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ABSTRACT 

 

Head and neck cancers (HNC) are among the most prevalent cancers globally, 

with high mortality and poor prognosis often resulting from late-stage diagnoses. 

However, diagnostic difficulties are compounded by the histological complexity 

of HNCs and the subjective nature of manual histopathological analysis, which 

is prone to human error and inter-observer variability. Therefore, this study 

proposed a deep learning approach to assist in the classification of HNC from 

histopathological whole slide images, aiming to improve diagnostic accuracy 

and reduce observer bias. This study adopted the Head and Neck Squamous Cell 

Carcinoma dataset from the Clinical Proteomic Tumor Analysis Consortium, 

which consists of 390 whole slide images from various head and neck cancer 

sites, including 122 benign and 268 tumor slides. Convolutional neural network 

(CNN) models were trained using a transfer learning strategy, incorporating 

variants from the DenseNet, EfficientNet, MobileNet, ResNet, and VGG 

families. These models were fine-tuned using pre-trained weights and further 

evaluated for classification performance at three magnification levels (1.25×, 

2.5×, and 5×). The top-performing CNN models were then combined using 

ensemble learning techniques to improve overall accuracy and robustness. The 

ensemble approach, particularly the majority voting with five models ensemble, 

outperformed individual models, achieving an accuracy of 96.09%, along with 

improved performance in sensitivity, precision, and F1-score. Visual 

interpretability tools, such as Gradient-weighted Class Activation Mapping, 

were employed to provide insights into the models' decision-making processes, 

enhancing the transparency and trustworthiness of the artificial intelligence 

predictions. The study also compared the CNN-based models to Vision 

Transformer models, showing that CNN ensembles achieved superior 

performance in classification tasks. This research highlights the potential of 

deep learning, particularly ensemble methods, in histopathological image 

analysis, with significant applications in computer-aided diagnosis for cancer 

detection. Further work should focus on addressing class imbalance, integrating 

the models into a clinical pipeline, and exploring multimodal learning to 

enhance model performance and clinical applicability. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Head and neck cancers, also known as Head and Neck Squamous Cell 

Carcinoma (HNSCC), are a group of cancers that typically begin in the 

squamous cells lining the moist surfaces of regions like the mouth, throat, and 

voice box (National Cancer Institute, 2021). These cancers represent the sixth 

most commonly diagnosed globally, with approximately 900,000 new cases and 

over 400,000 deaths reported annually (Stenson, 2025). The primary risk factor 

for HNSCC is tobacco use, accounting for approximately 75% of all cases, 

while other common risk factors include alcohol consumption and infections 

such as human papillomavirus and Epstein-Barr virus (Barsouk et al., 2023). 

The survival rates for head and neck cancers vary significantly depending on 

the stage at diagnosis. Studies show that patients diagnosed with localized 

disease have a 5-year survival rate of 86.3%, which decreases to 69.0% for those 

with locally advanced disease and drops further to 40.4% for metastatic cases. 

(Barsouk et al., 2023). Moreover, the diagnosis of head and neck cancers 

(HNCs), especially rare subtypes (r-HNCs), is also challenging due to their low 

incidence, overlapping histological features with more common cancers, and 

complex molecular profiles (Filippini et al., 2024). The rarity of these tumors 

often results in limited clinical experience, leading to difficulties in accurate 

recognition and classification. Therefore, early detection and accurate dianogsis 

are important for improving prognosis and tailoring appropriate treatment 

strategies, especially given the significant survival differences across disease 

stages. 

 Currently, cancer diagnosis primarily depends on imaging techniques 

and pathological assessments. Modern cancer diagnosis involve a series of steps 

designed to detect and confirm the presence of cancer. It typically starts with a 

clinical examination, where a doctor evaluates the patient’s symptoms and 

medical records. Imaging screening, such as computed tomography (CT) scans 

and magnetic resonance imaging (MRI) are then used to detect and evaluate 

suspected cancers. Moreover, a biopsy is usually required to confirm a cancer 
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diagnosis, as it provides a sample of abnormal tissue for further evaluation. The 

tissue is then analyzed through histopathological image analysis, where a 

pathologist examines it under a microscope to discover malignant cells and 

evaluate the specific type, level, and possible stage of the cancer (Robinson, 

2024). In recent years, this process has been enhanced through the adoption of 

Whole Slide Imaging (WSI), which digitizes tissue slides at high resolution. 

WSI has seen major improvements in image quality and scanning speed, and 

studies have shown strong diagnostic agreement between WSI and traditional 

microscopy, supporting its growing use in clinical and research applications for 

cancer detection and classification (Rizzo et al., 2022).   

With advances in technology, particularly through artificial 

intelligence (AI) and machine learning (ML), cancer diagnostics are being 

revolutionized through the integration of complex algorithms and large datasets. 

Computer-aided diagnosis (CAD), an automated tool that uses computer-

generated outputs, is gaining popularity due to its extensive use in digital image 

analysis across MRI, X-ray, endoscopy, ultrasound, and WSI to enhance clinical 

diagnosis (Halalli and Makandar, 2018; Komura and Ishikawa, 2018). Thereby 

improving early detection and diagnostic accuracy despite the computer’s 

performance not surpassing that of experienced radiologists (Doi, 2007). 

Therefore, the integration of AI and ML into CAD systems is expected to further 

elevate their capabilities, enabling more accurate and timely diagnoses. As these 

technologies continue to evolve, they hold the promise of transforming cancer 

diagnostics by providing additional layers of analysis and reducing the reliance 

on traditional methods alone (Sebastian and Peter, 2022). The ongoing 

advancements in CAD are paving the way for more personalized and effective 

cancer detection strategies, ultimately contributing to better patient prognosis 

and advancing the discipline of oncology.  

 

1.2 Importance of the Study 

Since the AI revolution in the mid-20th century, machine learning has revealed 

its vast potential in the medical field, driving advancements in personalized 

treatment, predictive analytics, remote patient monitoring, and especially 

enhanced diagnostics (Boyle, 2024). Among these applications, deep learning 

(DL) in cancer detection has been extensively explored due to its ability to offer 
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advanced imaging interpretation by analyzing large datasets, including 

thousands of medical images and patient records. DL models can detect subtle 

patterns and nuances that may be overlooked by the human eye, making it a 

powerful tool in early cancer diagnosis. For instance, in automated 

histopathological analysis, DL algorithms can examine tissue samples at a 

microscopic level, identifying cellular abnormalities with remarkable precision. 

These systems can differentiate between benign and malignant cells, assess 

tumor aggressiveness, and even predict patient outcomes based on histological 

features (Ong et al., 2023; McCaffrey et al., 2024). This technology also 

benefits doctors by enabling earlier and more accurate cancer diagnoses, which 

allows for quicker treatment initiation before the disease spreads. Additionally, 

AI helps in reduce unnecessary follow-up biopsies by minimizing false positives, 

saving time, costs, and reducing patient anxiety(Spectrum AI, 2024). By 

speeding up the diagnostic process and prioritizing high-risk cases, AI-powered 

technologies improve the productivity of medical personnel by allowing them 

to focus on challenging situations, ultimately improving patient outcomes and 

streamlining healthcare systems (Alowais et al., 2023).  

 These findings will not only contribute to the field of medical imaging 

and artificial intelligence but also support the broader goal of personalized 

medicine by enabling tailored diagnostic and treatment approaches based on 

individual patient profiles. AI technologies have significant potential to 

transform traditional cancer diagnostics, which have traditionally relied on the 

expertise of pathologists and are often labor-intensive and prone to human error. 

Nowadays, various machine learning approaches, including supervised and 

weakly supervised learning, unsupervised methods, transfer learning, and 

Vision Transformers, are actively being explored for their potential to support 

cancer diagnosis through tasks such as tissue segmentation, tumor classification, 

and feature extraction(Tiwari et al., 2025). By leveraging DL techniques or 

other AI advancements, automated systems hold great potential for enhancing 

the early and accurate detection of cancer, ultimately improving patient 

outcomes and increasing survival rates. 
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1.3 Problem Statement 

In Malaysia, oral squamous cell carcinoma (OSCC), the most common type of 

HNSCC, accounts for approximately 10.6% of cancer-related deaths in 

government hospitals, with a concerning 67.1% of cases diagnosed at an 

advanced stage (Ahmad et al., 2021). The high rate of late-stage diagnoses 

significantly compromises patient survival and limits treatment effectiveness, 

highlighting the urgent need for improved early diagnostic strategies. Moreover, 

diagnostic challenges are particularly prominent in rare subtypes of HNSCC that 

originate from anatomically complex regions such as the nasopharynx, nasal 

and paranasal sinuses, salivary glands, and middle ear. These tumors often 

present overlapping histological features with more common cancers, making 

accurate identification difficult. Their rarity and anatomical complexity further 

complicate early detection, leading to diagnostic delays and difficulties in 

planning timely and effective treatment. Therefore, early and accurate 

identification of tumor origins, particularly in anatomically complex and 

histologically diverse regions such as the head and neck, is crucial for improving 

prognosis and guiding effective therapeutic decisions.  

Furthermore, histopathology, a primary method for diagnosing cancer 

and determining its stage, can sometimes lead to misinterpretation and 

misdiagnosis, with a significant false-positive rate of approximately 27% 

(Wright, 2021). The reliance on manual interpretation of histopathological 

slides by pathologists further exacerbates this issue, as the process is time-

consuming, subjective, and susceptible to inter-observer variability and human 

error (Wang et al., 2025). Misdiagnoses can arise from the complexity of 

interpreting histopathological images, which may present subtle variations that 

are challenging to distinguish (Li et al., 2023). For instance, histopathological 

images of early-stage cancers can resemble non-cancerous conditions or other 

diseases, complicating diagnosis. The subjective nature of image interpretation 

by pathologists, variability in expertise, and potential fatigue can lead to 

oversight or errors (Najjar, 2023). These misdiagnoses can delay appropriate 

treatment, allow cancer to progress, and impact patient outcomes significantly.  

To solve these difficulties, deep learning has the potential to transform 

this field by enhancing early detection and precise diagnosis using advanced 

image analysis and pattern recognition, which may improve treatment accuracy 
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and patient outcomes. Therefore, there is a critical need for accurate and scalable 

deep learning models that can assist pathologists in detecting cancer with high 

precision and consistency. 

 

1.4 Aim and Objectives 

In this study, it focuses on the development of a CAD system based on deep 

learning for binary classification of histopathological images related to cancer, 

with a primary emphasis on HNSCC. State-of-the-art techniques such as 

transfer learning, ensemble learning, and Grad-CAM visualizations are 

employed to improve the accuracy and interpretability of the model. This 

method aims to contribute to advancements in automated cancer detection, 

improving both diagnostic precision and the ability to interpret model decisions 

in a clinical settings. Several objectives are aim to achieve in this study: 

(i) To design and implement CNN and ViT models using transfer 

learning and fine-tuning for histopathological image 

classification. 

(ii) To enhance classification performance through ensemble 

learning techniques. 

(iii) To evaluate the performance of designed models. 

(iv) To compare the performance of CNN-based approaches with 

ViT approaches on the same dataset. 

 

1.5 Scope and Limitation of the Study 

This study focuses on the development and evaluation of CNN models for the 

automated analysis of HNSCC histopathological images, with a specific 

emphasis on binary classification to differentiate between cancerous and non-

cancerous tissues. It will also involve pre-processing WSIs to prepare them for 

input into the deep CNN model. Transfer learning techniques, especially fine-

tuning, will be utilized to boost the model’s learning capabilities. Top-

performing models will then undergo ensemble learning to further enhance 

classification outcomes. The performance of these models will be evaluated and 

compared with a Vision Transformer (ViT) model to identify the most effective 

approach. While the primary focus is on HNC, the study has the potential to 

extend to other cancer types based on the results obtained. 
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However, the study encounters several limitations. The availability and 

quality of histopathological image datasets can impact the model's performance, 

as inadequate staining or poor-quality images may hinder effective training and 

validation. Additionally, the acquired dataset may show data imbalance, which 

could lead to biased model predictions and affect performance on 

underrepresented classes. To mitigate these issues, regularization techniques 

will be applied to reduce overfitting and improve the model's generalization 

across all classes. Moreover, this study will focus only on the HNSCC cohort, 

while the generalizability of the CNN model to other cancer types and 

histopathological conditions remains uncertain and requires further 

investigation. Lastly, while the model's performance has been evaluated within 

a research context, further validation and integration into clinical workflows are 

needed to ensure its reliability and practical effectiveness in real-world 

applications. 

 

1.6 Contribution of the Study 

This study contributes to the field of WSI analysis by exploring deep learning 

techniques for the binary classification of histopathological images, specifically 

focusing on HNSCC. The pipeline covers critical preprocessing steps, including 

tissue masking, tiling, patch extraction, stain normalization, and label 

assignment, followed by model training and evaluation. Several cutting-edge 

models are used, including CNNs (DenseNet, EfficientNet, MobileNet, ResNet 

and VGG) and ViT, which employ transfer learning and fine-tuning techniques. 

Ensemble learning techniques are applied to further improve classification 

performance by aggregating predictions from multiple CNNs. A comparative 

analysis between CNN-based and ViT-based approaches is conducted to assess 

their respective strengths in this domain. While the models generated in this 

study are not part of a fully deployed CAD system, the reliable models and 

reproducible pipeline developed here pave the way for future incorporation into 

diagnostic assistance systems. These models demonstrate significant potential 

for automating cancer detection, assisting pathologists with clinical processes, 

and contributing to the creation of interpretable, AI-powered decision support 

systems in digital pathology.  
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1.7 Outline of the Report 

This report is structured as follows: Chapter 2 presents an overview of deep 

learning in histopathological image processing and analyzes related research, 

with a focus on CNN and ViT architectures, transfer learning strategies, and 

ensemble learning techniques. Chapter 3 outlines the deep learning pipeline for 

the study, including dataset preparation, model development, implementation 

procedures, and evaluation method. Chapter 4 presents the evaluation results, as 

well as the discussion and comparison of outcomes across architectures. Chapter 

5 summarizes the key findings and outlines potential directions for future 

research. The confusion matrix, loss and accuracy curves, and ROC graphs are 

included in the Appendices for further reference. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Histopathological images are microscopic tissue samples used for disease 

analysis, commonly applied in cancer detection and stage determination. 

Traditionally, pathologists manually examine tissue samples under a 

microscope to identify abnormalities. Problems evolve including the complexity 

of these images, combined with the growing workload, makes the process time-

consuming and may lead to findings influenced by the pathologist's subjectivity. 

To address these issues, the digitization of these slides has enabled the 

application of computational techniques to automate the analysis process, aiding 

pathologists in detecting abnormalities with greater accuracy. Whole slide 

imaging was first described by Wetzel and Gilbertson in 1999 as the digitization 

of entire histology slides or selected areas. The evolution of WSI has progressed 

from basic digitization of tissue slides to advanced systems with automatic 

refocusing, tissue recognition, and multimodal imaging, significantly improving 

efficiency and image quality in digital pathology. However, the complexity of 

histopathological images, combined with the need for precise interpretation, 

poses significant challenges, especially when dealing with large-scale datasets. 

Therefore, modern histopathological image analysis, driven by advancements 

in digital pathology and artificial intelligence, has become essential in clinical 

practice (Moscalu et al., 2023).  

In recent years, deep learning methods are potentially poised to 

revolutionize clinical practice by enhancing diagnostic accuracy, streamlining 

workflows, and improving patient outcomes, with ongoing research addressing 

challenges to integrate these advancements into routine medical settings 

(Moscalu et al., 2023). A successful example by Guo et al. (2022) demonstrates 

the valuable clinical applications of CAD in MRI, where it is used to 

differentiate between noninvasive and invasive breast lesions, classify invasive 

cancers with or without lymph node metastasis, and assist in tumor staging. In 

result, the integration of digital pathology with AI enables pathologists to 

expand their diagnostic capabilities, facilitating the extraction of clinical 
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insights from large datasets, ultimately improving patient care and operational 

efficiency. 

 

2.2 Deep Learning Architectures 

Deep learning architecture refers to the structure and organization of layers in 

an artificial neural network designed to automatically learn patterns and 

representations from data, eliminating the need for manual feature extraction. 

(Madhavan and Jones, 2024). These architectures can generally be classified 

into supervised and unsupervised learning models. In cancer diagnostics, 

particularly using histopathological images, deep learning models like CNNs 

and ViTs have shown promising performance in image recognition and 

classification tasks. This section provides an overview of these prominent 

architectures used in the present study, outlining their design principles, variants, 

and applications in cancer detection. 

 

2.2.1 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks have revolutionized medical image analysis by 

leveraging hierarchical feature extraction to enhance classification performance. 

Unlike traditional image processing methods, CNNs automatically learn and 

extract features from raw image data through multiple layers of convolutional 

operations, pooling, and activation functions (Kalra, 2023). In a CNN, the 

convolutional layer applies filters to the image to detect features, using a set of 

weights to perform mathematical convolutions and generate feature maps 

(Shajun Nisha and Nagoor Meeral, 2021). These maps are then processed by the 

ReLU activation layer, which introduces non-linearity by setting negative 

values to zero. The pooling layer subsequently diminishes the spatial 

dimensions of the feature maps, retaining only the most significant information 

and helping to prevent overfitting. After several convolutional and pooling 

operations, the network uses fully connected layers, where flattened features are 

classified using a softmax function to output probabilities for different classes. 

This capability allows them to identify complex patterns and structures within 

histopathological images, which are critical for accurate cancer diagnosis. 
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2.2.1.1 VGG 

VGG is one of the earlier deep learning models that demonstrated the 

effectiveness of deep networks for image classification. It consists of sequential 

layers of convolutional filters that capture detailed features. While VGG is 

known for its simplicity and ease of implementation, its high computational 

complexity makes it less ideal for large histopathological datasets. The VGG 

models, developed by Simonyan and Zisserman (2014) and presented in their 

2014 paper, aimed to explore how increasing the depth of convolutional neural 

networks impacts performance in large-scale image recognition tasks. The 

primary variants of VGG used for transfer learning are VGG-16 and VGG-19 

(Shoeibi et al., 2022). Both VGG-16 and VGG-19 are popular choices for 

transfer learning in histopathological image detection. For instance, Setiawan, 

Pramudita and Mulaab (2024) demonstrated the effectiveness of these models 

in automated lung cancer detection, achieving a highest accuracy of 97%. 

Similarly, Kanimozhi and Priyadarsini (2024) used VGG-19 for breast cancer 

detection, attaining an impressive accuracy of 99.22%. Therefore, VGG models, 

particularly VGG-16 and VGG-19, have proven effective for transfer learning 

in histopathological image detection. Despite their computational complexity, 

these models have achieved notable results in various cancer detection tasks, 

demonstrating their value in advancing automated diagnostic systems. 

 

2.2.1.2 ResNet 

ResNet (Residual Networks) was introduced by He et al. (2016) in their 2015 

paper titled “Deep Residual Learning for Image Recognition.” It introduced the 

concept of residual learning, which allows for deeper networks without the 

vanishing gradient problem. Variants of ResNet include ResNet50, ResNet101, 

and ResNet152, each differing in the number of layers and the depth of the 

network. The different variants of ResNet primarily differ in their depth, or the 

number of layers, which affects their capacity and computational complexity 

(Chaure, 2024). These variants offer different trade-offs between computational 

complexity and model performance, allowing flexibility in various image 

recognition tasks. Findings indicate that ResNet-50 is frequently used for 

feature selection in the initial stage of multi-classification tasks. For instance, 

Shen et al. (2023) and Marostica et al. (2021) both employed ResNet-50 for 
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feature extraction before proceeding with further classification. This might due 

to ResNet's use of residual blocks allows it to train very deep networks 

effectively. This design addresses the vanishing gradient issue and allows the 

network to learn complex features more effectively compared to some other 

architectures. Moreover, Ashwini et al. (2024) demonstrated a framework using 

ResNet50 for early breast cancer detection, achieving an impressive accuracy 

of 96.9% with their proposed system. These capabilities underscore ResNet’s 

significant role in advancing both image recognition and medical diagnostics. 

 

2.2.1.3 DenseNet 

DenseNet (Densely Connected Convolutional Networks) was proposed by 

Huang et al. (2017). It further improved upon previous architectures by 

introducing dense connections between layers, allowing for more efficient 

gradient flow and feature reuse. Its compact architecture makes it suitable for 

analyzing high-resolution histopathological images, reducing the need for large 

computational resources. For instance, Noaman et al. (2024) had shown their 

promising result in automated breast cancer detection via the fusion of 

DenseNet201 with color histogram techniques  to chieve a 99.683% of accuracy. 

Besides, Potsangbam and Shuleenda Devi (2024) demonstrated the 

effectiveness of transfer learning with the DenseNet architecture, achieving an 

accuracy of 96.53% at 100x magnification. These examples illustrate 

DenseNet’s effectiveness in enhancing diagnostic performance in specialized 

image analysis tasks. 

 

2.2.1.4 MobileNet 

MobileNet, proposed by Howard (2017), is a lightweight architecture designed 

for use in resource-constrained environments. Its depthwise separable 

convolutions reduce computational complexity while maintaining high 

accuracy, yielding it appropriate for real-time applications and deployment on 

mobile devices. The MobileNet variants include MobileNetV1, MobileNetV2, 

MobileNetV3, MobileNetV3-Large, and MobileNetV3-Small, each offering 

distinct features tailored to different needs and computational constraints. 

According to research by Datta Gupta et al. (2023), MobileNet achieved a high 

accuracy of 98%, matching that of InceptionV3 and outperforming ResNet50 
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by 13.34% in a three-class classification task, while having a model that is at 

least six times more compact than the others. These advantages highlight 

MobileNet’s effectiveness in delivering high performance with significantly 

lower computational demands, making it particularly well-suited for mobile and 

edge computing applications. 

 

2.2.1.5 EfficientNet 

EfficientNet, as one of the latest CNN proposed by Tan (2019), scales both 

depth, width, and resolution of the network in a balanced manner, leading to 

state-of-the-art performance in various image classification tasks. Its efficiency 

in handling large image datasets with reduced parameters makes it particularly 

well-suited for histopathological image analysis, where computational 

resources may be limited. For instance, Albalawi et al. (2024) developed a deep 

learning model based on EfficientNetB3, achieving an impressive 99% accuracy 

in differentiating between normal epithelium and OSCC tissues using a 

substantial dataset of 1224 images from 230 patients. Moreover, Abhishek et al. 

(2024) demonstrated that the EfficientNetB4 model achieved superior 

performance with an accuracy of 99.89% in classifying colorectal cancer from 

histological images, outperforming other models such as GoogleNet, AlexNet, 

and various ResNet architectures, which all had accuracies below 95%. 

Therefore, EfficientNet’s scalable architecture, with its variants from B0 to B7, 

allows for modifications in depth, width, and resolution, making it adaptable for 

various computational needs and accuracy requirements in histopathological 

image analysis. 

 

2.2.2 Vision Transformers (ViTs) 

Unlike CNNs, Vision Transformer is a deep learning architecture that adapts the 

Transformer model, originally designed for text, to image analysis by treating 

images as sequences of patch embeddings. Dosovitskiy et al. (2020) pioneered 

the ViT by introducing a pure Transformer architecture for image classification 

and showing that, when trained on massive datasets like ImageNet-21k, it can 

surpass CNN performance. ViT divides an image into fixed-size patches, 

flattens them, and feeds the resulting sequence into a standard Transformer 

encoder, which a simple fully connected neural network includes Multi-Head 
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Attention and Multi-Layer Perceptrons, to extract features for image 

classification (Shah, 2022). While ViT and CNNs share similar steps, such as 

splitting the image into patches, using pretrained models, and fine-tuning, they 

are often compared or even combined in hybrid models due to their 

complementary strengths. 

 ViT shows its prominent in cancer clascification. For instance, Abadi 

and Reza (2024) achieved 95.11% accuracy in breast cancer classification using 

ViT by employing a progressive fine-tuning strategy that gradually updated 

more layers to adapt to the cytological image domain. Besides, ViT has also 

demonstrated strong performance in multi-class classification, particularly in 

skin cancer detection, as evidenced by studies from Yang, Luo and Greer (2025) 

and Ozdemir and Pacal (2025) , which reported high classification accuracies of 

95.05% and 93.48%, respectively. Several studies have also proposed hybrid 

CNN and ViT frameworks to leverage the advantages of both architectures for 

improved classification performance (Hayat et al., 2024; Katar et al., 2024; 

Patheda et al., 2025). The study from Momentum (2022) also highlighted 

several limitations of ViT learning, including lack of inherent positional 

awareness, fixed input resolution constraints, loss of fine-grained spatial 

information, patch border disruption, lack of translational equivariance, and 

high computational cost due to quadratic scaling with input length, which pose 

a significant challenge to its scalability and effectiveness in high-resolution or 

dense prediction tasks. 

 

2.3 Deep Learning Techniques 

2.3.1 Transfer Learning 

Transfer learning has become a critical approach in medical image analysis due 

to the limited availability of annotated medical datasets. This technique 

leverages deep learning models pre-trained on large, diverse datasets like 

ImageNet, which contain vast amounts of labeled data across various categories, 

and then applie it to another task. By using CNNs pretrained on large general-

purpose image datasets, researchers can fine-tune the models on medical images, 

thereby significantly improving accuracy, reducing training time, and 

addressing the challenge of limited labeled data (Zheng et al., 2023). For 

instance,Hava Muntean and Chowkkar (2022)demonstrated that transfer 
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learning with the DenseNet121 model achieved 86.6% accuracy in classifying 

breast histopathological images at the 100X magnification level, with a 16.4% 

increase in training accuracy compared to models trained from scratch. Besides, 

Deebani et al. (2025) analyzed the effectiveness of Transfer Learning and 

transformers in multiscale cancer detection, achieving 97.41% accuracy for 

colon cancer and 94.71% accuracy for histopathological lung cancer detection. 

These studies highlight the potential of transfer learning in reducing 

computational costs, minimizing the need for large datasets, and improving 

model generalizability. However, transfer learning can lead to negative transfer 

and reduced model performance if the source and target tasks are dissimilar, the 

data distributions differ significantly, or an inappropriate model is applied. 

Ongoing research is focusing on methods such as distant transfer and various 

evaluation techniques for assessing task and dataset similarities, with the goal 

of reducing negative transfer and increasing transfer learning efficacy. 

 

2.3.2 Ensemble Learning 

The intricate characteristics of histopathological images often make them 

difficult to identify recognizing features using a pre-trained classification 

method. Hence, ensemble learning approaches, which intergrate several 

classification models, are commonly employed to address the complexities 

natural in analyzing these images. 

Ensemble learning, first introduced by Nilsson in 1965, is a supervised 

learning approach where multiple base models are trained and their predictions 

are combined to generate a more precise overall result(Yang, 2017). The 

fundamental idea is to leverage the combined strength of diverse models, each 

with unique error patterns, to achieve improved overall performance compared 

to individual models. In cancer detection, ensemble methods have shown to be 

effective by reducing model variance and improving robustness. Techniques 

such as majority voting, stacking, and weighted averaging are commonly used 

to integrate the outputs of different CNN models, resulting in a more reliable 

classification system. For instance, Yong et al. (2023) demonstrates that the 

ensemble models, comprising EfficientNetB0, EfficientNetB1, DenseNet121, 

DenseNet169, and MobileNet with unweighted averaging, significantly 

enhance gastric cancer detection accuracy from histopathological images, 
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achieving a state-of-the-art accuracy of 99.20% in 160 × 160 pixel patches and 

offering valuable support for early diagnosis. By using the accuracy from pre-

trained models as weights for averaging in the ensemble, Zheng et al. (2023) 

achieved an impressive 98.90% accuracy with their deep ensemble model for 

binary classification of breast histopathological images. This model 

outperformed recent transformer and MLP models by 5%–20%, showcasing its 

superior performance in classification tasks. 

Addictionally, three ensemble methods, including majority voting, 

averaging, and probability-based fusion, were employed to categorize 

cardiovascular tissues into six distinct classes in Mittal (2021) study. For 

majority voting, the final prediction was determined by selecting the most 

frequently predicted label from the constituent CNNs. To produce the final 

prediction, the probability-based fusion method normalized and combined the 

predicted probabilities from the CNNs. While the averaging ensemble of three 

CNNs achieved the highest overall F1-score, the method provided the best F1-

score with six CNNs. Conversely, the majority voting method did not surpass 

the performance of the other two ensemble techniques in any configuration 

(Mittal, 2021). In short, ensemble learning methods, with their capacity to 

integrate multiple classification models, offer a robust solution for the complex 

task of analyzing histopathological images. By leveraging diverse models and 

combining their outputs through techniques like unweighted averaging, 

majority voting, and probability-based fusion, these methods enhance accuracy 

and reliability in cancer detection. 

 

2.4 Summary 

This literature review examined the development and application of deep 

learning techniques for histopathological image analysis, particularly in cancer 

detection. It reviewed major deep learning architectures, including CNNs and 

ViTs, outlining their structural differences, benefits, and prior success in 

medical image classification. The key techniques such as transfer learning and 

ensemble learning were also discussed, which enhance model generalization 

and performance, particularly on limited medical datasets. The summaries of 

each reviewed study are aligned with the specific cancer type targeted for 
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classification, as well as the selection of architectures and techniques adopted 

in the present study, as detailed in Table 2.1. 

 

Table 2.1: Summary of Reviewed Models. 

Reference Cancer Type Method Accuracy 

Setiawan, 

Pramudita, & 

Mulaab (2024) 

Lung Cancer 
VGG16, VGG19 for 

automated detection 
97% 

Kanimozhi & 

Priyadarsini 

(2024) 

Breast Cancer VGG19 for detection 99.22% 

Ashwini et al. 

(2024) 
Breast Cancer ResNet50 96.9% 

Noaman et al. 

(2024) 
Breast Cancer 

DenseNet201 + color 

histogram fusion for 

automated detection 

99.683% 

Potsangbam & 

Shuleenda Devi 

(2024) 

Breast Cancer 
DenseNet for transfer 

learning 
96.53% 

Datta Gupta et 

al. (2023) 

Three-class 

Classification 

MobileNet for 

classification task 
98.00% 

Albalawi et al. 

(2024) 

Oral 

Squamous 

Cell 

Carcinoma 

EfficientNetB3 for 

differentiation 

between normal and 

carcinoma tissues 

99% 

Abhishek et al. 

(2024) 

Colorectal 

Cancer 

EfficientNetB4 for 

histological image 

classification 

99.886% 

Abadi & Reza 

(2024) 
Breast Cancer 

ViT with progressive 

fine-tuning 
95.11% 
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Reference Cancer Type Method Accuracy 

Yang, Luo & 

Greer (2025) 
Skin Cancer 

ViT for multi-class 

skin cancer 

classification 

95.05% 

Ozdemir & Pacal 

(2025) 
Skin Cancer 

ViT for multi-class 

skin cancer 

classification 

93.48% 

Hayat et al. 

(2024) 
Breast cancer EfficientNetV2L-ViT 99.83% 

Katar et al. 

(2024) 
Lung Cancer 

EfficientNet-B0 + 

LBP + ViT Encoder + 

SVM 

99.87% 

Patheda et al. 

(2025) 
Breast cancer CNN+ViT-B16 90.1% 

Hava Muntean 

and Chowkkar 

(2022) 

Breast Cancer 
Transfer Learning 

with DenseNet121 
 

86.6% 

Deebani et al. 

(2025) 

Colon and 

Lung Cancer 

Transfer Learning and 

Transformers 

(Multiscale) 

Colon: 97.41% 

Lung: 94.71% 

Yong et al. 

(2023) 
Gastric Cancer 

Ensemble Learning 

(EfficientNetB0, 

EfficientNetB1, 

DenseNet121, 

DenseNet169, 

MobileNet with 

unweighted 

averaging) 

99.20% 

Zheng et al. 

(2023) 
Breast Cancer 

Deep Ensemble 

Model (Unweighted 

Averaging) 
 

98.90% 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

The methodology of this project focused on five key phases: image 

preprocessing, data labelling and spliting, transfer learning, ensemble learning, 

and model evaluation. The workflow began with the input of WSIs, which are 

subjected to image pre-processing techniques such as patch extraction and 

normalization to prepare them for model training. The processed image patches 

were then split into training, validation, and testing sets to ensure a robust 

evaluation process. Multiple pre-trained CNNs were fine-tuned through transfer 

learning to adapt them to the specific cancer detection task. The predictions from 

these individual models were then integrated using ensemble learning, where 

predictions from multiple CNNs were combined to form a more accurate and 

generalizable ensemble model. This ensemble generated the final model output, 

which was then assessed through model evaluation metrics to determine its 

classification performance. Overall, the proposed deep learning-based 

classification pipeline were designed to be robust, accurate, and scalable, aiming 

to assist pathologists in detecting cancer with high precision and reliability. The 

complete process flow is shown in Figure 3.1. 

 

 

Figure 3.1: Process Flow. 
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3.2 Dataset Resource 

The histology dataset utilized in this study was obtained from The Cancer 

Imaging Archive (TCIA) as part of the National Cancer Institute Clinical 

Proteomic Tumor Analysis Consortium (CPTAC) (2018) Head-and-Neck 

cancer (CPTAC-HNSCC) discovery study. It consists of 390 WSI, including 

122 normal and 268 tumor slides in svs format, which are critical for our 

investigation. The CPTAC-HNSCC dataset includes tumor samples primarily 

from common head and neck cancer sites such as the oral cavity, tongue, buccal 

mucosa, oropharynx, floor of mouth, larynx, tonsil, alveolar ridge, and epiglottis. 

These samples encompass a variety of subtypes of  HNSCC, including 

Keratinizing HNSCC, Acantholytic HNSCC, and Basaloid HNSCC, which vary 

in their histological characteristics and clinical behavior as shown in Figure 3.2. 

This diverse collection of images enhances the model's ability to learn distinct 

patterns and features characteristic of both normal and cancerous tissues.  

Benign 

Tissue 

Conventional 

HNSCC 

Keratinizing 

HNSCC 

Acantholytic 

HNSCC 

Basaloid 

HNSCC 

     

Figure 3.2: Example Slides for Each Subtype of Tissues in the Dataset. 

 

3.3 Histophatological Image Pre-processing 

The original WSI from CPTAC comprised high-resolution histopathological 

slides in the .svs format with a 20x magnification. Due to the high computational 

complexity associated with processing these large images, pre-processing was 

necessary to prepare the images for input into the transfer learning model. As 

shown in Figure 3.3, the image pre-processing in this study included four stages: 

tissue masking, tile extraction, segmentation, and stain normalization. Tissue 

masking, tile extraction, and segmentation were performed using PyHIST, 

which is a lightweight, semi-automatic command-line tool designed for 

extracting tiles from WSI in histopathology (Muñoz-Aguirre et al., 2020). Stain 

normalization was performed with StainTools, a Python 3-based toolset for 
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tissue stain normalization and augmentation, which includes methods such as 

Macenko and Vahadane (Byfield, Godard and Gamper, 2021). After these pre-

processing steps, the patches were labeled and split for training, validation, and 

testing purposes. 

 

Figure 3.3: Image Pre-processing Steps. 

 

3.3.1 Tissue Masking  

Tissue masking is a critical preprocessing step in analyzing WSI in 

histopathology. It involves distinguishing tissue regions from non-tissue areas, 

such as the glass background, within a WSI. In this project, PyHIST was 

employed to generate tissue masks using a graph-based segmentation method. 

Additionally, Otsu’s thresholding method was used to separate an image into 

foreground and background regions based on pixel intensity values. This 

automated algorithm works by maximizing the variance between the two classes 

(tissue and background) while minimizing the variance within each class. It 

determined the optimal threshold by analyzing the histogram of grayscale 

intensities and selecting the point that minimizes intra-class variance (Vijay and 

Patil, 2016). Pixels with intensities below this threshold were assigned to the 

background class, while those above are classified as foreground. This resulted 

in a clear distinction between tissue and non-tissue areas, facilitating the 

extraction of specific objects or regions of interest from the image 

(Gopalakrishnan, 2023). After generating the mask, it was transformed from the 

OpenCV format to the PIL format, and the corresponding background color 

array was stored subsequent tile extraction and processing tasks. 
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3.3.2 Tiles Extraction 

A grid of 224×224 pixel tiles was created over the masked image. The 

magnification of the tiles could be adjusted by controlling the downsampling 

factors, with maximum magnification factor of 20× corresponding to a 

downsampling factor of 1. As shown in Figure 3.4, WSI were stored in a 

pyramidal structure that enables access to multiple resolution levels. The 

relationship between magnification and downsampling is illustrated Equation 

1.1, where higher downsampling leads to lower image resolution. For this study, 

tiles were extracted at three different magnification levels, including 1.25×, 2.5×, 

and 5×, corresponding to downsampling factors of 16, 8, and 4, respectively.   

As illustrated in Figure 3.5, higher magnification tiles offered greater detail but 

also increase computational costs and processing time. Although this could 

enhance feature detection, excessively high magnification may not always 

improve results and could lead to diminishing returns due to increased noise and 

resource demands. Therefore, balancing magnification with computational 

efficiency was essential for optimal model performance. In this project, a 

downsampling factor of 8 was used to produce tiles with a 2.5x magnification.  

 

 𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑇𝑎𝑟𝑔𝑒𝑡 𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
 (3.1) 

 

 With the tile grid and tissue mask in place, each tile was evaluated to 

ensure it met a minimum tissue coverage threshold, which was set at 0.5 in this 

project to ensure adequate tissue content. Tiles meeting this criterion were 

extracted from the whole-slide image at the desired resolution. While higher 

tissue coverage in patches was desirable for reducing non-informative areas, 

setting a higher threshold could reduce the number of usable tiles, potentially 

limiting the availability of histopathological images for model training, 

especially at lower magnification settings.  
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Figure 3.4: WSI Pyramidal Structure. 

 

Figure 3.5: Image patches extracted at different magnification levels. 

 

3.3.3 Patches Cleaning and Stain-Normalisation 

A patch-cleaning step was conducted to eliminate undesired images that could 

negatively impact model performance. Specifically, tiles with excessive dark 

regions, commonly resulting from scanning artifacts such as blur, pen ink, or 

folded tissue, were identified and removed. This was achieved using a 

threshold-based approach, where any tile with over 90% of its pixels below a 

grayscale intensity of 50 was considered a "black image" and automatically 

excluded from the dataset. After automated filtering, the remaining patches were 

manually reviewed to ensure that any residual artifacts were also eliminated. 

 After cleaning, stain normalization was applied using the Vahadane 

method via the StainTools library. Vahadane’s technique is built on sparse non-

negative matrix factorization, which decomposes histological images into stain 
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color bases and their corresponding concentration maps (Vahadane et al., 2016). 

By substituting the original stain color bases with those from a reference image, 

the method standardizes the color appearance across different samples while 

preserving the underlying tissue structure. In this study, a representative 

reference image was selected, and all patches were normalized to match its stain 

profile. Figure 3.6 illustrates the outcome of this process, showing the stain-

normalised patches for each subtype of HNSCC. However, since stain weights 

were processed independently, the method might not fully consider the global 

intensity or relative proportion of each stain, occasionally resulting in 

overrepresentation of certain stains (Hoque et al., 2024). Despite this limitation, 

Vahadane normalization remained effective for reducing inter-slide stain 

variability, allowing the model to focus on learning morphological patterns 

rather than being influenced by inconsistent staining.  

 Reference Tissue Benign Tissue HNSCC Tissue 

Original 

   

Stain-

Nomalised 

   

Figure 3.6: Output of Stain Normalisation for Each HNSCC Subtype. 

 

3.3.4 Patch Labelling and Data Spliting 

Once the patches were prepared, each was labeled according to its parent WSI 

using binary labels: "0" for normal tissue and "1" for malignant tissue. This 

labeling was applied to the entire WSI rather than to specific regions of interest 

(ROIs) within the slide. Although including the entire WSI may introduce some 

irrelevant data, as a tumor-labeled WSI might also contain normal tissue patches, 

studies from Phan et al. (2021) and Koo et al. (2023) had shown that it is not 

significantly affect the classification performance.  
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At the end of image preprocessing, the generated patches were divided 

into training, validation, and testing sets with a distribution ratio of 

approximately 70%, 20%, and 10%, respectively, and saved in an array for 

further processing. The distribution counts for each divided set are recorded in 

Table 3.1. 

Table 3.1: Number of Patches in Training, Validation, and Testing Sets. 

Dataset 

Splitting 
WSI 

Patches with 

1.25x 

Patches with 

2.5x 

Patches with 

5x 

Training 273 5331 21552 86520 

Validation 82 1408 5949 22419 

Testing 35 556 3273 15411 

Total 390 7295 30774 124350 

 

3.4 Classification Model Development 

Transfer learning was carried out using five CNN architectures: DenseNet, 

EfficientNet, MobileNet, ResNet, and VGG, along with their respective variants. 

A shown in Figure 3.7, transfer learning was performed using models pretrained 

on the ImageNet dataset, with 80% of the convolutional base layers frozen and 

the remaining 20% unfrozen for fine-tuning on the histopathological dataset. 

Each pretrained model was selected and configured to accept input images of 

size 224 × 224 pixels. Four new trainable classification layers were then added, 

including a global average pooling layer, a dense connected layer with 512 

neurons and ReLU activation, a final dense layer with 1 neuron and a sigmoid 

activation function for binary classification. The dense layer incorporated an L2 

regularizer (with λ = 0.01) to penalize large weights and reduce overfitting.  

Moreover, the models were compiled with binary cross-entropy as the 

loss function and AdaBound optimizer, with a learning rate of 0.00001. Training 

was conducted with a batch size of 32 over a maximum of 50 epochs, with early 

stopping applied if validation accuracy did not improve for 5 consecutive 

epochs. Table 3.3 summarized all the training parameters in the experiment. 

Model performance was evaluated on both validation and test datasets to ensure 

classification effectiveness. 
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Figure 3.7: Overview of Transfer Learning with Fine Tuning. 

 

Table 3.2: Model Training Configuration and Parameters. 

Parameter Details 

Epochs 50 

Batch Size 32 

Input Dimensions 224 × 224 × 3 (RGB image patch) 

Pretrained Layers 80% frozen, final 20% fine-tuned 

Top Architecture 
GlobalAveragePooling2D → Dense(512) → 

Dropout(0.5) → Dense(1) 

Activation Functions ReLU (Dense 512), Sigmoid (Output layer) 

Regularizer L2 regularization (λ = 0.01) on Dense(512) 

Optimizer AdaBound 

Learning Rate 0.00001 (1e-5) 

Loss Function Binary Cross-Entropy 

Callbacks 
EarlyStopping (monitor = val_accuracy, 

patience = 5, restore best weights) 
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3.5 Esemble Learning 

Various CNN architectures were used to generate diverse models, each trained 

on the same histopathological dataset. The top-3 and top-5 highest accuracy 

predictions from these individual models were then aggregated using various 

techniques, including simple methods like averaging and majority voting, as 

well as advanced techniques including stacking. This approach leveraged the 

strengths of each model and reduces the likelihood of overfitting or model-

specific biases, leading to more accurate and reliable predictions for classifying 

HNSCC histopathological images. 

 

3.5.1 Averaging 

Averaging combines predictions from multiple models by computing the 

average of their predictions. Both unweighted and weighted averaging ensemble 

had been applied in this project. In unweighted averaging, all models 

contributed equally to the final prediction, with each model's output treated the 

same regardless of its individual performance. For classification tasks, this 

involved averaging the predicted probabilities and selecting the class with the 

highest average probability. In weighted averaging, predictions were averaged 

with each model assigned a weight based on its performance metrics, such as 

accuracy. Models that perform better have a greater influence on the final 

prediction, leading to potentially improved results. Weighted averaging allowed 

for a more nuanced aggregation by recognizing and leveraging the strengths of 

more accurate models. 

 

3.5.2 Majority Voting 

Majority voting aggregates predictions by tallying the votes each class received 

from all models. In this project, hard voting was employed, where each model’s 

prediction counted as a vote for a specific class, and the class with the highest 

number of votes was selected as the final prediction. This approach was both 

straightforward and effective, particularly when models had comparable 

performance. By counting votes directly, hard voting harnessed the collective 

judgment of multiple models to determine the most likely class. It was especially 

beneficial when individual models were diverse, as their varied predictions 

complemented each other to enhance overall classification accuracy. 
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3.5.3 Stacking 

Stacking, or stacked generalization, is an advanced ensemble technique where 

multiple base models are trained, and their predictions are aggregated through a 

meta-model. First, a diverse set of base models is trained separately on the same 

dataset. The predictions from each base model are then used as input features 

for a meta-model. The meta-model, trained on these predictions, learns to 

optimally combine the base models’ outputs to make the final prediction. This 

process allowed the meta-model to exploit the strengths of each base learner and 

integrate their predictions effectively. Stacking often results in superior 

performance compared to any single model, as the meta-model learns the best 

way to synthesize the diverse predictions of the base models. 

 

3.6 Model Evaluation 

3.6.1 Performance Matics 

To assess the effectiveness of the classification models, several performance 

metrics were utilized, all derived from the confusion matrix. The confusion 

matrix provides a detailed comparison between the predicted and actual 

outcomes, capturing key elements such as True Positives (TP), True Negatives 

(TN), False Positives (FP), and False Negatives (FN). By analyzing the 

confusion matrix from each model’s testing output, these performance metrics 

offered a comprehensive evaluation of the model's ability to classify correctly. 

Collectively, these metrics highlighted the model’s strengths and reveal areas 

for improvement, providing a robust assessment of its classification 

performance. 

 

3.6.1.1 Accuracy 

Accuracy (Acc) is a fundamental metric calculated as the ratio of correctly 

classified instances (both TP and TN) to the total number of instances. It 

provides an overall view of model performance, reflecting how well the model 

distinguishes between classes across the entire dataset. 

 

 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (3.2) 
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3.6.1.2 Specificity 

Specificity (SP) measures the proportion of actual negatives that are correctly 

identified, calculated as Equation 3.3. It represents the model's ability to 

correctly identify negative cases. For example, in a medical test for a disease, a 

high specificity means that the test is good at identifying healthy individuals as 

negative (those without the disease), thus minimizing the chance of falsely 

diagnosing someone as having the disease when they actually don't. A model 

with high specificity is particularly valuable when the consequences of false 

positives are serious, as it ensures that negative cases are accurately recognized. 

 

 𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (3.3) 

 

3.6.1.3 Precision 

Precision (Pr) reflects the proportion of true positive predictions among all 

positive predictions which calculated as Equation 3.4. Precision is crucial when 

the cost of false positives is high. In situations where false positives have 

significant consequences, such as in medical diagnoses or fraud detection, 

having a high precision ensures that when the model predicts a positive result, 

it is likely to be correct. 

 

 𝑃𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3.4) 

 

3.6.1.4 Recall 

Recall (Re), or sensitivity, shows the model’s ability to detect all positive cases, 

calculated as Equation 3.5. It quantifies how well the model captures all the true 

positives, considering both the correctly predicted positive cases (TP) and the 

cases that were missed (FN). For instance, in a cancer detection model, a high 

recall ensures that most of the actual cancer cases are identified, even if it means 

incorrectly classifying some healthy individuals (leading to more false 

positives). A low recall would mean that many positive cases (e.g., people with 

cancer) are not being detected, which could have serious consequences. 
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 𝑅𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3.5) 

 

3.6.1.5 F1 Score 

The F1 Score combines both precision and recall to provide a balanced measure 

of a model’s performance, especially when there is an uneven class distribution 

or when both false positives and false negatives are of concern. It is calculated 

as Equation 3.6. A high F1 score indicates that the model performs well in terms 

of both precision and recall, making it a reliable measure of the model’s overall 

classification ability. 

 

 𝐹1 = 2 ×
𝑃𝑟×𝑅𝑒

𝑃𝑟+𝑅𝑒
 (3.6) 

 

3.6.1.6 Area under Curve 

The Area Under the Curve (AUC) evaluates the model's ability to distinguish 

between classes across different thresholds, providing a summary of the model's 

performance. The ROC curve itself is created by plotting the True Positive Rate 

(Recall) against the False Positive Rate at different threshold values. By 

adjusting the threshold for classifying positive and negative cases, the ROC 

curve illustrates how well the model balances between correctly identifying true 

positives and minimizing false positives. The AUC represents the total area 

under this curve, with values ranging from 0 to 1. An AUC of 1.0 indicates 

perfect classification, where the model fully distinguishes between classes, 

while an AUC of 0.5 implies the model performs no better than random guessing. 

The closer the AUC value is to 1, the better the model's ability to separate the 

positive and negative classes. 

 

3.6.1.7 Matthews Correlation Coefficient 

Matthews Correlation Coefficient (MCC) is a comprehensive measure of the 

model's performance, considering all four categories of the confusion matrix, 

and is calculated as Equation 3.7. Unlike accuracy, which can be misleading in 

imbalanced datasets, MCC provides a balanced view of the model's 

performance by taking into account both the correct classifications and the types 

of errors made. MCC ranges from -1 to 1, where 1 indicates perfect 
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classification, 0 suggests no correlation between predictions and actual 

outcomes, and -1 reflects complete misclassification. 

 

 𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (3.7) 

 

3.6.1.8 Diagnostic Odds Ratio 

The Diagnostic Odds Ratio (DOR) evaluates the odds of a positive test result 

being correctly identified in positive cases versus negative cases, calculated as 

Equation 3.8. This metric provides an indication of the overall effectiveness of 

the diagnostic test. A higher DOR reflects improved test performance, with 

values above 1 indicating that the test is more effective at differentiating 

between positive and negative cases. 

 

 𝐷𝑂𝑅 =
𝑇𝑃×𝑇𝑁

𝐹𝑃×𝐹𝑁
 (3.8) 

 

3.6.2 Tumor Prediction Heatmaps using Grad-CAM 

To enhance the interpretability of the CNN model’s predictions, Gradient-

weighted Class Activation Mapping (Grad-CAM) was employed. This 

technique generates visual heatmaps that feature the regions of an image that 

most influence the model’s decision for predicting tumors. Typically, these 

heatmaps use a color gradient (e.g., from blue to red) to represent intensity. 

Areas with higher intensity are usually shown in warmer colors like red or 

yellow, while areas with lower intensity are depicted in cooler colors like blue 

or green. Grad-CAM was applied to the final convolutional layers of each CNN 

model (VGG, ResNet, DenseNet, MobileNet, and EfficientNet) to visualize 

their focus areas. 

In this project, the Grad-CAM process involved extracting the feature 

maps and gradients from the last convolutional layer, computing a weighted 

combination based on the gradients, and generating a normalized heatmap that 

was overlaid onto the original histopathological image for visual interpretation. 

An ensemble Grad-CAM approach was also implemented. For each image, 

Grad-CAM heatmaps were individually generated from the selected CNN 

models and resized to a uniform target shape. These heatmaps were then 
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averaged to produce a composite ensemble heatmap, which emphasizes 

consistent activation regions across all models. This ensemble method provides 

a more reliable interpretation by highlighting regions that multiple models agree 

are significant for classification.  

 

3.7 Baseline Comparison Using Vision Transformer (ViT) 

To establish a baseline for comparison against CNN-based models, a ViT model 

was implemented using the Hugging Face transformers library. The model was 

initialized with pretrained weights from a ViT variant and fine-tuned on the 

selected dataset with binary labels representing ‘Cancer’ and ‘No Cancer’. The 

label mapping was explicitly defined using label2id and id2label dictionaries to 

ensure consistent interpretation during training and inference. 

Fine-tuning was carried out using the Hugging Face Trainer API with 

the following key training configurations: a batch size of 32, learning rate of 2e-

4, and a total of 30 training epochs. The training used mixed precision (fp16) to 

accelerate computation and reduce memory usage. Model evaluation was 

performed at regular intervals, and early stopping was incorporated with a 

patience of 6 evaluation steps to prevent overfitting and minimize training time. 

The best model checkpoint was automatically selected based on validation 

performance. 

After training, the model was evaluated on the test dataset, and 

predictions were generated by passing each test image through the model. The 

predicted class for each image was determined by selecting the class with the 

highest logit score from the model’s output. These predictions were then directly 

evaluated using performance metrics and compared with the results from the 

CNN-based ensemble models. 

 

3.8 Experiment Settings 

All CNN and ensemble model training, evaluation, and preprocessing tasks 

were conducted on a Windows 10 workstation powered by dual Intel XEON 

E5-2630v3 CPUs, an NVIDIA Quadro P6000 GPU, 120 GB of RAM, and 

CUDA version 11.4. The environment was configured with Python 3.8.19 and 

TensorFlow 2.5. In contrast, the ViT models were trained on Google Colab 
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using Python 3.11.12, PyTorch 2.6.0+cu124, and the Transformers library 

version 4.37.2. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

In this project, fine-tuned trainings were done with CNNs of five major family, 

including DenseNet, EfficientNet, MobileNet, ResNet and VGG, to 

demonstrate their effectiveness in histopathological image classification and 

contribute to the objective of enhancing diagnostic performance through deep 

learning. Prior to training, the histopathological whole slide images were 

successfully tiled into patches using a 50% tissue threshold and underwent stain 

normalization using the Vahadane method. The dataset was split into 80% 

training, 20% validation, and 10% testing, with the benign slide ratio controlled 

between 22% and 26% within each category. To further address data imbalance, 

L2 regularization was applied to the model training process for smoothing the 

training process and avoiding sharp weight updates that could cause overfitting.  

To assess model robustness across varying visual contexts, three 

magnification levels (1.25×, 2.5×, and 5×) were tested. Different magnification 

levels provide varying tissue detail, where lower magnifications offer broader 

structural context, while higher magnifications reveal cellular features. Testing 

multiple levels helps identify which resolution yields the best diagnostic 

performance and supports multi-scale representation learning. A ViT model was 

also fine-tuned for comparison, and an ensemble voting strategy was later 

applied to explore performance gains through model combination. Together, 

this preprocessing and training pipeline demonstrated reliable performance 

across models and magnification levels. 

 

4.2 Classification Result 

The classification results were evaluated by comparing the performance of the 

proposed CNN architectures with 1.25x (Table 4.1), 2.5x (Table 4.2), and 5x 

(Table 4.3) magnification input using various metrics, including Acc, Sp, Pr, Re, 

F1, AUC, MCC, and DOR. Figure 4.1 was plotted to compare the classification 

performance of CNN-based models and ViT across three magnification levels 
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(1.25×, 2.5×, and 5×), facilitating an easy comparison of their respective 

accuracies. 

Table 4.1: Performance Metrics Comparison of Deep Learning Architectures 

for 1.25x Magnification. 

Architecture 
Performance Metrics 

Acc Sp Pr Re F1 AUC MCC DOR 

DenseNet121 0.8903 0.7315 0.9061 0.9484 0.9268 0.8400 0.7115 50 

DenseNet169 0.9065 0.7315 0.9080 0.9705 0.9382 0.8510 0.7536 90 

DenseNet201 0.8975 0.8523 0.9442 0.9140 0.9288 0.8832 0.7470 61 

EfficientNetB0 0.9083 0.7181 0.9045 0.9779 0.9398 0.8480 0.7587 113 

EfficientNetB1 0.9281 0.7987 0.9297 0.9754 0.9520 0.8870 0.8122 157 

EfficientNetB2 0.8867 0.6980 0.8963 0.9558 0.9251 0.8269 0.6997 50 

EfficientNetB3 0.9011 0.7181 0.9037 0.9681 0.9348 0.8431 0.7387 77 

EfficientNetB4 0.8849 0.6376 0.8803 0.9754 0.9254 0.8065 0.6937 70 

EfficientNetB7 0.8975 0.6980 0.8977 0.9705 0.9327 0.8343 0.7287 76 

MobileNet 0.8525 0.6242 0.8719 0.9361 0.9028 0.7801 0.6050 24 

MobileNetV2 0.7932 0.2752 0.7874 0.9828 0.8743 0.6290 0.4068 22 

ResNet50 0.8975 0.6913 0.8959 0.9730 0.9329 0.8321 0.7287 81 

ResNet101 0.9317 0.8255 0.9382 0.9705 0.9541 0.8980 0.8223 156 

ResNet152 0.9155 0.7584 0.9167 0.9730 0.9440 0.8657 0.7782 113 

VGG16 0.9317 0.8792 0.9556 0.9509 0.9532 0.9150 0.8266 141 

VGG19 0.9173 0.7919 0.9267 0.9631 0.9446 0.8775 0.7840 99 

Ensemble-MV31 0.9514 0.8523 0.9481 0.9877 0.9675 0.9200 0.8744 464 

Ensemble-UA32 0.9514 0.8456 0.9460 0.9902 0.9676 0.9179 0.8746 552 

Ensemble-WA33 0.9478 0.8121 0.9355 0.9975 0.9655 0.9048 0.8665 1755 

Ensemble 

Stack34 0.9460 0.8121 0.9353 0.9951 0.9643 0.9036 0.8613 875 

Ensemble-MV5 0.9424 0.8255 0.9391 0.9853 0.9616 0.9054 0.8507 316 

Ensemble-UA5 0.9460 0.8188 0.9374 0.9926 0.9642 0.9057 0.8609 608 

Ensemble-WA5 0.9406 0.7852 0.9269 0.9975 0.9609 0.8914 0.8479 1484 

Ensemble Stack5 0.9460 0.8121 0.9353 0.9951 0.9643 0.9036 0.8613 875 

ViT 0.8687 0.7517 0.9093 0.9115 0.9104 0.8320 0.6646 31 

1 MV3 represents the ensemble model with majority volting method for Top-3 highest accuracy 

CNN Model 
2 UA3 represents the ensemble model with unweighted averaging Method  

3 WA3 represents the ensemble model with weighted averaging Method  

4 Stack3 represents the ensemble model with stack method 
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Table 4.2: Performance Metrics Comparison of Deep Learning Architectures 

for 2.5x Magnification. 

Architecture 
Performance Metrics 

Acc Sp Pr Re F1 AUC MCC DOR 

DenseNet121 0.9361 0.8344 0.9497 0.9676 0.9586 0.9010 0.8199 150 

DenseNet169 0.9465 0.9094 0.9716 0.9580 0.9648 0.9337 0.8545 229 

DenseNet201 0.9438 0.9224 0.9754 0.9504 0.9627 0.9364 0.8497 228 

EfficientNetB0 0.9526 0.9159 0.9737 0.9640 0.9688 0.9400 0.8704 292 

EfficientNetB1 0.9487 0.9237 0.9759 0.9564 0.9661 0.9400 0.8616 265 

EfficientNetB2 0.9514 0.8732 0.9614 0.9756 0.9684 0.9244 0.8635 275 

EfficientNetB3 0.9490 0.8849 0.9646 0.9688 0.9667 0.9268 0.8579 239 

EfficientNetB4 0.9227 0.8642 0.9573 0.9408 0.9490 0.9025 0.7903 101 

EfficientNetB7 0.9065 0.7646 0.9289 0.9504 0.9395 0.8575 0.7349 62 

MobileNet 0.8772 0.6507 0.8976 0.9472 0.9218 0.7990 0.6422 33 

MobileNetV2 0.8619 0.5511 0.8735 0.9580 0.9138 0.7545 0.5865 28 

ResNet50 0.9453 0.8926 0.9666 0.9616 0.9641 0.9271 0.8493 208 

ResNet101 0.9388 0.8140 0.9538 0.9703 0.9620 0.9301 0.8058 143 

ResNet152 0.9401 0.8292 0.9486 0.9744 0.9613 0.9018 0.8303 185 

VGG16 0.9444 0.8564 0.9563 0.9716 0.9639 0.9140 0.8436 204 

VGG19 0.9157 0.7723 0.9317 0.9600 0.9456 0.8662 0.7597 81 

Ensemble-MV3 0.9554 0.9030 0.9700 0.9716 0.9708 0.9373 0.8761 318 

Ensemble-UA3 0.9554 0.9004 0.9693 0.9724 0.9708 0.9364 0.8759 318 

Ensemble-WA3 0.9551 0.8875 0.9656 0.9760 0.9708 0.9317 0.8742 321 

Ensemble 

Stack3 0.9548 0.8952 0.9678 0.9732 0.9705 0.9343 0.8739 310 

Ensemble-MV5 0.9609 0.9198 0.9752 0.9736 0.9744 0.9467 0.8918 423 

Ensemble-UA5 0.9523 0.8900 0.9662 0.9716 0.9689 0.9308 0.8671 277 

Ensemble-WA5 0.9560 0.8926 0.9671 0.9756 0.9713 0.9341 0.8770 332 

Ensemble 

Stack5 
0.9600 0.9185 0.9747 0.9728 0.9738 0.9556 0.8893 403 

ViT 0.9021 0.6438 0.9148 0.9674 0.9404 0.9360 0.6762 54 
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Table 4.3: Performance Metrics Comparison of Deep Learning Architectures 

for 5x Magnification. 

Architecture 
Performance Metrics 

Acc Sp Pr Re F1 AUC MCC DOR 

DenseNet121 0.9126 0.7584 0.9310 0.9579 0.9443 0.8581 0.7437 71 

DenseNet169 0.9055 0.7389 0.9256 0.9545 0.9398 0.8467 0.7223 59 

DenseNet201 0.8928 0.6375 0.9008 0.9678 0.9331 0.8027 0.6758 53 

EfficientNetB0 0.9272 0.8295 0.9502 0.9559 0.9530 0.8927 0.7912 105 

EfficientNetB1 0.9169 0.8166 0.9461 0.9464 0.9463 0.8815 0.7634 79 

EfficientNetB2 0.9223 0.8235 0.9483 0.9513 0.9498 0.8874 0.7778 91 

EfficientNetB3 0.9236 0.8529 0.9562 0.9444 0.9503 0.8987 0.7860 99 

EfficientNetB4 0.9228 0.8189 0.9471 0.9533 0.9502 0.8861 0.7784 92 

EfficientNetB7 0.9175 0.7901 0.9393 0.9549 0.9470 0.8725 0.7607 80 

MobileNet 0.8759 0.5578 0.8818 0.9694 0.9235 0.7636 0.6179 40 

MobileNetV2 0.8628 0.4656 0.8618 0.9795 0.9169 0.7225 0.5706 42 

ResNet50 0.9121 0.7344 0.9251 0.9644 0.9443 0.9494 0.7399 75 

ResNet101 0.9177 0.8486 0.9547 0.9380 0.9463 0.8933 0.7709 85 

ResNet152 0.9119 0.7629 0.9320 0.9557 0.9437 0.8593 0.7424 69 

VGG16 0.9208 0.8038 0.9430 0.9552 0.9491 0.8795 0.7711 87 

VGG19 0.9162 0.8095 0.9442 0.9475 0.9459 0.8785 0.7602 77 

Ensemble-MV3 0.9371 0.8600 0.9589 0.9598 0.9593 0.9099 0.8207 147 

Ensemble-UA3 0.9384 0.8566 0.9580 0.9625 0.9603 0.9095 0.8237 153 

Ensemble-WA3 0.9347 0.8161 0.9472 0.9695 0.9582 0.8928 0.8096 141 

Ensemble 

Stack3 0.9360 0.8255 0.9497 0.9685 0.9590 0.8970 0.8142 145 

Ensemble-MV5 0.9394 0.8589 0.9587 0.9631 0.9609 0.9110 0.8265 159 

Ensemble-UA5 0.9367 0.8486 0.9558 0.9626 0.9592 0.9056 0.8182 144 

Ensemble-WA5 0.9345 0.8141 0.9467 0.9699 0.9582 0.8920 0.8091 141 

Ensemble 

Stack5 
0.9365 0.8243 0.9494 0.9695 0.9594 0.8969 0.8155 149 

ViT 0.8935 0.7207 0.9200 0.9443 0.9320 0.9370 0.6880 44 
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Figure 4.1: Comparison of classification accuracy for CNN-based models and 

ViT across three magnification levels (1.25×, 2.5×, and 5×). 

 

4.3 Classification Performance Analysis of CNN Architectures 

For VGG family, they demonstrated consistent and promising performance 

across all three magnification levels, with VGG16 standing out in particular. As 

shown in Table 4.4, which recorded the Top-5 performing models, VGG16 

achieved the highest accuracy at 1.25× magnification with 93.17%, ranked 

among the Top-5 at 5× magnification with 92.08% accuracy. VGG19 also 

performed well, ranking fourth at 1.25× with an accuracy of 91.73%. Across all 

magnifications, both VGG16 and VGG19 showed strong results, although 

VGG16 consistently outperformed VGG19 in terms of accuracy, precision, and 

AUC. both variants exhibited a drop in precision and MCC at higher 

magnifications, indicating an increase in false positives. This suggests that at 

higher magnifications, the models became more aggressive in detecting cancer, 

leading to an increased risk of misclassifying normal tissue as malignant. 

For ResNet family, ResNet101 generally outperformed the other 

variants at lower magnifications (1.25× and 2.5×), with the highest accuracy and 

MCC at 1.25× and strong recall at 2.5×. However, at 5×, its F1-score and MCC 

dropped, allowing ResNet50 to rival or even exceed its performance in some 

metrics. This could be related to ResNet101's depth, which allows for subtle 

feature extraction at moderate resolutions but becomes less efficient on high-
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resolution inputs, whereas shallower models such as ResNet50 may generalize 

better and resist overfitting. Besides, despite being deeper, ResNet152 showed 

less consistency, with signs of overfitting at 2.5× (lower MCC) and a slight drop 

in recall at 5×. This suggests that excessive depth may introduce noise 

sensitivity and reduced generalization on fine-grained patches. Moreover, 

ResNet50, the shallower variant, performed moderately and consistently b but 

underperformed at 1.25× and 5×, likely due to limited capacity to capture 

complex features across scales. These trends suggest that ResNet101 offers an 

optimal trade-off between representational power and generalization in 

histopathological image classification, while excessively deep architectures like 

ResNet152 may become vulnerable to noise or reduced contextual diversity. 

For DenseNet family, they demonstrated generally consistent 

performance across the three magnification levels among other CNNs, serving 

as average-performing models among CNNs. Across all magnification levels, 

DenseNet169 emerged as the most balanced variant, achieving the highest 

accuracy (94.65%) along with strong recall, F1-score, and MCC. In contrast, 

DenseNet121, the lightest variant, showed comparatively lower performance at 

1.25× and 2.5×, likely due to its limited depth restricting its ability to capture 

rich feature hierarchies. Nevertheless, it remained competitive, with accuracy 

consistently above 89%, showing its efficiency despite lower complexity. 

DenseNet201 performed well at 2.5x due to its dense connectivity, allowing for 

gradient flow and feature reuse, but suffered at higher magnification. These 

patterns indicate that DenseNet169 offers an effective trade-off between model 

complexity and generalization across varying resolutions. 

The MobileNet family delivered lightweight and efficient performance 

across magnifications, though generally underperformed compared to deeper 

networks like ResNet and DenseNet. The best result within the family was 

achieved by MobileNet at 2.5× magnification, with 87.72% accuracy, strong 

specificity, presision and MCC. In contrast, the original MobileNetv2 struggled 

at all scale, which may due to its architecture trades accuracy for speed, which 

becomes a limiting factor in tasks requiring deep visual understanding. At 1.25× 

magnification, both variants experienced performance drops, particularly in 

recall and MCC, suggesting that their shallow architectures could not effectively 

capture broad contextual information from low-resolution patches. Remarkably, 
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both models showed more stable performance at 2.5× magnification, where the 

moderate-frequency details appeared to align better with MobileNet’s depth-

wise separable convolutions. The higher-capacity model achieved 87.72% 

accuracy with improved precision and MCC, showing better adaptation to 

detailed tissue regions. However, overall variability across scales indicates that 

while MobileNet is computationally efficient, it lacks the representational 

power to consistently handle the complexity of histopathological features at 

varying resolutions. 

Last but not least, the EfficientNet family showed consistently high 

and stable performance across all magnification levels, outperforming most 

other model families in overall metrics. This is evident as EfficientNet models 

dominated the Top-5 highest-performing models at 2.5× and also held a strong 

presence at 5×, outperforming most other CNN families. EfficientNetB0 

standing out by achieving the highest accuracy of 95.26% at 2.5x magnification 

and the best overall performance across metrics. This superior result can be 

attributed to EfficientNet's compound scaling strategy, which uniformly 

balances depth, width, and input resolution, allowing deeper models to learn 

complex features more effectively. Notably, even smaller variants like 

EfficientNetB0 and B1 performed competitively at 2.5×, indicating the 

efficiency of the architecture regardless of model size. However, performance 

declined at the lower (1.25×) and higher (5×) magnifications. Deeper variants 

such as B3 and B4 were more affected, possibly because their increased 

complexity demands richer and more balanced visual information. Surprisingly, 

the deepest variant, EfficientNetB7, demonstrated improved performance with 

increasing magnification, suggesting its potential to capture finer histological 

details at higher resolutions. These results highlight EfficientNet’s strength in 

handling multi-scale image resolutions while also revealing its sensitivity to 

suboptimal input scales, particularly for less complex tissue features or lower-

resolution patterns. 

In short, EfficientNet and VGG families stood out as the top-

performing architectures, consistently ranking among the best models across 

magnification levels. EfficientNetB0 demonstrated the highest overall 

performance with balanced depth and efficiency, while VGG16 showed 
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unexpected competitiveness despite its older architecture, likely due to its 

simplicity and strong feature extraction at early layers. 

 In comaparison among all CNNs models, the 2.5× magnification 

consistently yielded the highest overall performance across most architectures 

variants, including ResNet, DenseNet, MobileNet, and EfficientNet. This 

intermediate scale appears to offer an optimal balance between local cellular 

detail and broader tissue context, allowing models to extract discriminative 

features without being overwhelmed by noise or losing critical fine-grained 

information. In contrast, performance at 1.25× and 5× magnifications was 

slightly lower. At 1.25×, the broader but coarser tissue view likely lacked the 

resolution needed to capture subtle morphological differences, while at 5×, 

although high detail is present, it may introduce noise or lead to overfitting, 

especially in deeper models, due to limited contextual information. These 

findings underscore the importance of choosing an appropriate magnification 

level that aligns with the model’s capacity to generalize and the nature of the 

histopathological features. 

 

Table 4.4: Top-5 Performance of the Pre-trained Models. 

Magnification Rank Architectures Accuracy 

1.25x 

1 VGG16 0.9317 

2 ResNet101 0.9317 

3 EfficientNetB1 0.9281 

4 VGG19 0.9173 

5 ResNet152 0.9155 

2.5x 

1 EfficientNetB0 0.9526 

2 EfficientNetB2 0.9514 

3 EfficientNetB3 0.9490 

4 EfficientNetB1 0.9487 

5 DenseNet169 0.9465 

5x 

1 EfficientNetB0 0.9272 

2 EfficientNetB3 0.9236 

3 EfficientNetB4 0.9228 

4 EfficientNetB2 0.9223 

5 VGG16 0.9208 
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4.4 Classification Performance Analysis of Ensemble Models 

The ensemble models were ensembled according to the Top-3 and Top-5 

performing models with ensemble techniques, including majority voting (MV), 

unweighted average (UV), weighted average (WA) and stacking.  

Consider the Top-3 CNNs models ensemble, MV3 and UA3 provided 

the most consistent and balanced performance, while WA3 and Stack ensemble 

showed slightly lower stability, likely due to the compounding of model biases 

through weighting. All ensemble methods achieved their highest overall metrics 

at 2.5x magnification. MV3 at 2.5x magnification led with the highest accuracy 

(95.54%), followed closely by UA3 and WA3. This trend is mirrored in other 

metrics such as AUC, F1-score, precision, and MCC. It may attributed to MV3 

aggregates discrete class decisions, reducing the impact of individual 

misclassifications, while UA3 averages softmax probabilities, smoothing 

prediction noise. Both are basic, but effective. These observations highlighted 

that simple ensemble strategies like voting and unweighted averaging can be 

more effective and generalizable in histopathological contexts, especially when 

data resolution and patch variability introduce noise or fine-grained 

discrepancies.  

Consider the Top-5 CNNs models ensemble, MV5 at 2.5× 

magnification consistently delivered the best overall performance, achieving the 

highest accuracy of 96.09%, along with a precision of 97.52% and the highest 

MCC of 89.18%. This indicates a strong balance between sensitivity and 

specificity, as well as a high degree of agreement between predicted and actual 

classifications. While UA5 also showed competitive results, especially at 1.25× 

magnification, where it matched Stack5 with the highest accuracy (94.60%) and 

slightly outperformed in recall , making it more favorable when minimizing 

false negatives is crucial. But UA5’s averaging mechanism might have helped 

balance out extreme predictions, contributing to more stable recall, although its 

MCC was slightly lower.  

Stack5 showed competitive and stable performance, maintaining high 

accuracy and MCC across all magnifications, especially at 2.5× magnification. 

Unlike simple voting or averaging, stacking can learn to correct individual 

model biases through a meta-learner, which might explain its overall reliability. 
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However, its precision and recall metrics were slightly less optimal compared 

to MV5, indicating space for improvement in capturing fine-grained decision 

boundaries. While WA5 generally trailed behind MV5, UA5 and Stack5, 

especially at lower magnifications, likely due to its reliance on weight 

assignments that may have disproportionately favored certain base models. 

From the observation from both Top-3 and Top-5 ensemble, WA 

showed limitations, which might due to its sensitivity to weight distributions of 

some high accuracy but with relatively poorer sensitivity or specificity models. 

While UA and Stack are relatively competitive, each brings its own strengths to 

different situations. UA is effective at smoothing output probabilities and 

balancing bias, excelling in recall and providing a strong alternative, particularly 

when minimizing false negatives is essential. On the other hand, Stack5 captures 

complex inter-model dependencies, offering stable, well-rounded performance 

while leveraging a meta-learner's learning potential. Last but not least, MV 

emerged as the most balanced and consistently best performer among the 

ensemble models. Its simple, robust mechanism avoids extreme predictions, 

making it a reliable choice across all magnifications. This stability highlights its 

ability to maintain high accuracy and precision while mitigating fluctuations in 

model outputs. 

 

4.5 Comparison of Top-Performing Models Among CNNs and 

Ensembles 

The best-performing CNN models at 1.25x, 2.5x, and 5x magnifications were 

grouped as Top-CNNs and moved to this section for comparison with the 

ensemble models. As shown in Figure 4.2, all ensemble models outperformed 

the top-performing CNN model at both 1.25x and 5x magnifications. However, 

at 2.5x magnification, UA5 slightly underperformed compared to the CNN 

baseline. This might due to the ensemble averaging included predictions from 

weaker models at that scale, slightly diluting the performance of the top-

performing CNN. 

Further looking into others parameters, at 1.25x, ensemble models 

consistently improved key overall metrics such as accuracy, recall, F1-score, 

DOR, MCC, and AUC. Remarkably, all ensemble models had improved 

accuracy by 1% to 2% from the top CNN model. These improvements suggest 
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that ensembling was effective in enhancing model generalization and sensitivity 

at low magnification.  However, this came at the cost of reduced specificity and 

precision, indicating a slight increase in false positives.  

At 2.5x magnification, although the performance of UA5 was slightly 

lower than the CNN baseline, other core performance metrics, including 

accuracy, recall, F1-score, DOR, and MCC, were improved. These metrics 

reflect better overall classification balance and robustness, particularly in 

detecting positive (tumor) cases, which is crucial in cancer diagnosis.The 

improvements ranged an increment from 0.3% to 0.8%, suggesting that the 

ensemble of the top five CNN models effectively captured complementary 

features and reduced model variance. However, the slight drop observed in 

specificity and precision suggests that the model may have produced more false 

positives, but this trade-off led to higher recall, indicating fewer tumor cases 

were missed. This behavior is often preferred in clinical settings, where 

sensitivity is prioritized to avoid missing malignant cases. 

At 5x magnification, ensemble models performed admirably, 

enhancing accuracy, specificity, precision, F1-score, DOR, MCC, and AUC. 

Ensemble models also provide an improvement ranging from 0.7% to 1.2%, 

indicating a more consistent and balanced categorization at higher 

magnification, probably due to the ensemble's ability to filter noise and refine 

predictions. However, recall was reduced significantly, indicating a more 

conservative classification method that resulted in fewer false positives while 

missing some real tumor cases. The result suggests that ensembles at this 

resolution prioritized reliability and precision, which improves clinical 

applicability in situations when reducing false alarms is crucial. 

Overall, while ensemble techniques enhanced several performance 

aspects, their effectiveness varied across magnification levels. These results 

should be interpreted in the context of clinical priorities, such as emphasizing 

higher recall to minimize missed diagnoses or higher precision to reduce false 

positives. 

 

 



44 

 

Figure 4.2: Comparison of Top-Performing Model Performance Across 

Magnification Levels. 

 

4.6 Visual Interpretability Analysis of CNNs 

Grad-CAM was applied to both normal and tumor tissues using the top three 

pretrained CNN models, including VGG, ResNet, and EfficientNet, to visualize 

and interpret the regions localized by each model, as shown in Figure 4.3. This 

approach provided a detailed visual analysis of the areas in the images that the 

model focused on to make its predictions. The variations in heatmap intensity 

values reflect the level of attention the model gives to specific areas when 

making decisions, with warmer colors (e.g., red and yellow) representing areas 

of high attention and cooler colors (e.g., blue) indicating regions of low attention. 

 Focusing on benign tissue, VGG and EfficientNet exhibit more 

localized activations, focusing on specific regions of the image. In contrast, 

ResNet show higher activation across the entire image, indicating a broader area 

of attention. This indicated that VGG and EfficientNet concentrate their 

attention on specific regions of the image for the prediction, while ResNet tends 

to integrate information from a broader area. These variations in activation 

patterns reveal how each model processes and interprets images. For instance, 

ResNet potentially leveraged a more comprehensive view of the image for its 

predictions, while EfficientNetB0 and VGG16 focused on specific regions, 

suggesting a more localized approach in their analysis. This difference in 
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activation patterns provides valuable insights into the distinct strategies each 

model employs for image classification. 

 Focusing on tumor tissue, all models showed significant similarity in 

the regions of activation, although there are some differences in color intensity, 

except VGG at 1.25x magnification. It obviously showed that VGG at 1.25× 

concentrated its attention on the corners of the image, while both ResNet and 

EfficientNet localized their focus toward the central region of the patch. 

Although all models produced correct predictions, this variation in activation 

patterns highlights the distinct interpretative strategies used by each model, 

suggesting that even with similar outcomes, their internal feature recognition 

processes might differ. These understandings can help guide model selection 

and refinement in histopathology applications, ultimately improving 

classification accuracy and interpretability by explaining how each model 

makes its decision. 

Furthermore, Grad-CAM visualizations for benign tissue typically 

appeared predominantly blue, indicating low model activation across the image. 

This reflects the absence of discriminative pathological features, suggesting that 

the model confidently recognized the tissue as normal without focusing on any 

specific abnormal region. In some normal tissue patches, such as the benign 

tissue classified by ResNet at 2.5x magnification, Grad-CAM visualizations 

showed localized regions of high activation. Despite this focused attention, the 

overall prediction probability remained below the tumor classification threshold. 

This suggests that while the model identified potentially ambiguous features, 

they were not sufficient to override its classification of the tissue as benign. It 

may also reflect areas of normal histological variability or borderline features 

that the model considered but ultimately dismissed. 
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Figure 4.3: Visual Interpretability Analysis using Grad-Cam. 

 

4.7 Performance Comparison with Vision Transformer (ViT) 

To further validate the effectiveness of the proposed model, a ViT architecture 

was also employed as a baseline model for comparison using the same dataset, 

enabling performance benchmarking against non-CNN-based approaches. 

When compared to the fine-tuned CNN models shown in Figure 4.1, only the 

MobileNet family performed worse than the fine-tuned ViT. According to 

Figure 4.4, the best-performing CNN models, along with the ensemble models 

comprising three and five CNNs, all outperformed the fine-tuned ViT. This 

demonstrated the superior effectiveness of the proposed CNN-based approaches 

and the ensemble learning technique on the same dataset.  
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Figure 4.4: Performance Comparison among Different Models.  

 

4.8 Challenges of the Study 

One of the main challenges encountered in this study was the issue of overfitting. 

The CPTAC-HNSCC dataset used is relatively small for deep learning 

applications, which increases the risk of the models memorizing training data 

rather than learning generalizable patterns. Moreover, the dataset contains 122 

normal slides and 268 tumor slides, resulting in a class imbalance. The models 

tended to favor the majority class (tumor tissue), potentially leading to 

overfitting, where they became overly specialized in recognizing dominant 

patterns while struggling to generalize to the underrepresented normal tissue in 

unseen data. To address this, L2 regularization was incorporated during training 

to reduce overfitting. While this approach helped control validation loss, a 

noticeable gap between validation and testing accuracy still remained, 

suggesting that the models had limited generalization capability and were still 

influenced by patterns specific to the training data. 

 

4.9 Summary 

This study proposed a robust pipeline of model training for HNSCC cancer 

detection.  the classification performance of various CNN architectures and 

ensemble strategies on histopathological image patches at three different 

magnification levels (1.25×, 2.5×, and 5×), targeting accurate differentiation 

between tumor and normal tissues, which an essential task in computer-aided 
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cancer diagnostics. The individual CNN models displayed varied performance 

across magnifications, with EfficientNetB0 achieving the highest overall 

accuracy. EfficientNet and VGG family consistently delivered robust and 

balanced results, indicating their suitability as general-purpose backbones for 

histopathological image analysis pipelines. The ensemble models, which 

combined the predictions of individual CNN models, outperformed most of the 

individual models, highlighting the benefit of leveraging multiple architectures 

for improved accuracy and robustness. The MV5 ensemble model achieved the 

highest performance across all sectors, with an accuracy of 96.09%, 

outperforming both individual CNN models and other ensemble approaches.  

In terms of visual interpretability, Grad-CAM visualizations indicated 

that the CNN models focused on regions consistent with tissue structures, 

providing meaningful insights into their decision-making process. The 

comparison of top-performing CNN models (VGG16, EfficientNetB0, and 

DenseNet169) revealed that while the EfficientNetB0 model excelled at higher 

magnifications, DenseNet169 was more robust across different magnifications. 

Afterward, a performance comparison with the ViT model revealed 

that, while ViT delivered competitive results, CNN-based ensemble models 

outperformed ViT in classification tasks, particularly at higher magnifications, 

highlighting CNNs' superiority in histopathological image processing. 

Therefore, the further evident that the proposed pipeline, including image pre-

processing, transfer learning with CNNs and ensembling the top performance 

CNNs, was effective for enhancing classification accuracy in HNSCC detection 

and demonstrates strong potential for broader application in digital pathology 

workflows. The improved performance of ensemble models over individual 

CNNs can be attributed to their ability to integrate diverse feature 

representations and decision boundaries from multiple architectures, thereby 

compensating for the limitations of any single model. This fusion enhances the 

model's robustness, reduces variance, and provides more reliable predictions, 

especially in complex and heterogeneous tissue samples. 

 Such a pipeline could be integrated into CAD systems to assist 

pathologists by pre-screening slides, identifying suspicious regions, or 

prioritizing high-risk cases, ultimately improving diagnostic efficiency and 

accuracy. Furthermore, the interpretability component enabled by Grad-CAM 
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visualizations enhances clinical trust and transparency by allowing experts to 

verify that model attention aligns with histologically relevant structures. The 

combination of ensemble learning with careful magnification handling and 

model interpretability tools has the potential to significantly advance AI-driven 

histopathological analysis, making it more reliable and suitable for real-world 

clinical deployment. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusion 

This study proposed a robust and systematic deep learning pipeline for the 

classification of head and neck squamous cell carcinoma in histopathological 

images, utilizing both convolutional neural network architectures and ensemble 

learning strategies. The dataset, sourced from the CPTAC-HNSCC cohort, was 

stain-normalized and processed into image patches at three magnification levels 

(1.25×, 2.5×, and 5×), allowing a multi-scale examination of tissue 

characteristics.  

Individual CNN models demonstrated varied performance, with 

EfficientNetB0 achieving the highest accuracy among single models. Ensemble 

methods, particularly the MV5 ensemble, consistently outperformed individual 

CNN models, achieving the highest accuracy of 96.09% along with superior 

performance across other key metrics, including specificity (92%), precision 

(97%), F1-score (97%), and AUC (95%).  This demonstrated the effectiveness 

of combining diverse CNN models to improve robustness and generalizability 

across magnifications. Visual interpretability through Grad-CAM provided 

meaningful insights into model decision-making, aligning attention maps with 

histological features and enhancing clinical trust. When compared with a Vision 

Transformer model, CNN-based ensembles delivered superior classification 

results. The findings validate the proposed pipeline as a reliable solution for 

aiding computer-aided diagnostics in histopathology.  

 

5.2 Recommendations for future work 

To improve the clinical usability and effectiveness of AI-driven 

histopathological investigation, future research should concentrate on creating 

clinically deployable AI tools that connect smoothly with digital pathology 

systems. This includes optimizing user interfaces for pathologists, ensuring 

regulatory compliance, and validating performance in prospective clinical trials. 

Multi-modal learning also holds significant potential for precision oncology. By 
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combining histopathological image features with clinical data, such as age, 

tumor stage, and genomic profiles, it may further enhance diagnostic accuracy 

and support personalized treatment planning. Incorporating larger and more 

heterogeneous datasets (e.g., the recent multimodal HNC dataset by Dörrich et 

al. (2024)) would enhance model generalization and help reduce overfitting. 

Implementing strategies such as class-balanced sampling, synthetic patch 

generation (e.g., GANs), or focal loss can help models learn better 

representations of minority classes. Through these advancements, future studies 

can bridge the gap between research and clinical translation, promoting more 

accurate, interpretable, and scalable cancer diagnostic tools. 
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APPENDICES 

 

Appendix A: Confusion Metrics 

 

Table A-1: Confusion Matrix of Models at 1.25× Magnification. 

Architecture TN FP FN TP 

VGG16 131 18 20 387 

VGG19 118 31 15 392 

ResNet50 103 46 11 396 

ResNet101 123 26 12 395 

ResNet152 113 36 11 396 

DenseNet121 109 40 21 386 

DenseNet169 109 40 12 395 

DenseNet201 127 22 35 372 

MobileNet 93 56 26 381 

MobileNetV2 41 108 7 400 

EfficientNetB0 107 42 9 398 

EfficientNetB1 119 30 10 397 

EfficientNetB2 104 45 18 389 

EfficientNetB3 107 42 13 394 

EfficientNetB4 95 54 10 397 

EfficientNetB7 104 45 12 395 

Ens_MVote_3 127 22 5 402 

Ens_UAvg_3 126 23 4 403 

Ens_WAvg_3 121 28 1 406 

Ens_Stack_3 121 28 2 405 

Ens_MVote_5 123 26 6 401 

Ens_UAvg_5 122 27 3 404 

Ens_WAvg_5 117 32 1 406 

Ens_Stack_5 121 28 2 405 

ViT 112 37 36 371 
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Table A-2: Confusion Matrix of Models at 2.5× Magnification. 

Architecture TN FP FN TP 

VGG16 662 111 71 2429 

VGG19 597 176 100 2400 

ResNet50 690 83 96 2404 

ResNet101 569 130 82 2682 

ResNet152 641 132 64 2436 

DenseNet121 645 128 81 2419 

DenseNet169 703 70 105 2395 

DenseNet201 713 60 124 2376 

MobileNet 503 270 132 2368 

MobileNetV2 426 347 105 2395 

EfficientNetB0 708 65 90 2410 

EfficientNetB1 714 59 109 2391 

EfficientNetB2 675 98 61 2439 

EfficientNetB3 684 89 78 2422 

EfficientNetB4 668 105 148 2352 

EfficientNetB7 591 182 124 2376 

Ens_MVote_3 698 75 71 2429 

Ens_UAvg_3 696 77 69 2431 

Ens_WAvg_3 686 87 60 2440 

Ens_Stack_3 692 81 67 2433 

Ens_MVote_5 711 62 66 2434 

Ens_UAvg_5 688 85 71 2429 

Ens_WAvg_5 690 83 61 2439 

Ens_Stack_5 710 63 68 2432 

ViT 450 249 90 2674 
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Table A-3: Confusion Matrix of Models at 5× Magnification. 

Architecture TN FP FN TP 

VGG16 2814 687 534 11376 

VGG19 2834 667 625 11285 

ResNet50 2571 930 424 11486 

ResNet101 2971 530 739 11171 

ResNet152 2671 830 528 11382 

DenseNet121 2655 846 501 11409 

DenseNet169 2587 914 542 11368 

DenseNet201 2232 1269 383 11527 

MobileNet 1953 1548 365 11545 

MobileNetV2 1630 1871 244 11666 

EfficientNetB0 2904 597 525 11385 

EfficientNetB1 2859 642 638 11272 

EfficientNetB2 2883 618 580 11330 

EfficientNetB3 2986 515 662 11248 

EfficientNetB4 2867 634 556 11354 

EfficientNetB7 2766 735 537 11373 

Ens_MVote_3 3011 490 479 11431 

Ens_UAvg_3 2999 502 447 11463 

Ens_WAvg_3 2857 644 363 11547 

Ens_Stack_3 2890 611 375 11535 

Ens_MVote_5 3007 494 440 11470 

Ens_UAvg_5 2971 530 446 11464 

Ens_WAvg_5 2850 651 358 11552 

Ens_Stack_5 2886 615 363 11547 

ViT 2523 978 663 11247 
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Appendix B: Accuracy and Loss Curves 

 

The accuracy and loss curves were sampled and displayed from one 

representative model of each architecture family. 

Table B-1: Accuracy and Loss Curves Across Magnification. 
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DenseNet121 
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MobileNet 

 

 

 

 

 

EfficientNetB0  
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Appendix C: ROC Curves 

The ROC curves were sampled and displayed from one representative model of 

each architecture family. 

Table C-1: ROC Curves Across Magnification. 

 1.25x 2.5x 5x 

VGG16 

   

ResNet50 

   

DenseNet121 

   

MobileNet 

   

EfficientNetB0 
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