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ABSTRACT

Head and neck cancers (HNC) are among the most prevalent cancers globally,
with high mortality and poor prognosis often resulting from late-stage diagnoses.
However, diagnostic difficulties are compounded by the histological complexity
of HNCs and the subjective nature of manual histopathological analysis, which
is prone to human error and inter-observer variability. Therefore, this study
proposed a deep learning approach to assist in the classification of HNC from
histopathological whole slide images, aiming to improve diagnostic accuracy
and reduce observer bias. This study adopted the Head and Neck Squamous Cell
Carcinoma dataset from the Clinical Proteomic Tumor Analysis Consortium,
which consists of 390 whole slide images from various head and neck cancer
sites, including 122 benign and 268 tumor slides. Convolutional neural network
(CNN) models were trained using a transfer learning strategy, incorporating
variants from the DenseNet, EfficientNet, MobileNet, ResNet, and VGG
families. These models were fine-tuned using pre-trained weights and further
evaluated for classification performance at three magnification levels (1.25x,
2.5%, and 5x). The top-performing CNN models were then combined using
ensemble learning techniques to improve overall accuracy and robustness. The
ensemble approach, particularly the majority voting with five models ensemble,
outperformed individual models, achieving an accuracy of 96.09%, along with
improved performance in sensitivity, precision, and F1-score. Visual
interpretability tools, such as Gradient-weighted Class Activation Mapping,
were employed to provide insights into the models' decision-making processes,
enhancing the transparency and trustworthiness of the artificial intelligence
predictions. The study also compared the CNN-based models to Vision
Transformer models, showing that CNN ensembles achieved superior
performance in classification tasks. This research highlights the potential of
deep learning, particularly ensemble methods, in histopathological image
analysis, with significant applications in computer-aided diagnosis for cancer
detection. Further work should focus on addressing class imbalance, integrating
the models into a clinical pipeline, and exploring multimodal learning to
enhance model performance and clinical applicability.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

Head and neck cancers, also known as Head and Neck Squamous Cell
Carcinoma (HNSCC), are a group of cancers that typically begin in the
squamous cells lining the moist surfaces of regions like the mouth, throat, and
voice box (National Cancer Institute, 2021). These cancers represent the sixth
most commonly diagnosed globally, with approximately 900,000 new cases and
over 400,000 deaths reported annually (Stenson, 2025). The primary risk factor
for HNSCC is tobacco use, accounting for approximately 75% of all cases,
while other common risk factors include alcohol consumption and infections
such as human papillomavirus and Epstein-Barr virus (Barsouk et al., 2023).
The survival rates for head and neck cancers vary significantly depending on
the stage at diagnosis. Studies show that patients diagnosed with localized
disease have a 5-year survival rate of 86.3%, which decreases to 69.0% for those
with locally advanced disease and drops further to 40.4% for metastatic cases.
(Barsouk et al., 2023). Moreover, the diagnosis of head and neck cancers
(HNCs), especially rare subtypes (r-HNCs), is also challenging due to their low
incidence, overlapping histological features with more common cancers, and
complex molecular profiles (Filippini et al., 2024). The rarity of these tumors
often results in limited clinical experience, leading to difficulties in accurate
recognition and classification. Therefore, early detection and accurate dianogsis
are important for improving prognosis and tailoring appropriate treatment
strategies, especially given the significant survival differences across disease
stages.

Currently, cancer diagnosis primarily depends on imaging techniques
and pathological assessments. Modern cancer diagnosis involve a series of steps
designed to detect and confirm the presence of cancer. It typically starts with a
clinical examination, where a doctor evaluates the patient’s symptoms and
medical records. Imaging screening, such as computed tomography (CT) scans
and magnetic resonance imaging (MRI) are then used to detect and evaluate

suspected cancers. Moreover, a biopsy is usually required to confirm a cancer



diagnosis, as it provides a sample of abnormal tissue for further evaluation. The
tissue is then analyzed through histopathological image analysis, where a
pathologist examines it under a microscope to discover malignant cells and
evaluate the specific type, level, and possible stage of the cancer (Robinson,
2024). In recent years, this process has been enhanced through the adoption of
Whole Slide Imaging (WSI), which digitizes tissue slides at high resolution.
WSI has seen major improvements in image quality and scanning speed, and
studies have shown strong diagnostic agreement between WSI and traditional
microscopy, supporting its growing use in clinical and research applications for
cancer detection and classification (Rizzo et al., 2022).

With advances in technology, particularly through artificial
intelligence (Al) and machine learning (ML), cancer diagnostics are being
revolutionized through the integration of complex algorithms and large datasets.
Computer-aided diagnosis (CAD), an automated tool that uses computer-
generated outputs, is gaining popularity due to its extensive use in digital image
analysis across MR, X-ray, endoscopy, ultrasound, and WSI to enhance clinical
diagnosis (Halalli and Makandar, 2018; Komura and Ishikawa, 2018). Thereby
improving early detection and diagnostic accuracy despite the computer’s
performance not surpassing that of experienced radiologists (Doi, 2007).
Therefore, the integration of Al and ML into CAD systems is expected to further
elevate their capabilities, enabling more accurate and timely diagnoses. As these
technologies continue to evolve, they hold the promise of transforming cancer
diagnostics by providing additional layers of analysis and reducing the reliance
on traditional methods alone (Sebastian and Peter, 2022). The ongoing
advancements in CAD are paving the way for more personalized and effective
cancer detection strategies, ultimately contributing to better patient prognosis

and advancing the discipline of oncology.

1.2 Importance of the Study

Since the Al revolution in the mid-20th century, machine learning has revealed
its vast potential in the medical field, driving advancements in personalized
treatment, predictive analytics, remote patient monitoring, and especially
enhanced diagnostics (Boyle, 2024). Among these applications, deep learning

(DL) in cancer detection has been extensively explored due to its ability to offer



advanced imaging interpretation by analyzing large datasets, including
thousands of medical images and patient records. DL models can detect subtle
patterns and nuances that may be overlooked by the human eye, making it a
powerful tool in early cancer diagnosis. For instance, in automated
histopathological analysis, DL algorithms can examine tissue samples at a
microscopic level, identifying cellular abnormalities with remarkable precision.
These systems can differentiate between benign and malignant cells, assess
tumor aggressiveness, and even predict patient outcomes based on histological
features (Ong et al., 2023; McCaffrey et al., 2024). This technology also
benefits doctors by enabling earlier and more accurate cancer diagnoses, which
allows for quicker treatment initiation before the disease spreads. Additionally,
Al helps in reduce unnecessary follow-up biopsies by minimizing false positives,
saving time, costs, and reducing patient anxiety(Spectrum Al, 2024). By
speeding up the diagnostic process and prioritizing high-risk cases, Al-powered
technologies improve the productivity of medical personnel by allowing them
to focus on challenging situations, ultimately improving patient outcomes and
streamlining healthcare systems (Alowais et al., 2023).

These findings will not only contribute to the field of medical imaging
and artificial intelligence but also support the broader goal of personalized
medicine by enabling tailored diagnostic and treatment approaches based on
individual patient profiles. Al technologies have significant potential to
transform traditional cancer diagnostics, which have traditionally relied on the
expertise of pathologists and are often labor-intensive and prone to human error.
Nowadays, various machine learning approaches, including supervised and
weakly supervised learning, unsupervised methods, transfer learning, and
Vision Transformers, are actively being explored for their potential to support
cancer diagnosis through tasks such as tissue segmentation, tumor classification,
and feature extraction(Tiwari et al., 2025). By leveraging DL techniques or
other Al advancements, automated systems hold great potential for enhancing
the early and accurate detection of cancer, ultimately improving patient

outcomes and increasing survival rates.



1.3 Problem Statement

In Malaysia, oral squamous cell carcinoma (OSCC), the most common type of
HNSCC, accounts for approximately 10.6% of cancer-related deaths in
government hospitals, with a concerning 67.1% of cases diagnosed at an
advanced stage (Ahmad et al., 2021). The high rate of late-stage diagnoses
significantly compromises patient survival and limits treatment effectiveness,
highlighting the urgent need for improved early diagnostic strategies. Moreover,
diagnostic challenges are particularly prominent in rare subtypes of HNSCC that
originate from anatomically complex regions such as the nasopharynx, nasal
and paranasal sinuses, salivary glands, and middle ear. These tumors often
present overlapping histological features with more common cancers, making
accurate identification difficult. Their rarity and anatomical complexity further
complicate early detection, leading to diagnostic delays and difficulties in
planning timely and effective treatment. Therefore, early and accurate
identification of tumor origins, particularly in anatomically complex and
histologically diverse regions such as the head and neck, is crucial for improving
prognosis and guiding effective therapeutic decisions.

Furthermore, histopathology, a primary method for diagnosing cancer
and determining its stage, can sometimes lead to misinterpretation and
misdiagnosis, with a significant false-positive rate of approximately 27%
(Wright, 2021). The reliance on manual interpretation of histopathological
slides by pathologists further exacerbates this issue, as the process is time-
consuming, subjective, and susceptible to inter-observer variability and human
error (Wang et al., 2025). Misdiagnoses can arise from the complexity of
interpreting histopathological images, which may present subtle variations that
are challenging to distinguish (Li et al., 2023). For instance, histopathological
images of early-stage cancers can resemble non-cancerous conditions or other
diseases, complicating diagnosis. The subjective nature of image interpretation
by pathologists, variability in expertise, and potential fatigue can lead to
oversight or errors (Najjar, 2023). These misdiagnoses can delay appropriate
treatment, allow cancer to progress, and impact patient outcomes significantly.

To solve these difficulties, deep learning has the potential to transform
this field by enhancing early detection and precise diagnosis using advanced

image analysis and pattern recognition, which may improve treatment accuracy



and patient outcomes. Therefore, there is a critical need for accurate and scalable
deep learning models that can assist pathologists in detecting cancer with high

precision and consistency.

1.4 Aim and Objectives

In this study, it focuses on the development of a CAD system based on deep
learning for binary classification of histopathological images related to cancer,
with a primary emphasis on HNSCC. State-of-the-art techniques such as
transfer learning, ensemble learning, and Grad-CAM visualizations are
employed to improve the accuracy and interpretability of the model. This
method aims to contribute to advancements in automated cancer detection,
improving both diagnostic precision and the ability to interpret model decisions
in a clinical settings. Several objectives are aim to achieve in this study:

(1) To design and implement CNN and ViT models using transfer
learning and fine-tuning for histopathological image
classification.

(i)  To enhance classification performance through ensemble
learning techniques.

(ili)  To evaluate the performance of designed models.

(iv)  To compare the performance of CNN-based approaches with

VIiT approaches on the same dataset.

15 Scope and Limitation of the Study

This study focuses on the development and evaluation of CNN models for the
automated analysis of HNSCC histopathological images, with a specific
emphasis on binary classification to differentiate between cancerous and non-
cancerous tissues. It will also involve pre-processing WSIs to prepare them for
input into the deep CNN model. Transfer learning techniques, especially fine-
tuning, will be utilized to boost the model’s learning capabilities. Top-
performing models will then undergo ensemble learning to further enhance
classification outcomes. The performance of these models will be evaluated and
compared with a Vision Transformer (ViT) model to identify the most effective
approach. While the primary focus is on HNC, the study has the potential to

extend to other cancer types based on the results obtained.



However, the study encounters several limitations. The availability and
quality of histopathological image datasets can impact the model's performance,
as inadequate staining or poor-quality images may hinder effective training and
validation. Additionally, the acquired dataset may show data imbalance, which
could lead to biased model predictions and affect performance on
underrepresented classes. To mitigate these issues, regularization techniques
will be applied to reduce overfitting and improve the model's generalization
across all classes. Moreover, this study will focus only on the HNSCC cohort,
while the generalizability of the CNN model to other cancer types and
histopathological conditions remains uncertain and requires further
investigation. Lastly, while the model's performance has been evaluated within
a research context, further validation and integration into clinical workflows are
needed to ensure its reliability and practical effectiveness in real-world
applications.

1.6 Contribution of the Study

This study contributes to the field of WSI analysis by exploring deep learning
techniques for the binary classification of histopathological images, specifically
focusing on HNSCC. The pipeline covers critical preprocessing steps, including
tissue masking, tiling, patch extraction, stain normalization, and label
assignment, followed by model training and evaluation. Several cutting-edge
models are used, including CNNs (DenseNet, EfficientNet, MobileNet, ResNet
and VGG) and ViT, which employ transfer learning and fine-tuning techniques.
Ensemble learning techniques are applied to further improve classification
performance by aggregating predictions from multiple CNNs. A comparative
analysis between CNN-based and ViT-based approaches is conducted to assess
their respective strengths in this domain. While the models generated in this
study are not part of a fully deployed CAD system, the reliable models and
reproducible pipeline developed here pave the way for future incorporation into
diagnostic assistance systems. These models demonstrate significant potential
for automating cancer detection, assisting pathologists with clinical processes,
and contributing to the creation of interpretable, Al-powered decision support
systems in digital pathology.



1.7 Outline of the Report

This report is structured as follows: Chapter 2 presents an overview of deep
learning in histopathological image processing and analyzes related research,
with a focus on CNN and ViT architectures, transfer learning strategies, and
ensemble learning techniques. Chapter 3 outlines the deep learning pipeline for
the study, including dataset preparation, model development, implementation
procedures, and evaluation method. Chapter 4 presents the evaluation results, as
well as the discussion and comparison of outcomes across architectures. Chapter
5 summarizes the key findings and outlines potential directions for future
research. The confusion matrix, loss and accuracy curves, and ROC graphs are

included in the Appendices for further reference.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Histopathological images are microscopic tissue samples used for disease
analysis, commonly applied in cancer detection and stage determination.
Traditionally, pathologists manually examine tissue samples under a
microscope to identify abnormalities. Problems evolve including the complexity
of these images, combined with the growing workload, makes the process time-
consuming and may lead to findings influenced by the pathologist's subjectivity.
To address these issues, the digitization of these slides has enabled the
application of computational techniques to automate the analysis process, aiding
pathologists in detecting abnormalities with greater accuracy. Whole slide
imaging was first described by Wetzel and Gilbertson in 1999 as the digitization
of entire histology slides or selected areas. The evolution of WSI has progressed
from basic digitization of tissue slides to advanced systems with automatic
refocusing, tissue recognition, and multimodal imaging, significantly improving
efficiency and image quality in digital pathology. However, the complexity of
histopathological images, combined with the need for precise interpretation,
poses significant challenges, especially when dealing with large-scale datasets.
Therefore, modern histopathological image analysis, driven by advancements
in digital pathology and artificial intelligence, has become essential in clinical
practice (Moscalu et al., 2023).

In recent years, deep learning methods are potentially poised to
revolutionize clinical practice by enhancing diagnostic accuracy, streamlining
workflows, and improving patient outcomes, with ongoing research addressing
challenges to integrate these advancements into routine medical settings
(Moscalu et al., 2023). A successful example by Guo et al. (2022) demonstrates
the valuable clinical applications of CAD in MRI, where it is used to
differentiate between noninvasive and invasive breast lesions, classify invasive
cancers with or without lymph node metastasis, and assist in tumor staging. In
result, the integration of digital pathology with Al enables pathologists to

expand their diagnostic capabilities, facilitating the extraction of clinical



insights from large datasets, ultimately improving patient care and operational
efficiency.

2.2 Deep Learning Architectures

Deep learning architecture refers to the structure and organization of layers in
an artificial neural network designed to automatically learn patterns and
representations from data, eliminating the need for manual feature extraction.
(Madhavan and Jones, 2024). These architectures can generally be classified
into supervised and unsupervised learning models. In cancer diagnostics,
particularly using histopathological images, deep learning models like CNNs
and ViTs have shown promising performance in image recognition and
classification tasks. This section provides an overview of these prominent
architectures used in the present study, outlining their design principles, variants,
and applications in cancer detection.

2.2.1  Convolutional Neural Networks (CNNs)

Convolutional Neural Networks have revolutionized medical image analysis by
leveraging hierarchical feature extraction to enhance classification performance.
Unlike traditional image processing methods, CNNs automatically learn and
extract features from raw image data through multiple layers of convolutional
operations, pooling, and activation functions (Kalra, 2023). In a CNN, the
convolutional layer applies filters to the image to detect features, using a set of
weights to perform mathematical convolutions and generate feature maps
(Shajun Nisha and Nagoor Meeral, 2021). These maps are then processed by the
ReLU activation layer, which introduces non-linearity by setting negative
values to zero. The pooling layer subsequently diminishes the spatial
dimensions of the feature maps, retaining only the most significant information
and helping to prevent overfitting. After several convolutional and pooling
operations, the network uses fully connected layers, where flattened features are
classified using a softmax function to output probabilities for different classes.
This capability allows them to identify complex patterns and structures within

histopathological images, which are critical for accurate cancer diagnosis.
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22.1.1 VGG

VGG is one of the earlier deep learning models that demonstrated the
effectiveness of deep networks for image classification. It consists of sequential
layers of convolutional filters that capture detailed features. While VGG is
known for its simplicity and ease of implementation, its high computational
complexity makes it less ideal for large histopathological datasets. The VGG
models, developed by Simonyan and Zisserman (2014) and presented in their
2014 paper, aimed to explore how increasing the depth of convolutional neural
networks impacts performance in large-scale image recognition tasks. The
primary variants of VGG used for transfer learning are VGG-16 and VGG-19
(Shoeibi et al., 2022). Both VGG-16 and VGG-19 are popular choices for
transfer learning in histopathological image detection. For instance, Setiawan,
Pramudita and Mulaab (2024) demonstrated the effectiveness of these models
in automated lung cancer detection, achieving a highest accuracy of 97%.
Similarly, Kanimozhi and Priyadarsini (2024) used VGG-19 for breast cancer
detection, attaining an impressive accuracy of 99.22%. Therefore, VGG models,
particularly VGG-16 and VGG-19, have proven effective for transfer learning
in histopathological image detection. Despite their computational complexity,
these models have achieved notable results in various cancer detection tasks,

demonstrating their value in advancing automated diagnostic systems.

2.2.1.2 ResNet

ResNet (Residual Networks) was introduced by He et al. (2016) in their 2015
paper titled “Deep Residual Learning for Image Recognition.” It introduced the
concept of residual learning, which allows for deeper networks without the
vanishing gradient problem. Variants of ResNet include ResNet50, ResNet101,
and ResNet152, each differing in the number of layers and the depth of the
network. The different variants of ResNet primarily differ in their depth, or the
number of layers, which affects their capacity and computational complexity
(Chaure, 2024). These variants offer different trade-offs between computational
complexity and model performance, allowing flexibility in various image
recognition tasks. Findings indicate that ResNet-50 is frequently used for
feature selection in the initial stage of multi-classification tasks. For instance,
Shen et al. (2023) and Marostica et al. (2021) both employed ResNet-50 for
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feature extraction before proceeding with further classification. This might due
to ResNet's use of residual blocks allows it to train very deep networks
effectively. This design addresses the vanishing gradient issue and allows the
network to learn complex features more effectively compared to some other
architectures. Moreover, Ashwini et al. (2024) demonstrated a framework using
ResNet50 for early breast cancer detection, achieving an impressive accuracy
of 96.9% with their proposed system. These capabilities underscore ResNet’s

significant role in advancing both image recognition and medical diagnostics.

2.2.1.3 DenseNet

DenseNet (Densely Connected Convolutional Networks) was proposed by
Huang et al. (2017). It further improved upon previous architectures by
introducing dense connections between layers, allowing for more efficient
gradient flow and feature reuse. Its compact architecture makes it suitable for
analyzing high-resolution histopathological images, reducing the need for large
computational resources. For instance, Noaman et al. (2024) had shown their
promising result in automated breast cancer detection via the fusion of
DenseNet201 with color histogram techniques to chieve a 99.683% of accuracy.
Besides, Potsangbam and Shuleenda Devi (2024) demonstrated the
effectiveness of transfer learning with the DenseNet architecture, achieving an
accuracy of 96.53% at 100x magnification. These examples illustrate
DenseNet’s effectiveness in enhancing diagnostic performance in specialized

image analysis tasks.

2.2.1.4 MobileNet

MobileNet, proposed by Howard (2017), is a lightweight architecture designed
for use in resource-constrained environments. Its depthwise separable
convolutions reduce computational complexity while maintaining high
accuracy, yielding it appropriate for real-time applications and deployment on
mobile devices. The MobileNet variants include MobileNetV1, MobileNetV2,
MobileNetV3, MobileNetV3-Large, and MobileNetV3-Small, each offering
distinct features tailored to different needs and computational constraints.
According to research by Datta Gupta et al. (2023), MobileNet achieved a high

accuracy of 98%, matching that of InceptionV3 and outperforming ResNet50
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by 13.34% in a three-class classification task, while having a model that is at
least six times more compact than the others. These advantages highlight
MobileNet’s effectiveness in delivering high performance with significantly
lower computational demands, making it particularly well-suited for mobile and

edge computing applications.

2.2.1.5 EfficientNet

EfficientNet, as one of the latest CNN proposed by Tan (2019), scales both
depth, width, and resolution of the network in a balanced manner, leading to
state-of-the-art performance in various image classification tasks. Its efficiency
in handling large image datasets with reduced parameters makes it particularly
well-suited for histopathological image analysis, where computational
resources may be limited. For instance, Albalawi et al. (2024) developed a deep
learning model based on EfficientNetB3, achieving an impressive 99% accuracy
in differentiating between normal epithelium and OSCC tissues using a
substantial dataset of 1224 images from 230 patients. Moreover, Abhishek et al.
(2024) demonstrated that the EfficientNetB4 model achieved superior
performance with an accuracy of 99.89% in classifying colorectal cancer from
histological images, outperforming other models such as GoogleNet, AlexNet,
and various ResNet architectures, which all had accuracies below 95%.
Therefore, EfficientNet’s scalable architecture, with its variants from B0 to B7,
allows for modifications in depth, width, and resolution, making it adaptable for
various computational needs and accuracy requirements in histopathological

image analysis.

2.2.2  Vision Transformers (ViTs)

Unlike CNNs, Vision Transformer is a deep learning architecture that adapts the
Transformer model, originally designed for text, to image analysis by treating
images as sequences of patch embeddings. Dosovitskiy et al. (2020) pioneered
the VIiT by introducing a pure Transformer architecture for image classification
and showing that, when trained on massive datasets like ImageNet-21k, it can
surpass CNN performance. ViT divides an image into fixed-size patches,
flattens them, and feeds the resulting sequence into a standard Transformer

encoder, which a simple fully connected neural network includes Multi-Head
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Attention and Multi-Layer Perceptrons, to extract features for image
classification (Shah, 2022). While ViT and CNNSs share similar steps, such as
splitting the image into patches, using pretrained models, and fine-tuning, they
are often compared or even combined in hybrid models due to their
complementary strengths.

VIiT shows its prominent in cancer clascification. For instance, Abadi
and Reza (2024) achieved 95.11% accuracy in breast cancer classification using
VIiT by employing a progressive fine-tuning strategy that gradually updated
more layers to adapt to the cytological image domain. Besides, ViT has also
demonstrated strong performance in multi-class classification, particularly in
skin cancer detection, as evidenced by studies from Yang, Luo and Greer (2025)
and Ozdemir and Pacal (2025) , which reported high classification accuracies of
95.05% and 93.48%, respectively. Several studies have also proposed hybrid
CNN and ViT frameworks to leverage the advantages of both architectures for
improved classification performance (Hayat et al., 2024; Katar et al., 2024;
Patheda et al., 2025). The study from Momentum (2022) also highlighted
several limitations of ViT learning, including lack of inherent positional
awareness, fixed input resolution constraints, loss of fine-grained spatial
information, patch border disruption, lack of translational equivariance, and
high computational cost due to quadratic scaling with input length, which pose
a significant challenge to its scalability and effectiveness in high-resolution or
dense prediction tasks.

2.3 Deep Learning Techniques

2.3.1  Transfer Learning

Transfer learning has become a critical approach in medical image analysis due
to the limited availability of annotated medical datasets. This technique
leverages deep learning models pre-trained on large, diverse datasets like
ImageNet, which contain vast amounts of labeled data across various categories,
and then applie it to another task. By using CNNs pretrained on large general-
purpose image datasets, researchers can fine-tune the models on medical images,
thereby significantly improving accuracy, reducing training time, and
addressing the challenge of limited labeled data (Zheng et al., 2023). For

instance,Hava Muntean and Chowkkar (2022)demonstrated that transfer
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learning with the DenseNet121 model achieved 86.6% accuracy in classifying
breast histopathological images at the 100X magnification level, with a 16.4%
increase in training accuracy compared to models trained from scratch. Besides,
Deebani et al. (2025) analyzed the effectiveness of Transfer Learning and
transformers in multiscale cancer detection, achieving 97.41% accuracy for
colon cancer and 94.71% accuracy for histopathological lung cancer detection.
These studies highlight the potential of transfer learning in reducing
computational costs, minimizing the need for large datasets, and improving
model generalizability. However, transfer learning can lead to negative transfer
and reduced model performance if the source and target tasks are dissimilar, the
data distributions differ significantly, or an inappropriate model is applied.
Ongoing research is focusing on methods such as distant transfer and various
evaluation techniques for assessing task and dataset similarities, with the goal
of reducing negative transfer and increasing transfer learning efficacy.

2.3.2  Ensemble Learning

The intricate characteristics of histopathological images often make them
difficult to identify recognizing features using a pre-trained classification
method. Hence, ensemble learning approaches, which intergrate several
classification models, are commonly employed to address the complexities
natural in analyzing these images.

Ensemble learning, first introduced by Nilsson in 1965, is a supervised
learning approach where multiple base models are trained and their predictions
are combined to generate a more precise overall result(Yang, 2017). The
fundamental idea is to leverage the combined strength of diverse models, each
with unique error patterns, to achieve improved overall performance compared
to individual models. In cancer detection, ensemble methods have shown to be
effective by reducing model variance and improving robustness. Techniques
such as majority voting, stacking, and weighted averaging are commonly used
to integrate the outputs of different CNN models, resulting in a more reliable
classification system. For instance, Yong et al. (2023) demonstrates that the
ensemble models, comprising EfficientNetB0, EfficientNetB1, DenseNet121,
DenseNet169, and MobileNet with unweighted averaging, significantly

enhance gastric cancer detection accuracy from histopathological images,
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achieving a state-of-the-art accuracy of 99.20% in 160 x 160 pixel patches and
offering valuable support for early diagnosis. By using the accuracy from pre-
trained models as weights for averaging in the ensemble, Zheng et al. (2023)
achieved an impressive 98.90% accuracy with their deep ensemble model for
binary classification of breast histopathological images. This model
outperformed recent transformer and MLP models by 5%-20%, showcasing its
superior performance in classification tasks.

Addictionally, three ensemble methods, including majority voting,
averaging, and probability-based fusion, were employed to categorize
cardiovascular tissues into six distinct classes in Mittal (2021) study. For
majority voting, the final prediction was determined by selecting the most
frequently predicted label from the constituent CNNs. To produce the final
prediction, the probability-based fusion method normalized and combined the
predicted probabilities from the CNNs. While the averaging ensemble of three
CNNs achieved the highest overall F1-score, the method provided the best F1-
score with six CNNs. Conversely, the majority voting method did not surpass
the performance of the other two ensemble techniques in any configuration
(Mittal, 2021). In short, ensemble learning methods, with their capacity to
integrate multiple classification models, offer a robust solution for the complex
task of analyzing histopathological images. By leveraging diverse models and
combining their outputs through techniques like unweighted averaging,
majority voting, and probability-based fusion, these methods enhance accuracy

and reliability in cancer detection.

2.4 Summary

This literature review examined the development and application of deep
learning techniques for histopathological image analysis, particularly in cancer
detection. It reviewed major deep learning architectures, including CNNs and
ViTs, outlining their structural differences, benefits, and prior success in
medical image classification. The key techniques such as transfer learning and
ensemble learning were also discussed, which enhance model generalization
and performance, particularly on limited medical datasets. The summaries of
each reviewed study are aligned with the specific cancer type targeted for
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classification, as well as the selection of architectures and techniques adopted
in the present study, as detailed in Table 2.1.

Table 2.1: Summary of Reviewed Models.

Reference Cancer Type Method Accuracy
Setiawan,
) VGG16, VGG19 for
Pramudita, & Lung Cancer ) 97%
automated detection
Mulaab (2024)
Kanimozhi &
Priyadarsini Breast Cancer | VGG19 for detection 99.22%
(2024)
Ashwini et al.
Breast Cancer | ResNet50 96.9%
(2024)
DenseNet201 + color
Noaman et al. _ _
Breast Cancer | histogram fusion for 99.683%
(2024) .
automated detection
Potsangbam &
) DenseNet for transfer
Shuleenda Devi | Breast Cancer ) 96.53%
learning
(2024)
Datta Gupta et Three-class | MobileNet for
L L 98.00%
al. (2023) Classification | classification task
Oral EfficientNetB3 for
Albalawi et al. Squamous | differentiation
99%
(2024) Cell between normal and
Carcinoma | carcinoma tissues
] EfficientNetB4 for
Abhishek et al. Colorectal ) o
histological image 99.886%
(2024) Cancer o
classification
Abadi & Reza VIT with progressive
Breast Cancer | ) 95.11%
(2024) fine-tuning
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Reference Cancer Type Method Accuracy
ViT for multi-class
Yang, Luo & ) )
Skin Cancer | skin cancer 95.05%
Greer (2025) o
classification
) VIiT for multi-class
Ozdemir & Pacal ) )
Skin Cancer | skin cancer 93.48%
(2025) e .
classification
Hayat et al. o )
Breast cancer | EfficientNetV2L-ViT 99.83%
(2024)
EfficientNet-BO +
Katar et al. )
Lung Cancer | LBP + ViT Encoder + 99.87%
(2024)
SVM
Patheda et al. ]
Breast cancer | CNN+ViT-B16 90.1%
(2025)
Hava Muntean
Transfer Learnin
and Chowkkar Breast Cancer g 86.6%

with DenseNet121

(2022)
) Transfer Learning and
Deebani et al. Colon and Colon: 97.41%
Transformers
(2025) Lung Cancer _ Lung: 94.71%
(Multiscale)
Ensemble Learning
(EfficientNetBO,
EfficientNetB1,
Yong et al. ) DenseNet121,
Gastric Cancer 99.20%
(2023) DenseNet169,
MobileNet with
unweighted
averaging)
Deep E bl
Zheng et al. Breast C eep Ensemble 98.90%
reast Cancer | Model igh .90%
(2023) odel (Unweighted

Averaging)
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CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

The methodology of this project focused on five key phases: image
preprocessing, data labelling and spliting, transfer learning, ensemble learning,
and model evaluation. The workflow began with the input of WSIs, which are
subjected to image pre-processing techniques such as patch extraction and
normalization to prepare them for model training. The processed image patches
were then split into training, validation, and testing sets to ensure a robust
evaluation process. Multiple pre-trained CNNs were fine-tuned through transfer
learning to adapt them to the specific cancer detection task. The predictions from
these individual models were then integrated using ensemble learning, where
predictions from multiple CNNs were combined to form a more accurate and
generalizable ensemble model. This ensemble generated the final model output,
which was then assessed through model evaluation metrics to determine its
classification performance. Overall, the proposed deep learning-based
classification pipeline were designed to be robust, accurate, and scalable, aiming
to assist pathologists in detecting cancer with high precision and reliability. The

complete process flow is shown in Figure 3.1.

{ Dataset Spliting \
. NN
Input Dataset Image Pre-processing

&

N b

L5 N ]
ot 2 Validation Set
5
NN
.
Transfer Learning
Ensemble Learning /
Model Output Model Evaluation
Ensemble Model /
CNN-N

Figure 3.1: Process Flow.
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3.2 Dataset Resource

The histology dataset utilized in this study was obtained from The Cancer
Imaging Archive (TCIA) as part of the National Cancer Institute Clinical
Proteomic Tumor Analysis Consortium (CPTAC) (2018) Head-and-Neck
cancer (CPTAC-HNSCC) discovery study. It consists of 390 WSI, including
122 normal and 268 tumor slides in svs format, which are critical for our
investigation. The CPTAC-HNSCC dataset includes tumor samples primarily
from common head and neck cancer sites such as the oral cavity, tongue, buccal
mucosa, oropharynx, floor of mouth, larynx, tonsil, alveolar ridge, and epiglottis.
These samples encompass a variety of subtypes of HNSCC, including
Keratinizing HNSCC, Acantholytic HNSCC, and Basaloid HNSCC, which vary
in their histological characteristics and clinical behavior as shown in Figure 3.2.
This diverse collection of images enhances the model's ability to learn distinct
patterns and features characteristic of both normal and cancerous tissues.

Benign Conventional Keratinizing  Acantholytic Basaloid
Tissue HNSCC HNSCC HNSCC HNSCC

Figure 3.2: Example Slides for Each Subtype of Tissues in the Dataset.

3.3 Histophatological Image Pre-processing

The original WSI from CPTAC comprised high-resolution histopathological
slides in the .svs format with a 20x magnification. Due to the high computational
complexity associated with processing these large images, pre-processing was
necessary to prepare the images for input into the transfer learning model. As
shown in Figure 3.3, the image pre-processing in this study included four stages:
tissue masking, tile extraction, segmentation, and stain normalization. Tissue
masking, tile extraction, and segmentation were performed using PyHIST,
which is a lightweight, semi-automatic command-line tool designed for
extracting tiles from WSI in histopathology (Mufioz-Aguirre et al., 2020). Stain
normalization was performed with StainTools, a Python 3-based toolset for
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tissue stain normalization and augmentation, which includes methods such as
Macenko and Vahadane (Byfield, Godard and Gamper, 2021). After these pre-
processing steps, the patches were labeled and split for training, validation, and

testing purposes.

Original Data

Stain
Normalising

Figure 3.3: Image Pre-processing Steps.

3.3.1  Tissue Masking

Tissue masking is a critical preprocessing step in analyzing WSI in
histopathology. It involves distinguishing tissue regions from non-tissue areas,
such as the glass background, within a WSI. In this project, PyHIST was
employed to generate tissue masks using a graph-based segmentation method.
Additionally, Otsu’s thresholding method was used to separate an image into
foreground and background regions based on pixel intensity values. This
automated algorithm works by maximizing the variance between the two classes
(tissue and background) while minimizing the variance within each class. It
determined the optimal threshold by analyzing the histogram of grayscale
intensities and selecting the point that minimizes intra-class variance (Vijay and
Patil, 2016). Pixels with intensities below this threshold were assigned to the
background class, while those above are classified as foreground. This resulted
in a clear distinction between tissue and non-tissue areas, facilitating the
extraction of specific objects or regions of interest from the image
(Gopalakrishnan, 2023). After generating the mask, it was transformed from the
OpenCV format to the PIL format, and the corresponding background color
array was stored subsequent tile extraction and processing tasks.
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3.3.2  Tiles Extraction

A grid of 224x224 pixel tiles was created over the masked image. The
magnification of the tiles could be adjusted by controlling the downsampling
factors, with maximum magnification factor of 20x corresponding to a
downsampling factor of 1. As shown in Figure 3.4, WSI were stored in a
pyramidal structure that enables access to multiple resolution levels. The
relationship between magnification and downsampling is illustrated Equation
1.1, where higher downsampling leads to lower image resolution. For this study,
tiles were extracted at three different magnification levels, including 1.25x, 2.5%,
and 5x, corresponding to downsampling factors of 16, 8, and 4, respectively.
As illustrated in Figure 3.5, higher magnification tiles offered greater detail but
also increase computational costs and processing time. Although this could
enhance feature detection, excessively high magnification may not always
improve results and could lead to diminishing returns due to increased noise and
resource demands. Therefore, balancing magnification with computational
efficiency was essential for optimal model performance. In this project, a
downsampling factor of 8 was used to produce tiles with a 2.5x magnification.

. Original Magnification
Downsampling Factor = g 9z f : (3.1)
Target Magnification

With the tile grid and tissue mask in place, each tile was evaluated to
ensure it met a minimum tissue coverage threshold, which was set at 0.5 in this
project to ensure adequate tissue content. Tiles meeting this criterion were
extracted from the whole-slide image at the desired resolution. While higher
tissue coverage in patches was desirable for reducing non-informative areas,
setting a higher threshold could reduce the number of usable tiles, potentially
limiting the availability of histopathological images for model training,

especially at lower magnification settings.
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Downsampling Factor: 16, Magnification: 1.25x

Downsampling Factor: 8, Magnification: 2.5x

2S5 < Downsampling Factor: 4, Magnification: 5x

Normal
Tissue

HNSCC
Tissue

Figure 3.5: Image patches extracted at different magnification levels.

3.3.3  Patches Cleaning and Stain-Normalisation
A patch-cleaning step was conducted to eliminate undesired images that could
negatively impact model performance. Specifically, tiles with excessive dark
regions, commonly resulting from scanning artifacts such as blur, pen ink, or
folded tissue, were identified and removed. This was achieved using a
threshold-based approach, where any tile with over 90% of its pixels below a
grayscale intensity of 50 was considered a "black image" and automatically
excluded from the dataset. After automated filtering, the remaining patches were
manually reviewed to ensure that any residual artifacts were also eliminated.
After cleaning, stain normalization was applied using the Vahadane
method via the StainTools library. Vahadane’s technique is built on sparse non-
negative matrix factorization, which decomposes histological images into stain
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color bases and their corresponding concentration maps (Vahadane et al., 2016).
By substituting the original stain color bases with those from a reference image,
the method standardizes the color appearance across different samples while
preserving the underlying tissue structure. In this study, a representative
reference image was selected, and all patches were normalized to match its stain
profile. Figure 3.6 illustrates the outcome of this process, showing the stain-
normalised patches for each subtype of HNSCC. However, since stain weights
were processed independently, the method might not fully consider the global
intensity or relative proportion of each stain, occasionally resulting in
overrepresentation of certain stains (Hoque et al., 2024). Despite this limitation,
Vahadane normalization remained effective for reducing inter-slide stain
variability, allowing the model to focus on learning morphological patterns

rather than being influenced by inconsistent staining.

Reference Tissue Benign Tissue HNSCC Tissue

Original

Stain-
Nomalised

Figure 3.6: Output of Stain Normalisation for Each HNSCC Subtype.

3.3.4  Patch Labelling and Data Spliting

Once the patches were prepared, each was labeled according to its parent WSI
using binary labels: "0" for normal tissue and "1" for malignant tissue. This
labeling was applied to the entire WSI rather than to specific regions of interest
(ROIs) within the slide. Although including the entire WSI may introduce some
irrelevant data, as a tumor-labeled WSI might also contain normal tissue patches,
studies from Phan et al. (2021) and Koo et al. (2023) had shown that it is not
significantly affect the classification performance.
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At the end of image preprocessing, the generated patches were divided
into training, validation, and testing sets with a distribution ratio of
approximately 70%, 20%, and 10%, respectively, and saved in an array for
further processing. The distribution counts for each divided set are recorded in
Table 3.1.

Table 3.1: Number of Patches in Training, Validation, and Testing Sets.

Dataset WSI Patches with Patches with Patches with
Splitting 1.25x 2.5X 5X
Training 273 5331 21552 86520
Validation 82 1408 5949 22419
Testing 35 556 3273 15411
Total 390 7295 30774 124350
34 Classification Model Development

Transfer learning was carried out using five CNN architectures: DenseNet,
EfficientNet, MobileNet, ResNet, and VGG, along with their respective variants.
A shown in Figure 3.7, transfer learning was performed using models pretrained
on the ImageNet dataset, with 80% of the convolutional base layers frozen and
the remaining 20% unfrozen for fine-tuning on the histopathological dataset.
Each pretrained model was selected and configured to accept input images of
size 224 x 224 pixels. Four new trainable classification layers were then added,
including a global average pooling layer, a dense connected layer with 512
neurons and ReLU activation, a final dense layer with 1 neuron and a sigmoid
activation function for binary classification. The dense layer incorporated an L2
regularizer (with A = 0.01) to penalize large weights and reduce overfitting.
Moreover, the models were compiled with binary cross-entropy as the
loss function and AdaBound optimizer, with a learning rate of 0.00001. Training
was conducted with a batch size of 32 over a maximum of 50 epochs, with early
stopping applied if validation accuracy did not improve for 5 consecutive
epochs. Table 3.3 summarized all the training parameters in the experiment.
Model performance was evaluated on both validation and test datasets to ensure

classification effectiveness.
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Pre-trained Network Fine Tunned Network

Input Input
(ImageNet) (CPTAC)

Pre-Trained Base Pre-Trained Base
CNN Layer CNN Layer
CNN Layer Transfer Learning CNN Layer
CNN Layer CNN Layer
CNN Layer Fine-tunned
CNN Layer Lot
Pre-trained New Classification
Classification Layer Layer
Legend

Output Output
Prediction Prediction

—— =

Trainable

Figure 3.7: Overview of Transfer Learning with Fine Tuning.

Table 3.2: Model Training Configuration and Parameters.

Parameter Details ‘
Epochs 50
Batch Size 32

Input Dimensions 224 x 224 x 3 (RGB image patch)

Pretrained Layers 80% frozen, final 20% fine-tuned

GlobalAveragePooling2D — Dense(512) —

Top Architecture Dropout(0.5) — Dense(1)

Activation Functions ReLU (Dense 512), Sigmoid (Output layer)

Regularizer L2 regularization (A = 0.01) on Dense(512)

Optimizer AdaBound

Learning Rate

Loss Function

Callbacks

0.00001 (1e-5)
Binary Cross-Entropy

EarlyStopping (monitor = val_accuracy,
patience = 5, restore best weights)
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3.5 Esemble Learning

Various CNN architectures were used to generate diverse models, each trained
on the same histopathological dataset. The top-3 and top-5 highest accuracy
predictions from these individual models were then aggregated using various
techniques, including simple methods like averaging and majority voting, as
well as advanced techniques including stacking. This approach leveraged the
strengths of each model and reduces the likelihood of overfitting or model-
specific biases, leading to more accurate and reliable predictions for classifying

HNSCC histopathological images.

3.5.1 Averaging

Averaging combines predictions from multiple models by computing the
average of their predictions. Both unweighted and weighted averaging ensemble
had been applied in this project. In unweighted averaging, all models
contributed equally to the final prediction, with each model's output treated the
same regardless of its individual performance. For classification tasks, this
involved averaging the predicted probabilities and selecting the class with the
highest average probability. In weighted averaging, predictions were averaged
with each model assigned a weight based on its performance metrics, such as
accuracy. Models that perform better have a greater influence on the final
prediction, leading to potentially improved results. Weighted averaging allowed
for a more nuanced aggregation by recognizing and leveraging the strengths of

more accurate models.

3.5.2 Majority Voting

Majority voting aggregates predictions by tallying the votes each class received
from all models. In this project, hard voting was employed, where each model’s
prediction counted as a vote for a specific class, and the class with the highest
number of votes was selected as the final prediction. This approach was both
straightforward and effective, particularly when models had comparable
performance. By counting votes directly, hard voting harnessed the collective
judgment of multiple models to determine the most likely class. It was especially
beneficial when individual models were diverse, as their varied predictions

complemented each other to enhance overall classification accuracy.
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3.5.3  Stacking

Stacking, or stacked generalization, is an advanced ensemble technique where
multiple base models are trained, and their predictions are aggregated through a
meta-model. First, a diverse set of base models is trained separately on the same
dataset. The predictions from each base model are then used as input features
for a meta-model. The meta-model, trained on these predictions, learns to
optimally combine the base models’ outputs to make the final prediction. This
process allowed the meta-model to exploit the strengths of each base learner and
integrate their predictions effectively. Stacking often results in superior
performance compared to any single model, as the meta-model learns the best

way to synthesize the diverse predictions of the base models.

3.6 Model Evaluation

3.6.1 Performance Matics

To assess the effectiveness of the classification models, several performance
metrics were utilized, all derived from the confusion matrix. The confusion
matrix provides a detailed comparison between the predicted and actual
outcomes, capturing key elements such as True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN). By analyzing the
confusion matrix from each model’s testing output, these performance metrics
offered a comprehensive evaluation of the model's ability to classify correctly.
Collectively, these metrics highlighted the model’s strengths and reveal areas
for improvement, providing a robust assessment of its classification

performance.

3.6.1.1 Accuracy

Accuracy (Acc) is a fundamental metric calculated as the ratio of correctly
classified instances (both TP and TN) to the total number of instances. It
provides an overall view of model performance, reflecting how well the model

distinguishes between classes across the entire dataset.

TP+TN
Acc = ———
TP+TN+FP+FN

3.2)
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3.6.1.2 Specificity

Specificity (SP) measures the proportion of actual negatives that are correctly
identified, calculated as Equation 3.3. It represents the model's ability to
correctly identify negative cases. For example, in a medical test for a disease, a
high specificity means that the test is good at identifying healthy individuals as
negative (those without the disease), thus minimizing the chance of falsely
diagnosing someone as having the disease when they actually don't. A model
with high specificity is particularly valuable when the consequences of false

positives are serious, as it ensures that negative cases are accurately recognized.

TN

Sp = (3.3)

T TN+FP

3.6.1.3 Precision

Precision (Pr) reflects the proportion of true positive predictions among all
positive predictions which calculated as Equation 3.4. Precision is crucial when
the cost of false positives is high. In situations where false positives have
significant consequences, such as in medical diagnoses or fraud detection,
having a high precision ensures that when the model predicts a positive result,
it is likely to be correct.

Pr=— (3.4)

T TP+FP

3.6.1.4 Recall

Recall (Re), or sensitivity, shows the model’s ability to detect all positive cases,
calculated as Equation 3.5. It quantifies how well the model captures all the true
positives, considering both the correctly predicted positive cases (TP) and the
cases that were missed (FN). For instance, in a cancer detection model, a high
recall ensures that most of the actual cancer cases are identified, even if it means
incorrectly classifying some healthy individuals (leading to more false
positives). A low recall would mean that many positive cases (e.g., people with
cancer) are not being detected, which could have serious consequences.
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Re = —2 (3.5)

" TP+FN

3.6.1.5 F1 Score

The F1 Score combines both precision and recall to provide a balanced measure
of a model’s performance, especially when there is an uneven class distribution
or when both false positives and false negatives are of concern. It is calculated
as Equation 3.6. A high F1 score indicates that the model performs well in terms
of both precision and recall, making it a reliable measure of the model’s overall

classification ability.

F1=2x-"20 (3.6)
3.6.1.6 Areaunder Curve
The Area Under the Curve (AUC) evaluates the model's ability to distinguish
between classes across different thresholds, providing a summary of the model's
performance. The ROC curve itself is created by plotting the True Positive Rate
(Recall) against the False Positive Rate at different threshold values. By
adjusting the threshold for classifying positive and negative cases, the ROC
curve illustrates how well the model balances between correctly identifying true
positives and minimizing false positives. The AUC represents the total area
under this curve, with values ranging from 0 to 1. An AUC of 1.0 indicates
perfect classification, where the model fully distinguishes between classes,
while an AUC of 0.5 implies the model performs no better than random guessing.
The closer the AUC value is to 1, the better the model's ability to separate the

positive and negative classes.

3.6.1.7 Matthews Correlation Coefficient

Matthews Correlation Coefficient (MCC) is a comprehensive measure of the
model's performance, considering all four categories of the confusion matrix,
and is calculated as Equation 3.7. Unlike accuracy, which can be misleading in
imbalanced datasets, MCC provides a balanced view of the model's
performance by taking into account both the correct classifications and the types

of errors made. MCC ranges from -1 to 1, where 1 indicates perfect
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classification, 0 suggests no correlation between predictions and actual
outcomes, and -1 reflects complete misclassification.

TPXTN—FPXFN
MCeC = \(TP+FP)(TP+FN)(TN+FP)(TN+FN) 3.7)

3.6.1.8 Diagnostic Odds Ratio

The Diagnostic Odds Ratio (DOR) evaluates the odds of a positive test result
being correctly identified in positive cases versus negative cases, calculated as
Equation 3.8. This metric provides an indication of the overall effectiveness of
the diagnostic test. A higher DOR reflects improved test performance, with
values above 1 indicating that the test is more effective at differentiating

between positive and negative cases.

TPXTN
FPXFN

DOR =

(3.8)

3.6.2  Tumor Prediction Heatmaps using Grad-CAM

To enhance the interpretability of the CNN model’s predictions, Gradient-
weighted Class Activation Mapping (Grad-CAM) was employed. This
technique generates visual heatmaps that feature the regions of an image that
most influence the model’s decision for predicting tumors. Typically, these
heatmaps use a color gradient (e.g., from blue to red) to represent intensity.
Areas with higher intensity are usually shown in warmer colors like red or
yellow, while areas with lower intensity are depicted in cooler colors like blue
or green. Grad-CAM was applied to the final convolutional layers of each CNN
model (VGG, ResNet, DenseNet, MobileNet, and EfficientNet) to visualize
their focus areas.

In this project, the Grad-CAM process involved extracting the feature
maps and gradients from the last convolutional layer, computing a weighted
combination based on the gradients, and generating a normalized heatmap that
was overlaid onto the original histopathological image for visual interpretation.
An ensemble Grad-CAM approach was also implemented. For each image,
Grad-CAM heatmaps were individually generated from the selected CNN

models and resized to a uniform target shape. These heatmaps were then
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averaged to produce a composite ensemble heatmap, which emphasizes
consistent activation regions across all models. This ensemble method provides
a more reliable interpretation by highlighting regions that multiple models agree

are significant for classification.

3.7 Baseline Comparison Using Vision Transformer (ViT)

To establish a baseline for comparison against CNN-based models, a ViT model
was implemented using the Hugging Face transformers library. The model was
initialized with pretrained weights from a ViT variant and fine-tuned on the
selected dataset with binary labels representing ‘Cancer’ and ‘No Cancer’. The
label mapping was explicitly defined using label2id and id2label dictionaries to
ensure consistent interpretation during training and inference.

Fine-tuning was carried out using the Hugging Face Trainer API with
the following key training configurations: a batch size of 32, learning rate of 2e-
4, and a total of 30 training epochs. The training used mixed precision (fp16) to
accelerate computation and reduce memory usage. Model evaluation was
performed at regular intervals, and early stopping was incorporated with a
patience of 6 evaluation steps to prevent overfitting and minimize training time.
The best model checkpoint was automatically selected based on validation
performance.

After training, the model was evaluated on the test dataset, and
predictions were generated by passing each test image through the model. The
predicted class for each image was determined by selecting the class with the
highest logit score from the model’s output. These predictions were then directly
evaluated using performance metrics and compared with the results from the

CNN-based ensemble models.

3.8 Experiment Settings

All CNN and ensemble model training, evaluation, and preprocessing tasks
were conducted on a Windows 10 workstation powered by dual Intel XEON
E5-2630v3 CPUs, an NVIDIA Quadro P6000 GPU, 120 GB of RAM, and
CUDA version 11.4. The environment was configured with Python 3.8.19 and
TensorFlow 2.5. In contrast, the VIiT models were trained on Google Colab
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using Python 3.11.12, PyTorch 2.6.0+cul24, and the Transformers library
version 4.37.2.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction
In this project, fine-tuned trainings were done with CNNs of five major family,
including DenseNet, EfficientNet, MobileNet, ResNet and VGG, to
demonstrate their effectiveness in histopathological image classification and
contribute to the objective of enhancing diagnostic performance through deep
learning. Prior to training, the histopathological whole slide images were
successfully tiled into patches using a 50% tissue threshold and underwent stain
normalization using the Vahadane method. The dataset was split into 80%
training, 20% validation, and 10% testing, with the benign slide ratio controlled
between 22% and 26% within each category. To further address data imbalance,
L2 regularization was applied to the model training process for smoothing the
training process and avoiding sharp weight updates that could cause overfitting.
To assess model robustness across varying visual contexts, three
magnification levels (1.25x, 2.5x, and 5x) were tested. Different magnification
levels provide varying tissue detail, where lower magnifications offer broader
structural context, while higher magnifications reveal cellular features. Testing
multiple levels helps identify which resolution yields the best diagnostic
performance and supports multi-scale representation learning. A ViT model was
also fine-tuned for comparison, and an ensemble voting strategy was later
applied to explore performance gains through model combination. Together,
this preprocessing and training pipeline demonstrated reliable performance

across models and magnification levels.

4.2 Classification Result

The classification results were evaluated by comparing the performance of the
proposed CNN architectures with 1.25x (Table 4.1), 2.5x (Table 4.2), and 5x
(Table 4.3) magnification input using various metrics, including Acc, Sp, Pr, Re,
F1, AUC, MCC, and DOR. Figure 4.1 was plotted to compare the classification
performance of CNN-based models and ViT across three magnification levels
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(1.25%, 2.5%, and 5x), facilitating an easy comparison of their respective

accuracies.

Table 4.1: Performance Metrics Comparison of Deep Learning Architectures

for 1.25x Magpnification.

Architecture

Performance Metrics

Acc Sp Pr Re F1 AUC MCC DOR

DenseNet121  0.8903 07315 0.9061 0.9484 0.9268 08400 07115 50
DenseNet169  0.9065 0.7315 0.9080 09705 09382 08510 07536 90
DenseNet201  0.8975 0.8523 0.9442 09140 09288 0.8832 07470 61
EfficientNetBO  0.9083 0.7181 0.9045 0.9779 09398 0.8480 0.7587 113
EfficientNetBL ~ 0.9281 07987 09297 09754 09520 0.8870 08122 157
EfficientNetB2 ~ 0.8867 0.6980 0.8963 0.9558 0.9251 0.8269 0.6997 50
EfficientNetB3 09011 0.7181 0.9037 0.9681 09348 0.8431 07387 77
EfficientNetB4  0.8849 0.6376 0.8803 09754 09254 0.8065 0.6937 70
EfficientNetB7 ~ 0.8975 0.6980 0.8977 0.9705 0.9327 0.8343 0.7287 76
MobileNet ~ 0.8525 0.6242 0.8719 09361 09028 0.7801 0.6050 24
MobileNetv2 07932 02752 0.7874 09828 0.8743 0.6290 0.4068 22
ResNet50 ~ 0.8975 0.6913 0.8959 09730 09329 08321 0.7287 81
ResNetl01 09317 0.8255 09382 09705 09541 0.8980 0.8223 156
ResNetl52 09155 0.7584 09167 09730 09440 0.8657 07782 113
VGG16 09317 0.8792 09556 09509 0.9532 09150 0.8266 141
VGG19 09173 07919 09267 09631 09446 08775 07840 99
Ensemble-MV3! 0.9514 0.8523 0.9481 0.9877 0.9675 0.9200 0.8744 464
Ensemble-UA3? 09514 0.8456 0.9460 0.9902 09676 09179 0.8746 552
Ensemble-WA3? 09478 0.8121 09355 0.9975 0.9655 0.9048 0.8665 1755
Eg‘f:c”l!g!e 0.9460 0.8121 0.9353 0.9951 0.9643 0.9036 0.8613 875
Ensemble-MV5 09424 0.8255 09391 0.9853 09616 0.9054 08507 316
Ensemble-UA5  0.9460 0.8188 0.9374 09926 09642 09057 0.8609 608
Ensemble-WA5 ~ 0.9406 07852 0.9269 0.9975 0.9609 0.8914 0.8479 1484
Ensemble Stack5  0.9460 0.8121 0.9353 0.9951 09643 0.9036 08613 875
ViT 0.8687 0.7517 09093 09115 09104 08320 06646 31

Imv3 represents the ensemble model with majority volting method for Top-3 highest accuracy

CNN Model

2 UA3 represents the ensemble model with unweighted averaging Method

3waAs represents the ensemble model with weighted averaging Method

4 Stack3 represents the ensemble model with stack method
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Table 4.2: Performance Metrics Comparison of Deep Learning Architectures

for 2.5x Magnification.

Architecture

Performance Metrics

Acc Sp Pr Re F1 AUC MCC DOR
DenseNetl2l 09361 0.8344 0.9497 09676 09586 0.9010 0.8199 150
DenseNetl69  0.9465 0.9094 0.9716 0.9580 0.9648 09337 0.8545 229
DenseNet201  0.9438 09224 0.9754 09504 09627 09364 08497 228
EfficientNetBO 09526 0.9159 0.9737 0.9640 0.9688 0.9400 0.8704 292
EfficientNetBL  0.9487 0.9237 09759 09564 0.9661 0.9400 0.8616 265
EfficientNetB2 09514 0.8732 09614 0.9756 09684 09244 0.8635 275
EfficientNetB3  0.9490 0.8849 0.9646 09688 0.9667 09268 0.8579 239
EfficientNetB4 09227 0.8642 09573 09408 09490 0.9025 07903 101
EfficientNetB7  0.9065 0.7646 09289 0.9504 09395 0.8575 0.7349 62
MobileNet ~ 0.8772 0.6507 0.8976 009472 09218 07990 0.6422 33
MobileNetV2 — 0.8619 05511 0.8735 09580 09138 07545 05865 28
ResNet50 09453 0.8926 0.9666 0.9616 09641 09271 0.8493 208
ResNetl01 09388 0.8140 0.9538 09703 09620 09301 0.8058 143
ResNetl52 09401 0.8292 09486 09744 09613 09018 0.8303 185
VGG16 0.9444 0.8564 0.9563 09716 09639 09140 0.8436 204
VGG19 09157 07723 0.9317 09600 0.9456 0.8662 0.7597 81
Ensemble-MV3 0.9554 09030 09700 09716 09708 09373 08761 318
Ensemble-UA3 0.9554 09004 0.9693 09724 09708 09364 08759 318
Ensemble-WA3 0.9551 0.8875 0.9656 09760 0.9708 009317 08742 321
ngaeg?ge 0.9548 0.8952 0.9678 09732 09705 09343 08739 310
Ensemble-MV5 0.9609 09198 09752 0.9736 0.9744 09467 0.8918 423
Ensemble-UA5 09523 0.8900 0.9662 0.9716 0.9689 09308 08671 277
Ensemble-WA5 0.9560 0.8926 09671 09756 09713 09341 08770 332
Eg‘:‘ggge 0.9600 0.9185 0.9747 09728 0.9738 0.9556 0.8893 403
ViT 0.9021 0.6438 0.9148 09674 09404 09360 06762 54
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Table 4.3: Performance Metrics Comparison of Deep Learning Architectures

for 5x Magnification.

Architecture

Performance Metrics

Acc Sp Pr Re F1 AUC MCC DOR

DenseNetl2l 09126 0.7584 09310 09579 09443 08581 07437 71
DenseNet169 09055 0.7389 09256 0.9545 09398 0.8467 07223 59
DenseNet201 ~ 0.8928 0.6375 0.008 0.9678 09331 0.8027 06758 53
EfficientNetBO  0.9272 0.8295 0.9502 0.9559 0.9530 0.8927 0.7912 105
EfficientNetBl  0.9169 0.8166 0.9461 09464 09463 0.8815 0.7634 79
EfficientNetB2  0.9223 0.8235 09483 09513 009498 0.8874 07778 91
EfficientNetB3  0.9236 0.8529 0.9562 09444 09503 0.8987 0.7860 99
EfficientNetB4 0.9228 08189 09471 09533 09502 08861 0.7784 92
EfficientNetB7  0.9175 07901 09393 09549 09470 0.8725 0.7607 80
MobileNet ~ 0.8759 05578 0.8818 09694 09235 07636 06179 40
MobileNetvV2 — 0.8628 0.4656 0.8618 09795 0.9169 07225 05706 42
ResNet50 09121 07344 09251 09644 09443 09494 07399 75

ResNetl0l 009177 08486 09547 09380 09463 0.8933 07709 85
ResNetl52 009119 07629 09320 09557 09437 0.8593 07424 69
VGG16 0.9208 0.8038 09430 09552 09491 0.8795 07711 87

VGG19 09162 08095 009442 09475 009459 08785 07602 77

Ensemble-MV3 09371 0.8600 0.9589 0.9598 0.9593 0.9099 0.8207 147
Ensemble-UA3 0.9384 0.8566 0.9580 0.9625 0.9603 0.9095 0.8237 153
Ensemble-WA3 0.9347 08161 09472 09695 09582 0.8928 0.8096 141
Egi:g(g'e 0.9360 0.8255 0.9497 09685 09590 0.8970 0.8142 145

Ensemble-MV5 09394 0.8589 0.9587 0.9631 09609 009110 0.8265 159
Ensemble-UA5 0.9367 0.8486 0.9558 0.9626 009592 0.9056 0.8182 144
Ensemble-WA5 0.9345 0.8141 09467 09699 09582 0.8920 0.8091 141
ng;;?(g'e 09365 0.8243 0.9494 09695 09594 0.8969 0.8155 149

ViT 0.8935 07207 09200 09443 09320 09370 06880 44
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Comparison of Model Performance Across Magnification Levels
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Figure 4.1: Comparison of classification accuracy for CNN-based models and

VIT across three magnification levels (1.25x, 2.5%, and 5x).

4.3 Classification Performance Analysis of CNN Architectures

For VGG family, they demonstrated consistent and promising performance
across all three magnification levels, with VGG16 standing out in particular. As
shown in Table 4.4, which recorded the Top-5 performing models, VGG16
achieved the highest accuracy at 1.25x magnification with 93.17%, ranked
among the Top-5 at 5x magnification with 92.08% accuracy. VGG19 also
performed well, ranking fourth at 1.25x with an accuracy of 91.73%. Across all
magnifications, both VGG16 and VGG19 showed strong results, although
VGG16 consistently outperformed VGG19 in terms of accuracy, precision, and
AUC. both variants exhibited a drop in precision and MCC at higher
magnifications, indicating an increase in false positives. This suggests that at
higher magnifications, the models became more aggressive in detecting cancer,
leading to an increased risk of misclassifying normal tissue as malignant.

For ResNet family, ResNetl01 generally outperformed the other
variants at lower magnifications (1.25x and 2.5%), with the highest accuracy and
MCC at 1.25x and strong recall at 2.5x. However, at 5%, its F1-score and MCC
dropped, allowing ResNet50 to rival or even exceed its performance in some
metrics. This could be related to ResNet101's depth, which allows for subtle

feature extraction at moderate resolutions but becomes less efficient on high-
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resolution inputs, whereas shallower models such as ResNet50 may generalize
better and resist overfitting. Besides, despite being deeper, ResNet152 showed
less consistency, with signs of overfitting at 2.5x (lower MCC) and a slight drop
in recall at 5x. This suggests that excessive depth may introduce noise
sensitivity and reduced generalization on fine-grained patches. Moreover,
ResNet50, the shallower variant, performed moderately and consistently b but
underperformed at 1.25x and 5x, likely due to limited capacity to capture
complex features across scales. These trends suggest that ResNet101 offers an
optimal trade-off between representational power and generalization in
histopathological image classification, while excessively deep architectures like
ResNet152 may become vulnerable to noise or reduced contextual diversity.

For DenseNet family, they demonstrated generally consistent
performance across the three magnification levels among other CNNs, serving
as average-performing models among CNNSs. Across all magnification levels,
DenseNet169 emerged as the most balanced variant, achieving the highest
accuracy (94.65%) along with strong recall, F1-score, and MCC. In contrast,
DenseNet121, the lightest variant, showed comparatively lower performance at
1.25x and 2.5x, likely due to its limited depth restricting its ability to capture
rich feature hierarchies. Nevertheless, it remained competitive, with accuracy
consistently above 89%, showing its efficiency despite lower complexity.
DenseNet201 performed well at 2.5x due to its dense connectivity, allowing for
gradient flow and feature reuse, but suffered at higher magnification. These
patterns indicate that DenseNet169 offers an effective trade-off between model
complexity and generalization across varying resolutions.

The MobileNet family delivered lightweight and efficient performance
across magnifications, though generally underperformed compared to deeper
networks like ResNet and DenseNet. The best result within the family was
achieved by MobileNet at 2.5x magnification, with 87.72% accuracy, strong
specificity, presision and MCC. In contrast, the original MobileNetv2 struggled
at all scale, which may due to its architecture trades accuracy for speed, which
becomes a limiting factor in tasks requiring deep visual understanding. At 1.25x
magnification, both variants experienced performance drops, particularly in
recall and MCC, suggesting that their shallow architectures could not effectively

capture broad contextual information from low-resolution patches. Remarkably,
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both models showed more stable performance at 2.5% magnification, where the
moderate-frequency details appeared to align better with MobileNet’s depth-
wise separable convolutions. The higher-capacity model achieved 87.72%
accuracy with improved precision and MCC, showing better adaptation to
detailed tissue regions. However, overall variability across scales indicates that
while MobileNet is computationally efficient, it lacks the representational
power to consistently handle the complexity of histopathological features at
varying resolutions.

Last but not least, the EfficientNet family showed consistently high
and stable performance across all magnification levels, outperforming most
other model families in overall metrics. This is evident as EfficientNet models
dominated the Top-5 highest-performing models at 2.5x% and also held a strong
presence at 5x, outperforming most other CNN families. EfficientNetBO
standing out by achieving the highest accuracy of 95.26% at 2.5x magnification
and the best overall performance across metrics. This superior result can be
attributed to EfficientNet's compound scaling strategy, which uniformly
balances depth, width, and input resolution, allowing deeper models to learn
complex features more effectively. Notably, even smaller variants like
EfficientNetBO and B1 performed competitively at 2.5%, indicating the
efficiency of the architecture regardless of model size. However, performance
declined at the lower (1.25x) and higher (5%) magnifications. Deeper variants
such as B3 and B4 were more affected, possibly because their increased
complexity demands richer and more balanced visual information. Surprisingly,
the deepest variant, EfficientNetB7, demonstrated improved performance with
increasing magnification, suggesting its potential to capture finer histological
details at higher resolutions. These results highlight EfficientNet’s strength in
handling multi-scale image resolutions while also revealing its sensitivity to
suboptimal input scales, particularly for less complex tissue features or lower-
resolution patterns.

In short, EfficientNet and VGG families stood out as the top-
performing architectures, consistently ranking among the best models across
magnification levels. EfficientNetBO demonstrated the highest overall
performance with balanced depth and efficiency, while VGG16 showed
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unexpected competitiveness despite its older architecture, likely due to its
simplicity and strong feature extraction at early layers.

In comaparison among all CNNs models, the 2.5x magnification
consistently yielded the highest overall performance across most architectures
variants, including ResNet, DenseNet, MobileNet, and EfficientNet. This
intermediate scale appears to offer an optimal balance between local cellular
detail and broader tissue context, allowing models to extract discriminative
features without being overwhelmed by noise or losing critical fine-grained
information. In contrast, performance at 1.25x and 5x magnifications was
slightly lower. At 1.25x, the broader but coarser tissue view likely lacked the
resolution needed to capture subtle morphological differences, while at 5x,
although high detail is present, it may introduce noise or lead to overfitting,
especially in deeper models, due to limited contextual information. These
findings underscore the importance of choosing an appropriate magnification
level that aligns with the model’s capacity to generalize and the nature of the

histopathological features.

Table 4.4: Top-5 Performance of the Pre-trained Models.

Magnification | Rank Architectures Accuracy

1 VGG16 0.9317

2 ResNet101 0.9317

1.25x 3 EfficientNetB1 0.9281
4 VGG19 0.9173

5 ResNet152 0.9155

1 EfficientNetBO 0.9526

2 EfficientNetB2 0.9514

2.5x 3 EfficientNetB3 0.9490
4 EfficientNetB1 0.9487

5 DenseNet169 0.9465

1 EfficientNetBO 0.9272

2 EfficientNetB3 0.9236

5X 3 EfficientNetB4 0.9228
4 EfficientNetB2 0.9223

5 VGG16 0.9208
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4.4 Classification Performance Analysis of Ensemble Models

The ensemble models were ensembled according to the Top-3 and Top-5
performing models with ensemble techniques, including majority voting (MV),
unweighted average (UV), weighted average (WA) and stacking.

Consider the Top-3 CNNs models ensemble, MV3 and UA3 provided
the most consistent and balanced performance, while WA3 and Stack ensemble
showed slightly lower stability, likely due to the compounding of model biases
through weighting. All ensemble methods achieved their highest overall metrics
at 2.5x magnification. MV3 at 2.5x magnification led with the highest accuracy
(95.54%), followed closely by UA3 and WAS3. This trend is mirrored in other
metrics such as AUC, F1-score, precision, and MCC. It may attributed to MV3
aggregates discrete class decisions, reducing the impact of individual
misclassifications, while UA3 averages softmax probabilities, smoothing
prediction noise. Both are basic, but effective. These observations highlighted
that simple ensemble strategies like voting and unweighted averaging can be
more effective and generalizable in histopathological contexts, especially when
data resolution and patch variability introduce noise or fine-grained
discrepancies.

Consider the Top-5 CNNs models ensemble, MV5 at 2.5x
magnification consistently delivered the best overall performance, achieving the
highest accuracy of 96.09%, along with a precision of 97.52% and the highest
MCC of 89.18%. This indicates a strong balance between sensitivity and
specificity, as well as a high degree of agreement between predicted and actual
classifications. While UAS5 also showed competitive results, especially at 1.25%
magnification, where it matched Stack5 with the highest accuracy (94.60%) and
slightly outperformed in recall , making it more favorable when minimizing
false negatives is crucial. But UAS’s averaging mechanism might have helped
balance out extreme predictions, contributing to more stable recall, although its
MCC was slightly lower.

Stack5 showed competitive and stable performance, maintaining high
accuracy and MCC across all magnifications, especially at 2.5x magnification.
Unlike simple voting or averaging, stacking can learn to correct individual

model biases through a meta-learner, which might explain its overall reliability.
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However, its precision and recall metrics were slightly less optimal compared
to MVS5, indicating space for improvement in capturing fine-grained decision
boundaries. While WAS generally trailed behind MV5, UA5 and Stackb,
especially at lower magnifications, likely due to its reliance on weight
assignments that may have disproportionately favored certain base models.
From the observation from both Top-3 and Top-5 ensemble, WA
showed limitations, which might due to its sensitivity to weight distributions of
some high accuracy but with relatively poorer sensitivity or specificity models.
While UA and Stack are relatively competitive, each brings its own strengths to
different situations. UA is effective at smoothing output probabilities and
balancing bias, excelling in recall and providing a strong alternative, particularly
when minimizing false negatives is essential. On the other hand, Stack5 captures
complex inter-model dependencies, offering stable, well-rounded performance
while leveraging a meta-learner's learning potential. Last but not least, MV
emerged as the most balanced and consistently best performer among the
ensemble models. Its simple, robust mechanism avoids extreme predictions,
making it a reliable choice across all magnifications. This stability highlights its
ability to maintain high accuracy and precision while mitigating fluctuations in

model outputs.

4.5 Comparison of Top-Performing Models Among CNNs and

Ensembles
The best-performing CNN models at 1.25%, 2.5x, and 5x magnifications were
grouped as Top-CNNs and moved to this section for comparison with the
ensemble models. As shown in Figure 4.2, all ensemble models outperformed
the top-performing CNN model at both 1.25x and 5x magnifications. However,
at 2.5x magnification, UA5 slightly underperformed compared to the CNN
baseline. This might due to the ensemble averaging included predictions from
weaker models at that scale, slightly diluting the performance of the top-
performing CNN.

Further looking into others parameters, at 1.25x, ensemble models
consistently improved key overall metrics such as accuracy, recall, F1-score,
DOR, MCC, and AUC. Remarkably, all ensemble models had improved

accuracy by 1% to 2% from the top CNN model. These improvements suggest
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that ensembling was effective in enhancing model generalization and sensitivity
at low magnification. However, this came at the cost of reduced specificity and
precision, indicating a slight increase in false positives.

At 2.5x magnification, although the performance of UA5 was slightly
lower than the CNN baseline, other core performance metrics, including
accuracy, recall, F1-score, DOR, and MCC, were improved. These metrics
reflect better overall classification balance and robustness, particularly in
detecting positive (tumor) cases, which is crucial in cancer diagnosis.The
improvements ranged an increment from 0.3% to 0.8%, suggesting that the
ensemble of the top five CNN models effectively captured complementary
features and reduced model variance. However, the slight drop observed in
specificity and precision suggests that the model may have produced more false
positives, but this trade-off led to higher recall, indicating fewer tumor cases
were missed. This behavior is often preferred in clinical settings, where
sensitivity is prioritized to avoid missing malignant cases.

At 5x magnification, ensemble models performed admirably,
enhancing accuracy, specificity, precision, F1-score, DOR, MCC, and AUC.
Ensemble models also provide an improvement ranging from 0.7% to 1.2%,
indicating a more consistent and balanced categorization at higher
magnification, probably due to the ensemble's ability to filter noise and refine
predictions. However, recall was reduced significantly, indicating a more
conservative classification method that resulted in fewer false positives while
missing some real tumor cases. The result suggests that ensembles at this
resolution prioritized reliability and precision, which improves clinical
applicability in situations when reducing false alarms is crucial.

Overall, while ensemble techniques enhanced several performance
aspects, their effectiveness varied across magnification levels. These results
should be interpreted in the context of clinical priorities, such as emphasizing
higher recall to minimize missed diagnoses or higher precision to reduce false

positives.
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Top Model Performance Across Magnification Levels
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Figure 4.2: Comparison of Top-Performing Model Performance Across

Magnification Levels.

4.6 Visual Interpretability Analysis of CNNs
Grad-CAM was applied to both normal and tumor tissues using the top three
pretrained CNN models, including VGG, ResNet, and EfficientNet, to visualize
and interpret the regions localized by each model, as shown in Figure 4.3. This
approach provided a detailed visual analysis of the areas in the images that the
model focused on to make its predictions. The variations in heatmap intensity
values reflect the level of attention the model gives to specific areas when
making decisions, with warmer colors (e.g., red and yellow) representing areas
of high attention and cooler colors (e.g., blue) indicating regions of low attention.
Focusing on benign tissue, VGG and EfficientNet exhibit more
localized activations, focusing on specific regions of the image. In contrast,
ResNet show higher activation across the entire image, indicating a broader area
of attention. This indicated that VGG and EfficientNet concentrate their
attention on specific regions of the image for the prediction, while ResNet tends
to integrate information from a broader area. These variations in activation
patterns reveal how each model processes and interprets images. For instance,
ResNet potentially leveraged a more comprehensive view of the image for its
predictions, while EfficientNetBO and VGG16 focused on specific regions,

suggesting a more localized approach in their analysis. This difference in
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activation patterns provides valuable insights into the distinct strategies each
model employs for image classification.

Focusing on tumor tissue, all models showed significant similarity in
the regions of activation, although there are some differences in color intensity,
except VGG at 1.25x magnification. It obviously showed that VGG at 1.25%
concentrated its attention on the corners of the image, while both ResNet and
EfficientNet localized their focus toward the central region of the patch.
Although all models produced correct predictions, this variation in activation
patterns highlights the distinct interpretative strategies used by each model,
suggesting that even with similar outcomes, their internal feature recognition
processes might differ. These understandings can help guide model selection
and refinement in histopathology applications, ultimately improving
classification accuracy and interpretability by explaining how each model
makes its decision.

Furthermore, Grad-CAM visualizations for benign tissue typically
appeared predominantly blue, indicating low model activation across the image.
This reflects the absence of discriminative pathological features, suggesting that
the model confidently recognized the tissue as normal without focusing on any
specific abnormal region. In some normal tissue patches, such as the benign
tissue classified by ResNet at 2.5x magnification, Grad-CAM visualizations
showed localized regions of high activation. Despite this focused attention, the
overall prediction probability remained below the tumor classification threshold.
This suggests that while the model identified potentially ambiguous features,
they were not sufficient to override its classification of the tissue as benign. It
may also reflect areas of normal histological variability or borderline features

that the model considered but ultimately dismissed.
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Figure 4.3: Visual Interpretability Analysis using Grad-Cam.

4.7 Performance Comparison with Vision Transformer (ViT)

To further validate the effectiveness of the proposed model, a ViT architecture
was also employed as a baseline model for comparison using the same dataset,
enabling performance benchmarking against non-CNN-based approaches.
When compared to the fine-tuned CNN models shown in Figure 4.1, only the
MobileNet family performed worse than the fine-tuned ViT. According to
Figure 4.4, the best-performing CNN models, along with the ensemble models
comprising three and five CNNs, all outperformed the fine-tuned ViT. This
demonstrated the superior effectiveness of the proposed CNN-based approaches
and the ensemble learning technique on the same dataset.
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Accuracy of Top-Performing CNN, Ensemble, and ViT Models
Across Magnification Levels
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Figure 4.4: Performance Comparison among Different Models.

4.8 Challenges of the Study

One of the main challenges encountered in this study was the issue of overfitting.
The CPTAC-HNSCC dataset used is relatively small for deep learning
applications, which increases the risk of the models memorizing training data
rather than learning generalizable patterns. Moreover, the dataset contains 122
normal slides and 268 tumor slides, resulting in a class imbalance. The models
tended to favor the majority class (tumor tissue), potentially leading to
overfitting, where they became overly specialized in recognizing dominant
patterns while struggling to generalize to the underrepresented normal tissue in
unseen data. To address this, L2 regularization was incorporated during training
to reduce overfitting. While this approach helped control validation loss, a
noticeable gap between validation and testing accuracy still remained,
suggesting that the models had limited generalization capability and were still

influenced by patterns specific to the training data.

4.9 Summary

This study proposed a robust pipeline of model training for HNSCC cancer
detection. the classification performance of various CNN architectures and
ensemble strategies on histopathological image patches at three different
magnification levels (1.25x%, 2.5x%, and 5x), targeting accurate differentiation

between tumor and normal tissues, which an essential task in computer-aided
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cancer diagnostics. The individual CNN models displayed varied performance
across magnifications, with EfficientNetBO achieving the highest overall
accuracy. EfficientNet and VGG family consistently delivered robust and
balanced results, indicating their suitability as general-purpose backbones for
histopathological image analysis pipelines. The ensemble models, which
combined the predictions of individual CNN models, outperformed most of the
individual models, highlighting the benefit of leveraging multiple architectures
for improved accuracy and robustness. The MV5 ensemble model achieved the
highest performance across all sectors, with an accuracy of 96.09%,
outperforming both individual CNN models and other ensemble approaches.

In terms of visual interpretability, Grad-CAM visualizations indicated
that the CNN models focused on regions consistent with tissue structures,
providing meaningful insights into their decision-making process. The
comparison of top-performing CNN models (VGG16, EfficientNetBO, and
DenseNet169) revealed that while the EfficientNetB0O model excelled at higher
magnifications, DenseNet169 was more robust across different magnifications.

Afterward, a performance comparison with the ViT model revealed
that, while VIiT delivered competitive results, CNN-based ensemble models
outperformed ViT in classification tasks, particularly at higher magnifications,
highlighting CNNs' superiority in histopathological image processing.
Therefore, the further evident that the proposed pipeline, including image pre-
processing, transfer learning with CNNs and ensembling the top performance
CNNs, was effective for enhancing classification accuracy in HNSCC detection
and demonstrates strong potential for broader application in digital pathology
workflows. The improved performance of ensemble models over individual
CNNs can be attributed to their ability to integrate diverse feature
representations and decision boundaries from multiple architectures, thereby
compensating for the limitations of any single model. This fusion enhances the
model's robustness, reduces variance, and provides more reliable predictions,
especially in complex and heterogeneous tissue samples.

Such a pipeline could be integrated into CAD systems to assist
pathologists by pre-screening slides, identifying suspicious regions, or
prioritizing high-risk cases, ultimately improving diagnostic efficiency and

accuracy. Furthermore, the interpretability component enabled by Grad-CAM
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visualizations enhances clinical trust and transparency by allowing experts to
verify that model attention aligns with histologically relevant structures. The
combination of ensemble learning with careful magnification handling and
model interpretability tools has the potential to significantly advance Al-driven
histopathological analysis, making it more reliable and suitable for real-world
clinical deployment.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

This study proposed a robust and systematic deep learning pipeline for the
classification of head and neck squamous cell carcinoma in histopathological
images, utilizing both convolutional neural network architectures and ensemble
learning strategies. The dataset, sourced from the CPTAC-HNSCC cohort, was
stain-normalized and processed into image patches at three magnification levels
(1.25%, 2.5%, and 5x), allowing a multi-scale examination of tissue
characteristics.

Individual CNN models demonstrated varied performance, with
EfficientNetBO0 achieving the highest accuracy among single models. Ensemble
methods, particularly the MV5 ensemble, consistently outperformed individual
CNN models, achieving the highest accuracy of 96.09% along with superior
performance across other key metrics, including specificity (92%), precision
(97%), F1-score (97%), and AUC (95%). This demonstrated the effectiveness
of combining diverse CNN models to improve robustness and generalizability
across magnifications. Visual interpretability through Grad-CAM provided
meaningful insights into model decision-making, aligning attention maps with
histological features and enhancing clinical trust. When compared with a Vision
Transformer model, CNN-based ensembles delivered superior classification
results. The findings validate the proposed pipeline as a reliable solution for

aiding computer-aided diagnostics in histopathology.

5.2 Recommendations for future work

To improve the clinical usability and effectiveness of Al-driven
histopathological investigation, future research should concentrate on creating
clinically deployable Al tools that connect smoothly with digital pathology
systems. This includes optimizing user interfaces for pathologists, ensuring
regulatory compliance, and validating performance in prospective clinical trials.

Multi-modal learning also holds significant potential for precision oncology. By
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combining histopathological image features with clinical data, such as age,
tumor stage, and genomic profiles, it may further enhance diagnostic accuracy
and support personalized treatment planning. Incorporating larger and more
heterogeneous datasets (e.g., the recent multimodal HNC dataset by Ddorrich et
al. (2024)) would enhance model generalization and help reduce overfitting.
Implementing strategies such as class-balanced sampling, synthetic patch
generation (e.g., GANSs), or focal loss can help models learn better
representations of minority classes. Through these advancements, future studies
can bridge the gap between research and clinical translation, promoting more
accurate, interpretable, and scalable cancer diagnostic tools.
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APPENDICES

Appendix A: Confusion Metrics

Table A-1: Confusion Matrix of Models at 1.25x Magnification.

Architecture TN FP FN TP
VGG16 131 18 20 387
VGG19 118 31 15 392

ResNet50 103 46 11 396
ResNet101 123 26 12 395
ResNet152 113 36 11 396

DenseNet121 109 40 21 386

DenseNet169 109 40 12 395

DenseNet201 127 22 35 372

MobileNet 93 56 26 381
MobileNetV2 41 108 7 400
EfficientNetBO 107 42 9 398
EfficientNetB1 119 30 10 397
EfficientNetB2 104 45 18 389
EfficientNetB3 107 42 13 394
EfficientNetB4 95 54 10 397
EfficientNetB7 104 45 12 395
Ens_MVote_3 127 22 5 402

Ens_UAvg 3 126 23 4 403

Ens_WAvg_3 121 28 1 406

Ens_Stack 3 121 28 2 405

Ens_MVote 5 123 26 6 401

Ens_UAvg 5 122 27 3 404

Ens_WAvg_5 117 32 1 406

Ens_Stack 5 121 28 2 405

ViT 112 37 36 371




Table A-2: Confusion Matrix of Models at 2.5x Magnification.

Architecture TN FP FN TP

VGG16 662 111 71 2429
VGG19 597 176 100 2400
ResNet50 690 83 96 2404
ResNet101 569 130 82 2682
ResNet152 641 132 64 2436
DenseNet121 645 128 81 2419
DenseNet169 703 70 105 2395
DenseNet201 713 60 124 2376
MobileNet 503 270 132 2368
MobileNetV2 426 347 105 2395
EfficientNetBO 708 65 90 2410
EfficientNetB1 714 59 109 2391
EfficientNetB2 675 98 61 2439
EfficientNetB3 684 89 78 2422
EfficientNetB4 668 105 148 2352
EfficientNetB7 591 182 124 2376
Ens_MVote_3 698 75 71 2429
Ens_UAvg_3 696 77 69 2431
Ens_WAvg_3 686 87 60 2440
Ens_Stack_3 692 81 67 2433
Ens_MVote 5 711 62 66 2434
Ens_UAvg 5 688 85 71 2429
Ens_WAvg 5 690 83 61 2439
Ens_Stack 5 710 63 68 2432
ViT 450 249 90 2674

59



Table A-3: Confusion Matrix of Models at 5x Magnification.

Architecture TN FP FN TP
VGG16 2814 687 534 11376
VGG19 2834 667 625 11285

ResNet50 2571 930 424 11486
ResNet101 2971 530 739 11171
ResNet152 2671 830 528 11382

DenseNet121 2655 846 501 11409

DenseNet169 2587 914 542 11368

DenseNet201 2232 1269 383 11527

MobileNet 1953 1548 365 11545
MobileNetV2 1630 1871 244 11666
EfficientNetBO 2904 597 525 11385
EfficientNetB1 2859 642 638 11272
EfficientNetB2 2883 618 580 11330
EfficientNetB3 2986 515 662 11248
EfficientNetB4 2867 634 556 11354
EfficientNetB7 2766 735 537 11373

Ens_MVote_3 3011 490 479 11431

Ens_UAvg_3 2999 502 447 11463

Ens_WAvg_3 2857 644 363 11547

Ens_Stack_3 2890 611 375 11535

Ens_MVote 5 3007 494 440 11470

Ens_UAvg 5 2971 530 446 11464

Ens_WAvg 5 2850 651 358 11552

Ens_Stack 5 2886 615 363 11547

ViT 2523 978 663 11247
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Appendix B: Accuracy and Loss Curves

The accuracy and loss curves were sampled and displayed from one

representative model of each architecture family.

Table B-1: Accuracy and Loss Curves Across Magnification.
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Appendix C: ROC Curves

The ROC curves were sampled and displayed from one representative model of

each architecture family.

Table C-1: ROC Curves Across Magnification.
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