝑟) with respect to 𝑟.

Similar to Mugnaini (2014), determining the radius of convergence for the

series solutions remains a challenge. Nevertheless, interesting phenomena useful

for radius of convergence determination have been observed:

1. The series converges when
��� 𝑟
𝑊𝑘 (𝑧 𝑗 )

��� is small;

2. If the series converges, the rate of convergence increases as 𝑘 increases.

4.5.2 Lagrange inversion

As per Lagrange’s inversion method (Abramowitz and Stegun, 1992, Page 14), if

𝑥 = 𝑓 (𝑤), 𝑥0 = 𝑓 (𝑤0), and 𝑓 ′(𝑤0) ≠ 0, then the following relation holds:

𝑤 = 𝑤0 +
∞∑︁
𝑘=1

(𝑥 − 𝑥0)𝑘
𝑘!

lim
𝑤→𝑤0

"
𝑑𝑘−1

𝑑𝑤𝑘−1

�
𝑤 − 𝑤0
𝑓 (𝑤) − 𝑥0

�𝑘 #
. (4.23)

For 𝑟 = 0, we have𝑊 (0)
𝑘 (𝑥) = 2𝑊𝑘

�
±

√
𝑥

2

�
, where𝑊𝑘 (𝑥) is the 𝑘-th branch

of the Lambert𝑊 function. Using Lagrange’s inversion method, we can derive the
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series expansion of 𝑤 based on Equation (4.23), with 𝑤0 = 2𝑊𝑘

�
±

√
𝑥

2

�
:

𝑊 (𝑟)
−1 (𝑥) = 2𝑊𝑘

+
∞∑︁
𝑡=1

𝑟𝑡𝑒2𝑡𝑊𝑘

𝑡!
lim

𝑤→2𝑊𝑘

�
𝑑𝑡−1

𝑑𝑤𝑡−1

�
𝑤 − 2𝑊𝑘

(𝑤2 − 𝑟)𝑒𝑤 − (4𝑊2 − 𝑟)𝑒2𝑊𝑘

�𝑡�

= 2𝑊𝑘 +
4𝑊2

𝑘

𝑧(4𝑊2
𝑘 + 4𝑊𝑘 − 𝑟)

− 16𝑊4
𝑘 (4𝑊2

𝑘 + 8𝑊𝑘 − 𝑟 + 2)
𝑧2(4𝑊2

𝑘 + 4𝑊𝑘 − 𝑟)3
+ . . . .

where𝑊𝑘 = 𝑊𝑘

�
±

√
𝑥

2

�
.

4.5.3 Asymptotic expansions

When |𝑧 | ≫ 𝑟, we know that 𝑤2𝑒𝑤 is the dominating factor and hence we write

𝑤 = 𝑊 (𝑟)
𝑘 (𝑧) = 2𝑊𝑘 + 𝑢, where 𝑊𝑘 = 𝑊𝑘

�±√𝑧
2

�
is the 𝑘-th branch of the Lambert

𝑊 function. Substituting to the original equation yields

(4𝑊2
𝑘 + 2𝑢𝑊𝑘 + 𝑢2 − 𝑟)𝑒2𝑊𝑘+𝑢 = 𝑧�(2𝑊𝑘𝑒

𝑊𝑘 )2 + (𝑢2 + 2𝑢𝑊𝑘 − 𝑟)𝑒2𝑊𝑘
�
𝑒𝑢 = 𝑧�

𝑧 + (𝑢2 + 2𝑢𝑊𝑘 − 𝑟)𝑒2𝑊𝑘
�
𝑒𝑢 = 𝑧�

1
𝑧
+
�
𝑢2

𝑧2
+ 2𝑊𝑘

𝑢

𝑧
− 𝑟

𝑧2

�
𝑒2𝑊𝑘

�
𝑒𝑢 =

1
𝑧
.

Based on the assumption that |𝑢 | ≪ |𝑧 |, we have

log
�
1
𝑧
− 𝑟

𝑧2
𝑒2𝑊𝑘

�
+ 𝑢 ∼ − log 𝑧

𝑢 ∼ log 𝑧 − log
�
𝑧 − 𝑟𝑒2𝑊𝑘

�
.

Hence, we arrive at

𝑤 = 2𝑊𝑘 + log 𝑧 − log
�
𝑧 − 𝑟𝑒2𝑊𝑘

�
+ 𝑣, (4.24)
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where 𝑒−𝑣 + 𝑟𝜏𝑒2𝑊𝑘 − (𝜎 + 𝑣)2𝜏𝑒2𝑊𝑘 = 0 with 𝜏 =

𝑧 − 𝑟𝑒2𝑊𝑘

�−1 and 𝜎 = 2𝑊𝑘 +
log 𝑧 − log


𝑧 − 𝑟𝑒2𝑊𝑘

�
.

4.6 Branches of the𝑊 (𝑟) function

Among all series solutions derived in previous section, the Taylor series at around

𝑟 = 0 allows us to compute solutions in different branches. In this section, we will

consider the branch cuts and branch structure for this series solution.

From Eq. (4.11), we have 𝑃1, 𝑃2 ∈ R and 𝑃2 < 𝑃1 if 𝑟 > −1. For 𝑟 = −1,

𝑃1 = 𝑃2 ∈ R. For 𝑟 < −1, we solve Eq. (4.12) and arrive at

𝑤𝑛 = 𝑊𝑘

�
− 𝑧𝑛

2

�
and 𝑤1 = 𝑤2. (4.25)

This implies 𝑃1, 𝑃2 are complex and 𝑃1 = 𝑃2. Thus, we will discuss the branch

structure in three separate cases: 𝑟 > −1, 𝑟 = −1 and 𝑟 < −1.

4.6.1 Branch structure when 𝑟 > −1

In this case, we know that we have three distinct branch points 𝑧 = 0 and 𝑃1, 𝑃2.

From Figure 4.1, we know that 𝑃1 is a branch point of𝑊 (𝑟)
−1 and𝑊 (𝑟)

1 , while 𝑃2 is a

branch point of𝑊 (𝑟)
0 and𝑊 (𝑟)

1 .

It’s important to note that 𝑃1 is shared by𝑊 (𝑟)
3 also. For 𝑧 = 0, it is analytic

in the branch𝑊 (𝑟)
0 and𝑊 (𝑟)

1 , but it is a branch point in all other branches. Thus, we

choose the branch cuts as follows:

• 𝑊 (𝑟)
−1 : {𝑧 : −∞ < 𝑧 ≤ 0}, {𝑧 : 0 ≤ 𝑧 < 𝑃1} and {𝑧 : 𝑃1 ≤ 𝑧 < ∞},

• 𝑊 (𝑟)
0 : {𝑧 : −∞ < 𝑧 ≤ 𝑃2},

• 𝑊 (𝑟)
1 : {𝑧 : −∞ < 𝑧 ≤ 𝑃2} and {𝑧 : 𝑃1 ≤ 𝑧 < ∞},

• 𝑊 (𝑟)
3 : {𝑧 : −∞ < 𝑧 ≤ 0}, {𝑧 : 0 ≤ 𝑧 < 𝑃1} and {𝑧 : 𝑃1 ≤ 𝑧 < ∞},
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• For all 𝑘 ≠ 0,𝑊 (𝑟)
2𝑘 : {𝑧 : −∞ < 𝑧 ≤ 0},

• For all |𝑘 | ≥ 2,𝑊 (𝑟)
2𝑘+1: {𝑧 : −∞ < 𝑧 ≤ 0} and {𝑧 : 0 < 𝑧 < ∞}.

Note that for all 𝑘 ≥ 2, 𝑗 = 1, the (2𝑘 + 𝑗)-th branch has additional branch cut

{𝑧 : 0 ≤ 𝑧 < ∞} due to our choice of series solutions expressed in terms of the

Lambert 𝑊 function, 𝑊𝑘

�√
𝑧𝑒 𝑗 𝜋𝑖

2

�
. When 𝑗 = 1,

√
𝑧𝑒𝜋𝑖 maps the positive real axis

to the negative real axis, which is the branch cut for 𝑊𝑘 (𝑧) where 𝑘 ≠ 0. Thus,

positive real axis is included as an additional branch cut. This phenomenon is not

observed in (2𝑘)-th branch as
√
𝑧 does not map to the negative real axis.

Branch structure

For the case 𝑟 = 0, the Equation (4.18) reveals that for each 𝑘 , there are two solutions

which correspond to 𝑗 = 0, 1.

This suggests that the branch structure is similar to that of the Lambert

𝑊 and the square root function. Specifically, the ranges of the Lambert𝑊 function

will be doubled due to the coefficient of two in the Equation (4.18), and the resultant

ranges will be separated into two distinct ranges due to the square root function.

This is illustrated in the figure below.

Figure 4.3: Ranges of𝑊 (0)
2𝑘+ 𝑗 for 𝑘 = 0 and 𝑗 = 0, 1. The dashed line represents the

range of the principal branch of the Lambert𝑊 function.

The case 𝑘 = −1 is presented in the figure below. Similar to 𝑘 = 0, the

range of 𝑗 = 0 is enclosed by ranges of 𝑗 = 1.
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Figure 4.4: Ranges of 𝑊 (0)
2𝑘+ 𝑗 for 𝑘 = −1 and 𝑗 = 0, 1. The region bounded by

dashed lines represents the range of𝑊−1.

From Eq. (4.11) and (4.12), we can deduce that 𝑃1 = 4𝑒−2, 𝑃2 = 0 are

branch points for the real branches. Consequently,𝑊 (0)
0 has a branch cut {𝑧 : −∞ <

𝑧 ≤ 0} and𝑊 (0)
1 has branch cuts {𝑧 : −∞ < 𝑧 ≤ 0} and {𝑧 : 4𝑒−2 ≤ 𝑧 < ∞}.

Figures below illustrate the images of paths encircling around the origin in

a counter-clockwise manner with a radius 𝜌 > 𝑃1 = 4𝑒−2. The solid line indicates

closure.

Figure 4.5: 𝑊 (0)
1 and the image of semicircle AB in the 𝑤-plane.

Figure 4.6: 𝑊 (0)
0 and the image of circle CDE in the 𝑤-plane.
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Figure 4.7: 𝑊 (0)
1 and the image of semicircle FG in the 𝑤-plane.

Starting in𝑊 (0)
1 , the dashed semicircle in the left side of Figure 4.5 moving

counter-clockwise from point A to B in the 𝑧-plane corresponds to an image in the

𝑤-plane as illustrated on the right side of Figure 4.5. Continuing to move counter-

clockwise, we transition into the 𝑊 (0)
0 sheet, as shown in Figure 4.6, and after

completing a 2𝜋 rotation, we return to the𝑊 (0)
1 sheet, as shown in Figure 4.7.

In fact, all𝑊 (0)
2𝑘 and𝑊 (0)

2𝑘+1 sheets are interconnected through the branch cut

on the negative real axis. Additionally, 𝑊 (0)
2𝑘+1 is linked to 𝑊 (0)

2(𝑘+1)+1 and 𝑊 (0)
2(𝑘−1)+1

through the branch cut on the positive real 𝑧-axis. For example, if we traverse

beyond point G in Figure 4.7, we transition into the 𝑊 (0)
3 sheet. The following

figures illustrate this:

Figure 4.8: 𝑊 (0)
3 and the image of the semicircle HI in the 𝑤-plane.

Figure 4.9: 𝑊 (0)
2 and the image of the circle JKL in the 𝑤-plane.
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Figure 4.10: 𝑊 (0)
3 and the image of the semicircle MN in the 𝑤-plane.

The image of the semicircle with radius 𝜌 < 4𝑒−2 in𝑊 (0)
3 does not connect

to 𝑊 (0)
1 (see Figure 4.8 for comparison). This is due to the fact that 𝑊 (0)

3 has two

branch cuts on the positive real axis: {𝑧 : 0 ≤ 𝑧 < 4𝑒−2} and {𝑧 : 4𝑒−2 ≤ 𝑧 < ∞}.
𝑊 (0)

−1 exhibits similar behaviour.

Figure 4.11: 𝑊 (0)
3 and image of semicircle HI in 𝑤-plane.

The branch structure for the case 𝑟 ≠ 0 (𝑟 > −1) is akin to the 𝑟 = 0

case, with the distinction that 𝑃2 ≠ 0 and 𝑃1 ≠ 4𝑒−2. The figures below portray the

images of paths encircling around 𝑃1 in a counter-clockwise manner.

Figure 4.12: Image of circle AB in𝑊 (0.25)
1 .
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Figure 4.13: Image of semicircles CD and EF in𝑊 (0.25)
3 .

Boundary curves

By substituting 𝑤 = 𝜉 + 𝑖𝜂 and 𝑧 = 𝑥 + 𝑖𝑦 into Eq. (4.2), we obtain

[𝐴 cos 𝜂 − 𝐵 sin 𝜂 + 𝑖(𝐴 sin 𝜂 + 𝐵 cos 𝜂)] 𝑒𝜉 = 𝑥 + 𝑖𝑦,

where 𝐴 = 𝜉2 − 𝜂2 − 𝑟 and 𝐵 = 2𝜂𝜉. As all branch cuts fall on the real axis of

𝑧-plane, the boundary curves must satisfy 𝑦 = 0 or 𝐴 sin 𝜂 + 𝐵 cos 𝜂 = 0.

The boundary curves of 𝑊 (𝑟)
𝑘 can be obtained by considering the values

of 𝜉 and 𝜂 that satisfy 𝐴 sin 𝜂 + 𝐵 cos 𝜂 = 0, subject to 𝐴 cos 𝜂 + 𝐵 sin 𝜂 has the same

ranges as all the branch cuts. For instance, in the case of the branch 𝑘 = 2, the

conditions 𝐴 cos 𝜂 + 𝐵 sin 𝜂 ≤ 0 and 𝐴 cos 𝜂 + 𝐵 sin 𝜂 ≥ 0 yield the two boundary

curves of 𝑘 = 2 branch. Figure 4.14 illustrates the boundary curves for 𝑘 = −1, 0, 1

and 𝑟 = 0.

Figure 4.14: Ranges of𝑊 (0)
𝑘 .
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4.6.2 Branch cuts when 𝑟 = −1

Similar with the case 𝑟 > −1, we note that 𝑃1 = 𝑃2 = 2𝑒−1. Hence, the branch cuts

are chosen to be:

• 𝑊 (−1)
−1 : {𝑧 : −∞ < 𝑧 ≤ 0}, {𝑧 : 0 ≤ 𝑧 < 2𝑒−1} and {𝑧 : 2𝑒−1 ≤ 𝑧 < ∞},

• 𝑊 (−1)
0 : {𝑧 : −∞ < 𝑧 ≤ 2𝑒−1},

• 𝑊 (−1)
1 : {𝑧 : −∞ < 𝑧 ≤ 2𝑒−1} and {𝑧 : 2𝑒−1 ≤ 𝑧 < ∞},

• 𝑊 (−1)
3 : {𝑧 : −∞ < 𝑧 ≤ 0}, {𝑧 : 0 ≤ 𝑧 < 2𝑒−1} and {𝑧 : 2𝑒−1 ≤ 𝑧 < ∞},

• For all 𝑘 ≠ 0,𝑊 (−1)
2𝑘 : {𝑧 : −∞ < 𝑧 ≤ 0},

• For all |𝑘 | ≥ 2,𝑊 (−1)
2𝑘+1: {𝑧 : −∞ < 𝑧 ≤ 0} and {𝑧 : 0 < 𝑧 < ∞}.

As 𝑃1 = 𝑃2, there will be only two real branches, 𝑊 (−1)
0 and 𝑊 (−1)

−1 , as

presented in Figure 4.2. Since all branch cuts are positioned on the real axis, the

boundary curves can be constructed using the same approach as the case 𝑟 > −1.

Plotting all the relevant curves of 𝐴 sin 𝜂 + 𝐵 cos 𝜂 = 0, we obtain figure below.

Figure 4.15: Ranges of𝑊 (−1)
𝑘 .

4.6.3 Branch cuts when 𝑟 < −1

Similar to the case 𝑟 > −1, there exist three distinct branch points, namely, 𝑧 = 0

and 𝑃1, 𝑃2. Given that 𝑧 = 0 is branch point of 𝑊 (𝑟)
2𝑘+ 𝑗 for all 𝑘 > 0, we select the
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branch cuts for 𝑊 (𝑟)
2𝑘+ 𝑗 in a manner analogous to the 𝑟 > −1 case. The exceptions

are:

• 𝑘 = 0, 𝑗 = 0, 1,

• 𝑘 = −1, 𝑗 = 1, and

• 𝑘 = 1, 𝑗 = 1.

As 𝑃1, 𝑃2 are complex when 𝑟 < −1, the chosen branch cuts for these cases extend

from the point 4𝑒−2 to 𝑃1 or 𝑃2. We summarise the branch cuts for all branches as

follow:

• 𝑊 (𝑟)
−1 : {𝑧 : −∞ < 𝑧 ≤ 0}, {𝑧 : 0 ≤ 𝑧 < 4𝑒−2}, {𝑧 : 4𝑒−2 ≤ 𝑧 < ∞} and

{𝑧 : Arg(𝑧) = Arg(𝑃1 − 4𝑒−2), 4𝑒−2 ≤ Re(𝑧) ≤ Re(𝑃1)},

• 𝑊 (𝑟)
0 : {𝑧 : −∞ < 𝑧 ≤ 4𝑒−2}, {𝑧 : Arg(𝑧) = Arg(𝑃1 − 4𝑒−2), 4𝑒−2 ≤ Re(𝑧) ≤

Re(𝑃1)} and {𝑧 : Arg(𝑧) = Arg(𝑃2 − 4𝑒−2), 4𝑒−2 ≤ Re(𝑧) ≤ Re(𝑃2)},

• 𝑊 (𝑟)
1 : {𝑧 : −∞ < 𝑧 ≤ 4𝑒−2} and {𝑧 : 4𝑒−2 ≤ 𝑧 < ∞},

• 𝑊 (𝑟)
3 : {𝑧 : −∞ < 𝑧 ≤ 0}, {𝑧 : 0 ≤ 𝑧 < 4𝑒−2}, {𝑧 : 4𝑒−2 ≤ 𝑧 < ∞} and

{𝑧 : Arg(𝑧) = Arg(𝑃2 − 4𝑒−2), 4𝑒−2 ≤ Re(𝑧) ≤ Re(𝑃2)},

• For all 𝑘 ≠ 0,𝑊 (𝑟)
2𝑘 : {𝑧 : −∞ < 𝑧 ≤ 0},

• For all |𝑘 | ≥ 2,𝑊 (𝑟)
2𝑘+1: {𝑧 : −∞ < 𝑧 ≤ 0} and {𝑧 : 0 < 𝑧 < ∞}.

The presence of the disconnected branch 𝑊 (𝑟)
1 introduces an additional

branch cut (compared to 𝑟 ≥ −1) in 𝑊 (𝑟)
−1 , 𝑊 (𝑟)

0 , and 𝑊 (𝑟)
3 . For instance, 𝑊 (𝑟)

−1 is

connected to five other branches: 𝑊 (𝑟)
3 ,𝑊 (𝑟)

0 ,𝑊 (𝑟)
1 ,𝑊 (𝑟)

−2 , and𝑊 (𝑟)
−5 (see Figure 4.26).

Thus, four branch cuts are necessary.
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Branch structure

We will illustrate a circular path that traverse counter-clockwise, centred at 𝑧 = 4𝑒−2

and radius 𝜌 = 0.3, from𝑊 (−2)
−1 to𝑊 (−2)

0 and then to𝑊 (−2)
3 .

All branch cuts are chosen to be closed in a counter-clockwise direction,

and all solid lines in the figures below indicate the closure of the branch.

Figure 4.16: Image of 𝐴𝐵 in𝑊 (−2)
−1 .

Continuing the traversal from 𝐶 to 𝐷, we move into the branch𝑊 (−2)
0 . As

𝑃1 and 𝑃2 are complex, and since 𝑊 (−2)
1 is disconnected, we can now move into

𝑊 (−2)
0 without passing through𝑊 (−2)

1 .

Figure 4.17: Image of 𝐶𝐷 in𝑊 (−2)
0 .

Continuing on the path 𝐸𝐹, we obtain the following figure:

Figure 4.18: Image of 𝐸𝐹 in𝑊 (−2)
3 .
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Figure below shows the images of different paths in𝑊 (−2)
3 :

Figure 4.19: Images of 𝛾𝑖 in𝑊 (−2)
3 .

The image of 𝛾2 is hardly visible, so we present a larger image using a

solid red curve. Note that the solid boundary curve is the image of the line from

𝑧 = 4𝑒−2 to 𝑃2.

Figure 4.20: Image of 𝛾2 in𝑊 (−2)
3 .

Now, consider a circle with a radius of 𝜌 = 2, centred at 𝑧 = 4𝑒−2. The

images in different branches are presented below.

Figure 4.21: Image of 𝐴𝐵 in𝑊 (−2)
−1 .
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Figure 4.22: Image of 𝐶𝐷 in𝑊 (−2)
1 .

Figure 4.23: Image of 𝐸𝐹 in𝑊 (−2)
0 .

Figure 4.24: Image of 𝐺𝐻 in𝑊 (−2)
1 .

Figure 4.25: Image of 𝐼𝐽 in𝑊 (−2)
3 .

Boundary curves

Since all branch cuts of𝑊 (𝑟)
𝑘 , where 𝑘 ≠ 0,±1, 3, fall on the real axis, the boundary

curves satisfy 𝐴 sin 𝜂 + 𝐵 cos 𝜂 = 0. For𝑊 (𝑟)
0 , there are two branch cuts that are not
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on the real axis. For these branch cuts, we construct the boundary curves using

Arg[(𝐴 cos 𝜂 − 𝐵 sin 𝜂)𝑒𝜉 − 4𝑒−2 + (𝐴 sin 𝑦 + 𝐵 cos 𝑦)𝑒𝜉𝑖] = Arg(𝑧𝑛 − 4𝑒−2),

subject to 4𝑒−2 ≤ (𝐴 cos 𝜂 − 𝐵 sin 𝜂)𝑒𝜉 ≤ Re(𝑧𝑛). Here, 𝐴 = 𝜉2 − 𝜂2 − 𝑟 and

𝐵 = 2𝜉𝜂.

The figure below presents the branch structures for 𝑟 = −2.

Figure 4.26: Ranges of𝑊 (−2)
𝑘 .

Although there is at most one real solution for (𝑤2−𝑟)𝑒𝑤 = 𝑧when 𝑟 < −1

(see Figure 4.2), the real axis of the 𝑤-plane is still divided into two branches due

to our choice of the series solution.

4.7 Applications

4.7.1 Solutions to other exponential-polynomial equations

Theorem 4.5 can be used to obtain series solutions for cases with two upper param-

eters and two lower parameters.

Corollary 4.1. For all 𝑎1, 𝑎2 ∈ R. the series solutions of (𝑤 − 𝑎1) (𝑤 − 𝑎2)𝑒𝑤 = 𝑧

is given by

𝑊2𝑘+ 𝑗 ( 𝑎1 𝑎2 ; 𝑧) = 𝑎1 + 𝑎2
2

+ 2𝑊𝑘 (𝑧′𝑗 ) +
∞∑︁
𝑛=1

𝑝𝑛 (2𝑊𝑘 (𝑧′𝑗 ), 0)n
4𝑊𝑘 (𝑧′𝑗 )2 + 4𝑊𝑘 (𝑧′𝑗 )

o2𝑛−1
𝑟𝑛

𝑛!
,
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where 𝑟 =
 𝑎1−𝑎2

2
�2 and 𝑧′𝑗 =

√
𝑧𝑒−𝑟𝑚𝑒 𝑗 𝜋𝑖

2 .

Proof. Let 𝑟𝑑 = 𝑎1−𝑎2
2 and 𝑟𝑚 = 𝑎1+𝑎2

2 . The equation can be written as

�
(𝑤 − 𝑟𝑚)2 − 𝑟

�
𝑒𝑤−𝑟𝑚 = 𝑧𝑒−𝑟𝑚 ,

where 𝑟 = 𝑟2
𝑑 . Thus,

𝑤 = 𝑟𝑚 +𝑊 (𝑟)
2𝑘+ 𝑗 (𝑧𝑒−𝑟𝑚) .

□

Corollary 4.2. The solutions of 1
(𝑤−𝑎1) (𝑤−𝑎2) 𝑒

𝑤 = 𝑧, 𝑧 ≠ 0 is given by

𝑤 = −𝑊2𝑘+ 𝑗

�
−𝑎1 −𝑎2 ;

1
𝑧

�
.

Proof. It can be shown easily by rewriting the parameters:

(𝑤 − 𝑎1) (𝑤 − 𝑎2)𝑒−𝑤 = [−𝑤 − (−𝑎1)] [−𝑤 − (−𝑎2)]𝑒−𝑤 =
1
𝑧

which implies the solutions are 𝑤 = −𝑊2𝑘+ 𝑗
�
−𝑎1 −𝑎2 ; 1

𝑧

�
. □

We consider another example of application in physics (Scott, Fee and

Grotendorst, 2014), which arises from the Double Well Dirac Delta Potential model.

We wish to solve the equation

𝑒−𝑐𝑥 = 𝑎0(𝑥 − 𝑟1) (𝑥 − 𝑟2), (4.26)

where 𝑐 = 2𝑅, 𝑎0 = 1
𝜆 , 𝑟1 = 1, and 𝑟2 = 𝜆. Here, 𝑅 is the internuclear distance and

𝜆 is treated as a real perturbative parameter.
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Example 4.2. Let 𝜆 = 0.8 and 𝑅 = 2. Eq. (4.26) can be written as

(4𝑥 − 4) (4𝑥 − 3.2)𝑒4𝑥 =
64
5
.

Since −𝑒−1 < −𝑧0 = −0.0489 < 0, the equation has three real solutions. Using the

series solution, we obtain

𝑥1 = 𝑊0
 4 3.2 ; 64/5� /4 = 1.0485,

𝑥2 = 𝑊1
 4 3.2 ; 64/5� /4 = 0.6249,

𝑥3 = 𝑊−1
 4 3.2 ; 64/5� /4 = 0.

4.7.2 Inverse transform method of Erlang and negative binomial distributions

The inverse transform method is a widely used technique for generating random

variables from probability distributions. In this section, we will explore how the

𝑊 (𝑟)
𝑘 function can be utilized to obtain the quantile function of the Erlang and

negative binomial distributions with a shape parameter of 𝑘 = 3. Subsequently,

we will apply the inverse transform method to simulate random variables based on

these quantile functions.

Using the inverse transform method, random variables from the Erlang

and negative binomial distributions can be generated through the following steps:

1. Generate a random number 𝑢 uniformly distributed between 0 and 1.

2. Calculate the quantile function 𝐹−1(𝑢) using the appropriate equation involv-

ing the𝑊 (𝑟)
𝑘 function.

3. The resulting value is a random variable that follows the desired distribution.

By employing this approach, we can simulate random variables from the

Erlang and negative binomial distributions by leveraging the properties of the𝑊 (𝑟)
𝑘
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function. This method provides an effective and efficient way to generate random

samples from these distributions, enabling statistical analyses, simulations, and other

applications.

Erlang distribution

For the Erlang distribution with 𝑘 = 3, the quantile function equation is derived

from its CDF as follows:

1 −
�
1 + 𝜆𝑦 + 1

2
𝜆2𝑦2

�
𝑒−𝜆𝑦 = 𝑢′ = 1 − 𝑢, (4.27)

where 𝑦 represents the quantile, 𝜆 is a parameter, and 𝑢 is a random variable

following a uniform distribution,𝑈 [0, 1]. By introducing the variable 𝑤 = −𝜆𝑦−1,

the equation can be rewritten as:

�
𝑤2 + 1

�
𝑒𝑤 = 𝑥, (4.28)

where 𝑥 = 2𝑢𝑒−1. Therefore, we have 𝑟 = −1 and 0 < 𝑥 < 2𝑒−1. From the graph

of the real branches of 𝑊 (−1)
𝑘 in Figure 4.2, we observe that 𝑤 lies in the branch

𝑊 (−1)
−1 (𝑥). The quantile function can be expressed as:

𝑦 = −1
𝜆

h
𝑊 (−1)

−1 (2𝑢𝑒−1) + 1
i
. (4.29)

Negative binomial distribution

For the negative binomial distribution with 𝑘 = 3, the quantile function can be

obtained using the inverse transform method. Let 𝑛 represent the quantile, 𝑝 = 1−𝑞
be the probability of success, and 𝑢 be a random variable.

92



The quantile function equation can be written as:

1 −
2∑︁
𝑡=0

�
3 + 𝑛
𝑡

�
𝑞3+𝑛−𝑡 𝑝𝑡 = 𝑢′ = 1 − 𝑢, (4.30)

By introducing the variables 𝛼 = 𝑞𝑝−1 and defining:

𝑤 = (𝑛 + 𝛼 + 2.5) log 𝑞, (4.31)

the equation can be written as:

(𝑤2 − 𝑟)𝑒𝑤 = 𝑥, (4.32)

where 𝑟 = (0.25 − 𝛼 − 𝛼2) log2 𝑞 and 𝑥 = 2𝑢𝑞𝛼+1.5𝑝−2 log2 𝑞.

Since 𝑤 < 0 and 𝐹 (𝑛; 3, 𝑝) = 1−𝑢 implies that 𝑛 is inversely proportional

to 𝑢, we know that 𝑤 ∝ 𝑥 = 2𝑢𝑞𝛼+1.5𝑝−2 log2 𝑞. The only real branch that is

increasing and negative is𝑊 (𝑟)
−1 .

Let 𝑢0 = 1 > 𝑢1 > · · · > 𝑢𝑛−1 > 𝑢𝑛 > · · · > 0 such that

𝑤𝑛 = (𝑛 + 𝛼 + 2.5) log 𝑞,

where (𝑤2
𝑛 − 𝑟)𝑒𝑤𝑛 = 𝑥𝑛 and 𝑥𝑛 = 2𝑢𝑛𝑞𝛼+1.5𝑝−2 log2 𝑞. Thus, for 𝑢𝑛−1 < 𝑢 ≤ 𝑢𝑛,

we have 𝑤𝑛 ≤ 𝑤 < 𝑤𝑛−1. Solving Equation (4.31) for inverse transform method,

we obtain:

𝑛 =

&
𝑊 (𝑟)

−1 (𝑥)
log 𝑞

− 𝛼 − 2.5

'
. (4.33)
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CHAPTER 5

(𝑁 , 0)-TYPE LAMBERT FUNCTION

In this chapter, we delve into the study of the series solution of the equation

𝑃𝑁 (𝑤)𝑒𝑤 = 𝑧, where 𝑃𝑁 (𝑤) =
Î𝑁
𝑡=1(𝑤 − 𝑐𝑡), 𝑐𝑡 are real numbers, and 𝑧 is a

complex number. This equation holds significant importance in various areas of

mathematics and engineering, and its series solution plays a crucial role in solving

many practical problems.

The series solution of 𝑃𝑁 (𝑤)𝑒𝑤 = 𝑧, which is also known as the (𝑁 , 0)-
type Lambert function, provides a powerful tool for obtaining approximate solutions

and understanding the behaviour of complex functions. By expanding the polyno-

mial 𝑃𝑁 (𝑤) in a series form, we can express the equation as an infinite series

involving powers of 𝑤. This series can then be manipulated and truncated to obtain

an approximation of the solution.

The (𝑁 , 0)-type Lambert function, denoted as 𝑊𝑘 ( 𝑐1...𝑐𝑁 ; 𝑧), represents

the multi-valued function that arises from the solutions of 𝑃𝑁 (𝑤)𝑒𝑤 = 𝑧. It has

significant applications in various fields, including physics, engineering, and math-

ematical modelling.

By studying the series solution of 𝑃𝑁 (𝑤)𝑒𝑤 = 𝑧 and the (𝑁 , 0)-type Lam-

bert function, we aim to provide a comprehensive understanding of these powerful

techniques and their potential impact on mathematical modelling, scientific analy-

sis, and engineering design. This knowledge will enable researchers, engineers, and

practitioners to tackle complex problems, advance their fields, and make informed
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decisions based on rigorous mathematical foundations.

In the first section, we start with the study of the transformed equation

(𝑤3 + 𝑝𝑤 + 𝑞)𝑒𝑤 = 𝑧, where 𝑝 and 𝑞 are real coefficients and 𝑤 and 𝑧 are complex

variables. We investigate the series solution of this third-order equation and analyse

its properties and behaviour.

Following this, we explore the extension of the series solution method to

obtain series expansions for the (𝑁 , 0)-type Lambert function, where 𝑁 is greater

than three. We analyse the solutions of 𝑃𝑁 (𝑤)𝑒𝑤 = 𝑧 for different values of 𝑁 and

investigate the behaviour of the (𝑁 , 0)-type Lambert function in various contexts.

Throughout the chapter, we denote the solutions of the transformed equa-

tion as𝑊 (𝑝,𝑞)
𝑘 (𝑧) and the (𝑁 , 0)-type Lambert function as𝑊𝑘 ( 𝑐1...𝑐𝑁 ; 𝑧), where 𝑘 is

the branch index. Similarly, the branch index, 𝑘 , is omitted to represent the principal

branch when there is no ambiguity. By exploring the series solutions and properties

of these functions, we aim to provide valuable insights and tools for researchers and

practitioners in their mathematical analyses, problem-solving, and decision-making

processes.

5.1 The𝑊 (𝑝,𝑞) function

Since all cubic equations can be transformed into depressed cubic equation, we,

without loss of generality, study the equation

(𝑤3 + 𝑝𝑤 + 𝑞)𝑒𝑤 = 𝑧, (5.1)

where 𝑝, 𝑞 ∈ R and 𝑤, 𝑧 ∈ C.

95



5.1.1 Equations solvable using the𝑊 (𝑝,𝑞) function

In this section, we present some examples of the equations that can be solved using

the𝑊 (𝑝,𝑞) function. Unless specified otherwise, 𝑎, 𝑏, 𝑐, 𝑑, 𝑠 are real constants.

Example 5.1. For 𝑎, 𝑠 ≠ 0, we rewrite the equation

(𝑎𝑤3 + 𝑏𝑤2 + 𝑐𝑤 + 𝑑)𝑒𝑠𝑤 = 𝑥 (5.2)

by letting 𝑤 = 𝜔
𝑠 − 𝑏

3𝑎 , we have

�
𝜔3 +

�
3𝑎𝑐𝑠2 − 𝑏2𝑠2

3𝑎2

�
𝜔 + 2𝑏3𝑠3 − 9𝑎𝑏𝑐𝑠3 + 27𝑎2𝑑𝑠3

27𝑎3

�
𝑒𝜔 =

𝑠3𝑥

𝑎
𝑒

𝑏𝑠
3𝑎

which leads to

𝑤 =
𝜔

𝑠
− 𝑏

3𝑎
=

1
𝑠
𝑊 (𝑝,𝑞)

�
𝑠3𝑥

𝑎
𝑒

𝑏𝑠
3𝑎

�
− 𝑏

3𝑎
, (5.3)

where
𝑝 =

3𝑎𝑐𝑠2 − 𝑏2𝑠2

3𝑎2 ,

𝑞 =
2𝑏3𝑠3 − 9𝑎𝑏𝑐𝑠3 + 27𝑎2𝑑𝑠3

27𝑎3 .

Example 5.2. The equation

(𝑤 − 𝑎) (𝑤 − 𝑏) (𝑤 − 𝑐)𝑒𝑤 = 𝑥 (5.4)

known as three upper parameters equation, can be solved using a similar approach

as the previous example. Expanding the polynomial on the left hand side:

[𝑤3 − (𝑎 + 𝑏 + 𝑐)𝑤2 + (𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐)𝑤 − 𝑎𝑏𝑐]𝑒𝑤 = 𝑥.
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Compare with previous example, we obtain the solution

𝑤 = 𝑊 (𝑝,𝑞) (𝑥𝑒−𝑟𝑚) + 𝑟𝑚, (5.5)

where
𝑟𝑚 =

𝑎 + 𝑏 + 𝑐
3

𝑝 = (𝑟𝑚 − 𝑏) (𝑟𝑚 − 𝑐) − (𝑟𝑚 − 𝑎)2,

𝑞 = (𝑟𝑚 − 𝑎) (𝑟𝑚 − 𝑏) (𝑟𝑚 − 𝑐).

Example 5.3. For 𝑏 ≠ 0, 1, the equation

(𝑤3 + 𝑝𝑤 + 𝑞)𝑏𝑤 = 𝑥 (5.6)

can be solved in terms of𝑊 (𝑝,𝑞) by rewriting 𝑏𝑤 as 𝑒𝑤 log 𝑏:

�(𝑤 log 𝑏)3 + 𝑝 log2 𝑏(𝑤 log 𝑏) + 𝑞 log3 𝑏
�
𝑒𝑤 log 𝑏 = 𝑥(log 𝑏)3.

Thus, the solution is

𝑤 =
1

log 𝑏
𝑊 (𝑝 log2 𝑏,𝑞 log3 𝑏) (𝑥 log3 𝑏) (5.7)

5.1.2 Basic properties of the𝑊 (𝑝,𝑞) function

Lemma 3.1 indicates that Eq. (5.1) has at most four real solutions, depending on the

value of 𝑝 and 𝑞. Figures below illustrate the real branches for different values of 𝑝

and 𝑞.
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Figure 5.1: Real branches for 𝑝 = 𝑞 = 0 and 𝑝 = 0, 𝑞 = −2.

Figure 5.2: Real branches for 𝑝 = 0, 𝑞 = 1 and 𝑝 = −2, 𝑞 = 2.

The values 𝑃𝑛 and 𝑤𝑛 in figures above are branch points and can be

computed by considering the first derivative of Eq. (5.1):

𝑑𝑤

𝑑𝑥
=

𝑤3 + 𝑝𝑤 + 𝑞
𝑥(𝑤3 + 3𝑤2 + 𝑝𝑤 + 𝑝 + 𝑞) (5.8)

Equating the denominator to zero, we obtain 𝑥 = 0 and 𝑤 = 𝑤𝑛 such that 𝑤3
𝑛 +3𝑤2

𝑛 +
𝑝𝑤𝑛 + 𝑝 + 𝑞 = 0, for 𝑛 = 1, 2, 3. Thus, branch points are 𝑥 = 0 and 𝑥 = 𝑃𝑛 where

𝑃𝑛 = (𝑤3
𝑛 + 𝑝𝑤𝑛 + 𝑞)𝑒𝑤𝑛 = (−3𝑤2

𝑛 − 𝑝)𝑒𝑤𝑛 .

Thus, Equation (5.1) has four real solutions when 𝑃𝑛 are distinct real, at least two

of the 𝑃𝑛 are negative, and 𝑃1 < 𝑥 < min(0, 𝑃2).
In the case −4𝑝3 + 36𝑝2 − 108𝑝 − 27𝑞2 − 108𝑞 > 0, we have three distinct

real 𝑤𝑛. Suppose that 𝑤1 < 𝑤2 < 𝑤3.
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Theorem 5.1. If 𝑝 ≥ 0 and

−4𝑝3 + 36𝑝2 − 108𝑝 − 27𝑞2 − 108𝑞 > 0,

the equation (𝑤3 + 𝑝𝑤 + 𝑞)𝑒𝑤 = 𝑥 has four real solutions when 𝑃1 < 𝑥 < 𝑃2.

Proof. The equation 𝑓 (𝑤) = 𝑤3 + 3𝑤2 + 𝑝𝑤 + 𝑝 + 𝑞 has three distinct real roots if

and only if its discriminant is greater than zero. Simplifying its discriminant, we

have

−4𝑝3 + 36𝑝2 − 108𝑝 − 27𝑞2 − 108𝑞 > 0.

Since 𝑤𝑛 satisfy the equation 𝑤3
𝑛 + 3𝑤2

𝑛 + 𝑝𝑤𝑛 + 𝑝 + 𝑞 = 0, we know that

𝑃𝑛 = (𝑤3
𝑛 + 𝑝𝑤𝑛 + 𝑞)𝑒𝑤𝑛 = (−3𝑤2

𝑛 − 𝑝)𝑒𝑤𝑛 .

The condition, 𝑝 > 0 ensures that all 𝑃𝑛 are negative. Hence, there will be four real

solutions when 𝑃1 < 𝑥 < 𝑃2. □

Since the 𝑊 (𝑝,𝑞) functionhas one extra branch point as compared to the

𝑊 (𝑟) function, the branch structure is expected to be much more complicated. Thus,

branch analysis of𝑊 (𝑝,𝑞) will not be conducted in this project.

Similar to the𝑊 (𝑟) function, we define Ω𝑝,𝑞 to be the constant such that

(Ω3
𝑝,𝑞 + 𝑝Ω𝑝,𝑞 + 𝑞)𝑒Ω𝑝,𝑞 = 1.

Theorem 5.2. The Ω𝑝,𝑞 constant is transcendental if 𝑝, 𝑞 are algebraic.

Proof. Suppose that Ω𝑝,𝑞 is algebraic, then 𝑒Ω𝑝,𝑞 is transcendental. On the other

hand, the polynomial Ω3
𝑝,𝑞 + 𝑝Ω𝑝,𝑞 + 𝑞 is algebraic, leads to the contradiction that

(Ω3
𝑝,𝑞 + 𝑝Ω𝑝,𝑞 + 𝑞)𝑒Ω𝑝,𝑞 is algebraic. □
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The following example demonstrates that the omega constant can be alge-

braic.

Example 5.4. The constant Ω−𝑒,1 = −1 is algebraic.

5.1.3 Series solutions

In this subsection, we derive the series expansion of the 𝑊 (𝑝,𝑞) function by using

the Taylor series.

By differentiating Eq. (5.1) with respect to 𝑝 and 𝑞, and following induc-

tion, we obtained:

𝜕𝑚+𝑛𝑤
𝜕𝑝𝑚𝜕𝑞𝑛

=
𝑝𝑚,𝑛 (𝑤, 𝑝, 𝑞)

(𝑤3 + 3𝑤2 + (𝑤 + 1)𝑝 + 𝑞)2𝑚+2𝑛−1 (5.9)

where 𝑚, 𝑛 ≥ 0, 𝑚 + 𝑛 ≥ 1. Polynomials 𝑝𝑚,𝑛 (𝑤, 𝑝, 𝑞) satisfy:

𝑝𝑚+1,𝑛 (𝑤, 𝑝, 𝑞) = (𝑤3 + 3𝑤2 + (𝑤 + 1)𝑝 + 𝑞)2 𝜕

𝜕𝑝
𝑝𝑚,𝑛 (𝑤, 𝑝, 𝑞)

+ (2𝑚 + 2𝑛 − 1) (𝑤4 + 𝑤3 + (𝑝 − 3)𝑤2

+ (𝑝 + 𝑞) (𝑤 + 1))𝑝𝑚,𝑛 (𝑤, 𝑝, 𝑞),

𝑝𝑚,𝑛+1(𝑤, 𝑝, 𝑞) = (𝑤3 + 3𝑤2 + (𝑤 + 1)𝑝 + 𝑞)2 𝜕

𝜕𝑞
𝑝𝑚,𝑛 (𝑤, 𝑝, 𝑞)

− (2𝑚 + 2𝑛 − 1) (𝑤3 − 6𝑤 + 𝑤𝑝 + 𝑞)𝑝𝑚,𝑛 (𝑤, 𝑝, 𝑞)

where 𝑝1,0(𝑤, 𝑝, 𝑞) = −𝑤 and 𝑝0,1(𝑤, 𝑝, 𝑞) = −1.

The Taylor series of Eq. (5.1) can be obtained by using Eq. (5.9) and the

fact that

𝑊 (0,0)
3𝑘+ 𝑗 (𝑧) = 3𝑊𝑘

�
3√𝑧
3
𝑒

2𝜋𝑖
3 𝑗

�
.
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Theorem 5.3. The Taylor series of𝑊 (𝑝,𝑞)
3𝑘+ 𝑗 (𝑧) at around 𝑝 = 𝑞 = 0 is given by

𝑊
(𝑝,𝑞)
3𝑘+ 𝑗 (𝑧) = 3𝑊𝑘 (𝑧 𝑗 ) +

∞∑︁
𝑚=0

∞∑︁
𝑛=0

𝑝𝑚,𝑛 (3𝑊𝑘 (𝑧 𝑗 ), 0, 0)�
27𝑊𝑘 (𝑧 𝑗 )3 + 27𝑊𝑘 (𝑧 𝑗 )2

	2𝑚+2𝑛−1
𝑝𝑚𝑞𝑛

𝑚! 𝑛!
, (5.10)

where 𝑘 ∈ Z and 𝑧 𝑗 =
3√𝑧
3 𝑒

2𝜋𝑖
3 𝑗 for 𝑗 = 0, 1, 2. The polynomial 𝑝𝑚,𝑛 (𝑤, 𝑝, 𝑞) is given

by:

𝑝𝑚+1,𝑛 (𝑤, 𝑝, 𝑞) = (𝑤3 + 3𝑤2 + (𝑤 + 1)𝑝 + 𝑞)2 𝜕

𝜕𝑝
𝑝𝑚,𝑛 (𝑤, 𝑝, 𝑞)

+ (2𝑚 + 2𝑛 − 1) (𝑤4 + 𝑤3 + (𝑝 − 3)𝑤2

+ (𝑝 + 𝑞) (𝑤 + 1))𝑝𝑚,𝑛 (𝑤, 𝑝, 𝑞),

𝑝𝑚,𝑛+1(𝑤, 𝑝, 𝑞) = (𝑤3 + 3𝑤2 + (𝑤 + 1)𝑝 + 𝑞)2 𝜕

𝜕𝑞
𝑝𝑚,𝑛 (𝑤, 𝑝, 𝑞)

− (2𝑚 + 2𝑛 − 1) (𝑤3 − 6𝑤 + 𝑤𝑝 + 𝑞)𝑝𝑚,𝑛 (𝑤, 𝑝, 𝑞)

for 𝑛 ≥ 1. The initial polynomials are 𝑝0,0(𝑤, 𝑝, 𝑞) = 0, 𝑝1,0(𝑤, 𝑝, 𝑞) = −𝑤 and

𝑝0,1(𝑤, 𝑝, 𝑞) = −1.

The following two corollaries lead to series solutions of three upper pa-

rameters and three lower parameters.

Corollary 5.1. The series solutions of (𝑤−𝑎1) (𝑤−𝑎2) (𝑤−𝑎3)𝑒𝑤 = 𝑧 where 𝑎𝑖 ∈ R

are given by

𝑊3𝑘+ 𝑗 ( 𝑎1 𝑎2 𝑎3 ; 𝑧) = 𝑎1 + 𝑎2 + 𝑎3
3

+ 3𝑊𝑘 (𝑧′𝑗 )

+
𝑝𝑚,𝑛 (3𝑊𝑘 (𝑧′𝑗 ), 0, 0)n

27𝑊𝑘 (𝑧′𝑗 )3 + 27𝑊𝑘 (𝑧′𝑗 )2
o2𝑚+2𝑛−1

𝑝𝑚𝑞𝑛

𝑚! 𝑛!

where 𝑝 = (𝑟𝑚 − 𝑎2) (𝑟𝑚 − 𝑎3) − (𝑟𝑚 − 𝑎1)2, 𝑞 = (𝑟𝑚 − 𝑎1) (𝑟𝑚 − 𝑎2) (𝑟𝑚 − 𝑎3) and

𝑧′𝑗 =
3√𝑧𝑒−𝑟𝑚

3 𝑒
2 𝑗 𝜋𝑖

3 .
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Proof. By letting 𝑤 = 𝑣 + 𝑟𝑚 and 𝑟𝑚 = 𝑎1+𝑎2+𝑎3
3 , the equation

(𝑤 − 𝑎1) (𝑤 − 𝑎2) (𝑤 − 𝑎3)𝑒𝑤 = 𝑧, (5.11)

where 𝑎𝑖 ∈ R can be transformed into

(𝑣3 + 𝑝𝑣 + 𝑞)𝑒𝑣 = 𝑧𝑒−𝑟𝑚 ,

where
𝑝 = (𝑟𝑚 − 𝑎2) (𝑟𝑚 − 𝑎3) − (𝑟𝑚 − 𝑎1)2

𝑞 = (𝑟𝑚 − 𝑎1) (𝑟𝑚 − 𝑎2) (𝑟𝑚 − 𝑎3) .

Thus,

𝑊3𝑘+ 𝑗 ( 𝑎1 𝑎2 𝑎3 ; 𝑧) = 𝑎1 + 𝑎2 + 𝑎3
3

+𝑊 (𝑝,𝑞)
3𝑘+ 𝑗 (𝑧′),

where 𝑧′ = 𝑧𝑒−𝑟𝑚 and we have the desired result. □

Similarly, we obtain the following corollary for three lower parameters.

Corollary 5.2. The solutions of 1
(𝑤−𝑎1) (𝑤−𝑎2) (𝑤−𝑎3) 𝑒

𝑤 = 𝑧, 𝑧 ≠ 0 are given by

𝑤 = −𝑊𝑘

�
−𝑎1 −𝑎2 −𝑎3 ;−1

𝑧

�
.

Proof. The result follows from rewriting the equation as

[−𝑤 − (−𝑎1)] [−𝑤 − (−𝑎2)] [−𝑤 − (−𝑎3)]𝑒−𝑤 = −1
𝑧
.

□

From Lemma (3.1), Eq. (5.11) has at most four real solutions. The

following corollary provides an approach to compute all real solutions.
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Corollary 5.3. If equation (𝑤 − 𝑎1) (𝑤 − 𝑎2) (𝑤 − 𝑎3)𝑒𝑤 = 𝑧 has four real solutions,

then these solutions are 𝑊𝑘 ( 𝑎1 𝑎2 𝑎3 ; 𝑧), for 𝑘 = 0, 1, 2 and 𝑊−3+ 𝑗 ( 𝑎1 𝑎2 𝑎3 ; 𝑧),
where 𝑗 satisfies −𝑒−1 < 𝑧′𝑗 < 0.

Proof. Since Taylor series of𝑊3𝑡+ 𝑗 ( 𝑎1 𝑎2 𝑎3 ; 𝑧) can be expressed in terms of𝑊𝑘 (𝑧′𝑗 ),
and considering the properties of the Lambert𝑊 function, three real solutions can

be obtained by taking 𝑡 = 0, while the forth real solution can be obtained when

𝑡 = −1 with either 𝑗 = 0, 1 or 𝑗 = 2 such that −𝑒−1 < 𝑧′𝑗 < 0. □

The following example explores a scenario involving four real solutions.

Example 5.5. Consider the case where 𝑝 = 0.5 and 𝑞 = −1. Upon inspection, we

can verify that

−4𝑝3 + 36𝑝2 − 108𝑝 − 27𝑞2 − 108𝑞 = 35.5 > 0.

Additionally, the branch points are 𝑧 = −1.48, −0.83, and 𝑧 = −1.11. Consequently,

there exist four real solutions within the interval −1.11 < 𝑧 < −0.83.

For example, if we choose 𝑧 = −0.9, we obtain four real solutions: 𝑤 =

−4.90, −0.94, −0.21, and 𝑤 = 0.59.

5.2 Extension to higher degree

Using the transformation 𝑟𝑚 =
Í𝑛
𝑖=1 𝑎𝑖/𝑛 allows one to derive the Taylor series of

𝑊𝑛𝑘+ 𝑗 ( 𝑎1 ... 𝑎𝑛 ; 𝑧), and we obtain

𝑊𝑛𝑘+ 𝑗 ( 𝑎1 ... 𝑎𝑛 ; 𝑧) ∼ 𝑟𝑚 + 𝑛𝑊𝑘

𝑧0𝜔

𝑗 � , for 𝑗 = 0, 1, . . . , 𝑛 − 1 (5.12)

where

𝑧0 =
𝑛
√
𝑧

𝑛
𝑒−

𝑟𝑚
𝑛 , 𝜔 = 𝑒

2𝜋𝑖
𝑛 .
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The following example shows the approximated values obtained from

Eq. (5.12).

Example 5.6. Consider the case of five upper parameters, with 𝑎1 = 0.2, 𝑎2 =

0.4, 𝑎3 = 0.65, 𝑎4 = 0.7, 𝑎5 = 0.9 and 𝑧 = 10. Let 𝑊∗
5𝑚+ 𝑗 to be the approximation

given by Eq. (5.12), we tabulate the results for 𝑚 = 0,±1 in Table 5.1.

Table 5.1: 𝑊∗
5𝑚+ 𝑗 for 𝑚 = 0, 1,−1

𝑗 𝑊∗
𝑗 𝑊∗

5+ 𝑗 𝑊∗
−5+ 𝑗

0 1.6984 −13.7997 + 20.5058𝑖 −13.7997 − 20.5058𝑖
1 1.1996 + 1.0761𝑖 −14.9245 + 27.2609𝑖 −12.3235 − 13.4591𝑖
2 −0.5159 + 1.3815𝑖 −15.8374 + 33.8729𝑖 −10.1437 − 5.5206𝑖
3 −0.5159 − 1.3815𝑖 −10.1437 + 5.5206𝑖 −15.8374 − 33.8729𝑖
4 1.1996 − 1.0761𝑖 −12.3235 + 13.4591𝑖 −14.9245 − 27.2609𝑖

From the computations above, it seems suitable to use Eq. (5.12) as an

initial point for numerical computation. For the𝑊𝑘 ( 𝑎1𝑎2...𝑎𝑛 ; 𝑧) function, Halley’s

method is given in the form:

𝑤𝑛+1 = 𝑤𝑛 − 𝑓 (𝑤)
(1 + 𝑠1)

�Î𝑛
𝑡=1(𝑤 − 𝑎𝑡)

�
𝑒𝑤 − 𝑓 (𝑤)

2

�
− 𝑠2

1+𝑠1 + 𝑠1 + 1
� (5.13)

where 𝑓 (𝑤) = Î𝑛
𝑡=1(𝑤 − 𝑎𝑡)𝑒𝑤 − 𝑧, 𝑠1 =

Í𝑛
𝑡=1(𝑤 − 𝑎𝑡)−1 and 𝑠2 =

Í𝑛
𝑡=1(𝑤 − 𝑎𝑡)−2.

Table below summarises the results from Halley’s method:

Table 5.2: 𝑊5𝑚+ 𝑗 for 𝑚 = 0, 1,−1

𝑗 𝑊𝑗 𝑊5+ 𝑗 𝑊−5+ 𝑗

0 1.7195 −13.7998 + 20.5060𝑖 −13.7998 − 20.5060𝑖
1 1.2068 + 1.0569𝑖 −14.9246 + 27.2610𝑖 −12.3237 − 13.4595𝑖
2 −0.5332 + 1.3701𝑖 −15.8375 + 33.8730𝑖 −10.1432 − 5.5221𝑖
3 −0.5332 − 1.3701𝑖 −10.1432 + 5.5221𝑖 −15.8375 − 33.8730𝑖
4 1.2068 − 1.0569𝑖 −12.3237 + 13.4595𝑖 −14.9246 − 27.2610𝑖

We propose the following conjectures as avenues for further analysis:
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Conjecture 1. The solutions of (𝑤 − 𝑎1) (𝑤 − 𝑎2) . . . (𝑤 − 𝑎𝑛)𝑒𝑤 = 𝑧 is conjectured

to satisfy the following relation:

lim
|𝑚 |→∞

𝑊𝑛𝑚+ 𝑗 ( 𝑎1 𝑎2 ... 𝑎𝑛 ; 𝑧) →
𝑛
√
𝑧

𝑛
𝑒
− 𝑎1+𝑎2+···+𝑎𝑛

𝑛2 + 𝑛𝑊𝑚
�
𝑧0𝑒

2𝜋𝑖
𝑛 𝑗

�
,

for 𝑗 = 1, 2, . . . , 𝑛 − 1.

Conjecture 2. The generalised Lambert 𝑊 function is conjectured to exhibit con-

jugate symmetry as follows:

𝑊𝑛𝑚+ 𝑗 ( 𝑎1 𝑎2 ... 𝑎𝑛 ; 𝑧) = 𝑊−𝑛𝑚+(5− 𝑗) ( 𝑎1 𝑎2 ... 𝑎𝑛 ; 𝑧).
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CHAPTER 6

CONCLUSION

In this thesis, we have studied the generalised Lambert𝑊 function and made note-

worthy contributions to our understanding of these topics. Our journey began with

the aim of addressing the central questions and objectives that guided our research.

Our first objective was to investigate the application of the Lambert 𝑊

function in delay differential equations. We conducted a thorough analysis of

scalar systems with single delays, deriving conditions for the existence of feedback

controllers capable of assigning desired rightmost eigenvalues to the system.

The second objective involved exploring the series solutions and branch

structures of (𝑤2 − 𝑟)𝑒𝑤 = 𝑧, denoted as the 𝑊 (𝑟) function. We initiated our

analysis with equations solvable using the 𝑊 (𝑟) function, examining fundamental

properties, derivatives, and integrals of the 𝑊 (𝑟) function. We investigated series

expansions of the 𝑊 (𝑟) function using Taylor series expansion at 𝑟 = 0, Lagrange

inversion, and asymptotic expansions involving logarithms and the Lambert 𝑊

function. Additionally, we studied the branch structures of the𝑊 (𝑟) function.

The third objective encompassed an investigation into solutions of (𝑤3 +
𝑝𝑤 + 𝑞)𝑒𝑤 = 𝑧 and 𝑃𝑁 (𝑤)𝑒𝑤 across distinct branches. Employing an approach

similar to that used for (𝑤2 − 𝑟)𝑒𝑤 = 𝑧, we obtained series solutions for (𝑤3 + 𝑝𝑤 +
𝑞)𝑒𝑤 = 𝑧. We also acknowledged the infeasibility of extending this approach to

𝑃𝑁 (𝑤)𝑒𝑤 = 𝑧.

Our fourth and final objective aimed to numerically determine solutions
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for 𝑃𝑁 (𝑤)𝑒𝑤 = 𝑧. In this pursuit, we first identified appropriate initial points that

could be utilized to compute solutions in different branches. We employed Halley’s

method for numerical computation of solutions until achieving a specified level of

precision.

While we have successfully achieved our objectives, there remain open

questions that warrant exploration and offer intriguing prospects for future research:

Our first objective was to examine the application of the Lambert 𝑊 function in

delay differential equations. We performed detailed analysis on scalar systems with

a single delay, to provide the conditions for the existence of a feedback controller

related to assigning the rightmost eigenvalue of the system to a desired value.

1. Determining the convergence radius of the series expansions of the𝑊 (𝑟) function.

2. Exploring series expansions of the 𝑟-Lambert function capable of computing

solutions across diverse branches.

3. Investigating series solutions of the equation:

𝑃𝑁 (𝑤)
𝑄𝑀 (𝑤) 𝑒

𝑤 = 𝑧.

In accomplishing our objectives, we have not only contributed to the

advancement of pure mathematics but have also paved the way for future research

directions. The insights gained from our investigations have illuminated new avenues

for exploration and opened doors to further discoveries. Although our journey within

this thesis has reached its conclusion, the mathematical exploration ignited by our

objectives will undoubtedly continue to flourish, inspiring future mathematicians to

delve deeper into the realms of abstract mathematical thought.
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Komatsu, T., Liptai, K. and Mező, I., 2016. Incomplete poly-Bernoulli numbers as-

sociated with incomplete Stirling numbers, Publ. Math. Debrecen, 88(3-4), pp. 357–

368.

Lambert, J. H., 1758. Observationes variae in mathesin puram, Acta Hel-

vetica, 3(1), pp. 128–168.

Lovász, L., 2007. Combinatorial problems and exercises, second edn, AMS Chelsea

Publishing, Providence, RI.

Mendes, F. V., Lima, C. and Ramos, R. V., 2022. Applications of the Lambert–

Tsallis Wq function in quantum photonic Gaussian boson sampling, Quantum Inf.

Process., 21(6), p. Paper No. 215.
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APPENDIX A

MATLAB CODE

A.1 MATLAB function for the𝑊 (𝑟) function

We present the MATLAB code to compute the approximated 𝑊 (𝑟) function using
Equation (4.22).

function y=wrlambert(k, r, z)

% Compute j and ’k’

j = ceil(k/2 - floor(k/2));

k = floor(k/2);

% Compute z_j

z_j = (-1)ˆj*zˆ(1/2)/2;

Wk = lambertw(k,z_j);

% First 10 terms

term(1) = r/(4*Wk*(Wk + 1));

term(2) = (rˆ2*(4*Wkˆ2 - 2))/(128*Wkˆ3*(Wk + 1)ˆ3);

term(3) = -(rˆ3*(- 32*Wkˆ4 + 16*Wkˆ3 + 48*Wkˆ2 - 12)) ...

/(6144*Wkˆ5*(Wk + 1)ˆ5);

term(4) = (rˆ4*(384*Wkˆ6 - 512*Wkˆ5 - 1056*Wkˆ4 ...

+ 320*Wkˆ3 + 720*Wkˆ2 - 120))/(393216*Wkˆ7*(Wk + 1)ˆ7);

term(5) = -(rˆ5*(- 6144*Wkˆ8 + 14848*Wkˆ7 + 23168*Wkˆ6 ...

- 22784*Wkˆ5 - 31680*Wkˆ4 + 6720*Wkˆ3 + 13440*Wkˆ2 ...

- 1680))/(31457280*Wkˆ9*(Wk + 1)ˆ9);

term(6) = (rˆ6*(122880*Wkˆ10 - 454656*Wkˆ9 ...

- 495616*Wkˆ8 + 1197568*Wkˆ7 + 1180160*Wkˆ6 ...

- 849408*Wkˆ5 - 994560*Wkˆ4 + 161280*Wkˆ3 ...

+ 302400*Wkˆ2 - 30240))/(3019898880*Wkˆ11*(Wk + 1)ˆ11);

term(7) = -(rˆ7*(- 2949120*Wkˆ12 + 15187968*Wkˆ11 ...

+ 8871936*Wkˆ10 - 57819136*Wkˆ9 - 36314112*Wkˆ8 ...

+ 71454720*Wkˆ7 + 57666560*Wkˆ6 - 31868928*Wkˆ5 ...

- 33868800*Wkˆ4 + 4435200*Wkˆ3 + 7983360*Wkˆ2 ...

- 665280))/(338228674560*Wkˆ13*(Wk + 1)ˆ13);

term(8) = (rˆ8*(82575360*Wkˆ14 - 556793856*Wkˆ13 ...

- 15106048*Wkˆ12 + 2743828480*Wkˆ11 ...
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+ 624291840*Wkˆ10 - 5092556800*Wkˆ9 ...

- 2574473216*Wkˆ8 + 3941978112*Wkˆ7 ...

+ 2848204800*Wkˆ6 - 1263144960*Wkˆ5 ...

- 1261370880*Wkˆ4 + 138378240*Wkˆ3 + 242161920*Wkˆ2 ...

- 17297280))/(43293270343680*Wkˆ15*(Wk + 1)ˆ15);

term(9) = -(rˆ9*(- 2642411520*Wkˆ16 + 22356688896*Wkˆ15 ...

- 13038649344*Wkˆ14 - 131221422080*Wkˆ13 ...

+ 34736865280*Wkˆ12 + 333501480960*Wkˆ11 ...

+ 56692719616*Wkˆ10 - 392708194304*Wkˆ9 ...

- 179071119360*Wkˆ8 + 216340439040*Wkˆ7 ...

+ 145779701760*Wkˆ6 - 53690757120*Wkˆ5 ...

- 51338327040*Wkˆ4 + 4843238400*Wkˆ3 ...

+ 8302694400*Wkˆ2 - 518918400)) ...

/(6234230929489920*Wkˆ17*(Wk + 1)ˆ17);

term(10) = (rˆ10*(95126814720*Wkˆ18 ...

- 978824724480*Wkˆ17 + 1218840625152*Wkˆ16 ...

+ 6366973919232*Wkˆ15 - 5749812101120*Wkˆ14 ...

- 20707596042240*Wkˆ13 + 5430117171200*Wkˆ12 ...

+ 34399065014272*Wkˆ11 + 5758244831232*Wkˆ10 ...

- 28845622558720*Wkˆ9 - 12438287769600*Wkˆ8 ...

+ 12179973611520*Wkˆ7 + 7824090193920*Wkˆ6 ...

- 2456490516480*Wkˆ5 - 2274938265600*Wkˆ4 ...

+ 188194406400*Wkˆ3 + 317578060800*Wkˆ2 ...

- 17643225600))/(997476948718387200*Wkˆ19*(Wk + 1)ˆ19);

S = 0;

for m=1:10

S = S + term(m);

end

y = 2*Wk + S;

end
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A.2 MATLAB function for𝑊 (𝑝,𝑞) function

We present the MATLAB code to compute the approximated 𝑊 (𝑟) function using
Equation (5.10).

function y=wpqlambert(k, p, q, z)

t = 5;

% Compute j and ’k’

j = k - 3*floor(k/3);

k = floor(k/3);

% Compute z_j

z_j = zˆ(1/3)/3*exp(2*pi*1i/3*j);

Wk = lambertw(k,z_j);

% Terms

term(1, 1) = 0;

term(1, 2) = -q/(27*Wkˆ2*(Wk + 1));

term(1, 3) = (qˆ2*(9*Wkˆ2 - 6))/(13122*Wkˆ5*(Wk + 1)ˆ3);

term(1, 4) = -(qˆ3*(18*Wk - 486*Wkˆ2 - 243*Wkˆ3 ...

+ 162*Wkˆ4 + 126))/(9565938*Wkˆ8*(Wk + 1)ˆ5);

term(1, 5) = -(qˆ4*(540*Wk - 9504*Wkˆ2 - 8478*Wkˆ3 ...

+ 7209*Wkˆ4 + 5832*Wkˆ5 - 1458*Wkˆ6 + 1512))...

/(3099363912*Wkˆ11*(Wk + 1)ˆ7);

term(2, 1) = -p/(9*Wk*(Wk + 1));

term(2, 2) = (p*q*(9*Wkˆ2 - 6))/(2187*Wkˆ4*(Wk + 1)ˆ3);

term(2, 3) = (p*qˆ2*(15*Wkˆ2 + 6*Wkˆ3 - 6*Wkˆ4 - 4))...

/(39366*Wkˆ7*(Wk + 1)ˆ5);

term(2, 4) = (p*qˆ3*(19926*Wkˆ2 + 12150*Wkˆ3 ...

- 20169*Wkˆ4 - 11664*Wkˆ5 + 4374*Wkˆ6 - 3240))...

/(774840978*Wkˆ10*(Wk + 1)ˆ7);

term(2, 5) = (p*qˆ4*(1172232*Wkˆ2 + 868968*Wkˆ3 ...

- 2108997*Wkˆ4 - 2029536*Wkˆ5 + 822312*Wkˆ6 ...

+ 761076*Wkˆ7 - 157464*Wkˆ8 - 136080))...

/(753145430616*Wkˆ13*(Wk + 1)ˆ9);

term(3, 1) = -(pˆ2*(3*Wk + 2))/(486*Wkˆ2*(Wk + 1)ˆ3);

term(3, 2) = -(pˆ2*q*(13*Wk + 2*Wkˆ2 - 6*Wkˆ3 + 6))...

/(13122*Wkˆ5*(Wk + 1)ˆ5);

term(3, 3) = -(pˆ2*qˆ2*(4968*Wk - 108*Wkˆ2 - 7371*Wkˆ3 ...

- 2916*Wkˆ4 + 1458*Wkˆ5 + 1944))...

/(57395628*Wkˆ8*(Wk + 1)ˆ7);

term(3, 4) = -(pˆ2*qˆ3*(258228*Wk - 83754*Wkˆ2 ...

- 767637*Wkˆ3 - 429624*Wkˆ4 + 355752*Wkˆ5 ...

+ 218700*Wkˆ6 - 52488*Wkˆ7 + 91368)) ...
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/(41841412812*Wkˆ11*(Wk + 1)ˆ9);

term(3, 5) = -(pˆ2*qˆ4*(16201296*Wk - 11139120*Wkˆ2 ...

- 77472288*Wkˆ3 - 47290230*Wkˆ4 + 69172623*Wkˆ5 ...

+ 66738492*Wkˆ6 - 12439656*Wkˆ7 - 15903864*Wkˆ8 ...

+ 2361960*Wkˆ9 + 5342112)) ...

/(40669853253264*Wkˆ14*(Wk + 1)ˆ11);

term(4, 1) = -(pˆ3*(108*Wk + 387*Wkˆ2 + 594*Wkˆ3 ...

+ 324*Wkˆ4 + 18))/(354294*Wkˆ5*(Wk + 1)ˆ5);

term(4, 2) = -(pˆ3*q*(120*Wk + 505*Wkˆ2 + 1005*Wkˆ3 ...

+ 666*Wkˆ4 - 243*Wkˆ5 - 324*Wkˆ6 + 20)) ...

/(3188646*Wkˆ8*(Wk + 1)ˆ7);

term(4, 3) = -(pˆ3*qˆ2*(136080*Wk + 630990*Wkˆ2 ...

+ 1468692*Wkˆ3 + 961065*Wkˆ4 - 1288872*Wkˆ5 ...

- 1867698*Wkˆ6 - 262440*Wkˆ7 + 314928*Wkˆ8 ...

+ 22680))/(41841412812*Wkˆ11*(Wk + 1)ˆ9);

term(4, 4) = -(pˆ3*qˆ3*(7348320*Wk + 36245880*Wkˆ2 ...

+ 93871872*Wkˆ3 + 52440615*Wkˆ4 - 179218089*Wkˆ5 ...

- 279721674*Wkˆ6 - 41117787*Wkˆ7 + 124554024*Wkˆ8 ...

+ 39917124*Wkˆ9 - 14171760*Wkˆ10 + 1224720))...

/(30502389939948*Wkˆ14*(Wk + 1)ˆ11);

term(4, 5) = -(pˆ3*qˆ4*(221760*Wk + 1138240*Wkˆ2 ...

+ 3188144*Wkˆ3 + 1271398*Wkˆ4 - 10555296*Wkˆ5 ...

- 17324799*Wkˆ6 - 1027098*Wkˆ7 + 15388812*Wkˆ8 ...

+ 7702776*Wkˆ9 - 3123036*Wkˆ10 - 1796256*Wkˆ11 ...

+ 349920*Wkˆ12 + 36960)) ...

/(13556617751088*Wkˆ17*(Wk + 1)ˆ13);

term(5, 1) = -(pˆ4*(4752*Wk + 14976*Wkˆ2 + 24651*Wkˆ3 ...

+ 20412*Wkˆ4 + 6804*Wkˆ5 + 684)) ...

/(38263752*Wkˆ6*(Wk + 1)ˆ7);

term(5, 2) = -(pˆ4*q*(24*Wk + 80*Wkˆ2 + 1176*Wkˆ3 ...

+ 11985*Wkˆ4 + 74268*Wkˆ5 + 253827*Wkˆ6 ...

+ 480330*Wkˆ7 + 504225*Wkˆ8 + 275562*Wkˆ9 ...

+ 61236*Wkˆ10 + 4))/(3099363912*Wkˆ12*(Wk + 1)ˆ9);

term(5, 3) = -(pˆ4*qˆ2*(97200*Wk + 431406*Wkˆ2 ...

+ 888408*Wkˆ3 + 1735263*Wkˆ4 + 39538044*Wkˆ5 ...

+ 325482462*Wkˆ6 + 1240698222*Wkˆ7 ...

+ 2639057274*Wkˆ8 + 3336858990*Wkˆ9 ...

+ 2499544170*Wkˆ10 + 1026744012*Wkˆ11 ...

+ 178564176*Wkˆ12 + 16200)) ...

/(122009559759792*Wkˆ15*(Wk + 1)ˆ11);

term(5, 4) = -(pˆ4*qˆ3*(5715360*Wk + 27886680*Wkˆ2 ...

+ 70269768*Wkˆ3 + 29681235*Wkˆ4 - 39162609*Wkˆ5 ...

+ 2572939890*Wkˆ6 + 21803534883*Wkˆ7 ...

+ 86693222376*Wkˆ8 + 203237564454*Wkˆ9 ...

+ 300196849140*Wkˆ10 + 283351586616*Wkˆ11 ...
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+ 166316586714*Wkˆ12 + 55444176648*Wkˆ13 ...

+ 8035387920*Wkˆ14 + 952560)) ...

/(88944969064888368*Wkˆ18*(Wk + 1)ˆ13);

term(5, 5) = -(pˆ4*qˆ4*(181440*Wk + 926720*Wkˆ2 ...

+ 2572048*Wkˆ3 + 928130*Wkˆ4 - 8839392*Wkˆ5 ...

- 9694197*Wkˆ6 + 95024862*Wkˆ7 + 756172332*Wkˆ8 ...

+ 3112999884*Wkˆ9 + 8002240452*Wkˆ10 ...

+ 13520247840*Wkˆ11 + 15325679520*Wkˆ12 ...

+ 11589087960*Wkˆ13 + 5623826760*Wkˆ14 ...

+ 1587237120*Wkˆ15 + 198404640*Wkˆ16 + 30240)) ...

/(39531097362172608*Wkˆ21*(Wk + 1)ˆ15);

S = 0;

for m=1:t

for n=1:t

S = S + term(m,n);

end

end

y = 3*Wk + S;

end
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A.3 MATLAB function for solving 𝑃𝑁 (𝑤)𝑒𝑤 = 𝑧

We present the MATLAB code to compute the approximated solutions for𝑃𝑁 (𝑤)𝑒𝑤 =
𝑧 using Equation (5.13) with Equation (5.12) as initial point.

function w = initVal(inputArr, z, k)

% Handle optional input arguments

if nargin == 3

%k is given

else

k = 0;

end

% Compute parameters

n = numel(inputArr);

rm = sum(inputArr) / numel(inputArr);

z0 = zˆ(1/n)/n*exp(-rm/n);

omg = exp(2*pi*1i/n);

j = k - floor(k/n)*n;

k = floor(k/n);

% Compute initial value

w = rm + n*lambertw(k, z0*omgˆj);

end

function y = genLambert(inputArr, z, k)

if nargin == 3

% k is given

else

k = 0;

end

% Parameters

target = 1e-7;

loopCnt = 0;

% Initial value

w = initVal(inputArr, z, k);

chk = 1;

while (chk > target) && (loopCnt <= 100)

e = w - inputArr;

w1 = prod(e)*exp(w);

s1 = sum(1./e);

s2 = sum(1./(e.ˆ2));
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f = w1 - z;

f1 = (1 + s1)*w1;

f2_f1 = -s2/(1+s1) + s1 + 1;

w = w - f/(f1 - 0.5*f*f2_f1);

chk = abs(prod(w - inputArr)*exp(w) - z);

loopCnt = loopCnt + 1;

end

y = w;

end
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